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ABSTRACT 

 
For the last several years curcumin has attracted considerable interest due to its ability to inhibit 

cancer cell proliferation in vitro and in vivo by targeting a number of different cell signaling and 

molecular mechanism pathways in cancer cells. These results prove its potential to be considered 

as a future anticancer drug candidate. However its metabolic instability, low oral bioavailability 

and high clearance have limited its use as a clinical drug candidate. Subsequently enormous 

efforts have been expended by medicinal chemists to modify the curcumin structure which has 

led to the development of novel cytotoxic curcuminoid analogs.  

The replacement of the β-diketone moiety by a mono carbonyl group led to the discovery 

of the 1,5-diaryl-3-oxo-1,4- pentadienyl pharmacophore which was found to be metabolically 

stable and demonstrate high cytotoxic potencies. This class of compounds which possesses 

multiple alkylating sites are referred to as thiol alkylators based on their ability to interact 

preferentially with the thiol groups of macromolecules compared to the hydroxy and amino 

groups present in nucleic acids. The ability of this class of compounds to target multiple 

biochemical pathways has been considered to be an advantage to overcome multidrug resistance 

that is shown by many tumours to current anticancer drugs.  

My current work in this report focuses on the development of novel curcuminoid analogs 

possessing the 1,5-diaryl-3-oxo-1,4-pentadienyl pharmacophore as potent cytotoxic agents with 

the aspiration of identifying some lead molecules which can further be developed as anticancer 

drug candidates. In particular, the synthesis of novel curcuminoids based on the 3,5-

bis(arylidene)-4-piperidone nucleus is pursued. One of the main objectives was to produce novel 

cytotoxins which will display selective toxicity towards malignant cells compared to normal 

cells. In order to obtain tumour-selective cytotoxins, the design of molecules was based on a 

theory of sequential cytotoxicity which states that an initial chemical attack on cellular 

constituents followed by a second chemical attack will cause more damaging effects in cancer 

cells than normal cells. The sequential alkylation reaction was proposed to take place on both of 

the olefinic carbon atoms of the 1,5-diaryl-3-oxo-1,4-pentadienyl pharmacophore in the 

molecules  at the primary binding site whereas the other part of the molecule would interact at an 

auxiliary binding site which may confer preferential toxicity to tumours. Efforts have been made 

to improve the physicochemical properties of the molecules by introducing hydrophilic groups 
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such as phosphates onto the molecules. Bioevaluations of the novel molecules disclosed in the 

thesis revealed that many of these compounds display potent cytotoxic properties towards a wide 

range of neoplastic and transformed cells and show greater cytotoxic potencies to neoplasms 

than normal cells. Most of the molecules demonstrated higher cytotoxic potencies and greater 

tumour selectivity than melphalan, a reference alkylating anticancer drug. In general, increasing 

the number of thiol alkylating sites in the molecule has increased cytotoxic potencies and 

selective toxicities to tumours compared to normal cells.  One of the major challenges in cancer 

treatment is the resistance shown by tumors towards a number of chemotherapeutic agents. The 

molecules designed in this report are chemically and structurally divergent from established 

anticancer drugs; therefore they are expected to display different modes of action and may be 

able to overcome drug resistance shown by tumours to contemporary anticancer agents.  The 

ability of novel cytotoxic agents to modulate P-glycoprotein mediated drug resistance, a major 

form of drug resistance in cancers, was verified in a neoplastic cell transfected with the mdr1 

gene. A number of molecules demonstrate remarkable multidrug resistance reversal properties in 

a neoplastic cell line and the aspiration is that one or more molecules can be developed as a 

potent multidrug resistance modulator. A striking feature of many of these curcuminoids is that 

using a dose level up to and including 300 mg/kg is well tolerated in mice and displays no 

significant toxicities. The modes of action of a number of representative potent cytotoxic 

molecules were evaluated which include apoptosis, caspase-3 activation, DNA fragmentation, 

PARP cleavage and cell cycle arrest. The mitochondrion is emerging as a potential target for 

anticancer agents and to evaluate this possibility, the effect of a number of potent cytotoxins on 

mitochondrial functions was verified. The compounds affected respiration and caused swelling in 

mitochondria. Some guidelines for future development of these molecules are suggested.  

It is hoped that this eulogy of the importance of the conjugated dienone group will 

encourage researchers to consider incorporating this structural unit into candidate cytotoxins. 
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INTRODUCTION  

 

Cancer continues to be one of the most devastating diseases in the 21
st
 century. In the last 

decades scientists have expended numerous efforts to discover novel strategies to treat cancers; 

however, in general the cure of cancer still remains elusive. Even with the evolving of newer 

treatment options arising from current technological advancements, success in cancer treatment 

often remains unsatisfactory. Besides various treatment strategies such as surgery and radiation 

therapy, chemotherapy is still considered to be as the mainstay in cancer treatment. The 

emergence of multidrug resistance in cancers and the lack of selectivity of contemporary 

anticancer drugs to cancers than normal tissue are posing serious challenges today that need to be 

addressed for the success of chemotherapy. Therefore, novel drug candidates that are structurally 

divergent from available anticancer drugs and display different modes of action are urgently 

required to treat drug-resistant tumours.  

Over the last many decades, chemotherapeutic drugs used in the clinic have ranged from 

natural products to semisynthetic and synthetically produced chemical agents. The development 

of new anticancer agents by modifying the structure of a pharmacologically active natural 

product was considered the most viable approach in the past. In the last few years, curcumin, an 

ingredient of Curcuma longa, used as a spice in curry by Asian people, has attracted the attention 

of medicinal chemists owing to its association with a wide range of pharmacological activities, 

particularly anticancer properties. The clinical use of curcumin was limited due to a number of 

factors including low systemic stability, poor bioavailability and high clearance. To address these 

issues, the structure of curcumin has been modified in a number of ways keeping in mind the 

pharmacophores in the molecule that contribute to the anticancer properties. This endeavor has 

led to a diverse class of curcumin analogs, referred to as curcuminoids. One of the important 

molecular fragments that contributes toward the anticancer properties of curcumin is the α,β-

unsaturated ketone (enone) motif which alkylates cellular thiol nucleophiles. The molecules 

possessing this fragment display an array of pharmacological activities. A strategy was evolved 

by Dimmock’s group to expand an aryl enone group (Ar-CH=CH-CO-) to a diaryl dienone 

function (Ar-CH=CH-CO-CH=CH-Ar) to enhance the alkylating potential of the molecule with a 

view to enhance anticancer properties. This diaryl dienone pharmacophore resembles the diaryl 

1,3-diketone (Ar-CH=CH-CO-CH2-CO-CH=CH-Ar) structural unit of curcumin and  has led to 
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the discovery of  novel molecules with improved cytotoxic properties and better  metabolic 

stability.  

 

Perspectives of the Ph.D. project 

To develop novel curcuminoid analogs possessing the 1,5-diaryl-3-oxo-1,4-pentadienyl 

pharmacophore based on the following hypotheses and to evaluate  their potential as cytotoxic 

and multidrug resistance agents.  

 

1. Hypotheses 

 

1.1 Incorporation of a 1,5-diaryl-3-oxo-1,4-pentadienyl (Ar-CH=CH-CO-CH=CH-Ar) group 

onto alicyclic and heterocyclic scaffolds will lead to potent cytotoxic agents. 

1.2 Sequential attack of cellular thiols onto the 1,5-diaryl-3-oxo-1,4-pentadienyl (Ar-

CH=CH-CO-CH=CH-Ar) scaffold will be more detrimental to neoplasms compared to 

normal tissues. 

1.3 Doubling the number of sites available for thiol alkylation in a candidate cytotoxin will 

increase cytotoxic potency by more than two-fold. 

1.4 The design of cytotoxic molecules that are structurally divergent from contemporary 

anticancer agents may prove to be beneficial in overcoming drug resistance shown by 

tumours towards a number of anticancer agents. 

 

2. Research Objectives 

 

2.1 3,5-bis(Benzylidene)-4-piperidones as building blocks for designing cytotoxic agents: A 

proof of concept.  

 

2.2 Design and synthesis of N-phosphonate derivatives of 3,5-bis(benzylidene)-4-piperidones 

as a novel class of cytotoxic and multidrug resistance reversal agents. 
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2.3 To examine the theory of sequential cytotoxicity using N-phosphonate derivatives of 3,5-

bis(benzylidene)-4-piperidones. 

2.4 To develop 3,5-bis(benzylidene)-4-piperidones dimers  as a novel class of thiol targeting 

cytotoxic agents- A proof of concept of cytotoxic synergism. 

 

2.5 To design and prepare aryl substituted 3,5-bis(benzylidene)-4-piperidone dimers as novel 

cytotoxic agents based on the lead compounds identified from the objective 2.4.  

 

2.6 To investigate the effect of cytotoxic agents possessing the 1,5-diaryl-3-oxo-1,4-

pentadienyl pharmacophore on mitochondrial functions. The question to be addressed is 

whether cytotoxicity shown by the lead potent cytotoxic agents is mediated by targeting 

mitochondria. 
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CHAPTER 1 

 

Relationship of Chapter 1 to the objectives of this project 

A thorough literature survey on cytotoxic molecules possessing the 1,5-diaryl-3-oxo-1,4-

pentadienyl pharmacophore (Ar-CH=CH-CO-CH=CH-Ar) was important in order to gain some 

insight for designing the novel molecules in this study.   

 

Description 

The review outlines a number of important sections : (i) the genesis of 1,5-diaryl-3-oxo-

1,4-pentadiene as a cytotoxic pharmacophore, (ii)  its selective affinity for thiols, (iii) acyclic and 

cyclic cytotoxic molecules possessing this pharmacophore, (iii) their modes of action for 

displaying cytotoxicity, and (iv) their multidrug resistance reversal properties.  

 

Author Contribution 

A literature survey on cytotoxic molecules possessing the 1,5-diaryl-3-oxo-1,4-

pentadienyl pharmacophore was conducted by me and the review was written by myself with the 

guidance of my supervisors Drs. J.R. Dimmock and D. K. J. Gorecki. 
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CHAPTER 1 

CYTOTOXIC 1,5-DIARYL-3-OXO-1,4-PENTADIENES: A REVIEW OF THE 

LITERATURE 

1. Introduction 

The economic burden due to cancer is growing exponentially across the globe day by 

day. Despite evolving treatment strategies, cancer continues to be one of the most alarming 

diagnoses and the treatment remains problematical. Besides undesired toxicities and lack of 

sufficient effectiveness of currently available chemotherapeutic drugs, multidrug resistance 

(MDR) has emerged as a serious challenge for the successful treatment of cancers. The discovery 

of novel anticancer agents that can selectively target tumours compared to normal cells and show 

efficacy against MDR tumours are the need of the hour to combat the horrendous effects of 

cancers, reduce cancer deaths and to improve the quality of  patients’ lives. 

 In the last several years, many novel chemical structures have emerged from academia 

and pharmaceutical industries that display potent anticancer properties. However, the journey 

from discovering new chemical entities and developing them into clinically useful drugs is a 

complex, expensive and time-consuming process
1,2

 especially when the attrition rate of 

anticancer compounds in the drug discovery pipeline is very high compared to finding drugs to 

treat other medical problems. There is a paradigm shift in anticancer drug discovery approach in 

the 20
th

 century that traverse from non-target to target-specific strategies which is still heavily 

debated. It has resulted in some improvements in treating cancers but is still considered to be 

very little. Undoubtedly, cancer is a multifactorial disease caused by physiological and 

mechanistic deregulation of hundreds of genes and signaling cascades and therefore it appears 

that the treatment of cancer by a specific targeted approach is unlikely to bring success. 

Therefore, the chemotherapeutic agents that can target multiple intracellular components are of 

interest. The value of developing anticancer agents that interact at multiple sites
3-5

 has been 

advocated in the literature and arguments have been made in favour of antineoplastic agents with 

multiple sites of action are more likely to overcome MDR shown by the tumours.  

The therapeutic potential of natural products continues to attract the attention of drug 

discovery researchers and these medications comprise a substantial fraction of the current 

pharmacopeia.
6,7

 Although there has been  a substantial drop in the discovery of natural product–

based drugs between 2001 and 2008
7
 due to the evolution of synthetic drugs, a large number of 
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natural product–based drugs are in clinical studies. Enormous efforts have been expended by 

medicinal chemists over many years to modify the structures of bioactive natural products to 

improve their toxicological and pharmacological properties. In recent years one such natural 

product, namely curcumin 1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadien-3,5-dione, which 

is obtained from the rhizome of Curcuma longa  and is also known as “Indian saffron” in 

Europe, has drawn the attention of numerous researchers. Curcumin possesses potent anticancer 

and chemopreventive properties
8-11

 and other biological activities such as anti-inflammatory
12

 

antibacterial
13

 and antioxidant properties.
14

 The cytotoxic potential of curcumin stems from its 

ability to suppress tumour initiation, promotion and metastasis by targeting multiple pathways, 

such as inhibiting the expression of COX2, LOX, NOS, MMP-9, uPA, TNF, chemokines, cyclin 

D1, downregulating the transcription factors NF-kB, AP-1, Egr-1, and growth factor receptors 

(such as EGFR and HER2), inhibition of kinases (protein tyrosine kinases, c-Jun N-terminal 

kinase, and protein serine/threonine kinases) and angiogenesis.
15

  The usefulness of curcumin as 

a chemotherapeutic and chemopreventitive agent which emerges from its ability to target 

multiple biochemical pathways has triggered enormous interest of medicinal chemists to develop 

novel curcuminoid analogues as future anticancer drug candidates.    

 

2. Genesis of the 1,5-diaryl-3-oxo-1,4-pentadienyl pharmacophore 

Despite the promising bioactivities associated with curcumin, its clinical development 

has been hampered by its poor aqueous solubility, low in vivo efficacy and unfavourable and 

highly variable pharmacokinetics.
15

 These drawbacks are attributed to its extensive first-pass 

metabolism
16

 and some degree of intestinal metabolism, particularly glucuronidation and 

sulfation.
17

 Curcumin undergoes metabolic reduction to form dihydrocurcumin, 

tetrahydrocurcumin, hexahydrocurcumin and octahydrocurcumin, which are subsequently 

converted into monoglucuronide conjugates.
17

  Curcumin faces challenges of P-glycoprotein 

(Pgp)  mediated drug resistance when administered via the oral route. The bioavailability of 

curcumin increases by 154 and 2000 % in rats and humans, respectively, when administered with 

l-piperoylpiperidine (piperine) which is an inhibitor of UGT, CYP3A4 and Pgp.
18 
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 Figure 1: Development of the 1,5-diaryl-3-oxo-1,4-pentadiene pharmacophore  

 

            There has been much research devoted over the last few years to developing and 

understanding the structure-activity relationships (SAR) which are responsible for the 

pharmacological properties and metabolic instability of curcumin. Attempts have been made to 

produce curcumin analogues with increased potencies while retaining its low toxicity. In order to 

produce such molecules, molecular modifications of three regions of the curcumin structure have 

been undertaken, i. e., the aromatic ring, the β-diketone moiety and the two conjugated α,β-

unsaturated keto groups. Curcumin is a symmetrical bidentated ligand containing two α,β-

unsaturated diketone moieties flanked by 4-hydroxy-3-methoxyphenyl groups. The study carried 

out by Wang et al suggests that the instability of curcumin in aqueous solution is mainly due to 

the central diketone motif and the hydroxyl groups in the two terminal phenyl rings.
19

 The  α, β-

unsaturated keto motifs in curcumin were also found to be crucial for displaying anticancer 

properties. Therefore the next generation of curcuminoid analogues retains these motifs while the 

central β-diketone moiety was truncated to a mono-carbonyl group to produce 1,5-diaryl-3-oxo-

1,4-pentadienes (Figure 1).  

The development of 1,5-diaryl-3-oxo-1,4-pentadienes as cytotoxic agents may have been 

influenced by their structural similarity to chalcones (1,3-diaryl-2-propenones) which  possess an 

array of biological activities including potent cytotoxic properties.
20,21

 This argument was made 

on the basis that the bioactivities displayed by the chalcones are due to the α,β-unsaturated keto 

motif which acts as a Michael acceptor for cellular nucleophiles and the introduction of an 

additional ene group produces a dienone  which will enhance the alkylating potential and lead to 

enhanced  cytotoxic potencies. This new class of compounds possess potent cytotoxic activities 

and the results to date do not indicate significant toxicities in rodents. 

Since the awareness of the utility of the 1,5-diaryl-3-oxo-1,4-pentadienyl pharmacophore 

in cancer chemotherapy, numerous efforts have been expended by medicinal chemists to develop 



 

8 

 

novel 1,5-diaryl-3-oxo-1,4-pentadienes as cytotoxic agents. Progress has been made to elucidate 

the mode of action of this class of compounds by which cytotoxicity is mediated and a number of 

molecules display promising in vivo efficacy. With such a success story, it has become necessary 

to collate the current developments in this field for the benefit of  people who are researching in 

this area. The aim of this review is to emphasize the potential utility of 1,5-diaryl-3-oxo-1,4-

pentadienes as future chemotherapeutic and multidrug resistance modulating agents and to 

outline recent developments of their molecular targets.  

 

3. 1,5-Diaryl-3-oxo-1,4-pentadienes as thiol alkylators 

             A number of studies demonstrate that depletion of thiol concentrations prior to treatment 

with various anticancer drugs increase toxicities to cancer cells compared to the use of the drug 

alone.
22-26

 Since the rate and extent of thiol depletion in tumours differ from normal cells,
27 

the 

development of cytotoxic agents that target cellular thiols may prove to display selective 

toxicities to neoplasms compared to normal cells. Various cytotoxic α,β-unsaturated ketones 

demonstrate marked selective affinity for cellular thiols as compared to amino or hydroxy 

groups.
28,29

 Therefore it was proposed that the use of thiol alkylators in cancer chemotherapy 

may avoid the problem of genotoxic properties that are inherent with a number of anticancer 

drugs.
30,31

 The potential utility of thiol alkylators in cancer chemotherapy was reviewed a few 

years ago.
32

 Based on the above observations it was proposed that the compounds bearing 

multiple sites for nucleophilic attack, e.g. arylidene dienones by cellular thiols, would prove to 

be potent cytotoxins. This phenomenon was verified using a novel group of cytotoxic 

compounds 1a,b which displayed IC50 values of 16 and 134 picomolar towards P388/MRI cells, 

respectively.
33

 1a and 1b reduced hepatic GSH concentrations by 19 and 29%, respectively, 

when a dose of 0.87 mmol/kg of these compounds was administered to mice, suggesting that an 

increase in additional thiol alkylating sites enhances thiol depletion.  
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Further Dimmock and coworkers
34

 formulated a hypothesis of sequential cytotoxicity 

which states that “a chemical insult prior to a subsequent chemical attack on cellular thiol 

constituents may produce greater toxicity to cancers than normal cells”. In other words, an initial 

reaction with a cellular thiol by cytotoxic agents will sensitize the malignant cells preferentially 

and a further interaction with another thiol will cause greater damage to malignant cells than 

normal cells (Figure 2).  

 

 

Figure 2: Sequential Michael reaction of protein thiols with an arylidene dienone electrophile 

 Sun and coworkers
35

 investigated the reactivity of GSH and other thiol containing 

dipeptides with the symmetrical dienones 2 and 3  which possess cytotoxic, anti-angiogenic and 

antitumor activities. Conjugation of 2 and 3 with 2.1 equivalents of L-glutathione in aqueous 

acetonitrile at ambient temperature gave only the corresponding bis-adducts namely 2-(GSH)2 

and 3-(GSH)2 whereas a 1.0 equivalent of L-glutathione with 3 delivered a mixture of mono- and 

bis-adducts, 3-(GSH) and 3-(GSH)2, with the mono-adduct as the major product as identified by 

LC/MS. Conjugation of GSH with 3 takes place instantaneously while conjugation with 2 takes 

several hours to complete. The thiol alkylating ability of the dienones 2 and 3 along with several 

other cysteine-containing dipeptides such as Cys-Phe and Cys-Gly gave the corresponding 

conjugated adducts. The conjugates of 3 with Cys-Gly instantaneously form the 3-(Cys-Gly)2 

adduct while  2 reacts with Cys-Gly to yield the bis-adduct at a much slower rate which takes at 

least 7 h at room temperature. Conjugation with higher mass dipeptides, for instance Cys-Phe, 

proceeds much more slowly relative to Cys-Gly. These observations suggest that the reactivity of 

the thiol is very much dependent on the electrophilicity of the arylidene carbon atoms that is 

influenced by the nature of the aryl ring, the electronic effect of the aryl substituents and the 

molecular size of the thiol group. From these observations it was proposed that the anticancer 

effects of 2 and 3 are mediated in part by redox-mediated induction of apoptosis. Investigation of 

the cytotoxic activities of the conjugates 2-(GSH)2 and 3-(GSH)2 demonstrated potent 

cytotoxicity  with IC50 values of 1.5 µM and 1.0 µM against MDA-MB-435 human breast cancer 

cells which was very similar to the cytotoxic potencies of the parent compounds 2 and 3.  
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Figure 3:  Formation of glutathione adducts 

 

Another interesting phenomena observed from this study was that the reaction of 2-

(GSH)2 and 3 in a molar ratio of 1:1 resulted in the formation of  2-GSH, 3-GSH and 3-(GSH)2 

along with unreacted 3 and 2-(GSH)2 after 8h as indicated by LC/MS analysis. While extending 

the reaction period to 48 h gave no evidence of 3, only 2-(GSH)2, 3-(GSH)2 and a small amount 

of 2 were noticed. These results demonstrate the possibility that the retro-Michael addition of 2-

(GSH)2 takes place releasing free 2 and glutathione followed by GSH reacting with 3 leading to 

the formation of the corresponding mono- and bis-adducts. These results again confirm that the 

coupling of 3 with GSH is much faster than 2. The glutathione conjugates represent a promising 

new series of soluble antitumor prodrugs. 

 

4. Cytotoxic 1,5-diaryl-3-oxo-1,4-pentadienes  

              A number of 1,5-diaryl-3-oxo-1,4-pentadienyl acyclic and cyclic analogs have been 

developed which display potent growth-inhibiting properties against a variety of tumours. The 

cyclic analogs are based on cycloalkanone, β-tetralone and piperidone scaffolds. Various 

symmetrical and unsymmetrical dienone derivatives have been developed based on the 

hypothesis of sequential cytotoxicity and remarks are now made in terms of their selective 

toxicities towards neoplasms compared to normal cells. 

 

4.1.  Acyclic 1,5-diaryl-3-oxo-1,4-pentadienes  
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A number of aryl-substituted acyclic diaryl dienones 6 display potent cytotoxicity.
36

 The 

reduced analogs 7 were bereft of cytotoxicity which reveals the importance of the dienone motif 

which acts as Michael acceptors for cellular thiol nucleophiles. This result further supports the 

belief that enones and dienones are alkylators capable of binding to intracellular components 

bearing sulfhydryl groups such as GSH and thioredoxin-1. 

 

 

 

The acyclic derivatives 8-9 were evaluated against androgen-independent (PC-3) and 

androgen-dependent (LNCaP) human prostate cancer cell lines.
37

 Both  8 and 9 exhibit excellent 

growth-inhibiting properties towards both these cell lines with IC50 values in the 1.4-3.8 µM 

range. The importance of 3,4-disubstitution on the aryl rings in exhibiting marked potencies was 

stressed. The methoxy group located at the meta position was found to be critical in governing 

cytotoxicity. Cytotoxic potencies were lowered 6-fold when the position of the methoxy group 

was changed to the ortho postion of the aryl ring as in 10. 

 

 

 

Song et al reported  a novel series of  cytotoxic arylidene dienone derivatives.
38

 The most 

potent compounds 11 and 12 displayed IC50 values ranging from 6.6–8.6 µM against PC-3, 

BGC-823 and Bcap37 cells. The principal mechanisms by which 11 displayed cytotoxic 

properties is by inducing apoptosis triggered by DNA laddering. 
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The structure-activity relationship of a number of bis(benzylidene)ketones has been 

reported and conclusions have been made for further development of their use in cancer 

chemotherapy. In in vitro cytotoxicity studies, the compounds 13-16 exhibited potent growth 

inhibition with a GI50 value of 0.3 µM against HCT-116 cells.
39,40

 Various observations were 

noted from the SAR studies.  (1) The 1,5-diaryl-3-oxo-1,4-pentadienyl group serves as a 

promising skeleton as the 3-oxo-1,4-pentadienyl structure is essential for eliciting cytotoxicity. 

(2) Symmetry between the two aryl rings is not an essential requirement for these compounds to 

display cytotoxicity. (3) The para-positions in the aryl rings allow the introduction of additional 

functional groups for developing novel cytotoxins. (4) Compounds possessing the 3,4,5-

substitution in the aryl rings display the highest potency. Moreover, 14 exhibited in vivo 

chemopreventive activity in the familial adenomatous polyposis (FAP) mouse screen without 

apparent toxicity.
41

 

 

 

A biotinylated dienone 17, referred to as GO-Y086, is a potent cytotoxic agent which 

specifically interacts covalently with the nuclear protein KSRP/FUBP2.
42

 The KSRP/FUBP2 

protein is involved in a variety of cellular processes, including splicing in the nucleus, mRNA 

decay, maturation of miRNA, and transcriptional control of proto-oncogenes such as c-myc.
43-46
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17 markedly suppresses the expression of the c-Myc protein, which plays an important role in 

cellular proliferation and whose expression is regulated by KSRP/FUBP2. 

 

 

 

A further investigation of 8, 14 and a related analog 18 demonstrated  high cytotoxic 

potencies against the human colorectal cancer cell lines HCT-116, HT-29 and SW480 with IC50 

values ranging between  0.51-4.48 μM compared to curcumin (IC50: 10.26-13.31 μM).
47

 In these 

cell lines 8, 14 and 18 induce apoptosis as evidenced by cleavage of  PARP and caspase-3, partly 

suggesting the way cytotoxicity is mediated by these compounds. Additionally, 8 and 18 

displayed low toxicity to WI-38 normal human lung fibroblasts (IC50 : >1,000 μM). 

 

 

A novel curcuminoid difluoro analogue 19, exhibits greater systemic and pancreatic 

tissue bioavailability compared to curcumin and has attracted considerable interest as a drug 

modality to improve the treatment outcome of patients diagnosed with pancreatic cancers.
48

 

Mechanistic investigations reveal that compound 19 down regulates Akt, cyclooxygenase-2, 

prostaglandin E2, vascular endothelial growth factor, and NF-κB as well as possessing DNA 

binding activity. The cytotoxicity displayed by 19 is mainly due to induction of apoptosis. A 

copper  dichloride complex of  19 was developed  to examine whether it improves cytotoxicity; 

however, it was found to be inactive in these screens.  

 

 

4.2. Cyclic 1,5-Diaryl-3-oxo-1,4-pentadienes 
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4.2.1 Cycloalkanone  analogs 

 

  

 

  

 

 

 

 A series of bis(benzylidene)cyclohexanones 20 were screened against murine L1210 cells 

and human T-lymphocytes (Molt, CEM). The cytotoxic potencies (IC50) vary from 0.2 to >50 

µM.
49

 The most potent compound 20  [R
1
 = O(CH2)3N(CH3)2, R

2
 = H] showed an IC50 value of 

0.2 µM revealing 2-fold higher potencies than  melphalan. Moreover 20  has average IC50 values 

of 1.55 µM against a number of human tumour cell lines from different neoplastic conditions 

using the NCI screen. As the alicyclic scaffold controls the relative positions of the olefinic 

carbon for interaction with cellular thiol nucleophiles, two analogs of 20 (R
1
 = R

2
 = H), ( referred 

to subsequently as 20a) namely 21 and 22 were prepared and their cytotoxic potencies were 

compared against 20a in order to investigate whether a variation in the size of the cyclic ring 

which changes the relative location of the olefinic carbon  atoms influences cytotoxic potencies. 

The IC50 values were in the order of 20a (4.4 µM)>  21 (7.5 µM)> 22 (16 µM). These results 

suggest that a six-membered cyclic structure is the preferred over 5 and 7-membered rings. A 

negative correlation between the Hammett sigma and IC50 values suggests that the placement of 

strongly electron-withdrawing groups in the aryl rings enhances cytotoxic potencies. 

 In order to evaluate the hypothesis of sequential cytotoxicity, a series of  asymmetric 2,6-

bis(benzylidene)cyclohexanones 23-27 were designed.
50,51

 The compounds in these series  

display good tolerability in mice up to and including a dose level of 300 mg/kg.
50,51

 In series 23, 

the electronic environment of two olefinic carbon C
A
 and C

B
  vary considerably and hence  a 

sequential attack of cellular thiols on the olefinic carbon atoms can be achieved which may cause 

greater damage to malignant tissues. Both series 23 and 24 demonstrated comparable cytotoxic 

potencies as melphalan and IC50 values ranged from 3-6 µM.
50

 As the environment of certain 

tumours is more acidic than the corresponding normal cells,
52

 the piperidinyl analogs 24 could 

display preferential cytotoxicity of tumours in at least two different ways. (a) In the more acidic 
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milieu, there will be a higher percentage of the molecules in the ionized form, i.e. , the 

piperidinyl nitrogen atom carries a positive charge. Hence the electron density on the olefinic 

carbon atoms will be lowered  and enhanced electrophilic attack with cellular thiols can occur. 

(b) The protonated heterocycle may undergo elimination leading to a quinone methide which is 

predicted to be a powerful alkylating agent. A  linear correlation between the Hammett σ values 

and the atomic charges on the C
A
 atoms was noted (p < 0.05).  

 

 In series 25-27, a strong electron-withdrawing nitro group was introduced into the ortho, 

meta or para locations in ring B while the ring A possessed substituents with diverse electronic 

effects (σ values) in order to create a differential in the electronic charges at the olefinic carbons 

C
A
 and C

B
.
51

 The compounds exhibited average IC50 values of 1-10 µM against Molt 4/C8, CEM 

and L1210 cell lines. The potency order of the series 25-27 was in order of 25 (ortho)> 26(meta) 

> 27 (para). The most potent compound 25 (R
1
=R

2
=R

3
=OCH3) displayed an average IC50 figures 

of 0.88 µM  against the three cell lines.  Due to the strong electron-withdrawing effect of nitro 

groups, a polarization of the π electrons occurred towards the olefinic carbon C
B
 in the 1,5-

diaryl-3-oxo-1,4-pentadienyl group suggesting that an initial thiol alkylation takes place at C
A
. A 

negative linear correlation between cytotoxic potencies and electronic charges at the olefinic 

carbon C
A
 also support this observation. A substantial change in the average θA figures (the 

torsion angle between ring A and the C
A
 atoms) of the series 25 (76.8º) as compared to 26 (51.3º) 

and 27 (51.1º) suggests that the design of new series of analogs with larger θA values such as the 

formation of congeners with large Taft ES constants should be considered. The cytotoxic potency 
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was not influenced by the hydrophobicity of the molecules as the average log P figures of series 

25, 26 and 27 are very similar.  

 

 

 Lee et al reported a series of  2,6-bis(benzylidene)-4-phenylcyclohexanones which 

displayed IC50 values in the low micromolar range against murine B16 melanoma and L1210 

leukemia cell lines. Two potent cytotoxic molecules 28 and 29 were identified possessing 

average IC50 values of 0.51 and 0.35 µM against B16 and L1210 cell lines, respectively.
53

   

 

 

Photodynamic therapy (PDT) is a promising noninvasive treatment for cancer which 

offers the advantage of high selectivity to malignant targets vs. normal cells.
54

 It uses light to 

activate a tumor-localized photosensitizer via the in situ generation of highly cytotoxic reactive 

oxygen species (ROS).
55

 Due to the limited tissue penetration, the  applications of PDT are 

mainly confined to the superficial tissues of an organ, such as in esophageal cancer and skin 

diseases.
56

 In recent years two-photon excited PDT (TPE-PDT) offers  the significant benefit of 

deep tissue penetration since two photons of infrared light rather than one photon of visible light 

are absorbed by the photosensitizer which helps resolve the penetration problem.
57,58 
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A series of polyethylene glycol-functionalized benzylidene cyclopentanones with varying 

lipid/water partition coefficients were developed as photosensitizer cytotoxic agents.
59

 Among 

them, two analogs 30 and 31 exhibited good solubility in PBS (>2 mg/ml, which is sufficient for 

clinical venous injection) and produced high ROS, large two-photon absorption and low dark 

toxicity under the therapy dosage. They were absorbed efficiently by human rectal cancer 

HRC1116 cells and demonstrated strong two-photon excited PDT activity in in vitro cell 

experiments. Both 30 and 31 accumulate mainly in the mitochondria. 

 

4.2.2  β-Tetralone analogs 

 

 

 

 In view of the objective of achieving successive thiol reactions on arylidene olefinic 

carbons, a series of 1,3-bis(benzylidene)-3,4-dihydro-1H-naphthalen-2-ones 32
60

 was created in 

which carbon atoms C
A
 and C

B
 are in different electronic environments. All of the 

diaryldienones 32 displayed potent cytotoxicity with IC50 figures generally in the low 

micromolar range against human lymphocytes (Molt 4/C8, CEM) and murine leukemic (L1210, 

P388) cancer cell lines. Mechanistic investigations on some of the representative compounds in 

series 32 revealed that this class of compounds interfere with macromolecular biosynthesis by  

inhibiting DNA, RNA and protein biosynthesis while no binding with calf thymus DNA was 

noted.  Further investigations revealed the promising cytotoxic potencies of 33-35 which are 

clearly lead molecules for further development. The  IC50 values of 33-35 are in the range of 1.0-

1.6 µM towards Molt 4/C8 and CEM cells.
61

 In the NCI screen, compound 33 demonstrated 

promising cytotoxic potencies with an average GI50 of <1 µM against a panel of tumour cell lines 

which warrants further development of this analog as a candidate anticancer agent. Using a 
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concentration of 1 µM, 33 induced apoptosis in human HepG2 liver cancer cells suggesting that 

apoptosis is an important way whereby cytotoxicity is mediated.   

 

 A number of structural analogs of 34 were designed and screened against various 

malignant and non-malignant cell lines.
62

 Many of these analogs displayed high cytotoxic 

potencies and selective toxicities (SI) towards a number of tumorous cells such as oral squamous 

carcinomas (HSC-2, HSC-3, HSC-4) and promyelocytic leukemic HL-60 cells compared to 

various normal cells such as the HGF gingival fibroblasts, HPC pulp cells and HPLF periodontal 

ligament fibroblasts. Compound 34 emerged as the most promising selective cytotoxin (average 

CC50:1.75 µM, SI: 400) which was comparable to the clinically used drug doxorubicin. The 

compounds 36-38 were prepared to develop a structure-activity relationship. These analogs 

displayed considerably less potency and selectivity than  34 revealing that (1) the aryl ring C in 

34 may offer an additional hydrophobic binding at the receptor site which enhances the 

cytotoxicity of the molecule and (2) the relative locations of different functional groups in these 

compounds are very important in influencing bioactivity.  

 

 Jha et al prepared a number of arylidene β-tetralone derivatives 40 in which an extended 

conjugation was introduced between the aryl ring and C-3 olefinic group in 39 and compared 
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against the corresponding 1,3-bisarylidene-β-tetralone analogs 39. A comparison of cytotoxic 

potencies of 40a (R=H)  vs  39a (R=H)
63

 against Molt 4/C8, CEM and L1210 cancer cell lines 

revealed that 40a is on average nine times less potent than 39a (average IC50: 4.68 µM). These 

results further reconfirm that the relative location of aryl rings strongly influence cytotoxic 

potencies and an increase in the flexibility of the molecule by enhancing the number of rotatable 

bonds negatively influence bioactivity.  

 

4.2.3  4-Piperidone analogs 

 The initial development of these compounds as cytotoxins was based on two important 

considerations. A number of acyclic Mannich bases display cytotoxic and anticancer 

properties.
64

 However, they cause respiratory depression in low doses when administered to 

mice.
65

 Unwanted toxicities associated with the acyclic enones may be considered to be due to (i) 

the flexibility of the acylic Mannich bases enabling them to assume a variety of different shapes 

and (ii) the rapid deamination of Mannich bases which release dienones which are the active 

molecules that sequester indiscriminately. Therefore while a conjugated arylidene keto group 

along with a basic centre beta to the carbonyl function was retained, molecular flexibility was 

reduced by the incorporation of most of the molecule into a rigid piperidine ring as illustrated in 

Figure 3.  In addition, the high reactivity of the enone group was reduced by incorporating a 

phenyl group at the β-carbon. These modifications led to the genesis of  arylidene diones 41 

which possess potent cytotoxic activities; for example, 41a (R
1
=R

2
=H) displayed an IC50 value 

of  920 picomoles towards murine P388D1 cells.
33

 Second, administration of doses up to and 

including 240 mg/kg of this compound to mice on five successive days did not cause any 

mortalities.
33

 

Figure 4. The design of 1-methyl-3,5-bis(benzylidene)-4-piperidones as candidate cytotoxic 

agents 
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 Subsequently a series of  bis-arylidene-4-piperidones 42 possessing a dimethylamino 

group and the corresponding des-methyl and quaternized derivatives were developed by 

Dimmock et al and their cytotoxic potencies evaluated against P388/MRI murine leukemia 

cells.
33

 The des-methyl derivative 42a (R=H, Y=NH) and the quaternary ammonium compound 

42b (R= N(CH3)2, Y= 
+
N(CH3)2 I

-
)  demonstrated 57- and 95-fold higher potencies, respectively 

than the N-methyl adduct 42c (R= H, X=N(CH3)). X-ray crystallography studies on some of 

these compounds demonstrated that the olefinic double bonds adopt the E stereochemistry and 

no coplanarity exists between that the aryl rings and  the adjacent olefinic linkages. This 

phenomenon is due to nonbonded interactions between the equatorial protons at positions 2 and 6 

of the piperidine ring and the ortho hydrogen atoms of the aryl rings. No correlation between 

cytotoxic potencies and torsion angles between the aryl rings and the olefinic bonds was noted. 

 

 

Scheme 1: 3,5-bis(benzylidene)-4-piperidones 43 and the reduced analogs 

               In order to evaluate the importance of the dienone motifs in eliciting cytotoxicity, two 

molecular probes of  43a (R=H)  were prepared, one by reducing the carbonyl group and the 
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other by reducing the enone olefinic bond. Both the analogs 45
66

 and 46
67

 display substantial 

reduction of cytotoxic potencies which suggests that the integrity of the 1,5-diaryl-3-oxo-1,4-

pentadienyl group should be retained. The monoarylidene analog 44
66

 showed a 14-fold 

reduction in potency over 43a which reveals that  the removal of a potential alkylation site in the 

molecules reduces cytotoxicity. 

 

Scheme 2.  3,5-bis(benzylidene)-4-piperidones 43a and some acylated analogs. 

 

 With the aim of developing potent cytotoxins, additional thiol alkylating sites were 

introduced into the  arylidene dienone 43a that led to N-acryloyl-3,5-bis(benzylidene)-4-

piperidone 47.
68

 It was also hypothesized that while the 1,5-diaryl-3-oxo-1,4-pentadienyl group 

aligns at a primary binding site, the N-acryloyl group would interact at an auxiliary binding site 

that may lead to an increase in cytotoxic potency of  47 compared to 43a. The amide 47 may act 

as a prodrug liberating the 4-piperidones by amidic hydrolysis. As ions experience difficulty in 

penetrating cell membranes, the N-acryloyl analog being an uncharged molecule may display 

increased membrane permeability as compared to 43a which will ionize  under physiological 

conditions.
69

 The N-acryloyl analog 47  (IC50: 0.8µM) displayed 5-fold greater potency 

compared to 3,5-bis(benzylidene)-4-piperidone 43a (IC50 : 2.5 µM) against the L1210 leukemic 
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cell line.
68

   These results again reconfirm that an increase in thiol alkylating sites leads  to 

enhancement in cytotoxic potency.  

 The N-acylated analogs  48a (R= N(CH3)2), which may be referred to as a prodrug of the 

N-acryloyl derivatives 47 and a double prodrug of 43a since it can undergo deamination in situ  

to produce the parent compounds. This possibility was supported by the observation that 

incubation of 48b (R=N(C2H5)2) and 48e (R=morpholine) in a mixture of deuterated phosphate 

buffered saline and dimethylsulfoxide-d6 for 48 hours and 37º C led to the liberation of  43a 

along with other decomposition products as observed in 
1
H NMR spectroscopy. Various amines 

were introduced into the N-acyl chain of 48 in order to investigate the influence of the pKa of 

amines on  cytotoxicity. The most potent analog 48b (IC50: 0.5µM) displayed a 1.6-fold higher 

cytotoxic potency compared to 47 whereas the dimethylamine and pyrrolidine analogs displayed 

very similar potencies  to 47. The placement of electron-withdrawing groups such as chloro 

atoms on to the aryl rings of 48a in order to increase the electrophilicity of the olefinic carbons  

considerably led to a  potent cytotoxin 49 which  displayed more than 4-fold and 13-fold higher 

potency compared to the corresponding unsubstituted analog 47 and the parent precurser 43a, 

respectively.  

 

 In view of potent cytotoxicity displayed by the N-acryloyl analog 47, a number of 

acryloyl substituted analogs 50 were developed and the relative cytotoxic potencies were 

compared against the parent 3,5-bis(benzylidene)-4-piperidones.
70

 The aryl substitutions were 

chosen with varying electronic and hydrophobic properties. The N-acryloyl derivatives of 50 are, 

on average, 62, 30, 3 and 17 times more potent than the corresponding 3,5-bis(benzylidene)-4-

piperidones against human Molt 4/C8 and CEM T-lymphocytes as well as murine P388 and 

L1210 leukemic cells. The average IC50 figures of compound  47 and the five  compounds in 

series 50 were  0.96 (Molt 4/C8), 1.13(CEM), 0.28 (P388) and 4.71(L1210) µM, respectively. 

Furthermore, 47 displayed remarkable cytotoxic potency against a panel of approximately 56 
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human tumour cell lines from different groups of tumours, namely leukemia, melanoma and 

colon, renal, small cell lung, non-small cell lung, central nervous system and ovarian cancers in 

the NCI screen with an average IC50 figure of 0.16 µM. This compound demonstrated  ~164-fold 

higher potency than a reference alkylating cytotoxic drug melphalan (IC50: 26.3 µM). The SAR 

studies revealed that  introduction of one or more strongly electron-withdrawing groups in the 

aryl ring, the insertion of substituents of different sizes in the ortho position of the aryl rings in 

order to increase the torsion θ values and employing groups which have lower redox potentials 

should be considered for further designing analogs with a view to increasing cytotoxic potencies.  

In addition, the N-acryloyl derivatives display potent selective cytotoxic activities towards a 

number of neoplasms compared to normal cell lines. Selective cytotoxicity is represented by 

selective index  (SI) values which is derived by dividing the average CC50 values of the normal 

cells with the CC50 values of neoplastic cells and  a SI value of 10 was considered to denote 

noteworthy selectivity. Far greater cytotoxic potencies and selectivities were observed with these 

compounds compared to melphalan.
71

 Thus the compounds in series 50 emerge as lead 

molecules and warrant further development.   

 

 

Figure 5.  Structures  51-54 

 

 Further some related N-acryloyl analogs 51-54 were developed with the rationale that the 

olefinic double bond in the N-acyl group would not only provide an additional site for thiol 

alkylation but offer rigidity to the molecules thereby controlling the location of terminal aryl ring 

B relative to the 3,5-bis(benzylidene)-4-oxopiperidinyl moiety.
72,73

 A number of compounds 
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possessed submicromolar IC50 values against human Molt 4/C8 and CEM T-lymphocytes and 

murine L1210 leukemic cells.
72

  The compounds in series 51 were less potent than 53 and 47. 

However introducing an amide group between the olefinic group and the aryl ring in the side 

chain of 51 provided a novel series of potent cytotoxins 53. In general, the compounds in series 

53 were more potent than the N-acryloyl derivatives 47 and 43a.  A number of compounds 

displayed IC50 values less than 5 µM and were more potent than melphalan towards the T-

lymphocytes. Series 52, the corresponding E-analogs of the series 53, was accompanied by a 

reduction in potency
73

 suggesting that stereochemistry plays an important role in cytotoxic 

potencies. Introduction of a chalcone motif into the N-acyl side chain led to series 54 which 

showed very similar potencies as the series 51. The series 51-54 display good tolerability in mice 

in short-term toxicity studies up to and including the dose level of 300 mg/kg. 

 

 

    

Figure 6.  The N-aroyl derivatives 55 and 56 

 

           A  novel series of  N-aroyl analogs of 3,5-bis(arylidene)-4-piperidone namely 55 and 56 

was developed by Das et al as cytotoxic agents.
74

 Incorporation of the N-[4-(2-

alkylaminoethoxy)phenylcarbonyl] structural fragment onto  the piperidyl nitrogen of 43 

provided the compounds in series 55 with  remarkable cytotoxic potencies.
74

 Structure-activity 

relationships were elucidated by placing substituents with divergent σ and π values in the 

arylidene aryl rings and incorporating a number of different amines which differed in size and 

basicity in the N-acyl side chain (Figure 6). Among the aryl substituents, the nitro derivatives of 

55 displayed very high cytotoxic potencies.  In general, the greatest cytotoxic potencies are 

found when the R
1
 substituent is either nitro or methyl and the dimethylamino, diethylamino and 
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1-piperidyl groups are present in the N-aroyl side chain. Compound 56 (R
1
=H) displayed similar 

cytotoxic potencies as the parent compound 43a suggesting that the 4-(2-aminoethoxy) fragment 

contributes considerably towards the remarkable cytotoxicity of the compounds in series 55. 

From this result  it is very likely that the N-[4-(2-aminoethoxy)phenylcarbonyl] side chain 

enables additional binding at an auxiliary receptor site thereby increasing potencies. A number of 

the compounds in series 55 demonstrated potent cytoxicity against a panel of approximately 49 

human tumour cell lines in the NCI screen. In particular, 55 (R
1
=Cl, X= morpholine)  was a lead 

compound displaying an IC50 value of <5 nM against the colon cancer HCC-2998 cell line. The 

compounds in series 50 demonstrated differential toxicities towards certain tumour cell lines in 

the NCI screen compared to others. This observation suggests that N-acyl-3,5-bis(benzylidene)-

4-piperidones may cause preferential lethality to neoplastic cells compared to normal cells. 

Hence series 55 were evaluated against a number of malignant cell lines and normal cell lines 

which demonstrated that the compounds in series 55 are potent selective cytotoxins.
75

 

Additionally, these compounds are well tolerated in mice up to and including a dose of 300 

mg/kg without significant toxicities.
76

 

 

 

 A novel series of mercaptosulphonic acid adducts 57 was developed as tumour-selective 

cytotoxins with the hypothesis that mercaptoethanesulfonic acid will be released upon 

dethiolation  of 57 under physiological conditions.
77

 The sodium salt of mercaptoethanesulfonic 

acid (mesna) is used as a chemoprotectant and is administered on occasions with various 

anticancer drugs in order to protect normal cells from the toxic effects of chemotherapeutic 

agents while permitting the antineoplastic properties of the drugs.
78-80

 However very surprisingly 

the compounds in series 57 displayed poor cytotoxic potencies against a number of  cancer cell 

lines including L1210, HL-60 and  T-lymphocytes (Molt, CEM)
81

 and various squamous cell 

carcinomas.
77

 The relatively weak potencies of  57 may be due to the presence of the highly 
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polar sulfonic acid group which impedes the penetration of the compounds through cell 

membranes. In a stability study, a solution of a representative compound 57a revealed no 

dethiolated adduct after incubation at 37º C for 24h.  In order to overcome these difficulties the 

sulphonic acid group in the series 57  was replaced by a hydroxyl group which led to a novel 

series of compounds 58 with remarkable cytotoxic potencies with IC50 values in the low 

submicromolar range against a number of malignant cells.
81

 The most potent compound 58e 

displays an average GI50 value of 0.28 µM against a panel of  49 tumour cell lines in the NCI 

screen and demonstrates >90–fold higher potency compared to 5-FU and melphalan. 58e 

demonstrates most promising toxicities against a number of colon cancer cell lines (IC50: 0.06-

0.28 µM). By replacing the hydroxy group of a representative compound 58c with a mercapto 

group leading to 59, potency was reduced. This observation may be due to the differences in the 

sizes of the hydroxyl and thiol groups which have molar refractivity values of 2.85 and 9.22, 

respectively.
81a

 In other words, the hydroxyl group may align more favourably at a binding site. 

This observation again reaffirms the probability that the side chain of 53 binds to an auxiliary 

binding site which influences cytotoxicity. Further evaluation of the series 57-59 against a 

number of malignant and non-malignant cells reveals that the series 58 are a promising group of 

selective cytotoxins towards a number of neoplasms compared to normal cells.
81

 

 

 

          More conformationally rigid analogs of 3,5-bis(benzylidene)-1-methyl-4-piperidones  

were prepared and a comparison of the cytotoxic potencies of 60 with the corresponding analogs 

in series 41 was made using Molt 4/C8, CEM and L1210 cancer cell lines.
82

 The  introduction of 

a dimethylene bridge between the C-2 and C-6 atoms of 41a (R
1
=R

2
=H) led to a  decrease in 

cytotoxic potencies which was attributed to (i) a steric impedance to alignment at one or more 

binding sites; (ii) variation in hydrophobicity and (iii) changes in membrane transportation 

properties. The most potent compounds in both the series are the unsubstituted analogs 60a and 

41a which display average IC50 values of 9.77 and 4.69 µM, respectively.  These results suggest 
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that para substitution exerts an unfavourable steric effect at binding sites.
83

 The compounds were 

examined against HSC-2, HSC-3, HSC-4 and HL-60 neoplasms as well as HGF, HPC and HPLF 

normal cells.  The compounds 60a (>15), 41b (R
1
=Cl, R

2
=H) (>19) and 43c (R

1
=NO2, R

2
=H) 

(>11)  displayed high selective cytotoxicities (SI values are in parenthesis). 

 

  

A novel 3,5-bis-(4-boronic acid-benzylidene)-1-methyl-4-piperidone 61 exhibited potent 

growth-inhibitory activity in HCT-116 cells with IC50 values of 1.5 and 0.6 μM in the MTT and 

colony formation assays, respectively.
84

 Compound 61 displays preferential toxicity to cells with 

wild-type p53 expression and a combination of this compound with ionizing radiation (IR) 

significantly enhanced the cell-killing activity of IR in both wild-type p53 and p53-null cells.  61 

induces apoptosis in HCT-116 neoplasms which might contribute partly to the mode of action of 

the compound.  

 

Adams et al developed a number of cytotoxic ortho-substituted cyclic arylidene dienones 

62-66.
36

 Among them  63, 64 and 66 displayed remarkable cytotoxic activities against a panel of 

cancer cell lines in the NCI screen and compounds  63 and 64 demonstrate high selectivity 

towards leukemia cell lines.
36

 These compounds exert an impressive blockade of endothelial cell 

proliferation and in particular, 63, 64, and 66 were potent inhibitors of cord formation and cell 

migration, thereby proving their ability as potent antiangiogenic agents. In the NCI anti-

angiogenesis assays, 63 was just as potent as TNP-470, a well known antiangiogenic agent. 
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Compound 63 also effectively induced the regression of large number of human breast tumors in 

mice and demonstrated little toxicity during the treatment. In view of these results 63 emerged as 

a promising lead for clinical development. 

 

5. In vivo anticancer activity 

 

A bis-arylidene palladium metal complex 67 which was designed as an angiogenesis 

inhibitor displayed potent antitumour activities in vitro.
85,86

 A 10 µg/mL concentration of 67 

resulted in a 99% and 96% decrease in murine B16 and human A375 melanoma cell counts, 

respectively. This compound also reduced the tumour volume in murine (B16) and human 

(A375) melanoma xenograft models by 97% and 65%, respectively, by administering 67 (40 

mg/kg/d) three times per week for 15 days as compared to control.
85,86

  

1,5-bis(3,4-Dimethoxyphenyl)-1,4-pentadiene-3-one 9 and 2,6-bis((3-methoxy-4-

hydroxyphenyl)-methylene)-cyclohexanone 68 displays a 2-3 fold higher potency than curcumin 

towards melanoma and breast cancer cell lines (RPMI 7951 and MDA-MB-231, respectively).
36 

Both these compounds also  inhibit tumour growth in vivo.
87

 69 which is a demethylated analog 

of 68 reduced the growth of T-364 L mammary tumours in mice revealing its anticancer 

properties in vivo. 

 

A bis-arylidene 4-piperidone analog 63, displays very promising in vivo anticancer 

activity against the HCT-116 colon cancer xenograft tumour.
88

 An intraperitoneal dose (0.2 

mg/kg) of 63 exhibited  significant tumour regression and increased survival rates without any 

significant toxicity. 63 also demonstrates a 70% reduction in tumour growth in breast tumour 

xenografted athymic mice when  a dose of 20 mg/kg was administered subcutaneously.
36

 The 

100 mg/kg dose did not cause any liver, kidney or spleen toxicity and the animals had normal 
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weight gain. The dose administered is a much lower dose than the lethal dose of 400 mg/kg. The 

oral and intraperitoneal bioavailability of 63  in male CD2F1 mice was 60% and 35%, 

respectively, which is a significant improvement over curcumin.
88

 63 is absorbed very rapidly 

with a tmax of 3 minutes and exhibits high plasma protein binding (>98%). About 40-50% of the 

compound is eliminated via metabolism (t1/2: 73.6min).
89 

As membrane-bound receptor tissue factor (TF) is expressed on the surface of tumours 

and also on the endothelial cells of the tumour vasculature, a novel drug delivery strategy was 

devised to deliver a cytotoxic drug to the surface of tissue factor-expressing cancer cells and to 

the angiogenic cells that carry nutrients to the growing solid tumor by attaching the cytotoxic 

drug to a ligand that has high affinity for TF. An enzyme serine protease fVIIa displays high 

binding affinity towards TF. Tripeptide chloromethyl ketones, such as phenylalanine–

phenylalanine–arginine–chloromethyl ketone (FFRck), are irreversible inhibitors of fVIIa.
90a

 In 

addition, the FFRck-fVIIa conjugate displays 5-fold high binding affinity for TF than fVIIa 

alone. Therefore, a  complex of compound 63-FERck-fVIIa was developed  which displays 

greater growth inhibition of TF expressing breast (MDA-MB-231) and melanocyte (RPMI-7951) 

cell lines and shows a minimal effect on non-TF expressing breast and melanocytes compared to 

63.
90b,91

 This complex shows a reduction of a primary breast tumour xenograft and inhibition of 

angiogenesis in the rabbit corneal model.
92

 

 

  The diaryldienones β-lactam derivatives  70 and 71 inhibit the growth of murine 

S-180 and S-37 cells.
93

 The survival times of mice inoculated with Ehrlich’s ascitic carcinoma  

increases by 25 and 100% upon treatment with 70a and 70b, respectively, whereas  71a and 71b 

did not show any efficacy in this model suggesting that 70b is a promising lead for further 

evaluations. These compounds have a very good lethal dose (LD50) window which ranges from  
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1250-3000 mg/kg in mice.
93

 In addition, these molecules display high growth-inhibiting 

activities against Staphylococcus aureus and Staphylococcus albus. This observation illustrates 

the usefulness of  the 1,5-diaryl-3-oxo-1,4-pentadienyl based compounds in  various  

pathological conditions. 

 

6. Mechanisms of Action 

                  Some of the molecular mechanisms by which certain diaryldienones exert their 

cytotoxic properties have been discussed previously. Further comments revealing the array of 

different molecular targets of these compounds are now presented. 

 

6.1 Induction of Apoptosis 

 Apoptosis which refers to programmed cell death is very much suppressed in tumours 

compared to normal cells. A number of anticancer agents inhibit the growth of cancer cells by 

activating apoptotic pathways through two important routes: (1) formation of caspase-8 via 

binding of Fas (CD95/APO-1)-associated death domain (FADD) to procaspase 8 and (2) 

cytochrome c release from the mitochondria leading to a complex formation with Apaf-1 which 

binds to procaspase-9 and activates various caspases including caspase-9. 

           The cytotoxic diaryldienones 13-15 impair DNA synthesis in human HCT116 colon 

cancer cells as confirmed by a cell cycle analysis.
39

 Both  14 and 15 increase the sub-G1 cell 

population indicating that the cytotoxicities displayed by these compounds are mediated through 

induction of apoptosis. Co-treatment of 14 and 15 with a Z-DEVD-fmk, an inhibitor of caspase-3 

and caspase-8  in  HCT116 cells, reduces the sub-G1 population suggesting that apoptosis occurs 

via the caspase route.  Furthermore 14 and 15 downregulate a number of oncoproteins, including 

ErbB-2, c-Myc, cyclin D1 and Ki-ras. 

 

 A number of representative compounds from a series of bisarylidene-4-piperidones 43, 

their N-acyl analogs 50 and 55 and a bis-arylidene sulfoxide derivative 72 display cytotoxicity 

via induction of apoptosis in different cancer cell lines.  43c (R
1
=Cl)  and its corresponding N-
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acryloyl analog 50c (R
1
=R

2
=Cl) inhibit RNA and protein biosyntheses as well as inducing 

apoptosis in human Jurkat T cells.
70

 The acryloyl derivative 50e (R
1
=H, R

2
=NO2) is a potent 

inhibitor of DNA, RNA and protein biosyntheses in L1210 murine leukemic cells with an 

average IC50 of 3.90 µM whereas its bis-arylidene-4-piperidone analog  43e (R
1
=NO2) displays 

7-fold less potency than 50e.
70

 In a TUNEL assay, 55 (R= Cl, X=morpholine) triggers apoptotic 

cell death in human HepG2 liver cancer cells.
74

 Both 43d (R=CH3) and 72 display potent 

cytotoxicity and induce apoptosis via a Bcl-2-dependent but apoptosome-independent pathway 

of caspase activation in E1A/C9 cells
94

 which is not commonly followed by many anticancer 

agents.
95

 Both these compounds inhibit ubiquitin isopeptidases, thereby impeding ubiquitin-

dependent protein degradation.
96

 

 

6.2 DNA adducts 

 Treatment of two analogs of 42 (R = N(CH3)2; X = +N(CH3)2 
–
I) and 42 (R = N(CH3)2; X 

= NCH3) with various synthetic DNAs, namely poly[d(AT)], poly da·poly dT and poly 

[d(TG)]poly[d(CA)]  revealed that the quaternary ammonium compound
 
 caused a rise in the 

melting temperature of all three DNAs but no changes were noted with the non-quaternary 

ammonium compound.
33

 The behaviour of the quaternary ammonium compound indicates AT 

selectivity and is consistent with binding in the minor groove of DNA.  Further experimentation 

with three unsubstituted compounds 42 (R =H, X= NH.HCl, CH2 and +N(CH3)2
-
Br) using 

poly[d(AT)] revealed that binding occurred only with the quaternary ammonium compound.  A 

further study with related 3,5-bis(benzylidene)-1-methyl-4-piperidone methoiodides which are 

toxic to murine L1210 cells revealed that they too increased the melting temperature of 

poly[d(AT)].
97

 

 

6.3 Angiogenesis 

 Angiogenesis is a process of forming new capillaries which provide a continuous supply 

of nutrients and oxygen to the rapidly dividing tumour cells
98

 and thus plays an important role in 

the proliferation of tumour cells.
99

 Tumour angiogenesis is controlled by a balance between 

angiogenic activators
100

 and inhibitors.
101,102

 The vascular endothelial growth factor (VEGF) is 

one of the angiogenic activators secreted from growing tumors to stimulate angiogenesis. 

Inhibition of VEGF reduces angiogenesis and suppresses tumor growth in vivo
103

 and clinical 
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trials employing VEGF-targeting therapies have shown efficacy toward advanced-stage 

cancers.
104

 Among various isoforms of VEGF, VEGF-A is the most widely studied member of 

the VEGF family which is required for the normal development of vasculogenesis and 

angiogenesis, as even one missing allele can be lethal to animals.
105

 VEGF-A is overexpressed in 

most human solid tumours and thus emerges as a very good target for antitumourigenic 

agents.
106,107

 

          Various acyclic and cyclic bis-arylidene analogs 62, 63, 73a, 73b, 74a and 74b inhibit 

endothelial cell growth in vitro.
36,108

 Except for 73b, all of the other compounds displayed >90% 

inhibition of SVR endothelial cells, an established murine model of angiogenesis
109

 at a 

concentration of 3 mg/mL. Further evaluations revealed that 63 exhibits a reduction in cord 

formation and cell migration in human umbilical vein endothelial cells (HUVEC) at a 

concentration of approximately 1 µM.
36

   

 

 

  The arylidene palladium complex 67  inhibits VEGF expression in B16 and A375 cells 

in vitro.
85,86

 Treatment of 5 µg /mL of 67 with SVR cells for 48 hours decreased the cell viability 

by 97%.   

 

6.4 Tubulin  polymerisation 

 The microtubule network in eukaryotic cells is an essential component of the 

cytoskeleton and plays a pivotal role in a variety of cell signaling events.
110

 A large number of 

antimitotic drugs bind tubulin or microtubules at one of the three characterized tubulin ligand 

sites: taxol, colchicine, and vinca binding sites.
111

 Each site can accommodate compounds with 

very different structures.
112
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An arylidene derivative 75 is a potent inhibitor of tubulin polymerization which displays 

a half-maximum polymerization inhibition value of 16±1 μM, whereas the half-maximum 

polymerization inhibition value of curcumin was 20 ± 1 μM.
113 

 Curcumin and its analogue 75 

inhibited the proliferation of A549 and HeLa cells in a concentration-dependent manner. 

Compound 75 was found to be more effective than curcumin and displays IC50 values of 7 ± 0.4 

μM, and  6 ±0.8 μM against A549 and HeLa cells, respectively. 

 

6.5 Human N-myristoyltransferase 

 The enzyme myristoyl-CoA:protein N-myristoyl transferase (HMT) catalyzes the 

attachment of the myristoyl group onto the N-terminal glycine residues of certain 

polypeptides.
114

 In particular the cysteine-169 residue of human NMT (hNMT) is believed to be 

involved in the myristoylation process
115

 and the activity of this enzyme is higher in some 

colorectal tumours than in the corresponding normal tissues.
116

  hNMT may therefore be 

considered a molecular target in cancer chemotherapy.
117

  

           Two representative compounds in series 52 (R
1
=3-Cl, R

2
=4-Cl and R

1
=4-CH3, R

2
=H) 

both inhibited the action of hNMT by 52% using concentrations of 100 and 50 µM, 

respectively.
73

  A COMPARE program
118

 of a number of compounds in series 52 revealed 

another possible mode of action of these compounds is inhibition of tyrosine kinases. 

         hNMT-1 is a potential target for the cytotoxic palladium metal complex 67.
86

 This 

molecule was designed as an angiogenesis inhibitor.
86

  67 inhibits purified hNMT in a 

concentration-dependent manner with maximal inhibition at a concentration of 2.5±0.97 µmol/L 

and half-maximal inhibition at 1.0 ± 0.26 µmol/L.
85 

 Gene chip analysis of A375 cells shows that 

NMT-1 was downregulated by the treatment of 67 and potent NMT-1 inhibitory activity was 

observed with an EC50 of 1 µM.
86

 67 inhibits the phosphorylated forms of MAPK and Akt 

signaling pathways in B16 cells and S6 kinase and Stat-3 downstream in A375 cells.
85,86

 Since 
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NMT is required for the activation of upstream activators including Stat-3, it was hypothesized 

that inhibition of NMT activity could lead to decreased levels of NMT messages as a 

downstream consequence.   

 

6.6 Topoisomerases 

          Topoisomerases (topos) play important roles in nuclear metabolic processes, such as 

replication and transcription and govern DNA topology through transient DNA cleavage, strand 

passing and religation.The two isoforms topo I and II act differently on DNA. Topo I acts by 

forming a transient single strand break through which the other DNA strand passes to achieve 

relaxation and topo II is able to do so with the two strands creating a DNA-linked protein gate. 

This gate allows another intact duplex to pass through.
119

 Topo  poisons or inhibitors are an 

important group of anticancer agents that include many clinically used drugs such as 

doxorubicin, etoposide and topotecan. Topo II is a sulfhydryl rich protein and considered as a 

very popular target for many anticancer agents. Topo II poisons are believed to act via alkylation 

of an exposed cysteine residue of topo II that leads to lethal DNA breaks.
120

  

 

  

 Topo I is a potential target for the arylidene dienone 76 which displays  potent growth 

inhibitory activities against a number of human tumour cell lines with IC50 values in the low 

micromolar range. It interferes with  DNA relaxation and DNA single strand breaks of topo I by 

binding to AT-rich sites in the DNA minor groove, not by intercalation.
121

 More importantly, 76  

does not show any  cross-resistance against camptothecin-resistant cell lines. It induces caspase-

3 mediated apoptosis and arrests the G2/M phase in the cell cycle of KB cells. Furthermore 76 

activates the tumour suppressor gene p53 and displays no effect on the tumour activator 

oncogene bcl-2 in KB cells.
122

  This compound also inhibits tubulin polymerization and causes 

apoptosis in KB cells whereby activation of caspase-3 was observed.   

 

6.7 Oxidoreductases  
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          Both glutathione reductase and thioredoxin reductase are homodimeric enzymes belonging 

to the same family of FAD dependent oxidoreductases.
123

 They utilize NADPH as the electron 

donor. In both enzymes, similar FAD, NADPH, and interface domains are present.
124

 Both 

glutathione reductase and thioredoxin reductase contain a dithiol/disulfide catalytic site close to 

the N-terminus. However, thioredoxin reductase possesses a flexible and exposed peptide 

containing SH/Se motif at the C-terminus that allows the enzyme to react with a variety of 

electrophilic and chemically unrelated compounds. Thioredoxin reductase catalyzes NADPH-

dependent reduction of the disulfide group in thioredoxin. Both thioredoxin and thioredoxin 

reductase contain a critical cysteine molecule which plays an important role in the redox 

regulation of different signaling factors.  Hence this enzyme appears to regulate pro-survival 

signaling factors in response to oxidative stress. A number of tumours have elevated 

concentrations of thioredoxin reductase
125

 and thus molecules which inhibit this enzyme may 

lead to products which are useful in cancer chemotherapy. 

 

 In view of the ability of curcumin to inhibit rat thioredoxin reductase,
126

 a number of 

curcuminoid analogs including 77a and 77b
127

 were evaluated for their ability to  inhibit TRxR1.  

The  IC50 values of 77a and 77b towards thioredoxin reductase are 24.9 and 5.1 µM, 

respectively. This results suggest that 77b is a lead TRxR1 inhibitor and this mechanism of 

action may be a contributor to its cytotoxic properties. 

 

6.8 Nuclear type II site 

         Nuclear type II sites are located in the nuclear matrix which assist in DNA synthesis and 

replication.
128,129

 Ligands which interefere with this receptor inhibit cellular growth and 

proliferation. Compounds 68 and 69 bind to type II sites in rat uterine cells with very high 

affinity.
87

  A correlation was noted between the extent of binding to the nuclear type II site and 

the percentage inhibition of the growth of human MCF-7 breast cancer cells.
87
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6.9 Proteosome inhibition 

          The proteasome is an essential component of the ATP-dependent proteolytic pathway in 

eukaryotic cells and is responsible for the breakdown of most cellular proteins. Proteasomes are 

mainly located in the nucleus and cytosol of eukaryotic cells including some associated with the 

endoplasmic reticulum and the cytoskeleton. Another essential function of the proteasome is to 

eliminate highly abnormal proteins that are produced by mutation or post synthetic damage. The 

ubiquitin dependent proteasomal degradation is crucial for both normal and malignant cells. The 

higher demand for metabolic/catabolic activity associated with the malignant phenotype renders 

the ubiquitin-proteasome pathway a suitable tool for cancer treatment.
130,131

 Proteasome 

inhibitors may be particularly efficacious for certain cancer types with critical pathways that are 

dependent upon proteolytic degradation. Proteasome inhibitors may have the utility in the 

treatment of cervical and other HPV-related cancers.
132-134

 Proteasome inhibitors preferentially 

kill tumor cells both in vitro and in vivo.
135-138

 Furthermore, the induction of the NF-κB survival 

pathway by DNA damaging agents is dependent on proteosomal degradation of IκB. Thus, 

proteasome inhibitors block NF-κB activation that leads to the sensitization of cells to radiation 

and chemotherapy.
137

  

 

A novel bisarylidene-N-phenylalanine carboxamide 78, referred to as RA-1 displays 

potent growth inhibitory capacity in the human HeLa (+HPV18) and CaSki (+HPV16) cervical 

cancer cell lines with IC50 values of 0.32 and 1.5 μM, respectively.
139

 In HeLa cells, 78 produces 

an increase in the levels of polyubiquitinated proteins similar to bortezomib, a FDA approved 

proteasome inhibitor.
140 

Compound 78 is capable of inhibiting equally the three catalytic sites of 

the proteasome (IC50=5 μM). The replacement of the phenylalanine amino acid residue by  

tyrosine or leucine decreases proteasomal activity. The rapid accumulation of polyubiquitinated 

proteins observed following exposure to 78 is consistent with impairment of proteasomal 
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functions. Taken together, these results suggest that the toxicity exerted by 78 on cervical cancer 

cells is associated with in vivo proteasomal inhibition. 78 inhibits proteasomal activity and has 

improved dose-dependent antiproliferative and proapoptotic properties in cervical cancer cells 

containing a human papilloma virus. Further, it induces synergistic killing of cervical cancer cell 

lines when tested in combination with an FDA approved proteasome inhibitor. Exploration of the 

potential mechanism of proteasomal inhibition by 78 using in silico docking studies suggests that 

the carbonyl group of its oxopiperidine moiety is susceptible to nucleophilic attack by the γ-

hydroxythreonine side chain within the catalytic sites of the proteasome. 

               The diaryldienones 61 and the palladium complex 67 inhibit the activity of the 

chymotrypsin-like activity of the 20S proteasome in vitro, leading to a significant accumulation 

of ubiquitinated p53 and other cellular proteins in whole cells.
84

 In vitro studies showed that 61 

did not significantly disrupt the interaction of p53 and murine double minute 2 protein. The  IC50 

value of proteasome inhibition by 67 is approximately 1 µM.
84

  These results indicate that 61 and 

67 induce significant cytotoxic effects in cancer cells through the inhibition of the cellular 

proteasome and provide a rationale for the further development of this class of compounds as 

novel cancer chemotherapeutic agents. 

           Based on the observation that curcumin is a potent proteasome inhibitor in colon cancer 

HCT-116 and metastatic SW-480 cell lines,
141

 the difluoro compound 19 was evaluated for its 

inhibitory effects on purified rabbit 20S proteasome or cellular 26S proteasome and found to be a 

potent proteasome inhibitor as tested in vitro and in HCT116 cells in vivo, and inhibited the 

proliferation of both colon and pancreatic cancer cells by inducing apoptotic cell death.
142

 19 

displays potent growth inhibiting potential and is a good apoptosis inducer in BxPC-3 pancreatic 

cancer cells.
142

 19  was the most potent inhibitor compound showing 24%, 39% and 68% 

inhibition on cell proliferation at 10, 20 and 30 μM, respectively, compared to curcumin with 

24%, 53% and 49% inhibition at the same concentrations in HCT-116 cells. 19 displayed higher 

potency over other fluoro substituted curcumin analogs.  

 

6.10  NFkB pathway 

              Nuclear factor-kappa B (NF-κB) is a transcription factor that is activated by DNA 

damage
143,144

 leading to its nuclear localization and promotes the expression of target genes that 

regulate a number of processes including cell growth, differentiation, and apoptosis,
145

 while 
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inhibition of NF-κB activation exhibits therapeutic responses. In a number of tumours, NF-κB 

activation protects malignant cells from apoptosis.
146

 NF-κB activation resulted from IKK kinase 

catalyzed phosphorylation of the inhibitory factor IκB that promotes degradation of the IκB 

protein.
145

 NF-κB inhibitors sensitize cancer cells to both radiation and chemotherapy,
147-

150
which establish NF-κB inhibition  as a potential chemotherapeutic strategy to treat cancers. 

There are many potential strategies to inhibit NF-κB activation with a most promising target 

being the IKK kinase.
145

 NF-κB activation pathway can also be used as an alternate strategy to 

make normal tissue cells more resistant to the deleterious effects of radiation or chemotherapy. 

This strategy is supported by the fact that a polypeptide drug CBLB502 protects normal tissues 

against radiation by activating the NF-κB pathway.
151

 

 

 

 A number of cytotoxic acyclic and cyclic diarylidene dienones 6a (R= 2-OH), 68,  and 

79
152

 which possess average IC50 value of approximately 4.5 µM, inhibit TNFα-induced 

activation of NFκB in cells stably infected with NFκB-dependent reporter construct using the 

Panomics Reporter Stable Cell Line.   

 

6.11 Mitochondria 

 

 

 Mitochondria is an important cellular target of compounds containing the 1,5-diaryl-3-

oxo-1,4-pentadienyl group since a number of thiol alkylators react with mercapto groups in 

mitochondria.
153

 In particular, these compounds have the capacity to increase the rates of 

respiration in these organelles. Compound 80 increases respiration rates in mitochondria and 

causes a collapse of the membrane potential.
154

  This effect was reversed by 6-ketocholestanol 
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which is a recoupling agent suggesting that 80 is an uncoupler.  This compound inhibits the 

production of superoxide and oxidizes certain thiol groups which lead to swelling of 

mitochondria and the release of cytochrome c, which are events associated with the induction of 

apoptosis by PTP opening. The induction of cell death in tumours triggered by treatment of 

uncouplers is well documented.
155

 Furthermore 76 did not alter the mitochondrial membrane 

potential. 

 The effect of some of the  representative bis-arylidene dienones  from the series 55  such 

as  55a (R
1
=H, X=N(CH3)2 and 55 (R

1
=H, X=morpholine) on mitochondrial functions were 

investigated. Both the compounds  stimulate respiration in rat liver mitochondria.
76

 A similar 

observation was also noted for a tropinone derivatives 60a which stimulates mitochondrial 

respiration and produces rapid swelling of this organelle.
82

 Thus interference with mitochondrial 

function appears to be one way in which cytotoxicity is caused and influences the magnitude of 

the cytotoxic potencies. 

 The cytotoxins 25d (R
1
=R

2
=R

3
=OCH3) and 27d (R

1
=R

2
=R

3
=OCH3) stimulate the rate of 

respiration in rat liver mitochondria using a concentration of 10 µM while 27d had no effect at 

the same concentration.
51

 The average IC50 figures of 25d, 26d and 27d in the three bioassays are 

0.88, 43.8 and 6.00 µM, respectively. While the variation in cytotoxicity is likely multifactorial, 

the different effects on mitochondrial function may contribute to the differences in the observed 

potencies. 

 

7. Multidrug resistance  

            The resistance shown by tumours to a variety of chemotherapeutic drugs, referred to as 

multidrug resistance (MDR) possess a severe challenge in treating cancers.
156,157

 Besides several 

biochemical pathways which are responsible for drug resistance, the most widely studied ones 

are the cell membrane transporter proteins
158 

 which act as extrusion pumps. Several families of 

pumps are present in mammals and microorganisms that use different energy sources.
159-161

  

Overexpression of a number of these transporter proteins accelerates the efflux of 

chemotherapeutic drugs that result in a decrease in drug concentrations in cells.  The best known 

extrusion pumps are the ABC superfamily of transporters such as P-glycoprotein (P-gp), the 

MRP family and BCRP
162

 that use ATP as their energy source. The human P-gp is encoded by a 

mdr1 gene. Inhibition of the functions of P-gp and sister proteins are considered to be a realistic 
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therapeutic strategy to reverse MDR, and drug candidates possessing P-gp inhibitory properties 

have been sought.
163-166

 Inhibiting P-gp as a way of reversing MDR has been extensively studied 

for more than two decades.  

Many agents that modulate the function of P-gp have been identified, including calcium 

channel blockers, calmodulin antagonists, steroidal agents, protein kinase C inhibitors, 

immunosuppressive drugs, antibiotics, and surfactants. The coadministration of a non-toxic 

"MDR-modulating" compounds in combination chemotherapy may significantly improve the 

outcome of cancer treatment. In addition, a cytotoxic agent possessing MDR reversal properties 

may be helpful in treating drug resistant tumours.  Several efforts have been made to analyze the 

chemical features involved in P-glycoprotein modulating properties.
167,168

 A number of general 

features of MDR reversal agents have been identified such as the amphiphilic nature of the 

molecules, the presence of aromatic rings, a basic nitrogen and the positive charge at neutral 

pH,
169

 but no precise conclusions on the molecular features characterizing MDR reversal are yet 

established. However, this knowledge may prove to be very useful for the design and/or the 

selection of novel compounds to be tested in the clinical setting as MDR modulators. 

 A number of  N-aroyl-diaryldienones in series 55 are potent revertants of P-gp associated 

multidrug resistance.
170

 In the rhodamine 123 fluoresence assay,  these compounds  modulate P-

gp expression in murine L-5178 lymphoma cells transfected with the human MDR1 gene.
171

 The 

concentrations of rhodamine 123 in treated and untreated transfected and parental cells were 

measured and the fluorescence activity ratio (FAR) values of greater than 1 indicate the ability of 

the compound to reverse MDR. At concentrations of 4 µg/mL, the FAR figures of compounds in 

series 55 ranges from 46-179 which are substantially higher than a reference P-gp modulator 

verapamil. In series 55, the piperidine group in the N-aroyl side chain displayed greater P-gp 

reversal properties compared to other amines such as dimethylamine, diethylamine and 

morpholine which possess different pKa values while the 4-methyl and 4-chloro aryl substituents 

were the preferred the groups to exhibit higher potency. The 3,5-bis(arylidene)-4-piperidones 43 

which are the parent precursors for generating the compounds in series 55 were bereft of MDR 

reversal activity expect the 4-methylaryl substituted analog had weak activity. These results 

reveal that although the structural fragment N-[4-(2-alkylaminoethoxy)phenylcarbonyl] is 

virtually bereft of any MDR reversal properties, it contributes significantly in conferring MDR 

reversal properties of the compounds in series 55. These observations again establish that 
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incorporation of a side chain linker onto the 4-piperidyl nitrogen atom enhances bioactivity of 

the molecule by likely interacting with an important auxiliary binding site. 

 Some of the other arylidene dienones such as 37 and a related analog 27 (R
1
 = R

2
 = 

OCH3; R
3
 = H) have FAR values of 16 and 20 respectively, in the L-5178 P-gp reversal screen

62
 

while some of the β–tetralone analogs  demonstrate remarkable P-gp reversal properties. In 

particular 34 and 35 are potent P-gp modulators displaying FAR values of 134 and 44, 

respectively at a concentration of 4 µg/mL.
62

 

 

8. Concluding Remarks 

Numerous studies have established that curcumin possesses significant potential for the 

prevention and therapy of various cancers.  No natural product has yet been known which 

modulates such a diverse array of signal transduction pathways as curcumin does. Cancer 

molecular biologists believe that tumour cells use multiple pathways to escape host defense 

mechanisms. Therefore, the drug that targets a specific molecular pathway may not be effective 

to treat cancers, in particular when tumours become resistant to chemotherapeutic drugs. 

Developing a drug that targets multiple pathaways and yet is pharmacologically safe is not an 

easy task for medicinal chemists. In view of this, curcumin’s multitargeted mechanisms of action 

and its safe use merits its potential as a promising chemotherapeutic agent against a number of 

drug-resistant tumours. However, its poor bioavailability continues to be the most contentious 

issue for its further development as a clinical drug. In order to overcome this problem and not to 

compromise its pharmacological and toxicological properties, structural modifications of 

curcumin led to the development of the 1,5-diaryl-3-oxo-1,4-pentadienes, a novel class of 

curcuminoid analogs as emerging antineoplastics. Interesting features of many of these 

compounds are the remarkable selective toxicities towards neoplasms compared to normal cells 

and some have promising multidrug resistance reversal properties. Its multitargeted mechanisms 

of action may be the reason why these compounds display potent MDR reversal properties. Thus 

novel compounds which overcome MDR may find use as dual agents (possessing anticancer and 

MDR-revertant properties) or as compounds to be co-administered with established anticancer 

drugs.  In addition, many of these compounds display good tolerability in mice and demonstrate 

in vivo anticancer properties. The possibility of diaryldienones serving as Michael acceptors and 

permitting the sequential alkylation of cellular thiols has been suggested as the reason for the 
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greater toxicities of this class of compounds towards malignant cells compared to normal cells. 

Reduction of either the keto or ethylene group of the α,β-unsaturated keto motif in arylidene 

dienones lowers cytotoxic potencies substantially suggesting that alkylation is the principal 

mechanism by which cytotoxicity of arylidienones is mediated. Substantial evidence has been 

envisaged in support of diarydienones as thiol alkylators. The diaryldienones exert their 

cytotoxicities by interacting with multiple signal transduction pathways as curcumin does; 

however, in a number of cases the molecular mechanisms of action are quite distinct from 

curcumin. For example, 63, but not curcumin, disrupts normal mitosis, interphase microtubule 

organization and stabilizes cellular microtubules.
172

 Finally, this literature review advocates the 

potential utility of 1,5-diaryl-3-oxo-1,4-pentadienes as emerging future anticancer drug 

candidates and presents the importance in pursuing this class of compounds.  
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CHAPTER 2 

 

Chapter 2 is a copy of an article which will be submitted to the European Journal Medicinal 

Chemistry.  

Relation of Chapter 2 to the objectives of this project 

To support the first hypothesis as mentioned in the introduction that “Incorporation of a 

1,5-diaryl-3-oxo-1,4-pentadienyl (Ar-CH=CH-CO-CH=CH-Ar) group onto alicyclic and 

heterocyclic scaffolds will lead to potent cytotoxic agents”. 

Description 

In view of this hypothesis, a series of 3,5-bis(arylidene)-4-piperidones which possess the 

1,5-diaryl-3-oxo-1,4-pentadienyl pharmacophore was developed as cytotoxic agents. The 

influence of aryl substituents on cytotoxic potencies of the compounds was examined by 

introducing a number of substituents possessing diverse electronic, hydrophobic and steric 

properties onto the aryl rings. Some potential water soluble O-phosphorylated analogs of 3,5-

bis(4-hydroxybenzylidene)-4-piperidones were prepared. Also, the mono trimethylammonium as 

well as the bis trimethylammonium quaternized salts of 3,5-bis(4-dimethylaminobenzylidene)-4-

piperidone were synthesized. All compounds were evaluated against human Molt 4/C8 and CEM 

T-lymphocytes as well as murine leukemic L1210 cells.  Some of these compounds were also 

assessed against a panel of approximately 55 human tumor cell lines by the National Cancer 

Institute (NCI). All the compounds were assessed for short term toxicity in mice by the National 

Institute of Neurological Disorders and Stroke (NINDS). These screens identified a number of 

lead molecules. 

Author Contributions 

My contributions to this publication were undertaking a literature review of the prepared 

compounds, designing the synthetic chemical routes, synthesizing the compounds, determining 

and interpreting the 
1
H and 

13
C NMR spectra of the compounds in series 2. Elemental analysis 

was done by me using the CHNS analyzer. The coauthors on this paper are Inci Gul, who 

synthesized some of the compounds in series 2, U. Das, supervised the synthesis of the 

compounds and undertook the QSAR and molecular modeling studies, E. De Clercq and J. 

Balzarini supervized the cytotoxic assays against human Molt 4/C8 and CEM T-lymphocytes 

and murine leukemic L1210 cells, the laboratory of J. P. Stables performed the murine toxicity 
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screen in rodents, and overall guidance and supervision was provided by my supervisors J. R. 

Dimmock and D. K. J. Gorecki. The experimental in the manuscript was written by me while Dr. 

Dimmock gave final shape to the manuscript with some inputs given from my end. The figures 

and schemes were drawn by me using ChemBioOfficeUltra, version 12.0. 
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Abstract 

A number of 3,5-bis (benzylidene)-4-piperidones 2a-n were prepared in the quest to find analogs 

with potent cytotoxic properties which will serve as cytotoxic warheads in the subsequent 

development of these compounds. Most of the compounds have IC50 values less than 10 μM 

when evaluated against human Molt4/C8 and CEM T-lymphocytes and for five of these 

compounds; some of these figures are submicromolar. More than half of these compounds are 

more potent than melphalan in these two bioassays. The biodata suggest that potencies are 

greater when substituents are placed in the 2 and 3 positions of the aryl rings rather than in the 4 

location. The IC50 values of eight of these compounds towards four human leukemic cell lines 

and seven human colon cancer cells are mainly in the 10
-7

 to 10
-8

 M range. A representative 

compound caused apoptosis in HT29 cells and caused arrest of the cell cycle at the Sub G1 

phase. 

 

Keywords: Conjugated unsaturated ketones, cytotoxicity, structure-activity relationships, flow 

cytometry 
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Introduction 

The principal interests in this laboratory are the design and syntheses of various 

conjugated ketones as candidate antineoplastics.  These molecules have a marked affinity for 

thiol groups and little or no capacity for reacting with amino and hydroxy groups [1].  Thus these 

compounds may spare nucleic acids and hence be devoid of the mutagenic and carcinogenic 

properties of a number of alkylating agents used today in cancer chemotherapy [2]. Furthermore 

certain tumours are more susceptible to an initial chemical interaction than normal cells and in 

these cases a subsequent attack is more detrimental to the neoplasms than non-malignant cells [3, 

4]. Hence recent studies have involved the preparation of compounds capable of undergoing 

sequential alkylation of cellular thiols.  Specifically the 1,5-diaryl-3-oxo-1,4-pentadienyl 

pharmacophore has been mounted on heterocyclic and cycloaliphatic scaffolds[5]. In these 

compounds as illustrated in series 1 in Figure 1, an initial attack can occur at the olefinic carbon 

atom C
A
 followed by a further interaction with cellular thiols at C

B
. 

 

 

The unsubstituted compound 1a (1, R= H) has IC50 values in the low micromolar range 

against three cell lines as indicated in Table 1. However when substituents such as chloro, nitro, 

fluoro, methoxy and dimethylamino were placed in the para locations of the aryl rings, in 

virtually all cases a statistically significant reduction in cytotoxic potencies was observed[6]. 

Potencies could be enhanced however by placing various substituents on the piperidyl nitrogen 

atom thereby creating more complex molecules [7, 8]. 

 

             The objectives of the present study are as follows. First, this study was designed to find 

which substituents can be placed in the aryl rings to create 3,5-bis (benzylidene)-4-piperidones 
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with submicromolar IC50 values. Second, the aspiration was made that the results generated will 

provide guidelines for future directions so that further increases in potencies will be achieved. 

The longterm plan is to obtain one or more cytotoxic warheads, i. e., highly potent 3,5-

bis(benzylidene)-4-piperidones. These molecules can be structurally modified to obtain optimal 

characteristics of anticancer efficacy. For example, various substituents could be placed on the 

piperidyl nitrogen atom to achieve an appropriate hydrophilic-hydrophobic balance. 
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  The compounds proposed are presented in schemes 1-4. The groups in the aryl rings of 

2a-n have varied electronic, hydrophobic and steric properties and were chosen for the following 

reasons. Since the placement of substituents in the 4-position of the aryl rings in series 1 lowered 

cytotoxic potencies in general as illustrated for 1b (1, R= Cl) in Table 1, an E4 effect [9] was 

suspected, i.e., an unfavourable steric effect of 4-substitution. This theory was explored by 

placing the chloro atom into the 2 and 3 positions (2a, b). Other groups were placed in the 3 

location of the aryl rings (2c-e) and as a null hypothesis, different groups were inserted in the 4-

position of the aryl rings (2e-j). The thiol alkylating capacity of series 1 would be enhanced by 

the presence of a strongly electron-withdrawing group in the aryl rings such as in 2k since the σp 

value of the trimethylammonium group is 0.82 [10]. Finally a comparison of the bioactivities of 

the 4-hydroxy analog 2f with the candidate prodrugs 2m, n was planned. 

 

2. Results 

              Compounds a, b, d-j were prepared by condensation between the appropriate aryl 

aldehyde and 4-piperidone (Scheme 1). Reduction of the nitro group of 3, 5-bis(3-

nitrobenzylidene)-4-piperidone led to the formation of 2c (Scheme 2). The reaction between 4-

dimethylamino benzaldehyde and 4-piperidone afforded 3, 5-bis(4-dimethylaminobenzylidene)-

4-piperidone. Condensation of this compound with a slight molar excess of methyl iodide 

afforded 2l initially while the addition of more methyl iodide to the mother liquor and prolonged 

heating led to the isolation of 2k (Scheme 3). Reaction of 4-hydroxybenzaldehyde with either 

dimethylchlorophosphate or diethylchlorophosphate afforded the corresponding 4-

dialkylphosphoryloxybenzaldehydes. Condensation of both aldehydes with 4-piperidone led to 

the formation of the corresponding unsaturated ketones 2m, n (Scheme 4). 
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Table 1: Evaluation of 1a, b and 2a-n against human Molt 4/C8 and CEM T-lymphocytes and 

murine L1210 cells 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a
The IC50 value is the concentration of the compound required to inhibit the growth of the cells 

by 50%. 
b
The data has been reported previously [6]. 

c
The compound was prepared as the free 

base. 

 

All of the compounds were evaluated against human Molt4/C8 and CEM T-lymphocytes 

as well as murine L1210 lymphoid leukemia cells. These data are presented in Table 1. In 

addition 1a, 2a-d, h, j-l were screened against approximately 55 human tumour cell lines. These 

 

Compound 

    

      Aryl 

  Substituents 

IC50 (µM)
a
 

Molt 4/C8 CEM L1210 

1a
b 

H 1.67±0.15 1.70±0.02 7.96±0.11 

1b
b 

4-Cl 13.4±4.0 8.63±0.48 41.5±0.3 

2a 2-Cl 0.540±0.36 0.245±0.01 1.82±0.23 

2b 3-Cl 0.466±0.19 0.333±0.01 4.48±1.38 

2c
c 

3-NH2 0.439±0.11 0.396±0.09 4.24±0.73 

2d 3-OH 0.242±0.04 1.54±0.32 7.56±0.42 

2e 3,4-(OH)2 7.66±1.59 8.51±0.76 11.7±1.4 

2f 4-OH 10.5±1.6 8.24±0.05 73.6±3.0 

2g 4-Br 7.70±0.81 1.70±0.04 31.1±11.0 

2h 4-CF3 1.68±1.21 0.418±0.053 4.72±1.79 

2i 4-COOH 168±51 464±51 275±10 

2j
c
 4-COOC2H5 1.81±0.13 5.84±0.90 8.13±0.85 

2k 4-N(CH3)3I 4.72±1.93 5.14±3.12 41.2±1.3 

2l 4-N(CH3)3I/4-N(CH3)2 4.04±2.87 5.26±3.76 28.2±17.5 

2m 4-OP(O)(OCH3)2/ 

4-OP(O)(OH)(OCH3) 

7.70±2.04 31.8±5.6 78.7±25.2 

2n 4-OP(O)(OC2H5)2/ 

4-OP(O)(OH)(OC2H5) 

42.0±1.9 38.0±5.3 211±24 

Melphalan
b
        ---- 3.24±0.56 2.47±0.21 2.13±0.02 
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results are portrayed in Table 2. The effect of a representative compound on the cell cycle of 

HT29 cells is summarized in Table 3.   

 

3. Discussion  

                    The synthesis of 2a-j proceeded in a straightforward manner. However the first 

product isolated when 3, 5-bis (4-dimethylaminobenzylidene)-4-piperidone reacted with methyl 

iodide was the monoquaternary salt 2l (Scheme 3). The trimethylammonium group in 2l is a 

strongly electron-attracting substituent and will delocalize the lone pair of electrons on the 

nitrogen atom of the dimethylamino group of 2l thereby hindering the reaction with methyl 

iodide. Under forcing conditions the desired product 2k was obtained. In the process of reacting 

the 4-dialkylphosphoryloxybenzaldehydes with 4-piperidone, O-dealkylation of one of the 

alkoxy groups occurred leading to 2m, n. The partial dealkylation of a diethoxyphosphorylalkyl 

group attached to the nitrogen atom of some 3, 5-bis(benzylidene)-4-piperidones has been 

recorded previously [11]. The 
1
H NMR spectra of 2a-n revealed that the compounds were 

isomerically pure and were designated the E, E isomers [6]. This observation is in accordance 

with X-ray crystallographic evidence which assigned the E configuration to various related 3, 5-

bis (benzylidene)-4-piperidones [12]. 

             All of the compounds in series 2 were evaluated against human Molt4/C8 and CEM T-

lymphocytes in order to estimate the potencies of these compounds towards human transformed 

cells. In addition, a number of anticancer drugs are cytotoxic towards murine L1210 cells [13] 

and hence this assay, which may identify lead molecules, was also utilized. The data are 

presented in Table 1. 

          Two general comments upon the results are as follows. First, the objective of finding 

compounds with IC50 values in the submicromolar range in some of the bioassays was achieved 

by 2a-d, h which is clearly lead molecules. Second, in order to obtain some concept of how these 

biodata relate to an established alkylating agent used in cancer chemotherapy, a comparison was 

made between the potencies of melphalan and the compounds in series 2. The following 

compounds have statistically significant lower IC50 values than melphalan (fold increase in 

potency in parentheses) namely 2a (6.0), 2b (7.0), 2c (7.4), 2d (13.4), 2j (1.8) in the Molt4/C8 

assay, 2a (10.1), 2b (7.4), 2c (6.2), 2d (1.6), 2g ((1.5), 2h (5.9) in the CEM test and 2a (1.2) in 

the L1210 screen. In addition 2h, 2k, 2l (Molt4/C8 assay) and 2k, 2l (CEM screen) are 
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equipotent with melphalan. Thus over half of the compounds in series 2 are more potent or 

equipotent with melphalan in the case of the evaluation against Molt4/C8 and CEM T-

lymphocytes. In particular, 2a and 2d having greater than a 10-fold increase in potency than 

melphalan towards CEM and Molt4/C8 cells are noteworthy. 

              Some specific comments pertaining to the biodata in Table 1 are now presented. A 

question requiring resolution is whether substituents could be placed in the aryl rings of 1a 

which would lead to statistically significant potency increases. The results indicate that 2a-c are 

more potent than 1a in all three screens. It is of interest that 2a-c have substituents in the 2 and 3 

positions of the aryl rings and not in the para location. This observation was noted in other 

comparisons made. Thus in regard to the ortho (2a), meta (2b) and para (1b) chloro isomers, the 

average IC50 values of these compounds towards Molt4/C8, CEM and L1210 cells are 0.87, 1.76 

and 21.2 µM, respectively. Furthermore one may note from Table 1 the substantially greater 

potency of the 3-hydroxy analog 2d (average IC50= 3.11 µM) than the 4-hydroxy structural 

isomer 2f (average IC50 = 30.8 µM). These observations suggest that an E4 effect is indeed 

operating and further investigations with a range of other aryl substituents should be undertaken 

to evaluate this hypothesis. For example, the 3-amino analog 2c displays excellent potency 

towards the T-lymphocytes and the preparation of the ortho and para structural isomers for 

bioevaluations is warranted.  

           The cytotoxic potencies of 2g-k were compared with the data for 1a. The aryl rings in 2g-

k contain electron-withdrawing groups which means that the atomic charges on the olefinic 

carbon atoms should be lower than in 1a and thus enhance the interaction with cellular thiols. 

However only 2h had greater potency than 1a in the CEM and L1210 screens while equipotency 

with 1a was demonstrated in the following cases ( bioassay in parentheses ) namely 2g ( CEM), 

2h,j (Molt4/C8) and 2j (L1210). These data afford a further intimation that an E4 effect is in 

operation and placement of the same aryl substituents in the 2 and 3 locations should be 

undertaken. The high IC50 values of 2i (average IC50 figure is 302 µM) may have been due to the 

polarity of the carboxy group impeding the penetration of cell membranes. Esterification of the 

acidic groups of 2i leading to 2j (average IC50 value of 5.26 µM) led to a 57-fold increase in 

potency. The average IC50 figure of 3,5-bis(4-dimethylaminobenzylidene)-4-piperidone towards 

Molt4/C8, CEM and L1210 cells was shown previously to be 209 µM [6]. The bis and mono 

quaternary ammonium  iodides 2k and 2l have much lower average IC50 values namely 17.0 and 
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12.5 µM, respectively, i.e., potency increases of approximately 15 were noted. In general, the 

phosphoryl analogs 2m, n were substantially less potent than the 4-hydroxy analog 2f.  

                  In summary 2a-d, h have IC50 values in the submicromolar range and are lead 

molecules. The structure-activity relationships noted in series 2 suggest that greater cytotoxic 

potencies are found in the 2 and 3 positions of the aryl ring as an E4 effect is likely. These 

observations afford useful directions in amplifying the project. 

                  In order to explore further the potential of the lead compounds 2a-d, h and related 

analogs, and evaluations against a substantially increased number of cell lines was undertaken. 

Thus 2a-d,h,j-l as well as 1a were examined using approximately 55 human tumour cell lines 

from nine different neoplastic conditions namely leukemia and melanoma as well as non-small 

cell lung, colon, central nervous system, ovarian, renal, prostate and breast cancers [15]. The 

compounds were examined in the concentration range of 10
-4

 to 10
-8

 M. In virtually all cases IC50 

values were obtained but for a few assays (which are indicated in the Experimental section), 

these figures are outside this range. Hence in considering the data for all cell lines, the term GI50 

is employed. Examination of the mean graphs [16] revealed that leukemic and colon cancer cell 

lines are particularly sensitive to these compounds. The cytotoxic potencies towards all cell lines 

as well as various leukemic and colon cancer cell lines are presented in Table 2. 

               The average GI50 values presented in Table 2 confirm that 2a-d, h are lead molecules. 

These compounds as well as 2h, j are more potent than 1a while the two analogs which contain 

quaternary ammonium groups have higher GI50 values than the unsubstituted compound 1a. All 

of the enones are more potent than melphalan, e.g., the average GI50 value of 2d is 71 times 

lower than the figure for melphalan. 

              Compounds which vary in their potencies towards different neoplastic cell lines are not 

general biocidal agents. Thus it is conceivable that such differing toxicities may indicate 

compounds which are preferentially cytotoxic to neoplasms rather then normal cells. Hence 

selectivity index (SI) figures were generated which are the ratios of the highest and lowest IC50 

values of the compounds. The enones 2a, b, h have impressive SI figures thereby confirming 

their designation as prototype molecules for analog development. 

 



 

 

6
8 

 

 

Table 2.  Evaluation of 1a, 2a-d, h, j-l against a panel of human tumour cell lines 

 

 

Compound 

All cell lines  Leukemic cells, IC50(μM)
a
  Colon cancer cells, IC50(μM)

a
 

Ave. 

GI50 

(μM)
b
 

SI
c
  CCRF- 

CEM 

K562 RPMI

8226 

HL60 

(TB) 

Ave.  

IC50 

(μM) 

 COLO 

205 

HCC 

2998 

HCT

116 

HCT 

15 

HT 

29 

KM 

12 

SW 

620 

Ave. 

IC50 

(μM) 

1a 1.62 93.3  1.62 0.49 0.31 0.36 0.70  1.55 2.00 0.18 0.63 0.58 0.79 0.58 0.90 

2a 0.42 >3312  0.05 0.02 0.03 --- 0.03  4.17 0.17 0.04 0.21 0.77 0.10 2.57 1.15 

2b 0.66 >3162  0.24 --- 0.23 --- 0.24  0.50 0.20 0.03 0.19 1.98 0.26 0.04 0.46 

2c 0.53 60.3  0.29 0.55 0.22 0.30 0.34  0.25 0.43 0.21 0.21 0.21 0.21 0.20 0.25 

2d 0.38 195  0.01 0.04 0.05 0.15 0.06  1.45 1.62 0.23 0.04 2.63 0.22 0.16 0.91 

2h 1.07 >1995  0.04 0.12 0.02 0.66 0.21  1.48 1.45 0.17 0.15 0.67 6.76 0.11 1.54 

2j 0.45 >347  0.18 0.13 0.08 0.22 0.15  --- 1.02 0.13 0.20 0.21 0.21 0.17 0.32 

2k 9.55 >339  2.63 1.35 --- 1.20 1.73  1.91 6.31 3.55 >100 6.92 3.47 7.08 >18.5 

2l 7.41 347  1.58 1.15 0.29 0.48 0.87  1.70 4.68 3.63 >100 5.62 2.69 6.03 >17.8 

Melphalan
d
 26.9 118  6.17 43.7 66.1 2.04 29.5  66.1 41.7 30.2 36.3 46.8 43.7 38.9 43.4 

5-Fluorouracil 12.0 10,000  14.1 35.5 1.70 --- 17.1  14.8 <0.25 1.91 2.29 28.2 <0.25 22.4 <10.0 

 
a
The term IC50 refers to the concentrations of the compounds which are required to inhibit the growth of the cells by 50%. 

b
The term GI50 indicates the 

50% growth-inhibiting concentrations in most cases.  When this value fell outside of the concentrations utilized, e.g., > 10
-4 

M, the figure of 10
-4

 was 

used in calculating the average GI50 data. 
c
The letters SI refer to the selectivity index which is the ratio of the highest and lowest IC50 values of the 

compound to all cell lines. 
d
The data for melphalan is reported previously.

7
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             The data presented in Table 2 reveal that enones 1a, 2a-d, h, j-l  demonstrate remarkable 

potencies towards four leukemic cell lines in which 81% of the IC50 values are submicromolar. 

Nine of the IC50 figures are in the double digit nanomolar range (10
-8

 M) and the average IC50 

values of 2a and 2d are 32 and 62 nM, respectively. The compounds are far more potent than 

melphalan which is used in treating chronic lymphocytic leukemia [17]. In particular, the 

average IC50 values of 2a and 2d are 922 and 476 times lower than the figure for melphalan. 

              All of the compounds were evaluated against seven human colon cancer cell lines. The 

data in Table 2 reveal that 58% of the IC50 values 2a-d, j, k-l are submicromolar or if one 

considers only the non-quaternary ammonium compounds namely 2a-d, h, j, the figure rises to 

75%. Of particular note are the significant potencies of 2a, b towards HCT116 cells, 2b against 

SW-620 neoplasms and 2d versus the HCT116 tumour. 5-fluorouracil is used in treating colon 

cancers [18]
 
and all of the compounds 1a, 2a-d, h, j-l have lower IC50 values than 5-fluorouracil 

towards HT29 and SW-620 cells. 

 

Table 3: Effect of 2a on the cell cycle of HT29 cells 

 

Conc. of 2a (µM) Sub G1
a
 G1

a
 S

a
 G2/M

a
 

0.00 

0.5 

1.0 

5.0 

0.62 

23.6 

29.8 

54.1 

80.3 

47.8 

44.2 

27.9 

11.4 

13.9 

11.9 

8.42 

7.62 

14.4 

13.7 

8.57 

 
a
The figures are the percentage of the cells in different phases of the cell cycle. 

 

            In order to gain some idea as to how these compounds exert their antineoplastic 

properties, the effect of a representative enone 2a on the cell cycle using the HT29 neoplasm was 

undertaken. The results presented in Table 3 reveal that 2a caused a concentration dependent 

arrest of the cell cycle at the sub G1 phase. Thus 2a causes an increase in the percentage of the 

cells undergoing apoptosis and this mode of action likely applies to other compounds in series 1 

and 2. 

              Finally in considering the possible development of a series of cytotoxins, some 

appreciation of their mammalian tolerability should be obtained. Hence most of the members of 

series 2 were examined in a short term toxicity test in mice. Doses of 30,100 and 300 mg/kg of 

2a-k, n were administered intraperitoneally to mice and the animals examined after 0.5 and 4 

hours for lethality as well as neurotoxicty using the rotorod test [19]. No deaths were noted 
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among 2a-k while one of the two animals which had received 300 mg/kg of 2n was dead at the 

end of four hours. Neurotoxicity was noted in some of the animals which had received the 

maximum dose of 300mg/kg of 2c, i, j, k details of which are given in the Experimental Section. 

One may conclude that the antineoplastics 2 are well tolerated in mice which enhance their 

potential utility for development as cytotoxic warheads. 

 

4. Conclusions 

             Structural modifications of the lead compound 1a led to 2a-d, h which are more potent 

in some or all of the Molt4/C8, CEM and L1210 bioassays. Over half of the compounds in series 

2 have either lower IC50 values than melphalan or are equipotent with this antineoplastic drug. 

The biodata generated for 2a-n suggest that in the future the placement of substituents in the 2 or 

3 locations of the aryl rings will give the greatest potencies. The excellent cytotoxic potencies of 

2a-d, h noted from the initial screens were confirmed using a large number of human tumour cell 

lines. These compounds, along with 2j-l, are more potent than melphalan when the average GI50 

data are concerned. In addition, 2a, b, h have excellent SI values. The enones 2a-d, h, j-l 

demonstrate excellent growth-inhibiting properties towards human leukemic cell lines and in 

many cases towards human colon cancer cells. The mode of action of the compounds in series 2 

likely includes apoptosis and in general, these enones are well tolerated in mice. 

 

5.  Experimental 

5.1 Chemistry 

Melting points were determined on a Gallenkamp instrument and are uncorrected. 
1
H NMR 

spectra were obtained using a Bruker Avance spectrometer 500 MHz machine equipped with a 

BBO probe.  Chemical shifts (δ) are reported in ppm. Elemental analyses were undertaken using 

an Elementer CHNS analyzer. 

 

5.1.1 Synthesis of 3,5-bis(arylidene)-4-piperidones (2a,b,d-j) 

A mixture of 4-piperidonehydrochloride (0.005 mol) and an appropriate aryl aldehyde (0.01 mol) 

in acetic acid (15 ml) was saturated with anyhydrous hydrogen chloride and stirred at room 

temperature for 10-12 h. The precipitate was filtered, washed with acetone (2×10 ml) and dried. 

The crude hydrochloride salt was purified by crystalization from  chloroform-methanol. 
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5.1.1.1. 3, 5-bis (2-Chlorobenzylidene)-4-piperidone hydrochloride (2a). Yield 72%; mp 221 
o
C; 

1
H NMR (DMSO-d6): δ 9.78 (s, 2H, 

+
NH2), 7.43 (s, 2H, 2×=CH), 6.62 (m, 8H, Ar-H), 3.66 (s, 

4H, 2×NCH2). Anal.calcd for C19H16Cl3NO.H2O: C 59.94; H 4.24; N 3.68 %, found: C 59.87; H 

4.22; N 3.62%. 

 

5.1.1.2 3, 5-bis (3-Chlorobenzylidene)-4-piperidone hydrochloride (2b). Yield 74%; mp 250 
o
C; 

1
H NMR (DMSO-d6): δ 9.78 (s, 2H, +NH2), 7.85 (s, 2H, 2×=CH), 7.65 (s, 2H, Ar-H), 7.56 (m, 

4H, Ar-H), 7.49 (d, J=7.89Hz, 2H, Ar-H), 4.48 (s, 4H, 2×NCH2). Anal.calcd for C19H16Cl3NO: C 

59.94; H 4.24; N 3.68 %, found: C 59.78; H 4.00; N 3.61%. 

 

5.1.1.3. 3,5-bis (3-Hydroxybenzylidene)-4-piperidone hydrochloride (2d). Yield 61%; mp 300 

o
C; 

1
H NMR (DMSO-d6): δ 9.89 (s, 2H, +NH2), 9.76 (s, 2H, 2×OH), 7.77 (s, 2H, 2×=CH), 7.31 

(t, 2H, Ar-H), 6.90 (m, 6H, Ar-H), 4.45 (s, 4H, 2×NCH2). Anal.calcd for C19H18ClNO3: C 66.38; 

H 5.28; N 4.07 %, found: C 65.85; H 5.16; N 3.98%. 

 

5.1.1.4. 3, 5-bis (3,4-Dihydroxybenzylidene)-4-piperidone hydrochloride (2e). Yield 66%; mp 

254 
o
C; 

1
H NMR (DMSO-d6): δ 9.82 (brs, 2H, 2×OH), 9.58 (brs, 2H, 2×OH), 9.42 (s, 2H, 

+NH2), 7.67 (s, 2H, 2×=CH), 6.92 (s, 2H, Ar-H), 6.86 (q, 4H, Ar-H), 4.41 (s, 4H, 2×NCH2). 

Anal.calcd for C19H18ClNO5.0.5 H2O: C 59.30; H 4.97; N 3.73 %, found: C 58.20; H 5.02; N 

3.46%. 

 

5.1.1.5. 3, 5-bis (4-Hydroxybenzylidene)-4-piperidone hydrochloride (2f). Yield 63%; mp >300 

o
C; 

1
H NMR (DMSO-d6): δ 10.31(s, 2H, 2×OH), 9.66 (s, 2H, +NH2), 7.77(s, 2H, 2×=CH), 7.39 

(d, J=8.45Hz, 4H, Ar-H), 6.92 (s, 4H, J=8.45Hz, Ar-H), 4.44 (s, 4H, 2×NCH2). Anal.calcd for 

C19H18ClNO3.0.25H2O: C 65.46; H 5.16; N 4.02 %, found: C 65.24; H 5.58; N 4.14%. 

 

5.1.1.6. 3,5-bis (4-Bromobenzylidene)-4-piperidone hydrochloride (2g). Yield 74%; mp 280 
o
C; 

1
H NMR (DMSO-d6): δ 9.75 (s, 2H, +NH2), 7.90 (s, 2H, 2×=CH), 7.84(s, 4H, Ar-H), 7.57 (s, 

4H, Ar-H), 4.45 (s, 4H, 2×NCH2). Anal.calcd for C19H16Br2ClNO: C 48.60; H 3.43; N 2.98 %, 

found: C 48.27; H 3.18; N 2.92%. 
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5.1.1.7. 3,5-bis(4-Trifluoromethylbenzylidene)-4-piperidone hydrochloride (2h). Yield 67%; mp 

244 
o
C; 

1
H NMR (DMSO-d6): δ 9.92 (s, 2H,+NH2), 7.95 (s, 2H, 2×=CH), 7.89 (d, J=8.20Hz, 4H, 

Ar-H), 7.75 (d, J=8.10Hz, 4H, Ar-H), 4.49 (s, 4H, 2×NCH2). Anal.calcd for C21H16ClF6NO: C 

56.33; H 3.60; N 3.13 %, found: C 56.03; H 3.45; N 3.06%. 

 

5.1.1.8. 3,5-bis(4-Carboxybenzylidene)-4-piperidone hydrochloride (2i). Yield 74%; mp >300 

o
C; 

1
H NMR (DMSO-d6): δ 13.20 (brs, 2H, 2×COOH), 9.76 (brs, 2H, +NH2), 8.05 (d, J= 7.95Hz, 

4H, Ar-H), 7.92 (s, 2H, 2×=CH), 7.65 (d, J=7.90Hz, 4H, Ar-H), 4.50 (s, 4H, 2×NCH2). 

Anal.calcd for C21H18ClNO5: C 63.08; H 4.54; N 3.50 %, found: C 63.32; H 4.68; N 3.49%. 

 

5.1.1.9. 3,5-bis [4-(Ethoxycarbonyl)benzylidene]-4-piperidone hydrochloride (2j). Yield 62%; 

mp >300 
o
C; 

1
H NMR (DMSO-d6): δ 9.78 (brs, 2H, +NH2), 7.93 (s, 2H, 2×=CH), 8.07 (d, 

J=7.85Hz, 4H, Ar-H), 7.67 (d, J=7.85Hz, 4H, Ar-H), 4.50 (s, 4H, 2×NCH2), 4.34 (q, 4H, 

2×OCH2), 1.34 (t, 6H, 2×CH3). Anal.calcd for C25H26ClNO5: C 65.86; H 5.75; N 3.07 %, found: 

C 65.50; H 5.72; N 2.53%. 

 

5.1.2. Synthesis of 3,5-bis (3-aminobenzylidene)-4-piperidone (2c). Stannous chloride (0.03 mol, 

5.7 g) was added to a suspension of 3,5-bis (3-nitrobenzylidene)-4-piperidone [20] (0.05 mol, 

1.82 g) and aqueous potassium carbonate in ethyl acetate (10%, 25ml). The mixture was stored at 

room temperature for 12 h. The precipitate was collected by filtration, washed with ethyl acetate 

(2×5 ml) and suspended in water (15 ml). The solid was collected by filtration, dried and 

recrystallized from chloroform-methanol. Yield 43%; mp >300 
o
C; 

1
H NMR (DMSO-d6): δ 

7.56(s, 2H, 2×=CH), 7.13 (t, 2H, Ar-H), 6.63(m, 6H, Ar-H), 5.30 (s, 4H, 2×NH2), 4.19 (s, 4H, 

2×NCH2). Anal.calcd for C19H19N3O. 3H2O: C 63.44; H 5.28; N 11.68 %, found: C 63.06; H 

5.30; N 11.49%. 

 

5.1.5. Synthesis of quaternary salts 2k  and 2l.  

                 To a solution of 3,5-bis(4-dimethylaminobenzylidene)-4-piperidone [6] (0.005 mol, 

1.9 g) in chloroform (30 ml) was added methyl iodide (0.0125 mol, 1.77 gm) and stirred at room 

temperature overnight. The volume of chloroform was reduced to ~15 ml under reduced pressure 

at room temperature and left for crystallization. The solid crystallized out from the solvent was 
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filtered off after 48hrs. The solid was washed with chloroform cooled at ~2 
0
C and dried. The 

solid was characterized as the mono quaternized adduct 2l and the mother liquor contained a 

mixture of mono and the corresponding bis adduct 2k as established by 
1
N NMR. The mother 

liquor obtained after filtering the mono adduct was added in excess quantities of methyl iodide 

(0.01mol, 1.5 gm) and heated to ~ 40 
0
C for 12 hrs using a water condenser circulated with cold 

water (~ 5 
0
C). The solvent was removed under reduced pressure at room temperature and the 

solid obtained was crystallized from ethanol to produce the analytically pure bis adduct 2k.  

 

5.1.5.2.  3,5-bis(4-(N,N,N-Trimethylammonium)iodide)benzylidene)-4-piperidone (2k). Yield 

32%, mp >300 
0
C. 

1
H NMR (DMSO-d6): δ 7.91 (s, 2H, 2×=CH), 7.39 (d, J=8.75Hz, 2H, Ar-H),  

6.81 (d, J=8.75Hz, 2H, Ar-H),  4.89 (s, 4H, 2×NCH2), 3.21 (s, 6H, 2×
+
NCH3), 3.03 (s, 12H, 

4×
+
NCH3). Anal.calcd for C25H33l2N3O.H2O: C 45.22; H 5.27; N 6.33 %, found: C 45.29; H 

4.94; N 6.20%. 

 

5.1.5.1. 3-(4-(N,N,N-Trimethylammonium)iodide)benzylidene)-5-(4-dimethylaminobenzylidene)-

4-piperidone (2l). Yield 42%, mp >300 
0
C.

 1
H NMR (DMSO-d6): δ 7.91 (s, 2H, 2×=CH), 7.39 

(d, J=8.55Hz, 4H, Ar-H),  6.81 (d, J=8.70Hz, 4H, Ar-H),  4.89 (s, 4H, 2×NCH2), 3.24 (s, 6H, 

2×NCH3), 3.03 (s, 9H, 3×NCH3). Anal.calcd for C24H30lN3O: C 57.26; H 6.01; N 8.35 %, found: 

C 57.27; H 6.18; N 7.98%. 

 

5.1.3. Synthesis of 3-(4-((dimethylphosphoryl)oxy)benzylidene)-5-(4-((methoxy(hydroxyl)- 

phosphoryl)oxy)benzylidene)4-piperidone hydrochloride (2m) 

 

Step I: Synthesis of 4-((dimethoxyphosphoryl)oxy)benzaldehyde 

A mixture of 4-hydroxybenzaldehyde (0.05 mol, 6.1 gm), dimethylchlorophosphate (0.065 mol, 

9.4 gm), anhydrous potassium carbonate (0.05 mol, 6.9 gm) and a catalytic amount of potassium 

iodide (20 mg) in acetone was refluxed for 4 hrs. The mixture was filtered to remove inorganic 

salts, washed with acetone and the filtrate was evaporated under vacuum at room temperature. 

The crude product was dissolved in ethyl acetate, washed with 5% potassium carbonate, dried 

over sodium sulphate and evaporated to yield a thick liquid, which was characterized by 
1
H 

NMR. This product was taken for reaction in step II without further purification. 
1
H NMR 



 

74 
 

(CDCl3): δ 9.98 (s, 1H, CHO), 7.91 (d, J=8.45Hz, 2H, Ar-H), 7.40 (d, J=8.40Hz, 2H, Ar-H), 3.92 

(s, 3H, OCH3), 3.90 (s, 3H, OCH3). 

 

Step II: A mixture of 4-piperidone hydrochloride (0.0065 mol, 1gm) and 4-

((dimethoxyphosphoryl)oxy)benzaldehyde (0.013 mol, 3gm) in acetic acid (20 ml) was saturated 

with anhydrous hydrogen chloride and stirred at room temperature for 12 hrs. The solvent was 

removed under reduced pressure at 50-55 
0
C and the crude thick mass obtained was triturated 

with acetone. The solid obtained was filtered and washed with acetone. The crude product 2m 

was purified by refluxing in methanol, the solid filtered, washed with methanol (2×5 ml) and 

dried. Yield 54%; mp 216 
o
C (dec); 

1
H NMR (DMSO-d6): δ 9.85 (brs, 2H, +NH2), 7.85 (d, 

J=9.8Hz, 2H, 2×=CH), 7.60 (d, J=7.95Hz, 2H, Ar-H), 7.48 (d, J=7.75Hz, 2H, Ar-H), 7.37 (d, 

J=8.10Hz, 2H, Ar-H), 7.27 (d, J=8.05Hz, 2H, Ar-H), 4.47 (s, 4H, 2×NCH2), 3.83 (d, J=11.25Hz, 

6H, 2×OCH3), 3.56 (d, J=10.90Hz, 3H, OCH3). Anal.calcd for C22H26ClNO9P2: C 48.41; H 4.80; 

N 2.57 %, found: C 48.76; H 5.04; N 2.65%. 

 

5.1.4. Synthesis of 3-(4-((diethylphosphoryl)oxy)benzylidene)-5-(4-((ethoxy(hydroxyl)-phos- 

phoryl)oxy)benzylidene)4-piperidone hydrochloride (2n) 

 

Step I: Synthesis of 4-((diethoxyphosphoryl)oxy)benzaldehyde 

It was prepared following the same process as described above by using 4-hydroxybenzaldehyde 

(0.05 mol, 6.1 gm), diethylchlorophosphate (0.06 mol, 10.35 gm) and anhydrous potassium 

carbonate (0.05 mol, 6.9 gm) and taken for reaction in the second step without further 

purification. Yiled: 73%. 
1
H NMR (CDCl3): δ 9.86 (s, 1H, CHO), 7.85 (d, J=8.65Hz, 2H, Ar-H),  

7.51 (d, J=8.62Hz, 2H, Ar-H), 4.17 (p, 4H, 2×OCH2), 1.27 (t, 6H, 2×CH3).  

 

Step II:  It was prepared following same process as described above for 2m by using 4-

piperidone hydrochloride (0.004 mol, 0.62 gm) and 4-((ethoxyphosphoryl)oxy)benzaldehyde  

(0.008 mol, 2.1gm). Crude yield: 65%. The crude product 2n was purified by column 

chromatography by using the eluent chloroform/methanol (82:18). Yield 48%; mp 210 
o
C (dec); 

1
HNMR (DMSO-d6): δ 7.78(d, J=11.72Hz, 2H, 2×=CH), 7.58 (d, J=8.40Hz, 2H, Ar-H), 7.39(d, 

J=8.3Hz, 2H, Ar-H), 7.34 (d, J=8.22Hz, 2H, Ar-H), 7.21 (d, J=8.32Hz, 2H, Ar-H), 4.38 (s, 4H, 
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2×NCH2), 4.19 (p, 4H, 2×OCH2), 3.76 (p, 2H, OCH2), 1.29 (t, 6H, 2×CH3), 1.08 (t, 3H, CH3). 

Anal.calcd for C25H32ClNO9P2.5H2O: C 44.25; H 4.72; N 2.06 %, found: C 44.41; H 4.86; N 

1.8%. 

 

5.2.  Bioevaluations 

5.2.1. Cytotoxicity Assays. 

The Molt 4/C8, CEM and L1210 screens were undertaken using a literature procedure [21]. The 

evaluation of 1a, 2a-d, h, j-l towards a panel of 55±4 human tumor cell lines utilized a reported 

methodology [15]. The concentrations of compounds were 10
-4

 to 10
-8 

and the number of IC50 

values obtained/number of cell lines employed are as follows, namely 1a: 59/59; 2a: 53/54; 2b: 

52/53 ; 2c : 55/55 ; 2d : 58/58 ; 2h: 57/58; 2j : 52/53 ; 2k : 51/55 ; 2l : 52/56. The small number 

of IC50 figures outside of the range of 10
-4

 to 10
-8

 M were in excess of 10
-4

 M in the case of 2b, k, 

l and lower than 10
-8

 for 2a, h, j. The range of concentration employed for melphalan was 10
-3.6

 

to 10
-7.6

 and IC50 values were found for all 57 cell lines. For 5-fluorouracil, 58 cell lines were 

assayed using concentrations of 10
-2.6

 to 10
-6.6

 M. The IC50 figures for two cell lines were in 

excess of 10
-6.6

 M while in four of the assays, the IC50 values were lower than 10
-6.6

 M. 

 

5.2.2. Cell Cycle Analysis 

          The effect of 2a on the cell cycle of HT29 cells was undertaken by a procedure which has 

been described in detail recently [22]. In brief, HT29 cells were incubated for 24h in a 

humidified incubator at 37 °C with 5 % carbon dioxide. The compound was added to the cells 

and incubated at 37 °C in a humidified incubator with 5 % carbon dioxide for 48 h along with 

untreated cells. After the addition of propidium iodide (20 μg/ml) and RNase (300 μg/ml) for 20 

minutes, the samples were analysed by a FACScaliber (BD) flow cytometer. Cells were gated to 

include the subG1, G1, S and G2/M population of cells. 

 

5.2.3. Toxicity evaluations. 

Compounds 2a-k, n were administered to mice by intraperitoneal route. This experimentation 

was undertaken by the National Institute of Neurological Disorders and Stroke according to their 

protocols [23]. Neurotoxicity was noted after administration of the following compounds to mice 

(number of animals displaying neurotoxicity/total number of animals evaluated, dose in mg/kg, 
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time of observation in h) viz, 2c (1/4,300, 0.5; 1/2, 300, 4), 2i (1/2, 300, 4), 2j (1/4, 300, 0.5) and 

2k (1/4, 300, 0.5). The animals were housed, handled and fed in accordance with the procedures 

published in the document of the National Research Council entitled “Guide for the Care and 

Use of Laboratory Animals”. Euthanasia of the rodents was undertaken using the procedures of 

the Institute of Laboratory Resources. 
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CHAPTER 3 

 

Chapter 3 consists of copies of two articles: one was published in ChemMedChem in 2009.*† 

and the other one in Bioorganic and Medicinal Chemistry Letters in 2010.**# 

Relationship of Chapter 3 to the objectives of this project 

The objectives of this study were to develop cytotoxic water soluble prodrugs of 3,5-

bis(arylidene)-4-piperidone derivatives by introducing phosphoryl groups onto the piperidone 

nitrogen atom and to examine the theory of sequential cytotoxicity using these series of 

compounds in order to explore the hypothesis that (i) the prodrugs display greater cytotoxic 

potencies over their precursor enones; (ii) sequential thiol alkylation will be more detrimental to 

tumours than non-malignant cells and also to evaluate their potential as multidrug resistance 

modulators.  

Description 

A series of ethyl esters of 3,5-bis(arylidene)-4-piperidone-N-phosphonates and the N-

phosphonic acid derivatives were synthesized from their corresponding 3,5-bis(arylidene)-4-

piperidone precursors for evaluation of their cytotoxic and multidrug resistance reversal 

properties. The stereochemistry of one of the representative compounds was examined by X-ray 

crystallography. All compounds were evaluated against human Molt 4/C8 and CEM T-

lymphocytes as well as murine leukemic L1210 cells. Some of these compounds were assessed 

against a panel of approximately 55 human tumor cell lines by the NCI. The influence of aryl 

substituents possessing diverse electronic, hydrophobic and steric properties on the cytotoxic 

potencies of the compounds was also assessed. To evaluate the theory of sequential cytotoxicity, 

the compounds were screened against a number of malignant HSC-2, HSC-3, HSC-4 and HL-60 

cell lines and compared against the non-malignant HGF, HPC and HPLF cell lines. The modes 

of action of representative compounds by which cytotoxicity is mediated were investigated. 

Author Contributions 

My contributions to the ChemMedChem publication were: (i) undertaking a literature 

review of the prepared compounds, designing the synthetic chemical routes, synthesizing the 

compounds, determining and interpreting 
1
H and 

13
C NMR spectra of the compounds in series 3-

5, (ii) the mitochondrial studies, (iii) writing of experimental section of the manuscript, and (iv) 

elemental analysis was done by me using the CHNS analyzer. The coauthors on this paper are U. 
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Das, who supervised the synthesis of the compounds and undertook the QSAR and some 

molecular modeling studies, P. Selvakumar undertook the cell cycle analysis of 5g under the 

supervision of R.K. Sharma,  E. De Clercq and J. Balzarini supervized the cytotoxic assays using 

human Molt 4/C8 and CEM T-lymphocytes and murine leukemic L1210 cells, J. Serly and Z. 

Barath conducted the multidrug resistance reversal assay under the supervision of J. Molnar, B. 

Bandy guided the mitochondrial work,  G. Schatte elucidated the X-ray crystal structure of 4g, 

and the project was guided and supervised by J. R. Dimmock and D. K. J. Gorecki. The 

manuscript was written by J. R. Dimmock with some inputs from me.  

My contribution to the publication in Bioorg. Med. Chem. Lett. was the undertaking of 

the literature review of the prepared compounds, designing the synthetic chemical routes, 

synthesizing the compounds, determining and interpreting the 
1
H and 

13
C NMR spectra of the 

compounds in series 3-5. The coauthors on this paper are U. Das, who supervised the synthesis 

of the compounds and undertook the QSAR and molecular modeling studies, K. Hashimoto 

undertook the cytotoxic studies against some malignant and non-malignant cell lines and 

performed the caspase activation and DNA fragment studies on 1c under the supervision of H. 

Sakagami and M. Kawase, and the project was guided and supervised by J. R. Dimmock and D. 

K. J. Gorecki. The manuscript was written by J. R. Dimmock with some suggestions from the 

coauthors.  

______________________________________________________________________________ 

* Reproduced with permission from ChemMedChem © 2009 Wiley-VCH Verlag GmbH & Co. 

KGaA, Weinheim. 

† Das et al. ChemMedChem 2009, 4, 1831-1840. 

** Reproduced with permission from Bioorganic and Medicinal Chemistry Letters © 2010 

Elsevier Ltd. 
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3,5-Bis(benzylidene)-4-oxo-1-phosphonopiperidines and
Related Diethyl Esters: Potent Cytotoxins with Multi-Drug-
Resistance Reverting Properties
Swagatika Das,[a] Umashankar Das,[a] Ponniah Selvakumar,[b] Rajendra K. Sharma,[b]

Jan Balzarini,[c] Erik De Clercq,[c] Joseph Moln�r,[d] Julianna Serly,[d] Zolt�n Bar�th,[d]

Gabriele Schatte,[e] Brian Bandy,[a] Dennis K. J. Gorecki,[a] and Jonathan R. Dimmock*[a]

Introduction

A major interest in our research groups is the design of anti-
neoplastic agents that contain the 1,5-diaryl-3-oxo-1,4-penta-
dienyl pharmacophore. A number of reasons for the inclusion
of this group into the structures of candidate cytotoxins have
been collated recently.[1] Two important considerations are as
follows: First, conjugated unsaturated ketones are thiol alkyla-
tors with little or no capacity to interact with amino or hydroxy
groups, which are found in nucleic acids.[2] Thus these mole-
cules should be free of the mutagenic effects elicited by cer-
tain alkylating agents used in cancer chemotherapy.[3] Second,
the concept of sequential cytotoxicity states that successive al-
kylations of cellular constituents may be more detrimental to
malignant cells than to the corresponding normal tissues.[4]

This theory is based on the observation that an initial chemical
insult caused by a bifunctional alkylator, for example, may be
greater in neoplasms than in the corresponding normal
cells.[5, 6] Thus selective toxicity to tumors may result when the
1,5-diaryl-3-oxo-1,4-pentadienyl group is present in candidate
cytotoxins, as illustrated in Figure 1.

The excellent cytotoxic properties of various groups of com-
pounds possessing the general structure 1 have been report-
ed.[1] In particular, when X is a secondary amino group in series
1, in a number of cases the IC50 values toward various trans-
formed and malignant cells are in the low micromolar and
sub-micromolar range.[7, 8] For example, the free base of 2 has
an IC50 value of 7.96 mm toward murine L1210 leukemic cells.[7]

However, when assessment of 2 was made using this cell line
passaged in mice, there was no increase in the life span of the
animals.[8] A possible reason for this observation is the lipophi-
licity of 3,5-bis(benzylidene)-4-piperidones; for example, the

A series of 3,5-bis(benzylidene)-4-piperidones 3 were convert-
ed into the corresponding 3,5-bis(benzylidene)-1-phosphono-
4-piperidones 5 via diethyl esters 4. The analogues in series 4
and 5 displayed marked growth inhibitory properties toward
human Molt 4/C8 and CEM T-lymphocytes as well as murine
leukemia L1210 cells. In general, the N-phosphono compounds
5, which are more hydrophilic than the analogues in series 3
and 4, were the most potent cluster of cytotoxins, and, in par-
ticular, 3,5-bis-(2-nitrobenzylidene)-1-phosphono-4-piperidone
5 g had an average IC50 value of 34 nm toward the two T-lym-

phocyte cell lines. Four of the compounds displayed potent cy-
totoxicity toward a panel of nearly 60 human tumor cell lines,
and nanomolar IC50 values were observed in a number of
cases. The mode of action of 5 g includes the induction of
apoptosis and inhibition of cellular respiration. Most of the
members of series 4 as well as several analogues in series 5
are potent multi-drug resistance (MDR) reverting compounds.
Various correlations were noted between certain molecular fea-
tures of series 4 and 5 and cytotoxic properties, affording
some guidelines in expanding this study.

Figure 1. Structures of series 1 (the 1,5-diaryl-3-oxo-1,4-pentadienyl pharma-
cophore is boxed) and compound 2.
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log P value for the free base of 2 is 3.38.[9] Hence, the conver-
sion of these amines into the corresponding 1-phosphono de-
rivatives was considered, as the p value of the phosphono
groups is �1.59.[10] We therefore decided to embark on a syn-
thetic strategy leading to the compounds of series 3–5 as indi-
cated in Scheme 1 in order to explore the hypothesis that cy-
totoxic potencies are greater in 5 a–i than in the precursor
enones 3 a–i.

The choice of aryl substituents was made on the basis of the
considerable differences in their electronic, hydrophobic, and
steric characteristics. One or more of these properties may cor-
relate with cytotoxic potencies. The aryl groups in series 3–5
are identical and, hence, if the compounds bearing the same
substituents in the aryl rings have identical IC50 values, their
potencies could be ascribed to the 1,5-diaryl-3-oxo-1,4-penta-
dienyl group. On the other hand, variations in potencies, for
example between 3 c, 4 c, and 5 c, would point to a contribu-
tion to the magnitude of the bioactivity by the substituent on
the piperidyl nitrogen atom. In addition, a comparison of the
IC50 values of the 4-piperidones in series 4 and 5 may give
some indication of whether masking of the acidic groups pres-
ent in the 1-phosphono analogues is beneficial in terms of cy-
totoxic potencies.

A previous study revealed that while a small series of 3,5-
bis(benzylidene)-4-piperidones with an average log P value of
3.90 had little or no capacity to reverse P-glycoprotein-associ-
ated multi-drug resistance (MDR), conversion into the corre-
sponding amides with an average log P value of 5.52 led to
clusters of potent MDR reverting agents.[9] Hence the decision
was made to examine whether the phosphoramidates 4 and 5
possess this important biological property and whether lipo-
philicity affects the potencies of these compounds.

In summary, the objectives of the present study included ex-
amining the compounds in series 3–5 for cytotoxic properties
as well as 4 a–i and 5 a–i as candidate MDR reverting agents.
In addition, experiments were designed to find some of the
reasons for any variation in potencies observed in the different
biological evaluations.

Results

The synthetic route for the preparation of the 4-piperidones 3–
5 is presented in Scheme 1. The compounds in series 3 were
prepared by acid-catalyzed condensation between a variety of
aryl aldehydes and 4-piperidone. Reaction of 3 a–i with diethyl
chlorophosphonate led to the formation of the corresponding
amides 4, which were hydrolyzed with trimethylsilyl bromide
to yield the phosphonic acids 5 a–i. The Clog P values of the 4-
piperidones in series 4 and 5 were computed and are listed in
Table 1. The X-ray crystallographic structure of 4 g is presented
in Figure 3 below.

All of the compounds in series 4 and 5 were evaluated
against human Molt 4/C8 and CEM T-lymphocytes as well as
murine leukemia L1210 cells. These data are presented in
Table 1. The biological data from these three assays were re-
ported previously for 3 a,c,f,i[7] and also for 3 b.[11] Thus 3 d,e,g,h
were prepared, and their growth inhibiting properties from the
Molt 4/C8, CEM, and L1210 assays are listed in Table 1. The 4-
piperidones 4 a,c,d and 5 c were examined by NCI against a
panel of 58–59 human tumor cell lines, and these results are
presented in Table 5 below. Two mode-of-action studies used
human colon cancer HT29 cells: First, the effect of 5 g on these
cells was examined by flow cytometry, and the results are
shown in Figure 4. Second, evaluations of 5 d and 5 g on respi-
ration in HT29 cells were undertaken, and the effects are illus-
trated in Figure 5. All of the compounds in series 4 and 5 were
examined as candidate MDR reverting agents and the results
are presented in Table 1.

Discussion

X-ray crystallography of a number of compounds having the
general structure 3[7, 8, 12] and related N-acyl derivatives[7, 13, 14] re-
vealed that the olefinic double bonds adopt the E configura-
tion. In addition, a representative compound prepared in this
study, namely 4 g, is the E,E geometrical isomer as revealed by
X-ray crystallography. Hence, the compounds in series 3–5 are
considered to be the E,E isomers.

Scheme 1. Synthesis of series 3–5 : a) HCl, CH3COOH; b) (C2H5O)2P(O)Cl, K2CO3, KI ; c) (CH3)3SiBr.
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All of the compounds in series 4 and 5 were evaluated
against human Molt 4/C8 and CEM T-lymphocytes in order to
determine whether cytotoxic properties would be exhibited
toward human transformed cells. A number of anticancer
drugs display growth inhibiting properties in the L1210 bioas-
say,[15] and this assay was also used to detect promising lead
compounds. These data, along with the results of evaluating
3 d,e,g,h, which have not been assessed previously against
these cell lines, are presented in Table 1.

The biological evaluations reveal that both series 4 and 5
demonstrate potent cytotoxicity toward human T-lymphocytes.
No fewer than 94 % of the IC50 values of 4 a–i and 5 a–i in the
Molt 4/C8 and CEM screens are <10 mm, and 61 % of these are
in the sub-micromolar range. In particular, the high potency of
5 g, with IC50 values of 34�2 nm toward both T-lymphocyte
lines should be noted. This establishes this compound as a
lead molecule. The marked potencies of these compounds
toward Molt 4/C8 and CEM cells is confirmed when compari-
sons are made between these biological data and the results
for melphalan, which is an alkylating agent used in cancer che-
motherapy. In series 4, the 4-piperidones 4 a,d–i are more
potent than melphalan in both assays, that is, in 78 % of the
comparisons made. Furthermore, 5 a,b,d–i and 5 b–i have stat-
istically significantly lower IC50 values than melphalan in the
Molt 4/C8 and CEM screens, respectively, that is, in 89 % of the

data for series 5. In particular, 5 g has 90-fold greater potency
than this reference drug toward Molt 4/C8 cells, and is 76-fold
more potent than melphalan in the CEM test. While the
murine L1210 cells are more refractory to the 4-piperidones in
series 4 and 5, 78 % of the IC50 values are <10 mm, and both
5 d and 5 e possess sub-micromolar IC50 values.

The next part of the biological data analysis involved com-
parison of the potencies of the compounds in series 3–5. The
approach involved dividing the IC50 value of a compound in
series 3 by that of the analogue in series 4 or 5 having the
same aryl substituents. This procedure gave rise to a number
of D3/4 and D3/5 values in of each of the Molt 4/C8, CEM, and
L1210 screens which are presented in Tables 2 and 3.

The results in Table 2 indicate that 4 c,f,h,i are more potent
than 3 c,f,h,i in all three bioassays, that is, in 44 % of the com-
parisons made. Three (11 %) of the D3/4 values (indicated as
footnote [b] in Table 2) denote equal potency. In the remaining
cases (45 %), higher potency was observed for the analogues
in series 3. Thus overall there was neither an increase nor de-
crease in potencies, although in some cases such as 4 c and
4 h, the IC50 values were considerably lower than for 3 c and
3 h, respectively. In addition, the fact that the compounds in
series 4 are potent cytotoxins suggests that analogue develop-
ment should be pursued vigorously, such as the preparation of
a variety of related esters.

The D3/5 values are listed in
Table 3. In 78 % of the compari-
sons, 5 a–i are more potent than
the analogues in series 3,
whereas in 19 % of the cases
equal potency was observed.
The only case in which greater
potency is displayed in series 3
is the IC50 value of 3 b, which is
lower than that of 5 b in the
L1210 screen. The D4/5 values
were also computed and are
listed in Table 3. In 70 % of the
comparisons, the analogues in
series 5 have lower IC50 values
than 4 a–i, whereas in 15 % of
the cases equal potency was
noted. Thus, not only are series
4 compounds a group of prom-
ising cytotoxins, but hydrolysis
of the ester groups of 4 a–i led
to a highly potent cluster of cy-
totoxic molecules, namely series
5.

To guide future expansion
from these initial groups of
compounds in series 4 and 5,
different approaches were
adopted, including QSAR studies
and molecular modeling. The
magnitudes of the electronic,
hydrophobic, and steric proper-

Table 1. Cytotoxicity of series 3, 4, and 5 compounds and Clog P values and fluorescence activity ratio (FAR)
data for 4 a–i and 5 a–i.

IC50 [mm][a]

Compd Molt 4/C8 CEM L1210 Clog P[b] FAR[c]

3 d 0.25�0.13 0.37�0.05 1.33�0.37 – –
3 e[d] 0.31�0.02 0.30�0.02 0.53�0.34 – –
3 g[d] 0.37�0.03 0.36�0.11 1.17�0.37 – –
3 h 1.64�0.81 4.90�2.33 33.0�2.20 – –
4 a 1.36�0.20 1.52�0.19 8.46�0.18 4.01�0.43 (0.72) 51.6
4 b 12.60�1.3 24.0�3.00 49.40�4.9 4.86�0.48 (0.76) 17.1
4 c 2.90�1.07 5.82�0.07 38.5�3.9 3.95�0.58 (0.70) 49.6
4 d 0.27�0.03 0.85�0.01 2.00�0.20 3.52�0.75 (0.69) 57.9
4 e 0.45�0.02 0.51�0.05 3.00�1.01 3.38�1.09 (0.76) 52.9
4 f 0.83�0.10 0.99�0.11 5.20�0.00 5.11�0.34 (0.65) 23.6
4 g 1.58�0.08 1.91�0.01 7.12�0.54 3.75�0.40 (0.70) 1.86
4 h 0.19�0.01 0.16�0.01 1.49�0.11 3.81�0.42 (0.68) 17.5
4 i 1.02�0.06 1.30�0.06 8.63�0.04 3.76�0.32 (0.69) 11.2
5 a 0.46�0.41 1.88�0.34 6.20�1.49 2.21�0.92 (�1.08) 3.66
5 b 0.45�0.09 0.99�0.03 9.89�0.07 2.95�0.99 (�1.15) 13.3
5 c 5.22�3.24 2.00�0.09 47.10�3.9 2.08�0.95 (�1.17) 2.53
5 d 0.16�0.03 0.19�0.02 0.73�0.31 1.83�0.94 (�1.00) 60.5
5 e 0.11�0.07 0.25�0.03 0.16�0.11 1.48�1.18 (�1.14) 43.7
5 f 0.47�0.11 1.25�0.35 10.3�1.80 3.28�0.87 (�1.18) 1.51
5 g 0.03�0.03 0.03�0.03 1.41�0.28 1.90�0.87 (�1.15) 2.86
5 h 0.36�0.06 0.41�0.08 2.01�0.66 1.97�0.90 (�1.16) 1.45
5 i 0.13�0.08 0.91�0.04 6.92�0.25 1.93�0.89 (�1.14) 0.99
melphalan[e] 3.24�0.79 2.47�0.30 2.13�0.03 – –

[a] Concentration required to inhibit cell growth by 50 %. [b] Values in parentheses are the differences in Clog P
values from the respective analogue in series 3 that possesses the same aryl substituent; a negative value indi-
cates lower hydrophobicity for the molecule than the series 3 analogue. [c] FAR values are the ratios of the
fluorescence intensities of rhodamine 123 in treated versus untreated murine L-5178Y cells transfected with
the human mdr1 gene; compound concentration is 20 mm ; the reference compound verapamil has a FAR value
of 8.23 when 22 mm of this drug is used. [d] Evaluated as the HCl salt. [e] These data were reported previously
in reference [36] .
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ties of aryl substituents are indicated by the Hammett s values
(and Taft s* values for ortho substituents), Hansch p constants
and molecular refractivity (MR) values, respectively. Linear and
semilogarithmic plots were made between these constants
and the IC50 values of 4 a–i and 5 a–i in the Molt 4/C8, CEM,
and L1210 screens. In addition, logarithmic plots were made
between the MR values and the IC50 values. The following cor-
relations (p<0.05) or trends to significance (p<0.1) were
noted in series 5. Negative correlation values were observed
between the IC50 values of 5 a–i and the s/s* constants in the
Molt 4/C8 screen (p<0.1) as well as the MR values in the CEM
assay (p<0.05) and L1210 test (p<0.1). A positive correlation
with regard to the p constants in the Molt 4/C8 screen (p<
0.1) was also noted. No other correlations were observed in
either series 4 or 5 (p>0.1). Thus in developing these com-
pounds, large electron-withdrawing groups of low hydropho-
bicity should be placed in the aryl rings.

The calculated log P values of the esters 4 and phosphonic
acids 5 are listed in Table 1. The differences between the hy-
drophobicity of these compounds and the analogues 3 a–i are

also indicated in Table 1. Thus, on average, series 4 is more hy-
drophobic than 3 a–i by 0.71 log P units, while the phosphonic
acids 5 are more hydrophilic than 3 by 1.13 log P units. It is
conceivable that a physicochemical parameter which contrib-
utes to the IC50 values of series 5 being lower than those of
series 3 and 4 is their greater hydrophilic properties. In addi-
tion, we investigated whether the cytotoxic potencies of each
of the series 3–5 compounds are influenced by the log P
values. Thus linear, semilogarithmic, and logarithmic plots were
constructed between the IC50 values and the Clog P data. Posi-
tive correlations were observed between the IC50 values in the
L1210 screen and the Clog P values of series 3 (p<0.1) and 5
(p = 0.05). This observation is in agreement with the recom-
mendation made earlier of decreasing the magnitude of the p

values of the aryl substituents. Hence, as a general rule, a vari-
ety of hydrophilic groups should be included in the future ex-
pansions of the compounds in series 3–5.

In some cases biological potencies are influenced by the tor-
sion angles (q) between an aryl ring and the adjacent unsatu-
rated group.[16] Hence the torsion angles q1 and q2, as indicated
in Figure 2, were calculated by molecular modeling, and the

data for the compounds in series 3–5 are presented in Table 4.
The q1 and q2 angles were calculated in a clockwise fashion
and revealed that rings A and B rotate in opposite directions.
In each series, the greatest torsion angles are found in the
ortho-nitro analogues, namely 3 g, 4 g, and 5 g. Because 5 g is
the most potent compound toward both T-lymphocytes
among the 4-piperidones examined in this study, the place-
ment of substituents of varying size at one or both of the
ortho locations of rings A and B may establish whether a corre-
lation is present between the magnitude of the torsion angles
and cytotoxic potencies. In general, the torsion angles in series

Table 2. Comparison of the potencies of 4 a–i with respective analogues
in series 3 that have the same aryl substituents.

D3/4
[a]

Compd Ar Group Molt 4/C8 CEM L1210

4 a H 1.2[b] 1.1[b] 0.9
4 b 4-CH3 0.1 0.1 0.2
4 c 4-OCH3 99 28 6.3
4 d 3,4-(OCH3)2 0.9[b] 0.4 0.7
4 e 3,4,5-(OCH3)3 0.7 0.6 0.2
4 f 4-Cl 16 8.7 8.0
4 g 2-NO2 0.2 0.2 0.2
4 h 3-NO2 8.8 30 23
4 i 4-NO2 8.1 3.4 3.8

[a] The designation D3/4 refers to the quotient of the IC50 value of a com-
pound in series 3 divided by that of the analogue in series 4 which bears
the same aryl substituent. [b] No statistical difference in the IC50 values
when standard deviations are taken into account.

Table 3. Comparison of the potencies of 5 a–i with compounds in series
3 and 4 that have the same substituents on the aryl rings.

Molt 4/C8 CEM L1210

Compd Ar Group D3/5
[a] D4/5

[a] D3/5
[a] D4/5

[a] D3/5
[a] D4/5

[a]

5 a H 3.6 2.9 0.9[b] 0.8[b] 1.3 1.4
5 b 4-CH3 3.8 28 1.7 24 0.9 5.0
5 c 4-OCH3 55 0.6[b] 82 2.9 5.2 0.8
5 d 3,4-(OCH3)2 1.6[b] 1.7 2.0 4.5 1.8[b] 2.7
5 e 3,4,5-(OCH3)3 2.7 4.0 1.2 2.1 3.3[b] 19
5 f 4-Cl 28 1.8 6.9 0.8[b] 4.0 0.5
5 g 2-NO2 10 44 11 59 0.8[b] 5.1
5 h 3-NO2 4.6 0.5 12 0.4 16 0.7[b]

5 i 4-NO2 62 7.7 4.9 1.4 4.8 1.3

[a] The D3/5 and D4/5 values are the quotients of the IC50 values of a com-
pound in series 3 divided by that of either a respective series 5 (D3/5) or
series 4 (D4/5) compound having the same substituents on the aryl rings.
[b] No statistical difference in the IC50 values when standard deviations
are taken into account.

Figure 2. Designation of the torsion angles q1 and q2 in series 4 and 5.

Table 4. Torsion angles created between the aryl rings and the adjacent
olefinic group in compound series 3–5, a–i.

q1 [8] q2 [8]

Compd 3 4 5 3 4 5

a 60.03 56.65 58.43 122.10 122.88 124.29
b 56.37 55.87 55.02 125.43 127.09 129.68
c 55.50 54.96 54.11 127.05 126.88 125.46
d 68.39 53.57 54.07 107.15 131.07 127.84
e 62.02 54.03 55.49 122.40 126.18 124.22
f 63.81 55.67 57.44 117.16 123.76 125.35
g 98.87 70.56 78.22 104.74 82.21 81.15
h 56.50 62.33 61.12 128.07 123.31 121.50
i 73.26 58.07 61.21 107.73 126.15 122.40
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5 are not substantially different from those found in 3 a–i and
4 a–i, and hence q values per se are unlikely to be the principal
reason for the greater cytotoxic potencies of the analogues in
series 5.

Linear, semilogarithmic, and logarithmic plots were con-
structed between the q1 and q2 values in series 3–5, and the
IC50 values in each of the Molt 4/C8, CEM, and L1210 screens.
Negative correlations were observed in the plots between the
q1 values in series 5 and the IC50 values obtained in the Molt 4/
C8 (p<0.1) and CEM (p<0.05) assays. On the other hand, posi-
tive correlations were observed from the plots between the q2

values in series 5 and the IC50 values toward both Molt 4/C8
(p<0.1) and CEM (p<0.05) cells. No other correlations were
found (p>0.1). This observation is important for the develop-
ment of series 5, whereby further analogues should ensure
that q1 values are large and conversely q2 values are small. This
objective can be achieved by placing large groups in the ortho
position of ring A, and having ring B either unsubstituted or
possessing small groups at the para position of the aryl ring.

A representative compound 4 g was examined by X-ray crys-
tallography, and an ORTEP diagram[17] is presented in Figure 3.

The torsion angles C2�C13�C14�C19 (q1) and C5�C6�C7�C8
(q2) are 141.7(3) and �145.0(2), respectively. The piperidone
ring adopts a half-chair conformation. The two aryl rings are
orientated in an almost perpendicular fashion toward the pi-
peridone ring. The nitro groups point away from both the het-
erocycle and the phosphonate moieties.

The biological data summarized in Table 1 for the potencies
of various clusters of compounds containing the 1,5-diaryl-3-
oxo-1,4-pentadienyl group toward Molt 4/C8, CEM, and L1210
cells are encouraging. Thus an important question is whether
cytotoxicity toward a greater number and variety of neoplasms
can be demonstrated. Hence, four compounds, namely 4 a,c,d
and 5 c, were evaluated against 58–59 human tumor cell lines
which originated from nine different neoplastic conditions: leu-
kemia, melanoma, non-small-cell lung carcinoma, and colon,
CNS, ovarian, renal, prostate, and breast cancers.[18] The results
of these evaluations are presented in Table 5. When consider-
ing the toxicity toward all cell lines, the term GI50 rather than
IC50 is used, because the average potencies listed include IC50

values that are greater than the maximum concentration used.
The biological data reveal that 4 a,c,d and 5 c are potent cyto-
toxins, especially 4 d, which has a sub-micromolar average GI50

value, and is 21-fold more potent than melphalan. A positive
feature of a candidate anti-neoplastic agent is that it displays
varying toxicity toward different cell lines, which may be re-
flected in causing greater damage to tumors than the corre-
sponding normal cells. Notably, the very high selectivity index
(SI) values displayed by 4 c establish it as a lead molecule. Ex-
amination of the mean graphs[19] revealed that in general,
colon cancers and leukemic cells are particularly sensitive to
these compounds. In the case of the colon cancer cell lines,
64 % of the IC50 values of 4 a,c,d, and 5 c are sub-micromolar,
and 18 % possess double-digit nanomolar values. Where specif-
ic data are available, the IC50 values of 5-fluorouracil (5-FU),
which is a drug used in treating colon cancer, are in general
substantially higher than the data obtained for 4 a,c,d and 5 c
against colon cancer cells. In regard to anti-leukemic proper-
ties, the data in Table 5 reveal that 4 a,c,d and 5 c have high
potencies: 63 % of the IC50 figures are sub-micromolar. In par-
ticular, the IC50 values of <10 nm and 32 nm displayed by 4 a
and 4 c, respectively, toward RPMI 8226 cells are impressive.
The average IC50 values reveal that 4 a,c,d and 5 c possess 58-,
35-, 93-, and 15-fold greater potency than melphalan, which is
used clinically in treating various types of leukemia. The data
in Table 5 afford ample evidence to pursue series 4 and 5 as
excellent leads for the future development of candidate anti-
neoplastic agents.

A further issue to be addressed is the way in which the com-
pounds prepared in this study exert their cytotoxic activity. Ex-

Figure 3. ORTEP diagram of 4 g.

Table 5. Evaluation of 4 a,c,d and 5 c against a panel of 59 human tumor cell lines

All cell lines Colon cancers, IC50 [mm] Leukemic cell lines, IC50 [mm]

Compd GI50 [mm][a] SI[b] COLO
205

HCT
116

HCT
15

HT29 KM12 SW
620

HCC
2998

Avg.
IC50

HL60
(TB)

K-562 RPMI
8226

SR CCRF
CEM

Avg.
IC50

4 a 1.20 >381 1.62 0.21 1.26 0.37 0.20 0.23 2.14 0.86 1.12 2.29 <0.01 0.19 0.32 0.79
4 c 1.58 >3152 1.41 0.05 0.81 0.04 0.04 0.04 0.07 0.35 4.90 – 0.03 0.06 0.16 1.29
4 d 0.93 240 1.55 0.39 1.10 0.42 0.27 0.33 2.09 0.88 0.91 0.49 0.30 0.44 0.29 0.48
5 c 3.47 >355 2.04 0.34 2.24 0.72 0.32 0.68 2.00 1.19 3.72 3.63 0.28 5.25 2.19 3.01

melphalan 19.1 513 32.4 39.8 36.3 70.8 57.5 26.9 52.5 45.2 0.38 195 28.2 3.24 0.39 45.4
5-FU 12.0 >10 000 14.80 1.91 2.29 28.2 <0.25 22.4 <0.25 <10.0 – 35.5 1.70 2.09 14.1 13.4

[a] Average GI50 ; GI50 is used instead of IC50, as the average potencies listed include IC50 values greater than the maximum concentration used. [b] Selectivi-
ty index: quotient of the IC50 values from the most refractory versus most sensitive cell lines for a given compound.
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periments to monitor the effects on both cell cycle and respi-
ration using HT29 human colon cancer cells were undertaken.
The IC50 value of 5 g after incubation with HT29 cells for 96 h is
4.25 mm. The effect of this compound at 5 mm on the cell cycle
is illustrated in Figure 4, which reveals that the sub-G1 phase

has increased 29-fold, indicating that apoptosis has occurred.
Previous work from our research groups has revealed that vari-
ous compounds containing the 1,5-diaryl-3-oxo-1,4-pentadien-
yl group cause stimulation of respiration in rat liver mitochon-
dria.[20–22] In the present investigation, two of the potent cyto-
toxins, 5 d and 5 g, as well as 5-FU were examined for their ef-
fects on respiration in HT29 cells. A concentration of 25 mm

was chosen, which is close to the IC50 value of 5-FU toward
this cell line. The results are presented in Figure 5, which re-
veals that only inhibition of respiration was observed. Hence,
interference with mitochondrial respiration is one way in
which the cytotoxicity of 5 d and 5 g, and presumably ana-
logues of these compounds, is mediated. The significant inhibi-
tion of respiration by 5-FU suggests that this is an important
mode of action for this anticancer drug.

The final question is whether the compounds in series 4 and
5 have MDR reverting properties or not. The assays for P-glyco-
protein MDR reversal employed murine L-5178Y lymphoma
cells transfected with the human mdr1 gene. The concentra-
tions of the dye rhodamine 123 in treated and untreated trans-

fected and parental cells were measured, and the relative fluo-
rescence intensities are referred to as the fluorescence activity
ratio (FAR) values. A FAR value of >1 indicates MDR reversal
has occurred. These data are presented in Table 1. In general,
MDR reversal is more pronounced in series 4 than in 5, as re-
vealed from the following observations: First, the average FAR
values for series 4 and 5 are 32 and 15, respectively. Second,
with the exception of 4 d and 4 g, for the same substituent in
the aryl rings, the analogues in series 4 have the higher FAR
values. A number of MDR reversal agents have high lipophilici-
ty.[23, 24] Because the average Clog P values in series 4 and 5 are
4.02 and 2.18, respectively, the greater hydrophobicity of 4 a–i
than 5 a–i, in general, may contribute to the higher MDR re-
verting properties of the compounds in series 4. The following
4-piperidones possess FAR values in excess of 20 and are lead
molecules, namely 4 a,c–f and 5 d,e. Notably, the two com-
pounds in each of series 4 and 5 with the highest MDR revert-
ing properties, i.e. , 4 d,e and 5 d,e, have the same aryl substitu-
ents, namely 3,4-dimethoxy and 3,4,5-trimethoxy groups.
Hence the placement of a number of methoxy and related
alkoxy substituents at various locations on the aryl rings may
be worth pursuing in future searches for novel MDR reverting
agents. Furthermore, to determine whether MDR reversal is
governed by one or more of the physicochemical properties of
the aryl substituents, linear and semilogarithmic plots were
made between the s/s*, p, and MR constants of the groups in
the aryl rings and the FAR values in both series 4 and 5. A neg-
ative correlation was observed between the FAR values of 4 a–i
and the s/s* constants (p<0.01). In addition, a positive corre-

Figure 4. The effect of compound 5 g on the cell cycle of HT29 cells: A) con-
trol ; B) 5 g at 5 mm.

Figure 5. Effect of 5 d, 5 g, and 5-fluorouracil (25 mm each) on respiration in
colon HT29 cancer cells : A) kinetics of oxygen consumption; B) percent in-
hibition of respiration. Error bars indicate the standard deviations from three
replicates.
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lation was found between the MR values of the aryl substitu-
ents of the compounds in series 5 and the FAR data (p = 0.01).
A trend toward a negative correlation (p<0.1) was observed
between the FAR values of 5 a–i and the s/s* constants of the
aryl substituents. No other correlations were noted (p>0.1).
One may conclude that when developing the compounds in
series 4 and 5 as candidate MDR reverting agents, strongly
electron-releasing substituents should be placed in the aryl
rings. In the case of series 5, increasing the size of the aryl sub-
stituents will likely increase the magnitude of MDR reversal. An
intriguing question is whether any correlation exists between
the FAR values and the IC50 values generated for series 4 and 5
in the Molt 4/C8, CEM, and L1210 assays. Hence linear, semilo-
garithmic, and logarithmic plots were constructed, and a nega-
tive correlation was observed for 5 a–i in the murine L1210
screen (p<0.05). No other correlations were found (p>0.1).
Consequently the design of analogues 5 a–i for greater cyto-
toxic potencies should be accompanied by increased MDR re-
versal.

Conclusions

A series of 3,5-bis(benzylidene)-1-phosphono-4-piperidones 5
and the related diethyl esters 4 were synthesized. These com-
pounds display potent cytotoxicity toward human Molt 4/C8
and CEM T-lymphocytes as well as murine leukemia L1210
cells. In general, greater potencies are observed for series 5
than for the more hydrophobic analogues 4 a–i. In particular,
5 g, with an average IC50 value of 34 nm toward the T-lympho-
cyte lines, is clearly a lead molecule. Many of the compounds
are more potent than the anticancer drug melphalan. Various
physicochemical properties were shown to influence the mag-
nitude of the IC50 values generated. Four of the 4-piperidones,
namely 4 a,c,d and 5 c, are substantially more potent than mel-
phalan and 5-fluorouracil toward nearly 60 human tumor cell
lines. In this biological evaluation, approximately two-thirds of
the IC50 values toward several colon cancer cell lines and leuke-
mic cells are sub-micromolar, and several are in the double-
digit nanomolar range. The modes of action of representative
compounds include the induction of apoptosis and interfer-
ence with cellular respiration. Most of the compounds in series
4 as well as 5 b,d,e have significant MDR reverting properties.
Thus this study has disclosed the discovery of two novel series
of cytotoxic compounds, some of which have pronounced
MDR reverting properties. A number of guidelines for expand-
ing this project have been made.

Experimental Section

Chemistry

Synthesis of 3 d,e,g,h, 4 a–i, and 5 a–i : Melting points were deter-
mined on a Gallenkamp instrument and are uncorrected. 1H and
13C NMR spectra were recorded at 500 and 125 MHz, respectively,
on a Bruker Avance spectrometer equipped with a 5 mm BBO
probe. Chemical shifts (d) are reported in ppm. Elemental analyses
were conducted with an Elementer analyzer. Mass spectra were
measured using a Micromass Quattro II mass spectrometer.

Synthesis of 3,5-bis(arylidene)-4-piperidones (3 a–i): The synthe-
ses of 3 a–c,f,i were reported previously.[7, 11] Compounds 3 d,e,g,h
were prepared following the same procedure.

3,5-Bis-(3,4-dimethoxybenzylidene)-4-piperidone (3 d): Yield:
67 %; mp: 162 8C; 1H NMR (DMSO): d= 7.56 (s, 2 H, 2 �=CH), 7.07 (d,
6 H, Ar-H, J = 14.74 Hz), 4.03 (s, 4 H, 2 � NCH2), 3.82 (s, 12 H, 4 �
OCH3); Anal. calcd for C23H25NO5 : C 69.86, H 6.37, N 3.54, found: C
69.76, H 6.14, N 3.32.

3,5-Bis-(3,4,5-trimethoxybenzylidene)-4-piperidone hydrochlo-
ride (3 e): Yield: 68 %; mp: 251 8C; 1H NMR (DMSO): d= 9.5 (br d,
2 H, +NH2), 7.84 (s, 2 H, 2 �=CH), 6.86 (s, 4 H, Ar-H), 4.58 (s, 4 H, 2 �
NCH2), 3.84 (s, 12 H, 4 � OCH3), 3.73 (s, 6 H, 2 � OCH3); Anal. calcd for
C25H30ClNO7: C 61.04, H 6.15, N 2.85, found: C, 60.78, H 6.10, N
2.75.

3,5-Bis-(2-nitrobenzylidene)-4-piperidone hydrochloride (3 g):
Yield: 52 %; mp: 218 8C; 1H NMR (DMSO): d= 9.15 (br s, 2 H, +NH2),
8.28 (d, 2 H, Ar-H, J = 8.15 Hz), 8.14 (s, 2 H, 2 �=CH), 7.90 (t, 2 H, Ar-
H), 7.76 (t, 2 H, Ar-H), 7.57 (d, 2 H, Ar-H, J = 7.45 Hz), 4.19 (s, 4 H, 2 �
NCH2); Anal. calcd for C19H16ClN3O5: C 56.74, H 3.98, N 10.45,
found: C, 56.45, H 3.96, N 10.25.

3,5-Bis-(3-nitrobenzylidene)-4-piperidone (3 h): Yield: 68 %; mp:
214 8C; 1H NMR (DMSO): d= 8.34 (s, 2 H, Ar-H), 8.27 (d, 2 H, Ar-H, J =
8.20 Hz), 7.96 (d, 2 H, Ar-H, J = 7.71 Hz), 7.77 (t, 2 H, Ar-H), 7.72 (s,
2 H, 2 �=CH), 4.06 (s, 4 H, 2 � NCH2); Anal. calcd for C19H15N3O5 : C
62.46, H 4.14, N 11.50, found: C, 62.34, H 3.99, N 11.59.

Synthesis of [3,5-bis(arylidene)-4-oxo-1-yl]phosphonic acid di-
ethyl esters (4 a–i). General procedure : A mixture of 3 a–i
(0.01 mol), diethylchlorophosphate (2.07 g, 0.012 mol), anhydrous
K2CO3 (2.07 g, 0.015 mol), and a catalytic amount of KI (0.166 g,
0.001 mol) in acetone (30 mL) was held at reflux for 2–3 h. Reaction
progress was monitored by TLC (solvent: MeOH/CHCl3 5:95 v/v).
The solvent was evaporated under vacuum at 40–45 8C. An aque-
ous solution of K2CO3 (5 % w/v, 50 mL) was added to the crude
mass and stirred for 2 h. The solid was removed by filtration, dried,
and crystallized from a suitable solvent.ACHTUNGTRENNUNG[3,5-Bis(benzylidene)-4-oxo-1-yl]phosphonic acid diethyl ester
(4 a): Yield: 61 %; mp: 127 8C (acetone); 1H NMR (CDCl3): d= 7.86 (s,
2 H, 2 �=CH), 7.44 (m, 10 H, Ar-H), 4.50 (d, 4 H, 2 � NCH2, J =
7.86 Hz), 3.96 (m, 4 H, 2 � OCH2), 1.20 (t, 6 H, 2 � CH3); 13C NMR
(CDCl3): d= 187.02, 136.99, 134.77, 132.59, 132.55, 130.46, 129.40,
128.97, 128.79, 62.74, 62.69, 46.28, 46.26, 16.02, 15.98; MS (ESI):
m/z 450.01 [M+K]+ , 434.13 [M+Na]+ , 412.15 [M+H]+ ; Anal. calcd
for C23H26NO4P·0.25 H2O: C 66.35, H 6.25, N 3.36, found: C, 66.37, H
6.32, N 3.20.ACHTUNGTRENNUNG[3,5-Bis-(4-methylbenzylidene)-4-oxo-1-yl]phosphonic acid dieth-
yl ester (4 b): Yield: 66 %; mp: 151 8C (iPrOH); 1H NMR (CDCl3): d=
7.82 (s, 2 H, 2 �=CH), 7.34 (d, 4 H, Ar-H, J = 8.03 Hz), 7.26 (d, 4 H, Ar-
H, J = 7.96 Hz), 4.49 (d, 4 H, 2 � NCH2, J = 7.56 Hz), 3.96 (m, 4 H, 2 �
OCH2), 2.42 (s, 6 H, 2 � Ar-CH3), 1.21 (t, 6 H, 2 � CH3); 13C NMR
(CDCl3): d= 187.08, 139.78, 136.91, 132.04, 131.88, 131.84, 130.60,
129.53, 62.68, 62.64, 46.31, 46.29, 21.48, 16.06, 16.01; MS (ESI): m/z
440.16 [M+H]+ ; Anal. calcd for C25H30NO4P·0.25 H2O: C 67.57, H
6.75, N 3.15, found: C, 67.77, H 6.85, N 3.06.ACHTUNGTRENNUNG[3,5-Bis-(4-methoxybenzylidene)-4-oxo-1-yl]phosphonic acid di-
ethyl ester (4 c): Yield: 64 %; mp: 144 8C (MeOH); 1H NMR (CDCl3):
d= 7.81 (s, 2 H, 2 �=CH), 7.40 (d, 4 H, Ar-H, J = 8.70 Hz), 6.98 (d, 4 H,
Ar-H, J = 8.71 Hz), 4.49 (d, 4 H, 2 � NCH2, J = 7.31 Hz), 3.98 (m, 4 H,
2 � OCH2), 3.88 (s, 6 H, 2 � Ar-OCH3), 1.21 (t, 6 H, 2 � CH3); 13C NMR
(CDCl3): d= 186.92, 160.56, 136.51, 132.47, 130.72, 130.68, 127.58,
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114.31, 62.68, 62.64, 55.40, 55.32, 46.30, 46.27, 16.08, 16.03; MS
(ESI): m/z 472.27 [M+H]+ ; Anal. calcd for C25H30NO6P·0.5 H2O: C
62.43, H 6.24, N 2.91, found: C, 62.24, H 6.34, N 2.81.ACHTUNGTRENNUNG[3,5-Bis-(3,4-dimethoxybenzylidene)-4-oxo-1-yl]phosphonic acid
diethyl ester (4 d): Yield: 58 %; mp: 120 8C (EtOH); 1H NMR (CDCl3):
d= 7.79 (s, 2 H, 2 �=CH), 7.05 (dd, 2 H, Ar-H, J = 1.52, 8.32 Hz), 6.97
(d, 2 H, Ar-H, J = 1.53 Hz), 6.95 (d, 2 H, Ar-H, J = 8.35 Hz), 4.51 (d, 4 H,
2 � NCH2, J = 7.70 Hz), 4.02 (m, 4 H, 2 � OCH2), 3.95 (s, 6 H, 2 � Ar-
OCH3), 3.93 (s, 6 H, 2 � Ar-OCH3), 1.22 (t, 6 H, 2 � CH3); 13C NMR
(CDCl3): d= 186.75, 150.27, 148.93, 136.79, 130.99, 130.96, 127.82,
123.97, 113.85, 111.17, 62.69, 62.65, 55.99, 55.98, 46.31, 46.28, 16.11,
16.05; MS (ESI): m/z 532.25 [M+H]+ ; Anal. calcd for
C27H34NO8P·0.25 H2O: C 60.44, H 6.34, N 2.61, found: C, 60.31, H
6.40, N 2.48.ACHTUNGTRENNUNG[3,5-Bis-(3,4,5-trimethoxybenzylidene)-4-oxo-1-yl]phosphonic
acid diethyl ester (4 e): Yield: 54 %; mp: 129 8C (MeOH); 1H NMR
(CDCl3): d= 7.78 (s, 2 H, 2 �=CH), 6.66 (s, 4 H, Ar-H), 4.52 (d, 4 H, 2 �
NCH2, J = 8.40 Hz), 3.97 (m, 4 H, 2 � OCH2), 3.93 (s, 6 H, 2 � Ar-OCH3),
3.91 (s, 12 H, 4 � Ar-OCH3), 1.23 (t, 6 H, 2 � CH3); 13C NMR (CDCl3): d=
186.66, 153.26, 139.43, 137.17, 131.89, 131.86, 130.27, 107.89,
62.73, 62.69, 61.01, 56.27, 56.20, 46.27, 46.24, 16.12, 16.06; MS (ESI):
m/z 592.24 [M+H]+ ; Anal. calcd for C29H38NO10P·0.25 H2O: C 58.38,
H 6.37, N 2.34, found: C, 58.01, H 6.44, N 2.21.ACHTUNGTRENNUNG[3,5-Bis-(4-chlorobenzylidene)-4-oxo-1-yl]phosphonic acid dieth-
yl ester (4 f): Yield: 67 %; mp: 132 8C (MeOH); 1H NMR (CDCl3): d=
7.78 (s, 2 H, 2 �=CH), 7.44 (d, 4 H, Ar-H, J = 8.42 Hz), 7.36 (d, 4 H, Ar-
H, J = 8.45 Hz), 4.45 (d, 4 H, 2 � NCH2, J = 7.54 Hz), 3.97 (m, 4 H, 2 �
OCH2), 1.21 (t, 6 H, 2 � CH3); 13C NMR (CDCl3): d= 186.57, 135.73,
135.57, 133.12, 132.87, 132.83, 131.64, 129.13, 62.84, 62.79, 46.19,
46.17, 16.07, 16.02; MS (ESI): m/z 480.10 [M+H]+ ; Anal. calcd for
C23H24Cl2NO4P·0.25 H2O: C 56.92, H 4.95, N 2.88, found: C, 56.91, H
5.05, N 2.78.ACHTUNGTRENNUNG[3,5-Bis-(2-nitrobenzylidene)-4-oxo-1-yl]phosphonic acid diethyl
ester (4 g): Yield: 42 %; mp: 177 8C (EtOH); 1H NMR (CDCl3): d= 8.23
(d, 2 H, Ar-H, J = 8.22 Hz), 8.11 (s, 2 H, 2 �=CH), 7.73 (t, 2 H, Ar-H),
7.60 (t, 2 H, Ar-H), 7.41 (d, 2 H, Ar-H, J = 7.61 Hz), 4.18 (d, 4 H, 2 �
NCH2, J = 9.67 Hz), 3.95 (m, 4 H, 2 � OCH2), 1.21 (t, 6 H, 2 � CH3);
13C NMR (CDCl3): d= 185.49, 147.93, 134.64, 133.75, 133.09, 133.06,
130.89, 130.82, 129.78, 125.35, 62.87, 62.82, 16.04, 15.99; MS (ESI):
m/z 502.30 [M+H]+ ; Anal. calcd for C23H24N3O8P·0.25 H2O: C 54.51,
H 4.77, N 8.20, found: C, 54.55, H 4.74, N 8.30.ACHTUNGTRENNUNG[3,5-Bis-(3-nitrobenzylidene)-4-oxo-1-yl]phosphonic acid diethyl
ester (4 h): Yield: 52 %; mp: 147 8C (EtOH); 1H NMR (CDCl3): d= 8.29
(d, 2 H, Ar-H, J = 8.71 Hz), 8.27 (s, 2 H, Ar-H), 7.88 (s, 2 H, 2 �=CH),
7.76 (d, 2 H, Ar-H, J = 7.69 Hz), 7.66 (t, 2 H, Ar-H), 4.51 (d, 4 H, 2 �
NCH2, J = 7.88 Hz), 4.00 (m, 4 H, 2 � OCH2), 1.22 (t, 6 H, 2 � CH3);
13C NMR (CDCl3): d= 185.89, 136.14, 135.79, 134.56, 134.51, 130.00,
124.62, 123.98, 63.03, 62.98, 46.19, 46.17, 16.08, 16.03; MS (ESI):
m/z 524.23 [M+Na]+ , 502.37 [M+H]+ ; Anal. calcd for C23H24N3O8P:
C 55.09, H 4.82, N 8.38, found: C, 54.79, H 4.76, N 8.33.ACHTUNGTRENNUNG[3,5-Bis-(4-nitrobenzylidene)-4-oxo-1-yl]phosphonic acid diethyl
ester (4 i): Yield: 55 %; mp: 188 8C (EtOH); 1H NMR (CDCl3): d= 8.33
(d, 4 H, Ar-H, J = 8.64 Hz), 7.86 (s, 2 H, 2 �=CH), 7.58 (d, 4 H, Ar-H,
J = 8.57 Hz), 4.48 (d, 4 H, 2 � NCH2, J = 8.37 Hz), 3.98 (m, 4 H, 2 �
OCH2), 1.21 (t, 6 H, 2 � CH3); 13C NMR (CDCl3): d= 185.98, 147.82,
140.79, 135.12, 135.08, 134.66, 130.86, 124.05, 63.05, 63.01, 46.21,
46.18, 16.10, 16.04; MS (ESI): m/z 500.59 [M�H]� ; Anal. calcd for
C23H24N3O8P: C 55.09, H 4.82, N 8.38, found: C, 55.13, H 4.87, N
8.13.

Synthesis of [3,5-bis(arylidene)-4-oxo-1-yl]phosphonic acids (5 a–
i): General procedure: SiACHTUNGTRENNUNG(CH3)3Br (7.65 g, 0.05 mol) was added to a
solution of 4 a–i (0.01 mol) in CH3CN (30 mL) under N2 atmosphere
at room temperature, and the reaction was allowed to continue
for 12–15 h. Reaction progress was monitored by TLC (solvent:
MeOH/CHCl3 10:90 v/v). The solvent was evaporated under re-
duced pressure at 45–50 8C. H2O (30 mL) was added to the crude
mass and stirred for 2–3 h. The solid was filtered off, dried, and
crystallized from CHCl3/MeOH (2:8 v/v).ACHTUNGTRENNUNG[3,5-Bis(benzylidene)-4-oxo-1-yl]phosphonic acid (5 a): Yield:
41 %; mp: 258 8C (dec.) ; 1H NMR (DMSO): d= 9.39 (br s, 1 H, OH),
9.33 (br s, 1 H, OH), 7.91 (s, 2 H, 2 �=CH), 7.55 (m, 10 H, Ar-H), 4.54
(s, 4 H, 2 � NCH2); 13C NMR (DMSO): d= 182.84, 139.79, 134.15,
131.04, 130.63, 129.47, 128.26, 44.58, 44.55; MS (ESI): m/z 276.29
[M�HPO3+H]+ ; Anal. calcd for C19H18NO4P·3 H2O: C 55.70, H 4.39, N
3.42, found: C, 55.57, H 4.48, N 3.40.ACHTUNGTRENNUNG[3,5-Bis-(4-methylbenzylidene)-4-oxo-1-yl]phosphonic acid (5 b):
Yield: 46 %; mp: 254 8C (dec.) ; 1H NMR (DMSO): d= 9.29 (br s, 2 H,
2 � OH), 7.87 (s, 2 H, 2 �=CH), 7.45 (d, 4 H, Ar-H, J = 8.04 Hz), 7.36 (d,
4 H, Ar-H, J = 7.97 Hz), 4.53 (s, 4 H, 2 � NCH2), 2.39 (s, 6 H, 2 � Ar-CH3);
13C NMR (DMSO): d= 182.72, 140.82, 139.76, 131.40, 131.19, 130.09,
127.40, 44.63, 21.53; MS (ESI): m/z 304.33 [M�HPO3+H]+ ; Anal.
calcd for C21H22NO4P·1.25 H2O: C 55.70, H 4.39, N 3.42, found: C,
55.57, H 4.48, N 3.40.ACHTUNGTRENNUNG[3,5-Bis-(4-methoxybenzylidene)-4-oxo-1-yl]phosphonic acid
(5 c): Yield: 51 %; mp: 256 8C; 1H NMR (DMSO): d= 9.29 (br s, 2 H,
2 � OH), 7.86 (s, 2 H, 2 �=CH), 7.53 (d, 4 H, Ar-H, J = 8.72 Hz), 7.11 (d,
4 H, Ar-H, J = 8.73 Hz), 4.52 (s, 4 H, 2 � NCH2), 3.85 (s, 6 H, 2 � Ar-
OCH3); 13C NMR (DMSO): d= 182.52, 161.31, 139.43, 133.28, 126.73,
125.98, 115.05, 55.97, 44.65; MS (ESI): m/z 336.14 [M�HPO3+H]+ ;
Anal. calcd for C21H22NO6P·0.5 H2O: C 59.38, H 5.18, N 3.29, found:
C, 59.09, H 5.35, N 3.18.ACHTUNGTRENNUNG[3,5-Bis-(3,4-dimethoxybenzylidene)-4-oxo-1-yl]phosphonic acid
(5 d): Yield: 53 %; mp: 249 8C; 1H NMR (DMSO): d= 9.29 (br s, 2 H,
2 � OH), 7.87 (s, 2 H, 2 �=CH), 7.17 (s, 2 H, Ar-H), 7.14 (d, 4 H, Ar-H,
J = 7.90 Hz), 4.57 (s, 4 H, 2 � NCH2), 3.85 (s, 6 H, 2 � Ar-OCH3), 3.83 (s,
6 H, 2 � Ar-OCH3); 13C NMR (DMSO): d= 182.44, 151.15, 149.20,
139.86, 126.91, 126.07, 124.85, 114.86, 112.29, 56.19, 56.16, 44.67;
MS (ESI): m/z 396.25 [M�HPO3+H]+ ; Anal. calcd for
C23H26NO8P·3 H2O: C 52.13, H 4.91, N 2.64, found: C, 52.32, H 5.05,
N 2.53.ACHTUNGTRENNUNG[3,5-Bis-(3,4,5-trimethoxybenzylidene)-4-oxo-1-yl]phosphonic
acid (5 e): Yield: 61 %; mp: 245 8C; 1H NMR (DMSO): d= 9.29 (br s,
2 H, 2 � OH), 7.87 (s, 2 H, 2 �=CH), 6.87 (s, 4 H, Ar-H), 4.63 (s, 4 H, 2 �
NCH2), 3.86 (s, 12 H, 4 � Ar-OCH3), 3.75 (s, 6 H, 2 � Ar-OCH3); 13C NMR
(DMSO): d= 182.65, 153.42, 140.07, 139.79, 129.65, 127.46, 108.98,
60.69, 56.66, 44.64; MS (ESI): m/z 456.22 [M�HPO3+H]+ ; Anal. calcd
for C25H30NO10P·0.5 H2O: C 55.09, H 5.50, N 2.57, found: C, 55.06, H
5.66, N 2.52.ACHTUNGTRENNUNG[3,5-Bis-(4-chlorobenzylidene)-4-oxo-1-yl]phosphonic acid (5 f):
Yield: 62 %; mp: 264 8C (dec.) ; 1H NMR (DMSO): d= 9.34 (br s, 2 H,
2 � OH), 7.89 (s, 2 H, 2 �=CH), 7.62 (d, 4 H, Ar-H, J = 8.58 Hz), 7.58 (d,
4 H, Ar-H, J = 8.64 Hz), 4.52 (s, 4 H, 2 � NCH2); 13C NMR (DMSO): d=
182.67, 138.53, 135.35, 133.01, 132.80, 129.50, 128.81, 44.49; MS
(ESI): m/z 344.14 [M�HPO3+H]+ ; Anal. calcd for
C19H16Cl2NO4P·4 H2O: C 45.94, H 3.22, N 2.82, found: C, 45.59, H
3.31, N 2.58.ACHTUNGTRENNUNG[3,5-Bis-(2-nitrobenzylidene)-4-oxo-1-yl]phosphonic acid (5 g):
Yield: 34 %; mp: 259 8C (dec.) ; 1H NMR (DMSO): d= 9.35 (s, 2 H, 2 �
OH), 8.42 (d, 2 H, Ar-H, J = 8.15 Hz), 8.27 (s, 2 H, 2 �=CH), 7.89 (t,
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2 H, Ar-H), 7.76 (t, 2 H, Ar-H), 7.58 (d, 2 H, Ar-H, J = 7.60 Hz), 4.31 (s,
4 H, 2 � NCH2); 13C NMR (DMSO): d= 182.50, 146.53, 137.64, 137.11,
134.34, 129.80, 128.51, 128.13, 124.52, 44.46; MS (ESI): m/z 365.99
[M�HPO3+H]+ ; Anal. calcd for C19H16N3O8P·0.5 H2O: C 50.18, H 3.52,
N 10.39, found: C, 50.45, H 3.87, N 10.76.ACHTUNGTRENNUNG[3,5-Bis-(3-nitrobenzylidene)-4-oxo-1-yl]phosphonic acid (5 h):
Yield: 52 %; mp: 254 8C; 1H NMR (DMSO): d= 9.35 (br s, 2 H, 2 � OH),
8.38 (s, 2 H, Ar-H), 8.35 (d, 2 H, Ar-H, J = 8.20 Hz), 8.03 (s, 2 H, 2 �=
CH), 8.01 (d, 2 H, Ar-H, J = 8.30 Hz), 7.85 (t, 2 H, Ar-H), 4.61 (s, 4 H,
2 � NCH2); 13C NMR (DMSO): d= 182.55, 148.55, 137.69, 137.13,
135.67, 131.00, 130.35, 125.13, 124.89, 44.38; MS (ESI): m/z 366.18
[M�HPO3+H]+ ; Anal. calcd for C19H16N3O8P·0.5 H2O: C 50.18, H 3.52,
N 10.39, found: C, 50.22, H 3.76, N 10.03.ACHTUNGTRENNUNG[3,5-Bis-(4-nitrobenzylidene)-4-oxo-1-yl]phosphonic acid (5 i):
Yield: 42 %; mp: 204 8C; 1H NMR (DMSO): d= 9.36 (br s, 2 H, 2 � OH),
8.37 (d, 4 H, Ar-H, J = 8.70 Hz), 8.00 (s, 2 H, 2 �=CH), 7.83 (d, 4 H, Ar-
H, J = 8.68 Hz), 4.55 (s, 4 H, 2 � NCH2); 13C NMR (DMSO): d= 182.61,
148.15, 140.55, 137.63, 132.05, 131.09, 124.35, 44.49; MS (ESI): m/z
366.06 [M�HPO3+H]+ ; Anal. calcd for C19H16N3O8P·0.5 H2O: C 50.18,
H 3.52, N 10.39, found: C, 50.32, H 3.67, N 10.48.

Determination of Clog P values

The Clog P values of the compounds in series 3–5 were determined
with a commercial software package.[25] The Clog P values for the
compounds in series 3 are as follows: 3 a : 3.29�0.43; 3 b : 4.10�
0.55; 3 c : 3.25�0.60; 3 d : 2.83�0.73; 3 e : 2.62�1.22; 3 f : 4.46�
0.39; 3 g : 3.05�0.47; 3 h : 3.13�0.54; 3 i : 3.07�0.41.

Determination of QSARs

The s, p, and MR values were obtained from Hansch and Leo,[26]

whereas the s* value was taken from Taft.[27] Linear, semilogarith-
mic, and logarithmic plots were made with SPSS v. 14.0.0.[28]

Molecular modeling

Models of the compounds in series 4 and 5 were constructed
using BioMedCache v. 6.1 software.[29] The lowest-energy conforma-
tions were generated with the MOPAC system and were optimized
by PM3 parameters.

X-ray crystallography of 4 g

Apart from the structure factors, CCDC 733192 (4 g) contains the
supplementary crystallographic data for this paper. These data can
be obtained free of charge from The Cambridge Crystallographic
Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Cytotoxicity assays

The evaluation of 3 d,e,g,h, 4 a–i, and 5 a–i as candidate cytotoxins
using human Molt 4/C8 and CEM T-lymphocytes as well as murine
L1210 cells was carried out by following published procedures.[30]

Briefly, various concentrations of compounds were incubated with
cells in RPMI 1640 medium for 72 h at 37 8C (Molt 4/C8 and CEM T-
lymphocytes), whereas a 48 h incubation was used in the L1210
assay. The methodology with which 4 a,c,d, 5 c, melphalan, and 5-
fluorouracil were assayed by using 58 or 59 human tumor cell lines
was described previously.[18] The compounds were evaluated at
concentrations of 0.10 mm–10 nm (4 a,c,d, and 5 c), 0.25 mm–25 nm

(melphalan), and 2.5 mm–250 nm (5-fluorouracil). The number of
cell lines for which IC50 values lay outside the range of concentra-
tions employed are: 1/58 (4 a), 1/59 (4 c), 0/59 (4 d), 4/58 (5 c), 0/59
(melphalan) and 6/58 (5-fluorouracil).

Determination of MDR reverting properties

The ability of compounds 4 a–i and 5 a–i to reverse MDR was eval-
uated by a published procedure,[31] which was summarized recent-
ly.[9] Briefly, the compounds were dissolved in DMSO, added to L-
5178 MDR and parental cells, and incubated at room temperature
for 10 min. After the addition of a solution of rhodamine 123 in
DMSO, the cells were incubated at 37 8C for 20 min. The fluores-
cence was measured in treated MDR cells (F1), untreated MDR cells
(F2), treated parental cells (F3), and untreated parental cells (F4),
and the FAR values were calculated from the equation: FAR = (F1/
F2)/ACHTUNGTRENNUNG(F3/F4). In these experiments, the FAR value of DMSO was 0.89.

Evaluation of 5 g on cell proliferation and HT29 cell cycle

HT29 cells were obtained from the American Type Culture Collec-
tion (ATCC) and grown in DMEM and 10 % fetal calf serum. Cell cul-
tures were maintained at 37 8C under an atmosphere of humidified
air and 5 % CO2.[32] The cells were subsequently dissociated from
culture flask surfaces with a solution of trypsin (2.5 g L�1) and resus-
pended in DMEM to give a concentration of 1 � 105 cells mL�1. The
cells were added to 96-well plates (9000 cells per plate) and al-
lowed to attach for 24 h, after which time various concentrations
of 5 g were added. After incubation for 96 h, cell proliferation was
estimated by the MTT assay using a microplate reader (l=
540 nm).[33]

For cell cycle studies, HT29 cells were plated and grown for 48 h to
reach 50–60 % confluency.[34] Cells were treated with various con-
centrations of 5 g, and after 48 h the cells were treated with tryp-
sin, washed with PBS, and fixed overnight in 70 % EtOH at 4 8C. At
the time of harvest, the cultures were 70–90 % confluent. After re-
moving the EtOH by centrifugation, the cells were resuspended in
buffer containing Tris (10 mm, pH 7.5), sucrose (125 mm), MgCl2

(2.5 mm), NP40 (0.185 %), RNase A (0.02 mg mL�1), sodium citrate
(0.05 %), and propidium iodide (25 mg mL�1). After incubation on
ice for 1 h, the cells were subjected to DNA content analysis using
a FACScan cytometer (Becton Dickinson).

Effect of 5 d and 5 g on respiration in HT29 cells

The effect of 5 d, 5 g, and 5-fluorouracil on oxygen consumption in
human HT29 colon cancer cells was measured by polarography[35]

of 1 � 105 cells in air-saturated DMEM at 37 8C.
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The concept of sequential cytotoxicity, which states that successive chemical attacks on cellular constitu-
ents can be more deleterious to neoplasms than normal cells, was evaluated using a series of 3,5-bis(ben-
zylidene)-1-diethylphosphono-4-oxopiperidines 1 and related phosphonic acids 2, which were screened
against a panel of malignant and normal cell lines. The compounds proved to be not only potent cytotoxins
(71% of the CC50 figures are submicromolar) but to display greater cytotoxicity to the neoplastic cells. QSAR
revealed that both cytotoxic potencies and selective toxicity were increased by a rise in the electron-with-
drawing properties and a decrease in the hydrophobicity of the aryl substituents. Utilisation of the PL10
concept and evaluation of druglike properties revealed 1c as the lead tumour-specific cytotoxin. This
molecule activated caspase-3 in HL-60 cells but not in the HSC-2 cell line. While 1c caused internucleoso-
mal DNA fragmentation in HL-60 cells, it did not elicit this effect in either HSC-2 and HSC-4 cells. Clearly 1c
exerts its cytotoxic potencies by different mechanisms and such pleiotropy is likely the principal reason for
the remarkable display of preferential toxicity towards malignant cells of the compounds in series 1 and 2.

� 2010 Elsevier Ltd. All rights reserved.
The theory of sequential cytotoxicity was originally defined as various non-malignant cell lines.7 N-acylation of series 3 with acry-

the successive release of two or more cytotoxic compounds there-
by causing greater toxicity to neoplasms than normal cells.1 In the
present study, this hypothesis is simplified to refer to compounds
which are designed to cause successive chemical attacks on cellu-
lar constituents. This concept is based on the observation that on
occasions an initial chemosensitisation followed by a subsequent
chemical attack is more deleterious to tumours than non-malig-
nant tissues.2,3

In order to examine this hypothesis further, a series of 3,5-bis
(benzylidene)-1-diethylphosphono-4-oxopiperidines 1 and related
phosphonic acids 2 were designed for the following reasons. First,
conjugated enones have a marked affinity for thiols in contrast to
amino and hydroxyl groups.4,5 Hence interactions with the amino
and hydroxyl groups of nucleic acids, which may lead to genotoxic
effects,6 should be absent in these compounds. Second, series 1
and 2 contain the dienone motif which permits sequential interac-
tions at the olefinic carbon atoms with cellular thiols. Third, previous
studies revealed that various cytotoxic 3,5-bis(benzylidene)-4-pip-
eridones 3 demonstrated greater toxicity to certain neoplasms than
All rights reserved.

: +1 306 966 6377.
ck).
loyl chloride led to series 4 which was accompanied by increases in
both potency and selective toxicity to malignant cells.7 However the
hydrophobicity of 4 increases compared to 3 which may lead to
pharmacokinetic and formulation problems. Hence the acryloyl
group of 4 was replaced by the hydrophilic phosphono substituent
leading to series 2.8 Since there are two acidic protons in 2, which
may impede penetration of cell membranes, the corresponding
diethyl esters 1 were synthesised.8 The structures of the compounds
in series 1–4 are presented in Figure 1.

A preliminary investigation revealed that most of the compounds
in series 1 and 2 display potent cytotoxicity towards several malig-
nant and transformed cell lines.8 The aims of the present investiga-
tion are (1) to determine whether the theory of sequential
cytotoxicity is validated from the biodata generated in series 1 and
2, (2) to identify a lead molecule that possesses potent cytotoxicity
and selective toxicity to neoplasms compared to normal cells for
future in vivo pharmacokinetic and pharmacodynamic evaluations,
(3) to investigate the mode of action of the lead molecule in order to
gain some insight into the possible ways bioactivity is mediated and
(4) to develop suitable QSAR models which will enable the design of
potent, tumour-selective cytotoxins for future development.

All of the compounds in series 1 and 2 were evaluated against
four human neoplastic cell lines namely HL-60 promyelocytic

http://dx.doi.org/10.1016/j.bmcl.2010.09.051
mailto:jr.dimmock@usask.ca
http://dx.doi.org/10.1016/j.bmcl.2010.09.051
http://www.sciencedirect.com/science/journal/0960894X
http://www.elsevier.com/locate/bmcl
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Figure 1. Structures of the compounds in series 1–4.
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leukemic cells as well as HSC-2, HSC-3 and HSC-4 oral squamous
cell carcinomas. In addition, these dienones were screened against
three human normal cells viz HGF gingival fibroblasts, HPC pulp
cells and HPLF periodontal ligament fibroblasts.9 These data are
presented in Table 1.

The biodata displayed in Table 1 indicate that the compounds in
series 1 and 2 are potent cytotoxins. In fact, 71% of the CC50 values
of 1a–i and 2a–i are submicromolar while 1i, 2e, h, i have double
digit nanomolar CC50 figures towards HL-60 cells. The potencies
Table 1
Evaluation of 1a–i, 2a–i and melphalan against human tumour and normal cell lines

Human tumour cell linesa (CC50, lM)

HL-60 SIb HSC-2 SIb HSC-3 SIb

1a 0.61 ± 0.05 15 2.4 ± 0.13 3.8 2.5 ± 0.11 3.7
1b 3.3 ± 0.54 6.7 4.9 ± 0.05 4.5 4.1 ± 0.19 5.4
1c 1.9 ± 0.18 25 0.92 ± 0.08 51 0.66 ± 0.07 71
1d 0.75 ± 0.12 8.4 1.7 ± 0.23 3.7 1.4 ± 0.38 4.5
1e 0.29 ± 0.03 6.2 0.33 ± 0.02 5.5 0.43 ± 0.09 4.2
1f 0.14 ± 0.02 17 0.33 ± 0.02 7.3 0.38 ± 0.09 6.3
1g 0.60 ± 0.04 6.7 1.5 ± 0.25 2.7 2.0 ± 0.05 2.0
1h 0.38 ± 0.04 37 1.6 ± 0.24 8.8 1.2 ± 0.01 12
1i 0.05 ± 0.01 54 0.76 ± 0.07 3.3 0.74 ± 0.18 3.4
2a 0.46 ± 0.11 12 0.77 ± 0.54 7.4 0.98 ± 0.03 5.8
2b 1.1 ± 0.23 4.6 0.76 ± 0.09 6.7 0.95 ± 0.05 5.4
2c 5.6 ± 1.30 12 1.7 ± 0.18 40 2.2 ± 0.15 31
2d 0.26 ± 0.01 8.1 0.40 ± 0.11 5.3 0.59 ± 0.11 3.6
2e 0.06 ± 0.01 12 0.13 ± 0.01 6.2 0.27 ± 0.01 3.0
2f 0.14 ± 0.03 21 0.18 ± 0.02 17 0.23 ± 0.02 13
2g 0.46 ± 0.02 9.8 0.42 ± 0.18 11 0.41 ± 0.10 11
2h 0.07 ± 0.02 30 0.17 ± 0.05 13 0.32 ± 0.18 6.9
2i 0.09 ± 0.01 30 0.20 ± 0.04 13 0.18 ± 0.05 14
Melphalan 1.4 ± 1.2 150 8.7 ± 4.20 24 25 ± 7.70 8.4

a The CC50 values are the concentrations of the compounds required to kill 50% of the
b The letters SI refer to the selectivity index. These numbers are the quotients of the ave

for each neoplastic cell line.
c These figures are the average CC50 values of the compounds towards HGF, HPC and
of virtually all of the compounds towards the three squamous cells
carcinomas compare very favourably with melphalan, for example,
2h possesses 51, 78 and 320 times the potency of this drug towards
HSC-2, HSC-3 and HSC-4 cell lines, respectively.

In order to address the issue of whether the compounds display
greater toxicity to neoplasms than normal cells, selectivity index
(SI) figures were calculated for 1a–i and 2a–i. Under clinical condi-
tions, tumours are surrounded by a number of different types of
cells and in order to simulate in vivo situations, the average CC50
Human normal cell linesa (CC50, lM)

HSC-4 SIb HGF HPC HPLF Avec

1.1 ± 0.11 8.4 11 ± 0.55 6.5 ± 0.91 10 ± 0.2 9.2
4.6 ± 0.09 4.8 28 ± 7.50 18 ± 1.9 21 ± 0.7 22
1.3 ± 0.32 36 53 ± 3.20 41 ± 0.5 46 ± 3.2 47
0.50 ± 0.01 13 7.4 ± 2.60 6.2 ± 1.9 5.3 ± 0.5 6.3
0.16 ± 0.03 11 2.0 ± 0.07 1.3 ± 0.38 2.2 ± 0.11 1.8
0.72 ± 0.22 3.3 3.1 ± 0.75 1.9 ± 0.35 2.2 ± 0.35 2.4
0.64 ± 0.19 6.3 4.3 ± 0.16 2.8 ± 0.4 4.8 ± 0.22 4.0
1.8 ± 0.26 7.8 18 ± 1.40 8.3 ± 1.9 15 ± 4.9 14
0.26 ± 0.04 9.6 2.2 ± 0.05 1.5 ± 0.18 3.9 ± 4.9 2.5
0.57 ± 0.14 10 6.9 ± 0.81 3.2 ± 0.50 7.0 ± 1.8 5.7
0.96 ± 0.05 5.3 5.9 ± 1.70 3.3 ± 0.92 6.1 ± 0.25 5.1
3.9 ± 1.20 17 107 ± 7 54 ± 6.5 44 ± 6.30 68
0.42 ± 0.04 5.0 2.6 ± 0.45 1.3 ± 0.56 2.5 ± 0.05 2.1
0.12 ± 0.03 6.7 0.88 ± 0.04 0.59 ± 0.36 1.0 ± 0.05 0.8
0.13 ± 0.00 23 4.1 ± 0.61 1.6 ± 0.11 3.4 ± 0.85 3.0
0.72 ± 0.08 6.3 5.9 ± 0.50 2.6 ± 0.05 5.1 ± 0.23 4.5
0.10 ± 0.01 22 1.4 ± 0.57 2.1 ± 0.06 3.0 ± 0.09 2.2
0.14 ± 0.03 19 2.3 ± 1.20 2.2 ± 0.11 3.3 ± 0.83 2.6
32 ± 8.80 6.6 161 ± 27 269 ± 153 199 ± 60 210

cells.
rage CC50 value of the compound towards normal cells and the CC50 figure generated

HPLF cell lines.
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value of the compounds towards the three normal cell lines was di-
vided by the CC50 figure generated using a specific neoplasm. These
data are presented in Table 1. All of the compounds have SI figures
of greater than 1 which indicates that the theory of sequential
cytotoxicity is worthy of further investigation.

An effort was made to identify lead molecules using the PL10
concept.10 This approach seeks to identify Promising Lead com-
pounds which have CC50 values of 10 lM or less and the SI figure
is 10 or more. No less than 43% of the results obtained indicate
the PL10 criteria has been achieved namely 1a, c, f, h, i, 2a, c, e,
f, h, i (HL-60 screen), 1c, 2c, f–i (HSC-2 assay), 1c, h, 2c, f, g, i
(HSC-3 test) and 1c–e, 2a, c, f, h, i (HSC-4 screen). Of particular
note are 1c, 2c, f, i which have PL10 status when assayed against
all four tumour cell lines. The average SI values for these four com-
pounds (average CC50 figures in lM against the four neoplastic cell
lines are presented in parentheses) are 46(1.20), 25(3.35), 19(0.17)
and 19(0.15), respectively, indicating their being important lead
molecules, especially 1c.

The next phase of the study was aimed at discerning any phys-
icochemical properties of the aryl substituents which control the
magnitude of the CC50 figures towards the HL-60, HSC-2, HSC-3
and HSC-4 malignant cell lines. Accordingly linear and semiloga-
rithmic plots were made between the r/r* and p constants of
the aryl substituents of 1a–i.11 In addition, linear, semilogarithmic
and logarithmic plots were constructed between the CC50 values
and the molecular refractivity (MR) figures of the aryl groups.
The process was then repeated for the compounds in series 2.
The following correlations (p <0.05) and trends towards signifi-
cance (p <0.1) were noted. The CC50 figures of 1a–i correlate nega-
tively with the r constants in the HL-60 screen and positively with
the p values in the HSC-3 assay. Positive trends towards signifi-
cance were noted between the p values in the HL-60 and HSC-2
screens and a negative trend with the MR constants in the HSC-4
test. In the case of series 2, negative correlations were noted be-
tween the r constants in all four bioassays. No other correlations
or trends to significance were noted (p >0.1). Thus future develop-
ment should include the placement of substituents in the aryl rings
of both series 1 and 2 which are more electron-withdrawing while
in series 1, these groups should also be more hydrophilic.

In a further attempt to discern correlations between various
physicochemical parameters and the cytotoxic potencies of the
compounds in series 1 and 2, multilinear regression analyses were
undertaken.12 Excellent correlations were noted using the biodata
generated in the HSC-2 and HSC-3 assays as indicated in Eqs. 2 and
3, respectively, and the studied descriptors. However modest cor-
relations were obtained for HL-60 and HSC-4 cell lines. Efforts to
improve the statistical quality of the Eqs. 1 and 4 by changing or
omitting the studied descriptors did not give any good results.
Log10ðCC50 HL�60Þ ¼ �1:93ð�0:86Þ � 1:12ð�0:31Þ
X

r� 0:94ð�0:76Þ
X

pþ 0:66ð�0:34Þ
logP þ 0:73ð�0:49ÞIEt

n ¼ 18; r ¼ 0:795; radj ¼ 0:518; s ¼ 0:425; F ¼ 5:57; p ¼ 0:008 ð1Þ
Log10ðCC50 HSC�2Þ ¼ 1:05ð�0:86Þ � 0:97ð�0:49Þ

X
rþ 1:65ð�0:88Þ

X
p� 0:62ð�0:34Þ

logP � 1:55ð�0:58ÞIEt � 0:09ð�0:03Þ
X

MR þ 0:011ð�0:009ÞTPSA

n ¼ 18; r ¼ 0:906; radj ¼ 0:722; s ¼ 0:236; F ¼ 8:37; p ¼ 0:001 ð2Þ
Log10ðCC50 HSC�3Þ ¼ 1:51ð�0:84Þ � 0:31ð�0:17Þ

X
rþ 0:90ð�0:51Þ

X
p� 0:46ð�0:27Þ

logP � 0:95ð�0:37ÞIEt � 0:05ð�0:02Þ
X

MR

n ¼ 18; r ¼ 0:863; radj ¼ 0:637; s ¼ 0:234; F ¼ 6:94; p ¼ 0:003 ð3Þ
Log10ðCC50 HSC�4Þ ¼ 0:23ð�0:22Þ � 0:60ð�0:19Þ

X
r� 0:05ð�0:01Þ

X
MR þ 0:32ð�0:17ÞIEt

n ¼ 18; r ¼ 0:764; radj ¼ 0:494; s ¼ 0:35; F ¼ 6:53; p ¼ 0:005 ð4Þ
In these equations, n is the number of determinations, r is the
correlation coefficient, radj is the adjusted p value, s is the standard
deviation of the regression equation, F is related to the F—statistic
analysis (Fisher test) and IEt is an indicator variable which is as-
signed a value of 1 or 0 depending upon the ethyl group being pres-
ent or absent, respectively.

From these statistical analyses guidelines for expansion of this
study have been achieved. Thus by inserting the appropriate phys-
icochemical constants into Eqs. 1–4, a prediction of analogs with
increased cytotoxic potencies can be made. The fact that quite dif-
ferent equations were generated depending on the cell line under
consideration reinforces the conclusion that the compounds in ser-
ies 1 and 2 have pleiotropic properties which give rise to the
remarkable SI values observed.

In order to evaluate whether certain of the physicochemical
properties of the aryl substituents in series 1 and 2 influence
the SI values, the following statistical analysis was undertaken.
Linear and semilogarithmic plots were made between the r, p
and MR constants and the SI figures. In the HL-60 screen a positive
trend to significance with the r constants and a negative correla-
tion with the p values of 1a–i were noted. For series 2, a positive
correlation between the r and SI figures was observed in the
HL-60 and HSC-4 screens and a negative correlation with the p
constants in these screens. No other correlations were noted
(p >0.1). Thus in considering analog development, greater cyto-
toxic potencies and selective toxicity to neoplasms are predicted
to occur by placing substituents with increased electron-with-
drawing and hydrophilic substituents in the aryl rings of series
1 and 2 such as forming the 3-nitro-4-acetoxy and 2-nitro-4-carboxy
analogs.

A study was conducted to determine if any of the lead com-
pounds identified by using the PL10 concept have favourable
druglike properties. Hence 1c, 2c, f, i were examined in terms
of certain physicochemical parameters which govern intestinal
absorption13 as well as their predicted capacity for inducing var-
ious toxic symptoms. The results are portrayed in Table 2 which
reveals that the most favourable ratings appear with 1c and 2c.
However, 1c is considered the primary lead molecule due its
higher SI value and greater potency towards neoplastic cell lines
than 2c (Table 1).

A number of cytotoxic agents exert their bioactivity, at least in
part, by inducing apoptosis.14 There are two apoptotic mecha-
nisms, namely one which operates via the intrinsic pathway in
the mitochondria and also the extrinsic pathway involving death
receptors on the cell surface.15 Both mechanisms of action utilise
the proteolytic enzymes known as caspases. In particular cas-
pase-3 is an effector caspase. The lead compound 1c was evaluated
for its ability to activate caspase-3 using concentrations which are
�1, �2 and �4 of the CC50 values for the cells. The result is por-
trayed in Figure 2.16 Clearly 1c causes a concentration-dependent
activation of caspase-3 in HL-60 cells not in HSC-2 cells. Therefore
the cytotoxicity of this compound to HSC-2 cells is regulated by an
alternate mechanism. This finding is further substantiated by the
observation that 1c induced internucleosomal DNA fragmenta-
tion17 as revealed in Figure 3. In contrast, using the same concen-
trations of 1c as indicated in Figure 3 did not lead to any DNA
fragmentation in HSC-2 and HSC-4 cells. The fact that 1c causes cell
death by different mechanisms depending on the specific cell line
is probably the reason for the remarkable SI values of this com-
pound and others in series 1 and 2.

In conclusion, this study was designed to explore the theory of
sequential cytotoxicity and is validated when the 3,5-bis(benzyli-
dene)-1-diethylphosphono-4-oxopiperidines 1 and related phos-
phonic acids 2 are considered. In addition the submicromolar
CC50 values of many of the compounds are noteworthy. Series 1
and 2 are novel clusters of molecules which should be developed
in three ways, namely (1) analog development based on the QSAR,
(2) further explorations as to the mechanisms of action of these
compounds, and (3) in vivo pharmacokinetic and pharmacody-
namic evaluations of the lead compound 1c.
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Table 2
Evaluation of 1c, 2c, f, i for druglike properties

Compound Physicochemical propertiesa Toxicityb

Log P MW HBA HBD RB TPSA M T I R Ratingsc

1c 4.09 471.49 7 0 9 74.32 � � � � 10
2c 2.78 415.38 7 2 5 96.30 � � � � 10
2f 2.59 445.32 11 2 5 169.48 + + � � 6
2i 2.54 445.32 11 2 5 169.48 � � � � 8
Druglike compound <5 <500 <10 <5 <10 <140 � � � � 10

a The physicochemical properties considered are the logarithm of the partition coefficient (log P), molecular weight (MW), the number of hydrogen bond acceptors (HBA),
hydrogen bond donors (HBD) and rotatable bonds (RB) as well as total polar surface area (TPSA). These figures were obtained using the molinspiration Web explorer.21

b The possible induction of certain toxic effects are mutagenicity (M), tumour-induction (T), irritant effects (I) and impairment of reproduction (R). The assessment for
toxicity used the Osiris Property Explorer tool.22

c One point was allocated for each positive result, that is, a favourable physical property or the absence of one of the toxic symptoms. There is a maximum of 10 points. The
toxicity effects are classified as toxic (+), less toxic (±) and no toxicity (�).

Figure 2. Evaluation of 1c to activate caspase-3. Cells were incubated for 6 h and then harvested for caspase-3 activity. The bars are the mean determinations accompanied by
standard deviations (n = 3).

Figure 3. The effect of 1c on internucleosomal DNA fragmentation in HSC-2, HSC-4 and HL-60 cells. The cells were incubated with different concentrations (0, 1, 2, 4, 8,
16 lM) of 1c for 6 h and then harvested for DNA fragmentation. As a positive control, cells were exposed to UV irradiation for 1 min. followed by 3.5 h incubation. M is a
100 bp DNA ladder marker.
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CHAPTER 4 

 

Chapter 4 consists of copies of two articles: one published in ChemMedChem in 2011*† and 

other one in the European Journal of Medicinal Chemistry**#. 

Relation of Chapter 4 to the objectives of this project 

The aim was to investigate the hypothesis of cytotoxic synergism, namely that 

compounds capable of multiple cellular interactions in neoplasms exert a synergistic effect. In 

other words, an increase in the thiol alkylating sites will lead to increase in cytotoxic potencies, 

and selective tumour toxicity compared to normal cells.  

Description 

In order to probe this theory of cytotoxic synergism, a series of dimeric 3,5-

bis(arylidene)-4-piperidones 1 containing two 1,5-diaryl-3-oxo-1,4-pentadienyl groups was 

synthesized. In this case, the inclusion of two such groups into a molecule may more than double 

the potency of a related 3,5-bis(benzylidene)-4-piperidone which contains only one dienone 

moiety. The relative location of dienone groups may be very important for multiple thiol 

alkylations to take place which in turn can influence cytotoxic potencies substantially. Therefore 

in series 1, a linker group containing varying carbon chain lengths was introduced to develop a 

structure-activity relationship and to find out the most optimal distance between two dienone 

motifs for highest cytotoxic potencies. All the compounds were evaluated against human Molt 

4/C8 and CEM T-lymphocytes as well as murine leukemic L1210 cells. The ability of the 

compounds to inhibit non-adherent cancer cells which diffuse in vivo very rapidly that leads to 

tumour metastasis was assessed by using a number of non-adherent human CEM, JURKAT, and 

SUP-T1 and murine EL-4 T-cell lymphomas, as well as human BJAB, Nalm-6, and Ramos B-

cell lymphomas and compared against adherent human HeLa ovarian cancer cells, as well as two 

adherent non-malignant cell lines: human foreskin Hs27 and murine NIH-3T3 fibroblasts. Some 

of these compounds were assessed against a panel of approximately 55 human tumor cell lines 

by the NCI. To evaluate the selective tumour toxicity of the compounds in series 1, they were 

screened against a number of malignant HSC-2, HSC-3, HSC-4 and HL-60 cell lines and 

compared against non-malignant HGF, HPC and HPLF cell lines. The modes of action of 

representative compounds were investigated which included cell cycle analysis, apoptotic cell 

death, caspase activation, DNA fragmentation and PARP cleavage. 
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Introduction

The principal aim of this work was the design, syntheses, and
biological evaluation of conjugated styryl ketones as candidate
antineoplastic agents. A number of studies have revealed that
these enones react readily with thiols.[1, 2] In particular, conju-
gated styryl ketones react only with the thiol group in a variety
of compounds containing other functional groups such as
amino,[3] and hydroxy groups,[4] as well as with proteins con-
taining one or more mercapto substituents.[5] This affinity of
conjugated arylidene ketones for thiols, in contrast to other
functional groups present in nucleic acids, indicates that the
genotoxic properties displayed by various contemporary anti-
cancer drugs[6] should be absent in these compounds. Further-
more, a number of different proteins contain thiol groups,
leading to the possibility that these compounds have multiple
molecular targets. The importance of such pleiotropy has re-
cently been discussed.[7–9] Currently, emphasis has been placed
on the inclusion of a 1,5-diaryl-3-oxo-1,4-pentadienyl group
(ARCH=CHCOCH=CHAR), referred to hereafter as a dienone
moiety, into candidate cytotoxins. This pharmacophore pres-
ents the possibility that sequential thiol alkylation can occur
with the olefinic carbon atoms. Multiple studies have revealed
that an initial lowering of the concentration of cellular thiols,
followed by a second chemical attack, is more detrimental to
malignant cells than normal tissues.[10, 11] In addition, if this in-
teraction occurs at two different sites, the effect may be far
more detrimental to the neoplasm than reaction at only one
site.[12]

The aim of the present investigation was to evaluate the hy-
pothesis of cytotoxic synergism in cancer cells, which suggests
that compounds capable of multiple cellular interactions in ne-
oplasms exert a synergistic effect. In order to probe the viabili-
ty of this theory, we designed a series of compounds (1) con-
taining two dienone groups (Figure 1). In this case, the inclu-

sion of two such groups into a molecule may more than
double the potency of a related compound containing only
one dienone moiety. Series 1 was designed to include com-
pounds in which the locations of the dienone groups vary in

The principal objective of this study was the examination of
the theory of cytotoxic synergism. In this exploratory study, we
tested the hypothesis that doubling the number of sites avail-
able for thiol alkylation in a series of candidate cytotoxins in-
creases potency more than two-fold. This concept was verified
in one-third of our comparisons using human Molt 4/C8 and
CEM T-lymphocytes and murine L1210 cells. In addition, the
significant potencies of various members of our compound

series justified further studies. Molecular modeling revealed
that relative locations of the amidic groups correlate with cyto-
toxicity. A potent cytotoxic compound, 1,2-bis(3,5-dibenzyli-
dene-4-oxo-piperidin-1-yl)ethane-1,2-dione (1 a) inhibited the
growth of a large number of human tumor cell lines and dis-
played greater toxicity toward certain non-adherent cells than
toward adherent neoplasms or fibroblasts. The mode of action
of 1 a includes induction of apoptosis and necrosis.

Figure 1. General structure of series 1. * indicates the olefinic carbon atoms
that are capable of interacting with different thiol groups of a protein.
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relation to each other. Molecular modeling was used as a
means to determine the spatial relationship between the phar-
macophores. Biological evaluations were undertaken using
multiple cell lines in order to explore the generality of any
trends in the relative potencies of the compounds.

Results

Compounds were synthesized using the procedure indicated
in Scheme 1. All of the compounds in series 1 were evaluated
against human Molt 4/C8 and CEM T-lymphocytes, as well as
murine L1210 cells (Table 1). Various structural features of 1 a–j

were examined by molecular modeling. The most active com-
pounds, 1 a and 1 b, were evaluated against a large number of
human tumor cell lines, and selected biological data from
these studies is presented in Figure 4. In general, lead com-
pound 1 a displayed greater potency toward non-adherent
cells than toward either an adherent neoplasm or two fibro-
blasts. These results are illustrat-
ed in Figures 5 and 6 and
Table 3. Cell-cycle analysis of 1 a
revealed that this compound re-
sulted in apoptosis in four neo-
plastic cell lines, and necrosis
was also observed (Figure 7).

Discussion
1H NMR spectra of 1 a–k indicate
that the compounds are stereo-
isomerically pure, and absorb-
ance of the olefinic protons in
the region from 7.63–7.90 ppm
indicates that the compounds
have an E configuration.[13] In ad-
dition, X-ray crystallography of a
number of 3,5-bis(benzylidene)-
4-piperidones also confirmed

that these compounds adopt the E stereochemistry.[13, 14] While
this study was in progress, syntheses of 2-fluoro analogues of
1 a and 1 f were described, and X-ray crystallography of the 2-
fluoro analogue of 1 a showed that the four olefinic double
bonds possess an E configuration.[15]

The compounds in series 1 were evaluated against human
Molt 4/C8 and CEM T-lymphocytes in order to determine
whether they demonstrate cytotoxic properties towards
human transformed cells. A murine L1210 assay was employed,
as a number of anticancer drugs display potency in this
screen,[16] and it may, therefore, identify compounds of poten-
tial clinical value. The results presented in Table 1 show that a

number of compounds in series
1 are potent cytotoxins. Howev-
er, compound 1 k is virtually in-
soluble in multiple solvents, and
the observed IC50 values of
greater than 500 mm in the three
assays is likely due to the insuffi-
cient solubility of 1 k in the
media preventing penetration of
the malignant cells. Hence, this
compound has been removed
from further discussion of the
correlations between series 1
compounds and cytotoxic po-
tencies. With regard to the IC50

values of 1 a–j, 47 % are more
potent than melphalan, 60 % are
below 5 mm, and six are in the
sub-micromolar range. Of partic-

ular interest are 1 a and 1 b, which have average IC50 values to-
wards Molt 4/C8 and CEM T-lymphocytes of 0.61 and 0.14 mm,
respectively, and clearly emerge as lead molecules. The follow-
ing compounds have IC50 values that indicate higher potency
than melphalan, which is an alkylating agent used in cancer
chemotherapy (the fold increase in relative potency as com-

Scheme 1. Synthesis of series 1. Reagents and conditions : a) AcOH, dry HCl(g), 10 % aq K2CO3, RT, 12 h, 80 %;
b) SOCl2, 60–65 8C, 4–5 h, 90 %; c) Et3N, ~20 8C, 12 h, 48–72 %.

Table 1. Evaluation of 1 a–j against Molt 4/C8, CEM, and L1210 cells, as well as a comparison of their potencies
with 2.[a]

Compd Molt 4/C8 cells CEM cells L1210 cells
IC50 [mm] RP[b] IC50 [mm] RP[b] IC50 [mm] RP[b]

1 a 0.46�0.11 18 0.75�0.16 2.5 4.46�0.23 1.8
1 b 0.07�0.01 115 0.20�0.17 9.3 1.23�0.38 6.5
1 c 0.57�0.16 14 1.21�0.87 1.5 14.0�1.2 0.6
1 d 1.61�0.05 5.0 2.03�0.48 0.9 11.5�0.3 0.7
1 e 1.53�0.54 5.3 2.28�0.27 0.8 15.3�4.2 0.5
1 f 4.40�2.95 1.8 7.75�0.07 0.2 28.9�2.0 0.3
1 g 1.50�0.10 5.4 3.35�1.27 0.6 9.86�0.76 0.8
1 h 25.1�15.8 0.3 39.2�5.4 0.1 79.0�10.2 0.1
1 i 0.85�0.41 9.5 1.45�0.85 1.3 4.19�2.19 1.9
1 j 12.5�1.8 0.7 36.0�7.6 0.1 150�65 0.1
2 8.07�0.45 – 1.86�0.08 – 7.97�0.75 –
Melphalan 3.24�0.79 – 2.47�0.30 – 2.13�0.03 –

[a] IC50 values were determined using a literature procedure and are the average of three independent experi-
ments �SD. [24] Cells were exposed to the compounds for 3 d (Molt 4/C8 and CEM screens) or 2 d (L1210
assay). [b] Relative potencies (RP) were obtained by dividing the IC50 values of 2 by the values for each of the
compounds in series 1.
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pared with melphalan is given in parentheses): 1 a (7.0), 1 b
(44), 1 c (5.7), 1 d (2.1), 1 g (2.2), and 1 i (3.8) in the Molt 4/C8
screen; 1 a (3.3), 1 b (12), and 1 c (2.0) in the CEM test; 1 b (1.7)
towards L1210 cells.

For 1 a–j, IC50 values are lowest in the Molt 4/C8 screen and
highest in the L1210 assay. This observation is confirmed by
average IC50 values for 1 a–j in the Molt 4/C8, CEM, and L1210
tests of 4.86, 9.42, and 31.8 mm, respectively (Table 1). Varia-
tions in potency were displayed by each compound 1 a–j to-
wards Molt 4/C8, CEM, and L1210 cells. For example, Molt 4/C8
T-lymphocytes are 25-times more sensitive to treatment with
1 c than are L1210 cells, and this differential toxicity may be
also be observed between malignant and non-malignant cells,
leading to greater adverse effects toward neoplasms.

The following observations were made pertaining to the
effect of the nature of the spacer group (X in structure 1) on
average IC50 values of 1 a–j towards T-lymphocytes (these
values are given in parentheses). The most potent compound
is 1 b (0.14 mm) which has a single methylene group spacer. Re-
moval of the spacer, leading to 1 a (0.61 mm), or insertion of ad-
ditional methylene groups to 1 b, giving rise to 1 c (0.89 mm),
1 d (1.82 mm), and 1 e (1.91 mm), led to reduced potencies. A
comparison of IC50 values for three compounds which have a
two carbon atom spacer showed that 1 f (6.08 mm) and 1 g
(2.43 mm) are less potent than 1 c (0.89). The addition of a fur-
ther olefinic linkage to 1 f (6.08 mm), creating 1 h (32.2 mm), re-
duced potency five-fold. Upon introduction of an aryl ring
spacer, the relative location of the substituents influences po-
tency considerably, as observed by the substantial difference in
IC50 values for 1 c (1.15 mm) and 1 j (24.3 mm).

If the hypothesis is valid that synergism occurs when each
compound interacts at a different binding site, then one
would expect to observe similar relative potencies using vari-
ous biological assays. In order to evaluate this possibility, Ken-
dall’s coefficient of concordance[17] was applied to data gener-
ated in our three assays. Equation (1) used in this determina-
tion is given below, where W is Kendall’s coefficient of con-
cordance, i denotes the individual compound (i = 1 for 1 a, i =
2 for 1 b, etc.), n is the number of compounds, Ri is the aver-
age rank given to cell line i, m is the number of cell lines, T is
the correction factor for ties and j refers to the individual cell
line. Kendall’s coefficient of concordance is a test for assessing
the similarity of rankings. If the relative potency rank for each
assay is identical, Kendall’s coefficient of concordance will be 1.
If there is no agreement in rankings, Kendall’s coefficient of
concordance will be zero. The coefficient of concordance for
our biological data was found to be 0.924 (p = 0.03), providing
very strong evidence that the relative potency rankings are
similar across the assays. One may conclude, therefore, that de-
spite the difference in sensitivity of the three cell lines to 1 a–j,
the molecular shapes may influence cytotoxic potencies in a
similar fashion.

W ¼
12
Pn

i¼1 R2
i

� �
� 3m2n nþ 1ð Þ2

m2n n2 � 1ð Þ �m
P

m
j¼1 Tj

� � ð1Þ

The hypothesis that synergism may occur with the presence
of two dienone groups was examined by comparing the IC50

values of 1 a–j with that of piperidone 2. This dienone was
chosen because, like the compounds in series 1, 2 is a 1-acyl-
3,5-bis(benzylidene)-4-piperidone. Additionally, the hydropho-
bic 1-tetradecanoyl group ensures that 2 resembles series 1
with regard to their markedly lipophilic nature. For example,
the log P values of 1 e and 2 are 8.58 and 9.02, respectively. If
the hypothesis of cytotoxic synergism is valid, then the cyto-
toxic potencies of 1 a–j should be greater than twice the fig-
ures generated for 2. Therefore, the IC50 value of 2 was divided
by the corresponding value for each of analogues 1 a–j in the
Molt 4/C8, CEM, and L1210 assays to give the relative potency
(RP) figures (Table 1). RP values greater than two were ob-
tained for 1 a–e, g, and i in the Molt 4/C8 screen, 1 a and b in
the CEM assay, and 1 b in the L1210 test, that is, in one-third of
the comparisons made. The RP figures for the Molt 4/C8
screen are particularly encouraging, and these results warrant
further evaluation of the hypothesis.

Previous studies by our group involved the evaluation of
several series of structurally related 1-acyl-3,5-bis(benzylidene)-
4-piperidones for cytotoxic properties, including assessment
using Molt 4/C8, CEM, and L1210 cells. Series 3–5 have, respec-
tively, aroyl,[18] acryloyl,[13] and phosphono[19] groups attached
to the nitrogen atom (Figure 2). In general, series 1 exhibits

slightly weaker activities than 3–5 ; however, removal of the
two outliers (1 h and 1 j) shows that the observed IC50 values
for the remaining members of the series are comparable to
series 3–5 (Table 2).

Further evaluation of the biological data presented in
Table 1 was undertaken in order to examine the theory that
the topography of 1 a–j controls cytotoxicity. While a substan-
tial number of interatomic distances as well as various bond

Figure 2. Structures of compounds in series 2–5.

Table 2. Potencies of series 1 compounds as compared to series 3–5.

Compd IC50
[a] [mm]

Molt 4/C8 CEM L1210

3 2.64 2.92 49.8
4[b] 1.42 1.48 8.69
5 0.91 1.70 7.33
1 a–j 4.86 9.42 31.8
1 a–g,i 1.37 2.38 11.2

[a] Values shown are the average of three independent experiments.
[b] Data reported previously.[13]
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and torsion angles could be determined, we focused primarily
on the relative positions of the olefinic carbon atoms of both
pharmacophores, followed by the piperidyl nitrogen atoms
and the spacer group oxygen atoms. The generated figures
are presented in table S1 of the Supporting Information.

The relative positions of the olefinic carbon atoms in both
pharmacophoric groups were determined as follows: The four
olefinic carbon atoms were designated CA, CB, CC, and CD (Fig-
ure 3 a). Axes 1 and 2 were constructed (Figure 3 b), and d1, d2,

and y were measured. Linear and semi-logarithmic plots were
generated using the average IC50 values of 1 a–j towards Molt
4/C8 and CEM T-lymphocytes and their d1, d2, and y data. No
correlations (p>0.05) nor trends to significance (p>0.1) were
found, although a negative trend to significance was nearly at-
tained when using y values (p = 0.11). Thus, the possibility
exists that the preparation of analogues of series 1 in which y

values are increased may lead to molecules with greater cyto-
toxicity. Linear and semi-logarithmic plots were constructed
using the average IC50 values of 1 a–j towards the two T-lym-
phocyte cell lines and the interatomic distances d3 (N1�N2), d4

(N1�O2) and d5 (O2�O4) (Figure 3 c). Positive correlations were
noted between the IC50 values and d3 (p = 0.04), d4 (p = 0.04),
and d5 (p = 0.02), indicating that potency increases as the d3–
d5 spans diminish. Expansion of this project should involve the
design of molecules in which the spacer group (X) is either
small or eliminated entirely. In addition, these results highlight
the importance of the proximity of the piperidyl nitrogen
atoms to the oxygen atoms. Further experimentation should
be pursued, such as incorporating the CO�X�CO group into
rigid heterocyclic rings with the goal of finding the optimal
topography of these molecules to maximize cytotoxic proper-
ties.

In light of the encouraging biological data displayed by 1 a–
g, and i, we undertook further evaluations. First, it was neces-
sary to select a lead compound. As shown in Table 1, both 1 a
and 1 b exhibited sub-micromolar IC50 values toward human
cancer cells. These molecules were, therefore, evaluated
against a substantial number of human tumor cell lines,[20] with
the cytotoxic effect of 1 a and 1 b against some of these neo-
plasms presented in Figure 4. The data presented shows that
1 a generally displays lower IC50 values than 1 b ; consequently,
1 a was chosen for further studies. An additional noteworthy
feature of 1 a and 1 b is the differential potencies both com-
pounds display towards the cell lines. This observation
strengthens the view expressed earlier that these compounds
and analogues in series 1 may possess greater toxicity towards
neoplasms than normal cells.

Figure 3. Various structural features of 1 a–j as determined by molecular
modeling: a) olefinic carbon atoms CA–CD, piperidyl nitrogen atoms N1 and
N2, and carbonyl oxygen atoms O1–O4; b) interatomic distances d1 and d2,
and bond angle y ; and c) interatomic distances d3–d5.

Figure 4. Growth inhibitory effect of 10 mm 1 a or 1 b toward a number of human tumor cell lines. Cells were exposed to 1 a (&) and 1 b (&) for 48 h using a
previously described procedure.[20]
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The ability of non-adherent cells to diffuse in vivo, leading
to metastasis, led us to next address the discovery of novel
prototypic molecules that inhibit the growth of non-adherent
neoplasms. The potential of such compounds would be en-
hanced even further if greater toxicity could be demonstrated
towards non-adherent neoplasms over either adherent or non-
malignant cells. Compound 1 a was examined against the fol-
lowing non-adherent cell lines: human CEM, JURKAT, and SUP-
T1 and murine EL-4 T-cell lymphomas, as well as human BJAB,
Nalm-6, and Ramos B-cell lymphomas. This compound was
also assessed against adherent human HeLa ovarian cancer
cells, as well as two adherent non-malignant cell lines: human
foreskin Hs27 and murine N1H-3T3 fibroblasts.

Figure 5 shows that, in general, greater toxicity was demon-
strated toward non-adherent cells than toward either the ad-
herent HeLa cell line or the two fibroblasts. CC50 values were

also determined in order to garner an appreciation of the dif-
ferential toxicity between several non-adherent cells and the
adherent NIH-3T3 fibroblast (Table 3). Selectivity index values
are impressive and establish 1 a as an important lead molecule.
Further experimentation was initiated to determine whether
higher toxicity toward non-adherent over adherent cell lines is

a common property of the more potent compounds in series
1. Accordingly, 1 b–g, and i were evaluated against JURKAT and
SUP-T1 non-adherent cells, as well as against normal (Hs27)
and malignant (HeLa) adherent cell lines (Figure 6). The various

concentrations of 1 b–g and i were chosen to emphasize the
consistently greater cytotoxicity of these compounds in adher-
ent versus non-adherent cells. The results provide unequivocal
evidence that 1 b–g and i, similar to 1 a, display preferential
toxicity against non-adherent cells. This observation strength-
ens the need for development of these compounds, which dis-
play antimetastatic potential in addition to their cytotoxic
properties.

Flow cytometry was pursued, using four non-adherent cell
lines, in order to gain an understanding of the ways in which
1 a mediates its cytotoxic properties (Figure 7). After 8 h incu-
bation, an average of 19 % of the cells were apoptotic, with
this percentage doubling after 20 h. Necrosis was virtually
absent after 8 h, while on an average of 9 % of the cells were
necrotic after 20 h. One may therefore conclude that 1 a
causes cell death inter alia by apoptosis and, to a lesser

Figure 5. Cytocidal effects of 1 a (5 mm) as determined by flow cytometry
using a previously reported method.[25] Cells are non-adherent with the ex-
ception of the adherent HeLa, Hs27, and N1H-3T3 cell lines. Each bar repre-
sents the average value of triple measurements with error bars showing
standard deviations. Cells were exposed to 1 a for 22 h.

Figure 6. Evaluation of 1 b–g, and 1 i against non-adherent (JURKAT, SUP-T1)
and adherent (Hs27, HeLa) cells. Concentrations of compounds used were
2.5 mm (1 f, g, and i), 5 mm (1 e), and 10 mm (1 b–d). Cells were exposed to
compounds for 22 h as previously described.[25]

Table 3. Evaluation of 1 a against non-adherent cell lines and NIH-3T3 fi-
broblasts.

Cell line CC50
[a] [mm] SI[b]

CEM 0.034 376
EL-4 0.031 412
JURKAT 0.029 441
Nalm6 0.022 581
Sup-T1 0.384 33
NIH-3T3 12.78 –

[a] Cells were incubated with 1 a for 22 h as previously described.[25]

Values shown are the average of three independent experiments. [b] Se-
lectivity index (SI) figures are quotients of the CC50 values of 1 a toward
NIH-3T3 fibroblasts and the data for each of the non-adherent cell lines.
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degree, by necrosis. In a previous study, a cytotoxic 1-acyl-3,5-
bis(benzylidene)-4-piperidone activated caspase-3, with the
extent of activation dependent on the cell line under investiga-
tion.[21] Since caspases are involved in most apoptosis, it is
likely that one mechanism by which 1 a–j may exert their cyto-
toxic properties is the activation of one or more caspases.

Conclusions

This study reveals that the unsaturated ketones in series 1 are,
in general, potent cytotoxins. The theory that increasing the
number of sites for thiol alkylation two-fold should more than
double cytotoxic potency was validated in approximately half
of the biological data generated using Molt 4/C8 and CEM T-
lymphocytes, although there was little support when utilizing
the murine L1210 screen. Extensions of this study should con-
sider the design and evaluation of analogues of 1 a–j that con-
tain more than two identical phamacophores. In addition, the
synthesis of heterodimers should be pursued in which different
substituents are appended to the aryl rings, thereby creating
molecules with varying atomic charges on the olefinic carbon
atoms. For compounds such as these, stepwise reactions with
thiols should be enhanced, which may lead to greater increas-
es in toxicity to neoplasms than to normal cells.[10, 11] Molecular
modeling was also used to emphasize the importance of the
relative positions of the amide groups.

From this initial investigation, 1 a and 1 b emerged as lead
molecules, displaying potent cytotoxicity against a wide range
of human tumor cell lines. Further evaluations using 1 a re-
vealed its increased toxicity toward non-adherent cell lines
than toward either an adherent neoplasm or fibroblasts. Com-
pound 1 a was shown to exert its toxic effects against certain
cancer cells through apoptosis and necrosis. Sufficient evi-
dence has been presented through these studies to warrant
rapid expansion of evaluation of this compound series in order
to further investigate their potential as candidate anticancer
agents.

Experimental Section

Chemistry

Synthesis of 1 a–k : Melting points were determined on a Gallen-
kamp instrument and are uncorrected. 1H and 13C NMR spectra
were obtained using a Bruker Avance AMX 500 spectrometer
equipped with a BBO probe. Chemical shifts (d) are reported in
ppm. Mass spectra were obtained using a quad tandem 4000
QTRAP mass analyzer. Elemental analyses were undertaken using a
CHNS elemental analyzer (Vario EL III microanalyzer).

General procedure for the synthesis of 3,5-bis(benzylidene)-4-pi-
peridone dimers (1a–k): A mixture of the corresponding dicarbox-
ylic acid (0.005 mol) and thionyl chloride (0.02 mol, 2.4 g) was
heated at 60–65 8C for 4–5 h. Excess thionyl chloride was removed
at 45 8C in vacuo and moisture-free conditions. The resulting acid
chloride was used for further reaction without purification.

The previously prepared acid chloride in 1,2-dichloroethane (DCE;
5 mL) was added slowly over a period of 30 min to a stirred sus-
pension of 3,5-bis(benzylidene)-4-piperidone (0.009 mol, 2.75 g)
prepared according to a literature method[13] in DCE (20 mL) con-
taining Et3N (0.11 mol, 1.12 g) at �20 8C. The reaction stirred at RT
overnight, then the solvent was removed in vacuo at 45 8C. Aq
K2CO3 (25 mL, 10 % w/v) was added to the crude material and
stirred for 2 h. The resulting solid was filtered, dried, and crystal-
lized from a suitable solvent to yield pure product. In the case of
1 a, b, d, and e, the appropriate acid chlorides were procured from
commercial sources.

1,2-Bis(3,5-dibenzylidene-4-oxo-piperidin-1-yl)ethane-1,2-dione
(1 a): Yield: 62 %; mp: 246 8C (CHCl3/MeOH); 1H NMR (500 MHz,
[D6]DMSO): d= 7.72 (s, 2 H, 2 �=CH), 7.56 (s, 2 H, 2 �=CH), 7.53 (t,
4 H, Ar-H), 7.49 (d, J = 7.07 Hz, 2 H, Ar-H), 7.45 (m, 6 H, Ar-H), 7.39
(m, 8 H, Ar-H), 4.48 ppm (d, J = 23.28 Hz, 8 H, 4 � NCH2); 13C NMR
(125 MHz, [D6]DMSO): d= 184.7, 162.6, 137.9, 137.5, 134.4, 134.1,
131.4, 131.0, 130.9, 130.7, 130.2, 130.1, 129.3, 129.2, 46.4, 41.6 ppm;
MS (ESI) m/z : 627 [M + Na]+ ; Anal. calcd for C40H32N2O4·H2O: C
77.17; H 5.14; N 4.50, found: C 77.05; H 4.87; N 4.42.

1,3-Bis-(3,5-dibenzylidene-4-oxo-piperidin-1yl)propane-1,3-dione
(1 b): Yield: 65 %; mp: 201 8C (acetone); 1H NMR (500 MHz,
[D6]DMSO): d= 7.72 (s, 2 H, 2 �=CH), 7.57 (s, 2 H, 2 �=CH), 7.53 (d,

Figure 7. Flow cytometry analysis of the cytotoxic effect of 1 a on four non-adherent cell lines following incubation for 8 and 24 h.[25] The exact percentage of
apoptotic (&), necrotic (&), and viable (&) cells is indicated at the top of each bar graph. Two concentrations of 1 a are shown on the x-axis. Note that two-
fold higher concentrations were utilized for the most resistant cell lines, SUP-T and CEM.
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J = 4.18 Hz, 8 H, Ar-H), 7.47 (m, 12 H, Ar-H), 4.62 (d, J = 21.13 Hz, 8 H,
4 � NCH2), 3.46 ppm (s, 2 H, CH2); 13C NMR (125 MHz, [D6]DMSO):
d= 186.3, 165.9,136.6, 136.5, 134.7, 134.5, 132.6, 132.5, 131.0, 130.9,
130.1, 130.0, 129.3, 129.2, 47.0, 42.4 ppm; MS (ESI) m/z : 641 [M +
Na]+ ; Anal. calcd for C41H34N2O4·H2O: C 77.27; H 5.65; N 4.39,
found: C 77.31; H 5.50; N 4.47.

1,4-Bis-(3,5-dibenzylidene-4-oxo-piperidin-1-yl)butane-1,4-dione
(1 c): Yield: 58 %; mp: 188 8C (CHCl3/MeOH); 1H NMR (500 MHz,
[D6]DMSO): d= 7.68 (s, 4 H, 4 � = CH), 7.49 (m, 20 H, Ar-H), 4.78 (d,
J = 10.95 Hz, 8 H, 4 � NCH2), 2.29 ppm (s, 4 H, 2 � CH2); 13C NMR
(125 MHz, [D6]DMSO): d= 186.5, 170.4, 136.6, 136.5, 134.8, 134.5,
133.0, 132.8, 131.0, 130.0, 129.3, 46.3, 42.9, 27.16 ppm; MS (ESI)
m/z : 655 [M + Na]+ ; Anal. calcd for C42H36N2O4·0.5H2O: C 78.53; H
5.76; N 4.36, found: C 78.16; H 5.71; N 4.11.

1,5-Bis-(3,5-dibenzylidene-4-oxo-piperidin-1-yl)pentane-1,5-
dione (1 d): Yield: 43 %; mp: 170 8C (CHCl3/MeOH); 1H NMR
(500 MHz, [D6]DMSO): d= 7.71 (s, 2 H, 2 �=CH), 7.66 (s, 2 H, 2 �=
CH), 7.54 (m, 14 H, Ar-H), 7.42 (m, 6 H, Ar-H), 4.76 (d, 8 H, 4 � NCH2,
J = 28.18 Hz), 2.02 (t, 4 H, 2 � CH2), 1.42 ppm (p, 2 H, CH2); 13C NMR
(125 MHz, [D6]DMSO): d= 186.6, 171.0, 136.6, 134.8, 134.5, 133.1,
133.0, 131.0, 130.3, 129.3, 46.4, 42.8, 31.3, 20.4 ppm; MS (ESI) m/z :
627 [M + Na]+ ; Anal.calcd for C43H38N2O4·0.25H2O: C 79.22; H 5.91;
N 4.30, found: C 79.18; H 5.64; N 4.08.

1,8-Bis-(3,5-dibenzylidene-4-oxo-piperidin-1-yl)octane-1,8-dione
(1 e): Yield: 64 %; mp: 160 8C (CHCl3/MeOH); 1H NMR (500 MHz,
[D6]DMSO): d= 7.71 (s, 4 H, 4 � = CH), 7.51 (m, 20 H, Ar-H), 4.81 (d,
8 H, J = 29.13 Hz, 4 � NCH2), 2.00 (t, 4 H, 2 � CH2), 1.20 (m, 4 H, 2 �
CH2), 0.76 ppm (m, 4 H, 2 � CH2); 13C NMR (125 MHz, [D6]DMSO):
d= 186.6, 171.4, 136.8, 136.4, 134.8, 134.6, 133.2, 131.0, 130.0,
129.3, 46.5, 43.1, 32.4, 28.5, 24.7 ppm; MS (ESI) m/z : 711 [M + Na]+ ;
Anal.calcd for C46H44N2O4·0.5H2O: C 79.10; H 6.30; N 4.01, found: C
78.85; H 6.32; N 4.04.

1,4-Bis-(3,5-dibenzylidene-4-oxo-piperidin-1-yl)but-2-ene-1,4-
dione (1 f): Yield: 71 %; mp: 220 8C (EtOH); 1H NMR (500 MHz,
[D6]DMSO): d= 7.74 (s, 2 H, 2 �=CH), 7.66 (s, 2 H, 2 �=CH), 7.51 (m,
20 H, Ar-H), 6.92 (s, 2 H, 2 �=CH), 4.83 ppm (d, J = 8.54 Hz, 8 H, 4 �
NCH2); 13C NMR (125 MHz, [D6]DMSO): d= 186.2, 163.9, 136.9,
136.7, 134.7, 134.3, 132.6, 131.0, 130.1, 129.3, 46.9, 43.1 ppm; MS
(ESI) m/z : 653 [M + Na]+ ; Anal.calcd for C42H34N2O4·5H2O: C 69.92; H
4.71; N 3.88, found: C 69.85; H 4.79; N 3.57.

1,4-Bis-(3,5-dibezylidene-4-oxo-piperidin-1-yl)-but-2-yne-1,4-
dione (1 g): Yield: 48 %; mp: 220 8C (CHCl3/MeOH; dec.) ; 1H NMR
(500 MHz, [D6]DMSO): d= 7.81 (s, 1 H, =CH), 7.75 (d, 2 H, 2 �=CH,
J = 17.63 Hz), 7.68 (s,1 H, =CH), 7.56 (m,20 H, Ar-H), 4.79 (d, J =
18.80 Hz, 4 H, 2 � NCH2), 4.64 ppm (d, J = 16.96 Hz, 4 H, 2 � NCH2);
13C NMR (125 MHz, [D6]DMSO): d= 186.0, 185.7, 185.4, 162.4, 161.9,
149.9, 137.2, 134.5, 132.3, 131.8, 131.5, 131.0, 130.7, 130.4, 129.1,
128.7, 125.25, 95.25, 46.8, 42.7, 42.2 ppm; MS (ESI) m/z : 651 [M +
Na]+ ; Anal.calcd for C42H32N2O4·2H2O: C 75.82; H 4.81; N 4.21,
found: C 75.48; H 4.74; N 4.01.

1,6-Bis-(3,5-dibenzylidene-4-oxo-piperidin-1-yl)-hexa-2,4-diene-
1,6-dione (1 h): Yield: 56 %; mp: 199 8C (CHCl3/MeOH); 1H NMR
(500 MHz, CDCl3): d= 7.87 (s, 4 H, 4 � = CH), 7.42 (m, 20 H, Ar-H),
6.94 (m, 2 H, 2 �=CH), 6.16 (m, 2 H, 2 �=CH), 4.98 (s, 4 H, 2 � NCH2),
4.77 ppm (s, 4 H, 2 � NCH2); 13C NMR (125 MHz, [D6]DMSO): d=

186.6, 164.7, 140.3, 137.5, 134.5, 131.5, 130.6, 130.0, 125.9, 125.6,
46.3, 44.1 ppm; MS (ESI) m/z : 679 [M + Na]+ ; Anal.calcd for
C44H36N2O4·2.5H2O: C 75.23; H 5.12; N 3.98, found: C 75.23; H 5.02;
N 3.91.

1,2-Bis-[(3,5-dibenzylidene-4-oxo-piperidin-1-yl)-1-carbonyl]ben-
zene (1 i): Yield: 68 %; mp: 240 8C (CHCl3/MeOH; dec.) ; 1H NMR
(500 MHz, [D6]DMSO): d= 7.77 (s, 2 H, 2 �=CH), 7.69 (s, 2 H, 2 �=
CH), 7.57 (t, 10 H, Ar-H), 7.27 (brs, 5 H, Ar-H), 7.18 (brs, 5 H, Ar-H),
6.89 (m, 2 H, Ar-H), 6.78 (m, 2 H, Ar-H), 4.92 (brs, 4 H, 2 � NCH2),
4.49 ppm (s, 4 H, 2 � NCH2); 13C NMR (125 MHz, [D6]DMSO): d=
186.1, 167.9, 137.3, 136.5, 134.8, 133.8, 132.6, 131.1, 130.3, 129.8,
129.4, 129.0, 126.4, 47.8, 43.4 ppm; MS (ESI) m/z : 703 [M + Na]+ ;
Anal.calcd for C46H36N2O4·H2O: C 78.99; H 5.43; N 4.0, found: C
79.09; H 5.42; N 4.02.

1,3-Bis-[(3,5-dibenzylidene-4-oxo-piperidin-1-yl)-1-carbonyl]ben-
zene (1 j): Yield: 63 %; mp: 220 8C (CHCl3/MeOH; dec.) ; 1H NMR
(500 MHz, [D6]DMSO): d= 7.78 (s, 4 H, 4 � = CH), 7.53 (m, 10 H, Ar-
H), 7.31 (m, 10 H, Ar-H), 7.11 (s, 1 H, Ar-H), 7.06 (d, J = 8.93 Hz, 2 H,
Ar-H), 6.75 (t,1 H, Ar-H), 4.97 (brs, 4 H, 2 � NCH2), 4.57 ppm (brs, 4 H,
2 � NCH2); 13C NMR (125 MHz, [D6]DMSO): d= 186.03, 168.0, 137.2,
134.51, 132.6, 131.0, 130.1, 129.2, 128.9, 128.3, 125.7, 48.9,
45.6 ppm; MS (ESI) m/z : 703 [M + Na]+ ; Anal.calcd for
C46H36N2O4·0.5H2O: C 80.02; H 5.36; N 4.01, found: C 80.31; H 5.29;
N 4.01.

1,4-Bis-[(3,5-dibenzylidene-4-oxo-piperidin-1-yl)-1-carbonyl]ben-
zene (1 k): Yield: 72 %; mp: 220 8C (AcOH/H2O; dec.) ; 1H NMR
(500 MHz, CF3COOD): d= 10.44 (s, 2 H, 2 �=CH), 10.38 (s, 2 H, 2 �=
CH), 9.81 (d, J = 8.4 Hz, 10 H, Ar-H), 9.63 (brs, 6 H, Ar-H), 9.49 (brs,
4 H, Ar-H), 9.16 (s, 4 H, Ar-H), 7.47 (s, 4 H, 2 � NCH2), 6.86 ppm (s, 4 H,
2 � NCH2); 13C NMR (125 MHz, CF3COOD): d= 192.9, 174.1, 146.6,
144.2, 135.9, 135.4, 135.3, 133.4, 133.0, 132.6, 132.2, 132.0, 131.0,
130.9, 130.8, 129.0, 49.5, 47.12 ppm; Anal. calcd for
C46H36N2O4·0.5H2O: C 80.02; H 5.36; N 4.01, found: C 79.67; H 5.25;
N 3.99.

3,5-Bis(benzylidene)-1-tetradecanoyl-4-piperidone (2): Myristoyl
chloride (0.011 mol, 2.7 g) in DCE (5 mL) was added slowly over a
period of �30 min to a suspension of 3,5-bis(benzylidene)-4-piperi-
done (0.007 mol, 2 g), prepared according to a literature
method,[13] in DCE (15 mL) containing Et3N (0.016 mol, 1.7 gm) at
�15 8C. The reaction stirred at RT overnight, then the solvent was
removed in vacuo at 45 8C. Aq K2CO3 (25 mL, 10 % w/v) was added
to the crude, and the mixture was stirred for 2 h. The resulting
solid was filtered, dried, and crystallized from EtOH. Yield: 90 %;
mp: 82 8C; 1H NMR (500 MHz, CDCl3): d= 7.91 (s, 1 H, =CH), 7.85 (s,
1 H, =CH), 7.53–7.40 (m, 10 H, Ar-H), 4.96 (s, 2 H, NCH2), 4.87 (s, 2 H,
NCH2), 2.14 (t, 2 H, COCH2), 1.45 (p, 2 H, CH2), 1.26 (m, 16 H, Ar-H),
1.09 (m, 4 H, 2 � CH2), 0.91 ppm (t, 3 H, CH3); 13C NMR (125 MHz,
CDCl3): d= 186.9, 172.1, 138.6, 137.1, 134.7, 134.6, 132.1, 131.9,
130.7, 130.1, 129.6, 128.9, 128.8, 46.3, 43.6, 33.2, 32.0, 29.7, 29.7,
29.6, 29.5, 29.4, 29.3, 29.2, 25.1, 22.7, 14.2 ppm; Anal.calcd for
C31H39NO2: C 81.60; H 8.92; N 2.88, found: C 81.27; H 9.29; N 2.83.

Computational experiments

Molecular modeling : Models were built using the SYBYL 8.0 pro-
gram[22] on a Lenovo workstation with the RHEL 4.0 operating
system. Energy minimizations were performed with the conjugate
gradient method using the Tripos force field and Gasteiger–Huckel
charges with a convergence criterion of 0.001 kcal mol�1 �. Each
structure was further subjected to simulated annealing for identify-
ing the lowest energy conformation. The system was heated at
1000 K for 1 ps, and then cooled at 200 K for 1 ps. The exponential
annealing function was used, and ten such cycles were run. The
lowest energy conformer was used to calculate the distance be-
tween two points and bond angles as depicted in Figure 3.
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Determination of log P values : The predicted log P values for 1 e and
2 were obtained using Molinspiration Chemoinformatics software
online.[23]

Biology

Cytotoxicity assays : The compounds in series 1 were evaluated
against Molt 4/C8, CEM, and L1210 cells using a previously report-
ed procedure.[24] Briefly, various concentrations of the compounds
were incubated with the appropriate cell line in RPMI 1640
medium at 37 8C for 72 h (Molt 4/C8 and CEM assays) or 48 h
(L1210 screen). Numbers of cells were determined using a Coulter
counter. The IC50 value given is the concentration required to in-
hibit cell proliferation by 50 %. Data are expressed as the mean �
SD from the dose–response curves of at least three independent
experiments.

Compounds 1 a and 1 b were examined by the US National Cancer
Institute against 52 and 59 human tumor cell lines, respectively, as
previously described.[20] Solutions of 10�4, 10�5, 10�6, 10�7 and
10�8

m of 1 a or 1 b were added to the cells, which were grown in
RPMI 1640 medium containing 5 % fetal bovine serum (FBS) and
2 mm l-glutamine. After incubation at 37 8C in an atmosphere of
air (95 %), carbon dioxide (5 %), and relative humidity of 100 % for
48 h, the concentration required to inhibit growth by 50 % was de-
termined spectrophotometrically using sulforhodamine B. Com-
pound 1 a was evaluated at a concentration of 5 mm against CEM,
BJAB, EL-4, JURKAT, Nalm-6, SUP-T1, HeLa, Ramos, Hs27, and N1H-
3T3 cell lines essentially as previously described.[25] Briefly, a solu-
tion of 1 a in DMSO was added to cells grown in RPMI (CEM, BJAB,
EL-4, JURKAT, Nalm6, SUP-T1 and Ramos) or DMEM (for HeLa, Hs27
and N1H-3T3) media, followed by incubation for 22 h at 37 8C. The
average cytotoxicity of three independent experiments, expressed
as a percentage, was obtained by noting the disruption of the
plasma membrane using flow cytometry with propidium iodide as
described previously.[25] In cases where 100 % cytotoxicity is indicat-
ed, no cell viability was observed. Several of the 4-piperidones
were also examined against JURKAT, SUP-T1, Hs27 and HeLa cells
(concentration used, in mm, shown in parentheses): 1 b (10), 1 c
(10), 1 d (10), 1 e (5), 1 f (2.5), 1 g (2.5), and 1 i (2.5). Using a range
of concentrations of 1 a, we also obtained CC50 values of this com-
pound towards JURKAT, SUP-T1, CEM, EL-4, Nalm6, and N1H-3T3 as
previously described.[25]

Flow cytometry analysis of 1 a : Compound 1 a was incubated with
JURKAT, Nalm-6, SUP-T1, or CEM cells in RPMI media. After 8 and
20 h, the percentage of apoptotic, necrotic, and viable cells were
determined by flow cytometry using Annexin-V-FITC and propidi-
um iodide.[26]
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a b s t r a c t

A series of bis[3,5-bis(benzylidene)-4-oxo-1-piperidinyl]amides 1 display potent cytotoxic properties
towards a wide range of tumours. A number of the CC50 and IC50 values are in the range of 10�8 M.
Specifically, these compounds have the following important properties. First, greater toxicity was
demonstrated towards certain tumours than various non-malignant cells. Second, various compounds in
series 1 are toxic to a number of human colon cancer and leukaemic cells. Third, these compounds
reverse P-gp mediated multidrug resistance. Various prototypic molecules such as 1a,b and 1i were
identified as lead molecules for further studies. A representative lead molecule 1b induces apoptosis via
internucleosomal DNA fragmentation and PARP cleavage in HSC-2 and HL-60 cells while flow cytometry
revealed that this compound blocked the G2/M and S-phases in the cell cycle of human colon cancer
HCT-116 cells.

� 2012 Elsevier Masson SAS. All rights reserved.
1. Introduction

The principal aim of this laboratory is the synthesis of anti-
neoplastic conjugated unsaturated ketones which are designed as
thiol alkylators [1,2]. One of the reasons for the interest in these
compounds is that a,b-unsaturated ketones often react readily with
thiols but have little or no affinity for hydroxyl and amino groups
[3,4]; these latter functionalities are found in nucleic acids. Hence
the genotoxic effects associated with a number of alkylating agents
used in cancer chemotherapy [5] may be avoided. Furthermore, one
or more thiol groups are found in a variety of cellular constituents
such as thioredoxin, glutathione and cysteine. Thus thiol alkylators
have the potential to be multitargeted ligands and the perceived
importance of such pleiotropy has been documented recently
[1,6e8].

Initially a number of cytotoxins were designed possessing
a single 1-oxo-2-propenyl group (eCH]CHeCOe) [9,10]. However
x: þ1 306 966 6377.
Das), jr.dimmock@usask.ca

son SAS. All rights reserved.
a number of studies revealed that an initial lowering of the
concentrations of cellular thiols followed by a second chemical
attack was more detrimental to various neoplasms than normal
cells [11,12]. Such observations led to the decision to prepare series
1. These compounds have the potential to display dual functions,
namely to cause greater chemosensitivity to neoplasms than
normal cells and also to cause toxicity per se. For example, an initial
reaction of 1aej with a chemoprotectant thiol at one olefinic
carbon atom could sensitize cells to subsequent alkylation at the
remaining olefinic carbon atoms. Alternatively, reactions at two or
three olefinic carbon atoms may reduce the concentration of che-
moprotectant thiols significantly causing cancer cells to be partic-
ularly vulnerable to subsequent chemical insults. The linker group
between the amidic carbonyl groupswas absent (1a) or consisted of
saturated alkyl chains (1bee), unsaturated alkyl groups (1feh) and
an aryl ring (1i, j). In addition, the nature of the linker itself may
contribute to potency and selectivity. Thus the hypothesis to be
evaluated is that the design of series 1 leads to tumour-selective
cytotoxins. A preliminary investigation revealed that 1aej inhibi-
ted the growth of humanMolt4/C8 and CEM T-lymphocytes as well
as murine L1210 lymphoid leukaemic cells while a representative
molecule 1a was cytotoxic to a number of cancer cell lines [13].

mailto:umashankar.das@usask.ca
mailto:jr.dimmock@usask.ca
www.sciencedirect.com/science/journal/02235234
http://www.elsevier.com/locate/ejmech
http://dx.doi.org/10.1016/j.ejmech.2012.02.042
http://dx.doi.org/10.1016/j.ejmech.2012.02.042
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The aims of the present investigations are fourfold. First, the
question needs to be addressed whether the compounds in series 1
display greater toxicity to neoplasms than non-malignant cells.
Second, in view of the interest in our laboratories of compounds
which inhibit the growth of colon cancer and leukaemic cells
[14,15], the evaluation of representative compounds in series 1
against these neoplasms was planned. Third, further probing
regarding the mode of action of one of the representative potent
cytotoxins was considered of importance. Finally, a major problem
in cancer chemotherapy is the development of multidrug resistance
(MDR) in malignant cells. Hence compounds which are MDR-
revertants may be co-administered with an anticancer drug or
those which possess both MDR-revertant and antineoplastic
properties have immense clinical potential. Since a number of
cytotoxic 1-acyl-3,5-bis(benzylidene)-4-piperidone hydrochlorides
are potent revertants of MDR [16], an evaluation of 1aej for this
property was considered. Fig. 1
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2. Results

The synthesis of series 1 was accomplished by acid-catalyzed
condensation of 4-piperidone hydrochloride with benzaldehyde
which led to the formation of 3,5-bis(benzylidene)-4-piperidone
which in turn reacted with a variety of acid chlorides to form
1aej [13]. In addition, acylation of 3,5-bis(benzylidene)-4-
piperidone with phthaloyl chloride produced the corresponding
bisamide which is a structural isomer of 1i and 1j. However, its lack
of adequate solubility in different solvents precludes any discussion
of its cytotoxic properties.

All of the compounds 1aejwere evaluated against the following
neoplasms namely human HSC-2, HSC-3 and HSC-4 squamous cell
carcinomas and HL-60 promyelocytic leukaemic cells and non-
malignant HGF gingival fibroblasts, HPC pulp cells and HPLF peri-
odontal ligament fibroblasts. These data are presented in Table 1. In
addition, 1aec, f, g, i, j were examined against a number of colon
cancer and leukaemic cell lines and the results are summarized in
Table 2. A representative lead cytotoxin 1b was examined for its
Fig. 1. The structures of the compounds in series 1. Ta
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Table 2
Evaluation of 1aec, f, g, i, j against various human tumour cell lines.

Compound All all cell lines Colon cancer cells, IC50 (mM) Leukaemic cells, IC50 (mM)

aGI50 (mM) SI COLO205 HCC2998 HCT116 HCT15 HT29 KM12 SW620 Ave HL-60 (TB) K-562 RPMI8226 SR Ave

1a 0.31 95.5 0.36 0.19 0.03 0.30 0.17 0.04 0.07 0.17 0.20 0.20 0.25 0.02 0.17
1b 0.24 1191 0.16 0.17 0.03 0.17 0.05 0.13 0.05 0.11 0.29 0.05 0.13 0.03 0.13
1c 0.69 3316 0.39 0.23 0.14 0.38 0.24 0.30 0.26 0.28 0.27 0.22 0.06 0.05 0.15
1f 0.48 38.9 0.25 0.41 0.12 0.39 0.20 0.28 0.20 0.26 0.25 0.30 0.08 0.11 0.19
1g 1.12 11950 0.56 0.22 0.13 0.83 0.25 0.21 0.22 0.35 0.45 0.32 0.05 0.23 0.26
1i 0.36 135 0.21 0.20 0.03 0.35 0.17 0.21 0.30 0.21 0.21 0.21 0.06 0.03 0.13
1j 2.69 661 2.40 e 0.20 1.70 0.55 0.35 0.36 0.93 2.04 1.55 0.73 0.15 1.12
Average 0.84 484 0.62 0.24 0.10 0.59 0.23 0.22 0.21 0.33 0.53 0.41 0.19 0.09 0.31
5-Fluorouracil >56.2 >2239 4.17 13.5 8.51 9.71 10.2 8.32 380 62.1 >2512 2.40 e 1.12 >839
Melphalan 26.9 1118 66.1 41.7 30.2 36.3 46.8 43.7 38.9 43.4 2.04 43.7 66.1 1.86 28.4

a The term GI50 rather than IC50 is used since in the case of 1g, 1j and 5-fluorouracil, 50% inhibition of the growth of a cell line was not achieved at the maximum
concentration in a few instances.
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ability to cause internucleosomal DNA fragmentation, caspase-3
activation and PARP cleavage in HSC-2 and HL-60 cells. In addi-
tion, 1bwas examined for its effect on the cell cycle of human HCT-
116 colon cancer cells. These results are presented in Figs. 2e5. The
unsaturated ketones 1aej were evaluated for their potential to
reverse P-glycoprotein (P-gp) multidrug resistance in murine L-
5178Y cells which were transfected with the human mdr1 gene.
These results are summarized in Table 3.

3. Discussion

All of the compounds in series 1 were evaluated against HSC-2,
HSC-3, HSC-4 and HL-60 neoplastic cells and these results are
portrayed in Table 1.These data reveal that in general 1aej are
a cluster of highly potent cytotoxins. In fact 75% of the CC50 values
(the concentrations to kill 50% of the cells) are submicromolar and
28% are in the double digit nanomolar range. The average CC50
figures, which are listed in Table 1, are lowest towards HSC-2 cells
while the other three cell lines are approximately one-third less
sensitive. Comparisons were made between the potencies of 1aej
and melphalan which is an alkylating agent used in cancer
chemotherapy. All of the compounds have lower CC50 values than
melphalan towards HSC-2, HSC-3 and HSC-4 cells while 1a, b, i are
more potent than melphalan in the HL-60 bioassay, i.e., in 83% of
the comparisons made. The average CC50 figures of series 1 against
HSC-2, HSC-3 and HSC-4 cells are 13,15 and 19 times lower than the
CC50 values of melphalan in these three bioassays. In many cases,
the greater toxicity than melphalan is huge, e.g., 1i is 335, 329 and
390 timesmore potent than this drug in the HSC-2, HSC-3 and HSC-
4 screens, respectively.
Fig. 2. The effect of 1b on internucleosomal DNA fragmentation using HSC-2 and HL-60 cell
and cells irradiated with UV are the positive control.
Structureeactivity relationships were noted based on the
average CC50 values for 1aej against HSC-2, HSC-3, HSC-4 and HL-
60 cells which are presented in Table 1. There is no spacer group X
in 1a which is a potent cytotoxin. The addition of one methylene
group produced 1b having 2.4 times the potency of 1a. However,
increasing the number of methylene groups in 1cee gave rise to
analogues with higher average CC50 values than both 1a and 1b. A
comparison of the CC50 figures of 1c with the unsaturated
analogues 1f and 1g revealed a 2.5-fold reduction in potencies. The
addition of a second unsaturated linkage to 1g forming 1h results in
a 10-fold drop in potency. A comparison between the CC50 values of
the structural isomers 1i and 1j revealed an 82-fold difference in
the average CC50 data. One may summarize the SAR by stating that
in general the distance between the two amidic carbonyl groups
should be small; increasing this span causes a reduction in
potencies.

In addition to potency, an issue of major importance is whether
compounds exert greater toxic effects towards neoplasms than
normal cells. In order to address this issue, the compounds in series
1 were also evaluated against HGF, HPC and HPLF non-malignant
cells and the results are presented in Table 1. Under clinical
conditions, neoplasms are surrounded by different types of normal
cells. Hence the selectivity index (SI) figures were computed by
dividing the average CC50 value of the compound against the three
normal cells by the CC50 figure generated towards a particular
tumour cell line. These SI values are displayed in Table 1.

All of the compounds in series 1 have SI values greater than 1. In
many cases the selectivity is enormous, e.g., the average SI figures
for series 1 is 32.9 and for 1c, g, i they are 92.6, 191 and 189,
respectively, against HSC-2 cells. The enones 1c, g, i display the
s. M is a 100 bp DNA ladder marker, the figures refer to the concentrations of 1b in mM
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Fig. 3. A western blot analysis of the effect of 1b on the cleavage of PARP in HSC-2 and HL-60 cells. NS means no stimulation.
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highest average SI values of 48.3, 63.3 and 89.6, respectively, which
are similar to or greater than the figure of 47.3 for melphalan. This
observation indicates that 1c,g,i are important lead molecules and
it is of interest that there is a two carbon spacer between the amidic
carbonyl groups in these three compounds. Other correlations
between the average SI figures and the nature of the spacer group
were noted. First, the degree of saturation and unsaturation in the
two carbon spacer in 1c (48.3), 1f (18.8) and 1g (63.3) have
substantial effects on the extent of selectivity. Second, while the
presence of one olefinic group in the spacer led to 1g (63.3) with
excellent selectivity, the placement of a second ethylenic moiety
produced 1h (7.00) which has a greatly reduced SI value. Third,
there is a 13.2-fold difference between the average SI figures of the
structural isomers 1i (89.6) and 1j (6.78). Thus one may conclude
that series 1 is a novel group of tumour-selective cytotoxins.

Since both potency and selectivity are important features in
identifying lead molecules, a potency-selectivity expression (PSE)
was calculated for each compound. These values are the product of
the reciprocal of the average CC50 values against four tumour cell
lines and the average SI figures; these results are presented in
Table 1. All of the compounds have higher PSE values than
melphalan except 1h, j. The compounds with the highest PSE
figures are 1b and 1i which are 108 and 429 times greater than the
value for melphalan. One may note that a short methylene chain is
preferred (1aec > 1d, e) and the nature of the two carbon spacer
affects the PSE figures considerably (1c > 1g > 1f).Furthermore, 1i
has a much more favourable PSE value than 1j. From these data,
1aec, g, i, which have PSE figures in excess of 100, serve as
prototypic molecules for further development.
Fig. 4. Evaluation of 1b as an activator of caspase-3. The bars are the mean
The next phase of the investigation of the potential of these
compounds as candidate anticancer drugs was the examination of
representative members of series 1 for their ability to inhibit the
growth of neoplasms of different somatic origins. Of particular
interest was the question of whether cytotoxicity towards colon
cancers and leukaemic cells would be observed. In order to address
this issue, 1aec, f, g, i, j were examined against 59 � 3 human
tumour cell lines including not only colon cancers and leukaemia
but also melanoma and non-small cell lung, central nervous
system, ovarian, renal, prostate and breast cancers [17]. These data
are presented in Table 2.

The biodata in Table 2 reveal that the compounds are potent
cytotoxins to a wide variety of neoplasms. This conclusion may be
drawn from the average GI50 values obtained for all cell lines which
are submicromolar (1aec, f, i) or in the low micromolar range (1g,
j). In particular, the average GI50 figures for 1a, b, i are impressive
and serve as lead molecules. All of these compounds are substan-
tially more potent than melphalan e.g., the average GI50 value of 1b
is 112 times lower than the figure of the established drug.

A review of the mean graphs [18], revealed that these
compounds are particularly toxic towards colon cancers and leu-
kaemic cells. In regard to colon cancers, all of the GI50 values are
submicromolar except 1j towards COLO 205 and HCT15 cells, i.e., in
95% of the GI50 values. In addition, double digit nanomolar values
were obtained against HT-116 (1a, b, i), HT29 (1b), KM12 (1a) and
SW620 (1a, b) cells. These observations establish 1a, b, i as
important lead molecules for further development of chemical
agents against colon cancers. The anticancer drug 5-fluorouracil is
used in treating colonic neoplasms and the huge differential in
determinations and the standard deviations (n ¼ 3) are also indicated.
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Fig. 5. Effect of 1b (1 mM) and curcumin (16 mM) on the cell cycle of HCT-116 cells as determined by flow cytometry. Curcumin was taken as the positive control.
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potencies between this drug and representative compounds in
series 1 is most noteworthy. For example, the IC50 value of 1b
towards HCT 116 cells is 284 times lower than the figure for 5-
fluorouracil.

The IC50 values of 1aec, f, g, i, j towards four leukaemic cell lines
are presented in Table 2. These figures are submicromolar except
for 1j towards HL-60 (TB) and K-562 cells, i.e., in 93% of the
determinations. Double digit nanomolar IC50 figures were noted in
approximately one-third of the evaluations in the K-562 (1b),
RPMI8226 (1c, f, g, i) and SR (1aec, i) assays. The average IC50 data
of these seven compounds towards the leukaemic cell lines are
substantially greater than melphalan which is used in treating
certain leukaemias. The biodata summarized in Table 2 reveals
clearly that representative unsaturated ketones in series 1 inhibit
the growth of a wide variety of human tumour cell lines especially
colonic cancer and leukaemic cells.

An attempt was made to determine the mechanism of action of
the most potent compound 1b. Previously 1a caused apoptosis in
various neoplastic cells while very little necrosis was observed [13].
The structural similarity of 1a and 1b suggested that induction of
apoptosis was an important way whereby 1b also exerted its lethal
effects. A characteristic feature of apoptosis is the formation of
internucleosomal DNA fragmentation [19]. The unsaturated ketone
1b caused DNA cleavage in both HSC-2 and HL-60 cells as indicated
in Fig. 2. After 6 h, DNA fragmentation was noted in HL-60 cells but
not in HSC-2 neoplasms while 1b produced this effect in both cell
Table 3
Fluorescence activity ratio values of 1aej in murine L-5178Y cells transfected with
the human mdr1 gene.

Compound FAR valuea

4 mM 40 mM

1a 19.3 41.1
1b 35.3 53.3
1c 35.0 60.0
1d 50.2 73.4
1e 49.2 55.7
1f 42.0 45.7
1g 37.2 52.9
1h 48.6 44.3
1i 46.5 51.5
1j 38.9 61.3
Average 40.2 53.9

a The letters FAR refer to the fluorescence activity ratio. A reference drug
verapamil has a FAR value of 8.71 when a concentration of 5.2 mM was employed.
lines after 24 h. This result indicates that apoptosis is one way in
which 1b displays its bioactivity and that this compound exerts its
efficacy more rapidly in HL-60 than HSC-2 cells.

When DNA breaks, poly(ADP-ribose)polymerase 1 (PARP1) is
activated almost immediately [20] since its principal action is the
sensing and repair of DNA single-stranded breaks [21]. Hence
compounds which cleave PARP1 may have an important role to
play in cancer chemotherapy [22e24]. The results portrayed in
Fig. 3 reveal that 1b caused extensive PARP1 cleavage in HL-60 cells
after 6 h and in HSC-2 cells after 12 h. These results correlate well
with the DNA fragmentation experiments in which lower concen-
trations and shorter times of incubation with 1b were noted using
HL-60 cells.

Caspases, especially caspase-3, play important roles in apoptotic
cell death induced by anticancer agents [25e27]. Compound 1b
was incubated with HSC-2 and HL-60 cells up to 6 h and the effect
on caspase-3 activation is portrayed in Fig. 4. The data generated
reveal that only a statistically insignificant activation of caspase-3
took place after 6 h; hence the cytocidal effect of 1b on
neoplastic cell lines is not principally due to caspase-3 activation.
One may note that while in some cases PARP1 cleavage can be
initiated by caspase-3 activation during apoptosis [28e30], the
effect of 1b on PARP1 cleavage is brought about by mechanisms
other than caspase activation. In summary, themode of action of 1b
includes apoptosis mediated by DNA fragmentation and PARP1
cleavage.

The effect of 1b and curcumin on the cell cycle progression of
HCT-116 cells was investigated by flow cytometry (Fig. 5). For cell
cycle analysis, the cells were treated with 1 mM concentration of 1b
and 16 mM concentration of curcumin for 48 h. Curcumin, a potent
cytotoxic agent [31] that possesses structural similarity with 1b and
known to display dose dependant G2/M phase arrest in HCT-116
cells [32] was considered as a positive control for the cell cycle
analysis. 1b induced an increase in the cell population in S-phase
and G2/M phase by 40 and 20%, respectively as compared to the
untreated cells. Upon treatment with 1b, the cell population in G0/
G1 phase reduced significantly to 32% as compared to 92% in
untreated cells. These results suggest that 1b displays growth
inhibition of HCT-116 cells by inducing a G2/M and S block in the
cell cycle. Our study also shows that curcumin induces G2/M phase
arrest in HCT-116 cells which is in agreement with the previous
report [32].

Finally, a major problem in cancer chemotherapy is the ability of
various neoplasms to display multidrug-resistant (MDR) properties
which reduces the efficacy of antineoplastic agents by different
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means including accelerating the exodus of the anticancer drug by
the membrane transporter P-glycoprotein (P-gp) [33]. Thus novel
compounds which overcome MDR may find use as dual agents
(possessing anticancer and MDR-revertant properties) or as
compounds to be co-administered with established anticancer
drugs. Previous work from this laboratory revealed that in addition
to significant cytotoxic properties, various 1-acyl-3,5-
bis(benzylidene)-4-piperidones reversed P-gp associated MDR
[16]. Thus assessment of the compounds in series 1 for this prop-
erty was considered appropriate.

The assay utilized employs murine L-5187Y lymphoma cells
which have been transfected with the human mdr1 gene [34]. The
concentrations of the dye rhodamine 123 in treated and untreated
transfected and parental cells were obtained and the fluorescence
measured. The results are expressed as fluorescence activity ratio
(FAR) figures and a FAR value of greater than 1 indicates that
reversal of MDR has occurred. The biodata will be discussed prin-
cipally in terms of the FAR values obtained using a concentration of
4 mM since this figure is closer to the CC50 and IC50 cytotoxicity data.
All of the compounds have MDR-revertant properties and are
substantially greater than a reference MDR-modulator verapamil.
With the exception of 1a, the FAR values are in the range of 35e50.
The compoundswith the highest FAR values are 1d, e, h, iwhich are
clearly prototypic molecules for analogue development.

Molecular features which are found in a number of MDR-
modulators are the presence of hydrogen bond acceptor atoms such
as nitrogen and oxygen as well as hydrophobic aryl rings [35]. The
compounds in series 1 have four oxygen atoms which permit
hydrogen bonding to take place. The amidic groups per se may be
important contributors to MDR-reversal since excision of the linker
[eC(]O)eXeC(]O)e] leads to 3,5-bis(benzylidene)-4-piperidone
which is virtually bereft of Pgp-mediated MDR-reversal [16].
Series 1 has four (1aeh) or five (1i, j) aryl rings and in order to
determine if the hydrophobicity of the molecules was correlated
with the extent of MDR-reversal, linear, semilogarithmic and log-
arithmic plots between the logP figures of 1aej and their FAR
values were made. The semilogarithmic plot revealed a trend
towards a positive correlation (p ¼ 0.12) suggesting that MDR-
revertant properties increase as the hydrophobicity of the mole-
cules is raised.

The data in Table 3 indicate that, in general, by increasing the
concentration of the compounds tenfold, the FAR values rise only
by one-third approximately. This observation suggests that while
MDR-reversal is enhanced as the concentration of the compounds
is raised, biochemical processes which counteract MDR-revertant
properties are activated. For example, the binding area of P-gp
where these compounds interact may have become saturated. This
phenomenon has been noted previously [16,36].

4. Conclusions

The bis[3,5-bis(benzylidene)-4-oxo-1-piperidinyl]amides 1aej
are a cluster of potent cytotoxins which demonstrates greater
toxicity to neoplasms than normal cells. This study revealed
a number of promising leadmolecules 1b, i (in terms of potency and
PCE figures) and 1c, g, i (the most favourable SI values) for further
development. Various compounds in series 1 inhibit the growth of
a number of human colon cancer and leukaemic cells. Especially,
three prototypic molecules were identified namely 1a, b, i. An
investigation of themode of action of themost potent compound 1b
reveals that 1b displays cytotoxicity by inducing apoptosis which
acts through DNA damage and PARP cleavage in HSC-2 and HL-60
cells. 1b also trigger G2/M and S-phase arrest in cell cycle. Finally,
the discovery of the MDR-revertant properties of series 1 indicates
their being dual agents in the warfare against cancer insofar as they
couple significant toxic effects towards neoplastic cells with inhi-
bition of their extrusion from tumours by P-gp.

5. Experimental section

5.1. Synthesis of 1aej

The synthesis of 1aej has been described previously [13]. The
details of synthesis and their characterization data are given in the
supplementary section. In brief, 3,5-bis(benzylidene)-4-piperidone
(0.02 mol) which was prepared using a literature procedure [37]
was condensed with the appropriate dicarboxylic acid chloride
(0.0 l mol) in the presence of triethylamine (0.01 mol) in dichlo-
roethane at room temperature. After the reaction was complete,
aqueous potassium carbonate solution was added to the mixture
and the product was collected, dried and recrystallized from
a suitable solvent.

5.2. Bioevaluations

5.2.1. Cytotoxic assays
The evaluation of 1aej against HSC-2, HSC-3, HSC-4, HL-60, HGF,

HPC and HPLF cells was carried out using a literature method [38]
except that the time of incubation was 48 h. The CC50 values were
obtained from a doseeresponse curve.

The data in Table 2 was generated using a literature procedure
[17]. The concentrations of each compound were 10�4 to 10�8 M
(1aec, f, g, i, j), 10�2.6 to 10�6.6M (5-fluorouracil) and 10�3.6 to
10�7.6M (melphalan). The compounds were evaluated against 50
(5-fluorouracil), 56 (1j), 57 (melphalan), 59 (1b) and 60 (1a, c, f, g, i)
cell lines. The number of cell lines for which the maximum
concentration of compound did not inhibit growth by 50% was 2/60
(1g), 5/56 (1j) and 6/50 (5-fluorouracil).

5.2.2. Internucleosomal DNA fragmentation
The evaluation of 1b as an inducer of internucleosomal DNA

fragmentation in HSC-2 and HL-60 cells was undertaken by a liter-
ature procedure [39]. In brief, cellswere incubatedwith 0.05, 0.1, 0.2,
0.4 and 0.8 mMof 1b for 6 h. As a positive control, cells were exposed
to UV light (6J/m2/min) for 1 min and incubated for 3 h. Subse-
quently the cellswere harvested for evidence ofDNA fragmentation.

5.2.3. Caspase-3 activation
The enone 1b was examined for its ability to activate caspase-3

in both HSC-2 and HL-60 cells using a reported method [40]. In
brief, cells were lysed and mixed with a substrate, namely DEVD-p-
nitroanilide. After incubation at 37 �C for 2 h, the absorbance at
405 nm of the liberated chromophore p-nitroanilide was measured
using a microplate reader.

5.2.4. PARP cleavage
HSC-2 and HL-60 cells were treated with 0.4 mM and 0.2 mM of

1b, respectively. The cleavage of PARP was measured using a Prom-
ega PARP (Asp 214) human specific antibody [41]. In brief, cells were
washed in ice-cold PBS, scraped, collected in lysis buffer (20 mM
HEPES pH7.4,1% Triton-X 100,150mMNaCl,1.5mMMgCl2,12.5mM
b-glycerophosphate, 2 mM EGTA, 10 mM NaF, 2 mM DTT, 1 mM
Na3VO4,1mMPMSF plus 1x protease inhibitor).The cell lysateswere
applied to an 8% SDS-PAGE and the protein bands in the gels were
transferred onto polyvinylidene difluoride membranes. The
membranes blocked with 5% (w/v) nonfat dry milk were incubated
with primary antibody [anti-cleaved PARP1 (Cell Signalling Tech-
nology, Beverly, MA), anti-b-actin antibody (Santa Cruz Biotech-
nology, Santa Cruz, CA)], and then with horseradish peroxidase-
conjugated anti-mouse or anti-rabbit secondary antibodies.
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5.2.5. Cell cycle analysis
Cell Cycle analysis was carried out by modifying a literature

procedure [42]. HCT-116 cells were maintained in McCoys’5A
Modified media (ATCC) supplemented with 10% Foetal Bovine
Serum (Fischer Scientific) and 1% antibiotic-antimycotic solution
(Sigma). Cells (1 � 106 cells) were seeded in 75 cm2

flasks and
incubated for 24 h in a humidified incubator at 37 �C with 5% CO2.
Each flask containing cells was treated with the samples and
untreated control for 48 h in a humidified incubator at 37 �C with
5% CO2. Floating cells were collected and adherent cells were har-
vested with trypsin-EDTA (0.2%) and pooled. The samples were
washed with cold PBS, fixed in 70% ethanol and left on ice for 2 h.
Further samples were washed after 2 h with PBS and resuspended
in PBS containing RNase (300 mg/ml). The samples were incubated
for 20 min in the dark with propidium iodide (20 mg/ml) and RNase
(300 mg/ml). The samples were analyzed by a FACScalibur (BD) flow
cytotmeter. The data were analyzed using Modfit LT free trial
version 3.3 available from Variety software house. Cells were gated
to include G0/G1, S-phase, and G2/M populations.

5.2.6. Multidrug resistance reversal assay
The ability of 1aej to reverse MDR in murine L-5178Y cells

transfected with the mdr1 gene followed a published procedure
[34]. In brief, solutions of the compounds in dimethylsulfoxide
were added to MDR and parenteral cells at room temperature. After
10 min, rhodamine 123 was added and the cells were incubated at
37 �C for 20 min. In these experiments, the FAR value of 1% dime-
thylsulfoxide is 0.82.
5.3. Determination of log P values

The logP values of 1aej which were determined using a soft-
ware programme [43] are as follows, namely 1a : 5.40,1b : 5.34,1c :
5.29,1d : 5.71,1e : 6.96,1f : 5.67,1g : 5.57,1h : 6.08,1i: 7.08 and 1j :
7.08. Linear, semilogarithmic and logarithmic plots were made
using a commercial statistical package [44].
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Experimental section† 

Chemistry 

Synthesis of 1a-j:  Melting points were determined on a Gallenkamp instrument and are 

uncorrected. 
1
H and 

13
C NMR spectra were obtained using a Bruker Avance 500 spectrometer 

equipped with a BBO probe.  Chemical shifts (δ) are reported in ppm.  Mass spectra were 

obtained using a quad tandem 4000 QTRAP mass analyser. Elemental analyses were undertaken 

using an Elementer CHNS analyzer. 

 

Experimental 

 

Synthesis of 3,5-bis(benzylidene)-4-piperidone dimers (1a-j) 

General procedure 

A mixture of appropriate dicarboxylic acid (0.005 mol) and thionyl chloride (0.02 mol, 

2.4 gm) was heated at 60-65 
o
C for 4-5 h. Excess thionyl chloride was removed at 45 

o
C under 

reduced pressure and moisture-free conditions. The acid chloride thus obtained was taken for 

further reaction without any purification. 

To a stirred suspension of  3,5-bis(benzylidene)-4-piperidone (0.009 mol, 2.75 gm) 

prepared by a literature method [1] in DCE (20 mL) containing triethylamine (0.11 mol, 1.12 

gm) at ~20 
o
C was added the above prepared acid chloride in DCE (5 mL) slowly over a period 

of 30 min. The reaction was stirred at room temperature overnight. The solvent was removed 

under reduced pressure at 45 
o
C. An aqueous solution of K2CO3 (25 mL, 10% w/v) was added to 

the crude mass and stirred for 2h. The solid obtained was filtered, dried, and crystallized from a 

suitable solvent to yield pure products. 

In the case of 1a,b,d,e, the appropriate acid chlorides were procured from commercial 

sources. 

 

1,2-bis(3,5-Dibenzylidene-4-oxo-piperidin-1-yl)ethane-1,2-dione(1a) 

Yield: 62%; mp (chloroform/methanol) 246 
o
C; 

1
H NMR(500 MHz, DMSO-d6): δ   

7.72(s, 2H, 2×=CH), 7.56 (s, 2H, 2×=CH), 7.53(t, 4H, Ar-H), 7.49(d, J=7.07 Hz, 2H, Ar-H), 

7.45(m, 6H, Ar-H), 7.39(m, 8H, Ar-H), 4.48(d, J=23.28Hz, 8H, 4×NCH2; 
13

C NMR (125 MHz, 

DMSO-d6):184.7, 162.6, 137.9, 137.5, 134.4, 134.1, 131.4, 131.0, 130.9, 130.7, 130.2, 130.1, 
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129.3, 129.2, 46.4, 41.6; MS (ESI) m/z: 627 (M+Na)
+
.  Anal.calcd for C40H32N2O4.H2O: C 

77.17; H 5.14; N 4.50 %, found: C 77.05; H 4.87; N 4.42%. 

 

1,3-bis-(3,5-Dibenzylidene-4-oxo-piperidin-1yl)propane-1,3-dione (1b) 

Yield: 65%; mp (acetone) 201
 o

C; 
1
H NMR (500 MHz, DMSO-d6): δ 7.72(s, 2H, 

2×=CH), 7.57(s, 2H, 2×=CH), 7.53(d, J=4.18Hz, 8H, Ar-H), 7.47 (m, 12H, Ar-H), 4.62(d, 

J=21.13Hz, 8H, 4×NCH2), 3.46(s, 2H, CH2); 
13

C NMR (125 MHz, DMSO-d6):186.3, 

165.9,136.6, 136.5, 134.7, 134.5, 132.6, 132.5, 131.0, 130.9, 130.1, 130.0, 129.3, 129.2, 47.0, 

42.4; MS (ESI) m/z: 641 (M+Na)
+

. Anal.calcd for C41H34N2O4.H2O: C 77.27; H 5.65; N 4.39%, 

found: C 77.31; H 5.50; N 4.47%. 

 

1,4-Bis-(3,5-dibenzylidene-4-oxo-piperidin-1-yl)-butane-1,4-dione(1c) 

Yield: 58 %; mp (chloroform/methanol) 188
 o

C; 
1
H NMR(500 MHz, DMSO-d6): δ   

7.68(s, 4H, 4×=CH), 7.49(m, 20H, Ar-H), 4.78(d, J=10.95 Hz, 8H, 4×NCH2), 2.29(s, 4H, 

2×CH2);
 13

C NMR (125 MHz, DMSO-d6):186.5, 170.4, 136.6, 136.5, 134.8, 134.5, 133.0, 132.8, 

131.0, 130.0, 129.3, 46.3, 42.9, 27.16; MS (ESI) m/z: 655 (M+Na)
+

. Anal.calcd for 

C42H36N2O4.0.5 H2O: C 78.53; H 5.76; N 4.36%, found: C 78.16; H 5.71; N 4.11%. 

 

1,5-Bis-(3,5-dibenzylidene-4-oxo-piperidin-1-yl)-pentane-1,5-dione(1d) 

Yield: 43 %; mp (chloroform/methanol) 170
 o

C; 
1
H NMR(500 MHz, DMSO-d6): δ   

7.71(s, 2H, 2×=CH), 7.66(s, 2H, 2×=CH), 7.54(m, 14H, Ar-H), 7.42(m, 6H, Ar-H),  4.76(d, 8H, 

4×NCH2, J= 28.18 Hz), 2.02(t, 4H, 2×CH2), 1.42(p, 2H, CH2); 
13

C NMR (125 MHz, DMSO-

d6):186.6, 171.0, 136.6, 134.8, 134.5, 133.1, 133.0, 131.0, 130.3, 129.3, 46.4, 42.8, 31.3, 20.4; 

MS (ESI) m/z: 627 (M+Na)
+
.
 
Anal.calcd for C43H38N2O4.0.25 H2O: C 79.22; H 5.91; N 4.30%, 

found: C 79.18; H 5.64; N 4.08%. 

 

1,8-Bis-(3,5-dibenzylidene-4-oxo-piperidin-1-yl)-octane-1,8-dione (1e) 

Yield: 64%; mp (chloroform/methanol) 160
 o

C; 
1
H NMR(500 MHz, DMSO-d6): δ   

7.71(s, 4H, 4×=CH), 7.51(m, 20H, Ar-H), 4.81(d, 8H, J=29.13 Hz, 4×NCH2), 2.00(t, 4H, 

2×CH2), 1.20(m, 4H, 2×CH2), 0.76(m, 4H, 2×CH2); 
13

C NMR (125 MHz, DMSO-d6):186.6, 

171.4, 136.8, 136.4, 134.8, 134.6, 133.2, 131.0, 130.0, 129.3, 46.5, 43.1, 32.4, 28.5, 24.7; MS 



116 

 

(ESI) m/z: 711 (M+Na)
+
. Anal.calcd for C46H44N2O4.0.5H2O: C 79.10; H 6.30; N 4.01%, found: 

C 78.85; H 6.32; N 4.04 %. 

 

1,4-Bis-(3,5-dibenzylidene-4-oxo-piperidin-1-yl)-but-2-ene-1,4-dione(1f) 

Yield: 71 %; mp (ethanol) 220
 o

C; 
1
H NMR(500 MHz, DMSO-d6): δ  7.74 (s, 2H, 

2×=CH), 7.66(s, 2H, 2×=CH), 7.51(m, 20H, Ar-H), 6.92(s, 2H, 2×=CH), 4.83(d, J=8.54 Hz, 8H, 

4×NCH2); 
13

C NMR (125 MHz, DMSO-d6):186.2, 163.9, 136.9, 136.7, 134.7, 134.3, 132.6, 

131.0, 130.1, 129.3, 46.9, 43.1; MS (ESI) m/z: 653 (M+Na)
+
.Anal.calcd for C42H34N2O4.5H2O: 

C 69.92; H 4.71; N 3.88 %, found: C 69.85; H 4.79; N 3.57%. 

 

1,4-Bis-(3,5-dibenzylidene-4-oxo-piperidin-1-yl)-but-2-yne-1,4-dione(1g) 

Yield: 48%; mp(chloroform/methanol) 220
 o

C (dec.); 
1
H NMR (500 MHz, DMSO-d6): δ   

7.81(s, 1H, =CH), 7.75(d, 2H, 2×=CH, J=17.63 Hz), 7.68(s,1H, =CH), 7.56(m,20H, Ar-H), 

4.79(d, J=18.80 Hz, 4H, 2×NCH2), 4.64(d, J=16.96 Hz, 4H, 2×NCH2);
 13

C NMR (125  MHz, 

DMSO-d6):186.0, 185.7, 185.4, 162.4, 161.9, 149.9, 137.2, 134.5, 132.3, 131.8, 131.5, 131.0, 

130.7, 130.4, 129.1, 128.7, 125.25, 95.25, 46.8, 42.7, 42.2; MS (ESI) m/z: 651 (M+Na)
+
. 

Anal.calcd for C42H32N2O4.2H2O: C 75.82; H 4.81; N 4.21 %, found: C 75.48; H 4.74; N 4.01 %. 

 

1,6-Bis-(3,5-dibenzylidene-4-oxo-piperidin-1-yl)-hexa-2,4-diene-1,6-dione(1h) 

Yield: 56%; mp (chloroform/methanol) 199
 o

C; 
1
H NMR(500 MHz, CDCl3): δ   7.87(s, 

4H, 4×=CH), 7.42(m, 20H, Ar-H), 6.94(m, 2H, 2×=CH), 6.16(m, 2H, 2×=CH), 4.98(s, 4H, 

2×NCH2), 4.77(s, 4H, 2×NCH2);
 13

C NMR (125 MHz, DMSO-d6):186.6, 164.7, 140.3, 137.5, 

134.5, 131.5, 130.6, 130.0, 125.9, 125.6, 46.3, 44.1; MS (ESI) m/z: 679 (M+Na)
+
. Anal.calcd for 

C44H36N2O4.2.5H2O: C 75.23; H 5.12; N 3.98 %, found: C 75.23; H 5.02; N 3.91%. 

 

1,2-Bis-[(3,5-dibenzylidene-4-oxo-piperidin-1-yl)-1-carbonyl]-benzene(1i) 

Yield: 68 %; mp (chloroform/methanol) 240 
o
C (dec.); 

1
H NMR(500 MHz, DMSO-d6): δ  

7.77(s, 2H, 2×=CH), 7.69(s, 2H, 2×=CH), 7.57(t, 10H, Ar-H), 7.27(brs, 5H, Ar-H), 7.18 (brs, 

5H, Ar-H), 6.89(m, 2H, Ar-H), 6.78(m, 2H, Ar-H), 4.92(brs, 4H, 2×NCH2), 4.49(s, 4H, 

2×NCH2); 
13

C NMR (125 MHz, DMSO-d6):186.1, 167.9, 137.3, 136.5, 134.8, 133.8, 132.6, 
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131.1, 130.3, 129.8, 129.4, 129.0, 126.4, 47.8, 43.4; MS (ESI) m/z: 703 (M+Na)
+

. Anal.calcd for 

C46H36N2O4.H2O: C 78.99; H 5.43; N 4.0%, found: C 79.09; H 5.42; N 4.02%. 

 

1,3-Bis-[(3,5-dibenzylidene-4-oxo-piperidin-1-yl)-1-carbonyl]-benzene(1j) 

Yield: 63%; mp (chloroform/methanol) 220
 o

C (dec.); 
1
H NMR(500 MHz, DMSO-d6): δ  

7.78(s, 4H, 4×=CH), 7.53(m, 10H, Ar-H), 7.31(m, 10H, Ar-H), 7.11(s, 1H, Ar-H), 7.06(d, J= 

8.93 Hz, 2H, Ar-H), 6.75(t,1H, Ar-H), 4.97 (brs, 4H, 2×NCH2), 4.57(brs, 4H, 2×NCH2); 
13

C 

NMR (125 MHz, DMSO-d6):186.03, 168.0, 137.2, 134.51, 132.6, 131.0, 130.1, 129.2, 128.9, 

128.3, 125.7, 48.9, 45.6; MS (ESI) m/z: 703 (M+Na)
+

. Anal.calcd for C46H36N2O4.0.5H2O: C 

80.02; H 5.36; N 4.01%, found: C 80.31; H 5.29; N 4.01%. 

 

† Copyright © John Wiley and Sons, reproduced with permission. Das et al. ChemMedChem 6 

(2011) 1892-1899. 
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CHAPTER 5 

 

Chapter 5 includes a copy an article that will be submitted to the European Journal of Medicinal 

Chemistry. 

Relationship of Chapter 5 to the objectives of this project 

This study aims at developing further analogs of 3,5-bis(benzylidene)-4-piperidone 

dimers based on the lead compounds obtained from the study in chapter 4 with a view to finding 

novel molecules with improved cytotoxic potencies. Two important hypotheses need to be 

evaluated: (1) the introduction of aryl groups with varying physicochemical properties may 

improve cytotoxic potencies significantly; (2) the presence of amidic groups are important for 

displaying potent cytotoxicity.  

Description 

As outlined in chapter 4, the dimeric 3,5-bis(arylidene)-4-piperidones 1a and 1b emerged 

as the most potent cytotoxic compounds. In particular, these two molecules demonstrated very 

high inhibitory activities against a panel of colon cancer cell lines in the NCI screen. Structural 

modifications were undertaken on 1a and 1b by introducing aryl substituents with diverse 

Hammet σ, or Taft σ*, Hansch π and molecular refractivity (MR) values that provided the novel 

series 2 and 3, respectively. A representative molecule 4 was prepared in which the amidic 

carbonyl groups of 1b were excised and the cytotoxic activity of 4 was compared against 1b to 

delineate the contribution of the amide groups in exhibiting cytotoxicity.Series 1-3 and 

compound 4 were screened against two colon cancer cell lines HT29 and HCT-116.  A structure-

activity relationship was formulated to gain insights for further designing of the compounds. 

Flow cytometry analysis of the effect of a representative molecule on the cytotoxicity in HCT-

116  cells was carried out.  

Author Contributions 

My contributions to this publication were (i) undertaking a literature review of the target 

compounds (ii) designing the synthetic chemical routes, synthesizing the compounds, and 

determining the 
1
H and 

13
C NMR spectra of the compounds in series 1-4 as well as undertaking 

the elemental analyses (iii) carrying out the QSAR studies (iv) performing the cytotoxicity 

assays and the flow cytometry analysis and (v) writing the manuscript. The coauthors on this 

paper are U. Das, who supervised the synthesis of the compounds and undertook the molecular 
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was guided and supervised by J.R. Dimmock and D. K. J. Gorecki.  



120 

 

Novel 3,5-bis(arylidene)-4-piperidone dimers: Potent cytotoxins  against colon cancer cells  

Swagatika Das, Umashankar Das*, Deborah Michel, Dennis K. J. Gorecki, Jonathan R. 

Dimmock* 

Drug Design and Discovery Research Group, College of Pharmacy and Nutrition, University of 

Saskatchewan, Saskatoon, Saskatchewan S7N 5C9, Canada 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*
Corresponding authors: Tel.: +1 306 966 6358; Fax: +1 306 966 6377. 

E-mail addresses: umashankar.das@usask.ca (U Das), jr.dimmock@usask.ca (J.R. Dimmock). 

mailto:umashankar.das@usask.ca
mailto:jr.dimmock@usask.ca


121 

 

Abstract 

Two novel series of dimeric 3,5-bis(arylidene)-4-piperidones 7 and 8 were prepared as cytotoxic 

agents. A specific objective of this study was the discovery of novel compounds displaying 

potent anti-proliferative activities against colon cancers. Most of the compounds demonstrate 

potent cytotoxicity against HCT116 and HT29 colon cancer cell lines in which the IC50 values 

range from low micromolar to nanomolar values. In general, the majority of the compounds 

showed greater cytotoxicity and some degree of selectivity towards HCT116 cells compared to 

HT29 cells. Compound 9 in which the amidic carbonyl groups were excised was substantially 

less potent than 8a in both the cell lines suggested that the amide groups are important 

components of the molecule for exhibiting cytotoxicity.  Virtually all the compounds were more 

potent than a reference drug 5-fluorouracil which is used in treating colon cancers as well as a 

related enone curcumin. QSAR studies were undertaken and some guidelines for amplification of 

the project have been formulated. Flow cytometry analysis of a representative compound 7f 

revealed that it induced apoptosis in HCT116 cells.  

 

Keywords: piperidone, α, β-unsaturated ketone, cytotoxicity, selective toxicity   
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1. Introduction 

                Colorectal cancer is the second leading cause of death in men and women among all 

cancers [1]. The low incidence of colorectal cancer in Asian countries has been suggested to be 

due inter alia to the regular use of curcumin in the diet [2, 3]. Curcumin 1 produces a profound 

cytotoxic effect on colon carcinogenesis in rats and mice, reduces a number of colon tumours in 

a mouse model with a mutation in the APC gene [4] and decreases the multiplicity of colon 

adenomas [5]. Curcumin was found to protect against the development of colon cancer induced 

by azoxymethane during both the initiation and the promotion stages in both rats and mice [6,7] 

and also demonstrates potent anticancer effects on intestinal cancer, stomach cancer, and 

hepatocellular carcinoma [8]. The α,β-unsaturated keto motif is considered to contribute 

significantly to the bioactivity observed.  Subsequently a large number of curcuminoids have 

been described in the literature which display potent cytotoxic potencies against various cancers 

including colon cancers [9-11]. One of the reasons for the interest in these compounds is that 

α,β-unsaturated ketones display a selective affinity for thiols compared to  hydroxyl and amino 

groups [12] which are present in nucleic acids. Hence these molecules should not elicit genotoxic 

properties which are associated with a number of alkylating agents used in cancer chemotherapy 

[13]. Cytotoxic α,β-unsaturated ketones are thiol alkylators [12]  and their perceived importance 

as multitargeted ligands has been documented recently [14-16].  

Our major interest is the development of conjugated unsaturated ketones as candidate 

cytotoxins with special emphasis on those compounds which inhibit the growth of colon cancers 

[17,18]. In view of these considerations, a bifunctional 1,5-diaryl-3-oxo-1,4-pentadienyl 

pharmacophore was incorporated into a variety of cyclic and acyclic analogs that led to the 

discovery of a number of potent cytotoxins possessing the general structure 2 [14]. In particular, 

some 3,5-bis (arylidene)-4-piperidones demonstrate IC50 values in low micromolar to 

submicromolar values towards a number of malignant cell lines [19-20]. These compounds were 

designed based on the hypothesis of sequential cytotoxicity which states that successive chemical 

attacks may lead to greater damage in cancer cells compared to normal cells [19].  This theory 

was formulated on the observations that an initial lowering of the concentrations of cellular thiols 

followed by a second chemical attack would cause a greater deleterious effect to neoplasms than 

normal cells [21,22]. A N-acyl-3,5-bis(benzylidene)-4-piperidone 4a displayed more than 8-fold  

greater cytotoxic potency than its precursor 3 towards P388/MRI cells [23]. An investigation of 
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the effect of these two compounds 3 and 4a on hepatic glutathione levels in mice revealed 

reductions in the glutathione concentrations of 19 and 29%, respectively, suggesting that an 

increase in the number of thiol alkylating sites in the molecule contributed to an improvement in 

cytotoxic potency [23]. Based on this observation, the N-acryloyl-3,5-bis(arylidene)-4-

piperidone 4b and a number of  aryl substituted analogs were developed which possess greater 

cytotoxic potencies over their 3,5-bis(arylidene)-4-piperidone precursors [19]. These 

observations unequivocally demonstrate the value of incorporating additional thiol alkylating 

groups in the molecule and led to a decision to prepare series 5. In these compounds two 

molecules of 3 are attached by a linker with varying carbon chain lengths keeping in view that 

the relative location of one of the 1,5-diaryl-3-oxo-1,4-pentadienyl groups in series 5 with 

respect to the other one may be important for binding to the active sites of the proteins and may 

influence cytotoxicity substantially. The compounds in series 5 displayed potent cytotoxicity 

against human Molt4/C8 and CEM T-lymphocytes as well as murine L1210 lymphoid leukemic 

cells [24] while further investigations revealed the greater toxicity of these compounds to 

neoplasms than non-malignant cells [25]. From these studies two prototypic molecules 7a and 8a 

emerged which displayed remarkable cytotoxic potencies having average IC50 values of 0.17 and 

0.11 µM, respectively, against a panel of seven different colon cancer cell lines [25]. These two 

compounds are clearly lead molecules for analog development.  

 

Figure 1. Structures of the compounds in series 1-5 
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       The aims of the present study are fourfold namely (i) examining the compounds in series 7 

and 8 as candidate cytotoxins which are particularly effective against colon cancers, (ii) to 

evaluate the influence of the electronic, hydrophobic and steric properties of the aryl ring 

substituents in 7a-i and 8a-j on cytotoxic potencies and if possible to develop structure-activity 

relationships which will be helpful for designing further potent cytotoxic molecules, (iii) to 

establish the role of the amidic groups in governing cytotoxic properties of the molecules,  and 

(iv) to investigate the mode action of a representative molecule whereby the cytotoxicity of this 

class of compounds is mediated.  

 

2. Chemistry  

The synthesis of compounds in series 6-9 is outlined in Scheme 1.  Briefly, the 3,5-

bis(benzylidene)-4-piperidones 6a-j were synthesized by acid-catalyzed condensation of 4-

piperidone hydrochloride with aryl aldehydes [19]. The dimers in series 7 and 8 were obtained 

from their corresponding 3,5-bis(benzylidene)-4-piperidones 6 by reacting with oxaloyl chloride 

or malonyl chloride, respectively. The synthesis of 9 was accomplished by a base catalyzed 

condensation of two mole equivalents of 6a with one mole equivalent of 1,3-dibromopropane. 

The structures of all the compounds were established by 
1
H NMR and elemental analysis.  

 

Scheme 1. Syntheses of the compounds in series 7-9.  i = acetic acid/dry HCl; ii = oxaloyl 

chloride (for 7a-i) and malonyl chloride (for 8a-j); iii = 1,3-dibromopropane/K2CO3/KI.  The 

aryl substituents are presented in Table 1. 
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The 
1
H NMR spectra of 7a-i, 8a-j and 9 revealed that the compounds are isomerically pure 

and all four olefinic double bonds exhibit the E-configuration. The E-stereochemistry of these 

compounds was suggested based on the following observations.  First, the olefinic protons of the 

dimers 7-9 appear at 7.39-7.79 ppm in the 
1
H NMR spectra which is an indicative of the E 

geometry [19].  Second, a number of 3,5-bis(benzylidene)-4-piperidones 6 adopt the E-

stereochemistry as established by X-ray crystallography [19, 23]. In addition, very recently an X-

ray crystal structure of the 2-fluoro analog of 7 was shown to possess the E- geometry [26]. In 

order to evaluate the hypothesis that the amidic groups in the series 7-8 are essential for 

cytotoxicity, a representative molecule 9 was prepared which is bereft of both amidic carbonyl 

groups. Various physiochemical properties of the aryl substituents and the topography of the 

molecules were examined for correlations with the IC50 values. 

 

3. Bioevaluations 

The compounds in series 7-9 as well as two reference compounds 5-fluorouracil (5-FU) 

and curcumin were evaluated against two human colon cancer cell lines HCT116 and HT29. 

These biodata are reported in Table 1. Solubility considerations mandated that the highest 

concentration of 8i that could be used is 25µM which was insufficient to generate an IC50 value.  

A representative lead cytotoxin 7f was examined for its ability to cause apoptosis in HCT116 cell 

lines. This result is presented in Figure 2.  

 

4. Results and Discussion 

The compounds 7a-i and 8a-j were evaluated against human HCT116 and HT29 colon 

cancer cells.   The biodata presented in Table 1 show remarkable cytotoxic potencies of all the 

compounds except 7d,i and 8d,i.  The majority of the IC50 values were in the submicromolar to 

nanomolar range. The compounds displaying IC50 values < 1µM are considered to be highly 

cytotoxic.  In series 7, 78% of the IC50 values were <1 µM against both the cell lines and in 

series 8, IC50 values of <1µM were observed in 80% of the compounds against HCT116 and 

HT29 cells. 

In particular, 7a,e and 8a,c,h have double digit nanomolar IC50 values except in the case of 

8a, the IC50 figure is 3nM in the HT29 bioassay.  The importance of the marked cytotoxic 

potencies of these compounds was confirmed when the IC50 values of 7-9 are compared with that 
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of 5-FU which is a drug used in treating colon cancers.  Relative potency (RP) figures were 

generated by comparing the IC50 figures of the compounds in series 7-9 with that of 5-FU in 

these two screens.  These data are presented in Table 1 which reveals that in general the 

compounds are far more toxic to these two neoplasms than the clinically useful drug.  In 

addition, the RP figures indicate that in general the HCT116 cells are more sensitive to these 

compounds than the HT29 neoplasms.  This difference between the RP values for each 

compound may reflect a capacity to display greater toxic effects to malignant cells than normal 

tissues. This possibility is enhanced by the variation in efficacy of the compounds to inhibit the 

growth of the HCT116 and HT29 cells, e.g. the 304-fold difference between 7b and 7i in the 

HCT116 screen. 

Table 1: Evaluation of 7a-i, 8a-j and 9 against HCT116 and HT29 colon cancer cell lines 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a
The relative potency (RP) of the compounds against a reference drug, 5-fluorouracil was 

calculated by dividing the IC50 value of 5-fluorouracil by the IC50 value of the compound against 

a particular cell line. Only the mean IC50 values were considered for calculating RP values. 

Compound Aryl substituents IC50 (µM) RP
a
 

R
1
 R

2
 R

3
 HCT116 HT29 HCT116 HT29 

7a H H H 0.04±0.03 0.014±0.002 113 454 

7b H CH3 H 0.09±0.02 0.129±0.035 50 49 

7c H Cl H 0.03±0.01 0.78±0.13 151 8 

7d H Cl Cl 20.05±1.01 49.46±4.50 0.23 0.13 

7e H F H 0.02±0.01 0.03±0.001 226 212 

7f H OCH3 H 0.02±0.01 0.17±0.04 226 37 

7g H OCH3 OCH3 0.03±0.01 0.568±0.265 151 11 

7h OCH3 OCH3 OCH3 0.27±0.06 0.27±0.15 17 24 

7i H N(CH3)2 H 27.37±3.68 18.56±2.30 0.17 0.34 

8a H H H 0.02±0.01 0.003±0.002 226 2117 

8b H CH3 H 0.41±0.25 0.20±0.02 11 32 

8c H Cl H 0.05±0.001 0.09±0.05 90 71 

8d H Cl Cl 26.73±2.35 6.05±0.10 0.17 1.1 

8e H F H 0.60±0.01 0.18±0.08 8 35 

8f H OCH3 H 0.06±0.01 0.77±0.05 75 8 

8g H OCH3 OCH3 0.18±0.07 0.31±0.12 25 20 

8h OCH3 OCH3 OCH3 0.02±0.003 0.04±0.02 226 159 

8i H N(CH3)2 H >25 >25 <1 <1 

8j H OH H 0.72±0.10 0.46±0.21 6 14 

9 - - - 0.68±0.19 2.15±0.65 7 3 

5-FU - - - 4.52±0.54 6.35±1.12 1.00 1.00 

Curcumin - - - 11.54±4.45 13.20±2.08 0.39 0.48 



127 

 

 

In other words, the compounds in series 7 and 8 are not general biocidal agents and possibly 

are tumour-selective cytotoxins.  Virtually all of the compounds in series 7-9 are substantially 

more potent than curcumin.  

The following correlations were observed between the nature of the aryl substituents in series 

7 and 8 and their cytotoxic potencies in both screens.  First, the placement of a methyl (7b,8b), 

chloro (7c,8c), fluoro (7e,8e), or methoxy (7f,8f) group into the 4 position of the aryl rings led to 

compounds having similar potencies.  However the introduction of a 4-dimethylamino 

substituent (7i,8i) into the aryl rings caused potency to plummet considerably.  Second, the 

addition of a 3-chloro group to the 4-chloro analogs leading to the 7d and 8d cause a dramatic 

reduction in potency, e.g., there is a 668-fold difference between the IC50 values of 7c and 7d in 

the HCT116 screen. 

The next part of the analysis of the biodata involved a comparison of the potencies of some 

of the compounds in series 7 and 8. These comparisons are presented as Δ7/8 values which were 

obtained by dividing the IC50 value of a compound in 7a-h by that of the analog in series 8 which 

possesses the same aryl substituent. In this way one may able to ascertain whether an oxalyl [-

C(O)C(O)-] or malonyl [-C(O)CH2C(O)-] linker between the piperidinyl nitrogen atoms is 

optimal.  Taking standard deviations into account, in the HCT116 bioassay 7b-g are more potent 

than 8b-g while 8h has a lower IC50 value than 7h.  The unsubstituted analogs 7a and 8a are 

equipotent.  In the case of the HT29 screen, 7b,e,f are more potent than 8b,e,f while 8a,c,d,h 

have lower IC50 figures than 7a,c,d,h and 7g and 8g have equal potency.  Thus the oxalyl and 

malonyl linkers are favoured in 56%and 31%, respectively, of the enones 7a-h and 8a-h while 

equipotency was observed in 13% of the comparisons made.  A quantitative estimate of the 

differences in potencies between 7a-h and 8a-h, which are dependent on the nature of the spacer 

group, is presented as ∆8/7 values in Table 2.  Thus the oxalyl group is marginally preferable to 

the malonyl linker although excellent cytotoxic potencies were observed in each series of 

compounds. 

A question to be addressed is whether the substituted dimers 7b-i and 8b-i display greater 

cytotoxic potencies than the unsubtituted analogs 7a and 8a, respectively.  For series 7, the enone 

7a has greater potency than 7d,h,i and was equipotent with 7b,c,e-g in the HCT116 assay.    For 

the HT29 screen, 7a was more potent than 7b-d,f-i and was equipotent with 7e. 
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Table 2.  Comparisons between some of the potencies of the compounds in series 7 and 8 

 

Series 7, 

8 

Aryl 

substituent 

∆8/7
a 

∆7b-i/7a
b 

∆8b-i/8a
c 

HCT116 HT29 HCT116 HT29 HCT116 HT29 

a H 0.50 0.21 --- --- --- --- 

b 4-CH3 4.56 1.55 2.25 9.21 20.5 66.7 

c 4-Cl 1.67 0.12 0.75 55.7 2.50 30.0 

d 3,4-Cl2 1.33 0.12 501 353 1337 2017 

e 4-F 30.0 6.00 0.50 2.14 30.0 60.0 

f 4-OCH3 3.00 4.53 0.50 12.1 3.00 257 

g 3,4-(OCH3)2 6.00 0.54 0.75 40.7 9.00 103 

h 3,4,5-(OCH3)3 0.07 0.15 6.75 19.3 1.00 13.3 

i 4-N(CH3)2 >0.19 >1.35 684 1326 >1250 >8333 
a
The ∆8/7 values are the quotients of the IC50 values in series 8 divided by the analog in series 

7 which has the same aryl substituent. 

b
The ∆7b-i/7a values are the quotients of the IC50 values of 7b-i divided by the figure for the 

unsubstituted compound 7a. 

c
The ∆8b-i/8a values are the quotients of the IC50 values of 8b-i divided by the figure of the 

unsubstituted compound 8a. 

  In the case of series 8, the unsubstituted analog 8a has lower IC50 values than 8b-g,i and 

displays equal potency as 8h in the HCT116 screen while against HT29 cells, 8a is more potent 

than 8b-i.  Thus overall 7a and 8a are more potent than the substituted dimers 7b-i and 8b-i in 

78% of the comparisons made while the same potency was noted in 22% of the cases.  These 

comparisons are presented in quantitative form in Table 2 where, in general, the ∆7b-i/7a figures 

are smaller than the ∆8b-i/8a values.  Hence substitution in the aryl rings in series 7 rather than 8 

may lead to potency increases over the substituted components.   

Further, the importance of the amidic groups and their contributions towards the cytotoxicity of 

the dimers were verified by comparing the IC50 values of 8a and 9 against HCT116 and HT29 

cells. Compound 9 was found to be a potent cytotoxin compared to 5-FU and curcumin towards 

both cell lines. However it displayed more than 30-fold and 700-fold lower cytotoxic potencies 

in comparison to 8a against HCT116 and HT29 cells, respectively. These observations suggest 

that the amidic carbonyl groups contribute significantly to cytotoxic potencies. Therefore further 

analog development of these classes of compounds should retain the amidic groups. 
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In order to evaluate whether the magnitude of some of the physicochemical properties of the 

aryl substituents such as electronic (σ/σ*), hydrophobic(π), and steric properties (MR) influence 

the cytotoxic potencies in series 7 and 8, linear and semilogarithmic plots were made between 

these constants and IC50 values of 7a-i and 8a-j in the HCT 116 and HT29 screens. Statistically 

significant negative correlations (p<0.05) were noted between σ/σ* and IC50 values of 7a-i and 

8a-j in the HCT116 screen and a trend to significance (p=0.06) was noted between σ/σ* and IC50 

values of 7a-j in the HT29 bioassay. These results suggest that further development of this class 

of compounds should include stronger electron-withdrawing groups in the aryl rings. No 

correlations were noted between the π and MR constants of the aryl substituents and the IC50 

values.  

 

 

Figure 2. Analysis of the effect of 7f on HCT116 cells after incubation for 24 hours and 48 

hours by flow cytometry. 

 

A final issue to be investigated is the way in which these classes of compounds exert their 

cytotoxicity. A number of anticancer agents exert their activity by inducing apoptotic cell death 

in cancer cells. Compound 7a was shown to trigger apoptosis, not necrosis, in a number of T-cell 

and B-cell lymphomas [24]. In order to examine whether the substituted dimers also induce 
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apoptotic cell death in colon cancer cells, HCT116 cells was treated with a potent representative 

compound 7f using a concentration of 1µM. The result is presented in Figure 2. After 24 hours, 

34.9% apoptotic cell death was observed in the treated cells compared to 2.82% in untreated 

cells. After 48 hours, the percentage of apoptotic cells was increased slightly to 38.5%. This 

observation suggests that apoptosis is one of the ways by which 7f displays cytotoxicity in 

HCT116 colon cells. Due to its structural similarity to other analogs in series 7 and 8, it is 

possible that these compounds also follow the same mode of action.  

 

5. Conclusions 

This study reveals that in general the dimers in series 7-9 are potent cytotoxic agents. A 

number of these compounds possess submicromolar to low nanomolar IC50 values. Various 

potent cytotoxins possessing high selective toxicity towards a particular colon cancer cell type 

were identified. In particular, 7a, 7e, 8a, c and 8h emerged as potent lead molecules for further 

evaluations. The hypothesis that introduction of an aryl substituent enhance cytotoxic potencies 

was verified in less than half of the biodata in the HCT116 and HT29 screens.  The benefit of 

retaining amidic groups in the molecules and their contribution towards cytotoxicity was 

observed. An investigation of the mode of action of a potent representative compound 7f 

revealed that it induces apoptosis in HCT116 cells.  

 

6. Experimental protocols 

6.1. Chemistry 

Melting points were determined on a Gallenkamp instrument and are uncorrected. 
1
H NMR 

spectra were obtained using a Bruker Avance spectrometer 500 mHz equipped with a BBO 

probe.  Chemical shifts (δ) are reported in ppm. Elemental analyses were undertaken using an 

Elementer CHNS analyzer. 

 

6.1.1. Synthesis of 3,5-bis(arylidene)-4-piperidones (6a-j) 

The synthesis of 6a-j was reported previously [18,19].  

 

6.1.2. General procedure for the synthesis of 3,5-bis(arylidene)-4-piperidone dimers (7) 

Oxaloyl chloride (0.003 mol, 0.39 gm) in DCE (5 ml) was added  dropwise to a stirred 
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suspension of  a 3,5-bis(benzylidene)-4-piperidone 6 (0.006 mol) prepared by a literature method 

[19] in DCE (20 mL) containing triethylamine (0.006 mol, 0.61 gm) at ~20 
o
C for a period of 30 

min. The reaction was stirred at room temperature 8-12 hrs. The solvent was removed under 

reduced pressure at 45 
o
C. An aqueous solution of potassium carbonate (25 mL, 5 % w/v) was 

added to the crude mass and stirred for 2h. The solid obtained was filtered, dried, and 

crystallized from a suitable solvent to yield pure products. 

 

6.1.2.1.  1,2-bis[3,5-bis(Benzylidene)-4-oxo-piperidin-1-yl]ethane-1,2-dione (7a) 

The synthesis of 7a was reported previously [24]. 

 

6.1.2.2. 1,2-bis[3,5-bis(4-Methylbenzylidene)-4-oxo-piperidin-1-yl]ethane-1,2-dione (7b) 

Yield: 53%; mp (chloroform/methanol) 275 
o
C; 

1
H NMR (500 MHz, CDCl3): δ 7.79(s, 2H, 

2×=CH), 7.65 (s, 2H, 2×=CH),  7.29 (d, J=7.70 Hz, 8H, Ar-H), 7.18(q, 8H, Ar-H), 4.53 (d, 

J=15.61 Hz, 8H, 4×NCH2), 2.44 (s, 6H, 2×CH3), 2.28 (s, 6H, 2×CH3). Anal.calcd for 

C44H40N2O4.1.5 H2O: C 76.76; H 6.30; N 4.07 %, found: C 76.46; H 6.39; N 3.93%. 

 

6.1.2.3.  1,2-bis[3,5-bis(4-Chlorobenzylidene)-4-oxo-piperidin-1-yl]ethane-1,2-dione (7c) 

Yield: 61%; mp (methanol) 289 
o
C; 

1
H NMR (500 MHz, CDCl3): δ 7.72(s, 2H, 2×=CH), 7.54 (s, 

2H, 2×=CH),  7.46 (d, J=8.40 Hz, 2H, Ar-H), 7.37(d, J=8.37 Hz, 2H, Ar-H ), 7.31(d, J=8.42 Hz, 

4H, Ar-H), 7.20(d, J=8.38 Hz, 4H, Ar-H),  4.62 (s, 4H, 2×NCH2), 4.52 (s, 4H, 2×NCH2). 

Anal.calcd for C40H28Cl4N2O4.3 H2O: C 60.26; H 3.54; N 3.51 %, found: C 60.35; H 3.70; N 

3.15%. 

 

6.1.2.4. 1,2-bis[3,5-bis(3,4-Dichlorobenzylidene)-4-oxo-piperidin-1-yl]ethane-1,2-dione (7d) 

Yield: 64%; mp (chloroform/methanol) 271 
o
C; 

1
H NMR (500 MHz, CDCl3): δ 7.68 (s, 2H, 

2×=CH), 7.55 (s, 1H, =CH), 7.53 (s, 1H, =CH),  7.46 (d, J=8.15 Hz, 6H, Ar-H), 7.41(d, 

J=1.71Hz, 2H, Ar-H), 7.20 (dd, J=1.67Hz, J=1.71Hz, 2H, Ar-H), 7.05 (dd, J=1.71Hz, J=1.77Hz, 

2H, Ar-H), 4.67 (s, 4H, 2×NCH2), 4.56 (s, 4H, 2×NCH2).  Anal.calcd for C40H24Cl8N2O4: C 

54.58; H 2.75; N 3.18 %, found: C 54.52; H 2.90; N 2.95 %. 

 

6.1.2.5. 1,2-bis[3,5-bis(4-Fluorobenzylidene)-4-oxo-piperidin-1-yl]ethane-1,2-dione (7e) 
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Yield: 67%; mp (chloroform/methanol) 253 
o
C; 

1
H NMR (500 MHz, CDCl3): δ 7.73(s, 2H, 

2×=CH), 7.57 (s, 2H, 2×=CH),  7.37(q, 4H, Ar-H), 7.25 (q, 4H, Ar-H), 7.18 (t, 4H, Ar-H), 

7.098(t, 4H, Ar-H), 4.63 (s, 4H, 2×NCH2), 4.51 (s, 4H, 2×NCH2). Anal.calcd for 

C41H26Cl8N2O4.H2O: C 53.93; H 3.09; N 3.07 %, found: C 53.84; H 2.98; N 2.74%. 

 

6.1.2.6. 1,2-bis[3,5-bis(4-Methoxybenzylidene)-4-oxo-piperidin-1-yl]ethane-1,2-dione (7f) 

Yield: 71%; mp (chloroform/methanol) >300 
o
C; 

1
H NMR (500 MHz, CDCl3): δ 7.74(s, 2H, 

2×=CH), 7.58 (s, 2H, 2×=CH),  7.35 (d, J=8.65 Hz, 4H, Ar-H), 7.22 (d, J=8.63 Hz, 4H, Ar-H), 

6.98 (d, J=8.71 Hz, 4H, Ar-H), 6.91 (d,  J=8.67 Hz, 4H, Ar-H), 4.60 (s, 4H, 2×NCH2), 4.53 (s, 

4H, 2×NCH2), 3.90 (s, 6H, 2×OCH3), 3.76 (s, 6H, 2×OCH3). Anal.calcd for C44H40N2O8 : C 

72.91; H 5.56; N 3.86 %, found: C 72.57; H 5.94; N 3.75%. 

 

6.1.2.7.  1,2-bis[3,5-bis(3,4-Dimethoxybenzylidene)-4-oxo-piperidin-1-yl]ethane-1,2-dione (7g) 

Yield: 60%; mp (chloroform/methanol) 282 
o
C; 

1
H NMR (500 MHz, CDCl3): δ 7.71(s, 2H, 

2×=CH), 7.42 (s, 2H, 2×=CH),  6.99 (d, J=8.47 Hz, 4H, Ar-H), 6.94(d, J=8.08 Hz, 2H, Ar-H), 

6.80(m, 6H, Ar-H), 4.70 (s, 4H, 2×NCH2), 4.64 (s, 4H, 2×NCH2), 4.00 (s, 6H, 2×OCH3), 3.96 (d, 

12H, 4×OCH3), 3.74 (s, 6H, 2×OCH3). Anal.calcd for C48H48N2O12.H2O: C 66.75; H 5.84; N 

3.24 %, found: C 66.31; H 5.62; N 3.06%. 

 

6.1.2.8.1,2-bis[3,5-bis(3,4,5-Trimethoxybenzylidene)-4-oxo-piperidin-1-yl]ethane-1,2-dione (7h) 

Yield: 57%; mp (ethanol) 273 
o
C; 

1
H NMR (500 MHz, CDCl3): δ 7.63(s, 2H, 2×=CH), 7.44 (s, 

2H, 2×=CH),  6.66 (s, 4H, Ar-H), 6.49 (s, 4H, Ar-H), 4.75 (s, 4H, 4×NCH2),  4.68 (s, 4H, 

4×NCH2), 3.96 (s, 12H, 4×OCH3), 3.94 (s, 9H, 3×OCH3), 3.88 (s, 9H, 3×OCH3), 3.84 (s, 6H, 

2×OCH3). Anal.calcd for C52H56N2O16 : C 64.72; H 5.85; N 2.90 %, found: C 64.95; H 6.16; N 

2.78%. 

 

6.1.2.9.1,2-bis[3,5-bis{4-(N,N-Dimethylamino)benzylidene}-4-oxo-piperidin-1-yl]ethane-1,2-

dione (7i) 

Yield: 46%; mp (chloroform/methanol) >300 
o
C; 

1
H NMR (500 MHz, CDCl3): δ 7.75(s, 2H, 

2×=CH), 7.65 (s, 2H, 2×=CH),  7.33 (d, J=8.75 Hz, 4H, Ar-H), 7.21(d, J=8.71 Hz, 4H, Ar-H), 

6.73 (d, J=16.93 Hz, 8H, Ar-H), 4.58 (s, 4H, 2×NCH2), 4.54 (s, 4H, 2×NCH2), 3.08 (s, 12H, 
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4×NCH3), 2.95 (s, 12H, 4×NCH3). Anal.calcd for C44H40N2O4.1.5 H2O: C 76.76; H 6.30; N 4.07 

%, found: C 76.46; H 6.39; N 3.93%. 

 

6.1.3. General procedure for the synthesis of 3,5-bis(arylidene)-4-piperidone dimers (8a-j) 

Malonyl chloride (0.01 mol, 1.4 gm) in DCE (5 ml) was added  dropwise to a stirred 

suspension of  3,5-bis(arylidene)-4-piperidone 6 (0.015 mol) in DCE (20 mL) containing 

triethylamine (0.01 mol, 1.4 gm) at ~20 
o
C for a period of 30 min. The reaction was stirred at 

room temperature 8-12 hrs. The solvent was removed under reduced pressure at 45 
o
C.  An 

aqueous solution of potassium carbonate (25 mL, 5% w/v) was added to the crude mass and 

stirred for 2h. The solid obtained was filtered, dried, and crystallized from a suitable solvent to 

yield pure products. 

 

6.1.3.1. 1,3-bis-[3,5-bis(Benzylidene)-4-oxo-piperidin-1yl]propane-1,3-dione (8a) 

The synthesis of  8a was reported previously[24].
 

 

6.1.3.2. 1,3-bis-[3,5-bis(4-Methylbenzylidene)-4-oxo-piperidin-1yl]propane-1,3-dione (8b) 

Yield: 43%; mp (chloroform/methanol) 251 
o
C; 

1
H NMR (500 MHz, CDCl3): δ 7.81(s, 2H, 

2×=CH), 7.74 (s, 2H, 2×=CH),  7.40 (d, J=7.90 Hz, 4H, Ar-H), 7.27 (d, J=7.60 Hz, 4H, Ar-H), 

7.21(q, 8H, Ar-H), 4.89 (s, 4H, 2×NCH2), 4.65 (s, 4H, 2×NCH2), 3.15 (s, 2H, CH2), 2.43 (s, 6H, 

2×CH3), 2.41(s, 6H, 2×CH3).  Anal.calcd for C45H42N2O4.H2O: C 77.94; H 6.40; N 4.04 %, 

found: C 77.94; H 6.63; N 3.98%. 

 

6.1.3.3. 1,3-bis-[3,5-bis(4-Chlorobenzylidene)-4-oxo-piperidin-1yl]propane-1,3-dione (8c) 

Yield: 58%; mp (chloroform/methanol) 260 
o
C; 

1
H NMR (500 MHz, DMSO-d6): δ 7.64(s, 2H, 

2×=CH), 7.60 (s, 2H, 2×=CH),  7.57 (d, J=11.46 Hz, 4H, Ar-H), 7.54 (d, J=7.60 Hz, 4H, Ar-H), 

7.49 (q, 8H, Ar-H), 4.62 (d, 8H, J=10.15 Hz, 4×NCH2), 3.51 (s, 2H, CH2). Anal.calcd for 

C41H30Cl4N2O4.2.5 H2O: C 61.38; H 3.77; N 3.49 %, found: C 61.10; H 3.69; N 3.30%. 

 

6.1.3.4. 1,3-bis-[3,5-bis(3,4-Dichlorobenzylidene)-4-oxo-piperidin-1yl]propane-1,3-dione (8d) 

Yield: 65%; mp (chloroform/methanol) 236 
o
C; 

1
H NMR (500 MHz, CDCl3): δ 7.71(s, 2H, 

2×=CH), 7.63 (s, 2H, 2×=CH),  7.56 (q, 8H, Ar-H), 7.51 (d, J=8.29 Hz, 2H, Ar-H), 7.30 (d, 
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J=1.45Hz, 2H, Ar-H), 7.31 (dd, J=1.45Hz, J=1.53Hz, Ar-H), 7.15 (dd, J=1.48Hz, 2H, Ar-H),  

4.78 (d, 8H, J=6.72Hz, 4×NCH2), 3.30 (s, 2H, CH2). Anal.calcd for C41H26Cl8N2O4. H2O: C 

53.93; H 3.09; N 3.07 %, found: C 53.84; H 2.98; N 2.74%. 

 

6.1.3.5. 1,3-bis-[3,5-bis(4-Fluorobenzylidene)-4-oxo-piperidin-1yl]propane-1,3-dione (8e) 

Yield: 56%; mp (chloroform/methanol) >300 
o
C; 

1
H NMR (500 MHz, CDCl3): δ 7.81(s, 2H, 

2×=CH), 7.75 (s, 2H, 2×=CH),  7.49(q, 4H, Ar-H), 7.33 (q, 4H, Ar-H), 7.18 (t, 4H, Ar-H), 7.12 

(t, 4H, Ar-H), 4.84 (s, 4H, 2×NCH2), 4.79 (s, 4H, 2×NCH2), 3.22 (s, 2H, CH2  Anal.calcd for 

C41H30F4N2O4.H2O: C 69.42; H 4.27; N 3.95 %, found: C 69.58; H 4.30; N 3.71%. 

 

6.1.3.6. 1,3-bis-[3,5-bis(4-Methoxybenzylidene)-4-oxo-piperidin-1yl]propane-1,3-dione (8f) 

Yield: 61%; mp (chloroform/methanol) 245 
o
C; 

1
H NMR (500 MHz, CDCl3): δ 7.80(s, 2H, 

2×=CH), 7.73 (s, 2H, 2×=CH),  7.48 (d, J=8.6 Hz, 4H, Ar-H), 7.29 (d, J=10.17 Hz, 2H, Ar-H), 

6.98 (d, J=8.49 Hz, 4H, Ar-H), 4.85(s, 4H, 2×NCH2), 4.72 (s, 4H, 2×NCH2), 3.88 (d, J=7.72 Hz, 

12H, 4×OCH3), 3.22 (s, 2H, CH2).  Anal.calcd for C45H42N2O8.4 H2O: C 66.59; H 5.22; N 3.45 

%, found: C 66.68; H 5.38; N 3.27%. 

 

6.1.3.7. 1,3-bis-[3,5-bis(3,4-Dimethoxybenzylidene)-4-oxo-piperidin-1yl]propane-1,3-dione (8g) 

Yield: 65 %; mp (chloroform/methanol) >300 
o
C; 

1
H NMR (500 MHz, DMSO-d6): δ 7.86(s, 4H, 

4×=CH), 7.17 (s, 4H, Ar-H),  7.13 (s, 8H, Ar-H), 4.54 (s, 8H, 4×NCH2), 3.84 (d, J=7.27 Hz, 

24H, 8×OCH3), 3.48 (s, 2H, CH2). Anal.calcd for C49H50N2O12.7 H2O: C 59.69; H 6.54; N 2.84 

%, found: C 59.82; H 6.18; N 2.71%. 

 

6.1.3.8.   1, 3-bis-[3,5-bis(3,4,5-Trimethoxybenzylidene)-4-oxo-piperidin-1yl]propane-1,3-dione 

(8h) 

Yield: 53%; mp (chloroform/methanol) 115 
o
C; 

1
H NMR (500 MHz, CDCl3): δ 7.78(s, 2H, 

2×=CH), 7.74 (s, 2H, 2×=CH),  6.72 (s, 4H, Ar-H), 6.58 (s, 4H, Ar-H), 4.96 (s, 4H, 2×NCH2), 

4.90 (s, 4H, 2×NCH2), 3.92 (d, J=15.37 Hz, 30H, 10×OCH3), 3.86 (s, 6H, 2×OCH3), 3.37 (s, 2H, 

CH2). Anal.calcd for C53H58N2O16.H2O: C 63.83; H 6.07; N 2.81 %, found: C 63.84; H 6.27; N 

2.51%. 
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6.1.3.9. 1, 3-bis-[3, 5-bis{4-(N,N-Dimethylamino)benzylidene}-4-oxo-piperidin-1yl]propane-1,3-

dione (8i) 

Yield: 42%; mp (chloroform/methanol) >300 
o
C; 

1
H NMR (500 MHz, CDCl3): δ 7.78(s, 4H, 

4×=CH), 7.36 (d, J=8.64 Hz, 8H, Ar-H),  6.73 (d, J=8.70 Hz, 8H, Ar-H), 4.21(s, 8H, 4×NCH2), 

3.05 (s, 26H, 8×NCH3 and CH2). Anal.calcd for C49H54N6O4.1.5 H2O: C 71.88; H 7.02; N 10.61 

%, found: C 71.59; H 7.28; N 10.78 %. 

 

6.1.3.10. 1,3-bis-[3,5-bis(4-Hydroxybenzylidene)-4-oxo-piperidin-1yl]propane-1,3-dione (8j) 

Yield: 56%; mp (chloroform/ethanol) >300 
o
C; 

1
H NMR (500 MHz, DMSO-d6): δ 7.64(s, 2H, 

2×=CH), 7.60 (s, 2H, 2×=CH),  7.57 (d, J=11.46 Hz, 4H, Ar-H), 7.54 (d, J=7.60 Hz, 4H, Ar-H), 

7.49 (q, 8H, Ar-H), 4.62 (d, 8H, J=10.15 Hz, 4×NCH2), 3.51 (s, 2H, CH2). Anal.calcd for 

C41H34N2O8.4.5 H2O: C 64.46; H 5.68; N 3.67 %, found: C 64.59; H 5.31; N 3.59%. 

 

6.1.4. Synthesis of 1,3-bis-[3,5-bis(benzylidene)-4-oxo-piperidin-1yl]propane (9) 

A mixture of 3,5-bis(benzylidene)-4-piperidone 6a (0.004 mol, 1 gm), 1,3-

dibromopropane (0.002 mol,  0.41gm), potassium carbonate (0.002, 0.28gm) and a catalytic 

amount of potassium iodide (10mg) in acetonitrile (30 ml) was heated at reflux temperature for 

6-7 hrs. A further quantities of 1,3-dibromopropane (0.001 mol, 0.2 gm) added and the reaction 

continued for another 3-4 hrs. The completion of the reaction was monitored by TLC (solvent: 

chloroform-methanol 98:2). After the reaction was complete, the solvent was removed under 

reduced pressure at 45 
o
C.  An aqueous solution of potassium carbonate (25 mL, 10% w/v) was 

added to the crude mass and stirred for 2h. The solid obtained was filtered, dried, and 

crystallized from acetone to yield pure product. Yield: 63 %; mp (acetone) 135 
o
C; 

1
H NMR 

(500 MHz, CDCl3): δ 7.81(s, 4H, 4×=CH), 7.39 (m, 20H, Ar-H), 3.78 (s, 8H, 4×NCH2), 2.54 (t, 

4H, 2×NCH2), 1.60 (p, 2H, CH2). Anal.calcd for C41H38N2O2: C 83.36; H 6.48; N 4.74 %, found: 

C 83.74; H 6.79; N 5.05%. 

6.2. Biology  

6.2.1. Cell culture  

Phosphate buffered saline (PBS), pH 7.8, versene, and trypsin (2.5%) was obtained from 

Invitrogen Inc. (Burlington, ON, Canada). Fetal bovine serum was purchased from Fisher 

scientific (Toronto, ON, Canada). McCoy’s 5A medium (ATCC cat No: 30-2007) was purchased 
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from the ATCC (American Type Culture Collection, Rockville, USA). The penicillin-

streptomycin antibiotic solution and all other chemicals unless otherwise indicated were 

purchased from Sigma (Oakville, ON, Canada). MilliQ water was obtained from a MilliQ water 

purification system (Millipore, MA, USA). Dr. Keith Bonham, Saskatoon Cancer Center, 

Saskatoon kindly gifted the HCT-116 and HT-29 colon cancer cell lines. The HCT-116 and HT-

29 cell lines were subcultured in McCoy’s 5A medium (ATCC cat No: 30-2007) supplemented 

with 10% fetal bovine serum and 1% penicillin-streptomycin antibiotic solution. The cells were 

grown in an atmosphere of 95% O2 and 5% CO2 with 95% humidity.  

 

6.2.2. Cytotoxicity assay 

The cytotoxicity of the compounds 7-9, 5-fluorouracil and curcumin were determined using the 

sulforhodamine B assay as reported previously [27,28]. The cells were harvested using 0.25 % 

trypsin in versene and the cell count was determined using the  trypan blue exclusion method. In 

a 96-well plate, about 5×10
3
 cells in 100 μL of complete media was plated per well and allowed 

to grow for 24 hours. An aliquot of 100 μL of media containing a range of different 

concentrations of the test compounds and 1% DMSO (control) were added and incubated for 48 

hours. The cells were fixed by adding 50 μL of 50% w/v aqueous trichloroacetic acid to each 

well and incubated at 4°C for one hour. To obtain the cell numbers at zero time point (Tz), a 

plate was fixed at the time of treatment of the cells with a solution of the test compound. The 

plates were rinsed with tap water four times and air dried. The fixed cells were stained with 0.4% 

w/v sulforhodamine in 1% v/v acetic acid for 10 minutes and washed four times with 1% v/v 

acetic acid and air dried. The dye was re-dissolved in 200 μL of 10 mM Trizma base and the 

absorbance read at 515 nm. The percent growth was calculated as per the equation below. The 

IC50 values were derived by fitting a four-parameter curve into the percent cell growth versus log 

concentration data using GraphPad Prism 5.0 for windows (GraphPad Software, San Diego, 

California, USA). 

 

6.2.3. Apoptosis assay 

Apoptosis assay was conducted using Annexin V-FITC apoptosis detection kit (Biovision; 

Catalogue No: ALX-850-250-KI02) as per the suggested protocol. HCT116 cells were grown in 
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McCoys’5A Modified media (ATCC) supplemented with 10% fetal bovine serum (Fisher 

Scientific) and 1% antibiotic-antimycotic solution (Sigma) in a humidified incubator at 37°C 

with 5% CO2. About 1.5×10
3
 cells/well were seeded in 6 well plates and left for 24 hrs at 37

o
C 

following which the cells were treated with a solution of 2f in DMSO and further diluted to a 

final concentration of 1% in the well. Apoptotic cell death was examined at different time points 

1, 5, 11, 24 and 48 hrs and compared against untreated cells. The cells were collected by 

trypsinization (0.2% Trypsin-EDTA) followed by centrifugation for 5 minutes at 1000g at 4°C. 

The pallet was washed with 1ml of 1X PBS, resuspended in 500 microlitres of 1X binding buffer 

and treated with 5 microlitres of Annexin V-FITC (fluorescein isothiocyanate labeled annexin V) 

and 5 microlitre of propidium iodide. After incubating the samples in the dark for 5 mins at room 

temperature, apoptotic cell death was detected by a fluorescence-activated cell sorter (FACS) 

and analyzed by CellQuest (Becton-Dickinson) software. 

 

Acknowledgements 

This study was funded by a CIHR-RPP Saskatchewan grant to J. R Dimmock and U. Das.  

 

References 

1. A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, D. Forman, CA Cancer J. Clin. 61 

(2011) 69-90. 

2.  R.S. Rapaka, P.M. Coates, Life Sci. 78 (2006) 2026-2032. 

3. S. Shishodia, G. Sethi, B. B. Aggarwal,  Ann. N. Y. Acad. Sci. 1056 (2005) 206–217.   

4. M. Cruz-Correa, D. A. Shoskes, P. Sanchez, R. Zhao, L. M. Hylind, S. D. Wexner, F.M. 

Giardiello, Clin. Gastroenterol. Hepatol. 4 (2006)1035–1038. 

5. S. Reddy, A. K. Rishi, H. Xu, E. Levi, F.H. Sarkar, A.P. Majumdar, Nutr. Cancer 55 

(2006)185–194. 

6. Y. Kwon, B. A. Magnuson, Scand. J. Gastroenterol. 42 (2007) 72–80. 

7. S. R. Volate, D. M. Davenport, S. J. Muga, M. J. Wargovich, Carcinogenesis 26 (2005) 

1450–1456. 

8. B. A. Narayanan, Curr. Cancer Drug Targets 6 (2006) 711–727. 

9. B. M. Markaverich, T. H. Schauweker, R. R. Gregory, M. Varma, F. S. Kittrell, D. Medina, 

R. S. Rajender, Cancer Res. 52 (1992) 2482–2488. 



138 

 

10. B. K. Adams, E. M. Ferstl, M. C. Davis, M. Herold, S. Kurtkaya, R. F. Camalier, M. G. 

Hollingshead, G. Kaur, E. A. Sausville, F. R. Rickles, J. P. Snyder, D. C. Liotta, M. Shoji, 

Bioorg. Med. Chem. 12 (2004) 3871–3883. 

11. J. R. Dimmock, U. Das, H. I. Gul, M. Kawase, H. Sakagami, Z. Bar´ath, I. Ocsovsky,and J. 

Moln´ar, Bioorg. Med. Chem. Lett. 15 (2005) 1633–1636. 

12. H. N. Pati, U. Das, R. K. Sharma, J. R. Dimmock, Mini-Rev. Med. Chem. 7(2007)131-139. 

13. E. X. Chen, M. J. Moore, in Principles of Medical Pharmacology, 7th Ed. (Eds: H. Kalant, D. 

M. Grant, J. Mitchell), Elsevier Canada, Toronto, 2007, p. 778. 

14. U. Das, R. K. Sharma, J. R. Dimmock, Curr. Med. Chem. 16 (2009) 2001-2020. 

15. M. Galanski, B.K. Keppler, Anti-Cancer Agents Med. Chem. 7 (2007) 55-73. 

16. L.M. Espinoza-Fonseca, Bioorg. Med. Chem. 14 (2006) 896-897. 

17. U. Das, H. N. Pati, H. Sakagami, K. Hashimoto, M. Kawase, J. Balzarini, E. De Clercq, J.R. 

Dimmock, J. Med. Chem. 54 (2011) 3445-3449. 

18. S. Das, U. Das, P. Selvakumar, R.K. Sharma, J. Balzarini, E. De Clercq, J. Molnár, J. Serby, 

Z. Baráth, G. Schatte, B. Bandy, D. K. J. Gorecki, J. R. Dimmock, ChemMedChem. 4 (2009) 

1831-1840. 

19. J. R. Dimmock, M.P. Padmanilayam, R.N. Puthucode, A. J. Nazarali, N. L. Motaganahalli, 

G. A. Zello, J. W. Quail, E. O. Oloo, H.B. Kraatz, J. A. Prisciak, T. M. Allen, C. L. Santos, J. 

Balzarini, E. De Clercq, E. K. Manavathu, J. Med. Chem. 44(2001) 586-593. 

20. H. N. Pati, U. Das, J. W. Quail, M. Kawase, H. Sakagami, J. R. Dimmock, Eur. J. Med. 

Chem. 43 (2008) 1-7. 

21. G. Chen, D. J. Waxman, Biochem. Pharmacol. 47 (1994) 1079-1087. 

22. K. Tsutsui, C. Komuro, K. Ono, T. Nishidia, Y. Shibamoto, M. Takahashi, M. Abe, Int. J. 

Radiat. Oncol. Biol. Phys. 12 (1986) 1183–1186. 

23. J. R. Dimmock, V. K. Arora, S. L.  Wonko, N.W. Hamon, J. W. Quail, Z. Jia, R. C. 

Warrington, W.D. Fang, J. S. Lee, Drug Des. Deliv. 6 (1990) 183-194. 

24. S. Das, U. Das, A. Varela-Ramírez, C. Lema, R. J. Aguilera,  J. Balzarini, E. De Clercq,   S. 

G. Dimmock, D. K. J. Gorecki, J. R. Dimmock, ChemMedChem 6 (2011) 1892-1899. 

25. S. Das, U. Das, H. Sakagami, N. Umemura, S. Iwamoto, T. Matsuta, M. Kawase, J. Molnár, 

J. Serly, D. K. J. Gorecki, J. R. Dimmock, Eur. J. Med. Chem. (2012) (published online, 

DOI:10.1016/j.ejmech.2012.02.042). 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Dimmock%20JR%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Arora%20VK%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Wonko%20SL%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Hamon%20NW%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Quail%20JW%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Jia%20Z%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Warrington%20RC%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Fang%20WD%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Lee%20JS%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=Dimmock%2C%20Drug%20Des%20Deliv%201990%2C%206%2C%20183


139 

 

26. P. Lagisetty, D. R. Powell, V. Awashthi, J. Mol. Struct. 936 (2009) 23–28. 

27. P. Skehan, R. Storeng, D. Scudiero, A. Monks, J. McMahon, D. Vistica, J. T. Warren, H. 

Bokesch, S. Kenney, M. R. Boyd, J. Natl. Cancer Inst. 82 (1990) 1107-1112. 

28. V. Vichai, K. Kirtikara, Nat. Protoc. 1 (2006) 1112-1116. 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Skehan%20P%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Storeng%20R%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Scudiero%20D%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Monks%20A%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22McMahon%20J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Vistica%20D%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Warren%20JT%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Bokesch%20H%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Kenney%20S%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Boyd%20MR%22%5BAuthor%5D


 

140 

 

CHAPTER 6 

 

Chapter 6 consists of copies of three articles: one published in the European Journal of Medicinal 

Chemistry in 2009*†, another in Die Pharmazie 2008**
$
, and the last one in Bioorganic and 

Medicinal Chemistry Letters***# 

Relation of Chapter 6 to the objectives of this project 

The objectives are to investigate the cytotoxic properties of a number of 1,5-diaryl-3-oxo-

1,4-pentadienes possessing piperidine and cyclohexane rings and to evaluate the effect of 

representative potent cytotoxic molecules on rat liver mitochondria. The question to be addressed 

is whether cytotoxicity shown by these molecules includes targeting mitochondria.  

Description 

A number of structurally divergent molecules were developed as cytotoxic agents that 

includes: Part A. 2,4-bis(Benzylidene)-8-methyl-8-azabicyclo[3.2.1]octan-3-ones (2) and 3,5 

bis(benzylidene)-1-methyl-4-piperidones (3), Part B. 2-Benzylidene-6-(nitrobenzylidene)- 

cyclohexanones (1-3), and Part C. 1-[4-(2-Diethylaminoethoxy)phenylcarbonyl]-3,5-bis- 

(benzylidene)-4-piperidones (2) and their  methiodide analogs (3).  A number of representative 

potent cytotoxic molecules from Part A (2a and 2d) and Part B (1d, 2d and 3d) were evaluated 

for their effect on respiration and swelling in rat liver mitochondria. In Part C, the molecules are 

positively charged quaternized methiodide enones 3 and their corresponding free bases 2 which 

were evaluated for their effect on mitochondrial functions. Owing to the negative membrane 

potential of mitochondria, the positively charged cytotoxic compounds are of great interest in 

mitochondria targeted chemotherapy.  

Author Contributions 

My contributions to the Eur. J. Med. Chem, Bioorg. Med. Chem. and Die Pharmazie 

publications were the evaluation of the compounds for their effect on mitochondrial functions 

such as respiration and swelling.  The coauthors on these papers are U. Das, who synthesized 

some the compounds, supervised the synthesis of other compounds and undertook the QSAR and 

molecular modeling studies, H. N. Pati and A. Doroudi undertook the synthesis of some of the 

compounds, E. De Clercq and J. Balzarini supervised the cytotoxic assays against human Molt 

4/C8 and CEM T-lymphocytes and murine leukemic L1210 cells, H. Sakagami and M. Kawase 

supervised the selective toxicity studies against some malignant and non-malignant cell lines, B. 
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Bandy supervised the mitochondrial work,  J. W. Quail elucidated the X-ray crystal structure of 

2e in Part A and J. P. Stables supervised the short term toxicity of compounds in rodents in the 

Eur. J. Med. Chem. publication , and this project was supervised and guided by J. R. Dimmock 

and D. K. J. Gorecki.  

______________________________________________________________ 

* Reproduced with permission from the European Journal of Medicinal Chemistry © 2008 

Elsvier B.V. 

† 
Pati  et al. Eur. J. Med. Chem. 2009, 44, 54-62. 

** Reproduced with permission from Pharmazie. © 2008.  

$ 
Das et al. Pharmazie 2008, 63, 827-829. 

*** Reproduced with permission from the Bioorganic and Medicinal Chemistry. © 2008 Elsvier 

Ltd. 

# 
Das et al.  Bioorg. Med. Chem. 2008, 16, 6261-6268. 
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Abstract—Three series of structurally isomeric 2-benzylidene-6-(nitrobenzylidene) cyclohexanones 1–3 were prepared and evaluated
against human Molt/C8 and CEM T-lymphocytes as well as murine L1210 cells. The IC50 values of the majority of compounds are
less than 10 lM and in some assays, the figures for 1d and 1e are submicromolar. Correlations were discerned between cytotoxic
potencies and the atomic charges on one of the olefinic carbon atoms, the torsion angles between an aryl ring, and the adjacent
unsaturated group as well as logP values. Three representative compounds were examined for their effect on respiration in rat liver
mitochondria.
� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The principal interest in our laboratory is the syntheses
of a variety of conjugated styryl ketones as candidate
antineoplastic agents. These compounds are thiol alky-
lators having little or no capacity to interact with amino
or hydroxy groups1,2; since these latter groups, but not
thiols, are found in nucleic acids, enones may be devoid
of the genotoxic problems displayed by a number of
anticancer drugs.3 Recently molecules have been de-
signed to enable successive alkylation of thiols to occur
since on occasion sequential reactions with cellular con-
stituents have been claimed to be more detrimental to
malignant cells than the corresponding normal tissues.4

These considerations led to the decision to prepare a
number of compounds which contain the 1,5-diaryl-3-
oxo-1,4-pentadienyl pharmacophore (ArCH@CR–CO–
CR@CHAr)5,6 thereby allowing stepwise alkylation of
cellular thiols. Recently a small number of 2,6-bis(ben-
zylidene) cyclohexanones were prepared in which the
0968-0896/$ - see front matter � 2008 Elsevier Ltd. All rights reserved.

doi:10.1016/j.bmc.2008.04.029

Keywords: Unsaturated ketones; Molecular modeling; Cytotoxicity;

Mitochondria.
* Corresponding author. Tel.: +1 306 966 6331; fax: +1 306 966

6377; e-mail: jr.dimmock@usask.ca
� Present address: School of Pharmacy, Ahwaz Jondishapur Univer-

sity of Medical Sciences, Ahwaz, Khouzestan, Iran.
substituents in each of the aryl rings differed in their
electronic properties.7,8 In these molecules, the charges
on the olefinic carbon atoms are predicted to be diver-
gent thereby enhancing sequential reactions.

The objectives of the present study were twofold. First,
an evaluation was planned of the hypotheses that cyto-
toxic potencies were correlated with both the charge
densities and the steric environment of the olefinic car-
bon atoms. Second, the original series consisted of a
small group of compounds which possessed widely dif-
fering potencies in the Molt 4/C8, CEM, and L1210 bio-
assays.8 Hence expansion of the cluster of compounds
was indicated in order to draw meaningful conclusions
pertaining to those structural features which contribute
to cytotoxicity.

In ring A of series 1, the strongly electron-attracting 2-
nitro group was proposed which should cause the ole-
finic carbon atoms, designated CA and CB as indicated
in Figure 1, to be electron deficient thereby enhancing
thiol alkylation. Substituents with varying Hammett sig-
ma (r) values were considered for insertion onto ring B,
including the 3,4,5-trimethoxy group due to our recent
disclosure of the cytotoxicity of compounds containing
the 3-(3,4,5-trimethoxyphenyl)-2-propenoyl substitu-
ent.9 In addition, the rate of electrophilic attack with
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1a-g: R1= 2-NO2

2a-g: R1= 3-NO2

3a-g: R1= 4-NO2

O

AR1

4a: R1= 2-NO2

4b: R1= 3-NO2

4c: R1= 4-NO2

θΑ θΒCA CB

1-3 4

CAθΑ

Figure 1. General structures of series 1–4. The R2, R3, and R4

substituents in series 1–3 are as follows, namely a: R2 = R4 = H,

R3 = N(CH3)2; b: R2 = R4 = H, R3 = OCH3; c: R2 = R4 = H,

R3 = CH3; d: R2 = R3 = R4 = OCH3; e: R2 = R3 = R4 = H; f:

R2 = R4 = H, R3 = F; g: R2 = R4 = H, R3 = Cl.
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thiols will be influenced by the topography of the mole-
cules in the environment of the CA and CB atoms. Hence
the determination of the torsion angles hA and hB cre-
ated between the aryl rings A and B with the adjacent
olefinic carbon atoms was suggested. Such consider-
ations led to the decision to prepare series 1. In order
for these hypotheses to be examined further, the place-
ment of the nitro group in other locations of ring A
was planned leading to series 2 and 3. In addition, to as-
sist in the understanding of those structural features in
series 1–3 which contribute to cytotoxic potencies, the
O CHO

R

+

O

R = CH3

R= N(CH3)2

O

CH3

ONO2

6

5

v

1c

O

O

R1

N

OO
O2N viiiix

4b

i

R

CHO

R3

+
R4 R2

4a-c

vi

Scheme 1. Synthetic chemical routes in the preparation of the compounds in

NO2C6H4CHO; (iv) NaOH/3-NO 2C6H4CHO; (v) NaOH/2–NO2C6H4CH

CH3C6H4SO2OH; (ix) 3-NO2C6H4CHO.
monobenzylidene analogs 4a–c were also proposed.
The general structures of these compounds are presented
in Figure 1.
2. Results

The compounds in series 1–4 were prepared by the
synthetic routes outlined in Scheme 1. The majority
of the bis(benzylidene)cyclohexanones were prepared
by condensation of 4a, 4b, or 4c with various aryl
aldehydes under acidic conditions. However, attempts
to use this procedure in the preparation of 1a, 1c,
2a, and 3a led to the formation of dark polymeric
material from which no products were obtained. Un-
der basic conditions, 2-(4-dimethylaminobenzylidene)
cyclohexanone 5 and the related 4-methyl analog 6 re-
acted with the appropriate nitrobenzaldehyde to afford
1c and 2a. However under these conditions, reaction
of 5 with both 2-nitrobenzaldehyde and 4-nitroarylal-
dehydes led to the formation of multiple products
but under acidic conditions, both 1a and 3a were
formed. Initial attempts to prepare 4a–c from cyclo-
hexanone and the relevant nitrobenzaldehyde under
acidic conditions led to isolation of the corresponding
2,6-bis(nitrobenzylidene)cyclohexanones. In the pres-
ence of sodium hydroxide solution, the 2-nitro and
N

O

N
R1ii, iii

CH3

O

N

O2N

1a: R1= 2-NO2

3a: R1= 4-NO2iv

2a

OOH

R1i v,vii

4a: R1= 2-NO2

4c: R1= 4-NO2

O

1

O

R1

R2

R3

R4

1b, d-g: R1= 2-NO2

 2b-g: R1= 3-NO2

 3b-g: R1= 4-NO2

series 1–4. Reagents: (i) NaOH; (ii) HCl/2-NO2C6H4CHO; (iii) HCl/4-

O; (vi) HCl; (vii) NaOH/4-NO2C6H4CHO; (viii) morpholine/4-
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4-nitro benzaldehydes condensed with cyclohexanone
to produce the intermediate aldols which were dehy-
drated by acid to give 4a and 4c, respectively.
Under basic conditions, the 3-nitroaldehyde gave only
2,6-bis(3-nitrobenzylidene)cyclohexanone. Hence 4b
was prepared via the enamine route as illustrated in
Scheme 1. 1H NMR spectroscopy revealed that each
of the products in series 1–4 was isomerically pure.
The absorptions of the olefinic protons were in the
region of 7.47–7.97 ppm which is characteristic of E
isomers, since compounds possessing the Z configura-
tion absorb at higher fields.10 Furthermore, X-ray
crystallography revealed that the olefinic double bonds
adopted the E configuration in 3c11 and 3f12 as well as
a related 2,6-bis(benzylidene)cyclohexanone.13 The
assumption was made therefore that the olefinic bonds
in series 1–4 adopted the E configuration. Models of
the compounds in series 1–4 were built and the charge
densities of the CA and CB atoms as well as the tor-
sion angles hA and hB were determined and are pre-
sented in Table 2. In addition, the logP values of
all of the compounds were obtained and are portrayed
in Table 2.

All the compounds in series 1–4 were evaluated against
human Molt 4/C8 and CEM T-lymphocytes and murine
L1210 lymphoid leukemia cells. These data are summa-
rized in Table 1. The effect of representative compounds
on respiration in mitochondria isolated from rat liver
cells is presented in Figure 2.
Table 1. Cytotoxic properties of compounds 1–4

Compound IC50
a (lM)

Molt 4/C8 CEM L1210

1a 122 ± 6 168 ± 36 164± 27

1b 8.90±0.20 7.45±0.08 42.4±1.3

1c 7.52±0.45 6.09±2.12 7.77±0.45

1d 0.702±0.22 0.402±0.033 1.52±0.29

1e 1.48±0.11 0.925±0.056 4.84±0.40

1f 1.87±0.06 1.51±0.04 8.40±0.13

1g 3.86±1.00 1.75±0.14 9.38±0.47

2a 10.9±0.8 11.7±0.8 156±134

2b 7.98±0.54 8.22±0.12 29.5±9.8

2c 9.53±1.23 10.1±0.6 41.8±3.7

2d 44.0± 2.7 45.2±7.5 42.2±3.3

2e 1.70±0.42 2.29±0.75 9.44±1.07

2f 5.12±2.31 5.05±3.02 16.3±0.3

2g 2.02±0.28 1.75±0.00 9.16±0.87

3a >500 >500 >500

3bb 300±54 250±6 240±8

3c 8.44±0.49 8.53±0.31 8.16±0.35

3db 6.42±1.07 4.61±3.89 6.97±1.80

3e 8.35±0.95 9.32±0.20 9.80±0.18

3f 17.1±4.6 18.6±6.9 26.8±2.8

3gb 9.12±0.28 8.18±0.20 9.41±0.97

4a 33.3±3.1 36.4±1.3 23.8±12.4

4b 8.28±0.69 8.12±0.92 50.1±10.4

4c 13.9±1.0 19.3±1.5 46.5±9.1

Melphalanb 3.24 ±0.79 2.47 ± 0.30 2.13±0.03

a The IC50 values indicate the concentrations of compounds required

to inhibit the growth of the cells by 50%.
b The data were previously reported in Ref. 8 [copyright (2006) by

Elsevier].
3. Discussion

The bioevaluations of 1a–g, 2a–g, 3a–g, and 4a–c toward
three cell lines are presented in Table 1. The IC50 values
of 1d and 1e are submicromolar in some of the bioassays
and 58% of the IC50 values were less than 10 lM. In
view of these promising results, various studies were ini-
tiated to seek correlations between cytotoxic potencies
and different physicochemical and biochemical parame-
ters of these molecules with the aim of obtaining guide-
lines for expansion of this project.
Table 2. Some physicochemical properties of compounds 1–4

Compound Atomic chargesa Torsion anglesb logP

qA qB hA hB

1a �0.086 �0.032 76.79 �51.12 4.80

1b �0.081 �0.041 76.76 �51.27 4.76

1c �0.082 �0.047 �76.83 51.58 5.15

1d �0.092 �0.053 76.90 �51.53 4.33

1e �0.133 �0.055 76.59 �51.86 4.70

1f �0.130 �0.058 �76.79 51.55 4.86

1g �0.130 �0.061 �76.84 51.72 5.38

2a �0.093 �0.028 �51.30 50.72 5.01

2b �0.089 �0.042 �51.28 51.12 4.96

2c �0.083 �0.045 �51.27 51.42 5.35

2d �0.079 �0.053 �51.32 51.83 4.53

2e �0.087 �0.053 �51.27 51.56 4.90

2f �0.085 �0.056 �51.25 51.36 5.07

2g �0.084 �0.059 �51.24 51.58 5.58

3a �0.092 �0.022 �51.14 50.98 5.03

3b �0.096 �0.039 �51.11 51.09 4.98

3c �0.089 �0.043 �51.14 51.41 5.38

3d �0.086 �0.053 51.17 �51.86 4.56

3e �0.095 �0.050 �51.14 51.56 4.93

3f �0.092 �0.053 �51.14 51.37 5.09

3g �0.092 �0.056 �51.16 51.57 5.61

4a �0.092 — �69.54 — 2.92

4b �0.083 — �51.50 — 3.12

4c �0.090 — �50.68 3.14

a The atomic charges in esu are the electron densities on the carbon

atoms designated CA and CB in Figure 1.
b hA and hB refer to the torsion angles which are illustrated in Figure 1.
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Table 3. Comparison between the potencies of the bisalkylators 1a–g,

2a–g, and 3a–g with the monobenzylidene analogs 4a, 4b, and 4c,

respectively

Bioassay Comparison of potenciesa

1a–g 4a Equal 2a–g 4b Equal 3a–g 4c Equal

Molt 4/C8 86 14 0 43 29 29 57 29 14

CEM 86 14 0 29 43 29 57 29 14

L1210 71 29 0 57 0 43 71 29 0

Total 81 19 0 43 24 33 62 29 9

a The figures represent the percentage of compounds displaying greater

potency or were equipotent. The standard deviations of the IC50

figures were taken into account when making these comparisons.
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Interactions with cellular thiols are believed to occur at
the olefinic carbon atoms designated CA and CB. The
atomic charges on these atoms in the compounds 1–4
are presented in Table 2. The nitro group in ring A is
the most electron-attracting substituent having a Taft
r* value of 0.9714 (series 1 and 4a) and Hammett r val-
ues of 0.71 (series 2 and 4b) and 0.78 (series 3 and 4c).15

The r constants for the ring B substituents in a–g are
�0.83, �0.27, �0.17, �0.03, 0.00, 0.06, and 0.23, respec-
tively, 16 and are arranged in sequence with a bearing the
most electron-repelling group and g the most electron-
attracting substituent. For each compound in series 1–
3 , the electron densities are lower on the CB rather than
the CA atoms. Thus the polarization of the p electrons in
the conjugated 1,5-diaryl-3-oxo-1,4-pentadienyl group is
toward the nitro substituents, causing the CB atom to
have lower electron densities than CA. Hence thiol alkyl-
ation is predicted to take place initially at CB and subse-
quently at CA. In order to examine whether cytotoxic
potencies are correlated with the electron densities on
the CA and CB atoms, linear plots were made between
these values and the IC50 figures of 1a–g in each of the
three bioassays.This experiment was repeated with 2a–
g and finally with 3a–g. Positive correlations (p < 0.05)
were noted when considering the atomic charges on
the CB atoms except for the Molt 4/C8 and CEM bioda-
ta for series 2. No correlations were noted between the
IC50 figures and the charges on the CA atom (p >
0.05). This evaluation was repeated except that the
IC50 values were plotted against the r constants in ring
B. Negative correlations (p < 0.01) were obtained in all
cases except for 2a–g in the Molt 4/C8 and CEM tests
(p > 0.05). Thus potency increases (IC50 values dimin-
ish) as the electron densities on the CB atom are de-
creased (positive correlation) and the r constants are
elevated (negative correlation). This observation may
be rationalized by considering that attack of cellular thi-
ols at CB will be enhanced by a reduction in the atomic
charges on the CB atoms. Thus in the future, compounds
may be designed having substituents in ring B which
have large positive sigma values.

Consideration was given to the possibility that the steric
environment at the olefinic carbon atoms influences the
extent of thiol alkylation and hence cytotoxic potencies.
Thiolation is believed to occur initially at CB and the hB

values recorded in Table 2 reveal that they are virtually
constant. Thus the average hB values for series 1, 2, and
3 are 51.5�, 51.4�, and 51.4�, respectively, and there are
very small variations in these torsion angles within each
series. Hence the differences in cytotoxic potencies are
unlikely to be influenced by the torsion angles hB. The
average hA angles in series 1, 2, and 3 are 76.8�, 51.3�,
and 51.1�, respectively, and minimal variation of these
torsion angles was noted within each series. Since the
cytotoxic potencies of the compounds in series 1 are
greater than the analogs in series 2 and 3 vide infra,
these torsion angles may influence the magnitude of
the cytostatic effect. Hence in the future, groups with
larger molecular refractivity values than nitro group
should be placed in the 2 position of ring A or two ortho
substituents should be employed which may lead to
more potent analogs. The insertion of a second arylid-
ene ring onto 4a–c leading to series 1–3, respectively,
caused only minimal changes in the CA and hA values
as the data in Table 2 indicate.

The biodata in Table 1 were examined further with a
view to discerning those structural features which influ-
ence cytotoxic potencies. First, the optimal position of
the nitro group in ring A was considered. A point system
of 3 (highest potency), 2, and 1 (lowest potency) was
used in comparing the IC50 values of compounds having
the same substituents in ring B. Thus in the Molt 4/C8
assay, the IC50 figures of 1a, 2a, and 3a were compared,
then 1b, 2b, and 3b and so forth. Standard deviations
were taken into account and when the IC50 values were
statistically indistinguishable, equal points were allo-
cated bearing in mind that for each comparison of three
compounds, a total of six points were invariably
awarded. Use of this methodology indicated that the fig-
ures for series 1, 2, and 3 are 16.5, 16.5, and 9, respec-
tively (Molt 4/C8 assay), 19.5, 13.5, and 9, respectively
(CEM test) and 18, 13, and 11, respectively (L1210
screen). Hence the optimal position of the nitro group
in ring A in terms of potency is the 2 position.

In order to assess whether the compounds in series 1–3,
which permit sequential alkylation to occur, have in-
creased cytotoxic potencies vis-à-vis the analogs in which
this process will not occur (series 4), the IC50 values of1a–g,
2a–g, and 3a–g were compared with those generated for
4a, 4b, and 4c, respectively. The results are summarized
in Table 3. In general, structural modification of 4a, 4b,
and 4c into series 1, 2, and 3, respectively, was accompa-
nied by increases in potencies in all three bioassays except
conversion of 4b into 2a–g did not lead to compounds
with lower IC50 values toward CEM cells.

The rate and extent of the ability of compounds to pen-
etrate the cell membranes of neoplastic and transformed
cells is dependent on a number of structural features
including the lipophilicity of the molecules. The logP
values of the compounds were calculated and are pre-
sented in Table 1. The average logP values for 1a–g,
2a–g, and 3a–g are 4.86, 5.06, and 5.08, respectively,
and hence the lower lipophilicity of the compounds in
series 1 may have contributed to the greater potencies
than the analogs in series 2 and 3. The generally lower
IC50 potencies displayed by the compounds in series 1–
3 than 4a–c also reflect a negative correlation with the
logP values.
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Various compounds which are thiol reagents such as N-
ethylmaleimide and mersalyl interact with different mer-
capto groups in mitochondria.17 Furthermore, a Man-
nich base of a conjugated styryl ketone inhibited
respiration in rat liver mitochondria and the mode of ac-
tion, at least in part, was based on competition with the
conjugated unsaturated ketone coenzyme Q10.18 Thus
the decision was made to determine whether representa-
tive compounds interfered with respiration in mitochon-
dria isolated from rat liver cells, and if so whether the
magnitude of this effect correlated with cytotoxic poten-
cies. Three related compounds, namely, 1d, 2d, and 3d,
were chosen since they possessed markedly different
potencies having average IC50 figures of 0.88, 43.8,
and 6.00 lM, respectively, in the three cytotoxicity
screens. A concentration of 10 lM of each compound
was chosen which is in excess of the IC50 values of 1d
and 3d and substantially below that of 2d. The data in
Figure 2 reveal that 1d and 3d stimulated respiration.
However, the magnitude of the stimulatory effect was
negatively correlated with cytotoxic potencies. The least
potent of these three compounds, namely 2d, had virtu-
ally no effect on respiration. Increasing the concentra-
tion of 2d to 100 lM revealed no statistically
significant difference in stimulation of respiration from
the solvent control (data not shown). Nevertheless if
the causes for the relative cytotoxic potencies observed
in this study are multifactorial, the differences in the ef-
fects on mitochondrial function may have exerted some
contributions to the disparity of IC50 values.
4. Conclusions

A number of novel cytotoxic agents have been prepared,
many of which display good potencies toward Molt 4/
C8, CEM, and L1210 cells. The highest potencies were
displayed by the compounds in series 1 and in particular
1d and 1e are lead molecules having submicromolar IC50

values in some of the assays. Factors which influence
cytotoxic potencies in series 1–3 include the atomic
charges on the CB atoms, the torsion angle hA, and logP
values. Another factor which may have contributed to
the variation in IC50 values is the differences in the ef-
fects on respiration in rat liver mitochondria. A number
of guidelines for amplifying this project have been
proposed.
5. Experimental

5.1. Synthesis of compounds

Melting points in Celsius degrees were determined on a
Gallenkamp apparatus and are uncorrected. 1H NMR
spectra were recorded using a Bruker AMX 500 FT ma-
chine while elemental analyses were obtained using an
Elementer analyzer.

5.1.1. Syntheses of 1a, 2a, and 3a. 2-(4-Dimethylamino-
benzylidene)cyclohexanone 5 was prepared by a re-
ported procedure19 and crystallized from ethanol at 5–
6 �C to give the desired product in 45% yield, mp
130 �C [lit.19] 127–127.5 �C]. 1H NMR (CDCl3): 1.79
(p, 2H), 1.91 (p, 2H), 2.52 (t, 2H), 2.88 (t, 2H), 3.03
(s, 6H, 2· NCH3), 6.71 (d, 2H, Ar–H, J = 8.85 Hz),
7.41 (d, 2H, J = 8.83 Hz), 7.55 (s, 1H, @CH).

Dry hydrogen chloride was passed into a solution of 5
(0.005 mol) and 2-nitrobenzaldehyde (0.005 mol) in ace-
tic acid (15 mL) and the mixture stirred at room tempera-
ture overnight. Acetic acid was removed in vacuo and the
residue triturated with potassium carbonate solution
(10% w/v, 20 mL) and extracted with chloroform. The or-
ganic extract was washed with water and dried. Evapora-
tion of the solvent gave a semisolid which was purified by
chromatography using a column of silica gel 60 (70–
230 mesh) and an eluting solvent of 10–30% ethyl acetate
in hexane to produce 1a, mp 152 �C in 41% yield. 1H
NMR (CDCl3): d 1.79 (p, 2H), 2.60 (t, 2H), 2.96 (t, 2H),
3.05 (s, 6H, 2· N(CH3)2), 6.73 (d, 2H, Ar–H, J = 8.80
Hz), 7.38 (d, 1H, Ar–H, J = 7.60 Hz), 7.49 (m, 3H, Ar–
H), 7.64 (t, 1H, Ar–H), 7.84 (s, 1H, @CH), 7.95 (s, 1H,
@CH), 8.13 (d, 1H, Ar–H, J = 8.20 Hz). Anal. Calcd
for C22H22N2O3: C, 72.91; H, 6.12; N, 7.73. Found: C,
72.62; H, 5.98; N, 7.53%.

Aqueous sodium hydroxide solution (20% w/v, 1 mL)
was added to a solution of 5 (0.005 mol) and 3-nitro-
benzaldehyde (0.005 mol) in ethanol (15 mL) at 8–
10 �C. The solution was stirred at room temperature
for 0.5 h. The resultant precipitate was collected, washed
with water (3· 15 mL), dried and crystallized from chlo-
roform/ethanol (1:9) to give 2a, mp 169 �C in 68% yield.
1H NMR (CDCl3): d 1.86 (p, 2H), 2.93 (t, 2H), 3.01 (t,
2H), 3.07 (s, 6H, 2· N(CH3)2), 6.75 (d, 2H, Ar–H,
J = 8.84 Hz), 7.50 (d, 2H, Ar–H, J = 8.82Hz), 7.60 (t,
1H, Ar–H), 7.76 (d, 1H, Ar–H, J = 7.7 Hz), 7.79 (s,
1H, @CH), 7.84 (s, 1H, @CH), 8.20 (d, 1H, Ar–H,
J = 8.18 Hz), 8.32 (s, 1H, Ar–H). Anal. Calcd for
C22H22N2O3: C, 72.91; H, 6.12; N, 7.73. Found: C,
72.87; H, 6.0; N, 7.46%.

Dry hydrogen chloride was passed into a solution of 5
(0.005 mol) and 4-nitrobenzaldehyde (0.005 mol) in ace-
tic acid (15 mL) and the mixture was stirred overnight at
room temperature. The precipitate was collected, washed
with diethyl ether (2· 10 mL), and potassium carbonate
solution (10% w/v, 30 mL). The solid obtained was
washed with water (3· 10 mL), dried and crystallized
from chloroform/ethanol (1:9) to give 3a, mp 91–92 �C
in 66% yield. 1H NMR (CDCl3): d 1.86 (p, 2H), 2.91 (t,
2H), 3.0 (t, 2H), 3.07 (s, 6H, 2· N(CH3)2), 6.75 (d, 2H,
Ar–H, J = 8.84 Hz), 7.50 (d, 2H, Ar–H, J = 8.84 Hz),
7.60 (d, 2H, Ar–H, J = 8.63 Hz), 7.79 (s, 1H, @CH),
7.84 (s, 1H, @CH), 8.27 (d, 2H, Ar–H, J = 8.65 Hz).
Anal. Calcd for C22H22N2O3: C, 72.91; H, 6.12; N, 7.73.
Found: C, 72.94; H, 6.13; N, 7.52%.

5.1.2. Synthesis of 1c. 2-(4-Methylbenzylidene)cyclohex-
anone 6 was prepared by a literature procedure20 and
crystallized from methanol to give 6, mp 71 �C [lit.20

mp 60 �C] in 40% yield. 1H NMR (CDCl3): 1.78 (p,
2H), 1.92 (m, 2H), 2.38 (s, 3H, CH3), 2.53 (t, 2H),
2.86 (t, 2H), 7.21 (d, 2H, Ar–H, J = 7.90 Hz), 7.32 (d,
2H, Ar–H, J = 7.96 Hz), 7.50 (s, 1H, @CH).
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Aqueous sodium hydroxide solution (20% w/v, 1 mL)
was added to a solution of 6 (0.005 mol) and 2-nitro-
benzaldehyde (0.005 mol) in ethanol (15 mL) at 8–
10 �C. The solution was stirred at room temperature
for 0.5 h. The reaction mixture was acidified with di-
lute hydrochloric acid and extracted with chloroform.
Evaporation of the organic solvent gave a viscous oil
which was purified by chromatography using a col-
umn of silica gel 60 (70–230 mesh) and an eluting sol-
vent of ethyl acetate/hexane (1:9) to give 1c, mp
120 �C in 30% yield. 1H NMR(CDCl3): d 1.78 (p,
2H), 2.40 (s, 3H, CH3), 2.62 (p, 2H), 2.94 (t, 2H),
7.24 (d, 2H, Ar–H, J = 7.94 Hz), 7.39 (t, 3H, Ar–
H), 7.52 (t, 1H, Ar–H), 7.65 (t, 1H, Ar–H), 7.83 (s,
1H, @CH), 7.96 (s, 1H, @CH), 8.14 (d, 1H, Ar–H).
Anal. Calcd for C21H19NO3: C, 75.66; H, 5.74; N,
4.20. Found: C, 75.42; H, 5.71; N, 4.27%.

5.1.3. Synthesis of 1b, d–g, 2b–g, and 3b–g. The enones
1b, d–g , 2b–g, and 3b–g were prepared by the following
general procedure. Dry hydrogen chloride was passed
into a solution of 4a , 4b, or 4c vide infra (0.005 mol)
and the appropriate aryl aldehyde (0.006 mol) in ether
(40 mL) and methanol (4 mL). The reaction mixture
was stirred at room temperature for 24 h and the resul-
tant solid was collected and crystallized from chloro-
form/methanol (1:3).

5.1.3.1. E,E-2-(4-Methoxybenzylidene)-6-(2-nitroben-
zylidene)cyclohexanone (1b). Mp 157 �C; yield 80%. 1H
NMR (CDCl3): d 1.79 (p, 2H), 2.61 (t, 2H), 2.94 (t,
2H), 3.86 (s, 3H, OCH3), 6.98 (d, 2H, Ar–H, J = 8.3
Hz), 7.38 (d, 1H, Ar–H, J = 7.65 Hz), 7.48 (d, 2H, Ar–
H, J = 8.45 Hz), 7.52 (t, 1H, Ar–H), 7.65 (t, 1H, Ar–
H), 7.82 (s, 1H, @CH), 7.96 (s, 1H, @CH), 8.14 (d,
1H, Ar–H, J = 8.20 Hz). Anal. Calcd for C21H19NO4:
C, 72.19; H, 5.48; N, 4.01. Found: C, 71.89; H, 5.53;
N, 3.90%.

5.1.3.2. E,E-2-(3,4,5-Trimethoxybenzylidene)-6-(2-
nitrobenzylidene)cyclohexanone (1d). Mp 159 �C; yield
94%. 1H NMR (CDCl3): d 1.80 (p, 2H), 2.62 (t, 2H),
2.97 (t, 2H), 3.91 (s, 9H, 3· OCH3), 6.73 (s, 2H, Ar–
H), 7.39 (d, 1H, Ar–H, J = 7.60 Hz), 7.52 (t, 1H, Ar–
H), 7.66 (t, 1H, Ar–H), 7.77 (s, 1H, @CH), 7.96 (s,
1H, @CH), 8.14 (d, 1H, Ar–H, J = 8.15 Hz). Anal.
Calcd for C23H23NO6: C, 67.47; H, 5.66; N, 3.42.
Found: C, 67.60; H, 5.61; N, 3.58%.

5.1.3.3. E,E-2-(Benzylidene)-6-(2-nitrobenzylidene)-
cyclohexanone (1e). Mp 116 �C; yield 47%. 1H NMR
(CDCl3): d 1.78 (p, 2H), 2.63 (t, 2H), 2.95 (t, 2H),
7.40 (m, 5H, Ar–H), 6.79 (d, 2H, Ar–H, J = 7.6 Hz),
7.52 (t, 1H, Ar–H), 7.65 (t, 1H, Ar–H), 7.85 (s, 1H,
@CH), 7.97 (s, 1H, @CH), 8.15 (d, 1H, Ar–H,
J = 8.20 Hz). Anal. Calcd for C20H17NO3: C, 75.22,
H, 5.37; N 4.39. Found: C, 74.82; H, 5.26; N, 4.04%.

5.1.3.4. E,E-2-(4-Fluorobenzylidene)-6-(2-nitrobenzyli-
dene)cyclohexanone (1f) . Mp 136 �C; yield 52%. 1H
NMR (CDCl3): d 1.79 (p, 2H), 2.63 (t, 2H), 2.91 (t,
2H), 7.12 (t, 2H, Ar–H), 7.39 (d, 1H, Ar–H, J = 7.65
Hz), 7.47 (q, 2H, Ar–H), 7.52 (t, 1H, Ar–H), 7.65 (t,
1H, Ar–H), 7.80 (s, 1H, @CH), 7.97 (s, 1H, @CH),
8.15 (d, 1H, Ar–H, J = 8.20 Hz). Anal. Calcd for
C20H16FNO3: C, 71.21; H, 4.78; N 4.15. Found: C,
70.93; H, 4.79; N 3.88%.

5.1.3.5. E,E-2-(4-Chlorobenzylidene)-6-(2-nitrobenzyl-
idene)cyclohexanone (1g). Mp 149 �C; yield 41%. 1H
NMR (CDCl3): d 1.79 (p, 2H), 2.63 (t, 2H), 2.84 (t,
2H), 7.40 (m, 5H, Ar–H), 7.53 (t, 1H, Ar–H), 7.66 (t,
1H, Ar–H), 7.77 (s, 1H, @CH), 7.97 (s, 1H, @CH),
8.15 (d, 1H, Ar–H, J = 8.2 Hz). Anal. Calcd for
C20H16ClNO3: C, 67.90; H, 4.56; N, 3.96. Found: C,
67.70; H 4.61; N 3.78%.

5.1.3.6. E,E-2-(4-Methoxybenzylidene)-6-(3-nitroben-
zylidene)cyclohexanone (2b). Mp 114 �C; yield 68%. 1H
NMR (CDCl3): d 1.85 (p, 2H), 2.94 (t, 2H), 2.98 (t,
2H), 6.96 (d, 2H, Ar–H, J = 8.50 Hz), 7.49 (d, 2H, Ar–
H, J = 8.45 Hz), 7.60 (t, 1H, Ar–H), 7.75 (d, 1H, Ar–
H, J = 7.7 Hz), 7.79 (s, 1H, @CH), 7.81 (s, 1H, @CH),
8.19 (d, 1H, Ar–H, J = 8.10 Hz), 8.32 (s, 1H, Ar–H).
Anal. Calcd for C21H19NO4: C, 72.19; H, 5.48; N 4.01.
Found: C, 71.91; H, 5.46; N, 3.90%.

5.1.3.7. E,E-2-(4-Methylbenzylidene)-6-(3-nitrobenzyl-
idene)cyclohexanone (2c) . Mp 156 �C; yield 60%. 1H
NMR (CDCl3): d 1.84 (p, 2H), 2.94 (t, 2H), 2.98 (t,
2H), 7.25 (t, 2H, Ar–H), 7.41 (d, 2H, Ar–H, J = 7.85
Hz), 7.60 (t, 1H, Ar–H), 7.76 (d, 2H, Ar–H,
J = 7.65 Hz), 7.81 (s, 1H, @CH), 7.82 (s, 1H, @CH),
8.20 (d, 1H, Ar–H, J = 8.20 Hz), 8.32 (s, 1H, Ar–H).
Anal. Calcd for C21H19NO3: C, 75.66; H, 5.74; N,
4.20. Found: C, 75.58; H, 5.88; N, 3.92%.

5.1.3.8. E,E-2-(3,4,5-Trimethoxybenzylidene)-6-(3-
nitrobenzylidene)cyclohexanone (2d). Mp 172 �C; yield
82%. 1H NMR (CDCl3): d 1.86 (p, 2H), 2.95 (t, 2H),
3.00 (t, 2H), 3.91 (s, 9H, 3· OCH3), 6.74 (s, 1H, Ar–
H), 7.61 (t, 1H), 7.76 (d, 2H, Ar–H, @CH, J = 7.70
Hz), 7.80 (s, 1H, @CH), 8.21 (d, 1H, Ar–H, J = 8.15
Hz), 8.29 (s, 1H, Ar–H). Anal. Calcd for
C23H23NO6: C, 67.47; H, 5.66; N, 3.42. Found: C,
67.29; H, 5.57; N, 3.30%.

5.1.3.9. E,E-2-(Benzylidene)-6-(3-nitrobenzylidene)-
cyclohexanone (2e). Mp 120 �C; yield 22%. 1H NMR
(CDCl3): d 1.85 (p, 2H), 2.97 (m, 4H), 7.38 (t, 1H,
Ar–H), 7.44 (m, 2H, Ar–H), 7.49 (d, 2H, Ar–H,
J = 7.65 Hz), 7.61 (t, 1H, Ar–H), 7.76 (d, 1H, Ar–H,
J = 7.65 Hz), 7.80 (s, 1H, @CH), 7.84 (s, 1H, @CH),
8.21 (d, 1H, Ar–H, J = 8.25 Hz), 8.33 (s, 1H, Ar–H).
Anal. Calcd for C20H17NO3: C, 75.22, H 5.37; N,
4.39. Found: C, 75.28; H, 5.44; N, 4.28%.

5.1.3.10. E,E-2-(4-Fluorobenzylidene)-6-(3-nitroben-
zylidene)cyclohexanone (2f) . Mp 126 �C; yield 63%. 1H
NMR (CDCl3): d 1.85 (p, 2H), 2.81 (t, 2H), 7.13 (t,
2H, Ar–H), 7.48 (dd, 2H, Ar–H), 7.61 (t, 1H, Ar–H),
7.76 (d, 1H, Ar–H, J = 7.65 Hz), 7.80 (s, 2H, @CH),
8.21 (d, 1H, Ar–H, J = 8.15 Hz), 8.32 (s, 1H, Ar–H).
Anal. Calcd for C20H16FNO3: C, 71.21; H, 4.78; N,
4.15. Found: C, 70.97; H, 4.70; N, 4.08%.
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5.1.3.11. E,E-2-(4-Chlorobenzylidene)-6-(3-nitroben-
zylidene)cyclohexanone (2g). Mp 138 �C; yield 68%. 1H
NMR (CDCl3): d 1.99 (p, 2H), 2.96 (q, 4H), 7.42 (m,
4H), 7.62 (t, 1H), 7.77 (d, 2H, Ar–H & @CH,
J = 8.80 Hz), 7.81 (s, 1H, @CH), 7.84 (s, 1H, @CH),
8.16 (d, 1H, Ar–H, J = 8.16 Hz), 8.34 (s, 1H, Ar–H).
Anal. Calcd for C22H16ClNO3: C, 67.90; H, 4.56; N,
3.96. Found: C, 67.33; H, 4.58; N, 3.84%.

5.1.4. Compounds 3b–g. The synthesis of 3b, d, and g
has been reported previously.8

5.1.4.1. E,E-2-(4-Methylbenzylidene)-6-(4-nitrobenzyl-
idene)cyclohexanone (3c) . Mp 136 �C; yield 54%. 1H
NMR (CDCl3): d 1.84 (p, 2H), 2.41 (s, 3H, CH3), 2.92
(t, 2H), 2.98 (t, 2H), 7.25 (d, 2H, Ar–H, J = 7.8Hz),
7.41 (d, 2H, Ar–H, J = 7.80 Hz), 7.60 (d, 2H, Ar–H,
J = 8.35 Hz), 7.79 (s, 1H, @CH), 7.82 (s, 1H, @CH),
8.27 (d, 2H, Ar–H, J = 8.40 Hz). Anal. Calcd for
C21H19NO3: C, 75.66; H, 5.74; N, 4.20. Found: C,
75.45; H, 5.75; N, 4.13%.

5.1.4.2. E,E-2-(Benzylidene)-6-(4-nitrobenzylidene)cyclo-
hexanone (3e). Mp 141 �C; yield 40%. 1H NMR (CDCl3):
d 1.84 (p, 2H), 2.93 (t, 2H), 2.98 (t, 2H), 7.38 (t, 1H, Ar–
H), 7.44 (t, 1H, Ar–H), 7.49 (d, 2H, Ar–H, J = 7.75
Hz), 7.60 (d, 2H, Ar–H, J = 8.30 Hz), 7.80 (s, 1H,
@CH), 7.84 (s, 1H, @CH), 8.27 (d, 2H, Ar–H,
J = 8.40 Hz). Anal. Calcd for C20H17NO3: C, 75.22; H,
5.37; N, 4.39. Found: C, 75.02; H, 5.29; N, 4.19%.

5.1.4.3. E,E-2-(4-Fluorobenzylidene)-6-(4-nitrobenzyli-
dene)cyclohexanone (3f). Mp 167 �C; yield 33%. 1H
NMR (CDCl3): d 1.85 (p, 2H), 2.94 (t, 4H), 7.13 (t,
2H), 7.48 (t, 2H), 7.60 (d, 2H), 7.79 (s, 2H, @CH),
8.27 (d, 2H, Ar–H, J = 8.5 Hz) Anal. Calcd for
C20H16FNO3: C, 71.21; H, 4.78; N, 4.18. Found: C,
70.88; H, 4.70; N, 4.10%.

5.1.5. Synthesis of 4a. A solution of sodium hydroxide
(0.6 g, 0.015 mol) in water (5 mL) was added dropwise
to a mixture of cyclohexanone (3.0 g, 0.02 mol) and 2-
nitrobenzaldehyde (5.85 g, 0.056 mol) at room temper-
ature for 0.25 h and the stirring was continued for
4 h. The solid was collected, dried, and recrystallized
from chloroform/methanol to yield 2-(a-hydroxy-2-
nitrobenzyl) cyclohexanone (7), mp 126 �C in 28%
yield. 1H NMR (CDCl3): d 1.71 (m, 4H), 2.13 (m,
1H), 2.45 (m, 2H), 2.82 (m, 1H), 4.18 (d, 1H), 5.46
(t, 1H), 7.44 (t, 1H), 7.65 (t, 1H), 7.78 (d, 1H, J =
7.9 Hz), 7.86 (d, 1H, J = 8.15 Hz).

Hydrochloric acid (2 mL) was added to a solution of 7
(10.5 g, 0.045 mol) in ethanol (30 mL) and the reaction
mixture was heated at 40–45 �C for 4 h. The solvent
was removed in vacuo at 40–45 �C and water (100 mL)
was added to the residue. The solid was collected and
dried to give 4a, mp 92 �C in a yield of 64%. 1H NMR
(CDCl3): d 1.75 (p, 2H), 1.95 (p, 2H), 2.54 (t, 2H),
2.58 (t, 2H), 2.58 (t, 2H), 7.33 (d, 1H, Ar–H, J = 7.63
Hz), 7.51 (t, 1H, Ar–H), 7.60 (s, 1H, @CH), 7.64 (t,
2H, Ar–H), 8.12 (d, 1H, Ar–H, J = 8.21Hz). Anal.
Calcd for C13H13NO3: C, 67.52; H, 5.67; N, 6.06.
Found: C, 67.40; H, 5.49; N, 6.29%.

5.1.6. Synthesis of 4b. A solution of cyclohexanone
(4.9 g, 0.05 mol), morpholine (4.75 g, 0.055 mol), 4-tolu-
enesulfonic acid (0.02 g) in toluene (50 mL) was heated
under reflux using a Dean-Stark apparatus until the stoi-
chiometric amount of water separated (�8 h). 3-Nitro-
benzaldehyde (6.8 g, 0.045 mol) was added to the
reaction mixture and heating under reflux was continued
for 12 h. Water (25 mL) was added to the reaction mix-
ture which was heated at 50–55 �C for �1 h. The organic
phase was separated, washed with hydrochloric acid
(5%, 20 mL) and water (3· 50 mL), and dried. Toluene
was removed in vacuo at 50–55 �C to give a viscous oil
which was purified by chromatography using a column
of silica gel 60 (70–230 mesh) and an eluting solvent of
ethyl acetate/hexane (1:9) to give 4b, mp 51–52 �C in
45% yield. 1H NMR(CDCl3): 1.82 (p, 2H), 1.98 (p,
2H), 2.59 (t, 2H), 2.86 (t, 2H), 7.52 (s, 1H, @CH), 7.58
(t, 1H, Ar–H), 7.69 (d, 1H, Ar–H, J = 7.6 Hz), 8.19
(d, 1H, Ar–H, J = 8.15 Hz), 8.25 (s, 1H, Ar–H). Anal.
Calcd for C13H13NO3: C, 67.52; H, 5.67; N, 6.06.
Found: C, 67.30; H, 5.48; N, 6.41%.

5.1.7. Synthesis of 4c. This compound was prepared by a
literature procedure21 to give 4c, mp 119 �C [lit.21] mp
118–120 �C] in 72% yield with respect to 4-nitrobenzal-
dehyde. 1H NMR(CDCl3): 1.82 (p, 2H), 1.98 (p, 2H),
2.59 (t, 2H), 2.83 (m, 2H), 7.47 (s, 1H), 7.53 (d, 2H),
8.25 (d, 2H).

5.2. Molecular modeling

Models of the compounds in series 1–4 were built using a
BioMedCache program.22 The lowest energy conformers
were generated using the CONFLEX program and opti-
mized by mechanics using augmented MM2 parameters.

5.3. Determination of logP values

The logP values for enones 1–4 were generated with the
JME molecular editor.23

5.4. Cytotoxicity assays

A literature procedure was employed to examine the
cytotoxicity of 1a–g , 2a–g , 3a–g , and 4a–c toward hu-
man Molt 4/C8 and CEM T-lymphocytes as well as
murine L1210 cells.24 In brief, different concentrations
of compounds were incubated with the cells in RPMI
1640 medium at 37 �C for 72 h (Molt 4/C8 and CEM
T-lymphocytes) or 48 h (L1210 cells). The correct IC50

values for 4c are presented in Table 1 which replaces
the figures quoted previously.25

5.5. Evaluation of 1d, 2d, and 3d on respiration in rat liver
mitochondria

Rats were anesthetized with isoflurane and decapitated.
A previously reported procedure was employed to iso-
late mitochondria from the liver.26 The consumption
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of oxygen by mitochondria was determined by polarog-
raphy using a literature methodology.27

5.6. Statistical analyses

The linear, semilogarithmic and logarithmic plots were
constructed using a statistical software package.28
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J.; Molnár, J.; Baráth, Z.; Bata, Z.; Dimmock, J. R.
Bioorg. Med. Chem. 2007, 15, 3373–3380.
10. Hassner, A.; Mead, T. C. Tetrahedron 1964, 20, 2201–
2210.

11. Quail, J. W.; Doroudi, A.; Pati, H. N.; Das, U.; Dimmock,
J. R. Acta Cryst. 2005, E61, 1795–1797.

12. Quail, J. W.; Doroudi, A.; Pati, H. N.; Das, U.; Dimmock,
J. R. Acta Cryst. 2005, E61, 1774–1776.

13. Quail, J. W.; Das, U.; Dimmock, J. R. Acta Cryst. 2005,
E61, 1150–1152.

14. Taft, R. W., Jr. In Steric Effects in Medicinal Chemistry;
Newman, M. S., Ed.; John Wiley and Sons, Inc.: New
York, 1956; p 591.

15. Hansch, C.; Leo, A. J. Substituent Constants for Correla-
tion Analysis in Chemistry and Biology; John Wiley and
Sons: New York, 1979, p 49.

16. Hansch, C.; Leo, A. J. Substituent Constants for Correla-
tion Analysis in Chemistry and Biology; John Wiley and
Sons: New York, 1979, pp 49–50.

17. Bryla, J. In Inhibition of Mitochondrial Function; Erec-
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The effect of a number of N-aroyl-3,5-bis(benzylidene)-4-piperidones 2 and related quaternary ammo-
nium compounds 3 on the rates of respiration in rat liver mitochondria were determined. All of the
compounds stimulated respiration and the greatest effect was displayed by the compounds in series 3
which caused swelling of mitochondria.

1. Introduction

3,5-bis(Benzylidene)-4-piperidone (1) displays potent cyto-
toxicity to a number of transformed and neoplastic cell
lines (Dimmock et al. 2001; Das et al. 2007). In addition,
it has excellent antimycobacterial properties (Das et al.
2008). Thus 1 was used as the lead molecule in the simul-
taneous development of further candidate cytotoxins and
antimycobacterials, including the formation of the corre-
sponding N-aroyl derivatives 2a–d and related quaternary
ammonium salts (3a–d) (Das et al. 2007). Most of the
compounds in series 2 and 3 also possess excellent cyto-
toxic and antimycobacterial properties (Das et al. 2007;
Das et al. 2008).

2. Investigations, results and discussion

The aim of the present study was to investigate how these
compounds exert their bioactivities. A possible target orga-
nelle is the mitochondrion for a number of reasons includ-
ing the following considerations. First, respiration in rat
liver mitochondria was stimulated and then inhibited as
the concentrations of an acyclic Mannich base of a conju-
gated arylidene ketone increased (Hamon et al. 1982). The
compounds in series 1–3 are cyclic Mannich bases (3-
aminoketones) of arylidene ketones and hence may affect
mitochondrial respiration in a similar fashion. Second,
some compounds which are structurally related to 1 and 2
stimulate respiration in mitochondria at a low concentra-
tion (10 mM) (Das et al. 2008). Third, some antineoplastic
agents alter the rates of respiration in mitochondria (Ma-
rı́n-Hernández et al. 2003; Lemeshko and Kugler 2007).
The data in the Table indicate that the compounds 1–3
stimulate respiration in rat liver mitochondria. At the con-
centrations employed in this study, no inhibition of re-
spiration was noted although on occasions reduction of
stimulation was observed as the concentrations of the
compounds increased. This observation may have been

due to the coexistence of the induction of both inhibitory
and stimulatory effects on respiration in mitochondria. An
attempt was made to ascertain whether the extent of re-
spiration was controlled by the electronic, hydrophobic
and steric properties of the atom or group in the arylidene
aryl rings in series 2 and 3. Thus linear and semilogarith-
mic plots were constructed between the Hammett s,
Hansch p and molar refractivity constants of the R group
and the percentage increase in respiration when 50 mM of
the compounds were employed. A trend to a positive cor-
relation was noted only in series 2 with the s values when
linear (p ¼ 0.081) and semilogarithmic (p ¼ 0.100) plots
were made. In the remaining cases, no correlations were
observed (p > 0.1). Thus the insertion of strongly elec-
tron-attracting substituents in the arylidene aryl rings of
compounds related to 2a–d such as the 3,5-dinitro group
(Ss ¼ 1.42) (Hansch and Leo 1979) would be predicted
to increase respiration. Conversely the placement of one
or more electron-donating groups such as the 4-methyla-
mino substituent (s ¼ � 0.84) (Hansch and Leo 1979)
would likely reduce respiration compared to the biodata
generated for 2a–d.
Stimulation of respiration in mitochondria can be caused
by a number of biochemical mechanisms including the
induction of swelling of these organelles. In order to ex-
plore this possibility, 1, 2a and 3a–d were evaluated for
this property. The results which are portrayed in the Fig-
ure reveal that swelling in mitochondria was caused by
the quaternary ammonium compounds in series 3 while
this effect was absent in 1 and 2a. Mitochondrial swelling
has been observed previously, such as with the anticancer
quaternary ammonium compound erucylphosphohomocho-
line (Lemeshko and Kugler 2007).
An important consideration in deciding to develop com-
pounds as candidate drugs is their mammalian toxicity. A
previous study revealed that when a dose of 300 mg/kg of
1, 2a–d and 3a–d was administered to mice and the ani-
mals observed at the end of 4 h, there were no mortalities
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caused by the compounds in series 1 and 2 but all of the
mice receiving 3a, c, d were dead. Reducing the dose to
100 mg/kg led to the deaths of most of the mice receiving
3a, d (Das et al. 2008). It is conceivable that these differ-
ences in tolerability in mice may be due, at least in part,
to variations in the effects on mitochondria. Thus, in gen-
eral, stimulation of respiration is greater in series 3 than 2
as the D values in the Table indicate. This observation
may be due to the fact that quaternary ammonium salts
being completely ionized can interact with anionic binding
sites in the mitochondria. On the other hand, amines such
as 2a–d exist in solution as a mixture of protonated and
unprotonated molecules (Albert 1985) and hence the ex-
tent of their interacting with anionic sites will be lower
than is capable with 3a–d. Furthermore, the compounds
in series 3 cause swelling of mitochondria. These two ob-
servations are important, since the toxicity of quaternary
ammonium compounds is often attributed to neurological
deficit (Pandeya and Dimmock 1997) and hence future
toxicity studies of these compounds should take into con-
sideration their effect on mitochondria.

In conclusion, the mode of action of the promising bioac-
tive molecules 1–3 includes stimulation of respiration in
mitochondria and in the case of the quaternary ammonium
compounds swelling of these organelles takes place.

3. Experimental

The preparation of 1, 2a–d and 3a–d has been described previously
(Dimmock et al. 2001; Das et al. 2007). The Hammett s, Hansch p and
molar refractivity constants were taken from the literature (Hansch and Leo
1979) and the linear and semilogarithmic plots between these values and
the percentage increases in mitochondrial respiration were made using a
commercial software package (SPSS 2005).
A literature method was used to isolate the mitochondria (Kowaltowski
et al. 1996) and the increase in mitochondrial oxygen consumptions was
determined polarographically by a previously reported procedure (Estab-
rook 1967). A reference compound carbonyl cyanide 3-chlorophenylhydra-
zone caused an increase in respiration of 606 � 5.34% when 10 mM was
utilized. Mitochondrial swelling was determined spectrophotometrically at
520 nm as described previously (Kowaltowski et al. 1996). For obtaining
the data in the Table and the Fig., the mitochondria at 1 mg protein/mL
were incubated at 30 �C in an aqueous buffer pH 7.2 containing sucrose
(125 mM), HEPES (10 mM), potassium phosphate (5 mM), magnesium
chloride (1 mM) and succinate (5 mM).
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Table: Stimulation of respiration in rat liver mitochondria by 1, 2a-d and 3a-d

N
H

O

1

N

O

O

O
X

R R

2a-d: X = N(C2H5)2 HCl

3a-d: X = N(C2H5)2
CH3

+
I-

Compd. R Percentage increase in respirationa

10 mM Db 20 mM Db 50 mM Db 100 mM Db

1 – 20.2 � 1.22 – 22.8 � 0.61 – 43.3 � 4.51 – 48.3 � 4.80 –
2a H 27.7 � 2.80 28.4 � 2.17 61.2 � 5.14 87.2 � 11.6
3a H 32.4 � 5.68 1.2c 53.6 � 3.86 1.9 134 � 2.49 2.2 168 � 10.5 1.9
2b Cl 25.4 � 3.81 29.7 � 6.97 52.5 � 9.35 62.4 � 11.3
3b Cl 136 � 3.67 5.4 119 � 3.45 4.0 100 � 2.78 1.9 80.0 � 4.13 1.3
2c CH3 23.6 � 2.60 36.0 � 6.71 41.2 � 7.60 67.8 � 8.58
3c CH3 60.0 � 3.03 2.5 83.7 � 2.20 2.3 254 � 10.6 6.2 83.9 � 1.79 1.2
2d NO2 32.3 � 2.11 63.5 � 2.76 88.9 � 8.22 155 � 4.46
3d NO2 66.8 � 2.91 2.1 54.7 � 3.50 0.9 94.9 � 2.52 1.1c 60.3 � 3.56 0.4

a The rates of oxygen consumption by mitochondria (1 mg protein/mL) respiring on succinate were calculated for the period 1 min prior to, and 1 min after, addition of the compound
b The D figures are the quotients of the percentage increases in respiratory stimulation of the compound in series 3 with the analog in series 2 which has the same aryl substituent
c The differences between the percentage increases in respiration are not statistically significantly different
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CHAPTER 7 

 

GENERAL DISCUSSION 

 

For a number of years, α, β-unsaturated ketones have generated enormous interest among 

researchers owing to their potential to display an array of potent pharmacological properties [1-

3]. One of the important ways the α,β-unsaturated ketones display their cytotoxic properties is by 

selectively alkylating cellular thiols rather than hydroxyl and amino groups present in nucleic 

acids [4,5]. This property of α,β-unsaturated ketones has created special interests in designing 

cytotoxic agents possessing  this pharmacophore with the aspiration that these molecules may be 

free of the mutagenic properties that are inherent with many chemotherapeutic drugs [6]. Since 

the discovery of the natural product curcumin, which contains enone groups and displays potent 

cytotoxic activities in vitro and in vivo [7, 8], a major interest has been directed toward 

developing novel curcuminoids as future anticancer drug candidates.  
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Figure 1: 1, 5-Diaryl-3-oxo-1, 4-pentadienyl (dienone) group. The sequential alkylation of thiol 

groups occurs at the β-carbon of the α,β-unsaturated carbonyl group. 

 

To improve the metabolic stability of curcumin, the 1, 5-bis (arylidene)-pentan-2,4-dione 

group of curcumin was replaced by a 1,5-diaryl-3-oxo-1,4-pentadienyl pharmacophore. 

Incorporation of this group onto a number of alicyclic and heterocyclic rings led to the 

development of potent cytotoxic agents [9, 10]. In particular, novel cytotoxic agents based on the 

3,5-bis (arylidene)-4-piperidone core structure has been undertaken [11-13]. In the current study, 

a number of hypotheses were formulated to design novel cytotoxic molecules. It was 

hypothesized that inclusion of one or more α,β-unsaturated groups would enhance the thiol 

alkylating potential of the molecules, which may ultimately enhance the cytotoxic potencies of 

the molecules substantially.  
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One of the major problems in chemotherapy is the damaging effect of anticancer drugs on 

normal cells. A hypothesis of sequential cytotoxicity formulated previously by Dimmock et al 

[13] was utilized to design tumour selective cytotoxins. This hypothesis states that “sequential 

attack of one or more cytotoxic agents on cellular thiols in cancer cells could be more 

detrimental to malignant cells compared to the normal cells.” In other words, the initial thiol 

alkylation sensitizes the cancer cells and further alkylation would cause a preferential deleterious 

effect on cancer cells. Therefore the molecules carrying a 1,5-diaryl-3-oxo-1,4-pentadieny group 

may prove to be  tumour-selective cytotoxins  while causing minimal or sparing effects on 

normal cells.  
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In-line with the first objective of this thesis project, a series of curcuminoids 2 and 3 

based on a lead cytotoxin 1 were synthesized and evaluated against two human T-lymphocytes 

Molt4/C8 and CEM and a murine leukemia L1210 cancer cell line [13a].  Various substituents 

with diverse physicochemical properties were placed at the ortho, meta and para positions of the 

aryl rings and their effects on cytotoxic potencies were examined. In series 2 the molecules 

possessing ortho and meta substituents displayed greater cytotoxic potencies than their para 

analogs. To improve water solubility, the 4-O-phosphoryl derivatives 3 were prepared which 

displayed significantly lower cytotoxic potencies compared to their 4-hydroxy precursor. A 

number of molecules demonstrated greater cytotoxic potencies than melphalan which is an 

alkylating anticancer agent used in the clinic. The excellent cytotoxic potencies of a number of 
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lead molecules from the initial screen were also confirmed by evaluating these compounds 

against a panel of cancer cell lines that includes neoplasms of leukemic, lung, colon, CNS, breast 

and prostate origins. In general, the leukemic and colon cancer cells were more sensitive than 

other malignant cell lines to the compounds. Many of the compounds displayed remarkable 

cytotoxic potencies (GI50: <0.5µM) and high selective toxicities towards some cancer cell lines 

compared to others. Another important property of these enones is that they can safely be 

administered to rodents up to and including 300 mg/kg. The biodata generated from this study 

provides useful information for further designing of analogs of this class of compounds. 
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A further goal was to develop some water soluble prodrugs of 3,5-bis(arylidene)-4-

piperidones. In view of this aspiration, two series of N-phosphonate derivatives 4 and 5 were 

prepared [14]. These compounds display potent cytotoxicity toward human Molt 4/C8 and CEM 

T-lymphocytes as well as murine leukemia L1210 cells. The compounds in series 5 were in 

general more potent than the ethyl ester analogues 4. 3,5-bis-(2-Nitrobenzylidene)-1-phosphono-

4-piperidone, a member of the phosphonic acid series 5 displayed remarkable cytotoxic potency 

with an average IC50 value of 34 nM towards the human T-lymphocyte cell lines. Many of the 

compounds were more potent than the anticancer drug melphalan.  

Various physicochemical properties influence the cytotoxic potencies observed. In the 

NCI screen, the majority of the compounds demonstrated submicromolar to double digit 

nanomolar range IC50 values towards several colon cancer cell lines and leukemic cells. The 

ability of the compounds to reverse MDR in a mouse lymphoma cancer cell line transfected with 

the human mdr1 gene was evaluated. Most of the compounds demonstrated potent MDR 

modulating properties. Thus, these two series of compounds are found to be not only potent 

cytotoxins but to display potent MDR reversal activity. The study was further expanded to prove 

the concept of sequential cytotoxicity using these two series of compounds and this investigation 

was carried out using a panel of malignant (HL-60, HSC-2, HSC-3, HSC-4) and normal (HGF, 



165 

 

HPC, HPLF) cell lines [15]. The biodata obtained from this study revealed that over 70 % of the 

CC50 figures are submicromolar and they also display greater toxicities to the neoplastic cells 

compared to normal cells. In other words, these compounds were potent tumour-selective 

cytotoxins. QSAR studies show that cytotoxic potencies and selective toxicity were influenced 

by the nature of the aryl substituents. The modes of action of representative compounds include 

induction of apoptosis, interference with cellular respiration, activation of caspase-3 and 

internucleosomal DNA fragmentation. Very interestingly, some of these mechanisms are only 

noted in some cancer cells, but not in others. For example, one of the potent compounds in series 

5 induces caspase-3 in HL-60 cells, but this effect was not observed in HSC-2 and HSC-4 cells. 

This pleiotropy shown by these compounds may account for their selective toxicities towards 

cancer cells. 

 

It was hypothesized that doubling the number of sites available for thiol alkylation in a 

series of candidate cytotoxins would lead to increases in potency by more than two-fold. To 

prove this concept of cytotoxic synergism, a series of dimers 6 was synthesized [16]. These 

compounds possess at least double the number of thiol alkylating sites compared to 1. A linker 

group X with a varying carbon chain length was introduced between the two amidic carbonyl 

groups with the consideration that the relative location of one of the 1,5-diaryl-3-oxo-1,4-

pentadienyl groups with respect to other will influence cytotoxic potencies substantially. The 

hypothesis of cytotoxic synergism was verified in one-third of our comparisons using human 

Molt 4/C8 and CEM T-lymphocytes and murine L1210 cancer cells. Some correlations between 

the relative locations of the amidic groups with cytotoxicity was established using molecular 

modeling. Two potent compounds 6a (X= --) and 6b (X=CH2) were found to be the most potent 
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compounds. This observation was also further supported by the biodata generated from a panel 

of cancer cell lines in the NCI screen. The average GI50 values of 6a and 6b were 0.31 and 0.24 

µM, respectively [17]. These compounds displayed the following important properties.  First, 

greater toxicity was demonstrated towards certain tumours than various non-malignant cells [17].  

Second, various compounds in series 6 are toxic to a number of human colon cancer and 

leukemic cells i.e., the GI50 values were in the submicromolar to low nanomolar range against a 

number of colon and leukemic cell lines.  Third, these compounds reverse P-gp mediated 

multidrug resistance. The mode of action of 6a includes induction of apoptosis and necrosis 

while 6b induces apoptosis via internucleosomal DNA fragmentation and PARP cleavage in 

HSC-2 and HL-60 cells.  Flow cytometry analysis revealed that 6b arrests the G2/M and S 

phases in the cell cycle of human colon cancer HCT-116 cells.   
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The next endeavor was directed to developing further analogs of the lead cytotoxins 6a 

and 6b which emerged from the previous study in a quest to find more potent cytotoxic 

compounds. The major interest was to find novel compounds that are effective against colon 

cancer cells. This persuasion was based on the observation that 6a and 6b demonstrate potent 

growth-inhibiting properties against a panel of colon cancer cell lines in the NCI screen. Two 

series of dimers 7 and 8 were prepared by placing a number of substituents onto the aryl rings of 

6a and 6b, respectively, and were screened against HCT116 and HT29 colon cancer cell lines 

[18]. In these series, statistical correlations between their electronic, hydrophobic and steric 
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properties with cytotoxic potencies were sought. The data reveals that cytotoxic potency 

increases with the increase in the electron-withdrawing properties of the aryl substituents in both 

the series in HCT116 cells. A similar observation is also noted in series 7 against HT29 cells. 

Therefore, further analog development should include stronger electron-withdrawing groups in 

the aryl rings. A number of hypotheses were verified and the following observations were 

obtained from the biodata generated for these two series of compounds. First, compounds in the 

series 7- 9 are potent cytotoxins which display remarkable IC50 values that are in the 

submicromolar to low nanomolar range. Most of the compounds show greater cytotoxic 

potencies than melphalan and 5-fluorouracil. Second, the compounds in series 7 display greater 

cytotoxic potencies than the compounds in series 8. Third, in both series, the compounds 

demonstrate greater selective toxicities towards HCT116 cells compared to HT29 cells. Fourth, 

in a number of cases, the introduction of an aryl substituent enhanced cytotoxic potencies 

compared to the unsubstituted analog in both series. Fifth, excision of both the amidic carbonyl 

groups of 6b as represented by the compound 9 leads to a reduction in cytotoxic potencies 

against both the colon cancer cell lines which proved the importance of the amidic carbonyl 

groups in these dimeric molecules. An investigation was made to establish the mode of action a 

representative potent cytotoxin by which the cytotoxicity of this class of compounds is mediated 

in colon cancer cells. A potent cytotoxin in series 7 (R=4-OCH3) induced apoptosis in HCT116 

cells.  

The last part of the study was to evaluate an important question whether mitochondria are 

also a target for cytotoxic 1,5-diaryl-3-oxo-1,4-pentadienes and whether the variation in 

cytotoxic potencies of these compounds can be accounted for by their effects on mitochondrial 

functions. Three structurally different group of compounds, bis(arylidene)-4-piperidones, N-

aroyl-bis(arylidene)-4-piperidones and bis(arylidene)cyclohexanones were evaluated for their 

effect on two important mitochondrial functions namely respiration and swelling.  As observed 

earlier, alkylation or cross-linking of a number of conjugated unsaturated ketones with a critical 

thiol of a protein [4] leads to the opening of the mitochondrial permeability transition pore [19, 

20] which causes mitochondrial swelling and collapse of the mitochondrial membrane potential 

[21]. The collapse of the membrane potential decreases the resistance to electron flow in the 

respiratory chain and stimulates mitochondrial respiration [22]. The mitochondrial permeability 
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transition is a critical trigger for apoptosis [23] and has been identified as a target for cancer 

therapy [24-26].  

 

 

 

Two series of molecules with divergent topography were chosen. In general, the 

replacement of the protons at C-2 and C-6 position in series 11 by a dimethylene bridge as 

represented by series 10 led to a considerable reduction in cytotoxic potencies [27]. This 

disparity in cytotoxic potencies between both series was thought to be due to the dimethylene 

bridge in 10 exerting a steric impedance to aligning at a binding site. In addition, the variation in 

the hydrophobic properties of the molecules might be a contributing factor. In terms of cytotoxic 

potencies, the best compounds in both the series were the unsubstituted analogs 10a (R=H) and 

11a (R=H). 11a displays greater cytotoxic potencies toward malignant cells than normal cells as 

compared to 10a. Two compounds 10a and 10d (R=OCH3) which possessing markedly 

divergent cytotoxic potencies towards malignant cells were examined for their effect on 

mitochondrial respiration and swelling. Both the compounds exert a strong stimulating effect on 

mitochondrial respiration, with compound 10a having a significantly shorter latent period. A 

significant difference in mitochondrial swelling was noted with these two compounds. A rapid 

mitochondrial swelling was observed with 10a, while this phenomenon progressed very slowly 

in the case of 10d. The greater ability of 10a to induce mitochondrial swelling, therefore, may 

have contributed to its higher cytotoxic potency in malignant cell lines. A difference in the 

ability of 10a and 10d to cause mitochondrial swelling was also explained in the context of the 

electrophilicity of the aryl substituents. In the less potent 10d, the R
1
 methoxy substituents are 

electron repelling compared to the R
1
 protons of 10a and would thereby decrease the 

electrophilicity of 10d towards thiols compared to 10a. 
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In addition, a series of cytotoxic N-aroyl-3,5-bis(arylidene)-4-piperidones 12 and their 

methiodide analogs 13 were evaluated for their effect on mitochondrial respiration [28]. All the 

compounds in both series demonstrated a stimulating effect on mitochondria. The compounds in 

series 13 showed considerably greater stimulating effect than the series 12. In a dose-response 

study, an increase in mitochondrial respiration was noted with the increase in concentration in 

both series.  Evaluation of the effect of aryl substituents possessing diverse physicochemical 

properties on mitochondrial respiration in series 12 revealed that mitochondrial respiration 

increases with the increase in electron-withdrawing properties of the aryl group. The quaternized 

salts in series 13 caused rapid swelling of mitochondria while this effect was absent in 12a 

(R=H) and 11a (R=H). This observation partly accounted for the murine toxicity shown by the 

compounds in series 13. 
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Finally, a number 1,5-diaryl-3-oxo-1,4-pentadienes 14 possessing a cyclohexane nucleus 

were evaluated against  Molt4/C8, CEM and L1210 malignant cell lines [29]. The IC50 values of 

the majority of 2-benzylidene-6-(nitrobenzylidene)cyclohexanones were less than 10 µM. The 

order of cytotoxic potencies of the compounds in series 15-17 were in order of 

15(ortho)>17(para)>16(meta). A general observation is that bis(arylidene)cyclohexanones were 

less toxic to malignant cells compared to 3,5-bis(arylidene)-4-piperidones.  The most potent 

compounds emerged from this study were 15 (R= 2-NO2, ave IC50: 0.88 µM) and 17 (4-NO2, ave 
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IC50: 6 µM) whereas a corresponding meta analog 16 (3-NO2, ave IC50: 43.8 µM) was found to 

be less potent. To explain this disparity in cytotoxic potencies, the effect of these three related 

compounds were evaluated on mitochondrial respiration. Using a concentration of 10 µM, 15 

and 17 stimulated respiration whereas 16 had virtually no effect on respiration. Increasing the 

concentration of 16 as high as 100 µM also revealed no statistically significant difference in the 

stimulation of respiration.  The causes for the relative cytotoxic potencies observed in this study 

may be multifactorial; the differences in the effects on mitochondrial function may have exerted 

some contributions to the disparity of IC50 values. 

In conclusion, some novel series of potent cytotoxins were developed. A number of lead 

cytotoxic molecules with submicromolar to low nanomolar range were identified and warrants 

further development of these molecules as candidate anticancer agents. Multidrug resistance 

reversal properties displayed by a number of cytotoxic molecules were noteworthy. A number of 

potent cytotoxic molecules identified in this study did not cause any significant toxicity in 

rodents up to and including a dose of 300 mg/kg. The modes of action of these cytotoxic 

molecules include apoptosis, cell cycle arrest, DNA fragmentation, caspase-3 activation, PARP 

cleavage and interference with mitochondrial functions. 
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FUTURE WORKS AND CHALLENGES 

This thesis project work was my first step in drug discovery in the College of Pharmacy 

and Nutrition, University of Saskatchewan which was aimed at the development of novel 

cytotoxic agents based on various medicinal chemistry approaches. This study resulted in a 

number of novel curcuminoids possessing remarkable cytotoxic potencies in vitro against human 

cancer cell lines.  Some of these compounds also demonstrate potent multidrug resistance 

reversal properties. These interesting results warrant further examination of these molecules as 

candidate cytotoxins and the next phase of investigation should be pursued.  

The first phase of the investigation in drug discovery is the identification of leads for 

preclinical evaluations. In this step, a systematic investigation is proposed which is presented in 

Figure 1.  A number of other important questions that are relevant to this thesis work need to be 

addressed in the future: 

 Though the majority of the compounds designed in this project comply to drug likeliness 

properties, there are some compounds, for example the dimers, which are exceptions.  

Although drug likeness characteristics of molecules are considered important 

physicochemical parameters for prediction of oral bioavailability, a number of clinically used 

drugs do not meet these criteria.  From the in vitro studies, the dimers are found to be very 

interesting molecules. Very special interests have been expended in developing a number of 

these molecules.  Considering the dimers are large molecules, one may expect that solubility 

could be one of the problems with these molecules which may limit their further 

development. Therefore, to address this issue, one or more hydrophilic groups such as 

hydroxyl and phosphate should be introduced onto the aryl rings of the lead dimeric 

compounds to improve their aqueous solubility. 

 To examine whether these cytotoxic molecules target one or more sulfhydryl 

macromolecules such as glutathione S-transferase, thioredoxin reductase, and h-NMT which 

are known as potential targets for anticancer agents. 

 To evaluate whether these molecules are effective against drug-resistant cancer cell lines. 

 To examine whether the phosphate prodrugs are hydrolyzed to their active precursor 3,5-

bis(arylidene)-4-piperidones  and the cytotoxicity observed is due to the parent compound or 

its precursor.  
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Figure1. Systematic screening strategies for obtaining cytotoxic drug candidates for clinical 

evaluations. 
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Drug discovery is an expensive and very challenging job which takes a number of years 

to develop a suitable molecule for clinical evaluations. A molecule may fail to display the 

desired properties at any stage of the investigation and thereafter it goes back again to the first 

stage of the development process. In this scenario, structural modifications of the molecule are 

undertaken to improve its physicochemical characteristics.  A common problem like solubility 

can be addressed by introducing hydrophilic groups, or deploying a suitable formulation strategy. 

One of the biggest challenges in drug discovery research is to reproduce in vitro cytotoxic 

potencies of a molecule in vivo. Hence, suitable strategies and dynamic approaches are required 

to overcome potential hurdles in this endeavor.   
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APPENDIX  

 

Mitochondrial Study-Experimental protocol 

Mitochondria isolation[1]:  

Rats (250-300 g body weight) were euthanized by isoflurane and decapitation. 

Mitochondria were isolated from the liver following rapid removal of the organ. Briefly, freshly 

isolated liver was homogenized using a glass Teflon homogenizer using an isolation medium 

containing 250 mM sucrose, 10mM HEPES and 1 mM EGTA (pH 7.2). The homogenate was 

centrifuged at 1000g for 8 min at 4°C. The supernatant was collected and centrifuged at 10,000g 

for 10 min at 4°C. The pallet was collected and added to a medium containing 250 mM sucrose, 

10mM HEPES and 0.1 mM EGTA (pH 7.2) and centrifuged at 10000g for 10 min at 4°C. Again 

the final pallet was washed twice and suspended in 2 ml of a same medium except EGTA was 

omitted.  

 

Oxygen uptake studies: 

                              

The mitochondrial protein was measured at a wavelength of 520 nm in a 

spectrophotometer using 30/40 μl of freshly prepared mitochondria in 1 ml of respiratory buffer 

containing 62 mM KCl, 125 mM sucrose, 10 mM Hepes, 2 mM diabasic potassium phosphate 

and 1 mM MgCl2 (pH 7.2). Approximately 0.5 mg of protein/ml was used in each oxygen 

consumption experiment. Respiration rates were measured with a Clark-type electrode 

(Hansatech Instruments Ltd, Norfolk, England) in a water-jacketed glass chamber with a 

magnetic stirrer in it. An oxygen electrode system, which consists of two electrodes immersed in 

an electrolyte solution of 50% saturated solution of KCl. Application of a polarizing voltage of 

700 mV ionizes the electrolyte and initiates the current flow. This current is directly proportional 

to the amount of dissolved oxygen within the sample held in the reaction vessel. The current 

produced by the electrode disc is converted to a voltage signal, which is digitized into a 

reproducible unit (nmol/ml) by the electronics within the control unit. The temperature in the 

respiration chamber was kept constant at 30°C.  Before testing the compounds one initial 

experiment was carried out by using 0.25mM succinate as a respiratory substrate with 1 mg 

protein of the mitochondrial suspension with transitions from state 4 to 3
*
. After being confirmed 

that the mitochondria are coupled, further experiments were conducted with the compounds 

where succinate was used as a substrate. The compounds were dissolved in DMSO having a final 
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concentration in the chamber as 1%, whereas in some special cases it is >1% due to the solubility 

problem of the compounds. Respiration was monitored for 10 minutes. Assays were performed 

in triplicate using fresh mitochondria. Rates were calculated from Windows® software package, 

Oxygraph Plus. The % of inhibition /stimulation was calculated by using the following formula: 

% of inhibition = [(rate before treatment– rate after treatment) / rate before treatment] x 100.  

The difference between control and treated rates gives positive results when there is inhibition of 

respiration and a negative result indicates stimulation of respiration. Antimycin A was used as 

the standard inhibitor. 

      
*
[Mitochondrial respiratory state 4 is the resting state, which is differentiated by relatively 

slow oxygen uptake without ADP. On the other hand, mitochondrial respiratory state 3 is the 

active state with a high rate of oxygen uptake and with a sufficient ADP supply [2]. State 3 is 

initiated by adding ADP (0.2 micromoles). State 4 must be produced before producing state 3. In 

state 3 the increase in respiration rate is because of the binding of the ADP to the ATP synthase 

in the presence of inorganic phosphate, which results in the opening of a channel that permits the 

flow of protons into the matrix from outside the inner membrane. Due to the flow of protons 

across the membrane, the energy released is used to produce ATP. As soon as the energy in the 

gradient is removed the electron chain accelerates. When all of the ADP is used, the respiration 

rate goes back to state 4. Mitochondrial function was assessed by the respiratory control ratio 

(RCR) and ADP:O ratios. These two parameters are well accepted as indicators of electron 

transport chain coupling to ATP synthesis and the efficiency of oxidative phosphorylation in the 

presence of different substrates. The ADP:O ratio was calculated by taking the ratio of total 

amount of ADP added to the medium to the percentage of total oxygen used up in order to 

phosphorylate ADP (i.e. from the beginning to the end of state 3 respiration). RCR was 

calculated by taking the ratio of respiratory rate in state 3 to the respiratory rate in state 4[3]. The 

RCR value was higher than 4 and ADP:O was higher than 2. These values are generally accepted 

as normal for carefully prepared mitochondria from liver.] 

 

Mitochondrial swelling study: 

Using the fresh mitochondria isolated from rat liver (procedure explained earlier), a 

swelling study was performed. Mitochondrial swelling was determined by light absorbance 

measured at 520 nm wavelength using a spectrophotometer following the literature method [4]. 
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Briefly, 1 mg protein was used in the incubation medium (62 mM KCl, 125 mM sucrose, 10 mM 

hepes, 2 mM potassium phosphate diabasic and 1mM MgCl2) with 0.25 mM of succinate each 

time with or without the sample. All used reagents were purchased from Sigma Chemical Co. 

Each experiment was performed twice. The temperature in the spectrophotometer was 

maintained at 30 °C.  
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