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Abstract

In many parts of the world, the snowmelt energy balance is dominated by net solar

shortwave radiation. This is the case in the Canadian Rocky Mountains, where clear

skies dominate the winter and spring. In mountainous regions, solar irradiance at

the snow surface is not only affected by solar angles, atmospheric transmittance, and

the slope and aspect of immediate topography, but also by shadows from surround-

ing terrain. Many hydrological models do not consider such horizon-shadows. The

accumulation of errors in estimating solar irradiance by neglecting horizon-shadows

can lead to significant errors in calculating the timing and rate of snowmelt due to

the seasonal storage of internal energy in the snowpack.

A common approach to representing the landscape is through structured meshes.

However, such representations introduce errors due to the rigid nature of the mesh,

creating artefacts and other constraints. Unstructured triangular meshes are more

efficient in their representation of the terrain by allowing for a variable resolution.

These meshes do not suffer from the artefact problems of a structured mesh.

This thesis demonstrates the increased accuracy of using a horizon-shading model

with an unstructured mesh versus standard self-shading algorithms in Marmot Creek

Research Basin (MCRB), Alberta, Canada. A systematic basin-wide over-prediction

(basin mean expressed as phase change mass: 14 mm, maximum: 200 mm) in net

shortwave is observed when only self-shadows are considered. The horizon-shadow

model was run at a point scale at three sites throughout MCRB to investigate the

effects of scale on the model results. It was found that small triangles were best suited

for this topographic region and that shadow patterns were captured accurately. Large

triangles were found to be too easily shaded by the model, created many disjointed
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regions. As well, model results were compared to measurements of mountain shadows

by timelapse digital cameras. These images were orthorectified and the shadow

regions extracted allowing for a quantitative comparison. It was found that the

horizon-model produced results within 10 m of the measured shadows, and properly

captured shadow transits.

A point-scale energy balance model SNOBAL was run via The Cold Regions Hy-

drological Model, an HRU based hydrologic model. It was found that in the highly

shaded valleys, snowpack ablation could be incorrect by approximately 4 days. Al-

though MCRB was generally not significantly impacted by the over-estimation in

irradiance in this study, insight into the horizon-shadowing process was possible as

a result of the existing network of radiometers and other meteorological stations at

MCRB. Because down-stream processes such as flooding depend on correct headwa-

ter snowmelt predictions, quantitative results demonstrating inaccuracies in a mod-

elled component of the surface energy balance can help improve snowmelt modelling.
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Chapter 1

Introduction

High spatial and temporal resolution, physics-based computer-aided simulations

are an important tool for improving the understanding of the complex interactions

in both the hydrologic system and related aspects of the climate system. A common

characteristic of these models is that they require a large number of model parame-

ters such as high-resolution topographic information, vegetation maps, soils profiles,

and atmospheric forcing data in order to capture the spatial variability inherent in

hydrological systems. Unfortunately, these parameters are often poorly known due

to measurement constraints.

When available, these data are often not available for non-research basins, there-

fore limiting the areas where these models can be applied. Some authors (Sivapalan,

2003; McDonnell et al., 2007) have suggested that even within these research basins,

high-resolution modelling does not improve the understanding of processes and that

a new paradigm in modelling is required. In contrast however, other authors believe

that high-resolution, physically correct models are an important tool for improv-

ing the understanding of hydrologic systems (Rigon et al., 2006). The limitations

imposed by poor or non-existent data sets are gradually being reduced by ongoing

advances in ground, aircraft, and satellite data collection. Satellite remote sensing

has increased the ability to obtain certain types of high-resolution spatial data. A

decade ago, topographic and vegetation information was not readily available at the

required scale for most high-resolution hydrological models; however, with the ad-

vent and decreased cost of airborne mapping technologies such as high-resolution

Light Detection And Ranging (LiDAR) derived Digital Elevation Models (DEMs),

vegetation heights, and leaf area index maps have become more widespread. Al-
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though characterizing the spatial variability of a basin’s sub-surface properties is

more challenging, recent research in applying geophysical techniques such as Ground

Penetrating Radar (GPR) and Electrical Resistivity Imaging (ERI) (Berthold, 2004)

hold significant promise. These and other advances suggest that in the coming years,

a range of appropriate data sets will be available for carrying out large spatial scale

(e.g., 2000 km2), high-resolution hydrologic modelling.

Although an increase in spatial resolution of both models and observations brings

with it a potential for increased accuracy and ability to understand the relative im-

portance of various processes, parameters, and physical properties of the landscape,

it does raise many research questions. For example, the effect of scale on model

performance is sometimes not well known, and various hydrological processes may

be important at different scales, both spatially and temporally (Klemeš, 1986). It is

clear, however, that such high-spatial and temporal resolution modelling will require

an increase in both the efficiency of computer code and computing power in order to

improve the governing equation. Such efficiency will allow for faster simulation run

times and produce accurate results allowing for increased usage in operational and

experimental settings. Given recent advances in obtaining high-resolution spatial

data, it is reasonable to concentrate on aspects of the hydrological system that are

dependent upon test data and ensure correct prediction.

The surface energy balance, including both turbulent and radiative (shortwave

and longwave) fluxes, are spatially variable as numerous studies have demonstrated,

e.g., Pomeroy et al. (2003); Pohl et al. (2005). In many environments, such as low-

and mid-latitude glaciers and high alpine terrain, shortwave fluxes dominate the

surface energy balance, and for snow-covered surfaces it is often the main source of

energy for melt (Gray and Male, 1981; Corripio, 2004). Given the importance of

shortwave fluxes, correctly estimating the incoming shortwave solar radiation inci-

dent to a surface in complex terrain, both spatially and temporally, is necessary to

model dependent processes.

There are a number of factors that make it difficult to estimate incident solar

radiation across a basin at high resolution. First, as shortwave radiation passes
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through a cloud-free atmosphere, the energy partially scatters and is absorbed by

atmospheric constituents such as water vapour and other atmospheric gases. The

effect of these factors on the quantity of radiation that reaches the earth’s surface

is referred to as the atmospheric transmittance (Marshak and Davis, 2005). Unfor-

tunately, atmospheric transmittance is difficult to measure and requires knowledge

or estimates of all of the atmospheric properties throughout the entire thickness of

the atmosphere (Marshak and Davis, 2005). Once additional complexities such as

clouds are taken into account, the estimation of the quantity and spatial variability

of incoming solar radiation on a horizontal plane becomes more difficult. Another

complexity is that shortwave radiation must also pass through any vegetation canopy

before reaching the ground. It is also necessary to calculate the shortwave radiation

that is incident on slopes of various angles and aspects by taking into account self-

shading and shading from surrounding topography. The basic geometric equations

for estimating shortwave radiation to a slope are well known and have been applied

for many years, e.g., Garnier and Ohmura (1968); Dozier et al. (1981); Dozier and

Frew (1990); Frew (1990); Fu and Rich (1999); Chueca and Julián (2004). However

for an algorithm to be widely applicable it must be computationally efficient. As a

result there still exists a need for improved methods for large scale, high resolution

modelling of such a basic process. Therefore, there is a need to develop models that

can properly account the spatial variability of shortwave radiation (the appropriate

approximation may depend on the purpose of the modelling exercise) and that are

able to be coupled with current-generation hydrological models.

The remainder of this thesis is structured into five sections. Chapter 2 is a

review of the literature considering the current state of high-resolution modelling

in hydrology. It considers some of the limitations that exist in current shadowing

models based on structured meshes and outlines some of the reasons unstructured

meshes are well suited for hydrological modelling finishing with an outline of the

research gap. The hypotheses are formulates and presented. Chapter 3 is an outline

of the field methods, the data processing, and data input. The implementation of

an unstructured mesh shadowing model is presented, and a surface energy balance

3



model is described. Chapter 4 describes the results of the shadowing simulations at

a point and basin scale and presents the results of the snowmelt energy calculations.
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Chapter 2

Background

2.1 Snowmelt processes

2.1.1 Overview

The seasonal melt of snow cover provides water for streamflow that can affect ecosys-

tems far downstream from the source snowpack (Groisman and Davies, 2001). For

instance, many western and northern North American rivers derive the majority of

their flow from late spring mountain snowpacks that then flow to low-lying regions

(Stewart, 2009; Woo et al., 2008). Snowmelt often results in the largest discharge of

the year, transporting contaminants that accumulated during the winter and recharg-

ing soil moisture reserves (Davies et al., 1987; Gray et al., 2001; Gray and Male, 1981).

Snowpack accumulation and melt are of major importance for flood generation in the

North American Prairies (Gray and Male, 1981; World Meteorological Organization,

1970). Li and Simonovic (2002) demonstrated that snow accumulation and melt

were key variables for describing floods on the Red Deer and Assiniboine Rivers.

Capturing the dynamical processes of a hydrological basin is required for proper

flood forecasting (Li and Simonovic, 2002). Snowmelt is caused by energy inputs

to the snowpack, and generally net shortwave radiation is the largest single input

source controlling snowmelt (Male and Granger, 1981). When simulating snowmelt,

an incorrect snowmelt prediction causes an error on the simulation day as well as an

error later in the melt period (two errors total) (Walter et al., 2005).

In areas of complex topography, such as mountainous terrain, snowmelt calcula-

tions are complicated due to high spatial variability in energy fluxes (e.g., Marks and
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Dozier (1992); Pomeroy et al. (2003)). Terrain slope and aspect have been identified

throughout the literature as large contributors to this spatial variability (Carey and

Woo, 1998; Dozier et al., 1981; Pomeroy et al., 2003; Ryerson, 1984; Woo and Young,

2004). In a catchment in the Yukon, Canada, Pomeroy et al. (2003) found that on a

clear day at midday in the peak snowmelt period, a 20◦ south-facing slope received

80% more incoming solar shortwave radiation than a similarly steep, north-facing

slope. This spatial variability leads to significant differences in snowmelt timing and

magnitude throughout the basin and can limit melt on nested glaciers in shaded

cirques (Chueca and Julián, 2004), limit snow melt (Carey and Woo, 1998; Pomeroy

et al., 2003), cause changes in surface temperature (Pomeroy et al., 2003), and limit

or increase photosynthesis and therefore affect subsequent vegetation patterns (Dy-

mond, 2002). Chueca and Julián (2004) demonstrated that the spatial distribution

of small cirque glaciers could be primarily attributed to the differences in incoming

shortwave radiation, primarily due to shading. The spatial variability of topographi-

cally driven shortwave radiation is important in even gently rolling terrain, as shown

by Pohl et al. (2006) in a sub-Arctic tundra river basin. Incorporating the effects of

topography on shortwave radiation in a modelling framework is required for any of

the processes dependent upon it, such as snowmelt, to be correctly modelled. Failure

to account for even basic features such as slope and aspect has been shown to be

detrimental to snowmelt and stream flow prediction (Dornes et al., 2008a). In mod-

elling a sub-Arctic catchment, Davison et al. (2006) concluded that incorporating

surface slope and aspect is required for proper snow-cover ablation and runoff tim-

ing. Pohl et al. (2006) identified that the small-scale variability in solar radiation for

the melt period was an important contributing factor for the development of patchy

snow cover in the tundra and that it also controlled the timing and magnitude of

melt water release to the basin. Fundamentally, correct net radiation prediction is a

principal contributor of realistic snowmelt models (Munro and Young, 1982).
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2.1.2 Surface energy balance

The underlying physics of the snow melt process are governed by the available energy

that is input to the snowpack. For a snow pack with an upper snow-air boundary

and a lower snow-ground boundary the available energy for melt is given by (Gray

and Male, 1981):

Qm = Qsn + Qln + Qh + Qe + Qg + Qp −
dU

dt
, (2.1)

where Qm (W·m−2) is the energy available for snowmelt, Qsn = (1 − α)Ks is the

net shortwave radiation flux absorbed by the snow (W·m−2), α is the snow-surface

albedo to shortwave radiation (unitless), Ks is the shortwave radiation that has

passed through the atmosphere (W·m−2), Qln is the net longwave radiation flux at

the snow-air boundary (W·m−2), Qh is the convective or sensible heat flux from the

air at the snow-air boundary (W·m−2), Qe is the latent heat flux from evaporation

and condensation at the snow-air boundary (W·m−2), Qg is the heat flux from the

snow-ground boundary through conduction, Qp is the heat flux from precipitation

(W·m−2), and dU
dt

is the rate of change of internal energy (W·m−2). The total melt

energy, Qm, may then be used to determine a total melt volume via the latent heat

of fusion (0.334 MJ·kg−2) and the density of water (1000 kg·m−3).

The cold content describes the amount of energy required to bring the snowpack

up to 0 ◦C. Once the active layer of the snowpack becomes isothermal at 0 ◦C, melt

can occur with a positive energy balance. A negative energy balance cools the active

layer, thus increasing the cold content (Marks et al., 1998). Once melt occurs, melt

water infiltrates through the snowpack and can pond at stratigraphic horizons (e.g.,

created by snow metamorphism) allowing for the formation of flow fingers. As these

infiltrate to the the cold lower layers of the snowpack they can re-freeze, resulting in

a major source of latent heat to the snowpack (Marsh and Woo, 1984).

Longwave radiation is the component of the electromagnetic spectrum with a

wavelength that is approximately 4 µm to 100 µm (Petty, 2006) and is emitted from

any object that has a temperature greater than 0 K (Wallace and Hobbs, 2006). In

the context of Earth systems, longwave radiation is emitted from the atmosphere

7



(both towards space and the surface), the surface (including snow on the ground),

and vegetation. This process contains a feedback system where the emitted longwave

from the earth is absorbed by the atmosphere, thereby warming it, and resulting in

a higher longwave output. At high latitudes (e.g., 60◦ N) , longwave radiation can

provide potentially greater amounts of energy to the ground surface than from net

shortwave radiation due to the low solar angles (Sicart et al., 2006). As a result, it

can affect the timing of the the onset of snowmelt in early spring when the shortwave

flux is low (Sicart et al., 2006).

During periods of strong winds and warm humid air, the turbulent fluxes can

dominate the snowpack energy budget (Moore, 1983; Marks and Winstral, 2001).

The turbulent flux of sensible heat, Qh, exchanged at the surface of the snowpack

is due to the temperature gradient between the snow surface and the overlying air

mass. The turbulent flux of latent energy, Qe, is due to the vapour pressure gradients

between the snow surface and the overlying air mass.

2.1.3 Solar shortwave radiation

Solar shortwave radiation (irradiance) is emitted from the sun in the wavelengths of

0.1 µm to 4 µm (Petty, 2006; Wallace and Hobbs, 2006). Incident to the top of the

Earth’s atmosphere, the sun’s incoming rays provide a flux of energy, termed the solar

constant, of 1367 W·m−2–1368 W·m−2 (Willson, 2003). As this energy is transmitted

through the atmosphere, the total flux of energy is reduced due to absorption and

reflectance by atmospheric particulates and aerosols. On a flat plane, the radiation

incident to the ground is comprised of diffuse- and direct-beam components. Diffuse-

beam shortwave radiation is defined as the energy flux produced by any solar photon

that has had one or more interactions with any atmospheric constituent, and direct-

beam shortwave radiation is any solar photon that has not interacted with any

constituent of the atmosphere (Marshak and Davis, 2005). In complex terrain there

is a third component: reflected direct- and diffuse-beam from nearby terrain.

Irradiance is an important component of the surface energy balance and net short-

wave radiation can affect the spatial variability of ablation of a snowpack in a variety
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of ways. Because of the slope and aspect of a surface effects the incident irradiance,

the topographic variability present in a basin can greatly affect the spatial variabil-

ity of surface energy. In addition, ablation (melting, sublimation) and redistribution

processes (blowing snow) result in a patchwork of bare ground and snow cover that

has a fractal pattern (Shook and Gray, 1996). The geometries of these patches con-

trol the contributing areas of snowmelt and runoff (Shook and Gray, 1996). These

patchy locations allow for advection from the bare ground, warmed via incident net

shortwave radiation due to a low albedo, to the surrounding snowcover thus increas-

ing the rate of ablation (Gray and Male, 1981). DeBeer and Pomeroy (2009) and

DeBeer and Pomeroy (2010) identified that snowcovers of various depths complicate

estimates of snowcover depletion due to differences in cold content. Therefore loca-

tions with limited net shortwave radiation has a greater cold-content, resulting in a

prolonged melt. Other small-scale processes can occur. For example when melt water

percolates through the snowpack, it may be intercepted by an ice lens that can allow

for lateral transport, changing the snow water equivalent (SWE) distribution (Elder

et al., 1991). Through these processes, the spatial distribution of irradiance, and

subsequently net shortwave radiation, may effectively move SWE between discrete

parts of the basin.

Shortwave solar radiation must be modelled for periods of both clear and cloudy

skies. During clear sky conditions, only a clear-sky transmittance parameter is re-

quired. For cloudy periods, the calculations become much more difficult due to

the large spatial and temporal variability in cloud cover, density, and thickness.

Frequently, other factors that are related to cloud formation are used to infer and

approximate the cloud cover. These may include relative humidity, the presence or

absence of precipitation, and daily maximum and minimum air temperatures. Mod-

els based on these proxies are generally empirical and involve site specific parameters

to account for the large variability. In addition, the solar radiation passing through

a vegetation canopy adds additional complexity to a model. There have been many

parametrizations and physical models based on theoretical canopies. The effect of

canopy transmittance is outside the scope of this review and is not be discussed here.
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Incoming solar shortwave radiation (Ks [J· m−2]) to a surface of a given slope

and aspect between times t1, t2, is given by Garnier and Ohmura (1968):

Ks = S0

∫ t2

t1
[p(t)]m(t) cos(arccos(n̂ · ŝ(t)))dt, (2.2)

where S0 is the solar constant (W·m−2), p(t) is the zenith mean path transmissivity

of the atmosphere, m(t) is the optical air mass, n̂ is a unit vector normal to the slope,

and ŝ(t) is a unit vector pointing to the position of the sun. Thus arccos(n̂ · ŝ(t)) is

the angle between the sun and the slope. The two vectors are given as:

n̂ =
(
− cosA sinZn sinA sinZn cosZn

)
(2.3)

ŝ(t) =
(

0 cos δ(t) sin δ(t)
)

(2.4)

where A is the azimuth of the slope measured north through east, Zn is the zenith

angle of n̂, and δ(t) is the sun’s declination positive north of the equator and negative

south of the equator.

The angle between n̂ and ŝ(t) in Equation 2.2 can then be written in terms of a

global coordinate system where

cos(arccos(n̂ · ŝ(t))) ={
(sinφ cosH(t))(− cosA sinZx(t))− sinH(t) (sinA sinZx(t))

+ (cosφ cosH(t)) cosZx(t)
}

cos δ(t) (2.5)

+
{

cosφ (cosA sinZx(t)) + sinφ cosZx(t)
}

sin δ(t)

where φ is the latitude, H(t) is the hour angle measured from solar noon, positive

towards the west. An approximation for the optical air mass can be found from

m(t) = secZ(t) where Z(t) is the zenith angle of the sun (Garnier and Ohmura,

1968). However, this approximation is only valid for Z(t) ≤ 70◦ due to inaccuracies

for low sun angles (Haltiner and Martin, 1957). As well, this approximation implies

an infinite air mass at the horizon because lim
Z(t)→90◦

secZ(t) = ∞. Alternatively,

precomputed values via a look-up table such as List (1971) may be used, as can

empirically fit equations such as that developed by Young (1994) (Equation 2.6).
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Young (1994) states that this expression has an error of 0.0037 at the horizon and

that the precision in the coefficients is to mitigate roundoff errors; their precision

does not indicate the accuracy of the equation or coefficients.

m(t) = 1.002432 cos2 Z(t) + 0.148386 cosZ(t) + 0.0096467
cos3 Z(t) + 0.149864 cos2 Z(t) + 0.0102963 cosZ(t) + 0.000303978 . (2.6)

The clear-sky atmospheric transmissivity required to solve Equation 2.2 is difficult

to obtain via direct measurements, especially over large spatial extents. It should be

noted that the terms transmittance and transmissivity are frequently interchanged

in the literature, and although similar, are significantly different. Atmospheric trans-

mittance is the ratio of the total solar radiant flux that passes through the atmosphere

to that incident at the top of the atmosphere. Atmospheric transmissivity is the ra-

tio of solar radiant flux that passes through one unit length of atmosphere to the

that that would have passed through one unit length of vacuum. The transmissivity

and transmittance of the atmosphere are dependent upon the optical properties of

the gases, aerosols, and clouds present in the atmosphere (Rasmussen et al., 1998).

There is usually a critical lack of vertical resolution of these data (Marshak and

Davis, 2005) and although remote sensing platforms are able to view clouds, there

is a lack of quantitative error analysis to determine the reliability and accuracy of

the retrieved data (Marshak and Davis, 2005). Sophisticated cloud models require

large sets of boundary conditions to run and operate at a high vertical resolution

and a high temporal resolution (Marshak and Davis, 2005). Although these models

are useful, they require significant computational resources; thus there are many em-

pirical relations that attempt to use atmospheric proxies such as relative humidity

or temperature to infer cloud cover and atmospheric transmittance, e.g., (Walcek,

1994; Rasmussen et al., 1998; Annandale et al., 2002). For this study, these methods

are not used due to the availability of measured data (see Section 3.4); however these

methods are included as guidance for when such data are not available.
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2.2 Shadows

Shadows occur as a result of surrounding terrain blocking a location from the direct-

beam irradiance — that is they are cast from nearby terrain. These shadows are

frequently referred to as horizon-shadows (e.g., Essery and Marks (2007)). Self-

shadows form a subset of horizon-shadows that occur when a slope faces away from

the sun. In this case, the self-shadow is cast by the terrain only onto itself. These two

shadow types lead to terrain cycling in and out of shadow, creating large differences

in incident shortwave radiation.

The solar radiation incident to the surface is also affected by variations in slope

and aspect of the topography and by local terrain shadowing surrounding terrain

(Dozier et al., 1981). This shading changes with time of day, time of year, and

latitude. This cycling creates large differences in incident shortwave radiation and

can play a principal role in, for example, limiting melt on glaciers that are nested

in highly shaded cirques (Chueca and Julián, 2004), snow melt (Carey and Woo,

1998; Pomeroy et al., 2003), surface temperature (Pomeroy et al., 2003), and photo-

synthesis and subsequent vegetation patterns (Dymond, 2002). In high-relief areas,

such as in the Canadian Rocky Mountains, and in low-relief areas with short, steep

slopes, the topography can completely block some locations from receiving any direct

incoming solar radiation when the sun is low on the horizon. This is common near

sunrise and sunset and also for much of the day during the winter months. In fact,

much of the spatial variability in snowmelt energies can be attributed to topographic

influences (Woo and Young, 2004). Pohl et al. (2005) identified a need to further

study the topographic influences on the snowmelt energy balance, particularly the

effect of shortwave solar radiation flux on a smaller scale.

When considering a shadowing model that incorporates surrounding topographic

features, the most common approach is the hemisphere viewshed/horizon calcula-

tion. This algorithm can be described as follows. A structured mesh, rectangular

in shape with a fixed spatial cell scale, is taken to define the topography. Then for

each point in this mesh, the algorithm computes an upward-looking hemispherical
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viewshed by sampling in all cardinal directions from a focal point and then determin-

ing the maximum elevation angle of the obscuring terrain (Hetrick et al., 1993). A

continuous horizon is created by interpolating between the sampled horizon points.

Examples of horizon-based algorithms are those of Fu and Rich (1999) that are in-

corporated into the ArcGIS R© product by Environmental Systems Research Institute

(ESRI) under the name SolarAnalyst, as well as those of Dozier et al. (1981), Dozier

and Frew (1990), Frew (1990), and Varley et al. (1996). Other algorithms are less

common but still used, such as via ray-tracing (Coquillart and Gangnet, 1984) or a

sector/hull approach (Stewart, 1998). To determine if terrain is shaded, the horizon

in the direction of the sun’s azimuth is compared to the solar elevation and the ter-

rain is shaded accordingly. One of the major difficulties with this type of algorithm is

choosing a proper interval between sampling points when looking up and computing

the horizon. Increasingly, high-resolution data sets are becoming available and this

necessitates high-performance algorithms (Tabik et al., 2011) because more terrain

elements must be checked. Romero et al. (2008) identified the horizon calculation

and subsequent look-up in most shadow-aware models as the most computationally

expensive aspect. There have been many attempts at producing increasingly effi-

cient algorithms for the horizon calculation. Essery (2004) developed an alternative

approach. By examining slope components for North Wales and the French Alps, it

was found that a double-exponential (Laplace) distribution could describe the slopes.

Using this, a statistical model was developed that expressed the fractions of the sur-

faces that are self- and horizon-shaded. This type of approach is suited for sub-grid

shadow representation.

An approach that can be used with unstructured meshes is the algorithm of

Montero et al. (2009). This is an extension of the parallel point-plane method origi-

nally introduced by Clarke (2001). It is an efficient algorithm and one that is easily

implemented and modified, making it suitable for inclusion in a hydrology model.

The parallel point-plane algorithm determines horizon-shaded areas as follows. A

receiver area is an arbitrarily oriented plane defined in 3-space that can potentially

be shadowed, and an obstructer area is an arbitrarily oriented plane in 3-space that
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can cast a shadow. In this case, the topography is represented by triangles; therefore

each triangle is potentially an obstructer and a receiver simultaneously. That is, all

parts of the terrain can shade other terrain while being shaded. For this algorithm,

the standard x, y, z Cartesian coordinate system is rotated so that the new vertical

axis points at the sun. In this rotated configuration, some triangles may be located

between the sun and other triangles, and by projecting the rotated coordinate sys-

tem onto a plane and checking for intersecting triangles, shadow locations can be

calculated.

2.3 Terrain representation

Hydrology has had a long history of trying to determining the best method to prop-

erly quantify and represent the model domain and to consider the spatial variabil-

ity in many aspects of the hydrologic system, including solar radiation, as noted

above. Correctly representing landscape heterogeneity is key for simulating many

spatial processes, including, for example, snow accumulation and snowcover deple-

tion (Grayson and Blöschl, 2000; Dornes et al., 2008b). Previous studies have cate-

gorized hydrologic modelling approaches by the way that the spatial representation

of the model is conceptualized, with the three primary classes being distributed,

semi-distributed, or lumped. Distributed models are appealing because they can po-

tentially capture small scale variability when used at a sufficiently high-resolution,

provided the physics are valid for such a scale. This approach involves represent-

ing the landscape via a discretizing mesh, where each computational element of the

mesh (i.e., a grid cell or triangle) is characterized by elevation, vegetation cover, and

soil conditions. Because of this, when the cells are made sufficiently small, high-

resolution processes can be captured. One effect of an increase in spatial resolution

is that such high-resolution modelling requires an increase in computing power to

solve the controlling equations due to the larger number of times the equations must

be solved. Although an increase in spatial resolution brings with it a potential for

increased accuracy, it adds complexity. For example, it is often not known what an
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ideal scale is to correctly model certain processes; different approximating equations

and methods may only be applicable at certain scales (spatial or temporal), and var-

ious additional parameters (i.e., soil hydraulic conductivity) may also be required at

this fine scale. However, such parameters may not be available at the required resolu-

tion. Hopkinson et al. (2010) examined modern high-resolution DEMs and their scale

effects on glacial ablation, concluding that DEM resolution was important because

it affected the underlying terrain representation, causing errors in slope, aspect, and

shadow-generating topography. Mckenney (1999) noted that a coarser resolution

mesh (100 m versus 20 m) smoothed out the spatial heterogeneity of irradiance.

In contrast, a lumped approach generalizes the model domain into one compu-

tational element that characterizes the entire model domain. It considers neither

the spatial distribution in input variables nor the spatial variation in parameters

(Clarke, 1973). In addition, input variables may be lumped temporally, such as

treating rainfall as a daily value (Clarke, 1973). Because of this, lumped models are

computationally inexpensive but are unable to capture any high-resolution spatial

variability as has been shown on multiple occasions, such as in Pohl et al. (2005);

Dornes et al. (2008b). Because the lumped approach does not take into account any

spatially variable process, a compromise is often used. This compromise is generally

the semi-distributed method, whereby the landscape is discretized by lumping to-

gether similar aspects of the basin that are expected to behave in a similar fashion.

For example, all north-facing terrain might be considered as a single unit. This allows

for some spatial heterogeneity without sacrificing computational speed or requiring

a large set of input variables and parameters.

2.3.1 The Hydrological and Grouped Response Units

The Hydrological Response Unit (HRU) conceptualization is a semi-distributed ap-

proach that assumes that a basin can be subdivided into uniform elements (response

units) that are delineated based on a combination of one or more of elevation, land

cover, slope, aspect, soil type, and precipitation (Grayson and Blöschl, 2000). It

is assumed that each response unit responds uniformly to a hydrological event; the
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internal dynamics of the HRU are small compared to neighbouring HRUs (Flüegel,

1995). HRUs can be at any scale, from small scale such as a hillslope, to large scale,

such as a sub-basin (Pomeroy et al., 2007). An example of such a delineation is

‘forested, north-facing, and < 20◦ slope’. Mass may be transferred between response

units, thus simulating hydrological events such as runoff, blowing snow, etc. A va-

riety of hydrological models exists that exploit this conceptualization, such as the

Precipitation-Runoff Modelling System (PRMS) (Leavesley and Stannard, 1995) and

the Cold Regions Hydrological Model (CRHM) (Pomeroy et al., 2007).

The Grouped Response Unit (GRU) conceptualization is a lumped approached

utilizing a computational unit that consists of one or more fractional land cover

characteristics (Kouwen et al., 1993). Specifically, a GRU is a grouping of all areas

within an domain with a similar hydrological response (Soulis et al., 2005) regardless

of location (Shaw et al., 2005). GRUs are often used with a grid approach to represent

spatial variability within a basin. Each cell thus has associated GRUs and the cell

size need not reflect the size of the hydrologic unit being modelled (Cranmer et al.,

2001). However, the GRU elements are limited in size to an area that is subject to

a uniform hydrological response due to uniform meteorological conditions or where

travel times are small compared to the overall basin or the overall meteorological

events of interest (Kouwen et al., 1993). The land-cover characteristics of a GRU all

contribute to runoff and identical hydrological parameters are used for the same land

cover over all elements in the model basin. GRUs are typically based on vegetation

based land cover types. A defining characteristic of the GRUs approach is that

each group of GRUs must route water directly to a stream. Hydrological models

such as WATFLOOD (Kouwen et al., 1993) and the Modélisation Environmentale

Communautaire (MEC)-Surface and Hydrology (MESH) (Pietroniro et al., 2007)

model both exploit this concept to decrease model runtime and simplify calculations .

Topographic information controlling spatial variability of solar radiation is generally

omitted from GRU based models. There have been attempts to combine spatially

distributed topographic information with the GRU approach, such as Dornes (2009);

Pohl et al. (2005). In Dornes (2009), MESH was coupled with the Cold Regions
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Hydrologic Model. CHRM was used to produce incoming radiation estimates that

approximate the spatial variability of solar radiation. This coupling produced results

with an increased accuracy. However, this was a coupling with a HRU model, not a

fully distributed model. This suggests that there may be an increase in prediction

accuracy when increasingly distributed models are used to predict spatially variable

surface energetics.

2.3.2 Structured mesh

A structured mesh, also known as a raster or grid in the GIS nomenclature, is a

landscape representation where a structured mesh divides the landscape into uni-

formly sized cells. A DEM is an example of a structured mesh, where each cell has

an elevation value. Raster-based models are common (Tucker, 2001) because their

computer representation is trivial to implement using two-dimensional arrays, a fea-

ture intrinsic to modern programming languages. Widespread use of rasters, such

as satellite imagery, make using rasters a natural choice in models. Thus a raster is

intrinsic to many applications.

Despite their widespread use, rasters have a number of significant limitations for

usage in hydrological modelling. Tucker (2001) identified many limitations of rasters

with one of the most significant being that hydrology does not function on uniform

grids. Drainage directions are often constrained to 45◦ intervals when using struc-

tured meshes (Tucker, 2001). By shoehorning hydrological processes into structured

grids, geometrical artefacts and other sub-grid variability can be artificially intro-

duced (Tucker, 2001). Landscapes must also be represented by constant-sized cells

that are spatially invariant through time. Representing topographic domains with

both flat and hilly/mountainous terrain can result in excessive computations and

data due to data redundancy (Jones et al., 1994). Because of the rigid, constant na-

ture of a structured mesh, representing a non-rectangular hydrological basin requires

buffering around the basin in order to capture its irregular shape with regular cells.

This can result in having to either mask areas out, computing values for areas not

used in the simulation, or focusing on a ‘window’ within the basin that can be fully
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captured via a raster, neglecting the rest of the basin.

2.3.3 Unstructured triangular mesh

Unstructured triangular meshes, typically referred to as Triangulated Irregular Net-

works (TINs) in GIS literature, are a way of approximating the topography of the

earth’s surface and allow for distributed models. Unstructured meshes offer a so-

lution to the problem of a fixed spatial resolution intrinsic to structured meshes.

Unstructured meshes are generally comprised of a series of non-overlapping, con-

nected triangles, where each triangle face is of a constant gradient (Chang, 2008).

Because the triangles can have variable internal angles, they may have a variable

size. Areas of large topographic variability can have a higher density of small trian-

gles in order to capture the spatial variability and areas of relatively homogeneous

topography have fewer large triangles.

In contrast to structured meshes, unstructured meshes have a number of advan-

tages in hydrologic modelling. For example, because of the non-uniform spacing of

points of an unstructured mesh, meandering features such as streams can be easily

represented (Tucker, 2001). When river channel evolution was simulated by Braun

and Sambridge (1997), the artificial constraints from using a raster were identified as

the cause of creating non-natural channels. This was in contrast to the output from

unstructured meshes that produced more natural-looking channels. Tucker (2001)

suggested that unstructured meshes devised using unstructured meshes should be

preferred over raster DEMs. Unstructured meshes can provide an optimal represen-

tation of the terrain using the least number of elements while maintaining confor-

mance to the geometrical and physical properties of the basin (Kumar et al., 2009) to

some predefined tolerance. Furthermore, landforms and associated topography need

not be represented at the constant spatial resolution of a raster DEM, a resolution

that generally corresponds to the highest resolution required to represent one area

of the domain of interest (Tucker, 2001). Tachikawa et al. (1994) went as far to

say that structured meshes are not appropriate for hydrological models due to their

crude movement of water to only the eight adjacent cells (following the commonly
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used D8 routing method (O’Callaghan and Marks, 1984)). That is, flow directions

in a structured mesh are limited to the horizontal, vertical, and diagonal directions

(Nelson et al., 1999). Computation of flow on an unstructured mesh avoids the com-

plication of flow divergence (Zhou et al., 2011). Because of the reduction in spatial

information needed to properly quantify the basin due to a more efficient terrain rep-

resentation (Shewchuk, 1996), Ivanov et al. (2004) found that for an unstructured

mesh, 5%–10% of the original number of grid cells could be removed. When repre-

senting a non-rectangular hydrological basin, structured meshes necessitate buffering

around the basin in order to capture its irregular shape. Structured meshes create

artificial scaling and model parametrization problems that lends needless uncertainty

to model output. However, terrain resolution is still important in unstructured mesh

models. Failing to select a resolution that properly delineates streams, for example,

can lead to large discrepancies in hydrologic simulations (Vivoni et al., 2005).

However, unstructured mesh data structures are more complex than those for

grids. Because of the differences in terrain representation, using unstructured meshes

adds restrictions to the types of algorithms that can be used. For example, in order

to incorporate horizon-shading on unstructured meshes, a different approach must

be taken from that used in gridded approaches. Although it is sometimes possible

to utilize the algorithms designed for structured meshes with unstructured meshes,

there are increasing complexities associated with this. For example, the commonly

used fixed spatial intervals often used to calculate the horizon can no longer be

accurately used with unstructured meshes.

Creating an unstructured mesh from a set of points is referred to as meshing or

triangulation. Refining a mesh involves adding triangles, coarsening (or derefining)

a mesh involves removing triangles. The resulting triangular mesh is composed

of faces, nodes, and edges (Chang, 2008). In the generation of these meshes, a

guarantee about the shape of the triangle is necessary for numerical stability if solving

partial differential equations (e.g., no thin, sharp triangles). When representing

complex topography a valley could be an artefact of a poor meshing algorithm.

The triangle shape is affected by the angles at the nodes and it is known that
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excessively long, skinny triangles can lead to undesirable behaviour such as numerical

instabilities or terrain artefacts (Ruppert, 1995). Therefore, there has been much

interest in producing algorithms that produce triangles with certain geometrical

characteristics. One example of an algorithm class used for the generation of triangles

is the Delaunay refinement. This method satisfies guaranteed bounds on angles, edge

lengths, the number of triangles, and the grading of triangles from small to large sizes

(Shewchuk, 2002). It is extensively used and implementations can be found in many

software packages such as MATLAB R© , ArcGIS, and standalone tools like Triangle

(Shewchuk, 1996). Examples and further discussion of meshing algorithms can be

found in Rivara (1987); Bern and Eppstein (1992); Chew (1993); Ruppert (1995);

Shewchuk (1996, 2002).

When converting a structured mesh to an unstructured mesh, it is important to

select the points that best describe the topography, and disregard the rest. This

allows for reduced data redundancy in the final unstructured mesh. Unfortunately,

this process is usually a subjective task and depends on the criteria used as well as

the number of points taken to be significant. Outlined by Lee (1991) and referenced

elsewhere, such as El-Shimy et al. (2005) and Chang (2008), there are four popular,

significant point-selection algorithms: Skeleton, Filter (also known as ‘Very Impor-

tant Points’ (VIP)), Hierarchy, and Heuristic. Filter, VIP, Hierarchy and Heuristic

share the trait that possible stopping criteria be either a pre-set number of points to

be selected or a pre-set tolerance of differences in elevation between the original struc-

tured mesh and the final unstructured mesh (Lee, 1991). Slingsby (2002) performed

a comparison between these techniques with an eye to hydrological process mod-

elling. He found that the heuristic method was too slow for general use and that the

hierarchy/skeleton methods produced the most balanced unstructured meshes which

did not over- or under-represent any type of topography. This is in contrast to the

VIP method that over-represented complex topography, and under-represented the

other areas.
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2.4 Research questions

The surface energy balance is frequently dominated by net shortwave radiation fluxes,

and incorrectly modelling its behaviour in complex terrain can lead to inaccurate

predictions of dependent phenomena. In high-relief environments, high resolution

DEMs are required to properly account for horizon-shading. These DEMs generally

have large data redundancies that can make them difficult to use in models, given the

large number of cells required. This becomes a significant problem when modelling

large spatial domains. One method to overcome these problems is to use different

terrain representations and algorithms in order to reduce simulation time. Rigorous

testing of shadowing algorithms using field collected shadowing data has not been

performed. In addition, the effect of unstructured mesh tolerance selection on shadow

location prediction has not been qualitatively compared.

2.4.1 Objectives

1. Construct an unstructured-mesh-based shadow model that accounts for topo-

graphic shading.

2. Evaluate the shadowing algorithm over a series of spatial domains by compar-

ison with orthorectified imagery of the basin that captures the shadow bound-

aries. Determine the sensitivity of the spatially distributed radiation output

to the mesh resolution.

3. Evaluate the effects of horizon-shadowing on snowmelt by using a CRHM

based energy balance snowmelt model (CRHM SNOBAL) using both self- and

horizon-shaded irradiance inputs. Measured data will be used as input.

2.4.2 Hypotheses

1. By incorporating an unstructured mesh horizon-shading algorithm, spatially

variable radiation can be captured in a more accurate fashion with minimal

data overhead.
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2. Shadow location prediction is dependent upon topographic data resolution and

generally smaller triangles (lower tolerance) produce more accurate results.

3. As long as topographic data sets have sufficiently high resolution so that moun-

tains and valleys are discernible, this unstructured mesh method produces im-

proved hydrological predictions (for variables dependent upon shortwave radi-

ation) than methods that do not account for surrounding topographic shading.

By coupling the adaptive mesh model to basin scale models such as CRHM,

snowmelt can be predicted more accurately.
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Chapter 3

Methodology

3.1 Study site and instrumentation

The research was carried out over the winter of 2010 and the spring of 2011 at the

Marmot Creek Research Basin (MCRB) located at 50.96◦ N and 115.21◦ W in the

Kananaskis River Valley of the Canadian Rocky Mountains (Figure 3.1). The MCRB

is currently operated by the Centre for Hydrology, University of Saskatchewan, and

was initially established in 1962 by the Canadian Government as an experimental

research basin (Golding, 1970). A brief description of the MCRB follows.

The MCRB ranges in elevation from approximately 1450 m.a.s.l to 2886 m.a.s.l.

At lower elevations, landcover is generally dense lodgepole pine, Douglas spruce, and

sub-alpine fir; tree-line elevations are characterized by larch, spruce, fir, shrubs, and

grasses; high alpine zones consists of talus and bare rocks (DeBeer and Pomeroy,

2009; MacDonald et al., 2010). The climatic conditions are dominated by continen-

tal air masses where winters are long and cold, averaging −15 ◦C between January

and March (DeBeer and Pomeroy, 2009). Snow generally covers at least a portion

the basin from November to June. Average annual precipitation is about 900 mm,

increasing to over 1140 mm at the treeline (Storr, 1967), where about 60%–75% falls

as snow, and the melt period is generally April to July (DeBeer and Pomeroy, 2009).

DeBeer and Pomeroy (2009) showed that the snowcovered areas (SCA) of the alpine

sites such as the Mt. Allan cirque, a north-facing slope, and a south-facing slope

were 0.3, 0.4, and 0.1 respectively by mid-June, following a typical winter in 2007.

Measurements conducted over the study period were taken at hydro-meteorological

stations in the basin and are shown in Figure 3.1 and summarized in Table 3.1. Field
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Figure 3.1: Marmot Creek Research Basin, Kananaskis Valley, Al-
berta at 50.96◦ N and 115.21◦ W in the Canadian Rocky Mountains.
Locations of meteorological stations used in this study are shown along
with major topographical features, stream channels, and man-made
clearings.

visits are summarized in Appendix A. Shortwave pyranometers used in this study are

the Apogee SP-110s (spectral response: 280 nm–2800 nm, cosine correction of ±1%–

±5%, absolute accuracy of ±5%) at Fisera Ridge North and South, South Meadow,

and Hay Meadow; and Delta-T SPN1s (spectral response: 400nm–2700 nm, cosine

correction of ±2%, resolution 0.6 W·m−2) at Fisera Ridge and Hay Meadow. At

Vista View, temperature and relative humidity were measured using the Campbell

Scientific HMP45C (accuracy: ±0.5 ◦C and ±2% RH respectively); ground flux was

measured using a Campbell Scientific HFT3-L flux plate (accuracy: ±5%); wind ve-

locity was measured using an R. M. Young alpine 05103-45 anemometer (threshold:

1.0 m·s−1 accuracy: ±0.3 m·s−1). At the Upper Clearing site, precipitation was mea-

sured using Geonor T200B accumulation gauge (weight accuracy: 0.1% when full)

with alter shield. All instruments were sampled at a frequency of 0.1 Hz, and the
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data were averaged and stored every 15 minutes by Campbell Scientific Canada data

loggers and Delta-T data loggers. A timelapse camera was installed at Fisera Ridge

North, facing Mount Collembola. The camera was a Pentax K110D digital single-

lens reflex (DSLR) with a Pentax DA 21 mm F32AL Limited lens that minimizes

radial image distortion. The camera was triggered daily by a Campbell Scientific

Canada CR200 data logger and images were taken hourly from 08:00–17:00. A Light

Detection And Ranging (LiDAR) elevation dataset at 1 m × 1 m spatial resolu-

tion with 0.15 cm vertical accuracy were available from previous research and are

summarized in (Hopkinson et al., 2011).

Table 3.1: Listing of the hydrometeorological stations at Marmot
Creek Research Basin used in this study, with a list of instruments de-
ployed at each site. The CR data loggers are manufactured by Campbell
Scientific Canada, the GP1 data loggers by Delta-T.

Name Elevation(m.a.s.l) Instrumentation Data logger
Fisera Ridge 2318 SP-110, SPN1 CR3000, GP1

Fisera Ridge North 2311 SP-110, camera CR200X
Fisera Ridge South 2304 SP-110 CR200X

Hay Meadow 1429 SP-110, SPN1 CR3000, GP1
South Meadow 2235 SP-110 CR200X
Upper Clearing 1843 T200B CR3000
Vista View 1952 HMP45C, HFT3,

05103-45
CR23X

3.2 Orthorectification of timelapse imagery

In order to demonstrate and validate the model against measured shadow locations,

a subset of the timelapse images for February 1, 2011 were used. This day was cloud-

free, had no meteorological instrument failures, and had an uniform snowcover. The

set of hourly images were orthorectified using the algorithm and software of Cor-

ripio (2004). Orthorectification transforms georeferenced, oblique photographs into

quasi-airphotos by defining a mapping function between the image and the DEM by

performing a perspective transform on the DEM (Corripio, 2004). A 1 m × 1 m

LiDAR-derived DEM was used to create a viewshed (the area visible from the point
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of an observer [i.e., camera]) looking from the Fisera Ridge North station towards

Mt. Collembola was created with ArcGIS 10. Although the optics of the camera and

the initial alignment of the camera body are known, the following factors contribute

to errors in the orthorectification process. Throughout the season, the camera hous-

ing would move and flex (such as during a storm), and these slight changes resulted

in the need to use a trial-and-error process to obtain appropriate orthorectification.

This process attempts to align the perspective transformed DEM to what is within

the view range of the camera (represented by the viewshed). An example of this

process is shown in Figure 3.2, where the red points are the perspective transformed

DEM demonstrating the alignment process. As is visible, the viewshed does not

perfectly reflect reality, leading to an abrupt edge where the viewshed cuts off (right

side of image). However, it is clear that the rest of the image generally lines up

as expected. Examples of the parameters that can be modified include roll, yaw,

and pitch to control camera body misalignments; lateral and vertical alignment to

correct for camera target coordinate misalignment.

Once the timelapse images were orthorectified, the shadowed area was extracted

from each image via image classification. This classification was done using six

manual training groups in ArcGIS 10. Groups were classified as shadow on snow

(class 1), snow (class 2), shadow on trees (class 3), trees (class 4), no data (class 5),

and sky (class 6). The sky class was needed to mask out the sky above the ridge line

as a result of a slight misalignment in the orthorectification process. The classified

imagery was then post-processed in Matlab using the Image Processing Toolbox,

following Algorithm 1.

The goal of Algorithm 1 is to reclassify all the shadow locations into one class and

all the non-shadow locations into another, resulting in a a binary shadow/no-shadow

raster (lines 2–8). However, as a result of the original classification, there are holes,

regions connected by one pixel, and single unconnected pixels in the classified raster.

The algorithm removes these areas (lines 9–10) and fills holes via a three-by-three

majority filter, whereby eight of the nine pixels must match (lines 11–14). Noise

is further removed via opening, a process that removes small objects such as 2×2
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Figure 3.2: Example of the orthorectification perspective transform of
the 1 m × 1 m DEM (red points). The perspective transformed DEM is
shown on top of the unprocessed timelapse photography take at Fisera
Ridge North, Feb. 1st, 2011 at 17:00. The computed viewshed (not
shown) causes the sharp edge in the transformed DEM.

pixel groups. The image is subsequently thickened, a process that adds pixels to

the exterior of an object unless doing so would cause an unconnected object to be

8-connected. Thickening effectively smooths out the artificially rough edges of the

shadow location.

In order to quantify the accuracy of the orthorectified images, a previously ob-

tained air photo of the MCRB (spatial resolution: 1 m × 1 m) was compared to

the source LiDAR DEM. This was done by examining the vegetation heights derived

from the first-return of the LiDAR dataset. The vegetation extents were compared

to the visible vegetation extents in the air photo and an excellent match was found.

Fifty points on this air photo were compared to the same fifty points on the orthorec-

tified imagery. Points from one image were selected such that their corresponding

points on the other image were clearly matched. For each point, the minimum

distance between the orthorectified imagery and the air photo was measured and
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Algorithm 1 The shadow extraction algorithm.
Precondition: Set of partially classified images
Postcondition: Set of binary classified shadow areas

1: for each Image i do
2: for each Pixel p in i do
3: if p = class 1 or 3 then
4: p← Shadowed
5: else
6: p← Non-shadowed
7: end if
8: end for
9: i← 1pxConnected(i) . Break apart single-pixel connected regions

10: i← Clean(i) . Remove single-pixel noise
11: for 1 to 2 do
12: i← 3x3Majority(i) . Eight of nine pixels must match
13: i← Clean(i)
14: end for
15: i← OpenImage(i)
16: i← ThickenImage(i)
17: i← 3x3Majority(i) . Five or more of nine pixels must match
18: SaveToDisk(i)
19: end for

then this distance was spatially interpolated. The interpolation was done using the

ArcGIS software and the kriging spatial interpolation. Kriging is a geo-statistical

spatial interpolation that is best known in the earth sciences (Myers, 1994). Kriging

interpolation assumes that the distance between known points reflects a spatial cor-

relation that can be used to explain variation within the surface, with this spatially

correlated component quantified via a semivariogram. Such an interpolation allows

for quantification of the error across the entire orthorectified image. Choosing corre-

sponding points between the imagery and the DEM was difficult at times, with above

tree-line points having increased difficulty due to the lack of prominent landmarks.

Repeated measurements of the distance between the same point indicated that there

was about a ±5% error in this distance measurement.
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3.3 Terrain representation

For use in many types of hydrological research, the spatial domain of interest must

be discretized such that a spatial unit, however defined, is connected to other spa-

tial units. A structured mesh, such as that derived from a LiDAR source, may be

triangulated such that triangles of variable size represent the topography. Triangle

vertices thus have x, y, z components that represent the elevation of a point in some

coordinate system, e.g., Universal Transverse Mercator (UTM). A common and pow-

erful triangulation algorithm is Delaunay triangulation; see Shewchuk (2002). Using

Delaunay triangulation, the triangulation can be constrained to important charac-

teristics of the model domain such as streams, rivers, and basin delineation, thus

guaranteeing their representation. Once complete, a triangulation is essentially a

linear interpolant. Thus when creating a triangulation from a structured mesh, a

tolerance, i.e., the maximum difference between the triangle’s interpolated elevation

and the elevation of the structured mesh, must be specified. Therefore, stringent

tolerances produce a greater number of triangles, and vice versa. Because compu-

tational time increases as a function of number of triangles, choosing a tolerance

that is too stringent negates some of the performance increases of an unstructured

mesh. As an example (for the MCRB), using the base DEM of 1 m × 1 m with a

tolerance of 1 m results in 206580 triangles whereas a tolerance of 0.5 m results in

544507 triangles. Depending on the modelling requirements, there is a need to find a

balance between acceptable error and computational efficiency. The ideal approach

would be to use the LiDAR point cloud as the input to the triangulation process.

In order to investigate the effects of the dataset resolution on model performance,

sixteen combinations of resolution and tolerance were tested. The base 1 m × 1 m

LiDAR-derived DEM (herein referred to as a 1 m DEM) was resampled to produce

a raster with a spatial resolution of 2 m × 2 m (herein referred to as a 2 m DEM), a

10 m × 10 m (herein referred to as a 10 m DEM), and 30 m × 30 m (herein referred

to as a 30 m DEM). These structured meshes were used to create the unstructured

meshes with tolerances of 1 m, 2 m, 10 m, and 30 m for each DEM resolution. An
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area slightly larger than the MCRB area was simulated in order to capture horizon-

shadows created from topography outside the basin. The shadow-model model runs

were done for February 1, 2011. This day was selected to correspond to the days

used for the timelapse imagery, thus allowing for a priori knowledge of what the

daily shadowing regime.

3.4 Shortwave radiation data

In order to avoid the errors associated with modelled incident shortwave radiation,

this study used measured direct- and diffuse-beam irradiance (from the Delta-T

SPN1s) as input for the unstructured-mesh-based shadow model that accounts for

horizon-shading. Because there were no winter-accessible sites with an unobstructed

view of the sky that measured both direct and diffuse irradiance, no one hydro-

meteorological station provided a complete record of incoming solar radiation with

no shading. For example, the Hay Meadow site is in shadow early in the morning,

whereas the Fisera Ridge site is not, with this situation reversing late in the day. In

order to provide a complete record of incoming radiation (diffuse- and direct-beam)

with no shading, measurements from the SPN1 instruments at the Hay Meadow and

Fisera sites were spliced together to create a synthetic dataset spanning October,

2010–June, 2011 utilizing Fisera Ridge values from sunrise to noon and Hay Meadow

values until sunset. Each half of the day, from each site, was merged into one data

set. Smoothing or interpolation between datasets was not used. Between October,

2010–June, 2011 at 12:00:00 daily, these datasets had a mean difference of 15 W·m−2.

This synthetic dataset represents the irradiance throughout the day that is as free

from topographic shadow contamination as possible.

Diffuse radiation was assumed to be isotropic and corrected for the skyview-

factor; the ratio of the diffuse sky irradiance with obstructing terrain to that of an

unobstructed sky. This was computed using the the 1 m LiDAR structured-mesh

DEM using the algorithm of Dozier and Frew (1990) as implemented in the SAGA-

GIS software (SAGA Development Team (saga-gis.org), 2007). The values for each
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triangle vertex were extracted from the structured mesh, and the average of each

triangle’s vertices was used as the skyview for a triangle. Although it is necessary to

compute a skyview factor when considering diffuse radiation, this relatively simple

hybrid scheme avoids the problems of storing the horizon in every direction for every

point and searching through the horizon for every point for every timestep when

computing direct-beam shading. Rather, because the skyview is a fixed constant and

diffuse shortwave radiation is considered isotropic, there is no need for directional

searches. Therefore the skyview factor can be computed once and used for the entire

diffuse irradiance calculation. Because diffuse radiation is not affected by shadowing,

the shadowing algorithm was not applied to the diffuse component.

Reflected shortwave radiation from the surface can be important in many envi-

ronments (Marks and Dozier, 1992), especially on cloudy days; however it was not

considered in this study and solar irradiance was estimated as the sum of diffuse-

and direct-beam components.

3.5 Shadow model development

3.5.1 Model description

The shadowing model presented herein, an extension of the algorithm presented by

Montero et al. (2009), determines horizon-shadow locations via Euler rotations; see

Fowles and Cassiday (2005) for a treatment of Euler angles. This model is named

Umbra after the Latin word for shadow. It is an open-source software built upon the

Armadillo C++ linear algebra library (Sanderson, 2010) and MATLAB 2011a (see

Appendix B for details).

Let θs(t) be the solar elevation angle and φs(t) be the solar azimuth, clockwise

from north (radians), at a time t. Let x, y, z be a reference coordinate system with

x positive to the east, y positive to the north, and z positive in the vertical direction

(corresponding to elevation). This initial configuration is shown in Figure 3.3. Let

x′, y′, z′ be a coordinate system obtained by performing an XZX series of Euler
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rotations on the coordinate system x, y, z to align the z′ axis with the solar vector.

Figure 3.3: The initial coordinate system configuration of x, y, z,
where θs(t) is the solar elevation and φs(t) is the solar azimuth (clock-
wise from north). The x-axis is positive to the east, the y-axis is pos-
itive to the north, and the z-axis is positive in the vertical direction
(elevation).

For a given angle ψ, let Rx(ψ) be the x rotation matrix and Rz(ψ) be the z

rotation matrix given as

Rx(ψ) =


1 0 0

0 cosψ − sinψ

0 sinψ cosψ

 , (3.1)

and

Rz(ψ) =


cosψ − sinψ 0

sinψ cosψ 0

0 0 1

 . (3.2)

Then the rotation from x, y, z to x′, y′, z′ is done via the Euler rotations

R = Rx

(
−π2 + θs(t)

)
Rz (−π + φs(t)) Rx (0) (3.3)

R =
 cos(−π+φs(t)) sin(−π+φs(t)) 0
− cos(−π2 +θs(t)) sin(−π+φs(t)) cos(−π2 +θs(t)) cos(−π+θs(t)) sin(−π2 +θs(t))
sin(−π2 +θs(t)) sin(−π+φs(t)) − sin(−π2 +θs(t)) cos(−π+θs(t)) cos(−π2 +θs(t))

 . (3.4)
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The rotation R is applied to each triangle’s vertex. The result of this rotation is

a transformed x′, y′, z′ coordinate system that defines triangles, with respect to the

solar vector, further from the sun as having smaller z′ values and triangles closer

to the sun as having a larger z′ values. These rotated triangles are projected onto

the x′y′ plane and are interpreted as triangles in two dimensions for the purpose of

the triangle-triangle intersection test. For the purpose of visualization, the triangles

were coloured according to an average of their three vertex z′ values. An example

of this is shown in Figure 3.4a. The scene is shown with the observer between the

sun and the terrain and along the solar vector. Triangles with high values (red) are

the closest to the sun, and triangles with low values (blue) are furthest away from

the sun. The scene is shown from a different perspective in Figure 3.4b, with the

observer looking directly into the basin (approximately west), with the sun on the

left of the scene. The ordering of the triangles obtained from the z′ values allows for

obscuring triangles to be detected.

Each triangle’s irradiance was calculated using the standard cosine-correction

(Garnier and Ohmura, 1968; Oke, 1987). To calculate the direct-beam irradiance to

a triangle (considered uniform over the triangle) the following equations were used.

Let n̂ be the unit normal vector to a triangle’s surface. Then the angle Θsn between

the surface normal and ŝ(t) is a unit vector pointing to the position of the sun given

by

Θsn(t) = arccos(n̂ · ŝ(t)) (3.5)

where ŝ(t), in a Cartesian coordinate system, is given by:

ŝ(t) =


cos θs(t) sinφs(t)

cos θs(t) cosφs(t)

sin θs(t)

 . (3.6)

The measured direct-beam irradiance data (Kmeas [W·m−2]) were corrected from flat-

plane values to account for the flat-plane solar zenith angle (Garnier and Ohmura,

1968; Oke, 1987) such that

S0τ = Kmeas

cosZ(t) , (3.7)
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(a) The MCRB viewed along solar vector

2011/02/01 13:30:00

625000

625500

626000

626500

627000

5645500
5646000

5646500
5647000

5647500
5648000

5648500

1600

1800

2000

2200

2400

2600

2800

 

Northing (m)Easting (m)

 

E
le

v
a
ti
o
n
 (

m
)

z′
0

1

2

3

4

5

6

7

8

x 10
−4

(b) The MCRB viewed in a westerly direction

Figure 3.4: Result of the x, y, z coordinate system rotated to x′, y′, z′
where z′ is aligned with the solar vector. The colouring is the average
of the z′ values for each of the triangles’ vertices, where triangles with
larger z′ values (closer to the sun along the solar vector) are in red
and triangles with smaller z′ values (farther from the sun) are in blue.
The scene is shown from a perspective (a) aligned with the solar vector
and (b) looking approximately west towards the MCRB (black outline).
Model time: Feb 1, 2011 at 13:30 (local).

where S (W·m−2) is the solar constant, Z(t) is the solar zenith angle, and τ is

the transmittance of the atmosphere to direct-beam solar radiation. Thus the S τ
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term captures the measured incident irradiance (including transmittance) that can

be used as input to a hydrological model. The self-shaded direct-beam irradiance

(Ks(t) [W·m−2]) is then computed as

Ks(t) = Sτ cos Θsn(t) (3.8)

To account for self-shading, if cos Θsn(t) was less than zero, i.e., the triangle was

facing 90◦ or more away from the sun, the triangle was marked as self-shaded and

assigned a direct-beam irradiance of 0 W·m−2.

3.5.2 Horizon-shadow detection

The calculation of the z′ values for each triangle gives an ordering to the trian-

gles, allowing for obscuring triangles to be detected. This algorithm is outlined in

Algorithm 2 and described in detail below.

For computational efficiency when determining whether two triangles intersect,

only triangles with similar x′, y′ values need to be compared. Because the original

algorithm in Montero et al. (2009) used a different mesh type (Rivara 4-T (Rivara,

1987)) than the Delaunay mesh used herein, the shadowing algorithm was modified

and adapted accordingly. A three-dimensional bounding box is fit to the terrain.

This bounding box is then rotated and flattened to two-dimensions (line 3). This

minimum bounding rectangle is segmented into m rows and n columns creating mn

regions. Each rotated triangle is assigned to a region (lines 6–10), and if a triangle

falls into more than one region, it is considered in each region it intersects. The

triangles in each region are sorted in descending order of z′ (line 14). The triangles

of each region (lines 15–23) are checked in order of largest z′ to smallest z′ against

the remaining triangles in the region. If a triangle lies in front of another triangle

(based on their respective z′ values) the triangle with the larger z′ value is checked for

an intersection with the triangle behind it (lines 17–18). To determine intersection

between triangles, the vertices and circumcentre of the triangle with greater z′ are

used as detection points. These points are checked to see if they are contained by

the triangle with smaller z′; containment indicates intersection. If intersection is
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detected, the triangle with the smaller z′ value is marked as shaded with a binary

shadow mask (ζ) (line 19), where ζ = 0 when horizon-shaded and ζ = 1 for all

other cases. The horizon-shaded direct-beam irradiance (Kh(t) [W·m−2]) was then

computed as

Kh(t) = ζ Ks(t). (3.9)
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Algorithm 2 The shadowing algorithm.
Precondition: Tri is a 3 × N matrix where each row are the vertexes of an un-

structured triangular mesh of size N.
Precondition: Solar elevation for current time-step > 0.

1: function Umbra(Tri)
2: N ← Number of triangles in mesh
3: BR← CreateBR(Tri) . Create 3D bounding rectangle and

. flatten to 2D with m× n regions
4: for each t in Tri do
5: Tri(t)′ ← EulerRotation(Tri(t))
6: for j = 1 to BR’.rows do
7: for k = 1 to BR’.cols do
8: InsertTriangleIntoBRj,k(Tri′(t))
. Find region in BR′

9: end for
10: end for
11: end for
12: for j = 1 to BR.rows do
13: for k = 1 to BR.cols do
14: BRj,k ←Sort(BRj,k) . Sort region i,j using z’ values
15: for ti = 1 to BRj,k.size do
16: for tj = t1 + 1 to BRj,k.size do
17: if Tri′(ti).z′ > Tri′(tj).z′ then
18: if Intersects(Tri′(ti),Tri′(tj)) then
19: Tri(tj)← Shaded
20: end if
21: end if
22: end for
23: end for
24: end for
25: end for
26: end function
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3.5.3 Computational complexity

Computational complexity, the classification of computational problems according to

their inherent difficulty, of the horizon-shading algorithm was determined analytically

to be O(N logN), where N is the number of triangles in the unstructured mesh. Let

N be equal to the number of triangles T in the triangulation. Then lines 4–11 are

done in O(N) and the sorting algorithm (line 14) is O(N logN). The lines 15–23

are O(N).

An empirical verification of this complexity was performed by running the model

for one time step (February 1, 2011 at 16:30) for a range of meshes ranging from 851

triangles to 544507 triangles. The results are shown in Figure 3.5, where the black

symbols are the measured wall-clock times and the grey dashed line is a curve of

best fit of the form t = a0 + a1N + a2(N logN). The form of the fit is based on an

analytical complexity analysis of the algorithm and has an adjusted R2 of 0.99994.

Although the algorithm is parallelizable, and this fact is exploited when running

the algorithm in practice, the complexity analysis and timing information reported

are for a serial implementation. The benchmark tests were performed on an Intel

Xeon W3520 processor with a clock speed of 2.66 GHz and 16 GB of DDR3 RAM

running Ubuntu 10.04 LTS. The Intel C++ compiler version 12.0.4 20110427 was

used with level-3 optimization with SSE 4.2 instruction-set compatibility enabled.

Timings were taken using the clock_gettime function. The values reported are the

minimum of fifty runs.
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Figure 3.5: Wall-clock times of the horizon-shadow algorithm run for
mesh sizes from 851 to 544507 triangles. The grey dashed line is a line
of best fit of the form t = a0 + a1N + a2(N logN). Wall-clock times
are for one model timestep Feb 1, 2011 at 16:30, a time for which there
are many triangles in shadow.
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3.6 CRHM and SNOBAL

The Cold Regions Hydrological Model platform provides a modular framework to

assemble hydrological models (Pomeroy et al., 2007). Within this framework, mod-

ules conceptualize a process such as albedo decay, longwave radiation estimation,

snowmelt, or infiltration. These modules can be linked together, as appropriate,

to create a hydrological model tailored to a basin or hydrological phenomenon in

question. Spatial elements are conceptualized by the HRU approach. CRHM is

therefore used due to its ability to efficiently assemble a hydrological model and

perform sensitivity tests using different inputs.

In this thesis, CRHM is used with the SNOBAL energy balance model for calcu-

lating the snow-surface energy balance and melt. SNOBAL is a point scale, two-layer

energy balance snowmelt model that simulates each component of the snowcover

energy balance (Marks et al., 1998). It is driven using the following measured me-

teorological inputs: net shortwave radiation (W·m−2), incoming longwave radiation

(W·m−2), air temperature (◦C), vapour pressure (Pa), and wind speed (m·s−1). Fol-

lowing Marks et al. (1998), Figure 3.6 shows the conceptual structure of SNOBAL,

where the arrows denote flux direction.

For the CRHM model runs, two sites within the MCRB were simulated: the

South Meadow site and the Deep Valley site. The South Meadow site was chosen

because it represents an instrumented south-facing slope that is crossed by a horizon-

shadow each day. The Deep Valley site is located outside the MCRB in an adjacent

valley. It was chosen as a site that is heavily influenced by horizon-shadows. The

two input shortwave irradiances, Kh(t) for horizon-shaded irradiance and Ks(t) for

self-shaded irradiance (Equations 3.8 and 3.9), were generated for these sites using

the unstructured mesh model with a 1 m DEM and a 1 m tolerance. For input into

CRHM, the irradiances are the sum of the direct- and diffuse-beam components.

Precipitation measurements were from the forest clearing at Upper Clearing. There

were no missing data for this period. The remainder of the meteorological data were

from the Vista View site. This site represents a well-drained peat site and is a close
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Figure 3.6: Conceptual figure depicting the direction of fluxes in
SNOBAL. Arrows denote direction. This figure follows that of Marks
et al. (1998).

analogue to the South Meadow site. Because no site visit nor any studies have ever

been conducted at the Deep Valley site, knowledge of site specific characteristics are

missing. The same meteorology data are used for the South Meadow site as for the

Deep Valley site.

In order to simulate the snow accumulation and ablation at a point-scale for

South Meadow and Deep Valley, an HRU of size 1 m2 was created for each, for a

total basin size of 1 m2. CRHM modules used were: basin, global, obs, intcp,

longVt, pbsmSnobal, albedo_Richard, and SnobalCRHM#2.

The basin module manages the general parameters of the model by allowing for

the definition of the HRU parameters such as area, elevation, and ground slope and

aspect. This is a required core module and is the basis for all models. The global

module calculates the theoretical interval values of flat-plane and slope-corrected

direct- and diffuse-beam irradiances for each HRU. Solar geometry is also calculated

and used as input for other modules. The shortwave calculations follow those of

Garnier and Ohmura (1968). The obs module allows for reading the meteorologi-

cal forcing data. The intcp module is a compatibility module for when no canopy

interception is required. The longVt module calculates terrain-view correct long-
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wave radiation based on Sicart et al. (2006). Because this module uses irradiance

as an estimate for transmittance, the self-shading irradiance was used as input for

the longVt module. The pbsmSnobal module calculates snow transport and sub-

limation following Pomeroy et al. (1993). However, it was set to inhibit blowing

snow, resulting in a point-scale accumulation and ablation of a snow-pack. The

albedo_Richard module calculates the surface albedo, including albedo refresh due

to snowfall, following Essery et al. (2001). The SnobalCRHM#2 module is variation#2

of the SnobalCRHM module; it uses the observed irradiance and the calculated long-

wave from the longVt module. SnobalCRHM is the implementation of SNOBAL

following Marks et al. (1998) (as described above). As input, it requires the output

all the modules listed above.

For each site, the model was run twice, once using the self-shading Ks(t) irra-

diance and once using the horizon-shading Kh(t) irradiance. Differences were cal-

culated by subtracting the horizon-shading values from the self-shading values. All

other meteorological input values were the same between CRHM runs. Instead of us-

ing a measured ground temperature to calculate the ground heat flux via SNOBAL,

a measured ground-heat flux was used.

A snowcovered period was simulated from October 17, 2010 to June 14, 2011 at a

15-minute interval, and a snowmelt period was simulated from April 1, 2011 to June

14, 2011 at a 15-minute interval. Finally, a clear-sky day was modelled for Febru-

ary 1, 2011 at 15-minute intervals from sunrise to sunset. This was done to check

the performance of the model for a day that did not have any cloud-induced shad-

ows. Surface irradiance (MJ·m−2) was computed assuming a constant irradiance,

temporally over the timestep and spatially over each triangle.

3.6.1 Calculation of phase change mass

The cumulative differences of net solar radiation between the self- and horizon-

shading models were converted to a phase change mass per unit area using a constant

albedo. Snow in the study area is not affected by wind-borne dust and hence the

albedo remains higher than many published values, even during melt periods (Helga-
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son and Pomeroy, 2012). Many published low albedo values for snow during melt are

contaminated by snow-free area, and the SCA albedo is known to decay at a much

slower rate than the areal albedo (O’Neill and Gray, 1973; Male and Granger, 1981;

Pomeroy et al., 1998). Pomeroy et al. (1998) show that when SCA corrections are

employed, albedo during melt can remain at 0.85. However for this study a constant

albedo of 0.8 (Oke, 1987) and a spatially continuous snowcover were assumed. It

was also assumed that all net shortwave radiation was applied to snowmelt.

To express the cumulative energy difference (QΣ∆) between the two shading al-

gorithms to an equivalent phase change mass (mm SWE), the following was used:

QΣ∆ (1− α)
ρw hf

= SWE, (3.10)

where hf is the latent heat of fusion (0.334 MJ·kg−2), ρw is the density of water

(1000 kg·m−3), and α is the snow albedo.
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Chapter 4

Results

4.1 Shadow location and movement

A series of timelapse images demonstrating the movement of a horizon-shadow across

the South Meadow site on February 1, 2011 from 16:00 to 17:00 is shown in Figure 4.1.

The South Meadow site is located in the clearing indicated by the red arrow. The

image is taken from Fisera Ridge North viewing down the valley, roughly in an

easterly direction; see Figure 3.1. The large shadow visible in both images is cast

from the Fisera Ridge ridge line. South Meadow is located on a south-facing slope

and as a result generally receives relatively high irradiance. A sharp decrease in

irradiance at South Meadow is observed once the Fisera Ridge shadow crosses the

site. Therefore, in order to determine if the shadowing model can accurately predict

the correct timing of shadow movement, it is possible to consider these point-scale

irradiances.

Shown in Figure 4.2 is the irradiance measured at the South Meadow station (fine

dotted line), the irradiance (from the synthetic spliced dataset) with the horizon-

shadow algorithm (dashed line), and the irradiance (from the synthetic spliced

dataset) with the self-shading algorithm (solid line). The model results from the

horizon-shadows algorithm has a sharp decrease in irradiance at approximately 16:30

when the horizon-shadow from Fisera Ridge crosses the South Meadow site. This

decrease in irradiance corresponds well to that shown in the timelapse photos in

Figure 4.1. The differences in peak irradiance in Figure 4.2 between measured and

modelled are attributed to the fact that the triangle where the South Meadow site

is located in the model is not perfectly flat like the measuring pyrometer, resulting
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Figure 4.1: Timelapse photographs from Fisera Ridge North showing
shadow movement across the South Meadow site (red arrows). Photos
taken Feb 1, 2011 at (a) 16:00 and (b) 17:00. Photos taken in an
easterly direction.

in slightly higher direct-beam irradiance. As well, because the South Meadow mod-

elled data is a synthetic dataset composed of data from different locations there are

different amounts of reflected shortwave radiation. Finally, there are also differences

in the actual instruments.

This shadow movement can also be examined at a basin scale. A shadow map,

Figure 4.3, was created for the clear-sky day February 1, 2011 at 16:30. Areas in

black, grey, and white are the horizon-, self-, and non-shadowed areas respectively,

with elevation contours every 100 m. The South Meadow site is indicated. There are

misclassifications of some triangles, visible as the lone shaded triangles as a result of

imprecisions in the triangle-triangle detection scheme.
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Figure 4.2: Shortwave irradiance for the clear-sky day February 1,
2011 at South Meadow. Measured irradiance (fine dotted line), horizon-
shadow corrected irradiance (dashed line), and the self-shading cor-
rected irradiance. Because different instruments were used for South
Meadow and the synthetic input data for the model, different amounts
of reflected shortwave radiation are present as well as differences in the
actual instruments, resulting in the difference between measured and
modelled.
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16:30. Contours are every 100 m, and the South Meadow site is indi-
cated. This shows the horizon-shadow passing over the South Meadow
site, a phenomenon that is missed with only self-shadows.
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4.2 Comparison with orthorectified timelapse pho-

tographs

In order to empirically compare the locations of observed shadows with modelled

shadow locations, the timelapse photographs from February 1, 2011 were orthorecti-

fied and observed shadow locations were classified and extracted for comparison; see

Section 3 for details. Figure 4.4 shows the classified orthrectified photographs for

February 1, 2011 at (a) 16:00 and (b) 17:00. The red area is the classified shadow

area from the orthorectified photographs. The blue area is the modelled horizon-

shadow location. Some shadows are predicted in a location where the images do not

cover (white areas), so comparison in these locations is not possible. The observed

shadow in the bottom left corner of Figure 4.4a demonstrates the close fit of the

model. Figure 4.4b demonstrates the model fit one hour later as the South Meadow

site is full in shadow. The modelled shadow extents are generally over predicted.

This appears to be a result of the triangle-triangle collision algorithm. Because tri-

angle shading is considered binary, a triangle that only has a small intersection with

another is completely shaded. If a triangle rests on a uniform slope, such as at South

Meadow, the triangle may be large. Thus a larger area can be easily over shaded.

The results of the orthorectification error analysis are shown in Figure 4.5, where

the difference (m) between the orthorectified photographs and the aerial photogra-

phy is shown. Although the aerial photography cannot be considered a perfect truth,

these results do show that many of the largest differences between the modelled and

observed shadow regions occur in areas that have a large difference between the

orthorectified photographs and aerial photography. The maximum and minimum

differences are 24.7 m and 4.74 m respectively and an average of 14.5 m (standard

deviation 3.46 m). This suggests that utilizing orthorectified photographs for spa-

tial delineation of features has significant uncertainty. However, the uncertainty in

matching the points on the aerial photography to those on the orthorectified pho-

tographs indicates these differences may be overstated in this analysis. Without
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Figure 4.4: Orthorectified timelapse photographs from Fisera Ridge
North showing shadow movement across the South Meadow site. Pho-
tos were taken February 1, 2011 at (a) 16:00 and (b) 17:00. The red
area is classified shadow area from the orthorectified photographs and
the blue is from the model.

utilizing precise and accurate differential GPS devices, it is not possible to exactly

calculate the differences between orthorectified photographs and reality.
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Figure 4.5: Predicted and observed shadow movement across the
South Meadow site for February 1, 2011 at 16:00 and 17:00. The hor-
izontal difference (m) between the orthorectified photographs and the
aerial photography. The maximum and minimum differences are 24.7
m and 4.74 m respectively and an average of 14.5 m (standard devia-
tion 3.46 m). There is approximately a 5% systematic error in these
differences due to uncertainties in selecting matching points.

4.3 Comparison with existing shadowing methods

Although utilizing an unstructured mesh for landscape representation carries many

advantages over the commonly used structured mesh, there are certain disadvan-

tages. Because linear interpolants are used, error is introduced into the terrain

representation. Thus a comparison with an existing shadowing routine was done us-

50



ing the ArcGIS 10 Spatial Analyst hillshading algorithm to calculate horizon-shaded

shadows. The comparison between the observed shadows from the orthorectified

photographs from the Fisera Ridge North site, the unstructured mesh model, and

ArcGIS are shown in Figure 4.6 for (a) 16:00 and (b) 17:00.
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Figure 4.6: Comparison between the classified shadow from the or-
thorectified photographs (red), the modelled shadow from the unstruc-
tured mesh model (blue), and the ArcGIS shadows from the hillshade
algorithm (black). Time is February 1, 2011 at (a) 16:00 and (b) 17:00.

In both figures, the shadow from the classified imagery is shown in red, the Ar-

cGIS shadow in black, and the unstructured mesh model in blue. All are overlain

on the orthorectified photographs. Both models produce a continuous shadow in

an area with no orthorectified photographs (white areas; for example 626500 m E,

5647000 m to 6547100 m N). There is no imagery in these areas because they corre-

spond to valleys, thus obscuring the photographs. Field observations have confirmed

that these valleys do have shadows at this time, so it is not unexpected the models

are producing shadows in the valley. The main shadow visible in the orthorectified
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photographs is in the lower-left corner. ArcGIS does a good job at closely fitting the

observed data. The areas where the unstructured mesh has shadow false-positives

have a distinct triangular shape. Indeed, it is hypothesized that there are a few

big triangles that are overestimated as shadowed due to the limited triangle-triangle

collision algorithm. Based on the results presented in Section 4.5, the smaller the

triangle tolerance (i.e., the higher the resolution), and thus smaller triangle size, the

better the predictive capacities of the model. Thus, due to the inherent higher reso-

lution of a structured mesh (no error due to triangle tolerances), it would be expected

that the predicted shadows locations would be more accurate. Indeed, this is what

we see. This is further shown in Figure 4.6b. Again it is observed that most of the

difference between the models has a triangular nature, leading to further evidence

that a better triangle-triangle detection algorithm should be explored in future work,

such as that outlined by Devillers and Guigue (2002). This comparison suggests that

with a more accurate triangle-triangle collision algorithm, unstructured meshes can

perform on par with existing methods. Although this comparison does identify that

the ArcGIS method is slightly more accurate at this resolution, the advantages of

using an unstructured mesh plus the ability to further refine the detection algorithm

suggests that choosing unstructured meshes is desirable.

4.4 Effects of shading on surface energy

4.4.1 Point scale

The point-scale difference of irradiance between the self- and horizon-shading models

was averaged on a monthly basis over the course of the seasonal period (October–

June). The largest average difference was 4.8 W·m−2 during the period of December

to February, occurring during periods with the lowest solar angles when the largest

shadows are cast by the surrounding topography. Differences in irradiance decreased

over the winter and spring through to the summer, with a monthly average difference

of irradiance of less than 1 W·m−2 in June. Shown in Figure 4.7 is the cumulative

52



difference of irradiance between the self- and horizon-shading algorithms for the win-

ter season (October–June; dashed line) and the spring (April–June; solid line). The

cumulative difference of irradiance accumulated in a linear fashion throughout the

winter due to the long horizon-shadows from the low solar angles. With the ar-

rival of spring and larger solar angles, differences became smaller and the cumulative

difference in irradiance levelled off. Over the period of October–June, irradiance

at the South Meadow site was overestimated by a total of 52 MJ·m−2 by the self-

shading model. Some of this would be absorbed by the snowpack and contributes

to an overestimation of the internal energy of the snowpack (i.e., the snowpack is

too warm) over the winter and hence a ripening and melting of snow that are too

early in the spring. Even when melt simulations are started in spring from correct

initial conditions, there is a small, but potentially important, difference in estima-

tions of snowmelt by ignoring horizon-shading. It is observed that a large portion of

the cumulative difference develops in early to mid-April, with diminishing additional

differences in irradiance through late May into early June. During this spring period,

the cumulative difference in irradiance is 4.5 MJ·m−2. Following the conversion to

phase change mass as outlined in Section 3.6.1, this translates into a SWE difference

of 2.69 kg·m−2. These differences introduced when horizon shading is not accounted

for results in a cumulative difference in irradiance between models over the season

and the melt period. The difference in irradiance due to shadowing is predominantly

of similar sign and generally does not average or cancel out over the season.
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Figure 4.7: Cumulative differences in irradiance between simulations
using self-shading and horizon-shading algorithms at the South Meadow
site for the season (October 17, 2010–June 14, 2011) in the dashed line
and for the spring (April 1, 2010–June 14, 2011) in the solid line.
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4.4.2 Basin scale

The cumulative differences of net solar radiation, expressed as phase change mass per

unit area, between self- and horizon-shading algorithms for the spring period from

April 1, 2011 to June 14, 2011 were considered for the entire simulation domain

(206580 triangles). For this period, 99% of the differences are less than 500 kg·m−2,

with a peak difference of 1600 kg·m−2 predicted over a small fraction of the basin.

The mean phase change mass per unit area for the basin was 14.4 kg·m−2.

In Figure 4.8, the seasonal (October–June) cumulative difference of net solar

radiation between the two shading algorithms is shown, expressed as phase change

mass per unit area. For the majority of this period, low solar angles cast large

shadows onto the south-facing slopes, providing the bulk of the difference. The

south-facing slope of Mt. Collembola, the slope where South Meadow is located, is a

frequent recipient of horizon-shadows from Fisera Ridge. The south-facing slopes of

the Mt. Allan cirque, shaded from the surrounding ridge line, are also areas where

the irradiance is over-predicted by the self-shading algorithm. The right side of the

large ‘V’ notch on Mt. Collembola is strongly over-predicted using the self-shading

algorithm, and timelapse camera observations showed that this large shadow was

associated with an abrupt transition between snow and snow-free areas in the notch.

In the top left (NW) corner is an area outside of the MCRB. It is a ‘U’ shaped valley

that is almost always in the shadow cast from Mt. Collembola. This topography

resulted in a large over-prediction of irradiance throughout the melt period if horizon-

shadows are not considered — in fact, most of the largest differences in cumulative

difference of net solar radiation between the shadowing models are found in this

valley. The south face of the southern ridge line (approximately 6.27 × 106 m E) is

shown to have some of the largest differences due to horizon-shadows from the ridge

line. The largest differences in net shortwave radiation between shading models for

the MCRB are observed to be on east- and south-facing slopes.

For the melt period of April–June 2011, Figure 4.9 shows the cumulative differ-

ence of net solar radiation between self- and horizon-shading models, expressed as
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phase change mass per unit area. South-facing slopes are again predicted to be areas

of large cumulative difference in net solar radiation. The south-facing slope of South

Meadow is shown to have a large cumulative difference of net solar radiation, and in

general the basin exhibits a similar pattern to that of the seasonal period. However,

a notable change is that the north-facing southern ridge (at about 6.27 × 106 m E)

has a large cumulative difference of net solar radiation. Generally this area should

be self-shaded; however, due to the higher solar angles the triangle faces are not

fully facing away from the sun. Although this results in triangles with low values

of cos Θsn, these values are not so low as to generate self-shadows. Thus during the

morning as the sun passes through to the south, the direct-beam irradiances calcu-

lated using self-shading are not 0 W·m−2, and thus there is a large over-prediction of

net solar radiation. Because of these accumulated differences, higher-than-estimated

snowmelt would likely be observed in this valley if only self-shading algorithms were

used, and the persistence of late-winter snowpacks would not be appropriately mod-

elled. However, these results come with a caveat: the MCRB is dominated by

tree-cover, and as such, the sub-canopy irradiance is significantly reduced. Ellis and

Pomeroy (2007) demonstrated that mean daily canopy transmissivity values were

as low as 0.09 on north-facing slopes and 0.36 on south-facing slopes. Because this

study assumes a bare-earth, some of the locations may be impacted less by ignoring

horizon-shadows. However, Ellis and Pomeroy (2007) indicated that the forest-cover

on south-facing slopes had the greatest variance with respect to incident irradiance.

Thus the south-face slopes that are dominated by horizon-shadows may significantly

impact the sub-canopy energy balance.

Figure 4.10 depicts the cumulative difference of net solar radiation between the

self- and horizon-shading models expressed as phase change mass per unit area for

the entire clear-sky day February 1, 2011. This demonstrates the significant effect of

the differences in algorithms for even a single day. The deep southern valley at about

6.27 × 105 m East is a source of large net solar radiation differences with average

phase change mass values of about 5 kg·m−2. Overall, the valley bottoms have over

estimated net solar radiation and in many cases greatly so. The South Meadow site
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Figure 4.8: Cumulative seasonal (October 17, 2010–June 14, 2011)
difference of net solar radiation between self- and horizon-shading al-
gorithms expressed as phase change mass per unit area. An albedo of
0.8 is assumed. Note the logarithmic scale. The Marmot Creek Re-
search Basin is outlined in black and contour lines are every 100 m of
elevation.

is located such that although it has a prominent shadow crossing, its accumulated

difference is only approximately 2 kg·m−2. The north and south facing sites are areas

where limited difference in net solar radiation would be expected, and on this day

that remains the case.
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ence of net solar radiation between self- and horizon-shading algorithms
expressed as phase change mass per unit area. An albedo of 0.8 is as-
sumed. Note the logarithmic scale. The Marmot Creek Research Basin
is outlined in black and contour lines are every 100 m of elevation.
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Figure 4.10: Cumulative daily (February 1, 2011) difference of net
solar radiation between self- and horizon-shading algorithms expressed
as phase change mass per unit area. An albedo of 0.8 is assumed. Note
the logarithmic scale. The MCRB is outlined in black and contour lines
are every 100 m of elevation.
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4.4.3 Comparison with measured SWE

DeBeer and Pomeroy (2009) presented the results from a set of snow surveys con-

ducted in the Mt. Allan cirque over the later winter and spring of 2007. The cirque

is on the eastern side of Mt. Allan and is approximately 0.6 km2 in area. Extensive

snow surveys were made on March 29–30, 2007, just before the main snowmelt pe-

riod. These values are taken to be the pre-melt SWE values and are summarized in

Table 4.1. The shadow model for April–June 2011 was applied to the cirque and the

cumulative difference of net solar radiation between the self- and horizon-shading

algorithms was computed and expressed as phase change mass per unit area. For

the slopes of azimuth 0◦–40◦, the average difference was 19.7 kg·m−2, and for the

slopes of azimuth 140◦–180◦, the average difference was 16.3 kg·m−2. For the north-

and south-facing slopes, the cumulative difference of net solar radiation converted to

phase change mass equates to 6.0% and 11.4% of total pre-melt SWE respectively.

The cumulative difference is 66.4% of the total pre-melt SWE for the shallow south-

facing slope. This suggests that including horizon-shading is important when using

physically based, non-calibrated hydrological models.

DeBeer and Pomeroy (2009) identified that the spatial variability of the surface

energetics due to slope and aspect in the cirque had a strong effect on snowmelt

rates and snow cover depletion (SCD). Because of the patchiness of SCD, correct

prediction of the surface energy balance is required, and DeBeer and Pomeroy (2009)

suggest that melt energetics on slope units should be considered further. Although

timing issues in SCD were generally attributed to errors in the log-normal fit, it was

Table 4.1: Listing of the pre-melt snow water equivalent for the
Mt. Allan cirque following (DeBeer and Pomeroy, 2009)

Survey location SWE (kg·m−2) Average aspect (◦) Average slope (◦)
North-facing slope 329.3 20 30
South-facing slope 142.8 160 23

South-facing (shallow SWE) 24.6 - -
South-facing (deep SWE) 339.8 - -

All surveys 427.2 - -
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suggested that improvements might also arise from more accurate melt simulations in

sheltered areas. Slope units were considered in DeBeer and Pomeroy (2010) where it

was shown that consideration of slope-based melt energetics substantially improved

the SCD calculations. It is possible that SCD calculations would improve further

when coupled with horizon-shading models.

4.5 Effects of terrain resolution on model

As outlined in Section 3.3, the LiDAR-derived 1m × 1m DEM was resampled to

produce a raster with a spatial resolution of 2 m × 2 m, a 10 m × 10 m, and 30

m × 30 m. These structured meshes were used to create the unstructured meshes

with tolerances of 1 m, 2 m, 10 m, and 30 m for each DEM resolution. An example

of these combinations is shown in Figure 4.11 where the base DEM is the 1 m × 1

m with (a) 1 m, (b) 2 m, (c) 10 m, and (d) 30 m triangle tolerances. The MCRB

is in dark black, and contours are every 100 m. The triangles are coloured using

the mean elevation of the triangle with red corresponding to the highest elevation,

and blue corresponding to the lowest elevation. When the tolerance increases the

terrain is represented by larger triangles. Consequently, these large triangles produce

a disjoint landscape representation, as high elevation triangles are adjacent to lower

elevations. There is a lack of smooth transition between elevation bands at these

higher tolerances.

4.5.1 Point scale

The effects of changes of spatial resolution and tolerance were tested at a point scale

for Fisera Ridge North, Fisera Ridge South, and South Meadow for the clear-sky day

February 1, 2011 in order to correspond to the day used for the timelapse photos. The

following figures are grouped into four subfigures, one for each base DEM resolution.

Within each subfigure, the red line demonstrates the highest-resolution model output

— 1 m × 1 m DEM/1m tolerance triangles. All other lines are: black for the 1 m

tolerance, blue for the 2 m tolerance, green for the 10 m tolerance, and grey for
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Figure 4.11: Example of four DEM/tolerance combinations. The
base DEM is the 1 m × 1 m with (a) 1 m, (b) 2 m, (c) 10 m, and (d)
30 m triangle tolerances. The MCRB is in dark black, and contours
are every 100 m. The triangles are coloured using the mean elevation
of the triangle. The larger tolerances do not produce fully connected
contours and thus there are gaps.

the 30 m tolerance. In order to determine the effectiveness of a particular terrain

representation in capturing the shadow movement, the modelled shadowing regime

must conform to the observed shadow regime.

South Meadow

At the South Meadow site, as discussed in Section 4.1, a horizon-shadow crosses the

site at 16:30. Figure 4.12 shows the sixteen DEM resolution and mesh tolerance

combinations showing the differences in timing for the South Meadow site February

1, 2011.
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Beginning with the 1 m DEM, the 1 m and 2 m tolerances perform similarly.

Although a slight increase in peak irradiance is observed for the 2 m tolerance mesh,

the correct timing is present. The 10 m tolerance produces almost 100 W·m−2

greater peak irradiance than the 1 m tolerance. In addition, the shadow crossing is

roughly 45 minutes too early. The 30 m tolerance mesh fails completely to capture

the variability. Because of the large triangles, the site is in shadow almost all day,

emerging three times for brief periods before being fully in shadow almost an hour

early. The 2 m DEM shows similar traits with the 1 m and 2 m tolerances being

indistinguishable. The 10 m tolerance models the shadow crossing about 15 minutes

early. Interestingly the 30 m tolerance is not as poor as the 1 m DEM/30 m tolerance

mesh combination. It is not currently known why the 1 m DEM/30 m tolerance was

the only one to produce this effect. However, the 2 m DEM/30 m tolerance mesh

produces a significantly lower peak irradiance than the other models. The 10 m

DEM/1 m tolerance mesh performs the best out of this group, correctly producing

the shadow timing. The 2 m tolerance, in contrast to the first two DEM groups,

does not produce as good of a result as the 1 m tolerance. In fact, the 2 m tolerance

performs similarly as the 10 m and the 30 m tolerances. The 30 m DEM variants

all perform as well as the 1 m tolerances of the other groups; however the 30 m

tolerance exits shadow at 16:48. From all of this, the general trend is that the 1 m

tolerance meshes produce the most accurate shadow timings, regardless of the base

DEM resolution and the 2 m tolerances produce similar results. Tolerances any larger

are likely to have detrimental effects upon the shadow crossing with unpredictable

results. This unpredictability demonstrates that there are certain combinations of

base DEM and tolerance that appear to fail completely. These failure cases were not

anticipated a priori and thus demonstrate a need for care if a model is run at larger

mesh tolerances. It is generally risky to accept the results of calculations based on a

single set of parameters; these results reinforce the better practice of using a number

of tolerances and comparing the results.

The following sections show similar results for the other sites in the basin.
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Figure 4.12: Sixteen resolution and tolerance combinations showing
the differences in timing for the South Meadow site February 1, 2011.
The 1 m × 1 m DEM/1m tolerance is shown in red. Other lines are:
black for the 1 m tolerance, blue for the 2 m tolerance, green for the
10 m tolerance, and grey for the 30 m tolerance.
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Fisera Ridge North

The Fisera Ridge North site is a north-facing slope that is predominately in shadow,

either self- or horizon-shaded, throughout the day. Therefore low irradiance values

are expected. Figure 4.13 shows the sixteen DEM resolution and mesh tolerance

combinations.

This site is a simpler case, and all the terrain representations perform well expect

the 10 m DEM/30 m tolerance mesh and 1 m DEM/30 m tolerance mesh. These

two cases fail catastrophically. The 1 m DEM/30 m tolerance mesh fails to be

shaded in the morning leading to 140 W·m−2 overprediction until 13:30, at which

point it returns to being shaded. The 10 m DEM/30 m tolerance mesh begins being

properly shadowed, but twice throughout the day returns to a non-shaded state

before returning to being shadowed.
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Figure 4.13: Sixteen resolution and tolerance combinations showing
the differences in timing for the Fisera Ridge North site February 1,
2011. The 1 m × 1 m DEM/1m tolerance is shown in red. Other lines
are: black for the 1 m tolerance, blue for the 2 m tolerance, green for
the 10 m tolerance, and grey for the 30 m tolerance.
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Fisera Ridge South

The Fisera Ridge South site is a south-facing slope of Fisera Ridge. It receives high

irradiance, and like South Meadow, it passes in to shadow late in the afternoon.

The shadowing transition is less prolonged than the South Meadow site due to its

position high on the ridge line, as opposed to low in the valley. Figure 4.14 shows

the sixteen DEM resolution and mesh tolerance combinations.

The 1 m DEM provides similar timings of shadow crossing for the 1 m, 2 m,

and 10 m tolerances. Only their peak irradiances differs. The 30 m tolerance, like

the other sites, does not properly capture the movement of the shadow and predicts

the movement with a lag of about 15 minutes. In addition, the larger tolerance

overestimates the flatness of the slope, producing higher irradiances than the smaller

tolerances. However, the 10 m tolerance overestimates the steepness of the slope, thus

producing significantly lower irradiances. The 2 m DEM has similar performance,

although the 10 m tolerance significantly underestimates peak irradiance due to

slope overestimation. The 30 m tolerance is once again the weakest and not only

overpredicts peak irradiance, it fails to capture the timing of the shadow twice — the

site is predicted to move out of shadow at 17:00. The 10 m DEM is once again the

first group to have large systematic errors. The 1 m and 2 m tolerances have proper

shadow timing; however the 2 m tolerance overpredicts slope resulting in a larger

peak irradiance. The 10 m tolerance is modelled as shadowed from 13:00 until 14:30

where it makes a brief exit from shadow before returning to shadow at 14:35. The 30

m tolerance produces poor results; it descends into shadow at 14:30 before rapidly

exiting shadow at 14:45. The 30 m base DEM produces good timing results when

used with the 1 m and 2 m tolerances. However the 10 m tolerance produces a sharp

oscillation throughout the day as the site flips between shadowed and non-shadowed.

The 30 m tolerance performs surprisingly well, and this is attributed to the large flat

slope being well represented by single, large triangles. However, because the others

sites perform so poorly at this tolerance and DEM resolution, this seems to be a rare

event.
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Figure 4.14: Sixteen resolution and tolerance combinations showing
the differences in timing for the Fisera Ridge South site February 1,
2011. The 1 m × 1 m DEM/1m tolerance is shown in red. Other lines
are: black for the 1 m tolerance, blue for the 2 m tolerance, green for
the 10 m tolerance, and grey for the 30 m tolerance.
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4.5.2 Point-scale accumulated difference

As demonstrated in Section 4.4, there can be a systematic daily difference between

a self-and horizon-shading model that can accumulate. Thus every day there can be

a systematic overprediction in irradiance at a point because the self-shading model

fails to take into account a horizon-shadow. In some locations this can be a small

difference; in others, it can accumulate quickly. As shown in Section 4.5.1, when

modelling this difference at different base DEM resolutions and mesh tolerances, the

difference between the different DEM resolutions or the triangle tolerance can greatly

change the results. Although it was demonstrated that 1 m and 2 m tolerances

provide the best point-scale representation, it is instructive to see how this translates

to cumulative energy differences over a given temporal period. In this section, the

spring temporal period of April 2011 to June 2011 is examined. Given the results

from the previous section, it is taken that the 1 m DEM/1 m tolerance mesh is the

closest to the ‘truth’. All other DEM and tolerance mesh combinations are thus

compared to it. In all figures, the line colours are: red for the 1 m tolerance, black

for the 2 m tolerance, blue for the 10 m tolerance, and green for the 30 m tolerance.

South Meadow

In Figure 4.15, sixteen resolution and vertical tolerance combinations were compared

to the the 1 m DEM/1 m tolerance mesh and the cumulative difference in irradi-

ance was computed. As expected, the 1 m DEM/2 m tolerance mesh performs quite

closely to the 1 m DEM/1 m tolerance mesh. The different DEM/tolerance combi-

nations follows the situation of Section 4.5.1, in which the smaller tolerance meshes

mostly independent of base DEM resolution, perform increasingly poorly. All of the

10 m tolerance meshes have an 8 MJ·m−2 to 15 MJ·m−2 cumulative difference in

irradiance. However most tolerances are in the 4 MJ·m−2 – 6 MJ·m−2 range. The

1 m DEM/30 m tolerance mesh and the 2 m DEM/30 m tolerance meshes have a

completely different shadow regime. Their cumulative difference in irradiance has a

negative sign, indicating that the model is predicting the site to be in shadow much
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more than observed. This overprediction of shadowing was observed in Figure 4.12,

where the South Meadow site only briefly left shadow in three spiked intervals. This

underestimation of irradiance makes these larger tolerances unusable.
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Figure 4.15: Sixteen resolution/tolerance combinations showing the
accumulated difference in irradiance for South Meadow for the spring.
The 1 m DEM/1m tolerance mesh is taken as true. Line colours: red
for the 1 m tolerance, black for the 2 m tolerance, blue for the 10 m
tolerance, and green for the 30 m tolerance.
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Fisera Ridge North

In contrast to the South Meadow site, no combination closely matches the 1 m

DEM/1 m tolerance mesh. This is demonstrated in Figure 4.16. The most similar is

the 1 m DEM/10 m tolerance mesh and the 1 m DEM/2 m tolerance mesh performs

similarly to 2 m DEM/1 m tolerance mesh. Again, a similar pattern to the other sites

is observed where the larger tolerance meshes have the largest cumulative differences.

The largest over-predictions are caused by the four 30 m tolerances and the 30 m

DEM/30 m tolerance mesh has the largest difference of 175 MJ·m−2. The two largest

under-predictors are the 30 m DEM/2 m tolerance mesh and (surprisingly) the 2 m

DEM/2 m tolerance mesh.
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Figure 4.16: Sixteen resolution/tolerance combinations showing the
accumulated difference in irradiance for Fisera Ridge North for the
spring. The 1 m DEM/1m tolerance mesh is taken as true. Line colours:
red for the 1 m tolerance, black for the 2 m tolerance, blue for the 10
m tolerance, and green for the 30 m tolerance.
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Fisera Ridge South

Shown in Figure 4.17, Fisera Ridge South shows the most variance in cumulative

differences in irradiance. Surprisingly it is the 10 m DEM/30 m tolerance mesh that

performs closest to the reference solution. The general pattern observed at the other

sites where the 1 m and 2 m tolerances perform well does not hold here. The 10 m

DEM/2 m tolerance mesh and the 1 m DEM/1 m tolerance mesh perform almost

equally well and accrue the largest cumulative difference in irradiance of 40 MJ.

The 30 m DEM/10 m tolerance mesh and 10 m DEM/10 m tolerance mesh have

a similar linear increase in accumulated difference in irradiance; however one is an

overestimation and the other an underestimation. The 1 m DEM/30 m tolerance

and 2 m DEM/30 m tolerance meshes both have a shift in mid-May where the

accumulated difference in irradiance decreases after an initial accumulation. The

interpretation of these results is as follows. For the Fisera Ridge South site, the

horizon-shadows that cross it are cast from the reasonably distant Centennial Ridge

(see Figure 3.1). Small changes in the mesh can lead to large differences in shadowing

when calculating shadows from far away terrain. Thus for a site like Fisera Ridge

South, these small shadowing differences can quickly cause a site to have a reasonably

difference set of shadow regimes for different mesh combinations. The 30 m tolerance

meshes have been so far shown to produce poor results and this tolerance produces

poor results for this site. It is hypothesized that as the sun moves through the sky,

the large triangles eventually make a sudden change in where shadows are predicted.
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Figure 4.17: Sixteen resolution/tolerance combinations showing the
accumulated difference in irradiance for Fisera Ridge South for the
spring. The 1 m DEM/1m tolerance mesh is taken as true. Line colours:
red for the 1 m tolerance, black for the 2 m tolerance, blue for the 10
m tolerance, and green for the 30 m tolerance.
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4.5.3 Basin-scale accumulated difference

The point-scale results show that the mesh tolerances have the largest effect on the

timing and peak irradiance. This is not unexpected because larger tolerances result in

larger, flatter triangles. Flatter triangles have less cosine-correction for self-shading

and thus result in higher peak irradiances. This is easiest to visualize by comparing

the cumulative difference of net solar radiation expressed as phase change mass for

different resolution and tolerance combinations. Figure 4.18 shows the 1 m DEM

and 1 m, 2 m, 10 m, and 30 m tolerance meshes expressed as phase change mass

per unit area. From Figure 4.18d it is clear why such poor performance is observed

when using such a large tolerance. The triangles are so large as to be immediately

identifiable, and because of this the basin is a patchwork of net shortwave radiation

differences. Areas of large net solar radiation difference are adjacent to triangles of

lower net shortwave radiation difference. This is in comparison to Figure 4.18a where

individual triangles are difficult to see, and there are graduations between areas of

differing net shortwave radiation differences.
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Figure 4.18: Cumulative differences of net shortwave radiation ex-
pressed as phase change mass for the MCRB for April 1, 2010–June 14,
2011 for the 1 m DEM with the four mesh tolerances; (a) 1 m, (b) 2
m, (c) 10 m, and (d) 30 m. The MCRB is in dark black, and contours
are every 100 m. The larger tolerances do not produce fully connected
contours and thus there are gaps.

4.6 CRHM SNOBAL modelling

4.6.1 South Meadow

For the South Meadow site, the model predicts snow accumulation beginning Novem-

ber 7, 2010 and full ablation by June 9, 2011 for both Qsi model inputs – one that

is corrected for self- and horizon-shadows, and one that is only corrected for self-

shadows. The predicted SWE using the two Qsi values demonstrates a small dif-

ference in SWE, with only a two-hour timing difference in final snowpack ablation.

The modelled SWE is illustrated in Figure 4.19 where the top plot shows seasonal
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accumulation and ablation, and the bottom plot shows the difference between the

two modelled SWE curves. The red line (horizon-shading) is not visible in the top

plot because of the limited difference between the two curves.
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Figure 4.19: Top: Modelled SWE (mm) for October 2010–June 2011
for South Meadow using the two irradiance inputs from the self- and
horizon-shadow models. Bottom: Modelled SWE (mm) difference be-
tween the two irradiance inputs from the self- and horizon-shadow mod-
els. The red line is not visible because of the limited difference between
curves.

Between November 15, 2010 and April 1, 2011, there is a gradual divergence

of the modelled SWE with a maximum difference of 0.3 mm. To explain this, the

model’s energy balance was de-constructed for this time, and the cumulative dif-

ference (MJ·m−2) for each component (net shortwave radiation [Qsn], net longwave

[Qln], sensible heat flux [Qh], latent heat flux [Qe], ground heat flux [Qg], precipita-

tion heat flux [Qp], and change in internal energy storage [dU/dt]) was calculated.

The winter period cumulative energy balance is shown in Figure 4.20.

The winter period energy balance, as shown in (Figure 4.21), demonstrates that

there were no differences between the modelled precipitation or ground fluxes. The
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Figure 4.20: Modelled cumulative energy balance for the winter pe-
riod (November 15, 2010–April 1, 2011) for South Meadow using the
two irradiance inputs (self- and horizon-shading).

difference in net shortwave radiation is 10.6 MJ·m−2; because the change in internal

storage is small (0.06 MJ·m−2) and there is no melt during this period the difference

in Qsn is partially balanced by increased longwave loss. The self-shaded snowpack,

due to its higher surface temperature, emitted 8.05 MJ·m−2 more energy. Because of

this, the horizon-shaded snow pack had a slightly increased sensible heat gain than

the self-shaded snowpack. Finally, the difference in the latent heat flux explains

the small divergence in SWE throughout the winter. The self-shaded snowpack

experienced an increase in latent heat loss due to requiring energy for sublimation.

The energy difference in the latent heat flux (0.7 MJ·m−2) indicates that 0.3 mm

SWE sublimated between November 15, 2010 and April 1, 2011, exactly matching

the SWE divergence. This difference in latent heat is too small to be visible in

Figure 4.21 due to the scale used.

Between April 1, 2011 and June 14, 2011, the largest difference in both modelled

SWE and surface balance between the two models occurs. The difference is 1.6
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Figure 4.21: Modelled cumulative energy balance difference at South
Meadow between the self- and horizon-shading models for the winter
period (November 15, 2010–April 1, 2011)[dark grey] and for the spring
period (April 1, 2011 – June 14, 2011) [light grey].

mm SWE occurring on June 9, 2011. That is to say, the horizon-shading model

has 1.6 mm more SWE than the self-shading model, a negligible difference. The

cumulative difference, for each component, between the two shading algorithms for

the spring and winter periods is shown in Figure 4.21 with the winter period in

dark grey and spring period in light grey. Throughout the spring period, the small

difference in cumulative energy results in small SWE differences. The phase change

mass calculations suggest that 2.69 kg·m−2 could be over-melted given the extra

input energy (via Qsn, thus overestimating total SWE by 1.2 mm.

4.6.2 Deep Valley

The Deep Valley site is highly shaded, and as such the first snowfall events of the

year are different than that of South Meadow. This early snow-fall period is shown in

Figure 4.22. Although the main accumulation period does not start until November
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8, 2010, the first accumulation event on November 2, 2010 is of interest. Using the

self-shading model, the snowpack is predicted to have fully ablated by November 7,

2010, whereas when using the horizon-shaded model, the snowpack persists without

any melt.
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Figure 4.22: Two early snowfall events at the Deep Valley site showing
the self-shading model ablating the snowpack three to five days early.

Between November 15, 2010 and April 1, 2011 there is again a gradual divergence

in SWE, similar to the South Meadow site, with a maximum divergence of 10.3 mm

SWE. However, 7.4 mm of this is due to the initial snowfall not ablating; thus the

systematic decline of SWE is 2.8 mm. To explain this, the energy balance was de-

constructed for this time period. The cumulative energy balance for each component

is shown in Figure 4.23, with the cumulative difference of each component shown in

Figure 4.24.

Because it is winter, there is assumed to be no melt. The cumulative net short-

wave radiation difference is 59.8 MJ·m−2 and the cumulative difference in internal

snowpack energy is 0.16 MJ·m−2. The self-shaded snowpack loses much of the extra
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Figure 4.23: Modelled cumulative energy balance for the winter pe-
riod (November 15, 2010–April 1, 2011) for Deep Valley using the two
irradiance inputs (self- and horizon-shading).

energy through longwave radiative loss (44.5 MJ·m−2) and through sensible heat loss

(10.4 MJ·m−2). The self-shaded snowpack, like the self-shaded snowpack at the South

Meadow site, loses more energy to latent heat due to sublimation than the horizon-

shaded snowpack. The cumulative difference for latent heat is 6.93 MJ·m−2, equiva-

lent to 3.07 mm SWE. This agrees well with the observed SWE decline throughout

this period.

Unlike the South Meadow site, the Deep Valley site has different accumulation

and ablation patterns, shown in Figure 4.25. The horizon-shading model has a

predicted peak SWE of 380.4 mm versus the self-shading model value of 368.4 mm.

Ablation begins at the same time for both models with the horizon-shading model

having a consistently larger SWE.

Here, the final ablation for the self-shading model is June 8, but for the self-

shading model, it is June 10. The shading in the valley site has caused a two-

day ablation difference. As well, there are significant timing differences throughout
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Figure 4.24: Modelled cumulative energy balance difference at Deep
Valley between the self- and horizon-shading models for the winter pe-
riod (November 15, 2010–April 1, 2011)[dark grey] and for the spring
period (April 1, 2011 – June 14, 2011) [light grey].

the spring, leading to a peak SWE difference of 93 mm SWE. Phase change mass

calculations (using modelled albedo) suggest that 114 mm SWE could melt as a

result of the extra energy incident with the self-shading model for the spring. This

underestimation suggests that associated feedback mechanisms associated with melt,

such as the turbulent fluxes and ground flux, play an important role at this site

leading to greater ablation throughout the melt period leading to the self-shading

site having an increased SWE difference. It is worth noting that the reduced longwave

emission and smaller shading may be important for the atmospheric energy balance,

but it is outside the scope of this thesis to examine this issue in detail.
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Figure 4.25: Top: Modelled SWE (mm) for October 2010–June
2011 for Deep Valley using the two irradiance inputs from the self-
and horizon-shadow models. Bottom: Modelled SWE (mm) difference
between the two irradiance inputs from the self- and horizon-shadow
models.
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Chapter 5

Conclusion

In hydrological models, a common approach to representing the landscape is

through structured meshes. However, such representations introduce errors due to

the rigid nature of the mesh, creating artefacts and other constraints. On the other

hand, unstructured meshes may offer a number of advantages, which are explored in

this thesis. An unstructured mesh was used to discretize a Canadian Rockies complex

terrain site, the Marmot Creek Research Basin, using a 1 m × 1 m LiDAR-derived

DEM as input. In order to capture the horizon-shadows of surrounding topographic

features, the parallel point-plane method used by Clarke (2001) and expanded upon

by Montero et al. (2009) was implemented to model shadows in complex terrain. A

new coordinate system, aligned with the solar position, was created by rotating the

standard coordinate system using Euler angles. Self- and horizon-shading shadow

predictions were compared at a point scale to measured irradiance observations at the

South Meadow site in Marmot Creek Research Basin on the clear-sky day February

1, 2011. It was found that the shadow passage over the South Meadow site at 16:30

was correctly modelled by the horizon-shadow algorithm. The shading effects of

surrounding mountain topography on irradiance in Marmot Creek were substantial.

Overall, there was a systematic overprediction of irradiance when not considering

horizon-shadows.

The model output from the shadow model was compared to observed data using

orthorectified timelapse photography from February 1, 2011. These photos allowed

for a quantitative comparison with observed shadow locations. Observed shadow

locations were extracted from the timelapse photos using supervised classification

within ArcGIS and post-processed using Matlab. It was found that the shadow
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model performed well, closely matching the observed shadow locations. However,

some locations were over represented in the model due to the binary shading algo-

rithm used. Although some of the large triangles were only partially shaded, due

to the lack of sub-triangle representation within the model, the entire triangle had

to be marked as fully shaded. The output from the shadow model was compared

to that generated using a structured mesh (1 m × 1 m) generated using existing

algorithms via ArcGIS. The output from ArcGIS was a closer match to the observed

shadow locations; however it was using an higher resolution mesh, and thus it was

expected it would perform well. The error in the orthorectified imagery was quan-

tified by comparing distances between points on an airphoto and the orthorectified

image and spatially interpolating these differences for the entire orthorectified image

extent. The maximum and minimum differences were found to be 24.7 m and 4.74 m

respectively with an average of 14.5 m (standard deviation 3.46 m). Repeated tests

suggests that there is an approximate error of 5% in selecting corresponding points

on each image.

Modelled over the season from October to June, the difference in irradiance be-

tween self- and horizon-shading resulted in a total cumulative difference of 52 MJ·m−2

and, in the snowmelt period of April to June, 4.5 MJ·m−2. This corresponded to a

difference equivalent to a phase change mass of 2.69 kg·m−2 if all of the net short-

wave radiation difference were applied to phase change as snowmelt, assuming a

continuous snowcover and an albedo of 0.8. At the basin scale for the snowmelt

period of April–June, the mean triangle potential snowmelt mass difference was 14.4

kg·m−2, under the same assumptions. However, these results come with a caveat:

the MCRB is dominated by tree-cover, and as such, the sub-canopy irradiance is al-

ready significantly reduced. Ellis and Pomeroy (2007) demonstrated that mean daily

canopy transmissivity values were as low as 0.09 on north-facing slopes and 0.36 on

south-facing slopes. Because this study assumes a bare-earth, some of the locations

may be impacted less by ignoring the horizon-shadows. However, Ellis and Pomeroy

(2007) indicates the forest-cover on south-facing slopes had the greatest variance.

Thus the south-face slopes dominated by horizon-shadows may still have significant
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impacts on the sub-canopy energy balance. When the phase change mass is com-

pared to pre-melt SWE values from 2007 following DeBeer and Pomeroy (2009) for

the Mt. Allan cirque, this mean cumulative difference is 6.0% and 11.4% for north-

and south- facing slopes, respectively, of total pre-melt SWE. The cumulative differ-

ence is 66.4% of the total pre-melt SWE for the shallow south-facing slope. At the

basin scale for the spring of April to June, 2011, the peak cumulative difference was

1600 kg·m−2 despite the fact that 99% of the basin had a cumulative difference of

500 kg·m−2 or less. The deep valleys are chronically over predicted by self-shading

methods, resulting in snowpacks that ablate too early in the spring. However, these

differences are dependent upon the geometry of the river basin, and further studies

should examine multiple basins to determine the importance in different terrains.

The effects of the spatial resolution of the DEM and the tolerance of the unstruc-

tured mesh on irradiance and shadow prediction were examined. The model was run

at three point locations (Fisera Ridge, Fisera Ridge North, and South Meadow) for

February 1, 2011. The 1 m × 1 m spatial resolution LiDAR-derived DEM was down-

sampled to produce a 2 m × 2 m, a 10 m × 10 m, and a 30 m × 30 m DEM. Unstruc-

tured meshes with vertical tolerances of 1 m, 2 m, 10 m, and 30 m were created from

each of these DEMs. This generated a total of sixteen combinations of resolution and

tolerance. It was found that smaller tolerances, regardless of the DEM resolution,

had better predictive capacity than a higher-resolution DEM with large tolerances

(large triangles). This was partially attributed to the triangle-triangle intersection

algorithm. Because the large tolerances produced large triangles, it was possible for

triangles to be shaded too aggressively, as only a small portion of the triangle was in

shadows. Further research should focus on improving the triangle-triangle detection

as well as sub-triangle variability to enhance the shadow prediction. An ability to

capture some sub-triangle variability would help to mitigate this problem.

The CRHM SNOBAL model was run from within the CRHM modelling environ-

ment for October, 2010 to June, 2011 for the South Meadow and the Deep Valley

sites. It was found that at South Meadow there was a 0.3 mm SWE loss to subli-

mation throughout the winter and a maximum difference in SWE of 1.6 mm at the
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end of the melt period. At the Deep Valley site, the first snowfall of the season (7.4

mm) fully ablates with the self-shading model but remains with the horizon-shaded

model. Throughout the winter, there is a 2.8 mm SWE loss due to sublimation in

the self-shaded snowpack. Although final ablation is not modelled due to insuffi-

cient model input, extrapolation suggests a final ablation timing difference of 2–4

days. Although snowmelt was found to be influenced by these topographic shadows,

the MCRB as a whole is a poor basin for fully exploring the impact of neglecting

horizon-shadows. This is due to the low, less rugged topography present in this

basin. Because most of the MCRB is forested, the generally small overprediction

of irradiance due to neglecting horizon-shadows may be overstated, due to the low

transmissivity to irradiance of the forest canopies. Further work should examine

basins that are characterized by steep sides, much like the Deep Valley site. How-

ever, these results do demonstrate that a highly shaded basin could be significantly

impacted. Incorrect snowmelt timing throughout a variety of headwater basins could

have a potentially large cumulative effect when predicting downstream processes such

as floods.

As the triangle tolerance is increased, single large triangles begin to represent

large portions of the basin and these triangles are treated as hydrologically heteroge-

neous. There are clear parallels between this and the HRU conceptualization. Of in-

terest is where these two landscape representations, unstructured meshes and HRUs,

begin to converge. Although it was found that low-tolerance unstructured meshes

performed best at a point scale, the overall spatial patterns of the high tolerance

meshes suggests that perhaps they many be sufficient for large-scale modelling. If a

form of sub-triangle representation was included, high tolerance unstructured meshes

may be able to complement or replace the HRU approach by providing a landscape

representation that captures spatial variability while still requiring less parametrisa-

tion than high spatial resolution (e.g., 1 m × 1 m) models. By exploiting fully nested

unstructured meshes, where a triangle may be composed of sub-triangles, multi-scale

processes may be more fully captured, allowing for a merging of an HRU approach

with that of a distributed model.
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Appendix A

Field work

Field work was completed by the candidate at the MCRB is shown in Table A.1.

Table A.1: List of fieldwork performed by the candidate.

Date Duties
August 19–20, 2010 Site survey
October 11–20, 2010 Installation of instruments, erect South Meadow

January 27–February 9, 2011 Site visit, data download
April 14–18, 2011 Site visit, data download
May 19–26, 2011 Site visit, data download

June, 2011 Site visit, data download, removal of SPN1
August, 2011 Site visit, data download, removal of South Meadow
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Appendix B

Code

The code used for this study is a mix of C++ and Matlab and the code is split
into two sections:

Umbra is the shadowing model, written in C++ and Matlab. It provides the abil-
ity to read from the input meteorological files, to create the triangulation, generate
the shadow locations, and write the output.

libmaw (Matlab Application Wrapper) is the Matlab/C++ interface that pro-
vides a link between Matlab and Umbra written in C++ and Matlab. It is built
upon the open source linear algebra library Armadillo1. The libmaw library allows
for simple interaction with the Matlab engine from within C++ and handles all the
memory allocations and deallocations via the use of the Boost2 smart_ptr library.

The code listing is too large to include here. However, it is publicly available from
GitHub at github.com/Chrismarsh3. All code is licensed under the MIT4 or GPL5

open source licenses. Numerous Matlab File Exchange (FEX) submissions were used
to avoid re-implementing methods. These are available in the GitHub repository.

1http://arma.sourceforge.net/
2http://www.boost.org
3http://www.github.com/Chrismarsh
4http://www.opensource.org/licenses/MIT
5http://www.gnu.org/licenses/
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