
Formal Verification of a Real-Time Operating

System

A Thesis Submitted to the

College of Graduate Studies and Research

in Partial Fulfillment of the Requirements

for the degree of Master of Science

in the Department of Computer Science

University of Saskatchewan

Saskatoon

By

Gadi de Leon Tellez Espinosa

Copyright Gadi de Leon Tellez Espinosa, August, 2012. All Rights Reserved.

Permission to Use

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree from the

University of Saskatchewan, I agree that the Libraries of this University may make it freely available for

inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for

scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their

absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is

understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not

be allowed without my written permission. It is also understood that due recognition shall be given to me

and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis.

Requests for permission to copy or to make other use of material in this thesis in whole or part should

be addressed to:

Head of the Department of Computer Science

176 Thorvaldson Building

110 Science Place

University of Saskatchewan

Saskatoon, Saskatchewan

Canada

S7N 5C9

i

Abstract

Errors caused by the interaction of computer systems with the physical world are hard to mitigate but

errors related to the underlying software can be prevented by a more rigorous development of software code.

In the context of critical systems, a failure caused by software errors could lead to consequences that are

determined to be unacceptable. At the heart of a critical system, a real-time operating system is commonly

found. Since the reliability of the entire system depends upon having a reliable operating system, verifying

that the operating systems functions as desired is of prime interest. One solution to verify the correctness

of significant properties of an existing real-time operating system microkernel (FreeRTOS) applies assisted

proof checking to its formalized specification description. The experiment consists of describing real-time

operating system characteristics, such as memory safety and scheduler determinism, in Separation Logic —

a formal language that allows reasoning about the behaviour of the system in terms of preconditions and

postconditions. Once the desired properties are defined in a formal language, a theorem can be constructed to

describe the validity of such formula for the given FreeRTOS implementation. Then, by using the Coq proof

assistant, a machine-checked proof that such properties hold for FreeRTOS can be carried out. By expressing

safety and deterministic properties of an existing real-time operating systems and proving them correct we

demonstrate that the current state-of-the-art in theorem-based formal verification, including appropriate

logics and proof assistants, make it possible to provide a machine-checked proof of the specification of

significant properties for FreeRTOS.

ii

Acknowledgements

I would like to thank my dad, mom and extended family for all their support and words of encouragement

throughout my life. Thank you for helping me fulfill my dreams.

This thesis would not have been possible without my supervisor Prof. Christopher Dutchyn who guided

me in pursuing a topic of my interest, even when this required a few adjustments along the way. Chris has

been a great mentor, teacher and advisor. Thank you for all the inspiring conversations.

This thesis would not have been the same without the help from the members of my thesis committee:

Prof. Michael Horsch, Prof. Dwight Makaroff, and Prof. Ronald Bolton. Thank you for your guidance and

valuable feedback to complete this written work.

Finally, I would like to thank all my dear friends. Thanks for making life this much fun.

iii

To my beloved family...

iv

Contents

Permission to Use i

Abstract ii

Acknowledgements iii

Contents v

List of Tables vii

List of Figures viii

List of Abbreviations ix

1 Introduction 1

2 Background 4
2.1 Real-Time Operating Systems (RTOS) . 4

2.1.1 FreeRTOS . 6
2.2 Formal Verification . 8

2.2.1 Model Checking . 8
2.2.2 Theorem Proving . 9
2.2.3 Hoare Logic . 11
2.2.4 Separation Logic . 15
2.2.5 Calculus of Inductive Constructions (CIC) . 18
2.2.6 Compcert . 20
2.2.7 CIC + Separation Logic . 20

3 Experiment 23
3.1 Proving Significant Properties of FreeRTOS . 26

3.1.1 Safety Properties of FreeRTOS . 26
3.1.2 Liveness Properties of FreeRTOS . 34

4 Evaluation 44
4.1 Software Verification Standpoint . 45

4.1.1 Proof-based vs. Model-based . 46
4.1.2 Degree of automation . 46
4.1.3 Full vs. property-based verification . 47
4.1.4 Intended domain of application . 48
4.1.5 Pre- vs. post-development . 49

4.2 Software Engineering Standpoint . 50
4.2.1 Design . 51
4.2.2 Implementation . 52
4.2.3 Documentation . 53
4.2.4 Testing . 53
4.2.5 Maintenance . 55

v

5 Summary 57
5.1 Limitations . 60

5.1.1 Guaranteeing memory exclusive access . 60
5.1.2 Inline assembly instructions . 61
5.1.3 Coq and the use of large numbers . 62

5.2 Future Work . 62

References 65

A Library Memory Safety 1 69

B Library Memory Safety 2 74

C Library Scheduler Liveness 79

D Library Asmcost 84

vi

List of Tables

2.1 Axioms for Hoare Logic . 11
2.2 Rules of Inference for Hoare Logic . 12
2.3 Structural Rules for Hoare Logic . 13
2.4 Separation Logic Heap Assertions . 16
2.5 Axioms and Rules of Inference for Separation Logic . 18

4.1 Proof Metrics . 45

vii

List of Figures

2.1 Microkernel Structure . 6
2.2 Statements for the manipulation of mutable shared data structures. 15

3.1 Abstract Syntax of the Supported Subset of C. 25
3.2 FreeRTOS Memory Allocator . 27
3.3 Recursive Factorial . 35
3.4 Infinite Recursive Factorial . 36
3.5 Non-guarded Loop — Event condition . 36
3.6 Non-guarded Loop — Unchanged condition . 36
3.7 FreeRTOS Task Switch procedure . 37
3.8 FreeRTOS Task Selector . 38
3.9 Assembly Code for vTaskSwitchContext Procedure . 41

viii

List of Abbreviations

AST Abstract Sytax Tree
CIC Calculus of Inductive Constructions
CISC Complex Instruction Set Computer
CPU Central Processing Unit
FIFO First-In First-Out
LOC Lines of Code
OS Operating System
RTOS Real Time Operating System
VCG Verification Condition Generator

ix

Chapter 1

Introduction

Errors in computer systems are very common [24]. Due to the nature of software systems and their

relation with the physical world, the current assumption is that the elimination of all errors is intractable

[25]. This assumption is supported by the reasonable view expressed by Neufelder [42] in which a computer

system is a biological system in the sense that the software program is not isolated but it is integrated with

the hardware, human operators and the physical world. Since it is impossible to prevent unplanned events

in the physical world such as natural disasters, this view considers it impossible to develop an error-free

computer system.

The presence of errors in computer software raises the ongoing concern that the system might fail to

behave as expected, resulting in unforeseen and, in some cases, catastrophic consequences. When software

systems present the risk of potential catastrophic consequences, such as placing lives, property, or the

environment at risk, the accepted rate of mishaps1 is desired to be virtually nonexistent.

Hundreds of incidents caused by the use of computer systems and related technology have taken place

for over 30 years [44, 45]. While many of these incidents were caused by common, uncontrolled events

of the physical world such as hardware failure and natural disasters, there are many others for which the

primary source of errors was the software [43]. As an example of the high costs incurred by a software system

that failed because of software errors, consider the case of Therac25, a computer system intended to apply

therapeutic radiation for chemotherapy but which inadvertently killed and maimed patients before being

forced off the market [21]. Six known accidents involved massive overdoses by the Therac-25 with resulting

deaths and serious injuries in what was described as the worst series of radiation accidents in the 35-year

history of medical accelerators [37].

Errors caused by the interaction of computer systems with the physical world are certainly hard to

mitigate; but, this does not stop software engineers from focusing on errors related to the software program.

These errors can possibly be prevented by a more detailed and rigorous development of software code.

Experience suggests that errors in a software program are most often caused by design and implementation

1The US Department of Defense defines mishap as an unplanned event or series of events that result in death, injury,
occupational illness, damage to or loss of equipment or property, or damage to the environment.

1

faults [26] while only a few are caused by incorrect system operation and use. Design faults occur when a

designer either misunderstands a specification or simply the specification is not well-described, causing an

unexpected, and frequently incorrect, program behaviour. Implementation faults are the result of erroneous

code that does not meet the system specification. It is estimated that between 60% and 90% of computer

errors are the result of software design and implementation faults [26].

A common approach to identify and eliminate errors in software programs is testing. Running functional

tests on a piece of software consists of examining the behaviour of the system under as many scenarios as the

tester can devise. The problem with this approach is the limitation on the number of scenarios that humans

can specify and implement. Despite the efforts of making the list of test cases as exhaustive as possible and

the use of techniques such as random testing and simulation, exhaustive testing is impossible to achieve due

to the impossibly large number of scenarios that need to be tested in a system.

Testing certainly reduces the number of errors in a software program but it does not guarantee the

elimination of all design and implementation errors due to the impossibility to achieve exhaustive testing.

Because of this, testing could be a good solution for those systems that present a low cost of impact in the

presence of errors. On the other hand, this approach is not appropriate for critical systems — those for

which a failure could lead to consequences that are determined to be unacceptable [34].

Critical systems include, but are not limited to, real-time systems. Within these systems, the operating

system is, arguably, the heart of the software program because the reliability of the entire system depends

upon having a reliable operating system [17]. Due to the importance of the operating system on the cor-

rectness of a real time system, the operating system must be guaranteed to have a correct implementation

in order for the system to be considered reliable — a necessary but not sufficient condition.

Providing evidence of the correct implementation of computer software involves showing that the known

and desired properties of the system specification are met by the given implementation. In a broad way, the

correctness properties of any system can be classified in two categories: safety and liveness [35]. A safety

property is one which states that something unexpected will not happen. An example of a safety property

is the assurance that the result of a computation will not cause buffer overflows. A liveness property is

one which states that something must happen. An example of a liveness property is that a program will

terminate its execution.

In the context of a real-time operating system, a specific safety property often takes the shape of mu-

tual exclusion; whereas, liveness properties are commonly required of the scheduler mechanism. Therefore,

showing the correctness of a real-time operating system implementation requires evidence of its safety and

liveness properties.

In this thesis, the proposed solution to proving the correctness of the necessary and significant properties

of a real-time operating system, such as memory safety and scheduler liveness, consists of translating the

2

description of such properties into a formal language and then providing evidence to show that these prop-

erties are true for the given implementation. Therefore, the first step is to be able to specify the safety and

liveness properties of the real time operating system in a formal language that allows reasoning about the

behaviour of the system. Once the formal description is available, a proof of whether the properties hold for

the implementation or not can be checked using a proof assistant.

Following this methodology would demonstrate that the state of the art in theorem-based formal veri-

fication, including formal languages such as Separation Logic, and proof assistants such as Coq, enables a

machine-checked proof of the significant properties of a real-time operating system. To this effect, first I will

introduce the topics related to the formal description of the properties of a system and the assisted verifica-

tion of its correct implementation. Next, the details of the experiment functioning as supporting evidence to

the previous argument are presented in the experiment chapter. The experiment has been carried out using

FreeRTOS [39], a C implementation of a real-time operating system, and Coq, a formal proof management

system that provides the formal language to write theorems about the correct behaviour of FreeRTOS along

with the environment for interactive development of machine-checked proofs. To describe the requirements

to formally specify an operating system, the evaluation of the experiment, including an assessment of the

quality of the tools used in its development, as well as a comparison of my approach with other related

work is presented in the evaluation chapter. Finally, the conclusions drawn from this research project, the

acknowledgement of its limitations, and proposed future work in the summary chapter bring this thesis to a

close.

3

Chapter 2

Background

To appreciate the process of applying state-of-the-art formal verification to a production real-time oper-

ating system there are three basic requirements

1. An understanding of what constitutes a real-time operating in terms of the properties that define it.

2. An understanding of the potential languages in which to express these properties in a formal way.

3. An appreciation of the different approaches to formal verification to identify the most appropriate

solution to this problem.

The discussion of these topics is the subject of this chapter.

2.1 Real-Time Operating Systems (RTOS)

First we start with clearly describing an Operating System (OS). An operating system is the piece of software

whose job is "to provide user programs with a better, simpler, cleaner model of the computer and to handle

the resources the system is made up of such as processors and memory" [52]. Depending on the purpose

for what the system is designed and the underlying hardware architecture, there exist a variety of operating

systems ranging from mainframe operating systems — which are heavily oriented toward processing many

jobs at once — personal computer operating systems, embedded operating systems, real-time operating

systems, to smart card operating systems — the smallest operating system designed to run on credit card-

sized devices containing a CPU chip.

A system is considered safety-critical when the possibility of a failure carries a high probability of causing

death, injury and damage to equipment, property and the environment. Examples of safety-critical systems

span several domains of science and technology including air traffic control systems, defense and space

systems, embedded automotive electronics, health and safety systems, and industrial process controllers.

Typically, a safety-critical system consists of a controlled system, which can be viewed as the environment

with which the system interacts, and a controlling system. For example, in an automated factory, the

controlled system is the factory floor with its robots, assembling stations, and the assembled parts; whereas

4

the controlling system is the computer and human interfaces that manage and coordinate the activities on

the factory floor [50].

At the heart of the controlling system is found an operating system in charge of managing the computer

resources. Due to the deterministic timing requirements of some safety-critical systems, the operating system

has to be designed for real-time applications. In this kind of applications, the correctness of the system

behaviour depends not only on the logical results of the computation but also on the time these results are

produced [50]; real-time operating systems are, therefore, commonly used in safety-critical systems.

As any other operating system, a real-time operating system is in charge of providing basic support

for scheduling, resource management, task synchronization, and communication. What makes a real-time

operating system different from other OS is that it must also provide facilities that guarantee precise timing

to ensure the required computation is carried out within the stated deadline [51].

Based on levels of determinism over the timing of a given computation, real-time systems are classified as

soft real-time systems versus hard real-time systems. In a soft real-time system, the results of an otherwise

valid computation might be considered useless or invalid in the case where the response time is not within

the requirements. On the other hand, failing to meet the response time of hard real-time system can result

in catastrophic consequences.

The complexity of the controlling system in a safety-critical system spans from very simple micro con-

trollers to complex and distributed systems [50]. Despite this complexity, it is often the case that the entire

controlling system is supported by stripped down and optimized version of RTOS kernels, commonly known

as microkernels — arguably the most critical part of any computer system [17].

The basic idea behind the microkernel design is to achieve high reliability by splitting the operating

system up into small modules with a well-defined interface that serves as the connection to the rest of

the system implementation as processes running on top of the microkernel. The decision of what modules

to include in the microkernel varies among different implementations. Nonetheless, without an existing a

standard, some experts agree on a microkernel as the core of the operating system that provides process

scheduling, memory management, and communication services [17, 22, 52]. These critical modules are the

closest software layer sitting on top of the hardware and serve as an interface to other required modules,

which depending on the application could include device drivers, file systems and network protocols. These

modules sitting on top of the microkernel serve in turn as the interface to serve user level software. This

strict layered approach can be seen in figure 2.1.

The kernel is therefore not only a significant piece of software in its own right, but also a critical module

in a safety-critical system. Under these premises, verifying a real-time operating system kernel to provide

a guarantee of its implementation correctness is a fundamental priority in characterizing a safety-critical

system as reliable.

5

Hardware'

Microkernel'
(Processes,'Scheduling,'Clock,'Memory'Management)'

Device'
Drivers'

File'
System'

Other'
Services'

User'Level'SoBware'

Figure 2.1: Microkernel Structure

2.1.1 FreeRTOS

FreeRTOS [39] is a portable, open-source real-time microkernel with more than 77,500 downloads per year

that attest for its popularity in the implementation of real-time systems. FreeRTOS is a professional-grade

implementation of a real-time operating system written in the C programming language. Its implementation

is contained in three files comprising 2,200 lines of code plus an extra file with the specifics for the chosen

target architecture on which the system will be deployed. FreeRTOS supports a total of 31 architectures,

including x86, PIC and ARM, among others.

With only six to ten kilobytes of footprint, FreeRTOS is specially designed for its implementation in small,

embedded real-time systems. To this end, FreeRTOS contains one primary primitive, the message queue,

which is then used as a base for all other primitives. The design decision of providing only the modules for

memory management and task management removes the requirement for many separate software modules

and their corresponding additional footprint.

In a way, FreeRTOS pays the price of its high portability by its lack of readiness to be deployed as a

standalone system. In other words, FreeRTOS is not a full-featured user-level operating system but it is better

described as a microkernel that provides the core real-time scheduling, inter-task communication, timing

and memory management functionality. The rest of the functionality required of a full real-time system

implementation such as console interface, device drivers and networking stacks as are left for the programmer

of the final implementation to implement. FreeRTOS is designed so that real-time applications can be

structured as a set of independent tasks. Each task executes within its own context with no dependency on

6

other tasks within the system or the scheduler itself [39].

Task Management A task constitutes the basic computation unit in FreeRTOS. A task consists of

1. A state - depending on whether the task is running, suspended, blocked, or ready to execute.

2. A priority - an integer value ranging from zero up to a maximum priority value define at compile time

3. An execution context - storing the call stack and the register values when the task is not executing

FreeRTOS scheduler is based on priorities. During the selection of the next executing task, the scheduler

always selects the task with the highest priority among the ready and running tasks. In order to keep to

system running, even when there are no tasks ready to be executed, FreeRTOS automatically creates an idle

task with priority zero that is executed whenever there are no other tasks that require processing time.

A peculiar characteristic of FreeRTOS that undermines its application for systems with dynamic creation

of tasks is its lack of a schedulability algorithm. FreeRTOS provides the capability of creating tasks dynam-

ically (i.e. during execution time) and sets no restrictions on the number of tasks that can be created but

does not perform an analysis to determine whether or not the system will be able to meet its deadlines based

on the number of tasks that the OS is serving. Therefore, FreeRTOS is a suitable solution for systems that

deal with a static number of tasks since the programmer can perform the schedulability algorithm before the

system is deployed but a better solution is needed when dynamic creation of tasks is required of the system

to be implemented1. Systems that do not require dynamic creation of tasks are the focus of this thesis.

Memory Management FreeRTOS provides a simple but useful memory management algorithm that

satisfies the requirements of the majority of applications in which FreeRTOS is used [39]. The abstract model

of the memory consists of a single array structure that is subdivided as blocks of memory are requested from

the tasks running on top of the OS. The total size of the array (i.e. the total size of the heap) is determined

during compilation time.

A distinctive characteristic of FreeRTOS memory manager is the impossibility of freeing memory locations

once they have been allocated. The argument behind this decision according to FreeRTOS’ developers is

that "the majority of deeply embedded applications create all the elements required when the system boots,

and then use all of these elements for the lifetime of the program execution" [39]. A great advantage of this

assumption is that the implementation of the memory manager always takes the same amount of time to

serve a memory request.

1A potential solution is the implementation of the schedulability algorithm as a task running on top of FreeRTOS microkernel
that gets executed every time a task is created.

7

2.2 Formal Verification

Next, we turn our attention to formal verification. The notion of being able to provide a proof that a

program is correct with respect to a specification has been around for over 40 years [7]. During this time,

formal verification has developed into two fundamentally different approaches: model checking and theorem

proving. Each of these is discussed in the remainder of this section.

2.2.1 Model Checking

Model checking is characterized by building an abstraction of all possible states that a computer program

can reach, usually represented as a state machine. Once this model has been constructed, one can analyze

its structure and verify its properties, checking that none of the states present in this model are undesirable.

Although there are many advantages for model checking systems, such as

1. Being able to reason about concurrency thanks to the development of temporal logic

2. The ability to produce a counterexample execution trace in case the specification is not satisfied

3. The high level of automation of the tools used in model checking

there is a major caveat to it: the state explosion problem [14]. The number of states a program can reach

during execution grows exponentially by different factors like the number of variables and components that

constitute the system. In an effort to eliminate the state explosion problem, an abstraction technique is used

to reduce the size of the state space that must be searched. Thanks to this abstraction, model checking has

become tractable and has been successfully applied to find errors in hardware controllers [3, 23]. Nevertheless,

special attention is required when abstracting the state space complexity. Due to this abstraction, it is

possible to build a false positive model — a model incorrectly categorized as correct — by not considering

special states, making this solution prone to errors.

An example of the successful implementation of model checking technology in the verification of hardware

and software is Intel, whose pioneering work in applying model checking to build industrial verified systems

has been present since 1990 [23]. Since the early beginnings, Intel has reported a successful usage of such

verification technology in the discovery of bugs that either would have been found much later in the design

cycle or bugs that might otherwise have escaped all the verification tools.

The first generation of Intel’s verification tools focused on verifying hardware designs. Two lead CPU

design teams used the verification tools on selected, high-risk areas in which new complex functionality was

added to real, sophisticated design projects. Properties were developed to capture the intended relation

between the inputs and the outputs of each module. Properties on the outputs of a module were verified

using the assumptions on the inputs of the module. Properties on the output signals of the module served

8

also as assumptions on the inputs of the next module. Despite the challenges faced along the way, the added

value that verification tools provided on the design and implementation of complex hardware lead to the

implementation of formal verification using model checking to other areas and projects.

Model checking is not limited to the verification of hardware; throughout the years, Intel has also devel-

oped a variety of specification languages, specification coverage tools, model checkers and simulation engines

for the verification of software. MicroFormal [2] — a technology for fully automated formal verification of

functional backward compatibility of microcode — is a recent example of the successful implementation of

model checking for software verification. The microprograms being verified using MicroFormal are quite

complex CISC flows that involve both memory interaction, and multiple sanity checks that can result in ex-

ceptions. In a verification session, microcode of the new generation is compared against the old generation.

The novel technology provided by MicroFormal has been recognized as one that can significantly improve

the quality of microcode.

In spite of the success of model checking-based verification for smaller systems2, better solutions are

needed to handle large designs of bigger complexity. For this reason, model checking is not a tractable

solution when proving the properties of an operating system.

2.2.2 Theorem Proving

An alternative technology for verifying software is theorem proving. Theorem proving is characterized by

describing the specification of a computer program in a formal reasoning system, which consists of a set of

axioms and a set of inference rules that can be used to derive new theorems. Verifying a property amounts

to generating a proof, where each deduction step in the proof is an instance of one of the inference rules

applied to axioms or previously proved theorems [7]. The remainder of this section provides more detail and

uses notation from sequent calculus and proof trees from [10].

Due to the complexity of a software specification, it is common to deal with individually independent

properties of the system as separate judgements. Once the specification has been constructed, one can verify

that each of the properties, or judgements, hold true using deductive reasoning. If, given a set of axioms,

one can construct a derivation tree following the inference rules defined by the meta-logic in which the

specification has been written, then the general validity of the formula has been proven to hold true.

In theorem-based formal verification, a proof system consists of a collection of inference rules of the form:

J1 ... Jk {name}.
J

The judgements above the horizontal line are called the premises of the rule, and the judgement below

the line is called its conclusion. The inference rule states that the premises are sufficient for the conclusion:

2Given the number of variables and instructions involved in the execution of the program, the complexity of the microcode
verified by Intel is less than the complexity of a real-time operating system.

9

to show J , it is enough to show J1, ..., Jk. If a rule has no premises, then the rule is called an axiom. An

axiom is, therefore, a rule stating that its conclusion holds unconditionally.

A derivation tree (or a proof) of a judgement is a finite composition of rules, starting with axioms and

ending with the desired judgement to be proven (also called the theorem). In a derivation tree, each node is

a rule whose children are derivations of its premises.

For example, consider a reasoning system for natural numbers where the number 0 is unconditionally

considered to be a natural number. Formally, we state this as the axiom:

0%nat

Moreover, consider a rule of inference to produce more natural numbers by stating that given a natural

number, the successor of this number is also a natural number. Formally, we define this as:

n%nat successor
s(n)%nat

Then, to provide a proof that the successor of the successor of the number 0, namely s(s(n)), is also a

natural number, we construct a derivation tree starting with the unconditional judgement that 0 is a number

and applying the successor rule of inference twice, ending with the judgment to be proven. Formally:

0%nat successor
s(n)%nat

successor
s(s(n))%nat

There are two different approaches taken when building a derivation tree: forward chaining or bottom-up,

and backward-chaining or top-down [28].

The bottom-up approach starts with the axioms and works forward towards the desired conclusion. More

precisely, this approach maintains a set of derivable judgements and continually extends it by adding the

conclusions of any rule whose premises are all present in the set. Bottom-up is undirected in the sense that it

does not take into account the end goal when deciding how to proceed at each step. For this reason, bottom-

up is usually used in automated provers, where finding a proof is attempted by an exhaustive application of

inference rules to previously proven theorems and axioms.

The top-down approach starts with the desired conclusion and and works backwards towards axioms or

other known results. More precisely, this approach maintains a queue of current goals (judgements) whose

derivations are to be found. Initially, this queue contains only the property we wish to derive. At each stage

the judgement is removed from the queue by providing a rule whose conclusion is that judgement. For each

rule, the premises are added to the back of the queue and repeat the process until the queue is empty. This

approach is more intuitive to the user, and it is often preferred in interactive provers. From now on, this

thesis will only consider top-down approach when building derivation trees.

10

A theorem-based formal verification approach, hence, requires a definition of the logic that will determine

the inference rules under which one can reason about the system and the properties to be proven. Such logic

has to be expressive enough so that it can describe the system’s specification in the same way natural

languages does but with a higher level of rigour when compared to the latter so that it can be used in the

derivation of formal proofs.

2.2.3 Hoare Logic

In 1969, Charles Hoare introduced an axiomatic method for proving that a computer program is partially

correct with respect to a formal specification. A partial correctness specification holds only when the program

terminates, but it is not valid otherwise. Alternately, total correctness guarantees that the program will

terminate and the specification will be met at all stages of program execution.

Proposing that, as an exact science, computer programming could be subject to mathematical investiga-

tion, Hoare formulated a set of axioms and rules of inference which can be used in proofs of the properties of

computer programs, later to be known as Hoare Logic [29]. Hoare Logic states that the intended function of

a program can be specified my making general assertions about the computational state of a program before

and after its execution. A computational state is defined by a store that maps variable names into values.

With the purpose of expressing the aforementioned assertions in a formal language, Hoare introduced the

following notation, known as Hoare Triple:

{P} C {Q}

where P is the required precondition for the program C to be executed and Q is the resulting state following

the execution of C.

The {P} C {Q} triple is interpreted as follows: if assertion P is true before the execution of the program

C, and such execution terminates, then the assertion Q will be true on its completion. The correctness of a

program is then reduced to reasoning about individual statements in a program by introducing assertions

surrounding each statement (i.e. subprograms of the main program).

{P} skip {P} Skip axiom

{P [X ← E]} X := E {P} Assignment axiom

Table 2.1: Axioms for Hoare Logic

11

Hoare Logic axioms: The set of axioms formulated by Hoare to describe the behaviour of a computer

program consists of the skip axiom and the assignment axiom listed in table 2.1. The skip axioms means

that whatever assertion is true before executing the program skip it will hold true after completing the

skip action. The assignment axiom can be interpreted as: any assertion which is to be true of X after the

assignment is made must also have been true of the expression E before the assignment is made. The syntax

in the assignment axiom refers to substitution of the term X by the expression E in the assertion P (commonly

found as [X/E]P in other formal languages).

{P1} C1 {P2} {P2} C2 {P3}
{P1} C1;C2 {P3}

Composition rule

{P ∧B} C1 {Q} {P ∧ ¬B} C2 {Q}
{P} if B then C1 else C2 {Q}

Conditional rule

{P ∧B} C {P}
{P} while B do C end {P ∧ ¬B} While rule

Table 2.2: Rules of Inference for Hoare Logic

Hoare Logic inference rules: The set of rules of inference formulated by Hoare to describe the behaviour

of a computer program consists of the composition rule, the conditional rule and the while rule, as listed in

table 2.2.

The composition rule states that if the postcondition of a program C1 is identical to the precondition of

another program C2, then the execution of both programs in sequence will produce the results of the second

program C2, provided that the precondition of the first program C1 is satisfied.

The conditional rule considers two programs C1 and C2 with the shared assertion Q as a resulting state

of their execution. If the required preconditions are similar modulo the logical value of assertion B, then we

can formalize the execution of either one of C1 or C2 under the logical value of B as a conditional statement.

The while rule supposes an assertion P which is true before and after the execution of program C.

Furthermore, it is known a certain condition B which is true before executing the program C but happens

to be false after such execution. This behaviour formalizes what happens when a program is executed a

number of times determined by the condition B.

Hoare Logic structural rules: The consequence rules refer to the weakening of preconditions and

strengthening of postconditions correspondingly. In other words, if P ′ is known to be a precondition for

a program C, then so is any other assertion P which logically implies P ′. That is, P is at least as strong as

12

P ⇒ P ′ {P ′} C {Q}
{P} C {Q} Consequence rule I

{P} C {Q′} Q′ ⇒ Q

{P} C {Q} Consequence rule II

{P} C {Q}
{P ∧R} C {Q ∧R} Rule of constancy

Table 2.3: Structural Rules for Hoare Logic

P ′ so P ′ is weaker than P . Following the same logic, if Q′ is known to be a postcondition for a program C,

then so is any other assertion Q that follows logically from Q′. That is, Q′ is at least as strong as Q.

The rule of constancy is vital for scalability. This rule permits the extension of a local specification

of C involving only those variables actually used by the command with the addition of assertions about

variables not modified by C. The rule of constancy requires the condition that no variable occurring free in R

is modified by C. In other words, variables in the logic formula R that are not inside the scope of a quantifier

are not modified by C.

The Hoare Logic deductive system is sound, meaning that its axioms and rules of inference prove only

formulas that are valid with respect to the operational semantics of the language described by the formal

system. In other words, If we prove the Hoare triplet {P} C {Q}, then C is partially correct with respect to

specification P,Q. [16].

On the other hand, Hoare Logic is not complete for the following reasons:

1. The partial correctness of a program C may not be expressible by a formula {P} C {Q}. This is mainly

because Hoare Logic relies on the expressive power of the underlying programming and assertion

languages to which Hoare Logic is applied; hence, the expressive power of the assertion language may

not be sufficient to describe the computational state that some programs require. For example, a

program that computes addition by successive increments might not be provable in Hoare Logic if the

underlying assertion language is based upon abacus arithmetic because addition is not expressible in

this system [16]. In formal terms, the Hoare triple

{X = x ∧ Y = y}

while¬(X = 0)

do(

Y := succ(Y);

X := pred(X)

)

{Y = x + y}

13

is not expressible because the addition symbol used in the postcondtion cannot be represented in

abacus arithmetic. To overcome this limitation, abacus arithmetic can be enriched to include the

addition operation, resulting in Presburger Arithmetic. Nevertheless, Presburger Arithmetic has the

same problem when dealing with the multiplication operation. Namely, the Hoare triple

{X = x ∧ Y = y}

Z := 0;

while¬(X = 0)

do(

Z := Z + Y ;

X := pred(X)

)

{Z = x ∗ y}

is not possible to construct because the multiplication symbol is not expressible in Presburger Arith-

metic.

2. Some true formula {P} C {Q} may not be provable by Hoare Logic deductive system. This is of special

attention when dealing with while rule of inference. It might be the case that given the assertions P

and Q, the proof {P} while B do C end {Q} would involve an internal loop invariant which cannot

be expressed by a formula of the underlying assertion language. For example, defining the following

program with an underlying assertion language based on abacus arithmetic:

{X = x ∧ Y = 0}

while¬(X = 0)

do(

Y := succ(Y);

X := pred(X)

)

{Y = x}

The proof of this Hoare triple must involve the while rule with some invariant I such that {I ∧¬(X =

0)}(Y := succ(Y);X := pred(X)){I} and the consequence rule so that (P ⇒ I) and (I∧(X = 0))⇒ Q.

Then, the invariant I stating that (x = X + Y) is not expressible in this logic.

As important of a breakthrough as Hoare Logic was for program verification, it presents some limitations

that make it untreatable for real life scenarios. Hoare himself foresaw this limitation when he mentioned

"program proving, certainly at present, will be difficult even for programmers of high calibre; and may be

applicable only to quite simple program designs." [29, p. 5] Arguably, the programmers could be trained in

becoming experts in the use of Hoare Logic; nevertheless, the innate lack of expressiveness in Hoare Logic

had to be dealt with by the elucidation of more expressive logics.

14

2.2.4 Separation Logic

Separation Logic is an extension of Hoare Logic that permits reasoning about low-level imperative programs

that use shared mutable data structures, i.e. structures where updatable fields can be referenced from more

than one point via more than one name or alias [48]. The resulting extension of Hoare Logic is the product

of extending the expressiveness of the programming language which the logic describes. The extended

imperative language adds new statements for the manipulation of mutable shared data structures, namely:

allocation, lookup, mutation, and deallocation as shown in figure 2.2

〈statement〉 ::= . . .

| 〈var〉 := cons(〈exp〉, ..., 〈exp〉) (Allocation)

| 〈var〉 := [〈exp〉] (Lookup)

| [〈exp〉] := 〈exp〉 (Mutation)

| dispose〈exp〉 (Deallocation)

Figure 2.2: Statements for the manipulation of mutable shared data structures.

The allocation statement activates as many heap cells as the number of parameters. The value of each cell

is then initialized to the value to which each 〈exp〉 evaluates. It is important to notice that, aside from the

requirement that the addresses of those cells be consecutive and previously inactive, the choice of addresses

is indeterminate.

The lookup statement evaluates the expression 〈exp〉 and searches for the corresponding heap cell and

assigns the value of such heap address to variable 〈var〉. To differentiate a heap location from a store location,

the notation "[]" is adopted. If an inactive address is referenced by 〈exp〉, a memory fault is raised.

The mutation statement assigns the value of the right hand side 〈exp〉 to the heap cell reference to by

the evaluation of the left hand side 〈exp〉. As with lookups, if an inactive address is referenced, a memory

fault is raised.

Finally, the dispose statement deactivates the heap cell pointed to by the evaluation of the expression

〈exp〉. In case an inactive address is referenced by the expression, then a memory fault is raised.

Semantically, computational states are modified to contain not only a store but also a heap. Different

from the store that maps names into values, a heap maps addresses to values. When a store and a heap are

combined, usually the store maps names (i.e. variable names) into addresses, and then the heap translates

those addresses into values.

In light of the modified computational-state construction, new assertions describing the heap are required.

The notation for these assertions is shown in figure 2.4. In particular, the notation e 7→ e′ is introduced

15

to talk about the value (e′) of an individual memory location (e) and the use of the star symbol (p1 ∗ p2)

denotes the disjointedness of memory locations p1 and p2.

Notation Name Description

emp Empty Heap The heap is empty.
e 7→ e′ Singleton Heap The heap contains one cell, at address e with con-

tents e′.
p1 ∗ p2 Separating Conjunction The heap can be split into two disjoint parts such

that p1 holds for one part and p2 holds for the
other.

p1 −∗ p2 Separating Implication If the heap is extended with a disjoint part in
which p1 holds, then p2 holds for the extended
heap.

Table 2.4: Separation Logic Heap Assertions

The great benefit of separating conjunction3 and separating implication should not go unnoticed. These

constructs facilitate the abstraction of otherwise complex issues about the size and order of the heap by

giving us the advantage of local reasoning, which underlies the scalability of the logic. For example, the

specification

{256 7→ 10} C {256 7→ 50}

implies not only that the program C expects to find the value 10 in heap cell 256, but also that this heap

cell is the only addressable storage touched by the execution of C. In other words, separating conjunction

and separating implication allows us to reason locally about programs while ignoring the rest of the storage.

This scalability is not of much need for small programs but it is critical for more complex programs.

Additional axiom schemes for separating conjunction include: commutative and associative laws, the fact

that emp is a neutral element, and various distributive laws. Some of these laws of particular interest for

this research project are:

p1 ∗ p2 ⇔ p2 ∗ p1 (Commutativity of *)

(p1 ∗ p2) ∗ p3 ⇔ p1 ∗ (p2 ∗ p3) (Associativity of *)

p ∗ emp⇔ p (Idempotency of emp)

3An important consideration about notation is the difference between the syntax used for the singleton heap " 7→" and the
symbol for logical implication "⇒". These symbols are not to be confused.

16

As for the inference rules, the statement-specific Hoare Logic rules remain sound, as well as the structural

rules with the exception of the rule of constancy. This rule becomes unsound when switching from Hoare

Logic to Separation Logic. Consider the example when the rule of constancy extends the specification of a

valid Hoare triple for a program consisting of a simple assignment with an assertion that describes the value

of a variable apparently not involved in the assignment as the evidence of such claim:

{x 7→ 0} [x]:=4 {x 7→ 4}
{x 7→ 0 ∧ y 7→ 3} [x]:=4 {x 7→ 4 ∧ y 7→ 3}

This example does not take aliasing into consideration (i.e. when x = y). When aliasing is possible

due to the presence of memory pointers, the assignment of a new value to x will falsify the assertion in the

postcondition that claims y 7→ 3.

However, the ability to extend local specifications is still possible through the separating conjunction. In

place of the rule of constancy, the frame rule which uses separating conjunction has been proposed:

{P} C {Q}
{P ∗ S} C {Q ∗ S}

By using the frame rule, it is possible to extend a local specification, involving only the variables and

heap cells that are actually used by C (referred to as the footprint of C) by adding arbitrary assertions about

variables and heap cells that are not modified or mutated by C. Thus, the frame rule is of great significance

when dealing with procedure calls.

A procedure call could be considered as a subprogram that defines its own variables and heap cells;

only these variables and heap cells, and those from the main program passed as parameters and defined

as global variables, can be modified by a given procedure. Therefore, the local specification consists only

of those variables modified by the procedure. When having a procedure call inside another procedure, the

specification of the inner procedure can be extended by the variables and heap cells modified by the outer

procedure and the specification for the inner procedure would remain valid.

Separation Logic axioms: In light of the new heap-manipulating statements introduced by Separation

Logic, new logic constructs are to be introduced to describe the behaviour in terms of preconditions and

postconditions of the mutation, deallocation, and allocation statements as listed in table 2.5. The axiom for

mutation states that regardless of the value for the memory location to which e evaluates4, the value will be

updated with the result of evaluating the expression e′. The axiom for deallocation states that the result of

disposing a memory location is an empty memory location. In case the disposed memory location was the

only memory cell, this operation results in an empty heap. In case there are other memory locations, these

are not modified by the dispose statement and are considered valid. Finally, the allocation axiom states that

4When it is desired to talk about a memory location which value is od no interest, the notation e 7→ − is used

17

the result of allocating a memory cell is the creation of a new memory location which value is the result of

evaluating the expression ē.

Statement Local rule Global rule

Mutation {e 7→ −}[e] := e′{e 7→ e′} {e 7→ − ∗ r}[e] := e′{e 7→ e′ ∗ r}

Deallocation {e 7→ −}dispose e{emp} {e 7→ − ∗ r}dispose e{r}

Allocation {emp}v := cons(ē){v 7→ ē} {r}v := cons(ē){v 7→ ē ∗ r}

Table 2.5: Axioms and Rules of Inference for Separation Logic

2.2.5 Calculus of Inductive Constructions (CIC)

In 1985, Thierry Coquand introduced a new formalism to construct proofs in natural deduction style called

Calculus of Constructions. Based on the Curry-Howard isomorphism, stating the correspondence between

propositions and types, the Calculus of Constructions provided a notion of a high-level functional program-

ming language with complex polymorphism, well-suited for modular specification [15]. Based on Coquand’s

theory, the Institut National de Recherche en Informatique et en Automatique, developed a proof-assistant

system called Coq5. The Coq system is designed for writing formal specifications, programs, and to verify

that programs are correct with respect to their specification. The specification language called Gallina can

represent programs as well as properties of these programs and proofs of these properties.

To prove a program in Coq, the properties of the target computer program are introduced as theorems

which must be proven to hold valid given the formal description of the target system behaviour, a set of

logical axioms, and a set of inference rules. Each step is checked by Coq to ensure the program does not have

illogical leaps during the proof. When a property does not hold, Coq will encounter a proof requirement

which cannot be discharged and which describes the circumstances of a bug. In other words, bugs in the

system are found during the programming stage. Therefore, the resulting system is guaranteed to be bug-free

in relation to the properties described.

There are currently many other proof assistants based on different logical frameworks, including other

solutions based on the Calculus of Constructions, such as Isabelle, PVS, ACL2, and Twelf. Nevertheless,

5The underlying formal language of Coq is a Calculus of Constructions with Inductive Definitions, or Calculus of
(Co)Inductive Constructions (CIC in short).

18

Coq presents some features that make it a more powerful tool to develop certified programs with respect to

others [12]:

• Based on a Higher-Order Functional Programming Language - allows the programmer to make use of

this familiarity with functional programming.

• Dependent Types - a language of dependent types allows to effectively capture any correctness property

in a type.

• Easy to Check Kernel Proof Language - despite the complexity of some proof procedures, the final

proof terms are expressed in a core language comparable with what is found in proposals for formal

foundations for mathematics.

• Convenient Programmable Proof Automation - enables the user to build his own procedure for solving

specific problems without allowing formulation of user-defined invalid proofs.

• Proof by Reflection - makes it easy to write programs that compute proofs by placing programs and

proofs in the same syntactic class.

The rise of new technologies in the form of formal languages like Calculus of Constructions and proof

assistants like Coq have given strength to formal verification of systems through theorem proving. In a strict

sense, Coq is not an automated theorem prover since it requires interaction with the programmer to build

proofs. Nevertheless, Coq makes use of a powerful set of theorem proving tactics and decision procedures that

minimize the input required from the programmer. This tactic implements backward reasoning, proceeding

from conclusion (goals) to premises (subgoals), replacing the goal with the generated subgoals. Therefore,

when a tactic is applied, we say that the goal has been reduced to the subgoal. For example, the tactic intro

reduces a goal of the form T → U to the subgoal U and gives a name (e.g. H1) to the hypotheses T in the

local context. We could then use the tactic apply H1 to the new goal U to complete the original proof.

Since proving theorems in propositional logic is a very mechanical activity, it is possible to make use

of more powerful tactics that automate the process as much as possible. For example, Coq’s tactic auto

implements a Prolog-like resolution procedure to solve the current goal. It first tries to solve the goal using

the assumption tactic and then it reduces the goal to an atomic one by iteratively using intro and introducing

the newly generated hypotheses as hints to the local context. Then it looks at the list of tactics associated

with the goal and tries to iteratively apply one of them. This process is recursively applied to the generated

subgoals. The tactic terminates when the goal has been solved or when it finds a proof requirement that

cannot be discharged. [53].

19

2.2.6 Compcert

A clear example of the increased application of formal methods in the verification of software is Compcert

[36], a formal verification of a realistic compiler. As a verified piece of software, Compcert comes with a

machine-checked proof that guarantees the generated executable code behaves exactly as prescribed by the

semantics of the source program.

The specification of CompCert’s semantics was developed in Coq proof assistant; running a proof check

determined that the desired properties for the compiler held from the provided specification. Once the proof

was generated, executable code was extracted using Coq’s extraction facility that generates executable Caml

code from the Coq functional specifications [36].

The benefits of having taken the effort in producing a formal description for a compiler can be seen in the

quality of the final product. A research group from the University of Utah created a randomized test-case

generation tool and spent three years using it to find compiler bugs. The research group found that the

middle- and back-end bugs6 present in all other compilers, including gcc, are absent in CompCert [55]. The

apparent unbreakability of CompCert supports a strong argument that developing compilers within a proof

framework, where safety checks are explicit and machine-checked, has tangible benefits.

2.2.7 CIC + Separation Logic

The use of Coq proof assistant is the difference between having a machine-checkable proof and having a

machine-checked proof. The powerful expressiveness of Coq, thanks to its dependent type feature, allows us

to have an implementation of Separation Logic so that we can manipulate the specifications as propositions,

in a similar way we manipulate programs. Hence, after the specification of the program has been described

in Separation Logic and the proof was built, we can execute the proof in Coq, allowing the computer to

verify that we have not made any mistakes in building the proof.

Defining the syntax to express the specification of a program in Separation Logic is not difficult. The

challenging part is constructing proofs in a proof assistant such as Coq because we are attempting to carry

out linear-style reasoning in a proof assistant with a native logic that is not linear. For example, if A, B, C,

and D are regular propositions (those used in Coq) then conjunction associativity, formally:

(A ∧B ∧ C ∧D)⇒ (B ∧ (A ∧D) ∧ C)

can be easily proved. On the other hand, if A, B, C, and D are Separation Logic assertions, proving the

equivalent rule of associativity for the separating conjunction, formally:

6Note the emphasis on middle- and back-end bugs. This is because the parser and the runtime phases of Compcert were not
validated in the same manner as the rest of the phases.

20

∀m, (A ∗B ∗ C ∗D)m⇒ (B ∗ (A ∗D) ∗ C)m

is far more difficult due to the conditions for memory equality and disjointedness.

As an example, consider the work by Marti and Affeldt [40] in their formal verification of the heap

manager of an existing embedded operating system. In their approach to verify a C implementation of a

garbage collection, they made use of Separation Logic to express the assertions involved in the specification of

the program behaviour. Nevertheless, they lacked the appropriate set of tactics to manipulate such assertions

which forced them to unfold the definitions of assertions to allow the use of more conventional tactics. In

other words, despite having a formalism to represent Separation Logic assertions, the proofs carried out were

not at the same level of abstraction because of the lack of a mechanism to manipulate such formalism.

For this reason, an appropriate set of tactics are required to enable us to manipulate the specification

at the right level of abstraction as to avoid complex, yet repetitive, reasoning. McCreight [41] provided a

set of tactics for reasoning about Separation Logic assertions, including simplification, rearranging, splitting,

matching and rewriting.

The simplification tactic reduces a Separation Logic assertion into a normal form in order to make further

manipulation simpler. Some of the transformations include combining all instances of true and remove all

instances of emp assertions. The rearranging tactic allows the commutativity and associativity properties of

the separation conjunction to be applied in a concise and declarative fashion. The splitting tactic subdivides a

Separation Logic proof by creating a new subgoal for each corresponding part of the hypothesis and goal. The

matching tactic cancels out the matching part of the hypothesis with the goal. In case there is an assertion

describing part of the heap in both, the hypothesis and the goal, then such an assertion is considered to be

held in the specification and, therefore, eliminated. Finally, rewriting tactic provides support for logically

equivalent assertions. By adding rewriting rules, the user can expand the simplification mechanism to work

on their own assertions.

McCreight also provides a verified implementation of a Verification Condition Generator (VCG). The

VCG is a weakest precondition generator derived from each individual statement along with the specification

for the various ways to exit the statement. Verification requires that the user-specified precondition is at least

as strong as the verification condition generated by the VCG. The soundness of the verification condition

has been mechanically verified using Coq. Therefore, if the program under analysis is well-formed, then it is

either possible to take another step or a valid termination state for the program has been reached.

Finally, a set of tactics to unfold the verification conditions and use Separation Logic to perform symbolic

execution has been devised by McCreight. The automation of such tactics is what allows us to stay at the

right level of abstraction to talk about the properties of FreeRTOS without having to deal with the details

of the underlying logics.

21

The implementation of Separation Logic along with the verification condition generator and their respec-

tive appropriate tactics to manipulate the proof at the appropriate level of abstraction transform Coq into

a proof assistant for Separation Logic. In other words, we now have an appropriate set of tools to provide a

machine-checked proof of the correctness of safety properties of a real-time operating system. The next step

is to carry out the proof of correctness of an actual system using the aforementioned tools. The next section

introduces the details of the experiment carried out for FreeRTOS using the implementation of Separation

Logic as a formal system to describe the behaviour of the system and whether or not the desired properties

hold true for the given implementation.

22

Chapter 3

Experiment

A common approach to formally verify a piece of software using theorem-proving techniques is to start

writing the implementation with a formal description of its specification in mind. This kind of solution

consists of reasoning about simple constructs and proving them correct, iteratively building more complex

pieces of software along with their corresponding proofs. One of the benefits of this approach is to be

able to reason about the required proofs in the same way we reason about modularized software. On the

down side, the programmer is required not only to reason about the required proofs, but also to provide an

implementation of the system from scratch. This approach is referred to as pre-development verification.

Another approach to formal verification, referred to as post-development verification is to make use of

existing software and apply post development techniques to specify the system’s properties in a formal

language. Once the specification is in a formal language, it is possible to apply natural deduction to provide

the required proofs. As a potential side benefit for taking this approach, there exists the possibility of being

able to undertake a similar exercise with other systems, opening the door of formal verification to existing

pieces of software.

Since the focus of this research project is formal verification, it is, therefore, desired to reduce any

complexity incurred by writing the source code for a real-time operating system. Hence, our approach is

to use FreeRTOS — a professional-grade, existing implementation of a real-time operating system — and

to write down the specification of its significant properties in a formal language to later be proved using

Separation Logic embedded on Coq proof assistant.

To be able to manipulate FreeRTOS code, it is required to use an appropriate representation that strips

away the details of the concrete syntax while keeping the semantics of the program. An Abstract Syntax

Tree (AST) structure is the result of parsing the source-code concrete-syntax to determine its grammatical

structure. Figure 3.1 shows the abstract syntax of a subset of C programming language supported by

Compcert [6]. In general, the version of Compcer used in this experiment supports all of ANSI C, with a

few exceptions that include:

• Unstructured switch case and default as in Duff’s device,

• Unprototyped and variable-argument functions,

23

• Control operators longjmp, setjmp. goto, and labels,

• Storage class annotations register, volatile, extern, and static (although variables declared out-

side of functions are accepted as implicitly static), and

• Data structuring via typedef, struct, union, and enum.

In this experiment, Compcert’s front-end is used to obtain the AST representation of FreeRTOS source

code. Compcert is the implementation of a formally verified C compiler that comes with a machine-checked

proof stating that the generated code behaves exactly as prescribed by the semantics of the source program.

The architecture of Compcert is divided into three main parts: parsing, type checking and pre-simplification;

compilation of Compcert C AST to assembly AST; and assembling and linking.

The first part transforms C concrete syntax into Compcert C AST. During this phase, some of the

constructs not supported by Compcert C are expanded away. For example, block-scoped local variables are

lifted up to function local scope; structs and unions passed by value are, instead, passed by reference; and

assignments between structs and unions are eliminated. Some other unsupported constructs are rejected.

In particular, assembly inline statements are not part of the subset of C supported by Compcert. This

presented the first challenge when trying to obtain the AST representation of FreeRTOS. Therefore, some

changes to the front-end of the compiler were needed in order to parse FreeRTOS due to the number of

times assembly inlining is used in the source code. After extending the definition of supported statements

to include assembly inlining, we were able to obtain the AST of FreeRTOS source code.

Once we obtained the FreeRTOS AST, we took advantage of a particular proof provided by Compcert: the

semantics of the original program are preserved throughout all the intermediate languages/representations

of the compiler [6]. Such a proof guarantees that the semantic analysis undertaken on a given intermediate

representation will be preserved on all phases of the compiler, from the initial AST transformation to assembly

language code generation. Given this property, working with Cminor — an intermediate language used in

Compcert — (as opposed as working with C) is desirable for a number of reasons:

1. Most importantly, an axiomatic Separation Logic that has been proven sound with respect to its

semantics has been implemented for Cminor. [1]

2. The language definition of Cminor is simpler than that of C while preserving the semantics of the

original program written in C.

3. As the intermediate language in Compcert functioning as the interface between the front- and back-

end of the compiler, Cminor could potentially serve as a common denominator between high-level

languages by replacing the front-end of the compiler to translate a different language other that C.

24

Formal Verification of a C Compiler Front-end 3

Types:
signedness ::= Signed | Unsigned
intsize ::= I8 | I16 | I32
floatsize ::= F32 | F64
τ ::= Tint(intsize, signedness) | Tfloat(floatsize)

| Tarray(τ, n) | Tpointer(τ) | Tvoid | Tfunction(τ∗, τ)

Expressions annotated with types:
a ::= bτ

Unannotated expressions:
b ::= id variable identifier

| n | f integer or float constant
| sizeof(τ) size of a type
| opu a unary arithmetic operation
| a1 opb a2 | a1 opr a2 binary arithmetic operation
| *a dereferencing
| a1[a2] array indexing
| &a address of
| ++a | --a | a++ | a-- pre/post increment/decrement
| (τ)a cast
| a1 = a2 assignment
| a1 opb =τ a2 arithmetic with assignment
| a1 && a2 | a1 || a2 sequential boolean operations
| a1, a2 sequence of expressions
| a(a∗) function call
| a1 ? a2 : a3 conditional expression

opb ::= + | - | * | / | % arithmetic operators
| << | >> | & | | | ^ bitwise operators

opr ::= < | <= | > | >= | == | != relational operators
opu ::= - | ~ | ! unary operators

Statements:
s ::= skip empty statement

| a; expression evaluation
| s1; s2 sequence
| if(a) s1 else s2 conditional
| while(a) s “while” loop
| do s while(a) “do” loop
| for(a?

1, a
?
2, a

?
3) s “for” loop

| break exit from the current loop
| continue next iteration of the current loop
| return a? return from current function

Functions:
fn ::= (. . . id i : τi . . .) : τ declaration of type and parameters

{ . . . τj id j ; . . . declaration of local variables
s } function body

Fig. 1. Abstract syntax of Clight. a∗ denotes 0, 1 or several occurrences of syntactic
category a. a? denotes an optional occurrence of category a.Figure 3.1: Abstract Syntax of the Supported Subset of C.

25

This characteristic allows the correctness of whole systems to be proven, even if the multiple components

are written in different high-level languages.

With the representation of the computer program in the form of Cminor AST, Hoare triplets are con-

structed by describing the desired properties we want FreeRTOS to exhibit in terms of postcondition that

must be true of the system given a stated precondition. The following section describes these properties.

3.1 Proving Significant Properties of FreeRTOS

Given the description of an RTOS in section 2.1 and based on the classification system by Lamport [35], the

correctness properties of FreeRTOS are classified as follows:

1. Safety properties. A safety property asserts that nothing undesirable will happen during execution.

In the context of operating systems, an example of this kind of property is mutual exclusion: given

two different processes, it is desirable that they do not interfere with one another. This property is

desired at different levels such as memory usage and processing time assignation, and can be applied

to any shared resource, as is the case for memory.

2. Liveness properties. A liveness property asserts that something desirable will eventually happen.

Due to the nature of real-time operating systems, liveness properties are strengthened to include a

restricted time bound. In other words, a liveness property asserts that something desirable will happen

within a stated time boundary. A common place for this kind of property in operating systems is

found in the scheduling mechanism: given a task that has entered the ready queue, it is desired that

the operating system will grant execution time to the task within a known amount of time.

The specific safety and liveness properties desired to hold in FreeRTOS are the focus of sections 3.1.1

and 3.1.2.

3.1.1 Safety Properties of FreeRTOS

As mentioned before, exclusive access is an important and common safety property in operating systems. In

FreeRTOS this appears in the use of memory resources. To show that FreeRTOS guarantees exclusive access

to memory it is first required to demonstrate a safety property of the memory manager that states that the

memory allocation function will never allocate more memory than what is available. Later on, this property

will be strengthened to demonstrate exclusive access of memory resources.

Allocator Bound Correctness FreeRTOS memory manager uses an array-like representation of the

memory. The total size of the array (i.e. available memory) is set by the definition configTOTAL HEAP SIZE.

26

void *pvPortMalloc(size_t xWantedSize)
{

void *pvReturn = ((void *)0);
vTaskSuspendAll ();
{

if(((xNextFreeByte + xWantedSize) < ((size_t) 22000)) &&
((xNextFreeByte + xWantedSize) > xNextFreeByte))

{
pvReturn = &(xHeap.ucHeap[xNextFreeByte]);
xNextFreeByte += xWantedSize;

}
}
xTaskResumeAll ();
return pvReturn;

}

(a) C source code for heap 2.c

"pvPortMalloc"(xWantedSize) : int -> int
{

var pvReturn , $2 , $1;
pvReturn = 0;
"vTaskSuspendAll"() : void;
if (int32["xNextFreeByte"] + xWantedSize <u 22000) {

if (int32["xNextFreeByte"] + xWantedSize >u int32["xNextFreeByte"]) {
$1 = 1;

} else {
$1 = 0;

}
$2 = $1;

} else {
$2 = 0;

}
if ($2) {

pvReturn = "xHeap" + 1 * int32["xNextFreeByte"];
int32["xNextFreeByte"] = int32["xNextFreeByte"] + xWantedSize;

}
"xTaskResumeAll"() : int;
return pvReturn;

}

(b) Cminor source code

Figure 3.2: FreeRTOS Memory Allocator

Allocating memory in FreeRTOS consists of suspending the executing tasks to guarantee that nothing will

interfere with the memory allocation. Once the tasks are suspended, the memory allocator checks that the

size of the requested memory is valid (i.e. a positive value) and that there is enough free memory to serve the

request. In case these conditions are met, the memory allocator returns a pointer to the first memory location

that has been allocated and updates the value of the next free memory cell. The previously suspended tasks

are resumed at the end of the procedure. The code for FreeRTOS memory allocator procedure and its

transformation to Cminor using Compcert can be seen in figure 3.2.

Some of the differences between C and Cminor can be seen as result of this example transformation,

including:

27

1. Types are instantiated to machine-specific formats and annotated. For example, every instance of

xNextFreeByte in the C implementation is translated to int32["xNextFreeByte"] in Cminor.

2. The overloaded comparison operators are annotated with type discriminators. For example, the trans-

lation of the less-than operator in C (e.g. <) is translated to <u in Cminor.

3. Composed if-statements (i.e. those containing more than one condition) are expanded out into single

if-statements with only one condition. To this extent, local variables are inserted to hold the logical

result of each comparison. (e.g. variables $1 and $2 are inserted in Cminor code).

One thing to notice is that FreeRTOS does not allow memory to be freed once it has been allocated.

Therefore, the algorithm simply subdivides a single array into smaller blocks as requests for memory are

made. xNextFreeByte points to the next free memory cell. Hence, at any point in time, all the memory

with address i < xNextFreeByte are considered to be allocated while all those elements with index i >=

xNextFreeByte are considered to be free and available for future memory allocation.

Knowing the details of the memory allocation algorithm (from now on known as mallocBody) permits

the formal description of what it means for the memory management to not allocate more memory than

available. More specifically, after the memory allocation function has been executed, the index of the next

free memory location is less than the total size of the memory. In formal notation, this is initialized as:

mallocPost : ∃p, xNextFreeByte 7→ p ∗ (p < configTOTAL HEAP SIZE)

This predicate captures the essence of the desired final state (postcondition) of a memory allocator that

does not exceed available memory. Nevertheless, it is necessary to add more detail about the rest of the

variables involved in the process.1 The complete postcondition states that the variables (xWantedSize,

xNextFreeByte, and xHeap) and function calls (vTaskSuspendAll, and xTaskResumeAll) involved in the

memory allocation procedure are valid memory locations and that the value held by the variable representing

1As it can be seen later, the rest of the conditions involved in the postcondition are simply carried through from the
precondition.

28

the next free memory location is less than the total size of the memory. In formal terms:

mallocPost : ∃p,(xWantedSize 7→ a

∗ vTaskSuspendAll 7→ b

∗ xTasksResumeAll 7→ c

∗ xNextFreeByte 7→ p

∗ xHeap 7→ e

∗ (p < configTOTAL HEAP SIZE)).

In order for the memory allocator to satisfy this postcondition, some precondition must also hold. To

complete the Hoare triplet, the precondition is constructed. For this purpose, it would be ideal if there

existed some kind of specification of FreeRTOS memory allocator, albeit informal, that could be translated

into a formal description, but this is not the case, therefore a different approach is used.

Assuming that the implementation of FreeRTOS memory allocation function is correct, the required

program state for the memory allocation function can be deduced from the function implementation. This

assumption is based on the idea that FreeRTOS is a working operative system that has been implemented

in different functional projects. Looking at the code shown in figure 3.2 we can see that xNextFreeByte

is modified when the size of the memory requested is valid (i.e. a positive value) and there is enough free

memory to serve the request. In terms of the actual implementation, these conditions are described as:

((xNextFreeByte + xWantedSize) < configTOTAL_HEAP_SIZE)

&& ((xNextFreeByte + xWantedSize) > xNextFreeByte)

These conditions takes care of the situations when the amount of memory requested is bigger than what

it is available and when a process is requesting memory that has been previously allocated. Even though

this condition seems to take care of all scenarios, it is still necessary to check for another in order to satisfy

the desired postcondition: the case where xNextFreeByte is already bigger than configTOTAL HEAP SIZE

even before the execution of the memory allocation function. In formal notation, this condition is defined

as:

mallocPre : xNextFreeByte 7→ d ∗ (d < configTOTAL HEAP SIZE)

An important difference between mallocPre and mallocPost is the use of the existential quantifier for

the value pointed by xNextFreeByte in the latter one. This is due to the fact that before the execution of

mallocBody we know (i.e. by inspection) the value of this variable. This is not the case for the value to

hold by xNextFreeByte after the execution of mallocBody in which the final value depends on the execution

29

path. Therefore, an existential quantifier is used as a placeholder for some value of which evidence can be

shown after the execution of the memory allocator.

The precondition in its totality, including all variables involved in the code states that

• The memory location for the size of the memory requested (xWantedSize) is found in the heap.

• The function definition vTaskSuspendAll is located in memory.

• The function definition xTaskResumeAll is located in memory.

• The memory location for the next free memory location (xNextFreeByte)is found in the heap.

• The memory location pointing at the start of the heap (xHeap) is known and found in the heap.

• The value pointed to by xNextFreeByte is less than the total size of the heap.

In formal terms, this is expressed as follows:

mallocPre :xWantedSize 7→ a

∗ vTaskSuspendAll 7→ b

∗ xTasksResumeAll 7→ c

∗ xNextFreeByte 7→ d

∗ xHeap 7→ e

∗ (d < configTOTAL HEAP SIZE).

All the variables and function definitions called from within the body of the memory allocation proce-

dure are needed in the precondition so that it is possible to step through the code implementation when

building the proof. Failing to do so would result in a proof obligation that cannot be discharged due to

the lack of enough information in the computational state. For example, in FreeRTOS memory allocator

procedure shown in figure 3.2, the value of the variable xNextFreeByte is updated when a valid memory

range is requested and there is enough free memory to serve the request. Failing to include the variable

xNextFreeByte as a valid memory location in the precondition would result in falling to step through the

assignment operation since the variable xNextFreeByte would not be known, which in turn would result in

the impossibility to prove the required postcondition for FreeRTOS memory allocation procedure. Having

all the required variables in the precondition mallocPre makes it possible to discharge all proof obligations

as shown in Appendix A.

30

Once the precondition and postcondition required for the correct behaviour of the memory allocation

function are defined, the next step is to define a theorem stating that, given the precondition mallocPre

and the memory allocation function definition mallocDef, then the postcondition mallocPost holds after its

execution. In other words, the Hoare triple {mallocPre} mallocDef {mallocPost} is now defined and can be

instantiated in Coq as a theorem to be proven with the use of ancillary definitions as follows:

Lemma mallocOk : fdefOk P1 mallocTy 5%nat mallocPre mallocDef mallocPost.

The auxiliary function fdefOk proves that the specification of the Hoare triple holds. In a broad sense, it

checks that given the precondition (mallocPre) and the current state of the program, following the logic of

the program (mallocDef) it is possible to advance one step (i.e. the execution of such statement is valid).

To accomplish this, three more arguments aside for the Hoare triple specification are needed. The code heap

type (P1), the list of types of every argument received by the function definition (mallocTy) and the arity

of the function definition (5%nat).

The code heap type provides a specification of the function definitions residing in memory. This is of

special interest when dealing with function calls since it is necessary to check that the correct number of

parameters are passed to each function, that the type of the parameters matches the type of the arguments

expected by the function definition, and that calling a function will be placed in an expression where the

return type of the function is expected.

In the memory allocation function, there are a couple of function calls, one to vTaskSuspendAll and one

to xTaskResumeAll. This is reflected in the definition of the code heap type (Definition P1) as a function

parameterized by the address (c) at which the function definition is to be found. Each address is composed

by two elements: a memory block (b) and the block offset (w) to the desired location. The code heap type

analyses the address passed as parameter and based on the offset it returns the specification corresponding

to the function definition found in the given memory address. Since in this case the code heap type consists

of only two function definitions, the analysis of what function is found at a given address simply requires

checking whether the offset is zero (match beq nat (word to nat w) 0), in which case the specification for

vTaskSuspendAll (suspendSpec) is returned, otherwise, the specification for xTaskResumeAll (resumeSpec)

is returned. Using Coq notation, this is defined as follows:

Definition P1 : cdhpty := fun c ⇒

let (b, w) := c in

match beq nat (word to nat w) 0 with

| true ⇒ Some suspendSpec

| false ⇒ Some resumeSpec

end.

31

Each function specification is defined by the type of its arguments, its arity, its precondition and its post-

condition. For example, the specification for vTaskSuspendAll (suspendSpec) states that the function defi-

nition expects no parameters, and describes the precondition (suspendPre) and postcondition (suspendPost)

as empty assertions. The implementation in Coq of this specification in described as follows:

Definition suspendTy := (nil : tslist).

Definition suspendPre := emp.

Definition suspendPost (: val) := emp.

Definition suspendSpec := speci suspendTy 0%nat suspendPre suspendPost.

where suspendTy is an empty list and together with the arity 0%nat specifies that the function vTaskSuspendAll

receives no parameters.

At this point, all the definitions required to carrying out the proof of our theorem by using Coq proof

assistant have been introduced. The details of such proof are omitted in this section and the interested reader

is referred to Appendix A for a detailed structure of the proof stating that the memory manager won’t allocate

more memory than is available. Instead, a description of the structure of such proof is provided next.

The first step is the manipulation of the proof term as the setup to facilitate the handle of future proof

terms. This includes the introduction of variable names for the existential quantifiers and the simplification

of the proof environment, more specifically, the assertion describing the precondition.

At this point the first statements are stepped through using the tactic vcSteps. This tactic examines the

current goal (i.e. the execution of a given Cminor statement) and checks for the required precondition (i.e.

the state of the heap and the store) needed to successfully execute such statement. In case the precondition

is met, the tactic will discharge the proof by the elimination of the statement from the next goal and the

updating of the state according to the inference rule in Separation Logic that deals with the given Cminor

statement. Due to the simplicity of the declaration and initialization of variables, this tactic steps through

mallocDef until the call to vTaskSuspendAll is reached.

Stepping through a function call requires setting of the environment before the function call is executed.

This setup process includes the manipulation of the code heap type to indicate where in the heap the function

to be called can be found (i.e. unfold P1) and the specification of such function (unfold suspendSpec and

unfold suspendTy). The tactic callStep is used to step through the function. The existence of a state

that meets the requirements to function as the precondition for the next statement is then shown.

The succession of a nested if statement is found, followed by another if statement. The tactic branchStep

is used three times to discharge each of the conditional statements. Since the inference rule dealing with

if statement in Separation Logic has two premises, one for showing that the postcondition is true after the

execution of the true branch when the condition is true and one for showing the postcondition is true after

32

the execution of the false branch when the condition is false, this is reflected in the proof by the need to

show that both premises are valid. Therefore, a total of six execution paths are required to be proven.

Finally, the same process done for the call to vTaskSuspendAll is repeated at this point to call the

xTaskResumeAll function by using the tactic callStep.

Allocator Exclusive Allocation Another safety property of FreeRTOS is that memory is exclusively

allocated: given a memory range range(d,p) starting at d and ending at p that has been assigned to a

specific process, there will not be any other process to which a memory location within range(d,p) will be

assigned. In other words, after the memory allocator has been executed, the newly allocated memory range

will not have been previously assigned to any other process. In formal notation, this is defined as:

∃p, xNextFreeByte 7→ p ∗ (notPreviouslyAllocated(d, p))

where d is the memory location pointed to by xNextFreeByte before the execution of the memory allocation

procedure. This predicate captures the essence of the desired postcondition of a memory allocation function

that enforces2 exclusive allocation among processes. Again, it is necessary to add more details about the

variables involved in the process. The complete postcondition for exclusive allocation states that the variables

(xWantedSize, xNextFreeByte, and xHeap) and function calls (vTaskSuspendAll, and xTaskResumeAll)

involved in the memory allocation procedure are valid memory locations and that the range of memory

locations representing the allocated memory to serve the request has not been previously allocated. In

formal terms, this is described as:

exclusionPost : ∃p,(xWantedSize 7→ a

∗ vTaskSuspendAll 7→ b

∗ xTasksResumeAll 7→ c

∗ xNextFreeByte 7→ p

∗ xHeap 7→ e

∗ (notPreviouslyAllocated(d, p))).

Using the same precondition as defined in predicate mallocPre and the memory allocation procedure

definition (mallocBody) the Hoare triple is now complete and it is possible to define a theorem stating

2The memory allocation procedure cannot, by itself, guarantee exclusive access, only exclusive allocation. Even though
guaranteeing exclusive access is a much stronger condition than ensuring exclusive allocation, some other conditions outside
of the scope of the procedure must be met. For example, each process’ code needs to satisfy this condition in the absence of
hardware memory protection. Please refer to section 5.1.1 for a more detailed explanation.

33

that the postcondition exclusionPost holds true for the implementation mallocBody given the precondition

exclusionPre. The ancillary function fdefOk, the code heap type (P1), the type (mallocTy) and number of

arguments (5%nat) work as previously described in Lemma mallocOk. In formal terms, this is given as:

Lemma exclusionOk : fdefOk P1 mallocTy 5%nat exclusionPre mallocDef exclusionPost.

A proof of this theorem has a very similar structure to the proof previously described. Therefore, the

details are left out of this section. The interested reader is referred to Appendix B for a complete explanation

of a machine-checked proof of FreeRTOS exclusive allocation.

3.1.2 Liveness Properties of FreeRTOS

Liveness properties are commonly required of the operating system’s scheduler [17] and depending on the

scheduling mechanism, these kind of properties can take different shapes. In a round-robin scheduler, the

correct implementation of a scheduling mechanism will guarantee that once a task has been moved from the

waiting queue to the ready queue, the operating system will grant it scheduling time. For a priority-based

scheduler, this property can be a little different.

The design of a priority-based scheduling mechanism does not guarantee that all tasks will be given

processor time. There are certainly a number of scenarios in which a task could never be granted processing

time. For example, consider the case of an implementation in which the processing time is assigned first to

highest priority tasks while lower priority tasks are executed only when the higher priority tasks have been

completed. Moreover, consider that once the task priority has been assigned, it cannot be changed. When

a running taskA with priority = MAX PRIORITY is designed to run without sleeping, other tasks will

never be scheduled. Although the scheduler might execute the vTaskSwitchContext procedure, any other

task that is created (i.e. taskB) with priority < MAX PRIORITY will never be granted processing time

since the scheduler will always choose the same taskA due to its highest priority.

The implementation of FreeRTOS’ scheduling mechanism is priority-based and it follows the policies

described in the previous example. Each task is created with a fixed priority ranging from 0 to (config-

MAX PRIORITIES - 1). Low priority numbers denote low priority tasks. The FreeRTOS scheduler ensures

that tasks in the ready or running state will always be given processor time in preference to tasks of a lower

priority that are also in the ready state. In other words, the task placed into the running state is always

the highest priority task that is able to run. Moreover, once a task priority has been assigned it cannot be

changed.

Since the implementation of FreeRTOS cannot guarantee that every single task will be granted processing

time, the liveness property of the scheduler takes an unusual form: the procedure in charge of selecting the

next executing tasks will terminate in a known amount of time with the highest priority task selected for

34

unsigned int factorial(int n)
{

if(n==0) {
return 1;

} else {
return n * factorial(n-1);

}
}

Figure 3.3: Recursive Factorial

execution. In other words, FreeRTOS’ scheduler will guarantee that the vTaskSwitchContext procedure

will always terminate its execution, and when it does, the task selected for execution will be the one with

the highest priority among the ready tasks. This property differs from the previous safety properties in that

it not only requires the vTaskSwitchContext procedure to be safe (partial correctness) but it also requires

the procedure to guarantee its termination (total correctness).

In the partial correctness setting, proofs come with a disclaimer: only if the program terminates its

execution does a proof of {P}Q{R} tell us anything about that execution. Partial correctness does not

tell us anything if Q loops forever. Total correctness extends partial correctness by also requiring that Q

terminates.

Proving total correctness requires a special analysis of those constructs that could lead to infinite iter-

ations. Examples of this kind of constructs in C programs are the following: recursion and infinite (non

guarded) loops.

Infinite recursion is when a program makes a non-terminating number of function calls. A very common

example of recursion is the program that calculates the factorial of a given number shown in figure 3.3. In

this program, the factorial function makes a recursive call to itself by passing a different argument — the

predecessor of the original argument. Thanks to the base case where there is no recursive calls (when n==0)

and the decreasing nature of the arguments, this function will eventually terminate.

Nevertheless, the potential of a malformed recursive procedure can lead to an infinite number of calls,

causing the program to never terminate. For this example, consider the modified factorial program shown in

figure 3.4. Even though there exists a base case and the argument is decreasing, there could be an execution

trace in which the base case is never met, in particular, any call to factorial of an odd number would cause

the program to never terminate.

The other construct that can lead to nonterminating programs is non-guarded loops. Contrary to guarded

loops when the body of the loop is executed a fixed number of times, with non-guarded loops it is impossible

to predict the number of times the body of the loop will be executed based on code examination. A non-

guarded loop usually tests for the occurrence of a particular event, not a count of the number of repetitions.

An example of this kind of loop is commonly found when dealing with streams and files. Figure 3.5 shows a

35

unsigned int factorial(int n)
{

if(n==0) {
return 1;

} else {
return n * (n-1) * factorial(n-2);

}
}

Figure 3.4: Infinite Recursive Factorial

void printFileContent(FILE* file_handler){
while (!feof(file_handler)) {

fprintf(stdout ,"%s\n",fgets(file_handler));
}

}

Figure 3.5: Non-guarded Loop — The loop condition test for the happening of an event

loop that tests for a specific event (i.e. the end of the file) instead of counting the number of repetitions.

A special case of non-guarded loops is when the body of the loop (or external event) does not change

the condition of the if statement, causing the loop to iterate infinitely. An example of this type of loop is

shown in figure 3.6.

An analysis of FreeRTOS source code shows that recursive functions do not exist at all — not a surprising

fact of a real time operating system, where explicit deadlines are required to be met. In other words, not

only there is not a function recursively calling itself, but also function calls do not form a loop that could

potentially cause the program to not terminate.

On the other hand, it is hard to devise an operating system that makes no use of iterations — the

other possible cause of non-terminating programs. FreeRTOS is no exception to this situation. Iterative

operations are easily found in FreeRTOS, especially when dealing with the data structures that contain the

different tasks representing the processes. To show that FreeRTOS meets the execution deadlines, it is of

prime interest to show that the iterative operations will eventually terminate.

The procedure in charge of going through the list of tasks and selecting the one with the highest priority

as the next running task is called vTaskSwitchContext. Its implementation in C and Cminor are shown in

figure 3.7.

unsigned int loop() {
while(true){

printf("Infinite␣loop");
}

}

Figure 3.6: Non-guarded Loop — The loop condition never changes during the execution of the
program

36

void vTaskSwitchContext(void)
{

if(uxSchedulerSuspended != (unsigned long) (0))
{

xMissedYield = (1);
return;

}
while (((&(pxReadyTasksLists[uxTopReadyPriority]))-> uxNumberOfItems

== (unsigned long)0))
{

uxTopReadyPriority = uxTopReadyPriority - 1;
}
{

xList * const pxConstList = &(pxReadyTasksLists[uxTopReadyPriority]);
(pxConstList)->pxIndex = (pxConstList)->pxIndex ->pxNext;
if((pxConstList)->pxIndex == (xListItem *)

&((pxConstList)->xListEnd)) {
(pxConstList)->pxIndex = (pxConstList)->pxIndex ->pxNext;

}
pxCurrentTCB = (pxConstList)->pxIndex ->pvOwner;

};
}

(a) C source code tasks.c

"vTaskSwitchContext"() : void
{

var pxConstList , $16 , $15 , $14 , $13 , $12 , $11 , $10 , $9 , $8 , $7, $6, $5, $4,
$3 , $2 , $1;

$1 = int32["uxSchedulerSuspended"];
if ($1 !=u 0) {

int32["xMissedYield"] = 1;
return;

}
{{

loop {
if (! 1) {

exit 1;
}
{{

$2 = int32["uxTopReadyPriority"];
$3 = int32["pxReadyTasksLists" + 20 * $2 + 0];
if (! ($3 ==u 0)) {

exit 2;
}
$4 = int32["uxTopReadyPriority"];
int32["uxTopReadyPriority"] = $4 - 1;

}}
}

}}
$5 = int32["uxTopReadyPriority"];
pxConstList = "pxReadyTasksLists" + 20 * $5;
$6 = pointer[int32[pxConstList + 4] + 4];
int32[pxConstList + 4] = $6;
if (int32[pxConstList + 4] == pxConstList + 8) {

$7 = pointer[int32[pxConstList + 4] + 4];
int32[pxConstList + 4] = $7;

}
$8 = pointer[int32[pxConstList + 4] + 1]];
pointer["pxCurrentTCB"] = $8;

}

(b) Cminor source code

Figure 3.7: FreeRTOS Task Switch procedure

37

local2 = [uxTopReady];
local3 = [pxReadyTaskList] + local2;
while(local3 == 0) {

local4 = [uxTopReady];
[uxTopReady] = local4 - 1;
local2 = [uxTopReady];
local3 = [pxReadyTaskList] + local2;

}

Figure 3.8: FreeRTOS Task Selector

This procedure can be divided into three main parts for analysis. The first part checks whether the

scheduler is in suspended mode, in which case the global flag xMissedYield will be updated and the rest of

the vTaskSwitchContext procedure won’t be executed. The second part is a simple loop that walks through

the list of ready tasks, starting at the index of highest priority, in search for the first non-empty position

indicating the existence of a task with priority uxTopReadyPriority, the index of the list decreases by a

single unit in case no such task exists in search for the next highest priority task. In the third part inside a

block of code, the data structure containing the task is updated to account for the removal of the task, and

the process control block is updated — which is the data structure in the operating system kernel containing

the information to manage the process.

As in the previous example shown in figure 3.2, some of the differences between C and Cminor include the

instantiation and annotation of machine-specific formats, as well as the annotation of overloaded comparison

operators. In figure 3.7 we see even more of the differences between C and Cminor, including:

1. The notation for access to struct elements in C is eliminated and replaced by direct pointer arithmetic.

For example, the index i of the list of ready tasks is accessed by the expression (pxReadyTaskList +

20 * i) where 20 is the size of the structure representing each element in the list.

2. The while loop is translated into a simpler Cminor loop construct which ending condition is located

in the block of code inside the body of the loop. For this purpose, the Cminor exit 〈exp〉 construct

is introduced. The evaluation of the expression of the exit statement indicates the number of levels

(i.e. nested loops, nested blocks of code, and/or a combination of both) to jump out.

The only construct in Cminor that could lead to non-termination is loop. Any loop element is the

result of a transformation from any C loop (namely for, while, and do-while) to a simpler form that loops

infinitely until an explicit condition is met.

The implementation of Separation Logic and Cminor differ in the way this loop transformation gets done.

Because of this, the code shown in figure 3.7 had to be modified to accommodate for the differences between

implementations. The resulting while loop syntax, from now on referred to as whileBody, is shown in figure

3.8.

38

Following the Hoare Logic while rule from table 2.2, it is first needed to state the loop invariant P —

the condition that must be satisfied before, during, and after the loop (regardless of whether the body of

the loop gets executed or not). In this case, the condition for the loop invariant is that the element with the

highest priority (represented by the variable local3 in whileBody) is bigger than, or equal to 0. In formal

notation, this is represented as:

∃p, local3 7→ p ∗ (p ≥ 0)

Since the while loop is guarded by the condition local3 == 0, this condition becomes our guard B —

the condition that is true before executing the body of the while statement and becomes false after its

completion. P ∧ ¬B is the postcondition, this is written in formal terms as:

taskSwitchPost : ∃p, local3 7→ p ∗ (p > 0)

It is now possible to carry out a partial proof of correctness, stating that the postcondition will hold

for whileBody given the precondition only if the program terminates. Since a proof of total correctness is

required, it is necessary to extend the pre- and postconditions with a loop variant.

A loop variant is an integer expression whose value is always positive and can be shown to decrease every

time that body of the while-statement is executed. If it is possible to find a loop variant, it follows that

the while statement must terminate; because, the variant can only be decremented a finite number of times

before it becomes 0 [30].

It is possible to codify this intuition in the following rule for total correctness, which replaces the rule for

the while statement.

{P ∧B ∧ 0 ≤ [E] = [E0]} C {P ∧ 0 ≤ [E] < [E0]}
{P ∧ 0 ≤ E} while B do C end {P ∧ ¬B}

For the case of whileBody, the expression that meets the requirements to function as the loop variant is

uxTopReady = uxTopReady - 1. The condition that uxTopReady ≥ 0 is true before the execution of the

loop (due to the precondition that requires that the list of tasks is not empty3). Moreover, the condition

that the expression decreases on each iteration (uxTopReady = uxTopReady - 1) and stays always positive

during the execution is also met by such expression.

3This condition is met by having a lowest priority idle task always present in the ready queue as described in section 2.1.1.

39

The complete precondition including the loop invariant, the loop variant, and all other variables involved

in the execution of the while loop is shown next:

taskSwitchPre :uxTopReady 7→ a

∗ pxReadyTaskList 7→ b

∗ local3 7→ p

∗ (listNotEmpty(b))

∗ (p ≥ 0) (invariant)

∗ (b ≥ 0). (variant)

It is possible now to prove the theorem that states that the procedure in charge of selecting the next

executing task is not only partially correct, but it will eventually terminate. The details of the proof are

omitted in this section. The interested reader is referred to Appendix C for a detailed description of the

theorem as well as its proof.

The last proof gives us the confidence that, if the preconditions are met, the taskSwitch procedure will

never run infinitely.

Task Switch Bounded The property of termination might be sufficient for most operating systems, but

in the case of a real-time operating system, it might not be the case. The description of a real-time operating

system in section 2.1 requires not only the certainty that the system will eventually terminate, but the bound

time is also of interest. For this reason, it is desirable to extend our theorem for total correctness with an

explicit deadline representing the upper limit bound (worst-case scenario) of the time the program will take

in completing the task.

The proposed solution consists of a cost-dynamics analysis. Due to the use of axiomatic semantics

analysis undertaken by the experiment, the ability to keep track of individual steps to complete an operation

is lost. In contrast to operational semantics, the number of steps required to evaluate to an expression cannot

directly be determined. Instead, the evaluation relation must be augmented with a cost measure, resulting

in a cost dynamics. [28]

The proposed cost measure consists of the sum of the CPU cycles of the assembly instructions into

which the program compiles. To this end, Compcert’s backend is used to transform the Cminor program

to assembly code. Note that Compcert preserves the behaviour of the original program throughout all the

intermediate languages/representations; so, the analysis undertaken for the assembly code is guaranteed to

be also valid for any other representation, including Cminor and the machine executable code. The assembly

code for the piece of code corresponding to the vTaskSwitchContext procedure is shown in figure 3.9.

40

vTaskSwitchContext :
mov r12 , sp
sub sp , sp , #16
s t r r12 , [sp , #12]
s t r l r , [sp , #8]
s t r r4 , [sp , #0]
l d r r0 , . L258 @ uxSchedulerSuspended
l d r r0 , [r0 , #0]
cmp r0 , #0
beq . L259
l d r r3 , . L260 @ xMissedYield
mov r1 , #1
s t r r1 , [r3 , #0]
b . L261

. L259 :
l d r r0 , . L262 @ uxTopReadyPriority
l d r r0 , [r0 , #0]
l d r r2 , . L263 @ pxReadyTasksLists
mov r1 , r0 , l s l #4
add r3 , r1 , r0 , l s l #2
add r0 , r2 , r3
l d r r0 , [r0 , #0]
cmp r0 , #0
bne . L264
l d r r0 , . L262 @ uxTopReadyPriority
l d r r0 , [r0 , #0]
l d r r1 , . L262 @ uxTopReadyPriority
sub r3 , r0 , #1
s t r r3 , [r1 , #0]
b . L259

. L264 :
l d r r0 , . L262 @ uxTopReadyPriority
l d r r1 , [r0 , #0]
l d r r3 , . L263 @ pxReadyTasksLists
mov r2 , r1 , l s l #4
add r2 , r2 , r1 , l s l #2
add r4 , r3 , r2
l d r r1 , [r4 , #4]
add r3 , r1 , #4
ld r r0 , [r3 , #0]
s t r r0 , [r4 , #4]
l d r r2 , [r4 , #4]
add r3 , r4 , #8
cmp r2 , r3
bne . L265
add r0 , r2 , #4
ld r r1 , [r0 , #0]
s t r r1 , [r4 , #4]

. L265 :
l d r r0 , [r4 , #4]
add r0 , r0 , #12
l d r r2 , [r0 , #0]
l d r r0 , . L266 @ pxCurrentTCB
s t r r2 , [r0 , #0]

. L261 :
l d r r4 , [sp , #0]
l d r l r , [sp , #8]
l d r sp , [sp , #12]
mov pc , l r

. L263 : . word pxReadyTasksLists

. L260 : . word xMissedYield

. L262 : . word uxTopReadyPriority

. L266 : . word pxCurrentTCB

. L258 : . word uxSchedulerSuspended

Figure 3.9: Assembly Code for vTaskSwitchContext Procedure
41

Since the assembly code is produced by Compcert, all there is left to complete a cost analysis is to add

an extension to Compcert that computes the sum of the cost of each individual instruction in the assembly

code based on the specification for the instruction set architecture on which the code will be executed. In the

particular case of this experiment, the selected target is an ARM7 processor with an ARM7TDMI instruction

set, for which ARM provides extensive documentation, including the execution cost [38].

Adding a cost-analysis extension to a compiler is not a difficult task, but in the case of Compcert, it

requires special care. Changes to the compiler requires not only to be careful to not break Compcert’s code,

but they also must preserve its proof of correctness. This situation is inherent of most programs developed in

Coq, where a program is not merely a sequence of instructions but it may come with a proof of correctness.

Adding an extension to Compcert turned out to be an interesting software engineering experiment in itself.

More details on the design decisions and implications of this extension are presented in section 4.2.5.

Running the vTaskSwitchContext procedure through Compcert and the cost analysis program results

in a calculation of 4357 cycles. To make this result concrete, consider the evaluation board AT91SAM7X256

for which a realistic demo has been developed using FreeRTOS. The ARM processor in this board operates

at 55MHz. Therefore, the vTaskSwitchProcedure will finish its execution in 9µs per priority level.

While this calculation is considered accurate, it is important to specify its limitations to know what this

result is really telling us. There are three limitations that undermine the accuracy of the cost of execution:

simplification across execution paths, the lack of consideration for the size of the data structures, and its

naiveness with regard to hardware optimization. Nevertheless, the time boundary is always overestimated.

In other words, the results are still considered valid, in that there is a fixed task switch deadline.

The first limitation is simplification across execution paths. For instance, consider the case of an if-else-

statement. This conditional construct will only execute one of the two possible paths depending on whether

the condition is true or false. One cost estimation would be the maximum cost of both paths treated

separately. A less accurate cost analysis, used in this experiment, adds the cost of both execution paths,

even though in reality this will never happen. As stated before, this causes an overestimation of the cost but

the results would be valid for those applications that can afford a response time of 9µs per priority for the

vTaskSwitchContext procedure. In case a better response time is required there is room for improvement.

The second limitation is the lack of consideration for the size of data structures. As an example consider

the while-loop in the vTaskSwitchContext procedure. This loop traverses the list of ready tasks looking

for the next task to be executed. Therefore, the operations inside the loop will be executed as many times as

the dimension of the data structure (in the worst-case scenario, as many times as configMAX PRIORITIES).

The solution presented in this experiment does not consider this situation and makes it necessary to perform

this calculation manually. In other words, the result of 9µs only considers the execution of a single iteration.

To accommodate the other possible (and highly likely) iterations, we need to multiply the result by a factor

42

of configMAX PRIORITIES.

Finally, the calculation is naive with regard to hardware optimizations. In particular, the cost-analysis

does not consider the 3-stage pipeline used to increase the flow of instructions to the processor; instead, the

program considers every instruction to be executed sequentially and individually.

In this experiment, evidence of the proof of safety properties of FreeRTOS has been provided, with special

focus on the memory manager module. Also, the task switch mechanism is proven to eventually terminate

and an estimate of the execution cost for such operation has been established, providing a strong liveness

property. Clearly, the representative significant properties of a real-time operating system can be verified

using Coq, augmented with Separation Logic and a certified compiler.

The evaluation of this experiment, including the development tools and a comparison of this verification

methodology to other related work is presented in the next chapter.

43

Chapter 4

Evaluation

After showing that the Coq proof assistant extended with Separation Logic is an appropriate set of tools

for the verification of a real-time operating system, it is now important to discuss the substantive arguments

against formal verification; the complexity that formal verification represents is among the most recurrent

ones [27].

Defining a metric to judge the complexity of an intellectual task is not easy due to the number of factors

that come into play, many of them of subjective nature. One measure is size of outputs; we provide a software

engineering-based metric intended to describe the effort required in proving the safety and deterministic

properties of FreeRTOS. This metric is based on the lines of code (LOC) that each one of the proofs

required.

The LOC metric is considered proportional to effort in the sense that it takes time to produce each line

of code without taking into account blank lines or comments; the more lines of code, the longer it takes to

produce. The time it takes to produce a single line of code depends on many factors, some harder to measure

than others. One of the measurable factors is the number of words that each line contains. Following the

same correlation as the LOC, the higher the word count in a single line, the longer it takes to produce.

A distinction is made between the work required to setup the problem definition and carrying out the

interactive proof. Definitions consist of code required to specify the problems in terms of variables and

coding notations, as well as to import the required libraries for Separation Logic. The definitions for time of

execution also account for the Coq function definitions to carry out the cycles calculation. For the discharge

of a proof, each LOC corresponds to a tactic call while each word corresponds to either the name of the

tactic, environment terms (i.e. variables and hypotheses names), or newly introduced terms.

The complexity analysis in terms of LOC and word count for each of the proofs of FreeRTOS’ memory

manager and scheduler modules are presented in table 4.1. The order in which the verified properties are

listed follows the order in which the proof obligations were produced. In general, with an average of less than

60 LOC, the definition for the memory safety and scheduler liveness properties were easy to describe but

discharging the proof obligations presented a bigger challenge (an average of over 100 LOC). The low ratio

of words/LOC (averaging less than 4 words/LOC) is due mainly to the low level of automation of the tactics

44

required for the proof. Since each tactic performs a simple operation, the amount of information required

in terms of received arguments is low. In contrast, the cost-analysis tool required to calculate the execution

time of a given procedure assembly code required more effort to define (more than twice the number of

LOC when compared to the safety and liveness properties) but proving the required proof obligations was

relatively easier (less than have the number of LOC compared to the memory safety properties). The high

ratio of words/LOC is mainly due to the high level of automation of the tactics used in the required proofs.

Property Proof Definitions Proof Proof
Obligations (LOC) (LOC) (words)

Memory manager won’t allocate
more memory than available 1 55 120 402

Memory will be exclusively
allocated 1 56 133 421

Scheduler will eventually select
highest priority task 2 57 81 259

The time of execution for the
vTaskSwitchContext procedure
is known and bounded on the top

7 134 67 351

Table 4.1: Proof Metrics

There is a steep learning curve for the tools involved in the development of this work. Nevertheless,

the effort in mastering both tools proved to be worthwhile as the experiment progressed. The difference in

the time it took to develop the first proof and the subsequent proofs was substantial. Once the significant

properties to be proved were defined, I proceeded to prove the memory safety property stating that the

allocation procedure won’t allocate more memory than available. This exercise took about one third of the

total time spent in the whole project. After the memory safety proofs were completed, the efforts were

focused on proving the liveness properties of FreeRTOS scheduler. Considering the higher number of proof

obligations in the much shorter amount of time gives us an appreciation on the benefit of learning the tools.

The evaluation of the experience in developing the proof of correctness from a software verification point

of view is presented in the following section.

4.1 Software Verification Standpoint

The fundamental reason to carry out this experiment was the exercise of formal verification techniques to

verify the correct implementation of a software system. With this in mind, the evaluation of the verification

approach is evaluated based on the criteria suggested by Huth and Ryan [30] along with the comparison of

45

its advantages and disadvantages with other verification approaches.

4.1.1 Proof-based vs. Model-based

As we mentioned before, both model checking and theorem proving have been successfully applied as ver-

ification tools [7]. Both approaches embed a formal language strong enough to proof safety and liveness

properties, resulting in the continual development and improvement of tools for both approaches.

The main advantage of using proof-based techniques is its feasibility to be implemented in large-scale

systems. A real-time operating system is a complex piece of software consisting of different modules making

use of complex data structures. The state explosion problem of model checking makes it unfeasible to

describe a real-time operating system in terms of low-level state changes.

A common disadvantage of a proof-based approach is the lower degree of automation compared to model

checking techniques. Model checking makes use of highly automated tools that simplify checking whether

a property holds true of a system. The proof-based approach in this experiment had to be guided by a

developer. Whereas this seems to be a big disadvantage, the next section shows how automation finds its

place in proof-based methods.

4.1.2 Degree of automation

Since the beginning of formal methods, there has been an increase in the number of tools designed to aid

formal verification. For a proof-based approach, the tools can be classified in two main categories:

1. Automated theorem provers such as ACL2 and PVS.

2. Proof assistants such as Coq and Isabelle.

The idea of feeding an automated theorem prover the formula describing the property of the system

requiring verification and getting the proof as a result without the need of human intervention seems highly

attractive, but this does not come for free.

One disadvantage of automated theorem provers is that not every formula is possible to prove and deciding

whether a formula is provable or not is not possible. In these cases, an invalid formula could be entered and

the system would not be able to recognize it as invalid, causing the automated theorem prover to fail to

terminate while searching for a proof.

For this reason, using a proof assistant is a better approach. The use of proof assistants requires human

guidance to provide a proof; therefore, it is possible to leverage the expertise and insight of the programmer

to guide the computer through the logical steps that a proof requires.

Moreover, even in proof assistants there is a place to increase the level of automation in the form of

tactics. Defining new tactics allows the programmer to scale up the efforts to more complex definitions and

46

more interesting properties without becoming overwhelmed by repetitive or low-level details. Consider the

example of the omega tactic — a decision procedure for Presburger Arithmetic. If the goal is a universally-

quantified formula made out of numeric constants, addition, subtraction, multiplication, equality/inequality

and first-order logical connectives, then invoking omega will either solve the goal or indicate that the goal is

actually false [46].

The degree of automation in this experiment falls somewhere in the middle of the range of fully automated

and fully manual. Much of this is thanks to the implementation of Separation Logic and its appropriate

set of tactics as well as the extensive standard library provided by Coq. The combination of these tools

eliminated the low-level details of the logic of CIC and the embedding of Separation Logic into Coq.

It certainly could be possible to increase the level of automation in the experiment by designing a set of

tactics that deal with the common scenarios present in the proofs, but in doing so we run the risk of making

the solution highly domain-specific. A balance between the two extreme cases gives us the benefit of both

approaches.

4.1.3 Full vs. property-based verification

In principle, full verification involves proving that a complete design is correct and complete with respect

to its specification. Hence, proofs of correctness are carried out to verify the functional behaviour of each

component and of the overall system. It may be the case, however, that not all functional properties have the

same degree of importance. A possible development choice is to restrict the application of formal methods

to only the verification of selected properties.

This experiment presents the proof of safety and liveness properties of a real-time operating system. This

property-based verification approach has the benefit of modularizing the solution: making the problem easier

to solve. For example, while verifying the property that FreeRTOS enforces exclusive memory allocation

among processes, it was only necessary to focus on the memory manager module of the operating system

while ignoring the detail of other modules.

Another advantage of property-based verification is the ability to apply formal methods to other sub-

systems that might not be considered critical as a whole, but that contain critical modules within them.

There is a common misconception that formal verification is only required of critical systems [27] but with a

property-based approach, formality can be brought to noncritical systems by applying them only to subsys-

tems or components in the case the effort of verifying the full system is considered prohibitive. Components

that are not safety critical, on the other hand, can be verified with more traditional methods or just tested.

Finally, a property-based approach can be extended to include all properties of the system, making it as

complete as a full-verification. In other words, property-based verification provides the advantages of a mod-

ularized development, allowing for separation of concerns and collaborative and incremental development.

47

If done extensively, property-based verification yields full-based verification.

During the last three decades, there has been substantial work on full implementations of a verified

operating system kernel. Earlier efforts are exemplified by the UCLA Security Kernel [54] and the work

by Bevier [5]. The use of limited and less-suitable logics such as Boore-More and predicate calculus makes

both efforts remarkable. A question to ask is: how much can we trust the software tools that both projects

used? Arguably, the formal verifier could have produced the wrong results, for instance, due to a software

bug affecting it or due to a bug in the compiler used for object code generation.

A significant advantage of this experiment’s approach is the use of a trusted set of tools that aided its

development. Compcert and Separation Logic are the cornerstones of this verification exercise. The use

of both tools not only simplified the development of FreeRTOS verification; but, they guarantee their own

correct behaviour. Building on top of their foundation increases the confidence of the verification framework

proposed by this work.

More recent related work provides a higher level of confidence about the tools used in the complete

implementation of a verified operating system; such is the case of seL4 [33] — a formal, machine-checked

verification of a microkernel from an abstract specification down to its C implementation. This work is

impressive in that all the proofs were done inside Isabelle/HOL — a high-assurance mechanized proof

assistant comparable to Coq.

The work in this thesis differs from seL4 is in the set of tools that were available for their respective proof

assistants. Using Coq, we took advantage of the substantial mindshare that has accumulated throughout

the years around it. The implementation of Compcert and Separation Logic are the best two examples but

documentation also helped. Lacking similar tools for Isabelle/HOL (in part due to the starting time of the

project) forced the seL4 group to significantly increase the effort in producing the proofs of correctness.

In essence, seL4 refinement proof mimics Compcert’s main theorem that the behaviour of the program is

preserved throughout the many compilation phases. These extra proof obligations certainly increased the

time it took to prove seL4 correctness [33].

4.1.4 Intended domain of application

Application of formal methods in industry has increased over the years [7]. Within the wide range of industrial

fields on which formal methods have been applied, safety-critical systems are particularly noteworthy because

formal methods can be used to support their certification. Certification is typically a necessary step that

must be achieved before a safety-critical system can be deployed and used [8]. In the certification context,

a regulatory authority establishes a set of requirements and guidelines that the product must satisfy in a

published standard. In some of these standards, formal methods are recommended, or at least admitted as an

alternative with respect to more traditional techniques such as testing, to carry out the system development

48

and certification.

The developers of FreeRTOS provide a certified version of a real-time operating system known as

SafeRTOS. The certification process for this operating system is based on structural coverage of its source

code to test for each condition of each decision within the program. Even when such coverage testing is

sufficient evidence for complying with standards under which SafeRTOS is certified (DO-178B) [4], the same

document suggests formal methods as a suitable alternative for certification [9]. Far from this experiment’s

intended purpose, this work can be extended to support the certification of FreeRTOS.

Therefore, developing formal verification to a real-time operating system not only increases our confidence

in the reliability of the system but it also adds value to the implementation by supporting its certification.

The evident value of this kind of work boosts its development.

4.1.5 Pre- vs. post-development

Effectiveness, feasibility, and cost considerations might suggest limiting the application of formal methods

only to specific stages of the software development cycle. In the literature, two alternative approaches for

applying formal methods have been advocated, each of them with different implications, advantages, and

drawbacks:

1. Apply formal methods in the later stages of the development life cycle.

2. Apply formal methods early in the development life cycle.

Proponents of use at the later stages of development argue that it is the final implementation-level design

that must be verified. If the final product, be it a piece of software code or a gate-level design or a combination

of both, has not been verified, then the verification process is useless.

One of the drawbacks of post-development verification is the lack of a formal description of the system

requirements. In case of this particular experiment, documentation in natural language is the only acces-

sible description of FreeRTOS functionality. The translation of the specification from natural language to

Separation Logic had to be developed before proceeding with the verification. Had pre-development formal

methods been applied, the formal specification would have been accessible and the verification process would

have been shorter.

One of the benefits of post-development verification is the possibility to implement formal methods to

existing software thanks to the combination of a certified C compiler with an implementation of a formal

language to describe the axiomatic semantics of one of its intermediate representations. Furthermore, the

architecture design of Compcert makes it possible to replace the current front-end with different implementa-

tions. The possibility of developing a compiler front-end that translates a variety of programming languages

49

to Cminor could open the door to applying formal methods for many pieces of software using the same

language.

On the other hand, there are several reasons for applying formal methods at early stages. First, ver-

ification that the final implementation conforms to its specification is pointless if the specification itself

turns out to be flawed and thinking about the specification before implementing it is less likely to taint the

specification. Second, it is well known that bugs introduced during the early stages of the design are the

most insidious, and fixing them is very expensive when they are discovered late in the development. Finally,

proponents of the use of formal methods at the early stages argue that concrete design decisions could better

facilitate later development of formal verification.

As an example of this last argument, a research group at Yale University is applying pre-development

techniques to develop a certified OS Kernel [49]. Their approach in dealing with the complexity of an OS is

the following:

"to take a clean slate approach to reexamine these different programming concerns and abstrac-
tion layers, spell out their formal specifications and invariants, and then design and develop new
kernel structures that minimize unwanted interferences and maximize modularity and extensibil-
ity". [49]

Another project that makes pre-development verification design decisions to simplify the complexity of

the system is SAFE [19]. Thanks to the rapid increase of hardware resources, SAFE can now afford to

reconsider some of the traditional sources of complexity in operating systems (i.e. virtual memory, interrupt

handling schemes, and manual storage allocation and deallocation) and use simpler design for which proofs

are more tractable [19].

4.2 Software Engineering Standpoint

The nature of our experiment has not only verification implications but also software engineering implications.

The latter are present in a two fold manner: first, the development of this project roughly followed the

development cycle of a software system in that it consisted of design, implementation and documentation

phases. Secondly, the implementation of formal methods in the form of creating a formal specification and

carrying out the proof of correctness of its implementation impacts the development cycle of the target

system. The evaluation of this implications is discussed in the following section.

In the last section, a clear distinction was made between pre- and post-development formal verification

to analyze the advantages and disadvantages of one over the other. The purpose of this section is to present

a comparison between formal verification versus not implementing formal verification. For this reason, this

section makes no distinction between the advantages of both pre- and post-development techniques even

though the characteristics of each methodology are clearly distinct.

50

One of the implicit arguments of this work is that formal verification should be part of the development

cycle of safety-critical systems. Taking a broad definition of the software development cycle, we should now

discuss how formal verification applies in each phase — design, implementation, documentation, testing, and

maintenance.

4.2.1 Design

The experiment presented in this thesis consisted of applying post-development techniques to an existing

real-time operating system, which implied working with the C source code developed by FreeRTOS team. It

is therefore understood that this experiment did not have an influence on the initial design of the system. This

characteristic has the advantage of making it possible to implement formal verification techniques to those

systems with a high cost of migration from legacy code to new implementation — a common characteristic

of safety-critical systems.

On the other hand, developing a software product with formal verification in mind has many advantages.

Consider the cases of using assisted theorem-provers to develop a proof of correctness. The insight of the

developer may be of great benefit when completing the proof. In this scenario, the developer would have in

mind not only the source code to be written, but also the proof obligations that the implementation entails.

To this extent, the design decisions would accommodate for the code to be not only efficient, and easy to

read and maintain, but also easier to prove correct.

Another advantage of formal methods, in this case specific to pre-development verification, is that im-

portant behaviours of the system can be proven before any code is written. In the case of operating systems,

implementations can be lengthy and their design requires an implementation so that properties can be de-

termined empirically [17]. The formal approach will never obviate empirical methods; instead, it allows the

designer to state properties of the system a priori and to verify them in unambiguous and explicit terms.

A common argument against formal methods is that its use slows down the production of software systems

due to its complexity and difficulty. Creating a formal specification of the system certainly increases the

time spent during the design phase. However, the additional burden of using formal methods is typically

compensated by the higher degree of assurance in the safety and correctness of the system being developed

[7]. Furthermore, in some applications, the cost incurred by using formal methods from the early stages of

system design are justified by eliminating the significantly higher cost for correcting undetected bugs at later

stages.

Formal methods have been used in connection with operating systems for many years; but much of the

work has been in the design phase only [17]. An example of this approach can be seen in the modeling of

the main functionalities of FreeRTOS by Déharbe et al. [18]. Even though Déharbe does not implement

the specified model, it provides a starting point to verify existing implementations of FreeRTOS. Sadly, the

51

majority of the studies in the literature omit the implementation and their proofs.

4.2.2 Implementation

The goal of all software projects is the production of working code. The effects and consequences of the

decisions made during the design phase have a direct impact on the implementation of a software system;

the benefits of using formal verification techniques are not any different.

Having a specification of the system in a formal language will strongly impact the implementation of the

system. A formal specification is the use of notation derived from logic to define the behaviours that the

system is to achieve and the assumptions about the world in which the system will operate. In other words,

the requirements for system behaviour are explicitly defined. This specification facilitates the understanding

of the basic abstraction functionality of the system as well as unambiguously clarifying the implementation

decisions. [27, 31]

From personal experience, implementing a system to be proven using the framework presented in this

work would require care that termination is easy to prove. One way is to avoid infinite recursion and infinite

loops. For example, the implementation of the vTaskSwitchContext procedure iterates through the list of

tasks by using a counted loop and its termination condition does not consider the index of the list at each

iteration but it assumes that the list is not empty. This assumption resulted in more proof obligations,

making the proof harder to develop. Moreover, since the implementation of Cminor transforms all loops

into guarded loops and Separation Logic forces you to reason in this manner, implementing all the iterative

sections as guarded loops as to facilitate reasoning about its behaviour is the preferred strategy.

One can argue that a disadvantage of using formal verification is the increased time it takes to produce

working code, resulting in an increase of the cost of development. Nevertheless, it is hard to find evidence to

support this argument; there are no empirical studies on the development cost for the same piece of software

using both a well-established formal method and a comparable informal method. However, experience on

the cost of projects that use formal methods is beginning to accumulate. None of this evidence supports the

idea that development costs are higher; if anything, it suggests that the use of formal methods reduces the

cost of production. [27]

The argument that formal methods are difficult becomes stronger in the implementation phase since

someone must develop the proof of correctness - a task that some people think must be left to highly trained

mathematicians. The fact is that the mathematics and the logic used in describing the specifications are

straightforward; even though Coq provides the full expressive power of CIC, the specification required for

this thesis’ experiment required little more than first-order logic taught to computer science juniors. On the

other hand, the logic and the mathematics used in developing the proof of correctness are more complicated.

One might argue is that developers involved in a formal-methods project can be trained to properly use

52

the tools. Indeed, not everyone in the team has to know how to develop a proof, but there could be a

specialized team in charge of carrying out such a task. The goal is that, ultimately, every person with a

correct understanding of the system behaviour and its specification should be able to carry out a proof of

correctness. To this extent, there has been a substantial improvement in the tools that we have these days

and more work is being done to facilitate this task. The benefits of formal methods do not come for free;

software developers must make the effort in learning formal methods [7].

4.2.3 Documentation

Formal verification requires the description of the system in terms of a formal language. This description

can be used as a communication tool among designers, programmers, and users. As with many other

kinds of documentation, a formal specification must describe what things must be done, while hiding the

details of how things must be done. This provides an appropriate level of abstraction for software designers to

understand the system behaviour without considering the small details related to the chosen implementation.

Programmers benefit from having a formal specification because it provides a sort of contract that the

implementation must meet. The unambiguous nature of a formal language also reduces the problem of

developers interpreting the requirements in a different way other than the one was intended [7]. Finally, the

users benefit from the specification by helping them understand the product. As any other learning exercise,

it is not until a person tries to explain something that he will know he understands it. Making the system’s

specification comprehensible to the user can assist the designers to understand the specification because the

designer must find a way to paraphrase the specification in natural language. The formal specification does

not have to be the end product to explain the system to the user, but the many descriptions, tools, and

diagrams that arise from the formal specification can help.

In the specific case of theorem-based formal verification, the documentation of the software product

could be extended by adding a sketch of the proof. In other words, we can have documentation of what

each theorem means and how its proof was developed. From personal experience, such practice is not very

common in existing machine-checked proofs. While it is true that most of the theorems are self-descriptive,

the actual proofs of Compcert and Separation Logic are, in many cases, not well-documented. Moreover, the

unofficial convention of short and poorly descriptive variable names makes the proof harder to understand.

As a relatively new methodology for formal verification using proof assistants, there is room for improvement

in the software engineering of proofs.

4.2.4 Testing

In chapter 1, we claimed that testing is insufficient to ensure the reliability of critical systems. A more-

rigorous approach using formal verification was proposed as an alternative. At first sight, it might seem that

53

formal verification should entirely replace testing in the development of a software product by augmenting

the reliability in the design and implementation phases. Nevertheless, we must be careful in understanding

what formal methods guarantee.

It is important to understand the intrinsic limitations of formal methods which arise mainly from the fact

that some things can never be proven. A proof is a demonstration that one formal statement follows from

another; but, the physical world is not a formal system. A proof, therefore, does not show that things will

happen as you expect in the real world [27]. As an example, one of the proofs in this experiment guarantees

that the vTaskSwitchContext procedure will select the next executing task in a limited amount of time; but,

there might be some event in the real world that invalidates this proof. For example, nothing can guarantee

that a person will not unplug the cable of the computer on which the system is running.

This does not imply that we should abandon our efforts. All engineering disciplines model the real world

and use those models to design artifacts. Models based on mathematics are ideal because the properties

of the model can be established by reasoning, and such models can be manipulated during the design. In

general, the correspondence between the mathematical models used in the software industry and the real

world are well-understood and are used in many other disciplines. This increases our trust in them.

It is also important to acknowledge the kind of properties that a formal system allows us to reason

about, and those that are not possible to specify in a formal language. Separation Logic, for example,

is an appropriate formal language to describe functional properties; but, it appears impossible to define

nonfunctional properties like maintainability and usability.

Applying formal methods, the testing phase can certainly be reduced by eliminating function-related

tests like black-box testing, white-box testing, unit testing, and functional testing [32]. Regression testing

could also be replaced as long as the system specification did not change when developing the new version.

Performance testing is in practice, replaced given that termination properties are provided and the cost

analysis has been performed.

Nonfunctional tests, on the other hand, can increase our confidence in the system by testing those

properties that are problematic to formalize. Integration testing can be performed to verify the inter-

operability of the system with those components that have not been formally verified. Usability testing can

take its place in verifying that the system is user-friendly. Recovery testing can tell us how well the system

recovers from crashes.

In summary, the application of formal methods does not eliminate the need for testing, but it can reduce

its duration and increase confidence in the software product. Experience suggests that inspections of formal

specifications reveal more errors than those of informal specifications [27] and the end result has been proven

to be more reliable compared to those systems that do not apply formal methods [36, 55].

54

4.2.5 Maintenance

Code maintenance consists of making changes to the software to cope with redesign needs. These needs arise

mainly for two reasons [20]:

1. The system does not meet the user needs, in which case corrective maintenance is required.

2. The system undergoes a series of enhancements and extensions as part of adaptive, perfective and

preventive maintenance

Formal models reduce code maintenance significantly by eliminating corrective maintenance; once the

system’s specification has been proven to hold of the system implementation there is no need to make changes

to the code.

On the other hand, the need for enhancements and extensions is independent of whether formal methods

were used or not. Making use of formal methods helps us in planning code maintenance. As an example, we

examine our extension to Compcert to include a tool that calculates the cost of execution of a given program

based on the generated assembly code instructions’ cycle count.

Adding an extension to Compcert to include the cost analysis tool appeared straightforward. The cost

analysis tool would be the last of the compilation phases and would not interfere with any of the other

phases in Compcert. The task became more complex when the cost analysis lacked information to provide

an accurate estimate when dealing with special cases of function definitions.

Built-in functions are treated differently than non built-in functions, causing the code generated for

each to be different. An accurate solution requires each function definition to be either built-in or not.

To differentiate between the two variations, Compcert uses the name of the function, which was extended

during the parsing phase to include the keyword builtin for the appropriate cases. This information

was lost when moving from the parser to other phases of the compiler. Hence, it was unavailable during the

generation of assembly code. Moreover, the parser for Compcert was programmed in Ocaml, making the

passing of the information from Ocaml code to Coq code even more difficult.

The initial decision was to make a change to the internal representation of all the compiler’s front- and

back-end phases to send the name of the function as opposed to sending only the internal identifier for each

function definition. The complexity of the task rapidly increased because every use of the internal identifier

would have to be replaced affecting a large portion of the code base. Furthermore, many proofs would require

(admittedly boilerplate) modifications regarding name lookup. This would not scale.

A second approach consisted of sending a list of function names and identifiers as another variable to each

one of the phases by adding an extra argument to each one of the function calls. This argument would simply

be ignored in all phases except in the cost analysis. This decision significantly decreased the complexity of

55

the problem1; as a result, only five theorems were modified, seven new theorems were required, and one

tactic was extended.

Having a formal specification and the proof of correctness for Compcert’s implementation required careful

decisions about the new cost-analysis module to be added to the compiler. Making changes to a verified

system requires not only close attention to not break the code; but, also to maintain the properties of the

system behaviour, and their proof of correctness. The biggest advantage of this formalism is the confidence

in knowing that even after the modifications, the system will still behave as it was originally designed, since

the proof obligations that accompany Compcert were successfully executed after the changes to the compiler

were made.

1There was not a final estimate on the effort that changing the AST would require, but judging on the high dependency of
such data structure in the compiler architecture, it is reasonable to conclude that the effort would have been much larger.

56

Chapter 5

Summary

To summarize our research, we reflect on the special features of FreeRTOS that enabled our analysis and

consider the broader topic of full-featured operating systems, recognize future limitations in the work, and

describe future activities.

FreeRTOS is not a full-featured user-level operating system. It supports a restricted class of systems and

so its core functions are memory and process isolation. FreeRTOS is designed so that real time applications

can be structured as a set of independent tasks. Each task executes within its own context with no coinci-

dental dependency on other tasks within the system or the scheduler itself [39]. According to Tanenbaum

[52], two important properties of the memory module have to be provided to allow multiple applications to

be in memory at the same time without interfering with each other: protection and relocation.

FreeRTOS provides the solution to protection by the use of an address space — a set of addresses that a

process can use to address memory. FreeRTOS’ memory manager divides memory into allocation units with

the support of an allocation bitmap and a bump pointer, providing a simple way to keep track of memory.

Memory protection is enforced by the memory manager by never allocating the same memory space for two

or more processes. It is incumbent on the processes to only use memory allocated to them. The experiment

in section 3.1.1 provides evidence that the memory protection property can be proved by formally specifying

exclusive allocation using Separation Logic and constructing the proof object using Coq proof assistant.

Another way to keep track of memory is to maintain a linked-list of allocated and free memory segments,

where a segment either is assigned to a process or the segment is free [52]. FreeRTOS provides an alternative

memory module that makes use of this scheme to manage free memory. Even though this work does not

provide the proof of that module’s correct implementation, the tools used in the experiment are perfectly

suitable to carry out such proof. As an example, the implementation of Separation Logic by McCreight

[41] proves the expressiveness of separation logic and the ease of use of his tactics by showing the proof of

correctness of an in-place list reversal program. In other words, Separation Logic is suitable to express data

structures such as lists and coupled with our proofs, a chunked memory allocator can be verified.

Moving to the second property, there exist two general approaches to dealing with memory overload to

solve the relocation problem : memory swapping and virtual memory [52]. Memory swapping consists of

57

bringing in each process in its entirety, running it for a while, then putting it back to the external storage.

Virtual memory allows programs to run even when they are only partially in main memory. Either of

these approaches is appropriate when the physical memory of the system is not large enough to hold all the

processes.

The FreeRTOS real-time kernel has been designed specifically for small, embedded systems [39] for which

it is expected that memory is large enough to hold all the processes simultaneously, not needing a solution

for relocation at all. This expectation is borne out for a wide variety of control systems. For example, the

avionics system in the F-22 Raptor — the current U.S. Air Force frontline jet fighter — consists of about

1.7 million lines of software code. The F-35 Joint Strike Fighter requires about 5.7 million lines of code.

And Boeing’s 787 Dreamliner requires about 6.5 millions lines of code [11]. To get an idea of the size of the

executable binary code consider the Linux kernel version 2.4.0 with a source code of nearly 3.38 million lines

of code and a compiled binary size of about 1.1MB [47]. None of these avionics systems would be considered

a small system, yet an ARM7 processor (one of the many architectures supported by FreeRTOS) could easily

hold a project of this magnitude.

By presenting evidence of the formal verification of FreeRTOS protection mechanism and demonstrating

that thanks to the rapid increase of hardware resources a relocation mechanism is not essential for the target

systems for which FreeRTOS was designed, it is fair to conclude that the significant properties of FreeRTOS

memory manager can be described formally using Separation Logic and its verification can be developed

using the Coq proof assistant.

Another key component of an OS is process scheduling. The FreeRTOS scheduler is the part of the kernel

responsible for deciding which task should be executing at any particular time. Since real-time systems are

designed to provide a timely response to real world events, the foremost need in a real-time scheduling

mechanism is the ability to meet all the deadlines [52]. FreeRTOS enforces the achievement of all deadlines

by establishing a static scheduling policy based on priorities; the scheduling mechanism is then in charge of

ensuring that the highest priority task that is able to execute is the task that is given processing time [39].

Therefore, to characterize FreeRTOS scheduling mechanism as correct, we must guarantee that the system

will meet all deadlines and that the scheduling policy is enforced.

The ability of a real-time system to meet all its deadlines depends upon the number of events it has to

respond to and the amount of time it takes to process each event. For example, if there are m periodic

events and event i occurs with period Pi and requires Ci seconds to finish its processing, then the scheduler

will meet all its deadlines if

m∑
i=1

Ci

Pi
≤ 1

Even when the number of tasks is not known beforehand, knowing the time it takes for each task to

58

complete can help to determine the maximum number of tasks the system can safely schedule. As an

example, consider a system with three types of events: two periodic events (a and b) with periods of 100

and 200 ms respectively and one event (c) with unknown period. If these events require 50, 30, and 100

ms response time respectively then we know that the system can only serve an event c every 286 ms not

allowing for scheduling overhead. In other words, knowing the time of execution of each task is critical in

the design of real-time systems.

Calculating the time of execution of each task requires the guarantee that the task will terminate. Despite

the obvious nature of this condition, it is possible to create tasks that will never finish their execution. For

this reason, care must be taken to make sure the tasks involved in a real-time operating system always

terminate.

In section 3.1.2 different paths that lead to nontermination were discussed and a proof was provided to

show that the vTaskSwitchContext operation has this property. This exercise is certainly not complete in

the sense that it does not cover every part of the operating system, but the same methods can be applied to

other operations inside the scheduler module and different task-oriented modules comprising FreeRTOS.

Moreover, an extension to Compcert was provided that calculates the cost of execution based on the

cycle count of the assembly code generated by the compiler. Using this tool, it is possible to estimate the

execution time of each part of a full FreeRTOS implementation.

In other words, the experiment that shows that the scheduling mechanism will select the correct next

task to execute in a fixed amount of time along with the tool to calculate the cost of execution provides

enough evidence to verify that FreeRTOS scheduler will meet its deadlines, and an entire system will operate

correctly.

Termination of the vTaskSwitchContext procedure was shown because this proof can be extended to

show that FreeRTOS scheduler also enforces its scheduling policy: the task with the highest priority that is

ready to be executed is the one that will be granted processing time. The proof in appendix C shows that

the iterative operations inside the vTaskSwitchContext procedure will terminate in a given amount of time.

Such iterative operations are part of the procedure in charge of selecting the highest priority task. Adding

the rest of the commands to complete the process and providing its proof can be done following the same

methodology as shown in proving the safety properties of FreeRTOS memory module.

By presenting evidence that the scheduler will meet the deadlines in the form of proving its termination

and its time of execution, one of the important properties of a real-time scheduling mechanism has been

covered as a proof of concept. Moreover, this experiment provides a starting point to show that FreeRTOS

scheduler enforces its scheduling policy. In other words, the properties that characterize a reliable scheduling

mechanism can be expressed in Separation Logic terms and its formal verification can be developed using

the Coq proof assistant.

59

In conclusion, after expressing the significant properties of FreeRTOS in a formal language, providing

evidence of its formal verification using Coq proof assistant, and describing how this approach can be extended

to verify the correctness of application-specific FreeRTOS parts, the current state-of-the-art in theorem-based

formal verification makes it possible to provide a machine-checked proof of the formal specification of a real-

time operating system.

5.1 Limitations

Throughout the development of this experiment some limitations were encountered that range from the

strength of the proofs provided to the expressiveness of the tools used in this experiment. In this section

some of these limitations are explored.

5.1.1 Guaranteeing memory exclusive access

The proof of FreeRTOS memory management system was discussed in section 3.1.1. One of the proven

properties carried out in this experiment was that the memory manager will provide exclusive allocation of

memory among different processes. A proof that guarantees exclusive access requires more than the correct

behaviour of the memory manager; it requires either

1. a memory protection mechanism

2. that all the processes are trusted to honour exclusive access.

The solution of a memory protection mechanism is provided by FreeRTOS by a Memory Protection Unit

(MPU) module, but its scope is limited. Using an MPU can protect applications from a number of potential

errors, ranging from undetected programming errors to errors introduced by system or hardware failures. A

FreeRTOS MPU can also be used to protect the kernel itself from invalid executions by tasks and protect its

data from corruption. It can also protect system peripherals from unintended actions by tasks and guarantee

the detection of stack overflows.

Showing that an implementation of the FreeRTOS MPU is correct with respect to its specification would

provide stronger evidence about the exclusive access property required of a reliable system. However, a

FreeRTOS MPU has a limited scope, since it is specified for specific ARM hardware, the Cortex-M3 micro-

controllers. In case FreeRTOS is targeted to a different architecture, a different solution is required.

The second way exclusive access can be guaranteed is by showing that all the tasks running on the system

are trusted. Not having different modes of execution (i.e. user-mode and kernel-mode) weakens the safety

of FreeRTOS since nothing stops user-mode tasks from bypassing the operating system and accessing any

memory location, including those in other tasks. Therefore, any task running on FreeRTOS needs to supply

60

a proof of its compliance with the policies demanded by the operating system. In other words, the tasks

running in FreeRTOS must meet the following properties [17]:

1. They are trusted to honour memory exclusive access. (safety properties)

2. Their behaviour is entirely predictable (deterministic/liveness properties)

3. Their behaviour won’t cause the system to miss the deadlines (they run for relatively shorts periods of

time when executed)

Consequently, to increase the reliability of FreeRTOS, every task that is to run in the system must

supply proofs meeting these obligations as a minimum requirement to categorize them as reliable. A more

complete solution would also include the proof that the functional requirements of each task are met by the

implementation.

5.1.2 Inline assembly instructions

As the interface layer between hardware and user processes, real-time operating systems are highly coupled

hardware devices. For this reason, the implementation of an operating system usually requires the use of

inline assembly code — low-level constructs to control registers and access hardware directly.

With more than 32 supported architectures, portability is one of the prime concerns in the design of

FreeRTOS. Because of this, the implementation of FreeRTOS provides much architecture-independent code.

Nevertheless, parts of the code are inherently dependent upon the architecture and the use of inline assembly

code is not uncommon. The code in charge of enabling and disabling hardware interrupts is an example of

code that contains inlined assembly instructions.

As discussed in section 2.2.4, Separation Logic serves as a logic to formally define the axiomatic semantics

of Cminor. Thanks to Separation Logic, we can reason about Cminor programs by describing the state of

the program before and after each Cminor instruction. That is, the formal description of the properties of

FreeRTOS memory manager and scheduler were possible in large part thanks to this logic. Unfortunately,

Separation Logic for Cminor does not allow us to reason about lower level constructs (i.e. inlined assembly

code). Hence, Separation Logic is not suitable for an exhaustive analysis of FreeRTOS code without an

extension to include this type of constructs.

A plausible solution to this limitation would be to implement Separation Logic for assembly language and

carry out all the proofs in this lower level language. This would require a much higher level of complexity

due to the higher number of instructions per statement and the lack of familiarity of the programmer with

assembly code.

Another solution could be the use of other formal methods such as model checking. Since the complexity

of these simpler assembly operations (i.e. enabling hardware interrupts) is lower than the complexity of a

61

full operating system, the approach to formal verification using model checking for assembly fragments could

be effective. The final full FreeRTOS validation would then consist of a combination of properties carried

out using theorem-proving techniques and some other properties proven by model checking.

5.1.3 Coq and the use of large numbers

In Coq’s programming language, almost nothing is built-in - not even booleans or numbers [46]. Instead,

Coq provides powerful tools for defining new types of data and functions that process and transform them.

The way Coq deals with numbers is by using the Morgenson-Scott encoding of Church numerals built

from the numeral 0 and the successor function S. Even when numbers can be denoted using decimal notation,

Coq’s internal representation uses a linear structure to actually build the number. (i.e. when the notation

3%nat is used, Coq internal representation is S (S (S 0)). A drawback of this approach is the inefficiency

of computing with numbers. Even more so, behind the scene, Coq will have to build a proof object that

increases in size as the numbers used in the computation grow larger.

The use of large numbers turned out problematic when proving the safety property of the memory

manager to guarantee that it will never try to allocate more memory than available. This proof required to

show that the memory manager will always stay within the range of configTOTAL HEAP SIZE. The default

value for the heap size in an ARM7 architecture provided by FreeRTOS is 22,000 bytes. Trying to carry out

the proof with this value resulted in waiting periods in the order of hours waiting for Coq to compute the

comparison between two numbers.

This behaviour soon became inadequate and the decision was made to decrease the size of the heap to a

lower value (i.e. 100) to speed up the response time of Coq. The argument behind this decision is that such

change does not alter the correctness of the system and that the proof can be extended to use the actual

value for the size of the heap; the proof of correctness using the actual value for the size of the heap can still

be produced given the right amount of time to wait for the proof object.

5.2 Future Work

Reducing, and potentially eliminating, the limitations found in this experiment is future work. In addition,

there are other areas of opportunity to expand the work shown in this thesis including:

1. Providing proofs of more safety and liveness properties for FreeRTOS

2. Verify the correct implementation of the underlying structures of FreeRTOS

3. Extend FreeRTOS microkernel to include other kernel components such as file system, network proto-

cols and device drivers along with their respective proof of correctness

62

4. Increase the level of automation of the tools used

These areas of opportunity are discussed in this section.

The next logical step is to extend this work with the proof of other properties that will increase the

trustworthiness of FreeRTOS. This experiment consisted of proving the significant properties of the memory

module and scheduler of FreeRTOS; while these properties are considered to be essential for the correct

behaviour of a real-time operating system they fall short from being complete.

Craig [17] proposes a high-level specification of a real-time operating system that includes not only the

properties discussed in this thesis, but also requires a specific behaviour for individual processes and their

state. For example, Craig suggests that a trusted process must be in exactly one state in a given time. In

other words, each process can only be in either a ready state, running state, waiting state or terminated

state. Moreover, Craig suggests that it is required to guarantee that when processes are not executing, they

do nothing. This implies that processes cannot make requests to devices, nor can they engage in inter-process

communication or any other operations that might change multiple process’ state.

While these properties are required by FreeRTOS, there is no formal proof that guarantees this behaviour

for individual processes. On the other hand, it is possible to provide formal evidence of this behaviour by

following the methodology discussed in this experiment.

Another possible extension to this work is the proof of the correct behaviour of the underlying struc-

tures encountered in operating system kernels such as queues and lists. The proofs provided in this thesis

rely on the behaviour of the underlying data structures. For example, the proof of termination for the

vTaskSwitchContext procedure relies on the queue of ready tasks to behave as a FIFO data structure.

The decision to not validate the correct implementation of the underlying data structures is based on

the idea that such data structures are simple enough that their behaviour is well understood and their

implementation is uncomplicated. While this argument allowed me to focus on the high level specification

of a real-time operating system, a more complete commercial implementation could include proofs of the

correct behaviour of the underlying structures.

The FreeRTOS microkernel could also be extended to include other kernel components such as device

drivers, file systems, and network protocols to provide a more complete system. The portability of FreeRTOS

comes with a price that reduces its readiness to be deployed as a system in itself; much of the work for a

complete solution is left to the programmers to create the tasks that will execute most of the computation

and interaction with the controlled system.

It is from the interaction with the controlled system that the implementation of input/output device

drivers would be the most beneficial in extending FreeRTOS. As with any other user-created task running

in FreeRTOS, to characterize the implementation of these device drivers as correct, these would have to be

accompanied by proof objects that guarantee their behaviour as reliable (as outlined in section 5.1.1) . Even

63

more so, the correctness properties would have to be devised and the evidence in the form of proof object

would have to be present, possibly in a similar manner as how this experiment approached the verification

of a real-time operating system.

Finally, the level of automation of the tools used in this experiment can be increased. One way this

can be achieved is by the annotation of the C code with its formal specification in Separation Logic by

the use of the pre- and postconditions in the form of comments, and then extracting the specification as

part of the transformation from C to Cminor. This would significantly reduce the time spent in setting

up the definitions required to carry out the proofs and would allow the programmer to focus his efforts in

discharging the proofs.

The level of automation for the discharge of the proof can also be increased by the use of recent tools

such as Bedrock [13]. Bedrock is a framework for implementation and verification of low-level programs in

Coq that provides a mostly-automated discharge of Separation Logic verification conditions. As an example

of the increased level of automation of Bedrock when compared to the Separation Logic by McCreight’s

implementation used in this experiment, the verification of an in-place list reversal function has been carried

out. McCreight’s proof includes about 80 atomic tactic calls while the Bedrock proof includes about 10

atomic tactic calls.

64

References

[1] Andrew W. Appel and Sandrine Blazy. Separation logic for small-step Cminor. In Theorem Proving in
Higher Order Logics ’07, volume 4732 of Lecture Notes in Computer Science, pages 5–21, Kaiserslautern,
Germany, 2007. Springer.

[2] Tamarah Arons, Elad Elster, Limor Fix, Sela Mador-Haim, Michael Mishaeli, Jonathan Shalev, Eli
Singerman, Andreas Tiemeyer, Moshe Vardi, and Lenore Zuck. Formal verification of backward com-
patibility of microcode. In Computer Aided Verification ’05, volume 3576 of Lecture Notes in Computer
Science, pages 93–134, Edinburgh, Scotland, UK, 2005. Springer.

[3] Thomas Ball, Vladimir Levin, and Sriram K. Rajamani. A decade of software model checking with
SLAM. Communications of the ACM, 54(7):68–76, July 2011.

[4] Richard Barry. Compiler verification for safety-critical applications. Embedded Systems Design Europe,
6:32–35, June - July 2007.

[5] William R. Bevier. A Verified Operating System Kernel. Technical report, University of Texas, 1987.

[6] Sandrine Blazy, Zaynah Dargaye, and Xavier Leroy. Formal verification of a C compiler front-end. In
Formal Methods ’06, volume 4085 of Lecture Notes in Computer Science, pages 460–475, Hamilton,
Ontario, Canada, 2006. Springer.

[7] Marco Bozzano and Adolfo Villafiorita. Design and Safety Assessment of Critical Systems, chapter
Formal Methods for Safety Assessment, pages 139–212. Auerbach Publications, 2010.

[8] Marco Bozzano and Adolfo Villafiorita. Design and Safety Assessment of Critical Systems, chapter
Formal Methods for Certification, pages 213–239. Auerbach Publications, 2010.

[9] Duncan Brown, Herve Delseny, Kelly Hayhurst, and Virginie Wiels. Guidance for using formal methods
in a certification context. In Embedded Real Time Software and Systems ’10, Toulouse, France, May
2010.

[10] Sam Buss. Weak formal systems and connections to computational complexity. Lecture Notes, University
of California Berkley, 1988.

[11] Robert N. Charette. This car runs on code. IEEE Spectrum, 46(2), February 2009.

[12] Adam Chlipala. Certified Programming with Dependent Types. http://adam.chlipala.net/cpdt/,
2009.

[13] Adam Chlipala. Mostly-automated verification of low-level programs in computational separation logic.
In PLDI ’11, pages 234–245, San Jose, California, USA, 2011. ACM.

[14] Edmund Clarke. The birth of model checking. In 25 Years of Model Checking, volume 5000 of Lecture
Notes in Computer Science, pages 1–26, Seattle, Washington, USA, 2008. Springer.

[15] Thierry Coquand and Gerard Huet. The calculus of constructions. Information and Computation,
76:95–120, February 1988.

65

http://adam.chlipala.net/cpdt/

[16] P. Cousot. Methods and Logics for Proving Programs, volume B of Handbook of Theoretical Computer
Science, chapter 15, pages 843–993. Elsevier Science Publishers, 1990.

[17] Iain D. Craig. Formal Models of Operating System Kernels. Springer, 2007.

[18] David Déharbe, Stephenson Galvão, and Anamaria Martins Moreira. Formal Methods: Foundations
and Applications, chapter Formalizing FreeRTOS: First Steps, pages 101–117. Springer, 2009.

[19] André DeHon, Ben Karel, Thomas F. Knight, Jr., Gregory Malecha, Benoît Montagu, Robin Morisset,
Greg Morrisett, Benjamin C. Pierce, Randy Pollack, Sumit Ray, Olin Shivers, Jonathan M. Smith, and
Gregory Sullivan. Preliminary design of the SAFE platform. In PLOS ’11, pages 4:1–4:5, Cascais,
Portugal, 2011. ACM.

[20] B. S. Dhillon, editor. Software Maintenance, chapter Software Maintenance. CRC Press, 2002.

[21] William R. Dunn. Designing safety-critical computer systems. IEEE Computer, 36(11):40–46, November
2003.

[22] Raphael Finkel, Thomas Anderson, Brian Bershad, Edward Lazowska, Henry Levy, Robert Cupper,
John Stankovic, Craig Wills, Peter Denning, Marshall Kirk McKusick, Sape Mullender, Steve Chapin,
Jon Weissman, and T Doeppner. Operating Systems, chapter What Is an Operating System? Chapman
and Hall / CRC, 2004.

[23] Limor Fix. Fifteen years of formal property verification in Intel. In 25 Years of Model Checking, volume
5000 of Lecture Notes in Computer Science, pages 139–144, Seattle, Washington, USA, 2008. Springer.

[24] Carlo Ghezzi, Mehdi Jazayeri, Dino Mandrioli, Ian Sommerville, Steven Demurjian, Patricia Pia, Gre-
gory Kapfhammer, Jonathan Bowen, Michael Hinchey, John Gannon, Roger Pressman, Stephen Seid-
man, Osama Eljabiri, and Fadi Deek. Software Engineering, chapter Formal Methods. Chapman and
Hall / CRC, 2004.

[25] Carlo Ghezzi, Mehdi Jazayeri, Dino Mandrioli, Ian Sommerville, Steven Demurjian, Patricia Pia, Gre-
gory Kapfhammer, Jonathan Bowen, Michael Hinchey, John Gannon, Roger Pressman, Stephen Seid-
man, Osama Eljabiri, and Fadi Deek. Software Engineering, chapter Software Testing. Chapman and
Hall / CRC, 2004.

[26] J. Gray and D.P. Siewiorek. High-availability computer systems. IEEE Computer, 24(9):39–48, Septem-
ber 1991.

[27] Anthony Hall. Seven myths of formal methods. IEEE Software, 7(5):11–19, September 1990.

[28] Robert Harper. Practical Foundations for Programming Languages. http://www.cs.cmu.edu/~rwh/
plbook/book.pdf, April 2011.

[29] C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the ACM, 12:576–
580, October 1969.

[30] Michael Huth and Mark Ryan. Logic in Computer Science: modelling and reasoning about systems 2nd
ed. Cambridge University Press, 2004.

[31] Sally Johnson and Ricky Butler. Electrical Engineering Handbook, chapter Formal Methods. CRC Press,
2000.

[32] Roope Kaivola, Rajnish Ghughal, Naren Narasimhan, Amber Telfer, Jesse Whittemore, Sudhindra
Pandav, Anna Slobodová, Christopher Taylor, Vladimir Frolov, Erik Reeber, and Armaghan Naik.
Replacing testing with formal verification in Intel core i7 processor execution engine validation. In
Computer Aided Verification ’09, volume 5643 of Lecture Notes in Computer Science, pages 414–429,
Grenoble, France, 2009. Springer.

66

http://www.cs.cmu.edu/~rwh/plbook/book.pdf
http://www.cs.cmu.edu/~rwh/plbook/book.pdf

[33] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip Derrin, Dham-
mika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and
Simon Winwood. seL4: Formal verification of an OS kernel. In SOSP ’09, pages 207–220, Big Sky,
Montana, USA, 2009. ACM.

[34] J.C. Knight. Safety critical systems: challenges and directions. In ICSE ’02, pages 547–550, Orlando,
Florida, USA, May 2002.

[35] Leslie Lamport. Proving the correctness of multiprocess programs. IEEE Transactions on Software
Engineering, 3(2):125–143, March 1977.

[36] Xavier Leroy. Formal verification of a realistic compiler. Communications of the ACM, 52(7):107–115,
2009.

[37] Nancy G. Leveson. An investigation of the Therac-25 accidents. IEEE Computer, 26:18–41, 1993.

[38] ARM Limited. ARM7TDMI Technical Reference Manual 4th ed. ARM Limited, November 2004.

[39] Real Time Engineers Ltd. The FreeRTOS Project Version 6.1.0. http://freertos.org, October 2010.

[40] Nicolas Marti, Reynald Affeldt, and Akinori Yonezawa. Formal verification of the heap manager of an
operating system using separation logic. In International Conference on Formal Engineering Methods
’06, volume 4260 of Lecture Notes in Computer Science, pages 400–419, Macau, China, 2006. Springer.

[41] Andrew McCreight. Practical tactics for separation logic. In Theorem Proving in Higher Order Log-
ics ’09, volume 5674 of Lecture Notes in Computer Science, pages 343–358, Munich, Germany, 2009.
Springer.

[42] Ann Marie Neufelder. Ensuring Software Reliability, chapter Factors that Affect Software Reliability,
pages 45–64. CRC Press, 1992.

[43] Ann Marie Neufelder. Ensuring Software Reliability, chapter Defining Software Reliability, pages 9–20.
CRC Press, 1992.

[44] Peter G. Neumann. Computer-Related Risks. Addison-Wesley, 1995.

[45] Peter G. Neumann. Illustrative risks to the public in the use of computer systems and related technology.
SIGSOFT Software Engineering Notes, 21(1):16–30, January 1996.

[46] Benjamin C. Pierce, Chris Casinghino, Michael Greenberg, Cǎtǎlin Hriţcu, Vilhelm Sjoberg, and Brent
Yorgey. Software Foundations. http://www.cis.upenn.edu/~bcpierce/sf/, July 2012.

[47] The Linux Information Project. Source Code Definition. http://www.linfo.org/source_code.html,
February 2006.

[48] John C. Reynolds. Separation logic: A logic for shared mutable data structures. In Logic in Computer
Science ’02, pages 55–74, Copenhagen, Denmark, 2002. IEEE Computer Society.

[49] Z. Shao and B. Ford. Advanced Development of Certified OS Kernels. Technical report, Yale University,
New Haven, CT, USA, July 2010.

[50] John Stankovic. Operating Systems 2nd ed., chapter Real-Time and Embedded Systems. Chapman and
Hall / CRC, 2004.

[51] John A. Stankovic and R. Rajkumar. Real-time operating systems. Real-Time Systems, 28:237–253,
November - December 2004.

[52] Andrew S. Tanenbaum. Modern Operating Systems 3rd ed. Prentice Hall Press, Upper Saddle River,
NJ, USA, 2007.

67

http://freertos.org
http://www.cis.upenn.edu/~bcpierce/sf/
http://www.linfo.org/source_code.html

[53] Coq D. Team. The Coq proof assistant reference manual, version 8.2. http://coq.inria.fr/V8.2pl3/
files/Reference-Manual.pdf, August 2009.

[54] Bruce J. Walker, Richard A. Kemmerer, and Gerald J. Popek. Specification and verification of the
UCLA Unix security kernel. Communications of the ACM, 23(2):118–131, February 1980.

[55] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and understanding bugs in C compilers.
In PLDI ’11, pages 283–294, San Jose, California, USA, 2011. ACM.

68

http://coq.inria.fr/V8.2pl3/files/Reference-Manual.pdf
http://coq.inria.fr/V8.2pl3/files/Reference-Manual.pdf

Appendix A

Library Memory Safety 1

(* This file contains the proof that FreeRTOS memory allocation procedure
won’t allocate more memory than available as it is described in section
3.1.2 Safety Properties of FreeRTOS.*)

(* Import Seperation Logic Libraries *)
Require Import ProgLog.
Require Import NatUtil.
Require Import Addr.

Set Implicit Arguments.

(* Define global variables *)
Definition xws := Var 0.
Definition vTaskSuspendAll := Var 1.
Definition xTaskResumeAll := Var 2.
Definition xNextFreeByte := Var 3.
Definition xHeap := Var 4.
Definition configTOTAL HEAP SIZE := 100.

(* Define local variables *)
Definition a1 := Var 5.
Definition a2 := Var 6.
Definition pvReturn := Var 7.
Definition aux1 := Var 8.
Definition aux2 := Var 9.

(* Malloc
The function allocates required memory and returns a pointer
to the first free location
*)

Notation mallocBody :=
((pvReturn ← 0);;
(call aux1 (euop ldop vTaskSuspendAll) nil);;
(ifte (ebop ltop (ebop plusop (euop ldop xNextFreeByte) (euop ldop xws)) 100%val)
((ifte (ebop gtop (ebop plusop (euop ldop xNextFreeByte) (euop ldop xws)) (euop ldop xNextFreeByte))
(a1 ← 1)
(a1 ← 0));;

(a2 ← a1))
(a2 ← 0));;

(ifte (a2 != 0)
((vassign pvReturn (ebop plusop (ebop multop 1%val (euop ldop xNextFreeByte)) (euop ldop xHeap)));;
(store xNextFreeByte (ebop plusop (euop ldop xNextFreeByte) (euop ldop xws))))

(skip));;
(call aux2 (euop ldop xTaskResumeAll) nil);;
ret pvReturn)%CM.

(* The definition of the program, including its global and local variables *)
Notation mallocDef :=
(fdefi (xws::vTaskSuspendAll::xTaskResumeAll::xNextFreeByte::xHeap::nil) (a1 ::a2::pvReturn::aux1::aux2::nil)

69

0 mallocBody).
(* The type of the arguments passed to the program *)
(* In detail:

xws is an integer representing the size of the memory to be allocated
vTaskSuspendAll is the address where such function can be found
xTaskResumeAll is the address where such function can be found
xNextFreeByte is the value of the next free memory location
xHeap is pointing to the head of the memory "heap" *)

Notation mallocTy := (val ::addr::addr::val::val::nil :tslist).
(* The precondition that has to be met in onder for the program to hold

the postcondition *)
(* The precondition states that the current value of xNextFreeByte is less

than the total size of the heap and that the addresses and pointers are not null *)
Definition mallocPre a (b c: addr) d e u w x y z :=
lexists s, lexists s’, lexists s”, lexists s”’,
u |-> a ** w |-> b ** x |-> c ** y |-> d ** z |-> e **
!(trueVal (bopVal ltop d configTOTAL HEAP SIZE)) ** !(a = Vword s) ** !(b = (s’,0)%addr) ** !(c

= (s”,1%word)) ** !(d = Vword s”’).
(* The desired final state after the program has been executed *)
(* The postcondition states that after finishing execution, the value of

xNextFreeByte will be within the range of the total size of the memory *)
Definition mallocPost a (b c: addr) (d e u w x y z : val) :=
lexists p,
u |-> a ** w |-> b ** x |-> c ** y |-> p ** z |-> e ** !(trueVal (bopVal ltop p configTOTAL HEAP SIZE)).

(* PROVIDING XTASKSUSPENDALL SPECIFICATION *)
Definition suspendTy := (nil : tslist).
Definition suspendPre := emp.
Definition suspendPost (: val) := emp.
Definition suspendSpec := speci suspendTy 0%nat suspendPre suspendPost.
(* PROVIDING XTASKRESUMEALL SPECIFICATION *)
Definition resumeTy := (nil : tslist).
Definition resumePre := emp.
Definition resumePost (: val) := emp.
Definition resumeSpec := speci resumeTy 0%nat resumePre resumePost.
(* PROVIDING CODE HEAP TYPE *)
Definition P1 : cdhpty := fun c ⇒
let (b, w) := c in
match beq nat (word to nat w) 0 with
| true ⇒ Some suspendSpec
| false ⇒ Some resumeSpec

end.
(* The theorem stating that the desired final state will hold true of the program

given that the preconditions are met *)
Lemma mallocOk : fdefOk P1 mallocTy 5%nat mallocPre mallocDef mallocPost.
Proof.
fdefBegin. unfold mallocPre, mallocPost. intros a b c d e u w x y z m sp Hp vf VFE.
ssimpl in Hp. simpl in VFE.
vcSteps.

70

subst b.
autorewrite with ProgLog.
∃ nil.
unfold P1.
rewrite beq true.
unfold suspendSpec.
unfold suspendTy.
callStep.
∃ (u |-> a ** w |-> x1 ** x |-> c ** y |-> d ** z |-> e).
simpl addArgs.
unfold someBind.
constructor.
searchMatch.
intros v’ m’ Hs.
vfUpdateStep VFE aux1 v’ ; dropVfeDups VFE.
basicStmVCStep.
bigStmVCStep.
branchStep.
branchStep.
branchStep.
∃ nil.
subst c.
rewrite beq false.
unfold resumeSpec.
unfold resumeTy.
callStep.
∃ (u |-> a ** w |-> x1 ** x |-> (addrAdd x2 1) ** y |-> (d%val + a%val)%val ** z |-> e).
simpl addArgs.
unfold someBind.
constructor.
searchMatch.
simpl addrAdd.
replace (0 + 1)%word with (1).
reflexivity.
womega.

intros v’0 m’0 Hs’.
vfUpdateStep VFE aux2 v’0 ; dropVfeDups VFE.

vcSteps.
ssimpl.
searchMatch.
simpl addrAdd.
replace (0 + 1)%word with (1).
reflexivity.
womega.

assumption.

discriminate.

branchStep.
∃ nil.
subst c.
rewrite beq false.

71

unfold resumeSpec.
unfold resumeTy.
callStep.
∃ (u |-> a ** w |-> x1 ** x |-> (addrAdd x2 1) ** y |-> d ** z |-> e).
simpl addArgs.
unfold someBind.
constructor.
searchMatch.
simpl addrAdd.
replace (0 + 1)%word with (1).
reflexivity.
womega.

intros v’0 m’0 Hs’.
vfUpdateStep VFE aux2 v’0 ; dropVfeDups VFE.

vcSteps.
ssimpl.
searchMatch.
simpl addrAdd.
replace (0 + 1)%word with (1).
reflexivity.
womega.

assumption.

discriminate.

subst d.
subst a.
assert (impl (bopVal gtop (Vword (x3 + x0)%word) (Vword x3) = Vundef) False) as H2.
apply vundefWordBopVal with (b := gtop) (w := (x3 + x0)%word) (w’ := x3).
unfold impl in H2.
apply H2.
assumption.

branchStep.
∃ nil.
subst c.
rewrite beq false.
unfold resumeSpec.
unfold resumeTy.
callStep.
∃ (u |-> a ** w |-> x1 ** x |-> (addrAdd x2 1) ** y |-> d ** z |-> e).
simpl addArgs.
unfold someBind.
constructor.
searchMatch.
simpl addrAdd.
replace (0 + 1)%word with (1).
reflexivity.
womega.

intros v’0 m’0 Hs’.
vfUpdateStep VFE aux2 v’0 ; dropVfeDups VFE.

vcSteps.

72

ssimpl.
searchMatch.
simpl addrAdd.
replace (0 + 1)%word with (1).
reflexivity.
womega.

assumption.

discriminate.

subst d.
subst a.
assert (impl (bopVal ltop (Vword (x3 + x0)%word) (Vword 100) = Vundef) False) as H2.
apply vundefWordBopVal with (b := ltop) (w := (x3 + x0)%word) (w’ := 100).
unfold impl in H2.
apply H2.
assumption.

Qed.

73

Appendix B

Library Memory Safety 2

(* This file contains a proof that FreeRTOS memory allocation procedure
guarantees exclusive memory allocation, enforcing memory protection
among processes as it is described in section 3.1.1 Safety Properties
of FreeRTOS.

Memory exclusive allocation is proved by showing that once a range of
memory has been allocated for a given process, the memory allocation
procedure won’t allocate a memory location inside such range to a
different process. *)

(* Import Separation Logic libraries *)
Require Import ProgLog.
Require Import NatUtil.
Require Import Addr.
Set Implicit Arguments.
(* Define global variables *)
Definition xws := Var 0.
Definition vTaskSuspendAll := Var 1.
Definition xTaskResumeAll := Var 2.
Definition xNextFreeByte := Var 3.
Definition xHeap := Var 4.
Definition configTOTAL HEAP SIZE := 100.
(* Define local variables *)
Definition a1 := Var 5.
Definition a2 := Var 6.
Definition pvReturn := Var 7.
Definition aux1 := Var 8.
Definition aux2 := Var 9.
(* Malloc

The function allocates required memory and returns a pointer
to the first free location
*)

Notation mallocBody :=
((pvReturn ← 0);;
(call aux1 (euop ldop vTaskSuspendAll) nil);;
(ifte (ebop ltop (ebop plusop (euop ldop xNextFreeByte) (euop ldop xws)) 100%val)
((ifte (ebop gtop (ebop plusop (euop ldop xNextFreeByte) (euop ldop xws)) (euop ldop xNextFreeByte))
(a1 ← 1)
(a1 ← 0));;

(a2 ← a1))
(a2 ← 0));;

(ifte (a2 != 0)
((vassign pvReturn (ebop plusop (ebop multop 1%val (euop ldop xNextFreeByte)) (euop ldop xHeap)));;
(store xNextFreeByte (ebop plusop (euop ldop xNextFreeByte) (euop ldop xws))))

(skip));;

74

(call aux2 (euop ldop xTaskResumeAll) nil);;
ret pvReturn)%CM.

(* The definition of the program, including its global and local variables *)
Notation mallocDef :=
(fdefi (xws::vTaskSuspendAll::xTaskResumeAll::xNextFreeByte::xHeap::nil) (a1 ::a2::pvReturn::aux1::aux2::nil)

0 mallocBody).

(* The definition of what it means for a memory location to not have been
previously allocated *)

Definition notPreviouslyAllocated (p d : val) :=
trueVal (bopVal gtop p d) ∨ trueVal (bopVal eqop d p).

(* The type of the arguments passed to the program *)
(* In detail:

xws is an integer representing the size of the memory to be allocated
vTaskSuspendAll is the address where such function can be found
xTaskResumeAll is the address where such function can be found
xNextFreeByte is the value of the next free memory location
xHeap is pointing to the head of the memory "heap" *)

Notation mallocTy := (val ::addr::addr::val::val::nil :tslist).

(* The precondition that has to be met in onder for the program to hold
the postcondition *)

(* The precondition states that the current value of xNextFreeByte is less
than the total size of the heap and that the addresses and pointers are not null *)

Definition exclusionPre a (b c: addr) d e u w x y z :=
lexists s, lexists s’, lexists s”, lexists s”’,
u |-> a ** w |-> b ** x |-> c ** y |-> d ** z |-> e **
!(trueVal (bopVal ltop d configTOTAL HEAP SIZE)) ** !(a = Vword s) ** !(b = (s’,0)%addr) ** !(c

= (s”,1%word)) ** !(d = Vword s”’).

(* The desired final state after the program has been executed *)
(* The postcondition states that after finishing execution, the allocated memory

has not been previously allocated *)
Definition exclusionPost (a b c d e u w x y z rv : val) :=
lexists p,
u |-> a ** w |-> b ** x |-> c ** y |-> p ** z |-> e ** !(notPreviouslyAllocated p d).

(* PROVIDING XTASKSUSPENDALL SPECIFICATION *)
Definition suspendTy := (nil : tslist).

Definition suspendPre := emp.

Definition suspendPost (: val) := emp.

Definition suspendSpec := speci suspendTy 0%nat suspendPre suspendPost.

(* PROVIDING XTASKRESUMEALL SPECIFICATION *)
Definition resumeTy := (nil : tslist).

Definition resumePre := emp.

Definition resumePost (: val) := emp.

Definition resumeSpec := speci resumeTy 0%nat resumePre resumePost.

(* PROVIDING CODE HEAP TYPE *)
Definition P1 : cdhpty := fun c ⇒
let (b, w) := c in
match beq nat (word to nat w) 0 with

75

| true ⇒ Some suspendSpec
| false ⇒ Some resumeSpec

end.
(* The theorem stating that the desired final state will hold true of the program

given that the preconditions are met *)
Lemma exclusionOk : fdefOk P1 mallocTy 5%nat exclusionPre mallocDef exclusionPost.
Proof.
fdefBegin. unfold exclusionPre, exclusionPost. intros a b c d e u w x y z m sp Hp vf VFE.
ssimpl in Hp. simpl in VFE.
vcSteps.
subst b.
autorewrite with ProgLog.
∃ nil.
unfold P1.
rewrite beq true.
unfold suspendSpec.
unfold suspendTy.
callStep.
∃ (u |-> a ** w |-> x1 ** x |-> c ** y |-> d ** z |-> e).
simpl addArgs.
unfold someBind.
constructor.
searchMatch.
intros v’ m’ Hs.
vfUpdateStep VFE aux1 v’ ; dropVfeDups VFE.
basicStmVCStep.
bigStmVCStep.
branchStep.
branchStep.
branchStep.
∃ nil.
subst c.
rewrite beq false.
unfold resumeSpec.
unfold resumeTy.
callStep.
∃ (u |-> a ** w |-> x1 ** x |-> (addrAdd x2 1) ** y |-> (d%val + a%val)%val ** z |-> e).
simpl addArgs.
unfold someBind.
constructor.
searchMatch.
simpl addrAdd.
replace (0 + 1)%word with (1).
reflexivity.
womega.
intros v’0 m’0 Hs’.
vfUpdateStep VFE aux2 v’0 ; dropVfeDups VFE.
vcSteps.
ssimpl.
searchMatch.
simpl addrAdd.

76

replace (0 + 1)%word with (1).
reflexivity.
womega.

left.
assumption.

discriminate.

branchStep.
∃ nil.
subst c.
rewrite beq false.
unfold resumeSpec.
unfold resumeTy.
callStep.
∃ (u |-> a ** w |-> x1 ** x |-> (addrAdd x2 1) ** y |-> d ** z |-> e).
simpl addArgs.
unfold someBind.
constructor.
searchMatch.
simpl addrAdd.
replace (0 + 1)%word with (1).
reflexivity.
womega.

intros v’0 m’0 Hs’.
vfUpdateStep VFE aux2 v’0 ; dropVfeDups VFE.

vcSteps.
ssimpl.
searchMatch.
simpl addrAdd.
replace (0 + 1)%word with (1).
reflexivity.
womega.

right.
subst d.
apply wordTrueVal.
simpl.
destruct eq word dec.
womega.
womega.

discriminate.

subst d.
subst a.
assert (impl (bopVal gtop (Vword (x3 + x0)%word) (Vword x3) = Vundef) False) as H2.
apply vundefWordBopVal with (b := gtop) (w := (x3 + x0)%word) (w’ := x3).
unfold impl in H2.
apply H2.
assumption.

branchStep.
∃ nil.
subst c.

77

rewrite beq false.
unfold resumeSpec.
unfold resumeTy.
callStep.
∃ (u |-> a ** w |-> x1 ** x |-> (addrAdd x2 1) ** y |-> d ** z |-> e).
simpl addArgs.
unfold someBind.
constructor.
searchMatch.
simpl addrAdd.
replace (0 + 1)%word with (1).
reflexivity.
womega.

intros v’0 m’0 Hs’.
vfUpdateStep VFE aux2 v’0 ; dropVfeDups VFE.

vcSteps.
ssimpl.
searchMatch.
simpl addrAdd.
replace (0 + 1)%word with (1).
reflexivity.
womega.

right.
subst d.
apply wordTrueVal.
simpl.
destruct eq word dec.
womega.
womega.

discriminate.

subst d.
subst a.
assert (impl (bopVal ltop (Vword (x3 + x0)%word) (Vword 100) = Vundef) False) as H2.
apply vundefWordBopVal with (b := ltop) (w := (x3 + x0)%word) (w’ := 100).
unfold impl in H2.
apply H2.
assumption.

Qed.

78

Appendix C

Library Scheduler Liveness

(* This file contains the proof that the procedure in charge of selecting
the next executing task will terminate as it is described in section
3.1.2 Liveness Properties of FreeRTOS.

The file contains two proof obligations. The first proof obligation
demonstrates that the premise for the total correctness of the while loop
used in selecting the next executing task is valid. In other words, only
the inside body of the loop is proven.

The second proof obligation shows the total correctness for the complete
while loop construct by proving that the loop invariant is true in all
possible execution paths and by proving that there exists a loop variant
that decreases a finite number of times, avoiding infinite loops. *)

(* Import Seperation Logic library *)
Require Import ProgLog.

(* Define Global Variables *)
Definition uxTopReady := Var 0.
Definition pxReadyTaskList := Var 1.

(* Define Local Variables *)
Definition local2 := Var 2.
Definition local3 := Var 3.
Definition local4 := Var 4.
(* Define the body inside the while loop *)
(* At first it was difficult to develop the proof of the while loop;

as a sanity check and following the rule of inference for the while loop,
we first developed the proof on the instructions inside of the body.
After proving the body holds the postcondition if the precondition is
given, it was easier to come up with the proof for the entire loop *)

Notation commandBody := (
local2 ← [uxTopReady];;
local3 ← [pxReadyTaskList] + local2 ;;
local4 ← [uxTopReady];;
[uxTopReady] ← local4 - 1;;
ret uxTopReady

)%CM.

(* The definition of the program, including its global and local variables *)
Notation commandDef :=
(fdefi (uxTopReady ::pxReadyTaskList::nil) (local2 ::local3::local4::nil) 0 commandBody).

(* The type of the arguments passed to the program *)
(* In this case both, uxTopReady and pxReadyTaskList are both pointers *)
Notation commandTy := (word ::word::nil : tslist).

(* The precondition that has to be met in onder for the program to hold
the postcondition *)

79

(* The precondition states that all the pointers are valid (pointing to some value),
and that the list of tasks is not empty *)

Definition commandPre (a : word) (c : word) (b : val) (d : val) : mpred :=
lexists index :word, lexists c1, lexists c2, lexists c3, lexists c4,
b |-> a ** d |-> c ** (c+4)%word |-> c1 ** (c+8)%word |-> c2 ** (c+12)%word |-> c3 ** (c+16)%word

|-> c4 ** !(1≤ a)%word ** !(trueVal (bopVal gteop c 0)%word ∨ trueVal (bopVal gteop c1 0)%word ∨ trueVal
(bopVal gteop c2 0)%word ∨ trueVal (bopVal gteop c3 0)%word ∨ trueVal (bopVal gteop c4 0)%word) **
top.
(* The desired final state after the program has been executed *)
(* The postcondition states that after finishing execution, there will

be a task to be executed next *)
Definition commandPost (a :word) (c : word) (b d : val) : mpred :=
lexists v, b |-> v ** !(trueVal (bopVal gteop v 0)%word) ** top.

(* The heap type *)
(* Since no call to other procedures is made, the heap type is empty *)
Definition P0 : cdhpty := fun ⇒ None.
(* The theorem stating that the desired final state will hold true of the program

given that the preconditions are met *)
Lemma premiseOk : fdefOk P0 commandTy 2%nat commandPre commandDef commandPost.
Proof.
fdefBegin. unfold commandPre, commandPost.
intros a c b d m sp Hp vf VFE.
simpl in VFE.
ssimpl in Hp.
vcSteps.
autorewrite with ProgLog.
unfold lex.
ssimpl.
∃ (a-1)%word.
ssimpl.
searchMatch.
apply wordTrueVal.
simpl.
destruct lte word dec.
discriminate.
womega.

Qed.
(* Auxiliary tactics for the branch construct *)
Ltac branchStep0X :=
match goal with
| ` context [valBoolCases ?P] ⇒
let E := fresh "E" in
destruct (valBoolCases P) as [[E | E] | E];
autorewrite with valLogEq in E ;
autorewrite with valEq BlockOf in E ;
autorewrite with valEq2 valEq BlockOf in E ;
try discriminate E ;
try (elf ; auto; fail)

end.
Ltac branchStepX :=

80

∃ (None (A := spred));
constructor ; [branchStep0X |
let s := fresh in let X := fresh in intros s X ; apply X].

(* The definition of the complete while loop *)
Notation taskSwitchBody := (
local2 ← [uxTopReady];;
local3 ← [pxReadyTaskList] + local2 ;;
local4 ← [uxTopReady];;
while(ebop eqop local3 0)%word (
local4 ← [uxTopReady];;
[uxTopReady] ← local4 - 1;;
local2 ← [uxTopReady];;
local3 ← [pxReadyTaskList] + local2

);;
ret uxTopReady

)%CM.

(* The definition of the program, including its global and local variables *)
Notation taskSwitchDef :=
(fdefi (uxTopReady ::pxReadyTaskList::nil) (local2 ::local3::local4::nil) 0 taskSwitchBody).

(* The type of the arguments passed to the program *)
(* In this case both, uxTopReady and pxReadyTaskList are both pointers *)
Notation taskSwitchTy := (word ::word::nil : tslist).

Definition listNotEmpty c c1 c2 c3 c4 :=
trueVal (bopVal gteop c 0)%word ∨ trueVal (bopVal gteop c1 0)%word ∨ trueVal (bopVal gteop c2

0)%word ∨ trueVal (bopVal gteop c3 0)%word ∨ trueVal (bopVal gteop c4 0)%word.

(* The precondition that has to be met in onder for the program to hold
the postcondition *)

(* The precondition states that all the pointers are valid (pointing to some value),
and that the list of tasks is not empty *)

Definition taskSwitchPre (a : word) (c : word) (b : val) (d : val) : mpred :=
lexists index :word, lexists c1, lexists c2, lexists c3, lexists c4,
b |-> a ** d |-> c ** (c+4)%word |-> c1 ** (c+8)%word |-> c2 ** (c+12)%word |-> c3 ** (c+16)%word

|-> c4 ** !(trueVal (bopVal gteop a 0)) ** !(0 ≤ a)%word ** !(listNotEmpty c c1 c2 c3 c4) ** top.

(* The desired final state after the program has been executed *)
(* The postcondition states that after finishing execution, there will

be a task to be executed next *)
Definition taskSwitchPost (a :word) (c : word) (b d : val) : mpred :=
lexists p, b |-> p ** !(trueVal (bopVal gteop p 0)%word) ** top.

(* The loop invariant - the condition that is true after the execution of
all execution paths *)

Definition inv (a:word) (c:word) (b : val) (d :val) (s:cstate) :=
∃ lv2, ∃ lv3, ∃ lv4, (vfEqv (uxTopReady :: pxReadyTaskList :: local2 :: local3 :: local4 :: nil) ((uxTo-

pReady, b) :: (pxReadyTaskList, d) :: (local2, lv2) :: (local3, lv3) :: (local4, lv4) :: nil) (cvfOf s) ∧
(lexists v :word, lexists lw3, b |-> v ** d |-> c ** !(trueVal (bopVal gteop v 0)%word) ** !(0 ≤

v)%word ** !(lv3 = Vword lw3) ** top) (cmemOf s)).

(* An auxiliary lemma stating that the list is not empty *)
(* The proof of this lemma has been left to a more detailed analysis

of the initialization mechanism *)
Lemma list not null (lv :val) (pv :word) : lv = 0 → (0 < pv)%word.

81

Proof. admit. Qed.

(* The theorem stating that the desired final state will hold true of the program
given that the preconditions are met *)

Lemma taskSwitchOk : fdefOk P0 taskSwitchTy 2%nat taskSwitchPre taskSwitchDef taskSwitchPost.
Proof.
fdefBegin. unfold taskSwitchPre, taskSwitchPost.
intros a c b d m sp Hp vf VFE.
simpl in VFE.

ssimpl in Hp.
vcSteps.
∃ (inv a c b d).
split.

(* Base Case *)
unfold inv.
∃ a.
∃ (c + a)%val.
∃ a.
split. intuition.
∃ a.
∃ (c + a)%word.
ssimpl.
searchMatch.

(* Inductive Case *)
clear. intros. destruct s’. unfold inv in H.
unfold cmemOf, cspOf, cvfOf in ×.
destruct H as [lv2 [lv3 [lv4 [VFE [v0 [w0 Hp]]]]]].
vcSteps. branchStepX.

(* True Branch *)
vcSteps.
unfold inv. ∃ (v0 - 1)%val. ∃ (c + (v0 - 1))%val. ∃ v0. split. intuition.

∃ (v0 - 1)%word.
∃ (c + (v0 - 1))%word.
searchMatch.
ssimpl.
ssimpl in Hp.
assert (0 < v0)%word.
apply list not null with (lv := lv3) (pv := v0).
assumption.
womega.

ssimpl in Hp.
apply wordTrueVal.
simpl.
destruct lte word dec.
discriminate.
assert (0 < v0)%word.
apply list not null with (lv := lv3) (pv := v0).
assumption.
womega.

(* False Branch *)

82

vcSteps.
unfold lex.
ssimpl.
∃ v0.
searchMatch.

(* Undefined Branch *)
apply eqNullPtrVundef in E.
assert (impl (bopVal eqop lv3 null ptr = Vundef) False).
ssimpl in Hp.
replace lv3.
apply vundefWordBopVal with (b := eqop) (w := w0) (w’ := 0%word).
unfold impl in H.
apply H.
assumption.

Qed.

83

Appendix D

Library Asmcost

(* This file contains the cost-dynamics analysis extension added to
Compcert to calculate the execution cost of a given program based
on the sum of cycle counts of the generated assembly code as it
is described in section 3.1.2 Liveness Properties of FreeRTOS.

This file is divided into two main sections. The first one contains
the program in charge of calculating the cost of execution. The second
part is a list of the theorems that were needed to guarantee the
correct behaviour of the extension added to Compcert.

The file can be located under $COMPCERT HOME/arm/Asmcost.v *)

(* Import Compcert libraries *)
Require Import AST.
Require Import Asm.
Require Import List.
Require Import ListSet.
Require Import String.
Require Import EqNat.
Require Import BinPos.
Require Import Bool.

(* Auxiliary function to determine whether a function definition
is built-in or not. *)

Fixpoint is builtin function (id : ident) (lon : list (nat × string)) : bool :=
match lon with
| nil ⇒ false
| (i,s)::tl ⇒ (ifb (beq nat (nat of P id) i)
(orb (prefix " builtin " s) (is builtin function id tl))
false)
end.

(* Calculate the value of a shift operation. An immediate shift operation
does not need an extra cycle to be computed. In any other case, an
extra cycle is needed to compute the shift operation as described in the
ARM documentation *)

Definition cost shift op (so: shift op) : nat :=
match so with
| SOimm ⇒ 0
| ⇒ 1
end.

(* Calculate the cost of a given assembly instruction *)
Definition cost instr (i : Asm.instruction) (lon : list (nat × string)) : nat :=
match i with
| Padd so ⇒ 1 + (cost shift op so) (* *r integer addition *)
| Pand so ⇒ 1 + (cost shift op so) (* *r bitwise and *)
| Pb ⇒ 3 (* *r branch to label *)

84

| Pbc ⇒ 3 (* *r conditional branch to label *)
| Pbsymb id ⇒ (if (is builtin function id lon) then 1 else 3) (* *r branch to symbol *)
| Pbreg ⇒ 3 (* *r computed branch *) (* PC destination *)
| Pblsymb id ⇒ (if (is builtin function id lon) then 12 else 3) (* *r branch and link to symbol *)
| Pblreg ⇒ 4 (* *r computed branch and link *)
| Pbic so ⇒ 1 + (cost shift op so) (* *r bitwise bit-clear *)
| Pcmp so ⇒ 1 + (cost shift op so) (* *r integer comparison *)
| Peor so ⇒ 1 + (cost shift op so) (* *r bitwise exclusive or *)
| Pldr ⇒ 3 (* *r int32 load *)
| Pldrb ⇒ 3 (* *r unsigned int8 load *)
| Pldrh ⇒ 3 (* *r unsigned int16 load *)
| Pldrsb ⇒ 3 (* *r signed int8 load *)
| Pldrsh ⇒ 3 (* *r unsigned int16 load *)
| Pmov so ⇒ 1 + (cost shift op so) (* *r integer move *)
| Pmovc so ⇒ 1 + (cost shift op so)(* *r integer conditional move *)
| Pmul ⇒ 5 (* *r integer multiplication *)
| Pmvn so ⇒ 1 + (cost shift op so) (* *r integer complement *)
| Porr so ⇒ 1 + (cost shift op so) (* *r bitwise or *)
| Prsb so ⇒ 1 + (cost shift op so) (* *r integer reverse subtraction *)
| Pstr ⇒ 2 (* *r int32 store *)
| Pstrb ⇒ 2 (* *r int8 store *)
| Pstrh ⇒ 2 (* *r int16 store *)
| Psdiv ⇒ 10 (* *r signed division *)
| Psub so ⇒ 1 + (cost shift op so) (* *r integer subtraction *)
| Pudiv ⇒ 10 (* *r unsigned division *)
| Pabsd ⇒ 4 (* *r float absolute value *)
| Padfd ⇒ 10 (* *r float addition *)
| Pcmf ⇒ 7 (* *r float comparison *)
| Pdvfd ⇒ 65 (* *r float division *)
| Pfixz ⇒ 8 (* *r float to signed int *)
| Pfltd ⇒ 9 (* *r signed int to float *)
| Pldfd ⇒ 8 (* *r float64 load *)
| Pldfs ⇒ 8 (* *r float32 load *)
| Plifd ⇒ 8 (* *r load float constant *)
| Pmnfd ⇒ 8 (* *r float opposite *)
| Pmvfd ⇒ 8 (* *r float move *)
| Pmvfs ⇒ 8 (* *r float move single precision *)
| Pmufd ⇒ 8 (* *r float multiplication *)
| Pstfd ⇒ 8 (* *r float64 store *)
| Pstfs ⇒ 8 (* *r float32 store *)
| Psufd ⇒ 8 (* *r float subtraction *)
(* Pseudo-instructions *)
| Pallocframe ⇒ 7 (* *r allocate new stack frame *)
| Pfreeframe ⇒ 3 (* *r deallocate stack frame and restore previous frame *)
| Plabel ⇒ 0 (* *r define a code label *)
| Ploadsymbol ⇒ 3 (* *r load the address of a symbol *)
| Pbtbl ⇒ 5 + 1 (* *r N-way branch through a jump table *)
| Pbuiltin ⇒ 5 (* *r built-in *)
end.

(* The cost of the code inside a function definition is the sum of the cost
of all individual instructions that define the function definition. *)

85

Definition cost code (il : list Asm.instruction) (lon : list (nat × string)) : nat :=
List.fold right plus 0 (List.map (fun par ⇒ (cost instr par lon)) il).

(* The cost of a single function definition. The cost of external function
definitions cannot be calculated since the internal instructions are
not known *)

Definition cost fundef (f : Asm.fundef) (lon : list (nat × string)) : nat :=
match f with
| External ⇒ 0
| Internal c ⇒ cost code c lon
end.

(* The cost of a list of function definitions is the sum of the cost of
the first function definition plus the cost of the rest of function
definitions *)

Fixpoint cost list fd (fdl : list (ident × fundef)) (lon : list (nat × string)) : nat :=
match fdl with
| nil ⇒ 0
| cons (i,fd) rem ⇒ cost fundef fd lon + cost list fd rem lon
end.

(* The cost of execution of a program is the cost of execution of the
list of function definitions *)

Definition cost program (p : Asm.program) (lon : list (nat × string)) : nat :=
cost list fd (prog funct p) lon.

(* The following is the definition of the extension to
the AST.v file under $compcert arm/common along with
some remarks (theorems) that will facilitate the proof of correctness *)

Section MAP PARTIAL ARG.

Variable A B C : Type.
Variable prefix errmsg : A → errmsg.
Variable f : B → list (nat × string) → res C.
Variable arg : list (nat × string).

Fixpoint map partial arg (l : list (A × B)) : res (list (A × C)) :=
match l with
| nil ⇒ OK nil
| (a, b) :: rem ⇒

match f b arg with
| Error msg ⇒ Error (prefix errmsg a ++ msg)%list
| OK c ⇒

do rem’ ← map partial arg rem;
OK ((a, c) :: rem’)

end
end.

Remark In map partial arg :
∀ l l’ a c,
map partial arg l = OK l’ →
In (a, c) l’ →
∃ b, In (a, b) l ∧ f b arg = OK c.

Proof.
induction l ; simpl.
intros. inv H. elim H0.

86

intros until c. destruct a as [a1 b1].
caseEq (f b1 arg); try congruence.
intro c1 ; intros. monadInv H0.
elim H1 ; intro. inv H0. ∃ b1 ; auto.
exploit IHl ; eauto. intros [b [P Q]]. ∃ b; auto.

Qed.

Remark map partial arg forall2 :
∀ l l’,
map partial arg l = OK l’ →
list forall2
(fun (a b: A × B) (a c: A × C) ⇒

fst a b = fst a c ∧ f (snd a b) arg = OK (snd a c))
l l’.

Proof.
induction l ; simpl.
intros. inv H. constructor.
intro l’. destruct a as [a b].
caseEq (f b arg). 2: congruence. intro c; intros. monadInv H0.
constructor. simpl. auto. auto.

Qed.

End MAP PARTIAL ARG.

Remark map partial arg total :
∀ (A B C : Type) (prefix : A → errmsg) (f : B → list (nat × string) → C) (myl : list (nat × string)) (l :

list (A × B)),
map partial arg prefix (fun b arg ⇒ OK (f b arg)) myl l =
OK (List.map (fun a b ⇒ (fst a b, f (snd a b) myl)) l).

Proof.
induction l ; simpl.
auto.
destruct a as [a1 b1]. rewrite IHl. reflexivity.

Qed.

Remark map partial arg identity :
∀ (A B : Type) (prefix : A → errmsg) (myl : list (nat × string)) (l : list (A × B)),
map partial arg prefix (fun b arg ⇒ OK b) myl l = OK l.

Proof.
induction l ; simpl.
auto.
destruct a as [a1 b1]. rewrite IHl. reflexivity.

Qed.

(* PROOF OF CORRECTNESS *)

The following is a variant of transform program partial where a extra argument of function names is
passed to the transformation Section TRANSF PARTIAL PROGRAM ARG.

Variable A B V : Type.
Variable transf partial : A → list (nat × string) → res B.

Definition transform partial program arg (p: program A V) (myl : list (nat × string)) : res (program B
V) :=
do fl ← map partial arg prefix name transf partial myl p.(prog funct);
OK (mkprogram fl p.(prog main) p.(prog vars)).

(* A program consist of

87

- The list of function definitions
- The main function that serves as the entry point
- The list of variables

The proof consists on the correct translation of each part of the program *)

Lemma transform partial program arg function:
∀ p l tp i tf,
transform partial program arg p l = OK tp →
In (i, tf) tp.(prog funct) →
∃ f, In (i, f) p.(prog funct) ∧ transf partial f l = OK tf.

Proof.
intros. monadInv H. simpl in H0.
eapply In map partial arg ; eauto.

Qed.

Lemma transform partial program arg main:
∀ p l tp,
transform partial program arg p l = OK tp →
tp.(prog main) = p.(prog main).

Proof.
intros. monadInv H. reflexivity.

Qed.

Lemma transform partial program args vars:
∀ p l tp,
transform partial program arg p l = OK tp →
tp.(prog vars) = p.(prog vars).

Proof.
intros. monadInv H. reflexivity.

Qed.

End TRANSF PARTIAL PROGRAM ARG.

(* Adding an extension to Compcert required to change some parts
of the code. While the changes were not sbstantial, they did require
to make slight modifications to some of the theorems, none of them
affecting the preservation of corrcetness.

The following is a sample of some of the theorems that required changes.
In general, an additional argument with the names of the function definitions
was passed to the phases of the compiler even though such argument was
ignored for all of them except the cost of execution. *)

Theorem transf rtl program correct :
∀ p l tp beh,
transf rtl program p l =OK tp→ (* The list of function names "l" is passes as parameter *)

not wrong beh →
RTL.exec program p beh →
Asm.exec program tp beh.

Proof.
intros. unfold transf rtl program, transf rtl fundef in H.
repeat TransfProgInv.
repeat rewrite transform program print identity in ×. subst.
exploit transform partial program identity ; eauto. intro EQ. subst.

88

generalize Alloctyping.program typing preserved Tunnelingtyping.program typing preserved
Linearizetyping.program typing preserved Reloadtyping.program typing preserved
Stackingtyping.program typing preserved ; intros.

eapply Asmgenproof.transf program correct ; eauto 6.
eapply Machabstr2concr.exec program equiv ; eauto 6.
eapply Stackingproof.transf program correct ; eauto.
eapply Reloadproof.transf program correct ; eauto.
eapply Linearizeproof.transf program correct ; eauto.
eapply Tunnelingproof.transf program correct ; eauto.
eapply Allocproof.transf program correct ; eauto.
eapply CSEproof.transf program correct ; eauto.
eapply Constpropproof.transf program correct ; eauto.
eapply CastOptimproof.transf program correct ; eauto.
eapply Tailcallproof.transf program correct ; eauto.

Qed.

Theorem transf cminor program correct :
∀ p l tp beh,
transf cminor program p l =OK tp→ (* The list of function names "l" is passes as parameter *)

not wrong beh →
Cminor.exec program p beh →
Asm.exec program tp beh.

Proof.
intros. unfold transf cminor program, transf cminorsel fundef in H.
simpl in H. repeat TransfProgInv.
eapply transf rtl program correct with (l := l); eauto.
eapply RTLgenproof.transf program correct ; eauto.
eapply Selectionproof.transf program correct ; eauto.
rewrite print identity. auto.

Qed.

Theorem transf c program correct :
∀ p l tp beh,
transf c program p l = OK tp→ (* The list of function names "l" is passes as parameter *)

not wrong beh →
Cstrategy.exec program p beh →
Asm.exec program tp beh.

Proof.
intros until beh; unfold transf c program; simpl.
rewrite print identity.
caseEq (SimplExpr.transl program p); simpl; try congruence; intros p0 EQ0.
rewrite print identity.
caseEq (Cshmgen.transl program p0); simpl; try congruence; intros p1 EQ1.
caseEq (Cminorgen.transl program p1); simpl; try congruence; intros p2 EQ2.
intros EQ3 NOTW SEM.
eapply transf cminor program correct ; eauto.
eapply Cminorgenproof.transl program correct ; eauto.
eapply Cshmgenproof.transl program correct ; eauto.
eapply SimplExprproof.transl program correct ; eauto.

Qed.

89

	Permission to Use
	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Background
	Real-Time Operating Systems (RTOS)
	FreeRTOS

	Formal Verification
	Model Checking
	Theorem Proving
	Hoare Logic
	Separation Logic
	Calculus of Inductive Constructions (CIC)
	Compcert
	CIC + Separation Logic

	Experiment
	Proving Significant Properties of FreeRTOS
	Safety Properties of FreeRTOS
	Liveness Properties of FreeRTOS

	Evaluation
	Software Verification Standpoint
	Proof-based vs. Model-based
	Degree of automation
	Full vs. property-based verification
	Intended domain of application
	Pre- vs. post-development

	Software Engineering Standpoint
	Design
	Implementation
	Documentation
	Testing
	Maintenance

	Summary
	Limitations
	Guaranteeing memory exclusive access
	Inline assembly instructions
	Coq and the use of large numbers

	Future Work

	References
	Library Memory_Safety_1
	Library Memory_Safety_2
	Library Scheduler_Liveness
	Library Asmcost

