
Design And Implementation of a

Radix-100 Division Unit

A Thesis Submitted

to the College of Graduate Studies and Research

in Partial Fulfillment of the Requirements

for the Degree of Master of Science

in the Department of Electrical and Computer Engineering

University of Saskatchewan

by

Zhuo Wang

Saskatoon, Saskatchewan, Canada

c⃝ Copyright Zhuo Wang, August, 2012. All rights reserved.

Permission to Use

In presenting this thesis in partial fulfillment of the requirements for a Postgraduate

degree from the University of Saskatchewan, it is agreed that the Libraries of this

University may make it freely available for inspection. Permission for copying of this

thesis in any manner, in whole or in part, for scholarly purposes may be granted by

the professors who supervised this thesis work or, in their absence, by the Head of

the Department of Electrical and Computer Engineering or the Dean of the College

of Graduate Studies and Research at the University of Saskatchewan. Any copying,

publication, or use of this thesis, or parts thereof, for financial gain without the

written permission of the author is strictly prohibited. Proper recognition shall be

given to the author and to the University of Saskatchewan in any scholarly use which

may be made of any material in this thesis.

Request for permission to copy or to make any other use of material in this thesis

in whole or in part should be addressed to:

Head of the Department of Electrical and Computer Engineering

57 Campus Drive

University of Saskatchewan

Saskatoon, Saskatchewan, Canada

S7N 5A9

i

Acknowledgments

First and foremost, I would like to thank my supervisor, Dr. Seok-Bum Ko, for all

his help. He offered me his outstanding knowledge, experience, advices, and patience

without which the thesis would not have been possible. In addition, Dr. Ko provided

many advices for my life and career, which helped knowing my future much better.

Also, I appreciate the generous help from Liu Han who works in the same lab

with me. It is him who helped me avoiding many detours. In addition, I would like

to thank all the friends working in 2C60 for all their friendship and help.

I would also like to thank Dr. Ron Bolton, Dr. Anh van Dinh, Dr. Aryan Saadat

Mehr in the Department of Electrical and Computer Engineering for reading my

thesis and providing comments. And I would like to thank Dr. Li Chen for his help

and advices during my graduate studies.

Finally, I would like to thank family for their understanding, constant support

and encourage throughout my life.

ii

Abstract

Nowadays, DFP (Decimal Floating-point) is widely used in financial fields such

as tax calculation, currency conversion and other areas where precise arithmetic is

needed. Binary arithmetic, although widely used in current ALU (Arithmetic Log-

ic Unit)s, has some limitations when performing correct decimal arithmetic. Con-

sequently, DFU has drawn more and more attention in recent years. Due to the

increasing demands for DFUs, IEEE 754-2008 formally defines three decimal DFU

formats for both industry and research areas.

To perform DFP arithmetic, hardware implemented DFUs are the trend in indus-

try. IBM announced Power6, which fully supports IEEE 754-2008 standard, in the

year of 2007. But that microprocessor is mainly designed for high-end computers.

More effort should be made on the spread of DFUs.

In this thesis, a hardware based radix-100 divider is designed and implemented.

Instead of using popular SRT (Sweeney, Robertson, and Tocher) division algorithm,

selection by truncation algorithm is utilized. As a high-radix decimal divider, radix-

100 divider can generate two quotient digits in each iteration. This is the major

advantage of high-radix decimal divider compared to the decimal dividers. Besides,

a compensation method is utilized to reduce the cycle time and the time consumed

on the “multiples selection” module. Decimal carry-save adders and decimal carry-

propagate adders are reused to reduce the overall area.

The radix-100 divider is proven to be faster (3%) than the current decimal dividers,

although the ratio is not outstanding. Meanwhile, the radix-100 divider consumes a

larger area than the decimal dividers. It is expected to be a good start for the radix-

100 divider. By applying more techniques in the future, the performance (latency) of

the radix-100 divider is very likely to be much better than the decimal dividers.

iii

Table of Contents

Permission to Use i

Acknowledgments ii

Abstract iii

Table of Contents iv

List of Tables vii

List of Figures viii

List of Abbreviations ix

1 Introduction 1

1.1 Why Decimal? . 2

1.2 The Evaluation of Decimal Arithmetic 4

1.3 IEEE 754-2008 Standard . 5

1.3.1 Decimal Formats and Encoding 6

1.3.2 Decimal Rounding . 7

1.3.3 Exception Handling . 8

1.4 Radix-100 Division . 10

1.5 Binary Division Algorithms . 11

1.5.1 Binary Non-restoring Method 12

1.5.2 Binary SRT Method . 13

1.5.3 High-radix Division . 13

iv

1.6 Contribution . 16

2 Previous Work 18

2.1 Typical SRT-based Decimal Divider 18

2.2 Non-restoring based Decimal Divider 22

2.3 Decimal Divider with Different Encodings 25

2.4 Radix-16 Dividers . 28

3 Algorithm 31

3.1 Decimal Floating-point Division . 31

3.2 Decimal Representations . 33

3.3 Proposed Algorithm . 35

3.3.1 Pre-scaling Parameters . 37

3.3.2 Pre-scaling . 40

3.3.3 Quotient Selection . 42

4 Architecture 45

4.1 Major Blocks . 45

4.1.1 10’s Complement . 45

4.1.2 Doubler & Quintupler . 46

4.1.3 BCD DCSA . 47

4.2 Pre-scaling . 48

4.3 Iteration . 51

4.3.1 Digit Recognition . 51

v

4.3.2 Multiples Selection . 54

4.3.3 Addition . 57

4.3.4 Reuse Consideration . 58

4.3.5 On-the-fly Conversion . 60

4.3.6 Rounding . 61

4.4 Operation Sequence . 63

5 Implementation and Comparison 65

5.1 Synthesis Results . 65

5.2 Comparison . 67

5.2.1 Pre-calculation . 67

5.2.2 Quotient Selection . 68

5.2.3 Addition . 69

5.2.4 Area . 69

5.3 Conclusion . 70

6 Summary 71

7 Future Work 74

References 76

vi

List of Tables

1.1 Database statistic results . 2

1.2 Example of a binary implemented decimal tax calculation 3

1.3 Decimal formats defined in IEEE 754-2008 6

2.1 Different encodings and their efficiency 25

3.1 Pre-scaling parameter comparison . 38

3.2 Parameter exceptions . 39

3.3 Generation of Dm . 40

3.4 Parameter’s range . 40

3.5 Needs of compensations . 43

4.1 9’s complement table . 46

4.2 Algorithm for the quintupler . 47

4.3 Prediction of sign . 53

4.4 qHD
′ and the corresponding compensation selection 54

4.5 qL1D
′, qL2D

′ and the corresponding compensation selection 55

4.6 Addends . 57

4.7 Rounding rules . 62

5.1 Critical Path . 66

5.2 Results Comparison . 67

vii

List of Figures

1.1 P-D plot . 16

2.1 Overlapping quotient selection . 28

2.2 Cascaded radix-16 divider . 30

3.1 Architecture of IEEE 754-2008 divider 32

4.1 Architecture of the pre-scaling module 49

4.2 Architecture of the iteration module 51

viii

List of Abbreviations

ALU Arithmetic Logic Unit

BCD Binary Coded Decimal

BID Binary Integer Decimal

CPA Carry-propagate adder

CSA Carry-save adder

DCSA Decimal Carry-save adder

DCPA Decimal Carry-propagate adder

DFU Decimal Floating-point Unit

DFP Decimal Floating-point

DPD Densely Packed Decimal

LSB Least Significant Bit

LSD Least Significant Digit

MSB Most Significant Bit

MSD Most Significant Digit

SRT Sweeney, Robertson, and Tocher division algorithm

FO4 Fan-out of 4

MUX Multiplexer

ix

1. Introduction

Decimal arithmetic is the most natural arithmetic system in human calculations.

In fact, during the early days of the computer era, many computers, such as ENIAC [1]

and IBM 650 [2] used decimal arithmetic. However, the fundamental units of memory

and flip-flops are naturally binary elements and the representation of decimal digit,

which takes at least 4 binary bits, consumes much more storage than the binary based

system [3]. What’s more, the binary system was much simpler and faster than the

decimal system at that time [3]. Consequently, binary systems dominate the current

world and few computer systems include the decimal arithmetic unit.

Until now, full IEEE 754-2008 supportive DFUs were limited on some certain high-

end microprocessors [4], for example, IBM POWER6 [5], IBM mainframe Z9 (with

assistance) [6], and IBM mainframe Z10 [7], while in most other microprocessors,

decimal operations were based on software libraries or integer decimal arithmetic

units (IBM Z900 [8]).

Due to the booming commercial needs, decimal arithmetic has drawn more and

more attention. Hardware implemented DFU is a trend and it is possible that, just

like the popularization of the binary floating-point units, the DFU will be a standard

block in low-end microprocessors in a few years [4].

To make the DFU more widely used in the future, many companies and researchers

tried their best to improve the performance of the DFU. However, efforts focusing on

the four basic operations (addition, subtraction, multiplication and division) are not

the same. Division got the least amount of attention. However, the importance of

division should not be underestimated [9]. Consequently, in this thesis, we focus on

1

the decimal division field and try to apply high-radix to the decimal field.

In Section 1.1, the reasons why decimal arithmetic is important are introduced.

The history and evaluation of decimal arithmetic will be covered in Section 1.2. IEEE

754-2008 standard is explained in Section 1.3 followed by a brief introduction of the

proposed divider. Finally, some binary division methods are included in Section 1.5

since high-radix division is also based on those fundamental methods.

1.1 Why Decimal?

Although binary arithmetic is the major workforce in ALU, decimal calculation

can never be avoided. First of all, it is proven that decimal numbers are quite widely

used [10]. A database owned by 51 major organizations, which includes Banking, Air-

line, Financial Analysis, Insurance, Inventory control, Management reporting, Mar-

keting services and so on, was analyzed. There are totally 456,420 columns of data

used to get the statistic information, and the results are shown in Table 1.1.

Table 1.1 Database statistic results

Data Type No.ofcolumns Percent

Decimal 251,038 55.0

Integer 78,842 17.3

SmallInt 120,464 26.4

Float 6,180 1.4

From table 1.1, it is notable that 55% of the total analyzed data are decimal.

What’s more, another 43.7% are integers which are normally held in the form of

decimal numbers.

Another essential reason for using the decimal system is that we have been used

to the decimal arithmetic ever since the numbers were invented by our ancestors.

Although binary can represent every decimal integer number, it cannot represent most

of decimal fractions. The value 0.1, for example, results in an infinitely repeating

binary number. Other than that, if we use binary to represent a certain decimal

2

fraction, a notable difference might happen. For instance, the calculation of the total

amount of money (including 5% tax) which should be charged on a phone call cost

$0.70 will result in different bills in decimal and binary systems. The calculation and

comparison is shown in Table 1.2.

Table 1.2 Example of a binary implemented decimal tax calculation

Number system Cost Including Tax Calculation result Rounding

Decimal 0.7 1.05 0.735 0.74

Binary 0.6999999 1.05 0.734999999 0.73

Notice that this difference is not because of rounding. In fact, the cause of this

issue is the lack of binary representations [4], so that 0.7 cannot be represented prop-

erly in binary. This one cent difference will be accumulated to quite a large amount

of money if this kind of calculation is used by a big telecom company. Consequently,

binary arithmetic cannot be used in many commercial fields such as banking, account-

ing, tax calculation, insurance, currency conversion and so on. These areas almost

touch everyone’s life so no fault can be tolerated.

Another issue caused by binary arithmetic is the removal of trailing fraction zeros.

For example, there is no way for the binary system to distinguish 2.4 and 2.40 since the

current binary format doesn’t support the trailing fraction zeros. However, decimal

system can easily keep those trailing fraction zeros. Trailing fraction zeros may seem

meaningless, but they are essential because of the following reasons [11]:

1. Users expect the trailing fraction zeros after some certain arithmetic operations

such as addition and subtraction.

2. Sometimes currency calculation needs a full width of digits. For example, in

European regulations, the exchange rates have to be represented in 6 digits, even

when there are trailing fraction zeros. For instance, 1 EURO should equal to 340.750

Greek drachmas (Only for instance, the current ratio may be different).

3. Unit depends on the LSD (least significant digit) of a sequence of numbers. If

3

the trailing fraction zeros are removed, the unit will be changed. For example, there

is a difference between “using a 1.2 meter steel” and “using a 1.200 meter steel” to

construct a certain part of a house.

Overall, the trailing fraction zeros are essential in the calculation, which is another

reason for using decimal arithmetic. From these three aspects, it is certainly needed

to figure out a way to deal with decimal calculations. In fact, decimal arithmetic

is not a brand-new topic. There are several ways of performing decimal arithmetic.

They are introduced in Section 1.2.

1.2 The Evaluation of Decimal Arithmetic

Efforts have been made to deal with decimal arithmetic. Before decimal systems

were implemented in hardware, there were two ways to calculate decimal numbers [12].

The easier way is to convert decimal numbers to binary numbers, then use the built-in

binary arithmetic unit to finish the operation before converting the results back to

decimal numbers. However, the major technique behind this method is still binary

arithmetic, so the issues caused by binary arithmetic are still there. Another way is to

keep the decimal numbers in their original format while using software libraries to do

the decimal calculation. This method, which includes Sun BigDecimal for Java 5 and

IBM decNumber library for ANSI C and C++, is widely used. But the performance of

those softwares are unacceptable. In some applications, decimal calculations can take

almost 90% of the total workload [11]. In fact, it is proven that the software based

operation is 100 to 1000 times slower than the DFU implemented in hardware [12].

Due to the common complaints of the performance of software-based decimal

arithmetic, many companies have tried to implement hardware based decimal sys-

tems. The IBM z900 is one of the earliest mainframe microprocessors that includes

decimal arithmetic unit [8]. However, this type of decimal arithmetic is limited on

decimal integers. Despite the fact that this decimal arithmetic unit can improve the

performance of decimal fixed-point calculations, it requires manual scaling which is

error-prone and hard to use [10].

4

The ideal way of doing decimal arithmetic is to execute decimal operations on

exact arithmetic. The exact arithmetic will hold every single bit generated by the

arithmetic unit. For example, multiplication will probably need double length of each

operand. However, the commercial calculations have become more and more complex

so it is impossible to let the computer deal with the exact arithmetic since the memory

storing those commercial numbers will run out eventually [10].

Another restriction of decimal fixed-point and integer arithmetic is “rounding”.

Most of the fixed-point arithmetic operations do not require rounding. However,

rounding is required by many financial and other applications, so fixed-point and

integer arithmetics are not capable of dealing with calculations happened in those

areas [4].

The decimal floating-point can be used to avoid any inaccuracy seen in the binary

floating-point, and it can extend the decimal fixed-point and the integer arithmetic

[4]. Therefore, decimal floating-point arithmetic should dominate the industry in

the future. IBM has shown strong interests in the decimal floating-point area. In

the year of 2007, IBM announced the POWER6 microprocessor, which brought the

microprocessor to the decimal floating-point era. It fully supports IEEE 754-2008

standard and includes a DFU in each core [5].

1.3 IEEE 754-2008 Standard

Without a world-accepted format, it would be hard for the decimal floating-point

arithmetic to be widely used. Before the establishment of IEEE 854-1987 (with-

drawn by IEEE in 2008), there were no standards for floating-point numbers so each

application had its own format. However, IEEE 854-1987 was an radix independen-

t floating-point standard, it is mainly designed for scientific and engineering uses

instead of commercial uses [4]. Consequently, this standard cannot be adapted to

commercial needs. On the other hand, another standard, IEEE 754-1985, is a bina-

ry floating-point standard so it cannot be used for decimal arithmetic. Under these

circumstances, IEEE published the IEEE 754-2008 standard (previously known as

5

IEEE 754r), which is derived from IEEE 854-1987 and IEEE 754-1985, in August

2008. IEEE 754-2008 includes almost all of the standards defined in its predeces-

sors [13].

IEEE 754-2008 mainly defines several standards for both binary and decimal

floating-point data, including formats, encodings, rounding rules, operations and some

exception handling [14]. In the following subsections, the rules of the decimal arith-

metic are introduced.

1.3.1 Decimal Formats and Encoding

Basic format

The standard defines three decimal formats, which are decimal 32, decimal 64 and

decimal 128, as seen in Table 1.3.

Table 1.3 Decimal formats defined in IEEE 754-2008

Decimal format Digits Emax Emin

Decimal 32 7 +96 -95

Decimal 64 16 +384 -383

Decimal 32 34 +6144 -6143

The representation of decimal floating-point number is similar to the binary floating-

point number except that its base is 10, as shown in the following formula:

(−1)s × C × 10q (1.1)

Where s is the sign, which can be zero or one, C is the significant value, or coefficient,

and q is the exponent. There are two restrictions on C and q [13]:

1. C must be an unsigned integer between 0 and 10 × p − 1 , where p is the

number of digits in each decimal format (e.g., if p=7 then C will not be larger than

9999999). Notice that in the standard, C is not required to be normalized. Although

normalized C can save some storage and bring advantage to the calculations in binary

floating-point formats, it makes no sense in the decimal field. What’s more, as we

discussed in Section 1.1, it is preferred to keep the non-normalized decimal numbers.

6

2. q must be an integer satisfying this equation: 1 − Emax ≤ q + p − 1 ≤ Emax.

For example, q ranges from -101 to 90 in decimal 32 format.

Extended precision formats

In some certain cases, the formats provided in the standard might be insufficient.

In the extended precision formats, the precision or the range can be extended.

There are two kinds of encoding defined in the standard. DPD, which is short for

Densely Packed Decimal, is proposed by IBM. It can fit three decimal digits into 10

bits [15]. Compared with BCD, which use 4 bits to represent each digit, the DPD

introduces a significant reduction in terms of storage and bandwidth. However, since

DPD is quite a compact format, it is not convenient to use DPD directly in the

arithmetic implementations [4]. So some compact representations such as BCD, is

easier to handle. Due to the low cost (two or three gates delay [16]) in conversion

between DPD and BCD, the DPD stored BCD operation is possible and utilized in

POWER 6 [17].

Another encoding method is BID (Binary Integer Decimal) proposed by Intel.

This format is designed mainly for software implementation [4] to avoid the penalties

caused by the conversion between DPD and BCD [18]. Both encoding cases apply to

all decimal formats.

1.3.2 Decimal Rounding

As discussed in Section 1.2, rounding is one of the reasons why decimal floating-

point units will replace the decimal integer or fixed-point units. Operations like

multiplication will consume a significant amount of storage. Under the IEEE 754-

2008 standard, the decimal operations have to be followed by a rounding step.

roundTiesToEven

Round the operation result to the nearest value. If the halfway condition happens,

it is rounded to the nearest number with an even least significant bit.

7

roundTiesToAway

Round the operation result to the nearest value. If the halfway condition happens,

it is rounded to the number with larger magnitude.

roundTowardsPositive

Also named as rounding up or ceiling. In this rounding scheme, the operation

result is rounded to the positive infinite. The closest number (greater than the exact

result) which satisfies the decimal format should be used as the rounding result.

roundTowardsNegative

Also named as rounding down or floor. In this rounding scheme, the operation

result is rounded to the negative infinite. The closest number (lower than the exact

result) which satisfies the decimal format should be used as the rounding result.

roundTowardsZero

Also named as truncation. In this rounding scheme, the operation result is trun-

cated. The closest number (lower in magnitude) which satisfies the decimal format

should be used as the rounding result.

Among the five rounding schemes mentioned above, roundTiesToEven is recom-

mended since the result is rounded up and down alternately. This feature will avoid

keeping rounding up or down which may result in a positive or negative bias [19].

Also, there are three other rounding modes, which, though not defined in the

IEEE standard, are used occasionally in DFU implementations [4]. They are round-

ingTiesZero, roundAwayZero and roundToVariablePrecision.

1.3.3 Exception Handling

The standard specifies five different kinds of exceptions. These exceptions hap-

pens when the result is not the expected floating-point number. To deal with these

exceptions, the normal logic which is used to deal with meaningful decimal floating-

8

point numbers will be bypassed and the default nonstop exception handling will set

a status flag to indicate which exception has been triggered. The occurrence of these

exceptions always has something to do with the following numbers: ±0, ±∞, and

not-a-number (NaN) [20]. Some of these numbers have different encoding modes than

those mentioned above, but they are not within our interests.

Invalid Operation

This happens when the result of a certain operation is not defined. This might be

caused by some invalid operands, for instance, computation with NaN, square-root

of negative numbers and so on. The default result is a qNaN with other information.

Division by zero

As can be explained by the title, when the divisor is 0 in a division operation, this

exception will be triggered. The result will be set as a signed ∞.

Overflow

It is quite possible that after some arithmetic operations, the result exceeds the

standard’s maximum supportive number. If this happens, there are several possi-

ble results, which are plus or minus infinity or the maximum representable positive

number in the corresponding format. This depends on the rounding mode.

Underflow

Underflow happens when the magnitude of a result is below the smallest repre-

sentable number in the corresponding format. In this case, the result can be zero,

or a subnormal number, or the positive or negative minimum number in the current

decimal format.

Inexact

This status flag will be raised if the correct rounded results is different from the

infinite precision. Then, the default result would be the rounded one or the overflow

result.

9

Notice that these five operations have nothing to do with the main logic, which

is used to calculate normal numbers. They are performed in some side logics which

will not influence the overall performance. Consequently, they will not be touched in

the algorithm discussed in this thesis.

1.4 Radix-100 Division

Ever since DFU became a popular topic in industry as well as the research area,

decimal floating-point adders and multipliers have drawn most of the attention. The

reason is that division is believed to be a rare operation hence less effort has been made

[21]. However, it is true that among the four basic operations (addition, subtraction,

multiplication and division), division, although is a infrequently used operation, is

the most complex and time-consuming calculation. Proven in [9], underestimating

the division implementation will result in a degradation of system performance. This

fact reveals the incentive to design high-speed division algorithms so as to enhance

the performance of arithmetic processors.

Concluded and compared in [21], division algorithms can be divided into five

classes, which are “digit recurrence, functional iteration, very high radix, table lookup,

and variable latency” [21]. However, it doesn’t mean each DFU can only follow one

of these methods, instead, multiple methods are used in each DFU. For instance, a

functional iteration based division unit can use a look-up table to get the approximate

initial reciprocal, then use the functional iteration to get the quotients, then use the

variable latency methods at the end of the calculation [21].

In terms of the popular methods used in the area of decimal division, the SRT

algorithm (a digit recurrence method which is named after Sweendy, Roberton, and

Tocher [19]) is the most widely used technique. This is supported by some published

papers in recent years [22] [23] [24] [25] [26]. It is also proved that SRT would be

applied to decimal field [22]. Other implementations are [27], which is based on

Newton-Raphson algorithm (A typical functional iteration method), and [17], which

utilizes selection by truncation method. The latest radix-10 divider using SRT has

10

reached a great performance [26].

However, there is a limitation of improvement inside the radix-10 algorithm. As

a way of improving the performance of decimal dividers, high-radix decimal division

algorithms can be considered. This is utilized widely in the area of binary division

[28] [29] [30] [31]. We also focus on high-radix decimal division method (radix-100)

in this thesis to try to ameliorate the slow decimal division operation.

However, the well-known SRT algorithm is not suitable for the radix-100 division.

The main reason is that the number of potential quotients is tremendous. SRT needs

the same number of comparisons as the number of quotients before getting the final

quotient. This is unrealistic for such a high-radix division. In the binary field, over-

lapping [29] and cascading [30] methods are developed for high-radix implementation.

However, neither method has a notable advantage in terms of area and latency in the

usage of radix-100 division.

Theoretically, higher radix would consume higher area to reach a good perfor-

mance. As concluded from several recent papers, reduction of overall latency is the

major aspect in the research area. A non-restoring method combined with selection

by truncation method [17] has drawn our attention. Although performing moder-

ately in the field of decimal division, it has an inherent advantage which is a simple

quotient digit selection. By adopting that algorithm in radix-100 divider, a two-digit

quotient can be selected by simple combinational logics at the same time. Although

selection by truncation takes more time in the pre-scaling step compared with SRT,

iteration cycles are reduced by half compared to radix-10 dividers, which can save a

great amount of time in the end.

Details of the algorithm will be explained in Chapter 3.

1.5 Binary Division Algorithms

Although decimal division may seem like a different field to the binary division

field, the basic methods used in the decimal field are derived from the binary field.

11

Here, we only concisely introduce the non-restoring and the SRT methods whose

details can be found in the book [19].

1.5.1 Binary Non-restoring Method

The basic idea of the non-restoring method is that the remainder can be negative

while the quotient obtained in each iteration might be incorrect. These incorrect

quotient digits can be modified by next quotient digits. Assuming Ri is the partial

remainder obtained after the ith iteration. The basic formula in binary division is

shown in equation (1.2).

Ri = 2×Ri−1 − qi ×D (1.2)

The selection of the qi follows

qi =

 1 if 2×Ri−1 ≥ 0

−1 if 2×Ri−1 ≤ 0
(1.3)

One of the reasons why the non-restoring method is faster than the restoring

method is that it compares the partial remainder with 0 instead of D. In hardware, the

logic performing non-zero checking is much simpler than that used to do comparison

between two data.

In the restoring algorithm, if 2×Ri−1−D ≤ 0, the subtraction will be cancelled and

the remainder would be 2× Ri−1. In the next iteration, the remainder is left shifted

by one bit and D is subtracted from the remainder again. After these two iterations,

the partial remainder should be 4 × Ri−1 − D. In the non-restoring method, the D

is subtracted regardless of the sign of the partial remainder. In the next iteration,

since the previous partial remainder is negative, D should be added. Consequently,

the result is 2 × (2 × Ri−1 − D) + D = 4 × Ri−1 − D. By performing this kind

of correction, the result of the non-restoring method will be the same with that of

restoring algorithm.

12

1.5.2 Binary SRT Method

Notice that the non-restoring division needs to perform addition or subtraction

in every iteration, which can be sped up by using SRT division [19]. The main

improvement of SRT is the introduction of quotient 0 and the definition of boundary.

The selection of qi can be changed to equation (1.4)

qi =

1 if 2×Rr−1 ≥ D

0 if −D ≤ 2×Rr−1 ≤ D

−1 if 2×Rr−1 ≤ −D

(1.4)

The calculation of remainder still follows equation (1.2).

This requires the comparison between the partial remainder and the divisor, which,

as discussed before, is time-consuming in hardware implementation. Consequently, if

the divisor can be normalized to a certain range, such as 1
2
≤ |D| ≤ 1, the partial

remainder can be compared with either 1
2
or −1

2
instead of |D|, which is obviously

easier to implement. Notice that 1
2
is 0.1 in binary.

Now, the selection of qi becomes equation (1.5). This kind of division algorithm

is called SRT.

qi =

1 if 2×Rr−1 ≥ 1

2

0 if −1
2
≤ 2×Rr−1 ≤ 1

2

−1 if 2×Rr−1 ≤ −1
2

(1.5)

Notice that as long as we follow equation (1.5), the new partial remainder should

always be smaller than |1
2
|, which is smaller than or equal to |D|. Only if that

convergence requirement is satisfied can SRT work properly. Imagine if one partial

remainder was larger than |D|, the next partial remainder 2×Ri −D would still be

larger than |D|. This would continue so the division would never end.

1.5.3 High-radix Division

As discussed in Section 1.4, high-radix division is an efficient way to improve

the performance of division. No matter in decimal or binary field, many tricks and

13

techniques have been used to speed up the division. However, most of their basic

division algorithms are SRT based high-radix division. This method is also considered

to be applied to the radix-100 divider. Although it seems that SRT is not suitable

for the radix-100 division, it is still worth discussing the basic ideas of the high-radix

SRT binary division algorithm.

Assuming radix β (β = 2m) is utilized to perform the high-radix division, then the

number of the total steps generating the required number of quotients n is reduced

to n
m
. The equation of this high-radix division would be in equation

Ri = β ×Ri−1 − qi ×D (1.6)

Where the qi is no longer [−1, 1]. Instead, qi can be any value ranging from −α

to α, where α should meet the equation [19].

⌈1
2
(β − 1)⌉ ≤ α ≤ (β − 1) (1.7)

As discussed before, the convergence requirement should be |Ri| ≤ |D|. This re-

quirement should be changed. Assuming k is the factor which represents the influence

of the α in high-radix division algorithm. So the following equation is obtained.

|Ri| ≤ k × |D| (1.8)

After solving that inequality with equation (1.6), an important equation (1.9) can

be obtained.

k ≤ α

(β − 1)
(1.9)

Larger α (larger redundancy) always means easier SRT operation since the restric-

tions on the partial remainder are much wider and the overlap regions are larger than

those in the dividers with smaller redundant number system. On the other hand,

larger α means more quotient candidates, more q × Ds and more complex quotient

selection algorithm. Consequently, it is hard to say what kind of redundancy is the

best since each algorithm has a different situation.

14

The overlap region is an essential concept in the high-radix SRT division algorithm.

For example, if β is 8 and α is 5, then k should be 5
7
and according to equation (1.6)

and (1.8), the following equation is obtained.

−5

7
+ q ≤ 8×Ri−1

D
≤ 5

7
+ q

When q = 1, the inequality is transformed to 2
7
≤ 8×Ri−1

D
≤ 12

7
. When q = 2,

9
7
≤ 8×Ri−1

D
≤ 19

7
can be obtained. Obviously, if 8×Ri−1

D
falls into the region [9

7
, 12

7
], the

quotient can be either 1 or 2, which both satisfy the convergence requirement.

Normally, we need to choose a boundary within a overlap region. Any partial

remainder located in the overlap region should be compared with the boundary. No-

tice that the comparison is normally performed by subtraction followed by a sign

detection module so one may need to choose the best boundary (with fewer digits)

which is easier for implementation. Since larger redundancy results in larger overlap

regions, it is easier to find better boundaries when the redundancy is large enough.

P-D plot (Figure 1.1) is the basic method of choosing the boundaries. First of all,

equation (1.6) should be transformed to

β ×Ri−1 = qi ×D +Ri (1.10)

Replacing Ri in equation (1.10) with Ri in equation (1.8), the range of β × Ri−1

can be obtained as shown in equation (1.11).

(−k + q)×D ≤ β ×Ri−1 ≤ (k + q)×D (1.11)

β × Ri−1 is the shifted partial remainder. Working with several divisor Ds, the

P-D plot can be obtained and illustrated in Figure 1.1.

Nevertheless, it is impossible to define a boundary for each divisor in the hardware

implementation. An alternate way is to store some boundaries in a look-up table for

each section of divisor [23]. Here, the details of choosing the sections and calculating

the best boundaries will not be introduced, since they are not important in our design.

Refer to [19] for more details.

15

 !"!#$%

&'%(!')*

+,-'!./,%

012*3*45*

012*3*4*365*

02*3*45*

02*3*4*365*

 !"!#

 !"!#!$!%

&'()*+,!

)(-./0

Figure 1.1 P-D plot

Overall speaking, three major parts should be considered if one implements a

divider by using the high-radix SRT division. They are redundancy, divisor sections,

and the boundary of each section. The algorithm discussed in this section is just the

basic algorithm of the high-radix SRT division. In the real implementation, no one will

use the whole partial remainder to do the comparison since the number of bits/digits

in the partial remainder will result in a large amount of delay. Consequently, the

estimated partial remainder will be used and the error will be eliminated during the

selection of boundaries. This technique will be explained in the next chapter.

1.6 Contribution

The major contributions of this thesis are:

1. It proposes a novel high-radix decimal division algorithm. The radix-100 divider

can produce two quotient digits in each iteration, which can reduce the number of

16

iteration cycles. Consequently, the overall latency can be reduced.

2. It avoids the popular SRT division algorithm which would result in a huge area

and a long latency. Instead, the radix-100 divider utilizes selection by truncation

algorithm. Compared to SRT algorithm, selection by truncation method has a fast

quotient selection step which is one of the major parts implemented in the critical

path.

3. It combines the partial reminder in the form of “carry-sum” and the selection by

truncation method to achieve a fast quotient selection and an easy partial remainder

calculation.

4. It utilizes the compensation method to reduce the area and latency consumed

to generate and select multiples of divisor.

17

2. Previous Work

In this chapter, some recent typical works from related areas are included. Most

of them concern decimal dividers. As already mentioned, the proposed radix-100

division algorithm is derived from the decimal division algorithms. Meanwhile, all

the dividers focus on the calculation of the coefficient part as shown in equation (1.1).

Before the introduction of those algorithms, the basic equation of decimal division

is provided in equation (2.1), which is derived from equation (1.6). Ri is the partial

reminder generated from the ith iteration while qi is the quotient digits selected in

the ith iteration. D stands for the divisor.

Ri = 10×Ri−1 − qi ×D (2.1)

2.1 Typical SRT-based Decimal Divider

Tomas Lang and Alberto Nannarelli proposed a decimal division algorithm based

on SRT in the year 2007 [23]. To deal with the two common complicated issues in

decimal division (the selection function and the generation of the divisor multiples)

the authors came out with a solution, which is to split the quotient digit into two

parts as shown in equation (2.2)

qi = 5× qHi + qLi (2.2)

Where qHi ∈ [−1, 0, 1] and qLi ∈ [−α,, α]. By replacing the Ri−1 in equation (2.1)

with equation (2.2), equation (2.3) is obtained.

Ri = (10×Ri−1 − 5× qHi+1 ×D)− qLi+1 ×D = Vi − qLi+1 ×D (2.3)

Note that α = 2 is chosen in equation (2.3). Although the details concerning

18

why α = 2 is chosen are not available in [23], it is found that all of the following

possibilities are reasons: first of all, only if α ≥ 2 will every number within [−5, 5] be

represented by qH and qL. Second, since the number of multiples of divisor is one of

many important aspects which can influence the performance significantly, α = 2 is

the best choice. Another reason is that the doubler is quite easy to implement. All

of these features contribute to the selection of α = 2.

Since the qi ranges from −7 to 7, k = 7
9
is obtained according to equation (1.9).

The next major step is to calculate the boundaries. Here, instead of using the whole

partial remainder to select the quotient, only a few of the most significant digits

(MSD) from the partial remainder are used. The use of truncated partial remainder

will obviously introduce errors, as shown in equation (2.4)

Lk(Dj+1) ≤ mkj ≤ Uk−1(Dj)− 1.12× 10−t (2.4)

Obviously, 1.12×10−t is the error introduced by truncation and the t is the number of

digits in the partial remainder used to select the quotient. Such a technique is used by

almost all the SRT-based dividers [32] [25] [24] [33] [34] [35], since no one can afford

the comparisons between compact partial remainder and boundaries. Meanwhile, Lk

and Uk are the boundaries of quotient k on the P-D plot, and [Di, Di+1] is a section

of the divisor.

According to the convergence requirement shown in equation (1.8), two boundaries

are set for Ri and Vi. The equations for the Lks and Uks corresponding to Ri and Vi

respectively, are also obtained and shown in (2.5):

UkV = (5k + 25/9)×D

LkV = (5k − 25/9)×D

UkR = (k + 7/9)×D

LkR = (k − 7/9)×D

(2.5)

The selection of “t” will influence the performance. The smaller the “t” is, the

faster the quotient selection (SRT partial remainder comparison) will be. However,

19

there is a restriction on “t” as shown in equation (2.6)

Uk−1(Di)− Lk(Di+1) ≥ 1.12× 10−t (2.6)

After equation (2.6) is solved, t = 2 is selected which means three MSDs from

the partial remainder are then used to select the quotient. The boundaries employed

in the divider are selected by the authors. The largest subinterval of D following

equation (2.4) are obtained. Also, notice that an important symmetrical property of

the P-D plot is shown in equation (2.7), so not all boundaries need to be selected

individually.

m−k+1 = −mk (2.7)

In terms of the architecture, the authors utilized two techniques to reduce the

cycle time. The first one is to employ carry-save subtraction and sign detection for

the comparisons. The carry-save subtraction (addition) is also widely used in the

proposed radix-100 divider. On the other hand, it would be unacceptable if the qL

is selected after the calculation of Vi, since this will introduce more delay. Therefore,

the selection of qH and qL are overlapped; this technique is used in a radix-16 divider

as well. Since the partial remainder is in the form of sum and carry, the selection of

qL is now shown in equation (2.8)

(10RS)trun + (10RC)trun − u× (5D)trun −mLk (2.8)

in which the−u×(5D)trun−mLk can be pre-computed with u = [−1, 1] and k = [−1, 2]

(eight values in total). By performing such overlapping, the qH and qL can be selected

almost at the same time with the sacrifice of area.

Another smart retiming is the use of radix-2 to implement the quotient selection

part. Radix-2 is faster than decimal operation. By adding the compensation digits

generated from the decimal subtraction part, the binary part can perform separately

and generate correct results.

As a typical SRT-based decimal division algorithm, [23] was analyzed carefully.

The following aspects contribute to the proposal of the radix-100 divider:

20

1. Is the SRT algorithm suitable for the radix-100 divider? Similar to the digit-set

used in Tomas Lang’s algorithm, the radix-100 divider’s quotient can be decomposed

into two parts, qH and qL. However, in Tomas’s decimal divider, the authors over-

lapped the selection of quotients into one level of CSA followed by a sign detection

module, which reduces the latency but results in 14 CSAs and sign-detection blocks.

In terms of the radix-100 divider, if a similar overlapping method is used, there should

be at least 100 CSAs and sign-detection blocks, which will result in huge MUXes and

more delay, not to mention the area caused by those CSAs and other blocks. By con-

trast, if two levels of quotient selection are used instead of overlapping, the radix-100

divider is nothing but a cascaded decimal divider which lacks novelty.

2. Is carry-save subtraction (addition) helpful? In [23], three operands are added

together. The CSAs (or DCSAs) work much better than any other addition logics. In

the proposed radix-100 divider, more operands are involved in the operation so that

decimal CSAs would become essential. This is one of the reasons for decimal CSAs

being widely used in the proposed radix-100 divider.

3. Does the binary quotient selection technique also work on the radix-100 divider?

The binary solution works fine with the SRT division under the condition of proper

retiming. But the reasons that SRT is not suitable for the radix-100 divider are just

discussed, leaving the use of the binary system unconsidered.

4. Compensation. The compensation digits passed from the decimal side to the

binary side help to maintain a correct binary quotient selection. In the radix-100

divider, a carry generated from the decimal prefix-tree works in ways similar to the

compensation digits.

5. Although the quotient’s digit-set is [−7, 7], the partial remainder’s digit-set

is [0, 9]. This partial-remainder’s digit-set is straightforward so it is also used in

the radix-100 divider. However, some recent work done on the radix-100 divider

shows that employing signed-digit number system may result in a better area and

performance. This consideration will be included in the future work.

21

2.2 Non-restoring based Decimal Divider

Eric M.Schwarz and Steven R.Carlough published the “Power6 Decimal Divide”

in 2007 [17]. Non-restoring division algorithm is the basic decimal division algorithm

present in Power6, so it is worthwhile to read this paper carefully. This algorithm is

based on high-frequency BCD hardware.

Instead of using SRT, Power6 utilizes the traditional non-restoring method which

follows steps: quotient selection, multiples of divisor, creation of the partial remain-

der, and the final quotients accumulation. Normally, the critical path goes through

the first three steps, so some techniques should be used to reduce the cycle time.

Here, the pre-scaling and selection by truncation method is utilized. The basic

idea of pre-scaling is to convert the divisor close to 1, so that the quotient selection

will be easier, as shown in equation (2.9)

qi = (Ri−1)trun

Ri = 10×Ri−1 − qi ×D
(2.9)

In the above equations, (Ri−1)trun is the first digit of the partial remainder. This

type of quotient selection is called selection by truncation. Although there will be

errors in certain quotient digits, the non-restoring method can correct the errorous

quotient digits by applying their following quotient digits. But this kind of correction

can handle only one-unit’s error.

After some calculations, it is proven that the divisor should be pre-scaled to e-

quation (2.10) so that the the convergence requirement |Ri| ≤ |D| can be met.

1 ≤ D′ ≤ 1/9 (2.10)

The pre-scaling is done through a two-cycle BCD adder adding multiples generated

from a BCD doubler and quintupler. After completing analysis of the quotient-

selection part, it is found that another issue is the generation of multiples of the

scaled divisor. The 1D′ is the scaled divisor while the 2D′ and 5D′ can be obtained

22

through the BCD doubler and quintupler. In the implementation of Power6, the

3D′ and 4D′ are calculated in advance and saved in registers before the start of

division. However, there is no time for the calculation of multiples ranging from

6D′ to 9D′. Power6 therefore introduces a compensation method by generating an

alternate partial remainder (partial remainder B) in the previous iteration. Partial

remainder B is employed to compensate the missing of 6D′ to 9D′. The calculation

of the partial remainder B is shown in equation (2.11).

RiB = 10×Ri−1 − (qi + /− 1)×D′ (2.11)

For instance, if the current selected quotient is 6, the partial remainder B will be

used as the current partial remainder and will replace the Ri−1 in (2.1). This will

result in equation (2.12)

Ri = 10×Ri−1B − 6×D′ (2.12)

= 10× (Ri−1 + 1×D′)− 6×D′ (2.13)

= 10×Ri−1 + 4×D′ (2.14)

Therefore, the 4D′ can be selected to perform the calculation in that case. Also, to

determine whether the partial remainder B should perform plus or minus one, the

second digit of the current partial remainder should be checked. Since the divisor is

pre-scaled to less than 1.1, when the current selected quotient falls in the range of 6

to 9, it is possible that the next partial remainder could be negative and the abstract

quotient would then be larger than or equal to 5. This circumstance needs a partial

remainder B based on minus one.

Since Power6 is a commercial product, the paper does not describe in detail the

architecture of the proposed decimal algorithm. For instance, the details of the adders

performing the calculation of the partial remainder are missing. To cater to the overall

clock frequency, the divider is decomposed into several pipeline stages.

The Power6 needs three cycles (non-redundant partial remainder) to perform each

iteration, but with the help of pipeline, the latency consumed on performing a se-

quence of data will be shorter. However, since most of the decimal division dividers

23

do not care about the real ALU implementation, most of the proposed decimal algo-

rithms do not take the pipeline stages into consideration as the proposed radix-100

divider does.

Although [17] only introduces the overall algorithm and does not touch upon

many details, it provides several good ideas which can be considered in the design of

radix-100 divider:

1. The non-restoring method: As discussed in the first section, the decimal SRT

method is not a good choice for the radix-100 divider. The major reason is the quo-

tient selection. But with the non-restoring method and the selection by truncation,

the quotient selection is much simpler than that of the SRT division. Besides, there is

no big difference between the latency of the quotient selection in the radix-100 divider

and that in a decimal divider.

2. The adders used in the Power6 are uncertain. However, as concluded from

Tomas Lang’s algorithm, decimal carry-save addition is a good choice for multiple

addends. Consequently, if there is a way to combine the selection by truncation

method in Power6 and decimal CSA addition, the latency would be acceptable.

3. The generation of multiples of divisor. As described in [17], the BCD doubler

and quintupler are easy to be implemented and fast in terms of latency. The same

modules may be useful in the radix-100 divider. Besides, the quotients selected in

the radix-100 divider can be split into two parts, which are qH and qL. Both of them

can be treated as decimal numbers, so multiples of the divisor can be shared by the

two sub-quotients.

4. BCD operation. BCD represented decimal digits are used as the basic format

in this decimal divider. It is quite likely that BCD representation is suitable for the

radix-100 divider as well.

As a mature design already implemented in the Power6 microprocessor, the Pow-

er6 decimal divider should be considered as a standard reference for future decimal

24

or higher-radix dividers. Consequently, the proposed radix-100 divider utilizes the

same basic algorithm, which is the non-restoring division algorithm with selection by

truncation.

2.3 Decimal Divider with Different Encodings

Another typical decimal divider was proposed in the year of 2007 by Alvaro

Vazquez Alvarez [24]. Again, the decimal SRT method is utilized with some new

techniques. The basic equation is (2.1) and the basic format of the partial remainder

is non-redundant. However, the author utilized some different encodings in different

parts of the calculation as discussed later below.

The BCD encoding, although widely used, is considered as an inefficient encoding

since 8421 encoding can represent 16 different digits while the BCD utilizes only

10 of them. In the proposed radix-100 divider, BCD is the basic encoding format

since BCD is mature and the modules calculating BCD arithmetics are widely used.

Besides, after analyzing the encodings proposed by Vazquez, one can discover that

the benefits they can introduce to the radix-100 divider are limited. Several encodings

and their efficiencies are concluded in Table 2.1.

Table 2.1 Different encodings and their efficiency

Encoding 8421 3321 4221 5211 4321 5221

Efficiency 10/16 1 1 1 10/11 10/11

Maximum representable numbers 16 10 10 10 11 11

In this table, the efficiency (Used numbers/Maximum representable numbers) of

each encoding is concluded. It is obviously seen from the table that the encoding

3321, 4221, 5211 have the best efficiency. As proven in Vazquez’s PhD thesis, the

encoding 4221 and 5211 can lead to fast carry-save adders. This quality is especially

shown by the 5211 carry-save addition, which takes three 5211 addends and produces

one 5211 sum and one 4221 carry. But a decoder should be added to transform the

carry to 5211, which needs 8 levels of gates. On comparison to the decimal BCD

25

carry-save adder (DCSA) which also takes 8 levels of gates, although the DCSA’s

real implementation is slightly slower than the 5211 DCSA, the benefit of using 5211

coding style is not remarkable.

The digit-set for this divider is [−5, 5]. Consequently, the partial remainder should

be smaller than or equal to 5/9×D. As in Tomas Lang’s decimal division algorithm,

the estimated partial remainder and divisor are used, and the formula (2.15) is for

k ≥ 0 and (2.16) is for l ≤ 0:

Lk(Dj+1) ≤ mkj ≤ Uk−1(Dj)− δϵw + h(mk) (2.15)

Lk(Dj) ≤ mkj ≤ Uk−1(Dj+1)− δϵw + h(mk) (2.16)

Here, instead of using a number of digits to represent the length of an estimated

partial remainder and divisor, Vazquez decided to use the number of bits since in this

case, the number of bits might be smaller than the number of digits, which will result

in a lower delay. In addition to the previous two restrictions, the estimated partial

remainder should follow equation (2.17)

−δϵw − 10× 5

9
×D ≤ (10×Ri)est ≤ 10× 5

9
×D (2.17)

The author analyzed three decimal encodings, which are BCD, 4221 and 5211. It

is proven that 5211 uses one less fractional bit for the SRT comparison. Besides, since

the 5211 carry-save adder (with 4221 carry output) has the same delay as that of the

binary CSA, it is employed on the estimation of the partial remainder and the divisor

as well. On the other hand, since the decimal 5421 based carry-propagate adder has

the similar latency as the BCD carry-propagate adder and the conversion between

the 5421 and 5211 is simple enough, the calculation of the partial remainder is done

in a decimal 5421 adder.

Instead of using a look-up table to store all the boundaries, here in [24], the mul-

tiples of the estimated divisor will be calculated first; some rounding and truncation

techniques will be used on those multiples to generate the real boundaries. Since that

26

topic is not important to the radix-100 divider, the details are not described here.

Refer to Alvaro Vazquez Alvarez’s thesis for detail information.

In terms of the retiming and architecture, [24] works in patterns similar to Tomas

Lang’s architecture. The quotient selection (selected quotient will be used in the

next iteration) and the calculation of the current partial remainder are performed in

parallel. The critical path goes through the quotient selection part.

The major novel aspect of [24] is the different encodings. The major features of

different encodings used in [24] are concluded below.

1. 5211: 9’s complement is the reversion of the original format. Since some

multiples of divisor are involved in the radix-100 divider, this feature is useful. In

addition, as introduced above, the 5211 carry-save adder (with 4221 carry output) is

fast.

2. 4221: Right shift “a” in 4221 format will result in “a/2” in 5211 format. What’s

more, there is a 4221 carry-save adder already proposed by Vazquez.

3. 5421: Left shift “a” in 5421 format will result in “2a” in 8421 format. Left

shift “a” in BCD format will result the “5a” in 5421 format.

Features 2 and 3 can be used to generate multiples of divisor. Besides, it seems

that 5211 has some benefits for the iteration. First of all, the quotient selection step is

considered. If the traditional BCD carry-save format is used to represent the partial

remainder, the carry digit has only one bit, which will simplify the implementation

of selection by truncation. If the partial remainder is in the form of 5211 and 4221, a

5211 and 4221 carry propagate adder should be designed. Although a 4-bit addition

should be enough, it still takes more time. Consequently, the quotient selection step

will be longer than that using the BCD format if the 5211 and 4221 partial remainder

is used, but it is still acceptable if the addition part can reduce the time significantly.

In terms of the addition, a partial remainder in the form of sum-carry and at least

two multiples of divisor are the basic addends which cannot be avoided. Consequently,

27

the addition cannot be done in one level of carry-save adder, and a decoder should be

used since the second level of addition needs inputs with the same decimal encoding.

Other than that, further analysis shows that decoders should be used in multiple

places, which will add more latency. Therefore, BCD is decided to be used.

2.4 Radix-16 Dividers

Two typical high-radix (radix-16) dividers are briefly introduced in this section.

Both of them are derived from the radix-4 SRT division. Before going further, note

that there are two equations, (2.18) and (2.19), which are utilized in both designs.

Ri = 16× ri−1 − qi ×D (2.18)

qi = 4× qHi + qLi (2.19)

The first radix-16 divider is proposed in [29]. Both of the qHi and the qLi fall into

[−2, 2]. Similar to Tomas Lang’s quotient selection method, overlapping is chosen

again in this radix-16 divider. As shown in equation (2.20) and Figure 2.1

 !"#

 !"#

 !"#

 !"#

 !"#

 !"#

$%&

'(') $*+

 ,

 -

$*#.

$*#/

$*#0

$*#1

$*#2

Figure 2.1 Overlapping quotient selection

28

qLi =

SELL((Ri)est + (2D)est, Dest) if qHi = −2

SELL((Ri)est +Dest, Dest) if qHi = −1

SELL((Ri)est, Dest) if qHi = 0

SELL((Ri)est −Dest, Dest) if qHi = +1

SELL((Ri)est − (2D)est, Dest) if qHi = +2

(2.20)

However, as discussed in Chapter 2.1, the overlapping method is not applicable

for the radix-100 division, since the quotients’ digit-set is much wider than the radix-

16 division. The consumed area and timing would be much more than those of the

radix-16 division.

Another high-radix divider appears in the Intel Core2 Penryn Processor fami-

ly [30]. Also, since the Core2 is an commercial product, the paper [30] does not

introduce many details regarding its radix-16 divider. However, it is obvious that the

design is based on a cascaded SRT division method. With the new “digit-redundant

represented partial remainder” (similar to the carry-save format) and the “implicit

bias bits concept” (similar to the use of estimated partial-remainder and divisor), the

proposed radix-16 divider uses only a few bits for the selection of quotients; thus it is

proven to be an efficient and fast way of doing the division compared to the original

radix-4 divider [30], which uses a carry-propagate adder in each iteration. As shown

in Figure 2.2, there are two levels of radix-4 SRT divider in the radix-16 data flow,

so this method can be considered as a cascaded low-radix division algorithm.

Nevertheless, notice that even though the new radix-16 is much better than the

original radix-4 divider, according to the comparison results obtained by [29], the

performance improvement of the cascaded radix-16 divider is not outstanding com-

pared to a SRT based radix-4 divider. The brief architecture of the cascaded radix-16

divider is illustrated in Figure 2.2.

Another paper [26] published in 2011 combines the features in [23] and [24] to

reach better performance. Since there are no new techniques utilized in that paper,

details are not provided. Its performance will be given in Chapter 5.

29

 !"#$%&#'

(%)%*#$"&

+,-#$,)'

-%.,$&/%-'

,)!),#$"&

012

 !"#$%&#'

(%)%*#$"&

+,-#$,)'

-%.,$&/%-'

,)!),#$"&

012

3%4 3%4

3%4 3%4

Figure 2.2 Cascaded radix-16 divider

Generally speaking, after the analysis of the typical papers included in this chapter

and some other papers, the radix-100 divider utilizes the non-restoring with selection

by truncation method similar to the Power6 decimal divider. In addition, the basic

number system would be BCD.

30

3. Algorithm

To begin with, the details of the radix-100 divider need be introduced. The

radix-100 algorithm is described in this chapter, followed by the description of its

architecture. Implementation and comparison will be discussed in Chapter 5.

3.1 Decimal Floating-point Division

As described in Chapter 1, the IEEE 754-2008 defines three basic formats for

decimal floating-point numbers, which are decimal 32, decimal 64 and decimal 128.

The proposed radix-100 divider is implemented on decimal 64 standard. The reason

for this choice is that most of decimal dividers are based on decimal 64, and decimal

128 dividers can be implemented by modifying the decimal 64 easily.

The architecture of the overall decimal floating-point divider is shown in Figure

3.1. As introduced in Chapter 1, the floating-point number has three parts, which are

sign, coefficient and exponent. Assuming dividend FX and divisor FD are enrolled

in the division, and they are in form (3.1)

FX = (−1)SX ×X × 10EX−bias

FD = (−1)SD ×D × 10ED−bias
(3.1)

The X and D are the coefficients representing the fractional digits, which means

there is a virtual point before the left-most digit of the coefficient. But notice that

the IEEE 754-2008 does not require the removal of the leading zeros of the decimal

coefficient [22], which means that there might be some zeros locating in the left side

of the coefficient. To make sure that the result has the maximum number of digits

31

 ! "#$"%& "

'()$'(*

+,-.#(* +,-.#(*

!*$/$0('"

'-1-'(*

 -1-'("

23"4(*$

56/$7(7#"

)89):98#-$7

;$:7'-7<"="

>$*?89-48#-$7

+-<7

%& "#$" ! ")$'(*

@

A@ A

+@

+

5@ 5

AB

Figure 3.1 Architecture of IEEE 754-2008 divider

and to ensure the convergence, the leading zeros should be removed through a shifter.

Obviously this shifter will influence the exponent. Assuming there are LzX and LzD

leading zeros in FX and FD respectively, the exponent obtained after shifting would

be (3.2) after shifting.

EQ = EX − ED + LzD − LzX (3.2)

Since the pre-scaling parameter should also be applied to the dividend, the expo-

nent will be influenced again.

The calculation of the coefficient will be discussed in Section (3.3). It is also

possible that the divisor equals to zero, a condition which the proposed fixed-point

divider is not designed to handle. This possibility is one of the exceptions mentioned

in Chapter 1. If that happens, the module “divide by zero” will assert a signal to

point out an exception. This module is not part of the fixed-point radix-100 divider

block, that can produce two digits in each cycle. In the end, to perform the final

rounding and normalization (optional), 18 digits will be produced. A module named

“rounding and normalization” is in charge of this operation.

In terms of the sign, it is assumed that the coefficients provided to the divider are

32

positive, so the coefficient of the result is also positive. The sign will be generated

through an XOR gate, as shown in equation (3.3)

SQ = SX ⊕ SD (3.3)

The final result will be (3.4)

FQ = (−1)SQ ×Q× 10EQ−bias (3.4)

Required by the IEEE 754-2008 standard, the decimal numbers should be saved

in the form of a DPD. So there is a DPD to BCD decoder at the very beginning of

the data flow and a BCD to DPD coder in the end. This is the same as the DFU

in [4].

Overall, there are separate modules dealing with coefficient, exponent and sign.

But only the modules related to the calculation of the coefficient (proposed divider,

rounding and normalization module) are introduced since the other modules will not

influence the overall performance. They are not included in other implementations

mentioned in the previous chapter.

3.2 Decimal Representations

Before further explanation, the representations of the decimal operands should be

introduced well in advance. Normally, there are three important representations as

follows:

1. The dividend, divisor, and the quotient: these three operands are defined by

IEEE 754-2008, so there are not very many choices. One can use the DPD directly

but because it is a highly compact encoding, DPD is not a good choice. So, the BCD

is normally used to represent those three operands.

2. The partial remainder Ri: As shown in Chapter 2, there are several different

forms of partial remainder. It can be represented in a non-redundant format which

normally needs a carry-propagate adder. After a proper retiming, the carry-propagate

33

adder can be used as seen in [4] which uses 5421 encoding. Moreover, some references

use carry-save format [36] [26] and various other techiniques [22]. Besides, in terms

of each single digit of the partial remainder, there can be different ranges as long as

equation (1.7) is met. In this thesis, however, the digits of the partial remainder are

chosen from [0, 9] while the negative numbers are represented by 10’s complement,

just as Tomas Lang did in his decimal divider. This choice suits our selection by

truncation algorithm quite well since no recoding is needed.

3. The quotient digit qi: Similar to the partial remainder, the quotient digit

can choose any range following equation (1.7). The selection of quotient’s range will

influence the performance significantly. The larger redundancy means more multiples

of divisor. In terms of SRT, it also means more boundaries. But here, the maximum

redundancy [−9, 9] is selected. The reason for choosing this redundancy is that it is

the most nature range for the selection by truncation method. By using this range,

the quotients can be determined easily without performing any decoding. However, a

wide range definitely introduces some troubles relating to the generation of multiples.

Several tricks and retiming techniques should be used to minimize the latency caused

by the generation of multiples.

There are several carry-save adders, which can generate partial remainder in the

form of “carry-save”. For instance, as described in Chapter 2, some carry-save adders

are designed for different encodings other than BCD. Here only the BCD carry-save

adders are considered. There are two adders to be considered [4]:

1. Digit carry-save: This kind of carry-save adder can add two full range BCD

addends and one carry (each digit equals to 0 or 1) and the results are one full range

sum and one carry. The basic arithmetic behind such feature is that the addition of

the addends are |9 + 9 + 1| = |19|, which can be represented as one carry and one

sum whose abstract value is smaller than or equal to 9.

2. Full carry-save: This carry-save adder can add three full range BCD addends.

The results is composed of one full range sum and a carry within [−2, 2]. Similarly,

34

the basic idea is that |9 + 9 + 9| = |27| can be represented in a larger carry and a

sum.

In this thesis, the first DCSA is chosen since the timing latency of the first one

is smaller then that of the second one. Although using the second one can reduce

some area of the current radix-100 design, sacrificing the area would be preferred if a

better latency can be obtained.

3.3 Proposed Algorithm

Assuming that Ri is the partial remainder obtained after ith iteration and qi is

the quotient used in the ith iteration. D is the divisor. The basic equation for the

calculation of the radix-100 division is (3.5)

Ri = 100×Ri−1 − qi ×D (3.5)

Since the quotient’s digit-set is [−99, 99] as shown in the previous section, here

the fraction k (in equation (1.9)) can be calculated through equation (3.6) since the

α is replaced by 99 and the radix β is 100.

k =
99

100− 1
= 1 (3.6)

Based on the convergence requirement (|Ri| ≤ k × |D|), the radix-100 division

should comply with

|Ri| ≤ |D| (3.7)

Similar to [17], the selection by truncation method used on the radix-100 divider

needs a pre-scaled divisor which is close to 1. But how close should it be? “Close” can

be understood as close and larger than 1, close and smaller than 1, or close and around

1. In this thesis, only the scaled divisors larger than 1 are considered. The reason for

this choice is that the partial remainder digits are all positive values ranging from 0

to 9. So in terms of positive partial remainder, a subtraction is needed. Assuming

that the scaled divisor is smaller than 1, then the next partial remainder would be

35

definitely positive and probably larger than one. If it is larger than one, errors will

be accumulated, so the division will never end. Consequently, the scaled divisor used

in the proposed radix-100 divider should be “close and larger than 1”, as represented

in equation (3.8)

D′ ∈ [1, 1 + ϵ) (3.8)

In fact, although the divisor D is used in equation (3.7), it is the scaled divisor D′

that is the real divisor involved in the calculation of the proposed radix-100 divider.

So, equation (3.7) can be modified as

|Ri| ≤ |D′| (3.9)

This modification is also applied to equation (3.5)

Ri = 100×Ri−1 − qi ×D′ (3.10)

Replacing the |Ri| in equation (3.9) with the Ri in equation (3.10) and the |D′|

with (3.8), an inequality regarding ϵ is obtained

|100×Ri−1 − qi ×D′| ≤ min([1, 1 + ϵ)) = 1 (3.11)

The determination of ϵ is essential for the whole divider since this value will

determine whether the selection by truncation method is possible for the radix-100

(if 1+ϵ is smaller than 1, then it means the divisor cannot be pre-scaled to the range

(3.8)). ϵ also determines the complexity of the pre-scaling step. At this point, ϵ will

also determine the number of digits in the pre-scaling parameter, which will then

determine the whole architecture, as will be introduced later. By replacing the D′ in

(3.11) with 1 + ϵ, the range of ϵ can be obtained.

−1 ≤ 100×Ri−1 − qi × (1 + ϵ) ≤ 1

=> −1 ≤ 0.X − qi × ϵ ≤ 1

=> ϵ ≤ 1

99

(3.12)

36

Therefore, the range of the D′ is [1, 1.01]. This is a relatively tight range but it is

found that three digits’ parameter is enough to pre-scale the divisor into that range,

which is still acceptable. The details of the selection of the pre-scaling parameters

will be discussed later in this section.

There should be some modifications on the dividend, too. First of all, the dividend

should be multiplied by the same pre-scaling parameter used on the divisor, and the

result is R′
0. Since the dividend should be treated as the first partial remainder which

should follow the equation (3.10), the pre-scaled dividend is shifted as shown in (3.13)

where “n” represents the number of integers in the pre-scaled dividend.

0.1 ≤ R0

n
≤ 1 (3.13)

3.3.1 Pre-scaling Parameters

There are several different methods of pre-scaling. As concluded in [37] and [21],

to calculate the pre-scaling parameter (similar to the calculation of the reciprocal),

one of three methods can be used:

1. Using a look-up table which can provide the pre-scaling parameters directly.

This method suits the pre-scaling with lower precision requirements, and the param-

eters should have a limited number of digits.

2. Using a look-up table to provide a pair of coefficients before performing linear

approximation. This is popular in designs based on functional iteration (Newton-

Raphson) [27] and some very high-radix division implementations [37], since they can

benefit from an accurate initial reciprocal approximation.

3. Using a Newton-Raphson iteration with the initial approximation provided

by either one of the two previous methods. This will generate a full-range accurate

reciprocal value. This is, in fact, the process to get the reciprocal of a certain number,

which is done through a functional iteration based divider.

The first method is obviously the most straightforward one as long as the number

of digits in the pre-scaling parameters is acceptable. After the further analysis shown

37

below, each of the parameters consists only of three decimal digits, which is accept-

able. Consequently, similar to the Power6 decimal divider, a look-up table indexed

by the divisor directly is utilized to provide the pre-scaling parameters.

“Pa” is used to represent the pre-scaling parameter. The pre-scaling requirement

shown in (3.12) should be met by all possible divisors, including two ultra situations:

1 ≤ (0.D1D2D3...Dn0....0)× Pa ≤ 1 +
1

99

1 ≤ (0.D1D2D3...Dn9....9)× Pa ≤ 1 +
1

99

(3.14)

So, the range of Pa for each divisor would be

1

0.D1D2D3...Dn0....0
≤ Pa ≤ 1 + 1/99

0.D1D2D3...Dn9....9
(3.15)

There are two vital things to be determined from (3.15), which are the number

of digits in the divisor (the value of “n”) serving as the index to the look-up table

and the number of digits in the Pa. A MATLAB program is written to list those two

important values. The results are available in Table 3.1. Since the range [1, 1+1/99)

required by the radix-100 divider is larger than that of the Power6 divisor which uses

two digits’ pre-scaling parameters, the number of parameter digits would be at least

2. Therefore, the table starts from n = 2 to n = 5. The third and fourth row of

the table are the range of 0.15111 and its next nearest number (based on precision)

respectively. They are used as examples of the ranges (only five MSDs) of parameters.

Table 3.1 Pre-scaling parameter comparison

n = 2 n = 3 n = 4 n=5

Invalid 3 3 3

66.667,63.13 66.225,66.454 66.181,66.806 66.177, 66.841

62.5,59.418 65.789,66.02 66.138, 66.761 66.173, 66.837

The rules of the selection of parameters are: the upper boundary in (3.15) should

be larger than the lower one, and the number of exactly the same digits in the upper

38

and lower boundaries plus one is the number of digits in the parameter. For instance,

if the boundaries for 0.151 are [66.225,66.454], the parameter can be set to 66.3. Of

course, these rules should apply to all the divisors. Concluded from the table, n = 3 is

the best choice for the radix-100 divider. This means that three MSDs of the divisor

are used to index the look-up table, where the three digits’ parameters are saved.

There are some exceptional cases when n = 3. In these cases, the divisor should

be pre-scaled by 4-digit parameters. They are available in Table 3.2.

Table 3.2 Parameter exceptions

Divisor’s 3 MSDs Parameter range Selected parameter

0.909 11.001,11.1 11.05

0.943 10.604,10.7 10.65

0.952 10.504,10.599 10.55

0.961 10.406,10.5 10.45

0.980 10.204,10.297 10.25

0.990 10.101,10.193 10.15

Although it seems that they have 4-digit parameters, notice that all the exception-

s’ parameters have a zero digit, which means that there are also three digits involved

in the pre-scaling; all we need to do is to shift the addends before doing the multi-

plication. These exceptions can be avoided by setting n = 4, but 4-digits’ index is

slower than 3-digits’ index and the area of the 4-digit indexed look-up table will also

be larger.

Even with the 3-digit index, the look-up table would have 900 (103) entries, which

starts from 0.100 to 0.999. This requires a large amount of area and also latency.

By specific techniques though, the size of the look-up table can be reduced. As

introduced in the Power6 decimal divider, the BCD doubler and quintupler are easy

to implement so that the divisor can go through one level of doubler and quintupler,

giving outcome Dm shown by Table 3.3

By utilizing this transformation, one ensures that the look-up table only can

39

Table 3.3 Generation of Dm

Divisor [0.10,0.20) [0.20,0.50) [0.50,1.00)

Multiple 5×D 2×D D

Dm [0.50,1.00) [0.40,1.00) [0.50,1.00)

contain the parameters corresponding to the divisors within [0.40, 1.00). The total

number of entries would be reduced from 900 to 600 (6× 102). Further investigation

shows that the adjacent divisors tend to have the same parameters. Actually, there

are only 180 different parameters stored in the look-up table, which may leave the

compiler some room to reduce more area.

3.3.2 Pre-scaling

The pre-scaling comes after the selection of the partial remainder. After analyzing

the parameters of all possible divisors, the range of each digit in the parameter is

shown in Table 3.4:

Table 3.4 Parameter’s range

MSD Middle digit LSD

1,2 0,9 0,9

Since the parameter is to be multiplied by the divisor, a 3-digit parameter means

three multiples of divisor and two levels of addition. According to Table 3.4, the

MSD is easy to handle because 2Dm can be obtained from one level of doubler.

However, multiples such as 3Dm, 6Dm, 7Dm, 8Dm, 9Dm are difficult to generate from

simple logics. Inspired by [22],one finds that these multiples which cannot be obtained

through one level of doubler and quintupler are split into two parts, as shown in the

40

following equations:

3Dm = 2Dm + 1Dm

4Dm = 2Dm + 2Dm

6Dm = 5Dm + 1Dm

7Dm = 5Dm + 2Dm

8Dm = 10Dm − 2Dm

9Dm = 10Dm − 1Dm

(3.16)

By doing this transformation, all multiples can be calculated based on Dm (notice

that 10Dm is obtained by shifting Dm), 2Dm, and 5Dm. There are then a total of

five sums, a situation which needs three level of addition. The optimization of the

addition will be discussed in the architecture chapter.

Many efforts have been made on the reduction of addends. Reducing one addend

would mean the removal of one decimal CSA and one level of addition. There is a

method which can reduce the number of addends by one while the left four addends are

within [−2Dm,−1Dm, 1Dm, 2Dm, 4Dm, 5Dm, 8Dm]. For instance, in terms of divisor

0.568, the parameter is 17.7. Instead of using 10Dm +5Dm +2Dm +0.5Dm +0.2Dm,

10Dm+8Dm−0.2Dm−0.1Dm can be used. However, after going through all possible

divisors and their parameters, it is found that there are no regular patterns of this kind

of transformation, meaning that the look-up table should save all the transformations

which will result in a much larger look-up table than the current one. In addition,

the calculation of 4Dm and 8Dm needs three levels of doubler which are both area

and time consuming. Consequently, since using the extra one level of addition does

not influence the critical path, the transformation to four addends is not necessary.

Notice that the pre-scaling should be applied to the dividend, too, which means

the dividend should be multiplied by the factor generating Dm from D, and the split

parameter digits. Otherwise the final quotients would not be the correct ones.

41

3.3.3 Quotient Selection

In the radix-100 divider, the quotients generated in each iteration can be any value

within [−99, 99]. It is impossible to generate the multiples of divisor for such a wide

range. Similar to some high-radix dividers [29] [23], the quotients will be decomposed

into two parts following the equation (3.17)

qi = 10qHi + qLi (3.17)

Here, qHi and qLi are both in the range from -9 to 9. As described before, our

implementation uses selection by truncation method, which means the two quotient

digits are the first two digits (excluding sign digit) in the partial remainder. However,

compared to the straightforward quotient selection, the generation of multiples of the

scaled divisorD′ is complex. In [22] [23] [24], the multiples of divisor are pre-calculated

and saved before iterations. The possibility of calculating the multiples in parallel

with the quotient selection is analyzed, but since there is no way to generate those

multiples at the same time in a short latency (for instance, the generation of 3D′),

we decide to pre-calculate them and save them in registers before the selection of the

first quotient digit.

The problem is that of which multiples should be saved. It is impossible to save

all the multiples from −9D′ to 9D′ since generating all those multiples consumes a

great amount of time. There are no direct logics to calculate those multiples other

than 2D′ and 5D′. To deal with this issue, two possible ways can be considered:

1. Using a similar method as that used in the pre-scaling calculation. The two

quotient digits can be split into four parts, which are based on the doubler and

quintupler of the scaled divisor D′. By using this method, 2D′ and 5D′ can be either

pre-calculated or calculated in parallel with the quotient selection step.

2. Using a similar method as that used in the Power6 [17] decimal divider. Using

the compensation method to deal with the quotients within the range of [−9,−6], [6, 9]

while saving 1D′, 3D′, and 4D′. The calculation of 2D′, 5D′ can be performed in

parallel with the quotient selection.

42

The advantage of the first method is the easy calculation in the pre-scaling step.

No further additions are needed after the doubler and quintupler of the scaled divisor.

But the drawback is that there will be five addends, including the partial remainder

in the iteration. The carry-save adder used in the iteration can handle only two sums

and one carry at a time, so five sums mean at least four decimal CSAs and three

levels of addition. Therefore, this method is not a good choice if the second one can

provide a better solution.

In terms of the second method, assuming that the two compensation values for the

two quotient digits are CompH and CompL respectively, the value of CompH can be

±100D′ while CompL can be ±10D′. The situations which need compensation values

are concluded in Table 3.5. In this table, the values of qH, qL and their corresponding

compensation values are given.

Table 3.5 Needs of compensations

qH qL CompH CompL

1,5 6,9 0 −10D′

6,9 6,9 −100D′ −10D′

6,9 1,5 −100D′ 0

-1,-5 -6,-9 0 10D′

-6,9 -6,-9 100D′ 10D′

-6,-9 -1,-5 100D′ 0

Since two quotient digits are selected in each iteration, the sign of the two digits

is the same. For instance, if the quotients are 78, the real calculation should be done

through Ri − 100D′ − 10D′ + 30D′ + 2D′. Although it seems that there are still

five addends involved in the calculation, it is concluded from Table 3.5 that only 6

possible compensation values are needed, which are ±100D′,±10D′,±110D′. The

first four compensation values ±100D′,±10D′ can be obtained through shifting ±D′

while ±110D′ can be calculated in the pre-calculation step. Therefore, there will be

only four sums to be added together in the iteration, which needs only three DCSAs

43

and two levels of addition.

The compensation method is chosen to perform the iterations. However, it can

deal with only the quotients whose abstract value is larger than 5. The compensation

values cannot help avoiding the negative multiples of D′. The negative multiples can

be calculated in parallel with the quotient selection. Further analysis shows that the

compensation method is helpful to deal with the partial remainder in the form of

“carry-save”. This point will be discussed later.

44

4. Architecture

In this chapter, the architecture of the proposed radix-100 divider is shown. Before

introducing the overall architecture, it is necessary to describe the architecture of some

major blocks. There are two major parts in the overall architecture, the pre-scaling

module and the iteration module. They are described in Chapter 4.2 and chapter 4.3,

respectively.

4.1 Major Blocks

4.1.1 10’s Complement

There should be a way to represent negative values in the radix-100 divider. Nor-

mally, negative numbers can be represented by two methods [19]:

1. Using sign and magnitude to represent negative values, which is also known as

the signed-magnitude method. In this representation format, the first bit is a sign

bit (with no weight), and the others are magnitude bits. For instance, −7 can be

represented as 1111 while 7 can be represented as 0111.

2. Using the complement method. The 2’s complement representation is widely

used in modern ALUs. The 10’s complement method uses the similar idea. To

describe it in more detail, the 10’s complement of an n-digit decimal number X can

be obtained through the transformation equation 10n −X.

To work with the selected number-system and the representations of the partial

remainder as well as the quotient digits, the second method is utilized. After this

transformation, all the arithmetics involved in the radix-100 divider (addition, sub-

45

traction) can be done through decimal adders and the only thing used to distinguish

the subtraction from addition is the sign digit which is the MSD of a number.

But it would cause a large time delay if the 10’s complement value is obtained

through a subtraction as described above. In hardware implementation, 10’s com-

plement of a number is usually calculated by adding “1” to its 9’s complement. The

9’s complement of X is obtained by subtracting each digit from 9. This subtraction,

which is usually implemented in a look-up table in hardware, will not bring any carry

between digits. Adding “1” is complicated since this operation should be done in

a full-range adder, but alternatively, this can be done in separate steps with proper

retiming.

In terms of the sign digit, 0 is defined as the positive sign. According to the rules

of 9’s complement, 9 − 0 = 9 is defined as the negative sign digit. The sign digit is

located at MSD. Table 4.1 represents the rules of obtaining 9’s complement values.

The block dealing with 9’s complement is tagged as “Negative” in the architecture

diagram.

Table 4.1 9’s complement table

Input digit 0 1 2 3 4 5 6 7 8 9

Output digit 9 8 7 6 5 4 3 2 1 0

4.1.2 Doubler & Quintupler

As shown in the Power6 decimal divider [17], the BCD doubler and quintupler

are easy to be implemented. As described in the previous chapter, the doubler and

quintupler are widely used in the radix-100 architecture. The reason for the easy

implementation of those two modules is that the results of 2X and 5X where X is

a decimal digit are easy to predict. 2X is always an even number so the LSB of the

result is always zero. This position can be used to represent the carry generated from

the other digits. Since the maximum value of 2X is 19, the maximum carry is 1. So,

the influence of the carry is limited to the LSB.

46

In terms of performing 5X, the LSD of the result is either 5 or 0, so the value

of each output bit can be predicted through simple logics. This prediction is shown

in Table 4.2 where the “x” means “don’t care”. The values of the output bits are

decided by two digits in X. Concluded from this table, only four levels of and/or

gates are needed to implement the 5X and 2X logic. The hardware implementation

is a group of logic gates following the logic expressions derived from Table 4.2.

Table 4.2 Algorithm for the quintupler

Assert output bit Digit i Digit i-1

[0] xxx1 0x0x

xxx0 xx1x

xxx1 1xxx

[1] xxx0 x1xx

xxx1 x01x

xxxx x10x

[2] xxx1 0x0x

xxx1 x01x

xxx0 1xxx

[3] xxx1 x11x

xxx1 1xxx

4.1.3 BCD DCSA

BCD DCSAs are widely used in the proposed radix-100 divider. Here, the imple-

mented decimal CSA is based on the algorithm described in [38] and [39].

By the assumption that two 4-bit BCD input digits are Xi and Yi. Ci is a 1-bit

carry, the basic equation for the decimal CSA is as follows:

(Ci+1, Si) = Xi + Yi + Ci (4.1)

Where the Ci+1 is the carry output which 10 times of the weight of the current

digit position i, Si is a 4-bit BCD output. The details regarding the calculation and

47

analysis regarding equation (4.1) are discussed in [38]. Here in this thesis, only the

process equations are given below where “j” is within [0, 3]:

gi[j] =Xi[j] · Yi[j]

pi[j] =Xi[j] + Yi[j]

hi[j] =Xi[j]⊕ Yi[j]

ki =gi[3] + (pi[3] · pi[2]) + (pi[3] · pi[1]) + (gi[2] · pi[1])

li =pi[3] + gi[2] + (pi[2] · gi[1])

ci[1] =gi[0] + (pi[0] · Ci)

Si[0] =hi[0]⊕ Ci[0]

Si[1] =((hi[1]⊕ ki) · ci[1]) + (((hi[1]⊕ li) · ci[1])

Si[2] =(pi[2] · gi[1]) + (pi[2] · hi[2] · pi[1]) + ((gi[3] + (hi[2] · hi[1])) · ci[1])+

(((pi[3] · pi[2] · pi[1]) + (gi[2] · gi[1]) + (pi[3] · pi[2])) · ci[1])

Si[3] =((ki · li) · ci[1]) + (((gi[3] · hi[3]) + (hi[3] · hi[2] · hi[1])) · ci[1])

Ci+1 =ki + (li · ci[1])

(4.2)

Eight levels of and/or gates are used to implement the decimal CSA.

4.2 Pre-scaling

The basic function of the pre-scaling module is to transform D and X to Dm

and Xm, then to use the first three MSDs of Dm to index a look-up table for the

corresponding parameter. As illustrated in Figure 4.1, the inputs to the module are

a 16-digit dividend or divisor. An MUX is utilized for the selection of input which is

then stored in a register. The pre-scaling cycle starts from the input register and goes

into a level of doubler and quintupler that is designed to generate 2D and 5D while

at the same time, the first digit of the divisor is detected. The “detection” means

after going through some logics, the divisor should generate three signals indicating

48

 !"#!"!"$!"

#$!"

!"

http://www.foxitsoftware.com For evaluation only.

Figure 4.1 Architecture of the pre-scaling module

the three situations described in Table 3.3. These three signals are the inputs to the

MUX selecting proper Dm. Notice that the transformation between D and Dm does

not change the length of data, since the goal of that transformation is to convert the

first digit of D to the range of [4, 9] instead of generating any carry.

Three MSDs of Dm index a loop-up table containing all the parameters. To save

the area of the look-up table, only two LSDs of the parameters are saved. We noticed

that the MSD of all the required parameters is either 1 or 2. This feature results in

a logic (“First parameter digit detection”) working in parallel with the look-up table

to assert an output signal indicating the condition of the first digit in the parameter.

As concluded in equation (3.16), −2Dm,−1Dm, Dm, 2Dm, 5Dm are needed by the

split parameter digits. The generation of these multiples is performed in one level of

doubler and quintupler followed by a module calculating the 9’s complement values

49

of Dm and 2Dm. These blocks are again in parallel with the look-up table.

Then, the two LSDs stored in the look-up table are used to select the multiples

of Dm through an MUX. There are in fact five MUXes in this step, and each of them

can select one multiple of Dm. As described in the last paragraph, one MUX is used

to select the multiple of Dm corresponding to the first digit in the parameter. All of

these selections happen in parallel. After going through the MUX, five sums and two

carries (the “1”s used to generate 10’s complement values) are ready to be used. But

it should be noticed that there are several exceptions concluded in Table 3.2. The

logic (named as “Exceptions” in the figure) detecting whether the divisor is one of

the exceptional cases is also done in parallel. After the five sums and two carries are

obtained, some of the multiples should be shifted if one of the exceptional flags is

asserted.

As mentioned above, five sums should be added through three levels of decimal

CSA addition, which would result in a huge latency. The idea to deal with this issue

is to decompose the addition into two cycles. One level of addition (just one decimal

CSA which can reduce one sum from five sums) is done in the pre-scaling module

while the other two levels are done in a separate cycle and in a separate module as

well. In fact, to reduce the area consumed by decimal CSAs, the other two levels of

addition are done in the DCSAs in the iteration module.

Consequently, the outputs of the pre-scaling module are the parameter selected

by Dm, four sums and two carries, and the exceptional flags. When the input to this

module is a dividend, the pre-scaling parameter involved in the selection of multiples

is the parameter sent from the input.

Overall, the pre-scaling of a divisor needs two cycles. The first cycle is done in

the module described in this section. When the pre-scaling of a divisor goes into the

second cycle, this module can be used for the pre-scaling of a dividend.

50

4.3 Iteration

In this section, the architecture of the iteration module is described. There are four

major tasks that should be done in the iteration; they are quotients selection, partial

remainder calculation, on-the-fly, and rounding. The architecture of the iteration

module is shown in Figure 4.2.

 !"

#$%$&'

()*+%,$&$+,

 -.&$/.)0'0).)*&$+,

 !"#$%&"'%()

 !"#$%&"'%(*

1123 1123

1123

44 44

1423
56778'

0).)*&$+,

9 !":

5+;/),06&$+,

95+;/),06&$+,'

&6<.):

112311

#5=>9?@1:#5=>9?@1:

1123 1123

#5=>9?@1:

56778'

&76,0A+7;6&$+,

1123 1123

1123

11 11

11

+','-./-)

+','-./-*

 !"#$%&"'%() !"#$%&"'%(*

)'0/

#)*$;6.'

5B>

*%&&1

1123
14

$%&"'%() $%&"'%(*

23
24

 !"#$!%

C)%6&$D)

 !"#$! %&

 !"#$!"#$%"#$

&"#$'"#$("#

%"#$ &"#$

'"#$ ("#

 !"#$!"#$

!!)"#$!!)"#

% #*+ "

#*,"

#*+"

1121

11211121

1123 1123

1123

 !"'A+7'()-0)' !"'A+7'()-0)

E+%$*

F.+*G

*5/"&5(

 -.&$/.)

 -.&$/.)

6) 7) 8) 9)

()%

=H$A&)7

()% ()%
()%0

()%0

C)%6&$D)

:6)

I,J&H)JA.8

5+,D)70$+,

()%

'(%! "&!

'(%! "&!)

%(!*(!+

(+-,K$,%'L'

C+7;6.$M6&$+,

,%(&-"-

.(!*(!+

! #*+ "

!!)"#-

,"(+") &*(!+

!!)"#.
1121

Figure 4.2 Architecture of the iteration module

4.3.1 Digit Recognition

As described before, the decimal CSAs are the major addition blocks in the iter-

ation module. So the basic compositions of the partial remainder should be one 4-bit

sum and one 1-bit carry. After some analysis, two- bit carry (maximum value is two)

are chosen to reduce one level of decimal CSA addition, which will be explained later.

51

In the selection by truncation method, if the partial remainder is a compact value,

the first two digits of the partial remainder are simply the quotients needed in the

iteration. However, dealing with the partial remainder in the form of “sum-carry”,

some efforts should be made on the quotient selection module. Only the quotient

digits and sign digits are considered in this step, while the influence from the other

digits (LSDs) in the partial remainder will be dealt with in the next steps. There are

two ways of doing the digit-recognition:

1. Using a decimal CPA to add the sign digit and two quotient digits separately,

which is done through three 4-bit DCPA. The results are used to select the qD′s.

2. Using logics to generate a sequence of one-hot coded bits. Each bit represents

one value within the ranger from 0 to 9. For instance, there are three situations which

can result in number 8: 6+2, 7+1, or 8+0. These circumstances can be represented

by a logic expression corresponding to one bit in the one-hot coded sequence.

Even though the first method is quite straightforward, the decimal CPA needs an

operand setup which takes time. So, DCPA should be avoided for small additions.

Besides, the results generated by the first method should be recoded to fit the MUXes

in the following steps. Because of the small range of the carry, the expressions for

the second method will not be too complicated and will not take much time. Be-

sides, the one-hot coded results can reduce the complexity of the following MUXes.

Consequently, the second method is chosen for the digit-recognition.

However, the second method cannot propagate carries within digits. To represent

the cases where carries are involved, the number of bits in the one-hot coded sequences

is 11, indicating value 0 to 9, and “larger than 9 (carry)”. For instance, if the “sum”

of qL is 9 while its “carry” is 2, the value of qL should be 11. The bit position 1 and

10 in the sequence are set, meaning “qL = 1” and “Generate a carry” respectively.

The carries will influence the selection of multiples and the sign digit. The first

issue is dealt with in the shifter following the step of digit-recognition, while the sign

digit is obtained in this digit-recognition module since starting from here, the sign

52

is used in many places. The exact sign digit can have only two values, which are 9

and 0. Since the maximum carry generated from the other digits is 1, the sign digit

without carry can be only 8, 9, or 0. The sign is “guessed” according to Table 4.3.

(“x” means don’t care, and “carry” means the value is larger than 9)

Table 4.3 Prediction of sign

Sign Sign digit qH qL

Minus 8 x x

Plus 9 carry x

Plus 9 9 carry

Minus (Don’t care) 9 9 9

Plus 0 x x

Minus 9 others others

The digits in the partial remainder are all positive, so after taking the influence of

carries into consideration, the real sign digit can be only larger than or equal to the

value obtained through the logic expression. Consequently, when the sign = 8, there

is definitely a carry propagated to it, so that the sign digit can be meaningful. If the

sign digit is 0, there will not be any carry changing the sign digit equal to 1 since the

sign digit can be only 0 or 9. This is basically how Table 4.3 works.

Even though the sign can be predicted according to Table 4.3, there is one excep-

tion that the “carry” propagated to the quotient digits can influence the sign digit.

When both of the quotient digits are 9, and the sign digit is also 9, the carry propa-

gated from LSDs can convert the sign from 9 to 0. Since the non-restoring algorithm

can tolerate one-unit error, when the sign conversion happens, the next partial re-

mainder is nothing but the shifted current partial remainder while the quotients are

treated as 0s. The on-the-fly module and the rounding module are in charge of the

correction. This is the “Don’t care” condition described in Table 4.3.

53

4.3.2 Multiples Selection

There are 6 out of 18 multiples stored in registers before the starting of iteration.

These multiples are −1D′, D′, 2D′, 3D′, 4D′, 5D′, which are all generated and saved in

the pre-scaling stage. Besides, there are two compensation values stored in registers

as well, which are ±110D′. Even with the help of compensation values, some negative

multiples (−2D′,−3D′,−4D′,−5D′) are still missing.

The “Negative” block is designed to generate these negative multiples. By the

time the value of the sign digit and the one-hot coded sequences are ready, all the

multiples ranging from −5D′ to 5D′ are available. With the help of the compensation

values, the selection of multiples should follow Table 4.4 and Table 4.5. The values in

the parentheses are the compensation values following the rules concluded previously

in Table 3.5.

Table 4.4 qHD
′ and the corresponding compensation selection

qH qHD
′ qHD

′ qHD
′ qHD

′

Sign = Positive Sign = Positive Sign = Negative Sign = Negative

qL ≤ 9 qL > 9 qL > 9 qL ≤ 9

0 0 −10D′ −20D′(+100D′) −10D′(+100D′)

1 −10D′ −20D′ −30D′(+100D′) −20D′(+100D′)

2 −20D′ −30D′ −40D′(+100D′) −30D′(+100D′)

3 −30D′ −40D′ 50D′ −40D′(+100D′)

4 −40D′ 50D′(−100D′) 40D′ 50D′

5 50D′(−100D′) 40D′(−100D′) 30D′ 40D′

6 40D′(−100D′) 30D′(−100D′) 20D′ 30D′

7 30D′(−100D′) 20D′(−100D′) 10D′ 20D′

8 20D′(−100D′) 10D′(−100D′) 0 10D′

9 10D′(−100D′) 0 −10D′(+100D′) 0

In Table 4.5, two qLD
′s are selected. The qL1D

′ is selected when the carry gener-

ated from the digits other than the sign and the quotient digits is zero, and the qL2D
′

54

Table 4.5 qL1D
′, qL2D

′ and the corresponding compensation selection

qL qLD
′
1 qLD

′
2 qLD

′
2 qLD

′
1

Sign = Positive Sign = Positive Sign = Negative Sign = Negative

carry = 0 carry = 1 carry = 1 carry = 0

0 0 −1D′ −2D′(+10D′) −1D′(+10D′)

1 −1D′ −2D′ −3D′(+10D′) −2D′(+10D′)

2 −2D′ −3D′ −4D′(+10D′) −3D′(+10D′)

3 −3D′ −4D′ −5D′(+10D′) −4D′(+10D′)

4 −4D′ −5D′ 4D′ 5D′

5 5D′(−10D′) 4D′(−10D′) 3D′ 4D′

6 4D′(−10D′) 3D′(−10D′) 2D′ 3D′

7 3D′(−10D′) 2D′(−10D′) 1D′ 2D′

8 2D′(−10D′) 1D′(−10D′) 0 1D′

9 1D′(−10D′) 0(−10D′) −1D′ 0

is for the case where a propagate carry is generated. From the tables, three features

should be noticed:

1. Among all the columns in those two tables, the sequences of multiples are

exactly the same, except they are rotated.

2. Only the table for the selection of qLD
′ involves the different situations of

“carry” while the other table does not care about the “carry”. In fact, the selection

of qHD
′ cares about the carry generated from qL obtained in the digit-recognition

step.

3. The compensation values in Table 4.5 are not influenced by the “carry”.

The selection of the multiples is done in MUXes based on the one-hot coded

sequences obtained from the digit-recognition block. However, four columns in each

table means four MUXes for each quotient digit, which consumes a large area. Because

of the first feature, shifters can be used to shift the one-hot coded sequences to certain

positions, which can reduce the number of MUXes from 8 to 3.

55

“Carry” is calculated in parallel through a decimal CPA directly from the begin-

ning of the iteration cycle. However, by the time the one-hot coded sequences are

obtained through the digit-recognition block, the “carry” is not ready yet. To elimi-

nate the precious time consumed in waiting for the “carry”, two sets of multiples and

compensation values can be chosen, one for the case where the “carry” is 1 and the

other suits the opposite situation. By the time the “carry” is ready, an MUX will

select one from the two sets.

However, two compact sets mean larger area consumption. So, the influence of the

“carry” should be analyzed in order to minimize the area. Features 2 and 3 mentioned

above show that the influence of the “carry” is limited on the selection of “qLD
′”,

while the selection of the compensation value and the qHD
′ are not influenced. This

condition is fulfilled by the use of the compensation method, which is described in

the following equations (4.3 and 4.4). These equations deal with the positive and

negative partial remainder respectively. The quotient digits are X and 9 since this is

the only case wherein the “carry” can influence the qH .

Without“carry”

Ri = 100×Ri−1 − 10×X ×D′ − 9×D′

= 100×Ri−1 − 10×X ×D′ − 10×D′ +D′

With“carry”

Ri = 100×Ri−1 − 10× (X + 1)×D′

= 100×Ri−1 − 10×X ×D′ − 10×D′

(4.3)

Without“carry”

Ri = 100×Ri−1 + 10× (9−X)×D′

With“carry”

Ri = 100×Ri−1 + 10× (8−X)×D′ + 9×D′

= 100×Ri−1 + 10× (9−X)×D′ −D′

(4.4)

Concluded from these equations, only the qLD
′ is changed when the “carry” is

56

changed, while the qHD
′ and the compensation value are not influenced. Consequent-

ly, two qLD
′s (qL1D

′ and qL2D
′) are selected through two MUXes in each iteration.

After analysis, the “carry” can be obtained right after the selection of the qLD
′s, so

that only one qLD
′ is further selected by the “carry” through the “carry selection

MUX” before going into the addition stage.

4.3.3 Addition

The addends to be added together for the calculation of a partial remainder are

concluded in Table 4.6 where “carry-save” stands for a 4-bit sum and a 1-bit carry,

“Sum” means a 4-bit sum, “1” means the “1” added to the 9’s complement for the

10’s complement values.

Table 4.6 Addends

Name Form Additional information

Partial remainder Carry-save none

qLD
′ Sum 1

qHD
′ Sum 1

Compensation Carry-save none

The original partial remainder is composed of a 4-bit sum a 2-bit carry. However,

there are already four sums to be added, so there is no room for the 2-bit carry.

The “logic block” illustrated in Figure 4.2 is used to recode the partial remainder

to the “carry-save” format. The latency of this block is smaller than that of the

digit-recognition and multiples selection, so the results are already available before

the starting of addition.

Since the LSD of the numbers in the form of “carry-save” is not propagated by

other digits, the LSB of the “carry” should always be 0. This bit position fits the

additional “1s” that needs to be added. Concluded in Table 4.6, two “carry-save”

numbers can fit two “1s”, which is exactly the number of “1”s in that table. Therefore,

four sums and two carries need to be added.

57

These addends can be fit into two decimal CSAs in the first level. After going

through the first level, two sums and two carries are obtained. Then, two sums

and one carry can be added by another level of decimal CSA, leaving the other carry

“waiting” during the second level of addition. After two levels of addition, two carries

and one sum are obtained. Instead of using another level of addition to add them

up, a simple logic “carry combination” is utilized to “add” the two carries up, which

generates a 2-bit carry and a 4-bit sum. They form the partial remainder of the

current iteration and will be used in the next iteration.

4.3.4 Reuse Consideration

Even though the decimal CSA is considered as a fast way of addition, it consumes

a large area. Division is performed based on additions so that the decimal CSA is

an essential part in the overall architecture, especially for the pre-scaling method

which requires several DCSAs for pre-scaling. The multiplication of the pre-scaling

parameter, as described before, needs at least four decimal CSAs. The generation

of ±110D′ needs another three DCSAs. In the iteration module as described in the

previous section, there are three decimal CSAs. Therefore, 10 DCSAs should be

implemented to fulfill the function without consideration of reusing.

By utilizing reuse, only four DCSAs are needed: one in the pre-scaling module

while the others are in the iteration module. Even though more areas are consumed by

the MUXes to fulfill the reuse, a significant amount of area is saved since the number

of DCSAs is reduced. The following two paragraphes describe the reuse involved in

the pre-scaling and the calculation of compensation values respectively.

1. Pre-scaling. After going through the DCSA implemented in the pre-scaling

module, note that four sums and two carries are obtained from the pre-scaling module.

These addends are selected by the MUXes selecting inputs for the DCSAs in the

iteration module. Consequently, the addends from the pre-scaling module are added

in the addition stage of the iteration module. Exactly like the partial remainder, the

output is composed of a 4-bit sum and a 2-bit carry. The sum and carry will be added

58

up together later. To fulfill the pre-scaling, all of the three DCSAs in the iteration

module are reused.

2. Calculation of compensation values. The last cycle in the pre-calculation step

is to calculate the compensation values (only ±110D′). Before this step, 1D′ and

−1D′ (9’s complement) are already available. Therefore, the calculation of 110D′ is

done by adding 100D′ and 10D′, while the calculation of −110D′ is to add −100D′

and −10D′ with two “1”s for 10’s complement value. These additions should be done

in two levels of DCSAs. In this case, all addends are selected into the addition stage

of the iteration module. The inputs to the left DCSA are filled with 100D′, 10D′, and

0 (carry). Its outputs are connected directly to the output ports named 110D′ in the

form of “carry-save”. The inputs selected for the right DCSA are −110D′, −10D′,

and “1” (carry). Its outputs are sent to the second level of DCSA whose three inputs

are “1”, sum, and carry generated from the right DCSA in the first level. The “1” is

set by one level of gate connecting to one of the outputs of the left DCSA in the first

level. The outputs of the second level of DCSA forms the −110D′ in the format of

“carry-save”. Consequently, all three DCSAs are utilized.

Another reuse consideration is the decimal CPA. The decimal CPA located in

the iteration module serves to calculate the “carry” generated from the LSDs in the

partial remainder. According to Table 4.6, the multiples of D′ are in the form of

“Sum”. But according to the descriptions above, the 1D′ is reached through the

DCSAs in the iteration module whose outputs are in the form of “Carry-sum”. A

decimal CPA is needed for the calculation of the compact 1D′. Once the 1D′ is

available, 2D′, 4D′, 5D′ can be generated by the doubler and quintupler, while 3D′

needs another decimal CPA. Other than that, a DCPA is also needed in the rounding

cycle to calculate the compact final partial remainder. Consequently, four DCPAs are

needed in total. However, with proper retiming, the DCPA in the iteration module

can fulfill all the usages discussed above.

The calculation of the compact 1D′ can be done in the cycle following the calcu-

lation of its sum and carry. In the same cycle, the 2D′,−D′,4D′,5D′ can be obtained

59

since two levels of doubler can be assigned in the same cycle with the DCPA. In the

next cycle, 1D′ and 2D′ are selected as the inputs to the DCPA. The output will be

3D′. During the rounding cycle, the sum and carry of the final partial remainder can

be selected into the DCPA, and its output will go through the zero and sign detec-

tor needed to select the rounding results. Consequently, the DCPA in the iteration

module can be reused in different steps without any conflicts.

4.3.5 On-the-fly Conversion

In our implementation, the on-the-fly method proposed in [40] is used. Originally,

the on-the-fly is based on shift registers, which consumes a large number of registers

and a huge energy consumption. So, instead of utilizing the traditional on-the-fly

method, radix-100 divider saves the quotient digits in their assigned positions in an

18-digits’ wide register directly.

In [40], the rounding is also considered. But in the case of the radix-100 divider,

the quotients and sign can be obtained before the performing of the addition, which

means that the on-the-fly conversion can be done in parallel with the addition. Con-

sequently, at the end of each iteration, the on-the-fly conversion is already done, so

the quotients saved in the registers are the correct positive values. Therefore the

rounding is separated from the on-the-fly conversion.

An 18-bit register is used to indicate the condition of each digit. During the on-the-

fly conversion, every two digits in the quotient are checked at the same time, since they

are obtained through the radix-100 divider. For instance, every two adjacent digits

can be 00, 01, 10, and 11. They are described in detail in the following paragraphs:

00: This case means that the two quotient digits are not zeros. If the coming new

quotient digits are negative, the next flag bit should be checked: “1” means that the

next quotient digit is either the end of the consistent zeros, or the place where the

new quotients should be saved. In either case, the current two quotients should be

subtracted by “1”. Flags are set to “00” in all cases.

60

01: This is the case when the first digit is not zero while the second digit is. If the

new coming digits are negative, the digits in the current position should be subtracted

by 1, and the flags are set to “00”. Otherwise, if the new digits are not two zeros,

the flags are set to “00” directly.

10: This means the current digit positions are the positions where new quotient

digits should be saved. If the sign is negative while the two quotients are nines, the

flags are set to “11” while “00” are stored as quotient digits. If the sign is positive,

the flags are set to “00”, “01”, or “11” corresponding to different cases of the new

quotient digits. Meanwhile, the next two flag bits are set with “10” indicating the

positions of the digits from next iteration.

11: This means both of the digits are zeros. If the coming digits are negative, the

current digits under these flags are set to “9”. If the coming digits are positive and

not zeros, the flags are set to “00”. Otherwise, they are set to “11”.

4.3.6 Rounding

By the end of the last iteration (the generation of the 17th, 18th quotient digit), the

values available for rounding are the 18-digit quotient and the final partial remainder

in the form of a 4-bit sum and a 2-bit carry. The function of rounding is to determine

whether the final quotient should be added by “1” or not.

As described in the first chapter, roundTiesToEven is the recommended rounding

mode for the decimal arithmetic. The proposed radix-100 divider also utilizes this

rounding method which follows the rules in Table 4.7, where QP stands for adding

one to the current 16-digit quotient, and Q is the current quotient digits. “Negative

R” means that the final partial remainder is negative while the “Positive R” means

that the final partial remainder is larger than zero.

The rounding is performed in the last cycle of the whole division calculation. As

discussed in equation (3.13), the shifted dividend is smaller than 1 while the pre-

scaled divisor is larger than 1 but smaller than 1 + 1/99. Consequently, in extrame

61

Table 4.7 Rounding rules

Rounddigit NegativeR PositiveR R = Zero

0 Q Q Q

1 Q Q Q

2 Q Q Q

3 Q Q Q

4 Q Q Q

5 Q QP Q(Q[LSB]=0)

QP(Q[LSB]=1)

6 QP QP QP

7 QP QP QP

8 QP QP QP

9 QP QP QP

cases, it is quite possible that the final quotient is in the form of 0.0xxxxx instead

of 0.xxxxxx, which means a leading zero is generated. Although the IEEE 754-2008

does not require normalization (removal of the leading zero), considering further usage

of the quotients, it is better to remove the leading zero.

As described in [19], rounding is based on three digits, which are a guard digit, an

round digit, and a sticky digit. The IEEE 754-2008 decimal 64 format needs 16-digit

correct quotient, consequently, 18 digits are needed to do the rounding. In [23], an

extra cycle is needed for the removal of leading zero, since decimal dividers can only

generate one quotient digit at a time. However, in the radix-100 divider, 18 quotient

digits can be generated through 9 iterations.

In the rounding cycle, a shifter is utilized to shift the leading zero out of the

quotient if there is one at the MSD position. A 17-digit sequence should be generated

by the shifter. Meanwhile, components of the final partial remainder are added up

through the DCPA. The successive “9”s starting from the 16th digit to the MSD in

the quotient are marked. After that, all the marked digits are changed to “0” while

62

the digit whose right digit is the last marked digit is added by 1. This step generates

QP . The final rounded quotient can be selected by the results from the DCPA.

The partial remainder mentioned above is in fact the final partial remainder,

while there is no partial remainder for the 17th digit. If there is no leading zero in

the quotient, the partial remainder of 17th digit should be used. However, only the

sign or the zero condition of the partial remainder is needed, which can be derived

from the final partial remainder and the value of the 18th quotient digit. Only if

the 18th digit is zero, the partial remainder of the 17th digit has the same sign and

the same zero condition as the final partial remainder; otherwise, it is always positive

since the final partial remainder follows equation (3.9). To explain this point in detail,

even if the final partial remainder is negative, its abstract value must be smaller than

D′. If the 18th digit is not zero, adding the “18th digit ×D′” back to the final partial

remainder must result in a positive value that is the partial remainder of the 17th

digit.

4.4 Operation Sequence

The overall operation sequence and the tasks in each cycle are summarized below:

Cycle 1: Divisor is imported to the pre-scaling module. Parameter Pa is obtained

and the outputs (four sums and two carries) are saved.

Cycle 2: Task 1: A dividend is imported to the pre-scaling module. The parameter

obtained from the first cycle is used here for the dividend. Task 2: The four sums and

two carries got from the previous cycle are added up by the DCSAs in the iteration

block. The output is 1D′ in the form of “carry-sum”.

Cycle 3: Task 1: The addends of the scaled dividend are added up in the DCSAs.

The outputs are saved in a pair of registers to be used as R0 in the first iteration.

Task 2: The two parts representing 1D′ are added up in the DCPA in the iteration

block. After going through two levels of multiple logic and one level of negative logic,

1D′, 2D′, 4D′, 5D′,−1D′ are obtained and saved in registers.

63

Cycle 4: Task 1: 1D′ and 2D′, which are obtained from cycle 3, are selected into

the DCPA to generate 3D′. 3D′ is saved directly into register. Task 2: 100D′ and

10D′ are added in one DCSA while −100D′ and −10D′ are added with two “1”s in

the other two DCSAs. After these additions, 110D′ and −110D′ are obtained and

saved.

Cycle 5: The carry and sum of the scaled dividend are selected as the inputs to

the iteration module. Also, the values are assigned to inputs of the DCPA. After this

iteration, the first two quotient digits are obtained.

Cycle 6 to Cycle 13: There are 8 iteration cycles in total. They are same as the

cycle 5, except that the inputs are the outputs from the previous iteration. During the

calculation of the partial remainder, the on-the-fly module saves the quotient digits

selected in the current iteration to the right places with appropriate modifications on

the existing quotient digits.

Cycle 14: Two parts of the partial remainder from the previous iteration are added

up. The result then goes through a “sign and zero detection” module. Meanwhile, a

logic block serves to add 1 to the current quotient.

Overall, the radix-100 divider requires 14 cycles to produce a correct 16-digit

quotient.

64

5. Implementation and Comparison

The proposed radix-100 divider, as illustrated in Figures 4.1 and 4.2, is modeled

with Verilog, simulated in Modelsim and verified by System Verilog and MATLAB.

300,000 random cases are tested and verified. Finally, the design is synthesized by

using STM 90-nm CMOS standard cells library with typical conditions (1.2 VDD core

voltage and 25oC operating temperature) in Synopsys Design Compiler. The clock,

interfaces are assumed to be ideal. The synthesis tool computes the best latency.

5.1 Synthesis Results

After synthesis, the critical path is found in the iteration cycle as shown in Figure

4.2. Note that although the design compiler reports the cycle time in ns, it is the

logic effort that can estimate the delay values in a technology independent parameter.

The delay of an inverter of the minimum drive strength with a fanout of four 1x

inverters (FO4) is used as the basic delay model. The area measurement metric is

also transformed to NAND2 (two input NAND gate) from µm2 which is the unit in

the design compiler report. In the STM 90nm CMOS library, the basic equations for

the units described above are

1FO4 ≈ 45ps

1NAND2 ≈ 4.4µm2
(5.1)

The detail information of the critical path of the radix-100 divider is summarized

in Table 5.1. Figure 4.2 illustrates the critical path on the architecture of iteration.

The area is 139,812 µm2, which includes 111,094 µm2 (80%) combinational logic

65

Table 5.1 Critical Path

Component latency(ns) latency (FO4) %

Register 0.1 2.22 8.2%

Buffer 0.03 5.78 2.5%

Digit-recognition 0.13 2.89 10.7%

Shifter 0.16 3.56 13.1%

Multiples selection 0.2 4.4 16.4%

MUXes 0.08 1.78 6.5%

DCSAs 0.33 7.3 27.0%

Carry transformation 0.06 1.3 4.9%

Others 0.04 0.89 3.3%

Setup 0.09 2 7.4%

Total 1.22 27 100%

while the others are registers. The pre-calculation saved many values into registers,

which results in a relatively large register area. The total area is 31,458 NAND2.

We used the same libraries and conditions as used for the radix-100 divider to

synthesis [24] and [26]. Since these works are originally synthesised in TSMC 0.13

µm library, it is unfair to compare different works directly if they have different imple-

mentation environments. The divider in [23] used the same library as the radix-100

divider. Therefore, the data described in that paper can be used directly. In terms of

the Power6 decimal divider, since we don’t have the detailed architecture description,

the latency represented in FO4 provided by [24] is utilized and transformed to ns,

and the number of cycles is obtained by using the redundant adder.

Table 5.2 presents all the comparisons among different designs. Notice that ref-

erence [26], [24], and [23] utilize SRT division algorithm while [17] is based on the

selection by truncation method. All the designs except the proposed radix-100 divider

are decimal dividers.

66

Table 5.2 Results Comparison

Divider Cycle time (ns) No.of Cycles Latency (ns) Ratio Area (NAND2) Ratio

Radix-100 1.22 14 17.08 1 31,458 1

[26] 0.88 20 17.6 1.03 11,130 0.35

[24] 0.93 21 19.5 1.14 11,000 0.35

[23] 1 20 20 1.17 13,500 0.43

[17] 0.585 48 28 1.64 - -

5.2 Comparison

According to Table 5.2, the proposed radix-100 divider is 3% faster than the latest

decimal divider [26]. In the following sections, the major components in the critical

path are analyzed and compared with those of other decimal dividers. In the end,

the area is also analyzed.

5.2.1 Pre-calculation

All the designs included in Table 5.2 need pre-calculation. For instance, as de-

scribed in Chapter 2, the pre-calculation of the divider in [23] takes one cycle to cal-

culate and register the multiples of the divisor (±5D, ±2D). Similarly, [26] and [24]

require one cycle for the pre-calculation to generate the multiples they need. Es-

pecially in [26], multiples −5D to 5D, which are the same multiples needed in the

radix-100 divider, are generated in one cycle.

Since no pre-scaling is needed by SRT, the divisor provided as input is the one used

in the iteration. However, the selection by truncation method does not support one-

cycle initialization. The generation of multiples must wait for the pre-scaling, which

results in a large number of pre-calculation cycles. This delay is a major reason why

the proposed radix-100 divisor does not show significant improvement of performance

compared with other decimal SRT based dividers.

It is true that the radix-100 divider can reduce half of the iteration cycles (18

cycles to 9 cycles), but note that four cycles are used for the pre-calculation. In other

67

words, the cycles used for the pre-scaling take 28.6% of the total latency. In [24], [26]

and [23], only one cycle of pre-calculation is needed, which takes at most 5% of the

total latency.

The decimal divider in Power6, which utilizes the same selection by truncation

method, uses 12 out of 48 cycles for the pre-scaling.

Consequently, one of the drawbacks of the selection by truncation is the large

number of cycles consumed for the pre-calculation. In the Power6 decimal divider,

a pipeline technique is utilized. Similarly, the large number of pre-calculation cycles

can be fully used through pipeline. As described in [30], higher radix works better

in terms of pipeline. Therefore, the latency consumed by the pre-scaling would be

smaller if pipelined inputs are provided to the radix-100 divider.

5.2.2 Quotient Selection

There are two basic methods used by the designs shown in Table 5.2. Power6 [17]

and the proposed radix-100 divider utilize the selection by truncation while the others

are based on SRT.

SRT, as discussed in Chapter 1, is based on the comparisons between the partial

remainder and the boundaries. All three SRT designs in Table 5.2 utilize CSAs to do

the comparisons and prefix-trees to decide the signs. Besides, there should be a coder

used to generate a signal helping to choose the multiple of divisor needed in the next

iteration. In fact, the SRT used in these designs can be understood as a calculation

of the current partial remainder plus a quotient selection.

To reduce the cycle time, all of those designs separate the quotient selection step

and the calculation of the current partial remainder. Consequently, the cycle time

shown in Table 5.2 can be understood as the latency of the quotient selection module.

[26] combines the binary calculation technique in [23] and the digit set from [24]. Its

cycle time is 0.69 ns, which is better than that of [23] and [24]. But only one quotient

digit is selected within this latency while almost double of this time is needed in the

68

cascaded high-radix method [29].

Looking back to the proposed radix-100 divider, only 0.53 ns is needed to select

two quotient digits. In addition, the latency consumed on selection by truncation is

slightly influenced by the number of truncated digits. Consequently, even for higher

radix divider, the latency of the quotient selection would be still around 0.53ns.

As a result, the selection by truncation method is suitable for very high-radix

division from the view of the quotient selection.

5.2.3 Addition

The additions in [24], [23]and [26] are done in parallel with the quotient selection

so they are not part of the critical path.

In both [17] and the proposed radix-100 divider, the addition is done in the second

half part of each iteration. In the proposed radix-100 divider, two levels of addition

and one carry combination block are needed. These modules take 0.39 ns in total.

Because of the cycle time saved by the selection by truncation method, the addition

does not increase the cycle time significantly compared to those SRT decimal dividers.

It is found that carry-save adder is definitely a good choice for multiple addends’

addition in the radix-100 divider.

5.2.4 Area

Another issue to compare is the area. As shown in Table 5.2, the area consumed

by the radix-100 divider is more than two times higher than that of the decimal di-

viders. In fact, high-radix division always means larger areas, since more operands are

involved in each iteration (radix-100 needs more addends than the decimal divider-

s). As shown in [29], the radix-16 combined div/sqrt utilized in Penryn processor is

around 70% larger than the radix-4 combined div/sqrt unit. Other than that, ap-

plying high-radix to the decimal field is more complex than the use of high-radix in

the binary field. For instance, different decimal encodings can influence area, which

69

is not an issue in the binary field.

The pre-scaling module is found to take about 20% of the total area, which is a

major source of the total area. In addition, there are three sources contributing to the

large area: the DCSAs, the widely used MUXes, and the DCPA. The BCD encoding

(low efficiency) also results in the large area.

5.3 Conclusion

The synthesised results show that the proposed radix-100 divider is 3% faster than

the latest decimal divider [26]. More than 28% of the total latency of the radix-100

divider is consumed on the pre-calculation step, which can be reduced if pipeline is

added. Therefore, even if the selection by truncation method is not efficient in terms

of the pre-calculation, it is definitely a better solution than the SRT algorithm for the

radix-100 divider if proper pipeline is utilized. One drawback of the radix-100 divider

is that the radix-100 divider consumes a large area. This is caused by the utilization

of the basic BCD coding style (although it contributes the easy quotient selection).

The use of the unsigned partial remainder digit ([0, 9]) and the widely used registers

are two other reasons. It is possible that by utilizing more advanced techniques in

the future, radix-100 can be much faster than the highly developed decimal dividers.

70

6. Summary

Due to the increasing demand for fast and precise decimal divisions, designing a

fast decimal divider has recently become a popular trend and a promising field. After

analyzing some of the recent published dividers, instead of finding more tricks to be

applied to the current dividers, it was decided to try to improve the performance of

decimal dividers through another way, the high-radix. Proven in the binary field, the

radix-16 divider has better performance than the radix-4 dividers [29], and the same

concept can be applied to the decimal field.

Radix-100 divider is supposed to be a divider that can produce two decimal quo-

tient digits in each cycle. Compared to the decimal dividers using the decimal format

defined in IEEE 754-2008, radix-100 divider can reduce the iteration cycles by half.

The cycle time should be smaller than two times of the cycle time of the decimal

dividers.

A radix-100 divider is proposed in this thesis. As a first trial of applying the

high-radix to the decimal dividers, the proposed divider has the following features:

1. The non-restoring and selection by truncation method are utilized. It is found

that the popular SRT is not suitable for the radix-100 divider especially from the

point of cycle time. Similar to the Power6 decimal divider, the non-restoring based

selection by truncation method is used.

2. Partial remainder is in the form of sum and carry. To reduce the large latency

consumed on calculating the compact partial remainder, DCSAs are widely used in

the design to make addition as fast as possible.

71

3. Compensation method. To reduce one level of addition and the area, the

compensation method is utilized to work with the multiples of scaled divisor saved in

the registers.

4. Reuse. Many efforts have been made on the reuse, which can reduce the area

significantly. By reusing the DCSAs and the DCPA, the number of DCSAs is reduced

from 10 to 4 and the number of DCPAs is reduced from 4 to 1.

5. IEEE 754-2008 support. This design is based on Decimal 64 standard. Modules

dealing with rounding and normalization are included.

The proposed radix-100 divider is faster than the current decimal dividers. In

terms of the overall latency, the radix-100 divider is 3% faster than the latest decimal

divider [26], and is 14% and 17% faster than two typical decimal dividers [24] and [23]

respectively. The proposed radix-100 divider introduces a brand-new way of treating

decimal dividers. Compared with a very early decimal divider proposed in 2006 [22],

the latest decimal divider [26] achieves a much better performance than the old ones.

Consequently, with the start point that the proposed radix-100 divider is slightly

faster than the latest decimal divider, it is quite likely that the radix-100 divider can

be much faster in the future by applying more techniques on the radix-100 divider.

Also, the proposed design proves that the selection by truncation, which is not

as popular as SRT, is a good choice for very high radix division because of its fast

quotient selection method. Even though with longer pre-calculation latency, selection

by truncation can derive the quotient digits (regardless of the number) in a much

shorter time than the SRT method. In the radix-100 divider, the quotient selection

module can select two multiples of scaled divisor within 0.53ns while the fastest

decimal divider needs 0.69ns to select one multiple of divisor. In addition, it is found

that SRT is not suitable for the very high radix division since high radix division

means more comparisons, larger areas and longer latency.

The area consumed by the radix-100 divider is 2.85 times of the smallest decimal

divider. The major reasons for this large area are the use of BCD encoding and pre-

72

scaling. The pre-scaling module takes around 20% of the overall area. Although the

reuse concept reduces the area significantly, there are still four DCSAs in the overall

architecture.

The design utilizes many techniques derived from some typical previous works

as described in Chapter 2. Also, it uses some already available decimal arithmetic

components. By applying more techniques, the future of the radix-100 divider in

industry area is promising.

73

7. Future Work

Some future work may help the proposed radix-100 divider reaching a better

performance and a lower area. One way of doing this might be the usage of signed-

digit.

Signed-digit is a form of redundant number system which has a sign bit. For

instance, “1001” means “-7” while “0111” means “+7”. The advantages of the signed-

digit are:

1. The calculations of signed-digit numbers can be performed by many binary

arithmetic modules. For instance, “1001 + 1001 = 10010 = −14” is done through

binary addition.

2. With a proper selection of digit-set, the determination of “carry” in the current

design can be removed. For instance, the sum locates in [−5, 4] while the carry is in

[−2, 2]. The compact partial remainder digit ranges from −7 to 6. The addition of

the sum and the carry will not generate carries within digits.

Some drawbacks of using the signed-digit:

1. More complex quotient selection. The digit-recognition module should consider

“borrow” as well as “carry”. Also, it needs to transform the signed quotient digits to

the one-hot coded sequence as discussed before, which may consume longer latency.

2. The multiples of scaled divisor should be transformed to the signed-digit format.

Another future work is adding a pipeline to the current design. As described

before, pipeline can eliminate the influence of the pre-scaling and fully use all the

74

modules.

75

References

[1] H. Goldstine and A. Goldstine, “The Electronic Numerical Integrator and Com-

puter (ENIAC),” Annals of the History of Computing, IEEE, vol. 18, no. 1,

pp. 10 –16, 1996.

[2] D. E. Knuth, “The IBM 650: An Appreciation from the Field,” Annals of the

History of Computing, vol. 8, pp. 50 –55, Jan.-Mar. 1986.

[3] IBM, “Decimal Arithmetic Hardware Questions,” Available : http://speleotrove.

com/decimal/decifaq3.html#hwsupport, 2010.

[4] A. V. Alvarez, “High-performance Decimal Floating-Point Units,” University of

Santiago de Compostela, Jan. 2009.

[5] L. Eisen, J. W. Ward, H.-W. Tast, N. Mading, J. Leenstra, S. M. Mueller, C. Ja-

cobi, J. Preiss, E. M. Schwarz, and S. R. Carlough, “IBM POWER6 accelerators:

VMX and DFU,” IBM Journal of Research and Development, vol. 51, pp. 1 –21,

Nov. 2007.

[6] IBM, “IBM z9 EC and z9 BC - Delivering greater value for everyone,”

Available : http://www-01.ibm.com/common/ssi/rep ca/6/877/ENUSZG07-

0286/ENUSZG07-0286.PDF, 2007.

[7] E. M. Schwarz, J. S. Kapernick, and M. F. Cowlishaw, “Decimal floating-point

support on the IBM system z10 processor,” IBM Journal of Research and De-

velopment, vol. 53, pp. 4:1 –4:10, Jan. 2009.

[8] F. Busaba, C. Krygowski, W. Li, E. Schwarz, and S. Carlough, “The IBM z900

decimal arithmetic unit,” in Signals, Systems and Computers, 2001. Conference

Record of the Thirty-Fifth Asilomar Conference on, vol. 2, pp. 1335 –1339, Nov.

2001.

76

[9] S. Oberman and M. Flynn, “Design issues in division and other floating-point

operations,” Computers, IEEE Transactions on, vol. 46, pp. 154 –161, Feb. 1997.

[10] M. Cowlishaw, “Decimal floating-point: algorism for computers,” in Computer

Arithmetic, 2003. Proceedings. 16th IEEE Symposium on, pp. 104 – 111, June

2003.

[11] IBM, “Decimal Arithmetic General Questions,” Available : http://speleotrove.

com/decimal/decifaq3.html#softgood, 2012.

[12] D. Chen, “Algorithms and architectures for decimal transcendental function com-

putation,” University of Saskatchewan, Sept. 2010.

[13] Wikepedia, “IEEE floating-point,” Available : http://en.wikipedia.org/wiki/

IEEEfloating point, 2012.

[14] IEEE, “IEEE Standard for Floating-Point Arithmetic,” IEEE Std 754-2008, p-

p. 1 –58, 2008.

[15] M. Cowlishaw, “Densely packed decimal encoding,” Computers and Digital Tech-

niques, IEE Proceedings -, vol. 149, pp. 102 –104, May 2002.

[16] Wikipedia, “Densely Packed Decimal,” Available : http://en.wikipedia.org/

wiki/Densely packed decimal, 2012.

[17] E. Schwarz and S. Carlough, “Power6 Decimal Divide,” in Application -specific

Systems, Architectures and Processors, 2007. ASAP. IEEE International Conf.

on, pp. 128 –133, July 2007.

[18] Wikipedia, “Binary Integer Decimal,” Available : http://en.wikipedia.org/

wiki/Binary Integer Decimal, 2012.

[19] I. Koren, Computer Arithmetic Algorithms. A K Peters,Ltd., 2002.

[20] Wikipedia, “NaN,” Available : http://en.wikipedia.org/wiki/NaN, 2012.

77

[21] S. Obermann and M. Flynn, “Division algorithms and implementations,” Com-

puters, IEEE Transactions on, vol. 46, pp. 833 –854, Aug. 1997.

[22] H. Nikmehr, B. Phillips, and C.-C. Lim, “Fast Decimal Floating-Point Division,”

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 14,

pp. 951 –961, Sept. 2006.

[23] T. Lang and A. Nannarelli, “A Radix-10 Digit-Recurrence Division Unit: Al-

gorithm and Architecture,” Computers, IEEE Transactions on, vol. 56, pp. 727

–739, June 2007.

[24] A. Vazquez, E. Antelo, and P. Montuschi, “A radix-10 SRT divider based on

alternative BCD codings,” in Computer Design, 2007. ICCD 2007. 25th Inter-

national Conference on, pp. 280 –287, Oct. 2007.

[25] J.-P. Deschamps and G. Sutter, “Decimal division: Algorithms and FPGA im-

plementations,” in Programmable Logic Conference (SPL), 2010 VI Southern,

pp. 67 –72, Mar. 2010.

[26] A. Kaivani, A. Hosseiny, and G. Jaberipur, “Improving the speed of decimal

division,” Computers Digital Techniques, IET, vol. 5, pp. 393 –404, Sept. 2011.

[27] L.-K. Wang and M. Schulte, “Decimal floating-point division using Newton-

Raphson iteration,” in Application-Specific Systems, Architectures and Proces-

sors, 2004. Proceedings. 15th IEEE International Conference on, pp. 84 – 95,

Sept. 2004.

[28] C. Wey, “Design of fast high-radix srt dividers and their vlsi implementation,”

Computers and Digital Techniques, IEE Proceedings -, vol. 147, pp. 275 –282,

July 2000.

[29] A. Nannarelli, “Radix-16 Combined Division and Square Root Unit,” in Com-

puter Arithmetic (ARITH), 2011 20th IEEE Symposium on, pp. 169 –176, July

2011.

78

[30] H. B. James Coke, “Improvements in the Intel Core2 Penryn Processor Family

Architecture and Microarchitecture,” Intel Technology Journal, vol. 12, pp. 179–

192, Oct. 2008.

[31] N. Srivastava, “Radix 4 SRT Division with Quotient Prediction and Operand

Scaling,” in Design, Automation Test in Europe Conference Exhibition, 2007.

DATE ’07, pp. 1 –6, Apr. 2007.

[32] M. Baesler, S. Voigt, and T. Teufel, “FPGA Implementations of Radix-10 Digit

Recurrence Fixed-Point and Floating-Point Dividers,” in Reconfigurable Com-

puting and FPGAs (ReConFig), 2011 International Conference on, pp. 13 –19,

Dec. 2011.

[33] I. Castellanos and J. Stine, “Experiments for Decimal Floating-Point Division

by Recurrence,” in Signals, Systems and Computers, 2006. ACSSC ’06. Fortieth

Asilomar Conference on, pp. 1716 –1720, Nov. 2006.

[34] P. Kornerup, “Revisiting SRT quotient digit selection,” in Computer Arithmetic,

2003. Proceedings. 16th IEEE Symposium on, pp. 38 – 45, June 2003.

[35] E. Antelo, T. Lang, P. Montuschi, and A. Nannarelli, “Digit-recurrence dividers

with reduced logical depth,” Computers, IEEE Transactions on, vol. 54, pp. 837

–851, July 2005.

[36] M. Baesler, S.-O. Voigt, and T. Teufel, “A radix-10 digit recurrence division

unit with a constant digit selection function,” in Computer Design (ICCD), 2010

IEEE International Conference on, pp. 241 –246, Oct. 2010.

[37] M. Ercegovac, T. Lang, and P. Montuschi, “Very-high radix division with prescal-

ing and selection by rounding,” Computers, IEEE Transactions on, vol. 43, p-

p. 909 –918, Aug. 1994.

[38] M. Schmookler and A. Weinberger, “High Speed Decimal Addition,” Computers,

IEEE Transactions on, vol. C-20, pp. 862 – 866, Aug. 1971.

79

[39] M. Erle and M. Schulte, “Decimal multiplication via carry-save addition,” in

Application-Specific Systems, Architectures, and Processors, 2003. Proceedings.

IEEE International Conference on, pp. 348 – 358, June 2003.

[40] A. Nannarelli and T. Lang, “Low-power divider,” Computers, IEEE Transactions

on, vol. 48, pp. 2 –14, Jan. 1999.

80

