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ABSTRACT 

 

Geotechnical and geo-environmental engineering problems may require the computation 

of near-ground-surface water balances. Evaluation of the unsaturated coefficient of 

permeability function is often necessary in order to undertake numerical simulations 

associated with the water balance evaluations. Evaporation at ground surface has the 

potential to reduce the water content of the soil to values less than the residual water 

content. However, it appears that the accuracy of commonly used methods for the 

determination of the permeability function around residual-state conditions is unknown. 

There may be lack of accuracy due to an oversimplification of the physics of water 

movement around the residual-state condition. Evaluation of the coefficient of 

permeability function around the residual-state condition requires reliable experimental 

data in the low water-content range. 

In this study, the concept of residual-state condition is reviewed, and a definition of 

the conditions suitable for geotechnical engineering practice is suggested. A transition 

zone for the soil-water content/soil-suction profile is defined for steady-state flow 

systems. A possible link between the limits of the transition zone and the residual-state 

condition is proposed. A method is developed for predicting the unsaturated coefficient 

of permeability, based on a new definition of the residual-state condition. The method is 

based on the theory of vapour-phase flow and on the soil-water characteristic curve.  

A series of evaporation tests were conducted in an environmentally controlled room 

on two different types of soil samples: sand and clayey silt. The unsaturated coefficient 

of permeability functions for the selected soils were established. The steady-state 

evaporation method used in this study proved to measure the unsaturated coefficient of 

permeability function in the low-water content range. 

The results obtained from the predictive method proposed in this thesis are 

compared to the experimental data and to the data predicted by the previously proposed 

methods. Predictions computed when using the new method appear to be more accurate 

than those from previously proposed methods.  
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It was not possible to draw firm conclusions from the tests performed regarding the 

relationship between the residual-state condition and the upper and lower limits of the 

transition zone of the water-content/soil-suction profile. 
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CHAPTER 1  

INTRODUCTION 

 

1.1 BACKGROUND 

With an increasing world population and the extension of the geotechnical and geo-

environmental problems associated with human activities, geotechnical engineers have 

become more involved in solving unsaturated soil problems in the low water content 

range. One such problem is related to the unsaturated coefficient of permeability 

function. Engineering problems may require the computation of near-ground-surface 

water balances, the prediction of potential volume changes, or the prediction of the 

unsaturated shear strength of the soil. Evaporation at ground surface has the potential to 

reduce the water content of the soil to values less than the residual water content. The 

design of engineered cover systems and water balance evaluations in the top part of 

earthen embankments or natural slopes often requires an evaluation of the unsaturated 

coefficient of permeability function in order to undertake numerical simulations. 

Acid drainage has been found to be a serious environmental issue that the mining 

industry has had to address. More than 15,000 hectares of land have been covered with 

potentially acid-generating tailings in Canada (Wheeland and Feasby, 1991). Feasby et 

al. (1991) estimated $2 billion in liability costs for reclamation of acid-generating mines 

in Canada. The MEND (Mine Environment Neutral Drainage) program was initiated by 

the Government of Canada in 1988 to confront the issue of acid-generating mine tailings 

(Yanful et al. 1999). Many acid-generating mine tailings have been controlled using 

engineered soil covers since the initiation of the MEND program. 

Engineered soil covers have continued to be of interest in controlling acid-

generating mine tailings in Canada and worldwide (Yanful et al. 1999; Barbour et al. 

1993). Water balance calculations form the basis for the design of moisture-retaining 

cover systems. In arid and semi-arid regions, the evaporation component of the water 
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balance controls the degree of saturation and the unsaturated coefficient of permeability 

within the soil cover. Quantifying the evaporation component is fundamental to soil 

cover design (Carey et al. 2005). The unsaturated coefficient of permeability must be 

accurately defined in order to estimate the evaporation component of the water balance 

equation for the design of moisture-retaining covers. 

Commonly used methods for determining the unsaturated coefficient of 

permeability have been developed by Mualem (1976c), van Genuchten (1980) and 

Fredlund et al. (1994). The methods rely on the SWCC and the saturated coefficient of 

permeability for predicting the unsaturated coefficient of permeability. 

Two key features of the soil-water characteristic curve that have often been used to 

identify the form of the unsaturated coefficient of permeability function are the air-entry 

value and the residual water content. There is a general consensus on the definition, 

physical description, and determination of the air-entry value among researchers; 

however, differences have been observed on the definition, physical description, and 

determination of the residual water content (Luckner et al. 1989; Nimmo, 1991; Luckner 

et al. 1991).  

The concept of residual water content has been previously introduced in various 

disciplines, such as petroleum engineering, agriculture, and soil science. The residual 

water content has been estimated as a point on the SWCC. Methods for estimating the 

residual water content have been proposed in different disciplines (Brooks and Corey, 

1964; Mualem, 1976c; van Genuchten, 1980; Vanappali, 1990).  

Considering the residual water content as a point on the soil-water characteristic 

curve may lead to an inaccurate prediction of the liquid-phase coefficient of 

permeability around the residual state condition. The lack of an accurate prediction of 

the unsaturated coefficient of permeability around the residual water content can in turn 

lead to an inaccurate simulation of the soil-suction profile. Discrepancies have been 

observed between experimental and simulated soil-suction profiles within the transition 

zone obtained from the laboratory tests and flow models (Wilson, 1990; Gitirana, 2005; 

Choo and Yanful, 2000). 

Wilson (1990) developed a theoretical-based approach to evaluate the evaporative 

rate from a soil surface. A drying test using a fine, uniform column of sand was 
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conducted in an environmentally controlled room for 42 days. The developed theory was 

evaluated using experimental data obtained from the drying test.  Figure 1.1 shows the 

measured and computed suction profiles for day 29 of the column-drying test. The water 

content profile was divided into three distinct zones: i) a predominant liquid-water flow 

zone, ii) a transition zone, and iii) a predominant water-vapour flow zone. A sharp 

change in suction values was observed between the predominant water-vapour flow 

region at the bottom of the column and the predominantly liquid-water flow at the top 

(i.e., within the transition zone of the profile).  There are discrepancies between the 

experimental and computed data within the transition zone. The thickness of the 

transition zone of the suction profile is about 60 mm. It was suggested that discrepancies 

observed between the data might be attributed to the difficulty in defining the 

unsaturated coefficient of permeability around the residual-state condition.  

Although some literature is available on the definition and description of the 

transition zone of the water-content profile, little research is available on the definition 

of the residual-state condition for engineering practices. As previously explained, most 

of the previous research has considered the residual-water content as a well-defined or 

definite point on the SWCC.  It is hypothesized in this thesis that there may be a one-to-

one relationship between the residual-state condition and the transition zone of water-

content profile. That is, the residual-state condition is hypothesized to be a zone on the 

SWCC; the water contents at the lower and upper limits of the transition zone are 

assumed to mark the initial and final residual-state condition, respectively. The 

hypothesis will be evaluated through an experimental program in this research. 

From the examples described in the previous paragraphs, it appears that an 

inaccurate prediction of the unsaturated coefficient of permeability within the residual-

state condition may result in inaccurate simulations for the soil-suction profile within the 

transition zone. An inaccurate prediction of the unsaturated coefficient of permeability 

may be due to a simplification of the residual-state condition as a point on the SWCC 

along with the use of the point as a lower limit for the liquid-phase coefficient of 

permeability in most prediction methods.  
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Figure 1.1 Measured and computed suction profiles for day 29 of the column-drying test 

for Beaver Creek Sand (Modified from Wilson, 1990) 

The author considers that the definition of the liquid-phase coefficient of 

permeability within the transition zone of soil-suction profile or around the residual-state 

condition needs to be modified to improve the accuracy of the simulation of the soil-

suction profile within the transition zone. The prediction methods for the liquid 

coefficient of permeability have been mostly based on limited experimental data in the 

high range of water contents. The first step in the modification requires a set of reliable 

experimental data to observe the true form of the liquid-phase coefficient of 

permeability function within the transition zone or within the residual-state condition.  

Numerous methods have been used to measure the unsaturated coefficient of 

permeability in the laboratory. The methods have been classified into two categories: 
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steady-state and transient-flow methods. Most of the methods have been limited to high 

water-content ranges. Two of these methods, however, may be suitable for measuring 

the unsaturated coefficient of permeability for low water-content ranges. A modified 

form of the evaporation method for the measurement of the liquid coefficient of 

permeability has been shown to result in a reasonable liquid-phase coefficient of 

permeability for low water content ranges (Mehta et al., 1994; Fujimaki and Inoue, 

2003). A modified form of the evaporation method is given consideration in this thesis 

for the measurement of the coefficient of permeability in the residual zone.  

1.2 RESEARCH OBJECTIVES AND SCOPE OF THE THESIS 

The general objective of this research program is to study the hydraulic flow properties 

of sand and clayey silt soils around residual-state conditions. 

The specific objectives of the research are as follows:  

1) to review research in associated disciplines and determine an appropriate 

definition and description of the residual-state condition (RSC) for geotechnical 

engineering practice,  

2) to measure the unsaturated coefficient of permeability in the moderate to low 

water content ranges, 

3) to evaluate relationship between the residual-state condition and the transition 

zone of water-content profile, and 

4) to propose a methodology, or modify an existing methodology, in order to 

predict the unsaturated coefficient of permeability around the residual-state 

condition. 

Throughout this thesis, the porous media are assumed to be rigid in the sense that 

volume changes are assumed to be insignificant. Evaporation is considered as the main 

process involved in the desaturation of the soil. The evaporation method is considered to 

measure the coefficient of permeability around the residual-state condition. Soil columns 

at the start of the evaporation tests are considered to be saturated. The evaporation 

system needs to reach steady-state flow conditions at the end of the tests. Therefore, 

only steady-state flow condition will be considered in development of the flow equations 

as well as in the analysis. The transient flow at the beginning of the evaporation tests is 
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discarded from the analysis. The shear strength and volume change in the low water 

content range is considered to be beyond the scope of this thesis. 

1.3 OUTLINE OF THE THESIS 

Chapter 2 presents a review of literature on the SWCC, on the residual-water content 

concept and its various definitions, physical descriptions, and determinations, and on the 

drying soil system subjected to evaporation. It will also include a discussion on the 

development of evaporation methods to measure the unsaturated coefficient of 

permeability function and a review of literature on methods for predicting the 

unsaturated coefficient of permeability function.   

Chapter 3 proposes a physical description for the residual-state condition. The 

residual-state condition is theoretically defined through the development of a conceptual 

model of desaturation. Mathematical equations are developed to describe the flow and 

heat fluxes for the steady-state evaporation process. A combination of the liquid-phase 

and vapour-phase flows is considered for the flow mechanism within the transition zone 

of water-content profile. Challenges regarding the definition of the liquid-phase 

unsaturated coefficient of permeability within the transition zone of the water-contents 

profile are described. A modified procedure is proposed for the prediction of the liquid-

phase unsaturated coefficient of permeability within the transition zone. The modified 

procedure is based on Buckingham’s (1907) hypothetical definition for liquid-phase 

coefficient of permeability function, the definition of the residual-state condition, and 

the theory of vapour flow.  

Chapter 4 outlines the laboratory program for the entire thesis. As part of the 

experimental program, a series of steady-state evaporation processes on two different 

types of soil, namely, a sandy soil and a clayey silt soil, was conducted within an 

environmentally-controlled room.  

Chapter 5 presents the experimental test results and discussion.  

Chapter 6 presents the analyses and interpretations of the experimental data, 

including determination of the residual-state condition using the proposed theoretical 

method; validation of the existence of a relation between the residual-state condition and 

the transition zone of soil-suction profile; calculation of the unsaturated coefficient of 

permeability function using laboratory testing data; prediction of the coefficient of 
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permeability function using the proposed method in chapter 3; and evaluation of the 

proposed method using the experimental data.   

Chapter 7 presents the summary, conclusions, and recommendations for future 

research. 
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CHAPTER 2  

LITERATURE REVIEW 

 

2.1 INTRODUCTION 

This chapter provides a review of the research literature related to: i) various aspects of 

the soil-water characteristic curve (section 2.2); namely, the concept of the residual-state 

condition (section 2.3); ii) drying-soil systems, including flow equations and key soil 

parameters (section 2.4); iii) methods for measuring the coefficient of permeability 

function (section 2.5); and iv) methods for predicting the coefficient of permeability 

function (section 2.6). 

The soil-water characteristic curve (SWCC), discussed in section 2.2, plays a 

significant role throughout this research program. The residual-state condition is 

considered to be a key feature on the SWCC. In the analysis of the experimental data 

from an evaporation test, an independent measurement of the SWCC is often required 

and is used along with the water content profile to determine the coefficient of 

permeability. A water content profile can be converted to a soil suction profile using the 

independently measured SWCC. Additionally, the SWCC plays an important role in 

some commonly used methods for the prediction of the coefficient of permeability 

function. The SWCC has other applications which are outside the scope of this thesis 

and are not considered in this review.   

Thorough review on the concept of the residual-state condition is presented in 

section 2.3. The objectives of the review are: i) to highlight previous research related to 

the definition, physical description and determination of the residual-state condition 

described in different disciplines, ii) to understand how the concept has been interpreted 

in the literature when dealing with flow problems through unsaturated soils, iii) to 

establish a foundation to develop an appropriate definition and determination procedure 
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for the residual-state condition for geotechnical engineering practice. A new procedure 

to determine the residual-state condition will be proposed in Chapter 3.  

Section 2.4 presents a review on drying soil systems. Water content profiles have 

been widely used in the analysis of water flow through unsaturated soils. The water 

content profile has been used to determine the location of the drying surface and 

dominant flow mechanisms along a soil column during evaporation processes. Water 

content profiles can also be used to determine when steady-state flow conditions have 

been reached. A steady-state flow condition is assumed to have been reached when the 

water content profile remains constant with respect to time. In addition to water content 

profiles, temperature profiles may also be required to determine steady-state flow 

conditions. Examples are presented from the literature to provide information on the 

application of the water content and temperature profiles in a drying soil system. 

Separation of the liquid water and water vapour flow mechanisms using the water 

content and salt profiles is also considered. 

Section 2.4 also provides a review of literature on the flow equations and key soil 

parameters (i.e. coefficient of permeability and vapour diffusion) associated with water 

transport through unsaturated soils. Determination of the coefficient of permeability 

function using the evaporation method requires thorough understanding of flow 

equations. Darcy’s equation has been used to represent the liquid water movement 

within a soil profile. Fick’s law has been used to represent the water vapour flow within 

the soil. The combination of the two equations (i.e. Darcy’s equation and Fick’s law) has 

been used to represent a combined liquid water and water vapour flow within the soil 

profile. A concise review on the experimental data from the laboratory and field tests is 

also presented. 

Section 2.5 presents a concise review on the methods used for measurement of the 

coefficient of permeability function, with an emphasis on the evolution of the 

evaporation method. To assess the effect of defining the residual-state condition as a 

zone, on the prediction of the coefficient of permeability function, it is necessary to have 

a set of reliable experimental data for the coefficient of permeability function. A 

modified form of the evaporation method is considered for measuring the coefficient of 

permeability function around the residual-state condition in this thesis.  
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Section 2.6 presents a review of the prediction methods for the coefficient of 

permeability function. A method will be outlined in Chapter 3 to predict the coefficient 

of permeability function by considering the residual-state condition as a zone. 

Laboratory data from the evaporation method will be used in order to assess the newly 

proposed predictive method. The results from the new predictive method will also be 

compared with the results from some commonly used predictive methods.  

2.2 SOIL-WATER CHARACTERISTIC CURVE (SWCC)  

Many studies have been done on different aspects of the SWCC, including its 

measurement, representing equations, hysteresis, estimation, and application (Barbour, 

1998; Fredlund, 2006). The SWCC has been used in determining the unsaturated 

coefficient of permeability through measurement and prediction methods. Many 

research papers have related the definition and determination of the residual-water 

content to the SWCC (e.g., Barbour 1998, Fredlund 2006). Although there are several 

references on the SWCC, there is not a particular reference to cover all of the aspects of 

the SWCC that are needed for the current research. The following sections presents a 

concise review on the aspects of the SWCC associated with the current research. The 

review is written with the intention to help the reader comprehend the concepts 

associated with the SWCC throughout the thesis. 

2.2.1 Definition of the Soil-Water Characteristic Curve (SWCC) 

The soil-water characteristic curve indicates the relationship between water content and 

soil suction (Fredlund and Xing, 1994; Williams, 1982). Water content is a quantitative 

parameter used to define the amount of water within the pores of a soil specimen. The 

soil water content is generally presented as gravimetric water content, w, or volumetric 

water content, θw. The degree of saturation, S, is another commonly used measure to 

indicate the percentage of the voids that are filled with water. In geotechnical 

engineering, gravimetric water content, w, is commonly used, while in soil science and 

agricultural disciplines, the volumetric water content, θw, is more common. 

Soil suction is an indicator of the energy level of water in the soil. Soil suction may 

be either matric suction or total suction (i.e., matric suction plus osmotic suction). Matric 

suction is defined as the difference between pore-air pressure and pore-water pressure 
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within the soil pores. In their development of the theory for unsaturated soil mechanics, 

Fredlund and Morgenstern (1977) introduced matric suction as a stress-state variable for 

unsaturated soils. In developing theories for unsaturated soil mechanics, Fredlund and 

Rahardjo (1993) chose matric suction as one of two required stress-state variables. Net 

normal stress was chosen as the second stress-state variable. Typical drying SWCCs, 

from saturation to oven dry conditions (i.e., 0–1,000,000 kPa), are shown for four soils 

from Saskatchewan, Canada in Figure 2.1 (Fredlund, 2000).  

The key features of the SWCC are the air-entry value and the residual-state 

condition. The air-entry value has been seen to represent the suction at which drainage 

of the largest soil pores begins (Fredlund, 2006). Researchers seem to have reached a 

general consensus on the definition for air entry value. On the other hand, the literature 

shows that there have been considerable differences in the definition of the residual 

water content. A comprehensive review on the concept of the residual water content is 

presented in section 2.3.  

2.2.2 Hysteresis of the Soil-Water Characteristic Curve 

Desorption and adsorption branches of the soil-water characteristic curve exhibit 

hysteresis (Fredlund and Rahardjo, 1993). Figure 2.2 shows a schematic of the initial 

drying, main drying and main wetting soil-water characteristic curves from saturation to 

a completely dry condition (Ebrahimi-Birang et al. 2007).  

For many applications, it becomes necessary for a geotechnical engineer to decide 

which branch of the SWCC to use (Tami et al. 2004). For some cases, it might be 

suitable to use an average curve between the wetting and drying SWCCs (Fredlund, 

2006). The main drying curve has been most commonly measured in the laboratory 

since it is easier than the wetting curve to measure. Experimental data for the wetting 

branch of the SWCC is limited. Therefore, some procedures have been proposed to 

predict or estimate the wetting branch from the drying branch of the SWCC (e.g., Feng 

and Fredlund, 1999). Some complex models that represent the hysteretic SWCC have 

also been proposed (Mualem 1974, 1976 a,b; Pham et al. 2003). 
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Figure 2.1 Typical drying SWCCs for four soils from Saskatchewan, Canada (Fredlund, 

2000) 

 

 

Figure 2.2 A schematic diagram of initial and main drying and main wetting SWCCs 

(Ebrahimi-Birang et al. 2007) 
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Most studies on the hysteresis phenomena have focused on the low suction range of 

the SWCC. There is limited information on the SWCC hysteresis in the high suction 

range of the SWCC. It is hypothesized in this research program that there may be a 

suction value beyond which the main drying and wetting SWCCs essentially become the 

same. It is also assumed that this meeting point of the SWCCs may be located at the 

residual-state condition. The existence of the aforementioned suction value has not yet 

been verified with experimental data. Some measurements on the SWCC hysteresis in 

the high suction range will be a part of the proposed research program.  

2.2.3 Measurement of the Soil-Water Characteristic Curve 

An accurate SWCC is required for a precise estimation of the evaporation component of 

the water balance in engineering cover design (Yanful and Choo 1997). The SWCC is 

also an essential part for estimating the unsaturated coefficient of permeability a soil. A 

variety of methods have been used to measure the soil-water characteristic curve. 

Information on laboratory methods of measuring the SWCC in agriculture and soil 

science may be found in the reference by Dane and Topp (2002). Reference for 

geotechnical engineering discipline can be made to ASTM D 6836- 02 (2003). Similar 

methods have been used in geotechnical engineering practices and agronomy-related 

disciplines to determine the entire soil-water characteristic curve.  

Different apparatuses should be used for different ranges of suctions in order to 

obtain an accurate SWCC in the laboratory. Laboratory devices are usually limited to a 

specific range of suctions. All laboratory methods used for the measurement of the 

SWCC have a common theoretical base. Moisture within the soil pores is 

thermodynamically equilibrated to a known energy level through a water reservoir 

(Barbour, 1998).  Mechanical energy-based methods are used for the wetter portion of 

the SWCC curve (i.e., the soil suction range of 0 to 1500 kPa) and physico-chemical 

energy-based methods are used for the drier portion of the SWCC (i.e., beyond 1500 

kPa). 

To establish the SWCC, often a pressure plate apparatus is used in the low- to 

moderate-suction ranges (i.e., 0–500 kPa), and a desiccator is used in the high-suction 

range, (i.e., 1500–1,000,000 kPa). The pressure plate apparatus designed and 

manufactured at the University of Saskatchewan, Saskatoon will be referred to as “U of 
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S Pressure Cell” hereafter. The cell has been used for much of the research carried out in 

the University of Saskatchewan. The suction range of the U of S Pressure Cell has been 

limited to a maximum applied suction of 500 kPa. Recently, a device called “GCTS 

SWC 100” was designed by Fredlund and commercialized by GCTS Testing Systems. 

Through the GCTS SWC 100 device, the measurement range for the SWCC can be 

extended to 1500 kPa. As the GCTS SWC 100 device is relatively new, not many 

experimental data are available from it. Both the U of S Pressure Cell and the GCTS 

SWC 100 will be used for the measurement of the SWCC for the suction range from 10 

to 1500 kPa in this thesis. Details of the features of U of S Pressure Cells and GCTS 

SWC 100 devices will be described in Chapter 4. 

Different methods have been used to measure soil suction in the high suction range. 

The primary method has involved using equilibration of small soil samples over salt 

solutions of known osmotic suction (Fredlund, 1964; and Campbell and Gee 1986), or 

by using thermocouple psychrometry (Fredlund and Rahardjo, 1993; and Rawlins and 

Campbell, 1986). The former method is time consuming, while the latter method is 

limited to a maximum suction of 8000 kPa (Fredlund and Rahardjo, 1993).  

Another method of measuring high soil suction involves the measurement of water 

activity. The principle involved in this method is similar to those of the hygrometric 

technique associated with thermocouple psychrometry (Gee et al. 1992). The method is 

rapid and involves the measurement of soil suction from 0 to 316,000 kPa. The device 

was first introduced as a water-activity meter (Gee et al. 1992), and it was later 

commercialized by Decagon Company.  

The dew-point Water PotentiaMeter (WP4) has been used by several geotechnical 

researchers (Leong et al. 2003; Thakur et al. 2006; Agus and Schanz, 2005; Campbell et 

al. 2007) and is a modified form of the water-activity meter. The dew-point Water 

PotentiaMeter (WP4) has also been called the chilled-mirror dew-point psychrometer 

(Cardoso et al. 2007), or chilled-mirror hygrometer (ASTM D 6836-02, 2005). 

Figure 2.3 shows a schematic diagram of a Dew-Point Water PotentiaMeter (WP4) 

(Leong et al. 2003). The device consists of a sealed chamber with a fan, a mirror and a 

photodetector cell, and an infrared thermometer.  The soil sample is placed in a stainless 

steel or plastic container of approximately 40 mm diameter and is slid into the chamber 
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using a tray. The sample thickness may vary between 1 to 5 mm. The chamber is closed 

and the sample becomes thermodynamically equilibrated with the environment inside 

the chamber before measurements can be made. The fan helps to accelerate the 

equilibration process. A Peltier cooling system is used to reduce the temperature on the 

surface of the mirror to dew-point temperature. The photodetector cell detects the 

condensation on the mirror which first appears at dew point. The dew-point temperature 

is then measured by a thermocouple. The infrared thermometer is used to measure the 

temperature of the chamber which is assumed to be the same as the temperature of the 

soil specimen at equilibrium.   

Vapour pressure above the soil sample in the chamber and the saturated vapour 

pressure at the same temperature are computed using the dew-point and specimen 

temperatures. The calculations are done using software within the device and the value 

of the soil-water potential in MPa units, along with the specimen temperature, is 

displayed on an LCD panel. The soil suction is numerically equal to the negative soil-

water potential. 

 

 

 

Figure 2.3 A schematic diagram of a dew-point Water PotentiaMeter (WP4) (after 

Leong et al. 2003) 

Leong et al. (2003) evaluated the performance of a WP4 device for total suction 

measurements. It was reported that the quantities of total suctions determined from the 

individual measurements of osmotic and matric suctions were less than total suctions 

measured with the WP4 device. The difference increased with total suction. It was 
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suggested that the WP4 device could be used for rapid measurement of the total suction 

of unsaturated soils.  

Agus and Schanz (2005) quantified inaccuracy involved in the measurements of the 

total suction using WP4 and three other commonly used sensors, including filter paper, 

the psychrometer, and the capacitance sensor. They found that the WP4 resulted data 

with the greatest accuracy. Agus and Schanz (2005) suggested that WP4 could be used 

for evaluating performance of the other sensors. They also suggested that for adequate 

accuracy, the total suction measurements should not be considered for suctions less than 

1000 kPa. 

Thakur et al. (2006) used the WP4 device to determine the soil water characteristic 

curve for a locally available silty soil and commercial white clay. Thakur et al. (2006) 

reported that the study revealed the practicality of the WP4 for the measurement of the 

total suction for fine grained soils to maximum total suction of 80,000 kPa.  

Campbell et al. (2007) verified the performance of a WP4 device using five 

saturated salts and an unsaturated salt of known suctions. They found that the accuracy 

of the total suction measurements using the WP4 device was within 1% or better. 

Campbell et al. (2007) also determined the soil-water characteristic curve for four soil 

samples with different textures from sand to bentonite using a WP4 device for suction 

ranges from 1,000 to 400,000 kPa. They found that the relationship between the 

gravimetric water content and the logarithm of total suction was linear.  

As described on the performance of the WP4 in the previous paragraphs, some 

research has been shown to have high accuracy for the measurement of the total suction 

using the WP4 device (e.g., Agus and Schanz, 2005; Campbell et al. 2007). On the other 

hand, there has been research where the accuracy of the WP4 appeared not to be 

adequate (Leong et al. 2003).  

The manufacturer’s instructions request that the WP4 be calibrated prior to 

operation with a standard solution of 0.5 M KCl, which should yield a suction of 2.19 ± 

0.1 MPa, at 25 
o
C. Cardoso et al. (2007) found that the calibration procedure suggested 

by the manufacturer for the WP4 device was not satisfactory.  

Decagon Company recently added a new feature to the WP4 in order to minimize 

the influence of the ambient temperature fluctuation on the suction measurements. The 
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new device with internal temperature control is called WP4-T. The most important 

advantages of the WP4-T over the conventionally used desiccator method is its much 

shorter equilibrium time (e.g., 5–10 minutes).   

Further experimental investigation will be conducted as part of this research 

program in order to evaluate the performance of the WP4-T.  

2.2.4 Equations to Represent the Soil-Water Characteristic Curve 

A variety of equations have been proposed to represent the SWCC. Some of these 

equations are tabulated in Table 2.1 (Fredlund, 2006). Most of the proposed empirical 

equations in Table 2.1 result in a SWCC description in which the suction goes towards 

infinity at some water content value. To more accurately represent the true form of the 

SWCC in high suction ranges, some researchers have proposed modifications to the 

SWCC equations. Some of the modified equations are summarized in Table 2.2.  

Ross et al. (1991) suggested a method to extend any SWCC equation into high 

suction ranges provided the equation could be solved for the corresponding water 

content. 

Ross et al. (1991) suggested that a modified form of the van Genuchten (1980) 

empirical equation with a residual water content taken as zero could be written as 

follows (see Tables 2.1 and 2.2): 

 

     [       ]     [       
 ]      [2.1] 

 

Rossi and Nimmo (1994) proposed two equations to represent the SWCC for the 

entire range of suction. Both equations were developed based on a modified form of the 

Brooks and Corey (1964) equation with a residual saturation taken as zero. 

Fredlund and Xing (1994) developed an equation to represent the SWCC over the 

entire suction range from 0 to 1,000,000 kPa. A correction factor,     , was used to 

extend the SWCC curve beyond the residual-state condition to a totally dry condition. 

The correction factor,     , was defined as follows: 
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where    is the residual suction. Other variables in the equation were defined in 

Table 2.1. Fredlund and Xing (1994) suggested selecting 3000 kPa as the residual 

suction for situations where the residual suction was not known. Sillers and Fredlund 

(2001) showed that shape of the correction factor was insensitive to   .  

Table 2.1 Representing equations for the soil-water characteristic curve (after Fredlund, 

2006) 

References Equations Description 
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Table 2.1 Continued from previous page 
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function of the rate of water 
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air entry value has been 
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function of the residual water 
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  and    = curve fitting 
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    soil parameter which is 

primarily a function of air entry 

value of the soil;    = soil 

parameter which is primarily a 

function of the rate of water 

extraction from the soil, once the 

air entry value has been 

exceeded;      soil parameter 

which is primarily a function of 

the residual water content; and 

      correction which is 

primarily a function of the 

suction at which the residual 

water content occurs 

Note:    
      

       
 = normalized water content;    volumetric water content;     residual water 

content;     volumetric water content at saturation;    
 

  
 = dimensionless water content; and    soil 

suction 

 

Fayer and Simmons (1995) modified the SWCC equations proposed by Brooks and 

Corey (1964) and van Genuchten (1980) in order to represent the SWCC for entire range 

of soil suctions from 0 to 1,000,000 kPa. The adsorption function proposed by Campbell 

and Shiozawa (1992) (i.e., Eq. 2.3) was substituted into the Brooks and Corey (1964) 

and van Genuchten (1980) equations for   .  
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where    is a curve fitting parameter representing the volumetric water content at 1 

kPa suction and    represents the matric suction at oven-dry water content (i.e., 

  1,000,000 kPa). 

Table 2.2 Modifications proposed to represent the SWCC for entire suction ranges from 

0 to 1,000,000 kPa 

References Equations Description 

 

Ross et al. (1991) 

 

              

 

          a general equation 
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suction at zero water content 

 

Rossi and Nimmo (1994)      

 

modified form of  the Brooks and 

Corey (1964) equation with a 
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Fredlund and Xing (1994) 
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used to extend the curve below 
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dry conditions  
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The adsorption function 
proposed by Campbell and 
Shiozawa (1992), was substituted 
into the Brooks and Corey (1964) 
and van Genuchten (1980) 
equations for    

 

2.2.5 Prediction Methods of the SWCC 

Measurement of the SWCC is relatively expensive and time consuming. The required 

accuracy of the SWCC may vary depending on the sensitivity of the solutions for the 

unsaturated soil problem. Some solutions may be quite sensitive to the accuracy of the 

soil-water characteristic curve; others may not. Some methods have been proposed for 

prediction of the SWCC. The proposed methods may be useful for some applications. 

Most of the prediction methods use some easily obtained soil characteristics to describe 

the SWCC. Prediction methods that describe the SWCC through other easily obtainable 

soil characteristics are termed Pedo-Transfer Functions, PTFs (Bouma and van Lanen, 

1987). Estimation methods for the SWCC can be classified into three categories: i) point 

prediction of the SWCC, ii) functional parameter prediction methods, and iii) physico-

empirical methods (Tietje and Tapkenhinrichs, 1993; Wosten et al. 2001).  
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Point prediction of the SWCC or point regression methods constitute the earliest 

form of PTFs in which the water content corresponding to specified soil suctions is 

related to easily obtainable soil parameters such as dry density and the percentage of soil 

particles sand, silt, and clay (Gupta and Larson, 1979; Rawls et al., 1982; Ahuja et al., 

1985). In functional parameter prediction method, the parameters of a SWCC 

representing equation (see Table 2.1) are usually related to easily obtainable soil 

parameters (Cosby et al., 1984; Rawls and Brakensiek, 1985; Vereecken et al. 1989; and 

Aubertin et al., 2003). Physico-empirical models for the prediction of the SWCC often 

use information such as grain-size distribution and dry density. These types of models 

first translate the grain size distribution curve into an equivalent pore size distribution 

curve, which is then related to a distribution of water contents and associated suctions 

(Bloemen, 1980; Arya and Paris, 1981; Arya and Dierolf ,1992; Fredlund et al., 2002).  

In addition to the three types of prediction methods presented in this section, a 

series of research papers has been published where the SWCC was determined from 

measured  pore-size distributions (Simms and Yanful, 2002; Simms and Yanful, 2004). 

Pham et al., (2005) studied models for predicting the hysteresis soil-water characteristic 

curves.  

2.2.6 Relevance of the SWCC in Geotechnical Engineering 

Prediction methods have become quite routine for unsaturated soil property functions 

such as unsaturated coefficient of permeability function (Childs and Collis George, 

1950; Brooks and Corey, 1964; Campbell, 1974; Mualem, 1976c) and shear strength 

(Vanapalli et al., 1996; Fredlund et al., 1996; Oberg and Sallfors, 1997; Khalili and 

Khabbaz, 1998). Proposed prediction methods have been generally based on the SWCC 

(Barbour 1998; Fredlund, 2006).  

There are two essential bases for the prediction of the unsaturated soil properties:  i) 

understanding of the geometry and distribution of the water within the pores, and ii) the 

effect of the geometry and water distribution within the pores on the special predictive 

soil property. Figure 2.4 reveals that the form of the relationship between the degree of 

saturation and various unsaturated properties might be different due to the fact that soil 

properties are controlled by different interphase relations (Barbour, 1998). 
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In addition to its role in the predictive methods for unsaturated soil properties, the 

SWCC may also play a significant role in experimental determination of the unsaturated 

coefficient of permeability. The SWCC may be used for conversion of the water content 

profile into the soil suction profile for calculation of the unsaturated coefficient of 

permeability function. The SWCC often provides an indication of soil suction from the 

measured water content. However, the prediction of the soil suction from the measured 

water content is often approximate due to the hysteresis associated with the SWCC. 

 

 

Figure 2.4 A typical functional relationship for unsaturated soil property normalized to 

saturated soil property versus degree of saturation (Barbour, 1998) 

2.3 RESIDUAL-STATE CONDITION 

Different terms in the literature have been used for describing the concept of residual 

state. Terms related to the concept of the residual-water content in the literature have 

been irreducible saturation, residual saturation, and residual water content. The terms 

irreducible saturation and residual saturation have often been used in the field of 

petroleum technology, while in agriculture and geotechnical disciplines, the terms 

residual-water content, residual degree of saturation, or residual saturation are more 

often used. Vanapalli et al. (1998) and Rassam and Cook (2002) introduced the residual 

suction, the residual state, and the residual conditions to the geotechnical engineering 

field. 
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A review on the residual-state concepts associated with unsaturated porous media in 

various disciplines is described in this section. Definitions and determination methods 

for residual-water content or residual suction are classified into three approaches: 

empirical and semi-empirical, conceptual, and experimental. These three categories, 

along with the references, are summarized in Table 2.3. A concise review on these three 

approaches will be described in this section. 

 

Table 2.3 Definitions and determination methods of the residual-state concept for 

unsaturated soils 

Approach References 

Empirical and semi-

empirical approach 

Brooks and Corey (1964), Mualem (1976c), van Genuchten (1980), 

Haverkamp et al. (2005) 

 

Conceptual approach White (1968), White et al. (1970), Gvirtzman et al. (1987), Luckner et al. 

(1989), Couture et al. (1996) 

 

Experimental approach Haines (1923), Morrow (1970), Knight et al. (1996), Huang et al. (1998), 

Aoda (2000), Reinson et al. (2005) 

  

2.3.1 Empirical and Semi-Empirical Approach 

The residual concept (usually the residual water content) have been assumed either as a 

fitting parameter for an equation representing the SWCC (van Genuchten, 1980; 

Haverkamp et al., 2005) or as a lower water-content limit for the unsaturated water flow 

models (Brooks and Corey, 1964; Mualem, 1976c) in empirical and semi-empirical 

approaches. In both cases the residual-state concept has been assumed as a definite.  

The residual water content has often been determined by the means of the least 

square methods when taken as a fitting parameter in the SWCC representing equations. 

In the case of the lower limit for the unsaturated water flow models, the residual water 

content has been estimated using the graphical method proposed by Brooks and Corey 

(1964), or the mathematical approach proposed by Mualem (1976c).  

In petroleum engineering, the concept of the residual saturation has been defined as 

the lowest saturation below which flow of the wetting phase cannot occur. The concept 

has been brought to the field of irrigation and drainage by Brooks and Corey (1964) in 

order to develop a theory for modeling liquid flow in an unsaturated porous medium. 
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The theory was developed based on the principles used in the field of petroleum science. 

The slow flow of liquid water at low degrees of saturation was not included in the 

Brooks and Corey (1964) model.  

The unsaturated coefficient of permeability function is a key function for the 

models involving the liquid flow in porous media. Brooks and Corey (1964) developed a 

procedure to predict the unsaturated coefficient of permeability function using an 

empirical relationship between the effective saturation,   , and capillary pressure. In the 

equation proposed by Brooks and Corey (1964), the relative permeability of soil was 

also related to the effective saturation.  

Brooks and Corey (1964) defined the effective saturation as: 

 

           
    

    
       [2.4]                                

 

where S is degree of saturation, and    is “residual saturation.” 

Brooks and Corey (1964) defined the “residual saturation” as the 

“saturation at which theory assumes that effective permeability of the 

wetting phase,    , is zero and effective permeability of the non-wetting 

phase,     , is a maximum”.  

In unsaturated soils, the terms “wetting phase” and “non-wetting phase” refer to 

water and air phases, respectively. Brooks and Corey (1964) proposed a graphical 

method for determining the residual saturation from a relationship between effective 

saturation and capillary pressure. 

Considering the relevance of the unsaturated coefficient of permeability function in 

flow modelling through porous media, Mualem (1976c) proposed a method to predict 

the relative permeability of a soil using the SWCC. The equation derived by Mualem 

(1976c) included a parameter called the effective volumetric water content, defined as: 

 

  
    

     
       [2.5] 

 

where   is the volumetric water content,    is the volumetric water content at 

saturation, and    is the residual water content. 
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Mualem (1976c) defined the residual water content as follows: 

“   is defined as the residual water content for  
  

  
   for       

because it fulfills the other basic requirements that     ) = 0”.  

Mualem (1976c) observed that for most of the available measurements, SWCCs 

were limited to water contents above the residual water saturation. To make the 

prediction methods for the unsaturated coefficient of permeability function more 

practical, Mualem (1976c) suggested that the SWCC must be extended to the residual 

water content. Therefore, he developed a method termed “an analytical standard 

method” to determine the residual water content by extrapolating the available data for 

the SWCC.  

Van Genuchten (1980) proposed a closed-form equation to predict the relative 

permeability function from the SWCC. To represent the SWCC data, an empirical 

equation with four independent parameters was proposed. The parameters were 

saturation-water content,   , residual-water content,   , a parameter related to the air 

entry suction, a, and a parameter related to the slope of the SWCC, n. Van Genuchten 

(1980) presumed that two of the parameters—saturation-water content and the residual-

water content—could be measured experimentally. The residual-water content was 

assumed to be the water content corresponding to the permanent wilting point (i.e., 

water content at 1500 kPa suction). The saturated-water content was measured as one of 

the routine parameters; however, the residual-water content might not routinely be 

available for all soils. Therefore, similar to Mualem's procedure, the value of the 

residual-water content was assumed to be extrapolated from the available SWCC data.   

Van Genuchten (1980) defined the residual-water content as 

“the water content for which the gradient, 
  

  
 [slope of the SWCC], 

becomes zero excluding the region near saturation”. 

It was suggested that significant increases in suction may further decrease the 

amount of water below the residual-water content; however, from a practical point of 

view, such further decreases in water content were assumed not to be important. 

Definitions given by Brooks and Corey (1964), Mualem (1976c), and van 

Genuchten (1980) are similar in that there is a consensus that the unsaturated coefficient 

of permeability function becomes zero at the residual-water content.  
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The equation proposed by van Genutchen (1980) to represent the SWCC has been 

used in research in agriculture disciplines to simulate unsaturated flow problems. In 

most of the research, the residual water content has been taken as one of the fitting 

parameters in the SWCC equation (Haverkamp et al. 2005). In such cases, the residual-

water content does not have any physical description or definition. It is not uncommon 

to see negative values for residual-water content during the analysis.  

Several researchers have used the Brooks and Corey (1964) method in order to 

determine the residual saturation (e.g., Wilson, 1990; Bruch, 1993). Table 2.4 shows 

values of the residual saturation,   , determined by the Brooks and Corey (1964) method 

for different soils. Values of the residual saturation,   , vary from 8.5% to 57.7% for the 

soils presented in Table 2.4.  

Generally, clean sands have small residual saturations and sands containing some 

clay contents have larger residual saturations; however, Brooks and Corey (1966) 

indicated that the residual saturation was not solely a function of the clay content. 

Amarillo Silty Clay Loam (Table 2.4) and Pullman Clay Loam (see Figure 2.5) are two 

soils with high clay contents. While the residual-saturation value for Amarillo Silty Clay 

Loam is relatively high (   = 25%,), it is almost zero for Pulman Clay Loam. In Figure 

2.5, λ and η were defined as the slope of the capillary pressure head versus the effective 

saturation (Se) line, and the slope of the capillary pressure head versus the relative 

coefficient of permeability (krw) line, respectively.  

Table 2.4 Some residual saturation values obtained using the method proposed by 

Brooks and Corey (1966) 

References Soil Residual Saturation,    (%) 

Brooks and Corey (1966) Volcanic Sand 15.7 

Brooks and Corey (1966) 

Brooks and Corey (1966) 

Brooks and Corey (1966) 

Brooks and Corey (1966) 

Brooks and Corey (1966) 

Brooks and Corey (1966) 

Brooks and Corey (1966) 

Wilson (1990) 

Bruch (1993) 

Bruch (1993) 

Bruch (1993) 

Glass Beads 

Fine Sand 

Touchet Silt Loam 

Berea Sandstone 

Hygiene Sandstone 

Poudre River Sand 

Amarillo Silty Clay Loam 

Beaver Creek Sand 

Beaver Creek Sand 

Processed Silt 

Natural Silt 

8.5 

16.7 

27 

29.9 

57.7 

12.5 

25 

24 

26 

11 

10 
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In functional parameter prediction methods for prediction of the SWCC using Pedo-

Transfer Functions (see section 2.2.5), the residual-water content has been usually taken 

as a dependent variable of easily obtainable physical properties of the soil, such as dry 

density and porosity.  

 

 
Figure 2.5 Relative permeability and effective saturation as a function of capillary 

pressure head for Pullman Clay Loam (Brooks and Corey, 1964) 

2.3.2 Conceptual Approach 

Conceptual approaches for the definition of the residual-state concept associated with 

unsaturated soils have been developed based on the water distribution within soil pores 

during desaturation of an initially saturated soil. While most of the conceptual models 

have assumed the residual state concept as a point (e.g., Gvirtzman et al. 1987), White 

(1968) has proposed the residual-state concept as a zone on the capillary pressure versus 

water-content plot.  

Ever since the residual-water-content concept has been introduced, some authors 

have attempted to propose a physical description of the concept. There has been a 

consensus among the authors that when degree of saturation reaches the residual state, 

liquid water in the soil does not exist as a linked phase. In other words, the liquid-water 

 

 

a) 
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phase becomes discontinuous below the residual degree of saturation. This stage of the 

water distribution is known as the pendular rings stage. In the pendular rings stage, 

water is isolated as separated rings between joining points within grains. 

In the case of the residual state condition as a point, the water distribution within 

the pores is assumed to take the form of pendular rings. The capillary model has 

generally been used to estimate the capillary pressure at the pendular rings stage. 

Geometry of the pores and distribution of water within the pores in the pendular ring 

stage have been used to estimate the water content corresponding to the pendular ring 

stage (Gvirtzman et al. 1987).  

Gvirtzman et al. (1987) investigated the stage of pendular rings for an unsaturated 

clay loam using cold stage Scanning Electron Microscopy (SEM). Figure 2.6 shows an 

isolated pendular ring. Pendular rings of water were observed in the form of concave and 

convex curvatures (see “W” and “L” arrows in Figure 2.6). Bear (1979) and Barbour and 

Yanful (1994) suggested that although there might still be a hydraulic connection 

between isolated water rings through thin layer of water films, these water films do not 

appear to be able to effectively transmit the pressure between pendular rings.  

 

  

Figure 2.6 SEM micrograph of pendular rings with the convex and concave curvatures   

marked by “L” and “W” arrows, respectively (Gvirtzman et al., 1987) 

Gvirtzman and Roberts (1991) proposed a conceptual model based on geometry to 

quantitatively analyze the interfacial area between the wetting and non-wetting phases 
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within a porous medium as a function of degree of saturation.  Reinson et al. (2005) used 

the conceptual theory proposed by Gvirtzman and Roberts (1991) to predict the residual 

water content. Reinson et al. (2005) compared the predicted and measured data for the 

residual saturation. It was suggested that capillary theories and pendular rings could be 

used for the prediction of the residual saturation point on the soil-water characteristic 

curve for uniform coarse soils.  

Luckner et al. (1989) presented a physical description of the residual fluid (e.g., 

water and air) content based on continuum mechanics. Continuum mechanics assumes 

that in a three phase system such as an unsaturated soil system, all phases (i.e., air, 

water, and solids) are distributed continuously. Figure 2.7 shows possible mobility 

domains in a soil system that includes two immiscible fluids, a wetting and a non-

wetting fluid. Luckner et al. (1989) described the residual fluid (e.g., water and air) 

contents as follows: “the residual fluid contents      and       characterize the 

transitions from coherent to incoherent fluid phase distributions. These two residual 

parameters are important geo-hydraulic variables affecting fluid flow in the subsurface”  

Luckner et al. (1989) went on to say: 

we emphasize that incoherency of a fluid phase does not necessarily 

mean that the material making up the fluid phase is fixed in space or time. 

Incoherency only means that the fluid is immobile as a linked phase. 

Because of trans-phase exchange and transport as a dissolved phase in the 

other fluid phase, the incoherently distributed phase can still undergo 

significant changes. Evaporation and condensation, and de-gassing and 

dissolution between the liquid and gasses phase are examples of such 

trans-phase exchange processes. 

The values of      and       are wetting and non-wetting phase residual contents. 

For an unsaturated soil system,      is water residual content and       is air residual 

content. 

In Figure 2.7, kw and knw are the coefficient of permeability for wetting and non-

wetting phases, respectively;   and    are degree of saturations for wetting and non-

wetting phases, respectively; and   is total porosity of the soil.  

In addition to defining the residual saturation as a point, it has been also defined as 

a designated zone on the SWCC. Conceptual modeling of desaturation for an initially 
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saturated porous medium has often been considered to define the residual saturation as a 

zone (White, 1968; White et al., 1970; Sjoblom, 2000).  

White (1968) and White et al. (1970) developed a conceptual model to describe the 

residual-state condition as a zone on the capillary pressure versus saturation plot. White 

(1968) proposed a hypothetical model to describe desaturation of a porous medium. The 

model assumed that two types of desaturation mechanisms occur in a porous medium:  i) 

discrete mechanism in which the capillary pressure needs to exceed the air-entry value 

of the medium in order to create changes in saturation and ii) continuous mechanism in 

which finite change in capillary pressure causes finite change in saturation. The concepts 

of discrete and continuous mechanisms have been also used by Bethel and Calhoun 

(1953) and Miller and Miller (1958) to describe the change in saturation of a porous 

medium.  

 

 

Figure 2.7 Possible mobility domains for two immiscible (wetting and non-wetting) 

fluids in a porous medium (Luckner et al., 1989) 
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Using the concept of discrete and continuous mechanisms of flow, White (1968) 

divided a saturation-capillary-pressure curve into four desaturation zones: i) boundary-

effect zone, ii) primary-transition zone, iii) secondary-transition zone, and iv) residual-

desaturation zone (Figure 2.8). 

Boundary-Effect Zone 

During initial times of desaturation of a porous medium, the capillary pressure is 

not great enough to drain any pores; however, desaturation begins at the exterior 

boundary of the medium. The range of capillary pressure over which this type of 

desaturation is dominant is termed the “boundary-effect zone.” All equations and models 

developed for saturated soil mechanics are valid and applicable in this zone. 

Transition Zone 

Discrete desaturation begins when the capillary pressure is great enough to force the 

water through the largest throat in the exterior boundary toward a pore. The range of 

capillary pressure from this stage to the stage where discrete mechanism becomes 

insignificant is termed the “transition zone” of desaturation.  

 

Figure 2.8 Saturation-capillary pressure curve for a hypothetical porous medium (White, 

1968) 
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Residual Zone 

The residual zone of desaturation is defined as the range of capillary pressure which 

begins when the continuous mechanism of desaturation becomes dominant over the 

discrete mechanism and extends to the residual saturation,   , at which point the liquid 

phase practically becomes immobile. White (1968) proposed graphical methods to 

determine the saturation at the beginning and termination of the residual-desaturation 

zone.  

Vanapalli et al. (1996) proposed a probable distribution of water at different stages 

of desaturation by considering the description of the hypothetical desaturation model 

given by White (1968). The SWCC was divided into four independent zones, as shown 

in Figure 2.9. The residual condition was introduced as a point on the soil-water 

characteristic curve and a method of determination was proposed (Vanapalli et al., 

1998).  

 

 

Figure 2.9 Soil-water characteristic curve indicating different stages of desaturation 

(Vanapalli et al., 1996) 

The method of construction proposed by Vanapalli et al. (1998) has simplified 

definition of the residual-state condition from a zone on the saturation-capillary-pressure 

plot (i.e., a definition proposed by White, 1968) to a definite point on the SWCC. This 
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interpretation of the residual-state condition may retain the debate on the accuracy of the 

numerical simulations of suction profiles around the residual-state condition in 

unsaturated flow problems (see Chapter 1).  

In chapter 3 of this thesis, interpretation of the residual-state condition as a 

designated zone on the saturation-capillary-pressure plot, proposed by White (1968) 

(Figure 2.8), is used to establish a definition for the initial residual-state condition on the 

SWCC. 

2.3.3 Experimental Approach 

Experimental approaches for the description and determination of the residual-state 

condition have been based on conceptual models where the residual condition was 

assumed to be a point. As explained in the previous paragraphs, it was assumed that at 

the stage of pendular rings, the water phase became discontinuous and the capillary 

pressure could not be transferred between the water rings.  

Some laboratory methods have been used to estimate the residual saturation. Knight 

et al. (1996) used drying rate information from thin soils to estimate the residual 

saturation. From a series of evaporation tests they concluded that the hydraulic 

connectivity within the soil specimen breaks at a transition point from a constant rate to 

a falling rate of evaporation. Knight et al. (1996) suggested that the transition point from 

a constant rate to a falling rate of evaporation may provide an estimate for the residual 

water content.  

Wilson (1990) conducted similar evaporation tests to those of Knight et al. (1996) 

using thin soil layers. Wilson (1990) and Wilson et al. (1997) concluded that although 

the transition from constant rate to falling rate of evaporation occurs at different water 

contents for different type of soils, the corresponding suction values are independent of 

soil type. It was suggested that at an approximate soil suction value of 3000 kPa, there 

was a transition point regardless of the type of soils. The 3000 kPa value has been used 

in other research studies since it was initially suggested by Wilson (1990). Bruch (1993) 

used the 3000 kPa suction value as a separation point between liquid and vapour 

mechanisms of flow within the soil. Fredlund and Xing (1994) used the value as residual 

soil suction in development of their SWCC equation to represent the soil-water 

characteristic curve for entire suction range from 0 to 1,000,000 kPa. Vanapalli (1996) 



34 

 

used the 3000 kPa value for predicting the shear strength from the soil-water 

characteristic curve and indicated that the estimated value and experimental data showed 

closer agreement with a value of 3000 kPa. Rassam and Williams (1999) conducted 

laboratory evaporation column tests and numerical studies on tailings materials. It was 

concluded from the evaporation studies that a soil suction value of around 3000 kPa 

corresponded to an increase in the gradient in the soil relative humidity. It is not clearly 

explained in the literature why an application of 3000 kPa resulted in closer agreement 

between simulated and experimental data.  

Haines (1923) has defined the “residual shrinkage” as a zone on the shrinkage curve 

of a soil. It appears that Haines’s definition is the first instance of the residual concept in 

the literature associated with unsaturated soil studies. However, most of the definitions 

associated with the residual water content in the literature have been based on the 

relationship between the capillary pressure and water content or between the water 

content and the soil suction (i.e., SWCC).     

Barbour and Yanful (1994) investigated the pore-water pressure response within 

sand columns during prolonged drainage using two different tensiometers (i.e., “NTC” 

and “U of S”). After the applied pressure head was dropped below -0.35 m for coarse 

sand, the measured values commenced to depart from the applied hydrostatic pressure 

head (Figure 2.10). As the water distribution approached the condition where the liquid 

phase became discontinuous, it appeared that the applied pressure could not be 

transmitted between the soil and tensiometers. 

Aoda (2000) conducted a column drainage test using glass beads with a diameter of 

24 mm in a constant-temperature environment. The pore-water pressure was measured 

in three different points using a pressure transducer through an injection needle with an 

inside diameter of 0.2 mm (Figure 2.11). Starting from saturated conditions, different 

pressure heads were applied by changing the water level. The radius of meniscus 

curvatures of pendular rings was also photographed.   

The relationship between pressure heads and the height from the water table were 

plotted for measurement point No. 1 (Figure 2.12). The results of the test showed that 

the pressure head was constant and independent from change in water level, beyond a 

pressure head of -2.84 cm. Analyses of photographs also showed that the radius of the 
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meniscus curvatures of the pendular rings were independent of changes in water level 

(Aoda, 2000).  

 

Figure 2.10 Relationship between applied and measured pressure changes (Barbour and 

Yanful, 1994) 

 

 

 

Figure 2.11 Schematic diagram of experimental apparatus (Aoda, 2000) 
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Figure 2.12 Relationship between pressure heads and water level at measurement point 

No.1 (Aoda, 2000) 

The aforementioned review on the residual-state condition revealed that most 

researchers have considered the residual-state condition as a definite point. On the other 

hand, considering the residual-state condition as a point may lead to an inaccurate 

prediction of the liquid-phase coefficient of permeability around the residual-state 

condition. Inaccurate simulation of the water contents or soil suctions profile have been 

observed between the experimental suction profile and simulated data obtained from 

flow models within transition zone of a suction profile (Gitirana, 2005; Choo and 

Yanful, 2000). This discrepancy between the experimental and simulated suction 

profiles has been suggested to be due to the lack of accurate prediction of the 
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unsaturated coefficient of permeability around the residual water content (Wilson, 1990; 

Choo and Yanful, 2000). 

Wilson (1990) developed a theoretical based approach to simulate the unsaturated 

flow condition during evaporation. In order to evaluate the performance of the 

theoretical model, Wilson (1990) conducted a drying test using a fine uniform column of 

sand in an environmentally controlled room for 42 days. The moisture profile in terms of 

the mechanism of flow was divided into three distinct zones: i) the predominant water-

vapour flow zone, ii) predominant liquid-water flow zone, and iii) the transition zone. 

Gitirana (2005) simulated Wilson’s column test results using a heat and moisture flow 

model solved through FlexPDE, a Partial Differential Equation solver (PDE Solutions 

Inc., 2003). Results of the simulations by Wilson (1990) and Gitirana (2005) along with 

the measured results for suction profile for day 29 are shown in Figure 2.13. There was a 

clear discrepancy between the simulated and measured results in the transition zone.  

Wilson (1990) suggested that the difference between the simulated and measured 

profiles within the transition zone might be attributed to the difficulty in defining the 

unsaturated coefficient of permeability within the zone (Wilson 1990). 

 

 

Figure 2.13 Measured and computed suction profiles for day 29 of the column-drying 

test for Beaver Creek Sand (Gitirana, 2005) 
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Choo and Yanful (2000) observed a discrepancy between measured and simulated 

water-content and pressure-head profiles for a three-layer soil column. A finite element 

and analytical methods were used for simulations. For times equal to and greater than 3 

days, reasonable simulations were obtained by modifying the estimated coefficient of 

permeability function, k(ψ). Choo and Yanful (2000) suggested that the method used for 

predicting the coefficient of permeability function, k(ψ), could not capture the behaviour 

of soil around the residual-state condition.  

It appears that the lack of accurate simulation of the suction profile within the 

transition zone may be caused by inaccurate prediction of the unsaturated coefficient of 

permeability around the residual-state condition. Inaccurate prediction of the unsaturated 

coefficient of permeability might be attributed to the simplification of the residual-state 

condition as a point. 

2.4 DRYING SOIL SYSTEM 

Three stages of drying are often recognized during evaporation from a saturated soil 

(Campbell, 1985; Wilson, 1990). The actual evaporation rate is almost constant and 

equal to the potential evaporation rate during the first stage. The second stage begins 

where the evaporation rate starts to decline. The third stage of drying commences when 

the rate of decrease in evaporation becomes small. These three stages are shown in 

Figure 2.14 along a typical evaporation curve for sand. 

Evaporation may be analyzed in terms of the liquid-water flow rate throughout the 

first stage. Following the first stage to some degree of saturation, evaporation might still 

be analyzed as liquid-water flow. Campbell (1985) and Wilson (1990) proposed that 

there may be an unknown point within the third stage beyond which vapour flow is the 

only important mechanism of flow that must be considered.  

2.4.1 Water Content Profile in a Drying Soil System 

The water-content profile is commonly measured in the study of water movement in 

unsaturated soils. Based on the drying process stage, the type of soil and evaporation 

rate, water-content profiles can exhibit different shapes. If the evaporation process 

continues for a sufficiently long time, the evaporation front and hence the vapour-flow 

zone may develop. The primary mode of water movement near the surface within the 
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vapour-flow zone is due to vapour diffusion. The depth of drying front depends on 

different factors. The main factors are the depth of water table and potential rate of 

evaporation (Rose et al. 2005). The drying front can be characterized by an inflection in 

the soil water content profile, as illustrated in Figure 2.15 (after Hillel, 1998). 

 

 

Figure 2.14 Three stages of drying process (after Wilson et al., 1994) 

      Bruch (1993) conducted a series of evaporation tests on soil columns in an 

environmentally controlled room with “constant water head” and “zero water head” 

boundary conditions at the bottom of the soil columns. Figure 2.16 shows the 

gravimetric water-content profiles for the processed silt soil column at some selected 

times for the zero flux condition (i.e., no water table). A drying front is developed for 

this case, but a drying front was not developed for the constant head boundary condition. 

The results for the constant head boundary condition are not shown here.  

      Development of a drying front has been observed for some evaporation tests with the 

existence of a water table.  Rose et al. (2005) conducted a series of column evaporation 

tests with different water table depths. The development of the drying front was 

observed for all three cases on the water content profiles (Figure 2.17). 
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Figure 2.15 Hypothetical development of drying front and its movement into the soil 

during the course of soil moisture evaporation (after Hillel, 1998) 

 

Figure 2.16 Gravimetric water-content profiles for the homogeneous processed silt 

column at selected times during the zero-flux phase in the column 

evaporation tests (Bruch, 1993) 
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Figure 2.17 Soil-water profiles at different times above saline water tables a) 300, b) 

450, and (c) 700 mm deep. Times:   , 1 day;   , 3 days;    , 7 days;   , 16 days;    

, 36 days;     , 50 days;    , 70 days  (after Rose et al., 2005)  
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2.4.2 Temperature Profile in a Drying Soil System 

Two different source of energy are used to promote evaporation during evaporation 

processes in the experimental part of this thesis. This section presents a review of some 

of the temperature profiles resulted from different source of energy in experimental 

conditions similar to the conditions used in this thesis.   

Hanks et al. (1967) studied the effect of different sources of energy on the 

temperature profiles along a drying soil system. Two different sources of energy used in 

the test were radiation and wind. The results from his research are shown in Figure 2.18. 

With radiation as a source of energy for evaporation, soil temperatures near the surface 

of the soil were greater than the ambient temperature. The soil temperatures increased at 

the surface as the soil became drier. Except for the first day, the temperature was 

generally higher near the surface and it decreased with depth. With wind as a source of 

driving evaporation, the temperature near the surface of the soil was lower than the air 

temperature. The temperature increased with time as the surface of the soil became drier. 

The temperature was generally lower near the soil surface and increased with depth into 

the soil.  

 

  

Figure 2.18 Temperature profiles as a function of time and type of drying for Valentine 

sand (Hanks et al., 1967) 

Temperature profiles for the Beaver Creek sand column tests conducted by Bruch 

(1993) for “zero flux” and “constant head” boundary conditions are shown in Figures 
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2.19 and 2.20, respectively. With radiation as a source of energy for evaporation, soil 

temperatures near the surface of the soil were lower than the ambient temperature due to 

the latent heat of evaporation. As the soil surface became drier, the temperature at the 

surface of the soil column increased and reached around the ambient temperature.   

Further evaporation column tests will be conducted on Beaver Creek sand as part of 

this research program and the data will be analyzed in further detail.  

 

 

Figure 2.19 Temperature profiles for the homogeneous sand column during the zero flux 

boundary condition phase of the column evaporation test (Bruch, 1993) 

2.4.3 Separation of the Liquid Water and Water Vapour Flow 

During the drying process, there is a mixed form of vapour and liquid flow that occurs 

within the transition zone. Therefore, both liquid-water flow and water-vapour flow 

must be taken into consideration when performing numerical simulations. Separating the 

liquid-water flow and water-vapour flow within the transition zone is important in water 

transport analyses. To simplify the flow analysis, researchers have often selected a 

surface within the water-content profile above and below which vapour flow and liquid 
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flow are essentially independent processes. In other words, it is assumed that there is a 

definite water-content or soil-suction value where the vapour and liquid flow can be 

separated. This assumption essentially neglects the transition zone or simultaneous 

occurrence of the liquid water and water vapour flow.  

 

 

Figure 2.20 Temperature profiles for the Homogeneous Sand column during the constant 

head boundary condition phase of the column evaporation test (Bruch, 1993) 

The experimental research on the separation of the vapour and liquid phase flow 

does not support a sharp separation between the vapour and liquid phase flow. This 

section presents a concise review on experimental study of the liquid and vapour phase 

flow during evaporation.  

Marshal and Gurr (1954) used the redistribution of chloride and water in soil to 

separate liquid-water and water-vapour flow. Soil specimens with uniform chloride and 

water distribution were prepared. The transport of chloride from the lower half of the 

specimen to upper half of the specimen was observed after 24 hours of evaporation. 

Identical soil specimens with different initial water contents were tested. Figure 2.21 

shows the results of the tests for different types of soils. Marshal and Gurr (1954) 
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suggested that the lower limit of liquid water flow was at or below the plant wilting 

point. The plant wilting point values for different type of soils are shown in Figure 2.21 

with vertical dashed lines.  

 

 

Figure 2.21 Distribution of water and chloride after 24 hours of evaporation in different 

types of soil (Marshal and Gurr, 1954) 

Fritton et al. (1967) used chloride transport to distinguish the liquid water from 

water vapour movement in soil columns. Thirty columns containing silt loam soil were 

subjected to various evaporation potentials. The soils were initially wetted with 0.02 N 

CaCl2. Various parameters were recorded during the evaporation tests including 

cumulative evaporation, water distribution, chloride distribution, and thickness of the 

dry surface (i.e., depth of the vapour-phase dominant flow zone). Evaporation flux 

potentials ranging from 5 to 20 mm/d were used in the tests. Figure 2.22 shows the 

initial water content and chloride profiles before the start of evaporation. Figures 2.23 

 Sand 

Clay Loam  

Loam 
Loam 

Sandy Loam Clay 
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and 2.24 show the distribution of water and chloride contents for various elapsed time 

periods under different potential evaporative rates.  

 

       

 

Figure 2.22 Initial water and chloride distribution in the soil columns (after Fritton et al. 

1967) 

Fritton et al. (1967) assumed that depth of the visible dry layer was near the upper 

limit of the transition zone and the depth of chloride deposition was near the lower limit 

of the transition zone. Table 2.5 shows the depth of the transition zone inspected from 

the water-content and chloride-content profiles for different evaporation rates. Gardner 

and Hanks (1966) pointed out that the transition zone was almost 10 mm thick. In Table 

2.5 the thickness of the transition zone exceeded 10 mm in only two cases; both cases 

were in the high evaporation rates and long evaporation durations.  

Nakayama et al. (1973) studied the chloride transport to the soil surface by allowing 

evaporation from a bare soil (clay loam) under field conditions. A bare plot (72 x 90 m) 

was irrigated with about 100 mm of well water containing 12 meq/lit cl-. Starting 3 days 

after irrigation, soil samples were obtained from different depths every 0.5 hours for 2 

weeks. The maximum depth of soil sampling was 90 mm. Water content and chloride 

concentrations were measured on the soil samples. Observed chloride contents for 

different periods of time in the top layers of the soil (i.e., 0–5 mm, 5–10 mm, and 10– 20 

mm are shown in Figure 2.25. Below 20 mm depth, the concentrations of chloride were 
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almost constant, indicating that liquid water movement was the predominant form of 

flow. 

 

 

Figure 2.23 Water profiles at different elapsed times (Fritton et al., 1967) 

Movement of chloride was noticed to stop at about 4% water content (i.e., a suction 

value of about 100,000 kPa), leading to the conclusion that water could move as liquid 

water at very high suctions. The same results were obtained for different depths, (i.e., 0–

5 mm, 0–10 mm, and 10–20 mm) (Nakayama et al., 1973).  

Wilson (1990) showed that regardless to the type of soil, the actual evaporation rate 

started to decrease below the potential evaporation rate at a suction value of 

approximately 3000 kPa. Taking this suction value as a suction beyond which vapour 

flow becomes dominant over liquid flow, Bruch (1993) analyzed the dominant flow 

mechanism for three types of soils. The results for Beaver Creek sand are shown in 

Figure 2.26.  
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Figure 2.24 Distribution of chloride for different time periods (Fritton et al., 1967) 

Based on experimental observations given in this section, during the evaporation 

process it can be inferred that there is a transition zone within which the flow 

mechanism is the combination of liquid-phase and vapour-phase mechanisms. The 

existence and thickness of the transition zone is a function of the potential evaporation 

rate, duration of evaporation, type of soil, and depth of water table. The form of water 

content and chloride distribution profile during the evaporation process may be used as 

an indication of the lower and upper limit of the transition zone.  

2.4.4 Key Soil Parameters Associated with Water Transport through Unsaturated 

Soils 

There are two primary mechanisms for water transport in a drying soil system:  

conduction in the liquid-water phase and diffusion in the vapour phase. Liquid-water 

flux results from total pressure gradient along a soil specimen. Diffusion primarily 

results from a gradient in the water-vapour concentration. Darcy’s law is used to 

describe the flow of water in a saturated soil (Darcy, 1856). Darcy’s law is also used to 

describe the flow of liquid water through an unsaturated soil (Buckingham, 1907; 

Richards, 1931; Childs and Collis-George, 1950; Fredlund and Rahardjo, 1993). Fick’s 
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law (1855) was derived to describe the diffusion of gas through liquids.  Modified forms 

of Fick’s law have been developed to describe the diffusion of water vapour through the 

soil (Dobchuk et al., 2004). Equations governing these two mechanisms used in this 

thesis will be proposed in the theory chapter (i.e., Chapter 3). 

Table 2.5 Estimates of the vapour flow zone depth (mm) using different methods, 

observation, water profile, and chloride profile (after Fritton et al., 1967) 

Duration of 

Evaporation 

(day) 

Method of 

Estimation 

 Potential Evaporation (mm/d)  

5.1 7.3 1.13 1.92 
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The liquid-phase coefficient of permeability is the primary soil parameter used in 

describing liquid-water flow through an unsaturated soil. For vapour-flow analysis, the 

primary soil property is the coefficient of vapour diffusion. When liquid-phase and 

vapour-phase flow simultaneously occur in the soil, the coefficients of liquid-phase 

permeability and vapour diffusion are not readily comparable in their original forms 

because of their different units of measurement.  
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Figure 2.25 Chloride content versus time at top layers of the plot (Nakayama et al. 1973) 

 

 

Figure 2.26 Dominant flux mechanisms for the homogeneous Beaver Creek Sand during 

evaporation test (Bruch, 1993) 
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The literature shows that there are two options for comparing these two soil 

properties: i) the coefficient of permeability has been converted into hydraulic 

diffusivity, or ii) vapour diffusivity has been converted into vapour conductivity. Both 

conversions may be performed through application of the SWCC.  

Rose (1963a) used the following equation as the general equation for isothermal 

vapour flow: 

 

  

  
                 [2.6] 

 

where    is water vapour flux, g cm
-2

s
-1

;    is density of liquid water, 0.997 gcm
-3

; 

kv and Dv were defined as isothermal vapour conductivity, cm s
-1

, and isothermal vapour 

diffusivity, cm
2
s

-1
, respectively.    and    are soil suction and water content gradients, 

respectively. 

kv and Dv were defined as follows: 

 

         
     

    
     [2.7] 

 

     
  

  
              [2.8] 

 

where Da is molecular diffusion coefficient of water vapour in free air, 0.262 cm
2
s

-1
; ε is 

volumetric air content, cm
3
 air cm

-3
; ν is mass flow factor = P/(P-e); P is total gas 

pressure, mm Hg; e is partial pressure of water vapour at T, mm Hg; T is temperature, K; 

h is relative humidity;    issaturation density of water vapour, 2.3 x 10
-5

 g cm
-3

; g is 

acceleration due to gravity, 981.2 cm s
-2

;  R is gas constant of water vapour, 4.615 x 10
6
 

erg g
-1

 deg c 
-1

. 

      Rose (1963a) conducted laboratory experiments to determine the SWCC and the 

liquid-phase coefficient of permeability function for different type of soils. The results 

of the laboratory experiments are shown in Figures 2.27 and 2.28. In most cases, three 

zones can be recognized from either SWCC or coefficient of liquid-phase permeability 

function.  
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      Mehta et al. (1994) calculated the vapour coefficient permeability, kv, using Eq. 2.9, 

derived by Campbell (1985), and compared the calculated values with the liquid-phase 

coefficient of permeability, kl (Figure 2.29). The effect of temperature gradient on water 

flow was assumed to be negligible. 

 

   
      

    
   (

    

  
)    [2.9] 

 

      where M is molecular weight of water; R is universal gas constant, T is absolute 

temperature,    is density of solids. 

 

 

Figure 2.27 Relationship between volumetric water content and soil suction (modified 

from Rose, 1963a) 
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      Mehta et al. (1994) also calculated and compared vapour and water coefficient of 

diffusivities (Figure 2.30). 

      Bachmann et al. (2001) conducted a series of evaporation experiments from sandy 

soils of different water repellency. The calculated water vapour flux based on Fick’s law 

was 2 to 2.5 orders of magnitude smaller than the evaporation flux observed at the 

surface (Table 2.6). Comparing the isothermal vapour transport with the observed 

average moisture flux at the surface, Bachmann et al. (2001) suggested that the water 

transport in the upper part of the column (0 to 20 mm) occurred mainly in the liquid 

phase. 

 

 

Figure 2.28 Relationship between volumetric water content θ and the liquid-water 

coefficient of permeability, kl (ψ) (modified from Rose, 1963a) 

      Konukco et al. (2004) compared liquid-water, water-vapour, and total (liquid and 

vapour) diffusivities using evaporation tests on different type of soils. Figure 2.31 shows 

determined values of liquid-water diffusivity, Dl, water-vapour diffusivity, Dv, total 

diffusivities D = Dl + Dv, and the ratio of Dv/D for a sandy loam soil. Using the 

variation in the ratio of Dv/D, water-content values were determined for the upper and 

lower limits of the transition zone. Above the upper limit of the transition zone, the 

dominant mechanism of flow was assumed to be water vapour and below the lower limit 
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of the transition zone the dominant mechanism of water flow was assumed to be liquid 

water.  

 

 

Figure 2.29 Comparison of the liquid-water and water-vapour components of 

permeability (modified from Mehta et al., 1994) 

 

Figure 2.30 Comparison of the liquid-water and water-vapour components of diffusivity 

(modified from Mehta et al., 1994) 
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Table 2.6 Observed and calculated water-vapour flux in the surface layer (0–20 mm) 

based on water content data of day 195 (after Bachmann et al., 2001) 

Soil Type Observed Evaporation Flux (m/s) Calculated Vapour Flux (Depth = 

5-15mm), m/s 

Aw 6.5 x 10
-10

 6.1 x 10
-12

 

AH 

Bw 

BH 

5.4 x 10
-10

 

8.0 x 10
-10

 

5.9 x 10
-10

 

2.7 x 10
-12

 

6.3 x 10
-11

 

1.1 x 10
-13

 

 

       Konukco et al. (2004) termed the water content at the upper limit of the transition 

zone as threshold or critical water content. The corresponding suction value was also 

called the critical or threshold suction value. These values were determined for different 

soils through analyzing salt and water content profiles during evaporation tests. The 

results are shown in Table 2.7. 

 

 

Figure 2.31 Liquid-water diffusivity, (Dl), water-vapour diffusivity (Dv), total diffusivity 

(D = Dl + Dv), and the ratio of Dv/D versus water content for a sandy loam 

soil (after Konukco et al., 2004) 
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Table 2.7 Threshold water content for different soils (Konukco et al., 2004) 

Soil Texture 
  (Konukco et 

al., 2004) 
Rose (1963a) 

Calculated range of θ 

in transition zone 
Θ when Dl = Dv 

Clay Loam 

Silty Loam 

Sandy Loam 

Coarse Sand 

0.10 

0.06 

0.05 

0.02 

0.24 

0.09 

0.06 

0.01 

0.1-0.28 

0.06-0.17 

0.05-0.14 

0.02-0.09 

0.17 

0.1 

0.07 

0.05 

 

The laboratory experimental test results presented in this section suggest that it 

might be possible to use the liquid-phase and vapour-phase coefficient of diffusions to 

locate the upper and lower limits of the transition zone.  

2.5 EXPERIMENTAL DETERMINATION OF THE LIQUID-PHASE 

COEFFICIENT OF PERMEABILITY FUNCTION  

A variety of methods for measuring the unsaturated coefficient of permeability have 

been proposed in the literature. Benson and Gribb (1997) and Dane and Topp (2002) 

summarized some of the laboratory methods. The methods for the measurement of the 

liquid-phase coefficient of permeability function have been classified into two 

categories:  steady state methods and transient methods. Most of the methods are limited 

to measuring the coefficient of permeability at relatively high water contents. Two of the 

methods proposed in the literature have been shown to have potential for measuring the 

coefficient of permeability under low water-content conditions. These two methods are 

the centrifuge method (Nimmo et al., 1987, 1990) and the evaporation method (Wind, 

1968; Arya et al, 1975). The evaporation method will be further pursued as part of the 

research program in this thesis. The evolution of the evaporation method is briefly 

discussed in this section.   

Wind (1968) introduced the evaporation method (or the wind method) to measure 

the liquid-phase coefficient of permeability function in an unsaturated soil. In the wind 

method, a saturated soil column is placed in constant environmental conditions and 

water evaporates from top of the soil column. The amount of evaporated water is 

monitored by weighing the column with time.  

The main disadvantage of the wind method is that its data are limited to suctions in 

the range where tensiometers can be used to measure suction. Barbour and Yanful 

(1994) showed that for a sandy soil, tensiometer suction measurements were limited to 
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the residual suction condition, which could be as low as 3 to 5 kPa for sandy soils.  

Therefore, the method cannot be used for the measurement of the liquid-phase 

coefficient of permeability beyond the residual suction condition. 

Arya et al. (1975) developed what is called the hot-air method. Water diffusivity 

could be determined for a wide range of soil water contents using the hot-air method. 

The water diffusivity function was then converted to the unsaturated coefficient of 

permeability provided the soil-water characteristic curve was available.  

In the hot-air method, an initially saturated soil column is forced to dry using hot air 

flow above the soil sample. Mass of the column is monitored during drying. Drying of 

the soil must happen under the following initial and boundary conditions: 

 

                            for                                                             [2.10] 

                           for                                             

 

where    is initial water content,     is the air-dry water content,   is distance, and t 

is the elapsed time. 

The water content distribution data are measured at the end of the test. The data are 

analyzed in order to calculate the water diffusivity function using the following 

equation:   

 

           
  

  
  ∫    

  

  
                                   [2.11] 

 

where      is the water diffusivity, t is elapsed time, x is distance, and   is water 

content. 

If the SWCC is known, then the water diffusivity can be converted to the 

unsaturated coefficient of permeability using the following equation:  

 

             
  

  
                                                                 [2.12] 
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The hot-air method is based on two conditions: i) the existence of a linear 

relationship between the cumulative evaporation and t
0.5

 and ii) the availability of the 

water-content profile at the end of the test. The water content at the bottom of the 

column (i.e., lower boundary condition) must remain unchanged. 

Although the hot-air method can be used to measure the water diffusivity function 

for a wide range of water contents, there are some concerns related to this method. The 

method is not considered accurate since the theoretical assumptions are not fully 

satisfied in the experimental procedure. Some redistribution of water may also occur 

during sampling for gravimetric water content determinations. Pushing the sample from 

the wet end of the core (i.e., the portion used for sampling at the end of the test) may 

cause some compression and possibly squeezing out some water. The most serious 

concern appears to be related to the temperature effects on water flow. Because the 

samples are dried using hot air, a rise in soil temperature is expected. The increase in air 

temperature violates the assumption of isothermal conditions.  

A non-steady state evaporation method was used by Mehta et al. (1994) to 

determine the liquid-phase coefficient of permeability function for a sandy soil at low 

water contents. Six identical soil columns with saturated initial condition were used in 

the experimental program. Each soil column had a height of 120 mm and was composed 

of 12 acrylic rings with a thickness of 10 mm and an inner diameter of 49 mm. The soil 

columns were placed on a turntable (1 rpm) and evaporation was allowed to take place at 

a constant wind speed of 0.1 m/s in a room with a constant temperature of 20 
o
C and 

relative humidity of 70%. Soil columns were sectioned at different elapsed times and the 

volumetric water-content profiles were determined. The following equation was used to 

calculate the average water flux at any measured depth over specified time intervals:  

 

     
 

  
[∫            ∫        

 

 

 

 
]   [2.13] 

 

where q(x) is the average liquid-phase flux at any measured distance,    is time 

difference,       is the volumetric water content of the soil at x, x is distance, and L is 

the total length of the soil column.  
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Darcy’s law was used to calculate the average coefficient of permeability over a 

time increment,   , as follows: 

 

     
    

   [              ]  
                                     [2.14] 

 

where       and          are suction gradients corresponding to the times t and 

    , respectively. 

 

Figure 2.32 shows the SWCC of Shonai sand dune soil that was tested by Mehta et 

al. (1994). A wide range of suctions were applied in the measurements of the SWCC 

(i.e., 1–100,000kPa).  

Figure 2.33 shows the measured liquid-phase coefficients of permeability function 

for the sandy soil from saturation to a volumetric water content of 1%. The coefficient of 

permeability varies from 10
-4

 to about 10
-15

 m/s.  

 

 

Figure 2.32 SWCC of Shonai sand dune soil (modified from Mehta et al., 1994) 
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Figure 2.33 Relationship between the liquid-water coefficient of permeability and 

volumetric water content for a Shonai sand dune soil (modified from Mehta 

et al., 1994) 

Fujimaki and Inoue (2003) developed a flux-controlled steady-state evaporation 

method for determining the liquid-phase coefficient of permeability function at high 

suction values. Figure 2.34 shows a schematic of the experimental set-up used to 

measure the coefficient of permeability under environmentally-controlled conditions. 

The soil column was comprised of acrylic rings that were 5 to 10 mm thick. The soil was 

washed with distilled water applied from the top of the column in order to produce a salt 

free soil sample. An electric fan was used above the soil column to accelerate the rate of 

evaporation and a lamp was placed above the column. The lamp was automatically 

controlled to keep the soil column surface temperature at a constant value of 25 
o
C. At 

the same time, a peristaltic pump was attached to the middle of the bottom ring through 

a hypodermic needle. The pump was used to apply a small amount of water flow at a 

constant rate of 10.2 mm/d. Relative humidity of the room during the test was 

maintained at 37 ± 3%. The column was placed on a balance to monitor its mass. 

Polystyrene foam was used for thermal insulation. A thermocouple was inserted 

horizontally to a depth of 2 mm in the column to monitor the temperature. The 

evaporation rates were measured using an electronic balance.  
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Figure 2.34 A schematic of the evaporation experiment set-up (modified from Fujimaki 

and Inoue, 2003) 

The mass of the soil column was monitored over time. The evaporation test was 

started at an initially saturated condition. The rate of evaporation was greater than the 

applied inflow rate and therefore the mass of the column decreased with time. Since the 

suction in the top layer of the soil was increasing with time, the rate of evaporation and 

the mass of the column decreased with time until the rate of evaporation became equal to 

the water inflow rate, indicating that steady-state flow conditions had been reached 

(Figure 2.35). After achieving steady-state flow conditions, the column was sectioned to 

measure the water content and suction profiles. Water contents corresponding to each 

section were determined by an oven drying the soil samples at 105 
o
C. 

The following equation was used to calculate the unsaturated coefficient of 

permeability: 

 

     
  

       
 

     
     

 

   
 
  

  

  

  
  

     [2.15] 

                                                                                                                                              

where,        ,     and    are the liquid water and water vapour fluxes 

respectively, cm/s; z is the depth, cm; a is the air-filled porosity, mm
3
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tortuosity factor; Dva is the diffusion coefficient of water vapour in free air, g/(cm
2
.s);   

   

is saturated water-vapour density;     is the density of water, 0.997 g/cm
3
; Rv is gas 

constant for water vapour, 4697 cm/K; T is temperature, K; and   is soil suction,  

 

Figure 2.35 Change in column weight from the beginning of evaporation (Fujimaki and 

Inoue, 2003) 

Figure 2.36 shows the measured values of the unsaturated coefficient of 

permeability for Masa Loamy Sand using three different methods: i) the steady-state 

downward flow method (SDFM), ii) the steady-state evaporation method (SEM), and iii) 

the instantaneous profile method (IPM) (Fujimaki and Inoue, 2003). 

Fujimaki and Inoue (2003) used numerical analysis to find the time required to 

reach steady state conditions under different inflow rates and aerodynamic resistance. 

Figure 2.37 shows the final water contents near the surface of the soil column (i.e., at 10 

mm depth). The results show that the lower the inflow rate, the lower the water content 

at 10 mm depth and the more the time required reaching steady-state conditions. 

Therefore, with the controlled flux steady-state method, lower inflow rates are required 

to calculate lower values for the coefficient of permeability. Under the experimental 

conditions imposed by Fujimaki and Inoue (2003), steady state conditions were 

established within two weeks.  
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Figure 2.36 Experimental values of the unsaturated coefficient of permeability versus 

volumetric water content (Fujimaki and Inoue, 2003) 

 

Figure 2.37 Dependence of duration required to attain steady-state and water content at z 

= 1 cm on inflow rate (Fujimaki and Inoue, 2003) 

The method proposed by Fujimaki and Inoue (2003) will be modified and used for 

the measurement of the liquid-phase coefficient of permeability function in the 
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laboratory experimental program as part of this thesis. Details pertaining to the modified 

method will be presented in Chapter 4. 

2.6 PREDICTIVE METHODS FOR THE UNSATURATED COEFFICIENT OF 

PERMEABILITY FUNCTION 

Numerous models have been proposed for the representation or estimation of the liquid-

phase coefficient of permeability function, kl (θ) or kl (ψ). These models have been 

classified by Mualem (1986, 1992). Figure 2.38 shows various categories of the 

unsaturated coefficient of permeability models according to the Mualem classification. 

The models were classified into two categories: theoretical and empirical models. The 

theoretical models were classified into two groups: macroscopic and microscopic 

models. This section presents a concise review of each group of the unsaturated 

coefficient of permeability predictive models. A review of the relationship between the 

unsaturated coefficient of permeability and water content, presented by Buckingham 

(1907), is also presented.   

 

 

Figure 2.38 Classification of the unsaturated permeability models 

2.6.1 Empirical Models 

Empirical models are equations describing the variation of the unsaturated coefficient of 

permeability with soil suction, kl (ψ), or with volumetric water content, kl (θ). 

Parameters required for the empirical equations are generally determined using a curve- 

fitting procedure. Some of empirical equations along with appropriate references are 

given in Table 2.8. 
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2.6.2 Theoretical Models 

Theoretical models are based on the relationship between water flux and the hydraulic 

head gradient. There are two different groups of theoretical models: i) macroscopic 

models, and ii) microscopic models. These models are based on the statistical 

interpretation of the soil-water characteristic curve.  

 Table 2.8 Some of the empirical equations representing the unsaturated coefficient of 

permeability 

References Equations Description 

 

Averjanov (1950) 
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Note:     is the relative permeability,     is effective degree of saturation,    and     are the saturated 

water content and residual water content; respectively.  

 

2.6.2.1 Macroscopic Models 

The objective of the macroscopic models is to derive an analytical equation for the 

unsaturated coefficient of permeability function. All macroscopic models have the 

following general form: 
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       [2.16] 

 

where     is the relative permeability,     is effective degree of saturation (see Eq. 

2.4), and   is a constant value.  

The value of   depends on the assumptions made in deriving the permeability 

equation. Numerous researchers have suggested values for   (e.g., Averjanov, 1950,    = 

4; Yuster, 1951,    = 2; Irmay, 1954,    = 3).  

The effect of pore-size distribution is neglected in macroscopic models and this is 

the main criticism of this group of models (Childs and Collis George, 1950; Brooks 

Corey, 1964). Brooks and Corey (1964) showed that for a soil with uniform pore-size 

distribution index the exponent    is 3, and in general    
    

 
 , where    is a positive 

pore-size distribution index. Mualem (1976c) suggested that         , where m is a 

soil water parameter that is positive for granular soils and negative for fine-grained soils.  

2.6.2.2 Microscopic Models 

In microscopic models, the porous media is assumed to consist of a set of 

interconnected, randomly distributed pores. This group of models assumes the validity 

of the Hagen-Poiseuille equation at the level of a single pore, and hence uses this 

equation to estimate the permeability of an elementary pore unit. In this sense, statistical 

models may be considered to be a microscopic approach. The coefficient of permeability 

of an unsaturated soil is then determined by integration over the contribution of the 

liquid-filled pores. Numerous statistical models have been proposed by authors (e.g., 

Purcell, 1949; Gates and Lietz, 1950; Childs and Collis-George, 1950; Fatt and Dykstra, 

1951; Burdine, 1953; Wyllie and Gardner, 1958; Farrel and Larson, 1972; Mualem, 

1976c; Mualem and Dagan, 1978).  

All of different statistical models can be represented by three general mathematical 

equations as follows: 

 

        
 

∫
     

       
  

 
 

∫
      

       
  

  
 

                                        [2.17] 



67 

 

 

        
 

∫
  

    
 
 

∫
  

    
  
 

                                                [2.18] 

 

                                         
 [

∫
  

    
 
 

∫
  

    
  
 

]

 

                                     [2.19] 

 

The statistical models proposed by Childs and Collis-George (1950), Burdine 

(1953), and Mualem (1976c) appear to be more commonly referenced in the literature. 

Eq. 2.17 results in the Childs and Collis–George model if n =1 and b = 0. Eq. 2.18 is the 

form of the Burdine model if n = 2 and b = 0, and the Mualem model is a form of Eq. 

2.19 with n = 0.5 and b = 0. To solve the integral form of the statistical models and 

obtain the coefficient of permeability functions, the saturated coefficient of permeability 

and the soil-water characteristic curves are required. Numerous equations have been 

proposed to represent the soil-water characteristic curves (see Table 2.1). Van 

Genuchten (1980) suggested Eq. 2.20:  
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Where     soil parameter, which is primarily a function of air entry value of the 

soil;    = soil parameter, which is primarily a function of the rate of water extraction 

from the soil once the air entry value has been exceeded; and     soil parameter, 

which is primarily a function of the residual water content. 

A closed-form equation for the permeability function cannot be obtained when the 

parameters m and n are independent. However, the permeability models of Mualem 

(1976c) and Burdine (1953) can be solved when the restrictions       
 

  
    and  

     
 

  
 are applied, respectively. The closed-forms of the permeability function, 

      , derived under these restrictions, are given in Table 2.8.  
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Fredlund and Xing (1994) proposed the following equations to represent the soil-

water characteristic curve: 
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 Where     soil parameter, which is primarily a function of air entry value of the 

soil;    = soil parameter, which is primarily a function of the rate of water extraction 

from the soil once the air entry value has been exceeded;      soil parameter, which is 

primarily a function of the residual water content; and       correction, which is 

primarily a function of the suction at which the residual water content occurs.                                                                     

Fredlund et al. (1994) used Eq. 2.21, and solved the Childs’ and Collis–George’s 

integral equation to find the coefficient of permeability at various suction values (Table 

2.9). 

Numerous investigators have contributed to the verification and improvement of the 

statistical models, including Nielson et al. (1960), Brooks and Corey (1964), Mualem 

(1976c, 1986), amongst others.  

By analyzing experimental data for 30 soil samples, Ebrahimi-Birang et al. (2004) 

showed that while most of the predictive models were effective in predicting the liquid-

phase coefficient of permeability function in the high water-content range, they appeared 

not to be able to successfully predict the complete form of the liquid-phase coefficient of 

permeability for the low water-content range. The firm conclusion was not made due to 

lack of the trustful experimental data for the liquid-phase coefficient of permeability in 

the low water-content range.  

Over a century ago, Buckingham (1907) proposed a general qualitative relation 

between capillary conductivity (i.e., the liquid-phase coefficient of permeability) and the 

water content based on some theoretical reasoning. The relationship between the liquid-
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phase coefficient of permeability and water content was extended from saturation to an 

oven-dry condition.    

 Table 2.9 Statistical unsaturated permeability models (Ebrahimi-Birang et al., 2004) 

Permeability 

Models 

van Genuchten (1980) Fredlund and Xing (1994) and 

Fredlund et al. (1994) 
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Figure 2.39 shows the relationship between the liquid-phase coefficient of 

permeability and water content proposed by Buckingham (1907). Point A of the curve 

shows the value of the saturated coefficient of permeability. At point B, due to initiating 

the formation of film paths, the permeability starts to decrease (air-entry value). As the 

film paths become longer, capillary conductivity decreases rapidly towards point C. 

From C to D, the flow is taking place almost exclusively through film paths, but the 

length of these is not increasing proportionately as rapidly as before, so the curve does 

not fall as rapidly from C to D as it does from B to C and is concave upward. At D, the 

soil has reached such a state of dryness that the films begin to break and the conductivity 

falls toward zero, possibly reaching this value before the water content become zero. In 

other words, the curve may not go from D to point O but to some point, F, to the right of 

O.  
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The general form of the experimental data for the liquid-phase coefficient of 

permeability function obtained by Rose (1963a), Mehta et al (1994), and Fujimaki and 

Inuo (2003) (see section 2.4) seem to reasonably agree with the theoretical form of the 

function proposed by Buckingham (1907). On the other hand, commonly used predictive 

methods have often resulted in inaccurate prediction of the entire function. For instance, 

Wilson (1990) used the method proposed by Brooks and Corey (1964) for predicting the 

unsaturated coefficient of permeability in order to determine the coefficient of 

permeability function for the simulations of evaporation column test results (see Table 

2.10). The coefficient of permeability began to decrease as soil suction exceeded the air 

entry value of 3.8 kPa. The coefficient of permeability sharply decreased to an extremely 

small value once the water content reached the residual saturation. This sharp change 

resulted in a distinct transition from a liquid-flow dominant mechanism to a vapour-flow 

dominant mechanism on the water content/suction profile once matric suction exceeded 

15 kPa or the water content fell below approximately 6%.  

 

 

 

 

 

 

 

 

 

 

 

 

    

Figure 2.39 Variation of conductivity with water content (after Buckingham, 1907) 

Failure of the commonly used prediction methods for the unsaturated coefficient of 

permeability function rationalizes to propose a proper method in order to improve the 

predicted results. A modified prediction method for the coefficient of permeability 
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function that considers modification on the definition of the residual-state condition will 

be outlined in chapter 3. The proposed predictive method will be then assessed using a 

series of reliable experimental data. The experimental data will be obtained using 

modified form of the steady-state evaporation method. A testing program in order to 

obtain the experimental data will be outlined in chapter 4. 

Table 2.10 Predicted value of the coefficient of permeability in different suction- and 

water-content conditions using the Brooks and Corey (1964) method (after 

Wilson, 1990) 

Water Content (%) Matric Suction (kPa) k (m/s) 

 

24.4 

 

0.0 

 

3.0 × 10
-5

 

23.5 
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3.0 × 10
-5 
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7.2 × 10
-21 

 

 

Note: ksat = 3.0 × 10
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CHAPTER 3  

 THEORY 

 

3.1  INTRODUCTION 

This chapter describes a method of determining the residual-state condition that is 

suitable for geotechnical engineering practice. For this thesis, the residual-state 

condition (RSC) has been defined as a designated zone on the SWCC. The chapter also 

describes the theoretical framework and development of equations which are necessary 

to understand the experimental testing program outlined in Chapter 4, to analyze the 

data, and to interpret the test results. Flow equations are developed for isothermal 

steady-state conditions. The transient flow that occurs in the early stages of the 

evaporation tests has not been considered in the development of the flow equations. A 

procedure to predict the coefficient of permeability around the residual-state condition is 

also developed in this chapter.  

A thorough understanding of the hydraulic behaviour of a soil around the residual-

state condition requires a comprehensive description of this condition. The generally 

accepted methods for description and determination of the residual-state condition, 

reviewed in section 2.3, do not appear to satisfy the numerical simulations in the 

geotechnical literature (Wilson, 1990; Choo and Yanful, 2000; Gitirana, 2005). 

In the literature on drying soil systems reviewed in section 2.4, discrepancies 

between numerical simulations and experimental data have been observed within the 

transition zone (Wilson, 1990) (section 2.3). It has been suggested that the discrepancies 

between simulated and observed data may be due to inaccurate determination of the 

unsaturated coefficient of permeability around the residual-state condition, which in turn 

is due to the inaccurate definition of the residual-state condition. It appears that there 

may be a link between the zone of the residual-sate condition and the transition zone. 
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The possible relationship between the residual-state condition and the transition zone has 

not been examined in the literature. 

The residual-state condition has been considered in the geotechnical literature as a 

definite point in dealing with prediction of the coefficient of permeability (Wilson, 1990; 

Bruch, 1993; Gitirana, 2005). The effect of defining this condition as a zone does not 

appear to have been investigated.  

Section 3.2 presents a conceptual description of the evaporation process from a bare 

soil column. The section provides information to help with understanding the procedure 

associated with the steady-state evaporation tests used in this thesis.  

Section 3.3 describes three possible descriptions of the transition zone of the soil-

water profile in a steady-state evaporation system. The information provided in this 

section will help with analysis and interpretation of data from steady-state evaporation 

tests in order to determine the transition zone of the water content profile.  

Section 3.4 provides a physical description of the residual-state condition. Flow 

mechanisms of desaturation for a single pore as well as for a network of pores within a 

soil specimen are described in order to help with understanding the concept of the 

residual-state condition. A procedure is then developed to estimate the initial and final 

residual-state condition on the SWCC.  

Section 3.5 describes the region of the residual-state condition on the SWCC and 

develops methods for determining the initial and final limits of the condition.  

Section 3.6 describes development of the equations required for analysis of data from 

steady-state evaporation tests and for calculation of the coefficient of permeability.  

Section 3.7 proposes a procedure to predict the coefficient of permeability around the 

residual-state condition by considering the condition as a zone. The accuracy of the 

procedure will be assessed later in this thesis using experimental data. The results of the 

proposed method will also be compared with results from some of the commonly used 

methods for predicting the coefficient of permeability. 

3.2  EVAPORATION FROM A BARE SOIL COLUMN 

Evaporation column tests in an environmentally controlled room are a main part of the 

laboratory testing program for this thesis. Details of the laboratory procedure on 
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evaporation column tests will be described in Chapter 4. This section provides a 

theoretical concept used to achieve steady-state flow conditions in the tests. 

Figure 3.1 shows a schematic diagram of an ideal plot of the evaporation rate versus 

elapsed time for a column test with no flow from the bottom. Evaporation is assumed to 

start from a bared surface of a saturated soil column. The soil surface is exposed to a 

constant environmental condition during evaporation. The evaporation plot usually 

consists of three sections. In the first section, the rate of actual evaporation remains 

constant and equal to the potential evaporation rate. In the second section, called the 

falling-rate section, the rate of actual evaporation falls below the potential evaporation. 

The intersection of the constant-rate and falling-rate sections is the critical point of 

drying. In the third section, the rate of actual evaporation decreases gradually towards 

zero.  

 

 

Figure 3.1 Schematic diagram of an ideal plot of evaporation rate versus elapsed time for 

a soil column 

Theoretically, the steady-state condition may be reached at any evaporation rate on 

the evaporation plot, provided there is a continuous and constant inflow rate from the 

bottom boundary of the soil column. Figure 3.2 shows an example of an ideal plot of the 

evaporation rate versus elapsed time for a constant flow boundary condition at the 

bottom of the soil profile (ABCE’). The location of the horizontal line (CE’) is a 
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function of the inflow rate at the bottom of the column and the evaporation rate from the 

top.  

 

 

Figure 3.2 Schematic diagram of a drying test for a constant flow boundary condition at 

the bottom of the soil profile during steady-state evaporation process 

The steady-state flow condition described in this section will be simulated in the 

laboratory. The ambient relative humidity and temperature at the top and the inflow rate 

from the bottom of the soil evaporation columns will be controlled. The inflow rate from 

the bottom of the column must be less than the potential evaporation rate.   

3.3  TRANSITION ZONE OF THE SOIL-WATER PROFILE 

This section presents three possible descriptions for development of the soil-water 

content profile after an evaporation test reaches steady-state flow conditions. The 

transition zone of the soil-water content profile is also discussed.  

Figure 3.3 shows a schematic diagram of water content profile for a drying soil 

system after reaching the steady-state flow condition. The rate of evaporation from the 

top boundary and flow rate from the lower boundary are equal. 
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Figure 3.3 Schematic diagram of example cases of soil drying systems after reaching 

steady-state condition: a) drying surface remains at the surface of the soil 

column and only liquid flow zone develops, b) drying surface remains at the 

surface of the soil column and transition zone develops, and c) drying 

surface develops and receeds into the soil column, so that three zones are 

formed. 
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Figure 3.3a shows a case in which the drying surface remains at the surface of the 

soil column and only a liquid flow zone develops. Figure 3.3b shows a case in which the 

drying surface remains at the surface of the soil column. Transition and liquid-flow 

zones are developed. Figure 3.3c shows a case in which the drying surface develops and 

recedes into the soil column. Three zones may be developed: 

1- a liquid-flow dominant zone, which starts from the bottom boundary of the soil 

column to the lower limit of the transition zone. The dominant flow mechanism 

is liquid-water flow within the liquid-flow zone. 

2- a transition zone, which extends from the upper surface of the liquid-dominant 

flow zone to the drying surface. The flow mechanism in the transition zone 

consists of a combined liquid and vapour flow. 

3- a vapour-flow dominant zone, which extends from the drying surface to the soil 

surface. The water-vapour flow mechanism dominates over the liquid water 

flow mechanism in this zone. 

3.4  PHYSICAL DESCRIPTION OF THE RESIDUAL-STATE CONDITION 

This section describes development of a physical description for the residual-state 

condition. The development procedure considers mechanism of the desaturation from a 

single pore and extends to a series of pores in a soil specimen. Physical evidence from 

the literature has been collected to describe distribution of the pore water during the 

desaturation of an initially saturated soil and to define the residual-state condition.  

Rose (1963b) hypothesized water movement at the various stages in the wetting 

process of a porous material. Figure 3.4, a modified form of Rose’s hypothetical model, 

describes water movement at the various stages in the drying process of a porous 

material. In stage 1, soil is saturated. As the soil dries, the pore empties and the soil 

becomes unsaturated (stage 2, Figure 3.4). In both stages (i.e., stages 1 and 2), the flow 

is in the liquid form. The mechanism of water flow in stage 3 is considered to be in both 

liquid and vapour phases. The liquid-water phase flows between water bridges (i.e., 

pendular rings) through film water. The water flow in stage 3 was termed as “surface 

creep.”  
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Stage 4 shows the mechanism of “distillation” for vapour flow in soil (Philip and 

deVries, 1957). During the distillation process, water evaporates from one neck and 

condensates on the next neck. Vapour movement occurs between the two necks, and the 

necks work as short-circuits. Stage 5 is a condition in which the water bridges are 

diminished. The water flow occurs totally in the form of vapour flow. Stage 6 shows the 

condition in which there is only adsorbed water remaining in the soil and conductivity 

does not have actual meaning. Figure 3.4, as a whole, suggests that depending on the 

stage of drying, the water flow occurs in liquid form, in vapour form, or in the two forms 

combined. 

 

 

Figure 3.4 Mechanisms of moisture movement at various stages of drying (after Rose 

1963b) 

In this section, the residual-state condition is conceptually described for a single pore 

and for a series of pores within a soil specimen, based on the conceptual model proposed 

by Rose (1963b). Figure 3.5 shows the schematic diagram of a single soil pore during 

dewatering. Three stages of dewatering are considered.  Let us apply a small suction and 

gradually increase the suction value on an initially saturated soil pore. Figure 3.5.a 

shows water distribution within the pore where the suction reaches its critical value (i.e., 

air entry value) and drains out a portion of water from the soil pore. The critical-suction 

value depends on the diameter of the pore; the smaller the diameter of the pore, the 
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greater the critical suction value. From zero to near the critical-suction value, the pore 

remains saturated; it releases its water at air-entry value. This step in the process of 

desaturation is called a discrete mechanism (White 1968).  

 

 

 

Figure 3.5 Schematic diagram of a single soil pore during dewatering   

After the central part of the pore has been emptied, both air and water exist within it 

(Figure 3.5.b). The water inside the pore is assumed to be hydraulically connected 

through film water. The liquid-water flow can be transferred between water pockets 

through film water. The mechanism of desaturation at this stage is called a continuous 

mechanism. In other words, a finite change in suction value results in a finite change in 

water content (White 1968).  
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As the suction further increases, soil-water recedes toward the edges of the pore and 

pendular rings are formed. The film water becomes thinner with a further increase in the 

suction. At some suction value, the hydraulic connection between the water in the edge 

film water becomes weaker.  

The structure of a soil specimen consists of a series of interconnected pores of 

various sizes. The desaturation mechanism of the soil specimen, as a whole, could result 

from a combination of the desaturation mechanisms within interconnected pores. Since 

pores of a soil specimen are of a variety of sizes, the different stages described for a 

single pore may happen simultaneously in the specimen. For instance, at a given suction 

value, large pores may be empty while the small pores may be fully saturated (Figure 

3.6). 

 

 

Figure 3.6 Low-magnification SEM micrograph of the unsaturated soil sample with 

some of the pores filled with water (A and B) and some empty (C and D) 

(Gvirtzman et al. 1987) 

A conceptual model describing the desaturation mechanism of an initially saturated 

soil specimen has been proposed by various researchers (e.g., Childs, 1969; White, 

1968; Nitao and Bear, 1996). Figure 3.7 shows a schematic diagram for a series of 

interconnected pores of different sizes within a soil specimen, assumed to be initially 

saturated. A small value of suction is applied from the bottom of the specimen. As the 
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suction increases, the water-air interface slightly recedes into the soil pores (Figure 3.7, 

interface 1). When the suction exceeds the air-entry value of the largest pore in the 

surface, D1, the water-air interface recedes into the pore and empties the pore directly 

beneath D1 (Figure 3.7, interface 2). A further increase in the amount of suction causes 

the interfaces to further recede into the soil through D2 in two places. The discrete 

mechanism of desaturation is dominant at this stage. A further increase in the suction 

causes the interface to retreat deeper into the soil; and eventually all pores are emptied, 

and the discrete mechanism of desaturation is complete.  

 

 

 

Figure 3.7 Cross-sectional view of a hypothetical set of pores indicating water-air 

interface at different stages during desaturation (after White, 1968) 

As explained earlier, the continuous mechanism of desaturation within the soil 

specimen occurs when the applied suction value exceeds the air-entry value of a pore or 

series of pores. Upon drainage of the first pore within a soil specimen, the continuous 

mechanism of desaturation begins within the drained pore. At some state before 

completion of the discrete mechanism, the continuous mechanism becomes the dominant 

and primary means of desaturation.  

The residual-state condition is hypothesized to begin when the continuous 

mechanism becomes the dominant mechanism of desaturation, and the effect of the 

discrete mechanism of desaturation becomes insignificant. The residual-state condition 

continues until the continuous mechanism once again becomes insignificant. The initial 
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and final state of the discrete and continuous mechanisms may not be definite points on 

the SWCC.  

3.5 DETERMINATION OF THE RESIDUAL-STATE CONDITION  

In dealing with unsaturated flow models, two key concepts on the SWCC must be 

defined: the air-entry value and the residual-state condition. While researchers agree on 

the definition of the air-entry value, there is no consensus about defining the residual-

state condition. 

Typical forms of the degree of saturation versus soil suction (SWCC) for different 

soils on the semi-log scale are shown in Figure 3.8 (modified from Zapata et al., 2000). 

In general, from sandy soils toward clayey soils, both the air-entry value and the residual 

saturation increase.  

Most of the researchers mentioned in the previous chapter have defined the 

residual-state condition as a definite point on the SWCC (Brooks and Corey, 1964; 

Mualem. 1976; van Genuchten, 1980). The method for determining the condition 

introduced by White et al. (1970) considered it as a zone rather than a point. The White 

et al. (1970) method offers a procedure to determine the initial limit for the residual-state 

zone, but does not consider a final limit for it.          

An empirical method developed by the author for this thesis considers initial and 

final limits for the residual-state condition. The SWCC of a soil from saturation to 

dryness is considered for the proposed method, with soil suction value at dry condition 

assumed to be 1,000,000 kPa. Methods for determining these limits are given below. 

The initial and final residual-sate conditions are assumed as definite points for 

simplifying the problem.    

3.5.1 Determination of the Initial Residual-State Condition 

The author proposes an empirical method for determining the initial residual-state 

condition, which is a function of soil type. The method is suggested based on thorough 

evaluation of the limited data available for both soil-water characteristic curve and 

coefficient of permeability function in the literature. The method may be modified in the 

future if more experimental data becomes available. Figure 3.8 shows the relationship 

between the soil suction and degree of saturation on the semi-log scale. Past air-entry 
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value, there are generally two distinguishable points on the curve where the rate of 

change of water content with suction decreases. Line tangent to the first point is drawn. 

Approximately 0.6 orders of magnitude from the point is defined as the start of the 

Residual-State Condition (iRSC).  

 

 

Figure 3.8 Determination of the initial residual-state condition (iRSC) (modified from 

Zapata et al., 2000) 

3.5.2 Determination of the Final Residual-State Condition 

The author proposes an empirical method for determining the final residual-state 

condition, which is a function of soil type. Figure 3.9 shows the relationship between the 

soil suction and degree of saturation on the semi-log scale. A line drawn from 1,000,000 

suction value along the SWCC departs from the curve at a point, which is defined as the 

final Residual State Condition (fRSC).  

Using the proposed method, suction values of about 10,000 kPa, 70,000 kPa and 

200,000 kPa are determined for the final residual-state conditions of sand, silt and clay 

soils (Figure 3.9). 
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Figure 3.9 Determination of the final residual-state condition (fRSC) 

3.6 UNSATURATED COEFFICIENT OF PERMEABILITY AROUND THE 

RESIDUAL STATE ZONE  

The steady-state evaporation test is considered for the measurement of the unsaturated 

coefficient of permeability function around the residual-state condition for this thesis. In 

this section, the required flow equations for data analysis are developed for isothermal 

steady-state conditions. Transient flow conditions at the initial stages of the evaporation 

tests are not considered. Publications by Dakshanamurthy and Fredlund (1981), Wilson 

(1990), Dobchuk et al. (2004), and Gitirana (2005) are used for development of the 

equations.  

The driving forces for the liquid-phase flow could be total hydraulic head gradient, 

concentration gradient (i.e., osmotic pressure gradient), and temperature gradient. The 

driving forces for water-vapour flow are the partial-vapour pressure gradient and the 

temperature gradient. The water-vapour flow associated with bulk-air flow usually 

occurs in the presence of the continuous-air phase within the pores. A phase change also 

occurs between liquid water and water vapour, due to temperature change and/or the 

evaporation-condensation phenomenon.  
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The one-dimensional flow equation for porous media given below is derived based 

on liquid-phase conductivity and vapour-phase conductivity. Equations are also derived 

in terms of liquid-water diffusivity and water-vapour diffusivity. The conductivity and 

diffusivity terms for the liquid and vapour phases are defined as follows: 

Water conductivity or liquid-phase coefficient of permeability in soil (kl) is defined 

as the rate of liquid-water transport in soil per unit area under unit total hydraulic 

gradient. The hydraulic gradient is the difference in total head over difference in 

distance.  

Water diffusivity (Dl) is defined as follows: 

 

  ( )     ( )
  

  
       [3.1] 

 

where kl  is the coefficient of permeability and 
  

  
 is slope of the soil-water 

characteristic curve. 

 

Vapour diffusivity or coefficient of vapour diffusion in soil (Dv) is defined as the 

rate of vapour transport per unit area under unit vapour concentration gradient.  

Vapour conductivity (kv) is defined as follows: 

 

  ( )  
   ( )

  

  

       [3.2] 

 

3.6.1 Liquid Flow 

Darcy’s law is used to describe the flow of liquid water in a saturated soil (Darcy, 1856). 

Darcy’s law is also used to describe the flow of liquid water through an unsaturated soil 

(Buckingham, 1907; Richards, 1931; Childs and Collis-George, 1950; Fredlund and 

Rahardjo, 1993). Darcy’s law describes the liquid water flow through an unsaturated soil 

due to total head gradient (Fredlund and Rahardjo, 1993).          



86 

 

 

      
  

  
      [3.3] 

 

where, 

     = liquid water flux, m
3
/(m

2
.s), 

     = unsaturated coefficient of permeability with respect to liquid water phase, m/s, and 

  

  
  = total head gradient in the y-direction  

       
  

  
, m;    is unit weight of water, 9.81 kN/m

3
; uw is pore water pressure, kPa. 

 

Eq. 3.3 can be written as follows: 

 

    (   
  

  

   

  
 )      [3.4] 

 

The liquid flow equation can be written in terms of water diffusivity (Dl): 

 

    (     
  

  
 )       [3.5] 

 

where    is water diffusivity, m
2
/s, and is defined as: 

 

   
  

  

   

  
         [3.6]

  

Eq. 3.6 describes a relationship between the unsaturated coefficient of permeability 

and water diffusivity through use of the soil-water characteristic curve.  

3.6.2 Vapour Flow 

Fick’s law (1855) was derived to describe diffusion of gasses through liquids. Through 

experimental observations, Buckingham (1907) showed that water-vapour diffusion 

through a soil obeyed the same laws as the diffusion of a gas (e.g., carbon dioxide) 

through the soil. Eq. 3.7 describes the water vapour flux through unsaturated soils. 
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      [3.7] 

  

where 

   =  water vapour flux, kg/(m
2
.s), 

Dv = coefficient of vapour diffusion in soil, m
2
/s, 

Cv = water vapour concentration, kg/m
3
, and 

   

  
 = vapour concentration gradient. 

 

Partial water-vapour pressure, Pv, and water-vapour concentration, Cv, are related 

through the ideal gas law (Eq. 3.8): 

 

   
  

  
          [3.8] 

 

   

  
 

  

  

   

  
                                   [3.9]   

 

where, 

Pv = partial water vapour pressure, Pa;  

R  = the universal gas constant, R = 8.314 J /(mol 
o
K); 

T  = absolute temperature (
o
K); and 

   = molecular mass of water vapour,                  . 

 

By substituting Eq. 3.9 into Eq. 3.7, water vapour flux can be written in terms of 

gradient of the partial pressure of water vapour (Eq. 3.10) (Wilson, 1990). 

 

      
  

  

   

  
                             [3.10]

    

Dv  is the coefficient of vapour diffusion in the soil defined as: 
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            [3.11] 

 

where    is the air-filled porosity. 

Lai et al. (1976) proposed the following equation for determining   , 

 

    
 

 ⁄        [3.12] 

     

where n is the total porosity and    is the coefficient of water-vapour diffusion in the 

air, m
2
/s. 

 

Kimball et al. (1976) defined    as: 

 

               
 

   
         [3.13] 

3.6.3 Combined Liquid and Vapour Flow Equations 

Flow equations describing the combined liquid-water and water-vapour flow through an 

unsaturated soil can be written based on vapour and liquid diffusivities, and also based 

on vapour and liquid conductivities.  

By combining equations 3.4 and 3.10, the moisture-flow equation can be written as 

follows (Eq. 3.14): 

 

         (    
  

  

   

  
)    

  

    

   

  
            [3.14] 

 

During evaporation, phase change may be followed by a release of energy 

(condensation) and increase in temperature, or it may be followed by a consumption of 

energy (evaporation) and decrease in temperature. The evaporation-condensation 

mechanism often occurs in the second period of drying. 

The following equation shows Equation 3.15 is a widely accepted equation by 

Edlefsen and Anderson, 1943) which represents the relationship between partial-vapour 

pressure (Pv) and total suction ( ) in the soil. 
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    (

     

    
)      [3.15] 

 

where  

Pvs = the saturated vapor pressure, kPa;  

   = total suction, kPa;   (     )   ; ua – uw  is matric suction, kPa ; ua and 

uw are air and pore water pressures, kPa; and    is osmotic suction, kPa; 

g   = acceleration of gravity, 9.81 m/s
2
; 

R   = universal gas constant, 8.314 J/(mole K);   

T   = absolute temperature, K; and 

    = unit weight of water, 9.81 kN/m
3
 

 

Differentiation of the water-vapour pressure with respect to total suction and 

temperature in Eq. 3.15 will result in the following equation: 

    
     

    
( 

 

 
     )    [3.16] 

 

Substituting Eq. 3.16 into Eq. 3.14 gives: 

 

   (    
  

  

   

  
)  

 

  
  

  

    

     

    
(
 

 
     )   [3.17] 

 

Eq. 3.17 can be written in short forms as Eqs. 3.18 and 3.19. 

 

      (
     

  
)

   

  
 

    

   

  

  
                [3.18] 

 

     
  

    

     

  
      [3.19] 

 

Vapour flow equation can be withdrawn from Eqs. 3.18 and 3.19:  

  

   
   

  

   

  
 

    

   

  

  
     [3.20] 
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3.6.4 Equations for Describing Heat Flow  

Heat can be transferred within a soil by two main mechanisms: conduction and 

convection. Heat transfer by convection within soil is small compared to the other 

mechanism, and can often be neglected. Therefore, considering the conduction 

mechanism and latent heat due to phase change and conservation of energy, the equation 

for heat transfer is derived. 

The conductive heat flow can be written as a function of thermal conductivity of the 

soil and temperature gradient: 

 

     
  

  
          [3.21] 

 

where λ is thermal conductivity of a soil, which is a function of moisture content 

and soil minerals J/(m.s.
o
C). 

The latent heat due to phase change (hl) is equal to the amount of latent heat of 

evaporation multiplied by the evaporative flux. It should be noted that the evaporative 

and vapour fluxes for the steady-state flow condition are assumed to be the same (Eq. 

3.22). 

 

hl = Lv qv                                                                                                         [3.22] 

 

Substituting Eq. 3.10 into Eq. 3.22 will result in Eq. 3.23. 

 

        
  

  

  

  
      [3.23] 

 

Total heat flux can be written by combining Eqs. 3.21 and 3.23: 

 

    
  

  
     

  

  

  

  
     [3.24] 
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3.7 PREDICTION OF THE UNSATURATED COEFFICIENT OF 

PERMEABILITY FUNCTION 

In this section, a method for predicting the coefficient of permeability function is 

proposed by considering the residual-state condition as a zone. The proposed method is 

developed based on Buckingham’s hypothetical definition for the liquid coefficient of 

permeability function (section 3.7.1), the definition of the residual-state condition 

described in section 3.4, and the theory of vapour flow (section 3.6).  

3.7.1 Form of the Unsaturated Coefficient of Permeability Function for the Entire 

Range of Suction (Based on Buckingham’s Conceptual Model) 

Over a century ago, Buckingham (1907) described change in the coefficient of 

permeability versus water content for the entire range of water content from saturation to 

a totally dry soil condition. The conceptual plot proposed by Buckingham (1907), along 

with the theoretical explanation for each section of the plot, was given in the previous 

chapter (see section 2.6).  

The unsaturated coefficient of permeability has often been plotted versus soil 

suction on a log-log scale for the analyses associated with the geotechnical engineering 

practice. Figure 3.10 shows the hypothetical change in the unsaturated coefficient of 

permeability versus soil suction on a log-log scale based on Buckingham’s theory. The 

permeability function remains constant and equal to the saturated coefficient of 

permeability from point A to point B (i.e. from near-zero suction to the air-entry value).  

It should be noted that zero suction value cannot be shown at point A on a log scale plot 

because the logarithm of zero is not defined. Therefore, the start point of the abscissa on 

Figure 3.10 will be taken as a suction value close to zero, such as 0.1, 0.01 kPa, and so 

on. Past the air-entry value (i.e. point B), the coefficient of permeability decreases with 

soil suction with relatively constant rate to point C. Past point C, the rate of change of 

the unsaturated coefficient of permeability with soil suction decreases until the soil 

suction reaches point E. From E to F, the rate of change dramatically increases and the 

unsaturated permeability becomes zero at dry condition. 

Geotechnical engineers often use a two-region curve to represent the permeability 

function. The accuracy of a two-region predictive method may be sufficient where the 

minimum unsaturated coefficient of permeability for the problem in hand remains 
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greater than the corresponding unsaturated coefficient of permeability at point C (see 

Figure 3.10). There are engineering problems where the range of suction is greater than 

the corresponding suction at point C. Prediction of the permeability function beyond 

point C may be required in the latter case.  

As Buckingham stated from the theoretical standpoint, there are cases where section 

DE becomes a horizontal line. In some cases, the line DE may be so short that the line 

BC merges directly into DF and the permeability function may be shortened into two 

sections (i.e., AB and BF). The relative length of each line may differ from soil to soil.  

3.7.2 Analysis of Vapour Coefficient of Permeability Using Eq. 3.19 

Ebrahimi-Birang et al. (2004) determined the vapour coefficient of permeability, kv, 

based on the vapour-flow theory for three different types of soil. They showed that the 

maximum vapour coefficient of permeability (kvmax) was independent of the type of soil.  

 

 

Figure 3.10 Variation of the liquid-water coefficient of permeability with soil suction, 

based on Buckingham’s theory 

To investigate the independence of the maximum vapour coefficient of permeability 

(kvmax) to various soil specimens, the vapour-phase coefficient of permeability function 

was determined for three soils with different textures using Eq. 3.19. The soils were 

withdrawn from the SoilVision data base (2003). 
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Properties of the soils used in the analysis are given in Table 3.1. In addition to the 

soil properties given in Table 3.1, experimental SWCC data were available for all three 

soils.  

The equation proposed by Lai et al. (1976) (i.e., Eq. 3.12) was used to determine the 

value of the coefficient of vapour diffusion in a dry soil. Several other empirical 

equations have been proposed for determining the coefficient of vapour diffusion in a 

dry soil (i.e.,    in Eq. 3.12) (Millington and Quirk, 1961; Millington, 1959; Marshall, 

1959; Penman, 1940). The effect of using various equations for determining Dv was 

found to be insignificant on       values for the three selected soils (Ebrahimi-Birang 

et al. 2004).  

Table 3.1 Properties of soils chosen for analysis of the vapour-phase coefficient of 

permeability function 

Soil ID 
Reference and 

Specimen Counter 

Saturated Coefficient of 

Permeability, m/s 

Saturated Gravimetric 

Water Content, g/g 

Sand 
SoilVision Data Base, 

11456 
2.07E-06 0.2607 

Loamy Sand 
SoilVision Data Base, 

11178 
2.92E-08 0.2644 

Silty Loam 
SoilVision Data Base, 

11408 
2.55E-07 0.2662 

 

Figure 3.11 shows the vapour-phase coefficient of permeability function for the 

three selected soils. The symbols on the graph indicate the points at which the SWCC 

was measured for each of the selected soil specimens. The results show that the 

maximum value of the vapour-phase coefficient of permeability is about          m/s 

for all three soils.  
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Figure 3.11 Vapour-phase coefficient of permeability for three selected soils 

3.7.3 A Method to Predict the Liquid-Phase Unsaturated Coefficient of 

Permeability Function within the Residual-State Condition 

Figure 3.12 shows a schematic diagram of the liquid-phase coefficient of permeability 

function. The function consists of five sections specified as AB, BC, CD, DE, and EF.  

As previously described in section 3.4, when liquid becomes discontinuous at the 

end of the residual-state condition (point D), the film water still exists and water 

between the bridges is connected (see Figure 3.5.b).  

A complete monolayer has been shown to be adsorbed onto the soil at a relative 

humidity of 20% (ψ = 220,000 kPa) at 20 
o
C (Quirk, 1955) (see Figure 3.5.c). At this 

suction value (ψ = 220,000 kPa), the soil still contains liquid water. However, the liquid 

water occurs in isolated pockets, filling small pores, or forming wedges about the points 

of contacts between the grains of medium. The suction value of 220,000 kPa has been 

suggested based on observations on clayey soils and could probably be in the range of 

smaller suction for soils with lower clay contents.  

Capillary contributions to the SWCC are due to liquid held in pore corners behind 

curved interfaces. Adsorptive contributions to the SWCC are attributed to van der Waals 

surface forces forming liquid films. Generally, capillary forces dominate at the wetter 

range of the curve, whereas adsorptive forces dominate at the dry end (Barbour, 1998; 

3 × 10
-15

 m/s 
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Tuller and Or, 2005). Or and Tuller (1999) suggested that the capillary contributions 

become negligible for matric suction values larger than about 10,000 kPa. 

 

 

Figure 3.12 Schematic of the simplified proposed method for prediction of the 

unsaturated coefficient of permeability function 

For the method proposed in this thesis, the liquid-phase coefficient of permeability 

is assumed to reach its minimum at the end of the residual-state condition (i.e., point D) 

and to remain constant from point D to point E, beyond which vapour flow is assumed to 

be a dominant flow mechanism. The suction value suggested by Quirk (1955) ((ψ = 

220,000 kPa) is assumed to be reached at point E. 

The dashed section (DE) on Figure 3.12 shows the maximum vapour-phase 

coefficient of permeability function, which is almost independent of the soil type (see 

section 3.7.2), and may be estimated using Eq. 3.19. 
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 The methods proposed to predict the coefficient of permeability for each section on 

Figure 3.12 are described below. 

Approaches for predicting the coefficient of permeability of sections AB and BC 

are available in the literature (see section 2.6, Chapter 2). The coefficient of permeability 

in section AB (i.e. from saturation to air-entry value) is considered as the saturated 

coefficient of permeability (    ). 

The Campbell (1974) method is used to determine the coefficient of permeability 

function in section BC (Eq. 3.25). Point C is assumed as the initial residual state 

condition. The suction value at point C can be estimated using the method described in 

section 3.5.1. The corresponding coefficient of permeability at point C can then be 

determined using Eq. 3.25. 

 

    (
  

 
)     for        (see Chapter 2, table 2.8)                 [3.25] 

Where, n1 = 2 + 2/b, b = 1/λ and λ is defined as the pore-size distribution index of the 

medium, and where    is the air-entry value. 

An alternative predictive method such as Brooks and Corey (1974) or Fredlund et 

al. (1994) may be used to determine the coefficient of permeability function in section 

BC. 

Suction at point D can be determined using the method described in section 3.5.2. 

The coefficient of permeability at point D is assumed to be equal to the lower limit of 

the liquid coefficient of permeability function, which in turn is equal to the maximum 

value of the vapour coefficient of permeability. The maximum value of the vapour 

coefficient of permeability was shown to be equal to approximately 10
-15

 m/s, regardless 

of the type of soil (see section 3.7.2).   

The coefficient of permeability function in section CD can be drawn using Eq. 3.26. 

 

   
   (

     

     
)

   (
     
     

)
                                                      [3.26] 
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where kfRSC is equal to 3 × 10 
-15

 m/s. 

The coefficient of permeability in section DE is assumed to remain equal to the 

minimum value of 3 × 10 
-15

 m/s. 

The procedure given in this section will be later used in Chapter 6 to predict the 

liquid coefficient of permeability function for the soil samples under study, and the 

predictions will be evaluated using the measured values obtained from experimental 

tests. The procedure for the experimental tests will be described in the next chapter.   
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CHAPTER 4  

LABORATORY TESTING PROGRAM 

 

4.1 INTRODUCTION 

In the experimental laboratory testing program for this thesis, three types of soils were 

used: sandy, silty, and clayey. Section 4.2 describes the soils and their preparation for 

the entire testing program. 

Section 4.3 presents the primary geotechnical characteristic of the selected soils 

including grain-size analysis, specific gravity, and Atterberg limits. 

Section 4.4 describes the procedure used for one-dimensional consolidation and 

saturated coefficient of permeability tests. The main objectives of conducting the one-

dimensional consolidation tests were to measure the saturated coefficient of permeability 

and to prepare specimens with specified initial conditions for soil-water characteristic 

curve (SWCC) and steady-state evaporation tests.  

Section 4.5 describes the testing program for establishing the soil-water 

characteristic curve, which plays a major role in achieving the objectives of this thesis. 

The performance of a relatively new device (i.e., WP4-T) for measuring the SWCC in 

the high suction range was assessed; study of the SWCC hysteresis in the high suction 

range was also considered.  

Section 4.6 describes the steady-state evaporation tests. All of the evaporation tests 

were conducted on samples with saturated initial conditions in an environmentally 

controlled room. The design of evaporation columns, equipment, instrumentation, and 

testing procedure are described. Two evaporation columns were constructed: a primary 

and a modified column. A primary evaporation column was initially designed and 

constructed for the entire testing program. However, due to some technical difficulties 

on performing the evaporation tests on the clayey silt samples, a modified evaporation 

column with a shorter height was also constructed. The design of both columns is 
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described in this section. The main objective of the evaporation tests was to measure the 

coefficient of permeability function around the residual-state condition. The secondary 

objective was to obtain experimental data for the water-content and temperature profiles 

of the specimens at steady-state flow condition. 

4.2 SELECTION OF THE SOILS FOR LABORATORY TESTING PROGRAM 

The three soils selected to be used in this study were: i) a sandy soil, hereafter referred to 

as Beaver Creek sand, ii) a clayey silt soil, hereafter referred to as Botkin silt and iii) a 

clay soil, hereafter referred to as Regina clay. The Beaver Creek sand was available in 

the Department of Agriculture and Bio-resources, University of Saskatchewan, Canada. 

The sand soil was collected from sand deposits just South of Saskatoon, Canada. The 

Botkin silt and Regina clay soils were available in the Geotechnical Laboratory of the 

Department of Civil and Geological Engineering, University of Saskatchewan. All three 

soil samples were crushed, air-dried, and passed through a No. 10 sieve. The total soil 

samples of Beaver Creek and Botkin silt each weighed about 20 kg. The total sample of 

Regina clay was about 5 kg. 

The Regina clay was used only for part of the laboratory testing program involving 

measurement of the drying and wetting soil-water characteristic curves (SWCCs) in high 

suction ranges.  

The Beaver Creek sand and Botkin silt soil samples were washed to reduce the 

electrical conductivity of the saturated extracts in order to reduce the osmotic suction 

effect. The procedure for reducing electrical conductivity of the soils is discussed in this 

section. This section also presents the primary geotechnical characteristics of the soil 

samples before and after reduction of their electrical conductivity.  

The washing procedure for the sand was easy, since over 99% of the soil consisted 

of sand-sized particles. The soil was placed in a 20-litre bucket, and distilled water was 

added. Each time distilled water was added to the bucket, the soil suspension was stirred 

and the sample was left overnight to allow the soil particles settle to the bottom of the 

bucket. Electrical conductivity of the water above the settled soil was measured and then 

the water was removed from the bucket. The remaining slurry at the bottom of the 

bucket was air-dried in the laboratory environment, crushed, and sieved through a No. 

10 sieve (i.e., < 2 mm).  
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The washing procedure for the Botkin silt sample was the same as that used for the 

Beaver Creek sand; however, due to its consisting of 20% clay particles and 45% silt 

particles, the procedure was more challenging. The time required for settling the 

particles after stirring the soil with distilled water was longer. The number of times 

needed to wash the soil in order to reduce the electrical conductivity of the soil was 

larger.  

Table 4.1 shows the gravimetric water content, electrical conductivity, and pH of 

the saturated paste of the Beaver Creek sand and Botkin silt soils before and after 

washing. 

4.3 PRIMARY GEOTECHNICAL CHARACHTERESTICS OF THE SOILS 

Grain-size analysis (GSA), specific gravity (Gs), and Atterberg limits of the soils were 

measured based on the ASTM standard designations (ASTM D 422, 1994; D 4318, 

1994; D 854, 1994). The grain-size distribution curves for Beaver Creek sand, Regina 

clay, and Botkin silt soil samples are shown in Figures 4.1 to 4.3. Figure 4.3 shows the 

grain-size distribution curves for the Botkin silt sample before and after washing.  

Table 4.2 presents the percentage of sand, silt, and clay size particles, specific 

gravity and Atterberg Limits of the Beaver Creek sand, Botkin silt and Regina clay soil 

samples, measured based on the ASTM designation before and after washing. A 

summary of the results of the grain-size analyses are given in Appendix A.  

Table 4.1 Electrical conductivity, pH, and saturated paste water content of Botkin silt 

and Beaver Creek sand before and after washing 

                  Soil 

Property 

Botkin Silt 

before Washing 

Botkin Silt after 

Washing 

Beaver Creek Sand 

before Washing 

Beaver Creek 

Sand after 

Washing 

Electrical 

Conductivity, EC, 

dS/m 

4.2 0.86 0.8 0.4 

pH 7.6 7.7 8.1 8.1 

Gravimetric Water 

Content of the 

Saturated Paste (%) 

 

36 

 

36 

 

27 

 

27 
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Figure 4.1 Grain-size distribution curve for Beaver Creek sand 

 

Figure 4.2 Grain-size distribution curve for Regina clay 
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Figure 4.3 Grain-size distribution curve for Botkin silt before and after washing 

Table 4.2 Primary geotechnical properties of the selected soil samples before and/or 

after washing 

            Soil 

Property 

Botkin Silt 

before 

Washing 

Botkin Silt after 

Washing 

Beaver Creek 

Sand after  

Washing 

*Regina  

Clay 

Sand Sizes, % 

Silt Sizes, % 

Clay Sizes, % 

37 

45 

18 

35 

45 

20 

99.5 

**0.5 

 

5 

21 

74 

Specific Gravity, Gs ----- 2.71 2.65 2.7 

Liquid Limit, % ----- 20.3 ----- 81 

Plastic Limit, % 

Plasticity Index, PI 

----- 

----- 

15.1 

5.2 

----- 

----- 

23.1 

57.9 

*Regina clay sample was not washed since it was not used for evaporation processes 

**Total percentage of silt and clay sizes for Beaver Creek sand was 0.5 
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4.4 LABORATORY TESTING PROGRAM FOR ONE DIMENSIONAL 

CONSOLIDATION AND SATURATED COEFFICIENT OF 

PERMEABILITY 

The objectives of this section are: i) to establish the saturated coefficient of permeability 

versus vertical stress relations through the consolidation process and ii) to prepare some 

of the specimens to be used for the measurement of the soil-water characteristic curve 

(section 4.5). This section describes the testing program for conducting the consolidation 

process and measurement of the saturated coefficient of permeability using the falling-

head test at the end of the each loading increment during the consolidation process. A 

description of the laboratory equipment, as well as the sample preparation and the 

laboratory testing procedures, are presented. 

4.4.1 Laboratory Testing Equipment 

One-dimensional consolidation laboratory tests were conducted on the selected soils. 

The falling-head saturated coefficient of permeability tests were conducted after 

completion of the primary consolidation test associated with each of the applied vertical 

pressures. A consolidometer (i.e., consolidation cell) made of stainless steel, with a 

diameter of 101.5 mm and a total height of 62.6 mm, was used for conducting the 

consolidation test and for measuring the saturated coefficient of permeability at the end 

of each loading increment. Figure 4.4 shows a schematic diagram of the consolidation 

and saturated coefficient of permeability cell. The mass of the loading cap was 1093.5g. 

Details of the consolidation and saturated coefficient of permeability test used in this 

section can be found in Huang (1994). 

4.4.2 Preparation of the Specimens 

A saturated slurry of the Botkin silt and the Beaver Creek sand soil was prepared. The 

slurry was then poured into a consolidometer with dimensions shown in Figure 4.4. A 

total of three specimens were prepared, two for Botkin silt and one for Beaver Creek 

sand. Hereafter, the prepared specimens will be referred to as Specimens CS1-2 and 

CS2-2 for Botkin silt and Specimen S1-2 for Beaver Creek sand. 
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Figure 4.4 A schematic diagram of the consolidation and the saturated coefficient of 

permeability cell 

4.4.3 Test Procedure of the Slurry Consolidation and Saturated Coefficient of 

Permeability  

A small vertical pressure of 0.3 kPa was applied to the soil specimen using a 

consolidation loading frame. The deflection of the soil specimen with time during the 

consolidation test for each of the applied pressures was measured using a dial gauge. At 

the end of the each consolidation increment, the falling-head method was used to 

measure the saturated coefficient of permeability. The vertical pressures applied on 

Specimen CS1-2 were 12.5, 25, 50, 100 kPa. The vertical pressures applied on 

Specimens CS2-2 and S1-2 were 12.5, 25, 50, 100, 200 kPa. At the end of the 

consolidation tests, some of the consolidated specimens were used for measuring the 

soil-water characteristic curve (section 4.5).   

4.5 LABORATORY TESTING PROGRAM FOR THE MEASUREMENT OF 

THE SOIL-WATER CHARACTERISTIC CURVE (SWCC)  

This section is divided into three parts. Section 4.5.1 describes the equipment used for 

measuring the SWCC. The equipment used in this program was U of S Pressure Plate 

Cell, the GCTS SWC 100, the ATC, and the WP4-T. Section 4.5.2 describes the 
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procedure for preparing the soil specimens, and section 4.5.3 presents a description of 

the laboratory testing procedure used to measure the SWCC in soil suction ranges from 

0 to 1500 kPa. 

4.5.1 SWCC Testing Equipment 

Different testing apparatuses were used to establish the SWCC of the selected soil for 

entire ranges of soil suction from 0 to 1,000,000 kPa. The apparatuses were divided into 

two main groups. The first group of the apparatuses (i.e., U of S Pressure plate Cell and 

GCTS SWC 100) was used to measure the SWCC in the suction ranges from 0 to 1500 

kPa, and the second group of the apparatuses (i.e., ATC and WP4-T) was used to extend 

the SWCC beyond soil suction values of 1500 kPa. 

4.5.1.1 University of Saskatchewan Pressure Plate Cell (U of S Pressure Plate 

Cell) 

Figure 4.5 shows a schematic diagram of the U of S Pressure Plate Cell used in this 

study. 

 

 

 

Figure 4.5 A schematic of the U of S Pressure Plate Cell 
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The ceramic porous plate placed at the bottom of the specimen was saturated prior 

to the test and assumed to remain saturated until the end of the test. The saturated porous 

plate was placed onto the grooved pedestal. Two O-rings were used on top and bottom 

of the ceramic plate in order to seal the space between the pedestal and the cell for air 

diffusion. There were two clear flexible tubes attached to the pedestal in order to drain 

the water out of the specimen and to flush diffused air accumulated under the porous 

plate. 

4.5.1.2 Geotechnical Consultants and Testing System SWC-100 (GCTS SWC-100)  

The GCTS SWC 100 device is a fairly new unsaturated soil testing apparatus, with the 

capability of controlling matric suctions from near zero to about 1500 kPa and applying 

one-dimensional loading to the specimen. The air pressure above the specimen is 

controlled using dual pressure regulators. In this research, the apparatus was only used 

for controlling matric suctions. The device also includes a plumbing system that allows 

for flushing water below the high air entry disk and measuring the diffused air. Water 

drained from the soil specimen can be measured using the volume tube readings.   

The maximum supply pressure in the pipe network in the geotechnical laboratory 

was about 800 kPa. A pressure booster was used to increase the input air pressure from 

800 kPa up to 2000 kPa. The maximum desired air pressure to complete SWCC tests 

using GCTS SWC 100 device was 1500 kPa. Figure 4.6 shows the pressure booster 

connected to GCTS SWC 100 device and pressure pipe network of the laboratory 

applied through high-pressure plastic tubes. There were two outlets on the pressure 

booster and this allowed the use of two GCTS SWC 100 SWCC devices. 

4.5.1.3 Air-Tight Chamber (ATC) Equipment 

One of the methods that has been used to measure the SWCC in the high suction range is 

the equilibration of the soil samples over salt solutions of known osmotic suction. 

Various types of salts can be used; however, in some cases the accuracy may decline 

with time due to chemical instability. A plastic container can be used as an air-tight 

chamber provided the salt solution is placed in a dish made of a suitable material such as 

glass (ASTM E 104-02, 2003).   
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Figure 4.6 GCTS SWC 100 apparatus and pressure booster 

The air-tight chambers used in this research were built from PVC tubes at the 

University of Saskatchewan (Dadgar, 2005). Figure 4.7 shows an example of the air-

tight chamber equipment used in this study. The chambers were composed of a PVC 

tube with a diameter of 190 mm and a height of 200 mm, with a plate at the top and one 

at the bottom. To prevent vapour diffusion, O-rings were used between the plates and 

the tubes. 

 

 

Figure 4.7 Air-Tight Chamber (ATC) Equipment 

O-rings 
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4.5.1.4 Dew Point Water PotentiaMeter (WP4-T) 

Dew-Point Water PotentiaMeter (WP4-T), a relatively new device, has been used in 

order to establish the SWCC beyond soil suction value of 1,500 kPa. A concise review 

on the development of the device was given in the literature review chapter (Chapter 2, 

section 2.2.3)  

The manufacturer’s instructions recommend that the WP4 be calibrated prior to 

usage with a standard solution of 0.5 M KCl, which should yield a suction of 2.19 ± 0.1 

MPa, at 25 
o
C. Cardoso et al. (2007) suggested that the calibration procedure provided 

by the manufacturer for the WP4 device was not satisfactory. A WP4-T device used for 

the measurement of the soil suction throughout this thesis was calibrated using the 

following procedure. 

Different saturated salt solutions with known osmotic suction were prepared in the 

Environmental Engineering Laboratory in the Department of Civil and Geological 

Engineering at the University of Saskatchewan. The suction value of each of the 

prepared saturated salt solutions was measured using the WP4-T. Figure 4.8 shows the 

theoretical suction values versus the measured suction values using the WP4-T device 

for the selected saturated salt solutions. Good agreement was obtained between the 

theoretical and measured values. 

4.5.2 Preparation of the Soil Specimens for SWCC Measurement between Suction 

Ranges from 0 to 1500 kPa 

Different procedures were used for the preparation of the soil specimens for Beaver 

Creek sand and Botkin silt. The procedures for preparation of the Beaver Creek sand and 

Botkin silt specimens are described in this section. 

4.5.2.1 Preparation Procedures of the Beaver Creek Sand Specimens for the 

SWCC Measurement 

A total of 6 Beaver Creek sand specimens were prepared for measurement of the 

SWCCs. One of the preparation procedures for the sand specimens where the drying 

SWCC was measured in suction ranges from 0 to 1500 kPa was as follows: 

1- 2000 grams of air-dried Beaver Creek sand was mixed with 340 grams of 

distilled water to produce a gravimetric water content of 17%. 
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2- The soil sample was left in a plastic container with a tight lid cover for one day. 

3- The moist soil was placed into a Plexiglass column 180 mm in height and 70 mm 

in diameter with an extension tube. The column was placed on a circular thick 

steel plate. It should be noted that this column was later used as the primary 

evaporation soil column. The details on the design of the column will be later 

described in section 4.6.1.2. 

4- A vertical force of 14.25 kN was applied to the top of the soil through a load cap 

using a high-pressure consolidation load frame. 

5- The extension tube was removed and extra soil was carefully trimmed from the 

top of the column. 

 

Figure 4.8 Theoretical and measured suction values using WP4-T for the selected 

saturated salt solutions 
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Four soil specimens were extruded from the soil column into stainless steel 

specimen holders. A piston was inserted from the bottom of the soil column to push the 

soil out of the column. A soil sample holder was pushed into the soil from the top of the 

soil column. The soil inside the specimen holder was then separated from the remaining 

soil inside the column using a fine fish line. The soil on the both sides of the specimen 

holder was trimmed carefully. This procedure was repeated until four soil specimens 

were prepared. Hereafter, the prepared soil specimens will be referred to as S1-1, S2-1, 

S3-1, and S4-1.  

Using a similar procedure explained in the previous paragraphs, another set of four 

specimens of Beaver Creek sand were prepared. Hereafter, these specimens will be 

referred as S1-2, S2-2, S3-2, and S4-2. Some of the extruded specimens from the 

consolidation cells were broken during sampling or during setting up the SWCC test. 

Four out of 8 samples (i.e., S1-1, S3-1, S3-2, and S4-2) were successfully transferred to 

the SWCC measurement apparatuses. The volume-mass properties of Specimen S4-1 at 

the end of the consolidation test were used to estimate the initial volume-mass properties 

of the soil specimens (i.e., water content, dry density, and void ratio). The volume-mass 

relation of the SWCC specimens was also determined after completion of the SWCC 

tests. 

Another Beaver Creek sand specimen was prepared to use for SWCC measurement 

(MS1). Specimen MS1 was extruded from the cell that was used for the consolidation 

and coefficient of permeability test. The specimen was consolidated to the maximum 

vertical pressure of 200 kPa (see section 4.4.2). 

Table 4.3 summarizes all of the Beaver Creek sand specimens and their positions 

within the consolidometer cells in the preparation procedure used for SWCC testing. 

4.5.2.2 Preparation Procedures of the Botkin Silt Specimens for the SWCC 

Measurement 

A total of 7 Botkin silt specimens for the measurement of the SWCCs were prepared. 

One of the preparation procedures for the Botkin silt specimens where the drying SWCC 

was measured in suction ranges from 0 to 1500 kPa was as follows: 

1- 3,000 grams of air-dried Botkin silt soil was mixed with 1,020 grams of distilled 

water to make saturated slurry with 34% gravimetric water content. This slurry 
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was placed in a Plexiglass column with a height of 208 mm and a diameter of 

113 mm (Figure 4.9), and the column was placed on a pedestal. The column had 

a porous stone at the bottom and top. 

2-  Over the top porous stone a stainless steel loading cap was placed. The soil 

column was placed into a loading frame for consolidation. 

3- The soil was consolidated to a maximum vertical pressure of 19 kPa. 

4- After consolidation of the soil was complete (i.e., after about one week), four soil 

specimens were extruded into stainless steel specimen holders. Hereafter, the 

prepared specimens will be referred to as CS1-1, CS2-1, CS3-1, and CS4-1. 

Three of the soil specimens (i.e., CS1-1, CS2-1, and CS3-1) were transferred to 

the SWCC measurement apparatuses. The mass-volume properties of Specimen 

CS4-1 at the end of the consolidation test were taken as initial volume-mass 

properties of the SWCC specimens (i.e., gravimetric water content, dry density, 

and void ratio). The volume-mass relation of the SWCC specimens was also 

determined after completion of the SWCC tests. 

 

 

Figure 4.9 A schematic diagram of the consolidation column 

The saturated slurry in step one above was used to prepare two more Botkin silt 

specimens for the SWCC measurements. Hereafter, these two specimens will be referred 

to as CS01 and CS02. 
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Table 4.3 Specimens used for the SWCC measurement of the Beaver Creek sand in the 

suction ranges from 0 to 1500 kPa 

Specimen Testing Specimen Position 

S1-1 

 

 

S3-1 

SWCC 

 

 

SWCC 

From consolidation cell No. 1 

 

From consolidation cell No. 1 

 

S4-1 Initial Properties From consolidation cell No. 1 

 

S3-2 SWCC From consolidation cell No. 2 

 

S4-2 

 

 

MS1 

SWCC 

 

 

SWCC 

From consolidation cell No. 2  

  

From consolidation and k-test cell  

 

Specimen MCS was another SWCC Botkin silt specimen initially consolidated to a 

maximum vertical pressure of 50 kPa, using the consolidation cell that was used for the 

consolidation and coefficient of permeability test (section 4.4.2). Table 4.4 summarizes 

the Botkin silt specimens and their placement in the preparation procedure used for 

SWCC. 
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Table 4.4 Specimens used for the SWCC measurement of the Botkin silt in the suction 

ranges from 0 to 1500 kPa 

Specimen Testing Specimen Position 

CS1-1 SWCC From consolidation cell  

 

CS2-1 SWCC From consolidation cell  

 

CS3-1 SWCC From consolidation cell  

 

CS4-1 Initial Properties From consolidation cell  

 

CS01 SWCC From saturated slurry 

CS02 SWCC From saturated slurry 

MCS SWCC From consolidation and k-test cell 

 

4.5.3 Laboratory Testing Procedures for the Measurement of SWCCs 

The hanging-column and axis-translation techniques are used in soil suction ranges from 

0 to 1500 kPa. For high suction ranges (i.e., 1,500 to 300,000 kPa), chemical energy is 

used to provide a constant vapour pressure environment in which the soil samples were 

allowed to equalize. Sections 4.5.3.1 and 4.5.3.2 describe the testing procedure used to 

measure SWCCs of the selected soils in suction ranges from 0 to 1500 kPa and high 

suction ranges from 1500 kPa to 300,000, respectively. 
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4.5.3.1  Laboratory Test Procedure for the Measurement of the SWCC in Soil 

Suction Ranges from 0 to 1500 kPa 

A combination of the hanging-column and axis-translation techniques (Hilf, 1956) was 

used to measure the soil-water characteristic curve for the prepared Beaver Creek sand 

and Botkin silt soil specimens in suction ranges from 0 to 1500 kPa. The University of 

Saskatchewan Pressure Plate Cell and GCTS SWC 100 apparatuses were used for this 

purpose. Tables 4.5 and 4.6 show types of  the SWCC testing apparatuses used for the 

measurement of the SWCC for the Beaver Creek sand (S) and the Botkin silt or clayey 

silt (CS) specimens, respectively.  

Table 4.5 SWCC experiments conducted on the Beaver Creek sand specimens tested for 

applied suctions from 0 to 1500 kPa 

Specimen Initial Condition Testing Equipment 

S1-1 

S3-1 

S3-2 

S4-2 

MS1 

Compressed to 3870 kPa 

Compressed to 3870 kPa 

Compressed to 3870 kPa 

Compressed to 3870 kPa 

Consolidated to 200 kPa 

U of S Pressure Plate  (0-10) kPa 

GCTS SWC 100 (100-1500) kPa 

U of S Pressure Plate (10–100) kPa 

U of S Pressure Plate (100-500) kPa 

GCTS SWC 100 (0 – 1500 kPa)  

 

Porous plates with air-entry values of 1-bar and 5-bar were used during the 

measurement of the soil-water characteristic curve using a U of S Pressure Plate cell. 

The porous plates were saturated by placing them in distilled water for at least 24 hours. 

Before installing the saturated porous plate in the apparatus, the mass of the porous plate 

was measured. When the porous plate was replaced or the test was completed, the mass 

of the plate was again measured. The difference between the initial and final masses 

should be negligible. 

The masses of the prepared soil specimen (i.e., S1-1, S3-2, S4-2, CS1-1, CS2-1, 

CS01, or CS02) and the specimen holder were measured and transferred onto the 

saturated porous plate. A thin layer of distilled water was provided on the surface of the 

porous plate before transferring the specimen to ensure good hydraulic connectivity 

between the bottom of the soil specimen and the porous plate. A Plexiglass tube was 
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attached to the pedestal. The top cap of the apparatus was placed into its designated 

place (see Figure 4.10). An O-ring was used to prevent the air leakage between the cell 

and top cap. There was a hole in the middle of the cap which allowed the specimen to 

remain at atmospheric pressure during the hanging-column portion of the test. Later it 

was possible to apply air pressure to the inside of the apparatus during the axis-

translation portion of the test. 

Table 4.6 SWCC experiments conducted on the Botkin Silt specimens tested for applied 

suctions from 0 to 1500 kPa 

Specimen Initial Condition Testing Equipment 

CS1-1 

CS2-1 

CS3-1 

CS01 

CS02 

MCS 

Consolidated to 19 kPa 

Consolidated to 19 kPa 

Consolidated to 19 kPa 

Saturated Slurry 

Saturated Slurry 

Consolidated to 50 kPa 

U of S Pressure Plate Cell and GCTS SWC 100 

U of S Pressure Plate Cell (0-500 kPa) 

GCTS SWC 100 (10-1500 kPa) 

U of S Pressure Plate Cell (0-500 kPa) 

U of S Pressure Plate Cell (0-500 kPa) 

GCTS SWC 100 (100 – 1500 kPa) 

 

          The soil-water characteristic curve was measured using the hanging-column 

technique for the low suction range (i.e., 0 – 10 kPa). Figure 4.10 shows a schematic set-

up of the hanging-column apparatus using the U of S Pressure Plate Cell. The soil was 

saturated by applying water to the bottom of the specimen. The suction was set at 0 for 

about 48 hours in order to allow equilibrium conditions to be established. The zero level 

was referenced at the bottom of the soil specimen. Then a suction head, h, was applied. 

The smallest applied suction was 0.5 kPa (i.e., h = 50 mm). The mass of the U of S 

Pressure Plate cell along with the specimen was recorded at each suction level including 

zero suction conditions after equilibrium. The water that drained from the soil specimen 

was collected inside a small glass bottle. Water flowed from a needle that was attached 

to the end of a flexible tube. 

After the equilibrium suction of 10 kPa was established, mass of the entire cell was 

measured and the technique of the water extraction from the specimen was changed 

from the hanging-column to the axis-translation method. During the axis-translation 
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method, air pressure was applied to the top of the soil to further remove water from the 

soil specimen (see Figure 4.11). The first air pressure applied to the soil specimen was 

equal to the maximum suction applied using the hanging-column test (i.e., 10 kPa). This 

duplication was useful in back-calculating the water content of the specimen at the end 

of the test. Air pressures of 20, 50, and 100 kPa were applied to the soil specimen before 

changing the ceramic porous plate at the bottom of the sample. After reaching an applied 

air pressure near 100 kPa, the 1-bar ceramic porous plate was changed. A 5-bar porous 

plate was then placed into the Pressure Plate apparatus. The following procedure was 

used when changing the porous plates. 

 

 

 

Figure 4.10 A schematic set-up for the hanging-column technique using a U of S 

Pressure Plate Cell 

The mass of a 5-bar pre-saturated porous plate was measured. The U of S Pressure 

Plate cell was opened. The mass of the soil specimen along with the specimen holder 

was measured. The mass of the 1-bar porous plate was also measured. The 5-bar porous 

plate was placed onto the grooved pedestal and a thin layer of water was poured on the 

plate. Two O-rings were placed between the pedestal and steel ring of the porous plate 

and between the cell wall and the steel ring of the porous plate. The sample was placed 

Open to the atmosphere during the test

Soil specimen
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on top of the porous plate. The device was re-assembled using a similar procedure to 

that explained earlier for the 1-bar porous plate. Air pressure of 100 kPa was applied to 

the system and time was allowed for equalization of the water content. The procedure 

was carried out similarly by applying 150, 300, and 450 kPa air pressures.  

 

 

 

Figure 4.11 A schematic set-up for axis-translation technique using U of S Pressure 

Plate Cell 

As the pressure was increased, air bubbles began to accumulate at the bottom of the 

pedestal. The air bubbles can create a substantial error during the back-calculations of 

the water contents of the soil. Therefore, by passing a small flow of water through the 

flexible tubes attached to two sides of the pedestal, the air bubbles were replaced with 

water before measuring mass of the cell.    

At the end of the test the soil specimen was carefully removed from the cell. The 

gravimetric water content of the specimen was measured by oven-drying the soil. The 

mass of the 5-bar plate was also measured. The specimen holder and soil of Specimen 

CS1-1 was transferred to the GCTS SWC 100 device in order to apply higher air 

pressures. The experimental procedure used for the GCTS SWC 100 device will be 

described later in this section. 

The SWCC of two Beaver Creek sand specimens (S3-1 and MS1) and three Botkin 

silt (clayey silt) specimens (CS1-1, CS3-1 and MCS) was measured using GCTS SWC 

Soil specimen
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AEV = 1, 3, or 5bar

Flexible tubes

Air pressure 
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100 device. Two of the five specimens were transferred to the GCTS SWC 100 device 

after saturating using hanging-column technique (i.e., specimens S3-1 and CS3-1).  

Specimen CS1-1 was transferred from U of S Pressure Plate apparatus to the GCTS 

SWC 100 equipment after reaching the equilibrium under an applied pressure of 500 

kPa. The applied pressure was increased to 1000 kPa when the specimen was placed in 

the GCTS SWCC 100 equipment.  

The GCTS SWC 100 device cell was composed of two walls, a bottom plate, and a 

top plate. The bottom plate was grooved in order to collect and direct drained water from 

the specimen to the flexible tubes and finally to the volume tubes. 

Ceramic porous plates with air-entry values of 1, 5, and 15 bars can be used 

depending on the maximum desired air pressure. These plates needed to be saturated 

prior to the start of the test. This procedure is similar to that used for the U of S Pressure 

Plate cell. The mass of the saturated porous plates was measured at the beginning and 

the end of the test. 

The procedure for the laboratory test with the GCTS SWC 100 equipment was as 

follows:  

1- The specimen was slowly removed from the U of S Pressure Plate cell and after 

being weighed, it was placed onto the saturated porous plate of the GCTS SWC 

100 device. The saturated porous plate was already in place at the bottom of the 

device. If started from the saturated condition, the soil specimen inside the 

specimen holder was saturated by applying the water from the bottom of the 

sample or by placing it in a water container. After measuring the mass, the soil 

specimen was placed onto the saturated porous plate of the GCTS SWC 100 

device. The walls of the cell were installed and then the top plate was attached to 

the cell. 

2- The cell was fastened using four bolts and nuts. 

3- The valves attached to the glass volume tubes were opened. 

4- The required air pressure was applied into the cell. 

5- After equilibrium, the readings on the volume tubes were taken. 

6- The applied air pressure was increased and readings of the water level were 

taken. 
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7- After equilibrium under the highest applied air pressure, the specimen was 

dismantled and water content of the specimen was measured. 

8- The water content values corresponding to the applied suction or air-pressure 

values were back-calculated using recorded masses during the test.  

4.5.3.2 Laboratory Test Procedure for the Measurement of the SWCC in Soil 

Suction Ranges from 1,500 to 300,000 kPa 

The main objectives of the tests in this section were: 

1- to measure drying and wetting soil-water characteristic curves for the selected 

soils in the high suction range in order to establish the SWCC beyond suction 

values of 1500 kPa,  

2-  to evaluate the performance of the WP4-T apparatus used throughout the entire 

laboratory testing program for this research, and 

3-  to assess the significance of the hysteresis in high suction ranges for Botkin silt 

and Regina clay soil samples. 

Two pieces of equipment were used to measure the drying and wetting SWCCs of 

the soils in high suction ranges: the Air Tight Chamber (ATC) and the dew-point Water 

PotentiaMeter (WP4-T). The data from the ATC were used as a benchmark to evaluate 

the performance of the WP4-T device. The testing procedures using these apparatuses 

are explained in this section.  

The experimental tests were conducted in an environmentally-controlled room with 

a constant temperature in the range of 25–26 
o
C. Details of the room will be described in 

section 4.6.1.1. Seven different saturated salt solutions with known osmotic suction 

values, selected from ASTM E 104-85, 1998 and E104-02, 2003, were made and placed 

at the bottom of the various air-tight chambers. The expected constant relative humidity 

values and the corresponding suctions from each solution are given in Table 4.7. 

According to ASTM standards, these salts can be used for an entire year (ASTM E 104-

02, 2003). 

Small soil samples were placed inside an air-tight chamber, where an environment 

of a known relative humidity was created through use of a saturated salt solution. The 

soil samples were kept in this environment until equilibrium was reached. At 

equilibrium, the relative humidity and temperature inside the chamber become the same 
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as in the soil pores. The relative humidity inside the chamber remains constant and is 

determined by the saturated salt solution inside the chamber. To confirm that the 

expected relative humidity value given in Table 4.7 was achieved, an independent 

measurement of the relative humidity inside the ATC was taken using a portable 

Traceable Hygrometer. After equilibrium was achieved, the gravimetrical water content 

of the soil samples was measured. The soil-water characteristic curve could be 

determined since the water contents and corresponding soil suctions were known. The 

resulting soil-water characteristic curve corresponded to the drying curve when the soil 

samples were initially in a saturated condition. The results represent the wetting curve 

when the soil samples were initially dry. The number of the selected points on the 

SWCC determined the required number of various salt solutions that needed to be 

prepared.  

Table 4.7 The saturated salt solutions and corresponding relative humidities  (ASTM E 

104-85, 1998 and E 104-02, 2003) and calculated suction values for t = 25 
o
C 

Salt Solution Relative Humidity, % Suction, kPa 

Lithium Chloride 

Magnesium Chloride 

Potassium Iodide 

Sodium Chloride 

Potassium Chloride 

Potassium Nitrate 

Potassium Sulfate 

11.3 ± 0.3 

32.8 ± 0.2 

68.9 ± 0.3 

75.3 ± 0.2 

84.3 ± 0.3 

93.6 ± 0.6 

97.3 ± 0.5 

300008 

153383 

51256 

39034 

23500 

9100 

3766 

 

Figure 4.12 shows a schematic diagram of the set-up for the SWCC measurements 

of the selected soils using vapour pressure methods. Twenty-eight soil samples were 

prepared for each type of soil. Fourteen soil samples were saturated and the other 

fourteen were oven-dried. The saturated samples were used to determine the desorption 

SWCC and oven-dried samples were used to determine the sorption SWCC.  

Eight soil samples were placed in each chamber: four Botkin silt samples and four 

Regina clay samples. Two of the four samples were initially oven-dried and two were 
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initially saturated. The mass of the soil samples inside each chamber was monitored 

until there was no difference in masses between two consecutive weightings on two 

different days. 

 

 

Figure 4.12 A schematic diagram of the set-up for the SWCC measurements of the 

selected soils using vapour pressure methods 

Before placing the soil samples in each ATC, about 400–500 cc of a selected 

saturated salt solution of known osmotic suction was prepared and poured into a glass 

dish. The glass dish was placed at the bottom of the air-tight chamber. Using a pair of 

shelves, eight individual soil samples were placed inside the chamber on a stand. Two 

lengths of fishing line were attached to the top Plexiglass shelf to allow the samples to 

be easily lifted from the stand for weighing. The fishing lines passed through a hole 

made in the top plate of the chamber. The mass of the shelves along with the soil 

samples was monitored, without removing the soil samples from the chamber, using an 

electronic balance with a bottom hook (see Figure 4.12). The mass changes with time 

due to adsorption or desorption were recorded. An equilibrium condition was assumed to 

be reached when the weight stayed constant. The higher the relative humidity inside the 

chamber, the more time was required for equilibration. At equilibrium conditions, the 

relative humidity within the soil pores becomes the same as the relative humidity of the 
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environment inside the chamber created by the saturated salt solution. An independent 

measurement of the relative humidity inside the ATC was taken using the portable 

Traceable Hygrometer.  

After the equilibrium conditions were reached, four soil samples (i.e., two samples 

of each soil type, one oven-dried and one saturated) were taken from each chamber. The 

gravimetrical water contents were measured. To prevent the samples from absorbing or 

loosing water through evaporation, immediately after the sample was taken out from the 

chamber the lid was put on the soil container. Each sample was weighed in a short 

period of time (i.e., in the order of seconds). The precision of the electronic balance for 

the measurement of water contents was 0.0001 g. The other four samples from each 

chamber were used to measure total soil suction values with the WP4-T device. 

4.6 LABORATORY TESTING PROGRAM FOR ONE-DIMENSIONAL 

EVAPORATION PROCESSES 

A series of evaporation column tests were conducted in an environmentally controlled 

room to measure the unsaturated coefficient of permeability of the selected soils around 

the residual-state condition. The laboratory testing equipment, design of the evaporation 

columns, sample preparation, instrumentation, and testing procedure are described in 

this section. 

The main purpose of using the environmentally controlled room for conducting the 

evaporation tests was to have a controlled temperature and relative humidity so that a 

steady-state flow condition could be achieved at the end of the evaporation processes. 

The combination of temperature of about 25 
o
C and relative humidity of about 26% were 

chosen to generate a suction value of about 165,000 kPa. This suction value was 

assumed to be large enough to establish a dry condition in the top portion of the soil. It 

was anticipated that at the end of the evaporation processes, water content at some 

locations along the soil profile would drop lower than the residual water content. 

4.6.1 Laboratory Testing Equipment 

The laboratory equipment used for the evaporation processes consisted of an 

environmentally controlled chamber, evaporation column, T-type thermocouples, a 

Campbell Scientific data logger (CR1000), Geotechnical Digital System (GDS) (i.e., 
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volume/pressure controller), a Mariotte column, an Ohaus Explorer electronic balance 

and a balance talk software, a lamp and relay system, and a small computer fan. The 

following sections explain some of these components in a greater detail.  

4.6.1.1 Environmentally Controlled Room 

Constant ambient temperature and relative humidity are essential in order to reach a 

steady-state condition during the evaporation processes. The Controlled-Environment 

Facility (CEF) at the University of Saskatchewan consists of 183 environmentally 

controlled reach-in cabinets and walk-in rooms. Walk-in rooms (Model PGV36) were 

suitable for the proposed research studies. The interior dimensions of the walk-in rooms 

were W (226 cm) × D (245 cm) × H (203 cm).  The temperature of the room could be 

controlled in the ranges of 4–45 
o
C and 10–45 

o
C with lights off and with lights on, 

respectively. Most of the walk-in rooms were also capable of controlling additive 

humidity. In other words, the rooms had the capability of increasing the humidity inside 

the chamber compared to the outside ambient humidity. Only three of the walk-in rooms 

were equipped with dehumidifiers (Model HC300 and manufactured by Cargocaire) and 

had the capability of dehumidification using a chemical dryer.  

At the time of starting the evaporation processes, all three chambers equipped with 

dehumidifiers were occupied and tests were being conducted for three years inside those 

chambers. Therefore, it was decided to start primary evaporation processes using one of 

the walk-in chambers with additive relative humidity control until a chamber with 

dehumidifier became available. To minimize the humidity fluctuations inside the 

chamber with additive humidity control, any opening into the chamber, including the 

vents, was covered with thick plastic sheets. Relative humidity and temperature inside 

the chamber were monitored for a couple of weeks.  

It was observed that the relative humidity fluctuated less at higher temperatures 

than at lower ones. The fluctuation of relative humidity was even in the negligible range 

when the temperature was high. However, it was quite high for lower temperatures. The 

primary tests were conducted at a temperature of 30 
o
C and a relative humidity of 40%.  

After a couple of months of some primary evaporation processes inside the chamber 

with the additive humidity control, a chamber with a dehumidifier became available. 

The rest of the evaporation processes were conducted inside the new chamber. Most of 
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the evaporation processes, and also the SWCC measurements using the vapour pressure 

techniques (i.e., osmotic desiccation, Air-Tight Chamber, and WP4-T device), were 

conducted inside the chamber with dehumidifier at a constant temperature in the range 

of 25–26 
o
C and a constant relative humidity in the range of 25–26 %.  

4.6.1.2 Evaporation Columns 

Two evaporation columns: the primary evaporation column and modified evaporation 

column, were designed for use as a central part of this study. The columns were made in 

Engineering Shops at the University of Saskatchewan, Saskatoon. The primary 

evaporation column was originally intended to be used for all of the evaporation 

processes. However, the Botkin silt specimens developed horizontal and vertical cracks 

during evaporation processes when the primary column was used. The modified 

evaporation column was designed and manufactured to resolve this problem. 

Figure 4.13 shows a schematic diagram of the designed primary evaporation soil 

column. The column was consisted of a Plexiglass tube, a porous plate, and a grooved 

pedestal. The Plexiglass tube had an inside diameter of 69.8 mm and height of 159.2 

mm. Eight holes were drilled along the sides of the primary column for the installation 

of thermocouples. Some ports were also drilled around the perimeter of the tube to 

retrieve soil samples for gravimetric water content and/or electrical conductivity 

measurements. The sampling ports in the top 40 mm of the column were smaller (5 mm 

in diameter), allowing sampling at closer proximities. There were three sampling ports 

around the perimeter of the evaporation column for each sampling layer in the top 

section of the column. The ports in the lower part of the column had a diameter of 10 

mm. There were total of 18 sampling layers along the column. The distances from the 

top of the evaporation column to the center of the sampling ports are summarized in 

Table 4.8.   

Figure 4.14 shows a schematic diagram of the modified evaporation soil column. 

The column consisted of a Plexiglass tube, a porous plate, and a grooved pedestal. The 

Plexiglass tube had an inside diameter of 69.8 mm and height of 75 mm. Five holes were 

drilled along the sides of the column for installing thermocouples and retrieving soil 

samples. The distances from center of the sampling ports along the column from top of 

the evaporation column are summarized in Table 4.8.   
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The sampling ports in both primary and modified evaporation columns were 

plugged using rubber stoppers during the evaporation processes. A heat insulation jacket 

(i.e., Fiberglass tube) was used around the column to prevent horizontal heat transfer 

during the evaporation processes. A porous plate was placed on the grooved pedestal. 

The Plexiglass tube was attached to the pedestal using five bolts and nuts as shown in 

the Figure 4.13 and 4.14. O-rings were used between the Plexiglass tube and the pedestal 

to prevent water leakage during the evaporation processes. Figure 4.15 shows a 

schematic diagram of the pedestal. The inside surface of the pedestal was grooved for 

even distribution of the water into the soil column.   

 

 

 

Figure 4.13 A schematic diagram of the primary evaporation column used in evaporation 

processes 
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Figure 4.14 A schematic diagram of the modified evaporation column used in 

evaporation processes 

 

 

 

 

 

 

 

 

 

Figure 4.15 Schematic diagram of the pedestal 
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Table 4.8 Distance of the sampling ports from top edge of the primary and modified 

evaporation column 

Sampling Port No Distance from top edge of the 

primary evaporation column, 

mm 

Distance from top edge of the 

modified evaporation column, 

mm 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

5.2 

10.3 

15.4 

20.5 

25.6 

30.7 

35.8 

40.9 

50.5 

60.4 

70.3 

80.5 

90.5 

100.5 

110.5 

120.5 

130.5 

140.5 

5 

15 

25 

35 

50 

 

 

4.6.1.3 Thermocouples 

T-type thermocouples were used to measure the temperature above and within the soils 

along the evaporation columns during the evaporation processes. There were ten 

thermocouples, two for the measurement of the temperature above the primary 
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evaporation column and eight for the measurement of the temperature within the column 

at different depths. The length of the thermocouples was 1,100 mm. Stainless steel pins 

with a diameter of 1.5 mm were attached to one end of the thermocouples in order to 

facilitate the insertion of the thermocouples into the soil column. The other ends of the 

thermocouples were attached to a Campbell Scientific data logger for automatic 

recording of temperatures. Details related to the data logger are explained in the next 

section. Distances between the center of the thermocouples from the top edge of the 

evaporation column are summarized in Table 4.9. 

Similar thermocouples were used for measuring the temperature above and along 

the modified evaporation column. It was initially decided to use a total number of seven 

thermocouples, two for the measurement of the temperature above the modified 

evaporation column to measure the ambient temperature, and five within the modified 

evaporation column at different depths. The number of thermocouples used in some of 

the evaporation processes using the modified evaporation column was adjusted. The 

sampling ports along the modified evaporation column were used as thermocouple ports 

as well. The distances between the centers of the sampling ports (i.e., thermocouple 

ports) from the top edge of the modified evaporation column are summarized in Table 

4.8. 

Table 4.9 Distances of the center of the thermocouple ports from top edge of the primary 

evaporation column 

Thermocouples Distance from surface of the column, mm 

1 

2 

3 

4 

5 

6 

7 

8 

4.5 

14.5 

24.5 

34.5 

49.4 

72.1 

112.5 

147.0 
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4.6.1.4 Campbell Scientific Data Logger 

A Model CR1000 Campbell Scientific data logger was used for two purposes: i) to 

collect readings from thermocouples placed above and within the soil column during the 

evaporation processes at specified time increments, and ii) to control the temperature at 

the surface of the soil column and keep it constant around the ambient temperature.  

Figure 4.16 shows the Campbell Scientific data logger along with its compartments 

inside a box. The original data logger had 8 ports for attaching thermocouples. As 10 

thermocouples were needed with some of evaporation processes, a multiplexer was used 

to extend the number of available ports. All thermocouples were referenced to a single 

reference temperature.  

In order to control the temperature at the surface of the soil, a relay system with a 

bulb was installed on the data logger. The data logger was programmed so that it was 

possible to turn the bulb on and off based on the temperature reading at the surface of 

the soil. 

 

 

Figure 4.16 Campbell Scientific data logger (CR1000) 

4.6.1.5 Geotechnical Digital System (GDS Volume-Pressure Controller) 

To reach a steady-state condition during the evaporation process, it was necessary to 

accurately apply a very small and constant inflow of water to the soil column. Different 

syringe pumps available in the Environmental Laboratory of the Department of Civil 

and Geological Engineering at the University of Saskatchewan were tested for their 

suitability. None of them were found suitable for the purpose of the current research. A 
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GDS volume-pressure controller system was then tested for its suitability. It was found 

that the GDS system was capable of applying small and accurate constant inflow. Both 

pressure and water volume can be controlled during a test using a GDS system.  

A GDS volume-pressure controller was located inside the environmentally 

controlled room and left there for 48 hours. The system was turned on and emptied of 

any fluid. Then the system was filled with the distilled water. The empty function 

pressed to remove all water along with air bubbles which were visible through the 

plastic tubing. A plastic connector was used to connect the GDS volume-pressure 

controller to the base of the soil column through flexible tubes. The ramp function was 

used to program the system in order to transfer a given constant water flow to the soil 

column. The system was programmed to operate manually. The following steps were 

followed in order to get a flow rate of 0.36 cm
3
/ hr. 

1- The ramp key was pressed. 

2- Number 9 was pressed for the “slope CM” key to apply the unit “second” for 

time. 

3- A “slope value” of 10 was entered. 

4- A “slope value” of 10 was entered. 

5- A lower value of -900,000 mm
3
 was entered for the lower volume. 

6- The value shown on the LCD screen of the GDS controller was entered as the 

upper value for the volume. 

7- A function value of 47, defined as “volume ramp/cycle, negative slope” was 

entered. It should be noted that there are other function values available for 

different volume and pressure controls. 

8- The “OK” key was entered in order to commence the discharge. 

Slope value is the most important parameter when using a given outflow from the 

GDS volume-pressure controller. The slope value indicates the time per unit volume in 

s/mm
3
. For example, a slope value of 10 means it takes 10 seconds for 1 mm

3
 water to 

discharge from the system (i.e., 0.1 mm
3
/s or 0.36 cm

3
/hr). Table 4.10 indicates the 

expected discharge rates from the GDS device for different slope values from 1 to 10.  
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Table 4.10 Expected discharges from the GDS device for different “slope values” from 1 

to 10 

Slope value Expected discharge from the GDS system (cm
3
/hr) 

1 

2 

3 

4 

3.6 

1.8 

1.2 

0.9 

5 

6 

7 

8 

9 

10 

0.72 

0.6 

0.51 

0.45 

0.4 

0.36 

 

To avoid any possible errors during the evaporation processes and to evaluate the 

performance of the GDS volume-pressure controller used in this research, a simple 

procedure was carried out to check the accuracy of the device. Figure 4.17 shows the 

set-up for evaluating the GDS apparatus. The device was programmed to discharge 

distilled water at two different rates, namely, 3.6 and 0.72 cm
3
/hr (i.e., slope values of 1 

and 5). The volume of water discharged from the GDS volume-pressure controller was 

collected and measured using a graduated laboratory tube. The results are summarized in 

Tables 4.11 and 4.12 for a slope of 1 and 5, respectively. The accuracy of the readings 

was in the order of 0.03 cm
3
 which could be due to error in measuring the collected 

volume of water.   
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Figure 4.17 Set-up for evaluating the performance of GDS  

Table 4.11 Evaluating of the GDS for discharge rate of 3.6 cm
3
/hr (i.e., slope value = 1) 

t (min) Burette readings 

(cc) 

GDS controller 

readings (cc) 

Difference in 

readings from 

Burette (cc) 

Difference in 

readings from 

GDS controller , 

mm
3
   (cc) 

0 

15 

30 

45 

60 

2.5 

3.4 

4.3 

5.2 

6.10 

973937 

973029 

972100 

971200 

970300 

---- 

0.9 

0.9 

0.9 

0.9 

---- 

898 (0.898) 

929 (0.929) 

900 (0.900) 

900 (0.900) 

 

4.6.1.6 Mariotte Column 

A Mariotte column was used to control the water level within the soil at a desired 

constant distance from top of the soil column during evaporation process. Figure 4.18 

shows the schematic diagram of the Mariotte column made in the environmental 

laboratory with the help of the Environmental Laboratory technician in the Department 

of Civil and Geological Engineering, University of Saskatchewan. 
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Table 4.12 Evaluating of the GDS for discharge rate of 0.72 cm
3
/hr (i.e., slope value = 5) 

t (min) Burette readings 

(cc) 

GDS controller 

readings (mm
3
) 

Difference in 

readings from 

Burette (cc) 

Difference in 

readings from 

GDS controller, 

mm
3
   (cc) 

0 

15 

30 

45 

1.74 

1.57 

1.40 

1.23 

968934 

968754 

---- 

0.170 

---- 

180 (0.180) 

181 (0.180) 

180 (0.180) 

968573 

968393 

0.170 

0.170 

 

The Mariotte column consisted of a long tube (L =1,200 mm) with an inner 

diameter of 40 mm. Rubber stoppers with a hole in the middle were attached to two ends 

of the tube. A long glass tube with a length of about 1,150 mm was inserted through the 

top rubber stopper. The fit was tight enough to be air-proofed. The inner tube must be 

open to the atmosphere in order to create atmospheric pressure at the other end of the 

tube. To minimize evaporation errors, a rubber cap was installed on top of the glass tube 

and a needle was inserted through the rubber cap. A short glass tube (100 mm) was 

inserted through the bottom rubber stopper. A flexible tube was attached to the short 

glass tube to direct water into the bottom of the evaporation column. The main tube of 

the Mariotte bottle was graduated using a graduated tape in millimeters. The level of the 

water in the evaporation column attached to the Mariotte column is maintained at the 

same level as the end of the inner tube (see the location of the air bubble shown in 

Figure 4.18) provided the valve is open.  

4.6.1.7 Electronic Balances and Balance Talk Software 

Two electronic balances were used during the evaporation processes: the Ohaus 

Explorer balance and the Metler Toledo – AG204 balance. The maximum capacity of 

the Ohaus Explorer balance was 4,100 g with the readability of 0.01 g. The balance was 

mainly used to measure the mass of the evaporation soil column during evaporation 

processes. The balance had the capability of automatically recording the masses at 

specified time increments. To record the data, “balance talk” software was installed on a 
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computer and the balance was attached to the computer through a cable. It should be 

noted that although the balance cable was identical in appearance to a nine-pin computer 

cable, the computer cable did not work with the balance. A suitable cable was ordered 

through the Ohaus Company as it was not included with the balance. The balance was 

set to record the mass of the soil column at 10-minute increments.  

 

 

Figure 4.18 Schematic diagram of the Mariotte column 

The maximum capacity of the Metler Toledo – AG204 balance was 210 g with a 

readability of 0.0001 g. This balance was mainly used to measure mass of the soil 

samples taken from the soil column at the end of the evaporation processes. 

4.6.2 Preparation of the Soil Columns for the Evaporation Processes 

Different test procedures were used for the preparation of the Beaver Creek sand and the 

Botkin silt evaporation soil columns. The test procedures are described in the following 

Top rubber stopper

Bottom rubber stopper

Inner tube

open to atmosphere from top

Needle

Air bubble

Water level inside 

the main tube

Main tube

graduated using a tape

Valve

Flexible tube



135 

 

sections. The letters P and M in front of the sample designations refer to the primary and 

the modified evaporation column, respectively. 

4.6.2.1 Preparation of the Primary and Modified Evaporation Soil Columns for 

Beaver Creek Sand 

Two kinds of evaporation soil columns were prepared for primary evaporation processes 

with Beaver Creek sand: a saturated slurry sand column and a consolidated sand column. 

The preparation procedures are explained in this section.  

The following steps were used for preparation of the primary evaporation columns 

using slurry saturated soil. 

1- The base of the primary evaporation column (i.e., grooved pedestal) was 

filled with distilled water and a pre-saturated porous plate (with an air-entry 

value of either 100 kPa or 1.8 kPa) was placed in the pedestal. A detail on 

design of the pedestal was described in section 4.6.1.2 (see Figure 4.15). O-

rings were placed on top and bottom of the porous plate to prevent water 

leakage. 

2- The Plexiglass column constructed for the evaporation process was placed 

on the pre-saturated plate and fastened to the pedestal using five bolts. A 

detail on design of the primary evaporation column was described in section 

4.6.1.2 (see Figure 4.13). The thermocouple and sampling ports along the 

evaporation column were closed with tight rubber stoppers. 

3- The evaporation column was filled with the prepared slurry sand with a 

gravimetric water content of 27%. The evaporation column was gently 

tapped a few times while it was being filled. 

4- The top of the evaporation column was covered with a lid to prevent 

evaporation. 

5- The sample was then transferred to the environmentally controlled room. 

The following steps were followed for preparation of the primary evaporation 

column with consolidated sand: 

1- 2000 g of air-dried Beaver Creek sand was mixed with 340 g of distilled 

water to produce a gravimetric water content of 17%. 



136 

 

2- The soil was left in a plastic container with a tight lid for a day, and was 

mixed occasionally in order to produce a soil sample of uniform water 

content. 

3- The Plexiglass column manufactured for the primary evaporation process 

was extended using a small piece (i.e., 30 mm in length) of a Plexiglass tube 

with the same diameter as the column. The thermocouple and sampling 

ports along the evaporation column were closed using tight rubber stoppers. 

4- The wet soil sample was poured into the evaporation column. A vertical 

load of 1,450 kg (i.e., vertical stress of 3870 kPa ) was applied from the top 

of the soil through the load cap using a high pressure consolidation load 

frame. 

5- After consolidating the soil inside the column, the extended tube was 

removed. The extra soil was carefully trimmed from top of the column using 

a piece of fishing line. 

6-  The evaporation soil column was placed on the pre-saturated plate and 

fastened to the pedestal using five bolts. 

7-  The top of the evaporation column was covered with a tight lid. 

8-  The sample was then transferred to the environmentally-controlled room. 

For the modified evaporation column, the saturated Beaver Creek sand was placed 

inside the modified evaporation column and consolidated to 200 kPa. A detail on design 

of the modified evaporation column was described in section 4.6.1.2 (see Figure 4.14). 

An extension tube was attached to the column during consolidation. Steps 5 to 8 above 

were then followed.  

Soil specimens for the evaporation tests and the SWCC tests were prepared using 

similar procedures. For the SWCC specimens, soil samples were extruded into the 

stainless steel sample holders after step 5 of preparation of the compressed sand column 

(see section 4.4.2). 

4.6.2.2 Preparation of the Primary and Modified Evaporation Soil Columns for 

Botkin Silt 

Two kinds of evaporation soil columns were prepared for the primary evaporation 

processes on the Botkin silt: the slurry Botkin silt column, and the consolidated Botkin 
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silt column. With the modified evaporation column, only the consolidated silt column 

was prepared.  

The following steps were used for preparation of the primary evaporation column 

using slurry soil: 

1-  In a plastic container, 3,000 grams of air-dried Botkin silt soil was mixed 

with 1,080 grams of distilled water to produce the saturated slurry with a 

gravimetric water content of 36%. The lid of the plastic container was 

tightened and the slurry was mixed a couple of times every day in order to 

get rid of entrapped air bubbles and to create uniform slurry. After 72 hours, 

two soil samples were taken from the saturated slurry to measure the 

gravimetric water content of the slurry before starting the consolidation 

process.  

2- The base of the evaporation column (i.e., grooved pedestal) was filled with 

distilled water, and a pre-saturated porous plate (with an air-entry value of 

either 100 kPa or 1.8 kPa) was placed in the pedestal. A detail on design of 

the pedestal was described in section 4.6.1.2 (see Figure 4.15). O-rings were 

placed on the top and bottom of the porous plate to prevent the water 

leakage. 

3- The Plexiglass cell was placed on the pre-saturated plate and fastened to the 

pedestal through five bolts. The details of the design of the primary 

evaporation column were described in section 4.6.1.2 (see Figure 4.13). The 

thermocouple and sampling ports along the evaporation column were closed 

with tight rubber stoppers. 

4- The evaporation column was filled with prepared slurry Botkin silt with a 

gravimetric water content of 36%. The soil inside the evaporation column 

was gently mixed with spatula a few times while the column was being 

filled to remove air bubbles. 

5- The top of the evaporation column was covered using a tight lid. 

6- The sample was then transferred to the environmentally controlled room. 

For preparation of the primary evaporation column with consolidated Botkin silt the 

following steps were followed: 
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1- The slurry was poured into the consolidation cell (208 mm high and 113 mm 

in diameter). The consolidation cell was used for preparation of the SWCC 

specimens. Details on the consolidation cell and its compartments were 

described in section 4.5.2 (see Figure 4.9). The bottom plate was grooved 

and could collect the water under the consolidated sample and be directed 

outside the system through two attached drainage tubes. The consolidation 

cell was attached to the bottom plate and water proofed using an O-ring 

around the bottom plate. Vacuum grease was used on the O-ring to prevent 

possible water leakage. The slurry soil with the determined water content 

was poured into the consolidation cell. While the column was being filled an 

attempt was made to remove any air bubbles by mixing the slurry using a 

spatula. A porous plate, similar to the one at the bottom of the column, was 

placed on top of the soil. A stainless steel load plate was placed on top of the 

porous plate. The column was placed in a consolidation apparatus and a 

token load of 1,800 g was applied.  

2- The vertical deflection verses elapsed time was monitored using a dial 

gauge. The load was increased in two steps. 

3- After completion of the consolidation test, the soil specimen was transferred 

to the designed column for the evaporation process. The consolidation cell 

was carefully removed from its bottom plate. A metal column with a smaller 

diameter than the consolidation column was placed on the table. The soil 

was extracted from the cell by pushing from the bottom through the porous 

plate. The top porous plate was removed using a piece of fishing line.   

4- The consolidated soil specimen was carefully trimmed into the primary 

evaporation cell (see Figure 4.19). While trimming the specimen, three soil 

samples from the top, middle, and bottom sections of the soil column were 

taken to measure the final water content of the consolidated soil. Silicon 

lubricant was sprayed on the inner surface of the evaporation column, to 

prevent soil cracking during transfer from the consolidation cell to the 

evaporation column and also during the evaporation process as a result of 

desiccation.  
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5- The evaporation soil column was placed on the pre-saturated plate and 

fastened to the pedestal using five bolts.  

6- The top of the evaporation column was covered using a tight lid. 

7- The sample was then transferred to the environmentally controlled room and 

left for 24 hours for equilibration. 

For the modified evaporation column, two soil columns, hereafter referred to as 

MCS1 and MCS2, were prepared. For preparation of the MCS1, the Botkin silt slurry 

was placed directly inside the designed modified evaporation column and consolidated 

to 100 kPa. A detail on design of the modified evaporation column was described in 

Section 4.6.1.2 (see Figure 4.14). An extension tube was attached to the column during 

consolidation. After completing the consolidation test the extension tube was removed. 

The sample was trimmed from top of the modified evaporation column. Rubber stoppers 

were removed and replaced with five T-type thermocouples which were inserted 

horizontally into the soil columns. The soil column was transferred to the 

environmentally controlled room for evaporation process.  

 

Figure 4.19 Transferring the consolidated soil specimen into the primary evaporation 

column 

For preparation of Specimen MCS2, a triaxial rubber tube was placed between the 

inner wall of the modified evaporation column and the slurry soil. It was expected that 

the rubber tube would prevent the evaporation from the side surface of the sample 
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during evaporation process. The slurry soil was consolidated to a maximum vertical load 

of 50 kPa. The extra part of the rubber tube was then removed from top of the soil. The 

soil was trimmed and the surface of the soil was covered. The prepared evaporation soil 

column was transferred to the environmentally controlled room.   

4.6.3 Procedures of the Evaporation Processes 

Preparation of the evaporation specimens for Beaver Creek sand and Botkin silt soils 

was described in sections 4.6.2.1 and 4.6.2.2, respectively. Ten sets of evaporation 

processes were conducted on the prepared specimens. These evaporation processes will 

be referred to as PS1, PS2, PS3, PS4, PS5, and MS1 for evaporation processes 

conducted on Beaver Creek sand specimens, and as PCS1, PCS2, MCS1, and MCS2 for 

the evaporation processes conducted on Botkin silt specimens (see Table 4.13). In the 

specimen labeling, the letters P and M stand for Primary and Modified referring to the 

primary evaporation column and the modified evaporation column, respectively. The 

letters S and CS stand for sand and clayey silt referring to Beaver Creek sand and Botkin 

silt soils, respectively. The number at the end of each label refers to the specimen 

number. 

The evaporation soil processes were conducted in the environmentally controlled 

room. Only one evaporation process was conducted at a time. Information on the soil 

and the environment conditions for the evaporation processes are summarized in Table 

4.13. Both temperature and relative humidity were controlled in the environmentally 

controlled room. The room temperature and humidity were kept constant during the 

evaporation processes. The temperature was about 25–26 
o
C and the relative humidity 

was about 25–26% for most of the experiments. For evaporation Process PS1, a different 

room temperature and relative humidity was used as the test was conducted in a different 

chamber which was limited to additive humidity control (see Table 4.13). To minimize 

the effect of radiation on evaporation, all lights were turned off during the evaporation 

processes. The temperature and relative humidity in the room were also recorded using 

two Hobo data loggers.  

Figures 4.20 and 4.21 show the schematic diagrams of the evaporation processes 

set-ups for the primary and modified evaporation column tests, respectively. The main 

differences between these two set-ups are: the height of the columns (150 mm versus 75 
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mm) and the number of thermocouples installed along each column (8 versus 5). 

Additionally, the relay and bulb system was not used with the modified evaporation 

column. 

After the evaporation soil column was prepared, it was transferred to the 

environmentally controlled room. The soil column was then placed on an electronic 

balance. The thermocouples were attached to a CR1000 Campbell Scientific data logger 

(section 4.6.1.4). The thermocouples were horizontally inserted into the evaporation 

column through the designated temperature ports. They were passed through rubber 

stoppers to prevent water leakage. Ambient temperature above the soil column was also 

monitored using one or two thermocouples. 

The soil column was saturated by applying a slow flow of distilled water from the 

bottom of the column using the Mariotte column. After saturation, the top of the soil was 

covered tight with a plastic lid, which was open to the atmosphere through a small hole. 

The column was left in the environmentally controlled room for a few hours until 

thermodynamic equilibrium was achieved. The equilibration of the soil columns was 

determined by monitoring the temperature changes. When the temperature was the same 

along the entire soil column and approximately equal to the ambient temperature, 

thermodynamic equilibration was presumed. A fiberglass insulation tube was cut and 

placed around the top part of the column to prevent horizontal heat transfer. Two pieces 

of Velcro were used to tighten the fiberglass around the evaporation column.  

The CR1000 data logger was programmed to control the temperature along the 

column. A system of relay and lamp was used for this purpose. A 60 or 30 Watt lamp 

was placed above the soil column. A relay was used to automatically switch the lamp on 

and off. The first thermocouple in the soil was 4 mm from the soil surface and was 

programmed so that when the temperature in the surface of the soil passed the air 

temperature by about 0.1 degree, the lamp would shut off and when temperature dropped 

about 0.1 degree below the ambient temperature the lamp would turn on. By so doing, 

the temperature was kept constant at the surface of the soil column. A program was 

written for the data logger in order to record the temperature data and control the 

temperature at the surface of the soil.  
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Table 4.13 Summary of evaporation processes conducted on Beaver Creek sand (PS and MS) and Botkin silt (PCS and MCS) 

specimens 

Experiment 

Number 
Soil Initial Condition 

Device Used for 

Controlling Inflow 

Rate 

Inflow Rate   

(mm/day) 

Air Entry 

Value of 

Bottom Plate 

(kPa) 

Boundary 

Conditions 

Top 

Room 

*RH(%) 

Room 

Temperature 

(
o
C) 

PS1 Sand Slurry 
GDS volume/pressure 

controller 

Start = 11.49; End 

= 5.74 
1.8 

** “W & R” 

Treatment 
40 30 

PS2 Sand Slurry 
GDS volume/pressure 

controller 
5.74 1.8 

*** “W” 

Treatment 
25.3 25.8 

PS3 Sand Slurry 
GDS volume/pressure 

controller 
5.74 1.8 

“W & R” 

Treatment 
25.5 26 

PS4 Sand Compressed 
GDS volume/pressure 

controller 
2.3 100 “W” Treatment 26 25 

PS5  Sand Compressed 
Mariotte Bottle Controlled by 

Evaporation 
1.8 “W” Treatment 25 25.5 

PCS1             Silt Slurry 
GDS volume/pressure 

controller 
5.74 1.8 “W” Treatment 26 25 

PCS2 Silt Consolidated to 20 kPa 
GDS volume/pressure 

controller 
2.3 and 11.5 100 “W” Treatment 26 25 

MS1 Sand 
Consolidated to 200 

kPa 

GDS volume/pressure 

controller 
5.7 and 4.6        100 “W” Treatment   26       25.5 

MCS1 Silt 
Consolidated to 100 

kPa 

GDS volume/pressure 

controller 
11.5 100 “W” Treatment 26 25.5 

MCS2 Silt Consolidated to 50 kPa 
GDS volume/pressure 

controller 
1.13 100  No “R” No “W” 26 25.5 

* Relative Humidity          ** “Wind and Radiation” Treatment        *** ”Wind” Treatment 

 

 

1
4
2
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Figure 4.20 A schematic diagram of the experimental set-up for a primary evaporation 

column test 

 

Figure 4.21 A schematic diagram of the experimental set-up for a modified evaporation 

column test 

78 

cm 
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The evaporation processes were conducted using three types of top boundary 

conditions: i) radiation and wind treatment, ii) wind treatment, or iii) no-radiation–no-

wind treatment. For evaporation processes conducted under the “radiation and wind 

treatment”, an attempt was made to keep the temperature constant and equal to the room 

temperature along the soil column. A system comprised of a relay and lamp was used to 

control the temperature of the soil surface (Figure 4.20). A small computer fan was 

placed above the evaporation soil column as a wind source. 

A GDS volume/pressure controller (section 4.6.1.5) was attached to the column 

from the bottom through a plastic tube and a connector. The evaporation process was 

initiated by removing the lid. An electric fan was used above the column to promote 

evaporation. The mass of the soil column was recorded in 10-min time increments 

during the test (i.e., using an Ohaus electronic balance with a readability of 0.01g). The 

GDS volume/pressure controller was the source of pressure/volume control in all of the 

evaporation processes except in evaporation Process PS5. The Mariotte Bottle 

previously described in section 4.6.1.6 (see Figure 4.18) was replaced with the GDS 

volume/pressure controller for evaporation Process PS5. The GDS controller was 

programmed to control the inflow rate as a bottom boundary condition. At the end of the 

evaporation test soil samples were retrieved from different depths along the evaporation 

column, either through the sampling port or by sectioning the specimen, for gravimetric 

water content measurements. 

A series of evaporation processes using the primary evaporation column filled with 

distilled water was conducted within the environmentally controlled room. The 

temperature and relative humidity of the room were set at 25
o
C and 26%, respectively. 

The temperature, relative humidity, and wind speed above the evaporation column were 

controlled to resemble environmental conditions during the actual evaporation 

processes. The rate of the mass change with respect to time data for the distilled water-

filled column was used to calculate the potential evaporation rates. Temperature of the 

water at the distance of 5 mm from the surface of the column was measured using a 

thermocouple horizontally inserted into the water-filled column. Potential evaporation 

rates were measured under three different top boundary conditions: i) no-radiation–no-

wind, ii) wind, and iii) wind and radiation.  
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CHAPTER 5  

PRESENTATION OF THE LABORATORY TEST RESULTS 

 

5.1 INTRODUCTION 

This chapter presents results of the laboratory tests described in Chapter 4. Experimental 

results for the consolidation tests are presented in section 5.2; for the saturated 

coefficient of permeability tests, in section 5.3, for the soil-water characteristic curve 

(SWCC), in section 5.4, and for the primary and modified soil column evaporation 

processes, in section 5.5.  

5.2 CONSOLIDATION TEST RESULTS 

Test procedures for the consolidation and saturated coefficient of permeability were 

described in Chapter 4. The objectives of these tests were: i) to measure the saturated 

coefficient of permeability of the Beaver Creek sand and Botkin silt soils, and ii) to 

establish known initial conditions of the SWCC and evaporation tests specimens. For 

purposes of analysis in this thesis, it is necessary that the SWCC and evaporation test 

specimens have identical initial conditions. The SWCC and evaporation specimens were 

prepared using consolidation tests in order to create these conditions.  

During preliminary evaporation tests, the Botkin silt specimens prepared from 

slurry conditions with no vertical stresses were cracked both vertically and horizontally. 

To help prevent the cracking problem, slurry soil samples were consolidated to different 

maximum vertical stresses, and the evaporation column was modified.  

This section also presents deflection versus time plots for the consolidation tests 

during which the saturated coefficient of permeability was measured. The results of the 

saturated coefficient of permeability tests are presented in section 5.3.  
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Figures 5.1 and 5.2 show deflection versus time plots for each applied vertical 

pressure for specimens CS1-2 and CS2-2, respectively. Similar results were obtained for 

both samples to an applied pressure of 100kPa.  

 

Figure 5.1 Deflection versus time for the consolidation test on Botkin silt (Specimen 

CS1-2) 

5.3 SATURATED COEFFICIENT OF PERMEABILITY 

The saturated coefficient of permeability was measured using the falling-head technique 

as described in Chapter 4, section 4.4. The falling-head procedure was conducted at the 

end of each vertical stress increment during consolidation tests. The purpose of the test 

was to determine the initial hydraulic condition (i.e., saturated coefficient of 

permeability) of the specimens used for the evaporation column test. This value is 

required for predicting the unsaturated coefficient of permeability. The 

consolidation/permeability tests were not intended to study the effect of volume change 

on the saturated coefficient of permeability.  

The saturated coefficient of permeability for Beaver Creek sand was independent of 

applied pressure. The average value obtained was 1.27 × 10
-6

 m/s.  
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Figure 5.2 Deflection versus time for the consolidation test on Botkin silt (Specimen 

CS2-2) 

Figure 5.3 shows measured magnitudes of the saturated coefficient of permeability 

versus applied pressure for Botkin silt (Specimens CS1-2 and CS2-2). The magnitude of 

the coefficient decreased from 3.2 × 10
-9

 to 1.9 × 10
-9

 m/s in response to increase in the 

applied pressure from 50 to 200 kPa.  

The experimental data for the consolidation and k-tests are tabulated in Appendix 

B.  

5.4 SOIL-WATER CHARACTERISTIC CURVES  

This section presents the experimental test results for the measurement of the Soil-Water 

Characteristic Curves (SWCCs) for the selected soils. The results obtained from 

different devices (i.e., U of S Pressure Plate Cell, GCTS SWC 100, Air-Tight Chamber 

(ATC) and Chilled- Mirror Water-Potentia Meter (WP4-T)) are presented in three 

separate sections: 5.4.1, 5.4.2, and 5.4.3. The results obtained from the U of S Pressure 

Plate Cell and GCTS SWC 100 SWCC are presented in sections 5.4.1 and 5.4.2, 

respectively. The results obtained from ATC and WP4-T devices are presented in 

section 5.4.3. Section 5.4.4 presents the entire SWCCs of the selected soils for suction 
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ranges from 0 - 1,000,000 kPa. The soil suction value is assumed to be 1,000,000 kPa at 

oven-dry condition.  

Air-tight chambers and the WP4-T device were used to measure the soil-water 

characteristic curves for the high suction range (i.e., 1500 – 300,000 kPa) for the Beaver 

Creek sand, Botkin silt, and Regina clay. 

 

 

Figure 5.3 Saturated coefficient of permeability versus applied pressure for Botkin silt 

In addition to the drying SWCC of the Botkin silt and Regina clay, the wetting 

branch of the curve was measured in the high suction ranges. Section 5.4.3 presents the 

resulting drying and wetting SWCCs for these two soils. The drying SWCC data are 

used to establish the SWCC for the high suction ranges. The drying and wetting data 

will be used (in Chapter 6) to assess the performance of the WP4-T device and to study 

the SWCC hysteresis in the high suction range.  

The focus of this research was to study the hydraulic behavior of the soils around 

residual conditions, where the volume change of the specimen tends to become small. In 
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the case of Beaver Creek sand, the volume change did not appear to be important even in 

near-saturation condition.  

Soil-water characteristic curves are presented as gravimetric water content versus 

soil suction curve throughout this thesis. The soil suction values are presented in 

kilopascal (kPa). The volumetric water content values obtained from the GCTS SWC 

100 equipment were converted to the gravimetric water content using the volume-mass 

relations of the soil specimens. For the hanging-column techniques when using the U of 

S Pressure Plate Cell, applied suctions were in mm-H2O. These soil suction values were 

converted to kPa. The Chilled-Mirror Water Potentia Meter (i.e., WP4-T) measures the 

soil-water potential values in MegaPascals (MPa) (i.e., negative numbers). These 

numbers were converted to soil suction values in kPa (i.e., positive numbers). 

Five Beaver Creek sand and six Botkin silt specimens (see Chapter 4, Tables 4.5 

and 4.6) were used for the measurement of the SWCC using U of S Pressure Plate Cell 

and GCTS SWC 100 devices. The preparation of the soil specimens and test procedures 

for the measurement of soil-water characteristic curves were described in Chapter 4, 

section 4.5.3. Tables 5.1 and 5.2 summarize the initial condition and volume-mass 

relations for the SWCC specimens of the Beaver Creek sand and Botkin silt soils, 

respectively. The volume-mass relations of the SWCC specimens were determined using 

the volume-mass relations at the end of the SWCC tests. 

Table 5.1 Initial condition and volume-mass relations of the Beaver Creek sand SWCC 

specimens 

Specimen ID Initial condition Water content (%) Dry density (g/cm
3
) Void ratio 

S1-1 

S3-1 

S3-2 

S4-2 

MS1 

Compressed to 3870 kPa 

Compressed to 3870 kPa 

Compressed to 3870 kPa 

Compressed to 3870 kPa 

Consolidated to 200 kPa 

24.82 

25.75 

23.01 

18.10 

22.69 

1.46 

1.45 

1.45 

1.43 

1.56 

0.82 

0.83 

0.83 

0.86 

0.69 
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Table 5.2 Initial condition and volume-mass relations of the Botkin silt SWCC 

specimens 

Specimen ID Initial condition Water content (%) Dry density (g/cm
3
) Void ratio 

CS1-1 

CS2-1 

CS3-1 

CS01 

CS02 

MCS 

Consolidated to 19 kPa 

Consolidated to 19 kPa 

Consolidated to 19 kPa 

Saturated Slurry 

Saturated Slurry 

Consolidated to 50 kPa 

26.39 

26.62 

30.69 

34.17 

34.17 

24.46 

1.60 

1.59 

1.36 

1.35 

1.35 

1.63 

0.69 

0.70 

1.00 

1.01 

1.00 

0.66 

 

5.4.1 U of S Pressure Plate Cell  

Figure 5.4 shows the soil-water characteristic curve on the Beaver Creek sand specimens 

using the U of S Pressure Plate Cell for suctions ranging from 0 to 500 kPa. Three soil 

specimens: S1-1, S3-2, and S4-2, were used to complete the measurements. The 

hanging-column technique was applied to Specimen S1-1 to measure the SWCC for 

suctions ranging from 0 to 10 kPa. The axis-translation technique was applied to 

Specimens S3-2, and S4-2 to measure the SWCC curves for suctions ranging from 10 to 

100 kPa and from 100 to 500 kPa, respectively. The test procedures for the hanging-

column and axis-translation techniques using the U of S Pressure Plate Cell were 

described in the previous chapter (see Chapter 4, section 4.5.3). The data point 

corresponding to 100 kPa in Figure 5.4 were measured using two different specimens 

(Specimen S3-2 and Specimen S4-2).  

Figure 5.5 shows results of the soil-water characteristic curve tests obtained from 

the U of S Pressure Plate Cell for two Botkin silt specimens with slurry initial conditions 

(i.e., specimens CS01 and CS02). The results obtained from tests on two specimens are 

similar. These results were not used for the analyses along with the evaporation test 

results, because the preliminary evaporation tests on the specimens with the slurry initial 

conditions encountered some difficulties. 

Figure 5.6 shows the soil-water characteristic curve data for Botkin silt Specimen 

CS1-1 for suctions ranging from 0 to 1000 kPa. The soil specimen was first consolidated 
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to 19 kPa. A U of S Pressure Plate Cell was used to measure the soil-water characteristic 

curve from 0 to 500 kPa. The hanging-column technique was used for suctions ranging 

from 0 to 10 kPa. The axis-translation technique was used for suctions ranging from 10 

to 500 kPa. The test was started using a 1-bar high air-entry ceramic plate. The 1-bar 

plate was then replaced with a 5-bar ceramic plate after the applied suction value 

reached 70 kPa.  

 

 

Figure 5.4 Soil-water characteristic curve data for Beaver Creek sand using the U of S 

Pressure Plate Cell for suctions ranging from 0 to 10 kPa (i.e., hanging 

column technique on Specimen S1-1 and axis-translation technique on 

Specimens S3-2 and S4-2) 

The experimental test data obtained from GCTS SWC 100 device are presented in a 

separate section (i.e., Section 5.4.2). However, in order to emphasize the error that 

occurred when using U of S Pressure Plate Cell with the 5-bar porous plate, the data 

obtained for Specimen CS1-1 (i.e., GCTS SWC 100 apparatus), for suctions ranging 

from 500 to 1000 kPa are presented in Figure 5.6. The data point corresponding to 500 

kPa in Figure 5.6 was measured using both U of S Pressure Plate Cell and GCTS SWC-

100 equipment. The data points obtained using U of S Pressure Plate Cell with the 5-bar 

ceramic plate is shown inside a dashed circle in Figure 5.6. 

An error is visible in the SWCC results obtained from the U of S Pressure Plate Cell 

(see Figure 5.6). The error appears to be attributable to the possible lack of a complete 
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hydraulic connection between the soil and saturated 5-bar ceramic plate. Similar results 

were obtained for Specimen CS2-1 where only a U of S Pressure Plate Cell was used to 

measure the SWCC for suctions ranging from 0 to 500 kPa. Soil Specimen CS2-1 was 

also consolidated to 19 kPa.  

 

 

Figure 5.5 Soil-water characteristic curve data for Botkin silt using the U of S Pressure 

Plate Cell for suctions ranging from 0 to 500 kPa (Slurry Specimens CS01 

and CS02) 

5.4.2 GCTS SWC 100 Device 

Soil-water characteristic curve data for the Beaver Creek sand and Botkin silt soils 

obtained from the GCTS SWC 100 apparatuses are presented in this section. Figure 5.7 

shows the soil-water characteristic curve data obtained from the GCTS SWC 100 

equipment on Beaver Creek sand (i.e., Specimen S3-1). The SWCC was measured for 

suctions ranging from 100 to 1500 kPa. The axis-translation technique was used as 

described in Chapter 4.  

Figures 5.8 and 5.9 show SWCCs for Beaver Creek sand and Botkin silt specimens 

obtained from the GCTS SWC 100 equipment. The data from WP4-T device was also 

included for extension of the SWCC to the high suction range. 
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Figure 5.6 Soil-water characteristic curve data for Botkin silt using the U of S Pressure 

Plate Cell and GCTS SWC 100 device for suctions ranging from 0 to 1000 

kPa (Specimen CS1-1, Consolidated to 19 kPa) 

 

Figure 5.7 Soil-water characteristic curve data for Beaver Creek sand (Specimen S3-1) 

using GCTS SWC 100 device for suctions ranging from 100 to 1500 kPa 
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Figure 5.8 Soil-water characteristic curve data for Beaver Creek sand (Specimen MS1) 

using GCTS SWC 100 device for suctions ranging from 0.1 to 1500 kPa 

 

Figure 5.9 Soil-water characteristic curve data for Botkin silt (Specimen MCS) using 

GCTS SWC 100 device for suctions ranging from 1 to 1500 kPa 
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The SWCC data of the Beaver Creek sand from the GCTS SWC 100 device (see 

Figure 5.7) appear to be consistent with the results obtained from the U of S Pressure 

Plate Cell apparatus (see Figure 5.4), for suction ranges between 100 and 500 kPa. 

While, for suction ranges between 1 and 10 kPa, the results obtained from the GCTS 

SWC 100 (see Figure 5.8) do not appear to be consistent with the results obtained from 

the U of S Pressure Plate Cell apparatus (see Figure 5.4).  

The SWCC test results on a single specimen of the Botkin silt soil (MCS)  using the 

GCTS SWC 100 device (see Figure 5.9) are consistent with the data obtained from the U 

of S Pressure Cell apparatus(see Figure 5.6), for suction ranges less than 100 kPa. It 

should be noted that the MCS specimen was consolidated to 50 kPa vertical stress before 

the commencement of the SWCC test using the GCTS SWC 100 apparatus. 

5.4.3 Air-Tight Chambers (ATC) and Chilled-Mirror Water-Potentia Meter (i.e., 

WP4-T) 

As described in detail in the previous chapter (Chapter 4, section 4.5.3), seven air-tight 

chambers (ATCs) were used to measure the soil-water characteristic curve for the 

selected soil samples (i.e., Botkin silt and Regina clay) in the high-suction ranges from 

3,766 to 300,008 kPa. This section presents results of these measurements. 

5.4.3.1 Equilibrium Conditions inside ATC 

Equilibration conditions were assumed to have been reached when the change in the 

mass of the sample holders inside each ATC was zero for two consecutive 

measurements; that is, when the mass of the sample holders was constant. Different 

saturated solutions were used inside each air-tight chamber in order to achieve different 

relative humidity, and hence different suction values, at equilibrium.  

Table 5.3 shows the results for the mass of the sample holders inside each ATC 

with respect to time. Mass of sample holder for each ATC is given at the start of the test 

(at day 0) and at days 3, 7, 25, and 34. Targeted relative humidity numbers and the 

corresponding suction values for each ATC are also given. The relative humidity was 

selected in the range between 11.3 to 97.3%, covering suction values between 3766 and 

300,008 kPa. 
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Table 5.3 Change in the mass of soil sample holders inside the air-tight chambers with time 

Air-

Tight 

Chamber 

Saturated Solution 
Relative 

Humidity (%) 
Suction (kPa) 

Elapsed Time (day) 

0 3 7 25 34 

Mass of the Sample Holders (g) 

A Lithium Chloride 11.3 ± 0.3 300,008 421.1 418.2 428.7 428.5 428.5 

B 
Magnesium 

Chloride 
32.8 ± 0.2 153,383 439.3 433.4 433.2 433.6 433.6 

C Potassium Iodide 68.9 ± 0.3 51,256 433.4 430 427.7 427.7 427.7 

D Sodium Chloride 75.3 ± 0.2 39,034 423.3 420.2 416.8 416.9 416.9 

E Potassium Chloride 84.3 ± 0.3 23,500 427.5 423.2 420.6 414.6 414.6 

F Potassium Nitrate 93.6 ± 0.6 9,100 405.5 403.8 407.7 409.3 409.4 

G Potassium Sulfate 97.3 ± 0.5 3,766 417.9 417.0 416.4 413.9 413.8 

 

1
5
6
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Figure 5.10 shows the change in mass of the sample holders (i.e., mass change of 

the group of soil samples) for each air-tight chamber with respect to time. Soil samples 

inside chambers A, B, C, and D reached equilibrium with the chamber environment in 

25 days. The soil samples inside the chambers E, F, and G reached equilibrium 

conditions in about 34 days. The saturated solutions and associated target humidity 

values used in each of the chambers A, B, C, D, E, F, and G were given in Table 5.3. 

Based on the results described in this section, it appears that the equilibrium time is 

a function of type of saturated salt solution placed inside the ATC and is therefore a 

function of the target relative humidity. It was observed that the higher the expected 

relative humidity, the longer the equilibrium time.  

5.4.3.2 SWCCs of Botkin Silt and Regina Clay Soils in High Suction Ranges  

After equilibrium was reached (see section 5.4.3.1), the mass of the soil samples was 

measured using an electronic balance with a readability of 0.0001g. The gravimetric 

water contents were determined after measuring the oven-dried weight of the samples.  

 

 

Figure 5.10 Equilibrium time for soils inside air-tight chambers with different saturated 

salts or different relative humidities 
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In addition to the values, given in Table 5.3, the relative humidity and soil suctions 

were determined using a Traceable Hygrometer. 

The WP4-T measurements were taken after equilibrium was reached inside each 

ATC. Details of the test procedures were given in Chapter 4, section 4.5.3.2. The soil-

water potential values in MPa (negative values) were converted to soil suction in kPa.  

Figures 5.11 to 5.14 show the drying and wetting soil-water characteristic curves 

data measured when using the ATC and WP4-T experimental results.   

Figure 5.11 and 5.12 show the drying and wetting curves for Botkin silt and Regina 

clay, measured using the air-tight chambers (i.e., equilibration of soil samples over salt 

solutions of known osmotic suction). The difference between drying and wetting 

SWCCs (i.e., hysteresis) is greater for Regina clay soil than for Botkin silt.  

Figure 5.13 and 5.14 show the drying and wetting curves for Botkin silt and Regina 

clay measured using the Chilled-Mirror Water PotentiaMeter (i.e., WP4-T) device. The 

results are similar to the results obtained from the air-tight chambers (see Figure 5.11 

and 5.12). The hysteresis is more visible for Regina clay than for Botkin silt.  

 

 

Figure 5.11 Drying and wetting soil-water characteristic curves data using  ATC 

apparatus in the environmentally-controlled room for Botkin silt in the high 

suction ranges 
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Figure 5.12 Drying and wetting soil-water characteristic curves data using ATC 

apparatus in the environmentally-controlled room for Regina clay in the high 

suction range 

 

Figure 5.13 Drying and wetting soil-water characteristic curves data using WP4-T 

device in the environmentally-controlled room for Botkin silt in the high 

suction ranges 
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Figure 5.14 Drying and wetting soil-water characteristic curves data using WP4-T 

device in the environmentally-controlled room for Regina clay in the high 

suction ranges 

5.4.4 Difficulties Associated with the SWCC Tests 

This section discusses some difficulties related to the SWCC testing and the associated 

solutions used to resolve these issues.  

5.4.4.1 U of S Pressure Plate Cell and GCTS SWC 100 

To accelerate the testing procedure, ceramic plates with different air-entry values were 

used with U of S Pressure Plate Cell apparatuses (see Chapter 4, section 4.5.3). For 

example, during the SWCC measurement on specimen CS1-1 of Botkin silt, a ceramic 

plate with 100 kPa air-entry value was replaced with a ceramic plate with 500 kPa air-

entry value. The sample was then transferred to GCTS SWC 100 device for applying 

higher suction values, where a ceramic plate with air-entry value of 1000 kPa was used. 

The results for this SWCC measurement were presented in Figure 5.6. A difference was 

observed between the water-content values at 500 kPa suction obtained from U of S 

Pressure Plate apparatus with 500 kPa air-entry value ceramic plate and from GCTS 

SWC 100 apparatus with 1500 kPa air-entry value ceramic plate. The water-content 

value at 500 kPa was about 3% (in gravimetric water content) higher for the U of S 
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Pressure Plate Cell than that for the GCTS SWC 100. The higher water content for the U 

of S Pressure Plate Cell might be attributed to the lack of a complete hydraulic 

connectivity between the porous plate and the sample during exchange of the ceramic 

plates. A similar problem was observed on the results obtained from the U of S Pressure 

Plate Cell for Specimen CS2-1.  

Figure 5.15 compares the SWCC data for Beaver Creek sand Specimen MS1 from 

GCTS SWC 100 device using a ceramic plate with 1500 kPa air-entry value, with the 

data for Beaver Creek sand Specimen S1-1 from U of S Pressure Plate Cell using a 

ceramic plate with 100 kPa air-entry value. In the soil suction range from about 2 to 10 

kPa, the water content values remained higher when a ceramic plate with 1500 kPa air-

entry value was used. For example, gravimetric water content values at 10 kPa soil 

suction are about 2% and 10% for the ceramic plates with associated air-entry values of 

100 kPa and 1500 kPa, respectively.  It appears that using a ceramic plate with a high 

air-entry value of 1500 kPa did not create reasonable SWCC data. The hanging-column 

technique using a ceramic plate with a lower air-entry value of 100 kPa, appears to result 

in more reasonable data. 

5.4.4.2 Problem Associated with Diffused Air 

Another difficulty in measuring the SWCC was the issue of diffused air through ceramic 

plates. Diffused air may cause errors in the mass readings for the U of S Pressure Plate 

Cell or for the volume readings for the GCTS SWC 100 device. This is particularly true 

in the high air pressure range where the amount of diffused air is usually greater. A 

common solution for reducing this error is to periodically flush the diffused air from 

beneath the ceramic plate by water flow.  

Diffused air was flushed by applying water flow and pushing the air out from 

beneath the ceramic plate of the U of S Pressure Plate Cell. An air squeezer was used to 

force water to flow back and forth repeatedly through the bottom of the ceramic plate 

and between two tubes on the sides of the GCTS SWC 100 device. This procedure was 

continued until all diffused air accumulated beneath the plate flowed out of the 

compartment below the high air-entry value plate. 
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Figure 5.15 Comparison of the SWCC curves for the Beaver Creek sand obtained using 

a ceramic disk with AEV = 100 kPa on Specimen S1-1 and a ceramic disk 

with AEV = 1500 kPa on Specimen MS1 

The amount of diffused air was measurable when the GCTS SWC 100 apparatus 

was used. At the end of each air pressure increment, two readings were taken for the 

water level, one reading before and another one after the diffused air was removed. The 

diffused air was quantified using the difference between the readings before and after the 

removal of the diffused air.  

Figure 5.16 shows the soil-water characteristic curve data resulting from the GCTS 

SWC 100 equipment on the Botkin silt Specimen CS3-1. The soil-water characteristic 

curve was measured for soil suctions ranging from 10 to 1500 kPa. The water content of 

the soil specimen did not change significantly for 6 days after the applied air pressure 

was increased from 1000 kPa to 1500 kPa. The 15-bar ceramic plate could not withstand 

the air when the applied pressure was greater than 800 kPa. During the test with an 

applied pressure of 1500 kPa, the amount of diffused air passing through the 15-bar 

ceramic plate was so great that the diffused air required to be flushed at least 5 times a 

day. The SWCC of CS3-1 has been shown for discussion purposes only and will not be 

used in data analyses. 

0

5

10

15

20

25

30

0.1 1 10 100 1000 10000 100000 1000000

G
ra

v
im

e
tr

ic
 w

a
te

r 
c
o
n

te
n

t 
(%

) 

Soil suction (kPa) 

WP4-T

GCTS SWC 100
(AEV = 1500 kPa)

Best-Fit Line

Hanging Column



163 

 

 

 

Figure 5.16 Soil-water characteristic curve data for Botkin silt (Specimen CS3-1) using 

GCTS SWC 100 device for suctions ranging from 10 to 1500 kPa 

Figures 5.17 shows photos of the ceramic plate with an air entry value of 1500 kPa 

used to obtain the SWCC data on Botkin silt Specimen CS3-1 (see Figure 5.16). 

Damage was observed on both front and back sides of the ceramic plate.  

5.4.4.3 Solution to the Problem Associated with Diffused Air 

To make it possible to measure a reliable set of SWCC data for suction ranges between 

500 and 1500 kPa, the problem associated with the 1500 ceramic plate had to be 

resolved. Three ceramic plates were purchased and mounted on three steel rings using an 

epoxy from Engineering Shops at the University of Saskatchewan. Care was given to 

reduce the amount of the air bubbles during the process of applying the epoxy between 

the ceramic plates and the rings. Figures 5.18a and 5.18b show the front and back view 

of one of the ceramic plates mounted within a steel ring.  
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a) Back view of the 15-bar ceramic plate after SWCC testing 

 

 

 

b) Front view of the15-bar ceramic plate after SWCC testing 

 

Figure 5.17 Photos of the back and front view of the used 15-bar ceramic plate after the 

SWCC testing for Specimen CS3-1 

Two out of three ceramic plates functioned properly, while the issue of air leakage 

was observed with one of the plates during testing. The air leakage with the latter 

ceramic plate remained even after a few attempts to solve the problem. It was concluded 

that precise care must be taken when mounting a 15-bar ceramic plate within a steel ring 

in order to avoid air leakage during the measurement of the SWCC. 

The set of apparently reasonable SWCC data for Botkin silt Specimen MCS, shown 

on Figure 5.9, were obtained using the modified ceramic plate with an air-entry value of 

1500 kPa. The amount of diffused air during the test was lower and the diffused air 

required flushing once a day.  

Places where ceramic chips come 

out from the back of the plate 

Places where ceramic chips come out 

from the surface of the plate 
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a) Back view of the new 15-bar plate mounted on a steel ring in the Engineering 

Shops, U of S 

 

 

b) Front view of the new 15-bar plate mounted on a steel ring in the 

Engineering Shops, U of S  

 

Figure 5.18 Photos of the back and front view of the 15-bar ceramic plate mounted on a 

steel ring in the Engineering Shops, U of S 

A comparison of the water content value at 1500 kPa presented in Figure 5.16 

(obtained using the ceramic plate shown in Figure 5.17) with that in Figure 5.9 (obtained 

using the ceramic plate shown in Figure 5.18) reveals that the problem associated with 

the air diffusion was resolved with the latter.  

5.4.5 Entire Drying SWCCs for Beaver Creek sand and Botkin silt soils 

The entire drying soil-water characteristic curves are presented in Figures 5.19 and 5.20 

for the Beaver Creek sand and Botkin silt specimens, respectively. The device or 

technique used to establish the soil-water characteristic curve in each suction range is 

presented on the graphs.  

Figure 5.19 presents drying soil-water characteristic curves of the initially 

compressed obtained from U of S Pressure Plate, GCTS SWC 100, and WP4-T devices, 
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loose (prepared from saturated slurry with zero vertical stress) obtained from U of S 

Pressure Plate Cell; and consolidated Beaver Creek sand specimens obtained from 

GCTS SWC 100 and WP4-T. It can be seen from the results that the SWCC of the 

compressed and loose specimens are almost identical. For the suction ranges between 2 

and 10 kPa, the points from the GCTS SWC 100 device (empty circles) are not 

consistent with the other results. As mentioned before (see section 5.4.4.1), this 

inconsistency can be attributed to the use of a ceramic disk with an air-entry value of 

1500 kPa. 

Figure 5.20 presents drying soil-water characteristic curves of the Botkin silt 

specimens initially consolidated to maximum vertical pressures of 19 and 50 kPa. It also 

presents drying SWCC data for the specimens prepared in a saturated slurry condition 

with no vertical stress at the top. The soil-water characteristic curves of the specimens 

are almost identical for suction ranges beyond 200 kPa, regardless of the initial 

condition of each sample. This finding is important because it indicates that any of these 

soil-water characteristic curves can be used along with the evaporation data for 

determination of the unsaturated coefficient of permeability around the residual-state 

condition.  

 

Figure 5.19 Soil-water characteristic curves for Beaver Creek sand specimens 
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Figure 5.20 Soil-water characteristic curves for Botkin silt specimens 

5.5 EVAPORATION TEST RESULTS  

A total of ten evaporation processes were conducted on the Beaver Creek sand and 

Botkin silt specimens: 6 on Beaver Creek sand and 4 on Botkin silt (Chapter 4, Table 

4.13). The details on evaporation processes were described in Chapter 4, section 4.6.3 

(Table 4.13). This section presents the experimental results obtained during the 

evaporation processes. The results include potential (section 5.5.1) and actual (section 

5.5.2) evaporation rates, temperature changes with time (section 5.5.3), and the 

gravimetric water content profiles at the end of the evaporation tests (section 5.5.4). 

Experimental data for evaporation processes are tabulated in Appendix D. 

The relative humidity and temperature were controlled inside the environmentally 

controlled room where independent evaporation processes were conducted. The relative 

humidity and temperature in the room were recorded using two Hobo data loggers 

during evaporation processes. The data obtained from two different data loggers for 

relative humidity and temperature were comparable, and the average numbers were used 

in the analysis.  

Figure 5.21 and 5.22 show temperature and relative humidity with respect to time in 

the environmentally controlled room for evaporation Process PS3. Both temperature and 
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relative humidity show approximately constant values with small fluctuations. The 

temperature and relative humidity of the room were assumed to be constant and equal to 

the average values of approximately 25 
o
C and 26% during the evaporation process. 

Similar results were obtained for other evaporation processes with slightly different 

temperature and relative humidity values.  

Evaporation Process PS1 was conducted in a different chamber (an additive 

humidity chamber; see Chapter 4, section 4.6.1.1). The relative humidity and 

temperature values for Test PS1 were based on the values recorded by a built-in data 

acquisition system used to control the chamber environment. The relative humidity and 

temperature measurements were not recorded by an individual data logger. 

 

 

Figure 5.21 Temperature changes inside the environmentally-controlled room during 

evaporation Process PS3 

5.5.1 Potential Evaporation Rates 

Figure 5.23 shows the potential evaporation rate for a no-radiation–no-wind condition 

within the environmentally controlled room. Figure 5.24 shows the change in 

temperature of the water with respect to time during potential evaporation process. 

Water temperature decreased while the evaporation rate increased. The evaporation rate 
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reached the maximum value of about 8 mm/d when the water temperature at the surface 

of the water was 23.7 
o
C.   

The temperature showed a sudden drop and rise between the elapsed times of 

approximately 934 to 953 minutes. The sudden change in the temperature was due to the 

downward movement of the water surface as a result of evaporation. The thermocouple 

measured the air temperature above the water surface when the elapsed time was greater 

than 935 minutes. A difference of about 1.5 
o
C between water and air temperatures was 

observed (see Figure 5.20). 

          

 

Figure 5.22 Relative humidity changes inside the environmentally-controlled room 

during evaporation Process PS3 

Figure 5.25 and Figure 5.26 show the potential evaporation values for “wind” and 

“wind and radiation” treatments, respectively. As the water surface moved downward 

into the evaporation column, the evaporation rate decreased as a result of reduction in 

the effect of the wind.  Maximum evaporation rates of about 25 and 35 mm/d were 

measured for the “wind” and “wind and radiation” treatments, respectively. 
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Figure 5.23 Evaporation rate versus time for “without wind” treatment (an 

environmental condition of RH = 26 % and T = 25.5 
o
C) 

 

 

Figure 5.24 Temperature versus elapsed time at 5 mm from the top edge of the 

evaporation column during measurement of the potential evaporation 
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Figure 5.25 Evaporation rate versus elapsed time for “wind” treatment 

 

Figure 5.26 Evaporation rate versus elapsed time for “wind and radiation” treatment 

0

5

10

15

20

25

30

35

0 1000 2000 3000 4000 5000

E
v
a

p
o

ra
ti
o

n
 r
a

te
 (

m
m

/d
)

Elapsed time (min)

0

5

10

15

20

25

30

35

40

45

50

0 200 400 600 800 1000 1200 1400

E
v
a

p
o

ra
ti
o

n
 r
a

te
 (

m
m

/d
)

Elapsed time (min)



172 

 

5.5.2 Actual Evaporation Rates 

The mass of the soil-filled evaporation columns was measured during the evaporation 

processes by means of an electronic balance (Ohaus Explorer) with a readability of 

0.01g. The mass values fluctuated slightly (± 0.05g) because of air circulation within the 

environmentally controlled room. The mass was automatically recorded with time 

increments of 10 min for all evaporation processes except evaporation process PS1, for 

which the data were recorded manually.  

The actual evaporation rate at a given elapsed time was estimated as the slope of the 

change in the soil column mass versus time plot, plus the constant inflow rate applied to 

the soil column through the GDS volume and pressure control system. Since the mass 

values were recorded at 10-minute increments, the actual evaporation rates could be 

calculated based on the mass changes in 10 minutes. At the early stages of evaporation 

when the rate was high, the actual evaporation could be calculated using the change in 

mass data within shorter time increments. At the later stages of the evaporation, the 

changes in mass of the soil columns within 10-minute increments were too small to be 

used in the calculation of the evaporation rates, as there could be substantial errors.  

The evaporation rates are calculated using 1-hour, 6-hour and 24-hour based data. 

To calculate 1-hour based data for instance, the mass reduction of the evaporation 

column in the first hour was calculated. The constant inflow rate applied to the soil 

column through the GDS volume and pressure control system for the first hour was 

added to the difference in the column mass. The summation was then divided by the 

elapsed time (60 min) and the evaporation rate was calculated in mm/d. The calculated 

evaporation rate is shown on the graph at 60 min. This calculation was repeated for the 

second set of data, starting from 10 min of the initiation of evaporation tests. The 

calculated evaporation from the second sets of data is shown at 70 min on the graph. 

These calculations were repeated for the following sets of data. The data are shown as 

“based on 1-hour data” on evaporation versus elapsed time plots.  

The calculations were repeated based on first 6 hour data at the beginning of the 

evaporation test. The first calculated evaporation rate was shown on the plot at 6-hour 

elapsed time (360 min). The time lag of 360 min can be seen on the graph for 6-hour 
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based data as a result of these data analysis. The time lag for 24-hour based data is 1440 

minutes. 

Plots of actual evaporation rates with respect to time for the primary and for the 

modified evaporation column tests are presented in the following sections. Sections 

5.5.2.1 and 5.5.2.2 present results for the Beaver Creek sand specimens for primary and 

modified evaporation processes, respectively. Sections 5.5.2.3 and 5.5.2.4 present the 

results for Botkin silt specimens for primary and modified evaporation processes, 

respectively.  

Wind and/or radiation with some of the evaporation tests were exclusively 

considered to accelerate evaporation at the beginning of the tests (Chapter 4, table 4.13). 

The speed of wind and the quantity of radiation are not considered in the analysis. 

At the end of the evaporation tests, whenever possible the soil samples were taken 

from different depths in order to measure the gravimetric water content. These results 

are presented in section 5.5.4. 

5.5.2.1 Actual Evaporation Rates for Beaver Creek Sand Specimens for the 

Primary Soil Column Evaporation Processes  

Figures 5.27 to 5.31 show the actual evaporation rate for evaporation processes using the 

primary evaporation column on the Beaver Creek sand specimens.  

Figure 5.27 shows the change in actual evaporation rate for evaporation Process 

PS1. The test was conducted in a chamber with additive relative humidity control. The 

temperature and relative humidity of the chamber were set at 30 
o 
C and 40% during the 

evaporation test. Out of ten evaporation tests, the test PS1 was the only one conducted in 

this chamber. The remaining tests were conducted in a room equipped with a 

dehumidifier system (see Chapter 4, section 4.6.1.1). The initial soil was in slurry 

condition when the specimen for evaporation process PS1 was prepared (see Chapter 4, 

section 4.6.2.1). A porous stone with air-entry value of 1.8 kPa was placed at the bottom 

of the specimen. The GDS volume/pressure controller was used to control the inflow 

rate. The inflow rate at the start of the test was set at 11.49 mm/d. The evaporation rate 

began to decrease and became constant at elapsed time corresponding to about 3,000 

minutes. 
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At an elapsed time corresponding to 4,500 minutes, the mass of the soil column had 

a tendency to increase. It was reasoned that this increase in mass might be due to the 

high inflow rate applied at the bottom of the soil column; therefore, the inflow rate was 

reduced to one half of its initial value (i.e., 5.74 mm/d). The evaporation rate bagan to 

decrease and became constant at an elapsed time corresponding to about 6,500 minutes. 

The mass of the column began to increase again at an elapsed time corresponding to 

8,600 minutes. The evaporation process ended at an elapsed time of 9,700 minutes. 

 

 

Figure 5.27 Actual evaporation rate versus time data for evaporation Process 

PS1(Beaver Creek sand, wind and radiation treatment) 

Evaporation process PS2 was also conducted on Beaver Creek sand. The 

evaporation process was conducted in the environmentally controlled room 2- 47, where 

the chamber was equipped to a de-humidifier allowing for the constant lower relative 

humidity. The test conditions were similar to evaporation process PS1, except that the 

test was conducted in an environmentally controlled room with relative humidity and 

temperature of approximately 25% and 26 
o
C, respectively, and that the evaporation 

process was accelerated only with wind. The soil column was prepared with the same 
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initial condition as Test PS1. The inflow rate for the evaporation Process PS2 was set at 

5.74 mm/d and remained constant throughout the test. 

Figure 5.28 shows the actual evaporation rate versus elapsed time for evaporation 

Process PS2. The actual evaporation rates are presented based on 1-hour data and 24-

hour data. Likewise, the evaporation process for Test PS1 showed that the mass of the 

column had a tendency to rise at an elapsed time corresponding to 6,200 min. The 

increase in the mass of the column is not clearly reflected in evaporation rate graphs.  

 

 

Figure 5.28 Actual evaporation rate versus time data for evaporation Process PS2 

(Beaver Creek sand, wind treatment) 

Evaporation Process PS3 was also conducted on a Beaver Creek sand specimen. All 

test conditions were the same as for Test. PS2, except that the top boundary condition 

had a 30 Watt bulb installed at 40 cm above the soil surface to control the temperature at 

the surface of the soil (described in Chapter 4, section 4.6.3 for wind and radiation 

treatment). 

 Figure 5.29 shows evaporation rate versus time data for Test PS3. The evaporation 

process was ended a day after reaching the point that appears to represent steady-state 

flow conditions. 
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Figure 5.29 Actual evaporation rate versus time data for evaporation Process PS3 

(Beaver Creek sand, wind and radiation treatment) 

Evaporation Process PS4 was also conducted on the Beaver Creek sand. Some 

modifications were applied in an attempt to avoid the shortcomings from the earlier 

tests. The sand was compressed as described in Chapter 4, section 4.6.2.1. The “wind” 

boundary condition was applied at the top of the soil column. The wind speed was slow 

at the beginning of the evaporation process and changed to a higher speed at an elapsed 

time of t = 6,150 min. A ceramic porous plate with a high air entry value (AEV = 1 bar) 

was placed at the bottom of the soil column between soil and the grooved pedestal. The 

GDS volume/pressure controller was used to control the inflow rate from the bottom of 

the soil column at 2.3 mm/day. 

Figure 5.30 shows the results of actual evaporation rates versus time for the primary 

evaporation process associated with Test PS4. The evaporation rate increased during the 

early stages of evaporation. The increase in the rate of actual evaporation might be 

attributable to the possibility that the soil column was not fully saturated at the 

beginning of the test. At the elapsed time of 6,150 min, the evaporation rate was further 

promoted by changing the wind speed from slow to high. The effect of an increase in 

wind speed resulted in an increase in the rate of evaporation (see Figure 5.30). The 
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increased evaporation rate reduced the inflow rate with time as a result of the further 

drying of the soil at the surface. The process was ended when the evaporation rate 

became equal to the inflow rate suggesting that steady-state flow conditions had been 

achieved. 

  

 

Figure 5.30 Actual evaporation rate versus time data for evaporation Process PS4 

(Beaver Creek sand, wind treatment) 

For evaporation Process PS5, the sample was compressed, and a porous plate with 

air-entry value of 1.8 kPa was used at the bottom of the soil column. Water was applied 

from the bottom of the sample through a water reservoir (Mariotte bottle). The bottle 

used for this purpose was described in Chapter 4, section 4.6.1.6. The Mariotte bottle 

was also used to keep the water table at a constant level inside the sample (at the depth 

of 140 mm). The fan was placed closer to the sample (40 mm from the edge of the soil 

column) to promote a higher rate of evaporation.  

Figure 5.31 shows the rate of evaporation versus elapsed time for evaporation 

Process PS5. An extremely high evaporation rate at the start of the evaporation (about 75 

mm/d) was measured. The water table was placed at a shallow depth (140 mm) to 

provide the required water for evaporation. The actual evaporation rate results showed a 
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sharp drop during the early stages of the process, followed by a slow rate. The 

evaporation rate remained high after about 18 days, when the test was terminated.  

 

 

Figure 5.31 Actual evaporation rate versus time data for evaporation Process PS5 

(Beaver Creek sand, wind treatment) 

5.5.2.2 Actual Evaporation Rate for Beaver Creek Sand Specimens for Modified 

Column Evaporation Processes 

This section presents the actual evaporation rate versus time data for the Beaver Creek 

sand specimens subjected to the modified evaporation process. The evaporation process 

was conducted in the environmentally controlled room with a relative humidity of 26% 

and temperature of 25 
o
C. The soil specimen was consolidated to 200 kPa before the 

evaporation process. The top boundary condition consisted of a slow wind speed 

treatment. The ceramic porous plate with an air-entry value of 1 bar was placed at the 

bottom of the soil specimen. The lower boundary condition consisted of a constant flow 

rate of 5.74 mm/d controlled by the GDS volume/pressure controller. 

Figure 5.32 shows the results of evaporation Process MS1. During the test, actual 

evaporation rates versus time plots were plotted and monitored. The necessary 
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steady-state conditions. The actual evaporation rate decreased with time. It was expected 

that the actual evaporation rate would decrease to the inflow rate and become constant. 

However, the evaporation rate fell below the inflow rate and then stayed constant. There 

was a difference about 0.8 mm/d between actual evaporation rate and inflow rate.  

 

 

Figure 5.32 Actual evaporation rate versus elapsed time for evaporation Process 

MS1(Beaver Creek sand, wind treatment) 

To achieve the steady-state condition, two options were available: i) to increase the 

evaporation rate, or ii) to decrease the inflow rate. The evaporation rate could be 

increased in one of three possible ways: first, by increasing the temperature of the room; 

second, by decreasing the relative humidity of the room; and third, by increasing the 

wind speed above the soil surface. The latter action was performed by moving the fan 

closer to the edge of the soil column (80 mm). The fan was initially at a distance of 122 

mm from the soil column. The change was made at an elapsed time of 11,560 min as 

shown in Figure 5.28. In a relatively short time (about 200 min) after the adjustments 

0

5

10

15

20

0 5000 10000 15000 20000 25000 30000 35000 40000

E
v
a

p
o

ra
ti
o

n
 r

a
te

 (
m

m
/d

) 

Elapsed time (min) 

Based on 24-hour data

Based on 6-hour data

Inflow rate: 5.7 and 4.6 mm/d

The electric fan was moved  
closer to the  soil column  

The electric fan was 
turned off, inflow rate 
reduced to 4.6 mm/d  



180 

 

were made, the evaporation rate increased to a magnitude of 5.3 mm/d. It appeared that 

the steady-state flow condition was achieved. 

5.5.2.3 Actual Evaporation Rate for Botkin Silt Specimens for the Primary 

Column Evaporation Processes  

The first primary evaporation process on the Botkin silt (i.e., Test PCS1) was performed 

on a saturated slurry specimen. The sample was prepared using the saturated slurry soil 

with no consolidation (Chapter 4, section 4.6.2.2). Evaporation at top of the sample was 

accelerated using wind treatment. The relative humidity and temperature of the 

environmentally controlled room were 26% and 25 
o
C, respectively. A porous stone with 

air-entry value of 1.8 kPa was used at the bottom of the column. The GDS 

volume/pressure controller was used to control the inflow rate at 5.74 mm/d. During the 

evaporation process, deep cracks appeared both horizontally and vertically in the soil 

specimen. The soil also shrank, resulting in a gap between the soil and the column.  

Figure 5.33 shows the actual evaporation rate for Botkin silt Specimen PCS1 

determined based on 1-hour, 6-hour and 24-hour data. Based on the results, the steady-

state flow condition reached at about 6,000 min; however, due to cracking and 

shrinking, the results of this evaporation process have been discarded from further 

analysis. 

To prevent shrinking of the soil and the formation of desiccation cracks along the 

soil column during evaporation, the Botkin silt Specimen PCS2 was consolidated to 20 

kPa before the beginning of the evaporation process. Details on the preparation of the 

soil specimen were described in Chapter 4, section 4.6.2.2. Evaporation at top of the 

sample was accelerated using wind treatment. The relative humidity and temperature of 

the environmentally controlled room were 26% and 25 
o
C, respectively. A ceramic plate 

with air-entry value of 100 kPa was used at the bottom of the column. The GDS 

volume/pressure controller was used to control the inflow rate at 2.3 mm/d.  
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Figure 5.33 Actual evaporation rates versus time data for evaporation Process 

PCS1(Botkin silt, wind treatment) 

Figures 5.34 shows the actual evaporation rate versus time data for Botkin silt 

Specimen PCS2 using the primary evaporation column. The evaporation rate started at 

about 26 mm/day at the beginning of the test. The rate of evaporation decreased to about 

5 mm/day at t = 8,250 min. The inflow rate was 2.30 mm/d throughout the test. At t = 

8,260 shrinkage cracks appeared on the surface of the soil and a vertical crack developed 

from the specimen surface to a depth of about 30 to 40 mm. The heat jacket was opened 

to further investigate the soil column. Horizontal and vertical cracks along the soil 

column were observed (Figure 5.35) 

After the shrinkage that had developed during the evaporation process on Specimen 

PCS2 was observed, the specimen was again saturated. During the saturation process 

(between elapsed times of 8,260 and 11,720 min) the soil surface was covered and an 

inflow rate of 22.97 mm/d was applied (see Figure 5.34). After saturation, the soil 

swelled and the crack opening closed.  
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Figure 5.34 Actual evaporation rates versus time data for evaporation Process PCS2 (Botkin silt, wind treatment) 
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Figure 5.35 Development of the horizontal and vertical cracks along Specimen PCS2 

(Botkin silt) during evaporation process  

At t = 11,720 min (after saturation of the soil specimen), the evaporation process 

was resumed. The cover was removed from the top of the soil and the inflow rate was 

changed to 11.49 mm/d (Figure 5.34). Since the inflow rate was high, the evaporation 

reached the inflow rate (11.49 mm/d) in a relatively short time (2 to 3 days). The soil 

samples were not retrieved for gravimetric water content measurement from this test, 

since the soil was not sufficiently dry to create an acceptable water content profile for 

measurement of the unsaturated coefficient of permeability at lower water contents. 

5.5.2.4 Actual evaporation rate versus time for Botkin Silt Specimens for the 

Modified Column Evaporation Processes  

This section presents the actual evaporation rate versus time data for the evaporation 

processes on Botkin silt specimens MCS1 and MCS2 with the modified column 

evaporation process. The specimens were consolidated to 100 kPa and 50 kPa, 

respectively, in an attempt to overcome the problem of specimen cracking during the 

evaporation process. The details of the soil column preparations and evaporation 

procedure were described in Chapter 4, sections 4.6.2.2 and 4.6.3, respectively.  
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The “wind” treatment was used as the top boundary condition during the 

evaporation process on Specimen MCS1. The evaporation started with higher inflow 

rate of 11.49 mm/d. Figure 5.36 shows the evaporation rate versus time data for 

Specimen MCS1. The evaporation rate dropped below inflow rate beyond 2,300 

minutes. The reduction in evaporation rate below the inflow rate resulted in an increase 

in the soil column mass. At t = 3,000 min the mass of the column increased sharply. 

At t = 5,740 minutes, the heat jacket was removed and the soil column was 

investigated. Vertical cracks were not observed; however, there was shrinkage along the 

soil column, starting with about a 2 mm gap between the soil and the cell at the surface 

and decreasing throughout the depth of the soil column. The surface of the soil was 

dried. The side of the soil was also dried to a depth of about 30 mm. Water was observed 

in the gap between the soil and the cell below the dry surface.  

After investigation of the soil column, the heat jacket was put back in place and the 

evaporation process was resumed for another couple of days. An attempt was made to 

inject wax around the gap. The injection of wax was not successful due to the small size 

of the gap, and needle became clogged with wax during injection. After about 6,800 

minutes from the beginning of the evaporation process, the inflow rate was still greater 

than the rate of the evaporation; therefore, the mass of the column was still slowly 

increasing. 

It appeared that near steady-state condition for the Specimen MCS1 were reached at 

an elapsed time around 7,500 min. Soil samples were taken through the thermocouple 

ports in order to measure the gravimetric water content of the soil. The evaporation 

column was then dismantled. There were no cracks observed on the soil specimen. The 

diameter of the soil specimen was measured in different heights. The specimen had 

shrunk about 2 mm at the top, 1 mm at the mid-height and 0 mm at the bottom.  

From results of the evaporation process on Specimen MCS1 it was concluded that 

modification of the evaporation column and consolidation of the specimen to 100 kPa 

had helped to prevent the specimen cracking. However, it was not clear whether 

consolidation or shortening the evaporation column had prevented cracking of the 

specimen. The shrinkage or evaporation from side walls was still an issue.  
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Figure 5.36 Actual evaporation rate versus time data during evaporation Process MCS1 

(Botkin silt, wind treatment) 

Specimen MCS2 was consolidated to a maximum vertical pressure of 50 kPa before 

the beginning of the evaporation process. In order to prevent evaporation from the side 

surface of the specimen during evaporation, the specimen was confined with a triaxial 

membrane during both consolidation and evaporation processes. Details of the 

preparation were described in Chapter 4, section 4.6.2.2. The “no-radiation–no-wind” 

treatment was used as the top boundary condition at initiation of the evaporation process 

on specimen MCS2. In other words, the evaporation started without an attempt to 

accelerate the rate of evaporation by use of an electronic fan or a bulb above the soil 

column. The inflow rate at the start of evaporation was 1.13 mm/day and remained 

constant throughout the evaporation process.  

Figure 5.37 shows the evaporation rate versus time data for Specimen MCS2. The 

evaporation rate increased at the beginning of the test, stayed constant from 300 to 3,000 

min and then decreased towards a constant value equal to the inflow rate. The 

evaporation rate became equal to the inflow rate at about 13,500 min and remained 

constant (steady-state flow condition) until the test was terminated. 
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Figure 5.37 Actual evaporation rate versus time data during evaporation Process MCS2 

(Botkin silt, no-wind –no-radiation treatment) 

5.5.3 Temperature Measurements 

Soil temperature data at selected depths along the soil column were recorded using T-

type thermocouples attached to a Campbell Scientific data logger (CR1000). There were 

8 selected depths for thermocouples along the column for the primary evaporation 

column tests. For the modified evaporation processes, thermocouples were placed at 5 

selected depths along the column. For the last evaporation process on a Botkin silt soil 

column (MCS2), the temperature was measured only at the surface of the soil. A time 

increment of 10 minutes was chosen for the measurement of the soil temperature. 

In addition to the thermocouples used for recording the soil temperature, air 

temperature above the surface of the soil was also measured using 1 or 2 thermocouples 
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The following sections present the results of temperature measurements including 

soil temperature for the selected depths along the evaporation columns and air 

temperature during evaporation.  

5.5.3.1 Change in Temperature along and above the Beaver Creek Sand 

Specimens for the Primary Evaporation Column Tests  

This section presents temperature changes with respect to time at the selected depths 

along the primary evaporation column for Beaver Creek sand specimens PS1 to PS5 

(Figures 5.38 to 5.42). 

Figure 5.38 shows the change in temperature versus time data for primary 

evaporation process for Beaver Creek sand Specimen PS1. The “wind and radiation” 

treatment was used as the top boundary condition. An attempt was made to control the 

temperature of the soil surface through thermocouple T1, which was placed at a depth of 

4.5 mm from the surface of the soil. The temperature was maintained at a constant value 

of 30 ± 0.1 
o
C by switching on and off a 60 Watt bulb above soil surface.  

At the beginning of the evaporation process, the rate of evaporation was high. This 

demanded high radiation energy from the bulb in order to maintain the temperature at 

the given constant value (30 ± 0.1
 o

C). This required a longer “turned on” status for the 

bulb during the early stages of evaporation. A portion of the radiation energy, in addition 

to the portion required for latent heat, was transferred to the lower layers of the soil 

through conduction. The energy transfer increased temperature in the lower layers of the 

soil column at the early stages of the test (see Figure 5.38, T2 to T8).  

As the soil surface became drier, the rate of evaporation decreased. Reduction in the 

rate of evaporation resulted in a lower required latent heat, and hence a shorter time for 

the bulb to be turned on. The time duration in which the bulb was turned on was not 

measured. The conduction heat transfer from lower layers to the surface of the soil 

caused reduction in temperature of the lower layers (see Figure 5.38, t = 300 to 6,000 

min). For later times during the evaporation process (i.e., t > 6,500 min), temperature 

curves remained fairly constant. The elapsed time t = 6,500 min is coincident with the 

time when the actual evaporation rate became equal to the inflow rate (i.e., 5.74 mm/d) 

(see Figure 5.27).   
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Figure 5.39 shows results of the temperature change with time for primary 

evaporation Process PS2. The top boundary condition for this test was “wind” treatment. 

As the evaporation process initiated, the temperature at the surface of the soil reduced 

due to latent heat. A portion of the required energy for evaporation was supplied from 

lower layers of the soil. In other words, as soil temperature at the surface decreased 

because of evaporation, conduction heat was transferred from lower layers to the top 

resulting in reduction of the temperature at lower layers of the soil column. With time, 

the rate of the evaporation decreased and so did the required amount of latent heat. This 

in turn reduced the amount of heat transfer from lower layers to the top of the soil 

column, resulting in an increase in the temperature. As the evaporation rate became 

closer to the constant flow rate, the rate of temperature rise decreased. At near steady-

state flow conditions the temperatures became near constant for all depths of the soil.  

Figure 5.40 shows the results of changes in temperature with time for the primary 

evaporation Process PS3. Boundary conditions at the top of the soil column were similar 

to evaporation Process PS1 (“wind and radiation” treatment). A 30 Watt bulb used to 

supply radiation energy for this test. At the beginning of the test, radiation from the bulb 

did not supply sufficient additional energy to the soil surface to overcome the latent heat 

of evaporation. Therefore, temperatures of the lower layers decreased as a result of 

conduction heat transfer to the evaporation surface.      

Figure 5.41 shows the results of temperature measurements with respect to time for 

the selected depths for the primary evaporation process in Specimen PS4. The 

temperature at the surface of the soil column decreased at the beginning of the 

evaporation process due to the latent heat required for the evaporation. The reduction in 

temperature at the surface of the soil resulted in conductive heat transfer from the lower 

layers. This conductive heat transfer caused a temperature reduction in the lower layers. 

As the soil surface became drier, the required latent heat for evaporation was reduced. 

This resulted in an increase in the temperatures along the soil column. The rate of 

change in temperature along the soil column was closely related to the rate of change in 

actual evaporation (Figure 5.41 and Figure 5.30).   

Figure 5.42 shows the results of temperature measurements with respect to time for 

the selected depths for the primary evaporation process PS5. The water table was kept at 
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a constant depth (d = 140 mm) within the Beaver Creek sand column using a Mariotte 

bottle connected to the column as a water reservoir. As evaporation began at t = 530 

min, the temperature dropped from 25.4 
o
C to 17 

o
C at the soil surface in a short period 

of time. Following this decrease in temperature at the surface, the temperature at lower 

depths of the soil column decreased due to conductive heat transfer from lower layers to 

the surface. The rate of evaporation remained high (see Figure 5.31) due to continuous 

availability of water at the soil surface. After the minimum evaporation rate had been 

reached, the temperature remained around 17 
o
C (8.4 

o
C less than room temperature) at 

the surface of the soil. 

5.5.3.2 Change in Temperature along and above the Beaver Creek Sand 

Specimens for the Modified Evaporation Column Tests 

Modified evaporation column tests were conducted on the Beaver Creek sand 

specimens. Six thermocouples were inserted in the soil column at different depths. Five 

of them were inserted through sampling ports; one was buried at the surface of the soil 

from the top. In addition to six thermocouples attached to the soil column, one was 

placed above the soil column at a height of 50-60 cm for measurement of air 

temperature. Two Hobo data loggers were placed above the soil surface at 2.5 and 6 cm 

distance from surface of the soil, respectively. The data loggers measured relative 

humidity and temperature values at 10-min time increments. 

Figure 5.43 shows the change in temperature versus time data for the modified 

evaporation process in Specimen MS1. The temperature decreased at the beginning of 

evaporation due to latent heat. With time as the surface of the soil became drier and the 

suction value at the soil surface increased, the rate of evaporation decreased. The 

decrease in the rate of evaporation reduced the amount of energy required for latent heat. 

This change in turn increased the temperature at the surface of the soil. The rate of heat 

transfer from lower layers to the surface of the soil decreased accordingly. The outcome 

of these changes appeared in the form of changes in temperature. For elapsed times of 

400 min to about 2,800 min, the rate of change in temperature was almost constant. 

After 2,800 min the temperature began to rise rapidly. This rapid rise in temperature 

may be attributed to the sudden decrease in evaporation rate at the surface of the soil 

during the same time period (see Figure 5.32). 
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Figure 5.38 Temperature changes with respect to time along the column during evaporation Process PS1 (Beaver Creek sand) 
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Figure 5.39 Temperature changes with respect to time along the column during evaporation Process PS2 (Beaver Creek sand) 
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Figure 5.40 Temperature changes with respect to time along the column during evaporation Process PS3 (Beaver Creek sand) 
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Figure 5.41 Temperature changes with respect to time along the column during evaporation Process PS4 (Beaver Creek sand)  
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Figure 5.42 Temperature changes with respect to time along the column during evaporation Process PS5 (Beaver Creek sand)  
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Figure 5.43 Temperature changes with respect to time along the soil column during evaporation Process MS1 (Beaver Creek sand)
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5.5.3.3 Change in Temperature along and above the Botkin Silt Specimens for the 

Primary Evaporation Column Tests 

Figure 5.44 shows temperature measurement results with respect to time for the selected 

depths during primary evaporation column Test PCS1. Temperature near the surface of 

the soil (i.e., T1) remained essentially constant throughout the test.   

Figure 5.45 shows temperature changes with respect to time along the soil column 

during evaporation Process PCS2. The results are presented in the form of three 

processes along the elapsed time axis: first the evaporation process, the saturating 

process, and the subsequent evaporation process. During the first evaporation process, 

the soil shrank and cracks developed. This resulted in an abnormal trend for the 

temperature measurements with time. During the saturation process, the temperature of 

the soil along the column increased and approached air temperature. During the 

subsequent evaporation process the temperatures indicated a normal trend. 

Although the temperature data at the end of both tests (PCS1 and PCS2) suggest 

that the steady-state flow condition had been reached, these tests were discarded from 

further analysis because of cracks and shrinkage observed during the evaporation tests 

(see section 5.5.2.3). 

5.5.3.4 Change in Temperature along and above the Botkin Silt Specimens for the 

Modified Evaporation Column Tests 

Figure 5.46 shows change in temperature along the soil column during the evaporation 

process on the Botkin silt specimen for Test MCS1. Lines T1 to T5 show the 

temperature change with time from top to the bottom of the soil column. T6 and T7 show 

air temperature at a distance of 20 and 50 mm above the surface of the soil. As the 

evaporation process was started, the temperature at the surface of the soil column 

decreased, and heat was transferred from the lower layers to the top layers of the soil, 

causing decrease in temperature of the lower layers. After the maximum evaporation rate 

was reached, soil began to dry at the surface, causing a decrease in the amount of 

evaporation. Hence, there was a decrease in the amount of heat required for evaporation 

from lower layers of the soil. This in turn resulted in an increase in temperatures along 

the soil column.  
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In spite of an apparent steady-state flow condition at the end of the test, evaporation 

test results on the Botkin silt Specimen MCS1 was discarded from further analysis 

because of observed shrinkage and evaporation from the side surface of the specimen 

(see section 5.5.2.4).  

Figure 5.47 shows changes in temperature at the soil surface and temperature of the 

air above the soil surface with time for evaporation Process MCS2. A triaxial rubber 

membrane was used to minimize the amount of evaporation from the perimeter of the 

specimen during evaporation. To prevent any damage to the rubber membrane that 

installation of the thermocouples might have caused, temperature was monitored only at 

the surface of the soil. A thermocouple was installed at the surface of the soil from the 

top. The same pattern of temperature change at the surface of the specimen that occurred 

in Test MCS1 (Figure 5.46, T1) was observed in evaporation Process MCS2 (Figure 

5.47, Tsoil surface). As evaporation started, the temperature at the surface of soil specimen 

decreased. The temperature remained constant during the constant evaporation rate. The 

soil began to dry at the surface causing a decrease in the amount of evaporation; hence, 

there was a decrease in the amount of heat required for evaporation from lower layers of 

the soil specimen. This, in turn resulted in an increase in temperatures at the surface of 

the specimen. 

The modified evaporation process on Botkin silt Specimen MCS2 produced proper 

results that could be used in data analysis.  

5.5.4 Gravimetric Water-Content Profile   

At the end of the evaporation column tests, measurements of gravimetric water-contents 

were carried out at selected depths along the soil column. Details of these measurements 

were described in Chapter 4. The following sections present the results of the water- 

content measurements versus depth (i.e., gravimetric water-content profiles) along the 

soil column for evaporation processes.  
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Figure 5.44 Temperature changes with respect to time along the soil column during evaporation Process PCS1 (Botkin silt) 
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Figure 5.45 Temperature changes with respect to time along the soil column during evaporation Process PCS2 (Botkin silt)
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Figure 5.46 Temperature changes with time along the column during evaporation Process MCS1 (Botkin silt) 
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Figure 5.47 Temperature changes with time at the soil surface and the air above for 

evaporation Process MCS2 (Botkin silt) 
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corresponding suction value of 10% gravimetric water content is about 4 kPa (see Figure 
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5.4). This suction value is higher than the air-entry value of the porous stone at the 

bottom of the column (i.e., AEV=1.8 kPa) and could withdraw water from the stone.  

 

  

Figure 5.48 Gravimetric-water content profile at the end of evaporation Process PS1 

(Beaver Creek sand) 

Figure 5.49 shows the gravimetric water-content profile at the end of evaporation 

Process PS2. Water contents increased toward the bottom plate. The water content at the 

bottom of the soil column for this process was high compared to the water content at the 

bottom of the soil column for evaporation Process PS1. This variation appears to be 

mainly due to the lower potential evaporation rate for evaporation Process PS2 (“wind” 

treatment). Similar to evaporation Test PS1, the results of evaporation Process PS2 show 

that the water content at some depths was lower than that the upper portion of the 

column. A piece of filter paper was placed on top of the stone plate to create a uniform 

distribution of the water supplied at the bottom of the soil column for evaporation 

Process PS2. However, this procedure did not improve the test results.   

Figure 5.50 shows the gravimetric water-content measurements at the end of 

evaporation Process PS3. The results for this test are comparable to the results obtained 

for evaporation Process PS1 (Figure 5.44). In both cases, the top boundary condition 

was “wind and radiation” treatment.  
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Figure 5.49 Gravimetric-water content profile at the end of evaporation Process PS2 

(Beaver Creek sand) 

 

Figure 5.50 Gravimetric-water content profile at the end of evaporation Process PS3 

(Beaver Creek sand) 
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Figure 5.51 shows the gravimetric-water content measurements at the end of 

evaporation Process PS4. The results of the gravimetric-water content versus depth 

created a smoother curve than observed in the three previous evaporation processes (i.e., 

Tests PS1, PS2, and PS3), mainly because of replacing a high air-entry value ceramic 

plate (AEV = 100 kPa) with the porous plate (AEV = 1.8 kPa). 

 

 

Figure 5.51 Gravimetric-water content profile at the end of evaporation Process PS4 

(Beaver Creek sand) 

Figure 5.52 shows gravimetric water-content measurements at the end of 

evaporation Process PS5. For all depths, except for the thin layer (i.e., thickness of 1 

mm) at the soil surface, the water content remained high (between 22 to 26%) and close 

to the gravimetric water content at near-zero suction (26%).  Presence of the water table 

at a depth of 140 mm for evaporation Process PS5 was the main reason for observation 

of a relatively constant water-content profile along the column. The data for this test 

were not suitable for the purpose of this thesis, which was the study of the hydraulic 

behavior of the soil around the residual-residual conditions. The water content remained 

high along the evaporation column and was close to the saturated water content. 

0

20

40

60

80

100

120

140

160

0 1 2 3 4 5 6 7 8 9

D
e

p
th

 (
m

m
)

Gravimetric water content (%)



205 

 

 

Figure 5.52 Gravimetric-water content profile at the end of evaporation Process PS5 

(Beaver Creek sand) 

5.5.4.2 Water-Content Profiles of a Beaver Creek Sand Specimen for the Modified 

Evaporation Column Tests  

This section presents results of the gravimetric water-content measurements at the end of 

the modified evaporation Process MS1. 

Figure 5.53 shows the gravimetric water-content profile at the end of evaporation 

Process MS1. Two sets of data are shown on the figure. Open circles are data associated 

with the soil samples retrieved from thermocouple ports. The diamonds are data 

associated with the soil samples retrieved through sectioning the soil column at the end 

of the evaporation process. The soil samples from the thermocouple ports indicated 

lower water contents when compared to the other group of data. These discrepancies 

between two groups of soil samples may be due to higher density of the soil samples 

retrieved from the thermocouple ports. These samples were taken after the temperature 

probes were pulled out from the ports.  
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Figure 5.53 Gravimetric-water content profile at the end of evaporation Process MS1 

(Beaver Creek sand) 

5.5.4.3 Water-Content Profiles of the Botkin Silt Specimens for the Modified 

Evaporation Column Tests  

This section presents results of the gravimetric water-content measurements at the end of 

the modified evaporation Processes MCS1, MCS2. 

Figure 5.54 shows the gravimetric water-content measurements at the end of 

evaporation Process MCS1. The soil samples were retrieved through the sampling ports 

on the side of the evaporation column. Although the gravimetric water-content profile at 

the end of the test showed an expected form, the data from this test were discarded from 

the analysis because of shrinkage observed during the evaporation test.  

Figure 5.55 shows the gravimetric water-content measurements at the end of 

evaporation Process MCS2. Soil samples for this test were retrieved through sectioning 

the soil column at the end of the evaporation process. The data from this test appear to 

be suitable for analysis. 
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Figure 5.54 Gravimetric-water content profile at the end of evaporation Process MCS1 

(Beaver Creek sand) 

 

Figure 5.55 Gravimetric-water content profile at the end of evaporation Process MCS2 

(Beaver Creek sand)  
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The evaporation test results, presented in this chapter, were considered as successful 

if they met all the following conditions: 

1- The evaporation rate becomes equal to the controlled inflow rate at the end of the 

test (steady-state flow condition). 

2- The water-content profile at the end of the test consists of water-content values 

around the residual water content. 

3- Evaporation occurs exclusively through the top surface of the specimen (not 

from the side surface of the specimen because of shrinkage). 

4- Cracks are not developed vertically or horizontally. 

Plots of evaporation rate and temperature changes with time, as presented in this 

chapter, suggest that most of the evaporation tests had reached steady-state flow 

conditions at the end of the test before the soil samples were retrieved for the 

gravimetric water-content measurement. However, some of the evaporation tests could 

not satisfy all of the required conditions.  

The required conditions were met by 5 out of 6 Beaver Creek sand specimens used 

in the evaporation tests: PS1, PS2, PS3, PS4, and MS1. Specimen PS5, which failed to 

satisfy condition 2, was discarded from the analysis. These conditions were met by 1 out 

of 4 Botkin silt specimens (MCS2). Results of the successful tests are used for the 

analysis in Chapter 6.  

Along with the evaporation test results, the soil-water characteristic curve and 

saturated coefficient of permeability for the Beaver Creek sand and Botkin silt 

specimens were also required for the analysis. 

The SWCC test results, as presented in section 5.4, will be used to establish a 

suitable SWCC for the analysis along with the selected evaporation tests. The 

problematic SWCC test data will not be considered for  

The saturated coefficient of permeability for the Botkin silt was measured at 

different loads during consolidation tests. The saturated coefficient of permeability at 50 

kPa will be used in the analysis. This value was chosen because the Specimen MCS2 

from evaporation tests chosen for the analysis had a similar initial condition 

(consolidated to 50 kPa). 
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CHAPTER 6  

INTERPRETATION OF THE EXPERIMENTAL TEST RESULTS, DATA 

ANALYSIS, AND DISCUSSION 

 

6.1 INTRODUCTION 

This chapter presents interpretations of the laboratory test results, reported in Chapter 5, 

with data analysis, and discussion. As described in chapter 4, a total of 10 evaporation 

tests were conducted: 6 on the Beaver Creek sand and 4 on the Botkin silt specimens. 

The results of 5 evaporation tests on Beaver Creek sand (PS1, PS2, PS3, PS4, and MS1) 

and 1 test on Botkin silt are considered for the analysis in this chapter. The SWCC and 

the saturated coefficient of permeability test results selected for the analysis are also 

discussed. 

Section 6.2 discusses the results from the consolidation and saturated coefficient of 

permeability tests on the Botkin silt and Beaver Creek sand specimens.  

In section 6.3 the performance of the WP4-T device which was used throughout the 

laboratory testing program is assessed.  

Section 6.4 discusses the SWCC hysteresis in the high suction range.  

In section 6.5, the entire SWCC in suction ranges from near 0 to 1,000,000 kPa are 

established for Beaver Creek sand and Botkin silt soils. 

In section 6.6, the residual-state condition is estimated using the SWCC of Beaver 

Creek sand and Botkin silt soils. The residual-state condition is estimated based on the 

new procedure developed in Chapter 3, section 3.5. The residual-state condition is also 

determined as a designated point on the SWCC based on the commonly used methods 

described in Chapter 2, section 2.3.  

Section 6.7 discusses the steady-state flow conditions in evaporation processes.  

In section 6.8, the transition zone of the soil suction profile is estimated by analysis 

of the results obtained from the evaporation processes.  
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In section 6.9, the residual-state condition for the Beaver Creek sand and Botkin silt 

specimens are compared with upper and lower limits of the transition zone of the soil 

suction profile.  

Section 6.10 presents an analysis of the steady-state evaporation processes results in 

order to establish experimental data for the liquid-phase coefficient of permeability 

function. The equations developed in Chapter 3 were used for the data analysis.  

In section 6.11, the equations developed in Chapter 3 along with the data obtained 

from the evaporation processes are used to determine the vapour coefficient of 

permeability function for the Beaver Creek sand and Botkin silt.  

In section 6.12, the method for predicting the liquid-phase coefficient of 

permeability function, which was proposed in Chapter 3 is assessed through the 

experimental data from sections 6.10 and 6.11. 

6.2 CONSOLIDATION AND THE SATURATED COEFFICIENT OF 

PERMEABILITY  

The falling head test was used for the measuring the saturated coefficient of 

permeability. The testing procedure and the results of the tests were presented in 

Chapters 4 and 5, respectively. The saturated coefficient of permeability (ks) has been 

shown to be a function of void-ratio or effective stress. The volume change of Beaver 

creek sand during consolidation tests was not substantial, and as a result, the saturated 

coefficient of permeability (ks) remained practically constant for various applied 

pressures during consolidation. The saturated coefficient of permeability for Beaver 

Creek sand was found to be ks = 1.27 × 10
-6

 m/s under various applied pressures. Beaver 

Creek sand is considered to be a non-volume-changing material throughout this study. 

The results of the saturated coefficient of permeability were presented in chapter 5 

(see Figure 5.3). The saturated coefficient of permeability data were plotted versus 

applied pressure (effective stress) for the Botkin silt specimens. The saturated coefficient 

of permeability decreased from 4 × 10
-9

 to 1.8 × 10
-9

 m/s as the applied pressure 

changed from near 0 to 200 kPa. Results on Specimen MCS, initially consolidated to 50 

kPa, are used in data analysis. Little volume change was observed during the 

evaporation tests, because the Botkin silt specimen was consolidated to 50 kPa (e = 

0.66) before the evaporation test started, The volume change is not considered in the 



211 

 

analysis since the focus of this research is on the hydraulic behavior of the soil around 

the residual-state condition, where the volume change becomes practically insignificant.  

The saturated coefficients of permeability for the selected soils were used in 

sections 6.10, 6.11, and 6.12 for establishing the unsaturated coefficient of permeability 

function for the selected soils.  

6.3 ASSESSMENT OF THE CHILLED-MIRROR WATER-POTENTIA 

METER (WP4-T) 

A Chilled-Mirror Water-Potentia Meter (WP4-T) was used to measure the total soil 

suction in the high suction range of the SWCC. The device was also used to measure the 

suction profile after a steady-state condition on the evaporation columns was reached.  

Features of the device and the experimental testing procedures were previously 

described in Chapter 4, section 4.5 and Chapter 5, section 5.4, respectively. 

In this section, the accuracy of the Chilled-Mirror Water-Potentia Meter (WP4-T) is 

assessed using the experimental data presented in Chapter 5. Results from a traditional 

vapour pressure equilibrium method (air-tight chamber method, ATC) were intended to 

be used as a benchmark to assess the performance of the WP4-T device. Independent 

measurement of relative humidity using the Traceable Hygrometer did not match with 

the targeted relative humidity values in high range of suctions. It could not conclusively 

be determined whether the discrepancies were due to error in the measurement of 

relative humidity values using the Traceable Hygrometer, or whether the targeted 

relative humidity was not achieved within the chamber.  

The data from the WP4-T device are compared with the data from the ATCs 

(section 6.3.1) and with the data from the Traceable Hygrometer (section 6.3.2). 

6.3.1 Comparison of the Results Obtained From the Air-Tight Chamber (ATC) 

and the Chilled-Mirror Water-Potentia Meter (WP4-T) 

Figures 6.1 and 6.2 compare the suction values for drying and wetting curves obtained 

from the ATC and the WP4-T devices for Botkin silt and Regina clay, respectively. 

There is close agreement between suction values in the high suction range (i.e., suction 

values greater than 50,000 kPa). In the range of suctions less than 50,000 kPa, with the 

exception of the lowest measured suctions for Regina clay, there was not good 

agreement between suction values obtained using the WP4-T and the ATC. The WP4-T 
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method resulted in higher suction values compared to those measured using the ATC 

method.  

 

 

Figure 6.1 Comparison of soil suction results obtained from WP4-T and from ATC for 

Botkin silt 

6.3.2 Comparison of Data Obtained from a Hygrometer and the WP4-T 

The relative humidity created inside the air-tight chambers using various saturated salt 

solutions was measured through an access hole in the top plate (see Chapter 4, Figure 

4.7) using the Traceable Hygrometer. These relative humidity values were converted to 

total suction values, which were then plotted against those obtained from the WP4-T 

device for Botkin Silt and Regina clay soils in Figures 6.3 and 6.4, respectively. The 

results for both soils indicate close agreement between the two methods of suction 

measurements: the Traceable Hygrometer and the WP4-T device.   
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Figure 6.2 Comparison of soil suction results obtained from WP4-T and from ATC for 

Regina clay 

 

Figure 6.3 Comparison of results obtained from WP4-T and from Hygrometer for Botkin 

silt 
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It can be concluded from the results presented in sections 6.3.1 and 6.3.2 that the 

difference between suction values obtained from the ATC and the WP4-T devices for 

the suction range less than 50,000 kPa may be attributed to slightly lower than expected  

relative humidity at equilibrium inside some of the chambers. The lower relative 

humidity may be due to: i) the relatively large volume of the chamber, ii) inability of the 

saturated chemical to create the targeted relative humidity, and/or iii) lack of air 

circulation inside the chamber and air stratification. 

 

 

Figure 6.4 Comparison of results obtained from WP4-T and from Hygrometer for 

Regina clay 

6.3.3 Comparison of the Suction Values Obtained from WP4-T with Published 

Suction Values for Saturated Salt Solutions 

The suction values for the saturated salt solutions, measured using the WP4-T device 
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published relative humidity values for the saturated salt solutions are also given in Table 

6.1. There is a good agreement between these two sets of suction values. It is concluded 

that the saturated salt solutions were capable of creating targeted relative humidity 

values in an environment with small volume (the chamber within WP4-T is small). It 

can also be concluded that WP4-T was capable of accurately measuring the suction 

values of the saturated salt solutions.  

Table 6.1 Suction values for different saturated salt solutions obtained using WP4-T and 

calculated suction values using known relative humidities published in ASTM 

E 104-85, 1998 and E 104-02, 2003 

Salt Solution Suction Measured 

Using WP4-T, kPa 

Relative Humidity, % Calculated Suction, 

kPa 

Lithium Chloride 

Magnesium Chloride 

Potassium Iodide 

Sodium Chloride 

Potassium Chloride 

Potassium Nitrate 

Potassium Sulfate 

304330 

154660 

51680 

38610 

23050 

9840 

2900 

11.3 ± 0.3 

32.8 ± 0.2 

68.9 ± 0.3 

75.3 ± 0.2 

84.3 ± 0.3 

93.6 ± 0.6 

97.3 ± 0.5 

300008 

153383 

51256 

39034 

23500 

9100 

3766 

 

The discussions in this section show that: 

i) The targeted relative humidity values were not achieved in some of the air-

tight chambers due to the large volume of the chamber and/or air 

stratification. 

ii) Measurement of the soil suction using the WP4-T device is reliable. 

6.4 SWCC HYSTERESIS IN THE HIGH SUCTION RANGE 

The experimental program and test results for measurements of the SWCC in the high 

suction range using WP4-T and ATC were presented in Chapters 4 and 5, respectively. 

This section studies the presence of SWCC hysteresis for Botkin silt and Regina clay in 

high suction ranges. Results for Regina clay published by Fredlund (1964) are also 
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presented for comparison. Since hysteresis is assumed to be negligible for Beaver Creek 

sand, it is not considered for this analysis. 

6.4.1 Drying and Wetting SWCCs Using Chilled-Mirror Water PotentiaMeter 

(WP4-T) 

Figure 6.5 shows drying and wetting curves for Botkin silt and Regina clay measured 

using the Chilled-Mirror Water PotentiaMeter (WP4-T) and the ATC device. The 

hysteresis is more obvious for the clay than for the silt. The meeting point of the drying 

and wetting curves for Regina clay is located at a soil suction value approaching 300,000 

kPa. 

 

Figure 6.5 SWCC hysteresis obtained from the WP4-T device on Botkin silt and Regina 

clay 

6.4.2 Drying and Wetting SWCCs Using ATC  

Figure 6.6 shows drying and wetting curves for Botkin silt and Regina clay measured 

using air-tight chambers (equilibration of soil samples over salt solutions of known 

osmotic suction). The difference between drying and wetting SWCCs (hysteresis) 

increases from high to low suction values in both soils. The difference between drying 

and wetting curves is greater for the clay than for the silt. The meeting point of the 
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drying and wetting curves for Regina clay is located at a soil suction value approaching 

300,000 kPa. 

 

 

Figure 6.6 SWCC hysteresis obtained from the ATC method for Botkin silt and Regina 

clay 

6.4.3 Comparison of the Hysteresis Results for Regina Clay 

Fredlund (1964) conducted an experimental test on Regina clay using the equilibration 

of a small soil sample placed over saturated salt solutions. The procedure was similar to 

the air-tight chamber method in this research, except that the desiccators were used as 

air-tight containers. The data obtained using the Chilled-Mirror Water PotentiaMeter for 

a Regina clay sample are plotted along with data obtained from Fredlund (1964) on the 

same scale in Figure 6.7. Both data sets show hysteresis in Regina clay.  

A discrepancy between the curves in Figure 6.7 was anticipated, as the soil 

properties of the Regina clay samples used by Fredlund (1964) and of the sample used in 

this thesis (i.e., with the WP4-T device) were not quite the same. For example, the 

percentage of clay particles for the Regina clay sample tested by Fredlund (1964) was 

less than that tested in this research (i.e., 51% versus 74%). For given water content 

values, both drying and wetting curves for the Regina clay tested in this research show 
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higher suction values than those for the Regina clay tested by Fredlund (1964). The 

drying curves of both samples overlapped at about 300,000 kPa. 

 

 

Figure 6.7 SWCC hysteresis obtained from the WP4-T device and by Fredlund (1964) 

for Regina clay 

6.5 SOIL-WATER CHARACTERISTIC CURVES  

The SWCC test results (presented in Chapter 5, section 5.4) are used to establish a 

suitable SWCC for analysis along with the selected evaporation tests. Tests with 

problematic results (see Chapter 5, section 5.4.4) are excluded from the analysis. Two 

complete SWCCs, one for Beaver Creek sand and one for Botkin silt, are used in the 

analysis in this chapter.  

Figures 6.8 and 6.9 show the soil-water characteristic curves for Beaver Creek sand 

and Botkin silt samples for entire soil suction ranges from near 0 to near 1,000,000 kPa. 

Suitability of the SWCC for analysis along with the evaporation tests was a key factor in 

establishing the SWCCs. Water content of the samples assumed to be zero at suction 

value of 1000,000 kPa.  
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Figure 6.8 Entire soil-water characteristic curve for Beaver Creek sand (suction ranges 

from 0 to 1,000,000 kPa) 

 

 

Figure 6.9 Entire soil-water characteristic curves for Botkin silt from the specimen 

initially consolidated to 50 kPa  
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6.6 DETERMINATION OF THE RESIDUAL-STATE CONDITION (RSC) 

The method proposed in the theory chapter (Chapter 3, section 3.5) is used in this 

section to estimate the residual-state condition for Beaver Creek sand and Botkin silt 

soils. The residual-state condition is considered as a designated zone on the soil-water 

characteristic curve. For comparison, the residual-state condition of the soil samples is 

also estimated by conventionally used methods presented in the literature review (see 

Chapter 2, section 2.3). The residual-state condition has been considered as a definite 

point when the conventional methods are used for estimations. 

Table 6.2 summarizes the methods considered in this section in order to determine 

the residual condition (i.e., water-content and soil-suction values at the residual state) for 

Beaver Creek sand and Botkin silt soils. The residual-state condition is estimated using 

soil-water characteristic curves presented in section 6.5. Whenever required, the 

gravimetric water content is converted to volumetric water content or degree of 

saturation using volume-mass properties of specimens (Chapter 5, section 5.4). The 

volume change is assumed to be negligible. 

Table 6.2 Methods used for determination of the residual state conditions, RSCs 

Method Reference Description 

Brooks and Corey 

Mualem 

van Genuchten 

Vanapalli 

Proposed method 

Brooks and Corey (1964) 

Mualem (1976) 

van Genuchten (1980) 

Vanapalli (1994) 

Chapter 3 

Single point 

Single point 

Single point 

Single point 

Zone  

 

6.6.1 Brooks and Corey Method 

To determine the residual-state condition of a soil sample using Brooks and Corey 

(1964) method, the first step is to plot the soil suction (ψ) versus the degree of saturation 

(S). Figures 6.10 and 6.11 show plots of soil suction versus the degree of saturation 

values for the Beaver Creek sand and Botkin silt soil specimens, respectively.  
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The residual degree of saturation is determined using the effective degree of 

saturation (Se) versus soil suction (ψ) plots for Beaver Creek sand (Figure 6.12) and 

Botkin silt (Figure 6.13), respectively. The residual degrees of saturation using the 

Brooks and Corey method (1964) for Beaver Creek sand and Botkin silt specimens are 

4% and 3%, respectively. 

The pore-size index (λ) for the Beaver Creek sand and Botkin silt specimens 

(Figures 6.12 and 6.13) is also determined. This parameter (λ) is generally expected to 

be larger for sands than for clayey silts (Brooks and Corey, 1966). The pore-size index 

values determined for the Beaver Creek sand and Botkin silt soils (1.73 and 0.42) are 

consistent with the Brooks and Corey (1966) findings. 

 

 

Figure 6.10 Degree of saturation versus soil suction plot for Beaver Creek sand 
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Figure 6.11 Degree of saturation versus soil suction plot for Botkin Silt specimen 

 

Figure 6.12 Determination of the residual degree of saturation for Beaver Creek sand 
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Figure 6.13 Determination of the residual degree of saturation for Botkin silt soil 
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6.16 and 6.17. The gravimetric water content and soil suction values at the residual-state 

condition are 2% and 5 kPa for Beaver Creek sand and 7% and 1,800 kPa for Botkin silt. 

 

 

Figure 6.14 Soil-water characteristic curve for Beaver Creek sand 

 

Figure 6.15 Soil-water characteristic curve for Botkin silt 
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Figure 6.16 Construction method (Vanapalli, 1994) for determination of the residual 

conditions for the Beaver Creek sand 

 

Figure 6.17 Construction method (Vanapalli, 1994) for determination of the residual 

condition for Botkin silt 
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6.6.4 Van Genuchten (1980) Method 

Van Genuchten (1980) suggested that the residual water content is the water content 

value at a high suction. The permanent wilting point for plants was suggested as the 

suction value at the residual condition. The soil-suction value at the residual-state 

condition was taken as 1,500 kPa. The corresponding gravimetric water contents to the 

suction value of 1,500 kPa are 0.2% and 8% for the Beaver Creek sand and Botkin silt 

soils, respectively. 

Many research papers have used the residual-water content as a fitting parameter in 

the van Genuchten equation for the SWCC. Table 6.3 summarizes parameters of the van 

Genuchten SWCC equation for the Beaver Creek sand and Botkin silt soils. These 

parameters were defined in Chapter 2, sections 2.2.4 and 2.6.2.2. Figures 6.18 and 6.19 

show the SWCCs represented by van Genuchten equations, along with experimental 

data for Beaver Creek sand and Botkin silt, respectively. Considering the residual-water 

content as a fitting parameter during analysis for the Botkin silt soil, a negative value 

was obtained for the water content at the residual-state condition (i.e., wr = -0.01). Since 

the negative value was not an acceptable one for the water content, a constraint of wr ≥ 0 

was applied. A value of zero for the residual-water content was the result when a 

constraint of wr ≥ 0 was used in the analysis (Table 6.3). 

Table 6.3 Van Genuchten SWCC equation parameters for Beaver Creek sand and Botkin 

silt 

Soil Type SWCC Equation Residual Water 

Content (wr) % 

  n 

Beaver Creek Sand 

 

van Genuchten-Mualem (1980) 

van Genuchten-Burdine (1980) 

1.7 

0.8 

0.376 

0.416 

4.237 

4.420 

Botkin Silt van Genuchten-Mualem (1980) 

van Genuchten-Burdine (1980) 

0.5 

0 

0.011 

0.018 

1.375 

2.314 
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Figure 6.18 Van Genuchten-Mualem and van Genuchten-Burdine SWCC fitting curves 

for Beaver Creek sand 

 

Figure 6.19 Van Genuchten-Mualem and van Genuchten-Burdine SWCC fitting curves 

for Botkin silt 
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6.6.5 Determination of the Residual-State Condition Using the Proposed Method  

Determination of the residual-state condition for Beaver Creek sand and Botkin silt soils, 

using the new method described in Chapter 3, section 3.5, is presented in this section. 

The results are compared with those obtained from conventionally used methods (see 

section 6.6.1 to 6.6.4). Figures 6.20 and 6.21 show the resulting values for the initial and 

final residual-state condition using the proposed method.  

 

 

 

Figure 6.20 Determination of the residual-state condition using the proposed method 

(Chapter 3, section 3.5) for Beaver Creek sand 

6.6.6 Comparison of the Residual-State Condition Obtained from the Proposed 

Method and the Conventionally Used Methods 

Table 6.4 summarizes the results of the residual-state condition for the Beaver Creek 

sand and Botkin silt samples using different methods. The values in bold indicate the 

residual-state condition derived directly using the method indicated. The volume-mass 

properties of the specimens were used to determine the water content in terms of 

gravimetric, volumetric, and degree of saturation values. The SWCCs of the soil samples 

(see section 6.5) were used to estimate the suction value from a given water-content 

value and vice versa.  
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Figure 6.21 Determination of the residual-state condition using the proposed method 

(Chapter 3, section 3.5) for Botkin silt 

For Beaver Creek sand, using the proposed method, the initial and final suction 

values of the residual-state condition are 19 kPa and 10,000 kPa, respectively. The 

residual suction values resulting from all the conventional methods, except from the 

Mualem method and the Vanapalli method, are located between the initial and final 

values obtained by the proposed method. Based on the Mualem method the residual 

water content is 0. The corresponding suction value to totally dry condition is assumed 

to be 1,000,000 kPa. Based on the Vanapalli method the residual suction value is 5 kPa. 

For Botkin Silt, using the proposed method, the initial and final suction values of 

the residual-state condition are 900 kPa and 80,000 kPa, respectively. The residual 

suction values obtained by the Vanapalli (1994) method and the van Genuchten (1980) 

method are located between the initial and final residual-state condition resulting from 

the proposed method. The suction values from the other conventionally used methods 

are beyond the final residual-state condition. 
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6.7 EVAPORATION TESTS SELECTED FOR THE ANALYSIS 

A total of ten evaporation tests were conducted: six on Beaver Creek sand specimens 

and four on Botkin silt specimens (see Chapter 4, Table 4.13). The results of the tests 

were presented in Chapter 5. The evaporation test results were considered suitable for 

the analysis if all of the following conditions were met: 

1- The evaporation rate becomes equal to the inflow rate at the end of the test, 

2- The water-content profile at the end of the test consists of water-content values 

around the residual water content, 

3- Evaporation occurs exclusively through the top surface of the specimen (not 

from the side surface of the specimen because of shrinkage), and 

4- Cracks are not developed vertically or horizontally. 

Table 6.4 Residual-state conditions for Beaver Creek sand and Botkin silt soils using 

different methods 

Soil Type Method wr (%) θr (%) Sr(%) ψr(kPa) 

Beaver Creek 

sand 

Brooks and Corey (1964) 1.04 1.63 4 1,000 

Mualem (1967) 0 0 0 1,000,000 

Vanapalli (1994) 2.00 3.12 7.68 5 

van Genuchten (1980) 0.75 1.17 2.88 1,500 

van Genuchten-Mualem (1980) 1.70 2.65 6.53 30 

van Genuchten-Burdine (1980) 0.50 0.78 1.92 4,500 

Proposed method iRSC 1.47 2.34 5.86 19 

fRSC 0.21 0.32 0.79 10,000 

Botkin silt Brooks and Corey (1964) 

Mualem (1967) 

0.73 

0.61 

1.19 

1 

3 

2.52 

400,000 

500,000 

Vanapalli (1994) 7.00 11.41 28.74 1,800 

van Genuchten (1980) 8.00 13.04 32.85 1,500 

van Genuchten-Mualem (1980) 0.8 1.30 3.29 430,000 

van Genuchten-Burdine (1980) 0 0 0 1,000,000 

Proposed method iRSC 10.00  16.29 40.88 900 

 fRSC 2.01   3.28 8.26 80,000 

Note: Numbers in bold indicate the residual-state condition derived directly using the method indicated. 



231 

 

The results of five out of six evaporation tests on Beaver Creek sand (PS1, PS2, 

PS3, PS4, and MS1) met these conditions and were used in data analysis. The 

evaporation test on PS5 did not satisfy condition 2 above, as the water content remained 

significantly high in the soil profile (see Chapter 5, section 5.5.4.1). 

The results of one of the four tests on Botkin silt (MCS2) met all the above 

conditions and were used in data analysis. The other three tests (PCS1, PCS2, MCS1) 

did not satisfy conditions 3 and/or 4. Cracks and shrinkage were the main issue with 

PCS1 and PCS2 evaporation tests (see Chapter 5, section 5.5.2.3), and shrinkage was the 

main issue with MCS1 evaporation test (see Chapter 5, section 5.5.2.4). 

The main problem with development of the cracks and shrinkage during the 

evaporation tests is over-estimation of the evaporation rate. In addition to the cross-

sectional area of the soil surface, which is used for estimation of the evaporation rate, 

evaporation occurs through cracks and side surface. 

For the evaporation test on the MCS2 specimen, the cracking and shrinkage 

problems were solved by restricting the height of specimens, by consolidating the soil 

specimen prior to initiation of the evaporation test, and by using a triaxial test membrane 

around the specimen (see Chapter 5, section 5.5.2.4). 

6.8 TEMPERATURE AND SOIL SUCTION PROFILES 

The objective of conducting the steady-state evaporation processes was to determine the 

unsaturated coefficient of permeability function. The liquid- and vapour-phase flow 

equations to be used in the analysis were developed in Chapter 3, section 3.6 (Eqs. 3.4 

and 3.20). Temperature and soil suction gradients are two essential terms of the 

developed equations and must be determined for data analysis.  

In section 6.8.1, temperature profiles are discussed in general. In section 6.8.2, the 

results of change in evaporation rate in relation with temperature changes during the 

evaporation tests are discussed. An equation representing relations between the 

evaporation rate and soil surface temperature is then developed by analyzing the 

evaporation test data for MCS2, presented in Chapter 5, sections 5.5.2.4 and 5.5.3.4. In 

section 6.8.3, the experimental data of water content profiles are converted to the soil 

suction profiles using the corresponding SWCCs. Equations representing these suction 
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profiles are then developed. The suction gradients required for the flow equations are 

determined using the equations representing suction profiles.  

6.8.1 Temperature Profiles 

Temperature changes along the evaporation column at different depths were recorded in 

10-minute time increments during evaporation processes. The changes in temperature 

with time were presented in Chapter 5, section 5.5.3. Three types of top boundary 

conditions were considered for the evaporation tests: i) in the first type, controlled 

radiation energy was emitted to the surface of the soil in order to promote the 

evaporation rate and to keep the temperature at a constant value along the column (PS1 

and PS3); ii) in the second type, wind was created on top of the soil column to accelerate 

the evaporation (PS2, PS4, MS1); and iii) in the third type, there was no attempt to 

accelerate the evaporation rate during the test (MCS2). The evaporation tests were 

conducted in an environmentally controlled room. To avoid radiation from the light, all 

lights in the room were off during the evaporation processes, except for the controlled 

light which was required for the tests with the wind and radiation boundary condition 

type.  

Figure 6.22 shows the temperature profiles at 400 min (early stages) and 7,000 min 

(later stages) for the evaporation process on Beaver Creek sand Specimen PS2 with no 

radiation. The temperature profiles for times greater than 7,000 min were constant and 

similar to the temperature profile at 7,000 min. A temperature gradient of about 2.5 
o 

C/ 

145 mm is created. The temperature gradient was greater at the early stages of the test; it 

decreased with time, and became constant after the steady-state condition was reached. 

Similar results were observed in all of the evaporation processes without radiation.  

Figure 6.23 shows temperature profiles at 100 min (early stage) and 2830 min (later 

stage) for the evaporation process on Beaver Creek sand Specimen PS3 with radiation. 

Small differences in temperature (< 0.5 
o
C) with depth were observed. 
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Figure 6.22 Temperature profiles at elapsed times of 400 and 7,000 minutes for “wind” 

treatment of Specimen PS2 (Beaver Creek sand) 

 

Figure 6.23 Temperature profiles at elapsed times of 100 and 2,830 minutes for 

“radiation and wind” treatment of the Specimen PS3 (Beaver Creek sand) 
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Figure 6.24 shows temperature profiles at the end of the evaporation processes for 

the Beaver Creek sand specimens (PS1, PS2, PS3, PS4, and MS1). The top boundary 

condition for the evaporation processes on Specimens PS1 and PS3 was “wind and 

radiation” treatment. The top boundary condition for the evaporation processes on 

Specimens PS2, PS4, and MS1 was “wind” treatment. The temperature gradients along 

the evaporation column are smaller for the tests with top boundary condition controlled 

by “wind and radiation.” That is, the temperature was successfully controlled by the bulb 

and relay system used for this purpose (see Chapter 4). It should be noted that the 

modified evaporation column used for Specimen MS1 was shorter than the primary 

evaporation column. 

For the evaporation test on MCS2 (Botkin silt), the temperature with time data were 

measured only at the surface of the specimen. Thermocouples were not inserted at the 

different depths, in order to prevent damage to the triaxial membrane that in turn could 

compromise the data analysis. 

For MCS1 (Botkin silt), from the temperature changes versus time data (Chapter 5, 

section 5.5.3.4), it can be determined that difference in temperature along the soil 

column (between 5 and 50 mm distances from the surface) was about 1.2 
o
C. This 

sample was discarded from the analysis because of the shrinkage issue.  

Temperature difference along MCS2 was expected to be less than that along the 

MCS1 specimen, because the rate of evaporation at the end of the test was substantially 

larger for the latter (1.13 mm/d versus 11.49 mm/d).  

6.8.2 Evaporation Rate and Temperature 

The data for change in evaporation rate versus time were presented in Chapter 5, section 

5.5.2. The change in temperature versus time at different depths of the soil column was 

presented in Chapter 5, section 5.5.3. A close relationship between change in 

evaporation rate with time and change in soil temperature with time was observed during 

the evaporation processes. In general, the rate of evaporation and the temperature 

showed an inverse relationship: an increase in evaporation rate caused a decrease in 

temperature, and a decrease in evaporation rate caused an increase in temperature. When 

the evaporation rate remained constant, so did the temperature.  
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Figure 6.24 Temperature profiles at the end of the evaporation processes for Beaver 

Creek sand 

To explain how the change in evaporation rate caused the change in temperature, 

evaporation rate and temperature data for the evaporation test on Beaver Creek sand 

Specimen PS4, as an example, are shown on the same scale in Figure 6.25. As the cover 

on the evaporation column is removed, evaporation begins and increases with time. The 

temperature decreases at the surface of the soil due to latent heat. Heat is transferred 

from the depth to the surface of the soil due to temperature gradient through conduction, 

resulting in a decrease in temperature at lower depths of the column. After the potential 

evaporation (PE = 27 mm/d) for this test is reached, the evaporation rate begins to 

decrease; the latent heat required for evaporation decreases accordingly, resulting in the 

increase in temperature at the surface of the soil and at all depths of the soil column. 

Near the steady-state condition, both evaporation rate and temperature at different 

depths remained constant. 

Temperature and evaporation rate versus time for Botkin silt Specimen MCS2 are 

shown in Figure 6.26. As with Beaver Creek sand (Specimen PS4), the rate of 

evaporation and the temperature show a close relationship. Temperature decreases with 
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increase in evaporation rate. Both the evaporation rate and the temperature remain 

constant for a period of time after the potential evaporation rate is reached. Then, the 

temperature begins to rise again when evaporation rate decreases. At a steady-state 

condition, both temperature and evaporation rates remain constant. 

The correlation between soil surface temperature and the evaporation rate obtained 

from evaporation Process MCS2 for the second period of drying (from 2,800 min to 

10,000 min) is shown in Figure 6.27. The relationship between the evaporation rate and 

soil surface temperature is linear. The linearity and accuracy of the relationship between 

the evaporation rate and soil surface temperature should be further assessed.  

6.8.3 Determination of Soil Suction Profiles 

Soil suction profiles were required for analyzing data obtained from the evaporation 

processes in order to determine the unsaturated coefficient of permeability function. The 

suctions at the end of the evaporation processes along the evaporation columns were 

determined using the water content profile and the corresponding SWCC of each 

specimen. To determine the suction value near the surface, a thin layer of soil was 

removed and its suction was measured using a WP4-T device whenever it was possible. 

The suction values measured using this device were used to verify the values determined 

through the water content profile and the SWCC.  

Equation 6.1 is used to determine the fitting curve of the suction profile for each of 

the tests.  

 

 ( )   (   
 
 ⁄ )  (

 

 
)        [6.1] 

 

where 

   ( )             = suction, kPa, 

 y                   = distance from the surface of the soil specimen, mm, and  

 a, b, c, and d = fitting parameters of the equation. 
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Figure 6.25 Temperature and evaporation rate versus time for Beaver Creek sand Specimen PS4 
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Figure 6.26 Temperature and evaporation rate versus time for Botkin silt Specimen 

MCS2 

 

Figure 6.27 Correlation between soil surface temperature and evaporation rate for 

Botkin silt Specimen MCS2 
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 Figures 6.28 to 6.32 show experimental data and fitting curves of the soil suction 

profiles at the end of the evaporation tests on Beaver Creek sand Specimens PS1, PS2, 

PS3, PS4, and MS1. The fitting parameters are also presented in the figures. The figures 

show that there is generally good agreement between fitting curves and experimental 

data. However, discrepancies can be observed between experimental data and fitting 

curves for PS1 and PS2 specimens (Figures 6.28 and 6.29); they occurred mainly at 

depths above 20 mm for PS1 and below 25 mm for PS2. These discrepancies may cause 

uncertainties in determination of the coefficient of permeability in the regions where 

they appear. The impact of these discrepancies on determination of the unsaturated 

coefficient of permeability for Beaver Creek sand is discussed in section 6.10.  

Figure 6.33 shows the estimated profiles for the evaporation tests on all of the 

Beaver Creek sand specimens.  

Figure 6.34 shows experimental data and fitting curve of the soil suction profile at 

the end of evaporation Process MCS2. The fitting curve along with its parameters is also 

presented in the figure. There are discrepancies between the fitting curve and the 

experimental data at depths below about 55 mm.  

Differentiation of Eq. 6.1 with respect to y gives Eq. 6.2. Equation 6.2 is used to 

compute the suction gradients required in the data analysis. 

 

  

  
  

   

  
  
 
 ⁄  

   

    
       [6.2] 

 

Fitting curves for the soil suction profiles at the end of the evaporation processes for 

Beaver Creek sand specimens are shown in Figure 6.33. The main differences between 

the initial condition of MS1 and the other specimens were: i) the modified evaporation 

column was shorter than the primary evaporation column; therefore, the MS1 specimen 

was shorter than the other specimens, and ii) the boundary condition at top of the MS1 

specimen was “no-radiation–no-wind” treatment. That is, the potential evaporation rate 

for the MS1 specimen was smaller than that for the other specimens. The smaller 

potential evaporation rate and the short specimen appear to cause the small suction 

values along the soil column. 
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Figure 6.28 Experimental data and fitting curve for the soil suction profile at the end of 

evaporation Process PS1 (Beaver Creek sand) 

 

Figure 6.29 Experimental data and fitting curve for the soil suction profile at the end of 

evaporation Process PS2 (Beaver Creek sand) 
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Figure 6.30 Experimental data and fitting curve for the soil suction profile at the end of 

evaporation Process PS3 (Beaver Creek sand) 

 

Figure 6.31 Experimental data and fitting curve for the soil suction profile at the end of 

evaporation Process PS4 (Beaver Creek sand) 
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Figure 6.32 Experimental data and fitting curve for the soil suction profile at the end of 

evaporation Process MS1 (Beaver Creek sand) 

 

 

Figure 6.33 Fitting curves for the soil suction profiles at the end of the evaporation 

processes for Beaver Creek sand specimens 
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Figure 6.34 Experimental data and fitting curve for the soil suction profile at the end of 

evaporation Process MCS2 (Botkin silt) 

Most of the changes in suction values took place within the first 20 mm of the soil 

surface. That is, the suction gradient was the largest within 20 mm of the soil surface. 

For instance, the suction value for Botkin silt varied from about 90,000 kPa at the 

surface to about 5 kPa at a depth of 20 mm (see Figure 6.34).  

6.9 THE RESIDUAL-STATE CONDITION AND THE TRANSITION ZONE  

The transition zone was defined as a zone on the water-content or soil-suction profile 

over which the mechanism of flow transfers from liquid-phase-dominated flow (lower 

limit) to vapour-phase-dominated flow (upper limit). Definitions of the lower and upper 

limits of the transition zone were described in Chapter 2, section 2.4 and Chapter 3, 

section 3.3.  

Chapter 3, section 3.3 gave examples of soil profiles for soil-drying systems after 

the steady-state flow condition was reached. All the evaporation tests for this research 

generated type 2 profiles (Chapter 3, Figure 3.3.b). In a type 2 profile, the drying surface 
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profile, development of the upper part of the transition zone is considered to be 

incomplete.  

Table 6.5 shows the lower limit of the transition zones obtained from the suction 

profiles presented in section 6.8. In Chapter 3, it was hypothesized that the lower and 

upper limits of the transition zones may be considered as the initial and final residual-

state conditions. The resulting values for the lower limit of the transition zone for 

Specimens PS1, PS2, PS3, PS4, and MS1 (Beaver Creek sand specimens) vary between 

4.3 kPa and 5 kPa (Table 6.5), which are not comparable to 19 kPa,, the estimated value 

for the iRSC obtained from the method proposed in Chapter 3 (see Table 6.4). 

For the Botkin silt specimen MCS2, the lower limit of the transition zone is 700 kPa 

(Table 6.5), which is close to 900 kPa, the estimated value for the iRSC obtained from 

the method proposed in Chapter 3 (see Table 6.4). The upper limit of the transition zone 

is 90,000 kPa which is close to the estimated final residual-state condition for this soil 

based on the proposed method in Chapter 3 (80,000 kPa). 

Table 6.5 Lower and upper limits of the transition zones for the evaporation processes 

Soil  Specimen ID Transition zone 

(mm) 

Lower limit 

(kPa) 

Beaver Creek sand PS1 20 – 40 4.5 

 PS2 1 – 20 4.3 

 PS3 1 – 10 4.3 

 PS4 1 – 20 5.0 

 MS1 1 – 4 4.3 

Botkin silt MCS2 1 – 50 700 

 

It is not clear from a comparison of the results presented in Tables 6.4 and 6.5 

whether or not the lower and upper limits of the transition zone of the soil-suction 

profile indicate the initial residual-state condition (iRSC) and the final residual-state 

condition (fRSC). 
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6.10 DETERMINATION OF THE UNSATURATED COEFFICIENT OF 

PERMEABILITY FUNCTION USING EXPERIMENTAL DATA 

The unsaturated coefficient of permeability functions for Beaver Creek sand and Botkin 

silt specimens, presented in this section, were determined by analysis of the 

experimental results obtained from the evaporation processes by means of the flow 

equations developed in Chapter 3. 

6.10.1 Unsaturated Coefficient of Permeability Function for Beaver Creek Sand  

Figures 6.35 to 6.39 show unsaturated coefficient of permeability functions determined 

by analyzing the data obtained from the evaporation processes for Specimens PS1, PS2, 

PS3, PS4, and MS1. It was assumed that the coefficient of permeability remains constant 

and equal to the saturated coefficient of permeability from near-zero suction to the air- 

entry value. Past air-entry value, the coefficient of permeability decreases. For the range 

of suction value beyond 1500 kPa, WP4-T measurements were involved in the process 

of determination of the coefficient of permeability. 

The unsaturated coefficient of permeability data obtained from the evaporation tests 

on the 5 Beaver Creek sand tests are generally consistent. Inconsistencies were observed 

in the lower suction values, between 2 kPa to 3 kPa for the data obtained from the 

evaporation process PS2 (Figure 6.36). Theses inconsistencies may be attributed to the 

discrepancies in suction profile data for this test (see Figure 6.29). 

Figure 6.40 shows experimental data from all of the 5 evaporation tests for Beaver 

Creek sand soils on the same scale. The initial and final residual-state conditions 

predicted from the proposed method (see Table 6.4) are also shown in this figure. There 

is a clear change in the slope of the coefficient of permeability function at suction value 

of about 20 kPa, which is close to the initial estimated suction value of 19 kPa. Based on 

the experimental data, the coefficient of permeability may be presented as a three-region 

function: i) near-zero to air-entry value; ii) air-entry value to the initial residual-state 

condition; and iii) initial to final residual-state condition. 
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Figure 6.35 Coefficient of permeability function for Beaver Creek sand Specimen PS1 

(Experimental data) 

 

Figure 6.36 Coefficient of permeability function for Beaver Creek sand Specimen PS2 

(Experimental data) 

1.E-16

1.E-14

1.E-12

1.E-10

1.E-08

1.E-06

0 1 10 100 1000 10000

C
o
e
ff

ic
e
in

t 
o
f 
p
e
rm

e
a
b
ili

ty
 (

m
/s

)

Soil suction (kPa)

Experimental data

Air-entry value = 1.8 kPa

Saturated coefficient 
of permeability

1.E-16

1.E-14

1.E-12

1.E-10

1.E-08

1.E-06

0.1 1 10 100 1000 10000

C
o
e
ff

ic
ie

n
t 
o
f 
 p

e
rm

e
a
b
ili

ty
 (

m
/s

)

Soil suction (kPa)

Experimental data

Saturated coefficient 
of permeability

Air-entry value = 1.8 kPa



247 

 

 

Figure 6.37 Coefficient of permeability function for Beaver Creek sand Specimen PS3 

(Experimental data) 

 

Figure 6.38 Coefficient of permeability function for Beaver Creek sand Specimen PS4 

(Experimental data) 
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Figure 6.39 Coefficient of permeability function for Beaver Creek sand Specimen MS1 

(Experimental data) 

 

Figure 6.40 Coefficient of permeability function for Beaver Creek sand (Experimental 

data) 
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The general form of the coefficient of permeability function for the Beaver Creek 

sand in Figure 6.40 is consistent with the form of the function proposed in Chapter 3, 

section 3.7.3 (Figure 3.12). 

6.10.2 Unsaturated Coefficient of Permeability Function for Botkin Silt  

Figure 6.41 shows experimental data for the unsaturated coefficient of permeability for 

Botkin silt, determined by analyzing the data obtained from the evaporation process on 

Specimen MCS2. The estimated initial and final residual-state conditions (iRSC and 

fRSC) from the proposed methods (see Table 6.4), and the experimental data for the 

saturated coefficient of permeability, are also shown in Figure 6.41. There is a small 

change in the saturated coefficient of permeability from suction values near zero to the 

air-entry value of 65 kPa. The change in permeability below air-entry value is mainly 

due to change in volume of the sample. 

Past air-entry value, the soil becomes unsaturated, and a significant reduction in the 

coefficient of permeability with suction can be observed. Similar to the Beaver Creek 

sand, the general form of the coefficient of permeability function for the Botkin silt in 

Figure 6.41 is consistent with the form of the function proposed in Chapter 3, section 

3.7.3 (Figure 3.12). 

6.11 WATER-VAPOUR COEFFICIENT OF PERMEABILITY FUNCTION 

This section presents the liquid-water and water-vapour coefficient of permeability 

functions (kl and kv) determined for Beaver Creek sand and Botkin silt specimens. The 

data for the liquid-water coefficient of permeability are the same ones presented in the 

previous section.  

Water-vapour permeability functions for Beaver Creek sand and Botkin silt soils 

were determined by analyzing the experimental data (Chapter 4) and using Eq. 3.19, 

developed in Chapter 3, section 3.6. The results of the analysis are shown in Figures 

6.42 and 6.43 for Beaver Creek sand and Botkin silt soils, respectively. 

For both Beaver Creek sand and Botkin silt soils, the water-vapour coefficient of 

permeability reaches its maximum at about 3 × 10
15 

m/s at the initial residual-state 

condition. Figures 6.42 and 6.43 indicate that the water-vapour and liquid-water 

coefficients of permeability become approximately equal at the final residual-state 



250 

 

condition. The data analysis also shows that the total coefficient of permeability defined 

as kl  + kv is dominated by the liquid-water coefficient of permeability (kl) from near zero 

to the final residual-state condition, and by the water-vapour coefficient of permeability 

(kv) beyond the final residual-state condition. 

 

Figure 6.41 Coefficient of permeability function for Botkin silt Specimen MCS2 

(Experimental data) 

A physical description of the residual-state condition was given in Chapter 3, 

section 3.4. It was hypothesized that in a single soil pore in an unsaturated condition, the 

moisture flow may occur through hydraulically connected layers of water to a suction 

value at which the hydraulic connection is broken. The moisture flow was assumed to be 

dominated by the water-vapour flow mechanism after the hydraulic connection is 

broken. As mentioned in the previous paragraph, the experimental data show that the 

water-vapour coefficient of permeability becomes dominant beyond the final residual-

state condition.     

1.E-16

1.E-14

1.E-12

1.E-10

1.E-08

0.1 1 10 100 1000 10000 100000 1000000

C
o

e
ff

ic
ie

n
t 
o

f 
 p

e
rm

e
a

b
ili

ty
 (

m
/s

)

Soil suction (kPa)

Experimental data

Saturated coefficient 
of permeability

Air-entry value = 65 kPa

fRSC = 80,000 kPa

ifRSC = 900 kPa



251 

 

 

Figure 6.42 Experimental data for liquid-water permeability, and water-vapour permeability of Beaver Creek sand  
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Figure 6.43 Experimental data for liquid-water permeability and water-vapour permeability of Botkin silt  
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6.12 EVALUATION OF METHODS FOR PREDICTING THE UNSATURATED 

COEFFICIENT OF PERMEABILITY 

Methods for predicting the unsaturated coefficient of permeability were presented in the 

literature review chapter (i.e., Chapter 2, section 2.5). Three commonly used methods, as 

well as the new method proposed in Chapter 3, section 3.7.3 are used to predict the 

coefficient of permeability function for the soils under study. To assess the reliability of 

these methods, the predicted data for the Beaver Creek sand and Botkin silt soils are 

compared with the experimental data which were presented in sections 6.10 and 6.11. 

Table 6.5 shows the methods used for prediction of the coefficient of permeability 

function in this section. 

Table 6.6 Selected methods for predicting the unsaturated coefficient of permeability 

function 

Method  Reference 

B-C Method 

Campbell Method 

Fredlund et al. Method 

Proposed Method 

Brooks and Corey (1964) 

Campbell (1974) 

Fredlund et al. (1994) 

Chapter 3 

 

6.12.1 Prediction of the Unsaturated Coefficient of Permeability Using the Brooks 

and Corey (1964) Method 

The Brooks and Corey (1964) method is one of the commonly used methods for 

prediction of the unsaturated coefficient of permeability function. The Brooks and Corey 

(1964) relative permeability equation is as follows: 

 

   (
  

  
)
 

        [6.3] 

 

where 
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 kr = relative permeability, defined as the ratio of the coefficient of permeability at 

any soil suction value to the saturated coefficient of permeability, 

   = bubbling pressure (air-entry value), kPa, 

   = a soil-suction value greater than air-entry value, kPa, 

         , and  

λ   = pore-size distribution index. 

Two main parameters are required when using the Brooks and Corey (1964) 

predictive method: pore-size distribution index and air-entry value. These two 

parameters can be determined using SWCC data. The pore-size distribution index and 

air-entry values for Beaver Creek sand and Botkin silt soils were determined in section 

6.6.1 (see Figures 6.12 and 6.13).  

Figures 6.44 and 6.45 show the predicted unsaturated coefficient of permeability 

functions using the Brooks and Corey (1964) method for Beaver Creek sand and Botkin 

silt soils, respectively. Experimental data obtained from evaporation tests are also shown 

for comparison.  

The Brooks and Corey (1964) method appears to predict the coefficient of 

permeability function for Beaver Creek sand for the suction range between 3 kPa and the 

initial residual-state condition at 5 kPa (see Figure 6.44). There are discrepancies 

between the experimental and predictive data for suction values beyond 5 kPa. The 

discrepancies become larger for suction values beyond 20 kPa.  

As stated in the literature review (Chapter 2, section 2.3.1), the slow flow of liquid 

water at low degrees of saturation should not be included in the Brooks and Corey 

(1964) model. It was suggested that the analysis should be limited to residual saturation. 

The residual saturation and corresponding soil-suction values for Beaver Creek sand 

based on the Brooks and Corey (1964) method were determined to be 4% and 1,000 kPa 

(see Table 6.4). The discrepancies observed between the experimental and predicted data 

for Beaver Creek sand (Figure 6.44) suggest that application of the Brooks and Corey 

(1964) method must be limited to a maximum soil suction value of about 20 kPa for this 

soil.  

The residual saturation and corresponding soil-suction values for Botkin silt  based 

on the Brooks and Corey (1964) method were determined to be 3% and 400,000 kPa 
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(see Table 6.4). The discrepancies observed between experimental and predicted data for 

Botkin silt (Figure 6.45) suggest that application of the Brooks and Corey (1964) 

method must be limited to a maximum soil-suction value of about 700 kPa for this soil. 

The experimental observations in this research suggest some quantitative values 

beyond which the Brooks and Corey (1964) method may not predict accurate coefficient 

of permeability values. The initial residual-state condition (iRSC) appears to be the limit 

for the Brooks and Corey (1964) method. 

   

 

Figure 6.44 Experimental data and predicted unsaturated coefficient of permeability 

function using the Brooks and Corey (1964) method for Beaver Creek sand 
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Figure 6.45 Experimental and the predicted unsaturated coefficient of permeability 

function using the Brooks and Corey (1964) method for Botkin silt 

6.12.2 Prediction of the Unsaturated Coefficient of Permeability Using the 

Campbell (1974) Method  

The Campbell (1974) method is one of the commonly used methods for prediction of the 

unsaturated coefficient of permeability function. The Campbell (1974) relative 

permeability equation is presented as follows: 

 

   (
  

 
)
     

       [6.4] 

 

where 

 kr = relative permeability which is defined as ratio of the coefficient of 

permeability at any soil-suction value to the saturated coefficient of permeability, 

     = air-entry value, kPa, 

     = a soil-suction value greater than air-entry value, kPa, and 

    = slope of the soil suction versus water content plotted on a log-log scale.  
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The b values of 0.578 and 2.421 are used for Beaver Creek sand and Botkin Silt 

soils. Figures 6.46 and 6.47 show the predicted unsaturated coefficient of permeability 

using the Campbell (1974) method for Beaver Creek sand and Botkin silt soils. 

Experimental data obtained from evaporation tests are also shown for comparison. 

The Campbell (1974) method appears to predict the coefficient of permeability 

function with high accuracy for Beaver Creek sand to a suction value of about 20 kPa 

(see Figure 6.46). However, there are discrepancies between the experimental and 

predictive data for suction values beyond 20 kPa. The discrepancies become larger as 

the suction increases. These discrepancies between the experimental and predicted data 

suggest that application of the Campbell (1974) method must be limited to a maximum 

soil-suction value. 

 

Figure 6.46 Experimental and predicted unsaturated coefficient of permeability 

functions using the Campbell (1974) method for Beaver Creek sand 
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Figure 6.47 Experimental and predicted unsaturated coefficient of permeability 

functions using the Campbell (1974) method for Botkin silt 

Comparison of the observed and predicted unsaturated coefficient of permeability 

for Botkin silt (Figure 6.47) indicates discrepancies between the experimental and 

predicted data between the initial and final residual-state conditions.  

As with the Brooks and Corey (1964) method, a suction value of about iRSC 

appears to be the application limit for the Campbell (1964) method. 

6.12.3 Prediction of the Unsaturated Coefficient of Permeability Function using the 

Fredlund et al. (1994) Method 

Fredlund et al. (1994) used the Childs and Collis-George (1950) permeability equation 

and the Fredlund and Xing (1994) SWCC equation to predict the permeability function 

(see Chapter 2, Table 2.9). To predict the coefficient of permeability function using the 

Fredlund et al. (1994) method for the Beaver Creek sand and Botkin silt, the 

experimental data for the SWCC and saturated coefficient of permeability were analyzed 

using Excel Spreadsheet and MathCad14.0 software. 

The SWCC experimental data and the Fredlund and Xing (1994) fitting curves are 

shown in Figures 6.48 and 6.49 for Beaver Creek sand and Botkin silt soils.  
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Figure 6.48 Soil-water characteristic curve using the Fredlund and Xing (1994) equation 

for Beaver Creek sand 

 

 

Figure 6.49 Soil-water characteristic curve using the Fredlund and Xing (1994) equation 

for Botkin silt 
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The Fredlund and Xing (1994) SWCC fitting curve shows a good fit for both 

Beaver Creek sand and Botkin silt soils. The fitting parameters for the Fredlund and 

Xing (1994) SWCC equations for Beaver Creek sand and Botkin silt soils are 

summarized in Table 6.7. 

Figures 6.50 and 6.51 show the predicted coefficient of permeability functions for 

the Beaver Creek sand and Botkin silt soils. The experimental data are also shown for 

comparison. 

Table 6.7 Fitting parameters of the Fredlund and Xing (1994) SWCC equations for 

Beaver Creek sand and Botkin silt 

Soil ID 
af mf nf ws 

Beaver Creek sand 2.369 1.208 5.111 0.2482 

Botkin Silt 105.1 0.774 1.263 0.2446 

 

Unlike the Brooks and Corey (1964) method, and the Campbell (1974) method, the 

Fredlund et al. (1994) method shows a change in the slope of the coefficient of 

permeability function beyond the initial residual-state condition (iRSC) for both Beaver 

Creek sand and Botkin silt soils. 

6.12.4 Prediction of the Unsaturated Coefficient of Permeability Functions Using 

the Proposed Method 

The experimental data for the unsaturated coefficient of permeability function which 

were presented in sections 6.10 and 6.11 suggest a multiple-region function for the 

coefficient of permeability. The two-region methods proposed by Brooks and Corey 

(1964) and by Campbell (1974) did not generate reliable estimations beyond the initial 

residual-state condition for the soils under study. The method proposed by Fredlund et al 

(1994) generated a nonlinear coefficient of permeability function on a log-log scale, 

which indicates change in slope of the function. This change in slope of the unsaturated 

coefficient of permeability function was also observed by Ebrahimi-Birang et al. (2004) 

and Poulsen et al. (2002). 
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Figure 6.50 Experimental data and the predicted unsaturated coefficient of permeability 

functions using the Fredlund et al. (1994) method for Beaver Creek sand 

 

Figure 6.51 Experimental data and the predicted unsaturated coefficient of permeability 

functions using the Fredlund et al. (1994) method for Botkin silt 
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A four-region function for the unsaturated coefficient of permeability, proposed in 

Chapter 3, was used to predict the coefficient of permeability function for the Beaver 

Creek sand and Botkin silt soils. In the proposed method, the coefficient of permeability 

from saturation to air-entry value is considered as the saturated coefficient of 

permeability (    ). The Campbell (1974) method is used to determine the coefficient 

of permeability function passed air-entry value to the initial residual state condition. The 

suction value at the initial residual state condition was estimated using the method 

described in Chapter 3, section 3.5.1. The corresponding coefficient of permeability at 

the initial residual state condition can then be determined using the Campbell (1974) 

equation (see Chapter 3, Eq. 3.25). An alternative predictive method such as Brooks and 

Corey (1974) or Fredlund et al. (1994) may be used to determine the coefficient of 

permeability function in this section. 

Suction at the final residual state condition was determined using the method 

described in Chapter 3, section 3.5.2. The coefficient of permeability at this point was 

assumed to be equal to the lower limit of the liquid coefficient of permeability function, 

approximately 3 × 10 
-15

 m/s, regardless of the type of soil (see Chapter 3, section 3.7.2).   

The coefficient of permeability function within the residual-state condition was 

drawn using Eq. 3.26 presented in Chapter 3. 

The coefficient of permeability beyond the final residual state condition was 

assumed to follow the vapour-phase coefficient of permeability.  

Figures 6.52 and 6.53 show the experimental coefficient of permeability data along 

with the predicted unsaturated coefficient of permeability functions using the proposed 

four-region method for Beaver Creek sand and Botkin silt soils. Data obtained from the 

Brooks and Corey (1964), Campbell (1974) and Fredlund et al. (1994) methods are also 

included for comparison.  

The results shown in Figures 6.52 and 6.53 suggest that the proposed method in this 

thesis was able to predict the coefficient of permeability function within the residual-

state condition for both Beaver Creek sand and Botkin silt soils more accurately than 

two- region predictive methods such as the Brooks and Corey (1964) method and the 

Campbell (1974) method. 
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Figure 6.52 Experimental data for the unsaturated coefficient of permeability along with the predicted unsaturated coefficient of 

permeability functions, using the proposed method and the selected predictive methods for Beaver Creek sand 
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Figure 6.53 Experimental data for the unsaturated coefficient of permeability along with the predicted unsaturated coefficient of 

permeability functions, using the proposed method and the selected predictive methods for Botkin silt 
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CHAPTER 7  

SUMMARY AND CONCLUSIONS 

 

7.1 INTRODUCTION 

This chapter is consists of three main sections. Section 7.2 presents a concise overview 

of the study objectives and the methodology used to achieve the objectives. Section 7.3 

presents the conclusions reached from entire study. Section 7.4 presents some 

recommendations for future research. 

7.2 BRIEF OVERVIEW OF THE RESEARCH OBJECTIVES AND 

METHODOLOGY 

The general objective of the thesis was to study the hydraulic flow properties of sand 

and clayey silt soils around the residual-state condition. 

The specific objectives of the thesis were as follows:  

1) to review research in associated disciplines and determine an appropriate 

definition and description of the residual-state condition (RSC) for geotechnical 

engineering practice,  

2) to measure the unsaturated coefficient of permeability in the moderate to low 

water-content ranges, 

3) to evaluate relationship between the residual-state condition and the transition 

zone of water-content profile, and 

4) to propose a methodology, or modify an existing methodology, in order to 

predict the unsaturated coefficient of permeability around the residual-state 

condition. 

To meet objective 1, the topics related to the residual-state condition in associated 

disciplines were summarized in the literature review chapter. A definition for the 
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residual-state condition was proposed in Chapter 3, along with a procedure to determine 

the residual-sate condition using the soil-water characteristic curve (SWCC). This curve 

was measured for sand and clayey silt soils. The apparatuses, sample preparation, tests 

procedures, and results were presented in Chapters 4 and 5. Chapter 6 reports on 

determination of the residual-state condition for Beaver Creek sand and Botkin silt soils, 

by means of analysis of the SWCC results and the method proposed in Chapter 3. As a 

comparison, the residual-state condition was also determined by means of commonly 

used methods. 

The chilled-mirror Water PotentiaMeter (WP4-T), a relatively new device, was 

used to establish the SWCC in the high-suction ranges (i.e., > 1500 kPa) for the soils 

under study. To assess the reliability of soil-suction results produced using the WP4-T 

device, the results obtained from the device were compared with the results produced by 

a conventionally used method in which small soil samples were placed over saturated 

salt solutions of known osmotic suctions. A conventional method referred to as an air-

tight chamber (ATC) was introduced in Chapter 4. The WP4-T test results were 

compared with those obtained through ATC. The tests results were presented in Chapter 

5, and were analyzed and discussed in Chapter 6.  

Objective 2 was met through a series of steady-state evaporation processes, 

conducted in an environmentally controlled room. Details of evaporation columns, 

sample preparation, and steady-state evaporation process set-up were described in 

Chapter 4. The data obtained from the evaporation processes, presented in Chapter 5, 

were analyzed in Chapter 6 in order to determine the liquid-phase unsaturated 

coefficient of permeability function for the Beaver Creek sand and Botkin silt specimens 

around the residual-state condition. The data analysis was done using the liquid-water 

and water-vapour flux equations, developed in Chapter 3.  

In analysis of the evaporation process data, the SWCC was assumed to be non-

hysteretic at high-suction ranges. The hysteresis of the soil-water characteristic curve in 

high soil-suction ranges was investigated for two types of fine-grained soils: clay and 

clayey silt. The drying and wetting soil-suction values were those measured using the 

chilled-mirror Water PotentiaMeter (WP4-T) and the air-tight chamber (ATC) 

mentioned above.  
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Objective 3 was met through determination of the upper and lower limits of the 

transition zone for the soils under study. These limits were estimated by analyzing the 

water content and/or suction profiles at the end of the evaporation tests. The estimated 

values of the initial and the final residual-state conditions obtained by the method 

proposed in Chapter 3 were compared with the lower and upper limits of the transition 

zone of the water content/suction profiles for the Beaver Creek sand and Botkin silt 

soils. 

To meet objective 4, a method was developed for the prediction of the coefficient of 

permeability based on the SWCC, the definition of the residual-state condition and the 

theory of the vapour-phase flow. The method described in Chapter 3 was used in 

Chapter 6 to predict the unsaturated coefficient of permeability function for the Beaver 

Creek sand and Botkin silt specimens. The measured SWCC and the saturated 

coefficient of permeability values for the sand and silt specimens were used in the 

prediction. The experimental coefficient of permeability functions obtained from 

analyzing the evaporation test data were compared with the results obtained from the 

proposed method, and with the results obtained from three selected conventionally used 

methods, described in Chapters 2 and 3.  

7.3 CONCLUSIONS 

The following conclusions have been reached: 

1 The definition of the residual-state condition as a designated zone (between the 

initial and final residual-state conditions) on the SWCC improved the accuracy 

of prediction of the unsaturated coefficient of permeability function for the 

Beaver Creek sand and Botkin silt soils. 

2 The steady-state evaporation method used in this study proved to be a relatively 

rapid method of measuring the unsaturated coefficient of permeability function. 

The function in the low water-content range was measurable by the steady-state 

evaporation method.  

3 The main limitation of the steady-state evaporation method for the measurement 

of the unsaturated coefficient of permeability function was the need for enhanced 

control of the test environment.  
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4 Selection of an optimum combination of sample size, inflow rate, and outflow 

rate for obtaining the unsaturated coefficient of permeability function in the 

desired suction range was found to be essential in the steady-state evaporation 

process. 

5 From data analysis of the SWCC and the evaporation tests results on Beaver 

Creek sand and Botkin silt specimens, it is not possible to withdraw a firm 

conclusion on whether or not the lower and upper limits of the transition zone of 

the water content/soil suction profile at the end of the evaporation tests (after the 

steady-state flow condition is reached) can represent the initial residual-state 

condition (iRSC) and the final residual-state condition (fRSC).  

6 The predicted unsaturated coefficient of permeability function using the 

conventional predictive methods (Brooks and Corey, 1964; Campbell, 1974) 

agreed closely with the experimental data for suction values from zero to the 

initial-residual state condition for the Beaver Creek sand. For Botkin silt soil, the 

experimental data were not available between air-entry value and the initial 

residual-state condition.  

7 The commonly used predictive methods for the unsaturated coefficient of 

permeability function were able to predict the coefficient of permeability from 

saturation to the initial residual state condition for the Beaver Creek sand and 

Botkin silt soils.  

8 The initial residual-state condition appear to be the application limit for 

predicting the coefficient of permeability function using the commonly used 

predictive methods such as Brooks and Corey (1964) and Campbell (1974) 

methods. 

9 The new method proposed for the prediction of the permeability function made it 

possible to estimate the coefficient of permeability for the higher suction range. 

The proposed method predicted the coefficient of permeability function within 

and beyond residual-state condition for both Beaver Creek sand and Botkin silt 

soils.  
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10 An unsaturated coefficient of permeability equal to 3 × 10
-15

 m/s was suggested 

as a minimum limit value for the liquid-water coefficient of permeability based 

on the theory of vapour flow.  

11 The liquid and vapour coefficient of permeability was determined through 

analysis of the results obtained from the steady-state evaporation processes for 

the Beaver Creek sand and Botkin silt soils. The general form of the unsaturated 

coefficient of permeability function was matched with the form of the 

conductivity function that Buckingham (1907) had proposed over a century ago. 

12 Good agreement was observed between the suction values obtained from the 

WP4-T measurements and those determined from the theory based on relative 

humidity reported in the literature for saturated salt solutions.  

7.4 RECOMMENDATIONS FOR FUTURE RESEARCH 

The following are recommendations for future research: 

1 Further study should be done on the hysteresis of the soils in the high suction 

range using the WP4-T device. 

2 The behaviour of the unsaturated coefficient of permeability function was 

studied around and beyond the residual-state condition. Investigation should be 

conducted on the other behavior of the unsaturated soil such as the shear strength 

and the volume change behaviour around and beyond the residual-state 

condition. 

3 Using the theory proposed in this study, a study based on the numerical model 

analysis should be developed for choosing the optimum potential evaporation, 

sample height, and inflow rate for the steady-state evaporation process. 

4 The proposed predictive method in this research should be evaluated through the 

application of the proposed predictive method in the seepage related problems 

for geotechnical engineering practice. 
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APPENDIX A 

 

EXPERIMENTAL DATA OF THE GRAIN-SIZE ADANALYSIS FOR BEAVER 

CREEK SAND, BOTKIN SILT, AND REGINA CLAY SAMPLES 
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Experimental Data of the Grain-Size Analysis for Beaver Greek Sand 

(ASTM D 422) 

 

Sample: Beaver Creek Sand 

 
Total Mass, g: 100 

 
Test Method: Sieve 

 

   Sieve No Particle Size (mm) % Finer Than 

10 2.000 99.98 

20 0.850 96.21 

40 0.425 86.90 

60 0.250 32.25 

80 0.180 13.62 

100 0.150 7.22 

200 0.075 0.49 
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Experimental Data of Grain-Size Analysis for Botkin Silt Sample before and after 

Washing  

(ASTM D 422) 

 

Sample: Botkin Silt 

  Total Mass: 49.58 g 

  Test Method: Hydrometer and Sieve  

 

Sieve No Particle size (mm) 
Before Washing After Washing 

% Finer Than  % Finer Than 

10 2.000 100 100 

20 0.850 99.4 99.3 

40 0.425 97.5 97.4 

60 0.250 81.5 93.6 

80 0.180 75.6 89.3 

100 0.150 74.0 85.1 

200 0.075 62.8 65.4 

 

0.061 54.7 52.4 

 

0.044 50.2 45.4 

 

0.032 40.3 39.4 

 

0.021 34.5 34.0 

 

0.012 29.1 29.2 

 

0.009 26.9 27.6 

 

0.006 24.3 24.8 

 

0.003 20.1 21.9 

 

0.001 16.3 17.6 
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Experimental Data for Grain-Size Analysis on Regina Clay 

(ASTM D 422) 

 

Sample: Regina Clay 
 

Total Mass: 50 g 
 

Test Method: Hydrometer and Sieve 
 

Sieve No Particle size (mm) % Finer Than 

10 2.000 100 

20 0.850 100 

40 0.425 99.1 

60 0.250 97.9 

80 0.180 97.1 

100 0.150 96.7 

200 0.075 95.3 

 
0.071 95.3 

 
0.050 95.0 

 
0.036 94.7 

 
0.025 93.7 

 
0.016 91.5 

 
0.009 89.6 

 
0.007 86.4 

 
0.005 82.9 

 
0.002 73.7 

 
0.001 59.7 
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APENDIX B 

 

EXAMPLE TEST DATA FOR CONSOLIDATION AND SATURATED 

COEFFICIENT OF PERMEABILITY 
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Consolidation Test Data for Preparation of the Evaporation Column, CS1-2 Aug, 2009 

 

Consolidation Pressure =12.5 kPa 

 

 

 Date Elapsed Time (min) Deflection (mm) 

  

 

Aug. 27, 2009 0 0 

  

 

Aug. 27, 2009 0.1 2.060 

  

 

Aug. 27, 2009 2 2.170 

  

 

Aug. 27, 2009 5 2.375 

  

 

Aug. 27, 2009 10 2.645 

  

 

Aug. 27, 2009 20 2.995 

  

 

Aug. 27, 2009 52 3.770 

  

 

Aug. 27, 2009 104 4.520 

  

 

Aug. 27, 2009 140 4.850 

  

 

Aug. 27, 2009 270 5.400 

  

 

Aug. 27, 2009 300 5.455 

  

 

Aug. 27, 2009 670 5.655 

  

 

Aug. 28, 2009 1446 5.700 
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Experimental Data for the Falling Head Method of the Saturated Coefficient of 

Permeability Test 
 

Saturated Coefficient of Permeability Calculations for Botkin Silt 

 

Vertical Consolidation Pressure:  12.5 kPa 

 

 

Date  Time increment, sec h1, cm h2, cm L, cm ks, m/s 

Aug. 28, 2009  

 
225 33.478 32.878 4.66 4.01E-09 

 
240 32.878 31.778 4.66 7.07E-09 

 
3585 40.078 27.178 4.66 5.4E-09 

 

 

 

Vertical Consolidation Pressure: 25 kPa 

 

 

Date  Time increment, sec h1, cm h2, cm L, cm ks, m/s 

Aug. 30, 2009  

 

900 32.778 30.528 4.53 3.83E-09 

 

900 30.528 28.928 4.53 2.9E-09 

 

900 28.928 27.678 4.53 2.38E-09 

 

1800 27.678 25.678 4.53 2.02E-09 

 

 

Vertical Consolidation Pressure:  50 kPa 

 

 

Date  Time increment, sec h1, cm h2, cm L, cm ks, m/s 

Aug. 31, 2009  

 

900 34.078 31.678 4.41 3.83E-09 

 

900 31.678 29.928 4.41 2.98E-09 

 

900 29.928 28.528 4.41 2.51E-09 

 

3600 38.278 28.528 4.41 3.85E-09 
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Vertical Consolidation Pressure:  100 kPa 

 

Date  Time increment, sec h1, cm h2, cm L, cm ks, m/s 

Sept. 1, 2009  

 

420 29.578 28.778 4.284 2.99E-09 

 

660 28.778 28.178 4.284 1.46E-09 

 

720 28.178 26.678 4.284 3.48E-09 

 

780 26.678 25.628 4.284 2.36E-09 
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Experimental Data for the Falling Head Method of the Saturated Coefficient of 

Permeability Test 

 

Saturated Coefficient of Permeability Calculations for Beaver Creek Sand 

 

Vertical Consolidation Pressure:  25 kPa 

 

 

Date  Time increment, sec h1, cm h2, cm L, cm ks, m/s 

Sept. 06, 2009  

 
5 29.674 19.674 4.75 4.18E-06 

 
8 19.674 9.674 4.75 4.51E-06 

 

Vertical Consolidation Pressure:  200 kPa 

 

Date  Time increment, sec h1, cm h2, cm L, cm ks, m/s 

Sept. 07, 2009  

 
5 29.674 19.674 4.66 4.10E-06 

 
9 19.674 9.674 4.66 3.93E-06 
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APPENDIX C 

 

DESORPTION SWCC MEASUREMENTS USING THE U OF S PRESSURE PLATE 

CELL AND THE GCTS SWC 100 DEVICE 
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Soil: Specimen CS1-1  

Mass of the Sample Holder:       81.9g                     

Volume of the Sample:  101.61 cm 
3
                                   

Mass of the Sample Holder + Saturated Specimen: 287.91g             

                                                                          Initial                            Final 

Saturated porous plate 1-bar                            139.07g                         139.10g      

Saturated porous plate 5-bar                            141.40g                         141.39g 

Saturated porous plate 15-bar                          140.47g                         140.46g   

                                                                     

Date Time 
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Comments 

March 24, 2008 17:06  1873.49 0  right after consolidation 

March 25, 2008 14:20  1872.29 0  saturating 

March 30, 2008 14:15  1872.91 0 1 saturated 

March 30, 2008 19:40  1872.78 1   

March 31, 2008 11:51  1872.72 1 5  

March 30, 2008 21:00  1871.55 5   

April 1, 2008 15:35  1871.45 5 10  

April 1, 2008 19:35  1870.33 10   

April 2, 2008 14:55  1869.39 10   

April 3, 2008 17:10  1869.27 10   

April 4, 2008 13:50  1869.27 10 20 end of hanging column method  

April 5, 2008 17:40  1867.56 20   
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April 6, 2008 13:33  1867.57 20 30  

April 7, 2008 15:13  1865.96 30   

April 8, 2008 15:20  1865.82 30   

April 9, 2008 18:10  1865.78 30 40  

April 10, 2008 16:15  1865.09 40 60  

April 11, 2008 15:03  1864.04 60   

April 12, 2008 16:02  1863.53 60   

April 13, 2008 20:52  1863.07 60   

April 14, 2008 16:10  1862.87 60   

April 15, 2008 13:13 1862.65 1863.97 60   

April 16, 2008 16:32  1863.25 70  little air bubble 

April 17 2008 19:42  1862.93 70  little air bubble 

April 18, 2008 19:00  1863.41 70  Mring + soil @ 70 kPa=278.58g, 

plate was changed to 5 bar  

April 21, 2008 14:30  1866.18 70  5 bar, MTempe Cell after plate was 

changed= 1869.39g 

April 22, 2008 17:41  1866.14 70   

BFDA: Before Flushing Diffused Air,   AFDA: After Flushing Diffused Air 
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Date Time 

M
as

s 
o

f 
T

em
p
e 

C
el

l 

B
F

D
A

 (
g

) 

M
as

s 
o

f 
T

em
p
e 

C
el

l 

A
F

D
A

 (
g

) 

S
u

ct
io

n
 (

k
P

a)
 

C
h

an
g

ed
 t

o
 

Comments 

April 23, 2008 16:30  1866.05 70 90  

April 24, 2008 15:35  1865.62 90   

April 25, 2008 15:40  1865.42 90   

April 26, 2008 19:28  1865.42 90 100  

April 28, 2008  20:12 1865.05 1865.30 100   

April 30, 2008 16:32  1865.09 100   

May 01, 2008 17:17  1865.17 100 150  

May 02, 2008 16:05  1864.90 150  0.5 cm bubble 

May 03, 2008 19:15 1864.66 1864.68 150  0.5 cm bubble 

May 08, 2008 11:08 1864.07 1864.41 150   

May 11, 2008 14:22 1864.07 1864.37 150 200  

May 12, 2008 18:00 1864.28  200  some bubbles observed 

May 15, 2008 12:30 1863.95 1864.38 200 300  

May 16, 2008 16:07 1864.19  300  little bubbles 

May 19, 2008 13:47 1863.45 1864.01 300 500  

May 21, 2008 13:17 1863.71  500   

May 26, 2008 20:30 1861.44 1863.49 500   

May 28, 2008 17:27 1862.63 1863.24    

May 31, 2008 11:53 1862.06 1863.19 500  end of pressure Tempe Cell 
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Desorption SWCC Measurements Using U of S Pressure Plate Apparatus 

 

Soil: Specimen CS2-1 

Mass of the Sample Holder:  83.04g                     

Volume of the Sample Holder:  101.45 cm
3
                            

Mass of the Sample Holder + Saturated Specimen: 287.88 g         

                                                                          Initial                             Final 

Saturated porous plate 1-bar                            137.28 g                         137.32 g      

Saturated porous plate 5-bar                            135.52 g                         135.49 g                                                        

Date Time 
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Comments 

March 24, 

2008 

17:10  1888.35 0  right after consolidation 

March 25, 

2008 

14:20  1888.05 0  saturating 

March 30, 

2008 

14:15  1888.67 0 1 saturated 

March 30, 

2008 

19:37  1888.46 1   

March 31, 

2008 

11:50  1888.39 1 5  

March 30, 

2008 

21:00  1887.29 5   

April 1, 2008 15:33  1887.07 5 10  

April 1, 2008 19:33  1885.91 10   

April 2, 2008 14:53  1885.01 10   
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April 3, 2008 17:07  1884.83 10   

April 4, 2008 13:47  1884.79 10 20 end of hanging column method  

April 5, 2008 17:37  1883.02 20   

April 6, 2008 13:35  1883.04 20 30  

April 7, 2008 15:11  1881.40 30   

April 8, 2008 15:17  1881.23 30   

April 9, 2008 18:08  1881.15 30 40  

April 10, 2008 16:12  1880.59 40 60  

April 11, 2008 15:05  1879.47 60   

April 12, 2008 16:00  1878.96 60   

April 13, 2008 20:50  1878.41 60   

April 14, 2008 16:12  1878.22 60   

April 15, 2008 13:25 1877.99 1878.23 60 70  

April 16, 2008 16:30  1877.58 70   

April 17 2008 19:40  1877.16 70   

April 18, 2008 19:27  1876.84 70   

April 21, 2008 14:32  1876.00 70   

April 22, 2008 17:43  1875.75 70   

BFDA: Before Flushing Diffused Air,   AFDA: After Flushing Diffused Air 
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Date Time 

W
ei

g
h
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o
f 

T
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e 

C
el

l 

B
F

D
A

 (
g

) 

W
ei

g
h

t 
o
f 

T
em

p
e 

C
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l 

A
F

D
A

 (
g

) 

S
u
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n
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k
P

a)
 

C
h
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g
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Comments 

April 23, 2008 16:35  1875.48 70   

April 24, 2008 15:10 1875.26 1878.54 70  1 bar plate was replaced with 5 

bar 

April 24, 2008 15:30  1877.97 70  M5- bar plate=135.52, Ms @ 

70kPa+Mring=278.26g 

April 25, 2008 15:36  1876.77 70   

April 26, 2008 19:25  1876.77 70 100  

April 28, 2008  20:10  1876.40 100   

April 30, 2008 16:30  1876.26 100   

May 01, 2008 17:15  1876.21 100 150  

May 02, 2008 16:00  1876.12 150   

May 03, 2008 19:15  1876.04 150   

May 08, 2008 11:55 1875.61 1875.80 150   

May 11, 2008 14:30 1875.53 1875.88 150 200  

May 12, 2008 17:58  1875.86 200   

May 15, 2008 12:35 1875.47 1875.80 200 300  

May 16, 2008 16:00 1875.60  300  little bubbles 

May 19, 2008 13:52 1874.86 1875.66 300 500  

May 21, 2008 13:18 1875.50 1875.50 500   

May 26, 2008 20:35 1873.75 1875.23 500   

May 28, 2008 17:21 1874.53 1875.00 500   

May 31, 2008 11:40 1874.28 1874.95 500  end of pressure (Tempe Cell) 
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May 31, 2008 @ 11:45 the specimen was removed from the Tempe Cell 

Ms @ 500kPa+Mring = 274.78g 

Ms @ 500kPa+Mring +Mplate=291.69 

Ms@ovendried+Mring+Mplate=261.78g 

Ms@ovendried+Mring = 244.82g 

Mplate = 16.97g 
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Drying SWCC Measurements Using GCTS SWC-100 Equipment 

 

Soil:   Specimen CS3-1         

Mass of the Sample Holder:  91.50g                     

Volume of the Sample Holder:  100.02 cm
3
                                  

Mring + saturated soil = 268.91g          

                                                                          Initial                            Final 

Saturated porous plate 1-bar                            179.40g                         179.26g      

Saturated porous plate 5-bar                            135.52g                         135.49g                                                                  

Date Time 

B
u
re

tt
e 

R
ea

d
in

g
 

(m
m

) 

B
F

D
A

  

B
u
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tt
e 

R
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d
in

g
 

(m
m

) 

A
F

D
A

  

S
u
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n
 (

k
P

a)
 

C
h
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g
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Comments 

March 31, 

2008 

21:20 91 91 0 10  

April 1, 2008 15:52 123.5 123.5 10   

April 2, 2008 14:58 124.5 124.5 10   

April 3, 2008 17:35 124.5 124.5 10 20  

April 4, 2008 13:45 137.5 137.5 20   

April 5, 2008 17:40 137.5 137.5 20 30  

April 6, 2008 13:35 147.5 147.5 30   

April 7, 2008 15:15 147.5 147.5 30 40  

April 8, 2008 15:22 152.5 152.5 40   

April 9, 2008 18;10 152.5 152.5 40 60  

April 10, 2008 16:13 162.5 162.5 60   

April 11, 2008 15:15 162.5 162.5 60 80  
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April 12, 2008 16:06 169.5 169.5 80   

April 13, 2008 20:55 169.5 169.5 80 90  

April 14, 2008 16:14 172.5 172.5 90   

April 15, 2008 13:25 172.5 171 90 100  

April 16, 2008  173.5 173.5 100   

April 17, 2008 19:46 174.5 173.5 100   

April 18, 2008 9:40      173.5 173.5 100  Change the plate from 1 to 5-

bar 

5-bar saturated plate = 170.16g 

Ms @ 100kPa+Mring = 258.19g 

April 18, 2008 19:35  106.5 100  reading with 5-bar plate 

April 21, 2008 15:10  189 100  5-bar plate didn’t function 

well, so it was replaced with 

15bar @ 14:45, Ms @ 

100kPa+Mring = 257.78g 

 

April 22, 2008 17:48  209.5 100   

April 23, 2008 16:38  209.5 100 120  

April 24, 2008 15:47  210.5 120   

April 26, 2008 19:40  210.5 120 150  
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Date Time 

B
u
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) 
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) 
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C
h
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g
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Comments 

April 28, 2008 20:15 215.5 213 150   

April 30, 2008 16:27 216.5 214 150   

May 1, 2008 17:25 215.5 214 150 200  

May 2, 2008 16:00 220 218.5 200   

May 3, 2008 19:10 222 220.5 200   

May 8, 2008 12:05 228 221.5 200   

May 11, 2008 14:35 225 221.5 200 500  

May 12, 2008 18:00 Past 308 204 500 200  the 15-bar plate was cracked 

M15-bar = 137.28 and 137.52 

May 15, 2008 12;46 Past 308 

again 

 200  Change the plate and start 

from 200kPa again 

May 15, 2008 13:10  199 500   Suction was set at 500kPa after 

installing a new 15bar plate 

with M = 140.71 g 

May 15, 2008 14:35  206 500   

May 16, 2008 16:10 233.5 231 500   

May 19, 2008 13:43 255 245.5 500   

May 21, 2008 13:20 253.5 245.5 500 1000  

May 21, 2008 15:15 249.5  1000   

May 22, 2008 10:52 269.5 256.5 

(213) 

1000  The burrette reading was 

adjusted to 213 

May 26, 2008 2030 285 226.5 1000   

May 27, 2008 15:36 240.5 226.5 1000   
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May 28, 2008 17:07 243.5 226.5 1000   

May 29, 2008 10:50 241 226.5 1000 1500  

May 29, 2008 14:44 240 228.5 1500   

May 29, 2008 17:30 238.5 228 1500   

May 29, 2008 22:20 244.5 229 1500   

May 30, 2008 9:57 270.5 228.5 1500   

May 30, 2008 22:36 273.5 229 1500   

May 31, 2008 11:10 275.5 229 1500   

 

May 31, 2008 @ 11:20 AM 

Msoil @ 1500kPa+Mring = 243.14g 

Msoil @ 1500kPa+Mring+Mplate= 349.22g 

Moven-dried soil
 
+Mring+Mplate  = 333.38g 

Mplate = 106.10g 
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Desorption SWCC Measurements on Botkin Silt Using U of S Pressure Plate Apparatus  

 

Soil: Specimen CSSlurry02 

Mass of the Steel Plate:    106.32 g        

Mass of the Sample Holder:     76.65 g                                                                                         

Date Time 

M
as

s 
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p
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Comments 

Aug.11, 2006 17:06 1856.81  0   

  1853.83  1   

  1849.74  5   

  1846.84  10  End of hanging-column 

technique 

  1804.23  50   

  1797.72  50   

  1793.05  100  Ms@100kPa + Mring = 240.21 

  1843.17  100  The plate was changed 

  1842.53  100   

  1840.33  200   

  1837.85  300   

  1834.55  420   

BFDA: Before Flushing Diffused Air,   AFDA: After Flushing Diffused Air 

Msoil @ 420kPa+Mring+Mplate=  339.05g 

Moven-dried soil
 
+Mring+Mplate  = 321.40g 

Mplate = 107.21g 
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APPENDIX D 

EXAMPLE EXPERIMENTAL TEST DATA FOR EVAPORATION PROCESSES 

INCLUDING RECORDED DATA FOR  

MASS OF THE EVAPORATION COLUMN 

TEMPERATURE 

MOISTURE CONTENT AND SUCTION PROFILES 
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Experimental Recorded Data for the Mass of the Evaporation Column with Time  

(Example Data for Evaporation Test No. MCS2, Botkin silt) 

 

Date Time Mass of the Column (g) 

12/04/2010 17:51:28 1510.4 

12/04/2010 18:01:28 1510.46 

12/04/2010 18:11:28 1504.49 

12/04/2010 18:21:28 1508.74 

12/04/2010 18:31:28 1510.06 

12/04/2010 18:41:28 1510.56 

12/04/2010 18:51:28 1510.95 

12/04/2010 19:11:28 1511.41 

12/04/2010 19:21:28 1511.55 

12/04/2010 19:31:28 1511.66 

12/04/2010 19:41:28 1511.72 

12/04/2010 19:51:27 1511.7 

12/04/2010 20:01:27 1511.8 

12/04/2010 20:11:27 1511.73 

12/04/2010 20:21:27 1511.48 

12/04/2010 20:31:27 1511.52 

12/04/2010 20:41:27 1511.49 

12/04/2010 20:51:27 1511.52 

12/04/2010 21:01:27 1511.44 

12/04/2010 21:11:27 1511.39 

12/04/2010 21:21:27 1511.39 

12/04/2010 21:31:27 1511.23 

12/04/2010 21:41:26 1511.19 

12/04/2010 21:51:26 1511.12 

12/04/2010 22:01:26 1511.1 

12/04/2010 22:11:26 1510.92 

12/04/2010 22:21:26 1510.85 

12/04/2010 22:31:26 1510.76 

12/04/2010 22:41:26 1510.68 

12/04/2010 22:51:26 1510.6 

12/04/2010 23:01:26 1510.43 

12/04/2010 23:11:26 1510.41 

12/04/2010 23:21:26 1510.24 

12/04/2010 23:31:26 1510.17 

12/04/2010 23:41:26 1510.07 

12/04/2010 23:51:25 1509.86 

13/04/2010 0:01:25 1509.84 

13/04/2010 0:11:25 1509.67 
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13/04/2010 0:21:25 1509.6 

13/04/2010 0:31:25 1509.43 

13/04/2010 0:41:25 1509.36 

13/04/2010 0:51:25 1509.22 

13/04/2010 1:01:25 1509.09 

13/04/2010 1:11:25 1509 

13/04/2010 1:21:25 1508.86 

13/04/2010 1:31:25 1508.71 

13/04/2010 1:41:25 1508.56 

13/04/2010 1:51:24 1508.47 

13/04/2010 2:01:24 1508.33 

13/04/2010 2:11:24 1508.25 

13/04/2010 2:21:24 1508.09 

13/04/2010 2:31:24 1507.95 

13/04/2010 2:41:24 1507.84 

13/04/2010 2:51:24 1507.68 

13/04/2010 3:01:24 1507.56 

13/04/2010 3:11:24 1507.43 

13/04/2010 3:21:24 1507.32 

13/04/2010 3:31:24 1507.18 

13/04/2010 3:41:24 1507.04 

13/04/2010 3:51:24 1506.94 

13/04/2010 4:01:24 1506.74 

13/04/2010 4:11:23 1506.62 

13/04/2010 4:21:23 1506.44 

13/04/2010 4:31:23 1506.31 

13/04/2010 4:41:23 1506.21 

13/04/2010 4:51:23 1506.04 

13/04/2010 5:01:23 1505.92 

13/04/2010 5:11:23 1505.72 

13/04/2010 5:21:23 1505.62 

13/04/2010 5:31:23 1505.46 

13/04/2010 5:41:23 1505.39 

13/04/2010 6:01:23 1505.11 

13/04/2010 6:11:22 1504.94 

13/04/2010 6:21:22 1504.71 

13/04/2010 6:31:22 1504.68 

13/04/2010 6:41:22 1504.44 
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Experimental Recorded Data for Soil Surface and Air Temperatures with Time 

(Example Data for Evaporation Test No. MCS2, Botkin silt) 

 

Date and Time Elapsed Time (min) Ts (
o
C) Tair(

o
C) 

12/04/2010 17:50 0 25.65 25.51 

12/04/2010 18:00 10 24.34 25.56 

12/04/2010 18:10 20 22.91 25.52 

12/04/2010 18:20 30 22.29 25.44 

12/04/2010 18:30 40 21.82 25.46 

12/04/2010 18:40 50 21.56 25.46 

12/04/2010 18:50 60 21.33 25.48 

12/04/2010 19:00 70 21.14 25.49 

12/04/2010 19:10 80 20.98 25.46 

12/04/2010 19:20 90 20.87 25.46 

12/04/2010 19:30 100 20.77 25.45 

12/04/2010 19:40 110 20.66 25.46 

12/04/2010 19:50 120 20.57 25.41 

12/04/2010 20:00 130 20.52 25.47 

12/04/2010 20:10 140 20.47 25.46 

12/04/2010 20:20 150 20.39 25.4 

12/04/2010 20:30 160 20.34 25.47 

12/04/2010 20:40 170 20.3 25.39 

12/04/2010 20:50 180 20.29 25.45 

12/04/2010 21:00 190 20.24 25.45 

12/04/2010 21:10 200 20.23 25.42 

12/04/2010 21:20 210 20.2 25.46 

12/04/2010 21:30 220 20.19 25.44 

12/04/2010 21:40 230 20.19 25.48 

12/04/2010 21:50 240 20.16 25.44 

12/04/2010 22:00 250 20.15 25.43 

12/04/2010 22:10 260 20.12 25.47 

12/04/2010 22:20 270 20.09 25.45 

12/04/2010 22:30 280 20.09 25.44 

12/04/2010 22:40 290 20.09 25.42 

12/04/2010 22:50 300 20.09 25.47 

12/04/2010 23:00 310 20.07 25.44 

12/04/2010 23:10 320 20.06 25.42 

12/04/2010 23:20 330 20.03 25.45 

12/04/2010 23:30 340 20.03 25.41 

12/04/2010 23:40 350 20.01 25.43 

12/04/2010 23:50 360 20.03 25.45 
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13/04/2010 0:00 370 20.03 25.46 

13/04/2010 0:10 380 20 25.42 

13/04/2010 0:20 390 19.99 25.47 

13/04/2010 0:30 400 19.99 25.4 

13/04/2010 0:40 410 19.99 25.46 

13/04/2010 0:50 420 19.98 25.45 

13/04/2010 1:00 430 19.97 25.38 

13/04/2010 1:10 440 19.97 25.39 

13/04/2010 1:20 450 19.97 25.46 

13/04/2010 1:30 460 19.97 25.41 

13/04/2010 1:40 470 19.98 25.41 

13/04/2010 1:50 480 20 25.46 

13/04/2010 2:00 490 19.98 25.44 

13/04/2010 2:10 500 19.97 25.41 

13/04/2010 2:20 510 19.98 25.48 

13/04/2010 2:30 520 19.99 25.43 

13/04/2010 2:40 530 19.98 25.47 

13/04/2010 2:50 540 19.99 25.41 

13/04/2010 3:00 550 19.99 25.48 

13/04/2010 3:10 560 19.96 25.4 

13/04/2010 3:20 570 19.96 25.42 

13/04/2010 3:30 580 19.97 25.44 

13/04/2010 3:40 590 19.96 25.4 

13/04/2010 3:50 600 19.97 25.47 

13/04/2010 4:00 610 19.97 25.41 

13/04/2010 4:10 620 19.99 25.45 

13/04/2010 4:20 630 19.99 25.44 

13/04/2010 4:30 640 19.96 25.38 

13/04/2010 4:40 650 19.97 25.46 

13/04/2010 4:50 660 19.99 25.42 

13/04/2010 5:00 670 20 25.45 

13/04/2010 5:10 680 20 25.46 

13/04/2010 5:20 690 20 25.49 

13/04/2010 5:30 700 20 25.41 

13/04/2010 5:40 710 20 25.48 

13/04/2010 5:50 720 19.99 25.43 

13/04/2010 6:00 730 19.99 25.42 

13/04/2010 6:10 740 20 25.45 

13/04/2010 6:20 750 20.01 25.45 

13/04/2010 6:30 760 19.98 25.41 

13/04/2010 6:40 770 19.98 25.45 
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Experimental Moisture Content and Total Suction Data along the Soil Column after 

Reaching Steady State Flow Conditions (Example Data for Evaporation Test No. MCS2, 

Botkin silt) 

 

Depth (mm) Gravimetric Water Content(%) Suction (kPa) 

1.5 2.41 75980 

5.0 4.20 12380 

9.5 4.88 6010 

15.5 7.00 4290 

24.5 7.97 1860 

35.0 9.60 80 

44.0 10.30 

 

56.5 11.07 

 

70.0 10.79 

  


