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Abstract 
 

There is large variability in the dose of methadone required to prevent 

withdrawal symptoms in chronic, stable methadone users. The difference in dose 

between low-dose and high-dose patients may vary >50 fold, and could be as 

low as < 5-10 mg/day, or greater than >300 mg/day. Our Objective was to 

identify factors which account for the difference in biochemical response of 

patients to low- and high-dose administration of methadone. We hypothesized 

that differences in high dose vs. low dose methadone clients are due to lower 

number of human µ-opioid receptors (hMORs) in high dose maintenance therapy 

patients than in those on lower doses, and/or desensitization down-stream from 

the opioid receptor that manifests as an attenuated cyclic AMP (cAMP) response 

to opioid agonists. We also hypothesized that concurrent drug use as well as P-

glycoprotein levels may influence dosing requirements. 

Using white blood cells as a model, we measured hMOR expression, in 

vivo cAMP levels, cAMP levels in response to exposure to increasing levels of 

methadone, P-GP expression and the presence of other drugs.  

Our findings indicated that hMOR numbers on lymphocytes, granulocytes 

and monocytes did not vary for controls, low-dose, and high-dose methadone-

treated patients.  Baseline levels of cAMP in white blood cells were higher in 

controls than in low-dose methadone patients, and significantly lower in high-

dose patients than either controls or low-dose patients. Increasing concentrations 

of methadone exposure for control leucocytes resulted in a dose-related 

reduction in cAMP. In contrast, increasing doses of methadone treatment had no 



 III

effect on cAMP levels in white cells of either low- or high-dose methadone 

patients. P-glycoprotein levels did not correlate with dose requirements. 

Concurrent drug use was detected in a high percentage of patients.  

In conclusion, the dose of methadone required to prevent withdrawal 

symptoms in high-dose and low-dose methadone patients is not related to 

changes in hMOR number. In contrast, baseline cAMP levels were significantly 

lower in high-dose patients than in low-dose patients. Chronic treatment also 

abolished the methadone dose-related reduction in cAMP in-vitro in lymphocytes, 

indicating desensitization. Concurrent drug use may play some part in dosing 

requirements; however P-glycoprotein levels appeared not to. It is possible that 

mechanisms of the hMOR signal transduction cascade are responsible for these 

dosing discrepancies as related to of methadone-treated patients, however, more 

research is required to determine exact mechanisms 
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Chapter 1. 

Introduction 

A frequent challenge to methadone program clinicians is monitoring, 

adjusting and confirming appropriate methadone dosing for all of their treatment 

patients. Understanding dosing requirements is a difficult task. Many patients are 

motivated to obtain, either for use or for distribution, extra quantities of drug. 

Saskatchewan methadone physicians have described cohorts of patients who fall 

outside of normal dosing ranges, either requiring much lower dosing or much 

higher dosing. In many cases, both of these groups of patients have clinical 

presentation to support their claims. The intent of this research is to try and 

determine mechanisms responsible for this dosing discrepancy. 
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1.1   Methadone: 

Methadone, a synthetic human µ-opioid receptor agonist (hMOR), is used in 

the management of pain as well as a maintenance treatment drug for opioid 

dependent patients. It is used as an opioid withdrawal medication because it 

differs from morphine in pharmacokinetic (PK) properties with higher 

bioavailability, a much longer half-life, a faster onset of action, is metabolized by 

liver cytochrome P450 and is associated with much less withdrawal. Methadone 

typically causes less adverse effects than traditional opiates partly due to the fact 

that its metabolites are not pharmacologically active (1-4). 

After many years of performing analytical toxicological testing, and in 

particular performing drugs of abuse screening on “drug treatment” patients, a 

subject of inquiry became evident. Addictions clinicians wanted to know why 

certain patients exhibited very good clinical progress on what is considered to be 

normal methadone dosing, while others did very well on much lower doses and 

yet others required very high methadone doses. Methadone dosing is still an 

issue of debate and controversy among clinicians in methadone maintenance 

treatment (MMT) programs (5). In 1998 the National Institutes of Health proposed 

a recommended guideline for the proper methadone dose to be at least 60 

mg/day, yet a recent review of methadone dosing in 2010 suggests that 14% of 

MMT patients receive < 40 mg/day(5). While most patients do well on between 

60 and 100 mg/day, a subset of patients requires significantly higher dosing. 

Other researches have determined that methadone doses in the range of 120 – 
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150 mg/day are more effective in reducing heroin self-administration in some 

opiate dependent patients (6). In a 2002 study, 22% of the 1400 MMT patients in 

a Colorado facility were on doses exceeding 100 mg/day with a few cases as 

high as 300 mg/day (7).  

High dose methadone treatment was followed for 152 weeks with an outcome 

described as having lower rates of illicit drug use and high retention rates. In this 

study, 144 patients were successfully treated with a mean methadone dose of 

285 mg/day, much higher than control subjects who were maintained on a mean 

of 64 mg/day (8). This literature evidence seems to support the statements by 

local addictions clinicians that although many patients thrive on what has been 

described as “normal” dosing, a subset of patients remains that require either 

significantly lower or higher doses.  

It has always been difficult to optimize individual therapeutic dosing 

regimens. Traditional approaches normally include starting naive patients on a 

very low dose (approximately 20 mg) daily and increasing gradually over time 

until withdrawal symptoms are satisfied. Typically this has been accomplished 

with doses between 60 and 100 mg/day; however, some patients require as 

much as 350 mg/day and some need as little as 2.5 mg/day (9). Most recent 

research suggests that the concentration vs. response relationship is quite 

variable (8;10;11). Serum methadone levels vary significantly with dose, so that 

therapeutic monitoring in general, may not be reliable for obtaining optimal dose. 

Serum methadone levels may be of practical value in obtaining dosing level to 

serum concentration relationships for an individual patient. Coefficients of 
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variation for plasma levels are unacceptably large and poor concentration 

response is exhibited in most patients (11). 

The adverse effects and toxicity of methadone are similar to morphine and 

include respiratory depression, nausea, vomiting, dizziness, mental clouding, 

dysphoria, constipation, urinary retention and hypotension(5). Long-term 

treatment will result in tolerance to analgesic, euphoric and sedative effects, with 

a lowering of toxicity.  

The risk of methadone overdose tends to be in the early stages of 

treatment, since for a non tolerant adult a dose of 40 – 60 mg can be toxic (12). 

After no signs of intoxication, and with indications that the signs of withdrawal are 

still present, a patient may be dosed higher by up to 10 mg/day. Generally 60 mg 

would not be exceeded in the first 7 days and 100 mg would not be exceeded in 

the first 14 days (13). The fact that some patients do surprisingly well on lower 

doses, such as 10 – 30 mg/day, and other patients require very high doses, 200 

– 350 mg/day, speaks to the peculiarities of methadone and indicates why it is 

important for clinicians to optimize dosing on a patient by patient basis. The 

reasons for this variability are most probably attributed to a combination of 

pharmacokinetic/pharmacodynamics (PK/PD) parameters, especially in patients 

who have high tendencies to use other illicit drugs while on treatment (14). In 

methadone maintenance programs under the “harm reduction” model, it is 

common to see concurrent use of other opioid drugs by patients. In addition to 

co-medication, genetic polymorphisms and other factors (environmental, 



 5

biological) may contribute significantly to PK variability and to variation in 

response.  

 

 

1.1.1 Methadone structure and chirality 

Methadone contains an asymmetrical carbon atom, which allows it to exist 

in two enantiomeric forms (Figure 1.1). Both forms (R, S) have identical 

composition, however, different spatial arrangements mean that they are mirror 

images of one another. Methadone activates μ-opioid receptors at low 

concentrations in a stereo-specific manner in rat locus coeruleus (15). The R 

form possesses most of the pharmacological activity in human methadone 

patients (16). Original preparations contained only the enatiomerically pure (R) 

methadone, but based on its expense, racemic mixtures are the standard 

preparation administered today. Several studies indicate that the PK parameters 

suggested for the different enantiomers, show high variability, with coefficients of 

variation as high as 70%. The stereoselective differences in the PKs of 

methadone may be important for PK/PD modeling; however, it is unlikely to be of 

significant consequence in the therapeutic monitoring of compliance with drug 

treatment patients (17). If therapeutic drug monitoring was a practical approach 

to dosing requirements, then a measurement of each enantiomeric isomer would 

become much more important. To a large extent (R) methadone prevents the 

occurrence of opioid withdrawal symptoms, while the (S) form is ineffective. The 

(R) form has a lower intrinsic clearance and receptor binding compared to the (S) 
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form. Stereoselective differences may play an important part in PK/PD modeling 

and therefore it follows that with racemic methadone dosing, stereochemistry 

plays a significant role in dosing (15). Most treatment centers utilize racemic 

methadone simply based on cost and availability factors.  

 

 

Methadone 

 

 
Figure 1.1    Structure of Methadone Enantiomers;  (R) and (S)- 6-

Dimethylamino-4,4-diphenyl-3-heptanone (C21H27NO; MW = 309.4 g/mol). 

The red circle indicates the chiral carbon, which creates the difference in 

symmetry between enantiomers. 

 

1.1.2 Methadone pharmacokinetics 

Methadone total body clearance is approximately 0.095L/minute with a wide 

inter-individual variability (0.02 – 2 L/minute). Its elimination half-life (t1/2) is 

approximately 22 hours with a very wide range reported from 5 – 130 hours. The 
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more pharmacologically active (R) enantiomer has a mean t1/2 reported to be 

approximately 40 hours (12).   

Methadone is a lipophilic drug that can be administered by a variety of 

routes. It is rapidly absorbed and can be detected in blood 15 – 45 minutes after 

oral administration. Plasma concentrations (Tmax) peak at 2.5 – 4.4 hours after 

dosing and seem to be independent of dose. Oral doses are subject to first-pass 

effect in the liver and GI tract.  The average oral bioavailability is approximately 

80 – 90 %, but can range from 36 – 100% (18).  

In humans, high volumes of distribution (Vd) have been reported and 

exceed actual physiological volumes. The mean apparent volume of distribution 

in humans is approximately 4.5 L/kg with a range as large as 1.7 – 13 L/kg (19). 

Methadone distributes to brain, gut, kidney, liver muscle and lung tissue (1). 

Tissue binding and the large volume of distribution despite extensive plasma 

protein binding suggest a higher affinity for tissues relative to plasma proteins.  

Methadone undergoes hepatic metabolism predominantly to an inactive 

form of the drug, 2-ethylidene-1,5-dimethy-3,3-diphenylpyrrolidine (EDDP), by N-

demethylation and spontaneous cyclisation. Approximately eight other urinary 

metabolites have been identified, all of which have very little or no 

pharmacological effect. Urinary excretion of methadone and EDDP accounts for 

up to 60% of an oral dose.  Since methadone is basic (pKa = 9.2), changes in 

urinary filtrate pH have an important influence on the elimination of methadone. 

At urinary pH values above 6, renal clearance accounts for only 4% of the total 

drug elimination, while at pH values lower than 6, elimination of unchanged drug 
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can increase to 30% of the total dose (19). Until recently, the isoforms of P450 

(CYP) enzymes thought to be predominantly responsible for the metabolism of 

methadone were CYP3A4 and CYP2D6. More recently it has been shown that 

CYP2D6 plays a much lesser role and that CYP2B6 is more involved than 

originally thought (20).  

Methadone is highly bound by plasma proteins such as albumin and 

lipoproteins, but more specifically, it is found predominantly associated with α1-

acid glycoprotein. Mean free fractions (fu) of drug are reported to be between 2 

and 14%, with a high degree of variability and slight differences between 

enantiomeric forms (14). Inconsistent data exists in the literature about 

stereoselective binding. Most sources suggest a very low free fraction of 

circulating methadone of approximately 3% (19). This extent of protein binding 

will likely be responsible for some of the PK variability of methadone. Only free 

methadone is available for pharmacological effect and thus measurement of total 

methadone levels for therapeutic monitoring will not truly accurately reflect drug–

effect status. Since it is an acute-phase reactant protein, marked changes in α1-

acid glycoprotein levels due to other conditions (illness, stress etc.) may 

significantly alter methadone PK values (21). In the case of oral methadone 

maintenance treatment (MMT), these alterations related to fluctuating α1-acid 

glycoprotein levels may be a major consideration and are difficult to determine. 

Furthermore, plasma protein binding must be considered a potential factor 

responsible for some of the inter-individual variation in clearance (17). 
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Methadone can be considered to be a restrictive clearance or low extraction ratio 

drug for which clearance is strongly dependent on the fraction of protein binding. 

 

Table 1.1       Table of P450 enzyme involvement including which isoform and its 

function & significance 

 

Enzyme Isoform Function / Significance 
CYP3A4  Main isoform involved in metabolism 

 Activity among individuals varies 40 fold 
 Involved in the metabolism of approximately half 

of the drugs used today 
 Inhibitors include grape fruit juice, anti-retroviral 

drugs, ditiazem, erythromycin and ciprofloxacin 
 Inducers include Phenobarbital, carbamazepine, 

phenytoin and St John’s Wort 
  
CYP2B6  Important contributor to methadone metabolism 

 Stereoselectivity to (S-) enantiomer 
 Wide inter-individual variability in expression 
 Inhibitors include ticlopidine, orphenidrine & 

sertraline 
 Inducers include anticonvulsants & rifampicin 

  
CYP2D6  Minor contribution to methadone metabolism 

 Stereoselectivity to (R-) enantiomer 
 Largest phenotypical variability among the CYPs, 

largely due to genetic polymorphism. 
  
CYP2C9, CYP219  Very minor involvement 
  
CYP1A2  No known involvement 
 

Adapted with permission from:  Yonfang, Li et al 2008 

 

 



 10

1.1.3 Methadone pharmacodynamics  

Methadone elicits its pharmacodynamic properties predominantly by binding 

to the human µ-opioid receptor (hMOR) as well as to the δ- and κ-opioid 

receptors. Although methadone is a synthetic opioid agonist, it displays morphine 

like properties. The affinity constant to hMOR is 3.51 nM for methadone, which 

suggests slightly less affinity than morphine (22). Activation of hMOR via ligand 

(methadone) binding produces analgesia, respiratory depression, physiological 

dependence and tolerance. Methadone does exhibit a lower potential for abuse 

than morphine, which enhances its potential for drug maintenance therapy 

programs, but does induce some dependence (21). Methadone differs from 

morphine in that it displays a non-competitive antagonist activity at the N-methyl-

D-aspartate (NMDA) receptor. This receptor is well known for its ligand binding of 

dextromethorphan, a common cough suppressant. This receptor does play a role 

in pain transmission and both enantiomeric forms of methadone have some 

binding affinities to this receptor. This may partially explain why both enantiomers 

display some antinociceptive effect (R form has most of the effect at hMOR) (17).  

Methadone is also a strong inhibitor of serotonin and norepinephrine 

uptake. Genetic polymorphisms in the gene encoding the NMDA receptor have 

been described, without significant evidence of a relationship to methadone (13). 

Genetic polymorphisms in the gene encoding hMOR have been well described. 

More than 20 variants that produce amino acid changes in the receptor have 

been identified and some variants exhibit altered affinity to various substrates. 

The overall effect on methadone binding is unclear with little consensus, although 



 11

some studies have shown a decrease in opioid effect and increased opioid 

dosage requirements (23).  

 

1.1.4 Inter-individual variability 

Methadone PK varies significantly between individuals, and probably PD 

parameters also vary as illustrated by the lack of consensus of descriptions of 

these parameters in the literature. This variability appears to be both 

environmentally and genetically influenced (22) and may be largely attributed to 

CYP enzyme activities.  CYP3A4 is mainly responsible for the N-demethylation of 

methadone to inactive metabolites, and CYP2B6, another enzyme involved in 

metabolism, are present at up to a 30 fold variability in the liver and intestinal 

mucosa (24).  Some more remotely involved enzymes such as CYP2D6 display 

a more than 100 fold variation between subjects (20).  CYP2C19, CYP2C9 and 

CYP1A2 are all variable between individuals. Existence of genetically determined 

poor, extensive and ultra-rapid metabolizer phenotypes have been described 

based on the expression levels of these phenotypically different enzymes. Thus 

methadone, like many other drugs, displays a wide dose-plasma concentration 

relationship, since it is metabolized by CYP3A4 as well as these other 

polymorphic enzymes (18). 

Due to the nature of methadone drug treatment, a high percentage of 

patients are likely to use other drugs, both illegal and prescription. As most drugs 

are substrates (inducers, inhibitors) of these isoenzymes, drug-drug interactions 

involving methadone commonly occur.  This scenario is especially true in “harm 
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reduction” models, which are predominantly used in Western Canada (25). Harm 

reduction programs, as the name suggests, are not intended to treat all patients 

until they are weaned completely off all other drugs. Rather, the program’s intent 

is to monitor and control to some degree other drug use so that there is an 

overall lessening of harm to the patient as well as to the society they live in. The 

principle suggests that less crime (e.g. prostitution, theft etc.) will result if 

methadone patients have less of a need for illegal drugs and are not required to 

be completely free of other drugs. Thus, the likelihood of at least some 

concurrent drug use is high. Co-medications are able to introduce a further 

variability by either inhibition or induction of methadone clearance (enzyme 

activity and bioavailability). Multi-drug use will complicate normal metabolic 

processes and clearance. Cessation of a CYP active drug can also have severe 

consequences. When a potent inducer such as carbamazepine is discontinued, 

the patient now becomes a relatively slower metabolizer (due to loss of enzyme 

induction) and what was previously an adequate dose of methadone becomes 

excessive (2).  

Some studies have shown that patients on MMT with controlled 

administration of drug exhibit up to a 5-fold variation in trough plasma levels. 

Significant differences in dose-plasma level relationships are not limited to 

compliant patients. Based on very high inter-individual variability of methadone 

blood concentrations for a given dosage, a theoretical dosage of 55 – 920 

mg/day would be required to provide a blood concentration of 250 μg/L of (R) 

methadone for a theoretical 70 Kg patient without any co-medication (26).  
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Another possible variable, which contributes to methadone response, is the 

expression of p-glycoprotein. Sequence variations of the gene have been 

characterized, potentially leading to polymorphisms in the expressed protein (27). 

Thus, individuals may have significantly lower levels of expression in the 

duodenum with resultant variation of drug levels in the plasma. As well, lower p-

glycoprotein expression levels at the blood brain barrier may lead to higher brain 

levels of drug.  More recent work suggests less of an influence by p-glycoprotein, 

but the inconsistency of the associated literature implies it should be considered 

(28).   

PK/PD parameters of methadone during pregnancy and lactation have been 

studied in the context of female MMT patients maintaining their treatment while 

pregnant and/or breastfeeding. The effectiveness of a particular methadone dose 

will vary during pregnancy, but overall there is higher clearance of methadone 

during pregnancy. Several reasons may account for this observation, such as 

hormonal induction of intestinal and hepatic CYP enzymes, metabolism in 

placental tissue and variation of methadone transporters (29).  Alterations in 

methadone clearance may create opioid withdrawal symptoms during pregnancy, 

which will be mirrored by the fetus (30). The factors affecting methadone 

concentrations in fetal circulation during pregnancy and how they relate to fetal 

outcome are poorly understood. Most neonates born to MMT patients display 

some type of opioid withdrawal (30).  

 Few studies have examined the exposure of infants to methadone through 

breast milk (31). Measured concentrations of methadone in breast milk are low 
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and remain stable over time. Methadone doses of 27 – 180 mg/day produce milk 

concentrations of 25 – 260 ng/mL, in turn delivering approximately 0.05 mg of 

methadone based on an average daily intake of 500 mL (32). Even after 

correcting for lower clearance in neonates, the relative infant dose would be very 

small. Since methadone offers important therapeutic effects to the mother in 

dealing with opiate dependency, the benefit of methadone to the mother far out 

weighs the risk to the breastfeeding neonate (31).  

Since methadone is quite often used for very long term, it is likely that 

patients may remain under treatment until they are elderly. Altered PK/PD 

parameters of elderly patients have been well described. Generally elderly 

patients have reduced levels of clearance, often requiring a reduced or adjusted 

dosing regimen to maintain levels within the therapeutic  range without creating 

toxicity (33).  

Although serum methadone levels are often of minimal value, they can be 

used in special cases to confirm requests for increased dosage or to identify 

patients who may require split doses. The clinical presentation of a patient should 

always override serum methadone level values (2). Definitive toxic serum levels 

of methadone remain undetermined with concentrations ranging from 60 to 4,500 

ng/mL in observed fatalities (34).  
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1.2   μ-Opioid receptor 

Opioid receptors (hMOR – human mu opioid receptors) are G-protein 

coupled receptors responsible for most of the physiological action of opioids. G-

protein coupled receptors consist of seven trans-membrane spanning domains 

with an N-terminus extra cellular domain and a C-terminus intracellular domain 

(Figure 1.2). When a ligand such as a drug, hormone or neurotransmitter, 

interacts with a heptahelical receptor on the surface of the cell, the ligand either 

stabilizes or induces a conformation in the receptor that activates a heterotrimeric 

G-protein (35).  

 

 

1.2.1  The role of G-proteins  

G proteins, named for their interaction with guanine nucleotides GTP and 

GDP, most commonly consist of 3 discrete protein subunits - α, β and γ. Guanine 

nucleotides bind to the α subunit, which has enzymatic activity catalyzing the 

conversion of GTP to GDP. The β, γ subunits remain associated as βγ complex. 

All 3 subunits are anchored to the membrane through a fatty acyl chain 

covalently linked to an amino acid residue by prenylation. G-proteins appear to 

be freely diffusible in the plane of the membrane. In the resting state, the G-

protein exists as an unattached αβγ trimer, with GDP occupying the binding site 

of the α subunit. When a receptor is occupied by an agonist molecule, a 

conformational change occurs, involving the cytoplasmic domain of the receptor 
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causing it to acquire high affinity for αβγ. Association of αβγ with the receptor 

causes a conformational change in αβγ that has less affinity for GDP and which 

is replaced with GTP [GDP/GTP exchange]. This exchange causes dissociation 

of the G – protein trimer, releasing α-GTP and βγ subunits; these are the “active” 

forms of the G-protein, which diffuse along the membrane and can associate with 

various enzymes and ion channels, causing their activation or inactivation. The 

process is terminated with hydrolysis of GTP to GDP via the GTPase activity of 

the α-subunit. The resulting α-GDP dissociates from the effector and reunites 

with the α-subunit, completing the cycle. Targets for G – proteins include the 

adenylyl cyclase or cAMP system and the phospholipase system.  
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                           A.                                                        B. 

 

Figure 1.2 

 X-ray crystallographic ribbon models of A) the human µ-opioid receptor – a G-

protein coupled receptor consisting of a seven transmembrane spanning domain 

and B) the binding pocket of the µ-opioid receptor with modeled bound 

naltrexone.  

 

Adapted with permission from (36)   

 

Opioid receptors send cellular signals indirectly via a variety of G-proteins 

that, once activated, directly modulate channel activity or adenylyl cyclase (AC) 

that produces second messengers such as cyclic adenosine 5-monophosphate 

(cAMP) (37). Eventually this leads to reduced excitability along the neuronal cell 
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membranes involved in pain pathways. A reduction of cAMP production leads to 

a suppression of Na+ and Ca+ channels and results in analgesia. 

Neurotransmission of pain is lessened by a lowered neuronal excitability, 

reduced action duration and lowered neurotransmitter release. These G proteins 

are inhibitory in nature and inhibit AC activity as well as regulating the activity of 

mitogen-activated protein kinase (MAPK) and Ca+ and K+ ion channels. Opioids 

may also activate G-proteins, which have stimulatory properties in some tissues 

and stimulate AC to raise the cAMP levels in cells (38). Isoform-specific and 

differential regulation of various classes of effectors by the opioid receptors are 

interwoven into a complicated signaling network, which mediates opioid action 

(39).  
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Figure 1.3 

A simplified schematic of activation of down stream signaling by human mu 

opioid receptors - See 1.2.2 below 

Adapted with permission from (40)   

 

 

1.2.2 Receptor binding 

Ligand binding to the receptor creates a conformational change in the 

cytosolic portion of the receptor. This in turn activates a trimeric G protein, which 

causes a conformational change in the α-subunit. This allows GDP to dissociate 

and be replaced by cytoplasm-abundant GTP. The GTP binding causes the 

trimeric G-protein to dissociate into separate α and β / γ components. The active 
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α- subunit goes on to bind to other proteins or enzymes such as AC. This inhibits 

AC, which now reduces the production of cAMP, an important downstream 

signaling molecule. Neurotransmission of pain is lessened by a lowered neuronal 

excitability, reduced action duration and lowered neurotransmitter release.  

 Eventually the α-subunit hydrolyzes its bound GTP back to GDP, which 

inactivates the subunit. Another protein called the regulator of G-protein signaling 

(RGS), which inactivates the G-protein by combining with the β / γ complex, may 

influence this step. As long as the receptor remains stimulated it can continue to 

activate G- proteins. Upon prolonged stimulation, the receptor will become 

inactive even if its ligand remains bound. In this case, a G-protein receptor 

kinase (GRK) phosphorylates the cytosolic portions of the receptor. Once the 

receptor has been phosphorylated, it binds with great affinity to an arrestin 

protein (β-arrestin), which then inactivates the receptor by preventing it from 

binding to G-protein. Arrestins act as adapter proteins and recruit the receptor to 

clathrin coated pits, from where the receptors are endocytosed. The receptors 

may now be degraded in lysosomes or recycled back to the cell membrane and 

re-activated (41).  

 

 

1.3 Tolerance and dependence 

Physical dependence is a property of many drugs, not just drugs that have 

a high abuse potential. Physical dependence suggests that if drug use is 

suddenly discontinued there is a predictable physiological response. The body 
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will make changes to adapt to the drug leading to unpleasant withdrawal 

sensation upon cessation (42-44). Someone who is physically dependent on a 

drug requires that drug in order to function normally. Cross dependence is the 

partial or complete ability of one drug to suppress the manifestations of physical 

dependence produced by another drug.  

Drug addiction is not necessarily just a physical phenomenon, but also a 

psychological phenomena (for which there may be an unknown biochemical 

cause) consisting of loss of control, continued use despite adverse 

consequences and the preoccupation and obsession with obtaining and using 

more drug. The WHO defines addiction as “a behavioral pattern of drug use, 

characterized by overwhelming involvement with compulsive use of the drug, 

securing of the supply and the likelihood of relapse after withdrawal (42). 

Drug tolerance may be defined as a state of progressively decreased 

responsiveness to a drug resulting in a larger dose of the drug needed to achieve 

the effect originally obtained by the smaller dose (45). Tolerance to the desired 

action of the drug and the side effects may differ. Opioid tolerance is 

characterized by a reduced response to opioid drugs such as morphine or 

codeine, which are commonly used as pain medications, but are commonly 

abused based on their euphoric effects.  Profound tolerance may develop, 

especially if the drug is chronically administered.  A large range of 

neuroadaptations develop in response to chronic administration of these drugs, 

which are thought to be a significant contributor to tolerance and dependence 

(46). A very “short term” tolerance may develop within minutes of administration, 
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which is thought to involve receptor desensitization and internalization. A more 

substantial “long term” tolerance will emerge after days to weeks of opioid use. 

This tolerance results from mechanisms of adaptation at the levels of the 

receptor, cellular signaling and the synaptic network. Neuroadaptations are 

considered to be critical to bring about the major symptoms of opioid addiction - 

tolerance and withdrawal (47). 

A focus on the opioid drugs and their specific receptor types in relation to drug 

tolerance and dependence shows this to be a very complex process, including 

receptor dimerization processes which are not yet fully understood.  

 

 

1.3.1 Desensitization 

Desensitization at the receptor is considered one of the major mechanisms 

of the development of drug tolerance (48). It is observed when intracellular 

regulatory proteins and/or enzymes are activated in such a way that they 

“decouple” the receptor from the G protein or produce a “switch” in coupling to a 

“nonanalgesic” G protein.  Uncoupling of receptors is associated with 

phosphorylation by GRK and subsequent binding by arrestins. This leaves the G 

protein uncoupled from the receptor and inactive. It also prevents the G protein 

from any further interaction with a receptor (specifically if it is bound to either 

GRK or β-arrestin). The receptor may in turn be internalized and either destroyed 

or returned to the cell surface with restored activity, where different opioid 

agonists may be associated with different mechanisms (48). It is possible that the 
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varying effects on GRKs or protein kinase C (PKC) will depend on the specific 

opiate agonist. This has been shown by PKC inhibitors, seemingly providing 

inhibition to morphine tolerance but not inhibiting tolerance to all opioids (49). 

Morphine induction of PKC could cause the direct phosphorylation of MOR or 

phosphorylation and activity enhancement of other components involved in 

desensitization (50). Desensitization can be caused by such factors including 1) 

β-arrestin mediated receptor internalization; 2) Down-regulation of opioid 

receptors; 3) Uncoupling of opioid receptors from G proteins; 4) Increased 

production of nitric oxide via inducible nitric oxide synthase (iNOS); and 5) 

Signaling via G proteins. 

 

1.3.2 Internalization 

A second mechanism believed to contribute to the development of drug 

tolerance is internalization of the receptor from the cell membrane (51). Once it is 

internalized, the receptor can no longer function and is essentially down-

regulated. Down-regulation is defined as a disappearance or reduction of total 

cell surface and functional intracellular receptors. Once again the disparity in the 

literature suggests that this mechanism may indeed decrease tolerance by 

removing desensitized receptors from the membrane and recycling new 

receptors to the membrane (52). More complexity than clarity is often the case 

with opioid – related cellular mechanisms.  

Internalization of MOR has been observed in neuronal cells after treatment 

with etorphine, a high-affinity MOR agonist (53), with up to 50% undergoing 
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internalization within minutes of exposure. Yet, a more recent study suggests that 

treatment of cells with morphine does not result in a significant down-regulation 

of MOR, but tolerance was still observed to increase linearly with infusion dose 

(48). Thus, it can be speculated that although internalization seems to play a role 

in tolerance, it is not a mandatory requirement. Tolerance is likely a multi-factor 

process involving varying degrees of both desensitization and internalization or 

down-regulation, which may be opioid agonist dependent.   

 

1.3.3 Signal regulation by G-proteins 

G proteins are an important consideration in the understanding of the 

molecular basis of opioid dependence. Although eight or nine distinct G proteins 

have been identified, it is unclear which of them primarily carry the signals (54). 

Opioid receptors display differences in their specificities towards these G 

proteins. Many combinations of the G – α β γ heterotrimers are theoretically 

available for signal transduction. The coupling specificity to G proteins may be 

partly governed by the types of tissue and cells being examined. The same 

opioid receptor subtypes in various tissues and cells exhibit different preferences 

for G proteins. This suggests that receptor – G protein coupling may rely on the 

specific cellular environment (54).  
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Figure 1.4 Desensitization Mechanisms of hMOR 

Desensitization mechanisms of hMOR can affect the efficacy of many drugs.  A) 

Binding of an opiate agonist (L) to the receptor (R) leads to B) Coupling of the 

receptor to the G-protein (G) and activation. In C) G-protein receptor kinases can 

phosphorylate (P) receptors, which then leads to binding of ß-arrestins and other 

accessory proteins. This, in turn, results in uncoupling of the G-proteins and to D) 

& E) internalization and either recycling or degradation of the receptor. 

Adapted with permission from (55) 
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GRK proteins, which subsequently phosphorylate MOR and enable its 

binding with β-arrestin, play a significant role in the development of tolerance. 

GRK proteins appear to be more involved in both the electrophysiological and 

behavioral tolerance of high efficacy opioids such as fentanyl than in morphine 

tolerance, a lower efficacy agonist. Specific inhibition of PKC has also been 

studied to determine its role in tolerance (56). Tolerance to some opioid agonists 

was completely reversed by the administration of PKC inhibitors, but not all 

agonists display this reversal. An explanation for this discrepancy could be that 

different opioids induce particular conformational changes of the receptor. The G 

protein coupled receptors could acquire different conformations when activated 

by different ligands. This phenomenon has been labeled functional selectivity.  

Specific agonists appear to stabilize distinct conformations that allow the receptor 

to couple to the appropriate G protein to elicit downstream responses controlled 

by different desensitization mechanisms. It is possible that different mechanisms 

control tolerances to opioids of different efficacies and that both PKC and GRK 

proteins play a role (57). 

 

1.3.4 RGS proteins 

Important regulatory molecules in signal activation by the receptor are 

regulators of G protein signaling (RGS) proteins. These proteins serve as 

GTPase activating proteins (GAP) for G proteins and thus can modulate the 

duration of G protein signals (54). RGS proteins play a role in modulating opioid 

receptor – G protein interactions. and coupling specificity, with specific 
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correlations between RGS protein levels and the development of acute opioid 

tolerance (58). 

A primary function of RGS proteins is to regulate negatively G proteins via 

GAP to accelerate GTP hydrolysis and, hence, facilitate the switch of the Gα 

subunit from a GTP active state to a GDP inactive state. RGS proteins effectively 

halt the signaling event and return the receptor/G protein back to a “ligand 

receptive” state (58). Over twenty different RGS proteins have been identified 

and categorized based upon their structure. They play a relatively selective role 

in regulating opioid receptors. RGS19 seems to be most involved in opioid 

receptor internalization and recycling. The functionality of RGS proteins is related 

to their ability to interact with G proteins and opioid receptors.  The critical role 

they play in receptor desensitization and internalization/recycling is the basis for 

their contribution to tolerance.  

 

1.3.5 Hyperalgesia and antinociceptive tolerance 

Treatment of both severe acute pain and chronic pain is accomplished 

routinely with opiates. In addition to the desired analgesic actions, there is 

evidence that opiate administration can paradoxically lead to hyperalgesia 

(59;60). Hyperalgesia is an enhanced pain response to a noxious substance. 

Opioids may actually increase sensitivity to pain and may aggravate existing 

pain. The mechanisms by which chronic opiate exposure induces hyperalgesia 

and the relationship of this state to antinociceptive tolerance remain unclear. 

Data suggests that analgesic tolerance and sustained opiate induced 
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hyperalgesia and corresponding reduction in sensory thresholds are related and 

are a consequence of prolonged activation of MOR (61). The underlying 

mechanism linking tolerance and hyperalgesia is thought to be the NMDA 

receptor (60).  

The NMDA receptor is a glutamate receptor responsible for synaptic 

plasticity and memory function. N-methyl D-aspartate (NMDA) is a selective 

NMDA receptor agonist, which binds to this receptor but not other glutamate 

receptors. Some opioids such as methadone are partial NMDA agonists. MOR 

activation increases the NMDA receptor-mediated glutamate response by 

intracellular protein kinase. The NMDA system has also been implicated in acute 

tolerance to morphine but not to other selective MOR agonists. NO (nitric oxide), 

which is formed by NMDA activation, diffuses to adjacent nerve terminals to 

modulate neurotransmitter release. It also acts at several levels to develop 

hyperexcitability, which results in hyperalgesia (60).  

 

1.3.6 Endogenous morphine considerations 

Animal tissues and human cells have been shown to produce small 

amounts of endogenous morphine as well as other opioid ligands (endorphin, 

enkephalin), which act as neurotransmitters (62). They are produced by the 

pituitary gland and the hypothalamus and they resemble the opiates in their 

abilities to produce analgesia and a feeling of well-being. In various stressful 

situations, the levels of naturally occurring opiates do rise dramatically. Since we 

have described tolerance as a common phenomenon, what would the role of 
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tolerance be in the naturally occurring opiate system? Some researchers suggest 

that the phenomenon of opioid tolerance and rebound is an explanation of how 

we control down regulating occurrences (62). When down-regulation is initiated, 

the concentration of endogenous opioids rises to overcome competitively the 

initial stimulatory molecules. The effector cells would become tolerant to 

endogenous morphine, so that the morphine induced down regulation would be 

terminated. Tolerance would set in once down-regulation was resumed.  

Researchers have also speculated that addiction emerges from tolerance if 

the concentrations of endogenous opiates do not return to their previous or pre-

stimulation low levels. Tolerance may be an evolutionary designed phenomenon 

required to mediate critical life sustaining activities, which are required to be 

repetitive in nature. 

Drugs, as substances of abuse, may take control of these processes and 

create urges and desires, which have no benefit to the host (62).  

 

1.3.7 Shared mechanisms (other receptors) 

Studies suggest that the kappa opioid receptor (KOR) mediates inhibition of 

morphine tolerance (33;53;63;64). Recent studies have confirmed that KOR 

during repeated morphine treatment suppresses the development of analgesic 

tolerance to morphine (65). GRK proteins, PKA and PKC also play a role in 

receptor desensitization (66). PKC activity in the brain increases when tolerance 

has developed. As well, various PKC inhibitors block the development of 

morphine tolerance (67;68). Mechanisms governing KOR-mediated inhibition of 
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morphine tolerance may result from a decrease in PKC activation and prevention 

of MOR desensitization. Stimulation of KOR during repeated morphine 

treatments suppresses the analgesic tolerance by inhibition of MOR 

desensitization and/or acceleration of MOR recycling (65). Thus, other receptors 

(including both KOR and DOR) may influence tolerance and dependence 

normally associated primarily with MOR. 

 

1.3.8 Post receptor adaptations 

Other research suggests that post-opioid receptor adaptations may 

functionally alter signaling processes. These mechanisms involve covalent 

modification of signaling molecules and altered associations among them (69). 

Multiple considerations suggest that additional signal transduction modifications 

contribute to the development of tolerance. Supportive evidence shows that 

morphine (a tolerance producing drug) results in little or no receptor 

internalization and that morphine tolerance is frequently not accompanied by 

receptor down-regulation (70).  

 

As described previously, GPCR (G protein coupled receptor) signaling 

results from the signaling activity of both the Gα and the Gβγ subunits of the 

heterotrimer. The same effector (AC) can be regulated differentially by these two 

subunits altering their respective signaling capacities based on drug exposure. In 

opioid naïve tissue, opioid receptors signal predominantly through the Gα 

subunit, but with sustained exposure to morphine, inhibitory opioid signaling is 
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replaced with more frequent excitatory signaling. AC activity now instead of being 

inhibited becomes enhanced. This may result in opioid tolerance, since the 

sustained generation of Gα – inhibitory would be mitigated by the emergence of 

Gβγ – stimulatory (69). Chronic morphine-induced changes in AC may be related 

to functionality of segmented synthesis of AC isoforms, which are stimulated by 

Gβγ. Signaling via Gβγ is very complicated and may in fact be counterproductive 

to the Gα mediated effects. cAMP production may be regulated in opposite 

directions by these two competing subunits. Some of the Gβγ regulated 

pathways during chronic opioid treatment can link opioid receptors to gene 

transcription, which can then lead to modified cellular responses (54).  

The molecular basis of opioid dependency involves receptor coupling to G 

proteins. Since eight or nine distinct G proteins have been described, and their 

coupling specificity is governed at least in part by the type of tissue and cells 

involved, there are many factors, which control signaling. As well, specific 

regulatory molecules (e.g. RGS proteins) may be present in different types of 

cellular environments (49).  
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1.3.9 Membrane rafts and receptor localization 

 

Membrane rafts and caveolae influence cell functions including 

intracellular sorting of proteins and lipids, establishment of cell polarity, the 

function of vesicular transport processes and fine tuning of cell signaling 

processes specifically on the cell membrane (71). G Proteins, kinases, beta 

arrestin and phosphatases are located in membrane rafts and/or caveolae and 

significant evidence suggests they are involved in the functional regulation of 

signaling components. KOR and MOR localize mainly in membrane raft domains 

and normally internalize through clathrin-dependent pathways (72;73) 

Membrane rafts are planar domains of cell membranes enriched in 

specific lipid and proteins. High content of glycosphingolipids and cholesterol in 

the outer leaflet of the lipid bilayer gives these regions gel-like properties and 

organization. Caveolae have been identified by electron microscopy as 50 – 100 

nm diameter flask-shaped invaginations at or near the plasma membrane. 

Specific proteins (Caveolin-1, -2 and -3) are responsible for their shape and 

structure. Caveolae are presumed to function as non-planar membrane rafts in 

areas of invagination. Several methods of microscopy as well as co-immuno-

precipitation of GPCRs and caveolin have been used to determine receptor 

localization in caveolae (74).  

Mechanisms responsible for how GPCRs locate to membrane rafts 

include the transmembrane regions of GPCRs interacting with the lipid 

components of the rafts. The affinity for some GPCRs can be modulated by 
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cholesterol. This is probably not a general phenomenon, since cholesterol does 

not affect all GPCR agonist affinities. Alpha helices may also play a role as with 

receptor activation mechanisms. Intracellular loops and carboxyl-terminal tails 

may also be involved through fatty acylation and protein-protein interactions 

(72;74).  

Most research suggests that rafts are important for GPCRs at all stages of 

their life cycles (exocytic, plasma membrane and endocytic). Membrane rafts at 

the cell surface may be responsible for receptor stability by providing a stable, 

resistant environment to internalization and thus sustained specific signaling. The 

precise shuttling inside and outside of membrane rafts remains unclear although 

several paradigms exist (73;75)  

 The fact that the main function of most GPCRs is to elicit and modulate 

cell signaling responses and second messenger signaling, membrane rafts must 

elicit some effect on the signaling cascade. One view is that membrane rafts are 

“stations” where GPCRs meet specific signaling molecules enabling selective 

and efficient G protein coupling. This is a significant consideration since receptor 

activation outside versus inside membrane rafts creates different signaling 

pathways. The same receptor may also be differentially located in different cell 

types implying that compartmentalization may be cell specific. Protein distribution 

in membrane rafts may also be dependent on other factors such as age, 

concurrent drug use and diseased state suggesting different signaling 

efficiencies in normal vs. diseased conditions. The overall view is that recruitment 

of GPCRs into membrane rafts/caveolae affects the stages of their lifecycle by 
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regulating intracellular trafficking and signaling properties. GPCR domain 

compartmentalization appears to depend on receptor cell type, metabolic state, 

growth stage and differentiation, which affects its regulation (71).  

 Comparison of rat neuronal cells, which exhibit no significant caveolae, 

and CHO (Chinese hamster ovary) cells, which are enriched in caveolae, 

suggests that segregating proteins in caveolae vs. non-caveolae rafts has quite 

different functional consequences. In both systems, cholesterol was found to be 

important for organizing opioid receptors and G proteins signaling molecules in 

membrane rafts, and agonist treatment did not affect the association of hMOR 

with membrane rafts. Membrane rafts sustained hMOR mediated G protein 

activation in neuronal cells but inhibited it in CHO cells (75).  

 

 

1.3.10 Opioid receptor genetics 

 Drug – induced long-term functional alterations of cell signaling 

presumably also involves changes or modifications to gene expression. Several 

opioid-induced signals converge at the level of transcription factors.  Research 

has shown several transcription factors, including the cAMP-response element 

DNA binding protein (CREB), members of the MAPK cascade and the nuclear 

factor (NK)-κB (54). Opiate dependence would seemingly require adjustments in 

transcriptional activities.  

Another influential factor in opioid dependence, tolerance and 

hyperalgesia may be related to the activities of p-glycoprotein drug transporters. 
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These proteins are a family of ATP-dependent drug efflux pumps for xenobiotic 

compounds with broad substrate specificity. They are responsible for decreased 

drug accumulation in multidrug-resistant cells and often mediate the development 

of resistance to anticancer drugs. This protein family also functions as a 

transporter at the blood-brain barrier.  

Studies have shown that analgesic tolerance and physical dependence 

accompany the development of opiate induced hyperalgesia (OIH) and that they 

require P-glycoprotein activity to achieve maximal expression. Multiple morphine 

response –related traits also require P-glycoprotein (PGP) activity and genetic 

variations in PGP account for modifications to morphine levels. Recent reviews 

discuss the fact that genetic variants of PGP expression control the clinical 

effects of opioids and other drugs differently (76). Gene expression array studies 

may be an important tool to discover information on GPG modulation of opiate 

hyperalgesia, tolerance and dependence.  

Much work has been done to identify specific genetic haplotypes that confer 

genetic individual differences in addiction vulnerability. Genetic markers linked to 

or associated with vulnerability to substance abuse are beginning to emerge 

supporting polygenic inheritance of substance abuse vulnerability. These classic 

genetic studies document a strong, complex genetic contribution to abuse of 

multiple additive substances. The variations could act via: 1) Metabolism or bio-

distribution, 2) Drug rewarding properties, 3) Traits manifested by the addict, and 

4) Psychiatric co-morbidities (76). Understanding opiate drug tolerance and 

dependence is a very complex task with as yet many unanswered questions. 
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There are many contributions at the cellular or molecular level, which require 

further investigation. The cellular result of hMOR activation is generally 

understood, however, the complete understanding of neurotransmitter systems 

and intracellular signaling variations in acute and chronic opioid exposure are not 

as well known. The key is to understand which of the molecular level opioid 

actions contribute to the production of tolerance and dependence. These 

adaptations give rise to persistent changes in behavior in animals and humans 

exposed to long term opiate use (4). 

 

 

Figure 1.5 Determinants in drug metabolism [adapted with permission from 

(76). Genetic influences as well as health, environmental influence and age 

factors all play a role in methadone metabolism 
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1.4 Downstream signalling 

G Protein mediated cell signaling is a widely used mechanism for 

transmembrane signal transduction. There are four major types of G proteins 

(77). Gi/o and Gs are primarily involved in a decrease or increase in adenylyl 

cyclase (AC) activity, respectively. In normal opioid initiated pain management, 

ligand binding initiates G protein coupling that provides an inhibition of AC 

activity, which in turn reduces the level of cyclic adenosine 5-monophosphate 

(cAMP) and regulates the activity of mitogen-activated protein kinase (MAPK) 

and Ca+ and K+ ion channels. Eventually this leads to decreasing excitability 

along the cell membranes of neurons in the pain pathways (49;77-79). The 

mechanism is very similar in methadone maintenance treatment (MMT) where 

methadone is used as a replacement drug for opiate-dependent patients. 

Methadone binds to µ-opioid receptors, similar to morphine or some of the other 

more potent opiates. As previously stated its major advantages are that it 

displays much less associated dependence than morphine and has a much 

longer half-life so that its effect is prolonged and does not produce as much of a 

euphoric affect as do the true opiates.  
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Figure 1.6 Methadone activation of Gα (i/o) is a negative effector of AC, which 

in turn reduces conversion of ATP to cAMP and lessens downstream signaling 

events to control withdrawal symptoms in MMT patients. 

Adapted with permission from (80) 

 

As discussed the AC family of enzymes are influenced by GPCRs such as 

hMOR and in turn convert ATP to cAMP and inorganic pyrophosphate. Negative 

feed back is provided by cAMP phosphodiesterase enzymes (PDE), which 

control levels via degradation (81). When cAMP is produced, it binds to protein 

kinases within the cell and initiates phosphorylation events, which regulate 

transcription factors as well as target enzymes.  

(See Figure 1.7) 
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Figure 1.7 A diagram depicting what happens when cAMP is produced. It binds 

to protein kinases within the cell and initiates phosphorylation events, which 

regulate transcription factors (i.e. CREB) as well as target enzymes.  

Adapted with permission from (82)  

 

 

The signaling pathway is more complex, with a variety of proteins, 

enzymes and other molecular effector compounds involved at all levels. 

Monitoring cAMP levels provides a useful method to follow the influence of 

GPCRs and the accumulation of this second messenger in intact cells (83). 
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1.4.1 cAMP has many functions 

One of the key symptoms during opioid withdrawal is a state of sensitized 

pain. Although the cAMP system is known to have multiple effects on central 

neuron function, its mechanism mediating behavioural opioid dependence and 

withdrawal is not clearly understood. Morphine withdrawal, for instance, 

enhances the hyperpolarization-activated current in neurons by increased 

intracellular cAMP (83). In morphine–dependent rats in vivo, blocking the cAMP 

pathway significantly reduces withdrawal-induced pain sensitization (83). Chronic 

morphine use, with resultant tolerance and dependence, may induce adaptive 

changes in the regulation of transmitter release at synapses and with a 

compensatory increase in AC activity and cAMP concentration (84). These 

adaptations mediated through the AC cascade are not universal at opioid-

sensitive synapses and most are observed during acute withdrawal. During 

morphine withdrawal, cAMP concentrations may actually “overshoot” pre-

morphine use- levels (85) indicative of a cellular level of adaptation, by the 

receptor initiated signalling cascade.  

 

1.4.2 cAMP as an important marker for signaling  

 

A number of factors may alter cAMP levels including: 1) β-arrestin 

mediated receptor internalization, 2) down-regulation of opioid receptors, 3) 

Uncoupling of opioid receptors from G proteins (desensitization), 4) increased 
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production of nitric oxide via inducible nitric oxide synthase (iNOS), 5) other 

variations in signaling via G proteins (G-βγ vs. G-α), and 6) variations in isoforms 

of various other cell signaling molecules involved in signal transduction. 

 

By measuring cAMP levels in methadone patients, we immediately acquire 

information about the µ-opioid receptor-signaling cascade. This information 

together with knowledge of specific dosing requirements, receptor expression 

and possibly levels of G-glycoprotein expression may allow us to make 

conclusions about why dosing requirements are so variable. Understanding the 

variability in PK/PD factors affecting dose requirements provides a general 

knowledge that variability will exist (86). The fact that there are two major cohorts 

of MMT patients that require very low or very high dosing compared to the 

majority is perplexing. The study of these patients at the cellular level will shed 

light on whether neuro-adaptive changes are the cause of dosing variation. 

 

 

1.5  P-Glycoprotein influence 

 

P-Glycoprotein is an integral membrane protein that serves as an energy-

dependent transport protein of diverse substrates (87).  The importance of this 

protein in drug resistance has been well described (88) and it has been shown to 

be one of several transporters at the blood brain barrier. P-Glycoprotein 170 (P-

GP) is a multi drug transport pump. It mediates the efflux of many therapeutic 
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reagents and has been implicated in the treatment failure of many infectious 

diseases, cancers and other medical conditions (27). P-GP is a 170 kDa trans-

membrane glycoprotein, which includes 10-15 kDa of N-terminal glycosylation. 

The x-ray structure of P-GP reveals an internal cavity with a separation of the two 

nucleotide binding domains. Two additional P-GP structures with cyclic peptide 

inhibitors demonstrate distinct drug binding sites in the internal cavity capable of 

stereo-selectivity that is based on hydrophobic and aromatic interactions (89). 

Substrate and ATP binding are simultaneous, followed by ATP hydrolysis, which 

shifts the substrate into a position to be released and secreted from the cell, 

concurrent with release of the inorganic phosphate. ADP is released and a new 

molecule of ATP binds to the secondary ATP-binding site (90). Hydrolysis and 

release of ADP and a phosphate molecule resets the protein.  

P-GP expression originally was thought to be within the brain, liver, 

pancreas, kidney, gut and adrenal gland. More sensitive methods soon revealed 

the presence of P-GP on lymphocytes (91). Successful attempts to measure P-

GP expression in naïve volunteer blood cells were accomplished in the early 

1990’s, although the physiological role is still not completely understood (87). A 

conclusion of work done in 2002 was that the determination of levels of P-GP 

expression was a more reproducible and accurate approach to clinical 

investigation than determining  the functional activity of this transporter on a 

specific substrate (27). Therefore, an assay to detect P-GP expression on white 

blood cells of methadone maintenance individuals should provide information 

about the role of multi-drug resistant proteins in methadone therapy. 
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 Methadone is a substrate for the human P-Glycoprotein transporter (28) 

with very weak stereo-selective transport of the R and S enantiomers (28). This 

supports our previous work which suggested there is very little difference in 

enantiomeric form of methadone  in relationship to metabolism and dosing 

requirements (92).  

Although P-GP is thought to be involved in the transport of cytokines such 

as IL-2 and IFN- in peripheral blood lymphocytes, the function of P-GP on these 

cell populations is still largely unknown. Relating P-glycoprotein expression on 

white cells to overall effect in methadone treatment may provide at least some 

insight into the discordant dosing levels observed in high and low dose patients.  

P-glycoprotein is often expressed at low levels and therefore its 

measurement has proven to be a considerable technical challenge. Multicenter 

studies have demonstrated lack of agreement between laboratories, with 

consensus opinion that flow cytometry is a promising way forward (93). Other 

studies used immunoassay methods with micro titer plates pre-coated with an 

antibody specific to P-GP.   

Since methadone is a substrate for CYP3A4 it may be necessary to 

consider the combination effect of P-GP and CYP3A4. Since these entities are 

distributed extensively throughout the human body, but the main location for 

interaction is the intestine and liver, it may be important to consider the 

bioavailability of methadone with variable P-GP levels (94). The absorption of 

drugs from the intestine is an important factor in determining their bioavailability. 

P-GPs functions to pump out drugs from the enterocytes into the lumen – 



 44

decreasing their bioavailability. P-GP also performs this action at the blood brain 

barrier, thus reducing the delivered amount of drug to neuronal cells. Thus P-GP 

plays an important role in drug absorption and disposition (in the case of the 

blood brain barrier), acting as a biological barrier (94). 

 

Figure 1.8  Simplified schematic representation of drug pumped out from 

intestinal cells into the lumen of the gut 

 Adapted with permission from (94) 
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1.6 Concurrent drug use 

 

In one study from the UK no significant reductions in the prevalence of use 

of any of the main illicit drugs were observed during an examination of changing 

patterns of illicit and non-prescribed substance use among ongoing clients of a 

methadone maintenance treatment service (95). This theme is consistent in the 

literature and suggests that a significant factor in MMT success revolves around 

concurrent illicit and prescription drug use while on methadone treatment. 

Saskatchewan currently uses the “Harm Reduction” model of methadone 

treatment. The methadone assisted recovery program in Saskatchewan can be 

an important harm reduction strategy to prevent the transmission of HIV and 

other infectious blood-borne pathogens. Furthermore, this form of treatment has 

potential to assist those using opioids to reduce illicit use, needle sharing, and 

criminal activity associated with opioid use. As well, there is strong evidence to 

support improved outcomes when methadone treatment for opioid dependence 

includes addiction counseling (96). 

 

1.6.1 Understanding drug tolerance, dependence and addiction – as both a 

physical and psychological condition 

 

Drug addiction although considered a chronic relapsing neurobiological 

disease is also related to multiple pathways of severe psychological distress (97). 

Large-scale surveys indicate that addiction cannot be described as a chronic 



 46

relapsing condition for the general population; however, it is so for psychiatric 

patients. Mood and anxiety disorders have been associated with an increased 

prevalence of drug use disorders. The mechanisms underlying the association 

with mental disorders and harmful drug use are still unclear, however, they may 

relate to receptor activity. Some research has suggested that higher exposure to 

opportunity to obtain illicit drugs among individuals with pre-existing mental 

disorders may contribute to the co-existence of drug dependence and other 

mental disorders (98). There appear to be several motives for drug use including 

social stress and pressures. Most drug addicts use their primary substance of 

choice in response to unpleasant emotions, urges and temptations and social 

pressure (99). Vulnerability to opioid substance abuse and dependence is 

behaviorally complex. It is a function of biological, psychological and 

environmental interactions and influences (100). Opioid abuse, as well as drug 

abuse in general, is dependent upon social factors and behavioral disorders that 

often coexist with psychiatric illness as well as co-morbid medical conditions.  

 The use of pharmacotherapies such as methadone, buprenorphine or 

other drug-based treatments must be used in a coordinated medication assisted 

treatment programs in order to enhance public health issues. Integrating these 

medication based treatment programs with other social, medical and community 

services provides the best platform for promoting recovery from opioid 

dependence (100). 
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1.7 Peripheral white blood cells as a model? 

 

The site of µ-opioid receptor action is most significantly on neuronal cells 

in the brain and central nervous system (CNS).  The obvious disadvantage to this 

is that in vivo experimentation with human patients does not allow sampling 

spinal fluid or brain tissue. As early as 1988 research suggested that µ-opioid 

receptor were present on cells of the immune system (101;101), and more 

recently it was shown that µ-opioid receptors were present on human white blood 

cells subtypes such as lymphocytes, monocytes and granulocytes (102). Human 

µ opioid receptors (hMORs) are detectable on WBC using polyclonal antibodies 

and flow cytometry (103). Different studies (103),  (104) have suggested 

measuring WBC levels of opioid receptors mimics the overall effect of certain 

pathological conditions on neuronal expression of hMOR and therefore can be 

used as a relevant assessment of receptor behavior in neuronal cells under 

these conditions. This provides a convenient, practical way to assess drug 

dosing and its effect on opioid receptor function in human patients. However, no 

unambiguous proof exists that the cellular behavior in white blood cells of hMOR 

is identical to that in neuronal cells. This data, however, with consideration of 

these factors, should provide suggestive evidence of the behavior of certain 

signaling events related to methadone dosing. This model provides a practical 

way to involve MMT patients in dosing studies and measurements of in vivo 

signaling under different dosing regimens.  
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Defining the preexisting level of P-GP expression and activity in peripheral 

lymphocytes of transplant candidates may be a prerequisite to understanding 

how P-GP function may be modulated by immunosuppressive therapy or alter 

the therapeutic response (105). Thus, other researchers have looked at the 

correlation of P-glycoprotein levels versus activity on peripheral blood cells. The 

level of P-GP expression on lymphocytes of transplant candidates did not always 

correlate with the level of P-GP activity observed (105).   

 

1.7.1 Drawbacks of using human leucocytes  

Although collection of peripheral blood is a relatively non-invasive process 

and provides minimal risk or discomfort to the patient, it does provide a sample, 

which is not in direct involvement of the receptor function being studied. The 

effect of opioids is primarily on neuronal cells. By extrapolating the data from 

blood cells to neuronal cells may not be without challenge. As well, the 

expression of hMOR on WBC is significantly lower than of neuronal cells so that 

measurement is a more difficult task (106).  

Preliminary measurement of cAMP levels from WBCs of MMT patients 

revealed that this sample type provided relevant data about cAMP levels 

compared to methadone dose. This not only suggested a reliable model but was 

also suggestive of some kind of correlation between neuronal cell receptor 

function and levels of cAMP in blood cells. There is very little opportunity to 

experiment with human opioid receptors under in vivo conditions. The study of 

endogenous opioid receptors using in vivo models has produced some 
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interesting results that normally would not have been anticipated in vitro. 

Unfortunately, almost all of these studies are limited to rat, guinea pig or mouse 

(107).  In vivo studies are essential to provide more relevant insight into the 

mechanisms underlying opioid receptor regulation. Therefore, the model of WBC 

receptor function mimicking neuronal cell function may hold great promise in 

providing suggestive knowledge of tolerance, dependence and appropriate 

methadone dosing in human patients. 

 

 

1.8 Hypothesis & objectives 

Using a white blood cell model of neuronal receptors to assess practically 

several factors in the peripheral blood of both “low” dose and “high” dose 

methadone treatment subjects it may be possible to detect specific differences. 

Understanding discrepancies may contribute information necessary to make a 

better prediction of expected dosing levels. The objectives of this study were to: 

1) validate methods for the measurement of µ-opioid receptor expression and P-

Glycoprotein expression on white blood cells using flow cytometry, 2) reliably 

measure cAMP levels as an indicator of down stream signalling in white blood 

cells of methadone treated patients, 3) develop and validate a reliable method 

using ultra performance liquid chromatography coupled to tandem mass 

spectrometry to easily identify and quantitate a comprehensive list of more than 

40 drugs / drug metabolites in blood of drug dependent individuals.  
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These objectives are designed to provide information relevant to our 

hypotheses that: 1) Differences in dosing requirements may be due to 

differences in human µ-opioid receptor expression and/or P-glycoprotein 

expression in human subjects, 2) There may be differences between subjects in 

downstream signalling, which manifests as an attenuated cyclic AMP response 

and 3) Variations in concurrent drug use may influence methadone dosing 

requirements. 

By comparing all of the acquired data, we hope to determine any significant 

relationships between these parameters and the necessity to maintain some 

methadone subjects on “low” and “high” methadone dosing. Our overall 

objectives are: 1) To gain an understanding of extreme methadone dosing 

requirements in methadone maintenance subjects and 2) To determine 

practically measured chemical/biochemical markers, which may be used to 

predict more accurately, individual methadone dosing requirements. 
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Chapter 2. 

Methods and Analysis 

 

 

2.1 Experimental 
 

 

All experimental analytical work was performed at the Saskatchewan 

Disease Control Laboratory and the Pasqua Hospital in Regina, Saskatchewan, 

Canada for which I wish to acknowledge gratefully the foresight and 

understanding of management and staff at these facilities for placing value on 

educational enhancement and methodological research and validation. Ethics 

approval (Bio# 05-150) was obtained for this research on a yearly basis from the 

University of Saskatchewan Biomedical Research Ethics Board (Bio-REB)  

 

 

2.1.1  Daily schedule 

An overall approach was developed to collect and analyze samples 

appropriately. Several challenges arose when trying to acquire samples in a 

timely matter for analysis of viable samples, required for isolates and flow 

cytometry. Limitation in flow cytometer availability (1 h per day) was a significant 

factor. We created a theoretical schedule, which allowed us to collect from 2 – 3 

samples /day and yet complete all necessary analysis before the white cells 



 52

became less viable. Early on in this investigation we performed cell viability 

analysis by flow cytometry to ensure our sample collection, dextran 

sedimentation process and cell labeling produced reliable information.  

 

2.1.2 Blood collection and leukocyte isolation 

 

Patients were selected at random based upon their methadone dose, their 

arrival at the clinic (no appointment format) and as well their willingness to 

participate. An attempt was made to collect from both genders equally and over 

as wide an age range as practically possible. The intent of the research was 

explained to patients prior to their signing a consent form and each was 

remunerated an amount of twenty dollars per sample. 

Blood collection would take place early each day of analysis so that 

samples could be processed same day. Blood was collected by venipuncture 

with an attempt to acquire 5-8 mL of whole blood from each patient, in 2 X 5mL 

mL EDTA vacutainer tube. An aliquot of 200 µL was used for DOA screening.  .  

From most of the remaining blood (approximately 4 mL), WBC (section 2.1.4) 

were then isolated and used for measurement of cAMP, receptor number and p-

glycoprotein. Although a small amount of blood was retained whenever possible, 

it was found to be of limited value based on the strict time requirements and 

necessity to perform experiments on viable cells. 
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2.1.3 Preparation of Cells for further Laboratory Analysis 

 

Since the methadone clinic was remotely located, samples were 

immediately transported using appropriate transport containers (as required by 

“Transportation of Dangerous Goods” regulations). In the laboratory, a 200 uL 

aliquot of whole blood was refrigerated for LC-MS/MS analysis at a convenient 

time.  The white cell isolation process was then begun in the laboratory, which 

took approximately 90 minutes to perform. Immediately following white cell 

isolation an aliquot of white cell suspension was prepared for cAMP analysis as 

described later. Once suspensions were ready, they were frozen at -20º C for 

analysis at a more convenient time. Simultaneously, a sample of white cells was 

aliquotted for analysis of receptor expression by flow cytometry. These samples 

were prepared (as described later) with tubes placed as much as possible in a 

chilled container. The flow cytometry analysis was done at another facility so 

suspensions were stored in a chilled container on ice since cell viability was 

essential. Once these preparations were ready, they were immediately 

transported following appropriate transportation regulations and analyzed.  

A further aliquot of white cell suspension was stored at -20 ºC for analysis 

of P-glycoprotein levels at a more convenient time. Any unused white cells were 

then placed in storage at -20º C. Preparation of cells for analysis was 

accomplished within 3 hours of arriving back at the laboratory since the flow 
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cytometry experiments required travel to an off-site facility and had to be 

performed on fresh, viable cells. 

2.1.4 WBC isolation  

 

 

Leukocyte Separation from Blood Samples 

 

Dextrose was purchased from Becton Dickinson (Sparks, MD, USA), while 

dextran, sodium chloride, citric acid and sodium citrate·2H2O were all purchased 

from Sigma-Aldrich (Oakville, ON, Canada).  

ACD stock reagent was prepared by dissolving 2.25 g anhydrous 

dextrose, 2.51 g sodium citrate 2H2O and 0.73g anhydrous citric acid in 100 mL 

of 0.9% sodium chloride. A 6% dextran solution was prepared by dissolving 6 g 

dextran in 100 mL 0.9% NaCl. O.9% NaCl was prepared by dissolving 9 g NaCl 

in 1000 mL of de-ionized water. 5% NaCl was prepared by dissolving 5 g NaCl in 

100 mL water and 5% dextrose was prepared by dissolving 5 g dextrose in 100 

mL 0.9% NaCl. 

Sedimentation was performed using a dextran sedimentation method. We 

prepared sufficient volume of ACD/Dextran/Dextrose sedimentation solution as to 

be able to dilute blood sample with equal volume of solution. This combination 

reagent was prepared fresh each day and we used the following table to make 

the amount of solution required dependent upon how many samples we had. 
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Table 2.1 Volumes required to make working ACD/Dextran/Dextrose 

sedimentation solution 

 

 

 

 

 

 

 

 

Approximately 4 mL of fresh whole blood was pipetted into a 10 mL 

graduated cylinder with the exact volume being recorded. It was important for 

high yield of white cells that all reagents be equilibrated at room temperature 

specifically since they were stored at 4º C. At room temperature, we added equal 

volume of ACD/Dextran/Dextrose sedimentation solution to blood sample in a 

graduated cylinder. The cylinders were mixed by gentle inversion and allowed to 

sediment for 30-45 minutes. Yield of WBC would begin to decrease if 

sedimentation was allowed to continue past 45 minutes. The volume of blood 

was recorded. 

After sufficient time, the opaque supernatant was removed (plastic 

Pasteur pipettes) and equal amounts transferred equal to two 16 x 100 mm glass 

ACD 1.5 4.5 mL 

Dextran 4.0 15.0 mL 

Dextrose 3.5 10.5 mL 

 10 mL 30 mL  
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round-bottom tubes for centrifugation (2000 rpm; 4 C; 10 min),  after which the 

supernatant was discarded. To the pellets in each tube we added NaCl (0.8 mL; 

0.9%), and mixed well to suspend cells. After 90 seconds, we added 0.58 mL of 

5% NaCl and mixed to restore isotonicity. Pellets were recovered by 

centrifugation at 2000 rpm for 5 minutes and supernatant was discarded.  

This entire process from the point of adding 0.8 mL of 0.9% NaCl was 

repeated once more. If the pellets remained contaminated with red blood cells, 

we added 1.5 mL distilled water and mixed well. After 90 seconds, we added 

0.36 of 5% NaCl to restore isotonicity. Pellets were then recovered by 

centrifugation at 2000 rpm for 5 minutes and supernatant was discarded. Pellets 

were then stored at -70º C or assayed immediately dependent upon the specific 

test requirements. Each pellet represented approximately 2 mL of whole blood 

collected (exact volume recorded) 

 

 

 

2.2 cAMP measurement 

 

For determination of cAMP levels in cell lysates, a commercial 

immunoassay kit from Assay Designs, a division of Enzo Life Sciences was used 

(Product # ADI-901-163). Immunoassay kits were purchased from MJS Biolynx 

Inc. Brockville, Ontario, Canada).  
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The cyclic AMP Complete Enzyme-Linked Immunosorbent Assay (ELISA) 

kit is a competitive immunoassay for the quantitative determination of cyclic AMP 

in cells and tissue treated with 0.1M HCl, in addition to culture supernatants, 

saliva, and serum. The optional acetylated assay format provides an approximate 

10 fold increase in sensitivity and is ideal for samples with extremely low levels of 

cAMP. If expected levels of cAMP are unknown, the investigator may evaluate a 

few samples in the non-acetylated format in order to determine if higher 

sensitivity is required (108). 

 

 

 

Figure 2.1      Structure of cAMP Molecule 
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2.2.1 Assay procedure 

For each run, we generated a 96-well layout sheet and referred to it to 

determine the locations of unused wells. We removed wells that were not needed 

for the assay and returned them, with the desiccant, to the mylar bag. We stored 

unused wells at 4°C. 

Note: If the acetylated format of the assay is to be run, all standards, samples, 

and the diluents for the NSB and Bo wells must be acetylated as per the 

instructions in the reagent preparation section. Preparation of standards must be 

performed within 30 minutes of use if the acetylated format is being run. We 

found that for our purposes we acquired sufficient sensitivity when measuring 

cAMP in cell lysates using the non-acetylated protocol. 

Since we were using samples prepared in 0.1M HCl, it was necessary to 

pipet 50 μL of neutralizing reagent into each well except the Total Activity (TA) 

and Blank wells. To each well we then pipetted 100 μL of the appropriate 

standard diluent (Assay Buffer 2, 0.1M HCl, or non-conditioned culture media) 

into the NSB (non-specific binding) and Bo (0 pmol/mL standard) wells. Next, we 

added 50 μL of standard diluent to the NSB wells. 100 μL of Standards #1 

through #5 were then pipetted into the bottom of the appropriate wells. This was 

followed by the addition of 100 μL of the samples to the bottom of the appropriate 

wells. 50 μL of the blue conjugate was pipetted into each well except the TA and 

Blank wells, followed by 50 μL of the yellow antibody into each well except the 

Blank, TA, and NSB wells. 
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Note: At this point we performed a quick check to ensure that every well used 

was a green in color except the NSB wells which should be blue. The Blank and 

TA wells were empty at this point and had no color. 

The plates were then sealed and incubated on a plate shaker (~500 rpm) 

at room temperature for two hours. The plates were then manually washed by 

emptying the contents of the wells and washing with 400 uL of wash buffer. This 

was repeated 2 more times for a total of 3 washes. After the final wash the plates 

were emptied by aspiration and firmly tapped on a lint free paper to remove any 

remaining wash buffer.  

The final steps involved pipetting 5 uL of blue conjugate into the TA wells, 

after which, 200 μL of the substrate solution was pipetted into each well. The 

plates were then incubated for one hour at room temperature without shaking. 

Finally 50 μL stop solution was pipetted into each well. 

After blanking the plate reader against the substrate blank, we read optical 

densities at 405 nm. Note: If plate reader is not capable of adjusting for the 

blank, manually subtract the mean OD of the substrate blank from all readings. 

 

The procedure can be summarized as follows: 

1) Standards and samples are added to wells coated with a GxR IgG antibody. A 

blue solution of cAMP conjugated to alkaline phosphatase is then added, 

followed by a yellow solution of rabbit polyclonal antibody to cAMP.  2) During a 

simultaneous incubation at room temperature the antibody binds, in a competitive 

manner, to the cAMP in the sample or conjugate. The plate is washed, leaving 
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only bound cAMP. 3) pNpp substrate solution is added. The substrate generates 

a yellow color when catalyzed by the alkaline phosphatase on the cAMP 

conjugate. 4) Stop solution is added. The yellow color is read at 405nm. The 

amount of signal is indirectly proportional to the amount of cAMP in the sample. 

Measurement of cAMP levels from WBC isolates were performed after an 

incubation period with increasing concentrations of methadone. Maximal 

activation of cAMP production can be consistently achieved using forskolin (a 

known adenylyl cyclase activator) (109). Enhancement of adenylyl cyclase by 

forskolin was successful with a 30 minute incubation at room temperature.  On 

three separate occasions, using three different whole blood samples, white cells 

where isolated using the dextran sedimentation method. Incubation of intact cells 

with 30 uL of 20 uM forskolin produced the following increase in cAMP 

concentration: 

 

Approximately 10 6 cells/ mL of lysate 

Concentration cAMP (pmol/mL) 

     Pre incubation          Post incubation          increase 

1. 1.2   11.1   X 9.25 

2. 0.65   5.2   X 8 

3. 0.69   7.0   X 10.1  
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2.2.2 Further assessment of white cell viability 

 

To assess white cell viability and the cAMP second messenger signaling 

pathway, we treated white cell isolates with epinephrine and measured cAMP 

levels. 200 uL of cell isolates were incubated with 50 uL of 20 uM epinephrine. 

To test the viability of our experiments we utilized epinephrine and evaluated the 

β-adrenergic receptor pathway, by measuring cAMP levels. 
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Figure 2.2 Plot of cAMP level as a function of incubation time with epinephrine 
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The resulting increases of cAMP levels in cells treated with epinephrine 

were suggestive that the white cell isolates were still viable. Along with flow 

cytometric evidence of the same, we concluded that the cells should be receptive 

to treatment with methadone for dose response curves and subsequent 

measurement of cAMP production. We also performed brief experiments to 

ascertain that frozen white cell samples were suitable for measurement of cAMP 

with no degradation.  

 

 

Table 2.2   cAMP values from frozen cell lysates 

 

         Assessment of frozen White Cell Stability for cAMP Measurement 

Storage at -20 
 
 

2 hr post 
isolation 
  

1 day 
post 

isolation  

4 days 
post 

isolation 
       

  
cAMP 

pmol/mL     
       
  4.7  4.8  4.7 
  5.2  5.5  5.2 
  5.2  4.6  5.2 
  5.4  4.4  5.4 
  5.5  5.3  5.5 
  5.2  4.9  5.2 
  4.8  5.4   
  5.5     
  4.6     
  4.4     
Mean  5.05  5.0  5.2 
SD  0.395  0.422  0.276 
       
%CV  7.82  8.46  5.30 
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Thus, incubation with hMOR agonist must be performed on the same day as 

collection of blood samples; however, analysis of cAMP can be performed at a 

later date on frozen, lysed cell preparations.  

When the activity of adenylyl cyclase becomes inhibited, less or no cAMP 

is being made. Since cAMP is constantly degraded by phosphodiesterase, the 

levels begin to fall. This should allow us to measure the specific dose-response 

of cAMP for each patient. Work was performed to optimize experimental 

parameters so that reliable dose-response curves could be acquired for each 

patient.  
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Figure 2.3 Typical cAMP Standard Curve. Standard curve plot of concentration 

vs. O.D for cAMP assay  
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2.3  Flow Cytometry* 

*Isolate white cells as before (2.1.4) 

 

Reagents and materials 

32 µM [D-Ala2, N-Me-Phe4, Gly5-ol]-Enkephalin acetate salt (DAMGO), 

Forskolin and Epinephrine were purchased from Sigma-Aldrich Oakville, ON, 

Canada Naloxone –FITC was purchased from Invitrogen (Burlington, ON, 

Canada). PBS buffer (phosphate buffered saline) was acquired from the Media 

Preparation Facility at the Saskatchewan Disease Control Laboratory (Regina, 

Canada).  

Reagent Prep 
 
32 µM [D-Ala2, N-Me-Phe4, Gly5-ol]-Enkephalin acetate salt (DAMGO)  

MW: 513.59, was prepared by dissolving 1 mg of pure chemical in 5 mL PBS 

buffer.  This solution was subsequently diluted 1/12 by addition of 5 mL DAMGO 

solution in 55 mL PBS buffer  and stored in a screw top glass tube. 

 8 uM Naloxone Fluorescein in PBS buffer was prepared by weighing out 

approximately 2 mg in a screw top glass tube. The exact weight was recorded 

and 100 mL PBS buffer for every 2.0 mg was added to yield a 25.3 µM naloxone 

solution. A further 1/3 dilution was made to provide a Naloxone solution of 8 uM. 
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Method 
 

 

One pellet of white blood cells acquired in the isolation process was 

suspended in 3 mL PBS buffer. Five 200 uL aliquots of this homogenous 

suspension were pipetted into five separate 12 X 75 polystyrene flow cytometry 

tubes. Background (BG), total binding (TB) in duplicate, and specific binding (SB) 

in duplicate. To the BG and TB tubes, we added 30 µL PBS buffer. To the SB 

tubes, we added 30 µL 32 µM DAMGO. The tubes were then vortexed 

thoroughly for 15 seconds. These tubes were incubated at room temperature in 

the dark for 30 minutes with a quick vortex approximately every ten minutes. 

These tubes were then Centrifuged at 2000 rpm for 3 minutes after which, the 

supernatant decanted. Next, the pellet was re-suspended in 2 ml of PBS buffers 

After 30 seconds of vigorous vortexing the tubes were centrifuged at 2000 rpm 

for 3 minutes and the supernatant was decanted off.  

This wash step was repeated once more and then the pellet was 

reconstituted in 200 uL of PBS buffer. We then added 30 uL of Naloxone-FITC 

solution to all TB & SB tubes. Next we added 30 µL of PBS buffer to BG tube. 

We then vortexed all tubes to mix well. These tubes were incubated at room 

temperature in the dark for 30 minutes with a quick vortex approximately every 

ten minutes. These tubes were then centrifuged at 2000 rpm for 3 minutes after 

which, the supernatant decanted. We repeated the above wash step three times. 

Finally we re-suspended in 0.5 mL PBS buffer for flow cytometry analysis.  
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Samples had to be kept cool on ice for the approximately 20 minute drives 

to the Pasqua Hospital for flow cytometric analysis. Scheduling with this facility 

was crucial so that there would be allotted time to perform our analysis. 

Sometimes clinical samples of medical emergency would arrive that would 

exclude us from the arranged schedule or prevent us from having any time for 

that particular day. Staff at the facility was very accommodating, but 

understandably, clinical samples from hospital patients were given priority.  

 

 

Analysis 

Earlier work with University of Regina honors student Adam Clay had 

resulted in a workable flow cytometry method for the detection and measurement 

of relative expression of the human µ-opioid receptor on the surface of 

leukocytes (110). Initial work revealed that high dose methadone maintenance 

patients had expression of receptors at a high enough level for analysis by this 

method. Further work in this study suggests that expression of µ-opioid receptors 

is adequate for measurement by this technique on chronically dosed subject, 

regardless of the dose. Naïve subjects, however, did not express levels that 

could be reliably measured using this technique. This data is displayed later in 

the thesis.  
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Isolated leukocytes, as described above, were introduced to the flow 

cytometer in appropriate dilutions, which provided approximately 1 x106 cells/mL. 

The instrumentation was an automated FC 500 from Beckman Coulter, which 

utilized CXP version 2.2 controlling software. Optimized dot plot resolution was 

achieved on the first couple of experimental attempts and then specific method 

files were created with appropriate parameters for subsequent analysis. Voltages 

and gains were adjusted for forward and side scatter to isolate the 3 leukocyte 

populations of interest (monocytes, granulocytes and lymphocytes).  

Cells were labeled with a fluorescently coupled opioid receptor ligand – 

naloxone. This naloxone-FITC (fluorescein isothiocyanate) was incubated with 

cells in buffer alone to determine total fluorescence. Some of the binding of this 

label would be contributed to non µ-opioid receptors.  Cells not treated with 

naloxone-FITC, but all other components were used to determine background 

fluorescence levels. Specific µ-opioid receptor ligand DAMGO ([D-Ala2, N-

MePhe4, Gly-ol]-enkephalin) was added in excess to cell isolates and incubated 

for 20 minutes in the dark at room temperature to samples for specific binding 

fluorescence. DAMGO has preferential affinity over the naloxone-FITC for the µ-

opioid receptor. 
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Figure 2.4                  Chemical structure of DAMGO 

 

 Thus competitive binding resulted in only non-specific binding in these samples 

by the fluorescent label-compound. 

 

 

Percent specific labeling was calculated by the following equation: 

[(TF – BG) – (NSF – BG)]      x 100% 
         (TF – BG) 
 

Where:  TF = Total Fluorescence 

              BG = Background fluorescence 

              NSF = Non-specific fluorescence 
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Figure 2.5                    Chemical Structure of  Naloxone-FITC. This was the 

flurophor used in labelling hMOR for analysis by flow cytometry.   

    

Using CD45, a leukocyte marker, we were able to create representative 

histograms of regions within the flow cytometer dot plot for the 3 sub populations. 

They were defined as granulocytes (red), monocytes (blue) and lymphocytes 

(yellow) based on forward and side scatter. Histograms showing regions of viable 

and non viable cells based on morphology gave the following data from our 

dextran sedimentation method.  

 

Table 2.3 Table of viability of white blood cell types after isolation by dextran 

sedimentation (n =4) 

Leukocyte 
Subpopulation 

Dextran Sedimentation -  
Cell Viability by Flow 

Cytometry 
 

Granulocytes 81 ± 3 % 
Leukocytes  91 ± 2 %  
Monocytes 95 ± 5 % 

Average 90 ± 6 %  
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In the analysis of µ-opioid receptors all fluorophores were excited using a 20 mW 

argon laser, excitation wavelength = 488nm. Emission intensities were detected 

at 510 – 540 nm for FITC. Raw data was analyzed using the CXP cytometer 

software.   
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Negative Control (background fluorescence) 

Figure 2.6   Flow cytometry data for a negative control showing background 

fluorescence 
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Total Fluorescence 

 

 

 

Figure 2.7   Flow cytometry data for an MMT subject showing total fluorescence 

(specific and non-specific labelling)  
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Specific fluorescent Labeling (non-DAMGO) 

 

 

Figure 2.8 Flow cytometry data for an MMT subject showing non-specific 

fluorescence (non-DAMGO) 
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2.4 LC-MS/MS Analysis of Drugs and Metabolites in Blood Samples 

(Published Procedure)(111) 

 

(a)Abstract 
 
 

Primary objective: To replace immunoassay screening for drugs of abuse 

(DOA) with a cost effective tandem mass spectrometry method.  

Secondary objective: To substantially expand the drugs of abuse assay menu. 

Design and methods: The requirement was to perform high throughput DOA 

screening for 200 urine specimens/day for 40 drugs/metabolites. The total 

analysis time had to be < five minutes. We used UPLC chromatography, small 

particle size LC columns and fast scanning tandem mass spectrometry. Urine 

samples were hydrolyzed enzymatically, diluted and injected with isotopically 

labeled internal standards. The data produced was transferred by exporting 

reports as text files to an LIMS system followed by auto certification of the 

results. 

Results: 40 different drugs were separated by UPLCTM (ultra high-pressure liquid 

chromatography) with a run time of 5.2 minutes. Detection limits were below our 

cut-off values. Individual drug species instead of drug classes were identified; 

correlation with GC/MS was excellent. A high throughput, robust assay with 

acceptable accuracy, precision and specificity was developed. The procedure 

can also be used as a quantitative method with simple modifications.  
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Conclusions: An improved, high throughput, cost-effective method for drugs of 

abuse screening has been implemented. GC/MS confirmations were reduced or 

eliminated. The new procedure is a viable alternative to our previous 

immunoassay method. Acceptable turn around times, an expanded menu, 

simplified sample preparation and analytical reliability make this method a 

desirable option in the clinical laboratory setting. 

 

 

(b) Introduction 

Commercial immunoassay systems, which were originally developed in the 

1950’s, have evolved over time to provide extensive test menus in the area of 

drugs of abuse screening (112;112). Today’s immunoassays provide forensic 

laboratories with qualitative screens for many different drugs. Previously NIDA 

(National Institute for Drugs of Abuse) and currently SAMHSA (The Substance 

Abuse and Mental Health Service Administration) set proposed cut-off 

concentrations for drugs of abuse levels in urine based on detection of drugs 

and/or families of drugs by immunoassay techniques (113). 

Screening methods for drugs of abuse include immunoassays, which are 

calibrated at established cut-off levels. These cut-off values are not synonymous 

with assay detection limits, but are higher than the detection limit to ensure 

reliability. Immunoassays lack drug specificity, positive screens must therefore be 

confirmed by an alternate, more definitive confirmatory test (generally GC/MS) 

(114).  
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Substantial and variable cross-reactivity exist to each species within a class of 

drugs such as in a specific amphetamine/methamphetamine assay (115), where 

sometimes more than a ten-fold difference in concentration is required to create 

a “positive” result. In measuring the benzodiazepines (116) further complications 

arise because not only different parent species cross react differently, but the 

metabolites and conjugated forms of the drug display varying degrees of cross 

reactivity as well.   

With the employment of tandem mass spectrometry, much more specific results 

can be obtained as to exactly which drug(s) is present (117). For the clinician this 

provides a much better understanding of drug usage. As well, as previously 

discussed, custom test “menus” could be developed to suit the needs of 

individual screening laboratories based on the demands of individual 

geographical or social regions. 

 “Rapid” liquid chromatography coupled with tandem mass spectrometry is a 

promising approach to replacing immunoassay techniques in the quest for more 

reliable, high through put drugs of abuse screening (118). Many forensic 

laboratories have incorporated liquid chromatography – tandem mass 

spectrometry in drug screening and identification (119-121), however, to date 

there is no comprehensive approach to replacing immunoassay systems which 

many drugs of abuse screening facilities currently use (122).  

In the method described in this paper 40 drugs were analyzed using 

tandem mass spectrometry using labeled internal standards for every class or 
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family of drugs. Rapid chromatography and short run-times made it possible to 

analyze at least 200 urines in a 24- hour period(123).  

 

 

(c) Materials and Methods 

Chemicals and Reagents: HPLC grade acetonitrile and methanol, as well as 

reagent grade formic acid were obtained from Fisher Scientific (Ottawa, ON, 

Canada). Steam-distilled water was purchased from Arctic Glacier Inc. (Regina, 

SK, Canada).  96-well V-bottomed plates were purchased from Sarstedt Ind. (St. 

Leonard, QC, Canada), and the plates were sealed with common aluminum foil. 

All pipetting was done using adjustable Gilson and/or Rainin pipettes, Mandel 

Scientific (Guelph, ON, Canada). Certified drug-free urine as well as Urine 

Toxicology controls C3, C4, S2E, and S1 were purchased from Bio-Rad 

Laboratories (Montreal, QC, Canada). Beta-glucuronidase, type H-1; from Helix 

pomatia was purchased from Sigma-Aldrich (Oakville, On. Canada) 

All Cerilliant (Round Rock, Texas, USA) analytical drug reference standards both 

labeled and unlabeled were obtained from the Canadian supplier Diagnostix 

(Thermo Fisher), (Mississauga, On. Canada). - See Table 1.  Ritalinic acid was 

purchased directly from the pharmaceutical company (Novartis, Basel, 

Switzerland). 

 

Instrumentation:  Chromatography (UPLC) was performed using a Waters 

Acquity UPLC TM system (Waters Corp., Milford, MA, USA), which included a 
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micro-titer well-plate auto-sampler. Chromatographic separation was achieved 

using an Agilent  ZorbaxTM Eclipse XDB-C18 (Agilent, USA) rapid resolution 

column (4.6 x 50 mm, 1.8 m) with a 0.2 m stainless steel frit guard assembly 

(Waters Acquity UPLC TM part # 205000303). Mobile phase A was water with 0.1 

% formic acid (FA) and mobile phase B was acetonitrile (ACN) with 0.1 % formic 

acid. Flow rate through the chromatographic system was 0.6 mL/min.  A gradient 

method was used starting with a 90% aqueous composition at time 0, and 

incorporating a linear decrease to 10 % aqueous composition at time 4.0 min. 

We then used a steep ramp to 2 % aqueous at time 4.2 followed by a return to 

starting conditions at time 4.7 min. Injection volume was 15 uL with a strong 

solvent wash of 50:50; ACN: H2O with 0.1 % FA and a weak solvent wash of 

5:95; ACN: H2O with 0.1 % FA. The seal wash was 5:95; ACN: H2O with no FA. 

MS/MS detection was performed on a Waters Premier XE triple quadrupole mass 

spectrometer (Waters Corp., MicroMass UK Limited). Selected Reaction 

Monitoring (SRM) analysis was done using the electrospray source in positive ion 

mode. (See Tables) 
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Figure 2.9 LC-MS/MS chromatogram displaying 10 labelled internal standards 

from 10 SRM function windows, as well as 9 drugs/metabolites detected in urine. 

Standards and QC Material: Stock drug standards of either 1.0 mg/mL or 0.1 

mg/mL were purchased as solutions in methanol. Further dilutions were made 

using methanol to obtain 1.0-ug/mL concentrations. All standards were stored at 

–20 degrees C. Labeled standards were acquired for each species, with the 

exception of ritalinic acid, which was not available commercially.  

Combined intermediate standards of varying concentration were prepared and 

stored at –20 degrees. C. Fresh working standards were prepared weekly in 

certified drug free urine at 2 concentrations. The first standard was prepared to 

be at or near the cut-off value for each drug and the second to be at 2 times the 
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cut-off value. Limited 3- point calibration curves were deemed appropriate, as 

this is a screening procedure to provide evidence of drug levels above the 

established cut-off level. Values greater than the cut-off value are simply reported 

as positive for that particular species. Extrapolated values were never reported 

quantitatively. Each analytical batch required running a standard curve for each 

drug species using certified urine blank, a standard at the cut-off level for each 

drug in duplicate and a standard at 2 times the cut-off level. All standards were 

processed as samples with labeled internal analogs added. In cases of 

significant consequences or in medico-legal situations, subsequent quantitative 

analyses were performed using similar analytical techniques with alterations as 

listed: 

 1. A multi-point standard curve. 

 2. Utilization of a labeled standard for each drug/metabolite identified 

 3. Incorporation of at least one qualifier transition for each species  

 4. Acceptable relative abundance ratios between transitions (+/- 20%) (124) 

Recovery: To assess recovery from matrix, blank urine was spiked with each 

drug at 2 levels (n = 10). The first level was at 80 % of our proposed cut-off 

values, the second level was twice that of our proposed cut-off. The spike levels 

were chosen to focus on the expected levels of interest near and above our 

anticipated cut-off points.  (Table 3.) 

 

Precision and Carry over: Carryover was assessed by injecting samples spiked 

with high levels of each drug (20 X cut-off), followed by 3 blank urines. For 
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instance, if the cut-off value is 500 ng/mL, as in the case of amphetamine, a urine 

blank was spiked at 10,000 ng/mL. Three blank samples were analysed 

immediately following this sample and assessed to ensure they exhibited a value 

of no more than 20% of the cut-off for this compound (100 ng/mL).  Inter- and 

Intra-assay precision was established by spiking urines at 80 % of cut-off as well 

as 120 % of cut-off. For inter-assay precision, 10 samples of each level, for each 

drug were injected on 5 separate days and % CV’s calculated. For intra-assay 

precision, 20 replicates of each level of spiked urine were run re-pipetted and 

analysed in the same manner. 

(Table 3.) 

 

Quality Control: For day-to-day quality control, an in-house QC material in urine 

was prepared at the cut-off level for each drug. As well, two levels of 

commercially available “drugs of abuse” QC material were analyzed, which 

contained 14 commonly found drugs of abuse. These controls also contain 

morphine-glucuronide, so that monitoring of our hydrolysis process is 

accomplished by calculating daily recoveries of free morphine.  Quantitative 

values were plotted on a Levy-Jennings Chart. (Figure 3.)   

 

 

Sample Preparation: In order to develop a high throughput method, a simplified 

preparation process was developed in-house to handle up to 250 specimens/day. 

A 500-uL aliquot of urine was placed in a small glass tube to which 50 uL of beta 
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glucuronidase solution was added (121). The tubes were then vortexed briefly 

and placed in a water bath at 65 deg. C. for 60 minutes. After removal from the 

water bath, 20 uL of supernatant was pipetted from each tube into a numbered 

location on a 96 well micro-titer plate. Standards and control were treated 

similarly so that the dilution factor from addition of the enzymatic solution was 

accounted for. Once all of the samples, controls and standards were added to 

the plate, 180 uL of water: methanol -  80:20 containing labeled internal 

standards was added. The plate was mixed for 30 seconds and analysed. 

When LSD testing was required, we performed a basic solvent extraction into 

chlorobutane, evaporated the solvent to dryness and reconstituted in mobile 

phase. This allowed reliable detection of less than 0.1 ng/mL LSD. Two external 

commercial control levels were carried through this same process. Matrix effects 

play a substantial role in quantitative analysis and must be considered for each 

analyte. Matrix effects are the alteration of ionization efficiencies due to the 

presence of co-eluting species (125). 

For further validation, the effects of ion suppression were measured, by running 

serial dilutions of all standards in urine matrix and monitoring the response 

(normalized for dilution) versus dilution (see Figure 2.). Inter and intra-assay 

precision at different levels was determined. Accuracy was measured by 

comparing recoveries to external QC material. Both LOQ (limit of quantitation) 

and LOD (limit of detection) were established for all analytes as well as 

determining linear ranges for standard curves. 
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Table 2.4 Complete List of drug compounds including internal standards 

along with their mass spectrometry parameters. 

 

 
 
Drug Name R.T. Function Mass Cone Collision Dwell Cut-Off
 (min)  Transition (V) Energy (sec) (ng/mL)
   (Quant.)  (V)   
        
Function 1: SRM of 3 mass pairs, Time 0.8 to 1.40     
Morphine 1.11 1 286.2 > 164.9 45 36 0.1 100 
Hydromorphone 1.21 1 286.1 > 185.0 45 33 0.1 100 
Morphine D3 1.1 1 289.2 > 164.9 45 36 0.1 NA 
Function 2: SRM of 7 mass pairs, Time 1.40 to 1.90     
Amphetamine 1.68 2 136.0 > 118.9 12 10 0.01 500 
Amphetamine D5 1.68 2 141.0 > 124.0 12 10 0.01 NA 
Pseudoephedrine 1.5 2 166.2 > 148.0 12 10 0.02 500 
MDA 1.74 2 180.0 > 163.0 18 15 0.01 500 
Codeine 1.49 2 300.2 > 165.0 35 33 0.02 150 
Oxycodone 1.65 2 316.3 > 241.2 30 25 0.01 100 
6-MAM  2 328.2 > 211.0 45 30 0.01 25 
Function 3: SRM of 7 mass pairs, Time 1.65 to 2.10     
Methamphetamine 1.8 3 150.1 > 119.0 15 12 0.01 500 
MDMA 1.85 3 194.1 > 163.0 20 16 0.01 500 
MDMA D5 1.84 3 199.1 > 165.1 20 16 0.01 NA 
MDEA 2.01 3 208.1 > 163.1 25 12 0.01 500 
Ritalinic Acid 1.98 3 220.5 > 84.0 25 22 0.01 500 
Norfentanyl 2 3 233.0 > 84.3 25 18 0.01 50 
Hydrocodone 1.75 3 300.3 > 199.1 45 30 0.01 100 
Function 4: SRM of 3 mass pairs, Time 1.85 to 2.30     
Ketamine 1.99 4 238.0 > 179.0 40 20 0.01 100 
BE 2.08 4 290.2 > 167.9 30 25 0.01 150 
 
 
BE D8 2.08 4 298.2 > 171.0 30 25 0.01 NA 
Function 5: SRM of 6 mass pairs, Time 1.85 to 2.30     
Methylphenidate 2.26 5 234.1 > 83.8 25 22 0.02 100 
Normeperidine 2.37 5 234.2 > 160.0 30 22 0.02 200 
7-amino-Clonazepam 2.16 5 286.2 > 222.1 40 25 0.02 100 
7-amino-Clonazepam D4 2.16 5 290.1 > 226.1 40 25 0.02 NA 
LSD 2.35 5 324.3 > 223.1   0.02 0.5* 



 85

Cocaine 2.39 5 304.2 > 182.0 30 25 0.02 150 
Function 6: SRM of 7 mass pairs, Time 2.20 to 2.90     
PCP 2.62 6 244.2 > 158.9 20 14 0.005 25 
Meperidine 2.4 6 248.1 > 220.1 35 26 0.005 200 
Meperidine D4 2.4 6 252.2 >  224.1 35 26 0.005 NA 
Diphenhydramine 2.71 6 256.0 > 167.0 20 15 0.005 100 
7-amino-Flunitrazepam 2.42 6 284.1 >135.1 45 28 0.005 100 
Fentanyl 2.67 6 337.1 > 187.8 40 26 0.005 25 
Flurazepam 2.68 6 388.2 > 315.1 33 22 0.005 100 
Function 7: SRM of 5 mass pairs, Time 2.75 to 3.50     
EDDP 2.88 7 278.2 > 234.1 40 25 0.008 100 
Oxazepam 3.31 7 28.0 7> 241.0 25 22 0.008 100 
Methadone 3 7 310.3 > 265.1 25 20 0.008 100 
Methadone D9 3 7 319.4 > 268.2 25 20 0.008 NA 
a-Hydroxy-Alprazolam 3.12 7 325.1 > 297.1 50 28 0.008 100 
Function 8: SRM of 5 mass pairs, Time 3.20 to 3.60     
Alprazolam 3.34 8 309.2 > 281.1 45 33 0.005 100 
Clonazepam 3.44 8 316.2 > 270.1 40 25 0.005 100 
Clonazepam D4 3.44 8 320.2 > 274.1 40 25 0.005 NA 
Lorazepam 3.38 8 320.9 >229.1 40 30 0.005 100 
Triazolam 3.4 8 344.2 > 309.1 40 28 0.005 100 
Function 9: SRM of 6 mass pairs, Time 3.3.5 to 4.50     
Nordiazepam 3.49 9 271.1 > 140.0 42 24 0.01 100 
Diazepam 3.96 9 285.1 > 154.0 42 30 0.01 100 
Des-alkyl-Flurazepam 3.56 9 289.1 > 139.9 42 28 0.01 100 
Diazepam D5 3.96 9 290.1 > 154.0 42 30 0.01 NA 
Temazepam 3.68 9 301.0 > 255.1 25 20 0.01 100 
Flunitrazepam 3.64 9 314.0 > 268.1 40 30 0.01 100 
Function 10: SRM of 2 mass pairs, Time 4.48 to 5.20     
THC-COOH 4.85 10 345.3 > 327.2 40 18 0.12 15 
THC-COOH D9 4.85 10 354.3 > 308/.2 40 18 0.12 NA 
        
* Extra sample preparation       
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LOQ was determined by using minimum criteria of < 20% CV (interassay 

precision) and a signal to noise ratio of > 10.  LOD was determined using a 

minimum criterion of signal to noise ratio of > 5:1, determined by analysis of 

blank compound enriched with increasing amounts of pure drug standard. 

Linearity from zero to twice the cut-off value for each drug was determined by 

constructing calibration curves (n=5) for each drug at 1:3, 1:2, 2:3, 1:1, 3:2 and 

2:1of the cut-off values. The best fit for the calibration curves was determined by 

applying both linear and quadratic equations and trying different types of 

weighting. For screening purposes, 1 X blank urine, 2 X the cut-off standard and 

1 X twice the cut-off standard were used to construct a 3-point calibration curve 

with extra weighting at the cut-off (crucial) value. 
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Figure 2.10 Example of Levi-Jennings QC charts plotted on a daily basis for 

each analytical run. Each drug is plotted at 2 different levels    
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With the introduction of automated 96-well extraction plates, high-throughput 

approaches to biological sample preparation are now possible (123). When using 

a urine matrix, ion suppression could be adequately controlled and monitored 

using a dilution approach that gave reliable results.  

 

Table 2.5 LC-MS/MS data - correlation to other screening and confirmatory 

methods. Data based on n > 2000 urine samples from drug treatment clients 

screened  

 
Positive for 
Amphetamines 
by CEDIA* 

Confirmed 
Positive by 
GC/MS** 

Screened 
Positive by 
LC/MS/MS*** 

Correlation Identification 

169 151 – species 
identified 

151 – species 
identified 

100% 
correlation+ 
(GC/MS to 
LC/MS/MS) 

+Same 
species 
identified 
above the cut-
off 

 18 samples 
negative 

18 samples 
negative 

100% 
correlation + 

+same 
samples 
negative 

     
Positive for 
Opiates by 
CEDIA* 

Confirmed 
Positive by 
GC/MS** 

Screened 
Positive by 
LC/MS/MS*** 

  

203 200 – species 
identified 

201 – species 
identified 

99.5% 
correlation + 
(GC/MS to 
LC/MS/MS) 

+Same 
species 
identified 
above the cut-
off 

 3 samples 
negative 

2 samples 
negative 

  

     
Positive for 
THC by 
CEDIA* 

Confirmed 
Positive by 
GC/MS** 

Screened 
Positive by 
LC/MS/MS*** 

  

227 227 227 100% 
correlation + 
(GC/MS to 

+ THC-COOH 
identified 
above 15 
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LC/MS/MS) ng/mL 
     
Positive for 
Cocaine by 
CEDIA* 

Confirmed 
Positive by 
GC/MS** 

Screened 
Positive by 
LC/MS/MS*** 

  

96 96 96 100% 
correlation + 
(GC/MS to 
LC/MS/MS) 

+Positive for 
Cocaine 
and/or BE 
above 150 
ng/mL 

     
 
 
 
•*Greater than 1000 ng/mL (Amphetamines), 300 ng/mL (Opiates), 50 ng/mL 
(THC), 300 ng/mL cocaine 
•** Greater than 500 ng/mL (Amphetamines), 150 ng/mL (Opiates), 15 ng/mL 
THC-COOH (THC) and 150 ng/mL cocaine or benzoylecgonine (cocaine)  - 
Species identified 
•*** Greater than 500 ng/mL(Amphetamines), 100 ng/mL (Opiates), 20 ng/mL 
THC-COOH, 150 ng/mL cocaine or benzoylecgonine (cocaine) – Species 
identified – 100% correlation (GC/MS)  
 
Analytical Optimization: Injection of each compound was performed to optimize 

dwell times so that a minimum of 25 scans across each chromatographic peak 

were obtained. Since the entire run is comprised of 10 different experimental 

windows (different SRM functions – see Figure 1.), there exists slight overlap of 

SRM functions between individual experiments. Considering this overlap of SRM 

functions (potentially 2 X number of SRM scans), an effort was made to obtain a 

minimum of 20 points across each peak for any particular overlap period. This 

provided adequate sensitivity for all compounds at an acceptable LOQ. More 

points across the peak resulted in better integration and reproducibility; hence 

better analytical precision, especially at the lower end of quantitation. A method 

file was created to analyze the 40 drugs, which included all of the individually 

optimized parameters for each compound. 
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Analyzer and source parameters, which are not compound specific, were also 

developed (Table. 2.6) 

 
Table 2.6 Waters Quattro Premiere XE Tune Parameters 
 
 
Source (ES+) Settings Read backs (where 

applicable) 
Capillary (kV) 3.3 3.24 
Cone voltage Compound Specific Variable 
Extractor (V) 5.0 5.01 
Radio Frequency Lens (V) 0.5  
Source Temp. (Deg. C) 120 119 
Desolvation Temp. (Deg.C) 400 398 
Cone gas flow (L/Hr) 100 100 
Desolvation Gas Flow (L/Hr) 800 798 
Analyser   
Low Mass Q1 Resolution 15.0  
High Mass Q1 Resolution 15.0  
Ion Energy 1  0.8  
Entrance -2 -27 
Collision energy Compound Specific Variable 
Exit 0.2 -29 
Low Mass Q2 Resolution 15.0  
High Mass Q2 Resolution 15.0  
Ion Energy 2 0.8  
Multiplier (V) 665 -663 
Collision cell Gas Flow (mL/m) 0.11  
 
 
 
Quantitation: Optimization of quantitation parameters were developed using 

Waters Quanlynx software.  Quantitation parameters for each SRM transition 

were individually assigned based on peak width, retention time, and other 

general peak characteristics. Smoothing parameters were incorporated with a 

maximum number of smoothing iterations of two and in most cases the number 

of iterations was set at one, so that insignificant smoothing biases were created. 

Limit of quantitation (LOQ) for most compounds was set at 30 % of Cut-off value 
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or less. This allowed integration, quantitation and archiving of numeric data even 

when values were below the cut-off. Results were being reported as negative if 

below our established cut-off points (standard 1).  

 

Table 2.7 Method validation parameters for each drug 
 
*Calibration concentrations (ng/mL) 
 
A:   0, 0.5, 1.0, 2.0 
B:   0, 25, 50, 75 
C:   0, 150, 300, 450 
D:   0, 200, 400, 600 
E:   0, 500, 1000, 1500 
 

  %CV %CV  
Spiked 

Recovery 
% Accuracy 

to 
 Cut-Off  Intra-assay Inter-assay  in blank patient Biorad Urine
Compound  Value (ng/mL) Precision Precision S/N Urine (%)  QC material
(LSD requires extra sample prep)    n = 15 (n = 6) X 5  n=10       n=10 
       
7-amino-Clonazepam *(D)  100 12 14.7 29 97.18  

7-amino-Flunitrazepam *(D) 100 16.2 18.4 97 95.2  
a-Hydroxy-Alprazolam *(D) 100 8.6 13.9 176 97.3 91.8 

Alprazolam *(D) 100 14.6 18.4 345 77.6  
Amphetamine *(E)  500 5.4 12.9 1804 88.8 95.2 

BE *(B) 150 9 13.2 573 87.3 87.9 
Clonazepam *(D) 100 16.4 17.6 545 82.8  

Cocaine *(C) 150 12.2 12.5 8832 102.2  
Codeine *(C) 100 9.3 13.4 165 95.3 82 

Des-alkyl-Flurazepam *(D) 100 10.6 11.2 577 86.4  

Diazepam *(D) 100 6.9 9.7 475 95.7  
Diphenhydramine *(D) 100 13.4 13.8 6986 96.5  

EDDP*(D) 100 7 7.1 452 113  
Fentanyl *(B) 25 6.7 8.6 147 86.4  

Flunitrazepam *(D)   100 7.7 8.2 464 107.2  
Flurazepam *(D) 100 4.9 9.6 1488 99.7  

Hydrocodone *(C) 100 9.5 9.5 266 94.7  
Hydromorphone *(C) 100 6.1 9.4 1740 92  

Ketamine *(D) 100 8 10.5 379 101.5  
Lorazepam *(D) 100 17.7 19.6 261 80.1  

LSD * (A) 0.5* 11.1*  197* 83.8* 89.3* 
MDA *(E) 500 4.1 8.0 1155 104.2 97.1 
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Method Validation Results (At cut-off values for each drug) 

MDEA *(E) 500 7.6 8.8 192 83.4 96.7 
MDMA *(E) 500 8.1 7.9 87 90.2 84.2 

Meperidine *(E) 100 12.2 13.1 502 85.8  
Methadone *(C) 100 7.5 7.9 746 114.1 107 

Methamphetamine *(E) 500 8.5 8.8 221 87 86.1 
Methylphenidate *C 100 15.2 18.9 263 88.2  

Morphine *(C) 100 4.9 10.0 294 92.7  
Nordiazepam *(D) 100 10.3 10.3 733 95.8 113.6 
Norfentanyl *(B) 25 9.8 15.1 289 107.6  

Normeperidine *(D) 100 14.8 15.8 131 80.1  
Oxazepam *(D) 100 8.2 11.3 236 83.1  
Oxycodone *(C) 100 9.3 13.0 104 105.3  

PCP *(B) 25 14.5 18.7 56 82.5  
Pseudoephedrine *(E) 500 5.6 10.3 595 101.2  

Ritalinic Acid *(E) 500 11.1 16.5 260 118.1  
Temazepam *(D) 100 8.6 8.2 315 97.1  
THC-COOH *(B) 20 15 18.8 19 117.2 115 
Triazolam *(D) 100 17.8 18.0 203 113.1  
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Figure 2.11 Qualitative analysis of “positive” opiate results, which are generated 

based on SAMSHA guidelines: Comparison to analysis by GC/MS   

  

Laboratory Information System (LIS) Interface: In order to handle the significant 

amount of data generated for each urine specimen in a timely manner with error-

free data transfer, it was necessary to incorporate an interface directly to our 

laboratory information data system. Our in-house IT staff accomplished this task 
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by developing a text file transfer using the “export to LIS” feature in the Mass 

Lynx software. This allowed for the transfer of three crucial bits of information: 

the sample identification number, the test name e.g. morphine, codeine etc., and 

the numeric result e.g. 500 ng/mL. Specific analytes were reported as - Positive 

(equal to or greater than the established cut-off value) or Negative (less than the 

established cut-off value). Only positive test results were reported along with a 

comment stating that all other results were negative. (Figure 2.) 

Data Review: Post-run data review was performed every morning on QuanLynx 

software from data acquired the night before. Every individual integrated peak 

was reviewed to ensure reliable data had been generated. All internal standard 

peaks and response ratios were reviewed. While this may seem to be a labor- 

intensive task, it has become a routine part of the process and is normally 

accomplished in 1.5 – 2 hours each morning. Daily records are kept of column 

pressure, retention times and integrated areas of internal standards to assess 

method performance. Quality Control results of QC material were plotted daily on 

Levi-Jennings charts for each 96-well plate (Figure 3.). As soon as data files 

have been saved, they were up-loaded to our LIS system. If the LIS did not 

receive internal standard data it was assumed the sample has not been run. This 

prevented potential reporting of erroneous results where no data was acquired 

on a particular sample. We were able to process 200 – 225 specimens in this 

manner each morning.  This process still allowed time each workday for 

instrument maintenance, other low-volume analyses and/or the performance of 

“priority” analyses, or Stat samples. 
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Figure 2.11 Drug screen (Toxicology) report based on data transferred from 

instrument to LIS and converted from numeric to qualitative information based on 

cut-off values  

 (d) Results and Discussion 

Thousands of clinical urine specimens from drug treatment centers have been 

analyzed using the above described method. Results indicated that this is a 

reliable, high throughput method, which may replace traditional immuno-assay 

techniques in drug screening laboratories. Comparison to confirmatory methods 

(namely GC/MS) revealed a very high level of correlation. (Table 2.)  Specificity 

was markedly better than immunoassay. Even when only one SRM transition is 

used along with a chromatographic retention time, the tandem mass 

spectrometry method compares very well with GC/MS. Precision at or above cut-

off levels was acceptable when spikes and recovery experiments were done. 

Analysis of external QC material and comparisons to GC/MS suggest very 

acceptable accuracy. (Table. 3)  

All analytes produced relatively strong signals (S/N) at the cut-off levels, yet 

some analytes yielded significantly higher CV’s than others. This may be in part 

due to compound specific ionisation variability in the source. This is worthy of 

further investigation but was not addressed in this work. Imprecision of these 

compounds may also be improved by using a labeled internal standard for every 

compound, as is our practice in confirmatory testing. For screening purposes, 

this is less practical, since it begins to reduce SRM sensitivity by introducing 

many more transitions. 
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Chromatographic robustness was verified by confirming that the percent 

coefficient of variation for retention times from column to column was consistently 

around 1%. This was true when internal standard retention times were analyzed 

even across several column changes as well as daily mobile- phase changes 

over a four-month period. (Table 5.) 

An Agilent column (as discussed in Methods and Materials) was found to be 

more robust and develop much less backpressure. Pressures rarely exceed 

5,000 PSI even after a couple of weeks of use. Initial backpressure with a brand 

new Agilent column is approximately 2000 PSI with increase over time to 5000 

PSI, before any decrease in chromatographic resolution is noticeable. The 

Waters UPLC columns developed much higher backpressure and only lasted 

about 1- 2 weeks under strenuous use. The Agilent columns last on average 3 – 

4 weeks under similar conditions. 

The simplified sample preparation process allowed high sample throughput, and 

was compatible with routine and safe laboratory practice. No toxic extraction 

processes or sample clean up were required. Isotopically labeled internal 

standards were utilized, which are not present in urine samples of drug users. 

Specimens were enzymatically hydrolyzed since significant levels of several drug 

species such as morphine, oxazepam and lorazepam exist in urine as conjugates 

(126). Overall analysis time after hydrolysis was 5 minutes/sample. This 

achieved the goals of relatively high sample throughput. The fact that no 

chemical derivatizations were required eliminated the concerns relating to 
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variable derivatization efficiencies, as well as the time and labor associated with 

such tasks. 

Ion suppression is a common phenomenon in tandem mass spectrometry and 

must be evaluated and minimized for each drug of interest (127). This required 

some effort, since laborious, time-consuming sample preparation is not a viable 

option if high throughput and cost considerations are to be met. To remove or 

minimize matrix effects, modifications to the sample extraction methodology 

and/or improved chromatographic separation were required (125). Whether by 

solid phase extraction (SPE), liquid-liquid extraction, dilution and precipitation or 

fast flow, on line extraction with or without column switching, all analytes needed 

to be monitored for extraction efficiency by spikes and recoveries (128). The post 

column infusion method as defined by Bofiglio et al. was used. This involves the 

infusion of a constant amount of each analyte separately while injecting urine 

blanks. Regions of signal reduction indicate ion suppression. While this method 

is not truly quantitative, areas of ion suppression and their magnitude can be 

detected [108;109]. 

In our case simple dilution of urinary supernatant did not eliminate matrix effects, 

so careful consideration was given to this phenomenon.  Drug standards were 

introduced to the source through a tee junction along with mobile phase.  Urine 

blanks were diluted exactly as was done in our sample preparation process. 

Areas of signal decrease were monitored to detect major suppression effects for 

any of the drugs. The possibility exists that other drugs, which are not included in 

this panel, may interfere with this method. The use of two transitions, the 
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monitoring of ion abundance ratios and the use of chromatographic retention 

times are accepted criteria for quantitative tandem mass spectrometry, and 

provides much higher specificity and selectivity than immunoassays.  As 

indicated in Table 2., even as a screening procedure, this method shows high 

correlation to GC/MS confirmation.   

Confirmatory quantitative testing using more rigorous analytical criteria is easily 

accommodated for individual samples by the addition of multi-point standard 

curves, isotopically labeled internal standard for each compound, the use of a 

second qualifier ion and relative abundance ratio limits (119;124). Separate MS 

methods have been set up for this purpose, with a limited number of specific 

drugs in each method (e.g. opiates, benzodiazepines, etc.). This allows adequate 

sensitivity even with additional labeled internal standards and qualifier mass 

transitions. 
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Figure 2.13 Quantitative comparison of LC-MS/MS data to GC/MS data for 

analysis of THC-COOH in urine specimens   
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Financial considerations: Previous to the development of a tandem mass 

spectrometry methodology for “drugs of abuse” screening, the annual budget 

was $250,000 to $300,000 on immunoassay reagents alone. This cost did not 

include staffing, overhead or the added cost of confirmation by GC/MS. Our 

current cost of providing immuno-assay testing for barbiturates and ethanol (or 

possibly ethyl glucuronide) is approximately $25,000 / year. Annual costs to run 

the UPLC-MS/MS system are approximately $60,000 to $70,000. This includes 

reagents, control material, standards, service contract, chromatographic columns 

and other expendables as well as the beta-glucuronidase required for sample 

hydrolysis. 

This produced a yearly savings of between $160,000 and $210,000 and allowed 

cost recovery of the instrumentation within a 2- 3-years as well as providing 

improved testing capabilities. 

In summary, our method validation indicated that this is a highly specific, reliable 

and robust analytical technique in the challenging endeavor of detecting drug use 

for clinical reasons and may well meet or exceed the requirements for reliability 

and accuracy even for medical-legal purposes. 
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2.5 Measurement of total P-glycoprotein (P-GP) levels in white cell isolates 

 

P-GP was measured using a commercial immunoassay kit (Catalog No. CSB-

E11709h) purchased from CUSABIO BIOTECH CO., Ltd. (Hubei Province, 

P.R.China). This immunoassay kit allows for the in vitro quantitative 

determination of human P-GP concentrations in serum, plasma and other 

biological fluids. 

 

Principle of the Assay  
 
 
The microtiter plate provided in this kit has been pre-coated with an antibody 

specific to P-GP. Standards or samples are then added to the appropriate 

microtiter plate wells with a biotin-conjugated polyclonal antibody preparation 

specific for P-GP and Avidin conjugated to Horseradish Peroxidase (HRP) is 

added to each microplate well and incubated. Then a TMB (3,3'5, 5' tetramethyl-

benzidine) substrate solution is added to each well. Only those wells that contain 

P-GP, biotin-conjugated antibody and enzyme-conjugated Avidin will exhibit a 

change in color. The enzyme-substrate reaction is terminated by the addition of a 

sulphuric acid solution and the color change is measured spectrophotometrically 

at a wavelength of 450 nm ± 2 nm. The concentration of P-GP in the samples is 

then determined by comparing the O.D. of the samples to the standard curve. 
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Detection Range 

1.56 ng/ml-100 ng/ml.  

The standard curve concentrations used for the analyses were 100 ng/ml, 50 

ng/ml, 25 ng/ml, 12.5 ng/ml, 6.25 ng/ml, 3.12 ng/ml, 1.56 ng/ml. 

Specificity 

This assay recognizes recombinant and natural human P-GP. No significant 

cross-reactivity or interference was observed. 

Sensitivity 

The minimum detectable level of human P-GP was described as typically less 

than 0.39 ng/mL. The sensitivity of this assay, or Lower Limit of Detection (LLD) 

was defined as the lowest protein concentration that could be differentiated from 

zero. 

 

Assay Procedure 
 
 

Note: It was important to bring all reagents and samples to room 

temperature before use. It is recommended that all samples, standards, and 

controls be assayed in duplicate. 

We added 100μl of Standard, Blank, or Sample to each well.  We then 

covered the plate with a tight seal cover (adhesive strips). The plate was allowed 

to incubate for 2 hours at 37° C. After incubation, we removed the liquid from 

each well, without a wash step. Next we added 100μl of Biotin-antibody working 

solution to each well and incubated for anther 1 hour at 37°C. 



 104

Note: Biotin-antibody working solution may appear cloudy. For this reason we 

warmed to room temperature and mixed gently until solution appeared uniform. 

The next step was to aspirate each well and wash, repeating the process 

three times for a total of three washes. We washed by filling each well with 

approximately 350μl of wash buffer using a squirt bottle, multi-channel pipette, 

manifold dispenser or auto-washer. Complete removal of liquid at each step is 

essential to good performance. After the last wash, we remove any remaining 

wash buffer by aspirating or decanting and then inverted the plate and blotted it 

against clean paper towels. Next we added 100μl of HRP-avidin working solution 

to each well and after covering the microtiter plate with a new adhesive strip, we 

incubated for 1 hour at 37° C. Immediately following this incubation we repeated 

the aspiration and wash step three times and then at this point we added 90μl of 

TMB Substrate to each well. The plate was then incubated in the dark for 30 

minutes at 37 °C - keeping the plate away from drafts and other temperature 

fluctuations. Finally, we added 50μl of Stop Solution to each well. To ensure the 

color change appeared uniform, we gently tapped the plate to facilitate thorough 

mixing. We determined the optical density of each well within 30 minutes, using a 

microplate reader set to 450 nm. 

 

Calculation of Results 

We averaged the duplicate readings for each standard, control, and 

sample and subtracted the average zero standard optical density. We then 

created a standard curve by reducing the data using computer software capable 
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of generating a four parameter logistic (4-PL) curve-fit. As an alternative, a 

standard curve could be constructed by plotting the mean absorbance for each 

standard on the y-axis against the concentration on the x-axis and drawing a best 

fit curve through the points on the graph. The data may be linearized by plotting 

the log of the P-GP concentrations versus the log of the O.D. and the best fit line 

can be determined by regression analysis. This procedure will produce an 

adequate but less precise fit of the data. If samples have been diluted, the 

concentration read from the standard curve must be multiplied by the dilution 

factor. 

All analyses of optical densities were performed on Wallac Victor-2 automated 

plate reader (Perkin Elmer Life Sciences, Turku, Finland) using Muti-Calc 

software. Standards, samples and controls were all run in duplicate.  
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Figure 2.14   P-GP Standard Curve GP based on a plot of concentration vs. O.D. 
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Chapter 3 

Results  

3.1 Methadone maintenance subjects 

 

Early on in this research, consultation was undertaken with Dr. W. 

Wildenboer, an addictions clinician here in Regina. Discussion with Dr. 

Wildenboer provided insight into the treatment process for her patients. She 

agreed to allow access to her clinic for collection of samples for this study, since 

she understands fully the challenges of methadone dosing. A copy of a letter of 

agreement with Dr. Wildenboer is attached in the appendix as appendix 1.0. The 

format for patients to receive counselling and treatment is a non-scheduled come 

and go arrangement. This made it difficult for us to predict if and when subjects 

would be available for specimen collection. The process, however, did allow for a 

random sampling of subjects based on who showed up on any particular day. 

This may have actually removed some of the possible sampling bias by us or by 

the clinician. The only requirements were that the subjects had been on chronic 

dosing for at least 6 months and they revealed age, gender and dose to us for 

the study. All other information was kept confidential. Originally, we were going to 

request a sample of urine for drug detection, however, modifications to the 

developed drug screening technique allowed this testing to be performed on 

whole blood.  
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3.2 Methadone maintenance subject information: 

 

A total of 38 samples of blood were successfully obtained from individual 

subjects who agreed to provide blood samples for this study. An attempt was 

made to obtain roughly the same amount of samples from both genders, with the 

final number being 19 female and 19 male participants. The age range was from 

20 to 66 years old. The mean age was 43 years and the median age was 42 

years. A strict requirement was that all subjects were on chronic dosing for at 

least the past 6 months. 

The dosing range was from 0.5 mg/day to 220 mg/day. The mean daily 

dose was 81 mg and the median daily dose was 50 mg. By our categorization of 

“Low” dose as less than 50 mg/day – we had 16 subjects in this group. By our 

categorization of “High” dose as ≥ 90 mg/day – we had 16 subjects in this group. 

By our above categorizations we had 6 subjects on “Normal” dosing 

Although a few samples were collected earlier on to verify process and 

methods, the collection and analysis of the blood samples used for this research 

was performed between July, 2010 and December, 2011. Some frozen samples 

were re-analyzed in early 2012.  

Blood samples were collected in standard K2 EDTA Becton Dickinson 

Vacutainers©, with appropriate expiry dates. Samples were drawn with 21 gauge 

standard needles, 21 gauge butterfly needles or 23 gauge butterfly needles 

dependent upon how difficult the collection was based on each individual subject. 
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Many of the subjects had very poor quality veins from a history of intravenous 

drug use, so collection was frequently very challenging. All blood collections were 

performed by a trained phlebotomist (certified Medical Laboratory Technologist), 

with as little discomfort to the subject as possible. 

Naïve subjects (n = 6) were volunteers from the Saskatchewan Disease 

Control Laboratory. All of their information remains confidential, however, they 

did all testify to being non-drug users. (2 males, 4 females) 

 

 

 

3.3 Measurement of receptor numbers on leukocytes 

 

A total of 38 blood samples were collected from different methadone 

maintenance patients. The first 6 samples were used in the process of method 

development and verification of analytical capabilities.  Some measurements of 

receptor numbers were unsuccessful for both known and unknown reasons. 

Since cell viability was crucial a second attempt or repeat analysis of any 

particular sample was impossible. Thus, the number of samples successfully 

measured varied slightly for all of the analytical measurements. The number of 

samples for any particular data set is identified.  
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Analytical Data for µ-Opioid Receptor Number Data on White Blood Cells 

 

Expression of µ-opioid receptors was measured by flow cytometry on 

leucocytes as described previously. Cells had to be analyzed within a few hours 

of collection to ensure their viability. Percent specific labelling relates directly to 

the number of receptors expressed. Percent specific labeling was calculated 

using the previously described equation.  
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Table 3.1   Receptor expression data. White blood cells were isolated from each 

subject’s blood and analyzed by flow cytometry for expression of µ-opioid 

receptors. The level of expression correlates directly to the percent specific 

labelling. 

Subject Number Dose (mg/day) 

hMOR 
Receptor 

Expression 

hMOR 
Receptor 

Expression  

hMOR 
Receptor 

Expression 
37 0.5 20 49 15 
16 1.5 33 44 14 
21 3 21 51 19 
33 10 31 43 10 
32 15 31 46 12 
29 20 25 46 9 
30 20 19 50 17 
34 20 24 45 20 
36 25 33 58 17 
24 30 22 42 20 
28 30 31 41 19 
31 30 31 42 21 
38 50 20 56 15 
15 54 32 35 18 
17 70 21 45 19 
11 90 19 44 20 
19 90 28 40 20 
18 95 26 57 21 
25 100 23 41 18 
13 120 33 40 15 
22 135 27 48 18 
20 145 28 44 17 
23 145 24 44 20 
27 160 26 33 22 
10 185 27 47 17 
12 195 31 40 30 
26 195 24 41 15 
9 220 16 45 17 

 

 

 



 112

3.3.1 µ-Opioid receptor expression levels 

There was little correlation between receptor expression and dose (Figures 3.1 – 3.3). 

Methadone Dose (mg/day) and Mu-Opioid Receptor Numbers (percent 
Fluorescence)
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Figure 3.1  Receptor expression (as measured by percent fluorescence) in 

leukocytes as a function of methadone dose (all subjects measured – n=28) 
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Figure 3.2 Receptor expression (as measured by percent fluorescence) in 

leukocytes as a function of methadone dose (“low” dose  subjects – n= 12) 
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High Dose Methadone Subjects (≥ 90 mg/day) - Receptor numbers expressed as 
percent fluorescence
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Figure 3.3  Receptor expression (as measured by percent fluorescence) in 

leukocytes as a function of methadone dose (“high” dose subjects – n= 13) 

 

As displayed in Figures 3.1 – 3.3, increased methadone dose did not correlate 

with increased expression of µ-opioid receptors on white blood cells or any of the 

three white blood cell types. However, chronic dosing, regardless of level, did 

appear to enhance µ-opioid expression on leucocytes to detectable flow 

cytometry levels.  

 

 

 

 



 114

Methadone Dose (mg/day)

0 50 100 150 200 250

R
ec

ep
to

r 
N

um
be

rs
 (

%
 fl

uo
re

sc
en

ce
)

0

10

20

30

40

50

60

70

 

Figure 3.4 Plot of µ-opioid receptor numbers on white blood cells expressed 

as percent fluorescence versus methadone dose (mg/day).  Indicates 

percent fluorescence for granulocytes, indicates percent fluorescence for 

monocytes and indicates percent fluorescence for lymphocytes  
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Statistical analysis was accomplished using Sigma Plot and performing 

correlation between group means using the t test with a level of significance α = 

0.05  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 Plot of µ-Opioid receptor expression as percent fluorescence on 

granulocytes versus methadone dose (mg/day) . Statistical analysis reveals no 

significant relationship between dose and receptor expression 
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Statistical Correlation: t test 

Using Sigma Plot software to analyze this data set, the difference in the mean 

values of the two groups is not great enough to reject the possibility that the 

difference is due to random sampling variability. There is not a statistically 

significant difference between the input groups. (CI = 99%, α = 0.05, P = 0.73) 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.6 Plot of µ-Opioid receptor expression as percent fluorescence on 

monocytes versus methadone dose (mg/day).    
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Statistical Correlation: t test 

Using Sigma Plot software to analyze this data set, the difference in the 

mean values of the two groups is not great enough to reject the possibility that 

the difference is due to random sampling variability. There is not a statistically 

significant difference between the input groups (CI = 99%, α = 0.05, P = 0.093) 

 
 
 
 
 

 
 
 
Figure 3.7 Plot of µ-Opioid receptor expression as percent fluorescence on 

lymphocytes vs. methadone dose (mg/day). The data point circled in red is a 

suspected outlier. The t-test indicated a slight difference in the mean of the 2 
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groups; however, both Mann-Whitney Rank Sum Test and Wilcoxon Signed 

Rank Test indicated no difference. If we look at the plot in Figure 3.7, it seems 

apparent that we may have an outlier. Removing this outlier clearly indicated by 

all 3 statistical methods that this data has no statistical trend.  

 
 
 

Lymphocyte data with all points included 
 

Statistical Correlation: t test 

Using Sigma Plot software to analyze this data set, the difference in the 

mean values of the two groups is greater than would be expected by chance; 

there is a statistically significant difference between the input groups  

 

 

 

Lymphocyte data with “high" value excluded 
 

 
Statistical Correlation: t test 

Using Sigma Plot software to analyze this data set, the difference in the 

mean values of the two groups is not great enough to reject the possibility that 

the difference is due to random sampling variability. There is not a statistically 

significant difference between the input groups (CI = 99%, α = 0.05, P = 0.064) 
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From our flow cytometry data we would have to conclude that the 

difference in dosing requirements for our methadone subjects was not simply due 

to differences in the number of µ-opioid receptors as related to their presence on 

white blood cells. There was no significant difference in receptor numbers based 

on dosing. 

 

Apparent Information obtained from receptor expression data 
 
 

Evident from our receptor expression data displays the fact that 

chronically dosed subjects (> 6 months) expressed measureable levels of 

receptors on white blood cells. This is suggestive that methadone treatment 

induces the expression of hMOR, since we were unable to reliably measure 

receptor expression on naïve subjects using our flow cytometry technique. 

Receptor down regulation / internalization alone does not explain dose 

requirements for individuals, since we established no significant difference in 

receptor expression between low and high dose subjects 
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3.4 cAMP in “vivo” estimations and dose response curves 
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Figure 3.8 Plot of cAMP levels measured from white blood cells vs. 

methadone dose of all low and high dose subjects (mg/day)     

Red = “Low” dose 

Blue = “high” dose 
 
Green = “High” dose subject with highest cAMP values 
 
Time "0" represents in-Vivo concentrations of cAMP from cell lysates 

Incubation with increasing concentrations of methadone appear to have very little 

dose – response effect. 
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Figure 3.9 Dose response curves displaying the mean  ± 2 standard deviation 

of cAMP levels for both high and low dose methadone subjects. indicates 

cAMP levels from low dose patients and indicates cAMP levels from high 

dose patients       

 

Mean levels of our defined "low" and "high" dose groups of methadone 

maintenance subjects appear to have no over-lap and clearly display significantly 

different in-Vivo amounts of cAMP . 
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Statistical Correlation: t test 

Using Sigma Plot software to analyze this data set, the difference in the 

mean values of the two groups is greater than would be expected by chance; 

there is a statistically significant difference between the input groups (P = <0.001, 

α = 0.05)  
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Figure 3.10       Plot of dose response curves displaying difference in both slope 

and level of cAMP in Naïve subjects. (green = naïve subjects, red = high and low 

dose users) 
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Figure 3.11 Plot of “mean” cAMP levels of naïve users vs. both low dose 

subjects and high dose subjects (shown as dose response curves)   

Mean “low” Dose n = 16, displays no significant difference (99% CI = 9.30 – 

10.22, α = 0.05, P = < 0.01) 

Mean “high" Dose n=16, displays no significant difference (99% CI =3.01 – 3.87, 

= 0.05, P = < 0.01) 
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Mean Naïve user n=6, displays significant dose response relationship as 

described by:             Y = 0.0001 x 2 - 0.0497x +12.131, R2 = 0.9469 

y = -0.0005x + 9.8074

R2 = 0.0299

y = -0.0026x + 3.6413

R2 = 0.9927

y = 11.484e-0.0021x
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Figure 3.12  plots of dose response curves and baseline levels of cAMP in 

naive subjects versus low and high chronically dosed subjects.  

 

----------- indicates mean of naïve subjects 
----------- indicates mean of low dose subjects 
----------- indicates mean of high dose subjects 
 

 

Statistical Significance of Naïve Subject Dose Response Data 

Figures 3.10 and 3.11 clearly display that the difference in dose –

response curves in naïve users as compared to chronic users both at low and 

high dose. Neither “low” dose or “high” dose subjects display a significant trend 
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across the increasing dose (as described previously), while the naive users 

display an exponential response to increased methadone dose. 

In Vivo cAMP levels as represented by our values at time = 0, appear to indicate 

that there is a direct relationship to dose and baseline cAMP. 

 

 

 

Apparent Information obtained from cAMP level and dose response data 
 

Figure 3.9 clearly illustrates that chronic methadone dosing at any level 

appears to create a state of tolerance or desensitization to increased methadone 

dose. Dose reponse curves display a tendency to remain “flat” or to display little 

or now response to increased methadone. It also displays that there is a 

significant difference in mean in vivo cAMP levels between low and high dosed 

subjects 

Naive subjects display logarithmic change in cAMP levels when exposed 

to increasing methadone dose 
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3.5 P-GP levels measured by immunoassay in Leukocytes 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.13 Experimental data comparing P-GP levels (pmol/mL) vs methadone 

dose in all subjects n = 28. White cell lysates from blood samples (n=28) were 

analyzed for total P-GP levels. There appeared to be no correlation of P-GP level 

based on methadone dosing requirement.   
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Figure 3.14 Plot of P-GP expression vs. methadone dose in all subjects n = 28 

  

Statistical Correlation: t test      

Using Sigma Plot software to analyze this data set, the difference in the 

mean values of the two groups is not great enough to reject the possibility that 

the difference is due to random sampling variability. There is not a statistically 

significant difference between the input groups ( CI = 99%, α = 0.05, P = 0.413) 
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Apparent Information obtained from measuring levels of P-GP in white blood 
cells 
 
 

The data suggests no significant relationship between P-glycoprotein 

levels expressed on peripheral white blood cells and methadone dosing 

requirements. Both figures 3.14 and 3.15 illustrate a lack of correlation between 

dose of methadone and expression of p-glycoprotein in white blood cells 

Both co-medication and P-glycoprotein have been shown to play a role in 

the evolution of methadone analgesic effect (27;129). It is possible that P-

glycoprotein may play a role in methadone dosing requirements; however, it 

appears not just to be a case of P-glycoprotein expression levels specifically in 

white cells.  

We must consider that P-glycoprotein genetic variants are more likely to 

be associated with methadone dose required or concurrent use of P-glycoprotein 

inhibitors may be more significant. 

 
 
3.6 Concurrent drugs of abuse usage 

 
 
 

The majority of methadone patients, specifically on the “Harm Reduction” 

model, concomittantly use other drugs during their treatment. By assessing 

concurrent drugs use with a broad spectrum screen, predications may be 

possible about multi-drug contribution to dosing requirements. Some of the more 

“desperate” drug use belonged to the high dose group, with both gabapetin and 

diphenhydramine detected. (Table 3.2) 
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Table 3.2 Drugs and/or metabolites detected by LC-MS/MS screen 

 

 Methadone Dose   

 
Low ( < 50 
mg/day) 

High (± 90 
mg/day) 

Normal (50 – 80 
mg/day) 

Drugs/Metabolites 
Detected n=14 n=14 n=4 
    

Methadone 13 14 4 
EDDP 6 13 4 
THC 2 4 3 

Cocaine - - 1 
Benzoylecognine - - 1 

Morphine 3 1 - 
Codeine 1 - - 

Gabapentin - 2 - 
Diphenhydramine - 3 - 

Ritalinic Acid 1 1 - 
Fentanyl 1 1 - 

Oxazepam 5 3 1 
Lorazepam 2 3 - 

Nordiazepam 6 10 2 
Temazepam 2 6 1 
Diazepam 4 9 1 
Alprazolam 1 - - 

Clonazepam - 1 - 
7-amino-

clonazepam - 1 - 
 

 

 

Many benzodiazepine metabolites were detected. However, most of these 

compounds are both metabolites and available as drug preparations making it 

difficult to assess which drugs were ingested.  
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Figure 3.15  Data comparing concurrent drug detection in all methadone 

subjects    `  

 

 

 

 

 

 

 

 

Concurrent Drug Use Among Subjects

0

2

4

6

8

10

12

14

16

M
et
ha

do
ne

EDDP
TH

C

co
ca

ine BE

m
or

ph
in

e

co
de

in
e

Ben
zo

di
az

ep
ine

s

G
ab

ap
en

tin

Diph
en

hy
dr

am
in
e

Rita
lin

ic 
Acid

Fe
nt

an
yl

Drug/Metabolite Detected by LC-MS/MS 
Screen

N
u

m
b

e
r 

o
f 

P
o

s
it

iv
e
 v

a
lu

e
s

"Low"
Dose
Subjects
n = 14

"High"
Dose
Subjects
n = 14

"Normal"
Dose
Subjects
n = 4

*50 % 0f subjects* 



 132

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 

 

Figure 3.16 Data comparing concurrent drug detection in all methadone subjects 

expressed as a percentage  
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Chapter 4 
 

Discussion and Conclusions 
 

4.1 Methadone treatment and concurrent drug use. 
 

Most researchers would agree that individuals who receive methadone 

maintenance therapy have a better outcome probability than those that had 

either in-patient detoxification or no treatment at all (95). Benefits of such 

programs include improvements on many levels – other drug use, injecting and 

sharing needles, infectious disease transfer, physical and psychological health 

and social functioning and behavior (11).  

Methadone maintenance treatment programs are common drug-treatment 

programs in North America that can involve complex situations for clinicians to 

determine specifically when patients are involved in concurrent illegal drug use 

and/or being treated for other disorders with prescription drugs (34). The 

common use or abuse of other drugs creates a state of increased likelihood of 

variability in patient response to methadone.  

PD or PK drug interactions must be considered when utilizing chronic 

methadone therapy. Drug-drug interactions can alter methadone levels in a 

significant fashion. Some drug-drug interactions occur without any significant 

clinical effect; however, there is potential for medical consequence. Drugs that 

inhibit CYP3A4 may lead to methadone toxicity, while drugs that induce CYP3A4 

may lead to lowered plasma levels of methadone and possibly opioid or 

methadone withdrawal in extreme cases.  This is exactly the opposite effect 

desired. Part of methadone’s wide variability of action can be attributed to varying 
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CYP3A4 activity. Since methadone is primarily metabolized by CYP3A4, inhibitor 

and inducers of this cytochrome enzyme can affect levels (130).  

Our data also clearly shows a high subject usage of benzodiazepines, 

which was by far the most frequently detected drug. Our drug screening 

methodology allowed us to detect benzodiazepine use with a high degree of 

reliability, since parent drug and in most cases major metabolites were detected.  

This is an important consideration because the benzodiazepine family of drugs 

displays extensive metabolism with many active metabolites (131). Fully 50 % of 

all subjects were positive for at least one benzodiazepine or metabolite – many of 

them for several metabolites.  

One study identified diazepam as the most commonly detected concomitant 

drug (44 per cent of cases), followed by alcohol (33 per cent), morphine (28 per 

cent) and Temazepam® (21 per cent).  Fifty-four per cent of all index cases 

involved at least one benzodiazepine and, overall, more than 80 per cent of 

methadone-related deaths involved one or more other drugs. The general trend 

from that study was a decrease in people testing positive for benzodiazepines 

(129). 

Our data correlates well with a recent study from Switzerland, in which the 

benzodiazepine usage rate amongst methadone patients was 51.5% (132), with 

a worldwide range of 20 – 70% for MMT patients They also quote a range 

worldwide of 20 – 70% for patients who are on methadone maintenance 

treatment. Of the 101 methadone patients in the Swiss study, 52 (51.5%) were 

regular users of benzodiazepines and 48 of those received their benzodiazepines 
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by medical prescription. There is a lack of evidence-based recommendations for 

benzodiazepine prescription to MMT patients, so physicians often find 

themselves in a dilemma. Not prescribing risks the likelihood of patients that are 

benzodiazepine abusers, not tolerating cessation and dropping out of the 

program. On the other hand, prescribing means a risk of continued dependence 

(132). There is also the risk of new dependence upon new concurrent drugs 

being used.   

There is clinical evidence of significant methadone drug interactions among 

MMT patients (133), making it imperative that clinicians diligently check past 

history before prescribing medications. Certain combinations of methadone and 

other psychotropic or opioid medications may affect treatment outcomes or 

precipitate withdrawal (19). Evidence from this work suggests clinicians should 

be aware that a high percentage of methadone patients will be using other drugs 

concomitantly. A recent study from Ontario, Canada revealed that 18.4% of 

patients on methadone maintenance treatment in that province were prescribed 

other opioids for more than 7 days duration (134). This would suggest that many 

patients receiving methadone therapy receive overlapping prescriptions for other 

opioids, often for extended periods. Polypharmacy and legitimate prescriptions 

contribute to other drug use as well as street drug acquisitions. General 

recommendations of most methadone programs are to prescribe appropriate 

doses of methadone with a minimum use of concomitant benzodiazepine 

prescriptions (135).  
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Other drugs detected in MMT subjects included Gabapentin, which has 

recently been identified in Saskatchewan, by addiction clinicians, as a commonly 

abused drug. It was only identified in two high dose patients and without 

prescription drug history we are unable to ascertain if use was legitimate or 

illegal.  Morphine was identified in 3 low dose subjects; however, all three levels 

were very low, possibly indicating codeine usage (morphine being a major 

metabolite of codeine). Cocaine metabolite was detected in one normal dose 

patient, while ritalinic acid, a major metabolite of methylphenidate, was detected 

in one high dose and one low dose subject. Methylphenidate is a very commonly 

abused drug in Saskatchewan (136), but may also be a result of legitimate 

prescription. The same could be said for fentanyl, which was detected in one 

high and one low dose subject. Diphenhydramine, a common over the counter 

drug with significant abuse potential was detected in three high dose patients.  

Our low dose subjects (n=14) were positive for a total of 26 

drugs/metabolites and the high dose group (n=14) for a total of 45, other than 

methadone or EDDP (major methadone metabolite), suggesting a 

preponderance of higher dose patients to be associated with more frequent illicit 

drug use. 

These data are consistent with previous work showing that higher dosed 

methadone MMT patients have a higher rate of other drug use (92). The fact that 

more benzodiazepine metabolites were detected in the high dose subjects is 

suggestive of higher dosing of individual benzodiazepines, but lack of access to 
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patient information as outlined by our ethics approval precluded us from 

demonstrating this more definitively.  

It is clear from our results that concomitant drug use exists among MMT 

patients. As discussed below, there is likely to be a contributing effect of this drug 

use to overall methadone dosing requirements.  

Most drugs are substrates, either inducers or inhibitors of the major P450 

.isoenzymes CYP3A4, CYP2B6 and CYP2D6 as is methadone. Therefore MMT 

patients can readily have drug-drug interactions. Drugs such as rifampin or 

carbamazepine are classical CYP3A4 inducers which could potentially enhance 

methadone metabolism leading to under dosing and withdrawal symptoms. On 

the other hand a drug such as fluconazole, which inhibits several CYP enzymes, 

may increase parent methadone blood concentrations.  

Since there is a high incidence of positive HIV status associated with drug 

users, antiretroviral drugs used in treating HIV positive individuals must be 

carefully dosed and monitored because they are known to be responsible for 

drug-drug interactions involving methadone (137). 

In some cases it is not only the initiation of a specific drug treatment that 

creates an issue, but rather at the discontinuation of interacting agents. When a 

potent inducer is discontinued the patient may become a slower metabolizer as 

the CYP3A4 pathway also back to its normal metabolic rate (138). 

Other mechanisms may involve inhibition or induction of P-glycoprotein, 

which is responsible for active transport of substrates such as methadone. Co-

administration of hypericum causes a decrease in plasma methadone 
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concentration associated with increased withdrawal symptoms (139). Other 

drugs can increase the bioavailability of methadone by inhibition of P-

glycoprotein activity and result in an overall increase of methadone effect.  

Drugs such as other opioids or narcotics may interact with methadone via 

their effect on µ-opioid receptors. Buprenorphine, a partial agonist or mixed 

agonists-antagonist analgesics such as nalorphine, can displace methadone 

from receptors and should not be used in patients undergoing MMT (18).  

 

 

4.20 Mu opioid receptor numbers, regulation and responsiveness 
 

 
In an attempt to use a non-invasive model for assessing µ-opioid 

expression in MMT individuals we analysed receptor expression on three 

different white blood cell types. Since neuronal cells are not readily available 

from methadone maintenance subjects, this peripheral blood model is the basis 

for our scientific assessment of dosing variance. Measurement of µ-opioid 

receptors on white blood cells was feasible for all dosing groups, but reliable, 

reproducible receptor number data from naïve subjects was below detection 

limits.  Cell culture studies have shown that methadone treatment of human 

lymphocytic cell line increases hMOR expression (140). Increased receptor 

expression on leukocytes was essential for detection by flow cytometry. Thus, it 

would seem that a more sensitive method of receptor number detection is 

required to perform this task on Naïve subject cells. Other studies have shown 

that there may be differential expression of hMOR splice variants hMOR-1A and 
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hMOR-10 mRNA in peripheral white blood cells of opioid addicts (141). Currently 

only a single gene for this receptor has been identified; however, alternative 

splicing is responsible for production of several human MOR variants.  

Our analysis of both low dose and high dose cohorts of MMT subjects 

revealed no statistical difference in levels of hMOR expressed on 3 types of white 

blood cells. Flow cytometry is limited to measuring hMOR through specific 

binding and subsequent fluorescence, and so only detected total hMOR as % 

fluorescence, thus only reflecting plasma membrane receptor expression but not 

internalized receptors, which may have the potential to return to the cell 

membrane and resume activity. Plasma membrane receptors for the most part 

represent active receptors, yet there may be significant numbers of internally 

housed receptors, which would be unaccounted for by our model. 

Receptor expression on WBC plasma membranes was a function of 

chronic dosing with methadone, regardless of dose. There are studies that 

suggest expression of receptors in peripheral blood lymphocytes parallels and 

may represent expression in the brain (142). Up-regulation of receptor numbers 

in MMT patients does not seem dose dependent. What are the implications of 

up-regulation in opioid addiction? These answers have not yet been revealed, 

however, there may be usefulness in looking at WBCs as a reflection of neuronal 

receptor expression status. In our study receptor down regulation of high dose 

patients did not seem apparent, which would suggest other mechanisms of 

desensitization such as possibly receptor phosphorylation or binding by ß-

arrestins and decoupling with subsequent down stream signalling effects and/or 
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receptor internalization or sequestering (44). According to our data this did not 

appear to correlate more with high vs. low dose. These combined regulatory 

processes may still contribute to the phenomena of tolerance and dependence. 

Other factors to consider include the major key accessory proteins - regulators of 

G protein signalling (RGS), which dictate timing and duration of G protein cycles 

(143). RGS proteins control the lifetime of active Gα and Gßγ signalling 

molecules and thereby regulate downstream effects of G protein mediated 

signalling.  

 
 
 
 
 

4.3 Downstream signaling and variations in cAMP levels 
 
 
 

The µ-opioid receptor mediates or acts as a transducer for the action of 

most clinically important analgesics and opioids including methadone. This 

includes analgesia as well as tolerance and dependence (144). Recent studies 

have shown that there can be increased MOR signalling that was not associated 

with increased hMOR or G protein expression (145). One such mechanism is 

through scaffold proteins such as RanBPM, a hMOR interacting protein. Other 

hMOR receptor modulating proteins likely exist that affect or change responses 

in signalling despite constant receptor expression and binding characteristics. 

Other mechanisms may involve multiple receptors being tethered into complexes 

having signalling proteins that access shared AC (146). Receptors may be able 

to diffuse along the membrane to access free available G proteins, or be 
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corralled together in a micro domain (lipid rafts) by scaffolding proteins or 

dimerization (147).  

RGS proteins share a conserved 120 amino acid domain; however, they 

vary extensively in size and architecture. They are expressed in brain regions 

rich in µ-opioid receptors and participate in the manifestation of clinically relevant 

opioid behaviours (143). Thus RGS proteins may play a significant role in 

downstream signalling and subsequent variation in cAMP levels. 

Biochemically, both tolerance and dependence are found to be associated 

with an up-regulation of the second messenger cAMP against removal of the 

agonist (148). cAMP is a very important signalling molecule and for this reason 

we measured baseline levels in all patients as well as levels at increasing doses 

of methadone. Chronically treated MMT patients appeared to display in vivo 

baseline cAMP levels with a strong correlation to methadone dose. Higher dosed 

subjects in our study displayed lower levels of cAMP than their lower dosed 

counterparts. All of these patients also displayed tolerance to exposure to higher 

levels of methadone unlike naïve subjects. White blood cell isolates from all 

patients were incubated for 60 min with increasing doses of methadone. Naïve 

users displayed an overall higher baseline level of cAMP than chronically treated 

MMT patients. As well, naïve users displayed an obvious response to increased 

levels of methadone, while MMT patients did not. These results are in excellent 

agreement with much of the literature, demonstrating that prolonged exposure to 

opioids causes an up regulation of cAMP, and upon removal of the ligand gives 

rise to moderate levels of tolerance (83;149). 
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cAMP production as a result of AC induction or inhibition may also be 

related to AC splice variants. Marked differences have been reported in the 

agonist inhibition of different AC isoenzymes (150). At least nine isoenzymes 

have been cloned and shown to differ in their sensitivity characteristics to the G 

subunits (α and ßγ) and PKC. Persistent action of activated inhibitory Gα 

subunits with their respective AC isoforms provide the signals for induction of 

tolerance and dependence (151). We observed a statistically significant 

correlation of decreasing cAMP levels in vivo with increasing chronic methadone 

dose in our subjects. Thus, it appears that the higher dosed patients required a 

lower baseline level of cAMP in order to prevent withdrawal symptoms. This 

points in the direction of downstream signalling as a major factor in controlling 

withdrawal from opioid drugs.  

 
 

As illustrated in Figure 3.13, specific relationships between chronic dosing 

levels and cAMP levels exists. Also a dose response to methadone appears to 

be dependent upon naive versus chronically dosed status. A large range of 

changes or neuroadaptations develop in chronic opioid users or patients who 

have been on chronic methadone therapy. Our data clearly shows a relationship 

between endogenous cAMP levels and methadone dose. Adaptations causing 

cellular tolerance are certainly more complex than this; however, the data does 

suggest receptor desensitization and alterations in downstream signalling as a 

major potential for dose requirements.  
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Recent research has revealed that cAMP-mediated signaling relies on an 

intricate network of multiple signaling pathways (152).  In such a system, a tight 

spatial control of signal propagation allows for the signal to be transduced along 

defined branches of the network, depending on the specific extracellular 

stimulus. More recent literature suggests that compartmentalisation is a 

mechanism which allows individual extracellular cues to mediate specific cellular 

events (153). Once again, however, most of the particular events of the 

cAMP/AC/PKA signalling network components remain unknown (153).  

 
 

 
 

 
4.40 P-Glycoprotein and methadone dosing 

 
 
 

This study sought to also understand if P-glycoprotein expression played a 

significant role in methadone PK/PD processes, which could affect dosing 

requirements. Although we could not measure this influence on PK or PD 

parameters directly, we attempted to measure P-glycoprotein expression with the 

assumption that increased expression may represent increased likelihood of 

potential for PK/PD influence. As well as at the blood brain barrier, P-GP is a 

transmembrane protein expressed in various tissues including the intestine. Here 

it functions as an efflux pump to excrete drugs from the intracellular to the 

extracellular lumen (91). Since we know methadone is a substrate for P-GP, 

pumping of this drug from the intestine to the lumen may limit the amount of 

absorption. In a recent study, methadone pharmacogenetics were explored in 
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relation to polymorphisms in the MRD1 gene which encode the drug transporter 

P-GP, showing no evidence of genotype significance for the methadone 

concentrations studied (154).  

 Here, the measurement of P-GP in white blood cells was an attempt to 

determine expression level variation from subject to subject. Large interindividual 

differences in the amount of P-GP expressed in the intestine exists and it is 

possible that some of this difference is associated with genetic polymorphisms 

(154). Several studies indicate contradictory results about whether or not genetic 

variants influence both expression and function of P-GP (155). This study 

showed no statistical link between P-GP expression in white blood cells and 

methadone dose. Therefore we would have to conclude that extreme differences 

in methadone dosing requirements among MMT patients is not linked to P-GP 

expression in leukocytes or the latter does not reflect levels in other organs 

systems such as the intestines or blood brain barrier. The effect of P-GP at the 

blood brain barrier would influence physiological effects of drug (105). If we 

assume that P-GP levels detected in peripheral white blood cells are indicative of 

P-GP expression at these other sites, there appears to be very little correlation 

between P-GP expression to methadone dosing requirements and absorption of 

drug in the gut or transfer across the blood brain barrier.  

There is significant literature investigating the effect of drug transporter 

polymorphisms associated with pharmacokinetic characteristics for many 

different drugs (156-158).  Many drugs display marked variability between 

patients following standard dosing. The extent to which the polymorphisms of 
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drug transporters such as P-Glycoprotein play a role in this variability is currently 

being studied. Most studies conclude that knowledge of genotypes may be useful 

to adjust optimal dosing of drugs in patients (157). Since this work did not 

explicitly address the issue, this represents a potential future work research 

direction for methadone dosing requirements.  

 

4.5 Conclusions and summary 

 
High levels of methadone variability in response and its relatively narrow 

therapeutic index are related to metabolism, drug transport and MOR interaction 

(18). All of these phenomena are complex and require consideration by clinicians 

in order to personalize methadone administration so that it is safe and effective. 

Genetic factors are not the only cause of inter-individual variability and it is 

important to include other factors such as co medication, state of health and 

environmental and biological factors.  

This study focussed only on the white blood cell model to assess specific 

key factors including µ-opioid receptor expression, cAMP levels and response 

curves, P-glycoprotein expression and concurrent drug use.  

A total of 71 drug / metabolites other than methadone were identified in 

our 28 high and low dose methadone subjects, 26 in these low dose patients and 

45 in the high dose patients, with a mean of 1.86 other drugs in low dose patients 

and a mean of 3.21 other drugs in high dose patients. This correlates well with 

other literature and the fact that higher dose patients tend to exhibit more drug 

use (92).  
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Opioid tolerance, a complex process of neuroadaptations must be 

considered in all dosing schemes. It is essential to consider patients’ opioid-

dependence and tolerance prior to initiating methadone treatment. Tolerance and 

adaptations to methadone treatment are difficult parameters to measure. In our 

model we determined no significant difference in receptor expression between 

high and low dose patients. Chronic exposure appeared to up-regulate 

expression in white blood cells; however, this up-regulation was not dose 

dependent. No significant difference existed in receptor expression in 3 types of 

white blood cells amongst low versus high dosed patients.  

      P-GP involvement in drug efflux out of cells was also considered. Methadone, 

a known P-GP substrate may or may not be significantly transported out of cells 

at various organs. An overall correlation of P-GP expression to methadone dose 

requirements was not demonstrated, nor a correlation of P-GP expression in 

white blood cells to dose requirements. Thus, there is a more complex 

association than just expression levels of P-GP and methadone dosing 

requirements.  

The evidence pointed to downstream signalling variations in methadone 

patients that may control or influence dosing needs. In contrast to the apparent 

absence of P-GP effect on methadone dose we determined a correlation 

between cAMP levels in white blood cells and methadone dosing levels.  Naïve 

individuals displayed the highest cAMP levels, as well as a definite response 

effect to increased methadone exposure. Chronically dosed methadone subjects, 
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regardless of dosage, displayed no significant response to increased methadone 

exposure and the highest dosed subjects displayed the lowest levels of cAMP. 

 
 

It is likely those patients in MMT programs who require higher doses of 

methadone require lower levels of cAMP signalling in order to achieve desired 

control of withdrawal and cravings. We can hypothesize that the lower levels of 

cAMP are merely a result of higher drug doses, but then we would have to ignore  

the clinical presentations which support these individuals’ claims. Most clinicians 

base their decisions on dosing adjustments with the aid of several factors, 

including the single most important factor, clinical presentation. Withdrawal 

symptoms or reliable history of medically significant symptoms provide important 

evidence for dosing adjustments.  Thus, in general, higher dosed subjects 

appear to have a clinical need for higher dosing and legitimately require higher 

methadone doses to control withdrawal symptoms. Thus there may be a yet 

unexplained link between differences in downstream signalling and methadone 

dose requirements.  

The challenge going forward is to unravel some of the details of these 

signalling events and establish links between individual GCPRs such as the 

hMOR. 

A key feature of the cAMP signalling pathway is the very high degree of 

diversity and unique regulatory mechanisms of its multiple components. Many 

GPCRs signal via the Gαi pathway, which inhibits AC activity (153). There may 

be significant localized control within membrane domains to tune specific 
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signalling events.  The challenge ahead is to provide a more detailed map of 

cAMP signalling associated with methadone induced hMOR - GPCR signalling 

pathways.  

Studies directly involving human MMT patients and analysis of hMOR-initiated 

cell signalling are uncommon based on the unavailability of human neuronal 

cells. Thus, animal models remain a significant focus. By using this peripheral 

white blood cell model for receptor expression and signalling cascades it may be 

more practical to effectively and safely study opioid-induced effects in humans, 

especially the mechanisms of methadone action in MMT patients. 

 
 
 
 
 
 

4.6 Future work 
 

There are many directions that could be taken to further understand 

methadone dosing requirements. There may be a requirement to compare 

complex neuronal systems and peripheral cell models to better understand the 

mechanistic basis for methadone tolerance and opioid dependence. As well, 

further study of OR signalling is merited since it is the engine for neuronal 

adaptations that account for dosing adjustments. We still have yet to understand 

how many of these receptor adaptations develop in vivo, with limited opportunity 

to involve MMT patients. Despite the identification of several adaptations to 

chronic opioid agonist treatment, the molecular mechanism underlying these 

processes has yet to be definitively established. There are many phenomena 
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associated with adaptations to chronic methadone administration and they 

continue to create difficulties for clinicians who need to establish appropriate 

dosing.  

The logical step forward from this work is to investigate the downstream 

signaling pathways, explore cAMP production (AC activity), and protein kinases 

using their various inhibitors. The specific agents able to regulate cyclic AMP 

levels are either adenylyl cyclase, which induces cAMP production, or 

phosphodiesterases, which break down cAMP. 

 Another area of focus would be inhibition or induction of protein kinases. 

Protein kinase control may involve several mechanisms, including protein 

conformational changes, or phosphorylation (or some other post-translational 

modification) of the protein kinase that results in increased or decreased activity.  

One of the leading challenges is to provide a more detailed map of cAMP 

signalling associated with methadone induced GPCR signalling pathways. In this 

regard, future work could aim to identify local domains for which cAMP signals 

may affect a specific function. These strategies could help achieve valid 

therapeutic approaches to methadone dosing, if a biochemical marker(s) could 

be used to estimate signalling effeciencies. 

Methadone PK/PD is also affected by genetic polymorphisms of drug 

transporters. This line of research may also provide a plausible explanation for 

the variation we observe amongst individuals in the dosing requirements for 

many drugs, including methadone. Further evaluation of these phenomena is 

definitely warranted.  
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The most valuable studies in the future will likely analyze multiple 

phenomena which could be coalesced into a single model to help explain 

tolerance, dependence and appropriate dosing requirements for methadone.  
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