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Abstract

The study of human mobility patterns is important for both understanding human behaviour, a social

phenomenon and to simulate infection transmission. Factors such as geometry representation, granularity,

missing data and data noise affect the reliability, validity, and credibility of human mobility data, and any

models drawn from this data.

This thesis discusses the impact of spatial representations of human mobility patterns through a series

of analyses using entropy and trip-length distributions as evaluation criteria, Voronoi decomposition and

square grid decomposition as alternative geometry representations. I further examine a spectrum of spatial

granularity, from dimensions associated with social interaction, to city, and provincial scale, and toggle

analysis between raw data and post-processed data to understand the impact of noisy data and missing

data influence estimation. A dataset I was involved with collecting – SHED1 – featuring multi-sensor data

collection over 5 weeks among 39 participants – has been used for the experiments.

An analysis of the results further strengthens the findings of Song et al., and demonstrates comparability

in predictability of human mobility through geometric representation between Voronoi decomposition and

square grid decompositions, suggesting a scale dependence of human mobility analysis, and demonstrating

the value of using missing data analysis throughout the study.
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Chapter 1

Introduction

Prehistoric humans moved for survival, towards hunting and gathering grounds and away from catas-

trophe; modern humans move with inquiry – pondering why, how, and when are they going; technological

humans move in more complex patterns, turning life to a sophisticated tangle of contacts, and shrinking the

world into a flat village.

Just as agriculture contributed to the sedentarization and transition from a nomadic lifestyle, the trans-

portation revolution – enabled by the industrial revolution – sped up urbanization and the division of labour.

Throughout thousands of years, it appears that the pattern of our mobility evolved from urgency-driven to

profit-driven, and then to comfort-driven. At no time in our history have we had the capacity as today to

travel as rapidly, conveniently and safely on networks of roads, rails, causeways, and airlines. These benefits

have been secured not only because the number of routes has significantly increased, but also because the

topology of those routes are following the structure of network as demanded – in a word, human mobility is

a governing factor in our infrastructure planning.

Recording time series of locations is a typical numerical approach to track human mobility. The pattern

of human mobility underlies those time series, describing the relation between location-location and location-

time such as concurrency, stationary, and frequency – just like chord, canon, and tempo.

Starting with smoke signals and drums, improved by telegraph and telephone, extended as radio and

television, and finally revolutionized by computer networks and the Internet, telecommunications have been

rooted in our system such that its performance shakes the entire system. Network protocols determine

performance parameters, including efficiency, reliability, and power consumption. No universal protocol exists

due to the large impact from dynamics of the transmitting environment and service requirements. People are

eager to be serviced with telecommunications wherever they are, however it is impossible for service providers

to deploy access points capable of serving in all physically possible service demands. Human mobility patterns

could provide information like visiting schedules for access points, which could further used to estimate utility

requirements for service dispatching. Knowledge of user mobility patterns becomes the secret ingredient of

a network protocol at state of the art. A network protocols built and tested with a better mobility model is

just like a student receives a simulated exam closer to the actual one, which largely increases their confidence

in practical performance.

Human mobility underlies the transmission of contagious disease, as well as the footprint of alteration
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Figure 1.1: Aggegated Heatmap as a representation of the mobility pattern of a participant during
the study. Red shows higher and blue shows lower number of samples within a given grid cell [16].

of our environment. People’s mobility underlies contact patterns in between people-people and people-

place, which drives the probability of infection transmission. Knowledge of these contact patterns between

population members have a critical impact on the accuracy of simulations intended to help model disease

transmission and epidemic control [44, 48]. Better mobility models would allow realistic synthetic behaviors

for agents within Agent Based Models, which increases the fidelity of simulation and supports accurate

simulation of intervention outcomes.

Pioneering work in building models for mobility patterns could be traced back to the beginning of the

twentieth-century, when the Albert Einstein and Marian Smoluchowski brought their solution [10, 67] to

Brownian motion, a term named after Robert Brown, referring to the random motion of small particles

suspended in a gas or liquid. A Brownian motion could be abstracted as a continous stochastic process of a

variable in N -dimensional real space with independent normally distributed increments. Standard Brownian

motion has its start point at zero in coordination, which is also expressed as Wiener Process [47]. A Brownian

motion with constraint on magnitude of increment forms a random walk [50] – a mathematical formalization
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of random motions usually taking a regular lattice as the discretized movement space. At this stage, mobility

model assumes object moves wandering aimlessly.

A century later, Lévy walks were proposed as improved representations of human mobility. Lévy walk was

named after mathematician Paul Pierre Lévy, who proved the existence of solutions to the N-step addition of

Gaussians random variables other than still being Gaussians, although back in 1853, Augustine Cauchy was

the first to realize this from pure mathematical point of view. Lévy’s findings demonstrate that there could

be no characteristic size for the random walk jumps, which results Lévy walk model with scale-invariant

fractals. Rather than being based on a mathematical assumption like the Brownian motion model, the

Lévy walk model was derived from empirical animal mobility patterns, drawn from mobility data analysis of

creatures such as albatross, spider monkeys, bumblebees and deer [66, 51, 9].

An important characteristic of the Lévy walk model is that its trip length distribution is power-law

distributed. A power-law distribution implies the heterogeneity of a population such as the Pareto-Zipf

law (also known as Pareto-Mandelbrot law) showing that it is the sum of few high frequency events take big

portion of occurrence rather than sum of many rare occurred events. The characteristic power-law distribution

of Lévy walk model assumes that people tend to take trips with relatively short distance, while occasionally

undertaking a long distance trip. In the opening decade of the twenty-first century, the Lévy walk model

and related what is now called the continuous-time random walk (CTRW) [57] models of human mobility

were created for application in different scenarios, such as Pocket Switched Network (PSN) [36, 19, 39],

infrastructure location planning [6], and infectious disease simulation [65, 21, 42].

Although Lévy walk related models have allowed for significant improvements in caputuring human mo-

bility patterns, there still exist the following questions:

• Credit for model generality: Rather than classic mechanics domain that have Newton’s laws of motions

as basis, which could give credence to other propositions through inference; lacking fundamental theories

concerning the constitutive relationships linking different system components and collectively governing

process evolution, we are unable to estimate the generality of those models built via current case-

specified studies.

• Accuracy and domain of validity: The accuracy of prediction is one important criteria to assess theory

validity, such as the domain of validity for Classic mechanics bounded by velocity (comparable to

3× 108m/s) and size (near or less than 10−9m). Currently we require an accuracy analysis to discern

the domain of validity for mobility model to guide further research.

Novel data collection techniques could revolutionize our understanding of mobility patterns. Manual data

collecting methods such as logging [9] and bank notes records [4] established the relationship between mobility

patterns and the Lévy walk model. Wireless device assisted data collection approach such as using motes

[17], cell phones [58], Wi-Fi [37, 25], RFID [49, 54, 28], GPS [52], and multi-sensor smartphones [8, 16], has

improved the effectiveness of data collection and models for human mobility patterns.
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Questions regarding the generality and existence of better human mobility models remained elusive until

Barabási and his team confirmed the regularity and predictability of human mobility patterns. Taking human

mobility data through a large population of cell tower routing records and auxiliary GPS data, gathered by a

service provider, in [58] they calculated entropy to quantitatively evaluate the stochastics of human mobility

patterns. They evaluated 3 forms of information content – random entropy, temporal-uncorrelated entropy

and the actual entropy. Furthermore [58] summarized the results of entropy analysis by calculating the

upper bound of predictability Πmax of temporal-spatially dimensioned human mobility, where predictability

is reflected as the average of the probability of correctly predicting the next location based on all the previous

location history. The highly bounded distribution peaked near 0.93 for Πmax, effectively supported authors’

conclusion that human mobility is regular and predictable.

The same data has been used to investigate scaling properties of human mobility, and three inconsistencies

were reported based on number of distinct visited locations, visitation frequency and ultraslow diffusion of

location between the entropy of real collected human mobility data and that implied by classical Continuous-

time Random Walk models of human mobility [57].

The data collection of [58, 57] was relatively coarse. with an average accuracy of 3–4km over an irregularly

shaped area, based on the spatial decomposition governed by cell towers’ locations. Consequently, there is

an absence of direct measurements of human mobility predictability with more regular spatial decomposition

and at finer scales. Moreover, their data was biased towards oversampling intrinsically high-mobility people

as only cellphones which recorded more than two hours per day of talk time were included in the analysis

(approximately 0.5% of the total number of unique recorded devices in their data [57, 59]).

Injong Rhee’s lab derived data from 24 hour GPS traces of participants and modeled human mobility

pattern with four features, namely truncated power-law flights and pause-times; heterogeneously bounded

mobility areas; truncated power-law inter-contact times; and fractal waypoints [16]. They have also created a

model named Self-similar Least Action Walk (SLAW) as a result of the combination of fixed way points repre-

senting frequently visited locations and a Lévy Walk trajectory representing truncated power-law distributed

trip-length for trajectories between way points.

At the same time, SLAW appears to be confined by weak considerations regarding temporal correlations

observed in human mobility – instead of the absolute time that reflects a relatively firm schedule in human

mobility bounded by societal structures and regulations, SLAW tackled the relative, focusing on the relative

time between adjacent time stamps, thereby creating a memoryless process.

The idea of the Lévy walk of transitions among frequently visited locations in [16] has also brought an

implicit classification of human mobility from intentional-flight to random-walk, which further brings up

following issues:

• Will different geometric representation of location – namely, Voronoi decomposition in [16] and square

grid decomposition in [58] – lead to an impact on predictability?

• Will finer grained location classification expose previously obscured random-walks and cause a large
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drop in predictability?

• Will sensor failure-caused data noise and missing data affect the reliability of answers offered to the

previous two questions?

Despite the existence of qualitative and quantitative research on human mobility, there is currently lacking

a sensitivity analysis study in this area to investigate the impact of various geometric representation of human

location and the resulting implications for studies of human mobility. To be more specific, the sensitivity

analysis should investigate the impact on the reliability of inferences regarding human mobility of geometric

representation, of spatial granularity, and of noise and missing data.

Purely landmark-based localization methods return the coordinates of a known landmark, such as a cell

phone tower, WiFi router, Bluetooth beacon, or an RFID tag. The possible location of an object can be

characterized by a Voronoi cell centred on the landmark associated with that object (drawn from the collection

of landmarks). All known landmarks divide the space into a set of cells that are collectively exhaustive and

mutually exclusive, such that each cell contains one and only one landmark1. Thus, for all the locations

within a given cell, the returned location will be the coordinate of the corresponding landmark. The area

of each specific cell determines the error bounds associated with that cell, and the area of the cell is the

accuracy of the location estimate corresponding to that cell.

Different GPS localization considerations apply when binning locations in a square grid. The level of

accuracy may be determined not only by the GPS locating system itself, but also by the minimum grid

size required by the end application. Computation can be saved if the application in question requires a

significantly coarser resolution than that supplied by GPS, by binning GPS signals in larger geographic

areas.

The granularity with which human mobility is represented affects the reliability of research results as

well as the cost and the effort that one will have to invest to secure empirical evidence. For landmark-based

studies, the granularity is directly determined by the number of landmarks one maintains in the experiment

area. For gridded geometric representation, it is driven by the bin width of each square grid cell, and the

minimum reliable resolution of the sensor used to obtain continuous location records.

It is inevitable that a man-made system will generate errors and might have no response at certain times

due to service coverage lapses, energy exhaustion or participant opt-out. At the current time, studies on

collecting human mobility data usually face a notable rate of missing data, especially for studies that last for

months, and suffer from compliance fatigue. The location data available in [58]’s dataset comprises just 30

percent of the theoretical maximum that could be available and [15] has only 34 percent of the theoretically

possible GPS data available.

In order to address the impact of geometric representation on spatial decomposition, I adopt the entropy

evaluator used by [58] in cooperating with trip-length distribution used in [39, 29] as two criteria to investigate

1For the purpose of the thesis, I assume that all the points within a given Voronoi cell are capable of communicating with
the landmark associated with that cell.
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impact of Voronoi diagram represented location versus square grid represented location on human mobility

data. Additionally, I address the influence of granularity, which is represented as landmark density for the

Voronoi representation and bin width for a square grid representation.

The dataset – called Saskatchewan Human Ethology Dataset 1 (SHED1) – was used as dataset for the

experiments. This dataset includes smartphone collected multi-sensor data with updating period down to 5

minutes. The analysis used the Global Positioning System (GPS) as the primary localizing approach, with

WiFi, Bluetooth, and accelerometer as auxiliary data providers [16]. Detailed raw data enables simulation

of the effects of coarser sampling than SHED1 collected; additionally, multi-sensor data has made data noise

detecting, filtering and completing possible, so that I could investigate the impact of noisy data and missing

data by comparison between different data feeds.

This analysis is based on experiments that compare entropy and trip-length distributions across different

scenarios which are composed by cross combination of geometric representation (including Voronoi decom-

position and square grid decomposition with different granularity) and data feed-in (raw data, filtered data,

filtered completed data).

This study shows that geometric representation failed to cause human mobility predictability variation;

instead, granularity is the primary factor that affects human mobility predictability. There is no acute

increase of entropy detected with finer granularity, which further enhances the reliability of [58]. Finally, a

comparison between raw data and filtered data indicates the accuracy of GPS system is enough to capture

stable data.

The remainder of the thesis is organized as follows. Chapter 2 describes related research for each aspect

of this work, including the application of human mobility, data collection approaches for human mobility

patterns, and existing mobility models and analysis. Chapter 3 describes the theoretical background of the

thesis, including entropy and trip-length distribution as evaluators to help analyze human mobility. Chapter

4 describes the experimental setup. Chapter 5 illustrated the results and analysis. Chapter 6 summarizes

the thesis and outlines possible areas for future work.
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Chapter 2

Related Work

2.1 Applications of Human Mobility

Intelligent routing decisions, whether based on infrastructure such as cell tower or WiFi router placement,

or opportunistic peer-to-peer routing in delay tolerant networks, depend on reliable records, models and

predictions of human mobility patterns. Significant research has attempted to elucidate the impact of em-

ploying user movement patterns to support transit opportunity estimation [56, 22, 18, 26], device resource

management [24, 34], and battery savings [69, 38]. The same determinants of human mobility which inform

the placement of cell towers and WiFi hotspots also help determine the placement of other services such as

bus stops [20, 32].

Contact patterns show analysis including contact duration and intensity of population, it directly impact

the calculation of critical parameters in health modelling, such as the basic reproductive number. The basic

reproductive number of an infection is the number of cases one case generates on average over the course of

its infectious period [11]. Contact patterns play a central role in infection transmission models and infection

prevention and control decision-making and policies [44, 48]. Human mobility patterns underlie the contact

patterns between both people and places, impacting the transmission of contagious diseases, attitudes and

norms, access to services, and contribute to exposure to environmental risks such as toxins and pedestrian-

unfriendly built environments, driving both environmentally mediated diseases such as asthma and socially

mediated diseases such as obesity [60, 30, 31, 61, 63].

2.2 Methods of Data Collection

Because of the diverse and significant impacts of human mobility models on a variety of disciplines, researchers

from several fields have attempted to leverage novel measurement techniques to infer, measure or constrain

human mobility.

The cellular phone is a now ubiquitous item in modern society, and is undergoing rapid penetration

into the developing world. Cell tower call and contact records form an attractive data source for studying

human mobility because they are collected automatically, and cover thousands or millions of subscribers over

prolonged sampling periods. For this reason, several notable contributions [58, 25, 13] have used traces that
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reflect connectivity to existing infrastructure (e.g., Access Points (APs) or cells) as their primary data source.

However, the tower locations map to a Voronoi diagram with a spatial granularity dependent on geography

and population density, which can reduce the overall accuracy, and position updates for call records are only

available when a user initiates or receives a call or a text message [58].

The global positioning system (GPS) can provide near-continuous data with an accuracy down to a few

meters. However when users move indoors, GPS suffers a significant reduction in accuracy due to fading and

multi-path effects, up to the point of complete loss of signal within large facilities. Studies have employed

GPS data sets with a temporal resolution of hours [58], down to minutes [16, 39, 1]; study durations from a

day [16], to over a month [16, 1]; and study population from dozens [16], to hundreds [39, 1, 58] of people have

been reported. However, these datasets are often characterized by poor participant compliance, ranging from

30% to 50% [58, 16]. Low participant compliance could cause risk of misjudging human mobility predictability

and human mobility model creation.

To compensate for the poor resolution of cell tower based measures and the reduced coverage of GPS

data, researchers have turned to shorter-distance radio-based devices such as WiFi [37], or RFID [49, 28, 54]

systems, and have inferred position based on either the Voronoi diagram of beacons – as in the cell tower

case – or used more sophisticated methods such as trilateration or fingerprinting.

2.3 Mobility Models and Analysis

Taking bank note tracing data as a secondary data to reflect the underlying human mobility, [4] brought

human mobility research into a new phase by separating assumptions of human mobility research from

analogies of physical models such as random walk and Lévy walks [64, 33]. Within their paper, an investigation

regarding the distribution of traveling path lengths with relatively large scale led to the discovery of truncated

power-law distributed trip length as one of the potential characteristics of human mobility. The truncated

tails in the power-law distribution is mainly caused by the physical limitation of human beings and technology

such as the speed of driving lying under 200km/h [2]. The researchers have also proposed a model deriving

from lattice network assumptions that shows the ability to reproduce human tracks with truncated power-law

distributed trip length. However, trip length as a restriction only focuses on memoryless or quasi-memoryless

transitions, without considering the patterns of absolute location occupied by people. The memoryless

processes have only relative location aspects recorded, and this could not used to represent the characteristic

clustering of absolute locations.

The authors of [16] have developed an app for the Google Android operating system based smartphones.

Multi-sensor collected data provides a potential opportunity for data fusion that could mitigate noise caused

by a single sensor or complete missing data. However an analysis of collected data in terms of human mobility

patterns is not provided.

The authors of [27] used both GPS and WiFi supported location information as feed-in data, using the
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same criteria as the Song and Barabási adopted [58]; their results advocate Song and Barabási’s finding of

a high entropy upper-bound [58]. Besides using the Lempel-Ziv estimator for actual entropy, they have also

implied a first order Markov model with the transition probability estimated from the finite process and

obtained the same result as did the Lempel-Ziv estimator.

Integrating human traces from six studies, [29] found that the distribution of inter-contact time possesses

an invariant property: a characteristic elapsed time threshold – on the order of half a day – beyond which

the distribution decays exponentially. Random Way Points method of generating synthetic human mobility

records involves randomly generating points as persons’ possible visiting locations, and randomly choosing

destination from these points as the next trajectory. The Random Way Point method has the ability to aid

in generating human trajectories while allowing truncated exponential decay of inter-contact time pairs in

the simulated community.

This work is unique because it completed the post-processing of data collected from [16], and it have

multi-sensor data that allow us to filter noisy data, and – in addition to previously used techniques [29, 27]

– investigate the impact of and interaction between granularity and geometric representation.
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Chapter 3

Theoretical Background

As an estimator for predictability, entropy originated in physics for describing how evenly energy is

distributed in a system. Subsequently, this concept was introduced to information theory, and is now usually

referred to as Shannon Entropy, which has been widely used in information processing, such as in search

engines [45, 7], compression algorithms [35, 70], statistic tests [46], and parameter estimation [55, 5]. [58]

used Shannon Entropy as a measurement of predictability of human mobility. Human mobility entropy, as far

as I know, is the current best quantitative metric that is generally applicable to estimate the predictability

of heterogeneous mobility records.

The trip-length distribution has been studied since the Brownian motion model era. The trip-length

distribution is a practical analysis tool for a time-series of locations, because trips are one of the most

common patterns within those time-series.

3.1 Entropy and Predictability of Human Mobility

The entropy and predictability of human mobility are statistical properties of the temporal and spatial

characteristics of locations of a population of individuals. Such quantities are investigated in order to gain

insight into the question of whether human mobility is regular enough to be predicted or simulated, rather

than highly random without the potential to be accurately captured. The answer defines a general upper-

bound on the best results that could be obtained by human mobility modeling.

3.1.1 Information Entropy

Information Entropy – also known as Shannon Entropy – is a measure of the uncertainty associated with

a random variable [23]. The information entropy associated with a message specifies the amount of the

information contained in a message [14].

The basic unit of information is a bit – or binary digit – which can have a value of either 1 or 0, and

can be viewed as indicating that some proposition is either true or false. Series of bits represent information;

however the length of the string of bits does not always indicate the amount of information contained within

it. For example, within a string, if a long pattern was found repeated many times, a dictionary could be

created, using a short index to refer to the long pattern and then replace all occurrences of that pattern in
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the string with that short index, thus the length of the string was reduced without any loss of information.

This process is also called dictionary based compression, and its success proved that actually, that string did

not contain as much information as it might appear.

For this thesis, information regarding location is primarily dealt with. Consider a finite set L representing

all the possible locations for a person. Then at each time interval for that person, there could be a particular

element from the set L that would indicate the corresponding location the person is currently in. As the set

is finite, a series of bits could be used to encode the corresponding element. In this way, individual’s mobility

pattern could be presented with certain level of accuracy in both the temporal and spatial dimension using an

ordered series of bits. Similarly, to determine the mobility pattern of a person with the same level of accuracy

on both spatial and temporal scales, our residual uncertainty regarding that mobility pattern depends on the

amount of the information that is contained in that series.

With respect to the topic of human mobility, as Barabási described [58], there could be three types of

entropy:

• The random entropy

Srand
i = log2Ni (3.1)

Within equation 3.1, Ni is the number of distinct locations visited by user i. This entropy only

focuses on the number of unique locations that a person has ever visited during the experiment, and is

independent of history.

• The temporally-uncorrelated entropy

Sunc
i = −

Ni∑
j=1

pi(j) log2 pi(j) (3.2)

Within equation 3.2, pi(j) is the fraction of visits to locations by user i, that were to location j. This

entropy not only captures the number of unique locations that person visits, but also the potential

heterogeneity in the frequency with which a person visits all of those possible locations.

• The actual entropy S

S = lim
n→∞

1

n
S(X1, X2, . . . , Xn) (3.3)

The actual entropy is intended to capture both the order of visiting and heterogeneity in frequency

of visiting to locations that a person will visit. With regular observation intervals for the location

information of a person, actual entropy also captures the stationary property of human mobility, which

could reflect the physical inter-contact time of the human community once the observations schedules

for each entity are synchronized (i.e. a common temporal scale is defined).
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Within the three types of entropy above, the first two types of entropy could be evaluated directly from

collected location records, with only a very modest amount of processing. However, the third type of entropy

cannot be evaluated directly, because it requires finding those definitions (which might not be unique) of

dictionaries that could minimize the real entropy of the compressed string. Hence a method is required in

order to estimate the actual entropy.

Data compression is the process of reducing the redundancy within an ordered series of bits – and thus

reducing its size – so as to benefit transmission and storage. The compression ratio limit that the data

compression algorithm can reach on a specified ordered series of bits is determined by the information or the

entropy the series contains [35]. To estimate the entropy of a series of characters, it is possible to simply run

a universal compression algorithm (as not all such compression algorithms, for instances, will lead to a ratio

that approaches the entropy), and then calculate the ratio of compression [35]. This ratio approaches the

actual entropy of the string when the length of the string tends to infinity [58, 59].

3.1.2 Lempel-Ziv Estimation of Human Mobility Entropy

If the human mobility records are defined during duration T with a sampling interval (temporal resolution)

∆t, and a spatial resolution β such that all the possible locations that the observed group of people could

have is reflected in the discretization of geographical location mapping into a set L, each xi ∈ L represents a

non-overlapping sub-area containing one and only one landmark, and generally the scale of xi is on the order

β. For example, a string like:

x1, x2, x3, . . . , xn

where n = bT/∆tc and i ∈ [1, n], could be used to represent a time series of locations with temporal resolution

∆t and spatial resolution β , which represents a person’s mobility records with specific resolution.

Lempel-Ziv estimation of actual entropy can be calculated with the formula:

Sest =

(
1

n

n∑
i=1

Λi

)−1
lnn (3.4)

Within equation 3.4, Λi is the length of the shortest substring starting at position i which doesn’t previ-

ously appear from position 1 to i − 1, and n is the length of all samples for which records is available. The

estimation Sest converges to the actual entropy S when the string length n (corresponding to total recorded

time n ·∆t) tends to infinity.

In realistic scenarios, the records that have been exhibited a limited n, and within the limited records

there might be missing data on a person’s location information at specific times. Such missing data can be

treated as being represented by a distinguished character (without loss of generality, a question mark “?”).

Even for those times in which the location information xi ∈ L is available, there might be noise associated

with the location measurement, where – for example – the location of a person at time t is xi, while as a

result of the limitation of the locating method and related equipment, the recorded location is xj , i 6= j.
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Such noisy location records could, for example, flip among the cells adjacent to the actual location. This

effect determines the noise floor (the measure of the signal created from the sum of all the noise sources and

unwanted signals within a measurement system) for a particular human mobility pattern analysis. Sensor

failures which produce large relative displacements – such as a GPS restarting and reporting (latitude 0,

longitude 0) as the coordinate – can create outliers with significant impact on the entropy calculation.

In the supplementary material of [58], Barabási et al. have investigated the impact of missing data on

entropy estimation with an experiment that randomly assigns a fraction of known locations to unknown for

a dataset that they collected every hour over eight days for two typical users. This forms a subset of a

dataset that collects the nearest cell tower coordinates as personal location. From their result, the estimated

entropy will slightly (less than 12%) overestimate the actual entropy when there is more than 30% of location

information remaining. By contrast, when more than 70% of the location information is missing, the system

tends to underestimate the actual entropy (by up to 50%). This suggests that as long as less than 70% of

the total data is missing, Estimated entropy could still be used to bound the predictability in a conservative

fashion (in which the entropy might be overestimated – and thus underestimate the predictability – but not

the reverse).

Using a question mark “?” to represent unknown location information will tend to underestimate the

entropy of human mobility patterns, as once there is unknown location information, the “hole” will be patched

by the same location “?” throughout the records, such that when the missing rate is over 50%, one could

actually find a person over half of the time in the “unknown” bin. Secondly, in performing experiments

in which known locations were replaced with unknown locations, the newly formed pattern underplays the

clustering of the missing locations. Based on our experience, within the data that has been collected, the

missing data tends to be clustered rather than evenly distributed between known location information. The

preceding two points might have impact on the validity of sensitivity analyses to be presented.

3.1.3 Human Mobility Predictability

Predictability [58] is intended to quantify the ability to predict a person’s location given information regarding

all previous location information for that person. This corresponds to the probability that the location of a

person could be correctly guessed, if their history of previous locations were token into account.

The average rates of correct guesses of a person’s location might move and down as the algorithm exploited

additional past records; however, there exists a upper bound on predictability for any algorithm that could

be adopted. The upper bound of predictability over some period Πmax is defined implicitly by – and solved

by reference to – a set of equations considering both entropy S and number of unique locations N that a

person has visited during that period:

S = H(Πmax) + (1−Πmax) log2 (N − 1)

H(Πmax) = −Πmax log2 (Πmax)− (1−Πmax) log2 (1−Πmax)
(3.5)

13



Within equation 3.5, N must be no less than 2. In solving these equations for Πmax, I make use of the

value of S calculated using the Lempel-Ziv Entropy Estimation algorithm noted above as well as the value

of N . Πmax provides an upper limit for the performance of any algorithm which utilizes the complete past

for a person to guess at what specific location that person lies at a specified time [27].

Within [27], the authors note that there is a cluster of the upper-bound of predictability at 93% across

the 45,000 people in their dataset. The clustering also shows the lack of variability in predictability. This

upper-bound does not consider potential difficulty and cost in devising estimates that approach this limit.

3.2 Trip-Length Distribution

Trip-length distributions are intended to describe the character of human movement scales. Currently, human

movement is detected via location change between scheduled observations. The accuracy of the trip-length

distribution is mainly determined by the accuracy of the locating method and the sampling regime.

There is a trade-off between the accuracy of trip-length information that could be gathered and the

cost required to achieve it. Considerations for this cost include the storage capacity, complexity of sensor

deployment, power consumption, and (in a multiplicative fashion) the size of population that could be

monitored.

3.2.1 Implication for Human Mobility Characteristics

The truncated power-law distribution [29] reflects the heterogeneity in the distance traveled by humans. At

the same time, it also reflects limits in human energy [2]. This limitation could be further summarized as the

result of physical bounds and psychological bounds. Physical bounds emphasize on the limit of human body

tolerance and limitations of transportation devices and regulatory guidelines that shape human mobility,

such as the fact that an acceleration of 3 times of gravity is usually the limit that normal people can bear

and the fact that the upper-bound of freeway speed is usually no more than 140 miles per hour (about 225

km/h). The speed could also been restricted by psychological factors such as caution regarding the road

condition, cognitive mapping, or personal schedules. For example, a new settler of a city or campus might

choose a common path instead of a shortcut, but after some time familiarity with the path and its surround

might lead them to switch to shortcuts; at the same time, people might sacrifice the convenience of shortcut

if they were attracted by a scenic view. In a word, social and spatial context could change the behavior of

human mobility and cause a truncated tail as the distribution of trip-length.

In short, the rapid convergence of trip-length reflects existing bounds that people can’t overcome – it

could be the limit of the available time that people could have in a day, also with several physical boundaries

associated with the speed of displacement.

A trip-length distribution could not only determine the next location that one could transit to, but could

also to some extent reflect the specific habits of human beings, as the trip-length could related to two typical
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classes of human mobility: flight and random walk [16].

Flight is defined as a long distance trip with only minor direction changes. This type of mobility is

primarily related to intentional human movement, and could be tagged with important events that have a

long term plan that might transport resources, immigrate individuals and communicate between groups with

relatively little interactions. As flight is more related to intensional trajectories, it can also be related to

scheduled behavior. Thus, it would inherently provide a high degree of predictability [16].

By contrast, a random walk focuses on small scale wandering without obvious direction or bounding

region. This kind of mobility is mostly related to instant decision–making without a long-term forecast or

plan. The relatively small scale of unscheduled movement could cause difficulty in determining the exact

location of a person.

3.2.2 Implication for Data Collection and Resolution

Modern localization approaches typically rely on WiFi, Cell tower, GPS systems, but also specific indoor

localization using RFID tags [49, 28, 54]. The localization could be based on reference to known landmarks,

either directly duplicating the known location as the estimate, or using time-of-flight distance measurement

or trilateration to infer an intermediate location from a set of several such landmarks.

Cell tower or WiFi-based call and contact records form an attractive data source for studying human mo-

bility because they are collected automatically, and cover thousands or millions of subscribers over prolonged

sampling periods. For this reason, several notable contributions [58, 25, 13] have used traces that reflect con-

nectivity to existing infrastructure (e.g., Access Points (APs) or cells) as their primary data source. However,

the tower locations map to a Voronoi diagram with a spatial extent dependent on geography and population

density, which can reduce the overall accuracy. Moreover, because position updates for call records are only

available when a user initiates or receives a call or a text message [58], the records can over-sample client who

primarily rely on mobile phones such as real estate agents and cab drivers and (by extension) high mobility

individuals.

To compensate for the poor resolution and selection bias of cell tower-based measures and the reduced

coverage of GPS data, researchers have turned to shorter-distance radio-based devices such as WiFi [37],

or RFID [49, 28, 54] systems, and have inferred position using either the Voronoi diagram of beacons [58]

– as in the cell tower case – or used more sophisticated methods such as trilateration or fingerprinting

[68, 12, 43, 62, 3] to interpolate a cartesian position from multiple records.
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Chapter 4

Experimental Setup

To address the impact of geometric representation on spatial decomposition, the influence of granularity

and noisy incomplete data, and adopting both Entropy-Predictability and the distribution of trip lengths as

the metrics, the experiment is designed to compare the variety of human mobility pattern as a composite of

different human mobility records, varying sensor type (GPS or WiFi), data quality (raw data or filtered data),

geometric representation (Voronoi or squared grid) and location record granularity. The SHED1 dataset is

used, which includes multi-sensor data records for 39 participants over 5 weeks.

To reflect the variation in location record granularity, for Voronoi decomposition, Cell Towers are chosen

as low-density landmarks and WiFi access points as high-density landmarks. For square grid decomposition,

Five different granularities were used to represent the location, with bin width ranging from 15.626 m to 4

km with a multiplicative step factor of 2 (15.625 m, 31.25 m, 62.5 m, 125 m, 250 m, 500 m, 1 km, 2 km, 4

km).

Throughout the experiment, I obtained 52 boxplots for entropy evaluation and 1 triplength distribution

for further analysis.

4.1 SHED1 Dataset

Central to our analysis is the Saskatchewan Health Ethology Dataset (SHED1) collected over 5 weeks in

April and May of 2011 [16]. This dataset contains telemetry recorded from HTC Magic Android smartphones

and includes direct (through GPS) and indirect (through WiFi and Bluetooth) information on participant

geographic location. This data was crossed with estimated recorded positions of WiFi routers and cell towers

in the city of Saskatoon [40]. Collected data was parsed and filtered prior to performing entropy calculations

on the Socrates cluster at the University of Saskatchewan.

After receiving approval from our Research Ethics Board employing the software described in [15], we

deployed the data collection system for 5 weeks during April and May of 2011 using Android Dev Phone 2s

running a custom version of the Android 2.1 operating system. Forty participants were recruited from the

Computer Science department, consisting of graduate students from several laboratories, and technical and

administrative staff. Participants met one-on-one with at least one study organizer, were walked through

the experimental protocols and use of the phone, filled out consent forms, and had the opportunity to ask
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questions. Participants were requested to carry the phones with them at all times during the day, unless

the phone was low on batteries, in which case they were requested to plug it into a computer near them.

Participants were also requested to take the phone home with them at night, and to initiate charging just prior

to going to sleep. One participant withdrew within the first week, leaving 39 participants who completed the

entire study. Of those, one participant experienced a hardware failure on the GPS receiver on their phone,

leaving 38 participants with reliable location data. Results are presented here for those 38 participants.

The phone was programmed to collect data in bursts with a 5 minute duty cycle to manage data size and

battery life. Every duty cycle, the phone logged 1 minute of accelerometer records, 1 minute of Bluetooth

contacts, 3 seconds of WiFi contacts and 10 records of battery state. GPS records were collected for 2

minutes, but given that the GPS required significant time to acquire satellites to achieve position lock,

the first approximately 90 seconds often did not contain data. The information recorded by each sensor is

summarized in Table 4.1. Values in the ALL row correspond to common fields.

Table 4.1: SHED1 Collected Data List

Parameter Variables recorded

ALL Participant ID, time stamp

GPS Latitude, longitude, velocity, accuracy

Acceleration Acceleration in x, y, z

Bluetooth MAC address, signal strength

WiFi BSSID (MAC address), SSID (Network Name),

signal strength, frequency, security protocol

Battery Battery level, plugged status, battery status

Data was opportunistically uploaded by phones when participants were in contact with the university’s

secure wireless network. Data on the server was accumulated in flat files and parsed at regular intervals and

inserted into an MS SQL Server database. Participants with low compliance and those whose reported data

dropped significantly were notified through email. At the conclusion of the study, participants returned their

phones and filled out a questionnaire, which contained basic demographic information, information about

perceived compliance and lab/office affiliations.

Time series of location information were used to reformat those records of mobility. As SHED1 collected

data has several locations within the same duty-cycle, I summarized the location of a person in a duty cycle.

Because SHED1’s GPS data was in units of degrees of latitude and longitude, a way need to be adopted to

convert between GPS degree pairs and kilometers specified in two dimensional coordinates.

A space-time log is an ordered series of location indices representing the mobility of a participant during

the experimental period; each location index within the series representing the specific location that such

participant is in at a particular duty cycle. For those duty cycle when there is no location data for a
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Figure 4.1: Experimental Setup Flow showing data feeding, geometric representing and evaluating

participant, the special location index “-1” was assigned as a placeholder (analogous to the “?” described in

section 3). Therefore, we had 38 records of 9793 duty cycles corresponding to participant locations for every

duty cycle in the study.

For both geometric representations, the location index is used to indicate in which cell the participant

was currently located based on GPS coordinates. For the Voronoi geometric represented location, Cell tower

ID was used directly as the location index; for the square gridded geometric representation, I numbered the

bins from top to bottom with each row from left to right continuously; and for the WiFi location, I used the

MAC address of each access point as the location index.

To convert from GPS degree coordinates to two dimensions, I used the Spherical Law of Cosines to

calculate distance between two degree coordinates with the formula: Let p1(lat1, lon1), p2(lat2, lon2) be two

points whose GPS degree coordinates is already known,

Dist(p1, p2) = sin−1
(

sin(lat1) sin(lat2) + cos(lat1) cos(lat2) · cos(lon2 − lon1)
)
·R (4.1)

Within equation 4.1, R is the earth’s radius (mean radius 6,371km). This method typically gives errors

of up to 0.3%[41].

4.1.1 GPS Data Filtering

GPS data filtering enables us to inspect the impact of missing data and noisy GPS data on perceptions of

human mobility by removing data based on considerations of physically plausible velocities and detected

co-location with other nodes as measured by Bluetooth.
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Raw GPS data typically exhibits two major sorts of problems: by recording noisy data, and by missing

data which should have been recorded. Noisy data could, for example, be caused by an inappropriate report

of a default location while restarting the GPS sensor, or by presence indoors causing unreliable position

estimates from the GPS satellites. Missing data could be due to the phone running out of power, the

phone being in a location where no satellite signals are available or by the participant temporarily disabling

recording.

Table 4.2: Available Location Records

Representation Available Records Missing Meaning

Grid Raw 126,789 65.93% Fed with raw GPS data, square grid de-

composition

Grid ASF 112,268 69.83% Fed with average speed filtered GPS

data,square grid decomposition

Cell Tower Raw 126,788 65.93% Fed with raw GPS data, Voronoi decom-

position with cell tower as landmark

Cell Tower ASF 112,268 69.83% Fed with average speed filtered GPS data,

Voronoi decomposition with cell tower as

landmark

WiFi Raw 192,976 48.14% Fed with WiFi access point scanning data

using the access point with highest RSSI

level each duty cycle per participant,

Voronoi decomposition with WiFi access

points as landmarks

As shown in the Table 4.2, SHED1 collected raw GPS data has a missing rate of 65.93% which indicates

that only 34% of the potentially GPS data is available over all participants. This is primarily due to

participant compliance, which averaged a little over 50% [15]. Within this 34% of data that is available, I

also evaluated the reliability of these data via cross referencing with Bluetooth records.

Theoretically, the Bluetooth sensor on a smartphone will record the MAC address of all the devices having

Bluetooth radio in “discoverable” mode within approximately 10 meters. Bluetooth records were aggregated

into a table, listing any device that has ever been spotted for all participants [15] in the study for every

duty cycle. Because Bluetooth radio range is generally roughly 10 meters, one should expect that the GPS

locations of a pair of Bluetooth records should also exhibit displacement between their GPS location no more

than 10 meters (much less 100 meters). However, of those records containing both Bluetooth and GPS data,

14.7% exhibited a relative participant-participant displacement of over 1 km.
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4.1.2 Average-Speed Filter

The average speed filter is primarily intended to filter GPS data associated with physically impossible duty

cycle – duty cycle transitions. Note that average-speed filtering is not an absolute threshold filter such as

low-pass filter, high-pass filter, or band-pass filter in signal processing that will only working with signal

values without considering the variation of signal values; instead, this filter is based on the physical limits of

human speed.

A simply implemented average-speed filter could just use common speed (such as walking speed or driving

speed) as a threshold. But a more complex one could consider the acceleration that governs the potential

speed change during selected session. For instance, if average speed is found to be around 100km/h, then it is

very likely that the person is on a highway, and at this time, the person’s trajectory should exhibit properties

closer to flight, and has a higher chance to last many sessions.

The following CCDF plot shows the distribution of displacement of GPS coordinates for a pair of par-

ticipants when Bluetooth records show that at least one of them has detected the other at that duty cycle.

Different colors denote distinct different data feeds, with details as shown in Table 4.3.

Table 4.3: GPS post-processing methods

Data Field Name Processing Method

filteredMean Calculate mean latitude and longitude on all remaining records of each

duty cycle after filtering those records that have Euclidian distance more

than 1.5km from the median latitude and longitude of the duty cycle

MaxAccuracy Use the GPS records that have the maximum accuracy among all records

within each duty cycle

RawMean Calculate mean latitude and longitude on all records of each duty cycle

AvgSpdX Calculate mean latitude and longitude on all remaining records of each

duty cycle after filtering those records that have Euclidian distance more

than X km from the median latitude and longitude of the duty cycle,

and then discounting all duty cycle records that have their average speed

from last duty cycle larger than Xkm/duty cycle

With the average speed filter, I found that the noise spotted by using the Bluetooth table as the underlying

truth has been reduced from 15% down to 7%. That is, half of the mis-estimated positions were due to

erroneous reports of “teleportation” of one of the nodes likely due to a GPS reset.

An average-speed filter is insensitive to incompleteness. Even if there are several duty cycles with missing

data separating two tested sessions, the average-speed bound is still defined – as here “average-speed” also

indicates the minimum average-speed between two tested duty cycles, with the assumption that in the

intermediate missing-data sessions, I assume travel in a straight line with this average speed serving as a
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Figure 4.2: CCDF of GPS Displacement using Bluetooth as ground truth

lower bound.

4.1.3 Bluetooth Records Assisted GPS Location Completion

A bluetooth device in the phone could serve as a near-field contact detector able to detect connections in the

range of tens of meters.

Since there is a notable number of 51,113 duty cycle level Bluetooth connections recorded in SHED1 across

9,792 duty cycles, Bluetooth spot connections could be a tool to estimate location data for pairs of nodes in

Bluetooth contact where one node has GPS reading while its connected pair does not. This selection criteria

was used to enhance the number of GPS records after pruning unrealizable positions using the average speed

filter.

As we can see from table 4.4, using Bluetooth (BT) pairs to complete missing GPS records could increase

the single GPS Bluetooth pair raises the useful GPS data by 12%.

4.1.4 Mapping to Indexed Location

To calculate the entropy of human mobility, I have to map location into a symbol, and use a series of these

symbols to represent the location variation for a person over time.

For a square grid geometric representation, I first set the bin width and then extended if it is necessary

to each side equally from the boundary of both latitude and longitude, such that the final frame would have
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Table 4.4: Remaining Data Pairs Following Filtering

FullGPS BtPair SingleGPS BtPair

RawData 4,842 19,836

Median 4,842 19,836

FilteredMean 4,842 19,836

AvgSpd4 (48km/h) 4,099

18,054 AvgSpd3 3,802

17,221 AvgSpd2 3,455

15,977 AvgSpd1 2,829

integer count of bins spanning latitude and longitude.

Mapping to Synthetic Cell Tower and Wifi Location Index

The website [40] provides the location of all 14,000 cell sites across Canada, including all 32 national and

regional carriers, including Rogers, Bell, Telus, and Wind, giving us locations for all cell towers, which would

been likely contacted during the study.

The following two figures reflect both large and small scale representations of the area associated with

the coordinate of a cell towers. I acquired the location of cell towers from [40], and each cell tower is treated

as a landmark used in Voronoi decomposition. As I did not have the access to the routing table used in some

previous contributions [58], I assumed a person would secure services through the nearest tower.

The larger region shown in Figure 4.3 showed the set of cell towers that has been referenced in over 99%

of records; the remaining 0.1% not shown primarily correspond to towers in the Toronto area. While trips

further east and west were made, they were made by air, and contain limited path data, as participants had

to turn off their smartphones on an aircraft in keeping with air traffic safety regulations, and are omitted for

figure clarity.

The smaller area in Figure 4.4 represents the greater Saskatoon area, covering an area of approximately

570 km2, where 95% of records were concentrated. The Voronoi regions corresponding to cell towers are also

shown in these figures to provide a sense of scale for cell tower division of space.

The phone recorded all available Access Points during each duty cycle and the signal strength to each

router. Picking the access point with the strongest signal strength at each duty cycle, I obtained the MAC

address of the theoretically closest Access Point of the person’s current position (ignoring potential obstacles

such as walls and other signal interference). Approximate GPS coordinates for WiFi routers were obtained

by cross referencing WiFi traces with the GPS table. The location of a WiFi router was estimated to be

the GPS location of the participant who observed the WiFi router with the greatest signal strength. 26% of

WiFi routers were localized in this manner.
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Figure 4.3: Voronoi Decomposition fragment for much of southern Saskatchewan

4.2 Calculating Entropy and Predictability

4.2.1 Entropy

Within the computation of Lempel-Ziv Entropy estimation, I calculate Λ, which is defined as the length of

the shortest string that started at the current point that has not yet occurred in the previous part of the

string. For example, for the string “ABCAB”, if one currently stands at the first “B”, then Λ will be equal to

1, as “C” has not previously occurred. This could raise a challenge, because if the current position is beyond

the midpoint of the string, there could be a case where I could not find the correct length of the shortest

string that has not occurred previously. Still taking string “ABCAB” as an example, if I currently stand at

the second “A” and want to calculate Λ, I cannot be sure if Λ is 3 or more – because information after the

second “B” are missing. If the character following the second “B” is “D”, then Λ will be 3; if it is “C”, then

Λ will be at least 4. To deal with the issue, there are two approaches.

• Cycling the whole string

• Calculating the entropy on the first half of the string

For my calculation, I choose the later one, as personally I think introducing complete replication of

human mobility could lead to more dangerous deviation of result rather than does the risk of not having a

long enough length of location records to let the Lempel-Ziv estimator converge to the actual entropy, due
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Figure 4.4: Voronoi decomposition fragment for Urban areas of Saskatoon

to the proven quick convergence characteristic of Lempel-Ziv Entropy estimator [35].

When calculating entropy, a method for treating missing location data is required. There are typically

two approaches, one is ignore the missing part, the other is to use a place holder (denoted “?”) to mark

the missing location data. I computed the entropy and predictability with both methods to try to evaluate

bounds on their actual values.

4.2.2 Predictability

As the upper-bound of predictability is defined by equations involving actual entropy and number of unique

locations, and the equation contains non-linear components, I have employed the non-linear equation solver

“fsolve” function in Matlab to get the approximate solutions of the equation with an accuracy of at least

10−5. Because equations could have multiple solutions, to ensure solutions returned are meaningful, I set

the initial point of “fsolve” function to be 0.5 (which is in the middle of the meaningful range [0, 1], thus

unless the equation could have two solutions within the range of [0, 1] – it will occur no matter which solver

is adopted), and also applied a post-check to ensure no solution out of range [0, 1] is returned by the solver

function.
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4.2.3 Setting for Trip Length

I define path or trip length as the displacement by a participant with minimal stops. The distribution of path

lengths could be used to describe the characteristic of trajectories [29]. It can also be used to distinguish

random walk and intentional trips between common waypoints [39, 53] on the one hand and Levy walks on

the other.

To calculate trip length given a representation of space, one must first define what is meant by a trip.

Given that all of my representations are inherently rasterized, I chose to represent a trip as any sequence of

records for an individual where the location changes between each record. The length of the trip was either

summed over cell sizes for the grid representation, or calculated from transmitter to transmitter in the cell

tower and WiFi cases. For example, if there were 5 adjacent cells (A, B, C, D, and E), then sequential records

across duty cycles containing ABCD or ABD would correspond to a trip of length 4, while ABBC would

correspond to two trips of length two. Making a conservative assumption, I treated missing data in a duty

cycle as ending a trip, so the sequence AB?C corresponded to a single trip of length 2.

4.2.4 Deployment to the Socrates Cluster

To calculate the entropy, I need to calculate Λ, which require computation that requires on the order of 1011

string comparisons for each person under each scenario. Hence, to parallelize the computation, 1 node of the

Socrates cluster (2x Quad core Intel Xeon L5420 at 2.5GHz, and 2GB memory) was assigned to calculate

the entropy for all participants for a single spatial representation.
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Chapter 5

Results

My results could be categorized into two groups according to the evaluator used to execute comparisons

on scenarios. In section 5.1, we focus on the results of entropy and predictability analysis, where I enhanced

the regularity of human mobility pattern brought up by [58], demonstrate the similarity between Voronoi

decomposed versus square grid decomposed geometric representation, and support the impact of granularity

on human mobility predictability. In section 5.2, the trip-length distribution is used to demonstrate how data

granularity impacts the ability to capture trips in human mobility records, which further supports findings

advanced in 5.1.

5.1 Entropy and Predictability

Within this section, I used heatmaps of locations and entropy boxplots to illustrate the impact of issues such

as geometric representation, granularity on human mobility predictability.

Heatmaps in this section can be used to show the empirical distribution of a person’s location amongst

cells, either Voronoi or grid. The size of a cell is determined by the granularity of location information;

for reference-based geometric representations such as a cell tower Voronoi map, the size of a cell is directly

affected by the density of landmarks in an area; for coordinate based geometric representations such as square

grid maps, the size of a cell is dictated by the accuracy of the measured displacement between target position

and reference position (the origin). As shown in the following figure, the area was calculated of Voronoi cells

associated with Cell Towers or WiFi as landmarks in Saskatoon proximity area:

Figure 5.1 shows the Saskatoon proximity area, which contains over 97% of GPS data. Focusing our

Voronoi convex hull area distribution calculation in Saskatoon proximity area allows us to convert all GPS

location into UTM coordinates, so that Voronoi convex hull area in unit of square meters could be acquired.

To avoid overestimating cell size, the analysis excluded cells that reached the margin, because the area

of those cells will also be affected by landmarks that haven’t been included in the figure. For a cell tower

Voronoi map within the overall area, over 90% of cells are larger than 1 km2. The WiFi Voronoi map is more

fine-grained than cell tower, as overall, only 2.5% of cells are larger than 1 km2. Nearly 5% of the cells of the

WiFi Voronoi map exhibit area less than 10 m2, which is mainly because locations of WiFi Access Points in

different floors from the same building might become close when they are projected on to a plane.
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Figure 5.1: Voronoi diagram of Saskatoon proximity area

The area of the cell reflects the spatial error; the larger the cell is, the lower the accuracy that will result

from mapping locations to these cells. If there are relatively few times that person’s location lies within a

larger cell and most of the time it lies within smaller area cells, then Voronoi diagrams could be an efficient

tool in representing peoples’ locations. However, as shown in the following heatmap figure, there are large-

scale cells that exhibit frequent participant occupancy, which indicates that there might be a risk of lower

accuracy, due to larger mean cell size.

As shown in Figure 5.3, those cells colored black include over 10k counts of reported participant-dutycycle

records, which means that the location of the associated cell tower is at least 10 times more frequently referred

to than for the other lighter cells. However the size of those cells is relatively big, which could span over 1

square kilometer. Location information recorded within a cell with area 1km2 makes it difficult to detect

the movement under 1km, because it will often be referred to the same landmark; at the same time it could

overestimate the fraction of trip trajectories of approximately 1km in length for those points wandering across

the cell edge.

Figure 5.4 shows Voronoi decomposition using WiFi access points as landmarks. The density of WiFi

access points is much higher than for cell towers, but the shape of the WiFi access point distribution is

similar to the cell tower distribution, in that both of them are clustered in urban area but sparse at the

rural side. The dispersal of participant-duty cycles occurring in each cell is also similar to that for the cell

tower Voronoi heatmap, which includes a predominance of participant occurrence in small size cells, but still

exhibits a considerable amount of participant occurrence on whose area is on the order of square kilometers.
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Figure 5.2: Distributions of areas of Voronoi polygons in Saskatoon proximity Area (Shown in Figure
5.1)

Interestingly, I also found that even in those extremely clustered urban areas, with a very fine grained cells,

the dissemination of human location exhibits considerable heterogenity. This is another piece of evidence

supporting the regularity of human mobility, which is not hard to image, because our mobility in the crowded

area is significantly shaped by the path formed by amenities such as corridors, stairs and elevators.

One of the central questions I sought to investigate in this thesis is the degree to which spatial repre-

sentation impacts the predictability of human motion. If spatial resolution and representation have little

impact, it would further support Song et al.’s characterization of Western mobility patterns as inherently

predictable, potentially allowing for use of much coarser measurement tools – such as cell tower records –

to investigate mobility patterns for planning at all scales. If, however, [16] is correct, then there should be

a pronounced resolution effect on entropy, potentially to the point where a phase change occurs at small

scales. The entropy was calculated for all representations described here. The results are presented in Fig-

ure 5.5 as boxplots, where each distribution is computed across participants. A boxplot of predictability is

shown in Figure 12. The boxplot is a descriptive approach to demonstrate the distribution of the population

over a single dimension. Within Figure 5.5, there are boxplot showing the predictability distribution over

38 people under 13 different scenarios. The boxes extend from the 25th to 75th percentiles of participant

mobility entropy and the maximum whisker length is 1.5 times the 3rd to 1st inter-quartile difference, which

corresponds to approximately 99.3% coverage if the data are normally distributed. The line in the center of

the box represents the mean.
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Figure 5.3: Heat Map of Raw Cell Tower Voronoi

It is readily apparent from Figure 5.5 that while the pruning for the average speed filter removed a signif-

icant amount of data, it did little to change the entropy. This effect lends confidence that the measurements

represent a viable sample of participant mobility entropies, as selectively removing those points least likely

to be correct had limited impact. If removing points had a significant impact, one would have to conclude

that the calculations were strongly biased by the data quality.

As expected – but in contrast to some previous findings – there were significant resolution impacts,

with larger bins – either Voronoi or grid – producing smaller entropies. Indeed, looking only at the means, it

appears that quadrupling the area approximately halves the entropy, demonstrating that the entropy increases

in step with the resolution, albeit at a slower rate. There appeared to be little sensitivity to the geometry

of the representation, as cell tower entropy closely resembles that for the 4 km bin width, approximately the

average scale of the Voronoi cell size considered in the Greater Saskatoon area in which most of the records

fell, and the entropy for the WiFi Voronoi lies between that for the 62.5m and 250m grid; the latter is a

typical nominal range for WiFi routers.

The large variance in the entropies for the smallest grids (15.625 m and 62.5 m bin width, respectively)

are likely indicative of both greater mobility at small scales and the increasing impact of sensor noise on the

distribution. It is worth noting that the 15.625 m grid is the only case where a zero entropy is not within

the 99% confidence interval. I suspect – but cannot conclude – that this is primarily due to the bin size

being near the sensor noise floor. At any given duty cycle, the signal could then wander randomly about its

neighbors, giving rise to an artificially higher entropy. In fact, the relationship between bin area and entropy
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Figure 5.4: Heat Map of Raw WiFi Voronoi

seems to follow an inverse power relationship. For every quadrupling of bin width (with a resulting 16-fold

increase in bin area) the number of possible states decreases by a factor of 16; but the entropy only decreases

by a factor of 2. To investigate this further, the mean entropies from Figure 5.5 have been regressed against

the inverse of the square root of bin dimension, as shown in Figure 5.6.

As is clear from Figure 5.6, there is a strong inverse power relationship in evidence. Another way of

considering this relationship is to note that every decrease in cell area of 16 times increases the number of

possible states by 16, but participants would only double the number of states that they occupied. The

enumeration of the scaling of mobility entropy with area is one of the significant contributions of this work.

To facilitate comparison with other work, the upper-bound of predictability (Πmax) has also been plotted,

which denotes the upper bound for the predictability of an event based on the entropy. A boxplot of

predictability is shown in Figure 5.7.

As shown in Figure 5.7 the consistency between predictability data represented in Raw Bin and ASF Bin

further underscores the reliability of findings in human mobility [58], and that there is regularity in human

mobility pattern even though SHED1 data collection exhibits limitations. At the same time, granularity does

impact the predictability of human mobility – the predictability of Wi-Fi has a notable drop compared with

CT-Raw and CT-ASF in the “Voronoi” region, and for column “Raw Bin” and column “ASF Bin”, with the

four-fold reduction of bin area, there is relatively slowly accelerating predictability drop.
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Figure 5.5: Boxplot of entropy variation on geometry representation and granularity

5.2 Trip-Length Distribution

The impact of spatial representation on trip length can provide some insight into the potential impacts of

resolution on entropy. If trip length distributions tend to zero density beyond a minimum scale, then little

change in entropy would be expected for increasing resolution beyond that point. However, if the minimum

trip length corresponds to the resolution of the spatial representation, personally I cannot assume that entropy

will saturate with resolution. Trip length complementary cumulative distributions (CCDFs) for 15.625 m,

62.5 m, 250 m and cell tower grids are shown in Figure 5.8.

Most of the curves are characterized by a power law relationship over the 0.1 to 1 km distance interval,

with the exception of the cell tower trip length which is characterized by a much steeper decay in the vicinity

of 1 km. This is clearly a spatial sampling effect, as the underlying data is the same in all cases. Because of

the large mean size of the cell towers Voronoi cells, fewer trips occur, because cell changes in sequential duty

cycles are much less common as shown in Figure 13, and because when transitions do occur, they result in

much larger increments of distance. Further evidence of the resolution effect can be seen by comparing the

three grid resolutions, where fewer trips are reported for ever larger grid bin widths.

The saturation effect evident in all cases at around 2 km bin width is likely an artifact of my sample,

composed primarily of graduate students with a dependency on public transport, and the modest size of the
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Figure 5.6: Entropy vs bin width regression

city, which can easily be traversed by bus in less than 45 minutes. My strong trip definition – which split

trips if either a repeated cell was found or a duty cycle without GPS was found – also likely split some of

the longer trips into several smaller trips. Relaxing this assumption would likely bend the tail back towards

a power law distribution.

The two-piece power law evident in the 15.625 m grid case is likely due to two effects – an increase in the

probability of shorter trips as noted in [16], and noise contributed from the GPS sensor providing the illusion

of many short trips. In the 15.625 m and 62.5 m and 250 m grid resolutions, almost 90% of the probability

exists between the minimum grid size and 300 m, again confirming our intuition that there should be a

significant increase in entropy when considering smaller spatio-temporal granularity (higher spatio-temporal

resolution).
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Figure 5.7: BoxplotOfPredictability

	
  
Figure 5.8: Trip-length distribution
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Chapter 6

Conclusion

6.1 Contribution

As one looks at human motion in greater detail, more information will he require to capture that mobility.

There is no entropy saturation point observable in SHED1 data – suggesting that, from a purely analytic

perspective, there is no scale within the resolutions examined at which no additional data is required to

represent motion as scale decreases. However, It could be noted that the entropy grows more slowly than

resolution, indicating that, for SHED1 data at least, there is a declining return for incremental investment in

resolution, as the additional variability captured will grow more slowly than the resolution – and therefore

sensing effort – employed. This in turn indicates that the resolution of choice for a particular study should

be application – and not computationally – dependent; sufficient resolution for the task should be selected,

with the recognition that predictions and conclusions may not apply at finer scales.

There are barely notable interaction between scale size and spatial representation. Voronoi regions gen-

erated similar entropies for their scale as rectangular bins. This finding is important, as it suggests that

experimental designers can safely choose the most appropriate spatial partition based on the available infras-

tructure.

While most of the trips recorded with higher resolution representations were found on sub-100 m scales,

the difference in entropy and scale size remained largely consistent, echoing the findings at larger scales [58].

While larger cells obscure the shorter trips, the inherent predictability does not increase faster than the

number of available states. While it is more difficult to encode the trajectory of one of SHED1’s participants

at a smaller scale, this is in line with number of states, and not indicative of a phase change in mobility

patterns, where entropy would jump significantly.

6.1.1 Insensitivity to Geometry Representation

The most fundamental finding – the fact that entropy scales with resolution (but at a slower rate) – provides

guidance to intelligent system design based on the detection of human patterns such as those described in

[22, 44]. My analysis suggests that the complexity of representing mobility should scale slower than the

resolution, implying that the memory and computational requirements will also scale in a relatively favorable

manner, and designers should not be inhibited from employing higher-fidelity data to meet their system’s
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needs.

6.1.2 Sensitivity to Granularity

It could be concluded that there was little difference in predictability due to spatial representation, and that

the dominant parameter was the size of a cell – not the shape of a cell – at least between the two most

common representations: grid and Voronoi. Given the relative costs in terms of hardware and battery life,

and the extremely dense WiFi networks common in even moderately sized cities, personally I believe future

researchers should preferentially leverage WiFi for urban mobility data, supplementing with GPS only when

in rural areas lacking adequate WiFi coverage.

6.1.3 Insensitivity to Noise and Missing Data

Participant-intensive research in the wild will inevitably produce data with gaps and errors due to participant

neglect and sensor failure. My analysis of the data has shown that additionally pruning data based on speed

filters did little to change the calculated entropy. This suggests that datasets with smaller participant size

taken over a sufficiently large timeframe may be able to provide sufficient resolution to capture the underlying

mobility patterns, although this hypothesis will require further data and analysis to confirm.

6.1.4 Limitations

While this research has provided significant insight into the role of spatial resolution and representation on

the apparent entropy of human mobility, it suffers from two distinct shortcomings related to the structure

of the underlying SHED1 dataset. First, the dataset is predominantly comprised of graduate students, who

have unstructured lives and may have a bias towards a higher mobility entropy than average citizens – effects

moderated by their low income and associated reliance upon public transit. However, even with this highly

flexible population, a lower entropy was found than Song et al. [58] whose reliance on heavy mobile phone

users was built into their sampling protocol. Secondly, SHED1 sample size, while comprising a significant

proportion of graduate students in the Department of Computer Science, is insufficient to provide broadly

generalizable empirical conclusions. However, for the population under study, these findings are reasonable,

providing strong motivation for studies of larger and broader populations using similar techniques to more

fully elucidate the predictability of human motion. The third shortcoming of the dataset relates to the

compliance of the participants. SHED1 dataset captured slightly more than half the available data that

would have been obtained with perfect compliance, and only one third of the total possible data had viable

GPS measurements. However, I still obtained more than 1,000,000 GPS records at multi-minute resolution,

corresponding to a significant sample of the participants’ lives.

The use of GPS proximity to cell towers as a measure of cell tower based localization – rather than call

records from cell towers themselves, as reported in [58] – is also a limitation. However, Song et al. were

35



forced to use – and accept the associated biases of – call records as their baseline because they did not have

access to measurements of participant positions. In a sense, my representations is in an idealized case of

what Song et al. were hoping to achieve, and represents an upper bound on the fidelity of data that could be

obtained from cellular call records. However, calls placed from inside a building would register with the cell

tower, whereas GPS might not. The resolution and scope of the WiFi records provides us with additional

confidence that my methods were sufficient to capture the overall trends in mobility patterns.

Finally, it is worth noting that all automated studies cited in this work – including this one – focus

exclusively on Western mobility patterns. I do not contend that the mobility patterns of a tribesman in

Papua New Guinea would follow similar trends, although differences between culturally and environmentally

mediated mobility patterns would make for interesting future anthropological research.
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Chapter 7

Summary

This thesis focused on analyzing impact of spatial resolution on human mobility pattern by trying to

answer following three questions: will different geometric representation of location (Voronoi and square grid

decomposition) lead to an impact on predictability; will finer grained location classification expose previously

obscured random-walks and cause a large drop in predictability; will sensor failure-caused data noise and

missing data affect the reliability of answers offered to the previous two questions.

In order to answer proposed questions, I designed the experiment using entropy and trip-length distribu-

tion as criteria to evaluating on groups mixing by the Cartesian product of Voronoi decomposition, square

grid decomposition, (Sparse CellTower landmarking, finer WiFi landmarking as location classification for

Voronoi decomposition), (15.625 m to 4 km bin width with scale of 2 as location classification for square grid

decomposition, and Raw data, Filtered data, Completed data. I also calculated the trip-length distribution

of both geometric decomposition under representative grained location classification.

Experimental results show the absence of obvious differences between Voronoi decomposition and square

grid decomposition in representing human mobility pattern. Granularity of location classification has an

influence on predictability of human mobility but the drop of predictability is relatively slow when area

(Voronoi convex hull area for Voronoi decomposition and grid area for square grid decomposition) belongs to

a unique landmark arise. Missing data and noisy data did not jeopardize the reliability of my analysis.
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[10] A. Einsten. Über die von der molekularkinetischen theorie der warme geforderten bewegung von ruhenden
flüssigkeiten suspendierten teilchen. Ann Phys, 17:549–560, 1905.

[11] C. Fraser, C.A. Donnelly, S. Cauchemez, W.P. Hanage, M.D. Van Kerkhove, T.D. Hollingsworth, J. Grif-
fin, R.F. Baggaley, H.E. Jenkins, E.J. Lyons, et al. Pandemic potential of a strain of influenza a (h1n1):
early findings. Science, 324(5934):1557–1561, 2009.

[12] Q. Fu and G. Retscher. Active rfid trilateration and location fingerprinting based on rssi for pedestrian
navigation. Journal of Navigation, 62(02):323–340, 2009.
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