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ABSTRACT 

The application of second generation sequencing technology to the characterization of 

complex microbial communities has profoundly affected our appreciation of microbial 

diversity. The explosive growth of microbial sequence data has also necessitated 

advances in bioinformatic methods for profiling microbial communities. Data 

aggregation strategies should allow the relation of metagenomic sequence data to our 

understanding of microbial taxonomy, while also facilitating the discovery of novel taxa. 

For eukaryotes, a method has been established that links DNA sequences to the 

identification of organisms: DNA Barcoding. A similar approach has been developed for 

prokaryotes using target genic regions as markers for species identification and to profile 

communities. A key difference in these efforts is that within DNA barcoding there is a 

formalized framework for the evaluation of barcoding targets, whereas for prokaryotes 

the 16S rRNA gene target has become the de facto barcode without formal evaluation. 

Using the framework developed for evaluating DNA barcodes in eukaryotes, a study was 

undertaken to formally evaluate 16S rRNA and cpn60 as DNA barcodes for Bacteria. 

Both 16S rRNA and cpn60 were found to meet the criteria for DNA barcodes, with cpn60 

a preferred barcode based on its superior resolution of closely related taxa.  

The high resolution of cpn60 enabled a method of sequence data aggregation through 

sequence assembly: microbial profiling using metagenomic assembly (mPUMA). The 

scoring of metagenomic assemblies in terms of sensitivity and specificity of the 

operational taxonomic units formed was used to evaluate and optimize the assembly of 

cpn60 barcodes. Using optimized parameters, mPUMA was demonstrated to faithfully 
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reconstruct a synthetic community in terms of richness and abundance. To facilitate the 

use of mPUMA, a software package was developed and released under an open source 

license. 

The utility of mPUMA was further examined through the characterization of the 

epiphytic seed microbiomes of Triticum and Brassica species. A microbiome shared 

across both crop genera including fungi and bacteria was detected: a particularly 

important observation as it implies that seeds may serve as a vector for microbes that 

could include both pathogenic and beneficial organisms. The relative abundances of taxa 

identified by mPUMA were confirmed by qPCR for multiple cases of both fungal and 

bacterial taxa. By culturing isolates of both bacteria and fungi from the seed surfaces it 

was demonstrated that mPUMA faithfully assembled consensus sequences for OTUs that 

were 100% identical to isolated fungi and bacteria. Patterns observed in the relative 

abundances of the shared microbiome OTUs were used to generate the hypothesis that an 

Pantoea-like bacterium and an Alternaria-like fungus had an antagonistic relationship, 

since sequences corresponding to these organisms showed reciprocal abundance patterns 

on Triticum and Brassica seeds. Studies of the interactions of cultured isolates revealed 

fungistatic interactions that could account for their reciprocal abundances. These 

interactions could be directly relevant to plant health, given that Alternaria-like fungi are 

linked to grain spoilage in wheat, and diseases in canola.  

Taken together, results of this thesis demonstrate the superiority of the cpn60 universal 

target as a barcode for Bacteria, forming the basis for an assembly-based strategy for 

microbial profiling of bacterial and eukaryotic microbial communities that can lead to the 

discovery of novel taxa and microbial interactions. 
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CHAPTER 1 -  INTRODUCTION AND LITERATURE 
REVIEW 

Communities of microbes 

Estimates have placed the number of prokaryotic cells on earth at 1030 and suggested that 

the amount of carbon within those cells is similar to the amount of carbon found in all 

plant life on this planet (Whitman et al. 1998). Microbes naturally exist in environmental 

settings where they interact with each other, and in some cases a host. Interactions can be 

both direct and indirect and may result in dependencies between members of a 

community. Based on direct morphological observation it is clear that in most cases 

microbial communities are comprised of multiple distinct organisms. In fact it is largely 

only through some form of enrichment culture technique that a community of microbes 

be distilled to a sample comprised of a single discrete type of microbe. It is necessary to 

study microbes together in order to understand how they can perform specialized 

functions as a community. This examination of microbes as populations of organisms that 

are interacting with one another is Microbial Ecology.  

The concepts of Microbial Ecology were born out of studies of Plant and Animal systems 

where a community is a collection of organisms that interact with one another (Konopka 

2009). A fundamental question in ecological studies, microbial or otherwise, is who is 

there? This organismal richness is the alpha diversity of the community (Whitaker 1960). 

Given that ecological studies aim to understand how a community of microbes functions 

as a whole, assumptions have to be made that members of the same species will function 

in the same manner, generally speaking. If each type of microbe within a community can 

perform a series of functions then the number of functions that need to be understood, 
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modeled or predicted in an ecological study is largely based in terms of the number of 

distinct organisms present.  

An example of the linkage between community composition and function can be seen in 

the biosignatures left by microbial communities as they form sedimentary deposits in 

stromatolites (Baumgartner et al. 2009). A biosignature is an organomineral deposit that 

contains chemical characteristics of microbial origin. These origins could be the microbes 

themselves (e.g. cellular debris) or extra-cellular polymeric substances (EPS), which are 

the products of microbial activities. Baumgartner et al. demonstrated that changes in the 

richness of microbial communities could be linked to differences in EPS deposit 

characteristics (Baumgartner et al. 2009). As EPS deposits are derived from the activity 

of the microbes within the bacterial mats this demonstrates the connection between 

metabolic functions within a microbial community and the diversity of the community 

itself. In a microbial setting, the need to first understand the taxonomic richness and 

thereby composition is paramount to any understanding of community function. 

Microbial ecology also plays a crucial role in determining plant health and disease. Plants 

can affect the properties of the soil through alteration of humidity, pH and oxygen levels. 

Soil conditions affect survival of microbes, which in turn can affect nutrient availability 

to the plant and be the source of diseases. Recent work (Lundberg et al. 2012) has 

demonstrated the use of microbial profiling to examine the root microbiome of plants. 

The work of Lundberg et al. (2012) established that specific communities of microbes 

living in close association with plants could be reproducibly found in association with 

particular species of plants. Further it was demonstrated that soil type and genotype of the 

host plant could affect the composition of microbial communities that closely associated 
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with plant roots. The interactions between a host organism and its associated microbiota 

need to be well characterized in order to understand how these interactions can modulate 

the host’s health. 

Culture independent methods 

Prior to the adaptation of molecular methods in microbiology, characterization of 

organisms relied heavily on the isolation of strains as pure cultures. Once isolated, a 

microbe could be assessed in terms of phenotypic characteristics (e.g. morphology) and 

the phenotype derived from these observed characteristics provided systems for 

classification across isolates (Kampfer and Glaeser 2012). Culture dependent methods are 

extremely valuable in microbiology as they provide phenotypic information discretely 

linked to single isolates. Unfortunately, current culture-based methods have proven 

deficient in terms of their ability to access all microbial life present in complex 

communities. This discrepancy between numbers of microbial cells present in complex 

communities and those recoverable within culture has been termed the great plate count 

anomaly (Staley and Konopka 1985).  

A partial solution to the limitations of culture-based methods arose from the theory of a 

molecular clock (Zuckerkandl and Pauling 1965). The basis for the molecular clock 

theory is that if two organisms shared a common evolutionary ancestor then the sequence 

for a gene (conserved within both organisms) would have acquired mutations providing a 

record of evolution from the common ancestor. Thus by deriving the differences between 

organisms for a conserved gene (through sequence alignment) it is possible to infer a 

phylogenetic lineage for the evolution of those organisms (Fitch and Margoliash 1967). 
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From a practical standpoint, the sequence-derived phylogeny could be used as a tool 

within a taxonomic system of classification.  

Carl Woese and George Fox are largely responsible for moving microbiological 

taxonomy in a molecular direction (Woese and Fox 1977). Their work described life in 

terms of three domains and was based on phylogenetic analysis of ribosomal RNA genes. 

It was perhaps the direct way that Woese & Fox demonstrated the connection of nucleic 

acid sequences to phylogenetic relationships among microbes that empowered a 

paradigm shift in microbiology to connect the field directly with sequence data. By 

connecting Fitch’s work on molecular evolution (Fitch 1976; Fitch and Margoliash 1967) 

to an understanding of taxonomic relationships between microbes, Woese and Fox 

promoted a sequence-based understanding of taxonomy. Sequence-derived phylogenies 

have fundamentally changed prokaryotic taxonomy in that it has led to the adoption of a 

16S rRNA framework within Bergey’s Manual of Systematic Bacteriology (2001).  

While the adoption of sequence information into taxonomic frameworks is now 

commonplace, there still remains a need for a polyphasic (genotypic, phenotypic, and 

phylogenetic) approach to bacterial taxonomy (Vandamme et al. 1996). By relying on 

multiple characteristics to determine taxonomic relationships it is hoped that the strengths 

of one characteristic can compensate for weaknesses in another. For example, when a 

biochemical property of two organisms overlaps they may still be resolvable on the basis 

of the sequence of a gene they have in common. While a polyphasic approach to 

classification can be seen as stronger and more robust than any of the single 

characteristics on their own, it is crucial to maintain the understanding that any criteria 
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used for classification will have limits. Therefore it is important to establish classification 

criteria where limits can be both expressed and tested.  

Application of sequence-based identification to complex communities of microbes is 

largely attributed to the work of Norman Pace and colleagues (Stahl et al. 1985). 

Focusing on a demonstration of the enumeration of microbes present in a hot spring, 

Stahl et al. were able to show the adaptation of modern DNA sequencing advances to the 

identification of microbes in a complex community. Recognizing that a large fraction of 

ribosomal RNA could be extracted directly from a gentle lysis, Pace’s group was able to 

demonstrate the acquisition of nucleic acid directly from a naturally occurring microbial 

community. The group also recognized that through direct sequencing of the rRNAs the 

richness of the community could be estimated by the number of discrete rRNAs 

sequenced. Further, they began to explore additional concepts of microbial diversity 

through the abundance of each distinct rRNA, noting that issues like unequal 

incorporation efficiencies of the radio-labels would skew abundance estimates. 

Additional work by Lane et al. also examined the use of probes targeting 16S rRNA to 

directly address quantification and visualization (Lane et al. 1985).  

With increasing recognition that many microbes lack morphologically informative 

differences and that enrichment based culture techniques bias the view of a community 

(Giovannoni et al. 1990; Ward et al. 1990); there was a need to develop methods that 

were more universal in terms of their ability to identify and potentially quantify microbes 

using molecular data. A key development, made possible by the invention of the 

polymerase chain reaction (PCR), was the use of universal primers to anchor molecular 

data to a location within the gene of interest. This targeting of specific regions can be 
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seen in the demonstration of Weller and Ward, in which a conserved region (1392 bp - 

1406 bp) of the Escherichia coli 16S rRNA gene was used for surveying the community 

of microbes present in a hot-spring (Weller and Ward 1989).  

Microbial profiling using 16S rRNA gene sequences 

Weller and Ward's work ushered in a new era of microbial community profiling based on 

sequencing of marker genes PCR amplified from microbial communities. These studies 

rely on the use of an informative molecular target, which in order to be useful, must also 

be highly conserved in the population under study. While some genes may be informative 

when looking at specific, related taxa (e.g. gyrB for identification of Campylobacter spp. 

(Kawasaki et al. 2008) and mcrA for the identification of methanogenic Archaea (Gagnon 

et al. 2011)), there is a larger need within microbial profiling for the conservation to 

extend to all possible taxa being studied. 

The 16S rRNA gene was the first gene used for microbial profiling (Lane et al. 1985) and 

it remains the most widely used gene today. This is a natural extension from the works of 

Woese & Fox and Ward & Miller (Ward et al. 1990; Weller and Ward 1989; Woese and 

Fox 1977) as they collectively demonstrated that this gene is informative, could be used 

to distinguish between the Archaea and Bacteria, and could be amplified and cloned from 

naturally occurring communities using broad range primers. The 16S rRNA gene is an 

approximately 1.5 kb (Escherichia coli (Brosius et al. 1978)), highly conserved, gene that 

encodes a structural RNA and forms part of the small ribosomal subunit. The secondary 

structure of the 16S rRNA is crucial for its catalytic function. Encoded within the 

sequence of the 16S rRNA gene is the information that defines its secondary structure as 

a series of nine hyper-variable regions alternating with highly conserved regions 
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(Chakravorty et al. 2007). Thus when mutations arise within the 16S rRNA gene they can 

have a direct effect on the secondary structure by affecting intra-strand base pairing. With 

respect to its application to microbial profiling, both variable and conserved regions are 

fundamentally important to the utility of the gene. In order to make the amplification of 

targeted genic regions feasible from communities of microbes there needs to exist a 

universal primer set and amplification conditions which allow the recovery of the specific 

region from all taxa in a mixed population simultaneously. The highly conserved regions 

allow for "universal" primers to target the same sequence with very minor variation 

across distinct taxa. When amplification is carried out using primers targeting the 

conserved regions the resulting amplicon sequence contains one or more hyper-variable 

regions. The hyper-variable regions provide informative sequence data that can be used 

to distinguish and identify taxa. There have been numerous primer sets designed for the 

16S rRNA gene, varying in their scope in terms of the hyper-variable regions they cover 

and the taxa to which they have been applied. Recent studies examining published primer 

sets in terms of their broad applicability across phyla recognized the presence of 

hundreds (> 500) of primer pairs that could be used in 16S rRNA studies (Klindworth et 

al. 2013). The numerous options for primers actually present a limitation for studies 

targeting 16S rRNA because the ability to compare across studies is impeded by targeting 

of different regions within the gene. Additional problems in the use of 16S rRNA can 

arise due to the level of conservation amongst the highly conserved regions of the gene. 

Conserved regions can provide sites for chimera formation through aborted extension and 

mis-priming, which may occur when performing PCR (Haas et al. 2011).  
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Classical bioinformatics tools (e.g. global and local alignments) commonly use scoring 

strategies that may be inappropriate for the alignment of 16S rRNA data due to it being a 

structural RNA gene. The relationship between secondary structure and function of the 

16S rRNA gene has prompted the derivation of alignment methods that use secondary 

structure information to calculate similarity (Nawrocki et al. 2009). Other methods for 

alignment of 16S rRNA sequences such as NAST (DeSantis et al. 2006) produce 

alignments against a reference template and are prone to containing large numbers of 

gaps making the alignments difficult to interrogate visually. Despite these limitations, the 

16S rRNA target has been adopted almost universally for microbial profiling, and its 

status as the first and most commonly used gene for microbial profiling has resulted in a 

huge wealth of sequence data housed in databases such as RDP (Cole et al. 2007). 

Protein-coding alternative genes for microbial profiling 

In addition to 16S rRNA, protein-coding genes can also be targeted for microbial 

profiling. The degeneracy of the genetic code means that there is the potential for 

synonymous mutations within its DNA sequence. Thus protein-coding genes can 

accumulate some mutations (the synonymous ones), which do not affect the function of 

the encoded protein. Information about each amino acid is encoded by a codon in the 

sequence of protein-coding genes. For protein-coding genes there is thus a more direct 

connection between sequence of the gene and its function than there is for a structural 

RNA (e.g. 16S rRNA) where the secondary structure is not as easily predicted from the 

sequence. The sequence divergence rates of protein-coding genes are thereby more 

appropriate as a molecular clock than structural RNA-coding genes, and are a better 

choice for reconstruction of phylogenetic lineages. Protein-coding genes can be used in 
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terms of either their DNA or amino acid sequences, offering two levels of interpretation 

of sequence relationships. Only two protein-coding genes have been described for use in 

microbial profiling: rpoB (Mollet et al. 1997) and cpn60 (Goh et al. 1996).  

rpoB is a universally conserved gene that encodes the beta sub-unit of the bacterial RNA 

polymerase required for RNA synthesis. As a single copy gene (Case et al. 2007), rpoB 

was originally proposed as an alternative to 16S rRNA for denaturing gradient gel 

electrophoresis (DGGE) studies (Dahllof et al. 2000). Given that Dahllof et al. were 

focused on the use of rpoB for microbial profiling using DGGE, the primers they 

designed contained no degeneracy and would be predicted to have a limited taxonomic 

range. In analyses of whole genome data from GenBank, Case et al. (2007) were able to 

illustrate that there are some cases where rpoB could identify a monophyletic lineage 

(e.g. Firmicutes) while 16S rRNA could not. The lack of a validated universal PCR 

system for the amplification of rpoB limits its adoption for microbial profiling even 

though it has been used in conjunction with pyrosequencing to study microbial diversity 

in soil (Vos et al. 2012).  

cpn60 (also known as groEL or hsp60) encodes the type-I molecular chaperone, a 60 kDa 

protein which assists in the folding and stability of protein structures within the cell, and 

is highly conserved due to its essential function (Hemmingsen et al. 1988). A PCR 

system has been developed for the amplification of a universal target region of the cpn60 

gene (corresponding to nucleotides 274-828 of the E. coli cpn60 gene) (Goh et al. 1996). 

The original primers (H279 and H280) for amplification of the universal target region of 

cpn60 are highly degenerate (219 and 218 respectively) and multiple inosines (9 and 6 

respectively. The degenerate nature of the cpn60 universal target is a significant 
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difference from 16S rRNA where primers can be based on highly conserved regions that 

flank one or more hyper-variable regions. The universal amplification system for cpn60 

has been optimized for difficult templates (Hill et al. 2006b) and the recovery of under-

represented taxa (Hill et al. 2010). 

Initial applications of the universal target region for cpn60 were for species level 

identification (Goh et al. 1998; Goh et al. 2000; Goh et al. 1997; Hill et al. 2006a). 

Additional work found that cpn60 routinely provided a higher level of resolution when 

compared to 16S rRNA and other targets (Verbeke et al. 2011). Resolution at the 

subspecies level has also been demonstrated (Brousseau et al. 2001; Paramel Jayaprakash 

et al. 2012; Vermette et al. 2010). Identification of samples using cpn60 relies heavily on 

the existence of cpnDB, a database that houses chaperonin sequence data from a broad 

range of taxa (Hill et al. 2004). With a large amount of data available in cpnDB covering 

a wide breadth of taxa, it is possible to assess cross-reactivity of nucleic acid probes, in 

silico and assess suitability for diagnostic uses (Chaban et al. 2009; Chaban et al. 2010; 

Dumonceaux et al. 2009; Dumonceaux et al. 2011).  

Applications of cpn60 to microbial profiling were originally based upon di-deoxy 

terminator sequencing methods. A wide range of microbial communities were surveyed 

using these methods including industrial settings (Dumonceaux et al. 2006c), the 

intestinal / fecal communities of various animals (Desai et al. 2009; Dumonceaux et al. 

2006b; Hill et al. 2005b; Hill et al. 2002) including studies of humans (Hill et al. 2010) 

as well as studies relating to the human vaginal microbiome (Hill et al. 2005a). With the 

public availability of pyrosequencing in the form of Roche / 454’s GS FLX platform 

cpn60 was used in next-generation sequencing studies of the human vaginal microbiome 
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(Schellenberg et al. 2009; Schellenberg et al. 2011a; Schellenberg et al. 2011b) and 

studies in fish (Desai et al. 2012) and dogs (Chaban et al. 2012). 

An advantage cpn60 holds over 16S rRNA is that it is conserved across all domains of 

life. There is conservation of cpn60 among bacteria and eukaryotes as noted in the 

original characterization by Hemmingsen et al. (1998). More recently, the conservation 

has been shown to extend to some Archaea that have a type-I chaperone. However the 

majority of Archaea only possess a type-II chaperone with a small number containing 

both a type-I and type-II chaperone (Large et al. 2009). Chaban and Hill proposed a 

universal system for amplification of the type-II chaperone, which is highly analogous to 

the amplification system for cpn60 (Chaban and Hill 2012).  

A number of gene targets have potential for microbial profiling (16S rRNA, rpoB and 

cpn60), but there is currently no accepted framework for evaluating gene targets for 

microbial profiling. This leads to a need for a systematic mechanism through which gene 

targets could be proposed and evaluated in order identify strengths and denote weakness. 

One example of such a mechanism is found in the DNA Barcoding movement, where a 

formalized system for the selection and validation of DNA sequences for identification of 

eukaryotes has been developed. 

DNA Barcoding 

Hebert et al. raised concerns about the growing need for taxonomists to characterize 

eukaryotic species on the basis of morphology alone (Hebert et al. 2003). There was a 

series of issues that Hebert et al. identified with morphological based studies. Chiefly, the 

use of morphology alone is problematic given that plasticity of morphologic 
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characteristics can lead to inaccurate classification. Issues with morphological 

characteristics can arise from developmental linkages of the characteristics themselves or 

cryptic taxa. Also, increasingly expert-level knowledge was required to recognize 

taxonomically relevant characteristics as characterization continually refined species. 

Recognizing the increasing use of genomic characteristics to delineate taxa with 

application to microbes, Hebert et al. set out to define a system that could apply broadly 

to all life. The proposed solution of Hebert et al. was to adopt the use of informative 

DNA sequences from vouchered samples as barcodes for the organisms. These DNA 

barcodes could thus be used to identify organisms within a second collection without the 

need to repeat all of the morphological study present in the original voucher.  

From a collections perspective, DNA barcoding is fundamentally liberating. If each 

organism within a collection were identifiable to the species level using a DNA sequence 

then dependence on expert knowledge in each and every domain could be removed, or at 

least mitigated. Thus collections could be initially curated on the basis of a conserved 

DNA barcode and the sequence data could represent an initial measure of the richness of 

the collection itself. By no means was DNA barcoding proposed to eliminate the need for 

expert knowledge, but rather it was meant as a way to free experts from routine 

comparisons and allow taxonomic experts to focus on the unique aspects of collections or 

provide an initial starting point for the identification of new specimens.  

In the original description of DNA barcodes, Hebert et al. identified the cytochrome 

oxidase I (COI) gene as a candidate barcode. For eukaryotes it was suggested that 

mitochondrial genes like COI would be better barcodes given the mitochondrial genome 

accumulates mutations at a faster rate than the nuclear genome. Ribosomal genes were 
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considered, but discounted due to indels and the complications that these structures 

introduce to sequence alignments. Of the protein-coding gene options available, Hebert et 

al. acknowledged that any of the genes encoded in the animal mitochondrial genome 

could be suitable, but pointed out two key factors that make COI advantageous. There 

was a universal PCR amplification system for COI, and the distance between COI 

sequences of related taxa was greater than the other genes considered. These advantages 

have lead to the framework for determining selection of DNA barcodes. 

An evaluation scheme is essential since although COI has been widely used as a barcode 

across many taxa, there are inevitably cases where COI will not perform as an effective 

barcode. The CBOL (Consortium for the Barcode of Life) recognized cases where an 

alternative barcode may be considered: when COI alone does not provide sufficient 

discriminating information to resolve taxa, or when the research community has 

established significant amounts of data on the use of another gene. In order to deal with 

these situations, the CBOL has established criteria for the selection of a non-COI 

barcode. In cases where a non-COI barcode is to be proposed through the CBOL, the 

proponents must provide a documented argument as to why COI is inappropriate for the 

specific taxa under consideration. Requirements for a non-COI barcode include its 

accessibility in all taxa under study (usually through a universal PCR protocol for the 

target region), and that it be able to resolve species level relationships.  

An example of where COI is an inadequate barcode can be seen in the Kingdom 

Viridiplantae (Hollingsworth et al. 2011). The substitution rate of the mitochondrial 

genome in plants is lower than in other eukaryotes and thus makes COI less informative 

as a barcode for plants. This lower substitution rate within the mitochondrial genome has 
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led groups to look for alternatives to COI for plants. The best description of the state of 

DNA barcodes for plants would be contentious. Several groups of researchers have made 

proposals for combinations of genes, many of which overlap across proposals, and there 

have also been proposals of single genes for barcoding in plants (reviewed in 

Hollingsworth 2011). Taken together there is significant, ongoing debate around the 

establishment of a preferred plant barcode. There have been formal, international efforts 

to assess many of these genes, leading to the discounting of some non-COI candidates. 

While not formally a consensus, there is a working majority preference that a two-gene 

(rbcL + matK) strategy be used and augmented as necessary.   

There has been a rapid adoption of DNA barcoding across all fields involving biological 

collections. These adoptions have been highly significant leading to international 

engagement of 25 nations that have signed agreements to catalogue biodiversity with 

barcodes and the establishment of the International Barcode of Life Project (iBOL). 

Additional consortia have been formed around specific thematic areas of DNA barcoding. 

For example the CBOL is not involved in the process of data acquisition, but rather in the 

dissemination of knowledge about the methods and procedures for DNA barcoding. 

CBOL is chiefly responsible for creating working groups to address specific questions 

arising from the field (e.g. determining a framework for evaluating candidate barcodes). 

Data from conventional DNA barcoding is derived from di-deoxy terminator sequencing. 

These data exist as sequencing traces from a single vouchered specimen whose DNA was 

subjected to PCR amplification and sequencing. Both conceptually and logistically this is 

analogous to the use of marker genes for microbial ecology. There are, however, two key 

differences between these approaches: DNA barcoding employs a formal evaluation 
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framework to select barcode targets, and microbial ecology is chiefly interested in 

measuring sample richness directly from complex communities rather than identification 

of isolates.  

For studies of microbial life there has been only a single evaluation of a potential DNA 

barcode for fungi (Schoch et al. 2012). It was demonstrated that the ribosomal internal 

transcribed spacer (ITS) could be used to identify and differentiate fungi and was thereby 

a reasonable choice as a DNA Barcode. While not a demonstration of microbial profiling, 

Schoch et al. illustrated the highly similar application of DNA barcoding to the 

identification of microbial eukaryotes.  

Second Generation Sequencing and microbial profiling 

Initial applications of DNA sequencing for microbial profiling were very low throughput 

in terms of the numbers of samples examined and sequencing reads obtained (e.g. < 10 

sequences) (Giovannoni et al. 1990; Ward et al. 1990). The limiting throughput of early 

studies kept most experimental designs limited to small, descriptive studies of single 

samples of microbial communities. The adaptation of Capillary Array Electrophoresis to 

di-deoxy sequencing (CAE) in the 1990's provided a fundamental shift in sequencing 

technology that enabled significant numbers of sequences to be obtained for a given 

experiment. The use of an array format of parallel capillaries mated to electronics which 

could simultaneously resolve fluor-labeled di-deoxy nucleotides meant that the 

throughput of a single sequencing reaction was expanded by the number of parallel 

capillaries in the array. Using CAE it was thus possible to capitalize on microtitre plate 

formats and sequence in units based around a standard 96 well plate. It was this coupling 
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of automated DNA sequencing (in parallel) to PCR amplicons of informative DNA / 

RNA genes that enabled microbial ecologists to begin looking deeper into communities.  

More recently, a number of "next-generation" technologies for DNA sequencing have 

become available. By far the most significant of these in terms of its impact on microbial 

ecology is pyrosequencing. Pyrosequencing is a sequencing methodology based on 

coupling three biochemical reactions (Margulies et al. 2005). DNA dependent DNA 

polymerase releases pyrophosphate as a result of the incorporation of dNTP into the 

newly synthesized strand. The free pyrophosphate can then be consumed by ATP 

sulphurylase along with adenosine 5' phosphosulphate to produce ATP. Lastly, luciferase 

is capable of consuming ATP in order to convert luciferin to oxyluciferin and results in 

the production of light. Through this enzymatic cascade, the incorporation of free dNTP 

can be translated into an observable signal, which is the emission of light. Thus by 

cycling the availability of single dNTP moieties it becomes possible to determine the 

sequence of a DNA molecule during its synthesis.  

The data derived by pyrosequencing is collected as floating-point numbers, which 

represent measurements of the light emitted during a single dNTP flow and the name of 

the moiety that was available to the polymerase. Given that dNTPs are cycled in a 

repetitive fashion (e.g. A, G, C, T, A, G, C, T, A, …) it is necessary but trivial to exclude 

the flows that do not result in an incorporation event (i.e. have an amount of emitted light 

~ 0). The difficulty in interpreting pyrosequencing data comes from the occurrence of 

homopolymeric stretches in the DNA template being sequenced. As a contiguous stretch 

of a single repeating dNTP moiety, homopolymers result in multiple incorporation events 

within a single flow. Thus the amount of light emitted is > 1 and an interpretation of how 
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close the floating-point value is to an integer value determines the accuracy of correctly 

interpreting the length of the homopolymer. The length of pyrosequencing data generated 

with 454/Roche’s GS 20 platform (2005) was < 100 bp. This original read length was so 

dramatically shorter than conventional di-deoxy based sequencing (700-800bp) it was 

only appropriate for re-sequencing applications where data was mapped on to some pre-

existing reference dataset. Read lengths beyond 200 bp became possible with the release 

of the FLX, Titanium and FLX+ platforms, and were long enough to enable initial 

applications to microbial ecology (Schellenberg et al. 2009).  

Prior to the release of pyrosequencing instruments, there was an increasing application of 

di-deoxy based sequencing to microbial profiling (Hill et al. 2002). While sequencing 

using di-deoxy terminator chemistries and CAE machines was revolutionary, it limited 

high throughput sequencing studies by being based on 96-well microtitre plate. The 

picotitre plates commonly used for pyrosequencing feature wells of 50 microns in 

diameter and yields 1 million reads per sequencing run.  

A throughput of 1 million reads / run has enabled significantly more complex 

experimental designs. Studies including biological and technical replicates, multiple 

treatment levels and time-courses have become feasible, allowing researchers to move 

beyond anecdotal, observational studies consisting of mere "snapshots" of communities. 

All of these possibilities, and the correspondingly large volume of sequence data 

generated increased the need for bioinformatics methods that aggregate these data in 

automated ways. In the context of microbial ecology, data aggregation commonly is 

performed through the formation of Operational Taxonomic Units.  
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Operational Taxonomic Units 

The concept of Operational Taxonomic Units (OTUs) arose from the numerical 

taxonomy work of Sokal and Sneath, which focused on grouping organisms on the basis 

of numerical categories (Sneath 2010; Sokal and Sneath 1963). This phenetic approach to 

taxonomy differed from the existing prevalent phylogenetic view in that a phenetic 

approach uses a similarity measure to create assemblages of organisms and this grouping 

is an Operational Taxonomic Unit (OTU). Phenetic approaches are not intrinsically 

linked to an understanding of evolution as phylogenetic approaches are. At the time of 

the OTU’s inception, sequence data for microbes was far from commonplace and so the 

creation of OTUs was based on biochemical properties.  

With the advent of modern DNA sequencing based on Sanger’s (Sanger and Coulson 

1975) di-deoxy terminator method, it was feasible to sequence fragments of nucleic acid 

from bacterial isolates and thus form OTUs from sequence data. Sequence similarity 

(between genes) and more precisely the complementary idea of distance (or divergence) 

could be calculated based on sequence alignment. This similarity measurement or 

distance could also be used to attempt to infer species-level relationships between 

organisms (Devereux et al. 1990).  

Currently the bacterial species concept is widely agreed to be based upon sharing of one 

or more distinguishing phenotypic traits as well as a 70% DNA-DNA hybridization 

cutoff. Thus if two or more isolates are phenotypically similar and exhibit ≥70% DNA-

DNA hybridization then they should be considered the same species (Wayne et al. 1987). 

There are pragmatic reasons why a unification of the species concept with OTU 

formation is sought. Chiefly there is no reasonable way to perform DNA-DNA 
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hybridizations unless an isolate exists in pure culture. Therefore in order to describe 

uncultured, complex microbial communities in terms of species some connection is 

required between the metagenomic sequence data (and OTU) derived from the 

community and microbial species. The purpose of this translation of OTU to species is 

the harmonization of sequence-based microbial profiling and conventional microbiology, 

an idea captured best in the writing of Konstantinidis et al.  

“the purpose of the species is to be soundly predictive of the phenotypic 
potential of a strain (as the greater public assumes it to be)”(Konstantinidis et 
al. 2006) 

No formal connection is currently accepted between species and OTU derived from 

microbial profiling experiments based on marker genes such as 16S rRNA and cpn60. 

Some researchers have attempted to connect OTU formation (and the distances / 

similarities defined therein) to the species concept through the proposal of similarity 

cutoffs for 16S rRNA studies (Devereux et al. 1990; Schloss and Handelsman 2005; 

Stackebrandt and Ebers 2006). However, a rigid cutoff is necessarily problematic since 

the taxonomic framework to which sequence-based OTU are being compared was not 

arrived at using consistent measurements, but rather through a variety of qualitative and 

quantitative approaches that have evolved over centuries of study.  

Before his death, Sneath published some reflections on microbial systematics and gave an 

excellent description of how an OTU can be related to identification and specifically 

speciation. 

“One can imagine the various species as globes in space. An unknown strain 
is represented by a point in this space. It is possible to measure the distance of 
the unknown to the spheres, and find which it is nearest to. That will be the 
most likely identity. But in addition one can say whether the unknown is 
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within the envelope of that sphere – which implies that it is extremely likely 
to be correctly identified. If the unknown is just outside the envelope the 
identification is less certain, and it may be an atypical strain. If it is midway 
between two spheres it may be a hybrid of the two species. And if it is a long 
way from any sphere it is a strain that cannot be identified from the existing 
data. Such strains, when further work is done, commonly turn out to be new 
species.” page 81(Sneath 2010)  

Therefore it is reasonable to connect OTU formation with a definition of bacterial 

species, however there is a need to establish robust criteria to define a species in terms of 

an OTU.  

For microbial profiling using marker genes (e.g. 16S rRNA and cpn60) it has been 

commonplace to adopt some form of clustering to form OTUs. The sequence based 

OTUs formed through clustering can be used, as envisioned by Sneath, for identification. 

In addition, the use of bioinformatic methods for clustering serves as a general approach 

for data aggregation. Typically sequences are compared pairwise through an alignment 

method. Using criteria such as percent identity and length, cutoffs are used to determine 

whether or not sequences are similar on the basis of these cutoffs. Once all pairs of 

sequences have been compared a transitive closure is performed across the similarity 

results, producing a set of clusters, which are defined as OTUs. In many cases a 

maximum distance constraint for a cluster (or OTU) is used to limit membership. These 

distance constraints can be based on single linkage (nearest neighbour), average linkage 

(un-weighted pair-group method with arithmetic mean UPGMA), or complete linkage 

(furthest neighbour). Single linkage is the most straightforward extension of the transitive 

closure approach that has been widely used in the analysis of cDNA library data. Under 

single linkage a sequence is placed in a cluster if it shares similarity with any member of 

that cluster. Average linkage relies on iteratively joining sequences into the cluster 
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beginning with the two most similar and successively adding the next most similar 

sequence until some maximum average similarity constraint forces the creation of a new 

cluster. Complete linkage relies on a sequence being similar to every other member of the 

cluster.  

In the field of microbial ecology there have been a number of clustering implementations 

demonstrated specifically for OTU formation based on marker gene sequence data. 

DOTUR (Schloss and Handelsman 2005), more recently implemented within MOTHUR 

(Schloss et al. 2009), is an example of software that has the capacity to form OTUs 

through clustering by these various methods. In MOTHUR, a maximum distance cutoff 

(e.g. 3%) is used in conjunction with any of these clustering methods. Thus the OTUs 

formed by MOTHUR are simply the groupings of reads that are clustered together based 

on a linkage rule and a distance cutoff. These OTUs consist of a list of sequences, and 

leave the issue of finding a sequence to represent the OTU as a post-OTU-formation 

problem.  

Given that sequence based clustering is meant to find clusters of related sequences 

present in a dataset, it is common that implementations of these methods will require 

some all vs. all comparison of the dataset, typically sequence alignments. One feature of 

these data sets recognized by Edgar is that similar sequences will tend to have many sub-

sequences in common (Edgar 2004). Exploiting the similarity of multiple short sub-

sequences allowed Edgar to suggest that database type comparisons (the single sequence 

vs. all others in a clustering approach) could exploit this property. Using an ordered list of 

the database records, Edgar implemented a method to search a query sequence against a 

database only until the hit / matching falls below a specific level (e.g. 3% distance) and 
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then knowingly avoid searching the remainder of the database. This heuristic has been 

demonstrated to increase the performance of clustering (memory consumption and 

execution time) and is implemented within UCLUST (Edgar 2010). There are some costs 

associated with the use of such a heuristic, including that they may lead to an increase in 

error associated with detecting distant relationships.  

Clustering of sequences to form OTUs does achieve a level of data aggregation, but it 

alone does not provide a representative sequence for each OTU formed. Commonly the 

use of clustering approaches for OTU formation will rely on some post hoc step through 

which a representative sequence for each OTU is chosen. These choices could be based 

on the length of the sequences within the OTU, nearest sequence chosen from a reference 

database, or selecting a sequence at random (Caporaso et al. 2010).   

Selecting a representative sequence based on length could be appropriate when a distance 

of 0 was used as a cutoff for OTU formation. In this case an OTU would contain only 

sequences that were identical, thus making the longest one the best representative since 

other, shorter sequences in the cluster would be subsequences of the representative. 

Likewise the choice of a representative sequence for an OTU from a reference database 

could be appropriate if the representative OTU sequence was identical to the reference 

sequence. Lastly, the choice of a representative sequence from the OTU itself at random 

could be reasonable if all members of the OTU are equally likely to occur. Where all of 

these approaches fail is when one considers that a major goal of applying molecular 

techniques to complex microbial communities is the identification and characterization of 

unknown organisms. If the thing that defines the OTU (the representative sequence) does 

not capture all of the variation within the OTU (because the OTU was built with a 
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distance criterion > 0) then the character of the OTU is in doubt, and its suitability for 

numerical taxonomy should be called into question. This is perhaps a subtle but critical 

issue because it goes directly back to Sneath & Sokal’s original description of the OTU 

for numerical taxonomy.  

“Problems may arise if a taxon used as an OTU proves to be variable for one 
or more characters.” Page 121 (Sokal and Sneath 1963) 

In Sokal’s terminology, an OTU’s character (or set of characters) is the criterion used to 

define it. These characters could involve phenotypic, genotypic observations, or 

combinations thereof, which are used to classify the organisms being studied. Ideally all 

organisms grouped into an OTU need to be invariable in the characters that define the 

OTU.  

With modern, sequence-based OTU formation the primary character of an OTU is the 

sequence chosen to represent the OTU. This sequence becomes the OTU ipso facto and 

so Sokal’s comment about problems arising can be interpreted in terms of sequence data:  

all sequences within an OTU must be equally represented by the OTU’s sequence. This 

realization was a key motivator of this thesis, and the argument that OTU formation 

needs to be accomplished using sequence assembly methods not simply clustering 

methods. Clustering methods only group sequences together based on some distance 

criterion. At best, an OTU formed using a distance cutoff of 0 (where all sequences are 

identical) would be equivalent to the representative sequence produced through assembly. 

Assembly methods build the thing (i.e. the consensus sequence or rather the OTU) to 

which all of the component sequences belong. Sequence assembly for OTU formation 

has a major advantage over clustering: assembly supports discovery. By relying on 
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sequence assembly it is possible to build novel OTU that have no similarity to a reference 

database sequence. Further, the sequence that is built through a sequence assembly 

process is inherently more representative of the OTU than any individual sequence 

chosen to represent a cluster-based OTU. This means in practice, that assembly can 

reveal completely novel OTUs and provide the most representative biomarker possible 

for the OTU from the sequence data: the consensus sequence itself. 

It was suggested that as little as 1% of microbial species have been characterized in pure 

cultures (Staley and Konopka 1985). Of those microbes that have been characterized and 

identified, estimates place most of the isolates into as few as four phyla. Hugenholtz 

demonstrated this phenomenon using all isolates from the Australian culture collection to 

show that 97% of the collection is from the phyla Proteobacteria (54%), Actinobacteria 

(23%), Firmicutes (14%) and Bacteroidetes (6%) (Hugenholtz 2002) while estimating 

that there likely are ~45 distinct phyla present within taxonomic outlines  or current 

culture collections but most phyla are represented by extremely small number of 

examples. In essence this means that we know much about very few phyla (n=4) of a 

vanishingly small fraction (1%) of the world’s bacterial population (1030 cells). As the 

significance of prokaryotic life is on an equal footing with plant life (Whitman et al. 

1998) but is largely unknown, microbial ecology is in desperate need of bioinformatics 

methods that enable novel discovery of OTU and produce robust biomarkers for further 

study of those novel taxa.  
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OBJECTIVES 

 
1. Apply the Barcode of Life’s framework for barcode evaluation to Bacteria. 

2. Demonstrate that de novo assembly of DNA barcodes from complex microbial 

communities can faithfully construct the DNA barcodes.  

3. Develop a computational process for microbial profiling using metagenomic 

assembly (mPUMA) that is capable of forming Operational Taxonomic Units 

(OTUs) through assembly and providing outputs suitable for analysis of OTUs. 

4. Demonstrate the use of mPUMA to characterize a previously unstudied microbial 

community, and derive hypotheses as to the interactions of the community 

members. 
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Abstract 

Barcoding with molecular sequences is widely used to catalogue eukaryotic biodiversity. 

Studies investigating the community dynamics of microbes have relied heavily on gene-

centric metagenomic profiling using two genes (16S rRNA and cpn60) to identify and 

track Bacteria. While there have been criteria formalized for barcoding of eukaryotes, 

these criteria have not been used to evaluate gene targets for other domains of life. Using 

the framework of the International Barcode of Life we evaluated DNA barcodes for 

Bacteria. Candidates from the 16S rRNA gene and the protein-coding cpn60 gene were 

evaluated. Within complete bacterial genomes in the public domain representing 983 

species from 21 phyla, the largest difference between median pairwise inter- and intra-

specific distances (“barcode gap”) was found from cpn60. Distribution of sequence 

diversity along the ~555 bp cpn60 target region was remarkably uniform. The barcode 

gap of the cpn60 universal target facilitated the faithful de novo assembly of full-length 

operational taxonomic units from pyrosequencing data from a synthetic microbial 

community. Analysis supported the recognition of both 16S rRNA and cpn60 as DNA 

barcodes for Bacteria. The cpn60 universal target was found to have a much larger 

barcode gap than 16S rRNA suggesting cpn60 as a preferred barcode for Bacteria. A 

large barcode gap for cpn60 provided a robust target for species-level characterization of 

data. The assembly of consensus sequences for barcodes was shown to be a reliable 

method for the identification and tracking of novel microbes in metagenomic studies. 

Introduction 

Molecular barcoding is a strategy for cataloging biodiversity through identification and 

differentiation of organisms using DNA sequencing. Barcodes are relatively short, 



28 

specifically defined DNA sequences used to identify organisms by comparing the 

barcode sequence from an unknown sample to a collection of sequences from known 

reference samples. In order to facilitate molecular barcoding across life the International 

Barcode of Life (iBOL) project has developed a framework for evaluating potential 

barcodes (Hebert et al. 2003). 

Criteria for barcodes include that they must be universal in the taxa of interest, allowing 

the development of broad-range ("universal") PCR assays. The existence of reference 

sequence data from vouchered samples derived from curated specimen collections is 

required in order to permit robust identification of sequences. For discrimination of taxa 

it is also essential that inter-specific sequence distance for the barcode sequence be 

greater than intra-specific distance. This separation between the average intra-specific 

and inter-specific distance for a given locus defines the "barcode gap"(Meyer and Paulay 

2005). Gap size is a critical characteristic for any proposed barcode since it is the key 

determinant of confident resolution of taxa. For example, Schoch et al. (2012) recently 

demonstrated that the ITS region offers a superior barcode target for fungi compare to the 

commonly used 18S rRNA target since it features a larger barcode gap, making species 

discrimination more robust. 

For prokaryotes, it follows that a barcode locus that meets the iBOL criteria, and is 

suitable for cataloging biodiversity through the examination of individual specimens, 

would be a powerful tool for barcoding in communities of microorganisms. Confident 

resolution of taxa is paramount in either application. The gene encoding the small subunit 

(16S) ribosomal RNA has been used extensively in gene-centric metagenomic studies of 

microbial communities. Despite positive features that have led to its status as the de facto 
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barcode for Bacteria (universality, many sets of broad-range PCR primers targeting 

different variable regions, large reference database), the 16S rRNA sequence often fails 

to provide sufficient information for species-level identification (Zeigler 2003), and the 

occurrence of multiple, identical or nearly identical copies per genome complicates its 

use as a target for quantification. 16S rRNA sequence based metagenomic studies are 

commonly limited to reporting of taxa at the genus level or above (Sundquist et al. 2007). 

Protein-coding genes have long been recognized as providing superior resolution of 

closely related bacterial taxa compared to 16S rRNA (Case et al. 2007; Verbeke et al. 

2011; Zeigler 2003), and despite statements to the contrary (Schloss et al. 2011), one of 

these protein-coding genes has been demonstrated to provide an alternative "universal 

target" for bacteria. The gene encoding the 60 kDa chaperonin protein (cpn60) found in 

Bacteria and Eukaryotes has been established as a target for the detection, identification 

and quantification of microorganisms (Brousseau et al. 2001; Chaban et al. 2010; 

Dumonceaux et al. 2006c; Goh et al. 1998; Goh et al. 2000; Goh et al. 1996; Goh et al. 

1997; Hill et al. 2006a), as well as for gene-centric metagenomic profiling of microbial 

communities (Chaban et al. 2012; Desai et al. 2012; Desai et al. 2009; Dumonceaux et 

al. 2006c; Hill et al. 2005a; Hill et al. 2005b; Hill et al. 2002; Oliver et al. 2008; 

Schellenberg et al. 2009; Schellenberg et al. 2011b). A set of broad-range PCR primers 

that amplify a region of the gene (the Universal Target, UT) that is generally 552-558 bp 

(Goh et al. 1996; Hill et al. 2006b), and cpnDB, a curated sequence database (Hill et al. 

2004), enhance its utility and contribute to its status as a potentially preferred barcode for 

Bacteria. 
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We performed a barcode analysis of the cpn60 UT and several regions of the 16S rRNA 

gene that are widely exploited in systematics and microbial ecology. We show that the 

barcode gap for the cpn60 UT is largest of those examined, and that combined with the 

length of the target region, facilitate the use of a de novo assembly strategy for the 

formation of operational taxonomic units (OTU) that include the entire length of the 

target sequence. Finally, we present an approach for the evaluation and optimization of 

metagenomic assemblies, and demonstrate its application in an examination of the results 

of assembly of a synthetic community of cloned cpn60 UT sequences. The results of this 

work are discussed in terms of their implications for overcoming some of the limitations 

of 16S rRNA based sequencing for high resolution profiling of microbial communities, 

and the characterization of communities where novel taxa are likely to be encountered. 

Materials and Methods 

16S rRNA and cpn60 sequences 

A list of completed BioProjects for bacterial genomes (Pruitt et al. 2012) was obtained 

from the NCBI GenBank RefSeq FTP site (circa 12 April 2012). Each GenBank file was 

processed to extract DNA sequence data as FASTA, Taxon ID, and gene annotations. 

The resulting GFF files were parsed in order to identify 16S rRNA and cpn60 genes, and 

the DNA sequences of the genes were extracted. Taxon IDs were used to look up the 

species name and lineage using the NCBI Taxonomy database. Identification of gene 

annotations for 16S rRNA and cpn60 were based on a list of possible annotations ranging 

from InterPro annotation to explicit keyword sequences. In cases where multiple gene 

copies were annotated within a single genome all copies were extracted and used in the 

subsequent analyses. 
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Definition of putative bacterial barcode regions 

Predicted annealing sites of PCR primer pairs for amplification of commonly targeted 

variable regions were used to delineate putative barcode regions within the 16S rRNA 

gene. Primers used to amplify V1-V3 and V3-V5 were from the Human Microbiome 

Project (16S 454 Sequencing Protocol version 4.2.2, 

http://www.hmpdacc.org/doc/16S_Sequencing_SOP_4.2.2.pdf). Two additional regions 

(V2-V4, and variable region V6) were delineated using established primers (Sundquist et 

al. 2007). An alternate, shorter version of the V6 region was identified using primers 

from Hummelen et al. (2010). For cpn60, the universal target (UT) region corresponding 

to nucleotides 274-828 of the E. coli 60 kDa chaperonin gene was used for barcode gap 

analysis (Hill et al. 2006b). Primer sequences and corresponding gene regions are shown 

in Table 2-1.  
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Table 2-1 Definition of barcode regions based on established PCR primers.
Gene Target region E. coli 

nucleotides 
Primer sequence (5’-3’) Reference 

16S rRNA V1-V3 27-534 27F AGAGTTTGATCCTGGCTCAG 
534R ATTACCGCGGCTGCTGG 

HMP 16S 454Sequencing 
Protocol version 4.2.2 

     
 V2-V4 101-806 AGYGGCGIACGGGTGAGTAA 

GGACTACARGGTATCTAAT 
(Sundquist et al. 2007) 

     
 V3-V5 357-926 357F CCTACGGGAGGCAGCAG 

926R CCGTCAATTCMTTTRAGT 
HMP 16S 454Sequencing 
Protocol version 4.2.2 

     
 V6 907-1073 AAACTCAAAKGAATTGACGG 

ACGAGCTGACGACARCCATG 
(Sundquist et al. 2007) 

     
 V6-alternate 985-1078 L-V6 CAACGCGARGAACCTTACC 

R-V6 ACAACACGAGCTGACGAC 
(Hummelen et al. 2010) 

     
cpn60 UT 274-828 H279 GAIIIIGCIGGIGAYGGIACIACIAC 

H280 YKIYKITCICCRAAICCIGGIGCYTT 
(Goh et al. 1996) 
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Extraction of barcode sequences from whole genome sequences 

Full length sequences for 16S rRNA and cpn60 were aligned with the RDP aligner (Cole 

et al. 2007) or ClustalW (Thompson et al. 2002), respectively. Primer annealing sites 

were identified manually in each alignment using the eBioX alignment viewer 

(http://www.ebioinformatics.org/ebiox/) and the predicted amplicon sequence between 

the annealing sites was extracted. Extracted sequences were processed to remove gaps 

and then subjected to a second round of multiple sequence alignment by the same 

algorithm to ensure the best alignment of the putative barcode region for distance 

calculations. Multiple sequence alignments were converted to PHYLIP format and 

analyzed with DNADIST to calculate pairwise distances (F84) between all sequence 

pairs (Felsenstein 1989). DNADIST output was parsed to partition intra-specific and 

inter-specific distances, and histograms were plotted using Excel.  

Synthetic community sequencing 

A previously described mixture of 20 cloned cpn60 UT sequences of human vaginal 

bacteria with pairwise nucleotide sequence identities of 56-96% was used as a synthetic 

microbial community for sequence assembly experiments (Dumonceaux et al. 2009). An 

equimolar mixture of the 20 plasmids was subjected to cpn60 universal primer PCR and 

pyrosequencing on the Roche GS-FLX Titanium platform. Preparation of amplicon 

libraries for sequencing was done using established protocols (Schellenberg et al. 2011a). 
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Results 

Identification of vouchered 16S rRNA and cpn60 sequences 

Using all RefSeq bacterial genomes in GenBank as a starting point, 1,394 bacterial 

genomes were identified where both 16S rRNA and cpn60 genes could be identified 

based on annotation. BioProject descriptions provided voucher information for the strain 

sequenced. A total of 983 species, including at least one representative from each of 21 

phyla were included, with the majority (92%) of the genomes belonging to Proteobacteria 

(48%), Firmicutes (21%), Actinobacteria (12%), Bacteroidetes (5%), Cyanobacteria 

(3%), or Spirochaetes (3%). Nine records had Taxon IDs corresponding to “unknown” 

phylum in the NCBI taxonomy (Table 2-2). Numbers of annotated 16S rRNA genes per 

genome ranged from 1 to 15 (median = 3), and the number of cpn60 genes per genome 

ranged from 1 to 7 (median = 1). All annotated paralogs of cpn60 and 16S rRNA genes 

were identified and used in distance calculations.  
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Table 2-2 Taxonomic affiliations of the bacterial genomes used in the study.
Phylum* Number of genomes (%) 
Proteobacteria 661 (47.4) 
Firmicutes 285 (20.4) 
Actinobacteria 161 (11.5) 
Bacteroidetes 69 (4.9) 
Cyanobacteria 40 (2.9) 
Spirochaetes 35 (2.5) 
Chlamydiae 22 (1.6) 
Chloroflexi 15 (1.1) 
Thermotogae 13 (1) 
Deinococcus-Thermus 13 (1) 
Chlorobi 11 (0.8) 
Tenericutes 10 (0.7) 
Aquificae 10 (0.7) 
Acidobacteria 7 (0.5) 
Synergistetes 5 (0.4) 
Planctomycetes 5 (0.4) 
Fusobacteria 5 (0.4) 
Verrucomicrobia 4 (0.3) 
Deferribacteres 4 (0.3) 
Thermodesulfobacteria 2 (0.1) 
Nitrospirae 2 (0.1) 
Dictyoglomi 2 (0.1) 
Gemmatimonadetes 1 (0.1) 
Fibrobacteres 1 (0.1) 
Elusimicrobia 1 (0.1) 
Chrysiogenetes 1 (0.1) 
Unknown/Unassigned 9 (0.6) 
TOTAL 1394 (100 

*Based on TaxID lookup in the NCBI Taxonomy 
database 
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Extraction of the 16S rRNA records from the GenBank annotation was relatively 

straightforward based on matching of rRNA genes with “16S” in their annotated names. 

By contrast there was no single annotation characteristic sufficient to recognize the cpn60 

genes. Thus it was necessary to use keyword matching on gene names (“cpn60”, 

“groEL”, “hsp60”, “60 kDa chaperonin”, “chaperonin 60”, etc.) in order to extract cpn60 

sequences. 

Barcode gap analysis 

The barcode gap analysis of all 16S rRNA regions and the cpn60 UT is summarized in 

Figure 2-1 and Table 2-3. The data from 1,394 complete RefSeq bacterial genomes 

allowed for thousands of intraspecific comparisons for each target and nearly 2 million 

and 16 million interspecific comparisons for cpn60 and 16S rRNA, respectively. Data 

shown is from distance calculation using the F84 method. Other methods for calculating 

distance (Kimura’s 2-parameter model, and the Jukes and Cantor model) yielded similar 

observations both between and within barcodes, and did not affect the conclusions (data 

not shown). Barcode gaps for 16S rRNA ranged from 0.26 (V6) to 0.35 (V1-V3), with 

the exception of the ~75 bp V6-alternate region (Hummelen et al. 2010), which had a gap 

of 0.59. The cpn60 UT gap was 0.61 (Table 2-3). The intra-specific distance distributions 

for 16S rRNA V1-V3, V2-V4 and V3-V5 were the most narrow, with more than 50% of 

pairwise comparisons in the range of 0.00 to 0.01 (Figure 2-1). This was particularly true 

for V2-V4 and V3-V5 where >80% of the intra-specific comparisons were 0.00-0.01. The 

intra-specific distance distributions for both V6 targets, and the cpn60 UT were relatively 

enriched in their right-hand tails. The cpn60 UT had the highest median intra-specific 

(0.07) and inter-specific (0.68) distances (Table 2-3). 
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Figure 2-1 Barcode gaps for candidate targets. Barcode gap analysis of potential barcodes derived from the 16S rRNA and cpn60 genes. Each panel shows the 
distribution of inter- (red) and intra-specific (green) distances in terms of percent of the total number of comparisons made (see Table 2-3). In cases where 
percent values exceed 20, the actual value is indicated above an arrow on the relevant bar in the chart. For both V6-alternate and cpn60 UT, only distances up to 
1.00 are plotted. 
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 Table 2-3 Barcode gap analysis for 16S rRNA and cpn60 targets.
 Intraspecific Interspecific 

Gene target Region 
Average 

length (bp)1 
Barcode 

gap2 
# 

comparisons 
Min. 

distance3 
Max. 

distance3 
Median 

distance3 

# 
comparisons 

(Millions) 
Min. 

distance3 
Max. 

distance3 
Median 

distance3 
16S rRNA V1-V3 490 0.35 81247 0 0.30 0.00 15.8 0 0.97 0.35 
 V2-V4 666 0.31 81247 0 0.22 0.00 15.8 0 0.83 0.31 
 V3-V5 551 0.28 81247 0 0.17 0.00 15.8 0 0.80 0.28 
 V6 127 0.26 81247 0 0.31 0.04 15.8 0 2.88 0.30 
 V6-alternate 75 0.59 81241 0 0.78 0.02 15.8 0 5.91 0.61 
            
cpn60 UT 556 0.61 3803 0 5.57 0.07 1.7 0 5.89 0.68 

1Median length of the target region, between amplification primer annealing sites. 
2Barcode gap is the difference between the median inter-specific distance and median intra-specific distance. 
3Distance is expressed in terms of substitutions / site 

39 
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The distributions of inter-specific diversity in the cpn60 UT and 16S rRNA gene were 

determined by calculating the percent identity of each sequence to the next closest 

sequence. Figure 2-2 shows the average (median) percent identity between sequences in 

all 120 bp windows across the targets. Most of the cpn60 sequences (87%) were 552-558 

bp in length. Diversity along the target length was also remarkably uniform, with median 

percent identities ranging from 82 to 92%, with most (82%) below 90% identity. Variable 

and conserved regions of the 16S rRNA gene were visible in the distribution of diversity 

across the full length of the gene (Figure 2-2) with conserved regions appearing as 

stretches of windows with a median identity at or near 100% between sequences. The 

lowest median inter-sequence identities for the 16S rRNA gene were approximately 96%, 

and were observed near the 5' end of the gene, corresponding to variable regions V1 and 

V2.   
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Figure 2-2 Sequence diversity across the 16S rRNA gene and cpn60 UT. Median percent identity of 
each of sequence to its nearest neighbour among the 16S rRNA cpn60 UT sequences from 1,394 bacterial 
genomes. Median percent identity was calculated for each 120 bp window along the length of the targets 
and identity values are plotted for the midpoint of each window. Due to target length variation, particularly 
among 16S rRNA genes, data is shown for windows for which at least 95% of the genomes could be 
included. 
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Assembly of cpn60 UT amplicon sequences 

Based on the large barcode gap, target length and uniformity of sequence diversity within 

the cpn60 barcode, optimization of de novo assembly of OTU from 454 pyrosequencing 

data was investigated. A synthetic community comprising 20 cloned cpn60 universal 

targets ranging from 56% - 96% pairwise identity was subjected to universal primer 

amplification and sequencing with the 454 Titanium pyrosequencing platform. Sequence 

data was obtained from both ends of the amplicon. A total of 3,437 reads were obtained 

for the synthetic community with a median read length of 394 (NCBI Sequence Read 

Archive accession SRR531430). The resulting Standard Flowgram Format (SFF) file was 

used as input for the gsAssembler in cDNA mode (v2.3, 454 Life Sciences, Branford CT) 

to form an initial set of OTU. For sequence assembly we focused on the effects of two 

key parameters: minimum overlap length (-ml) and minimum overlap identity (-mi). 

Assemblies of the data were conducted, using combinations of minimum overlap length 

settings of 50, 100, 150, 200, 250, 300, 350 and 400 nucleotides and minimum overlap 

identity values from 90-99%. 

For each assembled OTU, the consensus sequence was evaluated in terms of the extent to 

which it represented all of the component sequences that were assembled into the OTU. 

The results of this evaluation were expressed in the form of sensitivity and specificity 

metrics as follows. Each component sequence and the consensus sequence were 

compared using wateredBLAST (Schellenberg et al. 2009) to the cpn60 UT sequences of 

the clones that comprised the synthetic community. "True positives" were individual 

sequences from the OTU that matched the same reference sequence as the consensus 

sequence assembled for the OTU, whereas "false positives" were those sequences that 
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were incorrectly placed in the OTU being evaluated (i.e. they matched a different 

reference sequence than the OTU consensus). "True negatives" were defined as those 

component sequences that were correctly placed into OTUs other than the one being 

evaluated, and "false negatives" were identified as sequences that matched the same 

reference as the consensus for the OTU but had been assembled into other OTUs. Thus 

for each OTU the specificity was calculated using Equation 2-1 and the sensitivity for 

each OTU using Equation 2-2. 

Equation 2-1. Specificity of an OTU consensus sequence. 

ivesFalsePositvesTrueNegati
vesTrueNegati

Sp
+

=  

Equation 2-2. Sensitivity of an OTU consensus sequence. 

ivesFalseNegatvesTruePositi
vesTruePositi

Sn
+

=  

By definition, both sensitivity and specificity of an OTU are values between 0 and 1, with 

a perfectly assembled OTU having Sp = 1 and Sn = 1 (i.e. no false positives or false 

negatives). By representing the accuracy of each OTU as a point in a 2-dimensional plane 

where one axis represented specificity and the other axis sensitivity it was possible to 

describe the error for a single OTU in terms of Euclidean distance from its coordinates to 

the optimal coordinates of (1,1) (Equation 2-3). The total error for an assembly was then 

calculated by summing the error associated with each OTU in the assembly (Equation 

2-4). 

Equation 2-3 Residual error associated with an OTU consensus sequence. 

( ) ( )22 11 SpSnErrorOTUi −+−=  
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Equation 2-4 Total error of an assembly. 

∑=
i

iErrorOTUblyErrorAssem
1

 

In general, minimum identity values of >94% resulted in over-splitting of OTU, 

regardless of the minimum length parameter. For example, setting the minimum identity 

parameter at 98% resulted in the assembly of 21 to 25 OTU across the range of minimum 

overlap settings. For minimum identity values ≤94%, the total error for each assembly 

varied with the minimum length parameter. Figure 2-3 shows the results of assemblies of 

the synthetic community data over a range of minimum overlap lengths with minimum 

identity 92%. The number of reads identified by the gsAssembler as singletons increased 

consistently with increasing minimum overlap length, to a maximum of 21% of the reads 

at -ml = 400, a value that exceeded the median read length of 394 (Figure 2-3A).  
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Figure 2-3 Error trade-offs in OTU assembly optimization. A. Total error (left ordinate) for de novo 
assemblies of cpn60 UT sequence reads from a synthetic community of 20 cloned targets, using a minimum 
identity value of 92% and a range of minimum overlap lengths (50-400 nucleotides). Raw total error (blue 
line), as well as error remaining after post-assembly primer trimming and clustering (red line), and after 
chimera removal (green line). Light blue bars indicate the percent of sequence reads identified as singletons 
in each assembly (right ordinate). B. Number of OTU assembled at each minimum overlap length. Each 
coloured segment of the stacked bar indicates a different member of the panel of 20 community members. 
The total number of OTU assembled is indicated on the top of each stack. 
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The impact of post-assembly trimming of amplification primer sequences was also 

investigated. Following assembly, the universal PCR primer sequences were removed 

using SeqClean (http://compbio.dfci.harvard.edu/tgi/software/) and the sequence data was 

clustered at 100% identity using CD-hit (Li and Godzik 2006) to combine OTU that were 

identical once primer sequences were removed. Chimeric OTU were identified as those 

where the 5'- 150 bp and 3'- 150 bp matched different sequences in the reference data set. 

This post-assembly clean up never increased total error, and routinely reduced it, 

although the amount of error reduction accounted for by primer trimming, clustering and 

chimera removal was less than that resulting from the optimization of assembly 

parameters (Figure 2-3A). 

A consistent, small amount of total error was observed across minimum overlap lengths 

of 100, 150 and 200 (1.44, 1.24 and 1.37 respectively), with almost no reduction in error 

following post-assembly clean up. The lowest error value observed was for -ml = 300 

(0.41 total error), although in this assembly, 17% of the reads were lost as singletons. The 

total numbers of OTU resulting from the assemblies is shown in Figure 2-3B. 

Assembly of only the 20 expected OTU sequences was achieved with -ml = 100. This 

included the correct assembly of OTU corresponding to templates Lactobacillus gasseri 

and Lactobacillus johnsonii N2, which are 96% identical over their cpn60 UT sequences. 

Eighteen of the 20 OTU sequences included the full-length cpn60 UT. OTU 

corresponding to synthetic community members Lactobacillus johnsonii N2 and 

Streptococcus sp. N1 were incomplete (305 and 214 bp respectively). Most of the error 

observed in the assemblies shown in Figure 2-3 was due to low sensitivity (i.e. high false 
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negatives). All assembled OTU consensus sequences were 100% identical to the 

corresponding input cpn60 UT template sequences. 

With a minimum overlap length of 150, a similarly low total error was observed, but 22 

OTU were generated including 2 OTU corresponding to each of L. gasseri and S. 

gallolyticus. A comparison of these OTU pairs showed that in both cases there was a full 

length OTU 100% identical to the reference sequence formed, however in both cases the 

full length OTU still had a cpn60 UT primer sequence on its 5’ end. The shorter 

sequences were each variant in a single position. In the case of S. gallolyticus the shorter 

sequence had an incorrect single nucleotide deletion and for L. gasseri the last nucleotide 

of the shorter sequence was incorrectly a T. 

Discussion 

cpn60 (also known by synonyms GroEL and Hsp60) is a molecular chaperone conserved 

in Bacteria and in Eukaryotes (Hemmingsen et al. 1988). The cpn60 UT sequence, 

accessible by PCR using degenerate broad-range (“universal”) primers has been shown to 

provide resolution of closely related taxa at the species and subspecies level (Blaiotta et 

al. 2008; Brousseau et al. 2001; Goh et al. 2000; Goh et al. 1996; Hill et al. 2006a; 

Sakamoto and Ohkuma 2010; Sakamoto et al. 2010; Vermette et al. 2010). The utility of 

the cpn60 UT sequence as a robust tool for detection, identification and quantification of 

microorganisms is well established, and it has already been implemented in the 

development of diagnostic tools based on a variety of technologies including quantitative 

PCR (Chaban et al. 2009; Chaban et al. 2010), hybridization on solid substrates (Goh et 

al. 2000; Goh et al. 1997; Masson et al. 2006), and suspension arrays (Dumonceaux et al. 

2009). The success of cpn60-based diagnostics is a direct result of the sequence diversity 
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of the barcode, and its length, which provides an abundance of informative sequence 

differences evenly distributed along the length of the target. Even closely related taxa 

have sufficient sequence differences to allow their discrimination with confidence. 

Recently, Verbeke et al. (Verbeke et al. 2011) demonstrated that unlike 16S rRNA 

sequences, cpn60 UT sequence identities alone are strong predictors of whole genome 

sequence relationships. 

The demonstrated utility of the cpn60 UT led us to investigate whether it could be 

evaluated as a DNA barcode using the iBOL framework. In order to fulfill the 

requirement for vouchered reference data, we limited our analysis to bacteria for which 

complete sequences were available in NCBI BioProjects. The first significant difference 

between 16S rRNA and cpn60 targets was encountered at the sequence alignment stage. 

Since cpn60 is a protein-coding gene, all classical bioinformatic methods that evaluate 

DNA evolution in terms of point mutation frequencies are directly applicable to the 

analysis of cpn60 sequences, and sequence alignments are rapidly accomplished with 

established tools such as ClustalW (Thompson et al. 2002). Additionally, the lack of 

significant length variation in cpn60 UT sequences (185 amino acids +/- 1 codon) makes 

it appropriate to use either global or local alignment methods when comparing sequences. 

By contrast, 16S rRNA genes encode structural RNA, necessitating the evaluation of 

mutations in the context of secondary structure using specialized algorithms such as 

INFERNAL (Nawrocki et al. 2009). Multiple sequence alignment tools such as the RDP 

Aligner and NAST (DeSantis et al. 2006) exploit methods to generate alignments based 

on comparison of input sequences to a reference alignment template, resulting in 

alignments that are not generally "human readable" due to large numbers of gaps. This 
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sort of bioinformatic advantage is an important, but perhaps under-recognized aspect of a 

preferred barcode sequence. 

The separation between distributions of intra- and inter-specific distances was originally 

termed a barcode gap (Meyer and Paulay 2005), and while "the simplest test is whether 

genetic distances within species are less than those between species"(Kerr et al. 2007), 

there is continuing debate about the best way to measure the barcode gap. Barcode gaps 

have been expressed in various ways including the difference between the smallest values 

in either distribution, the average distances, or the ratio of inter- and intra-specific 

distances (Meier et al. 2008). Some authors have gone as far as recommending the 

establishment of defined cutoffs for barcode gaps (Hebert et al. 2004). Use of the 

difference between minimum distances, or ratio of inter- and intra-specific distances, was 

inappropriate in our case since the minimum distance in all of the intra- and inter-specific 

distributions was zero (Table 2-3). Instead we opted to compare the average intra- and 

inter-specific distances, using median values rather than mean since the distributions, 

especially the intra-specific distributions, were not normal. The use of the median value 

as the parameter of comparison between distributions has the additional advantage of 

reducing the influence of extreme values within the distributions due to factors discussed 

below. 

While on first viewing, the presence of inter-specific zero distances may seem surprising, 

it is less so when one considers that the genome sequences examined included those from 

"problematic" taxa such as Brucella and Bacillus. It is known for these genera and others 

that historical definitions of species based on phenotypic properties are not always 
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congruent with comparisons of phylogenetic markers such as 16S rRNA and cpn60 

(Janda and Abbott 2007). 

We included all annotated paralogs of 16S rRNA (median = 3 copies / genome) and 

cpn60 (median = 1 copy / genome) in our analysis since our interest in application of the 

barcoding concept in bacteria extends beyond the examination of isolates to 

characterization of complex microbial communities, where practitioners cannot select 

which paralogs of 16S rRNA or cpn60 are sequenced. In the case of 16S rRNA, paralogs 

are generally highly similar if not identical to one another (Pei et al. 2010), which tends 

to shift the intra-specific distance distribution toward zero (Figure 2-1). For cpn60, 

multiple copies per genome are the exception rather than the rule, and these paralogs are 

generally highly divergent, leading to the opposite effect of shifting the intra-specific 

distance distribution away from zero.  

We were able to obtain sufficient data for thousands of intra-specific and millions of 

inter-specific comparisons from bacteria with complete genome sequences. The results of 

the barcode gap analysis (Figure 2-1, Table 2-3) revealed that among the longer 16S 

rRNA loci (those including 3 variable regions), V1-V3 had the largest gap. At 0.35, it is 

consistent with that of the ITS locus, recently proposed as a preferred barcode for fungi 

(Schoch et al. 2012), and indicates that these loci do exhibit a barcode gap, albeit a small 

one compared to the other targets examined. 

The difference between the two versions of the V6 target was striking, with the shorter 

(average 75 bp) version having a substantially larger barcode gap (0.59 vs. 0.26 for the 

125 bp locus). This difference is likely accounted for by the fact that the shorter version 



51 

of the locus is defined by PCR primers designed to exclude most of one of the adjacent 

conserved regions (Hummelen et al. 2010), which accounts for a substantial proportion of 

the 125 bp amplicon defined by Sundquist (Sundquist et al. 2007). Short target regions 

such as the V6 regions of 16S rRNA have recently become more popular for gene-centric 

metagenomic studies that exploit short-read methods such as Illumina (Hummelen et al. 

2010; Post et al. 2011; Sylvan et al. 2012). The disadvantage of these short targets is that 

they provide relatively few informative positions and may thus be substantially affected 

by PCR and sequencing error. Their short length also makes them limited in utility for the 

development of diagnostic methods for the detection of the corresponding organisms in 

complex samples. 

Both the 75 bp V6 locus and the cpn60 UT had broad intra-specific distance distributions 

with long right-hand tails. In the case of the cpn60 UT, some of this is accounted for by 

the occurrence in some taxa of multiple cpn60 paralogs with highly divergent sequences. 

Although the median number of cpn60 copies per genome in our study was 1, and the 

norm in Bacteria is for a single copy per genome, the occurrence of multiple copies that 

are widely divergent in sequence is well known in some taxa including Chlamydia, some 

Rhizobia and some Actinobacteria (Lund 2009), and these taxa were represented in the 

genome sequence collection examined in this study. Another contributing factor to the 

long right-hand tail in the intra-specific distance distribution for the cpn60 UT is the 

inclusion of some non- cpn60 but cpn60-related sequences as a result of the necessity of 

using multiple search terms to identify cpn60 gene annotations. Although there has been 

significant effort to standardize chaperonin nomenclature (Coates et al. 1993; 

Hemmingsen et al. 1988; Lund 2009), current bacterial genome annotations often do not 
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conform to these recommendations. An advantage to having cpn60 recognized as a 

barcode for Bacteria would be the standardization of annotations for this gene in bacterial 

genome sequences.  

The cpn60 UT had the highest median intra-specific (0.07) and inter-specific (0.68) 

distances and the largest barcode gap of the loci examined (0.61, Table 2-3), clearly 

meeting the barcode evaluation criteria. However, an additional criterion is that the 

barcode be accessible with broad-range PCR primers. Although we exploited published 

sequence data rather than directly amplifying the target from bacterial isolates, there is a 

wealth of published studies of targeted analysis of particular taxa and un-targeted 

metagenomic studies to provide evidence of the efficacy of the broad-range (“universal”) 

PCR primers for the cpn60 UT. A review of the data within cpnDB that has been 

generated through application of the broad-range PCR primers shows that the distribution 

of the >150 distinct taxonomic lineages closely resembles the distribution in Table 2-2. 

In addition to offering robust differentiation of bacterial species based on the examination 

of isolates, the cpn60 UT barcode can be exploited in high resolution profiling of 

microbial communities. Species level identifications are not often reported in 16S rRNA 

based metagenomic studies as a direct consequence of its frequent failure to differentiate 

bacterial species, and widely used tools such as the RDP classifier only provide 

identification to the genus level (Wang et al. 2007). However, in some environments, 

species level resolution is desirable. For example, the human vaginal microbiome is 

dominated by Lactobacillus species and in some cases, special effort has been dedicated 

to resolving the common lactobacilli based on partial 16S rRNA sequences (Hummelen 

et al. 2010; Srinivasan et al. 2012). In contrast, in cpn60 UT-based studies of the vaginal 
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microbiome, species resolution was accomplished based on comparison of OTU 

sequences to a reference database using simple, rapid sequence comparisons 

(Schellenberg et al. 2011b). 

In this study, we have demonstrated that the features of the cpn60 UT enable de novo 

assembly of OTUs, a process that has some important differences from more common 

clustering methods employed in gene-centric metagenomic sequence analysis. Current 

popular methods for OTU aggregation via clustering (Schloss et al. 2009) form clusters 

of related sequences but do not yield a consensus sequence directly. Instead, clustering 

methods identify a representative sequence for each OTU by selecting either the nearest 

neighbour sequence in a reference database, the most common experimental sequence, or 

a sequence selected at random from the OTU constituents. These existing methods of 

OTU formation by clustering are useful, unsupervised methods to aggregate large 

amounts of experimental data but they do not empower discovery of novel OTUs. 

The methods for OTU formation using sequence assembly we have described provide a 

framework for the assembly of full-length OTU consensus sequences in an unsupervised 

manner. We were able to reconstruct a synthetic community of 20 cpn60 UT sequences 

faithfully, and evaluate the quality of the results of different assembly strategies using an 

objective, quantitative measure (Figure 2-3). An examination of the results of assemblies 

of a single data set using a range of minimum overlap length and minimum identity 

values showed that there is a series of trade-offs involving the various types of error that 

may result from adjusting these settings. As shown in Figure 2-3, increasing the 

minimum overlap length can reduce the amount of total error in the final assembly, but 

there is a corresponding loss of raw data as the median read length is approached. 
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Decreasing the minimum overlap length and/or the minimum identity could result in an 

increased likelihood of reads from closely related templates being inappropriately 

assembled into a single OTU. In the case of the 92% minimum identity assemblies, 

minimum overlap lengths of 100 and 150 result in low total error, and less than 5% data 

loss due to singletons, suggesting that this may represent a “sweet spot” for assembly 

parameters. 

Optimal parameters could vary with different microbial population compositions, but the 

sensitivity and specificity metrics allow an objective assessment of the results of any 

assembly, even in the absence of knowledge of the actual composition of the community 

as we had with the synthetic community. Given that the OTU assembly procedure can be 

optimized to yield robust full-length barcode sequences with high specificity and 

sensitivity, it becomes possible to trust that if the assembly procedure yields novel 

sequences these can be relied upon as real biomarkers for an uncharacterized microbe 

(i.e. not represented among existing reference sequence data). Furthermore, the values for 

Sn and Sp for any individual OTU provide a potentially useful tool for the evaluation of 

the quality of a particular OTU of interest. Application of this concept has already 

resulted in the characterization of distinct subspecies groups within Gardnerella vaginalis 

that were originally identified based on assembly of metagenomic cpn60 UT data from 

human vaginal microbiota (Paramel Jayaprakash et al. 2012; Schellenberg et al. 2011b). 

The assemblies presented here are generated from 454 Titanium sequence data with an 

average read length of 394, which is typical of the 454 Titanium chemistry on the FLX 

and Junior platforms. It is anticipated the average read lengths for 454 pyrosequencing 

will consistently exceed 700 bp with the introduction of the FLX+ chemistry (Roche / 
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454), which will most likely further improve cpn60 UT sequence assembly. We have not 

yet experimented with cpn60 UT sequencing on the Illumina platform, where average 

read length is commonly lower than that obtained with pyrosequencing. However current 

forecasts for read length suggest that Illumina’s MiSeq platform may reach an average of 

400 bp soon. The fact that sequence diversity is evenly distributed along the length of the 

cpn60 target suggests that even existing technologies that produce shorter reads would 

provide good discrimination of closely related taxa (Figure 2-2), even if full-length OTU 

assembly would not be possible. De novo assembly of 16S rRNA gene sequences would 

be significantly more difficult as the average sequence difference between species is in 

the range of technical errors, which may arise from PCR and sequencing protocols. The 

most informative regions of the 16S rRNA gene (corresponding to the V1-V3 regions 

where sequences have an average 96% identity to their closest match in the database) are 

less informative that the most conserved segments of the cpn60 UT, for which average 

sequence identity does not exceed 92% (Figure 2-2).  

The results of our study indicate that the cpn60 UT provides a preferred barcode for 

Bacteria compared to the regions of the 16S rRNA gene we examined. The breadth of 

complete bacterial genome sequence data currently available is influenced by factors 

such as the cultivability of various taxa, and their relevance to human and animal health, 

and other well-explored environments. As this spectrum expands beyond what is 

currently available due to efforts to generate genome sequences for currently under-

represented taxa (Wu et al. 2009), there will be continuing opportunities to evaluate 

barcoding potential of the cpn60 UT for these new taxa. However, based on the evidence 

to date, it is clear that the cpn60 UT barcode offers significant advantages for cataloging 
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bacterial biodiversity through the analysis of isolates or in the context of microbial 

ecology studies. We suggest that de novo assembly of metagenomic sequence data from 

the cpn60 UT, or from any appropriate barcode sequence, is a useful approach, especially 

in cases where resolution beyond the genus level and the confident identification of 

potentially novel taxa is desirable. To support these activities, we are preparing to release 

a software package for metagenomic profiling using metagenomic assembly that provides 

a pipeline for the analysis of microbial profiling data using sequence assembly of 

barcodes, including the calculation of sensitivity and specificity. 

Our results demonstrate that the Barcode of Life’s framework has relevance for a domain 

of life other than Eukaryota. Thus it is reasonable to consider the use of this framework 

for evaluating barcoding targets for Archaea, including 16S rRNA and the Type II 

chaperonin (ortholog of cpn60) (Chaban and Hill 2012). 
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Abstract 

Background 

Formation of operational taxonomic units (OTU) is a common approach to data 

aggregation in microbial ecology studies based on amplification and sequencing of 

individual gene targets. The de novo assembly of OTU sequences has been recently 

demonstrated as an alternative to widely used clustering methods, providing robust 

information from experimental data alone, without any reliance on an external reference 

database.  

Results 

Here we introduce mPUMA (microbial Profiling Using Metagenomic Assembly, 

http://mpuma.sourceforge.net), a software package for identification and analysis of 

protein-coding barcode sequence data. It was developed originally for cpn60 universal 

target sequences (also known as groEL or hsp60). Using an unattended process that is 

independent of external reference sequences, mPUMA forms OTUs by DNA sequence 

assembly and is capable of tracking OTU abundance. mPUMA processes microbial 

profiles both in terms of the direct DNA sequence as well as in the translated amino acid 

sequence for protein-coding barcodes. By forming OTUs and calculating abundance 

through an assembly approach, mPUMA is capable of generating inputs for several 

popular microbiota analysis tools. Using SFF data from sequencing of a synthetic 

community of cpn60 sequences derived from the human vaginal microbiome, we 

demonstrate that mPUMA can faithfully reconstruct all expected OTU sequences and 

produce compositional profiles consistent with actual community structure. 
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Conclusions 

mPUMA enables analysis of microbial communities while empowering the discovery of 

novel organisms through OTU assembly. 

Keywords 

operational taxonomic unit; assembly; automated sequence analysis pipeline; 60 kDa 

chaperonin; cpn60; barcode; metagenomics; microbial profiling microbiota; microbiota 

analysis 

Background 

A common approach to the profiling of complex microbial communities is the 

amplification and sequencing of 'universal' genes, such as cpn60 (also known as groEL or 

hsp60) or 16S rRNA, as DNA barcodes for the genomes in which they reside. Barcodes 

are defined by the International Barcode of Life Project as short, phylogenetically 

informative sequences from standardized regions of the genome that can be used for 

species identification and discovery (Hebert et al. 2003), and preferred barcodes for 

microbes including fungi (Schoch et al. 2012) and bacteria (Links et al. 2012) have been 

proposed recently. In microbial community studies, broad-range 'universal' PCR primers 

are used to amplify regions of the target genes and amplicon sequences are determined 

directly using next-generation sequencing methods. These gene-targeted methods 

arguably fall under the umbrella of "metagenomics" along with whole genome 

sequencing approaches, since these are methods based on the analysis of total genomic 

content of a community of organisms rather than individual isolates (Schloss and 

Handelsman 2003). The number of individual sequences generated is typically in the 
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order of 106 and can be much greater. Thus, some form of data aggregation is required to 

reduce the complexity of the raw sequence data, and facilitate interpretation. Data 

aggregation is focused on the in silico steps following sequence data acquisition, and not 

issues which arise from methods of DNA extraction and possible biases in PCR 

amplification. The key challenge in aggregation is ensuring that the resulting "profiles" 

(list of sequences and their abundances), are faithful to the raw sequence data that was 

aggregated. 

Currently, the most widely used method for data aggregation is the formation of 

operational taxonomic units (OTU) with clustering approaches such as those of 

MOTHUR (Schloss et al. 2009) or UCLUST (Edgar 2010) as implemented within 

packages such as QIIME (Caporaso et al. 2010). Clustering procedures culminate in the 

selection of a representative sequence for each OTU, which may be selected from the 

experimental data according to various rules: longest sequence in the cluster, most 

abundant sequence in the cluster, or random selection. However, representative 

sequences selected from the experimental data may not include full-length coverage of 

the target, depending on its length. This in turn limits information content, and the ability 

to conduct multiple sequence alignments and phylogenetic analysis for characterization 

of novel OTU sequences. Alternatively, the closest sequence from a reference database 

may be used to represent the OTU (Schloss et al. 2009). A limitation common to all of 

these approaches is apparent when the community under study contains novel sequences 

not represented in reference databases. In these cases, novel sequences in the 

experimental data may be ignored or pooled together as “unclassified” since they do not 

closely resemble the reference sequences. The end result is that the aggregated 
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description of the community may not reflect the input sequence data generated in the 

experiment. 

We have demonstrated recently that de novo assembly of OTU sequences is an 

alternative strategy for sequence data aggregation that provides robust information from 

experimental data alone (Links et al. 2012). In this approach, OTU sequences are 

consensus sequences derived from the experimental data, without any reliance on an 

external reference database. This strategy has been used successfully in producing high 

resolution profiles of a variety of complex microbial communities (Chaban et al. 2012; 

Desai et al. 2012; Schellenberg et al. 2011b) and has led to the resolution of subspecies 

level diversity within previous established bacterial "species" (Paramel Jayaprakash et al. 

2012). However, until now there has been no computational pipeline available for this 

work, requiring practitioners to attend to each step of the assembly and post-assembly 

analysis individually. Here, we introduce mPUMA (microbial profiling using 

metagenomic assembly), a computational pipeline for the automated assembly and 

analysis of OTU sequences from protein-coding gene sequence data derived from 

microbial communities.  

Methods 

mPUMA workflow 

mPUMA was written in PERL using BioPerl (Stajich et al. 2002) and is maintained as a 

sourceforge project (http://mpuma.sourceforge.net/). It was developed originally for 

assembly of cpn60 universal target sequences (Goh et al. 1996; Hill et al. 2004) since the 

characteristics of this target make it a preferred sequence barcode for resolution of 
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bacterial taxa (Links et al. 2012). However, mPUMA is applicable to any other suitable 

molecular barcode. mPUMA assembles OTU from PCR amplicon sequence libraries 

generated from any number of samples, starting from a set of SFF or Fastq files, and a 

text file explaining how the files relate to experimental samples. Following assembly, the 

abundance of each OTU is determined and files for downstream analysis using several 

common microbial ecology and phylogeny tools are generated. The mPUMA workflow is 

illustrated in (Figure 3-1). 
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Figure 3-1 mPUMA workflow. Programs used at each step in the pipeline are shown in red. A. User-
defined protocol options for assembly and read-to-OTU tracking include gsAssembler for both processes 
(green arrows), gsAssembler plus Bowtie 2 for read tracking (blue arrows), and Trinity assembly plus 
Bowtie 2 for read tracking (purple arrows). B. Post-assembly analysis of OTU and abundance data. Grey 
boxes indicate possible downstream analysis tools for which input is generated by mPUMA. The horizontal 
broken line indicates the transition from analysis of nucleotide OTU [(nt)OTU] and translated peptide OTU 
[(aa)OTU]. 
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Sequence assembly 

Sequence assembly within mPUMA can be performed by two methods: gsAssembler 

(Roche/454, Branford, CT) in cDNA mode, or Trinity (Grabherr et al. 2011). Abundance 

per OTU can be calculated by mPUMA from a read-to-OTU map produced in one of two 

ways (Figure 3-1). For gsAssembler assemblies, the internal read tracking of the 

assembly process can be used as the basis for the read tracking. Alternatively, reference 

mapping with Bowtie 2 (Langmead and Salzberg 2012) can be used to map each 

experimental read onto reference OTUs assembled with either gsAssembler or Trinity. 

Considerations for the optimal assembly and read tracking strategy for any particular 

project are discussed below. Regardless of the strategy used, the quality of the assembly 

and read tracking result is assessed in terms of the specificity and sensitivity of each OTU 

as described previously (Links et al. 2012). 

Post-assembly analysis of OTU 

Removal of PCR primer sequences is accomplished with seqclean 

(http://sourceforge.net/projects/seqclean/files/). Identification and removal of chimeric 

sequences is performed by two strategies implemented within mPUMA. First, 

gsAssembler identifies chimeras resulting from the assembly process. Second, the 

Chaban Chimera Checker (C3) identifies putative chimeras that may be removed from 

subsequent analyses. In C3 the 5' and 3' ends of each OTU (150 bp) are extracted, 

compared to a reference set of sequences (e.g. non-redundant set of sequences from 

cpnDB (Hill et al. 2004)) and evaluated to see if both ends match the same reference 

sequence in the expected orientations. Putative chimeras are identified as assembled OTU 
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that fail this test. In novel environments where taxa are not well represented in the 

reference database, it may be appropriate to forego the use of C3 because the novelty of 

the experimental sequences could lead to an increased false positive rate in chimera 

identification.  

Non-chimeric OTU are clustered at 100% identity by CD-hit (Li and Godzik 2006) to 

remove redundant sequences. For protein-coding barcode sequences, mPUMA 

implements BLASTX (Altschul et al. 1997) to identify the correct reading frame for 

translation of OTU, and then translates the nucleotide OTU to their corresponding 

peptide OTU sequences. Redundant peptide sequences are also collapsed using CD-hit 

(Li and Godzik 2006) at 100% identity. mPUMA calculates the abundance of each non-

redundant peptide OTU for each library, resulting in a peptide OTU abundance table.  

Nucleotide and peptide OTU and abundance data are formatted for use with additional 

tools, which are run automatically where appropriate. Prior to generating input files for 

these applications, mPUMA carries out a down-sampling process where reads are 

sampled at random to the depth of the smallest library to address the concerns raised by 

Gihring et al. related to the effects of unequal sampling effort on calculation and 

comparison of ecological parameters such as richness, diversity and evenness (Gihring et 

al. 2012). Abundance files for OTU are used to create input for MOTHUR (Schloss et al. 

2009). Using t-coffee (Notredame et al. 2000) for multiple sequence alignments and 

FastTree (Price et al. 2009), a phylogenetic tree of the OTU is calculated, which can be 

used in conjunction with abundance data to analyze libraries in Unifrac (Hamady et al. 

2010; Lozupone and Knight 2005). A naïve Bayesian classifier trained on cpn60 

universal target sequences from cpnDB (Hill et al. 2004) has been developed using the 
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RDP classifier framework (Wang et al. 2007). Classifier results can be loaded into 

MEGAN (Huson et al. 2007) for comparison of multiple libraries in a taxonomic context. 

All of the output files generated by mPUMA for secondary analyses are generated both 

for the nucleotide and the amino acid OTU sequences. 

Computational platform  

Demonstrations of mPUMA running in an unattended fashion were performed using a 

previously published dataset (Chaban et al. 2012) that included 711 MB of data in SFF 

files. Analyses were carried out on a Dell R910 equipped with 128 GB of RAM and 2 x 

Intel Xeon 6-core E7530 processors running CentOS 5.8. 

Results & Discussion 

To validate the primary function of mPUMA (OTU formation and abundance 

calculation), we tested its performance in the analysis of sequence data generated by 

amplification and sequencing of cpn60 universal target sequences from a synthetic 

community containing cloned cpn60 universal target sequences from 20 human vaginal 

bacteria with pairwise sequence identity values of 60-96% (Dumonceaux et al. 2009). 

PCR from this template mixture and pyrosequencing of the resulting amplicon library on 

a Roche GS FLX instrument was performed using established protocols (Schellenberg et 

al. 2011a), resulting in 9877 sequence reads from either the 5' or 3' end of the target 

sequence. The SFF data is accessible through the mPUMA sourceforge site 

(http://mpuma.sourceforge.net/). We verified that all 20 target sequences were 

represented in the results by using Bowtie 2 to map all reads on to the reference 

sequences for the synthetic community ("Target" in Figure 3-2) 
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OTU formation and abundance calculations were performed on the dataset using all three 

options available within the mPUMA pipeline (gsAssembler OTU assembly/gsAssembler 

read-to-OTU mapping, gsAssembler OTU assembly/Bowtie 2 read-to-OTU mapping and 

Trinity OTU assembly/Bowtie 2 read-to-OTU mapping) and the resulting microbial 

profiles were evaluated for number of OTU generated, number of reads unmapped, 

amount of total error generated and comparison of the profile to the known “Target” 

synthetic community profile (Figure 3-2). 
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Figure 3-2 Comparison of methods for both assembly and abundance calculation using a synthetic 
community of 20 cloned cpn60 universal target sequences. Three different scenarios were investigated 
for the generation of a microbial profile (left-to-right): gsAssembler alone, gsAssembler plus Bowtie 2 for 
abundance, and Trinity plus Bowtie 2 for abundance. The number of community members recovered is 
shown across the top (out of 20). The major parameter affecting the accuracy of assembly is varied across 
the lower x-axis. For gsAssembler the minimum identity of overlaps was held constant at 90 while the 
minimum length parameter was varied. In the case of Trinity, the k-mer length was varied from 10 to 31 
bp. The upper panel shows the percentage of reads which were un-trackable (left ordinate) and the total 
error associated with each assembly (right ordinate). In the lower panel, microbial profiles are plotted as 
stacked bars with each element colored by organism according to the legend. Profiles marked as "Target" 
indicate the actual composition of the amplicon library determined by Bowtie 2 mapping of all reads on to 
the 20 reference sequences. 
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gsAssembler was able to reconstruct all 20 expected OTU with minimum length 

parameter settings of >100 bp (Figure 3-2). However, despite accurately describing the 

richness of the sample (20 OTUs), read tracking within gsAssembler failed to place a 

substantial proportion of data in any OTU. The proportion of sequence reads unmapped 

increased steadily from 8% to a maximum of 33% as the minimum length parameter was 

increased from 150 through 350 bp (Figure 3-2). There are several possible explanations 

for this unplaced data: the reads could be short or of low quality, or the assembly process 

may not have completely accounted for the placement of each read to an OTU. In our 

experience, situations in which a study contains samples with extreme differences in 

richness can lead to incomplete mapping when utilizing gsAssembler which cannot be 

resolved using the available command line options (-ig, -it, and -icc). The occurrence of 

such "thresholding" problems is recorded in the 454IsotigsLayout.txt files generated by 

gsAssembler. Given that we confirmed that gsAssembler had correctly resolved all 20 of 

the expected OTU for this synthetic community, we were left with the possibility that 

either there was a proportion of the data which was of insufficient quality and/or length to 

be placed in the OTUs at higher stringencies (i.e. greater minimum overlap length 

requirement) or the placement was incomplete. To determine which of these phenomena 

were occurring we employed Bowtie 2 (Langmead and Salzberg 2012) as a method to 

independently assess the read to OTU mapping.  

When read mapping was performed using Bowtie 2 to place reads onto a gsAssembler 

assembly, there was a dramatic reduction in the proportion of unmapped data and in total 

error of the assembly coincident with all 20 members of the synthetic community being 

resolved (Figure 3-2). The results of assembly using gsAssembler with a minimum 
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overlap >100 bp followed by read mapping with Bowtie 2 served to construct a microbial 

profile indistinguishable from the actual profile of the synthetic community at both the 

nucleotide and peptide levels, with the 20 expected nucleotide OTU and 19 

corresponding peptide OTU (peptide sequences for Lactobacillus gasseri and L. 

johnsonii are identical). This result confirmed that the reads were of sufficient length and 

quality for inclusion, and thus the more likely explanation for the relatively large 

proportion of data that is not placed by gsAssembler read tracking is that the assembler 

had failed to completely assign all reads to the OTU assembled (the thresholding problem 

described above).  

gsAssembler uses an Overlap-Layout-Consensus (OLC) strategy for assembly, which is  

dramatically affected by coverage depth (Li et al. 2012). The dominant alternative 

approach for assembly is the use of a de Bruijn graph (DBG) to analyze sequence 

composition in terms of k-mers. The total length of sequence being assembled, 

independent of coverage depth, governs the size of a de Bruijn graph. Being unaffected 

by coverage depth is the chief computational advantage of DBG approaches. We 

explored whether Trinity, a DBG method (Grabherr et al. 2011), offers a valid alternative 

to gsAssembler in cDNA mode for the analysis of microbial barcode data. Within Trinity, 

the parameter most likely to affect the accuracy of assembly results is k-mer size. We 

examined all possible k-mer lengths supported by Trinity (k-mer ranging from 10 to 31, 

inclusive). Bowtie 2 was then used to map the individual reads onto the non-redundant 

set of OTU formed by Trinity for calculating abundance because the reductive process of 

distilling sequences to component k-mers eliminates the ability of tracking reads directly 

within DBG approaches.  
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As can be seen in Figure 3-2, increasing k-mer length resulted in the formation of more 

of the expected OTU, reduction of the proportion of unmapped reads and a corresponding 

reduction in total error of the assembly. However, in no case did Trinity resolve all 20 

OTUs from the synthetic community. Trinity assemblies with a k-mer of 30 or 31 were 

nearly complete, failing only to resolve an OTU for L. johnsonii. This was perhaps not 

surprising since L. johnsonii and L. gasseri are the two most similar members of the 

community (96% identical) and have similar abundances, being the 11th and 9th most 

abundant in this dataset, respectively. The L. johnsonii reads were placed in the L. gasseri 

OTU when an L. johnsonii OTU was not formed. 

Resource usage by mPUMA can vary significantly depending on the size and complexity 

of the datasets being analyzed. In our experience the use of Trinity over gsAssembler can 

be necessary for computational constraints (memory and cpu time) when dealing with 

datasets that are extremely rich or diverse. mPUMA is suitable for the assembly and 

analysis of OTU from other suitable targets besides cpn60, such as the universal archaeal 

type-II chaperone (also known as Thermosome or TCP1 or CCT) (Chaban and Hill 

2012), and rpoB (Vos et al. 2012). Pyrosequencing data from both have been processed 

through mPUMA, confirming its utility for other protein-coding targets.  To date, we 

have applied mPUMA to the analysis of amplicon sequence data from the 454 GS FLX, 

Titanium and Junior platforms. We encourage the microbial ecology community to 

investigate the application of mPUMA to other sequence data types and gene targets of 

interest. 
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Conclusions 

The de novo assembly of OTUs from barcode sequence data can be optimized to reduce 

error and accurately reflect the richness of a microbial community, presenting possible 

advantages over clustering methods that may mask diversity or inhibit discovery of novel 

sequences. The mPUMA pipeline was developed to facilitate the use of assembly in 

microbial ecology studies where both accurate descriptions of richness and calculation of 

OTU abundance are desired. Based on our examination of a synthetic community, 

optimal resolution of OTU sequence barcodes and calculation of their abundance can be 

achieved through use of gsAssembler with a minimum overlap length parameter > 100 bp 

followed by Bowtie 2 read tracking for determining OTU abundance. In cases where 

computational performance is limiting, Trinity assembly followed by read tracking with 

Bowtie 2 should produce near-optimal results with only exceptionally similar barcodes 

remaining unresolved. In choosing the most appropriate strategy for assembly and 

abundance calculations from among the options available in mPUMA, researchers will 

need to balance the computational performance of the assembly approach with the 

precision of OTU formation.  

The mPUMA software package is available from sourceforge and it is covered by an 

open-source license (http://mPUMA.sourceforge.net). At present, mPUMA is distributed 

on its own but it is possible that in the future it may become incorporated into a Virtual 

Machine image. Since it is as an open-source platform, mPUMA can be extended by 

anyone interested in utilizing de novo assembly for the analysis of microbial profiling 

data. 
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Availability of Supporting Data 

The SFF data used in the validation and demonstration of mPUMA is available through 

the mPUMA sourceforge site (http://mpuma.sourceforge.net/). 
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Abstract 

We characterized the prokaryotic and eukaryotic microbiota associated with healthy crop 

seed surfaces by microbial profiling with cpn60. Over 400,000 sequences derived from 

independent Triticum spp. (n=6) and Brassica spp. (n=5) seed washes were assembled 

into 5,477 operational taxonomic units (OTU). Total epiphytic bacterial load, as 

measured by the number of 16S rRNA-encoding gene copies/g seeds, was not 

significantly different between the seed types, nor were community diversity parameters 

(richness and evenness). Analysis of the sample prevalence of OTU revealed a shared 

microbiota between the Triticum and Brassica samples, with 578 OTU found commonly 

in these crops at a variety of abundances. Hierarchical clustering of these shared OTU 

revealed that 203 OTU were significantly different in abundance on Triticum seeds 

compared to Brassica. This was confirmed for selected OTU by quantitative PCR. 

Microorganisms were isolated from seeds corresponding to 5 bacterial and 4 fungal OTU, 

showing 99-100% identity between the cpn60 sequences of the isolates and the 

assembled OTU sequences. Bacterial strains identified as Pantoea agglomerans were 

found to have antagonistic properties toward one of the fungal isolates (Alternaria sp.), 

providing a possible explanation for their reciprocal abundances on Triticum and 

Brassica seeds. Use of the cpn60 universal target enabled the simultaneous profiling of 

prokaryotic and eukaryotic microbiota and revealed previously unrecognized microbial 

interactions that could be exploited to protect seeds from spoilage and reduce pathogen 

burden. 
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Introduction 

The seeds of crops such as wheat (Triticum spp.) and canola (Brassica napus) are 

products of the agricultural enterprise and the source of the next generation of plants. 

Healthy, high quality seeds are critically important for the stability of the world’s food 

supply and the economic success of farmers. Crop seeds, like other parts of the plant, are 

colonized by epiphytic microbiota consisting of synergistic, commensal, and potentially 

pathogenic microbes that play a crucial role in health and susceptibility to disease 

(Critzer and Doyle 2010; Hashidoko 2005). Since the plant-associated microbiota clearly 

plays a role in plant fitness (Hallmann et al. 1997), different crops might be expected to 

harbor distinct microbiota on their seed surfaces and the constituents of these microbial 

communities are likely to have functional relevance during plant growth, development 

and seed storage. For example, specific microorganisms such as Penicillium verrucosum 

and Alternaria alternata in stored crop seeds can cause spoilage, decrease crop value, or 

produce mycotoxins that have a direct effect on human health (Duarte et al. 2010; Magan 

and Aldred 2007; Magan et al. 2010). On the other hand, commonly utilized crop 

rotations, such as canola-wheat, are known to have positive benefits for yields and for 

pathogen control (Bushong et al. 2012; Harker et al. 2012; Zegada-Lizarazu and Monti 

2011). Microorganisms that associate with each crop may influence the growth and 

development of the subsequent crop in the rotation. The potential impact of crop-based 
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microbial communities on yields and on pest control demands that a comprehensive 

knowledge of microbiota associated with seed surfaces be elucidated. 

Culture-independent methods for characterizing microbes associated with an environment 

involve the PCR amplification of taxonomic gene markers with universal primers, 

sequencing amplicons, and comparison of sequences to a reference database for 

taxonomic assignment. More recently, next-generation sequencing techniques have 

substantially increased the volume of DNA sequence data for this type of analysis; 

however, data analysis methods are the focus of ongoing development (Hamady and 

Knight 2009).  

One approach for data analysis is to cluster sequences based on a similarity criterion (e.g. 

97% identity). Software packages such as mothur (Schloss et al. 2009) and QIIME 

(Caporaso et al. 2010) implement clustering methods to form Operational Taxonomic 

Units (OTUs) based on a rule for cluster membership (single, average or complete 

linkage). In order to carry out downstream analyses on OTUs, a representative sequence 

must be chosen for each OTU. Clustering methods are a robust approach for OTU 

formation but they are limited, as clustering does not prescribe how to select a 

representative sequence for each OTU. Choices for a representative sequence from 

clustered OTUs vary from the longest, the closest sequence from a reference database to 

one chosen at random. These choices for representative sequence selection can allow for 

additional downstream analyses but they are poorly suited for identifying and tracking 

novel microbes.  
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In order to detect novel microbes it would be ideal that the sequence chosen for an OTU 

be the most representative sequence possible. For clustering methods, the only case 

where a perfect representative sequence could be identified is when clustering was 

performed at 100% identity and at least one sequence spans the full length of the OTU. 

This scenario is unlikely given the variable read lengths and error rates of current next-

generation sequencing technologies.  

An alternative method for OTU formation using de novo assembly has recently been 

described, and demonstrated for microbial profiling (Links et al. 2012)(Chapter 3). 

Assembly provides consensus sequences for OTU that are inherently the most 

representative sequences possible. Thus, when an OTU is assembled for an 

uncharacterized or novel organism, the assembled consensus sequence is a discrete 

biomarker that can identify the organism.  

The chaperonin 60 gene (cpn60, also known as hsp60 or groEL) encodes a protein that 

functions as a molecular chaperone assisting in the formation and maintenance of protein 

structures in cells (Hemmingsen et al. 1988). Determination of microbial community 

composition based on the amplification and sequencing of a portion of the cpn60 gene, 

the universal target (cpn60 UT) (Hill et al. 2004), offers a protein coding alternative to 

16S rRNA based approaches. Cpn60-encoding genes are found in essentially all 

prokaryotes and eukaryotes, and the cpn60 UT is accessible with a set of universal PCR 

primers (Hill et al. 2006b). The cpn60 UT has been exploited for characterizing microbial 

communities using both traditional (Dumonceaux et al. 2006c; Hill et al. 2005a) and 

next-generation (Chaban et al. 2012; Desai et al. 2012; Schellenberg et al. 2009; 

Schellenberg et al. 2011b) technologies, and it provides a convenient molecular target 
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with higher taxonomic resolution than 16S rRNA for microbial profiling (Paramel 

Jayaprakash et al. 2012; Schellenberg et al. 2011b; Verbeke et al. 2011; Vermette et al. 

2010). In addition, cpn60 has recently been shown to possess a larger “barcode gap” for 

Bacteria compared to 16S rRNA, and therefore is a preferred barcode for the domain 

Bacteria (Links et al. 2012). 

Using the cpn60 UT as a DNA barcode we tested the hypothesis that the seed-associated 

epiphytic microbiota of Triticum spp. and Brassica spp. are distinguishable. Furthermore, 

by comparing the assembled OTU sequences with those from bacteria and fungi isolated 

from these samples we demonstrate that OTU can be assembled accurately for microbes 

in complex samples. Finally, we examined the interactions of microorganisms that were 

originally identified based on sequence analysis of cpn60 amplicons. 

Materials and Methods 

Seed sources.  

Crop seeds of diverse geographic origins within Canada were chosen for analysis. Seeds 

of Brassica (B. juncea, B. rapa, B. napus), and Triticum (T. aestivum, T. durum) were 

used for the study (Table 4-1). All seeds were assessed as healthy by the Canadian Grain 

Commission with their respective grades denoted in Table 4-1. The seeds were from the 

2009 harvest and were stored separately in plastic bags at room temperature. 
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Table 4-1 Description of samples.

Sample name Sample source Sample description1 Geographic origin2 

Wheat-1 Triticum durum CWAD, grade 2 Western Canada 
Wheat-2 Triticum durum CWAD, grade 3 Western Canada 
Wheat-3 Triticum aestivum CESRW, grade 2 Eastern Canada 
Wheat-4 Triticum aestivum CWRS, grade 1 Western Canada 
Wheat-5 Triticum aestivum CWRS, grade 2 Western Canada 
Wheat-6 Triticum aestivum CWRS, grade 3 Western Canada 
Brassica-1 Brassica juncea Brown mustard, grade 1 Western Canada 
Brassica-2 Brassica napus Canola B Western Canada 
Brassica-3 Brassica napus Canola A Western Canada 
Brassica-4 Brassica juncea Oriental mustard, grade 1 Western Canada 
Brassica-5 Brassica rapa Brown mustard Western Canada 
1abbreviations: CWRS, Canada Western Red Spring wheat; CESRW, Canada Eastern 
Soft Red Winter wheat; CWAD, Canada Western Amber Durum wheat 
2seeds were sourced from different geographic locations in Eastern Canada (Ontario or 
Quebec) or Western Canada (Manitoba, Saskatchewan, Alberta, or British Columbia) 
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DNA extraction from seed-associated epiphytic microbiota.  

A 10 g sample of each seed lot was soaked in a solution of 45 ml buffered peptone water 

(10 g peptone, 5 g NaCl, 3.5 g Na2HPO4, 1.5 g KH2PO4 liter-1 (Kim et al. 2006) 

containing 0.05% Triton X-100 (Sigma, St. Louis, MO) in a 250 ml Erlenmeyer flask at 

room temperature with shaking (150 rpm) for 1 hour. The liquid fractions were 

centrifuged at 4000 × g for 15 minutes and the supernatant discarded. Pellets were 

resuspended in 200 µl of TE buffer and subjected to DNA extraction using the previously 

described bead-beating protocol (Hill et al. 2005b). DNA was quantified using a Quant-

IT DNA quantification kit and Qubit fluorometer (Invitrogen, Burlington, Ontario). 

Quantification of bacterial 16S rRNA-encoding genes.  

To determine the total number of bacterial 16S rRNA-encoding genes associated with 

each seed lot, quantitative PCR was employed using universal primers SRV3-1 and 

SRV3-2 targeting nucleotides 330-533 (numbered according to E. coli) of the 16S rRNA 

gene (Lee et al. 1996). Reactions were prepared using SsoFast EvaGreen supermix (Bio-

Rad, Mississauga, Ontario) with 400 nM of each primer in a final volume of 20 µl. 

Amplification conditions were: 95°C, 3 min (1x); followed by 30 cycles of 95°C, 15 sec, 

62°C, 15 sec, 72°C, 15 sec. Data collection was set at the extension step. Results were 

expressed as 16S rRNA gene copies g-1 seeds by considering the weight of seeds used for 

extraction and the template volume used for qPCR. 
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cpn60 UT amplicon generation and sequencing.  

Amplicons were generated from each sample using multiplexing ID (MID)-adapted 

universal primers as described previously (Schellenberg et al. 2009; Schellenberg et al. 

2011b). Purified, concentrated amplicon from all seed samples was pooled on an 

equimolar basis prior to emPCR adaptor ligation and pyrosequencing using Titanium 

chemistry (Roche/454). 

Assembly of Operational Taxonomic Units.  

The de-multiplexing of pyrosequencing data was done as described previously (Chaban 

et al. 2012). OTUs were derived from the pyrosequencing data using sequence assembly, 

and OTU abundances were determined using the mPUMA software package (Links et al. 

2012)(Chapter 3). 

α-diversity measures. 

To avoid biases introduced by unequal sampling effort (Gihring et al. 2012), OTU 

abundance data for each sample was sub-sampled at random to the size of the smallest 

library (3,606 reads). Calculation of community parameters including Chao1 richness, 

Simpson’s index D, the Shannon-Weiner index (H'), and Good’s coverage estimator was 

performed using mothur (Schloss et al. 2009). 

Analysis of OTU abundance across crops.  

Prior to analysis in R the OTU abundances were scaled to a library size of 107 to 

approximate the community size as measured by 16S rRNA copies g-1 for these samples 
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(Figure 4-1). Clustering and statistical tests based on OTU abundance were performed in 

R (version 2.15.1) on a Linux server (CentOS 5.8). Hierarchical clustering was performed 

using an average linkage method based on the Euclidean distance of both OTU and 

samples. OTU with significantly differential abundances were identified using an 

unpaired Mann-Whitney test followed by a Benjamini-Hochberg correction for multiple 

hypothesis testing at an alpha = 5% level of significance. 
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Figure 4-1 Total bacterial 16S rRNA gene counts as measured by quantitative PCR for Brassica and 
Triticum seed washes. The lower and upper edges of each box correspond to the 25th and 75th percentiles, 
while the whiskers correspond to the 10th and 90th percentiles. The median value is indicated by a 
horizontal line. 
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Quantitative PCR targeting specific microbes.  

Primers designed to target specific OTU were designed using sigoligo (Zahariev et al. 

2009), Beacon Designer 7 (Premier Biosoft, Palo Alto, CA, USA), and primer3 (Rozen 

and Skaletsky 2000). Primers targeting bacterial OTU00845 were 5'-CGG TAT TGA 

CCA GGC TGT TAT C-3' and 5'-AGT TCA ATC GCA CCG GTT T-3' (271 bp 

product). Amplification conditions used were 95°C, 3 min followed by 40 cycles of 

95°C, 15 sec, 60°C, 15 sec, 72°C, 30 sec. Primers targeting fungal OTU03024 were 5'-

GCT TGA GGT TAC CGA AGG-3' and 5'-GGA GAG GAG GAT CAG AGG-3' (112 

bp product). Amplification conditions were 95°C, 3 min followed by 40 cycles of 95°C, 

15 sec, 63°C, 15 sec, 72°C, 30 sec. For both assays, data collection was at the extension 

step (72°C). Quantitative PCR with SsoFast Eva Green Supermix (Bio-Rad) and primer 

concentrations of 400 nM each was used to determine the apparent genome number of 

each organism in each seed extract as described (Dumonceaux et al. 2006a). 

Isolation and identification of microbes.  

To isolate fungi from Brassica or Triticum seeds, a 4 g sample of seeds was incubated in 

50 ml of Taylor minimal medium (Taylor 1993) or malt extract broth (Difco, Houston, 

TX), each containing antibiotics: tetracycline (100 µg ml-1); streptomycin (100 µg ml-1); 

and penicillin (1000 units ml-1). Seed samples were incubated with shaking (150 rpm) at 

room temperature (20-23°C) for 4 days, then 100 µl of serial dilutions of the broth were 

plated on Taylor minimal medium or malt extract agar plates with antibiotics until 

colonies appeared. Some samples showed outgrowth in broth culture of large mycelial 

agglomerates; these were blended in a sterile Eberbach blender cup for 10 seconds prior 
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to dilution and plating. A similar strategy was used to isolate bacteria from Triticum 

seeds, except that 50 ml of antibiotic-free trypticase soy broth (Difco) was used as a 

culture medium and the cultures were incubated overnight at room temperature prior to 

dilution and plating on trypticase soy agar plates. DNA was extracted from each fungal 

strain using a miniprep method (Wendland et al. 1996) and from each bacterial strain 

using a Wizard genomic DNA extraction kit (Promega, Madison, WI). The cpn60 UT 

sequences of bacterial isolates were determined by direct sequencing of amplicons using 

M13-adapted universal primers H729/H730 as described previously (Goh et al. 2000). 

Sequences of the nuclear ribosomal internal transcribed spacer (ITS) were determined for 

each fungal isolate using PCR primers and amplification conditions as described (Schoch 

et al. 2012). 

Phylogenetic analysis.  

Full-length assembled OTU sequences were aligned with the cpn60 sequences 

determined from the isolates as described above and with selected reference strains from 

cpnDB (Hill et al. 2004) using clustalw (Thompson et al. 1994). Phylogenetic trees were 

constructed using the neighbor-joining method (Saitou and Nei 1987) with bootstrapping 

of 500 replicates. Distances were calculated using the maximum composite likelihood 

method. Alignments were performed and trees were calculated using MEGA v5.05 

(Tamura et al. 2007). 

Biological interaction assays.  

Triticum seeds (Canada Western Red Spring wheat, grade 3) were sterilized by 

submerging 30 g of seeds within a nylon bag in 250 ml of 95% ethanol for 20 seconds, 
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followed by 250 ml of 20% commercial bleach for 15 minutes with shaking. Seeds were 

then washed in 7×250 ml of sterile water (3 minutes for the first three washes and 10 

minutes for the final four washes). Sterilized seeds were dried overnight in a sterile Petri 

dish. Seeds were re-colonized with the desired strains by diluting overnight cultures of 

each strain 1:100 in 5 ml of sterile peptone water, then adding ~50 seeds to each dilution. 

This inoculum corresponded to approximately 1.6x107 cfu g-1 seeds. Control seeds were 

added to sterile peptone water without bacterial culture. The seeds were incubated at 

room temperature for 15 minutes with gentle agitation, and then placed in the center of 

plates containing Czapek-Dox agar medium (containing 30 g sucrose, 2 g sodium nitrate, 

1 g dipotassium phosphate, 0.5 g each of MgSO4 and KCl, and 0.01 g of FeSO4 liter-1). A 

5 mm punchout from the edge of a colony of Leptosphaeria maculans strain WA51 (Yu 

et al. 2005) or of fungal isolate 15 was placed within 3 cm of the seeds and the plates 

were incubated at 25°C for one week. Inhibition of fungal growth was scored using 

previously described methods (Chakraborty et al. 1994). 

Results 

Total 16S rRNA-encoding gene counts.  

The total 16S rRNA gene copy number associated with each Triticum seed type varied 

over a range of approximately 4-fold, with Wheat-4 (CWRS grade 1) being the lowest 

and Wheat-2 (CWAD grade 3) the highest (Figure 4-1). The range was somewhat wider 

(approximately 9-fold) within the Brassica seeds, with Brassica-5 (B. rapa) being the 

lowest and Brassica-4 (oriental mustard) the highest. Although the Triticum samples 

tended to have higher 16S rRNA gene counts than the Brassica samples, no statistically 
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significant differences were detected at a significance level of 0.01 (p=0.018, Mann-

Whitney rank sum test).  

Pyrosequencing of cpn60 UT amplicons.  

A total of 408,658 reads was generated from the 11 amplicon libraries. The median 

library size was 34,594 with a range of 3,606 reads (B. rapa) to 96,834 reads (CWRS 

grade 3). These reads were assembled into 5,477 distinct OTU. 

Microbial community diversity.  

Community richness (Chao1, expressed as the projected total number of OTU in each 

sample), evenness (Simpson’s index, D) and the Shannon index H' (Hill et al. 2003) was 

calculated for each sample. No correlation was observed between community richness or 

evenness, and total bacterial 16S rRNA gene copy numbers (Spearman rank correlation). 

Comparing the microbial communities associated with Triticum and Brassica seeds 

revealed no significant differences in the diversity parameters by Mann-Whitney test and 

one-way ANOVA (Figure 4-2).  
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Figure 4-2 Community statistics for Triticum and Brassica seed samples. A. Simpson’s index (1/D), 
which measures community evenness. Error bars represent the 95% confidence intervals of the data. B. 
Shannon index (H’). No statistically significant differences were detected between Brassica and Triticum 
samples for any of these community diversity measures (Mann-Whitney rank sum test, p > 0.05). 
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The shared epiphytic microbiota of Triticum and Brassica seeds.  

Microbial profiles determined for Triticum and Brassica samples were compared, 

resulting in the identification of a core microbiome for each host plant genus. All 

Triticum (n=6) samples had 262 OTU in common while all Brassica (n=5) samples had 

215 OTU in common. In order to identify the microbiota shared between seeds of 

Brassica and Triticum we established a sample prevalence of at least 7 / 11 as a lower 

limit for an OTU to be considered shared. This would ensure that any OTU identified as 

shared was observed in at least one sample of each host genus. There were 578 OTU 

identified with a sample prevalence of 7 / 11 or higher. Additionally we determined 

whether there were any OTU found in all samples. Across host plant species 64 OTU 

were detected in every sample. We examined the effect of sample size (per host plant 

genus) on the number of OTU identified as shared. The number of shared OTU was 

calculated for each combination of Brassica and Triticum samples (from 1 to 5 samples 

for each host plant genus). The number of shared OTU diminished as sample size 

increased in a non-linear fashion, suggesting an asymptote around 60 OTUs (Figure 4-3). 

These results are consistent with the identification of a shared microbiome at the sample 

size used in this study and suggest that larger sample numbers would not substantially 

decrease the size of the shared microbiome.  
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Figure 4-3 Determination of the Triticum/Brassica seed-associated shared OTU with increasing 
paired sample size. All possible combinations of Triticum and Brassica libraries were compared at each 
sample size (e.g. 1 Triticum-1 Brassica; 2 Triticum-2 Brassica, etc.) and the number of OTU that were 
observed in all samples of both Triticum and Brassica was determined. The median value for each data 
point is shown by a horizontal line, and the outer edges represent the 10th and 90th percentiles of the data. 
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Sequences for these 64 shared OTU were similar but not identical (88-99% identity) to 

records from cpnDB that included matches to Pantoea agglomerans (99%), Massilia 

timonae (93%), Pantoea stewartii (93%), Porphyrobacter sanguineus (88%), 

Pseudomonas fluorescens (97%), Pseudomonas syringae (95%), Pyrenophora tritici-

repentis (93%), Sphingobium japonicum (90%), Sphingomonas wittichii (90%), Telluria 

mixta (93%), Xanthomonas axonopodis (94%), Xanthomonas fuscans (95%) and some 

novel sequences.  

Differential abundance within the epiphytic microbiota of Triticum and Brassica seeds.  

Hierarchical clustering of the microbial profiles showed that the Triticum and Brassica-

derived samples could be separated on the basis of the 578 shared OTU (Figure 4-4). A 

Mann-Whitney test identified 203 of these OTU that were significantly differentially 

abundant between Triticum and Brassica, including all 64 OTU with a sample prevalence 

of 11 / 11 (Table 4-2;Table 4-3).  
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Figure 4-4 Hierarchical clustering of samples and OTU from crop seeds. These 578 OTU were found 
in at least 7/11 samples from the two seed types. Libraries are represented by columns while OTU are 
represented by rows. Abundances of each OTU are presented as a heat map (blue, less abundant to red, 
more abundant). Specific OTU corresponding to cultured isolates are identified along with their 
corresponding read abundances in each library and cpnDB nearest neighbor (with percent identities 
indicated in parentheses). 
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Table 4-2 OTU found to have a significantly higher abundance on seeds Brassica spp. vs. Triticum spp.  
OTU! p value! Best match from cpnDB (Hill!et!al.!2004)! Identity (%)! Length (bp)!
00868! 0.028! b12096 XM_001931520 Pyrenophora tritici-repentis Pt-1C-BFP ! 91.5! 577!
00947! 0.028! b12096 XM_001931520 Pyrenophora tritici-repentis Pt-1C-BFP ! 91.0! 555!
01356! 0.028! b12096 XM_001931520 Pyrenophora tritici-repentis Pt-1C-BFP ! 91.2! 612!
017191! 0.028! b12096 XM_001931520 Pyrenophora tritici-repentis Pt-1C-BFP ! 91.0! 586!
02679! 0.028! b12096 XM_001931520 Pyrenophora tritici-repentis Pt-1C-BFP ! 91.2! 555!
02750! 0.028! b12096 XM_001931520 Pyrenophora tritici-repentis Pt-1C-BFP ! 92.6! 555!
02863! 0.028! b12096 XM_001931520 Pyrenophora tritici-repentis Pt-1C-BFP ! 89.2! 471!
030242! 0.028! b12096 XM_001931520 Pyrenophora tritici-repentis Pt-1C-BFP ! 92.6! 580!
03573! 0.028! b12096 XM_001931520 Pyrenophora tritici-repentis Pt-1C-BFP ! 87.2! 555!
03644! 0.028! b12096 XM_001931520 Pyrenophora tritici-repentis Pt-1C-BFP ! 86.9! 580!
05457! 0.028! b12096 XM_001931520 Pyrenophora tritici-repentis Pt-1C-BFP ! 92.3! 467!
056223! 0.028! b12096 XM_001931520 Pyrenophora tritici-repentis Pt-1C-BFP ! 90.6! 555!
06305! 0.028! b12523 NC_011144 Phenylobacterium zucineum HLK1 ! 85.4! 552!
02815! 0.028! b12837 NC_012791 Variovorax paradoxus S110 ! 92.4! 554!
01363! 0.028! b14162 NC_012778 Eubacterium eligens ATCC 27750! 41.0! 384!
01435! 0.028! b14498 NZ_ACVD01000045 Acidithiobacillus caldus ATCC 51756! 43.0! 492!
04904! 0.028! b16011 CP001854 Conexibacter woesei DSM 14684! 88.5! 452!
05240! 0.028! b16011 CP001854 Conexibacter woesei DSM 14684! 85.1! 433!
00636! 0.028! b16615 AP010803 Sphingobium japonicum UT26S NBRC 101211! 89.4! 558!
01178! 0.028! b16615 AP010803 Sphingobium japonicum UT26S NBRC 101211! 89.5! 465!
01227! 0.028! b16615 AP010803 Sphingobium japonicum UT26S NBRC 101211! 89.4! 555!
01345! 0.028! b16615 AP010803 Sphingobium japonicum UT26S NBRC 101211! 90.2! 486!
01502! 0.028! b16615 AP010803 Sphingobium japonicum UT26S NBRC 101211! 89.5! 555!
02199! 0.028! b16615 AP010803 Sphingobium japonicum UT26S NBRC 101211! 89.5! 555!
02495! 0.028! b16615 AP010803 Sphingobium japonicum UT26S NBRC 101211! 89.9! 554!
02528! 0.028! b16615 AP010803 Sphingobium japonicum UT26S NBRC 101211! 89.0! 555!
02643! 0.028! b16615 AP010803 Sphingobium japonicum UT26S NBRC 101211! 90.0! 505!
05162! 0.028! b16615 AP010803 Sphingobium japonicum UT26S NBRC 101211! 88.6! 566!
04161! 0.028! b17405 GG774665 Pseudomonas savastanoi pv. savastanoi NCPPB 

3335!

94.1! 554!
01373! 0.028! b17482 XM_001840049 Coprinopsis cinerea okayama7#130 ! 69.0! 622!
01342! 0.028! b17665 AB547563 Butyricimonas virosa JCM 15149! 45.0! 449!
06099! 0.028! b18163 AP010968 Kitasatospora setae KM-6054 ! 87.9! 576!
03642! 0.028! b18946 AEAO01000548 Pseudomonas syringae pv. aceris str. 

M302273PT !

95.3! 555!
00301! 0.028! b19041 CP002727 Pseudomonas fulva 12-X ! 44.4! 335!
01754! 0.028! b19232 CP002897 Paracoccus denitrificans SD1 ! 87.9! 570!
04791! 0.028! b19627 JF745945 Tetrasphaera vanveenii DSM 17518! 48.3! 497!
00080! 0.028! b19629 JF745943 Tetrasphaera duodecadis DSM 12806! 52.2! 160!
06861! 0.028! b20425 NZ_CAGB01000016 Wolbachia pipientis wAlbB ! 42.7! 481!
03434! 0.028! b20442 NC_016887 Nocardia cyriacigeorgica GUH-2 ! 83.0! 553!
02318! 0.028! b21604 AMQP01000036 Pseudomonas viridiflava UASWS0038 ! 97.8! 585!
01073! 0.028! b21890 AGZI01000020 Massilia timonae CCUG 45783 ! 92.9! 445!
02542! 0.028! b21890 AGZI01000020 Massilia timonae CCUG 45783 ! 91.7! 458!
02748! 0.028! b21890 AGZI01000020 Massilia timonae CCUG 45783 ! 92.8! 558!
02869! 0.028! b21890 AGZI01000020 Massilia timonae CCUG 45783 ! 92.1! 552!
03058! 0.028! b21890 AGZI01000020 Massilia timonae CCUG 45783 ! 91.5! 458!
01377! 0.028! b21893 AGZU01000014 Sphingobium yanoikuyae ATCC 51230! 88.3! 471!
03149! 0.028! b21893 AGZU01000014 Sphingobium yanoikuyae ATCC 51230! 89.3! 475!
01809! 0.028! b22217 ANIU01000043 Rhodococcus wratislaviensis IFP 2016 ! 87.5! 556!
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OTU! p value! Best match from cpnDB (Hill!et!al.!2004)! Identity (%)! Length (bp)!
02808! 0.028! b3420 AY123661 Pseudomonas fluorescens ATCC 13525! 95.1! 555!
03647! 0.028! b3420 AY123661 Pseudomonas fluorescens ATCC 13525! 92.8! 555!
06166! 0.028! b5482 NC_002937 Desulphovibrio vulgaris subsp. vulgaris strain 

Hildenborough !

40.4! 357!
00061! 0.028! b6878 AADS00000000 Phanerochaete chrysosporium RP-78 ! 40.2! 379!
00929! 0.028! b6878 AADS00000000 Phanerochaete chrysosporium RP-78 ! 41.2! 392!
00738! 0.028! b7280 AY837539 Phoma pomorum DAOM172382! 38.7! 438!
03118! 0.028! b7361 AJ716085 Botrytis hyacinthi MUCL442 ! 39.8! 508!
04877! 0.028! b8480 CP000781 Xanthobacter autotrophicus Py2 ! 41.4! 599!
06892! 0.028! v6236 j0614 Fusarium equiseti 6! 100.0! 555!
01011! 0.035! b12423 EU790571 Porphyrobacter sanguineus ATCC 25659! 88.4! 402!
01848! 0.035! b16615 AP010803 Sphingobium japonicum UT26S NBRC 101211! 89.6! 578!
00524! 0.035! b18946 AEAO01000548 Pseudomonas syringae pv. aceris str. 

M302273PT !

94.2! 728!
00525! 0.035! b18946 AEAO01000548 Pseudomonas syringae pv. aceris str. 

M302273PT !

94.2! 707!
04621! 0.035! b18985 AB627073 Methylobacterium marchantiae JT1! 96.0! 555!
02566! 0.035! b21890 AGZI01000020 Massilia timonae CCUG 45783 ! 92.8! 578!
02536! 0.036! b12429 EU790577 Telluria mixta ATCC 49108! 92.1! 555!
02926! 0.036! b12837 NC_012791 Variovorax paradoxus S110 ! 91.3! 428!
04856! 0.036! b16615 AP010803 Sphingobium japonicum UT26S NBRC 101211! 88.8! 465!
01523! 0.036! b13298 NC_011988 Agrobacterium vitis S4 ! 92.6! 554!
00516! 0.036! b20091 BAED01000033 Gordonia amarae NBRC 15530! 44.3! 362!
01734! 0.049! b10265 EF685238 Rhodococcus fascians ATCC 12974! 99.5! 457!
03097! 0.049! b10265 EF685238 Rhodococcus fascians ATCC 12974! 99.6! 577!
02008! 0.049! b10915 AM849034 Clavibacter michiganensis subsp. spedonicus 

ATCC 33113!

90.2! 552!
01349! 0.049! b12429 EU790577 Telluria mixta ATCC 49108! 93.0! 553!
06404! 0.049! b1263 AY263151 Renibacterium salmoninarum ATCC 33209! 43.3! 646!
01947! 0.049! b12784 NS_000195 Candidatus Cloacamonas acidaminovorans ! 45.5! 657!
00869! 0.049! b15304 NC_013521 Sanguibacter keddieii DSM 10542! 99.8! 567!
01803! 0.049! b16615 AP010803 Sphingobium japonicum UT26S NBRC 101211! 89.2! 555!
03028! 0.049! b16615 AP010803 Sphingobium japonicum UT26S NBRC 101211! 89.4! 768!
03402! 0.049! b16615 AP010803 Sphingobium japonicum UT26S NBRC 101211! 89.4! 555!
02196! 0.049! b17885 FN298395 Erwinia rhapontici WMR127 ! 94.4! 553!
03415! 0.049! b17885 FN298395 Erwinia rhapontici WMR127 ! 91.7! 556!
06254! 0.049! b21890 AGZI01000020 Massilia timonae CCUG 45783 ! 93.0! 555!
00582! 0.049! b3420 AY123661 Pseudomonas fluorescens ATCC 13525! 93.9! 618!
01222! 0.049! b3420 AY123661 Pseudomonas fluorescens ATCC 13525! 94.6! 558!
04236! 0.049! b415 AB008150 Pantoea agglomerans JCM7000! 82.8! 364!
00813! 0.049! b9562 CP000699 Sphingomonas wittichii RW1 ! 89.9! 580!
1 100% identical to fungal isolate #6 

2 100% identical to fungal isolate #15 
3 100% identical to fungal isolate #9 

  



99 

Table 4-3 OTU found to have a significantly higher abundance on seeds Triticum spp. vs. Brassica spp. 

OTU p value Best match from cpnDB (Hill!et!al.!2004) Identity 

(%) 

Length 

(bp) 
06191 0.028 b12430 EU790578 Pseudomonas vancouverensis ATCC 700688 40.7 337 
04490 0.028 b12771 NZ_ABYT01000057 Eubacterium biforme DSM 3989 42.6 500 
01591 0.028 b13605 NC_013530 Xylanimonas cellulosilytica DSM 15894 46.0 547 
03501 0.028 b14106 NZ_ACIP02000002 Shuttleworthia satelles DSM 14600 42.8 652 
07027 0.028 b18763 XM_003226995 Anolis carolinensis 44.3 526 
02563 0.028 b18946 AEAO01000548 Pseudomonas syringae pv. aceris str. M302273PT 99.1 556 
04911 0.028 b18946 AEAO01000548 Pseudomonas syringae pv. aceris str. M302273PT 98.6 556 
01371 0.028 b18982 NZ_AFGG01000024 Sphingomonas sp. S17 39.3 332 
01867 0.028 b19675 AGFC01000008 Thiocystis violascens DSM 198 44.8 466 
00630 0.028 b21985 GACK01004998 Rhipicephalus pulchellus 45.1 431 
00047 0.028 b415 AB008150 Pantoea agglomerans JCM7000 99.1 345 
00294 0.028 b415 AB008150 Pantoea agglomerans JCM7000 98.4 554 
00424 0.028 b415 AB008150 Pantoea agglomerans JCM7000 99.3 591 
00589 0.028 b415 AB008150 Pantoea agglomerans JCM7000 98.9 584 
00657 0.028 b415 AB008150 Pantoea agglomerans JCM7000 99.3 443 
00859 0.028 b415 AB008150 Pantoea agglomerans JCM7000 98.7 463 
00963 0.028 b415 AB008150 Pantoea agglomerans JCM7000 99.3 437 
01183 0.028 b415 AB008150 Pantoea agglomerans JCM7000 98.8 402 
01187 0.028 b415 AB008150 Pantoea agglomerans JCM7000 98.5 406 
01453 0.028 b415 AB008150 Pantoea agglomerans JCM7000 98.4 575 
01575 0.028 b415 AB008150 Pantoea agglomerans JCM7000 99.3 663 
01700 0.028 b415 AB008150 Pantoea agglomerans JCM7000 98.3 484 
02231 0.028 b415 AB008150 Pantoea agglomerans JCM7000 98.7 452 
02235 0.028 b415 AB008150 Pantoea agglomerans JCM7000 98.5 389 
02331 0.028 b415 AB008150 Pantoea agglomerans JCM7000 99.3 558 
02347 0.028 b415 AB008150 Pantoea agglomerans JCM7000 96.2 556 
02397 0.028 b415 AB008150 Pantoea agglomerans JCM7000 98.5 342 
02456 0.028 b415 AB008150 Pantoea agglomerans JCM7000 98.0 412 
02457 0.028 b415 AB008150 Pantoea agglomerans JCM7000 98.3 563 
02508 0.028 b415 AB008150 Pantoea agglomerans JCM7000 99.3 555 
02625 0.028 b415 AB008150 Pantoea agglomerans JCM7000 99.3 458 
02702 0.028 b415 AB008150 Pantoea agglomerans JCM7000 99.1 458 
02703 0.028 b415 AB008150 Pantoea agglomerans JCM7000 99.1 430 
02737 0.028 b415 AB008150 Pantoea agglomerans JCM7000 98.2 434 
02856 0.028 b415 AB008150 Pantoea agglomerans JCM7000 97.9 429 
02983 0.028 b415 AB008150 Pantoea agglomerans JCM7000 99.1 560 
03382 0.028 b415 AB008150 Pantoea agglomerans JCM7000 98.7 444 
03396 0.028 b415 AB008150 Pantoea agglomerans JCM7000 99.0 394 
03408 0.028 b415 AB008150 Pantoea agglomerans JCM7000 97.8 673 
03692 0.028 b415 AB008150 Pantoea agglomerans JCM7000 98.2 433 
03734 0.028 b415 AB008150 Pantoea agglomerans JCM7000 98.9 567 
03806 0.028 b415 AB008150 Pantoea agglomerans JCM7000 99.1 568 
04062 0.028 b415 AB008150 Pantoea agglomerans JCM7000 98.7 444 
040811 0.028 b415 AB008150 Pantoea agglomerans JCM7000 99.1 555 
04119 0.028 b415 AB008150 Pantoea agglomerans JCM7000 99.5 456 
04145 0.028 b415 AB008150 Pantoea agglomerans JCM7000 98.6 584 
04256 0.028 b415 AB008150 Pantoea agglomerans JCM7000 98.8 363 



100 

OTU p value Best match from cpnDB (Hill!et!al.!2004) Identity 

(%) 

Length 

(bp) 
04326 0.028 b415 AB008150 Pantoea agglomerans JCM7000 99.3 434 
04519 0.028 b415 AB008150 Pantoea agglomerans JCM7000 98.7 383 
05148 0.028 b415 AB008150 Pantoea agglomerans JCM7000 99.1 454 
05833 0.028 b415 AB008150 Pantoea agglomerans JCM7000 96.2 555 
06129 0.028 b415 AB008150 Pantoea agglomerans JCM7000 98.0 551 
06438 0.028 b415 AB008150 Pantoea agglomerans JCM7000 98.8 340 
06542 0.028 b415 AB008150 Pantoea agglomerans JCM7000 98.0 553 
06543 0.028 b415 AB008150 Pantoea agglomerans JCM7000 98.9 562 
06558 0.028 b415 AB008150 Pantoea agglomerans JCM7000 98.5 341 
06591 0.028 b415 AB008150 Pantoea agglomerans JCM7000 98.1 365 
06594 0.028 b415 AB008150 Pantoea agglomerans JCM7000 99.0 400 
03082 0.028 b7564 NC_007963 Chromohalobacter salexigens DSM 3043 42.2 336 
03366 0.028 b7564 NC_007963 Chromohalobacter salexigens DSM 3043 44.7 341 
02123 0.028 b7834 AF429666 Lactobacillus acetotolerans ATCC 43578 43.7 337 
03768 0.028 b7834 AF429666 Lactobacillus acetotolerans ATCC 43578 41.5 474 
04210 0.028 b7834 AF429666 Lactobacillus acetotolerans ATCC 43578 40.5 373 
05844 0.028 b7834 AF429666 Lactobacillus acetotolerans ATCC 43578 42.8 337 
00411 0.028 b858 AY004281 Scardovia inopinata DSM10107 45.8 336 
05486 0.028 b9351 NC_009620 Sinorhizobium medicae WSM419 42 352 
00814 0.028 v4741 j0500 Sinorhizobium meliloti ATCC 9930 41.3 355 
02120 0.028 v4741 j0500 Sinorhizobium meliloti ATCC 9930 43.8 336 
03556 0.028 v5248 j0528 Cylindrocarpon destructans 41.9 578 
03335 0.035 b12430 EU790578 Pseudomonas vancouverensis ATCC 700688 40.5 343 
03315 0.035 b18946 AEAO01000548 Pseudomonas syringae pv. aceris str. M302273PT 98.6 557 
02448 0.035 b415 AB008150 Pantoea agglomerans JCM7000 99.5 554 
02871 0.035 b415 AB008150 Pantoea agglomerans JCM7000 98.6 360 
04109 0.035 b415 AB008150 Pantoea agglomerans JCM7000 98.5 389 
04471 0.035 b415 AB008150 Pantoea agglomerans JCM7000 99.2 387 
06423 0.035 b415 AB008150 Pantoea agglomerans JCM7000 99.5 399 
04918 0.035 b7584 CP000356 Sphingopyxis alaskensis RB2256 44.5 550 
00785 0.035 b7834 AF429666 Lactobacillus acetotolerans ATCC 43578 41.1 335 
03054 0.035 b862 AY004277 Bifidobacterium merycicum JCM8219 41.5 273 
05522 0.035 b862 AY004277 Bifidobacterium merycicum JCM8219 42.3 484 
00235 0.035 b9351 NC_009620 Sinorhizobium medicae WSM419 40 337 
00512 0.035 b9351 NC_009620 Sinorhizobium medicae WSM419 42.5 335 
00758 0.035 b9351 NC_009620 Sinorhizobium medicae WSM419 42.4 333 
00423 0.035 v4741 j0500 Sinorhizobium meliloti ATCC 9930 42.8 355 
06331 0.036 b19637 JF745935 Beggiatoa alba DSM 1416 45.8 722 
00685 0.036 b415 AB008150 Pantoea agglomerans JCM7000 99.3 555 
01208 0.036 b415 AB008150 Pantoea agglomerans JCM7000 98.6 430 
01237 0.036 b415 AB008150 Pantoea agglomerans JCM7000 98.5 399 
02513 0.036 b415 AB008150 Pantoea agglomerans JCM7000 99.1 553 
02872 0.036 b415 AB008150 Pantoea agglomerans JCM7000 98.7 378 
04166 0.036 b415 AB008150 Pantoea agglomerans JCM7000 98.9 554 
06516 0.036 b415 AB008150 Pantoea agglomerans JCM7000 98.6 428 
06590 0.036 b415 AB008150 Pantoea agglomerans JCM7000 98.2 429 
03319 0.036 b7834 AF429666 Lactobacillus acetotolerans ATCC 43578 43.9 346 
00244 0.036 b415 AB008150 Pantoea agglomerans JCM7000 99.3 554 
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OTU p value Best match from cpnDB (Hill!et!al.!2004) Identity 

(%) 

Length 

(bp) 
00854 0.036 b415 AB008150 Pantoea agglomerans JCM7000 98.7 552 
03520 0.036 b415 AB008150 Pantoea agglomerans JCM7000 98.6 416 
03968 0.036 b415 AB008150 Pantoea agglomerans JCM7000 99.3 554 
00407 0.036 v4741 j0500 Sinorhizobium meliloti ATCC 9930 42.7 458 
02858 0.038 b415 AB008150 Pantoea agglomerans JCM7000 99.3 668 

05044 0.049 b16950 CP002049 Truepera radiovictrix DSM 17093 39.4 395 
03327 0.049 b22216 CAPJ01000179 Xanthomonas translucens pv. translucens DSM 

18974 

98.9 692 
01355 0.049 b3420 AY123661 Pseudomonas fluorescens ATCC 13525 95.7 553 
00409 0.049 b415 AB008150 Pantoea agglomerans JCM7000 99.3 555 
008452 0.049 b415 AB008150 Pantoea agglomerans JCM7000 99.5 555 
00958 0.049 b415 AB008150 Pantoea agglomerans JCM7000 96.3 267 
01030 0.049 b415 AB008150 Pantoea agglomerans JCM7000 97.7 340 
01163 0.049 b415 AB008150 Pantoea agglomerans JCM7000 99.1 430 

01374 0.049 b415 AB008150 Pantoea agglomerans JCM7000 99.5 630 
02189 0.049 b415 AB008150 Pantoea agglomerans JCM7000 99.3 428 
03480 0.049 b415 AB008150 Pantoea agglomerans JCM7000 98.3 398 
03683 0.049 b415 AB008150 Pantoea agglomerans JCM7000 99.1 573 
03710 0.049 b415 AB008150 Pantoea agglomerans JCM7000 98.9 433 
04198 0.049 b415 AB008150 Pantoea agglomerans JCM7000 98.6 432 
04477 0.049 b415 AB008150 Pantoea agglomerans JCM7000 98.6 419 
00220 0.049 b7760 CP000453 Alkalilimnicola ehrlichei MLHE-1 ATCC BAA-1101 44.5 336 

00488 0.049 b7834 AF429666 Lactobacillus acetotolerans ATCC 43578 41.8 618 
1 99% identical to bacterial isolate #8 (2 bp different) 

2 100% identical to bacterial isolates #1-7 and #9 
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Approximately 40% of the significantly differentially abundant OTU (79 / 203, including 

OTU00845) were closely related (96-99% nucleotide identity) to Pantoea agglomerans. 

Triticum seeds were found to have significantly more sequences from Pantoea-like OTU 

than Brassica seeds (Table 4-2;Table 4-3). Fungal OTU were also identified as 

significantly different in abundance between Brassica and Triticum samples with 12 

OTU (including OTU03024) more abundant on Brassica seeds as compared to the 

Triticum seeds. These fungal OTU were more similar (up to 99% identity) to a truncated 

cpn60 UT sequence from Alternaria alternata (GenBank GQ871196). 

Quantitative PCR assays targeting OTU00845 and OTU03024 validated the sequence 

read abundance patterns seen in the microbial profiles of Triticum and Brassica (Figure 

4-5). Within Triticum samples, the Pantoea-like OTU00845 was more abundant than the 

Alternaria-like OTU03024 with the inverse relationship observed in Brassica samples. 

Between crops, the Pantoea-like OTU00845 was significantly more abundant on 

Triticum compared to Brassica. Consistent with the sequencing read counts, the P. 

agglomerans OTU were significantly more abundant on Triticum seeds than Brassica, 

while the Alternaria-like OTU03024 exhibited an inverse pattern, being more abundant 

on Brassica seeds.  
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Figure 4-5 Quantification by qPCR of OTU00845 (Pantoea agglomerans) and OTU03024 (Alternaria 
sp.) on seeds of Triticum (n=12) and Brassica (n=24). qPCR results are from at least 2 biological 
replicates (DNA extractions) and 2 technical replicates per sample. Significant differences in the median 
values measured by the Mann-Whitney rank-sum test (p < 0.01) are indicated (*). 
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Isolation of bacteria and fungi from Triticum and Brassica seeds.  

To assess potential interactions between members of the shared microbiota, we undertook 

efforts to culture bacteria corresponding to Pantoea-like OTU00845 and fungi 

corresponding to Alternaria-like OTU03024. These specific OTU were targeted due to 

their reciprocal patterns of abundance in both the microbial profiling and qPCR results 

(i.e. on seeds where Pantoea-like OTU were abundant, Alternaria-like OTU were rare 

and vice versa - Figure 4-5 and Table 4-2;Table 4-3). Multiple bacterial colony 

morphologies were observed when Triticum seeds were incubated in trypticase soy broth. 

Nine yellow colonies were picked from these plates, and these yielded a band with the P. 

agglomerans cpn60 UT-specific primer set and were sub-cultured to purity. Microscopic 

analysis revealed that the organisms were Gram-negative rods and they formed yellow 

colonies on the trypticase soy agar plates, consistent with previous reports for Pantoea 

agglomerans (Lee and Liu 1991). Determination of the cpn60 UT sequences for all 9 

isolates revealed > 99% sequence identity to P. agglomerans JCM7000 and that 8 of 

these were 100% identical with each other, and OTU00845. The isolate sequences 

clustered together with the OTU sequences and all were distinct from the P. agglomerans 

reference strain as well as from other Pantoea species (Figure 4-6). 
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Figure 4-6 Phylogenetic analysis of the cpn60 UT sequences of selected OTU assembled from 
pyrosequencing data along with reference strains from cpnDB and isolates from Triticum and 
Brassica seeds. In both a and b, the robustness of each node is indicated by the percentage of 500 trees in 
which the associated taxa cluster together and is presented next to the branches (Tamura et al. 2004). The 
scale bar represents units of base substitutions per site. Sequences corresponding to the cpn60 UT of 
reference strains were retrieved from cpnDB with the nucleotide accession number (ncbi.nlm.nih.gov) for 
each strain indicated in parentheses. a. P. agglomerans-related OTU, reference strains, and isolate 
sequences. b. Fungal isolates and OTU along with reference strain sequences from cpnDB. 
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Fungi were also isolated from Brassica and Triticum seeds, with a wide range of colony 

morphologies observed, including yeasts, molds, and filamentous phenotypes. Fungal 

isolates 6, 9 and 15 had Alternaria-like colony morphology and their cpn60 UT 

sequences were identical to OTU01719, OTU05622 and OTU03024, respectively (Figure 

4-6) The cpn60 UT sequence of a fourth isolate with similar morphology (fungal isolate 

5) was 1 bp different from non-significant OTU02724 in a short homopolymer (not 

shown). The cpn60 UT sequences of fungal isolates 5, 6, and 9 (and of OTU 02724, 

05622, and 01719) shared 96-99% identity over 483 bp with a truncated cpn60 UT 

sequence from Alternaria alternata (GenBank: GQ871196). The cpn60 UT sequence of 

fungal isolate 15 was distinct from the other isolates and identical to OTU03024. 

Examination of the ITS sequences of these isolates suggested that isolates 5, 6, and 9 

were most closely related to A. alternata while isolate 15 clustered with Alternaria 

infectoria and Alternaria triticina (Figure 4-7). These observations were consistent with 

the morphological features of the fungal conidia, which were also typical of Alternaria 

spp. (data not shown).  
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Figure 4-7 Phylogenetic analysis of ITS sequences of fungal isolates compared to reference sequences. 
Sequences were trimmed to the same length (570-600 bp) prior to alignment. The tree was constructed as 
described in Materials and Methods, with the percentage of 500 replicates showing identical 
branching/clustering patterns shown next to the nodes. Reference sequences were obtained from GenBank, 
with the accession numbers indicated. 
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Interactions between bacterial and fungal isolates.  

The 9 P. agglomerans isolates from Triticum seeds showed a spectrum of growth 

suppression against fungal isolate 15 (Alternaria sp.; identical to OTU03024) (Figure 

4-8) as well as the canola blackleg pathogen L. maculans (Figure 4-9). P. agglomerans 

isolate 4 (identical to OTU00845) showed the strongest inhibition while other strains 

(isolates 3, 6 and 8) as well as unsterilized and sterilized seeds showed no inhibition on 

both wheat and canola (Table 4-4; Figure 4-8; Figure 4-9). Some of the strains resulted in 

growth cessation of L. maculans at the point of contact, but fungal growth continued 

away from the bacterial colony (Table 4-4 and Figure 4-9). In general the inhibition of L. 

maculans growth was stronger than of fungal isolate 15 (Alternaria sp.) by several of the 

isolates, but isolate 4 (identical to OTU00845) was quite effective against both fungi 

(Table 4-4; Figure 4-8; Figure 4-9). Fungal isolate 15 produced a dark pigment upon 

interaction with bacterial isolate 4 and limited growth continued only in the direction 

opposite the bacterial challenge (Figure 4-8). Colonization of wheat and canola seeds 

with bacterial isolate 4 protected both seed types from overgrowth of both the Alternaria-

like strain (Figure 4-8) and L. maculans (Figure 4-9) in these assays.  
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Figure 4-8 Interactions between selected bacterial isolates and fungal isolate 15. In some instances 
(A,B,E,F,H), the seeds have begun to germinate, producing shoots on the plates. A. Sterilized wheat 
seeds not re-colonized with bacteria. Fungal isolate 15 is inoculated on the left while L. maculans (L.m.) is 
on the right. In all of the remaining panels, fungal isolate 15 is inoculated on the left and right sides of the 
seeds. B. Sterilized wheat seeds colonized with bacterial isolate 1 (homogenous). C. Same as B, but with 
bacterial isolate 4 (aversion) – top view. D. Same as C – bottom view. E. Nonsterilized canola seeds. F. 
Nonsterilized wheat seeds.  G. Nonsterilized canola seeds colonized with bacterial isolate 4. H. 
Nonsterilized wheat seeds colonized with bacterial isolate 4. 
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Figure 4-9 Interactions of selected bacterial isolates with the fungal pathogen Leptosphaeria 
maculans. A. Sterilized wheat seeds colonized with bacterial isolate #8 (homogenous). B. Same as A., but 
with bacterial isolate #9 (growth cessation at point of contact). C. Same as A, but with bacterial isolate #4 
(aversion). D. Nonsterilized wheat seeds colonized with bacterial isolate #4. E. Nonsterilized canola seeds. 
F. Nonsterilized canola seeds colonized with bacterial isolate #4. 
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Table 4-4 Interactions between bacterial isolates and Leptosphaeria maculans or fungal isolate 15. 
Colony diameter measurements are the mean of 4 or 6 measurements ± standard deviation. Interactions 
were scored according to (Chakraborty et al. 1994). 

Bacterial isolate 
Colony diameter increase/day, mm Interaction 

L. maculans Fungal isolate 15 L. maculans Fungal isolate 15 
Isolate 1 4.87 ± 0.47 6.84 ± 1.85 growth cessation homogenous 
Isolate 2 4.31 ± 0.12 6.63 ± 1.78 growth cessation homogenous 
Isolate 3 3.83 ± 0.35 6.65 ± 2.06 homogenous homogenous 
Isolate 4 0.24 ± 0.38 1.20 ± 0.36 aversion aversion 
Isolate 5 4.69 ± 0.79 6.74 ± 1.88 growth cessation homogenous 
Isolate 6 4.64 ± 0.43 6.63 ± 2.18 homogenous homogenous 
Isolate 7 4.76 ± 0.70 5.63 ± 1.21 growth cessation homogenous 
Isolate 8 4.58 ± 0.50 7.28 ± 1.92 homogenous homogenous 
Isolate 9 4.32 ± 0.49 6.84 ± 1.41 growth cessation homogenous 
Sterile seed 4.90 ± 0.87 6.81 ± 1.95 homogenous homogenous 
Nonsterile seed 5.08 ± 0.48 7.42 ± 2.13 homogenous homogenous 
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Discussion 

The microbial complement that is naturally associated with multicellular organisms plays 

an important role in host health and disease. The microbiota of humans (Turnbaugh et al. 

2007) and agricultural animals (Dumonceaux et al. 2006b; Hill et al. 2005b) has been and 

continues to be extensively studied. While excellent literature exists on the epiphytic and 

endophytic microbiota associated with a variety of plant surfaces (Lucero et al. 2011; 

Rastogi et al. 2012; Tikhonovich and Provorov 2011), there has been little to no 

characterization of the epiphytic microbiota associated with plant reproductive tissues, 

including seeds.  

In this work, our objective was to describe similarities and differences in the microbiota 

associated with Brassica and Triticum seed surfaces. Microbes isolated from the surface 

of these seeds served to validate the consensus sequences formed for OTU. In thirteen 

separate cases, including both bacteria and fungi, the sequences assembled were identical 

(n=11) or essentially identical (99%; n=2) to those obtained from isolates. This 

demonstrates that OTU assembly yields biologically relevant sequence barcodes that can 

be used for specific molecular diagnostic assays to detect and quantify microorganisms 

using established techniques (Dumonceaux et al. 2006a; Dumonceaux et al. 2009). This 

is a particularly significant advantage in cases where an OTU sequence is assembled with 

little similarity to available reference sequences. The simultaneous identification of both 

prokaryotes and eukaryotes is an advantage of microbial profiling using cpn60, as 

opposed to gene targets that are limited to one domain, such as the 16S rRNA gene for 

Bacteria, or the 18S rRNA and ITS regions commonly used for fungi and other 
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eukaryotic microbes. As seeds are known to be colonized by both bacteria and fungi, 

cpn60 offers a natural choice for characterizing these microbiomes.  

Examination of the microbial communities associated with seeds of these diverse plant 

species revealed a total epiphytic microbial load of approximately 106-108 bacterial 

genomes/g seeds. While this is within the range of what is observed by total aerobic plate 

counts on other crops such as bean and pea sprouts (Deb and Joshi 2007), there is no 

baseline data on total epiphytic microbial load of healthy Triticum and Brassica crop 

seeds. An endophytic bacterial load in this same range has been reported for B. napus 

seeds (Granér et al. 2003). For some related crops, such as buckwheat, customers may set 

limits on total aerobic plate counts that are considerably lower (5.5 log10 CFU/g seeds) 

than we observed for Triticum and Brassica (Dhillon et al. 2012), and lower total 

microbial loads are generally seen as desirable (Olaimat and Holley 2012). The molecular 

methods used to estimate bacterial genomes g-1 seeds are unable to distinguish between 

live and dead microbes, so estimates of total bacterial load by aerobic plate counts may 

be considerably lower than is determined using molecular methods.  Nevertheless, our 

results establish a baseline epiphytic microbial load for healthy, high grade seeds of 

Triticum and Brassica. 

An overall total of 5,477 OTU was associated with all Brassica and Triticum samples. 

Core microbiota were identified for all Brassica samples (215 OTU) as well as all 

Triticum samples (262 OTU), but remarkably, we also identified a shared microbiome 

among these seeds from distinct host plant genera harvested from a range of geographic 

locales, separated by thousands of kilometers. The existence of a shared microbiome 

conserved across plant genera illustrates that the seed-associated microbiome is not a 
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casually associated surface contamination but rather a selected, host-specific community, 

intimately associated with the host, and with potentially profound effects on seed health. 

These observations are consistent with previous studies of the seed-associated endophytic 

bacteria within Zea spp. (corn), wherein a microbiota was identified that is conserved in 

various teosinte progenitor species grown in an array of geographical locations 

(Johnston-Monje and Raizada 2011). Despite these commonalities, the Triticum and 

Brassica seed microbiota could be distinguished based on the relative abundances of 

shared OTU (Figure 4-4).  

Studies of Zea seed endophytes revealed a preponderance of Gammaproteobacteria 

including Enterobacter, Pantoea, and Pseudomonas spp. (Johnston-Monje and Raizada 

2011). Similarly, Weiss et al. examined the microbiota associated with alfalfa, radish, 

and bean sprouts and found the same genera represented, along with Lactobacillus 

(Weiss et al. 2007). The majority of bacterial taxa that we observed in the Brassica-

Triticum shared microbiome included OTU that were closely related to these genera 

(Table 4-2;Table 4-3). Many of the microorganisms we identified on the seed surface are 

also found in soil, suggesting a possible relationship between soil microbiota and seed-

borne microorganisms. This is consistent with the fact that Triticum and Brassica seeds 

are sown into soils, commonly in rotation with one another. The seed microbiome 

included a relatively large proportion of OTU that were closely related (95-99% sequence 

identity) to P. agglomerans, including 78 that were significantly differentially abundant 

on Triticum compared to Brassica seeds. Among the fungal OTU were several with 

similarity to yeasts and Ascomycetes, including Fusarium. While certain species of 

Fusarium are wheat pathogens, no sequences identical to known pathogens were detected 
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on these seeds; however, given the ability for the seeds to be associated with microbes 

closely related to pathogens there is a clear need to monitor seed health. In addition, 18 

OTU were identified that clustered with microorganisms such as Pyrenophora, 

Alternaria, and Leptosphaeria, of which there are related pathogenic species that can 

cause grain spoilage. While all seeds in this study were healthy, these findings 

demonstrated that the seed microbiome is crucial as it may harbor both beneficial and 

potentially pathogenic organisms. 

Our data also indicate that observations of OTU abundance patterns can lead to the 

recognition of interactions between microbes with significant implications for the host. 

Relatively high levels of Pantoea-like OTU and significantly lower levels of Alternaria-

like OTU were detected on Triticum seeds, while this relationship was reversed on 

Brassica seeds (Figure 4-4, Figure 4-5). The reciprocal abundances of P. agglomerans 

and Alternaria sequences on Triticum and Brassica seeds, validated by quantitative PCR, 

suggested a potential antagonistic relationship between these microbes. It is well known 

that P. agglomerans can be antagonistic to L. maculans and other pathogens (Braun-

Kiewnick et al. 2000; Bryk et al. 1998; Chakraborty et al. 1994; Kearns and Hale 1996; 

Kempf and Wolf 1989), but inhibition of the growth of Alternaria spp. by P. 

agglomerans has not been described. The fact that we identified this organism within the 

epiphytic microbiota of healthy Triticum and Brassica seeds suggests that organisms with 

pathogen-protective effects naturally associate with seeds. In contrast, Alternaria spp., 

distinct from those detected on the healthy seeds within this study, can cause grain safety 

concerns in storage due to the production of mycotoxins by specific species (Greco et al. 

2012). These observations suggest that the P. agglomerans strain we identified in this 
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study has potential as a biocontrol agent, and if applied to seeds may act to protect them 

from storage-associated spoilage or colonization with pathogenic microorganisms. 

We have identified a remarkably conserved epiphytic microbiome on the seeds of 

geographically and ecologically diverse samples of two important crops. Reproducible 

differences in the abundances of constituents of this microbiota were used to identify 

patterns associated with each crop type. Furthermore, this work has shown that 

differences in OTU abundance within and between microbiomes can be valuable clues 

and indicators of biological interactions among microorganisms. Finally, we 

demonstrated a method for simultaneous profiling of the prokaryotes and eukaryotes 

within the epiphytic microbiota of crop seeds. These results provide a system for 

understanding the microorganisms associated with crop seeds, and highlight the need for 

a thorough understanding of these microbial communities and their importance to 

production and storage of healthy, high quality seeds. 
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CHAPTER 5 -  Conclusions and discussion 

Summary and limitations of these works 

cpn60 is the preferred barcode for bacteria 

The formal framework developed for DNA barcoding of eukaryotes can be used to 

evaluate gene targets for microbial profiling (Links et al. 2012), and based on this 

framework, both 16S rRNA and cpn60 meet the criteria to be effective barcodes for 

Bacteria. On average, the distance between cpn60 sequences of different species of 

bacteria is larger than for 16S rRNA, suggesting cpn60 is a more robust choice for 

numerical taxonomy, and thus is the preferred barcode. The results presented in this 

thesis, based on all complete bacterial genomes in the public domain, also demonstrated 

that cpn60 has an additional advantage over 16S rRNA. cpn60 has on average 1 copy per 

genome as opposed to 16S RNA having 3, which has direct relevance to the inference of 

organismal abundance from DNA sequencing. While outside the scope of this work, it 

would be interesting to see formal proposals for both 16S rRNA and cpn60 to the 

Barcode of Life project. The proposal of DNA barcodes for Bacteria would expand the 

Barcode of Life to a second domain and it would establish within microbiology a 

rigorous method for evaluating barcodes.  

It was also shown that the distance between closely related cpn60 sequences could be 

exploited through methods of sequence assembly to form OTUs. Using sequence 

assembly to form OTUs requires the optimization of assembly parameters demonstrated 

initially in Chapter 2 and to a larger extent in Chapter 3. The use of de novo assembly for 

OTU formation ensures that the DNA sequence for each OTU is the most representative 



120 

one supported by the data. Clustering of sequence data is currently the most common 

approach to OTU formation. If all sequences were full length and clustering was 

performed at 100% identity then OTU clustering and assembly would produce equivalent 

results. However, it is common that experimental data will not be full length and that 

there will be errors within the data. Thus clustering approaches will tend to be 

implemented at less than 100% identity and this will result in problems when choosing a 

representative sequence for the OTU. In contrast, sequence assembly methods produce a 

consensus sequence that is by its nature the longest and most representative sequence 

possible to derive from the data. When an assembly method is used for OTU formation it 

produces a reliable consensus sequence that is suitable as a biomarker for downstream 

studies (e.g. isolation of an unknown organism). As a whole, the analyses presented here 

serve to formally establish suitable DNA barcodes for Bacteria, propose a method for 

OTU formation through sequence assembly, and provide a mechanism through which 

OTU assembly can be evaluated and optimized.   

While every effort was made to have the most taxonomic breadth possible when 

assessing DNA barcodes for Bacteria, there are inherent limitations in this work. 

Working with all complete genomes in the public domain did enable large numbers of 

comparisons for inter and intra specific distance calculations. However, the analysis may 

be biased by factors responsible for the organisms being chosen for sequencing and 

deposition in the public domain in the first place. Most of the data within public 

databases is highly biased to a limited number of phyla, which is a result of studies being 

primarily focused on pathogens and microbes that relate to human health. Therefore it is 

important to recognize that the observations on these data may have some limitations 
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when applied to novel or poorly described taxa. As future efforts continue to expand the 

content of public databases these biases will diminish.  

A related but much more minor limitation with the use of resources such as GenBank is 

that it is inherently difficult to extract barcode regions when the region is not yet an 

accepted barcode. One of the side effects of the acceptance of a DNA Barcode is that 

sequence repositories will attempt to identify barcodes from complete genome records 

systematically, and annotate them accordingly. However when evaluating a potential 

barcode there is a somewhat self-referential problem in that they cannot be identified 

until they are defined. This limitation manifests itself in that there may be a proportion of 

the test data arising from mis-annotation of the whole genomes when deposited into the 

public domain. These mis-annotations could be cases where the annotation 

(cpn60/groEL/hsp60) has been incorrectly ascribed to a gene. Conversely there may be 

annotations that are missed entirely. Both of these mis-annotations will affect systematic 

studies by either introducing false barcodes into the experimental dataset or missing 

examples and will affect the results.  

Unsupervised OTU formation is possible with mPUMA  

mPUMA is an unsupervised pipeline for the assembly of OTU from microbial profiling 

data. Using a synthetic community it was shown that mPUMA can reliably assemble the 

OTU present and estimate their abundance in the absence of any information other than 

DNA sequencing data itself. This enables the discovery of novel, unknown OTU and the 

tracking of their abundance across experiments. Using the procedures established in 
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Chapter 2 it was possible to evaluate the effects of changing both the method of assembly 

and read tracking on the performance of mPUMA (Chapter 3).  

The use of mPUMA was tested extensively and optimized in terms of its performance 

when applied to profiling a synthetic community of cpn60 sequences. There have been 

tests performed to confirm that mPUMA can process data from studies using 16S rRNA 

or rpoB but each non-cpn60 barcode warrants a direct investigation into the optimal 

procedures within mPUMA. Given that both of the assembly methods implemented 

within mPUMA (gsAssembler and Trinity) support RNA transcript assemblies, there is 

an opportunity to use multiple DNA barcodes simultaneously (e.g. cpn60 and 16S rRNA, 

or cpn60 and the type-II archaeal chaperonin). Obviously, any such application to a 

natural microbial community should be preceded by performance optimization studies 

using mPUMA to determine suitable parameters. 

Microbial profiles derived through mPUMA can generate testable hypotheses 

The application of mPUMA to the epiphytic microbiota of plant seeds demonstrated that 

multiple domains of life could be profiled simultaneously (Eukaryotes and Bacteria). 

Tools such as 16S rRNA commonly used for Bacteria and the ITS region used in fungal 

studies could be used together but would need to be performed independently. Microbial 

profiles derived through the use of mPUMA were used to identify core microbiomes 

within a genus and also shared between genera of different hosts. The existence of a core 

microbiome common within a genus (both for Triticum and Brassica) is particularly 

important as it suggests that the microbes, which associate with seeds of these plants, are 

conserved, and thus predictable. This observation suggests that there is something unique 
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about the interactions between the host and its seed microbiome. The additional finding 

that there exists a microbiome shared across these genera is also important. Crops of 

these genera are commonly grown in rotation with one another within a common field. If 

there are microbes that can survive on the seeds of both crops, then there may be some 

form of cycling between microbes on seeds, the soil they are seeded into, and the seeds 

produced in subsequent generations or crops. This further suggests that the microbes 

present on seeds could affect subsequent crops in the rotation. These crop-to-crop 

interactions should therefore be investigated in terms of the ability of the epiphytic seed 

microbiome to function as a vector through which new pathogens or probiotics could be 

introduced to a field. 

By observing differential patterns in OTU abundance amongst the inter-genera core 

microbiome it was hypothesized that these OTU may interact. Following up on this 

hypothesis it was shown that these OTU are functionally relevant to one another with 

Pantoea-like bacterial isolates exhibiting fungistatic properties to Alternaria-like fungal 

isolates. This provides a concrete example of how an understanding of the taxonomic 

composition of a microbial community can guide functional studies.  

While the microbial profiling was by no means the end point, it was a crucial component 

used to identify possible interactions and guide culture conditions in order to isolate 

examples of the relevant OTU. For the Pantoea-like and Alternaria-like isolates there 

were discrete culture conditions or morphologies known for these organisms that assisted 

in their isolation. When one considers application to novel or unknown OTU, the use of 

methods such as mPUMA are important. For a novel OTU there would not necessarily be 

a single prescriptive culture condition to try. However, when OTU are formed through 
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assembly, as is the case for mPUMA, there is the creation of a consensus sequence. This 

consensus sequence is a discrete biomarker for a specific OTU. If one were to try and 

culture out a completely novel OTU the consensus sequence could be a crucial tool used 

for PCR or screening assays while determining optimal culture conditions to isolate that 

organism.  

The study of the epiphytic seed microbiome has inherent limitations given the sample 

size (6 Triticum and 5 Brassica samples). Additional follow up experiments could 

investigate large collections of seed from the Plant Gene Resources of Canada, which 

contain 11435 accessions of Triticum and 2096 accessions from Brassica (as of July 19th, 

2013). Larger studies will be essential to understanding the significance of both the intra-

genus core and the inter-genera shared microbiomes that are reported in this thesis.  

Discussion of future prospects 

Third generation DNA sequencing will not presently disrupt metagenomics  

The advent of 3rd generation sequencing brings to light methods which carry out single 

molecule sequencing (SMS) (Schadt et al. 2010). The key advantage of SMS is that it has 

no reliance on PCR to amplify the original DNA sample, thus overcoming one of the 

major technical challenges with current methods. PCR amplification from a complex 

template necessarily results in a distortion of the proportional abundances of sequences in 

the original sample. In its most extreme manifestation, this results in some taxa being 

completely absent from the sequence library despite their prevalence in the community 

(Hill et al. 2010). Given that organismal abundance is a critical parameter in microbial 

ecology, there is an obvious desire to use the most robust estimates possible. Third 



125 

generation sequencing results in longer read lengths (1-10kb) but has higher per read 

error (>5%) than second generation methods (1%)(Gilles et al. 2011). Additional 

sequencing approaches such as strobing or circular consensus provide intriguingly 

different data types from 3rd generation technologies .  

Strobing is a method where data capture is turned on and off according to some pattern 

while the polymerase is functioning. When the processivity of the polymerase is known, 

an estimate can be placed on the distance between each data acquisition cycle. In the 

simplest form, an on-off-on strobe pattern would result in reads that are paired ends. The 

ability of the PacBio system to change the strobing patterns actually means that any 

pattern of on and off could be combined and used to capture data. The flexibility of 

strobing patterns is interesting, but will required new bioinformatics methods to handle 

these datasets.  

Circular consensus is a sequencing approach where multiple reads across a region are 

generated sequentially. In the sample preparation for the PacBio systems, fragments of 

DNA are double stranded and adapted to form a barbell structure with a loop at either 

end. During circular consensus sequencing the polymerase will use each of the barbell 

loops to complete a cycle through the DNA template and its complementary strand. Data 

generated from circular consensus would thus be in the form of [Adapter 1, DNA 

template, Adapter 2, Reverse complement of DNA template, Adapter 1, DNA template, 

Adapter 2, Reverse complement of DNA template, …]. The bioinformatic challenges of 

processing circular consensus data are less daunting than for strobing since the data 

would be trimmed for the two barbell adapters and then aligned.  
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While it might be tempting to say that 3rd generation sequencing will usher in a 

revolution for metagenomics, I am not currently convinced.  

The longer read lengths (1-10kb) from 3rd generation approaches will likely make 

tractable the resolution of larger repeat elements. However the associated reduction in 

accuracy makes the interpretation of such data questionable. The ability to acquire 

strobed reads which could bridge large gaps is also interesting, but the success of this 

technique depends on high molecular weight DNA and I do not think it will be feasible to 

extract DNA from a metagenomic sample while preserving its integrity to a high enough 

level. Lastly, the throughput of 3rd generation technologies is not currently at the scale 

where it would be disruptive to the metagenomics field. Currently the chief example of 

3rd generation sequencing is the Pacific Biosciences RS. The RS sequences in a chamber 

called a zero-mode waveguide (ZMW). Each single molecule, real-time (SMRT) cell of 

the RS is comprised of 75k ZMWs and there are 8 SMRT cells packaged together. So if it 

were possible to generate 1 kb reads on a Pacific Biosciences RS the machine could yield 

(1 kb/ZMW × 75,000 ZMWs/cell)�×�8 SMRT cells = 600 Mbp of data. Assuming a 5% 

error rate (and there would be no way to tell which calls were inaccurate) that would 

result in a theoretical maximum yield of 570 Mbp of high quality data, (or the equivalent 

of a 1× coverage through a community comprised of 100 organisms each with a 5 Mb 

genome and existing in equimolar concentrations). Therefore in my opinion the 

throughput of the current technologies and their corresponding error profiles suggest third 

generation sequencing is not yet suitable for metagenomic studies. 
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A run-until sequencing paradigm may disrupt microbial profiling 

Oxford nanopore has introduced a run-until paradigm for bioinformatic analyses linked 

in real-time sequencing on their nanopore platforms. The key facet to run-until is that the 

user of the DNA sequencer can develop a rule to determine when enough sequence data 

has been acquired. The simplest example is one of genome re-sequencing for SNP 

detection. A bioinformatics workflow can be used in real time to assess each sequence 

data in terms of a critical read depth at a specific location within a genome. When enough 

data has been acquired to robustly call the sample allele at that SNP, the bioinformatics 

procedure can signal that sequencing should cease. While these sequencers are not 

generally available at the time of writing, the inherent concept of a run-until paradigm is 

particularly interesting for microbial profiling. As described by Gihring et al., there is a 

potential for ecological parameters to be affected by un-equal sampling (Gihring et al. 

2012). The use of a run-until bioinformatics pipeline could enable the use of a constraint 

based on a target number of sequencing reads or a rarefaction of the distinct OTUs found 

in the sequencing run in order to produce equalized sampling efforts directly. 

Comparisons to presumed Gold Standards are problematic 

There is a common suggestion that novel bioinformatics methods for metagenomics 

should be subjected to comparison with some Gold Standard. Conceptually this is arising 

from the need to establish new methods in the context of prior art. Where this becomes 

problematic is when one considers the growing belief in the microbial bioinformatics 

community that methods have reached a state where there is in fact a Gold Standard, 

which is to target the 16S rRNA gene and form OTUs through clustering.  
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Commonly there is a perception that when a large or highly impactful study is published 

that it establishes a standard. Publication is by no means the establishment of a standard. 

If there were ever a field of science that should recognize that, it would be microbiology 

with its rich history in the area of microbial taxonomy. Standards take the engagement of 

knowledgeable and interested parties (e.g. Barcode of Life project), and usually are the 

result of discussion and agreement. Certainly the primary scientific literature should form 

the basis for a standard but the establishment of a standard is a much larger collective 

aim. There have been a number of large projects initiated (e.g. Human Microbiome 

Project) which have needed to adopt standards internally, but there has not been a 

discipline wide acceptance of a single method or procedure. 

Previously published studies may serve to provide insight into microbial communities but 

it is important to recognize that the choices made in each study from experimental design 

through data generation and interpretation, provide a lens through which the community 

is observed. If one were to exchange the use of cpn60 for 16S rRNA and analyze a 

previously studied community it is important to recognize that neither the 16S rRNA nor 

the cpn60-based study would generate the correct observation. Each study will have 

some limitations and so it is important to recognize that comparisons cannot be phrased 

in terms of one study being correct and the second needing to duplicate the findings of 

the first.  

Only a fraction of the world’s bacterial diversity has been characterized (Staley and 

Konopka 1985). Of those isolates that have been characterized there is a clear bias to a 

few phyla (Hugenholtz 2002). If the volume of bacterial life on Earth is on the same scale 

as plant life (Whitman et al. 1998) and only an exceptionally small fraction of the 
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diversity has been characterized then there is a clear need for novel approaches to explore 

microbial diversity. Continued efforts to apply a variety of approaches, challenge 

establish methods and evaluate new ones such as those presented in this thesis will be 

crucial to enhance our knowledge of microbial diversity on Earth. 
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