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Abstract

Weighted group algebras have been studied extensively in Abstract Harmonic Analysis.Complete

characterizations have been found for some important properties of weighted group algebras,

namely, amenability and Arens regularity. Also studies on some other features of these algebras,

say weak amenability and isomorphism to operator algebras, have attracted attention.

Hypergroups are generalized versions of locally compact groups. When a discrete group has

all its conjugacy classes finite, the set of all conjugacy classes forms a discrete commutative

hypergroup. Also the set of equivalence classes of irreducible unitary representations of a com-

pact group forms a discrete commutative hypergroup. Other examples of discrete commutative

hypergroups come from families of orthogonal polynomials.

The center of the group algebra of a discrete finite conjugacy (FC) group can be identified

with a hypergroup algebra. For a specific class of discrete FC groups, the restricted direct

products of finite groups (RDPF), we study some properties of the center of the group algebra

including amenability, maximal ideal space, and existence of a bounded approximate identity of

maximal ideals.

One of the generalizations of weighted group algebras which may be considered is weighted

hypergroup algebras. Defining weighted hypergroups, analogous to weighted groups, we study a

variety of examples, features and applications of weighted hypergroup algebras. We investigate

some properties of these algebras including: dual Banach algebra structure, Arens regularity,

and isomorphism with operator algebras.

We define and study Følner type conditions for hypergroups. We study the relation of the

Følner type conditions with other amenability properties of hypergroups. We also demonstrate

some results obtained from the Leptin condition for Fourier algebras of certain hypergroups.

Highlighting these tools, we specially study the Leptin condition on duals of compact groups for

some specific compact groups. An application is given to Segal algebras on compact groups.
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The understanding of Mathematics is necessary for a sound grasp of
Ethics.

Socrates (469 BC–399 BC)

In life it is never a mathematical proposition which we need, but we use

mathematical propositions only in order to infer from propositions which

do not belong to mathematics to others which equally do not belong to

mathematics.

(In philosophy the question “Why do we really use that word, that propo-
sition?" constantly leads to valuable results.)

Ludwig Wittgenstein (1889 AD–1951 AD)

Tractatus Logico-Philosophicus 6.211
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Introduction

Roughly speaking, a hypergroup is a topological space equipped with an extra structure,

which leads to the construction of a Banach algebra on the Banach space of all bounded complex

Radon measures on the hypergroup. This binary operation takes the Dirac measures of each

two elements of the hypergroup to a compactly supported probability measure and therefore

has probabilistic taste, since one may roughly express that the outcome of the action of two

elements of a hypergroup is chosen ‘randomly’.

A consistent definition of hypergroups was presented in different manuscripts. Dunkl in

[22, 21], Spector in [71], and Jewett in [38] defined hypergroups in different ways. Although the

ideas are essentially the same, these definitions are not exactly equivalent. The definition which

has been widely studied afterwards is Jewett’s in [38] wherein he calls hypergroups “convos”.

Apparently, the term ‘hypergroup’ first was used for different mathematical objects back in the

1930s, see [56]. Here, we follow Jewett’s definition of hypergroups.

Not only were hypergroups defined as a generalization of locally compact groups, but also one

may show that some objects related to locally compact groups may be studied as hypergroups.

For instance, if G is a FC group (i.e. every conjugacy class is finite), then the set of all conjugacy

classes of G, denoted by Conj(G), forms a commutative discrete hypergroup. Also, for a compact

group G, the set of equivalence classes of irreducible unitary representations of G, denoted by Ĝ

and called the dual of the group G, is a commutative discrete hypergroup. On one hand, these

examples together with hypergroups which are defined on orthogonal polynomials, connect the

studies done on hypergroups to different topics in abstract harmonic analysis. On the other

hand, the similarities of hypergroups with groups suggest that one may be able to generalize the

studies on locally compact groups to hypergroups. For example, different amenability properties

of hypergroups and hypergroup algebras have been studied extensively, [70, 62, 51, 46, 37].

After a brief review of preliminaries in Chapter 1, in Chapter 2, we want to know more

about center of group algebras for FC groups. It is known that the center of the group algebra,

Z`1(G), for an FC group G, is amenable if G′, the derived subgroup of G, is finite (see [5]). In

Section 2.2, for a specific class of FC groups, called restricted direct products of finite groups, we
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show that the other side is held. Let {Gi}i∈I be a family of finite groups. Then

G ∶= {(xi)i∈I ∶ xi = eGi for all except finitely many i ∈ I }

is called the restricted direct product of {Gi}i∈I. In this section, we study various properties of

Z`1(G), such as amenability and its Gelfand spectrum. We show that Z`1(G) is amenable if and

only if Gi is abelian for all but finitely many i which proves the aforementioned conjecture for

RDPF groups. Moreover, we characterize maximal ideals of Z`1(G) with bounded approximate

identities. This section is based on a joint work with Professor Yemon Choi and Professor

Ebrahim Samei.

In Chapter 3, we study three examples of hypergroups. First in Section 3.1, we introduce

Conj(G) the set of all conjugacy classes of an FC group G as a hypergroup and characterize

its hypergroup algebra. Features of duals of compact groups, as hypergroups, have strong

relations to the properties of their corresponding compact groups. In Sections 3.2, we check

the hypergroup definition for dual of compact groups and perform some observations on them.

Eventually, we close this chapter by a polynomial hypergroup structure on N0 in Section 3.3.

This class of hypergroups has been of interest for many studies on discrete hypergroups namely

[27, 37, 47, 46, 50, 51].

One of the topics related to hypergroups which has been initiated based on a similar study

on locally compact groups is “weighted hypergroups" and “weighted hypergroup algebras". One

may note that, for the specific weight ω ≡ 1, the weighted case is reduced back to regular hyper-

groups and their algebras. The first studies over weighted hypergroup algebras may be tracked

back to [7, 32, 33]. Chapter 4 is devoted to weights on discrete hypergroups, their corresponding

algebras, and their examples. In Section 4.1, we study weighted hypergroup algebras, `1(H,ω),

for commutative discrete hypergroups H and hypergroups weights ω. Subsequently, in Sec-

tion 4.2, we introduce some weights which are related to the growing rate of finitely generated

hypergroups.

To emphasize the importance of weighted hypergroup algebras in abstract harmonic analysis,

we continue by studying some well-known Banach algebras on groups which are isomorphic to

some weighted hypergroup algebras. First we study weights and their properties on Conj(G), as

a hypergroup, for FC groups G. As examples of these weights, if (G,σ) is a weighted discrete FC

group for some group weight σ, then Z`1(G,σ), the center of σ-weighted group algebra, is shown

in Section 4.3 to be isometrically algebraic isomorphic to `1(Conj(G), ωσ) for some hypergroup

weight ωσ which is generated using σ. We will introduce and study more examples of hypergroup
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weights on Conj(G) in Sections 4.4 and 4.5. Finally, we close the chapter by Section 4.6 in which

we introduce and study some hypergroup weights on dual of compact groups.

The Fourier algebra of a general locally compact group was first studied by Eymard, [26].

There are several papers which defined Fourier space on hypergroups, as a Banach space, [78,

4, 60, 45]. But unfortunately, none of them could show that the Fourier space defined in the

aforementioned references actually forms an algebra, unlike the group case. So although the

definitions are mainly similar, strategies to study the hypergroups for which the Fourier space

is an algebra are different. In [60], Muruganandam defined the Fourier space of a hypergroup

H, as a Banach space denoted by A(H), analogous to the Fourier algebra of groups. Applying

some tools from character theory of hypergroups, he studied the pointwise multiplication of

elements of A(H) and the behaviour of the norm with respect to this multiplication. He could

develop a machinery to study hypergroups whose Fourier space is a Banach algebra. He called

a hypergroup H a regular Fourier hypergroup if A(H) equipped with pointwise multiplication is

a Banach algebra. Muruganandam also recognized a variety of regular Fourier hypergroups in

[60, 61]. He proved that some polynomial hypergroups, double coset hypergroups, and the space

of all orbits in a locally compact group G for some relatively compact subgroup of automorphisms

of G including inner ones are regular Fourier hypergroups. Chapter 5 studies Fourier algebra

of hypergroups. After studying some general properties of Fourier algebra of hypergroups in

Section 5.1, in Section 5.2, we add the dual of compact groups to the list of regular Fourier

hypergroups. Furthermore, we show that if G is a compact group, the Fourier algebra of Ĝ,

A(Ĝ), is isometrically isomorphic to the center of the group algebra of G, ZL1(G). Furthermore,

we prove that ZA(G) ∶= A(G) ∩L1(G), as a subalgebra of A(G), is isometrically isomorphic to

the Banach algebra `1(Ĝ).

In [29], it was proved that the Fourier algebra of a compact group G is weakly amenable

if and only if the connected component of the identity, denoted by Ge, is abelian. We study

the question of weak amenability for ZA(G) of a compact group G in Section 5.3. Here, by

constructing one non-zero bounded derivation on ZA(SU(2)) and similarly ZA(SO(3)), we

prove the existence of a non-zero bounded derivation on ZA(G) for every compact group G

when Ge is not abelian; ZA(G) for this class of compact groups is not weakly amenable.

Chapter 6, is an attempt to re-create some amenability features of locally compact groups for

hypergroups and their relations with the Fourier algebra on regular Fourier hypergroups. We de-

velop some definitions and observe some of their examples and applications in harmonic analysis.
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For a locally compact group G, the Leptin condition was defined to characterize the existence of

a bounded approximate identity of the Fourier algebra, A(G); meanwhile, it is equivalent to the

amenability of the group G. In an attempt to develop a similar machinery for hypergroups, we

introduce a modified version of the Leptin condition for hypergroups called D-Leptin condition

for some D ≥ 1, in Subsection 6.1.1. This definition for D = 1 corresponds previous definitions

of Leptin condition for locally compact groups in [54] as well as polynomial hypergroups in [37].

In Subsection 6.1.2, we show that the D-Leptin condition implies the existence of a bounded

approximate identity of the Fourier algebra for regular Fourier hypergroups. Furthermore, the

D-Leptin condition results some other amenability properties of hypergroups introduced and

studied in [70], see Subsection 6.1.3. Furthermore, we study the D-Leptin condition of some

Lie groups. As a result, the dual of SU(2), the special unitary group of 2 × 2 matrices, satisfies

the 1-Leptin condition. Further, based on some studies on representation theory of SU(3), the

special unitary group of 3 × 3 matrices, we show that the 38-Leptin condition is satisfied by the

hypergroup of the dual of SU(3). Also for every connected simply connected compact real Lie

group G, the hypergroup Ĝ satisfies the D-Leptin condition for some D ≥ 1, as it is shown in

Section 6.2.

Approximate amenability of a Banach algebra was defined in [31]. A Banach algebra A is

said to be approximately amenable if every bounded derivation from A into the dual of any A-

bimodule can be approximated by a net of inner derivations. Reiter established classical Segal

algebras in his monograph [64]. A Segal algebra S1(G) on a locally compact group G is a dense

left ideal of L1(G) that satisfies some extra conditions. For example, the elements of L1(G)

act on the Segal algebra as bounded multipliers. Approximate amenability of Segal algebras

has been studied in several papers. Dales and Loy, in [18], studied approximate amenability

of Segal algebras on the torus T and the group of real numbers R. They showed that certain

Segal algebras on T and R are not approximately amenable. It was further conjectured that

no proper Segal algebra on T is approximately amenable. Choi and Ghahramani, in [14], have

shown the stronger fact that no proper Segal algebra on Td or Rd is approximately amenable.

In Subsection 6.2.3, applying the D-Leptin condition of hypergroups, we study the approximate

amenability of Segal algebras of compact groups. We prove that for every compact group G

whose dual satisfies the D-Leptin condition for some D ≥ 1, every proper Segal algebra is not

approximately amenable. A version of this subsection has been published as a part of [2].

In Chapter 7, we study some properties of weighted hypergroup algebras, including Arens
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regularity and isomorphism with operator algebras. We also study these features for some of

examples of weighted hypergroups introduced in the previous chapters.

Arens regularity of weighted group algebras has been studied by Craw and Young in [16].

They showed that a locally compact groupG has a weight ω such that L1(G,ω) is Arens regular if

and only if G is discrete and countable. They also characterized the Arens regularity of weighted

group algebras with respect to one feature of the weight, called 0-clusterness as described in [17].

In Section 7.1, the Arens regularity of weighted hypergroup algebras for discrete hypergroups

is studied and it is shown that strong 0-clusterness of the corresponding hypergroup weight

results in the Arens regularity of the weighted hypergroup algebra (strong 0-clusterness implies

0-clusterness, [17]).

A Banach algebra A is called an operator algebra if there is a Hilbert space H such that A

is a closed subalgebra of B(H). For a Banach algebra, one may ask about the existence of an

algebra isomorphism from the algebra onto an operator algebra. Isomorphism of weighted group

algebras to operator algebras has been studied before, see [52, 76]. In Section 7.2, studying the

hypergroup case, we demonstrate that for hypergroup weights which are weakly additive and

whose inverse is 2-summable over the hypergroup, an isomorphism to an operator algebra exists.
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Chapter 1

Preliminaries

1.1 Hypergroups

To define hypergroups, we need to present the definition of the Michael topology as follows.

Definition 1.1.1. [8, 1.1.1]

Let C(X) denote the space of nonvoid compact subsets of some locally compact space X. For

A,B ⊂ X, set CA(B) ∶= {C ∈ C(X) ∶ C ∩A ≠ ∅ and C ⊂ B}. Then C(X) is given the topology

which is generated by the subbasis of all CU(V ) for all U and V open subsets of X. Then

C(X) is a locally compact Hausdorff space. Moreover, if Ω is a compact subset of C(X) then

B = ⋃{A ∶ A ∈ Ω} is a compact subset of X.

For a locally compact space X, we use M(X) to denote the Banach space of all bounded

complex Radon measures on X. Recall that M(X) can be identified as the dual of C0(X),

the C∗-algebra of all continuous functions vanishing at infinity. For each x ∈ X, δx denotes

the Dirac measure at x i.e. δx(f) = f(x) for each f ∈ C0(X). We denote the C∗-algebra of

bounded continuous complex valued functions on X by C(X). Also, Cc(X) denotes the space

of all compactly supported elements of C(X) which is dense in C0(X).

Definition 1.1.2. [8, 1.1.2]

We call a locally compact space H a hypergroup if the following conditions hold.

(H1) There exists an associative binary operation ∗ called convolution on M(H) under which

M(H) is an algebra. Moreover, for every x, y in H, δx ∗ δy is a positive measure with

compact support and ∥δx ∗ δy∥M(H) = 1.

(H2) The mapping (x, y)↦ δx ∗ δy is a continuous map from H ×H into M(H) equipped with

the weak∗ topology that is σ(M(H),Cc(H)) where each µ ∈ M(H) is considered as a

functional on Cc(H) that is µ(f) ∶= ∫H fdµ for any f ∈ Cc(H).
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(H3) The mapping (x, y) → supp(δx ∗ δy) is a continuous mapping from H × H into C(H)

equipped with the Michael topology.

(H4) There exists an element (necessarily unique) e in H such that

δe ∗ δx = δx ∗ δe = δx

for all x in H.

(H5) There exists a (necessarily unique) homeomorphism x→ x̌ of H called involution satisfying

the following:

(i) (x̌)̌ = x for all x ∈H.

(ii) If f̌ is defined by f̌(t) ∶= f(ť) for all f ∈ Cc(H) and t ∈H, one may define µ̌(f) ∶= µ(f̌)

for all µ ∈M(H). Then

(δx ∗ δy )̌ = δy̌ ∗ δx̌ for all x, y ∈H.

(H6) e belongs to supp(δx ∗ δy) if and only if y = x̌.

Remark 1.1.3. Since here we mainly work with discrete hypergroups, we may notice that for

discrete hypergroup, two continuity conditions (H2) and (H3) are automatically satisfied.

Applying the convolution of M(H), one may define an action between subsets of H. We

denote it by ∗ again where the notation A ∗B stands for

⋃{supp(δx ∗ δy) ∶ for all x ∈ A and y ∈ B} (1.1.1)

for A,B subsets of the hypergroup H. With abuse of notation, we use x∗A and x∗ y to denote

{x} ∗A and {x} ∗ {y}, respectively.

We call a hypergroup H commutative if M(H) forms a commutative algebra. To facilitate

the notation, for each pair x, y ∈ H and f ∈ Cc(H), the value of the measure of δx ∗ δy on f is

denoted by f(δx ∗ δy). As mentioned in [8, 1.1.2], for each pair µ, ν ∈M(H) and f ∈ Cc(H),

µ ∗ ν(f) = ∫
H
∫
H
f(δx ∗ δy)dµ(x)dν(y).

We can define a left translation on C(H) by

Lxf ∶H → C, Lxf(y) = f(δx ∗ δy)

7



for each f in C(H) and x, y ∈ H. Note that Lxf ∈ Cc(H) for f ∈ Cc(H). Similar to the group

case a non-zero, positive, left invariant linear functional h (possibly unbounded) on Cc(H) is

called a Haar measure i.e. h(Lxf) = h(f) for all f ∈ Cc(H) and x ∈ H. Note that h is a Radon

measure which satisfies the subinvariant translation on measurable sets i.e. h(K) ≤ h(x ∗K)

for each compact set K ⊆ H and x ∈ H. The Haar measure is unique up to multiplication by a

positive constant, [8].

Unlike the theory of locally compact groups, the existence of a Haar measure on hypergroups

is not proven for general hypergroups1. But for specific cases of hypergroups including commu-

tative hypergroups, discrete hypergroups, and compact hypergroups, always a Haar measure

exists, [8, Section 1.3]. If there exists a Haar measure on a hypergroup H, it is unique up to a

constant multiplier.

Theorem 1.1.4. [8, Theorem 1.3.26]

Let H be a discrete hypergroup. Then there exists a Haar measure h ∶H → (0,∞). If we assume

that h(e) = 1, h(x) = (δx̌ ∗ δx(e))
−1 for all x ∈H.

Note that unlike groups, the Haar measure on discrete hypergroups is not necessarily a fixed

multiplier of the counting measure. As an instance, one may look at the Haar measure on ŜU(2)

(see Example 3.2.2).

Since most of the hypergroups that we work with are discrete or commutative or both, from

now on, we assume that a hypergroup H possesses a Haar measure. In this case, for each

1 ≤ p <∞, we define Lp(H,h) (sometimes denoted by Lp(H) if there is no risk of confusion) to

be the Banach space of p-integrable functions on H with respect to the Haar measure h; hence,

∥f∥p ∶= (∫
H

∣f(x)∣pdh(x))

1
p

<∞.

Furthermore, for each f, g ∈ Cc(H) and y ∈H, let us define

f ∗h g(y) ∶= ∫
H
f(x)g(δx̌ ∗ δy)dh(x) f̃(x) ∶= f(x̌).

One may extend ∗h and ∼ to L1(H,h). L1(H,h) equipped with the convolution ∗h forms a

Banach algebra, [8, Section 1.4]. To facilitate writing, we may use dx for integration with

respect to the Haar measure i.e. dh(x).

1Revising very last drafts of the thesis, Professor Yemon Choi directed me to the recent manuscript [11]. In
that, it has been claimed that the existence of a left invariant measure on an arbitrary hypergroup is proven.
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Let H be a discrete hypergroup. As we mentioned before, `1(H) = M(H) is a Banach

algebra. One may easily show that in discrete case, for each pair f, g ∈ `1(H), we have

∥f∥1 ∶= ∑
x∈H

∣f(x)∣ , f ∗ g(x) ∶= ∑
t∈H

∑
s∈H

δt ∗ δs(x)f(t)g(s) (x ∈H). (1.1.2)

On the other hand, for a discrete hypergroup H equipped with the Haar measure h, one gets

∥f∥L1(H,h) ∶= ∑
t∈H

∣f(t)∣h(t) and f ∗h g(x) ∶= ∑
t∈H

f(t)Ltg(x)h(t).

Proposition 1.1.5. [48, Theorem 1.8]

The map f → fh, L1(H,h) → `1(H) is an isometric algebra isomorphism from the Banach

algebra L1(H,h) onto the Banach algebra `1(H).

Lemma 1.1.6. Let H be a discrete hypergroup equipped with a Haar measure h. For each pair

x, y ∈H,

δx ∗h δy(z) = δx ∗ δy(z)
h(x)h(y)

h(z)
(z ∈H).

Proof. Let Θ be the inverse of the isomorphism defined in Proposition 1.1.5 i.e. Θ(f)(x) =

h(x)−1f(x) and x, y ∈H be arbitrary. For each z ∈H, we have

1

h(z)
δx ∗ δy(z) = Θ(δx ∗ δy)(z) = Θ(δx) ∗h Θ(δy)(z) =

1

h(x)h(y)
δx ∗h δy(z).

The following proposition is a discrete case of [8, Proposition 1.2.16].

Proposition 1.1.7. Let H be a discrete hypergroup. Then for every φ ∈ c0(H) and f ∈ `1(H),

the function

x↦ ∑
t∈H

f(t)φ(δt̃ ∗ δx)

belongs to c0(H).

Proof. Let ε > 0 be fixed. Therefore there is some K ⊂ H finite such that for every x ∈ H ∖K,

∣φ(x)∣ < ε∥f∥−1
1 . Also there is some F ⊆H finite such that

∑
x∈H∖F

∣f(x)∣ < ε∥φ∥−1
∞ .

Based on the definition of convolution between sets and (H1) in Definition 1.1.2, it is obvious

that C ∶= F ∗K is a finite subset of H.
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Let x ∈ H ∖C, t ∈ F , and s ∈ K. If δt̃ ∗ δx(s) ≠ 0, s ∈ t̃ ∗ x. Therefore, by (H6), e ∈ s̃ ∗ t̃ ∗ x.

Again (H6) implies that x̃ ∈ s̃∗ t̃ or equivalently x ∈ t∗s ⊆ F ∗K which is a contradiction. Hence,

for x ∈H ∖C, t ∈ F , and s ∈K, δt̃ ∗ δx(s) = 0. Consequently,

∑
t∈F

∣f(t)∣ ∑
s∈K

∣φ(s)∣δt̃ ∗ δx(s) = 0.

Therefore for x ∈H ∖C, one gets

∣∑
t∈H

f(t)φ(δt̃ ∗ δx)∣ ≤ ∣∑
t∈F

f(t)φ(δt̃ ∗ δx)∣ + ∣ ∑
t∈H∖F

f(t)φ(δt̃ ∗ δx)∣

≤ ∑
t∈F

∣f(t)∣∣φ(δt̃ ∗ δx)∣ + ∑
t∈H∖F

∣f(t)∣∥φ∥∞

≤ ε +∑
t∈F

∣f(t)∣ ∑
s∈H

∣φ(s)∣δt̃ ∗ δx(s)

= ε +∑
t∈F

∣f(t)∣ ∑
s∈H∖K

∣φ(s)∣δt̃ ∗ δx(s) +∑
t∈F

∣f(t)∣ ∑
s∈K

∣φ(s)∣δt̃ ∗ δx(s)

≤ ε + sup
s∈H∖K

∣φ(s)∣∥f∥1 +∑
t∈F

∣f(t)∣ ∑
s∈K

∣φ(s)∣δt̃ ∗ δx(s) = 2ε.

And this finishes the proof.

For two discrete hypergroups H1 and H2, H ∶=H1 ×H2 forms a discrete hypergroup where

δ(x1,x2) ∗H δ(y1,y2)(s, t) ∶= δx1 ∗H1 δy1(s) δx2 ∗H2 δy2(t)

for all x1, y1, s ∈H1 and x2, y2, t ∈H2. As an extension of the previous product of hypergroups, let

{Hi}i∈I be a family of discrete hypergroups, then H ∶=⊕i∈IHi where for each x ∈H, x = (xi)i∈I

where xi is the identity of the hypergroup Hi, eHi , for all i ∈ I except finitely many. H is called

restricted direct product of (Hi)i∈I.

A hypergroupH is said to be amenable if there exists a left invariant positive linear functional

of norm 1 on C(H). Amenability of hypergroups has been studied widely in [70]. Skantharajah,

in [70], showed that similar to amenable groups, all compact or commutative hypergroups are

amenable. But unlike group case, the amenability of hypergroups does not necessarily imply the

amenability of the hypergroup algebra as an algebra (defined in the following). The converse

is always true i.e. the amenability of a hypergroup algebra (as a Banach algebra) implies the

amenability of the corresponding hypergroup, [70, Proposition 4.9].

Let H be a commutative hypergroup equipped with a Haar measure h. Define

Ĥ ∶= {α ∈ Cb(H) ∶ α(δx ∗ δy) = α(x)α(y), α(x̌) = α(x), and α ≠ 0}. (1.1.3)

Let us give Ĥ the topology of uniform convergence on compact subsets of H. Every α ∈ Ĥ is

called a character of H and the topological space Ĥ is called the dual of the hypergroup H.
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For each µ ∈M(H), one may define the Fourier-Stieltjes transform µ̂ (or F(µ)) on Ĥ by

µ̂(α) ∶= ∫
H
α(x)dµ(x) (α ∈ Ĥ).

For f ∈ L1(H) this gives the Fourier transform

f̂(α) = ∫
H
α(x)f(x)dx,

which is also denoted by F(f), see [8, Definition 2.2.3]. In the following we just summarize some

of the main properties of Ĥ from [8, Chapter 2].

Theorem 1.1.8. [8, Theorem 2.2.4]

Let H be a commutative hypergroup.

(1) Since the constant function 1 belongs to Ĥ, it is non empty.

(2) Ĥ is a locally compact topological space.

(3) The Fourier-Stieltjes transform is a norm-decreasing linear mapping from M(H) into

Cb(Ĥ).

(4) The Fourier transform is a norm-decreasing linear mapping from L1(H) into C0(Ĥ).

Furthermore, F(L1(H)) is a dense subalgebra of (C0(Ĥ), ∥ ⋅ ∥∞).

Theorem 1.1.9. [8, Theorem 2.2.13]

Let H be a commutative hypergroup. Then there exists a non-negative measure π on Ĥ, called

Plancherel measure of Ĥ such that

∫
H

∣f(x)∣2dx = ∫
Ĥ

∣f̂(α)∣2dπ(α)

for all f ∈ L1(H) ∩L2(H).

Note that for an arbitrary hypergroup H (unlike group case) the support of the Plancherel

measure, supp(π), may not be equal to Ĥ.

1.2 Group algebra and its center

Let G be a locally compact group which is a hypergroup that possesses a Haar measure λ such

that λ(xE) = λ(E) for each measurable set E ⊆ G. From now on, we use dx to denote dλ(x) in

our integrations over a group G.
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For a group G, the derived subgroup of G (also called the commutator subgroup of G) is the

closed normal subgroup of G generated by the set of all commutators of elements in G. We

denote the derived subgroup of G by G′.

We denote the hypergroup algebra of G by L1(G) and call it the group algebra of G. Note

that L1(G) is commutative if and only if G is a commutative group.

Definition 1.2.1. Let G be a locally compact group. The center of the group algebra is the

subalgebra of L1(G) consisting of all elements which commute with all elements of the group

algebra and is denoted by ZL1(G).

Theorem 1.2.2. Let G be a locally compact group. ZL1(G) is the set of all elements of L1(G)

which are almost everywhere constant on conjugacy classes of the group G i.e. f(yxy−1) = f(x)

for almost all x, y ∈ G.

For a proof, one may look at [57]. Liukkonen and Mosak in their paper, [57], studied some of

the properties of ZL1(G). Namely they showed that ZL1(G) is a regular, Tauberian, symmetric

Banach ∗-algebra and contains a bounded approximate identity. In [5], Azimifard, Samei, and

Spronk studied some amenability properties of the center of group algebras for compact and

finite groups.

1.3 Banach algebras

1.3.1 Characters of commutative Banach algebras

Let A be a commutative Banach algebra. We denote by σ(A) the (Gelfand) spectrum of A

which is the set of all non-zero multiplicative linear functionals on A; that is also called the

maximal ideal space or character space of A. For each ψ ∈ σ(A), ψ is called a character on the

algebra A.

1.3.2 Injective and projective tensor products

We use [69] as our reference of this subsection. Let X and Y be two linear spaces. There

exists a linear space X ⊗ Y , called the tensor product of X and Y and a canonical bilinear map

ϕ ∶ X × Y → X ⊗ Y with the following universal property. For each linear space E and an

arbitrary bilinear map B ∶ X × Y → E there exists one and only one linear map B̃ such that
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B = B̃ ○ ϕ. A typical element u in X ⊗ Y can be represented in the form of

u =
n

∑
i=1

xi ⊗ yi (1.3.1)

for xi ∈X and yi ∈ Y and xi⊗ yi = ϕ(xi, yi). Note that this representation for each element may

not be unique. If X and Y are Banach spaces, we may apply their norms to norm X ⊗ Y and

even complete it to a Banach space. In this case, a norm ∥ ⋅ ∥ on X ⊗ Y is called cross norm if

∥x⊗ y∥ = ∥x∥X∥y∥Y for all x ∈X and y ∈ Y . For each u ∈X ⊗ Y , in the form of (1.3.1), let

∥u∥γ ∶= inf {
n

∑
i=1

∥xi∥X∥yi∥Y } (1.3.2)

where the infimum is taken over all representations of u. This norm is called projective tensor

norm and is the largest possible cross norm defined on X ⊗ Y . The completion of X ⊗ Y with

respect to ∥ ⋅ ∥γ is called projective tensor product of X and Y and denoted by X ⊗γ Y . One may

show that the dual of X ⊗γ Y , as a Banach space, is isometrically isomorphic to L(X,Y ∗), the

space of all bounded operators from X into Y ∗.

If A and B are two Banach algebras, there is a product on A⊗B which makes it an algebra

such that (a1 ⊗ b1)(a2 ⊗ b2) = a1a2 ⊗ b1b2. The projective norm on A ⊗ B is an algebra norm;

hence, A⊗γ B is a Banach algebra.

Let (S1, µ1) and (S2, µ2) be two measured spaces, then L1(S1, µ1)⊗γL
1(S2, µ2), as a Banach

space, is isometrically isomorphic to L1(S1 × S2, µ1 × µ2). Let H1 and H2 be two hypergroups.

Then there exists an isometric isomorphism θ from the Banach algebra L1(H1)⊗γ L
1(H2) onto

L1(H1 ×H2) such that

θ(f ⊗ g)(x, y) = f(x)g(y)

for all f ∈ L1(H1), g ∈ L1(H2), and almost all x ∈ H1 and y ∈ H2. A proof would be exactly

similar to the group case, (see [43, Proposition 1.5.5]).

Moreover, for Banach spaces X and Y and u ∈X ⊗ Y ,

∥u∥ε ∶= sup{
n

∑
i=1

ψ(xi)φ(yi) ∶ ψ ∈X∗ and φ ∈ Y ∗ such that ∥ψ∥ ≤ 1 and ∥φ∥ ≤ 1} ,

forms another norm called injective tensor norm which is the least cross norm one may define

on X ⊗Y . The completion of X ⊗Y with respect to the injective norm is called injective tensor

product of X and Y and denoted by X ⊗ε Y .

Remark 1.3.1. For each two Banach spaces X and Y , the projective tensor norm or injective

tensor norm are cross norms.
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1.3.3 Amenability of Banach algebras

For amenability of Banach algebras, we use [68] as the main reference. The proof of the following

results can be found there.

If A is a Banach algebra, a Banach space X is called a Banach A-bimodule if there are

bounded maps, a homomorphism A → B(X) ∶ a ↦ (x ↦ a ⋅ x) and an anti-homomorphism

A → B(X) ∶ a ↦ (x ↦ x ⋅ a), with commuting ranges. A Banach A-bimodule X is called

symmetric if the left and right module actions coincide i.e. a ⋅ x = x ⋅ a for all x ∈ X and a ∈ A.

The adjoints of these actions make the dual space X∗ into a dual Banach A-bimodule.

A linear map D ∶ A → X is called a derivation if D(ab) = a ⋅D(b) +D(a) ⋅ b for a, b in A.

Inner derivations are those of the form D(a) = a ⋅x−x ⋅ a for some x in X. A Banach algebra A

is amenable if, for every dual Banach A-bimodule X∗, every bounded derivation D ∶ A → X∗ is

inner.

Note that, canonical actions of A into its dual make A∗ into a dual Banach A-bimodule. A

Banach algebra A is weakly amenable if every bounded derivation D ∶ A → A∗ is inner. If A

is commutative, the weak amenability is equivalent to this fact that every bounded derivation

D ∶ A→X for a symmetric Banach A-bimodule X is constantly 0. Let φ ∈ A∗ be a character i.e.

φ is non-zero and φ(ab) = φ(a)φ(b) for all a, b ∈ A. A non-zero linear functional dφ ∈ A∗ such

that dφ(ab) = φ(a)dφ(b) + dφ(a)φ(b) is called a point derivation. If a non-zero point derivation

φ exists, the derivation D ∶ A → A∗ which is defined as D(a) ∶= dφ(a)φ implies that A cannot

be weakly amenable. If a Banach algebra A is amenable, it is clearly weakly amenable as well.

Let A be a Banach algebra. Then the Banach algebra A⊗γ A forms a Banach A-bimodule

where

a ⋅ (b⊗ c) ∶= (ab)⊗ c and (b⊗ c) ⋅ a = b⊗ (ca)

for all a, b, c ∈ A. Moreover, the mapping m ∶ A ×A → A, where m(a, b) = ab, has a continuous

extension from A⊗γ A into A which we denote by m again.

For a Banach algebra A there are a variety of conditions which equal the amenability of the

Banach algebra. For example, A is amenable if and only if there is a norm bounded net (mα)α

in A⊗γ A such that

(1) limα a ⋅mα −mα ⋅ a = 0.

(2) limα ∥m(mα)a − a∥A = 0 and limα ∥am(mα) − a∥A = 0.
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Such a bounded net (mα)α is called a bounded approximate diagonal of A.

Note that the second adjoint m is a mapping m∗∗ ∶ (A⊗γ A)∗∗ → A∗∗. Moreover, A∗∗ and

(A ⊗γ A)∗∗ are also A-bimodules in canonical ways. An element M ∈ (A ⊗γ A)∗∗ is called a

virtual diagonal for A if

a ⋅M =M ⋅ a and a ⋅m∗∗
(M) =m∗∗

(M) ⋅ a = a.

The existence of a virtual diagonal also equals the amenability of A.

The concept of amenability constant was developed by Johnson, in [39], as a tool to study

the amenability of Fourier algebras. Roughly speaking, we can measure amenability of a Banach

algebra via amenability constant.

Definition 1.3.2. For a Banach algebra A, we denote the amenability constant of A by AM(A)

and define it to be

inf {sup
α

∥mα∥A⊗γA}

where the infimum is taken over all bounded approximate diagonals (mα)α of A. If the set of

bounded approximate diagonals of A is empty, AM(A) is set to be +∞.

For a Banach algebra A, AM(A) <∞ if and only if A is amenable. If A is a unital Banach

algebra, AM(A) ≥ 1.

Remark 1.3.3. Let A and B be Banach algebras, and let φ ∶ A → B be a continuous homo-

morphism with dense range. It is well known that if A is amenable then so is B; moreover,

AM(B) ≤ ∥φ∥2 AM(A). Toward a proof, one may note that for every bounded approximate

diagonal (mα)α of A, (φ⊗ φ(mα))α is a bounded approximate diagonal of B.

Furthermore, if A and B are two amenable Banach algebras, the Banach algebra A⊗γ B is

also amenable, by [40, Proposition 5.4].

Note that for every amenable Banach algebra A, it has a bounded approximate identity. Let

A be an amenable Banach algebra, and let I be a closed ideal of A with finite dimension or

codimension. Then I is amenable. Specially for an amenable commutative Banach algebra A,

Ker(ψ) for all ψ ∈ σ(A) is amenable and consequently has a bounded approximate identity.
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1.4 More on locally compact groups

1.4.1 Representation theory of compact groups

For a locally compact group G, a unitary representation π from G into U(Hπ), the group of

all unitary operators on a Hilbert space Hπ, is a group homomorphism which is continuous

with respect to the topology of G and the strong operator topology on U(Hπ). For a sub-

Hilbert space Kπ of Hπ that is invariant under the group action of π(x) for all x ∈ G, the

representation π∣Kπ ∶ G → U(Kπ) is called a sub-representation of π. If π has exactly two sub-

representations corresponding to the Hilbert spaces {0} andHπ, then the representation π is said

to be irreducible. In this manuscript we mainly care about irreducible unitary representations

of locally compact groups which we call representations if there is no risk of confusion. Two

unitary representations ρ and π on a locally compact group G are called to be equivalent if there

is some unitary operator U ∶Hπ →Hρ such that U∗ρ(x)U = π(x) for every x ∈ G.

Let G be a compact group, Ĝ denotes a selection of continuous unitary irreducible repre-

sentations of G, when from each class of equivalent irreducible unitary representations, we have

one element in Ĝ. Let (π,Hπ) be an irreducible unitary representation of a compact group G,

it is well-known that Hπ is a finite dimensional Hilbert space (see [36]). In this case, we denote

the dimension of Hπ by dπ and call it the degree (or dimension) of the representation π.

The trace of a matrix A = (ai,j)i,j∈1,...,n is defined to be the sum of the coefficients on the

diagonal of A, i.e. ∑i∈1,...,n ai,i. We denote the trace of A by Tr(A). Let G be a compact group.

Since for each irreducible representation of G, say π, dπ is finite, π(x) is a matrix for each x ∈ G.

So we may define a function χπ ∶ G→ C, called a character of G, by χπ(x) ∶= Trπ(x) for x ∈ G.

Note that χπ(x−1) = χπ(x) for all π ∈ Ĝ and x ∈ G. Moreover, χπ(xyx−1) = Trπ(xyx−1) =

Tr(π(x)π(y)π(x)−1) = Trπ(y) = χπ(y), since Tr(AB) = Tr(BA) for all matrices A,B. Hence,

χπ for each representation π is a continuous class function i.e. it is constant over conjugacy

classes of G.

For each two compact groups G1 and G2, G ∶= G1 × G2 forms a compact group. For two

representations πi ∈ Ĝi with corresponding Hilbert space Hi, i = 1,2 one may define a unitary

irreducible representation π1 × π2 ∈ Ĝ where

π1 × π2(x, y)(ξ ⊗ η) = π1(x)ξ ⊗ π2(y)η

for ξ ∈ H1 and η ∈ H2. Moreover, dπ1×π2 = dπ1dπ2 and one may show that Tr(π1 ⊗ π2(x, y)) =

Tr(π1(x))Tr(π2(y)). The inverse is true that is Ĝ ≡ Ĝ1 × Ĝ2 i.e. for each π ∈ Ĝ, π ≡ π1 × π2 for
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some πi ∈ Ĝi where i = 1,2.

For each two representations π1, π2 ∈ Ĝ, for a compact groupG, π1⊕π2 is a new representation

of G with Hilbert space H1 ⊕H2 where π1 ⊕ π2(x)(ξ ⊕ η) = π1(x)ξ ⊕ π2(x)η for all ξ ∈ H1 and

η ∈H2. And Tr(π1 ⊕ π2(x)) = Tr(π1(x)) + Tr(π2(x)).

The proof of the following results can be found in [28, Section 5.3].

Proposition 1.4.1. For each character χπ (π ∈ Ĝ), we have χπ(eG) = dπ, ∥χπ∥∞ = dπ, and

χπ ∈ ZL
1(G).

Proposition 1.4.2. [28, (5.20)]

Let G be a compact group and λ(G) denotes the Haar measure of G. Then for all π1, π2 ∈ Ĝ,

χπ1 ∗ χπ2(x) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

λ(G)
dπ

χπ(x) if π = π1 = π2

0 if π1 ≠ π2

For a compact group G, for each 1 ≤ p < ∞, Lp(G) ⊆ L1(G); furthermore, (Lp(G), ∥ ⋅ ∥p)

equipped with the convolution forms a Banach algebra. Similarly, C(G) ⊆ L1(G) and therefore,

(C(G), ∥ ⋅ ∥∞) equipped with the convolution forms a Banach algebra.

Definition 1.4.3. For a compact group G, define ZLp(G) ∶= ZL1(G) ∩ Lp(G) (1 ≤ p < ∞)

and ZC(G) = ZL1(G) ∩ C(G) i.e. ZLp(G) = {f ∈ Lp(G) ∶ f ∗ h = h ∗ f ∀h ∈ L1(G)} and

ZC(G) = {f ∈ C(G) ∶ f ∗ h = h ∗ f ∀h ∈ L1(G)}.

The Banach spaces ZLp(G) (1 ≤ p < ∞) and ZC(G) equipped with the convolution form

commutative Banach algebras. Furthermore, ZLp(G) and ZC(G) are the closure of the linear

span of {χπ ∶ π ∈ Ĝ} for all 1 ≤ p ≤ ∞ with respect to ∥ ⋅ ∥p and ∥ ⋅ ∥∞, respectively. Let the

Haar measure on compact group G be normalized i.e. λ(G) = 1. Then {χπ}π∈Ĝ even forms an

orthonormal basis of ZL2(G).

Theorem 1.4.4. [28, Theorem 5.26]

Let G be a compact group. Then π ↦ ψπ forms a bijection from Ĝ onto σ(A), where A is one

of ZLp(G) (1 ≤ p <∞) or ZC(G) as a commutative algebra with convolution and

ψπ(f) =
1

dπ
∫
G
f(y)χπ(y)dy

for each f ∈ A.

For each π ∈ Ĝ, let us define

⟨f̂(π)ξ, η⟩ ∶= ∫
G
f(x)⟨π(x−1

)ξ, η⟩dx (ξ, η ∈ B(Hπ)).
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for each f ∈ L1(G). The Fourier transform, F , of some f ∈ L1(G) is defined to be (f̂(π))π∈Ĝ.

For each pair π,σ ∈ Ĝ, as a result of Schur orthogonality relations ([28, Section 5.2]), one gets

that

χ̂π(σ) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1
dπ
Idπ if π = σ

0 if π ≠ σ.
(1.4.1)

For each compact group G, f ↦ f̂(π) is an algebra homomorphism of L1(G) onto the algebra

of dπ × dπ matrices. In this case, A(G), the Fourier algebra of the compact group G is the set

of all functions f ∈ L1(G) such that

∥f∥A(G) ∶= ∑
π∈Ĝ

dπ∥f̂(π)∥S1 <∞ (1.4.2)

where ∥A∥S1 for a matrix A denotes the trace class norm i.e. ∥A∥S1 = Tr(∣A∣). One can show

that A(G) equipped with pointwise multiplication and the norm ∥ ⋅ ∥A(G) defined above forms a

Banach algebra (see [36, Theorem 34.18]). By (1.4.2), one can show that lin{χπ}π∈Ĝ is dense in

A(G) and ∥χπ∥A(G) = dπ for every π ∈ Ĝ.

Similarly, for each f ∈ L2(G),

∥f∥2
2 = ∑

π∈Ĝ

dπ∥f̂(π)∥
2
S2

(1.4.3)

where ∥A∥2
S2

is the the Hilbert-Schmidt norm of a matrix A = [ai,j]1≤i,j≤n that is (∑i,j ∣ai,j ∣
2)

1/2.

Unfortunately, the word ‘character’ is used in both Banach algebra theory and in the repre-

sentation theory of finite groups and means two slightly different things. To prevent ambiguity,

we may occasionally use the phrase algebra character to mean a character in the sense of Gelfand

theory for the center of group algebra.

1.4.2 Segal algebras

Abstract Segal algebras first was defined in [10] as generalization of Segal algebras. We say that

the Banach algebra (B, ∥ ⋅ ∥B) is an abstract Segal algebra of a Banach algebra (A, ∥ ⋅ ∥A) if

1. B is a dense left ideal in A.

2. There exists M > 0 such that ∥b∥A ≤M∥b∥B for each b ∈ B.

3. There exists C > 0 such that ∥ab∥B ≤ C∥a∥A∥b∥B for all a, b ∈ B.

If B is a proper subalgebra of A, we call it a proper abstract Segal algebra of A.
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The definition of Segal algebra and most of examples below are from [64]. Let G be a locally

compact group. A linear subspace S1(G) of L1(G), the group algebra of G, is said to be a Segal

algebra on G, if it satisfies the following conditions:

1. S1(G) is dense in L1(G).

2. S1(G) is a Banach space under some norm ∥ ⋅ ∥S1 and ∥f∥S1 ≥ ∥f∥1 for all f ∈ S1(G).

3. S1(G) is left translation invariant and the map x ↦ Lxf of G into S1(G) is continuous

where Lxf(y) = f(x−1y).

4. ∥Lxf∥S1 = ∥f∥S1 for all f ∈ S1(G) and x ∈ G.

Note that every Segal algebra on G is an abstract Segal algebra of L1(G) with convolution

product. Similarly, we call a Segal algebra on G proper if it is a proper subalgebra of L1(G).

Example 1.4.5.

• Let LA(G) ∶= L1(G)∩A(G) and ∣∣∣h∣∣∣ ∶= ∥h∥1 + ∥h∥A(G) for h ∈ LA(G). Then LA(G) with

norm ∣∣∣ ⋅ ∣∣∣ is a Banach space; this space was studied extensively by Ghahramani and Lau

in [30]. They have shown that LA(G) with the convolution product is a Banach algebra

called the Lebesgue-Fourier algebra of G; moreover, it is a Segal algebra on the locally

compact group G. LA(G) is a proper Segal algebra on G if and only if G is not discrete.

Also, LA(G) with pointwise multiplication is a Banach algebra and even an abstract

Segal algebra of A(G). Similarly, LA(G) is a proper subset of A(G) if and only if G is

not compact.

• The convolution algebra L1(G)∩Lp(G) for 1 ≤ p <∞ equipped with the norm ∥f∥1 + ∥f∥p

is a Segal algebra.

• Similarly, L1(G) ∩C0(G) with respect to the norm ∥f∥1 + ∥f∥∞ is a Segal algebra.

• Let G be a compact group, F denote the Fourier transform, and Lp(Ĝ) be the space

which will be defined in (3.2.1). We can see that F−1(Lp(Ĝ)), which we denote by Cp(G),

equipped with convolution is a subalgebra of L1(G). For ∥f∥Cp(G) ∶= ∥Ff∥
Lp(Ĝ), one can

show that for each 1 ≤ p ≤ 2, (Cp(G), ∥ ⋅ ∥Cp(G)) is a Segal algebra of G.
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Chapter 2

Restricted direct products of finite groups

In this chapter, we are interested in knowing more about the center of discrete group algebras.

Where G is a discrete group, if some conjugacy class Cx = {yxy−1 ∶ y ∈ G} is infinite for each

function f ∈ Z`1(G), it is easy to verify that f(Cx) = 0; therefore, the characteristic function of

the set Cx, denoted by 1Cx , does not belong to Z`1(G). This is the main reason that we restrict

our study to discrete groups with finite conjugacy classes (including finite groups) which are

called finite conjugacy groups or in short FC groups. For a FC group G, we denote the set of

all conjugacy classes of G by Conj(G). In this chapter, we study a specific class of FC groups,

called RDPF groups and some properties of the center of their group algebras.

This chapter is based on a joint project with Professor Yemon Choi and Professor Ebrahim

Samei; a version of that has been written in the manuscript [3].

2.1 General properties of Z`1(G) for product groups
It is well known that when G is finite, the space of maximal ideals of Z`1(G) corresponds to

the set of irreducible group characters of G. As a particular class of compact groups, one may

re-write Theorem 1.4.4 for finite groups, as follows.

Lemma 2.1.1. Let G be a finite group. If ψ is an algebra character on Z`1(G), then there is a

unique π ∈ Ĝ such that for the corresponding group character χπ,

ψ(f) = ∑
x∈G

f(x)dχπ
−1χπ(x

−1
) for all f ∈ Z`1(G). (2.1.1)

Conversely, for each group character χπ of G, π ∈ Ĝ, the formula (2.1.1) defines an algebra

character on Z`1(G).

The following lemma will be used later, in several places.

Lemma 2.1.2. Let H and K be (discrete) FC-groups. Then the canonical, isometric isomor-

phism of Banach algebras `1(H)⊗γ`
1(K) ≅ `1(H ×K) restricts to an isometric isomorphism of

Banach algebras Z`1(H)⊗γ Z`1(K) ≅ Z`1(H ×K).
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Proof. For any FC group H, we can define an averaging operator PH ∶ `1(H)→ Z`1(H) by

PH(f)(x) =
1

∣Cx∣
∑
t∈Cx

f(t)

where Cx denotes the conjugacy class of x in H. Since H is an FC-group, PH is well-defined

and PH leaves elements of Z`1(H) fixed. For two FC groups H and K, we define PH ⊗ PK ∶

`1(H)⊗γ `
1(K)→ Z`1(H)⊗γ Z`

1(K) where PH ⊗PK(f ⊗ g) = PH(f)⊗PK(g) for each f ⊗ g ∈

`1(H)⊗γ `
1(K).

Now let H and K be FC groups, and let θ ∶ `1(H)⊗γ`
1(K) → `1(H ×K) be the canonical

isometrical isomorphism of Banach algebras, which satisfies θ(f ⊗ g)(x, y) = f(x)g(y) for all

f ∈ `1(H), g ∈ `1(K), x ∈H and y ∈K. We claim that

PH×K ○ θ = θ ○ (PH ⊗ PK). (2.1.2)

Note that for every pair H,K of FC groups, H × K is a FC group. Let f ∈ `1(H) and

g ∈ `1(K). If (x, y) ∈H ×K, then since C(x,y) may be identified with Cx ×Cy, we have

PH×K ○ θ(f ⊗ g)(x, y) = PH×K(f(x)g(y))

= ∣C(x,y)∣
−1

∑
(t,s)∈Cx×Cy

f(t)g(s)

= ∣Cx∣
−1
∑
t∈Cx

f(t) ∣Cy ∣
−1
∑
s∈Cy

g(s)

= PH(f)(x)PK(g)(y) = θ ○ (PH ⊗ PK)(f ⊗ g)(x, y),

so PH×K ○ θ(f ⊗ g) = θ ○ (PH ⊗ PK)(f ⊗ g). Let f ∈ Z`1(H) and g ∈ Z`1(K), then for each

h1 ⊗ h2 ∈ `
1(H)⊗γ`

1(K), note that

θ(f ⊗ g) ∗`1(H×K) θ(h1 ⊗ h2) = θ((f ∗`1(H) h1)⊗ (g ∗`1(K) h2))

= θ((h1 ∗`1(H) f)⊗ (h2 ∗`1(K) g))

= θ(h1 ⊗ h2) ∗`1(H×K) θ(f ⊗ g).

Since the space generated by the set of all h1⊗h2 is dense in `1(H)⊗γ`
1(K), θ(f⊗g) ∈ Z`1(H×K).

Hence, θ(Z`1(H)⊗γ Z`1(K)) ⊆ Z`1(H×K). To prove the converse inclusion: let u ∈ Zl1(H×K);

then θ−1(u) ∈ `1(H)⊗γ`
1(K), and so

u = PH×Kθ(θ
−1

(u)) = θ(PH ⊗ PK)(θ−1
(u)) ∈ Z`1(H ×K),

since PH ⊗PK(θ−1(u)) ∈ Z`1(H)⊗γ Z`
1(K). Moreover, since θ−1 and PH ⊗PK both have norm

1, this shows that

θ∣Zl1(H)⊗γZl1(K) ∶ Zl
1
(H)⊗γZl

1
(K)→ Zl1(H ×K)
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is not just surjective, but is an isometry, as claimed.

2.2 The restricted direct product of finite groups

Let I be an indexing set and (Gi)i∈I a family of finite groups; the restricted direct product of the

family (Gi), abbrevated RDPF here, is defined to be the group

⊕
i∈I

Gi ∶= {(xi)i∈I ∈∏
i∈I

Gi∶xi = eGi for all but finitely many i.}

which is a group version of the definition mentioned in Section 1.1. Note that if I is finite, the

restricted direct product agrees with the usual direct product of groups.

Proposition 2.2.1. Let (Gi)i∈I be a family of finite groups and G their restricted direct product.

Then G is a FC group.

Proof. Let x = (xi)i∈I ∈ G and let Cx denote the conjugacy class of x. Since xi = eGi for all but

finitely many i ∈ I, for any y = (yi)i∈I, we have yixiy−1
i = eGi ∈ G for all but finitely many i ∈ I.

Define Ix ∶= {i ∈ I ∶ xi ≠ eGi}, which is a finite subset of I. Then

∣Cx∣ = ∏
i∈Ix

∣Cxi ∣ ≤ ∏
i∈Ix

∣Gi∣ <∞,

and since x was chosen arbitrarily, G is a FC group.

Recall that for a group G, the center of the group is defined to be the set of all x ∈ G such

that xy = yx for all y ∈ G and denoted by Z(G).

Proposition 2.2.2. Let (Gi)i∈I be a family of finite groups and let G =⊕i∈IGi.

(i) Z(G) =⊕i∈IZ(Gi).

(ii) G′ =⊕i∈IG
′
i.

(iii) If each Gi is nilpotent of class n, then so is G.

(iv) If each Gi is solvable of length n, then so is G.

Proof. (i). Let x = (xi)i∈I ∈ Z(G). For some i0 ∈ Ix, suppose that xi0 ∉ Z(Gi0). Therefore,

there exists some yi0 ∈ Gi0 such that yi0xi0 ≠ xi0yi0 . So for y ∶= (yi) where yi = eGi for all

i ∈ I ∖ {i0} and yi = yi0 as defined for i = i0. Hence, the i0th coordinate of xy which is xi0yi0 is

not equal to the i0th coordinate of yx which is yi0xi0 . So, xy ≠ yx which is a contradiction. So,
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Z(G) ⊆ ⊕i∈IZ(Gi). Conversely, for each x = (xi)i∈I ∈ ⊕i∈IZ(Gi) and each y = (yi)i∈I ∈ G, for

each i ∈ I, xiyi = yixi; hence, xy = yx.

(ii). Note that for each commutator [x, y] ∈ G′, [x, y] = ([xi, yi])i∈I ∈ ⊕i∈IG
′
i. Therefore,

G′ ⊆ ⊕i∈IG
′
i. On the other hand, for each x ∈ ⊕i∈IG

′
i, we know x = x(1)⋯x(n) such that for

j ∈ 1,⋯, n, Ix(j) is a singleton. So without loss of generality, we assume that x ∈ ⊕i∈IG
′
i and

Ix = {i0} is a singleton; hence, xi0 = y1
i0
⋯ymi0 where for each j ∈ 1,⋯,m, yji0 is a commutator

in Gi0 . For each j ∈ 1,⋯,m, define yj = (yji )i∈I ∈ G such that yji is the mentioned commutator

yji0 for i = i0 and eGi for i ≠ i0. Therefore, yj ∈ G′ for each j ∈ 1,⋯,m, and consequently,

x = y1⋯ym ∈ G′.

(iii) and (iv). First, note that if for each i ∈ I, Ni is a normal subgroup of Gi such that Gi/Ni

is commutative, then N =⊕i∈INi is a normal subgroup of G =⊕i∈IGi and G/N is commutative.

If for each i, Gi is nilpotent of class n, one may find a central series {eGi} = N
1
i ◁N

2
i ◁⋯◁N

n
i = Gi.

So, {eG} = ⊕i∈IN
1
i ◁⋯◁⊕i∈IN

n
i = G is a central series. Similarly, a set of subnormal series

{eGi} = N
1
i ◁N2

i ◁⋯◁Nn
i = Gi such that Ni+1/Ni is commutative implies the subnormal series

{eG} = N
1 =⊕i∈IN

1
i ◁⋯◁Nn =⊕i∈IN

n
i = G such that N j+1/N j is commutative.

Let (Gi) be a family of finite groups, and let F ⊂ I; write F c for I ∖ F . Since

⊕
i∈I

Gi ≅ (⊕
i∈F

Gi) × (⊕
i∈F c

Gi)

by Lemma 2.1.2, we obtain an isometric isomorphism of Banach algebras

Z`1(⊕
i∈I

Gi) ≅ Z`1(⊕
i∈F

Gi)⊗γ Z`1(⊕
i∈F c

Gi). (2.2.1)

Hence, if we write EcF for the identity of Z`1(⊕i∈F c Gi), there is a unital, isometric, homo-

morphism of Banach algebras

ıF ∶ Z`1(⊕
i∈F

Gi)→ Z`1(⊕
i∈I

Gi)(≅ Z`
1
(⊕
i∈F

Gi)⊗γ Z`
1
(⊕
i∈F c

Gi)) (2.2.2)

defined by ıF (f) = f ⊗EcF . When F is a singleton, say {j}, we denote ıF by ıj . Let εF c denote

the augmentation character on Z`1(⊕i∈F c Gi) i.e. for each f ∈ Z`1(⊕i∈F c Gi),

εF c(f) = ∑
x∈⊕i∈Fc Gi

f(x).

If we denote by idF the identity homomorphism on Z`1(⊕i∈F Gi), then there is a unital, surjective

homomorphism of Banach algebras

PF = idF ⊗ εF c ∶ Z`
1
(⊕
i∈I

Gi)→ Z`1(⊕
i∈F

Gi) (2.2.3)

which satisfies PF (f ⊗ g) = εF c(g)f for all f ∈ Z`1(⊕i∈F Gi) and all g ∈ Z`1(⊕i∈F c Gi).
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2.3 The Gelfand spectrum of Z`1(G)
Let G be a RDPF group. Since Z`1(G) is a commutative Banach algebra, it is natural to ask

for a description of its Gelfand spectrum. This is given by the following result (recall that

Lemma 2.1.1 gives a description of the spectrum when G is finite).

Theorem 2.3.1. Let (Gi)i∈I be a family of finite groups and G their restricted direct product.

Then there is a homeomorphism from σ(Z`1(G)) onto

∏
i∈I

σ(Z`1(Gi)) ∶= {(ψi)i∈I ∶ ψi ∈ σ(Z`
1
(Gi)) ∀i ∈ I}

equipped with the product topology. In particular, σ(Z`1(G)) is totally disconnected.

Proof. For each ω ∈ σ(Z`1(G)), we can define ψi ∶= ω ○ ıi for each i ∈ I. Note that ψi is a

functional on Z`1(Gi). Moreover, since ∥ıi∥ ≤ 1, ψi is also continuous. Moreover, note that for

all f, g ∈ Z`1(Gi),

ψi(f ∗g) = ω○ıi(f ∗g) = ω(f⊗E
c
i ∗g⊗E

c
i ) = ω(f⊗E

c
i )ω(g⊗E

c
i ) = ω○ıi(f)ω○ıi(g) = ψi(f)ψi(g).

So, ψi is an algebra character for Z`1(Gi) for each i ∈ I. Conversely, let

Zcc(G) = {f ∈ cc(G) ∶ f is constant on the conjugacy classes of G}.

For each set (ψi)i∈I, we define ω on Zcc(G) as follows: given f ∈ Zcc(G), since supp(f) is a

finite subset of G. There is some F ⊆ I such that supp(f) ⊆⊕i∈F Gi ×E
c
F . It is clear that

ωF (x) ∶=∏
i∈F

ψi(xi), x = (xi)i∈F ∈⊕
i∈F

Gi

for ψi’s defined above. It will define a character group for finite group ⊕i∈F Gi. Let ω(f) ∶=

ωF (PF (f)) (PF was defined in (2.2.3)). We show that ω is well-defined. If for some F ⊆ F ′ for

some F,F ′ ⊆ I, and x = (xi)i∈F ∈ ⊕i∈F Gi, then for y = (yi)i∈F ′ ∈ ⊕i∈F ′ such that yi = xi for all

i ∈ F and yi = eGi for i ∉ F , ωF (x) = ωF ′(y). Also, P(δx) = δx ⊗E
c
F . Clearly, for each pair F,F ′

of subsets of I, if supp(f) ⊆⊕i∈F Gi ×E
c
F and supp(f) ⊆⊕i∈F ′ Gi ×E

c
F ′ , supp(f) ⊆⊕i∈F∩F ′ Gi ×

EcF∩F ′ . Moreover, since f is finitely supported, ωF (PF (f)) = ωF ′(PF ′(f)) = ωF∩F ′(PF∩F ′(f)).

Since ω is a bounded linear map, we can extend it to Z`1(G). On the other hand, for all

f, g ∈ Zcc(G) we have ω(f ∗ g) = ω(f)ω(g) and so ω belongs to σ(Z`1(G)).

Let j ∶ σ(Z`1(G))→∏i∈I σ(Z`
1(Gi)) be the map defined by

j(ω) = (ω ○ ıi)i∈I.
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We have just seen that j is a bijection. It remains only to show that j is continuous. Let

U =∏i∈IUi ⊆∏i∈I σ(Z`
1(Gi)) be a sub-basic open set i.e Ui = σ(Z`1(Gi)) for all i ∈ I but one i0

when

Ui0 = {ψ ∈ σ(Z`1(Gi0)) so that ∣⟨ψ − φ, f⟩∣ < ε}

for some f ∈ Z`1(Gi0), ε > 0, and φ ∈ σ(Z`1(Gi0)). We show that j−1(U) is open, by showing

that each ω ∈ j−1(U) has a Gelfand-open neighbourhood contained in j−1(U). Since ω ∈ j−1(U),

δ ∶= ε − ∣⟨ω ○ ıi0 − φ, f⟩∣ > 0. Define

V ∶= {ω′ ∈ σ(Z`1(G)) so that ∣⟨ω′ − ω, ıi0(f)⟩∣ < δ}

an open neighborhood of ω in Gelfand topology on σ(Z`1(G)). So, for each ω′ ∈ V ,

⟨ω′ − ω, ıi0(f)⟩ = ⟨(ω′ − ω) ○ ıi0 , f⟩ = ⟨ω′ıi0 − ωıi0 , f⟩.

Hence,

∣⟨ω′ıi0 − φ, f⟩∣ ≤ ∣⟨ω′ıi0 − ωıi0 , f⟩∣ + ∣⟨ωıi0 − φ, f⟩∣ < ε;

thus, ω′ ○ ıi0 ∈ Ui0 . Therefore, j(ω′) ∈ U . Since i0 is arbitrary and f is an arbitrary element in

Z`1(Gi0), Thus j is continuous; since it is bijective from a compact space onto a Hausdorff one,

we conclude that j−1 is also continuous.

2.4 Characterizing ZL-amenability of RDPF groups

The amenability of the group algebra of a locally compact group G is equivalent to the amenabil-

ity of the group G, [68]. But, the amenability of ZL1(G), the centre of L1(G), is not character-

ized completely. If ZL1(G) is amenable for a locally compact group G, we call G ZL-amenable.

As we mentioned before, amenability constant of a Banach algebra is a tool to quantify the

amenability of the algebra. The amenability constant of ZL1(G) for a locally compact group G

is called the ZL-amenability constant of G.

As a conjecture for a discrete FC group G, ZL-amenability of G is equivalent to the finiteness

of G′. In this section, we prove this conjecture for RDPF groups.

The following proposition is a result by Rider, [67], about the norm one of a class of idempo-

tents in group algebras of compact groups, presented in the following. Note that Rider’s result

is stated for the case where the Haar measure on G is normalized i.e. λ(G) = 1. However, a

rescaling argument, based on Proposition 1.4.2, shows that this is equivalent to the formulation

we have given.
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Proposition 2.4.1. [67, Lemma 5.2]

Let G be a compact group with a Haar measure λ and ψ = ∑π∈F
dπ
λ(G)χπ for a finite subset F ⊆ Ĝ

such that ∥ψ∥L1(G,λ) > 1. Then ∥ψ∥L1(G,λ) ≥ 301/300.

Remark 2.4.2. For a finite groupG, let µ be the normalized Haar measure onG i.e. µ(x) = ∣G∣−1

for every x ∈ G. Let us denote the group algebra generated by the normalized Haar measure µ

by `1(G,µ) and ∥ ⋅ ∥1,µ and ∗µ denote the corresponding norm and the convolution respectively.

While `1(G,λ)(= `1(G)) denotes the center of the group algebra with the regular counting

measure i.e. λ(x) for every element x ∈ G is 1. Hence, λ = ∣G∣µ. Then one may define an

isometric linear map θ ∶ `1(G,µ)→ `1(G,λ) where θ(f) = ∣G∣f for every f ∈ `1(G,µ). Note that

θ(f) ∗µ θ(g)(x) = ∑
y∈G

θ(f)(y)θ(y−1x)µ(y)

= ∣G∣
2
∑
y∈G

f(y)g(y−1x)
λ(y)

∣G∣

= ∣G∣(f ∗λ g)(x)

= θ(f ∗λ g)(x).

Therefore, two algebras `1(G,µ) and `1(G) are isomorphic. In many studies of finite groups

as a special case of compact groups, they are equipped with a normalized Haar measure. Here

we mainly work with the counting measure. So all results which are mentioned in the following

have been modified for the counting measure, in particular the following summary from [5].

Azimifard, Spronk, and Samei in [5] studied the ZL-amenability constant of the center of the

group algebra of finite groups. In [5, Theorem 1.8] they have shown that for a finite group G,

M = ∑

π∈Ĝ

d2
π

∣G∣2
χπ ⊗ χπ (2.4.1)

is a virtual diagonal of Z`1(G) which is actually an idempotent of the form mentioned in

Proposition 2.4.1 that belongs to Z`1(G) ⊗γ Z`
1(G). Computing the norm of M where they

consider G equipped with normalized Haar measure, they achieved a formula for ZL-amenability

constant of G. One may note that by some simplifications in the ZL-amenability developed in

[5], for an abelian finite group G, since Z`1(G) = `1(G), AM(Z`1(G)) = 1. The following

proposition is based an observation which is done in the proof of [5, Theorem 1.10] applying

Proposition 2.4.1 and computing norm of M .
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Proposition 2.4.3. Let G be a non-abelian finite group equipped with the normalized Haar

measure λ generated by the counting measure. Then the ZL-amenability constant of G is always

greater than or equal to 1 + 1/300 i.e. AM(Z`1(G)) ≥ 301/300.

Proof. Let us consider M as an element in `1(G ×G)(= `1(G) ⊗γ `
1(G)). Note that, for each

representation π ∈ Ĝ, π ⊗ π ∈ Ĝ × Ĝ = Ĝ ×G where π ⊗ π(x, y) = π(x)⊗ π(y) and dπ⊗π = d2
π. On

the other hand,

χπ ⊗ χπ(x, y) = Tr(π(x))Tr(π(y)) = Tr(π ⊗ π(x, y)) = χπ⊗π(x, y).

Therefore, M = ∣G∣−2
∑π∈Ĝ dπ⊗πχπ⊗π forms an idempotent which is a finite combination of

characters of the group G×G, based on Proposition 1.4.2. But by [5, Corollary 1.9], if G is non-

abelian ∥M∥`1(G×G) = AM(Z`1(G)) > 1. Therefore, by Proposition 2.4.1, ∥M∥1 ≥ 301/300.

The following theorem is the main result of this section.

Theorem 2.4.4. Let (Gi)i∈I be a family of finite groups and let G =⊕i∈IGi. Then the followings

are equivalent:

(i) Z`1(G) is amenable;

(ii) Gi is abelian for all but finitely many i;

(iii) G is isomorphic to the product of a finite group with an abelian group;

(iv) the derived subgroup of G is finite.

Proof. We start by defining N = {i ∈ I∶Gi is non-abelian}.

(i) Ô⇒ (ii). By Proposition 2.4.3, AM(Z`1(H)) ≥ 1 + 1/300 whenever H is a finite non-

abelian group. Now suppose Z`1(G) is amenable, and let F be a finite subset of N . Recall

that we have a quotient homomorphism of Banach algebras PF ∶ Z`1(G) → Z`1(⊕i∈F Gi),

as defined earlier in (2.2.3). Moreover, note that if Z`1(G) is equipped with the regular

counting measure, one may compute an upper bound for ∥PF ∥. For each f ⊗ g ∈ Z`1(G) ≅

(Z`1(⊕i∈F Gi))⊗γ (Z`1(⊕i∈F c Gi)), one gets that ∥f ⊗ g∥1 = ∥f∥1∥g∥1. Therefore,

∥PF (f ⊗ g)∥1 ≤ ∣εF c(g)∣∥f∥1 ≤ ∥f∥1∥g∥1. (2.4.2)

Note that according to the definition of projective tensor product and its norm, (2.4.2) implies

that ∥PF ∥ ≤ 1.
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It follows from Remark 1.3.3 that

∞ > AM(Z`1(G)) ≥ ∥PF ∥
2 AM(Z`1(G)) ≥ AM(Z`1(⊕

i∈F

Gi)).

Moreover, it was proven in [5] that

AM(Z`1(⊕
i∈F

Gi)) =∏
i∈F

AM(Z`1(Gi))

Hence, by Proposition 2.4.3,

∞ > AM(Z`1(G)) ≥∏
i∈F

AM(Z`1(Gi)) ≥ (1 + 1/300)∣F ∣.

Since F was an arbitrary finite subset of N , this shows N is finite.

(ii) Ô⇒ (iii). Let IA = {i ∈ I ∶ Gi is abelian}; thus, A ∶=⊕i∈IA Gi is abelian. Since F ∶= I∖ IA

is finite, so K =⊕i∈F Gi is a finite group and G = A ×K.

(iii) Ô⇒ (i). If K is finite and A is abelian, then by Lemma 2.1.2,

Z`1(K ×A) ≅ Z`1(K)⊗γ Z`1(A) = Z`1(K)⊗γ`
1
(A)

which is the projective tensor product of two amenable Banach algebras, hence is amenable by

[40, Proposition 5.4].

(ii) ⇐⇒ (iv). It is pointed out in Proposition 2.2.2(ii) that G′ =⊕i∈I G
′
i. Note that G

′
i = {eGi}

if and only if Gi is abelian. Therefore G′ is finite if and only if Gi is abelian for all but finitely

many i.

2.5 Bounded approximate identities in maximal ideals of Z`1(G)
Stegmeir, in [72], studied the center of the group algebra Z`1(G) for a RDPF group G where

Z`1(G) has a maximal ideal without a bounded approximate identity, and therefore, G is not

ZL-amenable. In this section, we study the existence of a bounded approximate identity of max-

imal ideals of Z`1(G) for RDPF groups with respect to a characterization of the corresponding

character ψ ∈ σ(Z`1(G)).

We need some preliminary observations, which all follow from basic properties of the non-

abelian Fourier transform for finite groups. Note that for a finite group G, the linear span of

{χπ}π∈Ĝ is dense in Z`1(G).
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Let ψσ be the algebra character on Z`1(G) that corresponds to the irreducible group repre-

sentation σ ∈ Ĝ. Let us recall a finite version of Proposition 1.4.2 as follows where ∗ denotes the

convolution with respect to the counting measure:

dσ
∣G∣

χσ ∗
dπ
∣G∣

χπ =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

dσ
∣G∣χσ σ = π

0 σ ≠ π
(2.5.1)

Thus if π ≠ σ, then

ψσ(χπ) = ∑
x∈G

χπ(x)d
−1
σ χσ(x

−1
) = d−1

σ χπ ∗ χσ(eG) = 0.

Therefore, Ker(ψσ) is the closure of the linear span {χπ ∶ π ∈ Ĝ ∖ {σ}}. Note that Z`1(G) has

the identity δe. We show that Ker(ψσ) has the identity element

uσ ∶= δe −
dσ
∣G∣

χσ. (2.5.2)

To observe that, let f = ∑π∈Ĝ,π≠σ απχπ (which belongs to Ker(ψσ)), for some finite set {απ}π∈Ĝ,π≠σ ⊆

C. Therefore

f ∗ uσ = f − ∑

π∈Ĝ,π≠σ

απχπ ∗
1

∣G∣
dσχσ

= f − ∑

π∈Ĝ,π≠σ

απ
dσ
∣G∣

χσ ∗ χπ = f

by (2.5.1).

Now suppose G = G1 ×⋯ ×Gn. Then the Banach algebra `1(G) is isometrically isomorphic

with `1(G1)⊗γ . . .⊗γ`
1(Gn). Let σ,π ∈ Ĝ. Then for i = 1, . . . , n, there exists σi, πi ∈ Ĝi such that

σ = σ1×⋅ ⋅ ⋅×σn and π = π1×⋅ ⋅ ⋅×πn, by Theorem 2.3.1; and since dσ =∏n
i=1 dσi and dπ =∏

n
i=1 dπi ,

one may conclude from (2.5.1) that

(
n

⊗
i=1

dσi
∣Gi∣

χσi) ∗ (
n

⊗
i=1

dπi
∣Gi∣

χπi) =
n

⊗
i=1

(
dσi
∣Gi∣

χπi ∗
dπi
∣Gi∣

χπi)) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

⊗
n
i=1

dσi
∣Gi∣

χσi σ = π

0 σ ≠ π

Hence, one may rewrite the whole story of the identity of kernel of some character ψσ

corresponding to a representation σ ∈ Ĝ. Consequently, (2.5.2) implies that

uσ = δe − (
1

∣G1∣
dσ1χσ1)⊗ ⋅ ⋅ ⋅ ⊗ (

1

∣Gn∣
dσnχσn) ∈ `1(G1)⊗γ . . .⊗γ`

1
(Gn), (2.5.3)

is an identity for Ker(ψσ).

Theorem 2.5.1. Let (Gi)i∈I be a family of finite groups, and let G =⊕i∈IGi. Let ω ∈ σ(Z`1(G)),

and let (χi)i∈I be the corresponding family of group characters. Then Kerω has a bounded

approximate identity, if and only if dχi∥χi∥1 = ∣Gi∣ for all but finitely many i ∈ I.
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Proof. Define for each F ⊆ I finite, HF = ⊕i∈F Gi and HF c = ⊕i∈I∖F Gi, so that Z`1(G) =

Z`1(HF ×HF c). Write EF c for the identity element of Z`1(HF c), i.e. the Dirac measure at the

identity element of HF c , and likewise write EF for the identity element of Z`1(HF ). We also

write di for the degree of χi.

First suppose that di∥χi∥1 = ∣Gi∣ for all but finitely many i ∈ I. As in Equation (2.5.3), define

uF ∈ Z`1(HF ) by

uF = EF −⊗
i∈F

di
∣Gi∣

χi .

Let ωF ∶= ω○ıF , where ıF ∶ Z`1(HF )→ Z`1(G) was defined in (2.2.2). Then uF is the identity

element of KerωF . As ⊗γ is a cross-norm,

sup
F

∥uF ∥1 = sup
F

∥EF −⊗
i∈F

di
∣Gi∣

χi∥ ≤ 1 + sup
F

∥⊗
i∈F

di
∣Gi∣

χi∥ = 1 + sup
F
∏
i∈F

(
di
∣Gi∣

∥χi∥1) <∞ .

Moreover, since ∥ıF (uF )∥1 = ∥uF ⊗EF c∥1 = ∥uF ∥1, the family (ıF (uF ))F⊂I,∣F ∣<∞ is bounded. We

claim that it is, when ordered by inclusion of finite subsets, a bounded approximate identity for

Kerω. To prove this, it is enough to prove that

lim
F⊆I,∣F ∣<∞

(ıF (uF )) ∗ f = f for all f ∈ Ker(ω); (2.5.4)

and by a standard approximation argument, we may assume without loss of generality that f

has a finite support. Thus, for f ∈ Zcc(G) ∩Ker(ω) and S the support of f ; if F is any finite

subset of I such that S ⊆ ⊗i∈FGi ⊗EF c , then

f = ıFPF (f)

(where PF is the homomorphisms defined in (2.2.3)). So, 0 = ω(f) = ω○ιF ○PF (f) = ωF (PF (f)).

Consequently PF (f) ∈ Ker(ωF ), and thus

f ∗ ıF (uF ) = ıF (PF (f) ∗ uF ) = ıF (PF (f)) = f.

This proves Equation (2.5.4).

Conversely, suppose that Kerω has a bounded approximate identity say (hα)α. For each

F ⊆ I when ∣F ∣ <∞ define

ΛωF (f ⊗ g) = ωF c(g)f for all f ∈ Z`1(HF ) and g ∈ Z`1(HF c).

Since ωF c = ω ○ ıF c has norm 1, being an algebra character, we have

∥ΛωF (f ⊗ g)∥1 ≤ ∥f∥1∥g∥1,
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and so ΛωF defines a linear contraction from Z`1(HF ×HF c) onto Z`1(HF ), using Lemma 2.1.2.

Moreover, given f1, f2 ∈ Z`1(HF ) and g1, g2 ∈ Z`1(Hc
F ),

ΛωF ((f1 ⊗ g1) ∗ (f2 ⊗ g2)) = ΛωF ((f1 ∗ f2)⊗ (g1 ∗ g2)) = ωF c(g1 ∗ g2)f1 ∗ f2

= ωF c(g1)f1 ∗ ωF c(g1)f2 = ΛωF (f1 ⊗ g1) ∗ΛωF (f2 ⊗ g2).

Hence, by linearity and continuity, ΛωF is an algebra homomorphism. Moreover,

ωFΛωF (f ⊗ g) = ωF (ωF c(g)f) = ωF (f)ωF c(g) = ω(f ⊗ g)

and

ΛωF ıF (f) = ΛωF (f ⊗EF c) = ωF c(EF c)f = f

for all f ∈ Z`1(HF ) and g ∈ Z`1(HF c).

Observe, since ωFΛωF = ω, that ΛωF (Ker(ω)) ⊆ Ker(ωF ). Moreover, for each f ∈ Ker(ωF ),

ω(ιF (f)) = ω(f ⊗EF c) = ωF (f); therefore, ıF (f) ∈ Ker(ω). Since uF ∈ Ker(ωF ) and (hα) is a

bounded approximate identity for Ker(ωF ),

∥ΛωF (hα) − uF ∥1 = ∥ΛωF (hα) ∗ uF − uF ∥1

= ∥ΛωF (hα) ∗ΛωF ıF (uF ) −ΛωF ıF (uF )∥1

= ∥ΛωF (hα ∗ ıF (uF ) − ıF (uF )) ∥1 → 0 .

Because ∥ΛωF ∥ ≤ 1,

sup
F⊆I,∣F ∣<∞

sup
α

∥ΛωF (hα)∥1 ≤ sup
α

∥hα∥1 ≤M

for some M > 0, thus ∥uF ∥1 ≤M for all finite subsets F ⊆ I. Hence

∏
i∈F

di
∣Gi∣

∥χi∥1 = ∥EF − uF ∥1 ≤M + 1 (2.5.5)

Let i ∈ I. For each i, ∣Gi∣
−1diχi is a central idempotent in the group algebra `1(Gi); in

particular it has `1-norm ≥ 1. Moreover, by Proposition 2.4.1,

either ∣Gi∣
−1di∥χi∥1 = 1 or ∣Gi∣

−1di∥χi∥1 ≥
301

300
.

But if {i ∈ I∶di∥χi∥ > ∣Gi∣} is infinite, we may find a subset F ⊆ I such that (301/300)∣F ∣ >M +1.

But by (2.5.5),

(
301

300
)
∣F ∣

≤∏
i∈F

di
∣Gi∣

∥χi∥1 = ∥EF − uF ∥1 ≤M + 1

which is a contradiction. Therefore, di∥χi∥ = ∣Gi∣ for all but finitely many i.
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Although the following theorem is not resulted from Theorem 2.5.1 directly, its proof is

analogous to some parts of the proof of Theorem 2.5.1.

Theorem 2.5.2. Let (Gi)i∈I be a family of finite groups and let G =⊕i∈IGi. Then the following

are equivalent:

(i) every maximal ideal in Z`1(G) has a bounded approximate identity;

(ii) there is a finite subset F ⊂ I such that, for each i ∈ I ∖ F and each irreducible group

character χ of Gi, we have dχ∥χ∥1 = ∣Gi∣.

(iii) there exists a constant M > 0 such that each maximal ideal in Z`1(G) has a bounded

approximate identity of norm ≤M .

Proof.

(iii)Ô⇒ (i). This is trivial.

(ii)Ô⇒ (iii). Let F be as assumed in (ii), and define

M ∶=∏
i∈F

sup
π∈Ĝ

dπ
∣Gn∣

∥χπ∥1 <∞.

Given ω ∈ σ(Z`1(G)), let (χi) be the corresponding family of (irreducible) group characters,

and let di denote the degree of χi. For each finite subset T ⊂ I, define uT ∈ Z`1(⊕i∈T Gi) =

⊗̂i∈T Z`1(Gi) by

uT = δe −⊗
i∈T

di
∣Gi∣

χi

Order the net (ıT (uT )), where T ranges over all finite subsets of I, by inclusion. Then by an

argument like that in the proof of Theorem 2.5.1, (ıT (uT )) is a bounded approximate identity

for Kerω, with supT ∥ıT (uT )∥ ≤M + 1.

(i) Ô⇒ (ii). Suppose that (ii) does not hold. Then there exists an infinite set S ⊂ I, and for

each j ∈ S, an irreducible group character φj on Gj such that dj∥φj∥1 ≠ ∣Gj ∣. Since ∣Gj ∣
−1djφj is

an idempotent in Z`1(Gj), Proposition 2.4.1 implies that ∣Gj ∣dj∥φj∥1 ≥ 301/300. Now let ω in

σ(Z`1(G)) be such that the corresponding family (χi) of group characters satisfies χj = φj for

all j ∈ S and χj ≡ 1 for j ∈ I ∖ S. Then as in the last part of the proof of Theorem 2.5.1, we can

show that Ker(ω) does not have a bounded approximate identity.
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For any irreducible group character χ on a finite group G, dχ∥χ∥1 ≥ ∣G∣ implies a lower

bound. In the rest of this section, we investigate this property a bit deeper.

Lemma 2.5.3. Let G be a finite group and χ an irreducible character on G. Then dχ∥χ∥1 ≥ ∣G∣.

Moreover, equality holds if and only if

∣χ(x)∣ ∈ {0, dχ} for all x ∈ G. (2.5.6)

Proof. Since χ is irreducible, ∑x∈G ∣χ(x)∣2 = ∣G∣, [28, Proposition 5.23]. Moreover, since ∥χ∥∞ ≤

dχ,

∣G∣ = ∑
x∈G

∣χ(x)∣2 ≤ dχ ∑
x∈G

∣χ(x)∣ = dχ∥χ∥1. (∗)

For the second statement, we need to show that equality holds in (∗) if and only if (2.5.6)

is satisfied. If ∣χ(x)∣ ∈ {0, dχ} for all x ∈ G, clearly the inequality in (∗) is replaced by an

equality. Conversely, if (2.5.6) is not satisfied, pick y ∈ G such that 0 < ∣χ(y)∣ < dχ. Then

∣χ(y)∣2 < dχ∣χ(y)∣, so that

∑
x∈G

∣χ(x)∣2 = ∣χ(y)∣2 + ∑
x∈G∖{y}

∣χ(x)∣2 < dχ∣χ(y)∣ + dχ ∑
x∈G∖{y}

∣χ(x)∣ = dχ ∑
x∈G

∣χ(x)∣

as required.

Following [42], in [3], a character satisfying (2.5.6) is called absolutely idempotent character ,

abbreviated as AIC. Clearly each linear character is AIC. We also call a finite group G to be AIC

if each irreducible character of G is AIC. It follows from the definition that quotients of AIC

groups and from Theorem 2.3.1 that products of AIC groups are also AIC. F. Ladisch proves

the following result about AIC groups, [3].

Theorem 2.5.4. Every finite AIC group is nilpotent.
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Chapter 3

Three families of examples

In this chapter we introduce three main classes of discrete commutative hypergroups. In the

rest of this manuscript, we will study more properties of these classes of hypergroups.

3.1 Conj(G) as a hypergroup

In this section, G is a discrete finite conjugacy group with the group algebra (`1(G),⍟, ∥ ⋅ ∥1)

where ⍟ denotes the regular convolution of the group algebra. Furthermore, Conj(G) is the

set of conjugacy classes of G. By Theorem 1.2.2, we know that for each two conjugacy classes

C and D, 1C and 1D, the characteristic functions of C and D respectively, belong to Z`1(G);

thus, 1C ⍟ 1D ∈ Z`1(G), for ⍟ the convolution of `1(G). Let Ψ denotes a linear mapping from

cc(G) ∩Z`1(G) to cc(Conj(G)) such that for each f ∈ Z`1(G) ∩ cc(G), Ψ(f)(C) = ∣C ∣f(C) for

C ∈ Conj(G) where

f(C) ∶= f(x) for (every) x ∈ C. (3.1.1)

First note that

∥Ψ(f)∥1 = ∑
C∈Conj(G)

∣Ψ(f)(C)∣ = ∑
C∈Conj(G)

∣f(C)∣∣C ∣ = ∑
t∈G

∣f(t)∣ = ∥f∥1,

which shows that Ψ is an isometry. On the other hand, for each C ∈ Conj(G), Ψ(1C) = ∣C ∣δC .

Therefore Ψ is surjective. Since cc(G) ∩ Z`1(G) and cc(Conj(G)) are dense in Z`1(G) and

`1(Conj(G)) respectively, Ψ can be extended as an isometric linear mapping from Z`1(G) onto

`1(Conj(G)).

Applying Ψ, let us define an associative binary operation ∗ on cc(Conj(G)), where

δC ∗ δD ∶=
1

∣C ∣∣D∣
Ψ(1C ⍟ 1D) C,D ∈ Conj(G). (3.1.2)

A simple approximation argument lets us to extend ∗, called convolution, as a continuous bilinear

action on `1(Conj(G)); hence, (`1(Conj(G)),∗, ∥ ⋅ ∥1) forms a Banach algebra. Therefore, from

now on we identify each function f ∈ `1(Conj(G)) with its pre-image with respect to Ψ. The

following theorem is an immediate result of the previous observations.
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Theorem 3.1.1. Let G be a FC group. Then the Banach algebra (`1(Conj(G)),∗) is isometri-

cally isomorphic to (Z`1(G),⍟).

Remark 3.1.2. Note that for each z ∈ G and C,D ∈ Conj(G) such that 1C ⍟ 1D(z) ≠ 0,

1C ⍟ 1D(z) = ∑
t∈G

1C(t)1D(t−1z) = ∑
t∈C

1tD(z);

therefore, z ∈ CD. Moreover, supp(1C ⍟ 1D) is a subset of G which is invariant with respect to

inner automorphisms, so for some αC,DE ≥ 0, we have

1C ⍟ 1D = ∑
E∈Conj(G),E⊆CD

αC,DE 1Er .

So for all C,D ∈ Conj(G),

Ψ(1C ⍟ 1D) = Ψ( ∑
E∈Conj(G),E⊆CD

αC,DE 1E) = ∑
E∈Conj(G),E⊆CD

αC,DE ∣E∣δE .

Therefore

δC ∗ δD =
1

∣C ∣∣D∣
∑

E∈Conj(G),E⊆CD

αC,DE ∣E∣δE . (3.1.3)

We show that Conj(G) is a discrete hypergroup with the convolution defined in (3.1.2) with

respect to Definition 1.1.2. We observed that (`1(Conj(G)),∗, ∥ ⋅ ∥1) forms a Banach algebra.

Moreover, for each C,D ∈ Conj(G), one can write

∑
E∈Conj(G),E⊆CD

αC,DE ∣E∣ = ∑
t∈G

1C ⍟ 1D(t)

= ∑
t∈G

∑
s∈G

1C(s)1D(s−1t)

= ∑
s∈G

1C(s)∑
t∈G

1D(t) = ∣C ∣∣D∣.

Hence, ∥δC ∗ δD∥1 = 1 for the positive measure δC ∗ δD. So `1(Conj(G)) satisfies (H1). For

e, the identity of the group G, let us denote the conjugacy class {e} by e as well. Therefore,

1e ⍟ 1C = 1C for each C ∈ Conj(G); hence, δe ∗ δC = δC ∗ δe = δC and therefore Conj(G) satisfies

(H4).

If for C ∈ Conj(G), Č ∶= C−1 where C−1 = {x−1 ∶ x ∈ C}, one has that e ∈ CC−1; hence,

e ∈ supp(1C ⋆ 1C−1) and consequently e ∈ supp(δC ∗ δC−1). On the other hand, suppose that

e ∈ supp(δC ∗ δD) for some C,D ∈ Conj(G). Therefore,

0 ≠ 1C ⍟ 1D(e) = ∑
t∈G

1C(t)1D(t−1
) = ∑

t∈C

1D(t−1
).

It implies that at least for one x ∈ C, x−1 ∈ D. Then by a simple argument about conjugacy

classes of groups, one may verify that D = Cx−1 = Čx = Č. This implies (H6). For each
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f ∈ `1(G), we define f̃(x) = f(x−1) for all x ∈ G. A brief study of the properties of ⍟ verifies

that (f ⍟ g)̃ = g̃ ⍟ f̃ . Also, 1̃C = 1Č for each C ∈ Conj(G). Since ∣C ∣ = ∣Č ∣ for all C ∈ Conj(G),

(δC ∗ δD )̌ = (
1

∣C ∣∣D∣
∑

E∈Conj(G),E⊆CD

αC,DE ∣E∣δE )̌

= (
1

∣Č ∣∣Ď∣
∑

Ě⊆C̃D̃

αC,DE ∣Ě∣δĚ)

= (
1

∣Č ∣∣Ď∣
∑

Ě⊆ČĎ

1C ⍟ 1D(E)∣Ě∣δĚ)

= (
1

∣Č ∣∣Ď∣
∑

Ě⊆ČĎ

1Ď ⍟ 1Č(Ě)∣Ě∣δĚ) = δĎ ∗ δČ .

So Conj(G) satisfies (H5). This implies that Conj(G) is a commutative discrete hypergroup.

Note that to avoid conflict between our notations, in the section ⍟ denotes the convolution

of the group algebra of G, `1(G), while ∗ denotes the convolution of the hypergroup algebra of

Conj(G), `1(Conj(G)).

Example 3.1.3. For a family of finite groups (Gi)i∈I, let G ∶= ⊕i∈IGi be the restricted direct

product of (Gi)i∈I. Then G is a discrete FC group, by Proposition 2.2.1. For each C ∈ Conj(G),

C can be seen as the conjugacy class of some x = (xi)i∈I ∈ C. On the other hand, for each

i ∈ Ix = {i ∈ I ∶ xi ≠ eGi}, Cxi ≠ eGi . Therefore, C = ∏i∈Ix Cxi × E
c
Ix

where EcIx is the identity

of the group ⊕i∈I∖Ix Gi; hence, C ∈ ⊕i∈I Conj(Gi). Conversely, for each C ∈ ⊕i∈I Conj(Gi),

C = (Ci)i∈I where Ci = eGi for all i ∈ I except finitely many. We denote the set of all i ∈ I for

them Ci ≠ eGi by IC . For each i ∈ IC , Ci = Cxi for some xi ∈ Gi. Define y = (yi)i∈I ∈ G where

yi = xi for each i ∈ IC and xi = eGi otherwise. It is not hard to show that Cx = C ∈ Conj(G).

This argument implies that the hypergroup Conj(G) equals the hypergroup generated by the

restricted direct product of (Conj(Gi))i∈I,

Conj(G) =⊕
i∈I

Conj(Gi),

as defined in Section 1.1.

Remark 3.1.4. By Theorem 1.1.4, for h, the Haar measure on Conj(G),

h(C) = (δČ ∗ δC(e))
−1

= ∣C ∣ (C ∈ Conj(G))

To prove that, note

δČ ∗ δC(e) =
1

∣Č ∣ ∣C ∣
∑

E⊆ČC

αC,ČE ∣E∣δE(e) =
1

∣C ∣2
1C−1 ⍟ 1C(e) =

1

∣C ∣2
∑
t∈G

1C−1(t)1C(t
−1

) = ∣C ∣
−1.
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3.2 Dual of compact groups as hypergroups

In this section, G is a compact group. Let Ĝ denote the set of all irreducible unitary representa-

tions of a compact group G, up to equivalence relation, as defined in Section 1.4. Here we follow

the notation of [23] for the dual of compact groups and apply many results of [36, Section 27]

about representation theory of compact groups.

Let φ = {φπ ∶ π ∈ Ĝ} if φπ ∈ B(Hπ) for each π ∈ Ĝ and define ∥φ∥
L∞(Ĝ) ∶= supπ ∥φπ∥∞ for

∥ ⋅ ∥∞ to be the operator norm of a matrix. The set of all those φ’s with ∥φ∥
L∞(Ĝ) < ∞ forms

a C∗-algebra denoted by L∞(Ĝ). It is well known that L∞(Ĝ) is isomorphic to the group von

Neumann algebra of G i.e. the dual of A(G), see [23, 8.4.17]. We define

L
p
(Ĝ) = {φ ∈ L∞(Ĝ) ∶ ∥φ∥p

Lp(Ĝ)
∶= ∑

π∈Ĝ

dπ∥φπ∥
p
Sp

<∞}, (3.2.1)

for ∥ ⋅ ∥Sp , the p-Schatten norm1 that is ∥A∥
p
Sp
∶= ∑n≥1 s

p
n(A) for s1(A) ≥ s2(A) ≥ ⋯sn(A) ≥ 0 the

singular values of a matrix A, i.e. the eigenvalues of the Hermitian matrix ∣A∣ ∶=
√

(A∗A). For

each p, Lp(Ĝ) is an ideal of L∞(Ĝ), see [23, 8.3]. Moreover, we define

C0(Ĝ) = {φ ∈ L∞(Ĝ) ∶ lim
π→∞

∥φπ∥∞ = 0}.

For each f ∈ L1(G), F(f) = (f̂(π))π∈Ĝ belongs to C0(Ĝ), where F denotes the Fourier transform

and

f̂(π) = ∫
G
f(x)π(x−1

)dx.

Indeed, F(L1(G)) is a dense subset of C0(Ĝ) and F is an algebra isomorphism from L1(G) onto

its image where F(f ∗ g) = F(f)F(g) for all f, g ∈ L1(G). Moreover, F(A(G)) is isometrically

isomorphic to the Banach space L1(Ĝ), [23].

For each two unitary irreducible representations π,σ ∈ Ĝ, we know that π ⊗ σ forms a

new unitary representation of G whose dimension is dπdσ. This new representation can be

decomposed as a direct product of a finite set of irreducible unitary representations π1, . . . , πn

with respective positive constants mπ,σ
1 , . . . ,mπ,σ

n ∈ N, i.e.

π ⊗ σ ≅
n

⊕
i=1

mπ,σ
i πi.

1Note that , as described in Chapter 1, for p = 1 and p = 2, p-Schatten norm is called Trace norm and
Hilbert-Schmidt norm respectively.
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consequently,

χπχσ = Tr(π)Tr(σ) = Tr(π ⊗ σ) = Tr(
n

⊕
i=1

mπ,σ
i πi) =

n

∑
i=1

mπ,σ
i Tr(πi) =

n

∑
i=1

mπ,σ
i χπi . (3.2.2)

Therefore the dimension of π ⊗ σ which is dπdσ is equivalent to ∑ni=1m
π,σ
i dπi . We define a

convolution on cc(Ĝ) by

δπ ∗ δσ ∶=
n

∑
i=1

mπ,σ
i dπi
dπdσ

δπi . (3.2.3)

Note that

∥
n

∑
i=1

mπ,σ
i dπi
dπdσ

δπi∥`1(Ĝ) =
n

∑
i=1

mπ,σ
i dπi
dπdσ

= 1 ≤ ∥δπ∥`1(Ĝ)∥δσ∥`1(Ĝ). (3.2.4)

By (3.2.3) the convolution is submultiplicative on cc(Ĝ), and since cc(Ĝ) is dense in `1(Ĝ); we

can extend the convolution defined in (3.2.3) to `1(Ĝ). For each representation π ∈ Ĝ, π denotes

the complex conjugate of π, [36, Definition 27.27].

Theorem 3.2.1. Let G be a compact group. Then Ĝ equipped with discrete topology, the convo-

lution (3.2.3), and the involution resulting from complex conjugate forms a discrete commutative

hypergroup.

Proof. (3.2.4) implies (H1) while the associativity is resulted from associativity of tensor prod-

ucts of the representations i.e. π1 ⊗ (π2 ⊗ π3) ≅ (π1 ⊗ π2)⊗ π3. Commutativity is a direct result

of this fact that π ⊗ σ is equivalent to σ ⊗ π. The trivial representation π0 ∶ G → U(C) where

π0(x) = 1 for all x ∈ G always belongs to Ĝ. Also, π ⊗ π0 ≅ π for all π ∈ Ĝ. So δπ0 plays the

role of the identity of `1(Ĝ) and so Ĝ satisfies (H4). Since π ≅ π and π ⊗ σ ≅ π ⊗ σ, (H5) is

held. One side of (H6) is directly resulted from [36, (27.34)]. On the other hand, suppose that

for two representations π,σ ∈ Ĝ, χπχσ = ∑ni=1m
π,σ
i χπi such that for one i, say i = 1, π1 = π0, the

trivial representation of G, and mπ,σ
1 > 0. Then

∫
G

n

∑
i=1

mπ,σ
i χπ0(x)χπi(x)dx =

n

∑
i=1

mπ,σ
i ∫

G
χπ0(x)χπi(x)dx =

n

∑
i=1

mπ,σ
i ⟨χπi , χπ0⟩L2(G) =m

π,σ
1

since {χπ}π∈Ĝ forms an orthogonal basis for ZL2(G) (see [36, Theorem 27.24]). Note that

χπ0(x) ≡ 1 and χπ(x) = χπ(x); hence similarly,

mπ,σ
1 = ∫

G
χπ(x)χσ(x)χπ0(x)dx = ∫

G
χπ(x)χσ(x)dx = ⟨χπ, χσ⟩L2(G) = δπ,σ,

Therefore π = σ.

To calculate the Haar measure of Ĝ, we apply Theorem 1.1.4. By [36, (27.34)], the multi-

plicity of π0 in the irreducible decomposition of π ⊗ π is 1. So for each π ∈ Ĝ, the Haar measure
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is defined by

h(π) = (δπ ∗ δπ(π0))
−1

=
dπdπ

1
= d2

π,

since dπ = dπ.

Example 3.2.2. Let SU(2) denote the compact Lie group of 2 × 2 special unitary matrices on

C, and let ŜU(2) be the hypergroup of all irreducible representations on SU(2). It is known

that

ŜU(2) = (π`)`∈0, 1
2
,1, 3

2
,⋯

where the dimension of π` is 2` + 1, see [36, 29.13]. Moreover, for all `, `′, π` = π` and

π` ⊗ π`′ ≅
`+`′

⊕
r=∣`−`′∣

πr = π∣`−`′∣ ⊕ π∣`−`′∣+1 ⊕⋯⊕ π`+`′ [36, Theorem 29.26]

called “Clebsch-Gordan” decomposition formula. So using Definition 3.2.3, we have that

δπ` ∗ δπ`′ =
`+`′

∑
r=∣`−`′∣

(2r + 1)

(2` + 1)(2`′ + 1)
δπr .

Also π` = π` and h(π`) = (2` + 1)2 for all `.

Remark 3.2.3. Indeed, the hypergroup structure of ŜU(2) can be rendered by a family of

Chebyshev polynomials as a polynomial hypergroup structure on N0. We will define polynomial

hypergroups in the following section.

Example 3.2.4. Suppose that {Gi}i∈I is a non-empty family of compact groups for arbitrary

indexing set I. Let G ∶=∏i∈IGi be the product of {Gi}i∈I i.e.

G ∶= {(xi)i∈I ∶ xi ∈ Gi}

equipped with the product topology. Then G is a compact group and [36, Theorem 27.43]

implies that Ĝ is nothing but

{π =⊗
i∈I

πi ∶ such that πi ∈ Ĝi and πi = π0 except for finitely many i ∈ I}

equipped with the discrete topology. Moreover, for each π =⊗i∈I πi ∈ Ĝ, dπ =∏i∈I dπi .

When πk =⊗i∈I π
(k)
i ∈ Ĝ for k = 1,2, one can show that

δπ1 ∗ δπ2(π) =∏
i∈I

δ
π
(1)
i

∗Ĝi
δ
π
(2)
i

(πi) for all π =⊗
i∈I

πi ∈ Ĝ,
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where ∗Ĝi is the hypergroup convolution of Ĝi for each i ∈ I. Also, each character χ of G is

related to a family of characters (χi)i∈I such that χi is a character of Gi and

χ(x) =∏
i∈I

χi(xi)

for each x = (xi)i∈I ∈ G. Note that χi ≡ 1 for all of i ∈ I except finitely many; therefore, χ is

well-defined.

3.3 Polynomial hypergroups on N0

Let N0 = N∪{0}. Let (an)n∈N0 and (cn)n∈N0 be sequences of non-zero real numbers and (bn)n∈N0

be a sequence of real numbers with the property

a0 + b0 = 1

an + bn + cn = 1, n ≥ 1.

If (Rn)n∈N0 is a sequence of polynomials defined by

R0(x) = 1,

R1(x) = 1
a0

(x − b0),

R1(x)Rn(x) = anRn+1(x) + bnRn(x) + cnRn−1(x), n ≥ 1,

(3.3.1)

then it is proven in [12] that there exists a probability measure π on R such that

∫
R
Rn(x)Rm(x)dπ(x) = δn,mµm (3.3.2)

where (µn)n∈N0 is a sequence of positive numbers. The sequence (Rn)n∈N0 satisfying (3.3.2) is

called an orthogonal polynomial sequence. By induction, one can see that Rn(1) = 1 for each

n ∈ N0. Moreover,

Rn(x)Rm(x) =
n+m

∑
k=∣n−m∣

g(n,m;k)Rk(x) (3.3.3)

where g(n,m;k) ∈ R for all ∣n −m∣ ≤ k ≤ n +m. Moreover, g(n,m; ∣n −m∣) and g(n,m;n +m)

are non-zero. The following theorem summarizes some of the main results of [49, Section 5].

Theorem 3.3.1. Let (Rn)n∈N0 be an orthogonal polynomial sequence defined by (3.3.1). Assume

that

g(n,m;k) ≥ 0 ∀n,m ∈ N0, ∣n −m∣ ≤ k ≤ n +m.

Let ∗ to be defined on N0 to `1(N0) such that

δn ∗ δm =
n+m

∑
k=∣n−m∣

g(n,m;k)δk
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and ň = n. Then (N0,∗,̌ ) is a discrete commutative hypergroup with the unit element 0 which

is called the polynomial hypergroup on N0 induced by (Rn)n∈N0.

[49, Section 5] is a good reference to observe almost all of the facts mentioned above. Here,

we should mention that there are plenty of concrete examples of polynomials that satisfy the

conditions of Theorem 3.3.1, namely Chebyshev polynomial of the first and second kinds, cosh

polynomials, ultraspherical polynomials, Jacobi polynomials, Karlin–McGregor polynomials, and

little q-Legendre polynomials.

Remark 3.3.2. For a polynomial hypergroup the left translation is defined by

Lnf(m) =
n+m

∑
k=∣n−m∣

g(n,m;k)f(k).

Moreover, the Haar function is defined by

h(n) = (δn ∗ δn)(0))
−1

= g(n,n; 0)−1
= µ−1

n .
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Chapter 4

Weighted discrete hypergroups

In this chapter we study weights on discrete hypergroups, their corresponding algebras, and

their examples. Specially we are interested to see concrete examples of weights defined on the

classes of commutative discrete hypergroups which were introduced in Chapter 3.

4.1 Weighted hypergroups and their algebras

Definition 4.1.1. Let H be a discrete hypergroup. We call a function ω ∶H → (0,∞) a weight

if, for every x, y ∈H,

ω(δx ∗ δy) ≤ ω(x)ω(y)

where ω(δx ∗ δy) = ∑t∈H ω(t)δx ∗ δy(t) is as defined in Section 1.1. We call (H,ω) a weighted

hypergroup. Let `1(H,ω) be the set of all complex functions on H such that

∥f∥`1(H,ω) ∶= ∑
t∈H

∣f(t)∣ω(t) <∞.

Then one can easily observe that (`1(H,ω), ∥ ⋅ ∥`1(H,ω)) forms a Banach space.

This definition is a specific case of the weighted hypergroups defined in [32]; here, we focus

mainly on discrete hypergroups.

Definition 4.1.2. A function ωz ∶H → (0,∞) is called a central weight if

ωz(t) ≤ ωz(x)ωz(y)

for all t, x, y ∈H where t ∈ x ∗ y(= supp(δx ∗ δy)), in the sense of (1.1.1).

Since, δx ∗ δy is a positive probability measure, for each central weight ωz, one gets that

∑
t∈H

ωz(t)δx ∗ δy(t) ≤ ∑
t∈H

ωz(x)ωz(y)δx ∗ δy(t) ≤ ωz(x)ωz(y)∥δx ∗ δy∥ = ωz(x)ωz(y).

Hence, ωz is a weight over a hypergroup H. Although, most of the hypergroup weight studied

in here are central, in Subsection 4.4.1 and Section 4.6, we will see some examples of weights

which are not central weights.
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For all f, g ∈ cc(H), we have

∥f ∗ g∥`1(H,ω) = ∑
t∈H

∣f ∗ g(t)∣ω(t)

= ∑
t∈H

∣ ∑
x∈H

∑
y∈H

δx ∗ δy(t)f(x)g(y)∣ω(t)

≤ ∑
x∈H

∑
y∈H

∑
t∈H

δx ∗ δy(t)ω(t)∣f(x)g(y)∣

= ∑
x∈H

∑
y∈H

ω(δx ∗ δy)∣f(x)∣ ∣g(y)∣

≤ ∑
x∈H

ω(x)∣f(x)∣ ∑
y∈H

ω(y)∣g(y)∣ = ∥f∥`1(H,ω)∥g∥`1(H,ω).

Since cc(H) is dense in `1(H,ω) and the convolution is continuous with respect to ∥ ⋅ ∥`1(H,ω),

one may extend the convolution to `1(H,ω). Therefore, (`1(H,ω),∗, ∥ ⋅ ∥`1(H,ω)) is actually a

Banach algebra; we call it weighted hypergroup algebra of H with respect to the weight ω.

Moreover, we can see that the dual of `1(H,ω) is nothing but `∞(H,ω−1) which is the set

of all functions φ ∶H → C such that

∥φ∥`∞(H,ω−1) ∶= sup
t∈H

∣f(t)∣ω(t)−1
<∞.

We may easily see that `∞(H,ω−1) equipped with the norm ∥ ⋅ ∥`∞(H,ω−1) forms a Banach space.

Definition 4.1.3. [17, Definition 2.6]

Let A be a Banach algebra. Then A is a dual Banach algebra with respect to E, if E is a closed

sub-bimodule of the dual A-bimodule A∗ that if for every φ ∈ E and f ∈ A, f ⋅φ and φ ⋅f belong

to E such that A = E∗.

Let c0(H,ω
−1) be the set all elements φ in `∞(H,ω−1) such that φω−1 is vanishing at infinity.

Clearly c0(H,ω
−1) is Banach subspace of `∞(H,ω−1).

Proposition 4.1.4. Let (H,ω) be a weighted discrete hypergroup for a central weight ω. Then

`1(H,ω) is a dual Banach algebra with respect to c0(H,ω
−1).

Proof. We know that `1(H,ω) can be considered as the dual of c0(H,1/ω) = {f ∶ H → C ∶

f/ω ∈ c0(H)}, by Riesz representation theorem; the second dual of c0(H,1/ω) is `∞(H,1/ω).

Let us define the Banach space isomorphism κ ∶ `1(H,ω) → `1(H) where κ(f) = fω for each

f ∈ `1(H,ω). Then κ∗ ∶ `∞(H)→ `∞(H,1/ω) where

⟨κ∗(φ), δx⟩ = ⟨φ,κ(δx)⟩ = ∑
t∈H

φ(t)ω(t)δx(t) = φ(x)ω(x)

for all x ∈H. So, κ∗(φ) = φω. One may easily show that κ∗(c0(H)) = c0(H,1/ω).
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On the other hand, we show that c0(H,1/ω) is an `1(H,ω)-bimodule. To do so, let f, g ∈

`1(H,ω) and φ ∈ c0(H,1/ω). Hence

⟨g, φ ⋅ f⟩ = ⟨f ∗ g, φ⟩ = ∑
y∈H

f ∗ g(y)φ(y)

= ∑
y∈H

∑
t∈H

∑
s∈H

δt ∗ δs(y)f(t)g(s)φ(y)

= ∑
s∈H

g(s)∑
t∈H

f(t) ∑
y∈H

δt ∗ δs(y)φ(y)

= ∑
s∈H

g(s)∑
t∈H

f(t)φ(δt ∗ δs).

Therefore,

φ ⋅ f(x) = ∑
t∈H

f(t)φ(δt ∗ δx).

And similarly,

f ⋅ φ(x) = ∑
t∈H

f(t)φ(δx ∗ δt).

Here we show that if φ ∈ c0(H,1/ω) and ω is central, f ⋅ φ and φ ⋅ f also belong to c0(H,1/ω)

for all f ∈ `1(H,ω). To do so, let us recall from Proposition 1.1.7 that for every ϕ ∈ c0(H) and

ψ ∈ `1(H),

x↦ ∑
t∈H

ψ(t)ϕ(δt̃ ∗ δx) (4.1.1)

belongs to c0(H).

Let ω be a central weight on H as defined in Definition 4.1.2. Note that for φ ∈ c0(H,1/ω)

and f ∈ `1(H,ω), κ∗−1
(∣φ∣) = ∣φ∣ω−1 ∈ c0(H). Moreover, since ∼∶ H → H is a bijection, κ̃(∣f ∣) ∶=

∣f̃ ∣ω̃ ∈ `1(H). Therefore,

∣φ ⋅ f(x)∣ = ∣∑
t∈H

f(t)φ(δt ∗ δx)∣

≤ ∑
t∈H

∣f ∣(t)∣φ∣(δt ∗ δx)

= ∑
t∈H

∣f ∣(t) ∑
s∈H

∣φ∣(s)δt ∗ δx(s)

= ∑
t∈H

κ(∣f ∣)(t)

ω(t)
∑
s∈H

κ∗
−1

(∣φ∣)(s) ω(s) δt ∗ δx(s)

≤ ∑
t∈H

κ(∣f ∣)(t)

ω(t)
∑
s∈t∗x

κ∗
−1

(∣φ∣)(s) ω(x)ω(t) δt ∗ δx(s) (⋆)

= ω(x)∑
t∈H

κ(∣f ∣)(t)κ∗
−1

(∣φ∣)(δt ∗ δx)

= ω(x)∑
t∈H

κ̃(∣f ∣)(t)κ∗
−1

(∣φ∣)(δt̃ ∗ δx). (⋆⋆)

Note that (⋆) is because ω is central. By (4.1.1), (⋆⋆) belongs to c0(H,1/ω). Consequently, φ ⋅f

whose absolute value is dominated by a function in c0(H,1/ω) belongs to c0(H,1/ω) as well.
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Similarly, one may show that f ⋅ φ lies in c0(H,1/ω). Therefore, c0(H,1/ω) is a sub-bimodule

of `1(H,ω)-bimodule `∞(H,ω) while c0(H,1/ω)
∗ = `1(H,ω). Consequently, `1(H,ω) is a dual

Banach algebra.

It would be interesting to know if the theorem remains true for arbitrary weights, not just

the central weights.

Definition 4.1.5. A hypergroup weight ω on H is called weakly additive, if for some C > 0,

ω(δx ∗ δy) ≤ C(ω(x) + ω(y)) for all x, y ∈ H. Also ω is said to be centrally additive if ω(t) ≤

C(ω(x) + ω(y)) for some C > 0 and all x, y, t ∈H such that t ∈ x ∗ y.

Note that for all x, y ∈ H, ∑t∈H δx ∗ δy(t) = 1; therfore, for each weight ω which is centrally

additive, it is weakly additive as well.

Definition 4.1.6. Let H be a hypergroup and ω1 and ω2 are two weights on H. Then ω1

and ω2 are two equivalent weights if there are two constants C1 > 0 and C2 > 0 such that

C1ω1 ≤ ω2 ≤ C2ω1.

It is straightforward to check that if two weights ω1 and ω2 on a hypergroup H are equivalent

with respect to two constants C1 and C2 as defined in Definition 4.1.6,

C1∥ ⋅ ∥`1(H,ω1)
≤ ∥ ⋅ ∥`1(H,ω1)

≤ C2∥ ⋅ ∥`1(H,ω1)
;

hence, `1(H,ω1) is isomorphic to `1(H,ω2).

Remark 4.1.7. Let H be a discrete hypergroup equipped with the Haar measure h. For a

weight ω ∶H → (0,∞), let L1(H,ω) be the set of all complex functions on H such that

∥f∥L1(H,ω) ∶= ∑
t∈H

∣f(t)∣ω(t)h(t) <∞.

Then (L1(H,ω), ∥ ⋅ ∥`1(H,ω)) equipped with the convolution forms a Banach algebra .

4.1.1 Product of weighted hypergroups

Let (H1, ω1) and (H2, ω2) be two weighted hypergroups. For the hypergroup H ∶=H1 ×H2 and

the function ω ∶= ω1 × ω2 ∶H1 ×H2 → (0,∞), we have that

∑
(s,t)∈H1×H2

ω(s, t)δ(x1,x2) ∗H δ(y1,y2)(s, t) = ∑
s∈H1

δx1 ∗H1 δy1(s)ω1(s) ∑
t∈H2

δx2 ∗H2 δy2(t)ω2(t)

≤ ω1(x1)ω1(y1) ω2(x2)ω2(y2)

= ω(x1, x2)ω(y1, y2).
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Therefore, ω forms a weight on the hypergroup H. An argument similar to the group case

implies that `1(H1 ×H2, ω1 × ω2) = `
1(H1, ω1)⊗γ `

1(H2, ω2).

As an extension of the previous example, let {Hi}i∈I be a family of discrete hypergroups with

corresponding weights {ωi}i∈I such that ωi(eHi) = 1 for all i ∈ I except finitely many. Let us

recall from Section 1.1 that the restricted direct product of {Hi}i∈I, denoted by H ∶=⊕i∈IHi, is

{(xi)i∈I ∶ xi = eHi for all i ∈ I but finitely many}.

We can define

δ(xi)i∈I ∗ δ(yi)i∈I(si)i∈I ∶=∏
i∈I

δxi ∗Hi δyi(si)

and

ω(xi)i∈I ∶=∏
i∈I

ωi(xi)

which are well-defined. Using the properties of finite product of hypergroups, one may easily

verify that H forms a discrete hypergroup. Moreover,

∑
(si)i∈I∈H

ω(si)i∈I δ(xi)i∈I ∗ δ(yi)i∈I(si)i∈I = ∏
i∈I

∑
si∈Hi

ωi(si) δxi ∗Hi δyi(si)

≤ ∏
i∈I

ωi(xi) ωi(yi)

= ω(xi)i∈I ω(yi)i∈I

for all (xi)i∈I and (yi)i∈I in H. Therefore, (H,ω) is a weighted hypergroup. Note that since in

the aforementioned equations, only for finitely many indices, the corresponding values may not

be 1, the calculations are well-defined.

4.2 Some weights related to the growth of hypergroups

If a, b ≥ 0 and β ≥ 0, then

(a + b)β ≤ C(aβ + bβ) (4.2.1)

where C = min{1,2β−1}. We will use this inequality in the following.

Let H be a discrete hypergroup. For each finite subset F of H, we define

Fn ∶=⋃{x1 ∗⋯ ∗ xn ∶ for all x1, . . . , xn ∈ F}.

Definition 4.2.1. A hypergroup H is called a finitely generated hypergroup if there exists a

finite subset F ⊆H, called a generator, such that

H = ⋃
n∈N

Fn.
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Let F be a finite symmetric generator of H i.e. x ∈ F implies that x̌ ∈ F . Then we define

τF ∶H → N ∪ {0} (4.2.2)

by τF (x) = inf{n ∈ N ∶ x ∈ Fn} for all x ≠ e and τF (e) = 0. Moreover, since F is symmetric,

τF (x̌) = τF (x). It is straightforward to verify that if F ′ is another finite symmetric generator of

H, then for some constants C1,C2, C1τF ′ ≤ τF ≤ C2τF ′ .

If there is no risk of confusion, we may just use τ instead of τF . For each pair x, y ∈ H, for

each t ∈ x ∗ y(= supp(δx ∗ δy)), t belongs to F τ(x)+τ(y), so

τ(t) ≤ τ(x) + τ(y) where t ∈ x ∗ y. (4.2.3)

• Polynomial weight. For a given β ≥ 0, ωβ(x) ∶= (1 + τ(x))β is a central weight on H.

Proof. We know that for each t ∈ x ∗ y, ωβ(t) = (1 + τ(t))β ≤ (1 + τ(x) + τ(y))β . On the

other hand,

ln(1 + τ(x) + τ(y)) ≤ ln(1 + τ(x) + τ(y) + τ(x)τ(y))

= ln(1 + τ(x)) + ln(1 + τ(y)).

Therefore ωβ(t) ≤ ωβ(x)ωβ(y).

Remark 4.2.2. ωβ is centrally additive (and consequently weakly additive). For a generator F

of H, note that

ωβ(t) = (1 + τF (t))
β
≤ (1 + τF (x) + τF (y))

β
≤ C(1 + τF (x))

β
+C(1 + τF (y))

β

= C(ωβ(x) + ωβ(y))

where C = min{1,2β−1} based on the inequality (4.2.1).

• Exponential weight. For given C > 0 and 0 ≤ α ≤ 1, σα,C(x) ∶= eCτ(x)
α
is a central

weight on H.

Proof. For x, y ∈ H and t ∈ x ∗ y, σα,C(t) = eCτ(t)
α
≤ eC(τ(x)+τ(y))

α
. Also eC(τ(x)+τ(y))

α
≤

eCτ(x)
α
eCτ(y)

α
, since τ(x) ≥ 1 for all x ≠ e.

Example 4.2.3. [49] implies that F = {0,1} is a symmetric generator of N0. Using induction

and since 1 ∈ F 1, suppose that τF (n) = n. Then by [49, Proposition 5.2], g(n,1;n + 1) ≠ 0;
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therefore, n + 1 ∈ supp(δn ∗ δ1) ⊆ F
n+1. But n + 1 ∉ Fn. Thus τF (n) = n for all n ∈ N0 for the

map τF defined in (4.2.2). In particular, N0 is a finitely generated hypergroup.

Consequently, for each β ≥ 0, we can define a polynomial weight ωβ on N0 where

ωβ(n) = (1 + n)β (n ∈ N0).

Also, for each 0 ≤ α ≤ 1 and C > 0, we can define an exponential weight σα,C on N0 where

σα,C(n) = e
Cnα

(n ∈ N0).

Using these two classes of weights we can generate a variety of weighted hypergroup algebras.

4.3 Weights on Conj(G) derived from group weights

For a (discrete) group G, as a hypergroup, a weight is a mapping σ ∶ G → (0,∞) such that

σ(xy) ≤ σ(x)σ(y) for all x, y ∈ G, since δx ⍟ δy = δxy. Then (G,σ) is called a weighted group.

Therefore, `1(G,σ) equipped by the convolution and the weighted norm i.e.

∥f∥`1(G,σ) = ∑
t∈G

∣f(t)∣σ(t). (4.3.1)

is a Banach algebra called weighted group algebra.

To prove the main result of this section, we need the following lemma.

Lemma 4.3.1. Let ω ∶ Conj(G)→ (0,∞) be defined on Conj(G). Then

ω(δC ∗ δD) =
1

∣C ∣∣D∣
∑
t∈C

∑
s∈D

ω(Cts) (C,D ∈ Conj(G)).

Proof. The proof is a straightforward calculation based on (3.1.3) as follows:

∑
E∈Conj(G)

ω(E)δC ∗ δD(E) = ∑
E∈Conj(G)

ω(E)
∣E∣

∣C ∣∣D∣
αC,DE

= ∑
Ct∈Conj(G),Ct⊆CD

1

∣C ∣∣D∣
αC,DCt

ω(Ct)

= ∑
t∈G

ω(Ct)

∣C ∣∣D∣
1C ⍟ 1D(t)

= ∑
t∈G

ω(Ct)

∣C ∣∣D∣
∑
s∈G

1C(s)1D(s−1t)

= ∑
t∈G

∑
s∈G

ω(Cst)

∣C ∣∣D∣
1C(s)1D(t)

=
1

∣C ∣∣D∣
∑
t∈D

∑
s∈C

ω(Cst).
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The following proposition, as the main result of this section, lets us apply group cases which

are constant on conjugacy classes to generate hypergroup weights on Conj(G).

Proposition 4.3.2. Let G be a FC group possessing a weight σ. Then the mean function ωσ

defined as

ωσ(C) =
1

∣C ∣
∑
t∈C

σ(t) for every C ∈ Conj(G) (4.3.2)

is a weight on the hypergroup Conj(G).

Proof. By Lemma 4.3.1, it suffices to show that

1

∣C ∣∣D∣
∑
t∈C

∑
s∈D

ωσ(Cts) ≤ ωσ(C)ωσ(D)

for all C,D ∈ Conj(G). To do so, using weighted group algebra `1(G,σ), one gets

∑
t∈D

∑
s∈C

ωσ(Cst) = ∑
t∈G

∑
s∈G

1C(s)1D(t)ωσ(Cst)

= ∑
t∈G

∑
s∈G

1C(s)1D(s−1t)ωσ(Ct)

= ∑
t∈G

1C ⍟ 1D(Ct)ωσ(Ct)

= ∑
E∈Conj(G)

1C ⍟ 1D(E)∣E∣ωσ(E)

= ∑
E∈Conj(G)

1C ⍟ 1D(E)∑
s∈E

σ(s)

= ∑
t∈G

1C ⍟ 1D(t)σ(t) = ∥1C ⍟ 1D∥`1(G,σ)

≤ ∥1C∥`1(G,σ)∥1D∥`1(G,σ) = ∣C ∣ωσ(C)∣D∣ωσ(D),

because ∥1E∥`1(G,σ) = ∑t∈E σ(t) = ωσ(E)∣E∣ for every E ∈ Conj(G).

We call ωσ the weight derived from σ. When (G,σ) is a weighted FC group, we define

Z`1(G,σ) = {f ∈ `1(G,σ), f(yxy−1
) = f(x) ∀x, y ∈ G}

which is the center of the Banach algebra `1(G,σ); hence, it is a commutative Banach algebra.

Corollary 4.3.3. Let (G,σ) be a weighted FC group, and ωσ on Conj(G) be the weight derived

from σ. Then the weighted hypergroup algebra `1(Conj(G), ωσ) is isometrically isomorphic to

Z`1(G,σ).

Proof. By Proposition 4.3.2, `1(Conj(G), ωσ) is a weighted hypergroup algebra. Similar to the

proof of Theorem 3.1.1, we define Ψ ∶ Z`1(G,σ) → `1(Conj(G), ωσ) such that for each f ∈
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Z`1(G,σ), Ψ(f)(C) = ∣C ∣f(C) for all C ∈ Conj(G). Note that Ψ is an algebra homomorphism,

since the convolution is the same of the hypergroup algebra restricted to Zcc(G)(= cc(G) ∩

`1(G)). To see that Ψ is an isometry, note that for every f ∈ Z`1(G,σ),

∥Ψ(f)∥`1(Conj(G),ωσ) = ∑
C∈Conj(G)

∣Ψ(f)(C)∣ωσ(C) = ∑
C∈Conj(G)

∣C ∣∣f(C)∣ωσ(C)

= ∑
C∈Conj(G)

∣f(C)∣∑
s∈C

σ(s) = ∑
t∈G

∣f(t)∣σ(t) = ∥f∥`1(G,σ).

Here, F (C) is as defined in (3.1.1).

4.4 Central weights on Conj(G)

Let ω be a mapping from Conj(G) to R+ such that ω(E) ≤ ω(C)ω(D) for all conjugacy classes

E,C,D ∈ Conj(G) where E ⊆ CD. Then it is immediate that ω forms a central weight on the

hypergroup Conj(G) as defined in Definition 4.1.2.

Remark 4.4.1. Let G be a FC group and ω be a central weight on Conj(G). Then the mapping

σω is defined on G by σω(x) ∶= ω(Cx) that forms a group weight on G. And `1(Conj(G), ω) as

a Banach algebra is isometrically isomorphic to Z`1(G,σω).

Example 4.4.2. Let G be a discrete FC group. The mapping ω(C) = ∣C ∣, for C ∈ Conj(G), is

a central weight on Conj(G). Clearly, if E ⊆ CD, we have ∣E∣ ≤ ∣C ∣∣D∣.

Example 4.4.3. Let G =⊕i∈IGi for a family of finite groups (Gi)i∈I as studied in Example 3.1.3.

Given C ∈ Conj(G), for each α > 0, we define a mapping

ωα(C) ∶= (1 + ∣Ci1 ∣ +⋯ + ∣Cin ∣)
α

where ij ∈ IC . We show that ωα is a central weight on Conj(G). Let E ⊆ CD for some

E,C,D ∈ Conj(G). One can easily show that for each i ∈ I, Ei ⊆ CiDi; IE ⊆ IC ∪ ID. Therefore,

ωα(C) = (1 + ∑
i∈IE

∣Ei∣)
α
≤ (1 + ∑

i∈IE

∣Ci∣∣Di∣)
α by Example 4.4.2

≤
⎛

⎝
1 + ∑

i∈IC

∣Ci∣
⎞

⎠

α
⎛

⎝
1 + ∑

i∈ID

∣Di∣
⎞

⎠

α

= ωα(C)ωα(D).

Theorem 4.4.4. Let (G,σ) be a weighted FC group such that M = supC∈Conj(G) ∣C ∣ <∞. Then

the hypergroup weight ωz(C) ∶=M2ωσ(C), for C ∈ Conj(G), forms a central weight.
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Proof. Let E ⊆ CD for some C,D,E ∈ Conj(G). Note that for each t ∈ E, there are some x ∈ C

and y ∈D such that t = xy, so one gets that

ωσ(E) =
1

∣E∣
∑
t∈E

σ(t) ≤
1

∣E∣
∑
t∈E

∑
x∈C

σ(x) ∑
y∈D

σ(y) ≤ ∑
x∈C

σ(x) ∑
y∈D

σ(y).

Hence,

ωσ(E) ≤ ∣C ∣ωσ(C) ∣D∣ωσ(D) ≤M2ωσ(C)ωσ(D),

and so, ωz(E) ≤ ωz(C)ωz(D).

Theorem 4.4.4 implies that for discrete groups whose conjugacy classes are uniformly finite,

every weight on G leads to a central weight on Conj(G). A group G is called a group with

finite commutator group or FD if its derived subgroup is finite. Let G be an FD group. For

every C ∈ Conj(G), C = {zxz−1 ∶ z ∈ G} for some x ∈ C. Hence, Cx−1 = {zxz−1x−1 ∶ z ∈ G} ⊆ G′

and therefore ∣C ∣ = ∣Cx−1∣ ≤ ∣G′∣. Therefore, the order of conjugacy classes of an FD group are

uniformly bounded by ∣G′∣.

4.4.1 An example: Conj(S3)

The natural question that one may ask would be the existence of a weight over Conj(G), for

some discrete FC group G, which is not equivalent to any central weight with respect to the

equivalency defined in Definition 4.1.6. In this subsection, we generate a class function which is

satisfying Lemma 4.3.1 but is not equivalent to any central weight.

Let Sn be the symmetric group of degree n. First, we study Conj(Sn) for n = 3 and

some possible weights on the finite hypergroup Conj(S3). Recall that for any element x =

(i
(1)
1 ⋯i

(1)
k1

)⋯(i
(m)
1 ⋯i

(m)
km

) ∈ Sn, where (i
(j)
1 ⋯i

(j)
kj

)’s are pairwise commute cycles, the conjugacy

class of x is the set of all elements of Sn which can be written in the same cycle structure [19,

Section 1.3].

Figure 4.1 summarizes the support of δC ∗ δD for all C,D ∈ Conj(S3). As an example,

supp(δC
(12)

∗ δC
(123)

) = C(12). To check this note that for each z ∈ G where 1C
(12)

⍟1C
(123)

(z) ≠ 0,

one gets that

1C
(12)

⍟ 1C
(123)

(z) = ∑
t∈S3

1C
(12)

(t)1C
(123)

(t−1z) = ∑
t∈S3

1C
(12)

(t)1tC
(123)

(z) = ∑
t∈C

(12)C(123)

(t).

So, by the definition of the convolution on Conj(S3), supp(δC
(12)

∗ δC
(123)

) = C(12)C(123) which

is C(12). Clearly, since Conj(S3) forms a commutative hypergroup the table is symmetric, and

hence, one may complete the other half symmetrically.
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∗ Ce C(12) C(123)
Ce {Ce} {C(12)} {C(123)}
C(12) {Ce,C(123)} {C(12)}
C(123) {Ce,C(123)}

Figure 4.1: Convolution action on conjugacy classes of S3

Example 4.4.5. Using the table, one may easily verify that the weight ω, defined in the fol-

lowing, forms a central weight on Conj(S3).

Ce C(12) C(123)

ω 1 3 5

Applying Lemma 4.3.1, it is sufficient to check that the following inequalities hold for ω to

be a weight on Conj(S3).

(i) 1/3 ω(Ce) + 2/3 ω(C(123)) ≤ ω(C(12))
2.

(ii) 1 ≤ ω(Ce), ω(C(123)).

(iii) 1/2ω(C(123)) + 1/2ω(Ce) ≤ ω(C(123))
2.

Remark 4.4.6. Some long computations on the previous equations imply that for each weight

ω on Conj(S3), one may show that ωz = αω will be a central weight for all α > 5/4.

Example 4.4.7. Considering equations (i), (ii), and (iii), one may verify that the weight ω

as defined below is a weight on Conj(S3).

Ce C(12) C(123)

ω 1 2 5

On the other hand, since 5 = ω(C(123)) ≰ ω(C(12))
2 = 4, ω is not a central weight.

Question. Can one generate a group weight σ on S3 for which ωσ is not a central weight on

Conj(S3)?

Example 4.4.8. We generate the RDPF group G = ⊕n∈N S3 as defined in Section 2.2. Let us

define the weight ω′ ∶=∏n∈N ω on Conj(G) where ω is the hypergroup weight on Conj(S3) defined

in Example 4.4.7. For each N ∈ N, define DN ∶= ∏n∈ND
(N)
n ∈ Conj(G) where D(N)n = C(123)

for all n ∈ 1, . . . ,N and D
(N)
n = Ce otherwise. One can verify that DN ∈ supp(δEN ∗ δEN ) for
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EN = ∏n∈NE
(N)
n ∈ Conj(G) with E

(N)
n = C(12) for all n ∈ 1, . . . ,N and E

(N)
n = Ce otherwise.

Therefore
ω′(DN)

ω′(EN)2
=

N

∏
n=1

ω(C(123))

ω(C(12))
2
= (5/4)N →∞

where N → ∞. We claim that ω′ is a weight which cannot equal any central weight i.e. there

is not a constant M such that Mω′ is a central weight. To prove this claim, let ωz be a central

weight and α1 and α2 two positive constants such that α1ω
′ ≤ ωz ≤ α2ω

′. Hence,

ω′(DN)

ω′(EN)2
≤
α2

2ωz(DN)

α1ωz(EN)2
<
α2

2

α1

which is a contradiction.

4.5 Weights related to quotient groups

Let G be a group, N a normal subgroup of G, and T ∶ `1(G) → `1(G/N) the Reiter’s map as

defined in [65, (3.4.10)],

Tf(xN) = ∑
t∈N

f(xt) for f ∈ `1(G)

which is an onto algebra homomorphism. For each f ∈ Z`1(G) and g ∈ `1(G), note that Tf⍟Tg =

T (f ⍟ g) = T (g ⍟ f) = Tg ⍟ Tf . Since T is onto, this implies that T (Z`1(G)) ⊆ Z`1(G/H).

Let us denote the restriction of T to Z`1(G) by T again; hence, T ∶ Z`1(G) → Z`1(G/N). By

Theorem 3.1.1, T can be seen as a mapping T ∶ `1(Conj(G))→ `1(Conj(G/N)).

Claim. We claim that for each x ∈ G, T (δCx) = αCxN δCxN for some 0 < αCxN ≤ 1.

Proof of Claim. For each Cx ∈ Conj(G) and CzN ∈ Conj(G/N), applying Ψ defined to prove

Theorem 3.1.1, one gets

T (δCx)(CzN) = T ○Ψ(
1

∣Cx∣
1Cx)(zN) =

1

∣Cx∣
∑
t∈N

1Cx(zt). (4.5.1)

First, assume that CxN ≠ CzN . Toward a contradiction, one may assume that for some

t ∈ N , zt ∈ Cx. Without loss of generality, let zt = x. But, this implies that zN = xN which is a

contradiction. Therefore, if CxN ≠ CzN , T (δCx)(CzN) = 0.

On the other hand, one may complete the equation (4.5.1) as follows.

T (δCx)(CzN) =
1

∣Cx∣
∑
t∈N

1Cx(zt) =
1

∣Cx∣
∑
y∈Cx

∑
t∈N

δy(zt).

So, if for some y ∈ Cx, zt = y, ∑t∈N δy(zt) = 1;

0 <
1

∣Cx∣
≤

1

∣Cx∣
∑
y∈Cx

∑
t∈N

δy(zt) ≤ 1 = δCxN (CxN).
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For some 0 < αCxN ≤ 1, we have proved the claim. ◻

Suppose that ω be a weight on Conj(G) which is bounded away from zero i.e. for some

δ > 0, ω(C) > δ for all C ∈ Conj(G). Since ω is away from zero by some δ > 0, for each

f ∈ `1(Conj(G), ω),

δ∥f∥`1(Conj(G)) = ∑
C∈Conj(G)

δ∣f(C)∣ ≤ ∑
C∈Conj(G)

∣f(C)∣ω(C) = ∥f∥`1(Conj(G),ω).

Therefore, `1(Conj(G), ω) is a subalgebra of `1(Conj(G)). So, let us define the restricted map

Tω by

Tω ∶= T ∣`1(Conj(G),ω) ∶ `
1
(G,ω)→ A

where A = Im(Tω) is equipped with the quotient norm i.e. for each f ∈ `1(Conj(G), ω),

∥Tω(f)∥q = inf{∥f − k∥`1(Conj(G),ω), k ∈ KerTω}.

Some arguments in the proof of the following proposition are similar to the ones in [65,

Proposition 3.6.11].

Proposition 4.5.1. The mapping ω̃ ∶ Conj(G/N)→ R+ defined as

ω̃(CxN) = inf{ω(Cxy) ∶ y ∈ N} (CxN ∈ Conj(G/N))

forms a weight on Conj(G/N).

Proof. Note that, Tω(δCx − δCxy) = αCxN (δCxN − δCxyN ) = 0 for all x ∈ G and y ∈ N . For each

x ∈ G and

∥Tω(δCx)∥q = inf{∥αCxN δCx − k∥`1(Conj(G),ω) ∶ k ∈ KerTω}

≤ inf{∥αCxN δCx + αCxN δCxy − αCxN δCx∥`1(Conj(G),ω) ∶ y ∈ N}

= αCxN inf{ω(Cxy) ∶ y ∈ N} = αCxN ω̃(CxN).

Let us study the dual of the map Tω which is denoted by T ∗ω ∶ A∗ → `∞(Conj(G), ω−1). So for

each ϕ ∈ A∗, T ∗ω(ϕ) ∈ `∞(Conj(G), ω−1). Hence,

∥ϕ∥A∗ ≥ sup
C∈Conj(G)

∣⟨ϕ,Tω(δCx)⟩∣

∥Tω(δCx)∥q
≥ sup
CxN ∈Conj(G/N)

αCxN ∣ϕ(CxN)∣

αCxN ω̃(CxN)
= ∥ϕ∥`∞(Conj(G/N),ω̃−1).

54



Also, since A is equipped with the quotient topology, T ∗ω is an isometry. Hence,

∥ϕ∥A∗ = ∥T ∗ω(ϕ)∥`∞(Conj(G),ω−1)

= sup
Cx∈Conj(G)

∣T ∗ω(ϕ)(Cx)∣

ω(Cx)

≤ sup
Cx∈Conj(G)

∣T ∗ω(ϕ)(Cx)∣

ω̃(CxN)

= sup
Cx∈Conj(G)

∣⟨ϕ,Tω(δCx)⟩∣

ω̃(CxN)

= sup
x∈G

αCxN
∣ϕ(CxN)∣

ω̃(CxN)
≤ ∥ϕ∥`∞(Conj(G/N),ω̃−1).

So ∥ ⋅ ∥A∗ = ∥ ⋅ ∥`∞(Conj(G/N),ω̃−1). Consequently, as two Banach algebras,

`1(Conj(G/N), ω̃) ≅ `1(Conj(G), ω)/KerTω.

Thus,

∥δCxN ∗ δCyN ∥`1(Conj(G/N),ω̃) ≤ ∥δCxN ∥`1(Conj(G/N),ω̃)∥δCyN ∥`1(Conj(G/N),ω̃)

which equals to this fact that ω̃(δCxN ∗ δCyN ) ≤ ω̃(CxN)ω̃(CyN). This shows that ω̃ is a weight

on Conj(G/N).

4.6 Weights on duals of compact groups

Corollary 4.6.1. Let G be a compact group and Ĝ be the set of all irreducible representations

of G as a discrete commutative hypergroup. Then ωβ(π) = d
β
π = h(dπ)

β/2 is a central weight for

each β ≥ 0.

Proof. Since for every pair π,σ ∈ Ĝ, the dimension of π ⊗ σ which is dπdσ is equivalent to

∑
n
i=1m

π,σ
i dπi for some mπ,σ

i > 0 and (πi)
n
i=1 ⊆ Ĝ, for each πi0 ∈ π ∗ σ one gets that

dπdσ =
n

∑
i=1

mπ,σ
i dπi ≥m

π,σ
i0
dπi ≥ dπi0 .

Example 4.6.2. Let ŜU(2) be the hypergroup of all irreducible representations on the compact

group SU(2). Let F = {π0, π1/2}. We claim that F is a generator for ŜU(2). For π1 we know

that

δπ1/2 ∗ δπ1/2 =
3

4
δπ1 + δπ0 .

So F 2 = {π0, π1/2, π1}. We claim that F 2k = {π`}
k
`=0. Suppose that this claim is correct for k − 1

2

that is F 2k−1 = {πi}
k−1/2
i=0 . Therefore, for each πi ∈ F

2k−1, πi ∗ π0 = πi and for each πi ≠ π0,
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πi ∗ π1/2 = {πi−1/2, πi+1/2}. So F 2k = F 2k−1
⋃{πk}. Thus, ∣Fn∣ = n + 1 and for each ` ∈ ŜU(2),

τF (π`) = 2` for all ` > 0 and τF (π0) = 0 where τF is the map defined in (4.2.2).

Consequently, for each β ≥ 0, we can define a polynomial weight ωβ on ŜU(2) when

ωβ(π`) = (1 + 2`)β π` ∈ ŜU(2). (4.6.1)

Note that (4.6.1) implies that ωβ(π) = h(π)β/2 = d
β
π corresponds to the weight defined in Corol-

lary 4.6.1.

Also, for each 0 ≤ α ≤ 1 and C > 0, we can define an exponential weight σα,C on ŜU(2) where

σα,C(`) = e
C(2`)α ` ∈ ŜU(2).

Example 4.6.3. Let us define ωa ∶ ŜU(2)→ R+ such that

ωa(π`) =
a2`+1

2` + 1

for a fixed constant a ≥ (
√

5 + 1)/2. We show that ωa is a weight on ŜU(2). For a pair of `, `′

in 1
2Z

+ ∶= {0,1/2,1,3/2, . . .}, without loss of generality suppose that ` ≥ `′. So

`+`′

∑
r=`−`′

(2r + 1)ωa(πr) =
`+`′

∑
r=`−`′

a2r+1

= a2`−2`′+1
2`′

∑
r=0

a2r

= a2`−2`′+1 a
4`′+2 − 1

a2 − 1

=
a2`+2`′+3

a2 − 1
−
a2`+2`′+1

a2 − 1

≤ a2`+2`′+2
(

a

a2 − 1
)

≤
a

a2 − 1
ωa(`)(2` + 1)ωa(`

′
)(2`′ + 1).

But since a ≥ (
√

5 + 1)/2, a/(a2 − 1) ≤ 1; therefore,

ωa(δπ` ∗ δπ`′ ) ≤ ωa(π`)ωa(π`′).

Note that
ωa(π2`)

ωa(π`)2
=
a4`+1

4` + 1
/(
a2`+1

2` + 1
)

2

→∞

where ` → ∞; while π2` ∈ π` ∗ π`. Hence, not only is ωa not a central weight but also it is not

equivalent to any central weight. To show the second claim, let ωz be a central weight and α1

and α2 two constants such that α1ωa ≤ ωz ≤ α2ωa. Hence,

ωa(π2`)

ωa(π`)2
≤
α2

2ωz(π2`)

α1ωz(π`)2
<
α2

2

α1

which is a contradiction.
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Example 4.6.4. Let σ be a weight on the group Z i.e. σ(m + n) ≤ σ(m)σ(n). We define

ωσ(π`) =
1

2` + 1

2`

∑
r=−2`

σ(r) (` ∈
1

2
Z+). (4.6.2)

Recall that elements of ŜU(2) can be regarded as πk when k ∈ 1
2Z

+. Suppose that m,n ∈ 1
2Z

+

and without loss of generality n ≥m. Then,

ωσ(πm)ωσ(πn) =
1

2m + 1

2m

∑
t=−2m

σ(t)
1

2n + 1

2n

∑
s=−2n

σ(s)

≥
1

(2m + 1)(2n + 1)

2m

∑
t=−2m

2n

∑
s=−2n

σ(t + s)

=
1

(2m + 1)(2n + 1)

2n+2m

∑
t=2n−2m

2n

∑
s=−2n

σ(t − 2n + s)

=
1

(2m + 1)(2n + 1)

2n+2m

∑
t=2n−2m

t

∑
s=t−4n

σ(s) (⋆)

≥
1

(2m + 1)(2n + 1)

2n+2m

∑
t=2n−2m

t

∑
s=−t

σ(s)

=
n+m

∑
r=n−m

(2r + 1)

(2m + 1)(2n + 1)
(

1

2r + 1

2r

∑
s=−2r

σ(r))

=
n+m

∑
r=n−m

(2r + 1)

(2m + 1)(2n + 1)
ωσ(πr)

= ωσ(δπm ∗ δπn).

We note that, in (⋆) above, since if 2n − 2m ≤ t ≤ 2n + 2m and −2(n +m) ≤ t − 4n; therefore

−2n ≤ t, one gets that t − 4n ≤ −t. Therefore, ωσ forms a weight on ŜU(2) as a hypergroup.

Remark 4.6.5. Let σ(n) = an for some a ≥ 1 on Z. Clearly, σ is a weight on Z and therefore,

one may consider the weight ωσ as defined in Example 4.6.4. For each ` ∈ 1
2Z

+ and a ≥ (1+
√

5)/2,

ωσ(π`) =
1

2` + 1

2`

∑
r=−2`

ar =
a−2`

2` + 1
(1 + a2

+⋯ + a4`
)

=
a−2`

2` + 1

a4`+2 − 1

a2 − 1

= ωa(π`)
a4`+2 − 1

a4`+1(a2 − 1)

where ωa is the weight defined in Examples 4.6.3. But some simple calculations verify that for

every ` ∈ 1
2Z

+ and a > 1,
1

a
≤

a4`+2 − 1

a4`+1(a2 − 1)
≤

a

a2 − 1
.

This implies that
1

a
ωa ≤ ωσ ≤

a

a2 − 1
ωa

for each a ≥ (
√

5 + 1)/2; hence, the weights ωa and ωσ are equivalent according to Definition 4.1.6.
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Example 4.6.6. [58, Proposition 4.11]

Let G be a compact group and ω be a central weight on the hypergroup Ĝ. Then for each closed

subgroup N of G, we may define ωN on N̂ such that

ωN(σ) = inf
π∈Ĝ,σ≤π∣N

ω(π) (σ ∈ N̂)

where σ ≤ π∣N means that σ is equivalent to one of the representations of irreducible decom-

position of π∣N . Given ε > 0, note that if σ1, σ2 ∈ N̂ there are π1, π2 ∈ Ĝ such that σi ≤ πi and

ω(πi) < ωN(σi) + ε for i = 1,2. Note that for each σ ∈ σ1 ∗ σ2, σ ≤ σ1 ⊗ σ2 ≤ π1∣N ⊗ π2∣N ; hence,

ωN(σ) = inf
π∈Ĝ,σ≤π∣N

ω(π) ≤ inf
π≤π1⊗π2,σ≤π∣N

ω(π) ≤ ω(π1)ω(π2) ≤ (ωN(σ1) + ε)(ωN(σ2) + ε).

Since ε > 0 is arbitrary, it implies that ωN is a central weight on N̂ .
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Chapter 5

The Fourier algebra of a regular Fourier hyper-

group

For a hypergroup H, Muruganandam, [60], gave a definition of the Fourier space, A(H),

and showed that A(H) is a Banach algebra with pointwise product for certain commutative

hypergroups. In this chapter first we study Fourier space of hypergroups in general. Then we

focus on the Fourier algebra of dual of compact groups. We finishes the chapter by studying the

amenability of ZA(G) for a compact group G in Section 5.3.

A version of some results of Sections 5.1 and 5.2 has appeared in [2].

5.1 Background

In this section, we review main properties of A(H) from [60]; the proof of all unproven results

mentioned in the following may be found there.

For a compact hypergroup H, Vrem in [78] defined the Fourier space similar to the Fourier

algebra of a compact group. Subsequently, Muruganandam, [60], defined the Fourier-Stieltjes

space on an arbitrary (not necessary compact) hypergroup H using irreducible representations

of H analogous to the Fourier-Stieltjes algebra on locally compact groups. Subsequently, he

defined the Fourier space of a hypergroup H, as a closed subspace of the Fourier-Stieltjes

algebra, generated by {f ∗h f̃ ∶ f ∈ L2(H,h)} or equivalently generated by {f ∗h f̃ ∶ f ∈ Cc(H)};

hence, A(H) ∩Cc(H) is dense in A(H).

Proposition 5.1.1. Let H be a hypergroup. Then

(1) A(H) ∩Cc(H) is dense in A(H),

(2) A(H) ⊆ C0(H), by [60, Corollary 2.13],

(3) ∥ ⋅ ∥∞ ≤ ∥ ⋅ ∥A(H), by [60, Remark 2.9],

(4) for every u ∈ A(H), Lxu, ǔ, and u belong to A(H), [60, Proposition 2.16].
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In [60], Muruganandam showed that when H is commutative, A(H) can be characterized as

follows. This argument first was appeared in [13].

Theorem 5.1.2. [60, Section 4]

Let H be a commutative hypergroup. Then A(H) = {f ∗h g̃ ∶ f, g ∈ L2(H,h)} and ∥u∥A(H) =

inf ∥f∥2∥g∥2 for all f, g ∈ L2(H,h) such that u = f ∗ g̃.

Remark 5.1.3. The key point for this advantage of commutative hypergroups, as it was proven

in [60, Proposition 4.2] and [13, Section 2], is this fact that F(A(H)), where F is the (extension

of the) Fourier transform, is L1(S,π) where S, as a subset of Ĥ, is the support of the Plancherel

measure π (see [8, Chapter 2]). Note that the Fourier transform F ∶ L1(H)→ C0(Ĥ) is an algebra

isomorphism i.e. F(f ∗ g) = F(f)F(g). Moreover, similar to the group case, F ∣L2(H)∩L1(H) is

an isometry which can be extended as an isometric isomorphism from L2(H) onto the Banach

space L2(S,π) (see [8, Theorem 2.2.22]). Therefore, by taking care of some details, one may

obtain that for each u ∈ A(H), F(u) ∈ L1(S,π) and since F(u) = fg for some f, g ∈ L2(S,π),

u = I ○F(u) = I(f) ∗ I(g).

But note that I(f),I(g) ∈ L2(H). The implication of the norm is now obvious applying the

mapping I for every f ∈ A(H).

For a hypergroup H, it is known that for every x ∈ H and f ∈ L2(H), Lxf ∈ L2(H) while

∥Lxf∥2 = ∥f∥2 (see [8, (1.3.18)]). Therefore, Lx is an operator in B(L2(H)) which we denote

it by λ(x). The von Neumann sub-algebra of B(L2(H)) generated by (λ(x))x∈H is called the

hypergroup von Neumann algebra of H and denoted by V N(H).

On the other hand, for each f ∈ L1(H), f ∗ g ∈ L2(H) for g ∈ L2(H) while

∥f ∗ g∥2 ≤ ∥f∥1∥g∥2 (5.1.1)

(see [8, (1.4.12)]). So the operator λ(f) which carries g to f ∗ g belongs to B(L2(H)). The C∗-

algebra generated by (λ(f))f∈L1(H) in B(L2(H)) is called reduced C∗-algebra of H and denoted

by C∗
λ(H). It is proven in [60] that C∗

λ(H) is actually a C∗-subalgebra of V N(H).

Let Bλ(H) denote the set of all continuous, bounded functions φ on H such that

∥u∥Bλ(H) ∶= sup{∫
H
u(x)f(x)dx ∶ f ∈ L1

(H), ∥f(x)∥C∗

λ
(H) ≤ 1} <∞.

Similar to the group case, it is proved that (Bλ(H), ∥ ⋅ ∥Bλ(H)) forms a Banach space which

is isomorphic to the dual of C∗
λ(H). Moreover, A(H) ⊆ Bλ(H) and for every u ∈ A(H),

∥u∥A(H) = ∥u∥Bλ(H).
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Remark 5.1.4. Note that based on the inequality (5.1.1), for each f ∈ L1(H), ∥f∥V N(H) =

∥f∥C∗

λ
(H) ≤ ∥f∥1. Hence, for every F ∈ V N(H)∗ while L1(H) is observed as a subalgebra of

V N(H), F ∣L1(H) can be considered as a functional on L1(H) or equivalently, F ∣L1(H) can be

represented by an element in L∞(H), because

∣⟨F, f⟩∣ ≤ ∥F ∥∥f∥V N(H) ≤ ∥F ∥∥f∥L1(H).

For a net (Tα)α ⊆ B(H) where H is a Hilbert space, Tα converges to 0 in σ-weak topology if

lim
α
∑
n

⟨Tαξn, ηn⟩ = 0

for all sequences of (ξn, ηn)n ⊆H where ∑n(∥ξn∥2
H + ∥ηn∥

2
H) <∞.

Theorem 5.1.5. [60, Theorem 2.19]

Let H be a hypergroup. For every T ∈ V N(H) there exists a unique continuous linear functional

φT on A(H) satisfying φT (u) = ⟨T (f), g⟩L2(H) where ǔ = f ∗ g̃. The mapping T ↦ φT is a

Banach space isomorphism between V N(H) and A(H)∗. Moreover, the above mapping is also a

homeomorphism when V N(H) is given the σ-weak topology and A(H)∗ is given weak∗ topology.

Abusing the notation, for every T ∈ V N(H) let us denote φT ∈ A(H)∗ by T from now on.

One may show that for each µ ∈M(H), µ can be considered as an element in V N(H). In this

case for each µ ∈M(H) and the corresponding operator Tµ ∈ V N(H),

⟨Tµ, u⟩ = ∫
H
u(x)dµ(x) (u ∈ A(H)), (5.1.2)

by [60, Proposition 2.21]. In particular, for each u ∈ A(H),

λ(x)(u) = u(x). (5.1.3)

Remark 5.1.6. For each f ∈ L1(H) and u, v ∈ A(H), note that f can be considered as a

function in V N(H); therefore, by (5.1.2),

⟨f ⋅ u, v⟩ = ⟨f, uv⟩ = ∫
H
f(x)u(x)v(x)dh(x).

Hence, f ⋅u and similarly u ⋅f equals pointwise multiplication of u and f on almost every x ∈H.

Moreover, the reduced C∗-algebra of H, C∗
λ(H), is a closed A(H)-submodule of V N(H).

The last part of Theorem 5.1.5 and the characterization of A(H) for a commutative hyper-

group H in Theorem 5.1.2 result the following corollary.
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Corollary 5.1.7. Let H be a commutative hypergroup. Then for a net (Tα)α ⊆ V N(H), Tα

converges to 0 in σ-weak topology if for every pair f, g ∈ L2(H), ⟨Tαf, g⟩→ 0.

Recall that a state on a C∗-algebra is a positive linear functional of norm 1. Moreover,

if A is a von Neumann algebra with predual A∗, every state of A can be approximated by a

net of states of the elements of pre-dual in the weak∗ topology. Therefore, for a commutative

hypergroup H each state u on V N(H) which belongs to A(H) is in the form of f ∗h f̃ for some

f ∈ L2(H) such that

1 = ∥u∥A(H) = u(e) = ∥f∥2
2. (5.1.4)

In [60], Muruganandam calls the hypergroup H a regular Fourier hypergroup, if the Banach

space (A(H), ∥ ⋅ ∥A(H)) equipped with pointwise product is a Banach algebra. He studied this

property for a variety of commutative hypergroups in [60]. He showed that some polynomial

hypergroups including Jacobi polynomial hypergroups and Chebyshev polynomial hypergroups

are regular Fourier hypergroups. Furthermore, in [61], he pursued this study for double coset

hypergroups (which are not necessarily commutative). He showed that the hypergroup of the

double coset of a locally compact group G with respect to some compact subgroup H, usually

denoted by G//H, is also a regular Fourier hypergroup. One may see [8, Section 1.5] for more

information about coset hypergroups.

We prove a hypergroup version of [26, Lemma 3.2] which shows some important properties

of the Banach space A(H) for an arbitrary hypergroup H (not necessarily a regular Fourier

hypergroup). Some parts of the following Lemma have already been shown in [78] for compact

hypergroups where proof is applicable to general hypergroups. Here we present a complete proof

for the lemma. Note that for each A ⊆H for a hypergroup H, we define Ǎ = {x̌ ∶ x ∈ A}.

Lemma 5.1.8. Let H be a hypergroup, K a compact subset of H and U an open subset of H

such that K ⊂ U . Then for each relatively compact open set V such that K ∗ V ∗ V̌ ⊆ U , there

exists some uV ∈ A(H) ∩Cc(H) such that:

1. uV (H) ≥ 0.

2. uV ∣K = 1.

3. supp(uV ) ⊆ U .
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4. ∥uV ∥A(H) ≤ (hH(K ∗ V )/hH(V ))
1
2 .

Proof. Let us define

uV ∶=
1

hH(V )
1K∗V ∗h 1̌V .

Since, for every x, t ∈H, 1K∗V (t)1̌V (δť ∗ δx) ≥ 0, uV ≥ 0. Moreover, for each x ∈K ,

hH(V )uV (x) = 1K∗V ∗h 1̌V (x)

= ∫
H

1K∗V (t)1̌V (δť ∗ δx)dhH(t)

= ∫
H

1K∗V (t)1V (δx̌ ∗ δt)dhH(t)

= ∫
t∈H

1K∗V (δx ∗ δt)1V (t)dhH(t) (by [8, Theorem 1.3.21])

= ∫
V
⟨1K∗V , δx ∗ δt⟩dhH(t)

= hH(V ).

Also [8, Proposition 1.2.12] implies that

supp(1K∗V ∗h 1̌V ) ⊆ (K ∗ V ∗ V̌ ) ⊆ U

which implies that uV has compact support, [8, Proposition 1.2.12]. Finally, by [60, Proposi-

tion 2.8], we know that

∥uV ∥A(H) ≤
∥1K∗V ∥2∥1V ∥2

hH(V )
=
hH(K ∗ V )

1
2hH(1V )

1
2

hH(V )
=
hH(K ∗ V )

1
2

hH(V )1
2

.

Remark 5.1.9. For each pair K,U such that K ⊂ U , we can always find a relatively compact

neighborhood V of eH that satisfies the conditions in Lemma 5.1.8. The existence is a result

of continuity of the mapping (x, y) ↦ x ∗ y with respect to the locally compact topology of

H × H into the Michael topology on C(H), (H3). Since H is locally compact, there exists

some relatively compact open set W such that K ⊆ W ⊆ W ⊆ U ; K ∈ CH∖W (W ) as an open

set in the Michael topology and consequently for each x ∈ K, x ∗ e ∈ CH∖W (W ). Since, the

mapping e→ x ∗ e is continuous, there is some neighborhood V x
1 of e such that for each y ∈ V x

1 ,

x ∗ y ∈ CH∖W (W ) i.e. x ∗ y ⊆W and x ∗ y ∩H ∖W = ∅. Let us define

V (1) = ∪x∈K(V x
1 ∩ V̌ x

1 ).

Clearly, V̌ (1) = V (1). Moreover,

K ∗ V (1) = ∪y∈V (1) ∪x∈K x ∗ y ⊆ ∪x∈Kx ∗ V
x

1 ⊆W
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and K∗V (1)∩H∖W = ∅ since (x∗y)∩(H∖W ) = ∅ for all x ∈K and y ∈ V (1). Now let us replace

K by the compact set K ∗ V (1). Therefore, similar to the previous argument, for some relatively

compact open setW ′ such thatK ∗ V (1) ⊆W ′ ⊆W ′ ⊆ U , one may find some V (2) a neighborhood

of e such that V (2) = V̌ (2), K ∗ V (1) ∗ V (2) ⊆W ′, and (K ∗ V (1) ∗ V (2)) ∩ (H ∖W ′) = ∅. Hence,

for the relatively compact open set V ∶= V (1) ∩ V (2), one gets that V = V̌ and

K ∗ V ∗ V̌ ⊆K ∗ V (1) ∗ V (2) ⊆W ′.

So K ∗ V ∗ V̌ ⊆ U .

Remark 5.1.10. Let H be a regular Fourier hypergroup. Then if (eα)α is an approximate

identity of A(H), for each compact set K ⊆H, by Lemma 5.1.8, there is some uK ∈ A(H) such

that uK ∣K ≡ 1. Therefore, for each x ∈K, and based on Proposition 5.1.1,

lim
α

∣1 − eα(x)∣ = lim
α

∣uK(x) − uK(x)eα(x)∣ ≤ lim
α

∥uK − uKeα∥∞

≤ lim
α

∥uK − uKeα∥A(H) = 0.

Therefore, eα → 1 uniformly on compact subsets of H.

Remark 5.1.11. Let H be a discrete hypergroup. Then δx ∈ L2(H) (and δx ≠ 0 almost

everywhere); δx ∗ δe ∈ L2(H) ∗L2(H )̃ ⊆ A(H). Hence, cc(H) ⊆ A(H) and equivalently, A(H) ∩

cc(H) = cc(H). Therefore, applying Proposition 5.1.1, cc(H) is dense in A(H). Moreover, if

H is a regular Fourier hypergroup, as it is proven in [60, Theorem 5.13], the space of maximal

ideals of the Banach algebra A(H) is homemorphic to H as a discrete topological set.

5.2 The dual of a compact group

Given a commutative hypergroup, it is not immediate that it is a regular Fourier hypergroup

or not. We will show that when G is a compact group, the hypergroup Ĝ is a regular Fourier

hypergroup.

Theorem 5.2.1. Let G be a compact group. Then Ĝ is a regular Fourier hypergroup and A(Ĝ),

equipped with pointwise multiplication, is isometrically isomorphic with the center of the group

algebra G, i.e. A(Ĝ) ≅ ZL1(G).

Proof. Let F be the Fourier transform on L1(G). By [23, Proposition 8.4.3], F ∣L2(G) is an

isometric isomorphism from Banach space L2(G) onto L2(Ĝ). Recall that ZL2(G) = ZL1(G)∩

64



L2(G)). By the properties of the Fourier transform, [23, Proposition 4.2], for each f ∈ ZL2(G),

g ∈ L1(G), and π ∈ Ĝ we have

F(f)(π) ○F(g)(π) = F(f ∗ g)(π) = F(g ∗ f)(π) = F(g)(π) ○F(f)(π). (5.2.1)

So F(f)(π) commutes with all F(g)(π) ∶= f̂(π) for all f ∈ L1(G). Since π is an irreducible

unitary representation into semisimple Banach algebra Mdπ(C); we conclude that F(f)(π) =

απIdπ for some scalar απ ∈ C where Idπ is the identity matrix. Because π was arbitrary, it implies

that F(f) = (απIdπ×dπ)π∈Ĝ for a family of scalars (απ)π∈Ĝ in C. Hence, by (1.4.3),

∥f∥L2(G) = ∥F(f)∥2
L2(Ĝ)

= ∑

π∈Ĝ

dπ∥f̂(π)∥
2
S2

= ∑

π∈Ĝ

dπα
2
π∥Idπ∥

2
S2

= ∑

π∈Ĝ

α2
πdπ

2
= ∑

π∈Ĝ

α2
πh(π). (5.2.2)

Note that {χπ}π∈Ĝ forms an orthonormal basis for ZL2(G) and dπχπ is a non-zero idempotent

with respect to the convolution for every π ∈ Ĝ, [28]. Therefore F(dπχπ)(π) is the only non-zero

idempotent of the center Mdπ(C) i.e. Idπ . Hence χ̂π(π) = d−1
π Idπ and χ̂π(σ) = 0 for all σ ≠ π.

Similarly, F(χπ) = d
−1
π Idπ . Let us define f(x) ∶= f(x); hence, χπ = χπ. Using (5.2.2), we define

T ∶ span{χπ}π∈Ĝ → cc(Ĝ) by T (χπ) = d
−1
π δπ. So,

T (χπ) = T (χπ) = d
−1
π δπ = d

−1
π δ̌π = T (χπ )̌.

Note that span{χπ}π∈Ĝ is dense in ZL2(G) and

∥dπχπ∥L2(G) = dπ = h(π)
1/2

= ∥δπ∥L2(Ĝ,h), [28].

Furthermore, for each f ∈ span{χπ}π∈Ĝ say f = ∑
n
i=1 αiχπi for some αi ∈ C and πi ∈ Ĝ, one

may apply (5.2.2) to observe that ∥f∥L2(G) = ∥T (f)∥L2(G). So, since T acts as an isometry on

span{χπ}π∈Ĝ; moreover, since cc(Ĝ) is dense in L2(Ĝ, h) and span{χπ}π∈Ĝ is dense in ZL2(G)

(see [28, Chapter 5]), T can be extended as a mapping from ZL2(G) onto L2(Ĝ, h) which is an

isometrically isomorphism and takes complex conjugate to the involution.

We claim that T (fg) = T (f) ∗h T (g)̌ for all f, g ∈ ZL2(G). To prove our claim it is enough

to show that T (χπ1χπ2) = T (χπ1) ∗h T (χπ2) for π1, π2 ∈ Ĝ. Using Lemma 1.1.6 and (3.2.2), for

each two representations π,σ ∈ Ĝ, we have

T (χπχσ) = T (
n

∑
i=1

mπ,σ
i χπi)

=
n

∑
i=1

mπ,σ
i T (χπi)

=
n

∑
i=1

mπ,σ
i d−1

πi δπi

= d−1
π δπ ∗h d

−1
σ δσ

= T (χπ) ∗h T (χσ).
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Now we can define a surjective extension T ∶ ZL1(G)→ A(Ĝ), using the fact that span{χπ}π∈Ĝ

is dense in ZL1(G) and ∥f∥1 = inf ∥g1∥2∥g2∥2 for all g1, g2 ∈ ZL2(G) such that f = g1g2 which

are straightforward results. Using the definition of the norm of A(Ĝ),

∥T (f)∥A(Ĝ) = inf{∥T (g1)∥L2(Ĝ,h)∥T (g2)∥L2(Ĝ,h) ∶ T (f) = T (g1) ∗ T (g2)̌}

= inf{∥g1∥L2(G)∥g2∥L2(G) ∶ f = g1g2} = ∥f∥1

for each f ∈ ZL1(G). To show that the extension of T is onto, for each pair g1, g2 ∈ ZL
2(G), we

note that g1g̃2 ∈ ZL
1(G).

So, T is an isometric isomorphism between Banach spaces. Hence, A(Ĝ) is a Banach algebra

with the product which is carried through the mapping T . In the remaining we show that this

product is actually the pointwise multiplication of functions in A(Ĝ) by using this fact that

span{χπ}π∈Ĝ is dense in ZL1(G) and T (dπχπ) = δπ, [28, Proposition 5.25]. Recall that for each

pair π,σ ∈ Ĝ,

dπχπ ∗ dσχσ =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

dπχπ π = σ

0 π ≠ σ

by Proposition 1.4.2. On the other hand,

δπδσ =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

δπ π = σ

0 π ≠ σ

Since span{δπ}π∈Ĝ is dense in A(Ĝ), the algebraic action of A(Ĝ), inherited from ZL1(G)

through T , is corresponding to the pointwise multiplication of A(Ĝ). So one may conclude that

(A(Ĝ), ⋅, ∥ ⋅ ∥A(Ĝ)) ≅ (ZL1(G),∗, ∥ ⋅ ∥1).

Remark 5.2.2. For a compact group G, we define ZA(G) ∶= A(G)∩ZL1(G). It is straightfor-

ward to check that

ZA(G) = {f ∈ A(G) ∶ f(yxy−1
) = f(x) for all x, y ∈ G}.

Furthermore, ZA(G) forms a subalgebra of A(G) with respect to the pointwise multiplication.

Theorem 5.2.3. Let G be a compact group. Then the hypergroup algebra of Ĝ, L1(Ĝ, h), is

isometrically isomorphic with the Banach algebra ZA(G).

Proof. Note that the Fourier transform F is an isometric isomorphism from Banach space A(G)

onto Banach space L1(Ĝ), [23, Theorem 8.4.16]. Since G is a compact group A(G) ⊆ L1(G);
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therefore, for each f ∈ ZA(G) and g ∈ L1(G), f ∗g = g ∗f ; f ∈ ZL1(G). By an argument similar

to the one after (5.2.1), for each π ∈ Ĝ, f̂(π) = απIπ for some απ ∈ C such that, by (1.4.2),

∥f∥A(G) = ∑

π∈Ĝ

dπ ∣απ ∣∥Iπ∥S1 = ∑
π∈Ĝ

απd
2
π

= ∑

π∈Ĝ

απh(π) = ∥T (f)∥L1(Ĝ).

So T ∣ZA(G) is an isometry into L1(Ĝ, h).

Conversely, for each g = (απ)π∈Ĝ ∈ cc(Ĝ), define φg = (απIπ)π∈Ĝ ∈ L1(Ĝ). Since F ∶ A(G) →

L1(Ĝ) is surjective, by [23, Definition 8.4.12], for such a φg, there exists some f ∈ span{χπ}π∈Ĝ ⊆

A(G)∩ZL1(G) such that F(f) = φg; hence, T (f) = g ∈ cc(Ĝ) ⊆ L1(Ĝ). Applying this fact that

T is an isometric mapping and cc(Ĝ) is dense in L1(Ĝ), T is a surjective mapping. Note that

this argument consequently implies that span{χπ}π∈Ĝ is dense in ZA(G).

We claim that T is an algebra isomorphism. To prove our claim, we just note that

T (χπ1χπ2) = T (
n

∑
i=1

miχσi) =
n

∑
i=1

mid
−1
σi δσi = d

−1
π1δπ1 ∗h d

−1
π2δπ2 = T (χπ1) ∗h T (χπ2).

One may extend it to the whole ZA(G), using this fact that span{χπ}π∈Ĝ is dense in ZA(G).

Although the following corollary is a well-known result, we mention it here since we apply it

more often in the next section. Besides the classic proof, it may be implied by the argument in

the proof of Theorem 5.2.3.

Corollary 5.2.4. Let G be a compact group. Then ZA(G) is the closure of span{χπ}π∈Ĝ.

5.3 Amenability of ZA(G)
First let us briefly mention some results from [36, (29.25)] which characterize group characters

of SU(2). In this section, we present the torus T by the interval [0,2π] where each θ ∈ [0,2π]

represents eiθ.

Let u ∈ SU(2). There is a matrix a ∈ SU(2) such that

a−1ua =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

eiθ 0

0 e−iθ

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(5.3.1)

for some θ ∈ [0,2π]. As we saw in Example 3.2.2, the irreducible unitary representations of

SU(2) can be represented by π` where ` ∈ 1
2Z

+ ∶= {0,1/2,1,3/2,2, . . .}. Also for each χπ` the

group character generated by the representation π`, χπ`(a
−1ua) = χπ`(u). So, we will know χ` if
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we compute it on the matrices of the form (5.3.1) for each θ ∈ [0,2π]. To facilitate the writing,

we denote χπ`(u) for some u corresponding to θ by χ`(θ).

By [36, (29.25)], the irreducible group characters of SU(2) represented by {χk}k∈ 1
2
Z+ can be

characterized by the functions1

χk(θ) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

sin((2k+1)θ)
sin(θ) θ ∈ (0, π) ∪ (π,2π)

(2k + 1)e2iθk θ = 0, π
(5.3.2)

where k ∈ 1
2Z

+ and θ ∈ T.

For each f = ∑
n
j=1 αjχkj ∈ lin{χk}k∈N0 , by (1.4.2) and (1.4.1),

∥f∥A(SU(2)) =
n

∑
j=1

dkj ∣αj ∣∥χ̂kj(πkj)∥S1 =
n

∑
j=1

dkj ∣αj ∣∥d
−1
kj
Iπkj ∥S1 =

n

∑
j=1

∣αj ∣(2kj + 1). (5.3.3)

Let us define a mapping I ∶ lin{χk}N0 → C1(T) to be the restriction map to the the torus T

as defined in (5.3.2) where C1(T) denotes the set of all differentiable functions on T. We claim

that I can be extended to a continuous mapping on ZA(SU(2)). Doing so, it is enough to show

that I(ZA(SU(2))) ⊆ A(T) where A(T) is the Fourier algebra of the torus.

Proving our claim about I, note that for each k ∈ 1
2Z

+ and θ ∈ T ∖ {0, π},

I(χk)(θ) =
sin((2k + 1)θ)

sin(θ)
=
ei(2k+1)θ − e−i(2k+1)θ

eiθ − e−iθ
=

2k

∑
`=0

ei(2k−2`)θ
=

2k

∑
`=−2k

ei`θ.

A similar argument works for θ = 0, π as well. Note that by (1.4.2),

∥I(χk)∥A(T) = ∥θ ↦
2k

∑
`=−2k

ei`θ∥A(T) =
2k

∑
`=−2k

1 = (2k + 1).

Therefore, ∥I(χk)∥A(T) = dk which is equal to ∥χk∥A(SU(2)). For each f ∈ lin{χk}k∈N0 say

f = ∑
n
j=0 αjχj ,

∥f∥A(SU(2)) =
n

∑
`=0

∣α`∣(2` + 1) ≥ ∥I(f)∥A(T).

Hence, one may extend I as a continuous linear mapping from ZA(SU(2)) into A(T). Note

that I is the restriction mapping on T; therefore, I(fg) = I(f)I(g) for all f, g ∈ ZA(SU(2)).

Furthermore, if for some f ∈ ZA(SU(2)), I(f) = 0, it means that for each conjugacy class C of

SU(2), f(C) = 0; f ≡ 0. So I is injective. We denote the image of I here by AI .

1Applying this representation of the elements of SU(2) with respect to their eigenvalues as elements in [0,2π],
each conjugacy class will be represented twice by the angle θ. But since, we want to study ZA(SU(2)) as functions
restricted on T as the maximal torus of SU(2), we rely on this representation.
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Remark 5.3.1. One may show that I is not surjective to the closure of its image, AI . If I

is surjective, since it is one to one as well, I−1 should form a bounded mapping from AI into

ZA(SU(2)). But note that on one hand for each k ∈ N0; ∥χk−χk−1∥ZA(SU(2)) = (2k+1)+(2k−1) =

4k. On the other hand, ∥I(χk − χk−1)∥A(T) = ∥ei2kθ + e−i2kθ∥A(T) = 2. Therefore, I cannot be

invertible and AI is not a closed subalgebra of A(T).

Proposition 5.3.2. ZA(SU(2)) is not (weakly) amenable.

Proof. Let us considerAI ∶= I(ZA(SU(2)) ⊆ C1(T) the restriction of the functions in ZA(SU(2))

on the maximal torus. We will prove the existence of a non-zero continuous point derivation on

AI . For θ ∈ (0, π), one may define Dθ ∶ AI → C where Dθ is the point derivation on functions of

C1(T) evaluated at θ. Therefore

Dθ(χk) =
2k

∑
`=−2k

i`ei`θ =
2k

∑
`=1

i`ei`θ − i`e−i`θ = −2
2k

∑
`=1

` sin(`θ)

=
2

4 sin2(θ/2)
(2k sin((2k + 1)θ) − (2k + 1) sin(2kθ)).

Moreover, Dθ is non zero, for example Dπ/2(χ1/2) = −2; further,

∣Dθ(χk)∣ ≤
1

sin2(θ/2)
(2k + 1) =

1

sin2(θ/2)
∥χk∥A(SU(2)).

One may apply (5.3.3) to verify that for each f = ∑
n
j=1 αjχkj ∈ lin{χk}k∈N0 ,

∣Dθ(f)∣ ≤
n

∑
j=1

∣αj ∣

sin2(θ/2)
∥χk∥A(SU(2)) =

1

sin2(θ/2)
∥f∥A(SU(2)),

which implies that Dθ can be extended as a norm bounded linear map on ZA(SU(2)), because

lin{χk}k∈N0 is dense in ZA(G). Hence, Dθ is a non-zero bounded derivation on AI , so AI is

not weakly amenable.

Remark 5.3.3. Let SO(3) be the compact Lie group of 3× 3 special orthogonal group. SO(3)

actually forms the set all of rotations in R3 which preserves the length and orientation. In

fact, there is a two-to-one continuous homomorphism τ from SU(2) onto SO(3) such that

Ker(τ) = {±I}, [36, Theorem 29.36]. For

uθ ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

eiθ 0

0 e−iθ

⎤
⎥
⎥
⎥
⎥
⎥
⎦

θ ∈ [0,2π]

one gets that

τ(uθ) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

cos(2θ) − sin 2θ) 0

sin(2θ) cos(2θ) 0

0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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Applying τ , one may show that for every integer ` ∈ Z+ ∶= {0,1,2,⋯}, there is a representation

π` ∈ ŜO(3) and vice versa. Moreover, for all `, `′ ∈ Z+ (` ≥ `′), π` ⊗ π`′ is equivalent to π`−`′ ⊕

π`−`′+1 ⊕⋯⊕π`+`′ . Moreover, χ`(uθ) is defined exactly as one defined χ` on θ in (5.3.2). So one

may rewrite this section for SO(3) and all the results would be still valid. Specially, ZA(SO(3))

is not (weakly) amenable.

In the remaining, we prove that not only are ZA(SO(3)) and ZA(SU(2)) not (weakly)

amenable, but also for fro a wider class of compact groups G, ZA(G) cannot be (weakly)

amenable.

To prove the main result of this section, we need to prove a few results first. Although the

following proposition is known for the experts, because of completeness we prove it here.

Proposition 5.3.4. Let G be a compact group. Then the space of maximal ideals of ZA(G)

is homeomorphic to Conj(G) equipped with the quotient topology of G through the mapping

ι ∶ G → Conj(G) where x ↦ Cx. Moreover, ZA(G) separates conjugacy classes of G i.e. for

C,D ∈ Conj(G), C ≠D, there is some f ∈ ZA(G) such that f(C) = 0 and f(D) = 1.

Proof. Clearly for each C ∈ Conj(G), ψC ∶ ZA(G)→ C forms a multiplicative bounded functional

on ZA(G) where ψC(f) = f(x) for some x ∈ C. Hence, KerψC is a maximal ideal space of

ZA(G).

Conversely, for each φ ∈ σ(ZA(G)) and f ∈ Kerφ, f is not invertible. Theorem 3.6.15 and

Theorem 3.7.1 of [66] imply that for a commutative regular Banach algebra A and a closed

subset E of σ(A) equipped with the Gelfand spectrum topology, if a ∈ A such that ∣ϕ(a)∣ ≥ δ > 0

for every ϕ ∈ E, then there exists some a′ ∈ A such that ϕ(aa′) = 1 for every ϕ ∈ E. In particular,

this applies to E = σ(A). It is known that A(G) is a commutative regular Banach algebra and

its Gelfand spectrum is homeomorphic to G.

Now assume that f(x) ≠ 0 for all x ∈ G; therefore, f as an element in A(G) is invertible

i.e. there exists some f ′ ∈ A(G) such that ff ′(x) = 1 for all x ∈ G. Clearly since f is a class

function so is f ′; f ′ ∈ ZA(G) which violates our assumption. Therefore, f(x) = 0 for some x ∈ G.

Therefore, Kerφ ⊆ KerψCx as two maximal ideals. So, φ = ψCx .

Let us note that for each f ∈ A(G), LyRyf(x) = f(y−1xy) also belongs to A(G). Therefore,

we may get a Bochner integral of LyRyf for all y ∈ G; consequently, P ∶ A(G)→ ZA(G) where

P (f)(x) = ∫
G
f(y−1xy)dy.

For x ∈ G, note that Cx ∈ Conj(G) is the image of the compact set G through the continuous

mapping y ↦ yxy−1; Cx is a compact and hence closed subset of G. Applying regularity of the
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Banach algebra A(G), for each C,D ∈ Conj(G) where C ≠ D, there is some f ∈ A(G) such

that f(C) ≡ 1 and f(D) ≡ 0. The existence of such a f is proven in [26, Lemma 3.2], since

the conjugacy classes are closed as mentioned. Hence, P (f)(C) ≡ 1 and P (f)(D) = 0 when

λ(G) = 1.

Let Ψ ∶ Conj(G)→ σ(ZA(G)) be the mapping such that Ψ(C) = ψC . Ψ is an onto mapping.

In the following we demonstrate that Ψ is a homeomorphism where Conj(G) is equipped with

the quotient topology of G through the mapping ι ∶ G → Conj(G) where x ↦ Cx. By [59,

Theorem 22.2], for each f ∈ ZA(G) as a continuous class function, f can be regarded as a

function in C(Conj(G)); consequently the quotient topology of Conj(G) is finer that the Gelfand

topology σ(ZA(G)). Note that σ(ZA(G)) is compact, because ZA(G) is a unital algebra.

Therefore, Ψ ∶ σ(ZA(G)) → Conj(G) forms a continuous bijection from a compact space to

another compact space; hence, Ψ−1 is continuous.

The following theorem is the main result of this section.

Theorem 5.3.5. Let G be a compact group such that Ge, the connected component of the

identity, is not abelian. Then ZA(G) is not weakly amenable.

Proof. Since Ge is not abelian, by a result in the proof of Theorem 2.1 in [29], Ge has a closed

subgroup H such that is isomorphic to the topological group SU(2) or SO(3).

For each f ∈ A(G), let ιH(f) denotes the restriction of the function f to the subgroup

H. As it was proven in [20], for the closed subgroup H of G, ιH(A(G)) = A(H); further,

∥ιH(f)∥A(H) ≤ ∥f∥A(G). Therefore, ZA(G)∣H ⊆ A(H) where ZA(G)∣H = ιH(ZA(G)).

Moreover, for each f ∈ ZA(G), f(xyx−1) = f(y) for all x, y ∈ G. So for each x, y ∈ H,

f(xyx−1) = f(y). In other words, f ∣H is a class function onH as well. Hence ZA(G)∣H ⊆ ZA(H).

For each π ∈ Ĝ, note that π∣H is a unitary representation and it may be decomposed applying

finitely many representations σi ∈ Ĥ such that π∣H = ⊕ni=1miσi; hence,

χπ(y) = Tr(π∣H(y)) =
m

∑
i=1

miχσi(y) for all y ∈H,

where mi denotes the number of redundant of each representation σi in the irreducible decom-

position of π∣H . Hence, χπ ∣H ∈ lin{χσ}σ∈Ĥ .

If for each π ∈ Ĝ, χπ is a constant function on H; therefore, lin{χπ}π∈Ĝ and consequently

ZA(G) are also constant on H. In this case, Proposition 5.3.4 implies that H is contained in

just one conjugacy class of G i.e. H = {e}. Hence, there is some π ∈ Ĥ such that χπ ∣H(= ιH(χπ))

is not a constant function on H; χπ ∣H = ∑
n
k=0 αkχk for n ∈ K where K = 1

2Z
+ (= {0,1/2,1,⋯}) if
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H = SU(2) or K = Z+ (= {0,1,⋯}) if H = SO(3), αk ∈ C, and {χk}k∈K are the group characters

of H. Note that αk ≠ 0 for at least one k > 0. Therefore, for the restriction mapping I

defined earlier, we get that I(χk) ∈ A(T) is not a constant function on T (because all constant

functions in A(T) are the elements of the subalgebra generated by the constant function 1, by

[28, Proposition 5.23], and clearly I(χk) does not belong to that subalgebra while αk ≠ 0 for

some k > 0). Therefore,

I(χπ ∣H)(θ) =
n

∑
k=0

αkI(χk)(θ) =
n

∑
k=0

αk
2k

∑
`=−2k

ei`θ ∈ lin{χk}k∈Z+/2 (θ ∈ T)

is not a constant function on T. Hence, there is some θ ∈ (0, π) such that Dθ(χπ ∣H) ≠ 0

for the continuous point derivation Dθ defined in the proof of Proposition 5.3.2. Note that

∥ιH(f)∥A(H) ≤ ∥f∥A(G) for all f ∈ ZA(G); hence, Dθ ○ ιH forms a non-zero bounded derivation

on ZA(G) and therefore, ZA(G), as a commutative algebra, is not weakly amenable.

Question. In [29], it was proved that the Fourier algebra of a compact group G is weakly

amenable if and only if Ge is abelian. Theorem 5.3.5 shows that for such a G one side of such

a result holds for ZA(G) as well. One may conjecture that the other side can be proven for

ZA(G) as well where Ge is abelian.
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Chapter 6

Følner type conditions on hypergroups

6.1 Amenability properties of regular Fourier hypergroups

Amenability of hypergroups has different levels. The concept of amenability can be defined on

hypergroups as the existence of a left invariant mean, analogous to groups. In this sense lots of

hypergroups that we know are amenable, say all commutative hypergroups and compact hyper-

groups. This notion of amenability was mainly studied in [70]. In that paper, the author also

showed that the amenability of a hypergroup is equivalent to the property (P1) which is defined

in the following. In this chapter, we introduce more amenability properties of hypergroups and

study them.

6.1.1 Følner type conditions on Hypergroups

Amenable locally compact groups are characterized by a variety of properties including Følner

type conditions. These conditions have been studied extensively, [25, 54]. Not only have Følner

conditions attracted attention for locally compact groups, but Følner conditions have also been

interesting and useful in the study of semigroups, [73]. They relate the concept of “amenability"

to the structure of the group or semigroup. In this section, we look at a generalization of Følner

type conditions over hypergroups.

In [2], I introduced the Leptin condition for hypergroups. Here, we define more Følner type

conditions for hypergroups and we study their relations. To recall, for each two subsets A and

B of some set X, we denote their symmetric difference, (A ∖B) ∪ (B ∖A), by A△B.

Definition 6.1.1. Let H be a hypergroup and D ≥ 1 an integer. We define the following

properties:

(LD) We say thatH satisfies theD-Leptin condition if for every compact subsetK ofH and ε > 0,

there exists a measurable set V in H such that 0 < h(V ) <∞ and h(K ∗V )/h(V ) <D + ε.
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(F ) We say that H satisfies the Følner condition if for every compact subset K of H and ε > 0,

there exists a measurable set V in H such that 0 < h(V ) <∞ and h(x ∗ V △ V )/h(V ) < ε

for every x ∈K.

(SF ) We say that H satisfies the Strong Følner condition if for every compact subset K of H and

ε > 0, there exists a measurable set V inH such that 0 < h(V ) <∞ and h(K∗V△V )/h(V ) <

ε.

Remark 6.1.2. If a hypergroup H satisfies the 1-Leptin condition, H is said to satisfy the

Leptin condition as defined in [2, Definition 4.1]. From now on, we may use the Leptin condition

instead of the 1-Leptin condition and we denote it by (L).

Proposition 6.1.3. For every compact hypergroup H, H satisfies all conditions (SF ), (F ),

and (L).

Proof. The proof is a direct result of finiteness of the Haar measure on compact hypergroups,

[8], by replacing V =H for all conditions in Definition 6.1.1.

Remark 6.1.4. In Definition 6.1.1 of the Leptin condition, (LD), we can suppose that V is

compact. To show this fact suppose that H satisfies the D-Leptin condition. For compact subset

K of H and ε > 0, there exists a measurable set V such that h(K ∗ V )/h(V ) < D + ε. Using

regularity of h, as a measure, for each positive integer n, we can find compact set V1 ⊆ V such

that h(V ∖ V1) < h(V )/n. This implies that 0 < h(V1) and h(V )/h(V1) < n/(n − 1). Therefore

h(K ∗ V1)

h(V1)
≤
h(V )

h(V1)
(
h(K ∗ V1)

h(V )
) <

n

n − 1
(D + ε).

So we can add compactness of V to the definition of the Leptin condition.

Proposition 6.1.5. For every hypergroup H, (SF ) implies (L).

Proof. For a compact setK and ε > 0, let V be a measurable set such that h(K∗V △V ) < εh(V ).

Hence

h(K ∗ V )

h(V )
− 1 ≤

h(K ∗ V ) − h(V )

h(V )

≤
h(K ∗ V ) + h(V ) − 2h((K ∗ V ) ∩ V )

h(V )

=
h((K ∗ V )△ V )

h(V )
< ε.
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Proposition 6.1.6. For every discrete hypergroup H, (F ) implies (SF ). And consequently,

(F ) implies (L).

Proof. We should just show that (F )⇒ (SF ) the rest is obtained by Proposition 6.1.5. Let K

be a compact subset of H. Since for discrete hypergroups, each compact set is finite, we may

suppose that K = {xi}
n
i=1. Therefore, for ε > 0 there is a finite set V such that 0 < h(V ) and

h((x ∗ V )△ V )

h(V )
<

ε

∣K ∣
(x ∈K).

So

h((⋃ni=1 xi) ∗ V △ V )

h(V )
=

h(⋃ni=1(xi ∗ V )△ V )

h(V )

≤
n

∑
i=1

h(xi ∗ V △ V )

h(V )
= ε.

The last inequality is a result of the following fact about arbitrary sets B1,B2,C:

((B1 ∪B2)△C) ⊆ (B1 △C)) ∪ (B2 △C)).

Remark 6.1.7. If H is a locally compact group, all the conditions (F ), (SF ), and (L) are

equivalent and they equal the amenability of the group H. If one tries to adapt the rest of

relations of (F ), (SF ), and (L) from the group case, [63], one may notice that in almost all of

the arguments, the inclusion x(A ∖ B) ⊆ xA ∖ xB is crucially applied where A,B are subsets

of the group H and x is one arbitrary element.1 But this inclusion does not necessarily hold

for a general hypergroup. As an example, one may consider A ∶= {π0, π 1
2
, . . . , πk− 1

2
, πk} and

B ∶= {π0, π 1
2
, . . . , πk−1, πk− 1

2
} as two subsets of ŜU(2) for some k ∈ 1

2Z
+ (see Example 3.2.2).

Therefore, one gets πk ∗A = {0, π1/2, . . . , π2k} and πk ∗B = {π1/2, . . . , π2k− 1
2
}; hence, (πk ∗A) ∖

(πk ∗B) = {π0, π2k}. But πk ∗ (A ∖B) = πk ∗ πk = {π0, π1, . . . , π2k−1, π2k}.

6.1.2 The existence of a bounded approximate identity of Fourier algebra

For a regular Fourier hypergroup H, we denote the existence of a ∥ ⋅∥A(H)-bounded approximate

identity by some D ≥ 1 by (BD) and we call it D-bounded approximate identity.

Theorem 6.1.8. Let H be a regular Fourier hypergroup which satisfies the D-Leptin condition.

Then A(H) has a D-bounded approximate identity.

1Note that in general the equality holds, but this side of the inclusion suffices.
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Proof. Fix ε > 0. Using theD-Leptin condition onH, for every arbitrary non-void compact setK

inH, we can find a measurable subset VK ofH with 0 < h(VK) <∞ such that h(K∗VK)/h(VK) <

D2(1 + ε)2. Define

vK ∶=
1

h(VK)
1K∗VK ∗h 1̃VK .

As in the proof of Lemma 5.1.8, we have ∥vK∥A(H) < D(1 + ε) and vK ∣K ≡ 1. We consider the

net

{aε,K ∶K ⊆H compact, and 0 < ε < 1}

in A(H) where aε,K ∶= (1+ ε)−1vK and aε1,K1 ≼ aε2,K2 whenever supp(vK1) ⊆K2 and ε2 < ε1. So

(aε,K)K⊆H,0<ε<1 forms a ∥ ⋅∥A(H)-norm D-bounded net in A(H)∩Cc(H). Let f ∈ A(H)∩Cc(H)

with K0 = supp f . Then vKf = f where K0 ⊆K. Therefore

lim
ε→0

lim
K0⊆K→H

∥aε,Kf − f∥A(H) = lim
ε→0

∥
f

1 + ε
− f∥A(H) = ∥f∥A(H) lim

ε→0

ε

1 + ε
= 0.

Since, by Proposition 5.1.1, A(H) ∩ Cc(H) is dense in A(H), (aε,K)0<ε<1,K⊆H is a D-bounded

approximate identity of A(H).

Remark 6.1.9. LetG be a compact group. Then the Fourier algebra of Ĝ, A(Ĝ), is algebraically

isometrically isomorphic to ZL1(G), by Theorem 5.2.1. Also since every compact group G is a

SIN-group, [35], ZL1(G) always has a 1-bounded approximate identity. Therefore, A(Ĝ) has a

1-bounded approximate identity.

6.1.3 Reiter condition

In [70, Theorem 4.1], it was shown that the amenability of a hypergroup is equivalent to the

property (P1) which is defined as follows.

Definition 6.1.10. [70, p32]

We say that H satisfies (Pr), r = 1 or 2, if whenever ε > 0 and a compact set E ⊆ H are given,

then there exists f ∈ Lr(H), f ≥ 0, ∥f∥r = 1 such that

∥δx ∗ f − f∥r < ε x ∈ E.

We say that K satisfies the Reiter condition if it has property (P1).

[70, Theorem 4.3] showed that (P2) implies (P1). Furthermore, for every hypergroup H,

(P1) is equivalent to the amenability of H, [70, Theorem 4.1].
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Example 6.1.11. Every commutative or compact hypergroup H, as an amenable hypergroup,

satisfies condition (P1), see [70].

We rely on the following lemma which is from [70] to characterize (P2).

Lemma 6.1.12. [70, Lemma 4.4]

Let H be a hypergroup. Then H satisfies (P2) if and only if there is a net (fα)α ⊆ L
2(H) such

that ∥fα∥2 = 1 and fα ∗ f̃α converges to 1 uniformly on compact subsets of H.

Remark 6.1.13. Note that by Lemma 6.1.12, (P2) implies the existence of a net (gα) (in the

form of gα ∶= fα ∗ f̃α) which belongs to A(H) while, by Theorem 5.1.2, ∥gα∥A(H) ≤ ∥fα∥
2
2 = 1.

Remark 6.1.14. Note that in hypergroup case, (P2) is not necessarily equivalent to the

amenability of the hypergroup, though it implies the amenability of the hypergroup. As a coun-

terexample, one may consider the Naimark hypergroup, see [8, (3.5.66)] and [70, Example 4.6],

that is a commutative hypergroup structure on R∗ (= [0,+∞)) where

δx ∗ δy ∶=
1

sinh(x) sinh(y)
∫

x+y

∣x−y∣
sinh(t)δt dt (x, y ∈ R∗

),

x̌ ∶= x, and 0 is the identity. For this hypergroup, constant character 1 does not belong to

the support of the Plancherel measure. But [70, Lemma 4.5] shows that for a commutative

hypergroup H, the constant character 1 belongs to the support of the Plancherel measure if and

only if H satisfies (P2). Therefore, the Naimark hypergroup does not satisfy condition (P2)

while as a commutative hypergroup it does satisfy (P1).

The following theorem resembles the Leptin theorem for commutative regular Fourier hy-

pergroups. In the proof, some techniques of the proof of group case (see [68, Theorem 7.1.3])

have been applied. Some properties of the Fourier algebra which are applied here have been

mentioned briefly in Section 5.1.

Let us recall that a state on a C∗-algebra is a positive linear functional of norm 1. Moreover,

if A is a von Neumann algebra with predual A∗, every state of A can be approximated by a

net of states of the elements of pre-dual in the weak∗ topology. Therefore, for a commutative

hypergroup H, a state u on V N(H) which belongs to A(H), is in the form of g ∗ g̃ for some

g ∈ L2(H) (see Section 5.1).

Theorem 6.1.15. Let H be a commutative regular Fourier hypergroup. Then the following

conditions are equivalent.
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(B1) A(H) has a 1-bounded approximate identity.

(BD) A(H) has a D-bounded approximate identity for some D ≥ 1.

(P2) H satisfies (P2).

Proof. (B1)⇒ (BD) is trivial.

(BD)⇒ (P2).

For (eα)α a D-bounded approximate identity of A(H), there exists a w∗-cluster point F ∈

V N(H)∗. Note that for each x ∈ H, ⟨λ(x), F ⟩ = limα⟨λ(x), eα⟩ = limα eα(x) = 1. So F ∣L1(H,h)

may be interpreted as the constant function 1 on H (where L1(H,h) is observed as a subalgebra

of V N(H)). Therefore, for each f, g ∈ L1(H,h), one gets that ⟨F, f ∗ g⟩ = ⟨F, f⟩ ⟨F, g⟩. Hence

F ∣L1(H,h) is a multiplicative functional on L1(H,h). Therefore, for each f ∈ L1(H,h), ⟨F, f̃∗hf⟩ =

⟨F, f̃⟩⟨F, f⟩ = ∣⟨F, f⟩∣2 ≥ 0. But L1(H,h) is dense in the C∗-algebra C∗
λ(H); hence, F ∣C∗

λ
(H) is a

positive functional on C∗
λ(H) that is ⟨F, f ∗ f̃⟩ ≥ 0 for every f ∈ C∗

λ(H). Also as a multiplicative

functional, ∥F ∣C∗

λ
(H)∥ = 1. But as a positive norm 1 functional, F ∣C∗

λ
(H) is a state. Thus,

by [55, Corollary 2.3.12], F ∣C∗

λ
(H) is extendible to a state E on V N(H). Because states of

V N(H) which belong to A(H) are weak∗ dense in the set of all states of V N(H), we may

find a net (fβ)β in {f ∗h f̃ ∶ f ∈ L2(H,h)} such that fβ = gβ ∗h g̃β → E in weak∗ topology

for a net (gβ)β ⊆ L2(H,h). Moreover, 1 = ∥fβ∥A(H) = fβ(e) = gβ ∗h g̃β(e) = ∥gβ∥
2
2. Since

F ∣C∗

λ
(H) = E∣C∗

λ
(H), for each u ∈ A(H) and f ∈ L1(H), since uf ∈ L1(H), we have

lim
β

⟨ufβ, f⟩ = ⟨u ⋅E,f⟩ = ⟨F,uf⟩ = lim
α

⟨eα, uf⟩ = ⟨u, f⟩. (6.1.1)

Therefore, ufβ → u with respect to the topology σ(A(H), L1(H)). Recall that L1(H) is dense

in C∗
λ(H) while A(H) ⊆ Bλ(H) and Bλ(H) = C∗

λ(H)∗. Let us fix u ∈ A(H). Therefore, for

some given ε > 0 and f ∈ C∗
λ(H), there is a g ∈ L1(G) such that ∥g − f∥C∗

λ
(H) < ε. Also there is

some β0 such that for each β ≽ β0, ∣⟨ufβ − u, g⟩∣ < ε. So,

∣⟨fβu − u, f⟩∣ ≤ ∣⟨fβu − u, f − g⟩∣ + ∣⟨fβu − u, g⟩∣

≤ ∥u∥A(H)(∥fβ∥A(H) + 1)∥f − g∥C∗

λ
(H) + ε < (2∥u∥A(H) + 1)ε.

Therefore, ufβ → f with respect to the topology σ(A(H),C∗
λ(H)) which corresponds to the

weak topology on Bλ(H). It is a well-known result of functional analysis that the weak closure

of a convex set coincides with its norm closure, so that for every ε > 0, there exists ϕ{u1,...,un},ε =

ϕ ∈ conv{fβ} such that ui ∈ A(H) for i = 1, . . . , n and ∥uiϕ − ui∥A(H) < ε. Moreover,

1 = ϕ(e) ≤ ∥ϕ∥∞ ≤ ∥ϕ∥A(H) ≤ 1.
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Note that ϕ is also is a positive functional in the cone of positive functionals on V N(H);

therefore, ϕ is actually a state and since H is commutative, ϕ = ψ ∗ ψ̃ for some ψ ∈ L2(H).

To make the set of all such ϕ’s a net, let I ∶= {(S, ε) ∶ S ⊆ A(H) is finite, ε > 0} become a

directed set by (S, ε) ≤ (S′, ε′) if S ⊆ S′ and ε ≥ ε′. This lets us to render the net (ϕα)α ⊆ conv{fβ}

that is a bounded approximate identity of A(H). On the other hand, for each compact set

K ⊆ H, by Lemma 5.1.8, there is some uK ∈ A(H) such that uK ∣K ≡ 1. Therefore, for each

x ∈K,

lim
α

∣1 − ϕα(x)∣ = lim
α

∣uK(x) − uK(x)ϕα(x)∣ ≤ lim
α

∥uK − uKϕα∥∞

≤ lim
α

∥uK − uKϕα∥A(H) = 0.

So ϕα → 1 uniformly on compact subsets of H. Consequently, by Lemma 6.1.12, the existence

of the net (ϕα)α implies (P2).

(P2)⇒ (B1).

Let (gβ)β be the net generated by (P2) in Lemma 6.1.12, that is gβ = fβ∗ f̃β for some fβ ∈ L2(H)

while ∥fβ∥2 = 1 for every β and gβ → 1 uniformly on compact sets. Therefore,

1 = ∥fβ∥
2
2 = gβ(e) ≤ ∥gβ∥∞ ≤ ∥gβ∥A(H) ≤ ∥fβ∥

2
2 ≤ 1.

Also for each u ∈ A(H) ∩Cc(H) and f ∈ L1(H),

lim
β

∣⟨ugβ − u, f⟩∣ ≤ lim
β
∫
H

∣u(x)∣∣gβ(x) − 1∣∣f(x)∣dx

= ∫
supp(u)

∣u(x)∣∣gβ(x) − 1∣∣f(x)∣dx = 0.

Let us fix u ∈ A(H). For given ε > 0 and f ∈ L1(H), there is some v ∈ A(H) ∩Cc(H) such

that ∥u − v∥A(H) < ε and β0 such that for any β ≽ β0, ∣⟨vgβ − v, f⟩∣ < ε. So for any β ≽ β0,

∣⟨ugβ − u, f⟩∣ ≤ ∣⟨ugβ − vgβ, f⟩∣ + ∣⟨vgβ − v, f⟩∣ + ∣⟨v − u, f⟩∣

≤ ∥u − v∥A(H)∥gβ∥A(H)∥f∥1 + ε + ∥v − u∥A(H)∥f∥1

< ε(2∥f∥1 + 1).

Therefore, by one generalization to arbitrary functions on A(H), limβ ugβ = u in the topology

σ(A(H), L1(H)). But indeed A(H) ⊆ Bλ(H) and this topology on bounded subsets of A(H)

coincides to the weak topology on Bλ(H) i.e. σ(Bλ(H),C∗
λ(H)). So similar to the previous

part, there is a (eα)α ⊂ conv{gβ}β such that

lim
α

∥ueα − eα∥A(H) = 0
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for every u ∈ A(H). Also note that for each α,

1 = eα(e) ≤ ∥eα∥∞ ≤ ∥eα∥A(H) ≤ 1.

Remark 6.1.16. Let G be a locally compact group. Then G satisfies the D-Leptin condition

for each D > 1 if and only if it satisfies the Leptin condition. To observe this fact, note that the

existence of a bounded approximate identity for A(G) is equivalent to satisfaction of the Leptin

condition by the group G, [68, Theorem 7.1.3].

6.1.4 Summary

Theorem 6.1.17. Let H be a commutative regular Fourier hypergroup. Where

(SF ) H satisfies the strong Følner condition.

(LD) H satisfies the D-Leptin condition for some D ≥ 1.

(BD) A(H) has a D-bounded approximate identity for some D ≥ 1.

(P2) H satisfies (P2).

Then

(SF ) +3 (L1) +3 (LD) +3 (BD) ks +3 (B1) ks +3 (P2)

Proof. (SF ) ⇒ (L1) by Proposition 6.1.5. While (L1) ⇒ (LD) is trivial, (LD) ⇒ (BD) by

Theorem 6.1.8. (B1)⇐⇒ (BD)⇐⇒ (P2), by Theorem 6.1.15.

Note. In Theorem 6.1.17, note that we suppose H to be a commutative hypergroup; hence, H

is amenable, and equivalently, H satisfies the Reiter condition.

Note. For a locally compact group H in Theorem 6.1.17, all aforementioned conditions are

equivalent and equal the amenability of the group (see [63] and [68]).
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6.2 D-Leptin condition on dual of compact groups

In Theorem 5.2.1, it was proven that the duals of compact groups, as discrete commutative

hypergroups, are regular Fourier hypergroups. We will apply this fact to study some properties

of compact groups, using the Fourier algebra of the dual of compact groups. In the following

we study the D-Leptin condition for some hypergroups which are the dual of compact groups.

We calculate D, for ŜU(3) and ŜU(2), relying on representation theory of the corresponding

compact groups.

Note that since the duals of compact groups are commutative, they are all amenable hyper-

groups, [70], but this amenability does not say anything about the Følner condition on these

hypergroups (unlike groups). So the next question is: for which compact groups G do the

hypergroups Ĝ satisfy the D-Leptin condition?

A version of some results of this section has been published in [2].

Proposition 6.2.1. The hypergroup ŜU(2) satisfies the Leptin condition.

Proof. Take a finite subset K of ŜU(2) and ε > 0. Let k ∶= sup{` ∶ π` ∈ K}. Recall that for the

Haar measure h, h(π`) = d2
π`
= (2` + 1)2 for every ` ∈ 1

2Z
+ (see Example 3.2.2). We select m ≥ k

such that for V = {π`}
m
`=0,

h(πk ∗ V )

h(V )
=

∑
2m+2k+1
j=1 j2

∑
2m+1
j=1 j2

(6.2.1)

=

1
3(2m + 2k + 1)3 + 1

2(2m + 2k + 1)2 + 1
6(2m + 2k + 1)

1
3(2m + 1)3 + 1

2(2m + 1)2 + 1
6(2m + 1)

< 1 + ε.

Note that for every π`1 ∈ K, `1 ≤ k ≤ m and for every π`2 ∈ V , `2 ≤ m. Therefore, π`1 ∗ π`2 =

⋃
`1+`2
`=∣`1−`2∣

{π`}. Let us fix π`0 ∈ π`1 ∗ π`2 ; 0 ≤ `0 ≤ `1 + `2 ≤ k +m. By splitting the possibilities of

`0 with respect to m and k in the following, we show that π`0 ∈ πk ∗ V and since `0, `1, and `2

are arbitrary, this implies that π`1 ∗ V ⊆ πk ∗ V for every π`1 ∈K.

(i) If k ≤ `0 ≤ m + k. Then for t ∶= `0 − k ≤ m, one gets that πk ∗ πt = ⋃`0`=∣`0−2k∣
{π`} which

clearly contains π`0 .

(ii) If 0 ≤ `0 < k and `0 ∈ N+. Then πk ∗ πk = ⋃2k
`=0{π`} contains π`0 .

(iii) If 0 < `0 < k and `0 ∉ N+. Then πk ∗ πk− 1
2
= ⋃

2k− 1
2

`= 1
2

{π`} contains π`0 .

Therefore, for each x ∈K, K ∗ V = ⋃x∈K x ∗ V ⊆ πk ∗ V . So by using (6.2.1),

h(K ∗ V )

h(V )
≤
h(πk ∗ V )

h(V )
< 1 + ε.
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In the following theorem, we study the D-Leptin condition for the hypergroups defined in

Example 3.2.4.

Theorem 6.2.2. Let G = ∏i∈IGi for a family of compact groups (Gi)i∈I such that for each

i ∈ I, Ĝi satisfies the Di-Leptin condition. Then if D ∶= ∏i∈IDi exists, Ĝ satisfies the D-Leptin

condition.

Proof. Given finite subset K of Ĝ and ε > 0 there exists some finite set F ⊆ I such that K ⊆

⊗i∈F Ki ⊗E
c
F where Ki is a finite subset of Ĝi and EcF =⊗i∈I∖F π0 where π0’s are the identities

of the corresponding hypergroup Ĝi. If D ∶=∏i∈IDi <∞, given ε > 0, one may find an ε′ > 0 such

that ∏i∈F (Di + ε
′) < D + ε. Using the Di-Leptin condition for each Ĝi, there exists some finite

set Vi such that hĜi(Ki ∗Vi)/hĜi(Vi) <Di + ε
′. Therefore, for the finite set V = (⊗i∈F Vi)⊗E

c
F ,

h(K ∗ V )

h(V )
≤∏
i∈F

hGi(Ki ∗ Vi)

hGi(Vi)
<∏
i∈F

(Di + ε
′
) <D + ε.

6.2.1 D-Leptin condition for dual of Lie groups

Let G be a connected simply connected compact real Lie group, (e.g. SU(n)). Then, Ĝ, as

the dual object of a compact Lie groups, forms a finitely generated hypergroup (see [9, 77]).

Suppose that F is a finite generator of Ĝ; therefore, by [6, Theorem 2.1], there exists positive

integers 0 < α,β <∞ such that

α <
hĜ(F

k)

kdG
< β (6.2.2)

for all k ∈ N where dG is the dimension of the group G as a Lie group over R. According to the

following theorem, this estimation for the growth rate of Ĝ results in the satisfaction of D-Leptin

condition for Ĝ.

Theorem 6.2.3. Let G be a connected simply connected compact real Lie group. Then Ĝ, as a

hypergroup, satisfies the D-Leptin condition for some D ≥ 1.

Proof. Take a finite set K ⊆ Ĝ. Suppose that F is a finite generator of Ĝ. For some k ∈ N,

K ⊆ F k. Moreover, for each ` ∈ N, F ` ∗ F k ⊆ F `+k. By applying (6.2.2),

lim sup
`→∞

hĜ(K ∗ F `)

hĜ(F
`)

≤ lim sup
`→∞

hĜ(F
`+k)

hĜ(F
`)

= lim sup
`→∞

hG(F
`+k)

(` + k)dG
`dG

hĜ(F
`)

(` + k)dG

`dG
≤ β/α.

Therefore, Ĝ satisfies the D-Leptin condition for some 1 ≤D <∞.
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6.2.2 D-Leptin condition of ŜU(3)

Let SU(3) denote the special group of 3 × 3 unitary matrices which is a connected simply

connected compact real Lie group. Although by Theorem 6.2.3, we may verify the satisfaction

of the D-Leptin condition for SU(3), we found it difficult to calculate the constants α and β in

the proof of Theorem 6.2.3 for G = SU(3). Here we may apply some studies on the representation

theory of SU(3) to find a concrete answer for D.

Proposition 6.2.1 proves that Leptin condition is satisfied for the dual of 2×2 special unitary

matrices group. We have not been able to prove the same result for the dual of the 3 × 3

special unitary matrix group, ŜU(3). Instead, we may show that ŜU(3) satisfies the 6561-

Leptin condition. Our main reference to study ŜU(3) is [79]. In this paper, the irreducible

decomposition of the tensor product of irreducible representations of SU(3) has been studied.

The author would like to thank Professor Wesslén for the constructive communication about

this subsection. Here we recall the following brief background from [79] as well.

One may present the irreducible representations of SU(3) by {(p, q)}p,q∈N∪{0} where for each

representation (p, q) the dimension of the representation is (p+ 1)(q + 1)(p+ q + 2)/2. Although

the precise decomposition of tensor product of irreducible representation studied in [79] is fairly

complicated and we do not have a simple formula similar to the “Clebsch-Gordan” decomposition

formula for SU(2), introduced in Example 3.2.2, the work of [79, Section E] shows that

(p, q) ∗ (p′, q′) ⊆ {(i, j) ∶ 0 ≤ i, j ≤ 3 max{p, q} + 3 max{p′, q′} + 1}. (6.2.3)

Proposition 6.2.4. The hypergroup ŜU(3) satisfies the 6561-Leptin condition.

Proof. Fix a finite set K of ŜU(3) and ε > 0. Given Kk ∶= {(i, j)}ki,j=0 for some k ∈ N such that

K ⊆Kk, for each n ∈ N, define Vn ∶= {(i, j)}ni,j=0. Hence, by (6.2.3),

Kk ∗ Vn ⊆ Uk,n ∶= {(i, j) ∶ i, j ∈ 0, . . . ,3k + 3n + 1} .

Therefore,

h(K ∗ Vn)

h(Vn)
≤

h(Kk ∗ Vn)

h(Vn)
≤
h(Un,k)

h(Vn)

=
∑

3k+3n+1
i,j=0 h((i, j))

∑
n
i,j=0 h((i, j))

=
∑

3k+3n+1
i,j=0

1
4(i + 1)2(j + 1)2(i + j + 2)2

∑
n
i,j=0

1
4(i + 1)2(j + 1)2(i + j + 2)2

which approaches 6561 = 38 when n→∞, by some simple calculations.
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6.2.3 An application: approximate amenability of Segal algebras of compact

groups

The notion of approximate amenability of a Banach algebra was introduced by Ghahramani and

Loy in [31]. A Banach algebra A is said to be approximately amenable if for every A-bimodule

X and every bounded derivation D ∶ A → X, there exists a net (Dα) of inner derivations such

that

lim
α
Dα(a) =D(a) for all a ∈ A.

This is not the original definition but it is equivalent. In [31], it is observed that approxi-

mately amenable algebras have approximate identities; moreover, closed ideals with a bounded

approximate identity and quotient algebras of approximately amenable Banach algebras are

approximately amenable.

In this subsection, we study the approximate amenability of proper Segal algebras of compact

groups. Approximate amenability of Segal algebras has been studied in several papers. Dales and

Loy, in [18], studied approximate amenability of Segal algebras on T and R. They showed that

certain Segal algebras on T and R are not approximately amenable. It was further conjectured

that no proper Segal algebra on T is approximately amenable. Choi and Ghahramani, in [14],

have shown the stronger fact that no proper Segal algebra on Td or Rd is approximately amenable.

Remark 6.2.5. I extend the result of Choi and Ghahramani to apply to all locally compact

abelian groups, not just Td and Rd in [2]. My approach, like that of Choi-Ghahramani and

Dales-Loy, was to apply the Fourier transform and work with abstract Segal subalgebras of the

Fourier algebra of a locally compact abelian group.

In [14], a nice criterion is developed to prove the non-approximate amenability of Banach

algebras. We will rely crucially on this criterion. For this reason, we present a version of the

criterion below. Recall that for a Banach algebra A, a sequence (an)n∈N ⊆ A is called multiplier-

bounded if, for some M > 0, supn∈N ∥anb∥ ≤M∥b∥ and supn∈N ∥ban∥ ≤M∥b∥ for all b ∈ A. If S is

an abstract Segal algebra of a Banach algebra A, each element a ∈ A acts on A as a bounded

multiplier on S.

Theorem 6.2.6. (Choi-Ghahramani)

Let A be a Banach algebra. Suppose that there exists an unbounded but multiplier-bounded

sequence (an)n≥1 ⊆ A such that

anan+1 = an = an+1an
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for all n. Then A is not approximately amenable.

To prove the main theorem we need the following lemma. The proof of the following lemma

is adapted from [44, Lemma 1].

Lemma 6.2.7. Let A be a Banach algebra and J be a dense left ideal of A. Then for each

idempotent element p in the center of algebra A i.e. p2 = p ∈ Z(A), p belongs to J .

Proof. Since J is dense in A, there exists an element a ∈ J such that ∥p−a∥A < 1. Let us define

b ∶= p +
∞

∑
n=1

(p − a)n.

One can check that pb − pb(p − a) = pba, which is an element in J . On the other hand,

pb − pb(p − a) = p(p +
∞

∑
n=1

(p − a)n) − p(p +
∞

∑
n=1

(p − a)n)(p − a)

= p + p
∞

∑
n=1

(p − a)n − p
∞

∑
n=2

(p − a)n − p(p − a)

= p + p(p − a) − p(p − a) = p.

Remark 6.2.8. As an alternative proof for Lemma 6.2.7, let us assume that (if A is not unital)

Ae is the unitalized algebra of A with the identity e. Therefore, for the idempotent p ∈ A, there

is some a ∈ J such that ∥p−a∥A < 1. Therefore, by a well-known argument in spectral theory of

Banach algebras, for x ∶= p − a, e − x is invertible and

(e − x)−1
= e + x + x2

+⋯.

Note that a = p−x; therefore pa = p−px = p(e−x) = (e−x)p since p ∈ Z(A). So p = (e−x)−1pa ∈ J .

Corollary 6.2.9. Let G be a compact group. Then lin{χπ}π∈Ĝ is ∥ ⋅ ∥1-dense in ZL1(G) and

for every Segal algebra S1(G), its center, ZS1(G), contains lin{χπ}π∈Ĝ.

Proof. Let T be the map defined in the proof of Theorem 5.2.1. Then, T (ZL1(G)) = A(Ĝ). Also

for the discrete hypergroup Ĝ, A(Ĝ) equals the ∥ ⋅ ∥A(Ĝ)-closure of lin{δπ}π∈Ĝ, [60]. Therefore,

ZL1(G) is the ∥ ⋅ ∥1-closure of lin{χπ}π∈Ĝ, since T (χπ) = d−1
π δπ for each π ∈ Ĝ. Also by

Lemma 6.2.7, S1(G) contains all central idempotents dπχπ for each π ∈ Ĝ.

The main theorem of this section is as follows.
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Theorem 6.2.10. Let G be a compact group such that Ĝ satisfies the D-Leptin condition for

some D ≥ 1. Then every proper Segal algebra on G is not approximately amenable.

Proof. Let S1(G) be a proper Segal algebra on G. Fix ε > 0. Using the D-Leptin condition on

Ĝ, for every arbitrary non-void finite set K in Ĝ, we can find a finite subset VK of Ĝ such that

h(K ∗ VK)/h(VK) < (D + ε)2. Using the proof of Lemma 5.1.8, for

vK ∶=
1

h(VK)
1K∗VK ∗h 1̃VK (6.2.4)

we have ∥vK∥A(Ĝ) < (D + ε), vK ∣K ≡ 1, and support of vK is compact. We consider the net

{vK ∶K ⊆ Ĝ compact} in A(Ĝ) where vK2 ⪰ vK1 whenever supp(vK1) ⊆K2. So (vK)K⊆Ĝ forms

a ∥ ⋅ ∥A(Ĝ)-bounded net in A(Ĝ)∩ cc(Ĝ). Let f ∈ A(Ĝ)∩ cc(Ĝ) with K = supp f . Then vKf = f .

Therefore, (vK)K⊆Ĝ is a (D + ε)-bounded approximate identity of A(Ĝ), since A(Ĝ) ∩ cc(Ĝ)(=

cc(Ĝ)) is dense in A(Ĝ), by Remark 5.1.11.

Using T defined in the proof of Theorem 5.2.1, we can define the net (uK)K⊆Ĝ in S1(G)

by uK ∶= T −1(vK). Fix a finite set K0 ⊆ Ĝ. We show that (uK)K⊆Ĝ satisfies some conditions.

First of all, since T is an isometry from ZL1(G) onto A(Ĝ), (uK)K⊆Ĝ is a ∥ ⋅ ∥1-bounded net in

S1(G), by Lemma 6.2.7. Moreover, since T is an isomorphism,

uK1 ∗ uK2 = T
−1

(vK1) ∗ T
−1

(vK2) = T
−1

(vK1vK2) = T
−1

(vK1) = uK1

for vK2 ⪰ vK1 which we equivalently denote by uK2 ⪰ uK1 . Let (uK)K⊆Ĝ be the net constructed.

Claim. For every K0 ⊆ Ĝ, K0 finite, the net {uK ∶ uK ⪰ uK0} is unbounded in the norm of

S1(G).

To prove the claim, assume towards a contradiction that there exists K0 finite and C > 0

such that ∥uK∥S1(G) ≤ C for all uK ⪰ uK0 . Since G is compact and S1(G) is a Segal algebra,

we know, [44], that S1(G) has a central approximate identity which is bounded in L1-norm.

Denote this by (eα)α. By Corollary 6.2.9, let us generate a net (e′α,ε)α,1>ε>0 in lin{χπ}π∈Ĝ where

∥e′α,ε − eα∥1 < ε for each pair of (α, ε) while α ↗ on the given order and ε → 0; therefore,

(e′α,ε)α,1>ε>0 ⊆ ZS
1(G). We show that (e′α,ε)α,1>ε>0 is still a central ∥ ⋅ ∥1-bounded approximate

identity of S1(G). To do so, for each f ∈ S1(G), note that

∥e′α,ε ∗ f − f∥S1(G) ≤ ∥e′α,ε ∗ f − eα ∗ f∥S1(G) + ∥eα ∗ f − f∥S1(G)

≤ ∥e′α,ε − eα∥1∥f∥S1(G) + ∥eα ∗ f − f∥S1(G)

which goes toward 0 where α grows and ε → 0. Moreover, for each (α, ε), there exists some

finite set K ′ such that K0 ⊆ K ′ ⊆ Ĝ and T (e′α,ε)vK = T (e′α,ε) for each vK′ ≼ vK ; hence,
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∥e′α,ε∥S1(G) = limK ∥e′α,ε ∗ uK∥S1(G). Consequently,

∥e′α,ε∥S1(G) = lim
K

∥e′α,ε ∗ uK∥S1(G) ≤ sup
K0⊂K⊆Ĝ

∥e′α,ε∥1∥uK∥S1(G) ≤ C∥e′α,ε∥1.

This implies that (e′α,ε)α,1>ε>0 is ∥ ⋅∥S1(G)-bounded. But, a Segal algebra cannot have a bounded

approximate identity unless it coincides with the group algebra, [10], which contradicts the

properness of S1(G). Hence, the claim is proved.

To generate a sequence which satisfies the conditions of Theorem 6.2.6, fix a non-empty

finite set K0 ⊆ Ĝ. By our claim, we inductively construct a sequence of finite sets K0 ⊂ K1 ⊂ ⋯

in Ĝ such that uKn ⪰ uKn−1 and ∥uKn∥S1(G) ≥ n for all n ∈ N. Since uKn ∗ uKn−1 = uKn−1 , by

Theorem 6.2.6, S1(G) is not approximately amenable.

6.3 Leptin condition for Polynomial hypergroups

In [37] the authors try to render the notion of Følner conditions on polynomial hypergroups.

With this motivation, summing sequences in the context of polynomial hypergroups are defined

as follows.

Definition 6.3.1. [37, Definition 2.1]

Let N0 denote the polynomial hypergroup defined in Section 3.3 and h its Haar measure. A

sequence (An)n∈N0 where An ⊆ N0 for all n ∈ N is called summing sequence on the polynomial

hypergroup N0 if it satisfies

(1) An ⊆ An+1 for every n ∈ N0,

(2) N0 = ⋃n∈N0
An,

(3) h(An) <∞ for every n ∈ N0,

(4) lim
n→∞

h((k ∗An)∆An)

h(An)
= 0 for all k ∈ N.

In [37], a polynomial hypergroup N0 is said to satisfy property (H) if

lim
n→∞

h(n)

∑
n
i=0 h(i)

= 0. (6.3.1)

[37, Theorem 2.5] shows that a polynomial hypergroup on N0 satisfies condition (H) if and only

if the sequence (Sn)n∈N is a summing sequence where for each n ∈ N, Sn ∶= {0,1, . . . , n}.

87



Proposition 6.3.2. Let N0 be a polynomial hypergroup which has a summing sequence (An)n∈N0.

Then it satisfies all the Leptin, Strong Følner, and Følner conditions.

Proof. If we just show that the existence of a summing sequence implies the Følner condition, the

rest would be proven based on Proposition 6.1.6, since N0 is a discrete commutative hypergroup.

Let K ⊆ N0 be finite. Since (An)n∈N is a summing sequence, for given ε > 0, there is some N ∈ N

such that
h(k ∗AN∆AN)

h(AN)
< ε

for every k ∈K. Therefore, N0 satisfies (F ) and consequently (SF ) and (L).

Remark 6.3.3. Note that if N0 satisfies (H), the canonical sequence (Sn)n∈N0 is a summing

sequence. Therefore by Proposition 6.3.2, every polynomial hypergroup which satisfies condition

(H) satisfies (L), (F ), and (SF ). As an example in [37], it was shown that Jacobi polynomials

satisfy condition (H) and consequently have the canonical sets (Sn)n∈N as a summing sequence.

So this class of polynomial hypergroups includes Jacobi polynomials.
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Chapter 7

Arens regularity and operator alegbras

In Chapters 3 and 4, we saw a family of hypergroups which have applications to some Banach

algebras on locally compact groups. In this chapter, we pursue our studying on properties of

weighted hypergroup algebras. Therefore the abstract results obtained in this chapter can be

applied to the Banach algebras mentioned in the previous chapters. Doing so, we enrich this

chapter with a variety of examples.

7.1 Arens regularity

7.1.1 General theory

This subsection is a brief report of the general theory of Arens regularity of Banach algebras

which is a summary of a part of [17, Chapter 2]. So all unproven results can be found there.

Let A be a Banach algebra. For φ ∈ A∗ and f, g ∈ A, one may define φ ⋅ f and f ⋅ φ in A∗ by

⟨f ⋅ φ, g⟩ ∶= ⟨φ, gf⟩, ⟨φ ⋅ f, g⟩ ∶= ⟨φ, fg⟩.

Note that this implies that A∗ is actually an A-bimodule with respect to the maps

(f, φ)↦ φ ⋅ f, (f, φ)↦ f ⋅ φ, A ×A
∗
→ A

∗.

For each φ ∈ A∗ and F ∈ A∗∗, let us define φ ⋅ F and F ⋅ φ in A∗ by their action on A where

⟨f, φ ⋅ F ⟩ = ⟨F, f ⋅ φ⟩, ⟨f,F ⋅ φ⟩ = ⟨F,φ ⋅ f⟩

for all f ∈ A. Eventually, for each pair F,G ∈ A∗∗, one may define

⟨F ◻G,φ⟩ = ⟨F,G ⋅ φ⟩, ⟨F ◇G,φ⟩ = ⟨G,φ ⋅ F ⟩

for all φ ∈ A∗.

Theorem 7.1.1. [17, Theorem 2.8]

The Banach space A∗∗ equipped with multiplication ◻ (with multiplication ◇) forms a Banach

algebra.
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Definition 7.1.2. The Banach algebra A is called Arens regular if two actions ◻ and ◇ coincide.

Let A be a Banach algebra and F,G ∈ A∗∗, we know that there are nets (fα)α and (gβ)β in

A such that fα → F and gβ → G in weak∗ topology. One may show that for products ◻ and ◇

of A∗∗,

F ◻G = w∗
− lim

α
w∗

− lim
β
fαgβ and F ◇G = w∗

− lim
β
w∗

− lim
α
fαgβ.

Note that sinceA is a closed subalgebra of (A∗∗,◻) and (A∗∗,◇), by identifying each element

of A by its image in the second dual, one gets that

f ⋅ F ∶= f ◻ F = f ◇ F and F ⋅ f ∶= F ◻ f = F ◇ f (F ∈ A
∗∗, f ∈ A).

Let us recall from Definition 4.1.3, that a Banach algebra A is called a dual Banach algebra

with respect to E, if E is a closed sub-bimodule of the dual A-bimodule A∗ that if for every

φ ∈ E and f ∈ A, f ⋅ φ and φ ⋅ f belong to E such that A = E∗. Also by Proposition 4.1.4, for a

central weight ω, `1(H,ω) is a dual Banach algebra.

For Banach algebra A, let A∗ be a Banach space such that A is (isometrically isomorphic

to) (A∗)
∗ as its dual Banach algebra that is the dual space of A∗ as a Banach space, and such

that the multiplication becomes separately weak∗-continuous. Therefore, for every f, g ∈ A and

φ ∈ A∗,

⟨fg, φ⟩ = ⟨g, φ ⋅ f⟩.

Moreover, let A be a dual Banach algebra with respect to A∗. Let ι ∶ A∗ → (A∗)
∗∗ be the

canonical embedding which identifies every elements φ ∈ A∗ as a linear functional in A∗. For

every φ ∈ A∗, F ∈ A∗∗, ⟨P (F ), φ⟩ = ⟨F,φ⟩. Further, for each f ∈ A, F ∈ A∗∗, and φ ∈ A∗, recall
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that F is the weak ∗ limit of a net (fα)α ⊆ A; hence,

⟨P (f ⋅ F ), φ⟩ = ⟨f ⋅ F, ι(φ)⟩

= ⟨f ⋅ F, ι(φ)⟩

= ⟨F, ι(φ) ⋅ f⟩

= lim
α

⟨fα, ι(φ) ⋅ f⟩

= lim
α

⟨ffα, ι(φ)⟩

= lim
α

⟨fα, φ ⋅ f⟩ (⋆)

= lim
α

⟨fα, ι(φ ⋅ f)⟩

= ⟨F, ι(φ ⋅ f)⟩

= ⟨P (F ), φ ⋅ f⟩

= ⟨fP (F ), φ⟩.

Note that (⋆) is correct based on this fact that A is a dual Banach algebra of A∗. But since

A∗ is weak∗ dense in A∗ = (A∗)
∗∗, one may conclude that P (f ⋅ F ) = fP (F ) and similarly,

P (F ⋅ f) = P (F )f for all f ∈ A and F ∈ A∗∗.

Let us define A⊥∗ ∶= {F ∈ A∗∗ ∶ ⟨F,φ⟩ = 0 for all φ ∈ A∗}.

Proposition 7.1.3. [17, Proposition 2.16]

Let A be a dual Banach algebra with respect to some Banach space A∗ where A = (A∗)
∗. Then

A is Arens regular if Φ ◻Ψ = Φ◇Ψ = 0 for all Φ,Ψ ∈ A⊥∗.

Proof. Note that for each F ∈ A∗∗, ⟨F − P (F ), φ⟩ = 0; F − P (F ) ∈ A⊥∗. Hence, A∗∗ = A ⊕A⊥∗

as a direct sum of Banach spaces where every F ∈ A∗∗ can be decomposed canonically as

(P (F ), F − P (F )). Furthermore, note that for every F,G ∈ A∗∗,

F ◻G = (P (F ) + (F − P (F ))) ◻ (P (G) + (G − P (G)))

= P (F )P (G) + P (F ) ⋅ (G − P (G)) + (F − P (F )) ⋅ P (G)

+ (F − P (F )) ◻ (G − P (G)).

Therefore, (A∗∗,◻) can be identified as a semidirect product A ⋊ A⊥∗ if for F = (f,Φ) and

G = (g,Ψ) in A∗∗,

F ◻G = (fg, f ⋅Ψ +Φ ⋅ g +Ψ ◻Φ). (7.1.1)

Similar argument works for ◇-action as well; hence, (A∗∗,◇) = A⋊A⊥∗ where for each F ∈ A∗∗, if

Φ ∶= F −P (F ) ∈ A⊥∗ and f = P (F ), F = (P (F ),Ψ). Therefore, for each F = (f,Φ) and G = (g,Ψ)
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in A∗∗,

F ◇G = (fg, f ⋅Ψ +Φ ⋅ g +Ψ◇Φ). (7.1.2)

Therefore if Φ ◻Ψ = Φ◇Ψ = 0, (7.1.1) and (7.1.2) finish the proof.

7.1.2 Arens regularity of weighted hypergroup algebras

In [41, Chaptetr 4], Kamyabi-Gol applied the topological center of hypergroup algebras to prove

some results about the hypergroup algebras and their second duals. For example, in [41, Corol-

lary 4.27], he showed that for a (not necessarily discrete and commutative) hypergroup H (which

possesses a Haar measure), L1(H) is Arens regular if and only if H is finite.

Arens regularity of weighted group algebras has been studied by Craw and Young in [16].

They showed that a locally compact group G has a weight ω such that L1(G,ω) is Arens

regular if and only if G is discrete and countable. [17] presents a thorough report of the Arens

regularity of weighted group algebras. In the following we adapt the machinery developed in [17,

Section 8] for weighted hypergroups. [17, Section 3] studies repeated limit conditions and gives

a rich variety of results for them. Here, we will use some of these results. We define 0-cluster

functions as presented in [17, Definition 3.2] and [17, Definition 3.6].

Definition 7.1.4. Let X and Y be non-empty sets, and let f ∶X × Y → C be a function. Then

f 0-clusters on X × Y if

lim
n

lim
m
f(xm, yn) = lim

m
lim
n
f(xm, yn) = 0

whenever (xm) and (yn) are sequences in X and Y , respectively, each consisting of distinct

points and both repeated limits exist.

If f is a bounded continuous function on X × Y into C. Then f 0-clusters strongly on X × Y if

lim
x→∞

lim sup
y→∞

f(x, y) = lim
y→∞

lim sup
x→∞

f(x, y) = 0.

Let X and Y be non-empty sets, and let f ∶ X × Y → C be a continuous bounded function.

Then [17, Proposition 3.8] shows that if f 0-clusters strongly on X × Y , it 0-clusters on X × Y .

Note that for κ∗∗ ∶ `1(H,ω)∗∗ → `1(H)∗∗ and Φ ∈ c0(H,ω)
⊥, one gets

⟨κ∗∗(Φ), φ⟩ = ⟨Φ, κ∗(φ)⟩

which is equal to 0 for all φ ∈ c0(H). Therefore κ∗∗(Φ) ∈ c0(H)⊥. The converse is also true and

straightforward to show (which we do not use here so we do not mention).
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Let us define the bounded function Ω ∶H ×H → (0,1] by

Ω(x, y) ∶=
ω(δx ∗ δy)

ω(x)ω(y)
(x, y ∈H). (7.1.3)

The following theorem is a generalization of [17, Theorem 8.8]. In the proof we use some

techniques of the proof for [53, Theorem 3.16].

Theorem 7.1.5. Let (H,ω) be a weighted hypergroup and let Ω 0-cluster strongly on H ×H.

Then Φ ◻Ψ = 0 and Φ◇Ψ = 0 whenever Φ,Ψ ∈ c0(H,1/ω)
⊥.

Proof. Let us show the theorem for Φ ◻Ψ, the proof for the other action is similar. Let Φ,Ψ ∈

c0(H,1/ω)
⊥. There are nets (fα)α, (gβ)β ⊆ `1(H) such that fα → κ∗∗(Φ) and gβ → κ∗∗(Ψ) in

weak∗ topology of `1(H)∗∗. Without loss of generality, let ∥κ∗∗(Φ)∥ = ∥κ∗∗(Ψ)∥ = 1; hence, by a

standard corollary of Goldstine’s theorem, [24, Theorem 9.7.14], (fα)α and (gβ)β may be chosen

such that supα ∥fα∥1 ≤ 1 and supβ ∥gβ∥1 ≤ 1.

So for each ψ ∈ `∞(H), κ∗(ψ) = ψω ∈ `∞(H,1/ω) and Φ ◻Ψ ∈ `1(H,ω)∗∗; hence,

⟨ψω,κ∗∗(Φ ◻Ψ)⟩ = ⟨κ∗(ψ),Φ ◻Ψ⟩

= lim
α

lim
β

⟨ψω,κ−1
(fα) ∗ κ

−1
(gβ)⟩

= lim
α

lim
β

⟨ψω, fα/ω ∗ gβ/ω⟩.

Thus

∣⟨ψω,κ∗∗(Φ ◻Ψ)⟩∣ = lim
α

lim
β

∣⟨ψω, fα/ω ∗ gβ/ω⟩∣

= lim
α

lim
β

RRRRRRRRRRR

∑
y∈H

ψ(y)ω(y) ∑
x,z∈H

fα(x)

ω(x)

gβ(z)

ω(z)
δx ∗ δz(y)

RRRRRRRRRRR

≤ lim sup
α

lim sup
β

∑
x,z∈H

∣fα(x)∣

ω(x)

∣gβ(z)∣

ω(z)
∑
y∈H

∣ψ(y)∣ω(y)δx ∗ δz(y)

≤ lim sup
α

lim sup
β

∥ψ∥`∞(H) ∑
x,z∈H

∣fα(x)∣∣gβ(z)∣ ∑
y∈H

ω(y)

ω(x)ω(z)
δx ∗ δz(y)

= lim sup
α

lim sup
β

∥ψ∥`∞(H) ∑
x,z∈H

∣fα(x)∣∣gβ(z)∣Ω(x, z).

For a given ε > 0, since by the hypothesis limx lim supz Ω(x, z) = 0, there is a finite set

A ⊆ H such that for each x ∈ Ac ∶= H ∖ A there exists a finite set Bx ⊆ H such that for each

z ∈ Bc
x ∶=H ∖B, ∣Ω(x, z)∣ ≤ ε.

First note that

lim sup
α

lim sup
β

∑
x∈Ac

∑
z∈Bcx

∣fα(x)∣∣gβ(z)∣Ω(x, z) ≤ lim sup
α

lim sup
β

ε∥fα∥1∥gβ∥1 ≤ ε.
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Also according to our assumption about Φ and Ψ and since for each x ∈H, δx ∈ c0(H,1/ω),

lim
α
fα(x) = ⟨Φ, δx⟩ = 0, lim

β
gβ(x) = ⟨Ψ, δx⟩ = 0.

So for the given ε > 0 there is α0 such that for all α0 ≼ α, ∣fα(x)∣ < ε/∣A∣ for all x ∈ A. Moreover,

for each x ∈ Ac there is some βx0 such that for all β where βx0 ≼ β, ∣gβ(z)∣ < ε/∣Bx∣ for all z ∈ Bx

(this is possible since A and Bx are finite). Therefore, since ∣Ω(x, z)∣ ≤ 1,

lim sup
α

lim sup
β

∑
x∈A

∑
z∈H

∣fα(x)∣∣gβ(z)∣Ω(x, z) ≤ lim sup
β

ε∥gβ∥1 = ε

and

lim sup
α

lim sup
β

∑
x∈Ac

∑
z∈Bx

∣fα(x)∣∣gβ(z)∣Ω(x, z) ≤ lim sup
α

∑
x∈Ac

∣fα(x)∣ lim sup
β

∑
z∈Bx

∣gβ(z)∣

≤ lim sup
α

ε∥fα∥1 = ε.

But

∑
x,z∈H

∣fα(x)∣∣gβ(z)∣Ω(x, z) = ∑
x∈Ac,z∈Bcx

∣fα(x)∣∣gβ(z)∣Ω(x, z)

+ ∑
x∈A,z∈H

∣fα(x)∣∣gβ(z)∣Ω(x, z)

+ ∑
x∈Ac,z∈Bx

∣fα(x)∣∣gβ(z)∣Ω(x, z),

and so, one gets that ∣⟨ψω,κ∗∗(Φ ◻Ψ)⟩∣ ≤ 3ε∥ψ∥∞. This implies that Φ ◻Ψ = 0.

Theorem 7.1.6. Let (H,ω) be a discrete weighted hypergroup with a central weight ω and

consider the following conditions:

(1) Ω 0-clusters strongly on H ×H.

(2) Φ ◻Ψ = Φ◇Ψ = 0 for all Φ,Ψ ∈ c0(H,1/ω)
⊥.

(3) `1(H,ω) is Arens regular.

Then (1)⇒ (2)⇒ (3).

Proof. (1) ⇒ (2) by Theorem 7.1.5. (2) ⇒ (3) is implied from Proposition 7.1.3 and Proposi-

tion 4.1.4.

Remark 7.1.7. Since in hypergroups, the cancellation does not necessarily exist, the argument

of [16, Theorem 1] cannot be applied to show ((3)) implies ((1)).
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Corollary 7.1.8. Let (H,ω) be a weighted discrete hypergroup such that ω is a weakly additive

central weight. If 1/ω ∈ c0(H), then `1(H,ω) is Arens regular.

Proof. We have

lim
x→∞

lim sup
y→∞

ω(δx ∗ δy)

ω(x)ω(y)
≤ lim sup

x→∞
lim sup
y→∞

C
ω(x) + ω(y)

ω(x)ω(y)

= C lim sup
x→∞

lim sup
y→∞

1

ω(x)
+

1

ω(y)
= 0.

Therefore Ω 0-clusters on H ×H and hence `1(H,ω) is Arens regular by Theorem 7.1.6.

Corollary 7.1.9. Let H be an infinite finitely generated hypergroup. Then for each polynomial

weight ωβ (β > 0) on H, `1(H,ωβ) is Arens regular.

Proof. Let F be a finite generator of the hypergroupH containing the identity ofH rendering the

central weight ωβ . First, note that by Remark 4.2.2, ωβ is centrally additive (and consequently

weakly additive) with constant C = min{1,2β−1}. Moreover, for each N ∈ N, FN is a finite

subset of H such that for each x ∈H ∖ FN , τF (x) ≥ N ; hence,

ωβ(x) = (1 + τF (x))
β
≥ (1 +N)

β.

Hence 1/ωβ ∈ c0(H) and therefore `1(H,ωβ) is Arens regular, by Corollary 7.1.8.

Example 7.1.10. In Section 3.3, we introduced polynomial hypergroup structure of N0. Fur-

ther, as a finitely generated hypergroup, we defined the polynomial weight ωβ on that where

ωβ(n) = (1 + n)β for every n ∈ N0. Therefore by Corollary 7.1.9, `1(N0, ωβ) is Arens regular.

Remark 7.1.11. Every infinite finitely generated hypergroup H admits a weight for which the

corresponding weighted algebra is Arens regular. An argument similar to [16, Corollary 1] may

apply to show that for every uncountable discrete hypergroup H, H does not have any central

weight ω which 0-clusters.

7.1.3 Arens regularity of weighted hypergroup algebra of Conj(G) for some

special G

Remark 7.1.12. Let ω be a central weight on Conj(G) for some FC group G. Then there is a

group weight σω, as defined in Remark 4.4.1, such that `1(Conj(G), ω) is isometrically Banach

algebra isomorphic to Z`1(G,σω). So one may use the embedding `1(Conj(G), ω) ↪ `1(G,σω)
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to prove the results of this subsection applying the theorems which are characterizing weighted

group algebras..

Example 7.1.13. Let Affp ∶= Zp ⋊ Z∗p be the affine group generated with Zp(∶= Z/pZ) for a

prime number p, when for each (a, b), (a′, b′) ∈ Affp we define (a, b)(a′, b′) = (a+ ba′, bb′). Based

on the calculations of [74, p 274], in the following table, we re-present the structure of conjugacy

classes of Affp.

Conjugacy classes C(0,1) C(1,1) C(0,y) y∈2,⋯,p−1

Number 1 1 p − 2

Size 1 p − 1 p

As a direct result of the above table, for each three conjugacy classes say C1,C2,D ∈

Conj(Affp), ∣D∣ ≤ (∣C1∣ + ∣C2∣) if D ⊆ C1C2 for each prime number p ≥ 3. In other words,

the weight ωp(C) ∶= ∣C ∣, defined in Example 4.4.2, forms a central additive weight on Affp. Let

P be the set of all prime numbers greater than or equal to 3. Define G = ⊕p∈P Affp and ωα is

the weight defined in Example 3.1.3 for some α > 0. For C ∈ D ∗E for C,D,E ∈ Conj(G), we

have

ωα(C) = (1 + ∣Ci1 ∣ +⋯ + ∣Cin ∣)
α

≤ (1 + ∣Di1 ∣ +⋯ + ∣Din ∣ + 1 + ∣Ei1 ∣ +⋯ + ∣Ein ∣)
α

≤ M ((1 + ∣Di1 ∣ +⋯ + ∣Din ∣)
α
+ (1 + ∣Ei1 ∣ +⋯ + ∣Ein ∣)

α
) ≤ C(ωα(D) + ωα(E))

for M = min{1,2α−1}, by (4.2.1), where ij ∈ IC and IC is the set of all indexes i ∈ I such that

xi ≠ eGi for some x = (xi)i∈I ∈ C as defined before in Example 3.1.3.

Hence, ωα is centrally additive (see Definition4.1.5). Moreover, since for each p ∈ P, ∣C ∣ ≥ p−1

for any non-trivial element C ∈ Conj(Affp), limn ωα(Cn) = ∞ for each sequence of distinct

elements of Conj(G). Therefore by Corollary 7.1.8, `1(Conj(G), ωα) is Arens regular.

Example 7.1.14. Let SL(2,2n) denote the finite group of special linear matrices over the field

F2n with cardinal 2n, for given n ∈ N. The character table of SL(2,2n) can be found at [1]. In

the following we just present the part of the character table related to the conjugacy classes of

SL(2,2n).

Conjugacy classes e N c3(x) c4(z)

Number 1 1 (2n − 2)/2 2n−1

Size 1 22n − 1 22n + 2n 22n − 2n
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As a direct result of the above table, for each three conjugacy classes say C1,C2,D ∈

Conj(SL(2,2n)), ∣D∣ ≤ 2(∣C1∣ + ∣C2∣) if D ⊆ C1C2 for all n. Let us define the FC group G

to be the RDPF of (SL(2,2n))n∈N i.e.

G ∶=
∞

⊕
n=1

SL(2,2n).

Therefore, similar to the previous example, for the hypergroup Conj(G), the weight ωα, as

defined as in Example 3.1.3, is centrally additive for the constant M = 2αmin{1,2α−1}, and

consequently, weakly additive. Moreover, since limC→∞ ωα(C) = ∞, `1(Conj(G), ωα) is Arens

regular, by Corollary 7.1.8.

Remark 7.1.15. Let G be an FC group and σ a group weight on G. We defined ωσ, the derived

weight on Conj(G) from σ in Definition 4.3.2. Recall that in this case Z`1(G,σ) is isomorphic

to the Banach algebra `1(Conj(G), ωσ), by Corollary 4.3.3. If N is a normal subgroup of G,

in Section 4.5, we defined a quotient mapping Tωσ ∶ `1(Conj(G), ωσ) → `1(Conj(G/N), ω̃σ) in

Proposition 4.5.1 where

ω̃σ(CxN) = inf{ωσ(Cxy) ∶ y ∈ N} (CxN ∈ Conj(G/N)).

Let us note that for an Arens regular Banach algebra A, every quotient algebra A/I where I is a

closed ideal of A is Arens regular as well (see [17, Corollary 3.15]). Therefore, if `1(Conj(G), ωσ)

is Arens regular, for every normal subgroup N , `1(Conj(G/N), ω̃σ), which is isomorphic to

`1(Conj(G), ωσ)/Ker(Tωσ), is Arens regular.

7.1.4 Arens regularity of `1(ŜU(n), ω)

Example 7.1.16. In Example 4.6.2, we observed that for each β > 0, ωβ(`) = (2` + 1)β is

a polynomial weight on the finitely generated hypergroup ŜU(2). Therefore `1(ŜU(2), ωβ) is

Arens regular. Note that ωβ also corresponds the weight on the dual of SU(2) which is generated

by the degree of representations. See Corollary 4.6.1.

In this subsection, we may generalize the result of Example 7.1.16 for all SU(n) and ωβ

for β > 0 base on some recent studies on the representation theory of SU(n). As an example

for Corollary 4.6.1, (ŜU(n), ωβ) is a discrete commutative hypergroup where ωβ(π) = dβπ for

some β ≥ 0. It is known that there is a one-to-one correspondence between ŜU(n) and n-tuples

(π1, . . . , πn) ∈ Zn+ such that

π1 ≥ π2 ≥ ⋯ ≥ πn−1 ≥ πn = 0.
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This presentation of the representation theory of SU(n) is called dominant weight. Using this

presentation, we have the following formula which gives the dimension of each representation.

dπ = ∏
1≤i<j≤n

πi − πj + j − i

j − i
(7.1.4)

where π is the representation corresponding to (π1, . . . , πn). Suppose that π, ν, µ are repre-

sentations corresponding to (π1, . . . , πn), (ν1, . . . , νn), and (µ1, . . . , µn), respectively, such that

π ∈ ν ∗ µ. By a new result of Collins, Lee, and S̀niady [15, Corollary 1.2], for each n ∈ N, there

exists some Dn > 0 such that
dπ
dµdν

≤Dn(1/µ1 + 1/ν1). (7.1.5)

when neither ν nor µ is the trivial representation of SU(n). Hence in general if Cn = max{Dn,1/2},

then
dπ
dµdν

≤ 2Cn (
1

1 + µ1
+

1

1 + ν1
) . (7.1.6)

Applying (7.1.6), we prove that ωβ 0-clusters on ŜU(2).

Theorem 7.1.17. For every β > 0, `1(ŜU(n), ωβ) is Arens regular.

Proof. Let (µm)m∈N and (νk)k∈N are two arbitrary sequence of distinct elements of ŜU(n).

Since, the elements of (µm)m∈N ((νk)k∈N)) are distinct, limm→∞ µ
(m)
1 = ∞ (limk→∞ ν

(k)
1 = ∞ )

where µm = (µ
(m)
1 , . . . , µ

(m)
n ) (νk = (ν

(k)
1 , . . . , ν

(k)
n )). For each arbitrary pair (m,k) ∈ N × N, if

π ∈ µm ∗ νk, we have

dπ ≤ 2Cn(
1

1 + µ
(m)
1

+
1

1 + ν
(k)
1

)dµmdνk .

Hence

ωβ(π) ≤ (2Cn)
β
(

1

1 + µ
(m)
1

+
1

1 + ν
(k)
1

)
βωβ(µm)ωβ(νk).

Therefore

ωβ(δµm ∗ δνk) = ∑

π∈ŜU(n)

δµm ∗ δνk(π)ωβ(π) ≤ (2Cn)
β
(

1

1 + µ
(m)
1

+
1

1 + ν
(k)
1

)
βωβ(µm)ωβ(νk).

Or equivalently

Ωβ(µm, νk) ∶=
ωβ(δµm ∗ δνk)

ωβ(µm)ωβ(νk)
≤ (2Cn)

β
(

1

1 + µ
(m)
1

+
1

1 + ν
(k)
1

)
β.

And,

lim
m→∞

lim sup
k→∞

Ωβ(µm, νk) = lim
k→∞

lim sup
m→∞

Ωβ(µm, νk) = 0.

Since ŜU(n) is countable, this argument implies that Ωβ 0-clusters strongly on ŜU(n)× ŜU(n)

and, by Theorem 7.1.6, `1(ŜU(n), ωβ) is Arens regular.
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7.1.5 Some weighted hypergroup algebras are not Arens regular

In the following theorem, we apply some techniques of [16] to show that for restricted direct

product of hypergroups many weights fail to give Arens regular algebras.

Theorem 7.1.18. Let (Hi)i∈I be an infinite family of non-trivial hypergroups and for each i ∈ I,

ωi is a weight on Hi such that ωi(eHi) = 1 for all except finitely many i ∈ I. Let H =⊕i∈IHi and

ω =∏i∈I ωi, as defined in Subsection 4.1.1. Then `1(H,ω) is not Arens regular.

Proof. Since I is infinite, suppose that N0 × N0 ⊆ I. Define vn = (xi)i∈I (um = (xi)i∈I) where

xi = eHi for all i ∈ I∖(n,0) (i ∈ I∖(0,m)) and x(n,0) (x(0,m)) be a non-identity element of H(n,0)

(H(0,m)) for all n ∈ N (m ∈ N). Note that for each pair of elements (n,m) ∈ N × N, vn ∗ um

forms a singleton in H; moreover, ω(vn ∗ um) = ω(vn)ω(um). Hence, (vn ∗ um)(n,m)∈N×N forms

a sequence of distinct elements in H.

Let us define fn = δvn and gm = δum for all n,m ∈ N; hence, fn ∗ gm(t) = δvn∗um . Suppose

that A ∶= {(vn, um) ∶ n > m} and φ ∈ `∞(H) is the characteristic function of the subset A.

Clearly, κ−1(fn) = ω
−1fn and κ−1(gm) = ω−1gm belong to `1(H,ω) for all n,m and κ∗(φ) = ωφ ∈

`∞(H,ω−1), for κ define in Subsection 7.1.2. Note that

⟨ω−1fn ∗ ω
−1gm, κ

∗
(φ)⟩ = ⟨ω−1fn ∗ ω

−1gm, ωφ⟩

= ∑
t∈H

(ω−1fn ∗ ω
−1gm)(t)ω(t)φ(t)

=
ω(vn ∗ um)

ω(vn)ω(um)
φ(vn ∗ um)

= φ(vn ∗ um) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 if n >m

0 if n ≤m

Let us recall that for each n andm, ∥fn∥`1(H,ω) = 1 and ∥gm∥`1(H,ω) = 1. So (fn)n∈N and (gm)m∈N,

as two nets in the unit ball of `1(H,ω)∗∗ which is weak∗ compact, have two subnets (fα)α and

(gβ)β such that fα and gβ converge weakly∗ to some F and G in `1(H,ω)∗∗, respectively.

Note that for the specific element φ, defined above,

⟨F ◻G,φ⟩ = lim
α

lim
β

⟨ω−1fα ∗ ω
−1gβ, κ

∗
(φ)⟩ = 0

while

⟨F ◇G,φ⟩ = lim
β

lim
α

⟨⟨ω−1fα ∗ ω
−1gβ, κ

∗
(φ)⟩ = 1.

Hence F ◻G ≠ F ◇G and `1(H,ω) is not Arens regular.
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Example 7.1.19. Let G be the restricted direct product of an infinite family of finite groups

(Gi)i. By Example 3.1.3, Conj(G) = ⊕i∈I Conj(Gi). Also for ω(Cx) = ∏i ∣Cxi ∣, ω is a weight

such that `1(Conj(G), ω) is not Arens regular, by Theorem 7.1.18. One may compare this weight

with the examples in Subsection 7.1.3.

7.2 Operator algebra property of weighted hypergroup algebras

Let (H,ω) be a weighted discrete hypergroup. In this section, we study the existence of an

algebra isomorphism from `1(H,ω) onto an operator algebra. A Banach algebra A is called an

operator algebra if there is a Hilbert space H such that A is a closed subalgebra of B(H).

Definition 7.2.1. Let A be a Banach algebra and m ∶ A×A→ A is bilinear mapping m(f, g) =

fg. Then A is called injective, if m has a bounded extension from the injective tensor product

A⊗ε A into A, where ⊗ε is the injective tensor product. In this case, we denote the norm of m

by ∥m∥ε.

We present the following theorem from [52, Corollary 2.2.] without a proof.

Theorem 7.2.2. Let A be an injective Banach algebra. Then A is isomorphic to an operator

algebra.

Injectiveness of weighted group algebras has been studied before. Initially Varopoulos, in

[76], studied the group Z equipped with the weight σα(n) = (1 + ∣n∣)α for all α ≥ 0. This

study looked at injectiveness of `1(Z, σα). He showed that `1(Z, σα) is injective if and only

if α > 1/2. The manuscript [52], which studied the injectiveness question for a wider family of

weighted group algebras, developed a machinery applying Littlewood multipliers. In particular,

they partially extended Varopoulos’s result in [76] to finitely generated groups with polynomial

growth. Following the structure of [52], in this section, we study the injective property of

weighted hypergroup algebras.

We know that `1(H,ω)⊗γ `1(H,ω) is isometrically isomorphic with `1(H ×H,ω×ω). More-

over, `1(H ×H,ω ×ω)∗ is nothing but `∞(H ×H,ω−1 ×ω−1). Since the injective tensor product

is minimal among all Banach space tensor products, the identity map ι ∶ `1(H) × `1(H) →

`1(H) × `1(H) may extend to a contractive mapping

ι ∶ `1(H)⊗γ `
1
(H)→ `1(H)⊗ε `

1
(H).
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Since, ι has a dense range,

ι∗ ∶ (`1(H)⊗ε `
1
(H))

∗
→ (`1(H)⊗γ `

1
(H))

∗
= `∞(H ×H) (7.2.1)

is an injective mapping. Therefore, applying ι∗, one may embed (`1(H)⊗ε `
1(H))∗ into `∞(H ×

H), as a sub vector space of `∞(H ×H).

7.2.1 Littlewood multipliers for hypergroups

Let H be a discrete hypergroup. We define Littlewood multipliers of H to be set of all functions

f ∶H ×H → C such that there exist functions f1, f2 ∶H ×H → C where

f(x, y) = f1(x, y) + f2(x, y) (x, y ∈ G)

and

sup
y∈H

∑
x∈H

∣f1(x, y)∣
2
<∞, sup

x∈H
∑
y∈H

∣f2(x, y)∣
2
<∞.

We denote the set of all Littlewood multipliers by T 2(H) and define the following norm on

T 2(H)

∥f∥T 2(H) = inf

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

sup
y∈H

(∑
x∈H

∣f1(x, y)∣
2
)

1/2

+ sup
x∈H

⎛

⎝
∑
y∈H

∣f2(x, y)∣
2⎞

⎠

1/2⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

.

where the infimum is taken over all possible decompositions f1, f2. Note that for each f ∈ T 2(H)

and a decomposition f1, f2 of that,

∥f∥`∞(H×H) = sup
x,y∈H

∣f(x, y)∣ ≤ sup
x,y∈H

∣f1(x, y)∣ + sup
x,y∈H

∣f2(x, y)∣

≤ sup
y∈H

(∑
x∈H

∣f1(x, y)∣
2
)

1/2

+ sup
x∈H

⎛

⎝
∑
y∈H

∣f2(x, y)∣
2⎞

⎠

1/2

<∞,

since for discrete space H, `2(H) ⊆ `∞(H) and ∥ ⋅ ∥∞ ≤ ∥ ⋅ ∥2. Since f1, f2, in the previous

equation are arbitrary, ∥f∥`∞(H×H) ≤ ∥f∥T 2(H). Hence T 2(H) ⊆ `∞(H ×H). Furthermore, for

each φ ∈ `∞(H ×H) and f ∈ T 2(H), fφ ∈ T 2(H) and

∥fφ∥T 2(H) ≤ ∥f∥T 2(H)∥φ∥∞. (7.2.2)

Theorem 7.2.3. Let I ∶ T 2(H) → (`1(H) ⊗γ `
1(H))∗ = `∞(H × H) be the mapping which

takes every element of T 2(H) to itself as a bounded function on H × H. Then I(T 2(H)) ⊆

ι∗((`1(H)⊗ε `
1(H))∗) for the mapping ι∗ defined in (7.2.1).

Moreover, for J ∶= ι∗−1
○ I i.e. J ∶ T 2(H)→ (`1(H)⊗ε `

1(H))∗ is well-defined and ∥J∥ ≤KG

where KG is Grothendieck’s constant.
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The proof and its preliminaries are given in Appendix A. From now on, we identify (`1(H)⊗ε

`1(H))∗) with its image with respect to the mapping ι∗; hence, J is the identity mapping which

takes T 2(H) into (`1(H)⊗ε `
1(H))∗.

7.2.2 The operator algebra property of weighted hypergroup algebras

Theorem 7.2.4. Let H be a discrete hypergroup and ω is a weight on H such that Ω, de-

fined in (7.1.3), belongs to T 2(H). Then `1(H,ω) is injective. Moreover, for m as defined in

Definition 7.2.1,

∥m∥ε ≤KG∥Ω∥T 2(H).

Proof. Let

Γω ∶ `
1
(H ×H,ω × ω)→ `1(H,ω)

such that

Γω(f ⊗ g) = f ∗ g (7.2.3)

for f, g ∈ `1(H,ω). The adjoint of Γω, Γ∗ω, can be characterized as follows.

Γ∗ω(φ)(x, y) = ⟨Γ∗ω(φ), δx ⊗ δy⟩ = ⟨φ,Γω(δx ⊗ δy)⟩ = ⟨φ, δx ∗ δy⟩

for all φ ∈ `∞(H,ω−1) and x, y ∈ H. Now we define L from `∞(H) to `∞(H ×H) such that the

following diagram commutes.

`∞(H,ω−1)
Γ∗ω // `∞(H ×H,ω−1 × ω−1)

R
��

`∞(H)

P

OO

L // `∞(H ×H)

where P (ϕ)(x) = ϕ(x)ω(x) for ϕ ∈ `∞(H) and R(φ)(x, y) = φ(x, y)ω−1(x)ω−1(y) for φ ∈ `∞(H×

H,ω−1 × ω−1) and x, y ∈H. Hence, one gets

L(ϕ)(x, y) = R (Γ∗ω ○ P (ϕ)) (x, y) =
(Γ∗ω ○ P (ϕ)) (x, y)

ω(x)ω(y)

=
Γ∗ω (ωϕ) (x, y)

ω(x)ω(y)

=
⟨ϕω, δx ∗ δy⟩

ω(x)ω(y)

= ∑
t∈H

δx ∗ δy(t)
ω(t)

ω(x)ω(y)
ϕ(t).

for all ϕ ∈ `∞(H). Hence,

∣∑
t∈H

δx ∗ δy(t)
ω(t)

ω(x)ω(y)
ϕ(t)∣ ≤ ∑

t∈H

δx ∗ δy(t)
ω(t)

ω(x)ω(y)
∣ϕ(t)∣ ≤ ∥ϕ∥∞Ω(x, y)
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So there is a function vϕ ∶H ×H → C such that

⟨δx ∗ δy, ωϕ⟩

ω(x)ω(y)
= vϕ(x, y)∥ϕ∥∞Ω(x, y)

and ∥vϕ∥∞ ≤ 1. Therefore

L(ϕ) = Λ(ϕ)Ω

where Λ(ϕ)(x, y) ∶= vϕ(x, y)∥φ∥∞ for all ϕ ∈ `∞(H). Since Ω belongs to T 2(H) and T 2(H) is an

`∞(H ×H)-module, L(ϕ) ∈ T 2(H) and ∥L(ϕ)∥T 2(H) ≤ ∥ϕ∥∞∥Ω∥T 2(H). Therefore L(`∞(H)) ⊆

T 2(H) ⊆ (`1(H)⊗ε `
1(H))∗.

In this case, using the following diagram with A = R−1((`1(H)⊗ε `
1(H))∗),

`∞(H,ω−1)
Γ∗ω // A

ι //

R∣r
��

`∞(H ×H,ω−1 × ω−1)

R
��

`∞(H)

P

OO

L // (`1(H)⊗ε `
1(H))∗

ι // `∞(H ×H)

Cliam. A = (`1(H,ω)⊗ε `
1(H,ω))∗.

Proof of Claim. Note that R is the adjoint of R∗ an isomorphism from `1(H) ⊗γ `
1(H) into

`1(H,ω)⊗γ `
1(H,γ) such that R∗(f ⊗ g) = fω

−1 ⊗ gω−1. Similarly, one may define the isometry

Rε∗ such that Rε∗(f ⊗g) = fω−1⊗gω−1. Therefore, Rε∗ ∶ `1(H)⊗ε `
1(H)→ `1(H,ω)⊗ε `

1(H,ω) is

a Banach space isomorphism. Let us define, similar to ι, ιω ∶ `1(H,ω)⊗γ `1(H,ω)→ `1(H,ω)⊗ε

`1(H,ω). Therefore, clearly the following diagram commutes (one may study the maps on

elementary elements).

`1(H,ω)⊗γ `
1(H,ω)

ιω // `1(H,ω)⊗ε `
1(H,ω)

`1(H)⊗γ `
1(H)

R∗

OO

ι // `1(H)⊗ε `
1(H)

Rε
∗

OO

For Rε = (Rε∗)
∗, we get

(`1(H,ω)⊗ε `
1(H,ω))∗

ι∗ω //

Rε
��

`∞(H ×H,ω−1 × ω−1)

R
��

(`1(H)⊗ε `
1(H))∗

ι∗ // `∞(H ×H)

Therefore, for each ψ ∈ ι∗ω((`
1(H,ω) ⊗ε `

1(H,ω))∗), R(ψ) ∈ ι∗((`1(H) ⊗ε `
1(H))∗). Similarly,

if we may identify ι∗ω((`
1(H,ω) ⊗ε `

1(H,ω))∗) with (`1(H,ω) ⊗ε `
1(H,ω))∗ as a subspace of

`∞(H ×H,ω−1 × ω−1),

R((`1(H,ω)⊗ε `
1
(H,ω))∗) = (`1(H)⊗ε `

1
(H))

∗.
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So, we have shown that Γ∗ is a map projecting `∞(H) into (`1(H)⊗ε `
1(H))∗ as a subset of

`∞(H ×H). we see that Γ∗ω is a map projecting `∞(H,ω−1) into (`1(H,ω)⊗ε `
1(H,ω))∗. Hence,

Γ∗ω =m
∗, where

m ∶ `1(H,ω)⊗ε `
1
(H,ω)→ `1(H,ω).

and therefore m is bounded while ∥m∥ = ∥Γω∥ = ∥RΓωP ∥ = ∥L∥. Moreover,

∥L(ϕ)∥(`1(H)⊗ε`1(H))∗ ≤ ∥J∥ ∥Γ∗(ϕ)∥T 2(H) ≤KG ∥Ω∥T 2(H) ∥Λ(ϕ)∥`∞(H×H)

≤ KG ∥Ω∥T 2(H) ∥ϕ∥`∞(H)

for all ϕ ∈ `∞(H). Consequently, ∥m∥ε ≤KG∥Ω∥T 2(H).

Example 7.2.5. Let ωβ be the weight defined on ŜU(n) in Corollary 4.6.1. As we have shown

in the proof of Theorem 7.1.17, for polynomial weight ωβ , β ≥ 0, and µ, ν ∈ ŜU(n),

Ωβ(µ, ν) ≤ (2Cn)
β
(

1

1 + µ1
+

1

1 + ν1
)
β
≤ Aβ(2Cn)

β
(

1

(1 + µ1)
β
+

1

(1 + ν1)
β
) ,

where Aβ = min{1,2β−1}. To study ∥ ⋅ ∥
T 2(ŜU(2))

for Ωβ , let us note that for each k ∈ N ∪ {0},

there are less than (1 + k)n−2 many λ ∈ ŜU(n) such that λ1 = k. Therefore

∑

λ∈ŜU(n)

1

(1 + λ1)
2β

≤
∞

∑
k=0

(1 + k)n−2

(1 + k)2β

which is convergent if and only if 2β − n + 2 > 1. Therefore, for β > (n − 1)/2, Ωβ ∈ T
2(ŜU(n))

and by Theorem 7.2.4, `1(ŜU(2), ωβ) is injective. Moreover, note that

∥Ωβ∥T 2(ŜU(n))
≤ ∥(µ, ν)↦

Aβ(2Cn)
β

1 + µ1
+
Aβ(2Cn)

β

1 + ν1
∥
T 2(H)

≤

⎛
⎜
⎜
⎝

sup
ν∈ŜU(n)

⎛
⎜
⎝

∑

µ∈ŜU(n)

∣
Aβ(2Cn)

β

1 + µ1
∣

2⎞
⎟
⎠

1/2

+ sup
µ∈ŜU(n)

⎛
⎜
⎝

∑

ν∈ŜU(n)

∣
Aβ(2Cn)

β

1 + ν1
∣

2⎞
⎟
⎠

1/2
⎞
⎟
⎟
⎠

≤ Aβ(2Cn)
β2(

∞

∑
k=0

1

(1 + k)2β−n+2
)

1/2

.

Hence

∥m∥ε ≤KGAβ2β+1Cβn (
∞

∑
k=0

1

(1 + k)2β−n+2
)

1/2

for Aβ = min{1,2β−1}.

Let us recall the definition of weakly additive weights on hypergroups from Definition 4.1.5.

ω is a weakly additive weight on a hypergroup H if for all x, y ∈H, ω(δx ∗ δy) ≤ C(ω(x)+ω(y))

for some fixed C > 0.
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Corollary 7.2.6. Let H be a discrete hypergroup and ω is a weakly additive weight on H with

corresponding constant C > 0. Then `1(H,ω) is injective if

∑
x∈H

1

ω(x)2
<∞.

Moreover, for m as defined in Definition 7.2.1,

∥m∥ε ≤ 2CKG (∑
x∈H

1

ω(x)2
)

1/2

.

Proof. Suppose that ∑x∈H ω(x)−2 <∞. Note that for each t ∈ x ∗ y,

ω(t)

ω(x)ω(y)
≤ C

ω(x) + ω(y)

ω(x)ω(y)
=

C

ω(x)
+

C

ω(y)
.

Thus based on (7.2.2) and for functions f1(x, y) = ω(x)
−1 and f2(x, y) = ω(y)

−1,

∥Ω∥T 2(H) ≤ ∥(x, y)↦
C

ω(x)
+

C

ω(y)
∥
T 2(H)

≤
⎛
⎜
⎝

sup
y∈H

⎛

⎝
∑
x∈H

∣
C

ω(x)
∣

2
⎞

⎠

1/2

+ sup
x∈H

⎛

⎝
∑
y∈H

∣
C

ω(y)
∣

2
⎞

⎠

1/2
⎞
⎟
⎠

≤ 2C (∑
x∈H

1

ω(x)2
)

1
2

.

Consequently, by Theorem 7.2.4, Ω ∈ T 2(H) and

∥m∥ε ≤ 2CKG (∑
x∈H

1

ω(x)2
)

1/2

.

Remark 7.2.7. In Example 7.1.14, we introduced a hypergroup which results from conjugacy

classes of a specific group, G = ⊕∞n=2SL(2,2
n). For the weight ωα defined on Conj(G) by

Example 3.1.3, we observed that `1(Conj(G), ωα) is Arens regular. Moreover, as mentioned

in Example 7.1.14, ωα forms a weakly additive weight on Conj(G). But we may show that

∑C∈Conj(G) ω(C)−2 = ∞. Doing so, let us define Em to be the set of all C = ⊕n∈NCn ∈ Conj(G)

such that IC = {1,2, . . . ,m} where IC ∶= {n ∈ N ∶ Cn ≠ eSL(2,2n)} for each n in IC . More-

over, for each n ∈ IC , let Cn = c4(z) for c4(z) denoted in the conjugacy table of SL(2,2n) in

Example 7.1.14. Therefore,

∑
x∈Conj(G)

1

ω(C)2
≥

∞

∑
m=2

∑
C∈Em

1

ω(C)2

≥
∞

∑
m=2

∏
m−1
i=1 2i

(1 + 41 +⋯ + 4m)2

=
∞

∑
m=2

2m(m−1)/2

(4m+1 − 1)2/9
=∞.
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Hence, not all weakly additive weights are satisfying the other condition mentioned in Corol-

lary 7.2.6.

For finitely generated hypergroups, we have introduced two classes of weights in Section 4.2,

namely, polynomial growth weights and exponential weights. Applying this fact that polynomial

weights are weakly additive, in the following, we study operator algebra isomorphism for weighted

hypergroup algebras with polynomial weights. Developing a machinery which relates exponential

weights to polynomial ones, we also study exponential weights in Subsection 7.2.3. For the case

that H is a group, this has been achieved in [52]

Corollary 7.2.8. Let H be a finitely generated hypergroup. If F is a generator of H such

that ∣Fn∣ ≤ Dnd for some d,D > 0 and ωβ is the polynomial weight on H associated to F (see

Section 4.2). Then `1(H,ωβ) is injective if 2β > d + 1. Moreover,

∥m∥ε ≤ 2CKG (1 +
∞

∑
n=1

Dnd

(1 + n)2β
)

1/2

for C = min{1,2β−1}.

Proof. To show this corollary, we mainly rely on Corollary 7.2.6. By Remark 4.2.2, ωβ is weakly

additive whose constant is C = min{1,2β−1}.

To show the desired bound for ∥m∥ε, note that

∑
x∈H

1

ωβ(x)2
= ∑

x∈H

1

(1 + τ(x))2β
=

∞

∑
n=0

∑
{x∈Fn∖Fn−1}

1

(1 + n)2β

≤ 1 +
∞

∑
n=1

∣Fn∣

(1 + n)2β
≤ 1 +

∞

∑
n=1

Dnd

(1 + n)2β

which is convergent if 2β > d + 1. Furthermore, by Corollary 7.2.6,

∥m∥ε ≤ 2CKG (∑
x∈H

1

ωβ(x)2
)

1/2

≤ 2CKG (1 +
∞

∑
n=1

Dnd

(1 + n)2β
)

1/2

.

Example 7.2.9. As we have seen in Example 4.6.2, for each β ≥ 0, ωβ defined in (4.6.1) is the

polynomial weight on ŜU(2) associated to F = {π0, π1/2}. Therefore, by Remark 4.2.2, ωβ is

weakly additive on ŜU(2). On the other hand,

∑

π∈ŜU(2)

1

ω2
β(π)

= ∑

`∈ Z
+

2

1

(2` + 1)2β
= ∑
n∈N

1

n2β
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which is convergent if β > 1/2. Note that this bound for β verifies the bound which was found

in Example 7.2.5 by using a different property of ŜU(2). Furthermore, Corollary 7.2.6 implies

that

∥m∥ε ≤ 2CKG (
∞

∑
n=1

1

n2β
)

1/2

for C = min{1,2β−1}.

Example 7.2.10. For a polynomial hypergroup N0, as a finitely generated hypergroup with the

generator F = {0,1}, we have ∣Fn∣ = n + 1 ≤ 2n, as we have seen in Section 3.3. Hence for d = 1

and D = 2, ∣Fn∣ ≤ Dnd. Recall that by Remark 3.2.3, ŜU(2) can be regarded as a specific case

in this example.

By Corollary 7.2.8, for the polynomial weight ωβ with β > 1 associated to F , `1(N0, ωβ) is

injective. In this case also, an argument similar to Example 7.2.9 implies that

∥m∥ε ≤ 2CKG (
∞

∑
n=1

1

n2β
)

1/2

for C = min{1,2β−1}.

7.2.3 Hypergroups with exponential weights

The other class of weights introduced for finitely generated hypergroups in Section 4.2 is the

class of exponential weights. As we mentioned before, unlike polynomial weights, exponential

weights are not necessarily weakly additive. In this subsection , following [52], we develop a

machinery to study operator algebra isomorphism of these weights. The following lemma is

narrated from [52, Lemma 3.2] without its proof.

Lemma 7.2.11. Let 0 < α < 1, C > 0, and β ≥ max{1, 6
Cα(1−α)}. Define the functions p ∶

[0,∞)→ R and q ∶ (0,∞)→ R by

p(x) ∶= Cxα − β ln(1 + x), q(x) ∶=
p(x)

x
.

Then on [(
β2

Cα(1−α))
1/α

,∞), p is increasing and q is decreasing.

The following lemma is a hypergroup adaptation for [52, Theorem 3.3] and the proof is

similar to [34, Lemma B.2].

Lemma 7.2.12. Suppose that 0 < α < 1, C > 0, and β ≥ max{1, 6
Cα(1−α)}. Let p ∶ [0,∞) → R

and q ∶ (0,∞) → R be the functions defined in Lemma 7.2.11. Let H be a finitely generated

hypergroup with a symmetric generator F and ω ∶H → (0,∞) such that

ω(x) = ep(τF (x)) = eτF (x)q(τF (x)) for all x ∈H.
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Then ω(t) ≤Mω(x)ω(y) for all t, x, y ∈H such that t ∈ x ∗ y where

M = max{ep(z1)−p(z2)−p(z3) ∶ z1 ∈ [0,4K] ∩N0, z2, z3 ∈ [0,2K] ∩N0}

and

K = (
β2

Cα(1 − α)
)

1/α

.

Proof. We split the proof into four cases with respect to possibilities of τF (x), τF (y), and

τF (t) for t ∈ x ∗ y. In each case, we apply Lemma 7.2.11 and this fact that e−p(0) = 1, and

τF (t) ≤ τF (x) + τF (y). In particular note that M ≥ 1.

Case I: max{τF (x), τF (y)} ≤ 2K. In this case, note that τF (t) ≤ τF (x) + τF (y) ≤ 4K for

every t ∈ x ∗ y. Therefore,

ω(t)

ω(x)ω(y)
= ep(τF (t))−p(τF (x))−p(τF (y)) ≤M.

Case II: max{τF (x), τF (y)} > 2K and min{τF (x), τF (y)} ≤ K. Without loss of generality,

we may suppose that τF (x) > 2K and τF (y) ≤K. SinceH is a discrete commutative hypergroup,

for each t ∈ x ∗ y, x ∈ t ∗ y̌ (see [49, Lemma 1.2]). Therefore, for the symmetric generator F

(where τF (y) = τF (y̌)), one gets that τF (x) + τF (y) ≥ τF (t) ≥ τF (x) − τF (y) ≥ 2K −K = K.

Hence,

ep(τF (t)) ≤ ep(τF (x)+τF (y))

= e(τF (x)+τF (y))q(τF (x)+τF (y))

= eτF (x)q(τF (x)+τF (y))eτF (y)q(τF (x)+τF (y))

≤ eτF (x)q(τF (x)+τF (y))eKq(K)

≤ eτF (x)q(τF (x))eKq(K) (⋆)

= ep(τF (x))ep(τF (y))ep(K)−p(τF (y)) ≤Mω(x)ω(y).

Note that (⋆) is implied by this fact that q is a decreasing function on that specific interval.

Case III: min{τF (x), τF (y), τF (t)} > K for some t ∈ x ∗ y. In this case, note that K <

τF (x), τF (y) < τF (x) + τF (y). Hence,

ep(τF (t)) ≤ ep(τF (x)+τF (y))

= eτF (x)q(τF (x)+τF (y))eτF (y)q(τF (x)+τF (y))

≤ eτF (x)q(τF (x))eτF (y)q(τF (y)) = ω(x)ω(y) ≤Mω(x)ω(y).
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Case IV: Finally let min{τF (x), τF (y)} >K while τF (t) ≤K for some t ∈ x ∗ y. So

ω(x)ω(y) = ep(τF (x))+p(τF (y))

≥ e2p(K)

= e2p(K)−p(τF (t))ω(t) ≥
1

M
ω(t).

In other words, ω(t) ≤Mω(x)ω(y).

Theorem 7.2.13. Let H be a finitely generated hypergroup. If F is a symmetric generator of

H such that ∣Fn∣ ≤ Dnd for some d,D > 0 and σα,C is an exponential weight on H for some

0 < α < 1 and C > 0. Then `1(H,σα,C) is injective.

Proof. Let ωβ be the weight defined in Lemma 7.2.12. We define a function ω ∶H → (0,∞) by

ω(x) ∶=
σα,C(x)

ωβ(x)
= eCτF (x)

α−β ln(1+τF (x)) (x ∈H)

where ωβ is the polynomial weight defined on H associated to F and β > max{1, 6
Cα(1−α) ,

d+1
2 }.

Therefore, by Lemma 7.2.12, ω(t) ≤ Mω(x)ω(y) for some M > 0 and all t, x, y ∈ H such that

t ∈ x ∗ y. Therefore
σα,C(t)

σα,C(x)σα,C(y)
≤M

ωβ(t)

ωβ(x)ωβ(y)
.

Hence it follows from Remark 4.2.2 that

σα,C(t)

σα,C(x)σα,C(y)
≤M ′

(
1

(1 + τ(x))β
+

1

(1 + τ(y))β
)

for a modified constantM ′ > 0. Therefore by the proof of Corollary 7.2.8, Ωσα,C ∈ T 2(H). Hence

`1(H,σα,C) is injective by Theorem 7.2.4.

Example 7.2.14. As a result of Theorem 7.2.13, and to follow Example 7.2.9 and Exam-

ple 7.2.10, if H is a polynomial hypergroup on N0, for each exponential weight σα,C for 0 < α < 1

and C > 0, `1(H,σα,C) is injective. Note that by Remark 3.2.3, this class of hypergroups includes

ŜU(2).
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Appendix A

p-summing operators and dual of injective tensor

products

Recall that in Subsection 1.3.2, we briefly have mentioned the definitions and some basic

facts about tensor products of Banach spaces.

Definition A.0.15. [75, Section 9]

Let X and Y be Banach spaces. An operator T ∶ X → Y is called p-summing if there exists a

constant C ≥ 0 such that for all finite sequences (xn)n∈N ⊆X one gets

(∑
n

∥T (xn)∥
p
)

1/p

≤ C sup
φ∈X∗∶ ∥φ∥X∗≤1

(∑
n

∣⟨φ,xn⟩∣
p
)

1/p

.

The infimum of all such C is denoted by πp(T ) and is called p-summing norm of T .

If an operator T is not p-summing, we may define πp(T ) = ∞. The set of all p-summing

operators from X into Y is denoted by Πp(X,Y ) after [75] and (Πp, πp) forms a normed operator

ideal in L(X,Y ) (the space of all bounded operators from X into Y ).

Definition A.0.16. [69, pp63-64] and [75, p42]

LetX and Y be Banach spaces. An operator T ∶X → Y is called integral if there exists a compact

Hausdorff space K and a probability measure µ on K and two operators W1 ∶ X → C(K) and

W2 ∶ L
1(K,µ)→ Y ∗∗ such that the following diagram commutes i.e. id ○ T =W2 ○ I ○W1.

X
T //

W1

��

Y
id // Y ∗∗

C(K)
I // L1(K,µ)

W2

OO

where id is the canonical identity from Y into its second dual and I is the identity map from

C(K) into L1(K,µ). Then ∥T ∥i ∶= inf ∥W1∥∥W2∥, where W1 and W2 are changing between all

possible factorizations, defines a norm called integral norm. The space of all integral norms of

X into Y denoted by I(X,Y ) equipped with ∥ ⋅ ∥i is a normed operator ideal in L(X,Y ).

Proposition A.0.17. Let X and Y be two Banach spaces. Then (X ⊗ε Y )∗ is isometrically

isomorphic to Π1(X,Y
∗).

Proof. By [69, Proposition 3.14], we know that (X ⊗ε Y )∗ is isometrically isomorphic to the

space of all integral operators from X into Y ∗, denoted by I(X,Y ∗). By [75, p50], T ∶X → Y is
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an integral operator if and only if T is 1-summing. Moreover, π1(T ) = ∥T ∥i where ∥ ⋅ ∥i implies

the integral norm of T .

Theorem A.0.18. [75, Theorem 10.11]

Let L1(S) be the Banach space of all µ-integrable functions on a measure space (S,Σ, µ) and let

H be a Hilbert space. Then every operator T ∈ L(L1(S),H) is 1-summing and π1(T ) ≤ KG∥T ∥

where KG is Grothendieck’s constant.

Lemma A.0.19. Let T1 ∶ X → Y and T2 ∶ Y → Z be bounded operators. Then π1(T1T2) ≤

∥T1∥πp(T2) for each p.

Proof. Just note that

(∑
n

∥T1T2(xn)∥
p
)

1/p

≤ ∥T1∥(∑
n

∥T2(xn)∥
p
)

1/p

∥T1∥C sup
φ∈X∗∶ ∥φ∥X∗≤1

(∑
n

∣⟨φ,xn⟩∣
p
)

1/p

.

Proof of Theorem 7.2.3. For each f ∈ T 2(H), let f = f1 + f2 be an arbitrary Littlewood decom-

position of f . Clearly, f1, f2, and f belong to `∞(H ×H). Note that

`∞(H ×H) = (`1(H)⊗γ `
1
(H))

∗
= L(`1(H), `∞(H)) [69, Section 2.2].

So fi may be represented by some Tfi ∈ L(`1(H), `∞(H)) i = 1,2, if we prove that Tfi ∈

Π1(`
1(H), `∞(H)), then we are done, by Proposition A.0.17.

For f1, note that t ↦ f1(⋅, t) ∶ H → `2(H) is a function in `∞(H, `2(H)). So, for each

g ∈ `1(H) define Tf1(g) = ∑t∈H g(t)f1(⋅, t) ∈ `2(H). So Tf1 is an operator from `1(H) into

`2(H). Furthermore,

∥Tf1(g)∥2 = ∥∑
t∈H

g(t)f1(⋅, t)∥
2

≤ ∑
t∈H

∣g(t)∣∥f1(⋅, t)∥2 ≤ ∥g∥1 sup
t∈H

(∑
s∈H

∣f1(s, t)∣
2
)

1/2

.

Therefore, by Theorem A.0.18, for Tf1 as an operator from `1(H) into `2(H),

π1(Ff1) ≤KG∥Tf1∥ ≤KG sup
t∈H

(∑
s∈H

∣f1(s, t)∣
2
)

1/2

.

For f2, similarly, note that s ↦ f2(s, ⋅) ∶ H → `2(H) is a function in `∞(H, `2(H)). So, for

each g ∈ `1(H) define Tf2(g) = ∑s∈H g(s)f2(s, ⋅) ∈ `
2(H). So Tf2 is an operator from `1(H) into
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`2(H). Furthermore,

∥Tf2(g)∥2 = ∥∑
s∈H

g(s)f1(s, ⋅)∥
2

≤ ∑
s∈H

∣g(s)∣∥f1(s, ⋅)∥2 ≤ ∥g∥1 sup
s∈H

(∑
t∈H

∣f2(s, t)∣
2
)

1/2

.

For Tf2 as an operator from `1(H) into `2(H),

π1(Tf2) ≤KG∥Tf2∥ ≤KG sup
s∈H

(∑
t∈H

∣f2(s, t)∣
2
)

1/2

.

Also, note that id2,∞ ○ Tfi is an operator from `1(H) into `∞(H). Lemma A.0.19 implies

that

π1(id2,∞ ○ Tfi) ≤ ∥id2,∞∥π1(Tfi) (i = 1,2).

Note that since ∥ ⋅ ∥∞ ≤ ∥ ⋅ ∥2, ∥id,∞∥ ≤ 1. To conclude, one may apply Lemma A.0.19 to conclude

∥Tf∥i = π1(f) ≤ π1(f1) + π1(f2)

≤ ∑
i=1,2

π1(id2,∞ ○ Tfi)

≤ ∑
i=1,2

∥id2,∞∥π1(Tfi)

≤ KG
⎛

⎝
sup
t∈H

(∑
s∈H

∣f1(s, t)∣
2
)

1/2

+ sup
s∈H

(∑
t∈H

∣f2(s, t)∣
2
)

1/2
⎞

⎠
.

Since, the choice of f1 and f2 was arbitrary ∥Tf∥i ≤KG∥f∥T 2(H). ◻
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