
 

 

 

 

HIGH LINEARITY UNIVERSAL LNA DESIGNS FOR NEXT 

GENERATION WIRELESS APPLICATIONS 

 

 

 

A Thesis Submitted to the College of 

Graduate Studies and Research 

In Partial Fulfillment of the Requirements 

For the Degree of Doctor of Philosophy 

In the Department of Electrical and Computer Engineering 

University of Saskatchewan 

Saskatoon 

 

 

By 

 

ZHICHAO ZHANG 

 

 

 

 

 

 Copyright Zhichao Zhang, December, 2013. All rights reserved. 

 



 

 

i 
 

PERMISSION TO USE 

 

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree from the University 

of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection.  I further 

agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be 

granted by the professor or professors who supervised my thesis work or, in their absence, by the Head of the 

Department or the Dean of the College in which my thesis work was done.  It is understood that any copying or 

publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission.  

It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly 

use which may be made of any material in my thesis. 

Requests for permission to copy or to make other use of material in this thesis in whole or part should be 

addressed to: 

 

 Head of the Department of Electrical and Computer Engineering 

 University of Saskatchewan 

 57 Campus Drive, S7N 5A9  

 Saskatoon, Saskatchewan 

 

Canada 

 

 

 

 

 

 



 

 

ii 
 

  ABSTRACT 

 

Design of the next generation (4G) systems is one of the most active and important area of 

research and development in wireless communications. The 2G and 3G technologies will still 

co-exist with the 4G for a certain period of time. Other applications such as wireless LAN (Local 

Area Network) and RFID are also widely used. As a result, there emerges a trend towards 

integrating multiple wireless functionalities into a single mobile device. Low noise amplifier 

(LNA), the most critical component of the receiver front-end, determines the sensitivity and 

noise figure of the receiver and is indispensable for the complete system. To satisfy the need for 

higher performance and diversity of wireless communication systems, three LNAs with different 

structures and techniques are proposed in the thesis based on the 4G applications. 

The first LNA is designed and optimized specifically for LTE applications, which could be 

easily added to the existing system to support different standards. In this cascode LNA, the 

nonlinearity coming from the common source (CS) and common gate (CG) stages are analyzed 

in detail, and a novel linear structure is proposed to enhance the linearity in a relatively wide 

bandwidth. The LNA has a bandwidth of 900MHz with the linearity of greater than 7.5dBm at 

the central frequency of 1.2GHz. Testing results show that the proposed structure effectively 

increases and maintains linearity of the LNA in a wide bandwidth. However, a broadband LNA 

that covers multiple frequency ranges appears more attractive due to system simplicity and low 

cost. The second design, a wideband LNA, is proposed to cover multiple wireless standards, such 

as LTE, RFID, GSM, and CDMA. A novel input-matching network is proposed to relax the 

tradeoff among noise figure and bandwidth. A high gain (>10dB) in a wide frequency range 

(1-3GHz) and a minimum NF of 2.5dB are achieved. The LNA consumes only 7mW on a 1.2V 
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supply. The first and second LNAs are designed mainly for the LTE standard because it is the 

most widely used standard in the 4G communication systems. However, WiMAX, another 4G 

standard, is also being widely used in many applications. The third design targets on covering 

both the LTE and the WiMAX. An improved noise cancelling technique with gain enhancing 

structure is proposed in this design and the bandwidth is enlarged to 8GHz. In this frequency 

range, a maximum power gain of 14.5dB and a NF of 2.6-4.3dB are achieved. The core area of 

this LNA is 0.46x0.67mm
2
 and it consumes 17mW from a 1.2V supply.  

The three designs in the thesis work are proposed for the multi-standard applications based 

on the realization of the 4G technologies. The performance tradeoff among noise, linearity, and 

broadband impedance matching are explored and three new techniques are proposed for the 

tradeoff relaxation. The measurement results indicate the techniques effectively extend the 

bandwidth and suppress the increase of the NF and nonlinearity at high frequencies. The three 

proposed structures can be easily applied to the wideband and multi-standard LNA design.  
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CHAPTER 1 

INTRODUCTION 

 

Communication and semiconductor technologies are undergoing continuous improvement 

due to the demands of numerous applications. To make wireless communication systems 

compatible and efficient, numerous standards have been developed. In the past, standards were 

based on the need for applications and on bandwidth allocation. Such standards are categorized 

as a different generation of cellular communications [1-4], Radio Frequency Identification (RFID) 

[5-7], Global Positioning System (GPS) [8-13], WiFi Local Area Network [14-16], Zigbee 

[17-20], and Bluetooth [21-23]. Since the early 1990s, new wireless communication standards, 

transmitting in the gigahertz range, have become popular, one of such standards is GSM and the 

market for this standard has exploded. Most standards are co-existing because systems, devices, 

and applications are not quickly changing to the new standard system. The cost of building a 

device and a system that is compatible for each standard is very high. There is a demand for a 

single system (or handset in the case of consumer wireless communications) that has the ability 

to support multiple standards over a wide range of frequency bands [24]. A highly integrated and 

low cost solution for the multi-standard handset is attracting research interest. Wireless 

communications and semiconductor technologies, in particular CMOS, play a key role in finding 

solutions for the current and future handsets for wireless applications. 

1.1 The CMOS Technology 

Until the late 1980s, large-scale integrated circuit technology was thought to be inapplicable 

for wireless communication devices. Radio frequency circuits are implemented by adopting 
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discrete components, such as transistors, inductors, capacitors, and resistors. These components 

are optimized for high frequency applications and the circuits are bulky and expensive [25]. The 

advances of microelectronic technology bring more integrated circuits into wireless 

communication devices and systems. One of such technology is the Complementary 

Metal-Oxide Semiconductor (CMOS). The CMOS process of fabricating devices is advanced 

enough that any device and system can be implemented for wireless communication 

applications. 

CMOS technology is becoming an attractive solution due to its low cost and high level of 

integration. As the size of the transistor gets smaller, according to Moore Law, the technology is 

more applicable to high-speed circuits. The peak unity-current-gain frequency (fT) for the CMOS 

transistor is now higher than 400GHz in the 65nm CMOS [26]. This frequency increases as the 

transistor size is shrinking. The maximum oscillation frequency, fmax, which determines the 

highest working frequency for the active devices, has exceeded 200GHz and 100GHz for 65nm 

and 0.13μm CMOS technologies, respectively [27,28]. Noise figure (NF) is one of the most 

important parameters of an active device. The minimum device NF for CMOS 0.13μm 

technology is around 0.7dB at 5GHz [29]. To minimize NF, many optimization methods with 

specified quality factor Q and power consumption have been proposed.  

The other technologies such as 0.18μm and 90nm CMOS are also widely adopted for analog 

and RF implementations because of their excellent technological performances. In addition to 

active devices, the realization of on-chip passive elements in CMOS, such as the MIM capacitors 

[30] and spiral inductor [31] also increases the device speed and reduces the size and cost of the 

wireless communication systems. A huge number of highly performed CMOS RF circuits and 

subsystems has been designed and fabricated in last few years [32-36]. To compare the 
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performance of different technologies, Table 1.1 is included. The CMOS 0.13μm technology will 

be the targeted process for this work due to its good technology performance and low fabrication 

cost. In addition, the included passive elements library in the available design tools makes the 

parameters extraction more convenient and accurate. 

  

 

1.2 The Need for Multi-standard Mobile Terminal 

Over the past decade, a high number of wireless communication standards have been 

proposed and implemented. In 2004, the ITU-R [37] specified the International Mobile 

Telecommunications Advanced (IMT-Advanced) requirements for 4G standards. The peak speed 

for 4G service can reach up to 100Mbit/s in fast moving communications, such as trains or cars. 

For slow moving communications, such as pedestrians and stationary users, the data speed can be 

Table 1.1 Mixed-Signal and RF CMOS Process Overview 

 
 0.18μm 0.13μm 90 nm 65nm 

DC Supply (V) 1.8/3.3 1.2/2.5, 3.3 1.0/1.2/1.8/2.5/3.3 0.9/1.0 

Metal Layers 6 8 9 8 

Vt_N, Vt_P (V) 0.40, -0.48 0.34, -0.36 0.54, -0.51 0.29 

Low-Vt (V) 0.24, -0.30 0.24, -0.27 0.3 0.2 

NMOS ft (GHz) 60 (Vds=1.8V) 80 (Vds=1.2V) 100 360 

NMOS fmax(GHz) 65 (Vds=1.8V) >100 (Vds=1.8V) 150 420 

PMOS ft (GHz) 23 40 60 238 

PMOS fmax(GHz) 38 60 >110 295 

NFmin @ 2.4GHz 1.4 (Vds=1.8V, 

Vgs=1V)  

=<1.4 (Vds=1.8V, 

Vgs=1V) 

0.8 (Vds=1.0V, 

Vgs=0.7V) 

0.4dB at 2GHz 

Deep N-well Yes 

 

http://en.wikipedia.org/wiki/ITU-R
http://en.wikipedia.org/wiki/Megabits_per_second
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as high as 1Gbit/s [38]. The 4G standard opens a new door for advanced wireless applications, 

such as video chatting, web browsing, and online gaming. Pre-4G technologies such as mobile’s 

WiMAX and Long Term Evolution (LTE) have been on the market since 2006
 
and 2009 [39, 40]. 

Although the current use of LTE and WiMAX is often branded as 4G, their downloading and 

upstream peak bitrates are just 144Mbit/s and 100Mbit/s, respectively. Currently, design and 

development of the next generation systems (i.e., 4G) is one of the most active and important areas 

of research and development in the wireless communication world. 

Various wireless communication standards have already been proposed and used before the 

emergence of 4G. This is due to the limited frequency resource and the increasing demand for 

high-speed applications. The Global System for Mobile Communications (GSM) is a standard that 

was developed by the European Standards Committee. The original version of GSM was used in 

the 900MHz band throughout Europe. The 1800MHz band, originally called Personal 

Communications Network (PCN) [41], was added for the up-band version of GSM. The PCN was 

later renamed to Digital Cellular System at 1800MHz (DCS1800) [42]. After that, the 

Enhanced-GSM version was created by adding extra 10MHz frequency to both receiver and 

transmitter lower bands. 

In the United States, the 1900MHz band was chosen for applying the European GSM and 

named PCS1900 [43]. PCS1900 is an evolution of the GSM900/DCS1800 European cellular 

systems for the 1.9GHz North American emerging technologies. The Wideband-CDMA 

(Code-Division Multiple Access) [44] is a technology for wideband digital radio communications 

for internet, multimedia, video, and other capacity-demanding applications. WCDMA is the 

dominating 3G technology, providing higher data rates to increase capacity for voice and video 

applications. WCDMA’s peak speed can reach up to 2Mbps for local area access and 384Kbps for 

http://en.wikipedia.org/wiki/Gigabits_per_second
http://en.wikipedia.org/wiki/Mobile_WiMAX
http://en.wikipedia.org/wiki/Mobile_WiMAX
http://en.wikipedia.org/wiki/Long_term_evolution
http://en.wikipedia.org/wiki/Peak_bitrate
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wide area access. A new version of the WCDMA is going to be released where the speed can 

reach up to more than 10Mbps. WCDMA is also known as the Universal Mobile 

Telecommunications System (UMTS) and has been adopted as a standard by the International 

Telecommunication Union (ITU) under the name IMT-2000 direct spread [45]. For a smooth 

transition from 3G and 2G to 4G technology, the next generation wireless systems and devices 

must simultaneously support all the mentioned existing wireless standards. 

Besides mobile wireless communications, other applications, such as Global Positioning 

System (GPS), Wi-Fi Local Area Network (WLAN), Radio Frequency Identification (RFID), and 

Bluetooth have been widely used and continue to evolve. This leads to a very desirable prospect 

for a multiple radio functionalities mobile terminal to support different application standards. Thus, 

next generation wireless communication devices will require new designs and innovative 

solutions to create multi-band handsets with low power consumption at the least cost. Such 

devices should include a transmitter and a receiver comprised of an essential component, a low 

noise amplifier (LNA). 

1.3 A Universal Radio Receiver and LNA 

In the recent years, most of the multi-band handsets were built by combining individual 

receivers that optimized for individual standards. This technique required larger chip areas, 

higher cost, and higher power consumption not mentioning the complexity of the interface 

between the receivers. In order to realize a high level of integration, many wireless 

communication standards should be integrated into a single hardware system. The single receiver, 

which can be called “Universal Radio Receiver”, can be reconfigured for different wireless 

applications. The size and cost of the receiver are then dramatically reduced.  
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The basic concept of a universal radio receiver is shown in Figure 1.1. The circuits of the 

universal radio must work across a wide frequency range and have to meet the performance 

specifications required by the individual standards [46, 47]. This is the main difference from the 

previous multi-standard receiver designs in which each building block is optimized and 

dedicated for one specific standard. For the universal receiver, the zero-intermediate frequency 

(or direct-conversion) architecture is much preferred because the carrying frequency of the 

received signal is down-converted to zero. Compared to the traditional super-heterodyne 

architecture, the direct-conversion structure have more inherent advantages, such as lower 

complexity, low power consumption, no image frequency, and easier to be reconfigured. 

 

 

In addition to direct-conversion receivers, there is another attracting architecture candidate 

called “Digital RF” [48]. By adopting the high-speed sampling and processing techniques, a 

series of traditional analog blocks in the heterodyne receiver, such as mixer and filtering, are 

being replaced by their digital counterparts [49-50]. This technology is getting more popular 

because of the continuous scaling of CMOS technology with higher switching speed. The main 

ADC

ADC

DSP

LO

CellPhone

GPS

Computer

TV

LNA

  

Figure 1.1 Illustration of a universal radio for multiple standards [46] 

app:ds:zero
app:ds:intermediate
app:ds:frequency
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drawback of the digital RF is that the high-speed sampling technique introduces more noise to 

the received signal. The signals need to be pre-processed to increase the Signal-to-Noise ratio 

before sending to the next stages to suppress the noise. Therefore, the low noise amplifier 

remains indispensable for either architecture of a universal receiver. There is no demodulation 

scheme in wireless communications that can eliminate the need for an LNA. 

In order to be part of a high performance receiver, the LNA must have certain characteristics. 

The most decisive characteristics of LNA are its amplifying gain, bandwidth, noise figure, and 

linearity. Noise Figures (NF) and sensitivity of the receiver (or system) depend strongly on the NF 

and gain of the LNA used at the front end. In addition, the nature of the LNA’s transfer function 

and its reverse isolation affects the overall system linearity. A wideband LNA that can cover 

multiple standard bandwidths is very attractive to the development of devices and systems for 

future generations of wireless communications. By definition, when the bandwidth of the circuit 

is larger than 10% of the center frequency, it is called wideband. However, designing such an 

amplifier poses numerous challenges which will be addressed in the thesis in the subsequent 

chapters. 

1.4 Research Goals and Contributions 

From the concept of sharing a single LNA for a universal receiver, this research targets on 

the design of multi-standard LNAs suitable for 4G wireless communications and other 

applications such as GSM, WCDMA, WLAN, etc. Based on the realization for the 4G 

applications, three LNAs targeting different spectrums are designed, as shown in Figure 1.2.  

1. The most economical way to upgrade existing devices to support 4G application is to design 

a receiver that specific for the 4G and combine it with the existing system. Since LTE is the 
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most widely used standard for 4G applications, the first LNA is mainly designed to fulfill the 

basic LTE standard. The RFID (860-969MHz) and GSM (865-960MHz) spectrums are also 

covered since they are located in the neighboring bands.  

2. Combining different circuit blocks that are optimized for specific standards makes the 

device bulky and expensive. Sharing circuits is the best way to maximize the integration 

level. A LNA that can support different cellular technologies (4G/3G/2G) and other local 

wireless standards (WiFi/Bluetooth) is highly desired in creating a smooth transition 

between different communication generations. A wider bandwidth LNA, which covers 

nearly all the existing wireless frequency ranges, will be proposed in the second design.  

3. Although LTE is generally considered to be the dominant wireless technology of the future, 

WiMAX, the other candidate for 4G, is another promising technology. However, there is no 

uniform global licensed spectrum for WiMAX, the spectrums are very fragmented and vary 

from country to country as shown in Figure 1.2. The third design implements the first 

wideband multimode LNA for 4G wireless applications that covers both the LTE and 

WiMAX frequency ranges. 

This thesis work contributes to the advancement of multi-standard LNAs for the next 

generation of wireless communications. The works also provides a smooth transition between 

generations and/or allows the co-existence of different standards in a cost effective way. Unlike 

the narrow-band LNA, co-existing of different signals in a single device can interfere with each 

other and degrade the receiver sensitivity. Linearity of the new LNA must be excellent in order to 

provide good performance for multi-standard devices. Although numerous techniques have been 

proposed for enlarging the LNA bandwidth, unfortunately, the noise also proportionally increases 
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with the bandwidth. Keeping the noise within an acceptable level while increasing the LNA 

bandwidth is a challenging task. 

 

In addition, the LNA linearity drops quite quickly as the frequency increases. There are very 

few studies of the linearity improving methods, especially for the wideband LNAs. In this thesis, 

the tradeoff among noise figure, linearity, and wideband input impedance matching are well 

addressed. New noise cancelling and linearity enhancing techniques that can be very effective in 

a wide frequency range are introduced. All the wideband, noise figure, and linearity improving 

techniques are incorporated and implemented simultaneously to the LNA designs in the thesis.  

1.5 Thesis Organization 

Following this chapter, Chapter 2 begins with an introduction of the basic performance 

metrics desired from a LNA, such as the input matching, noise figure, gain, bandwidth, linearity, 

 

Figure 1.2 Frequency spectrum bands of different standards. 
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and power consumption. Chapter 3 introduces the basic techniques used to improve impedance 

matching, noise figure, and linearity of the LNA. Some limitations of the precedent analysis 

approaches are also addressed in this chapter. Chapter 4 reviews the deficiency of the existing 

distortion characterization method and presents an alternative linearity enhancement approach, 

targeting the first multi-band LNA ranging from 0.7 to 1 GHz that was described in the first 

objective. Chapter 5 analyzes the trade-off between the input matching and noise figure in more 

detail. This chapter also introduces a novel input matching technique for the second LNA 

(targeting the frequency band from 0.7-2.4GHz). For the third LNA, Chapter 6 presents a 

modified noise and distortion cancelling LNA prototype. Analysis, synthesis, design, 

implementation, fabricating, and testing of the three LNA’s are included in Chapter 4, Chapter 5, 

and Chapter 6. Chapter 7 concludes the thesis work and provides direction and discussion for 

future investigations. 
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CHAPTER 2 

LNA FUNDAMENTAL REQUIREMENTS AND CIRCUIT 

SPECIFICATIONS 

 

In order for the multimode Low Noise Amplifier (LNA) to be used in a universal receiver, it 

should not only support different standards bandwidths and simultaneously satisfy other 

requirements, such as sensitivity, linearity, and noise factor. In this chapter, some of the key 

performance parameters of a LNA will be discussed, such as input/output impedance matching, 

gain, noise figure, and linearity.  

2.1 Scattering Parameters (S-parameters) 

Low-Noise Amplifier (LNA) can be considered as a two-port network, shown in Figure 2.1. 

The incident wave at each port is indicated by “a” while the reflected wave for each port is 

represented by “b”. The wave includes both the amplitude and phase information. The 

relationship between the reflected wave, incident wave, and the S-parameter matrix is given by 

[51]: 

(
𝑏1
𝑏2
) = (

𝑆11 𝑆12
𝑆21 𝑆22

) (
𝑎1
𝑎2

)                         (2.1) 

Expanding the matrix yields: 

𝑏1 = 𝑆11𝑎1 + 𝑆12𝑎2   and   𝑏2 = 𝑆21𝑎1 + 𝑆22𝑎2             (2.2) 
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According to the definition of S-parameters, port2 is terminated in a load identical to the 

system impedance (Z0), normally 50Ω, then, by the maximum power transfer theorem, 𝑏2 will be 

totally absorbed making 𝑎2 equal to zero. Therefore 

𝑆11 =
𝑏1

𝑎1
     and     𝑆21 =

𝑏2

𝑎1
                      (2.3) 

 Similarly, if port1 is terminated in the system impedance of 50Ω, then 𝑎1 becomes zero, 

giving  

S12 =
b1

a2
    and     𝑆22 =

𝑏2

𝑎2
                     (2.4) 

 

For an amplifier, S11 indicates the input return loss, which is a scalar measure of how close 

the input impedance of the amplifier is to the system impedance (i.e., 50Ω). S21 indicates the gain 

of the amplifier. S12 and S22 are the reverse isolation and the output return loss, respectively. In 

practice, for convenience, most of the parameters are expressed in decibel (dB) [52]. For 

example, the dB expression for the S11 is 20log(S11). A S11 of less than -10dB is considered 

acceptable. This indicates more than 90% signal energy absorption. For a LNA, the gain, S21, of 

10dB is acceptable. The isolation between the input and the output, S12, should be as small as 












2221

1211

SS

SSa1

b1

a2

b2

 

Figure 2.1 Two-port network for S-parameters 

http://en.wikipedia.org/wiki/Maximum_power_theorem
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possible otherwise the output signal will leak into the input as a feedback signal and oscillation 

may occur making the circuit unstable. 

2.2 Impedance Matching 

LNA is the first block on the receiver to receive and amplify the incoming signal from the 

antenna. Before reaching the LNA input, the signal must pass through various components, such 

as the traces on the PCB, filter or duplexer, package pins, and bonding wires. If the LNA input 

impedance does not match well with the characteristic impedance of the antenna, the signal 

energy may reflect back to the antenna and becomes noise. As a result, the input matching is one 

of the most important parameters for LNA. In addition, the signal energy that is received and 

amplified by the LNA must be transferred to the subsequent stages for further processing. 

Therefore, the output of the LNA needs to be connected to other stages that have a low input 

impedance. In that case, the LNA output impedance also is required to be matched with the input 

of the preceding stages. As described in Section 2.1, S11 is used to indicate the input matching of 

a LNA and a S11 less than -10dB is considered to be acceptable.  

One of the most popular LNAs is the inductively degenerated common-source LNA 

(CS-LNA) [53], shown in Figure 2.2. This amplifier is commonly used in narrow-band 

applications due to its low NF, ease of input matching, high gain, and low power consumption. 

The input impedance of this amplifier can be found as:  

   =  (  +   ) +
1

    
+ (

  1

   
)                      (2.5) 
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Even though there is not a real resistor in the circuit, the real impedance (
  1

   
)   is formed, 

this is shown in Eq. 2.5. At the series resonance of the input circuit, the impedance is purely real 

and proportional to   . The real term can be made equal to 50Ω by choosing appropriate value of 

the inductor   . For example, if fT, which equals to (
  1

   
), is 10 GHz, then a 50Ω impedance 

requires a    of 800 pH. 

The gate inductance Lg is being used to compensate for the imaginary part that is caused by 

the gate-to-source capacitance Cgs, this happens once    is already chosen to satisfy the criteria 

of 50Ω input impedance. As a result, the resonant frequency 𝜔0 of the circuit becomes:  

𝜔0 =
1

√   (𝐿 +𝐿 )
                           (2.6) 

For this input series RLC network, the quality factor can be expressed as  

Rs

Ls

Output

Input

Lg

M

Lload

2

M1

 

Figure 2.2 Basic cascode topology of the proposed circuit 
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𝑄 =
1

𝑅 𝜔0   
                          (2.7) 

For low frequency circuit, the bandwidth is defined by the 3dB bandwidth where the gain is 3dB 

lower than the targeted value. For RF circuit, the bandwidth is defined as the range of 

frequencies over which a device performs to the rated specifications, such as the S11 is smaller 

than -10dB and gain is larger than 10dB.  

The matching bandwidth is inversely related to Q: 

𝐵𝑊 =
𝜔0

𝑄
                             (2.8) 

Assuming 𝑅 = 50Ω and f0 is in the GHz range, Q of Eq. 2.7 is greater than 1 for a 

practical Cgs value. As a result, the bandwidth of this amplifier is very limited to not more than 

𝜔0. To enlarge the bandwidth of a LNA, several topologies have been adopted for wideband 

impedance matching. The most straightforward way is combining more than one narrow-band 

pass-filter, as shown in Figure 2.3 [54]. 

  

C1
L1

C2 L2

Rs

LG

Cgs

Ls
Zin

M1

V bias

Z1

 

Figure 2.3 A band-pass filter input matching network [54] 
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The input impedance of the source degenerated CS amplifier can be expressed as:  

 1( ) =
1

 (   + 𝑝)
+  (  +   ) + 𝜔𝑇                            

 1( )=
 2(  + 𝑔)(𝐶𝑔 +𝐶𝑝)+ 𝜔𝑇  (𝐶𝑔 +𝐶𝑝)+1

 (𝐶𝑔 +𝐶𝑝)
             (2.9) 

where 𝜔𝑇 = 𝑔𝑚/(𝐶  + 𝐶𝑝) and 𝐶𝑝 is the parallel capacitance. For the whole input matching 

network shown in Figure 2.3, there are three complex zeros. It is possible to provide wideband 

input matching by properly arranging the zeros at the expense of an in-band ripple, as shown in 

Figure 2.4. However, because of a large number of inductors required in the structure, the 

band-pass filter matching network consumes a substantial amount of power and chip area. 

  

In order to reduce silicon area, inductorless broadband LNAs are gaining interest in the 

research community. There are two well-known broadband topologies currently being used: the 

common-gate (CG) [55-57] and the shunt-shunt feedback amplifiers [58-60], which are both 

shown in Figure. 2.5.  

 

 
 

 

Figure 2.4 S11 of the combined narrow band input matching 
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The CG LNA can provide a wide bandwidth by using a small die area. This is because no 

inductor is required for the input impedance matching. The impedance can be expressed as: 

   ,  =
𝑟0+𝑅𝐿

1+  𝑟0
≈

1

  
                        (2.10) 

in which 𝑟0 is the resistance of the transistor; this resistor is much larger than the load resistor 

𝑅𝐿. The load resistance can be ignored in this approximation. The pre-determined 𝑔𝑚 limits the 

choice of the device size and power consumption. For the shunt-shunt feedback structure, the 

input impedance is 

   ,𝐹𝐵 =
𝑅𝐹+𝑅𝐿||𝑟0

1+  (𝑅𝐿||𝑟0)
≈

𝑅𝐹+𝑅𝐿

1+  𝑅𝐿
                   (2.11) 

From Eq. 2.10 and Eq. 2.11, the input impedances are very easy to be matched to 50Ω by 

varying both 𝑔𝑚 and the load resistance values. However, when the frequency increases, the 
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Figure 2.5 (a) Common-gate LNA (CS-LNA), (b) Common-source LNA 

(CG-LNA) with resistive feedback 
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effects of the parasitic capacitance becomes serious and limits bandwidth and gain of the 

amplifier. In addition, both the CG and the feedback structure suffer from poor noise 

performance which will be discussed in the following sections. 

2.3 Noise and Noise Figure Requirements   

Noise Figure (NF) is one of the most important parameters of a high performance LNA. As 

the first block, NF of the LNA determines the noise performance for the entire receiver. To 

properly design a LNA, a basic understanding of noise sources and noise analysis is required. 

There are two types of noise: interference noise and inherent noise [61]. Interference noise is 

mainly coming from unwanted interaction that is generated by different components inside the 

circuit or by other parts outside the circuit, such as power supply noise and coupling problems 

between signal wires. Careful circuit wiring and layout can effectively reduce interference noise. 

In contrast, inherent noise is a random noise coming from the fundamental properties of the 

circuit and its components. This type of noise cannot be avoided. This section deals only with 

inherent noises, namely thermal noise and flicker noise. 

2.3.1 Thermal Noise and Flicker noise 

Thermal noise or white noise is generated due to the Brownian motion of the conductor [62]. 

The measured voltage across the conductor may fluctuate because of the random motion of the 

electrons in the conductor even if there is no current flowing into it. Power of the thermal noise 

is proportional to the absolute temperature of the device.  

 As shown in Figure 2.6 (a), the thermal noise of a resistor can be modeled by a series 

voltage source, with a power density of:  

app:ds:parasitic
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𝑆𝑣(𝑓) = 4𝑘𝑇𝑅,  𝑓 ≥ 0                        (2.12) 

where 𝑘 = 1.38 × 10−23J/K, is the Boltzman’s constant. T is the absolute temperature in Kelvin 

and R is the resistance. The unit for 𝑆𝑣(𝑓) is 𝑉2/𝐻𝑧. Therefore, the noise “voltage” can be 

expressed as 

𝑣2̅̅ ̅ = 4𝑘𝑇𝑅∆𝑓                           (2.13) 

where ∆𝑓 is the noise bandwidth in Hz.  

 

Similarly, the thermal noise of a resistor can also be represented by a parallel current source, 

as shown in Figure 2.6 (b). Using Ohm’s law: 

𝑖2 =
𝑣2̅̅̅̅

𝑅2                             (2.14) 

then the current can be expressed as  

 

R

RV

      

R

Ri

 

(a)                        (b) 

Figure 2.6 Thermal noise model for a resistor 
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𝑖2 =
4𝑘𝑇∆𝑓

𝑅
                            (2.15) 

The dependence of the thermal noise upon T suggests that a low-temperature operation can 

decrease the noise. However, it is not practical since the circuits are designed to work at normal 

(or room) temperature, also the cooling equipment is very expensive to keep operating 

temperature low.  

From Eq. 2.13 and 2.15, it can be seen that the noise power also depends on the bandwidth, 

∆𝑓. That explains why the noise performance becomes worse as bandwidth increases. As a result, 

the only means for reducing thermal noise is to reduce the bandwidth by adopting very sharp 

filters. 

Contrary to the wide bandwidth of thermal noise, flicker noise has a smaller bandwidth at 

the lower frequency range. Flicker noise is inherent of the material used to build the device such 

as silicon. The crystal lattices at the interface between the gate oxide and the silicon substrate of 

a MOSFET are not pure and the connections between the silicon are not stable. As charge 

carriers move at the interface, some are randomly trapped and later released by the “dangling” 

stages, introducing “flicker” noise in the drain current of a transistor.  

Different from the thermal noise, flicker noise is generated randomly and the power density 

is very difficult to predict. The flicker noise may vary considerably between different CMOS 

technologies because of the “purity” of the oxide-silicon interface. The power of the flicker noise 

can also be modeled as a voltage source, which is connected in series with the gate of a 

transistor:  

𝑣2̅̅ ̅ =
𝐾

 𝑜𝑥𝑊𝐿
∙
1

𝑓
∆𝑓                        (2.16) 

app:ds:temperature
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where K is a device specified as constant on the order of 10−25 𝑉2𝐹 [62]. As shown in Eq. 2.16, 

the noise power is inversely proportional to the frequency. Therefore, the flicker noise is also 

called 1/f noise. As the frequency increases, the 1/f noise will fall off quickly, and its amplitude is 

much smaller compared to white noise. Eq. 2.16 also suggests that a larger device area may 

reduce 1/f noise. The PMOS has a smaller flicker noise compared with the NMOS transistors. 

This is because the former takes the holes as carriers instead of electrons.   

In order to compare the significance of different noise sources, both 1/f noise and thermal 

noise are plotted on the same graph, as shown in Figure 2.7. The intersection point of the 1/f and 

the white noises is called the “corner frequency”, 𝑓 . It is given by: 

𝑓 =
K

 𝑜𝑥𝑊𝐿
𝑔𝑚

3

8𝑘𝑇
                         (2.17) 

Eq. 2.17 shows that  𝑓  depends on the size of the device and on 𝑔𝑚. However, when the length 

L is determined the corner frequency is relatively constant, which locates between 500kHz to 

1MHz. Therefore, in a high frequency circuit the flicker noise can be neglected. By using these 

two types of noise, a MOS transistor can be modeled and analyzed its performance due to noise. 
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2.3.2 Noise Model for Standard MOSFET 

The dominant noise source in a CMOS transistor is its channel thermal noise. This noise 

source is commonly modeled as a current source that is in parallel with the transistor. The CMOS 

noise model, which is considered as white noise, is shown in Figure 2.8.  

 

The noise power density can be expressed as [62]: 

 

 

Figure 2.7 Corner frequency due to noise. 
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Figure 2.8 A standard CMOS noise model 
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 𝑑
2

∆𝑓
= 4𝑘𝑇𝛾𝑔𝑑0                            (2.18) 

where 𝑔𝑑0 is the drain conductance of the transistor when the gate is biased at zero, and 𝛾 is a 

bias-dependent factor. For long-channel devices, the value of 𝛾 is 

2

3
≤ 𝛾 ≤ 1                             (2.19) 

When the transistor is in saturation and the drain-source voltage is zero, 𝛾 can be constant 

at 2/3. However, for short-channel devices, 𝛾  is much larger than 2/3 when the devices 

operating in saturation, which is always as high as 2 to 3, depending on the bias condition [63, 

64]. 

Another main source of noise in a MOS transistor is the gate noise generated by the gate 

resistance [63]. This noise source can be modeled as a white noise source that is in series with a 

resistor in the gate circuit. In order to decrease the gate resistance and reduce the contribution of 

the noise source in the gate, the multi-finger structure can be used in the layout of the transistor 

and connecting two ends of the fingered gates. In that condition, the resistance of the gate can be 

expressed as  

𝑅 =
𝑅□𝑊

12 2𝐿
                            (2.20) 

where 𝑅□ is the sheet resistance, W is the total gate width, L is the length of the gate, and n is 

the number of gate fingers in the layout. The connection between two ends of the fingers can be 

routed in a metal layer instead of directly using the polysilicon layer to reduce gate resistance. 
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Since the sheet resistance of a metal layer is much lower than polysilicon layer, the interconnect 

resistance can also be decreased. 

2.3.3 Noise Figure and Sensitivity 

The Noise Figure, which is used to evaluate noise performance of the circuit, can be 

analyzed by using the above CMOS noise model. Noise figure is a metric to evaluate 

Signal-to-Noise Ratio (SNR) degradation by a noisy circuit after a signal passing through it. 

                             𝑁𝐹 =
𝑆𝑁𝑅𝑖𝑛

𝑆𝑁𝑅𝑜𝑢𝑡
                          (2.21) 

There is another expression for the NF, which is  

 𝑁𝐹 =
𝑇𝑜𝑡𝑎𝑙 𝑜𝑢𝑡𝑝𝑢𝑡  𝑜  𝑒

𝑜𝑢𝑡𝑝𝑢𝑡  𝑜  𝑒 𝑑𝑢𝑒 𝑡𝑜  𝑜𝑢𝑟𝑐𝑒
=  1 +

𝑜𝑢𝑡𝑝𝑢𝑡  𝑜  𝑒 𝑑𝑢𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑐 𝑟𝑐𝑢 𝑡

𝑜𝑢𝑡𝑝𝑢𝑡  𝑜  𝑒 𝑑𝑢𝑒 𝑡𝑜  𝑜𝑢𝑟𝑐𝑒
   (2.22) 

In a series system, each building block generates noise from its own circuit but the 

contribution and influence to system noise coming from each stage is different. The system noise 

figure can be expressed by Friis formula: 

    𝑁𝐹𝑎𝑙𝑙 = 𝑁𝐹1 +
𝑁𝐹2−1

 1
+

𝑁𝐹3−1

 1 2
+⋯+

−1

∏  𝑗
𝑖−1
𝑗=1

             (2.23) 

where 𝑁𝐹  and Gi are the noise factor and gain of each stage, respectively [61]. As shown in Eq. 

2.23, the receiver noise is mainly determined by the first stage, LNA. The effect of noise coming 

from the subsequent stages is decreased by the gain of the LNA. 
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The sensitivity of a receiver defines the minimum signal power that can be processed by the 

receiver. Noise figure specification of a receiver is mainly determined by the receiver’s 

sensitivity, as shown in the following equation.  

𝑃 𝑒  = 𝑆𝑁𝑅𝑅𝑥 + 𝑃 , +𝑁𝐹𝑅𝑥                   (2.24) 

in which 𝑆𝑁𝑅𝑅𝑥  is the output signal-to-noise ratio. 𝑃 ,  and 𝑁𝐹𝑅𝑥 are the source noise power 

and the noise figure of the receiver. The unit in this expression is in dBm for power and dB for 

the ratio. A lower sensitivity indicates that the receiver can receive weaker signal power at a 

longer distance from the transmitter; this determines the maximum range for receiving a signal. 

Therefore the LNA noise figure must be as low as possible in order to provide a better sensitivity 

for the receiver. For most of the communication standards, minimum sensitivity and SNR are 

specified in their specifications. Table 2.1 shows some typical receiver input sensitivity and noise 

figure. Accounting for these extra NF degradations, a noise figure of 3dB is expected for LNA in 

most applications [65,66]. 

 

Table 2.1 Sensitivity and Noise Figure specifications 

 WCDMA WLAN GPS WiMAX BlueTooth GSM/PCS LTE RFID 

Psens 

(dBm) 

-117 -65 -136 -65 -70 -102 -102 -70 

SNR 

(dB) 
5.2 28 7 24 21 9 8 11.6 

NF 

(dB) 
9 7.5 2 7 23 9 9 39 
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2.4 Linearity 

Linearity is another important consideration in the design of a high performance LNA, 

especially for multi-standard applications. This is because of the blocking problem, which will be 

discussed in the following section. Linearity also determines the largest signal level of the 

system in combination with a certain Signal-to-Noise ratio. When the received signal power is 

higher than the normal level (where the harmonics are negligible), the non-linear effects become 

noticeable, such as the harmonics, gain compression, desensitization, cross-modulation, 

intermodulation, and others. 

2.4.1 Harmonics 

The nonlinearity of the transistor is mainly caused by the nonlinear transconductance of the 

MOSFET. Assume the nonlinear relationship between the output and input of the system, the 

output can be described as [61]:  

       𝑆𝑜𝑢𝑡 = 𝛼1 ∗ 𝑆  + 𝛼2 ∗ 𝑆  
2 + 𝛼3 ∗ 𝑆  

3 +⋯+ 𝛼 ∗ 𝑆  
          (2.25) 

Assume the input of the system is 

                     𝑆  = 𝐴  𝑖𝑛(𝜔1𝑡)                         (2.26) 

Substitute Eq.2.26 into Eq.2.25 and neglect higher order terms, the output becomes: 

𝑆𝑜𝑢𝑡 = 𝛼1 ∗ A sin(𝜔1𝑡) + 𝛼2 ∗ A
2sin2(𝜔1𝑡) + 𝛼3 ∗ A

3sin3(𝜔1𝑡) 

 =
𝑎2𝐴

2

2
+ (𝛼1𝐴 +

3

4
𝛼3𝐴

3) sin(𝜔1𝑡) +
1

2
𝛼2A

2 sin(2𝜔1𝑡) +
1

4
𝛼3A

3 sin(3𝜔1𝑡)    (2.27) 
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Eq. (2.27) shows that the output contains the DC component 
𝑎2𝐴

2

2
 and the fundmental 

component (𝛼1𝐴 +
3

4
𝛼3𝐴

3) sin(𝜔1𝑡) . Besides the fundamental harmonic, there are two 

additional terms at 2𝜔1𝑡 and 3𝜔1𝑡, which are the 2
nd

 and 3
rd

 harmonics.  

2.4.2 Gain Compression 

From Eq. 2.27, it can be seen that the fundamental amplitude (𝛼1𝐴 +
3

4
𝛼3𝐴

3) is distorted by 

3

4
𝛼3𝐴

3. If 𝛼3 < 0, then the gain of the fundamental signal decreases with the increasing of the 

magnitude A. This is characterized by P1dB point. This point occurs where the nonlinear gain 

decreased by 1dB or 11%, smaller than 𝛼1, as shown in Figure. 2.9.  

 

The 1dB point can be calculated by:  

𝛼1 +
3𝛼3

4
𝐴2 = 𝛼1 ∗ 10

(
1

20
)                       (2.28) 

P1dB
Pin (dBm)

Pout (dBm)

1dB

(Linear Term)

 

Figure 2.9 Definition of the 1dB compression 
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Solving Eq. 2.28, the  𝐴𝑃1dB can be expressed as:  

   𝐴𝑃1dB = √0.145 |
𝛼1

𝛼3
|                        (2.29) 

2.4.3 Desensitization and Blocking 

In a nonlinear circuit, a large interferingsignal may reduce the gain or “block” the desired 

weak signal, this phenomenon is called “desensitization”. Assume there are two frequencies for 

the input signal passing through the system: 

𝑆  = A1 sin(𝜔1𝑡) + A2 sin(𝜔2𝑡)                   (2.30) 

The results for the output becomes 

 𝑜𝑢𝑡 = (𝛼1𝐴1 +
3

4
𝛼3𝐴1

3 +
3

2
𝛼3𝐴1𝐴2

2) sin(𝜔1𝑡) + (𝛼1𝐴2 +
3

4
𝛼3𝐴2

3 +
3

2
𝛼3𝐴1𝐴2

2) sin(𝜔1𝑡) +

1

2
𝛼2𝐴1

2 sin(2𝜔1𝑡) +
1

2
𝛼2𝐴2

2 sin(2𝜔2𝑡) +
1

4
𝛼3𝐴1

3 sin(3𝜔1𝑡) +
1

4
𝛼3𝐴2

2 sin(3𝜔2𝑡) +

(𝛼2𝐴1𝐴2 sin(𝜔1𝑡 + 𝜔2𝑡) + 𝛼2𝐴1𝐴2 sin(𝜔1𝑡 − 𝜔2𝑡) +
3

4
𝛼3𝐴1

2𝐴2 sin(2𝜔1𝑡 + 𝜔2𝑡) +

3

4
𝛼3𝐴1

2𝐴2 sin(2𝜔1𝑡 − 𝜔2𝑡) +
3

4
𝛼3𝐴2

2𝐴1 sin(2𝜔1𝑡 + 𝜔2𝑡) +
3

4
𝛼3𝐴2

2𝐴1 sin(2𝜔2𝑡 − 𝜔1𝑡))                                                            

(2.31) 

If 𝐴1 ≪ 𝐴2, the first term in Eq. 2.31 can be simplied to (𝛼1𝐴1 +
3

2
𝛼3𝐴1𝐴2

2). Then the 

gain for the singal 𝐴1 can be expressed as (𝛼1 +
3

2
𝛼3𝐴2

2). If 𝛼3 < 0, the gain of the 𝐴1 

decreases with the increasing of 𝐴2. If 𝐴2 is large enough, the gain can be as low as zero, and 

the signal with the magnitude of 𝐴1 will be blocked. 



 

 

29 
 

2.4.4 Intermodulation 

If the two frequencies in Eq. 2.31 𝜔1 and 𝜔2 are close enough and the magnitues 𝐴1 and 

𝐴2  are the same, the intermodulation terms 
3

4
𝛼3𝐴1

2𝐴2 sin(2𝜔1𝑡 − 𝜔2𝑡)  and 

3

4
𝛼3𝐴2

2𝐴1 sin(2𝜔2𝑡 − 𝜔1𝑡)  are located near the fundamental signals, which is difficult to 

identify and eliminate. The concept is shown in Figure 2.10.  

Figure 2.11 shows the geometric interpretation of the 1
st
 order and 3

rd
 order extrapolation of 

the signals in a log-log scale. The Pin and Pout indicate the input and output signal power, 

respectively. The Input Interception Point (IIP) indicates the input signal power where the 

extrapolated curves intercepted. According to [67], the IIP2 and IIP3 can be expressed as  

𝐼𝐼𝑃2 = √
𝛼1

α2
                            (2.32) 

                             𝐼𝐼𝑃3 = √|
4𝛼1

3𝛼3
|                          (2.33) 

 

Comparing Eq. 2.29 and Eq. 2.33, IIP3 is related to P1dB by 

                          A𝑃1𝑑𝐵 = 𝐼𝐼𝑃3 − 9.6dB                      (2.34) 

It has been shown that the relation between 1dB and IIP3 point is relatively constant 

[68-71]. 
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For a series system, the intercept point can be expressed as  

        
1

𝐼𝐼𝑃𝑥
2 ≈

1

𝐼𝐼𝑃𝑥,1
2 +

𝛼1,1
2

𝐼𝐼𝑃𝑥,2
2 +

𝛼1,1
2 𝛼1,2

2

𝐼𝐼𝑃𝑥,3
2 +⋯+

∏ 𝛼1,𝑗
2𝑖−1

𝑗=1

𝐼𝐼𝑃𝑥,𝑖
2              (2.35) 

where 𝑥  is the x
th

 order of the input intercept, and the α  coefficient at the i
th

 stage [61].  

Different from noise figure, linearity of the system is determined by each stage instead of 

just the first stage. The targeted receiver linearity requirements of the multiple standards are 

shown in Table 2.2. In RFID applications, the IIP3 is dependent on the power of the transmitter. 

The minimum IIP3 requirement is 1dBm for 20dBm transmitting power and 10dBm for 30dBm 

transmitting power. 

 

2

Desired 
Channel

1 2
2 1- 2

2 2- 1

LNA1 
 

 

 
 

Figure 2.10 Signal corruption due to two-tone intermodulation 
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Figure 2.11 dB plot of IIP3 

Table 2.2 Signal corruption due to two-tone intermodulation in different 

standards 
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CHAPTER 3 

LNA DESIGN AND OPTIMIZATION 

 

In previous chapter, the basic device and system parameters that are needed to be concerned 

for the implementation of a low noise amplifier have been introduced and discussed. It is very 

challenging to design a LNA that simultaneously consists all of the desired performances: wide 

bandwidth, high linearity, high gain, small NF, and low power consumption. In general, there are 

tradeoffs between these parameters. In this study, the requirement for area and power 

consumption is not too stringent. This comes from the fact that by comparing with the solution of 

employing parallel narrowband LNAs, the method of sharing a single LNA for multiple 

applications already inherits the benefit in chip area and power usage. In the designs of this 

thesis work, area and power can be sacrificed to trade-off for the bandwidth, noise figure, and 

linearity. Based on this design, the noise figure and linearity optimization methods will be 

discussed in this chapter. 

3.1 Noise cancellation techniques 

3.1.1 Extended CMOS Noise Model Analysis  

The standard CMOS noise model is given in Chapter 2. There are two basic noise sources in 

a CMOS transistor: the channel thermal noise and the noise that is generated by the gate 

resistance. Gate resistance is much less significant than channel noise. The resistance can be 

minimized by adopting multi-fingers in the layout or by decreasing sheet resistance 𝑅□. Channel 

noise can also be simplified to a white noise with the power density shown in Eq. 2.18. In 

addition to these two noise sources, when the operating frequency increases, there will be a 
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current generated in the gate because of the capacitive coupling. This limits noise performance of 

the device.  

The noise from the gate has not been considered in previous analyses and will be analyzed in 

detail in the following introduction for noise optimization. The gate circuit noise model is shown 

in Figure 3.1(a), which includes a noise current 𝑖 
2 and a conductance 𝑔 in parallel. Similar to 

the drain noise expressed in Eq. 2.18, the gate noise can be expressed as:  

  
2

∆𝑓
= 4𝑘𝑇𝛿𝑔                             (3.1) 

𝑔 =
𝜔2   

2

5 𝑑0
                              (3.2) 

where 𝛿 is the coefficient of the gate noise, which equals to 4/3 for long channel transistor. 

Different from the drain noise in Eq. 2.18, the gate noise is not a white noise. This is because the 

gate conductance 𝑔  is proportional to frequency.  

According to [63], the gate noise is partially correlated with the drain noise with a 

correlation coefficient  

𝑐 =
   𝑑

∗

√  
2  𝑑

2
≈ 0.395𝑗                         (3.3) 

where the value of 0.395j is a constant for the long channel transistor. Then the gate noise can be 

expressed as  

 𝑖𝑔
2

∆𝑓
= 4𝑘𝑇𝛿𝑔 (1 − |𝑐|2) + 4𝑘𝑇𝛿𝑔 |𝑐|

2               (3.4) 
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where the first term is uncorrelated with the drain noise while the second term is fully correlated. 

  

Until now, the three main noise sources for the transistor have been introduced and analyzed. 

Based on this analyses, the NF of a LNA will be evaluated and optimization methods will be 

proposed. 

3.1.2 LNA Noise Analysis 

For a typical common source LNA structure shown in Figure 3.2 (a), noise is analyzed 

using a small signal model, as shown in Figure 3.2 (b). In this circuit, Rl and Rg represent the 

series resistance of the inductor and the transistor gate, respectively. In the analysis, the noise 

coming from the following stages are neglected based on the assumption that the first stage has 

sufficient gain. 𝑣𝑙
2̅̅ ̅ and 𝑣𝑟 2̅̅ ̅̅  represent the noise voltages of the inductor and the gate resistance. 

Cgsggig
2Vgs

Cgs

vg
2

Vgs

rg

 

Figure 3.1 Noise model of a gate circuit 
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𝑣𝑑
2̅̅ ̅ represents the drain current noise of the transistor, which is also channel thermal noise. ig,u2   

represents the gate noise that is uncorrelated with the drain noise and  ig,c2  is the noise that is 

correlated with the drain noise. The input noise voltage will be transferred to an output current 

because of the transconductance of the transistor. The noise figure of the LNA will be calculated 

according to the definition in Eq. 2.22.  
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(b) 

Figure 3.2 (a) Typical common source LNA structure (b) Small-signal model 

for LNA noise analysis 
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The four noises coming from the source resistance, the gate inductor and resistance, the 

channel thermal noise, and the gate noise contribute to the output noise. The output power 

density due to the 50Ω input source is  

𝑆 𝑟𝑐 =
4𝑘𝑇𝑤𝑇

2

𝑤0
2𝑅 (1+

𝑤𝑇𝐿 
𝑅 

)2
                          (3.5) 

The output noise power density due to the Rl and Rg is  

𝑆𝑅𝑙,𝑅 
=

4𝑘𝑇(𝑅𝑙+𝑅 )𝑤𝑇
2

𝑤0
2𝑅 

2(1+
𝑤𝑇𝐿 
𝑅 

)2
                         (3.6) 

The channel current is the main contribution of the output noise, which can be expressed as  

𝑆 𝑑 =

 𝑖𝑑
2

∆𝑓

(1+
𝑤𝑇𝐿 
𝑅 

)2
=

4𝑘𝑇𝛾 𝑑0

(1+
𝑤𝑇𝐿 
𝑅 

)2
                      (3.7) 

The gate noise is divided into two parts. The portion that correlates with the drain noise can be 

expressed as  

𝑆  ,𝑐 = к𝑆 𝑑 = к
4𝑘𝑇𝛾 𝑑0

(1+
𝑤𝑇𝐿 
𝑅 

)2
                      (3.8) 

where к is correlating parameter,  

к =
𝛿𝛼2

5𝛾
|𝑐|2 + [1 + |𝑐|𝑄√

𝛿𝛼2

5𝛾
]

2

                   (3.9) 

and Q is the effective quality factor, which can be expressed as 
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𝑄 =
𝑤0(𝐿 +𝐿 )

𝑅 
=

1

𝑤0𝑅    
                     (3.10) 

The gate noise that is uncorrelated with the drain noise is  

𝑆  ,𝑢 = 𝜉𝑆 𝑑 = 𝜉
4𝑘𝑇𝛾 𝑑0

(1+
𝑤𝑇𝐿 
𝑅 

)2
                     (3.11) 

The total output noise density is the sum of Eq. 3.8 to Eq. 3.11, after simplification, the output 

noise becomes  

𝑆𝑜𝑢𝑡 = (𝜉 + к)𝑆 𝑑 = [1 + 2|𝑐|𝑄√
𝛿𝛼2

5𝛾
+

𝛿𝛼2

5𝛾
(1 + 𝑄𝐿

2)]
4𝑘𝑇𝛾 𝑑0

(1+
𝑤𝑇𝐿 
𝑅 

)2
    (3.12) 

To simplify the expression, the factor χ is defined as 

χ = 𝜉 + к = 1 + 2|𝑐|𝑄√
𝛿𝛼2

5𝛾
+

𝛿𝛼2

5𝛾
(1 + 𝑄𝐿

2)            (3.13) 

Taking it into the Eq. (2.22), the NF can be expressed as  

 𝑁𝐹 = 1 +
𝑅𝑙

𝑅 
+

𝑅 

𝑅 
+ 𝛾𝜒𝑔𝑑0𝑅 (

𝑤0

𝑤𝑇
)                (3.14) 

Taking Q to the expression, the NF can be re-expressed as  

𝑁𝐹 = 1 +
𝑅𝑙

𝑅 
+

𝑅 

𝑅 
+

𝛾

𝛼

𝜒

𝑄
(
𝑤0

𝑤𝑇
)                  (3.15) 
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Through observation of Eq. 3.13 and Eq. 3.15, it can be seen that there is a particular value of Q 

to provide a minimum NF and makes the process of NF optimization possible. 

3.1.3 NF Contour Optimization  

It can be seen that the NF can be optimized according Eq. 3.15. All of the parameters have 

been defined in previous analysis except for 𝛾 and 𝛿, which is in Eq. 3.13. The two parameters 

depend on the drain voltage and the gate bias voltage; normally, it is difficult to account for their 

contributions into the noise calculation. In order to simplify the calculation both 𝛾 and 𝛿 are 

assumed to be the functions of the gate bias voltage, because both have a similar dependence that 

was previously mentioned.  

It can be seen that NF is mainly determined by the last term in Eq. 3.15. The second and 

third terms can be neglected since the resistances of 𝑅𝑙 and 𝑅  are much smaller compared to 

Rs. Therefore, these two terms will be ignored in the following analysis. The most critical factor 

Q can be expressed as:  

𝑄𝐿 =
𝑃0

𝑃𝐷

𝜌2

1+𝜌
                           (3.16) 

With the definition that  

𝜌 =
𝑉  −𝑉𝑡ℎ

𝐿 𝑎𝑡
                           (3.17) 

𝑃0 is a constant which is only determined solely by the technology parameters, as shown 

𝑃0 =
3

2

𝑉𝑑𝑑𝑣 𝑎𝑡𝜀 𝑎𝑡

𝑤0𝑅 
                       (3.18) 
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𝑃𝐷 is the power consumption of the LNA, it can be calculated as  

𝑃𝐷 = 𝑉𝑑𝑑𝐼𝑑                            (3.19) 

The current Id can be expressed as  

𝐼𝑑 = 𝑊𝐶𝑜𝑥𝑣 𝑎𝑡
(𝑉  −𝑉𝑡ℎ)

2

𝑉𝑜𝑑+𝐿𝜀 𝑎𝑡
                    (3.20) 

Replacement of current into Eq. 3.19, the power becomes: 

𝑃𝐷 = 𝑉𝑑𝑑𝑊𝐶𝑜𝑥𝑣 𝑎𝑡
(𝑉  −𝑉𝑡ℎ)

2

𝑉𝑜𝑑+𝐿𝜀 𝑎𝑡
                 (3.21) 

There are two ways to optimize NF: optimization with a constant transconductance (or gain) 

and optimization with a constant power consumption. Therefore, the quality factor Q is related to 

both power consumption and overdrive voltage.  

The above equations provide the design guideline for NF optimization. However it is 

difficult to directly apply these equations to designing the LNA because there are too many 

parameters involved at the same time. In practice, a NF contour analysis by sweeping the 

parameter values is commonly used in order to clearly apprehend the design.  

3.1.4 Bruccoleri’s Thermal Noise Cancellation  

The NF optimization method illustrated in Section 3.1.3 only provides a guideline for 

choosing the transistor size and power consumption to achieve a relative lower NF. However, if 

the requirements for power and gain are critical, there is not much freedom allowed to reduce NF 

because of the trade-offs between NF, power, and bandwidth. Also, the optimized NF only 

happens at a particular frequency range. For multi-standard applications, the wideband input 
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matching structures, such as the resistive feedback common-source and the common-gate, show 

a severe trade-off between NF and the matching requirements.  

In [72], Bruccoleri’s technology was first proposed for wideband noise cancelling 

applications and was proved to effectively lower noise figures in the targeted bandwidth without 

consuming extra chip area and power. In this technique, both thermal noise and distortion of the 

input transistor can be sensed and cancelled by a feed-forward structure [73]. By adding the 

feed-forward structure, the potential instability that is caused by the feed-back loop (negative 

feedback) was eliminated. Both noise and distortion are cancelled at the output, therefore both 

input matching and noise performance can be optimized simultaneously without any trade-off 

between them. 

The basic concept is to generate signals with the same phase and noises with an opposite 

phase in different paths. By summing the output, the signals will be added while noises will be 

cancelled with each other. The basic structure is shown in Figure 3.3. This is the most widely 

used common source structure of LNA. The resistive feedback structure is used for broadband 

impedance matching but the use of resistances induces a high noise figure. A feed-forward 

amplifier with a gain of Ax is used to generate noises with the opposite phase-polarities in 

different paths and cancel noises at the output. Since the cancellation method has no relevance to 

the input impedance, this technique can simultaneously achieve low noise figure and broadband 

impedance matching. 
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For CMOS transistors, the channel thermal noise is considered as the dominant noise 

component. Therefore, the common-source stage, M1, is modeled as a noise current source 

between the drain and source. Rf is the feedback resistor, which is used for wideband input 

matching. The feed-forward voltage amplifier has a gain of Ax. Part of the noise current that is 

generated by the transistor flows through the feedback resistor Rf  to the gate of the amplifier 

and generates the noise voltage VA, VB at the node A and B with the same phase polarity. Let the 

input impedance be Rs, the noise voltages at A and B can be expressed as 

𝑉𝐴, = ⍺𝐼 𝑅                             (3.22) 

𝑉𝐵, = ⍺𝐼 (𝑅 + 𝑅𝑓)                        (3.23) 

where 0 < ⍺ < 1, is the percentage of the noise current that flowing to the feedback resistor. 

On the other hand, the signal voltages at nodes A and B have the opposite polarity because 

the common-source amplifier has an inverting gain. The differences of signal and noise polarities 
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Figure 3.3 Bruccoleri’s thermal noise cancellation 
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at node A and B make it possible to cancel the noise while adding the signal contributions. This 

can be realized by the feed-forward amplifier, which adds one negative scale to the voltage at 

node A. The output noise voltage after the noise cancelling operation can be expressed as 

𝑉𝑜𝑢𝑡, = 𝛼𝐼 (𝑅 + 𝑅𝑓) − 𝐴𝑣(𝛼𝐼 𝑅 )                   (3.24) 

To make sure the 𝑉𝑜𝑢𝑡,  equals zero, the gain of the feed-forward amplifier should be 

𝐴𝑥 = 1 +
R𝑓

𝑅 
                             (3.25) 

It shows that, when Ax equals to 1 + (𝑅𝑓/𝑅 ), the noise of the input transistor M1 can be 

cancelled at the output and the signal gain is enhanced. Assuming that the input impedance of the 

amplifier matches the source impedance, the overall gain for the signal is:  

𝐴𝑣 = −𝑅𝑓(𝑔𝑚1 +
1

𝑅 
)                        (3.26) 

Assuming the input impedance    = 1/𝑔𝑚 = 𝑅 , the voltage gain Av is:                         

𝐴𝑣 = −2
𝑅𝑓

𝑅 
                           (3.27)  

By choosing appropriate resistance and gain to match the path gain for concerned drain 

noise, a complete removal of transistor noise can be achieved.  

However, to make sure that the noise can be cancelled at the output, the feed-forward gain 

should be equal to AX, which is 1 + (R𝑓/𝑅 ), as shown in Eq. 3.25. In the meantime, the overall 

signal gain is −2(𝑅𝑓/𝑅 ), as indicated in Eq. 3.27. Therefore, the noise cancelling requirement 

restricts freedom for controlling gain of the amplifier [74, 75]. Based on traditional Bruccoleri 
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technology, a new structure that can enhance the gain of the noise cancelling technology is 

proposed in the following designs. 

3.2 Linearity Enhancement Techniques  

According to [76], linearity of a LNA can be improved by increasing the overdrive voltage. 

However, if the power consumption will be high then thermal noise will also increase. Another 

linearity enhancing method is to adopt the negative feedback structure. By doing this, the second 

order linearity can be improved because the input signal is relatively low and the non-linear 

effects coming from the transistor is alleviated. The third order linearity can also be improved 

because IIP2 and IIP3 are related [77]. Second and third order linearity of the feedback structure 

can be improved by a factor of (1 + 𝑇0) and (1 + 𝑇0)
2 respectively, where 𝑇0 is the open 

loop gain. However, for high frequency LNA applications, the feedback structure is less 

effective. 

Another linearity enhancement method is through cancellation. Different from noise, which 

is random and difficult to be anticipated, the circuit nonlinearity can be predicted and easily to be 

corrected at the output by adopting a special structure. Many distortion cancellation techniques 

have been proposed and widely used, which will be introduced in the following sections. 

3.2.1 Feedback  

As previously mentioned, the feedback structure can improve both the second order and 

third order linearity of the LNA. The basic schematic is shown in Figure 3.4 in which A is the 

amplifier with nonlinearity and β is the amplitude of the feedback path. X and Y are the input and 

output signal. According to Eq. 2.25, output Y can be expressed as  



 

 

44 
 

𝑌 = 𝑎𝑋 + 𝑎′𝑋2 + 𝑎′′𝑋3                         (3.28) 

where 𝑎, 𝑎′ and 𝑎′′ are the closed loop linear gain, and the second and third order nonlinearity 

coefficients respectively. This can be expressed as:  

𝑎 =
𝑔

1 + 𝐴0
 

𝑎′ =
𝑔′

(1 + 𝐴0)3
 

𝑎′′ =
1

(1+𝐴0)
4
(𝑔′′ −

2( ′)2

 

𝐴0

1+𝐴0
)                  (3.29) 

  𝐴0, the open loop gain, can be expressed as 𝐴0 = 𝑔𝛽. IIP2 and IIP3 of the closed loop 

system can be expressed as  

𝐼𝐼𝑃2 = √
𝑎

𝑎′
= √

 

 ′
(1 + 𝐴0)

2                    (3.30) 

           𝐼𝐼𝑃3 = √|
4𝑎

3𝑎′′
| = √

4 

3 ′′

(1+𝐴0)
3

(1−
2( ′)2

  ′′
𝐴0

1+𝐴0
)
                 (3.31) 
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Compared with the IIP2 and IIP3 expression in Eq. 2.32 and Eq. 2.33, the IIP2 is improved 

by a factor of (1 + 𝐴0) and IIP3 is improved by (1 + 𝐴0)
3
2⁄  when 𝑔′ ≈ 0 . If 𝑔𝑔′′  is 

negative (this is the case for typical CMOS transistor), when 𝑔′  increases IIP3 will be 

degraded. This phenomenon is called “second-order interaction”. Therefore, the feedback 

structure can eliminate the third order nonlinearity. The main drawback of the feedback 

structure is that the open loop gain 𝐴0 cannot be too high. In addition, the “second order 

interaction” can be very serious and degrades the IIP3 of the feedback structure. Therefore, the 

effectiveness of the feedback linearity enhancing method is limited. 

3.2.2 Sweet Spot 

For CMOS transistors, nonlinearity is mainly coming from the transconductance. According 

to [61], the drain current of the transistor can be expressed as:  

𝑖𝑑 = 𝑔𝑚𝑣  + 𝑔𝑚
′ 𝑣  

2 + 𝑔𝑚
′′𝑣  

3                     (3.32) 

where the 𝑣   is the gate to source voltage.  𝑔𝑚, 𝑔𝑚
′  and 𝑔𝑚

′′  are the first, second, and third 

order transconductances. It can be seen that the third nonlinearity is mainly caused by the third 
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Figure 3.4 Nonlinear amplifier with negative feedback 
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order transconductance 𝑔𝑚
′′ . Therefore, a lower 𝑔𝑚

′′  makes an excellent third order linearity, 

which is indicated by IIP3 [78]. From Figure 3.5, it can be seen that there is a peaking or a 

“sweet spot” in the moderate inversion region of the common-source amplifier. The third order 

transconductance 𝑔𝑚
′′  equals to zero at the “sweet spot”, and according to Eq. 3.28, the third 

order nonlinearity is cancelled.  

However, the “sweet spot” method is not easily implemented. The IIP3 peak value is too 

sensitive to the bias voltage. A small offset of the bias will cause a big change in the IIP3 value. 

Even if the optimized bias voltage can be found in the simulation, it is difficult to be realized 

because of the process variation [79]. Also, even if the sweet spot can be found in the real circuit, 

the bandwidth with high IIP3 is limited and cannot be used for wideband LNAs. 
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(a) 

 
 

(b) 

 

Figure 3.5 (a) DC transfer characteristic of the Common Source Structure and 

(b) Plot of IIP3 versus gate-to-source voltage. 
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3.2.3 Derivative Superposition 

When observing the curves in Figure 3.5, it can be seen that 𝑔𝑚
′′  first goes to a positive peak 

and then goes down to a negative peak. This happens as the Vgs changes from the weak inversion 

region to the strong inversion region.  

If two transistors are put in parallel with proper sizes and bias voltages, as shown in Figure 

3.6 (a), the positive and negative polarity regions of the third order transconductances for the two 

transistors can be aligned and be cancelled each other. By doing this, a relatively wide range of 

near zero 𝑔𝑚
′′  can be achieved, as shown in Figure 3.7. This process is called the derivative 

superposition (DS) technique [80-85]. The DS technique reduces IIP3 sensitivity.  

In Figure 3.6 (a), there is one transistor added in parallel with the original common source 

amplifier. The drain and source of the two transistors are connected together. The transistor MA is 

biased in the weak inversion region while transistor MB is biased in the strong inversion region. 

The offset of the bias voltage can arrange the 𝑔𝑚
′′  curves of the two transistors to ensure that the 

peak of one transistor is aligned with the valley of the other. The size of the two transistors 

should be matched, allowing for a relatively flat near zero 𝑔𝑚
′′  to be achieved. Compared to the 

“sweet spot” technique, the DS method is less sensitive to bias variation and achieves a broader 

high IIP3 range, as shown in Figure 3.7.  

The DS method is proven to be effective only at a lower frequency range. When frequency 

increases, the nonlinearity that is coming from the parasitic parameters becomes more significant. 

For the common source structure, the degenerated inductor provides a feedback for the drain 

current to the gate-source voltage. Even though the third order nonlinearity can be perfectly 

cancelled out, the second order harmonic components are still contributing to the third order 

harmonics through the feedback path, as shown in Figure 3.6 (b). 
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To illustrate the imperfect cancellation of the DS technique quantitatively, the IIP3 

expression of the DS technique is presented as:  
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Figure 3.6 (a) Simplified schematic of the derivative superposition technique 

and (b) Conceptual vector diagram 
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𝐼𝐼𝑃3 =
4𝜔2( ′)2𝐿𝐵( 𝐴+ 𝐵)

3|𝜀|
                  (3.29) 

where 

 
 

(a) 

 
 

(b) 

Figure 3.7 (a) 𝑔𝑚
′′  of the transistors and (b) Plot of IIP3 versus gate-to-source 

voltage. 
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ε = 𝑔𝐴
′′ + 𝑔𝐵

′′ −

2

3
(𝑔𝐵

′ )2

𝑔𝐵 +
1

𝑗2𝜔𝐿𝐵
+ 𝑗2𝜔(𝐶𝐴 + 𝐶𝐵) +  1(𝑗𝜔)

 𝐴+ 𝐵

𝐿𝐵

 

≈ 𝑔𝐴
′′ + 𝑔𝐵

′′ −
2( 𝐵

′ )
2

3 𝐵

1

1+
1

𝑗𝜔 𝐵𝐿𝐵

                  (3.30) 

As shown in Eq. 3.29 and Eq. 3.30, IIP3 is limited because of the second order products in 

Eq. 3.30 even though the third order part 𝑔𝐴
′′ + 𝑔𝐵

′′ equals to zero. In addition, it can be seen that 

the IIP3 is inversely proportional to frequency 𝜔. As a result, the effectiveness of the DS 

method is limited at higher frequencies.  

3.2.4 Modified Derivative Superposition 

In order to enhance the effectiveness of the DS techniques at higher frequencies, the 

modified derivative superposition method was proposed in [86, 87]. As shown in Figure 3.8 (a), 

the sources of the two parallel transistors are connected to different nodes of the degenerated 

inductors (LA and LB). By regulating the inductance of LA and LB, both the phase and the 

magnitude of the third order harmonics can be adjusted. By adjusting LA and LB, the second-order 

and third-order nonlinearity will cancel each other as illustrated in Figure 3.8 (b).  

The quantitative analysis is shown as the following section. The IIP3 of the modified DS 

technique is expressed as  

𝐼𝐼𝑃3 =
4𝜔2( ′)2[𝐿𝐴( 𝐴+ 𝐵)+𝐿𝐵 𝐵]

3|𝜀|
                     (3.31) 

ε = 𝑔𝐴
′′(1 + 𝑗𝜔 𝐵𝑔𝐵)[1 + (𝜔 𝐵𝑔𝐵)

2] [1 +
 𝐵𝐶𝐵

 𝐴(𝐶𝐴 + 𝐶𝐵) +  𝐵𝐶𝐵
] 
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+𝑔𝐵
′′ −

2( 𝐵
′ )

2

3 𝐵

1

1+
1

2𝑗𝜔 𝐵(𝐿𝐴+𝐿𝐵)

                          (3.32) 

The second order term can be adjusted by changing inductance of  𝐴 and  𝐵, causing the 

second order nonlinearity to be cancelled by the modified DS technique. However, the modified 

DS technique is effective only for narrow banded LNAs and also, IIP3 is very sensitive to bias 

voltage.  

3.2.5 Noise and Distortion Cancellation 

This basic idea for the noise and distortion cancellation technique is similar to the 

Bruccoleri’s thermal noise cancellation method. By generating the noise and nonlinearity 

contributions with opposite phases and the same amplitude in different paths, both the noise and 

distortion can be cancelled at the output. The circuit in Figure 3.9 was proposed in [88-90].  

The input signal is amplified by the common gate amplifier MA (with the same phase) and 

MB (with the opposite phase) and summed at the output. In the meantime, both the nonlinearity 

and thermal noise of MA flow through the CG and CS stages are being subtracted at the output. 

All the intrinsic distortion that generated by the MA can be cancelled out by this method, 

including gm and gds nonlinearity. However, like the other linear methods, the “sweet spot” and 

the DS technique method, can only cancel the gm nonlinearity. After cancelling all the distortion 

of MA, the nonlinearity of this method is mainly coming from MB.    
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3.3 Summary  

Table 3.1 compares IIP3, gain, NF, and power consumption of different noise and linearity 

enhancing methods discussed in previous sections. Only one representative reference is chosen 

for each method. Note that there is a tradeoff between different parameters of each technique. 

The noise and distortion technique adopted the feedback structure and achieves the largest 
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(b) 

Figure 3.8 (a) Simplified schematic of the Modified Derivative Superposition 

technique and (b) Conceptual vector diagram. 
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bandwidth. However, both its IIP3 and NF are not as good as the other methods. The modified 

DS technique achieved the best IIP3 with the increment in power consumption. Optimal biasing 

achieved the best NF, even it has the lowest power consumption, it is only effective on a 

particular frequency and it is very sensitive to bias variation.  

 

 

M
Rs

R

IN

A

Vx

RB
Vy

B

AM

Vs

V0 =Vx-Vy

    

(a)                              

M
Rs

R

IN

A

Vx

RB

Vy

B1

AM

Vs

MB2

=V0

  

(b)  

Figure 3.9 Noise/distortion cancellation. (a) Differential output [88], [90]. (b) 

Single ended output [89]. Simplified circuit schematic of noise/distortion 

cancellation. 
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In the multi-standard LNA design, the LNA receives signals with different channels at the 

same time. The nearby signals and the on-chip transmitter leakages can interfere with each other 

and cause severe intermodulation, blocking, and gain compression. Therefore it is very 

challenging to achieve a high linearity over a wide frequency range without significantly 

influencing NF and gain of the LNA.   

In addition to the challenges of achieving a high linearity with a wide bandwidth, there are 

several different tradeoffs that must be considered. These tradeoffs will be discussed in the 

subsequent chapters. Feedback topology was chosen for this work because it can increase the 

bandwidth and linearity simultaneously with a reduction in gain. In addition, the feedback circuit 

introduces more noise into the structure. According to [76], a high overdrive voltage improves 

linearity while consuming much more power.  

The DS technique methodology improves linearity effectively by adding an additional 

transistor for IIP3 cancellation. However, the additional transistor also introduces more noise 

into the circuit. Therefore, it is very challenging to balance the tradeoff among all of the desired 

parameters. In the future design, all of the approaches and methodologies previously mentioned 

will broadly be followed. Some parameters and detailed circuit structures will be regulated for 

parameters optimization. 
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Table 3.1. Comparison of linearity enhancement techniques 

Linearity 

Enhancing 

Technique 

Optimal 

Biasing (sweet 

spot) [78] 

Derivative 

Superposition (DS) 

technique [80] 

Modified DS 

technique [86] 

Noise and 

Distortion 

Cancellation 

[89] 

Frequency 880MHz 2.2GHz 900MHz 0.2-5.2GHz 

IIP3 (dBm) 10.5 2.7 20 >0 

Gain (dB) 14.6 15.3 16 13 

NF (dB) 1.8 2.9 1.4 3.5 

Power (mW) 5.4 20 23.4 19.6 

Supply Voltage 

(V) 
2.7 2.5 2.6 1.5 

Process (µm) 0.25 0.25 0.25 0.18 
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CHAPTER 4  

A HIGH LINEAR BROADBAND CASCODE LNA EMPLOYING 

COMMON-GATE LINEARITY ENHANCING TECHNOLOGY 

 

The first LNA design, which will be placed in parallel with the existing receiver system, is 

targeted on the applications of the most commonly used 4G standard LTE, which is located on 

700-800MHz. This is the most economical way to upgrade the existing (2G and 3G) devices to 

new 4G application without significant changes of the existing circuit. The frequency bands of 

GSM, Zigbee, and RFID are also covered since they are all located at the nearby frequency 

bands, 850MHz for GSM, 915MHz for Zigbee, and 900MHz for RFID.   

This chapter presents a low power and noise, high linearity, wideband cascode LNA that 

targets on the multi-standard wireless communication applications including LTE, GSM, Zigbee, 

and RFID. The common source (CS) stage is the main nonlinearity source for a cascode LNA. A 

modified derivative superposition (MDS) technology is adopted to improve the linearity. In 

addition, when the operating frequency increases, the nonlinearity influence coming from the 

common gate (CG) increases and limits the linearity performance of the LNA. Based on the 

modified MDS technique, this work employs both the derivative superposition (DS) and a 

terminal LC resonator on the CG stage. The nonlinearity coming from the CG stage is degraded 

at a higher frequency and, at the same time, high linear bandwidth is also increased. The cascode 

LNA was designed, analyzed, and implemented using the IBM 0.13μm CMOS technology. The 

LNA achieved a third-order intercept point (IIP3) of +13.6dBm, 3dB NF and a 12dB gain in a 

wide frequency from 700MHz to 1.1GHz. 
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4.1 Introduction 

The LNA in this design is targeted on applications to cover the three standards that range 

from 700MHz to 950MHz. The cascode amplifier has been adopted because of its reputation of 

high gain, good noise performance and high isolation characteristics. In the design of cascode 

LNAs, improving the linearity without sacrificing gain or/and noise figure is the most 

challenging task. The problem is more serious when the LNA is to be used in the multi-standard 

devices because of the in-band interferences. A linearization method for high frequency 

wideband applications is desired. 

In order to improve linearity of the cascode amplifier, an optimal biasing technology was 

proposed in [79], in which the third-order derivative of DC transfer characteristics of the 

field-effect transistor (FET) is adjusted to zero by regulating the biasing voltage Vgs. However, 

the region with high linearity is narrow and the cancellation of third order transconductance is 

very sensitive to the biasing voltage.  

Another method to extend the linearity bandwidth called the derivative superposition (DS) 

method was proposed in [80-85]. The technique is to combine two parallel transistors of different 

widths and bias voltages to achieve an extended linear range, in which the third-order derivative 

approaches to zero. However, IIP3 improvement is limited because of the feedback of the second 

order derivatives to the input through the gate to source capacitance Cgs. The second order 

derivatives contained in the feedback can generate higher-order derivatives. A modified DS 

method is proposed in previous designs. In this method, magnitude and phase of the 

second-order and the third-order nonlinearity contributions are regulated by inserting an extra 

inductor. As a result, the influence coming from the second-order derivative is reduced.  
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However, all the reported cascode linear methods consider the common-gate (CG) stage as 

an ideal current buffer and target only on improving the linearity of the common-source (CS) 

stage. As the operating frequency increasing, the nonlinearity influence coming from the CG 

stage becomes more serious and limits the cascode LNA linearity. The nonlinearity of the CG 

amplifier was analyzed in [99-102] but the analysis did not reveal the role of the CG stage in the 

cascode LNA. In [99], the effects of the CG stage nonlinearity on the linearity of the cascode 

were first analyzed. However, there is only a qualitative analysis and no improving method was 

proposed. 

In this design, the cascode LNA is taken as a two-stage amplifier, which is composed of the 

CS and CG stage. The nonlinearity influence coming from the CG stage is analyzed in more 

detail. Based on the DS method, linearity of the CS and the CG stage are enhanced separately 

and at the same time, a high linearity in a relative wide range of frequency is achieved. 
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Figure 4.1 Circuit diagram for nonlinearity analysis of the CG stage in 

cascode LNA 
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4.2 Circuit Design & Analysis  

4.2.1 CG Stage non-linearity analysis 

Figure 4.1 shows the circuit diagram for the analysis of the CG stage nonlinearity in 

cascode LNA. The CS stage is modeled as a current source with output resistance r0,A, and the 

current is controlled by the input voltage Vgs,A. The current of the CS stage id,A is the input current 

for the CG stage. For conventional analysis, the CG stage is taken as an ideal current buffer and 

the currents of the CG (id,B) and CS stage (id,A) are identical. The current id,B is driven by the 

gate-source voltage Vgs,B, which can be expressed as 

𝑖𝑑,𝐵 = 𝑔𝑚1𝑉  ,𝐵 + 𝑔𝑚2𝑉  ,𝐵
2 + 𝑔𝑚3𝑉  ,𝐵

3 +⋯               (4.1) 

where 𝑔𝑚 ,𝐵 is the n
th

 order transconductance of the CG stage. The gate-source voltage 𝑉  ,𝐵 

can be expressed as 

𝑉  ,𝐵 = 𝑅  ,𝐵𝑖𝑑,𝐴                             (4.2) 

where 𝑅  ,𝐵 is the input resistance of the CG stage, then the drain current id,B  will be 

𝑖𝑑,𝐵 =  𝑚1𝑅  ,𝐵𝑖𝑑,𝐴 +  𝑚2𝑅  
2 𝑖𝑑,𝐴

2 +  𝑚3𝑅  
3 𝑖𝑑,𝐴

3 +⋯          (4.3) 

From Eq. 4.3, the second-order and the third-order nonlinear currents of the CG stage 

increase in proportion to the 2
nd

 and 3
rd

 order of Rin,B. Therefore, a smaller Rin,B for the CG stage 

generates smaller nonlinear currents. Rin,B is expressed as 

𝑅  ,𝐵 =
𝑟0+𝑅𝐿

1+(1+𝜒)  𝑟0
                           (4.4) 
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where 


is given by 

𝜒 =
𝛾

2√𝑉𝑆𝐵+|2∅𝐹|
                            (4.5) 

VSB is the voltage difference between source and body of the transistor. γ is the body 

effect parameter and ∅F is the junction potential. It is can be seen in Eq. 4.4, Rin,B increases as 

the load resistance RL increases and results in more nonlinear currents. In order to limit the 

nonlinearity coming from the CG stage, RL should be chosen as small as possible. However, 

since the gain is proportional to RL, there is a trade-off between the gain and linearity of a LNA. 

Figure 4.2 shows the change of IIP3 of the cascode LNA at 1.5GHz with respect to the 

increase in the load resistance RL. The simulation results indicate that there is an optimum value 

of the load impedance at which the output third order point, OIP3, can reach up to its maximum. 

This is the trade-off between the gain and linearity as earlier mentioned. The OIP3 curve is flat 

while RL is ranging from 75Ω to 125Ω. Therefore, RL can be changed in the range to balance the 

better trade-off between linearity and gain without big influence to the output linearity. 
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From Eq. 4.4, another way to decrease Rin,B is to increase χ. Increasing the body-effect 

factor λ and decreasing the source-bulk voltage VSB of the CG stage have the same effect in 

raising χ. Both can be realized by putting the CG stage in a well where the doping density of P
+
 

is higher than the substrate. 

To verify the analysis, a simulation was carried out with the CG stage being placed in the 

substrate and isolated deep doped P
+
 well separately. The transistors are of the same size and 

under the same bias conditions. The IIP3 of the LNA increases while the CG stage is putting in a 

heavy doped P
+
 well. In other words, connecting the bulk of the CG stage to the source instead 

of to the substrate can improve the IIP3 to some extent. However, the effectiveness depends too 

much on the process technology since γ is proportional to the doping density. 

Based on the analysis, there are two linearization methods to improve linearity of a LNA. 

The first one is to limit the loading resistance RL at the expense of sacrificing the gain. The 

second is to connect the bulk of the CG FET to the source instead of to the substrate, which is 
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Figure 4.2 Gain, IIP3 and OIP3 of the cascode amplifier 
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realized by putting the transistor in a heavily doped well. However, both methods can only 

improve the linearity of the LNA in a certain bandwidth. The bandwidth of the LNA with high 

linearity is still limited. Also, the gain cannot be too high to realize a high linearity. In the 

following section, a LNA having high linearity in a wide bandwidth is proposed. 

4.2.2 Circuit Design and Analysis for the Proposed Wideband High Linearity Cascode LNA 

The DS linearity is the most effective method for improving the linearity and has been 

widely used because it does not have a significant influence to the LNA structure and is easy to 

be realized. However, the DS method is applied to the CS stage in previous works and only one 

IIP3 peak at the operating frequency can be achieved. As a result, the bandwidth of the high 

linearity LNA is limited. Since the cascode structure can be taken as two separate stages, 

assuming that the linearity of two stages are optimized independently to obtain IIP3 peak at the 

low frequency corner in Figure 4.3 (a) and at the higher frequency in Figure 4.3 (b) and they are 

merged together. 

 

 

IIP3 IIP3 IIP3

f f ff1
f2 f1 f2

(a) (b) (c)

 

Figure 4.3 (a) IIP3 of the CS stage, (b) IIP3 of the CG stage, and (c) IIP3 for 

the entire circuit 
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The two independent IIP3 peaks over the wide frequency range can be achieved as shown in 

Figure 4.3 (c). Figure 4.4 shows the proposed LNA with linearity-enhanced topologies. In the 

following sections, the two stages are analyzed in detail. 

(1) Common-Source Stage 

As shown in Figure 4.4, the CS stage adopts the MDS linearity enhancement technology in 

which an extra gate to source capacitor Cgs is inserted. For the DS method, an auxiliary transistor 

(AT) with a proper size and bias voltage is added in parallel with the main transistor (MT) to 

compensate for the third-order nonlinearity.  

The second transconductance of the MT has a negative peak in the saturation region, which 

severely decreases the linearity. The second order response of the AT with different size and 

biased voltage can be shifted to the right, the 𝑔𝑚
"  of AT and the  𝑔𝑚

"   of MT will cancel each 

other to drive the  𝑔𝑚
"   of the LNA close to zero. In this way, the third-order nonlinearity will 

be eliminated. 
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However, for the DS technology, even the third-order nonlinearity can be cancelled by the 

AT 𝑔𝑚
"  compensation, the second nonlinearity component still exists and generates additional 

third-order nonlinearity through the source-gate feedback. The modified DS method proposed in 

this design addresses the issue of feedback of the second-order frequency components. In this 

method, the magnitude and phase of second-order nonlinearity contribution to the third-order 

components are tuned to cancel the third-order nonlinearity contribution, thus resulting in an 

output current with a minimum third-order component. As shown in Figure 4.4, the transistor 

MT is biased in the strong inversion region, while the transistor AT is biased in the weak 

inversion region. The two source degeneration inductors LA and LB connected to the sources of 

the two transistors are used to tune the magnitude and phase of the third-order components. 
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Figure 4.4 Circuit diagram of the proposed cascode LNA 
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In the proposed design, an extra gate-to-source capacitance (Cadd) is added. The quality 

factor of the input matching network is indicated as Qmatch [53]. A lower Qmatch results in a wider 

bandwidth, as shown in Eq. 4.6. 

𝐵𝑊

𝑤0
= 

1

𝑄
                               (4.6) 

Because the Qmatch is inversely proportional to Cgs, adding Cadd will decrease Qmatch and 

results in an increment in bandwidth. In addition, the total output noise will be further reduced by 

inserting a proper value of the parallel capacitance. 

The input matching is mainly determined by the CS stage. Figure 4.5 presents the small 

signal equivalent circuit, and the input impedance is expressed in Eq. 4.7. 

      =   𝐵 +
1+𝑆 𝑀𝑇(𝐿𝐴+𝐿𝐵)+𝑆

2 𝑀𝑇𝐿𝐴

𝑆( 𝐴𝑇+ 𝑀𝑇+ 𝑎𝑑𝑑+𝑆 𝑀𝑇( 𝐴𝑇+ 𝑎𝑑𝑑)𝐿𝐵+𝑆
2( 𝐴𝑇+ 𝑎𝑑𝑑) 𝑀𝑇𝐿𝐴)

    (4.7) 

Regarding the noise figure (NF), the system NF is described by the well-known Friis 

formula  

𝐹 = 1 + (𝐹1 − 1) +
𝐹2

𝐴1
+

𝐹3

𝐴2
+⋯                 (4.8) 

where Fi, Ai are the noise factor and gain, respectively, of the i
th

 stage down in the chain. Notes 

that the noise figure of the entire circuit mainly comes from the first stage, which is the CS stage 

in this case. The noise figure of the CS stage is expressed as: 

𝐹 = 1 +
𝛾′ 𝑑0,𝑀𝑇

4  ,𝑇𝑂𝑇
2 𝑅 𝑄

2
+

𝛽′(1+4𝑄2)𝑅
 (𝜔𝐶  )

2

 𝑑0,𝐴𝑇
                (4.9) 
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where 𝛾′ is the bias-dependent noise coefficient, which equals to 2/3 for long-channel devices 

but it is 2 to 3 for short-channel devices. 𝑔𝑑0 is the zero-bias drain conductance of the device. 

 

(2) Common-Gate Stage 

As indicated in previous analysis, the linearity of the CG stage decreases as the frequency 

increases. One way to limit the nonlinear current is to decrease the loading resistance by 

sacrificing the gain. Another way is putting the CG stage in a highly doped well but the 

procedure is expensive and the effectiveness is limited. 

For the CG stage, the transconductance nonlinearity is also the dominant factor as shown in 

previous analysis. Therefore, it is possible that the DS compensation can also be applied to the 

CG stage. The negative value of the third transconductance of the main transistor is compensated 

with the positive value of the auxiliary transistor, as shown in Figure 4.6. This indicates the 

effectiveness of the DS technology for the third derivative cancellation.  
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Figure 4.5 Equivalent small signal circuit for the common source stage of the 

proposed cascode LNA 
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However, the input driving impedance, which is the output impedance of the CS stage, 

forms a voltage-current feedback path [103]. Even though the third-order coefficient can be 

reduced using the DS technology, the second-order nonlinear current can mix with the input 

through the feedback impedance and generate a third-order distortion. One of the best ways to 

eliminate the second-order harmonic feedback effect is adopting a RF current source in the 

high-frequency region. In this design, the CS stage can be seen as a current source with output 

impedance Zcs. The equivalent circuit for the CG stage is modeled in Figure 4.7. 

 

 
 

Figure 4.6 Transconductance cancellation of CG stage using DS technology 
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Vgs and Cgs indicate the voltage and capacitance between the gate and the source of the 

common gate transistor. RL′ represents the load resistance at the operating frequency. The total 

input impedance of common gate stage Zin, total is given by [104] 

   ,𝑡𝑜𝑎𝑙 =
𝑅𝐿
′+𝑍𝑖𝑛,𝑑

1+  2𝑍𝑖𝑛,𝑑
                        (4.10) 

where 

   ,𝑑 =    //
1

𝑗𝑤   
                         (4.11) 

Zin,d is the impedance looking back from point A. It indicates the equivalent impedance of the 

entire CS and CG stages. 

Assume the operating frequency is 𝜔, according to [98], the IIP3 can be expressed as 

 

ZCS

’RL

Zin
Cgs

 

 

Figure 4.7 Common-gate stage equivalent circuit 
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𝐼𝐼𝑃3 =
  1

6

1

|(1+  1𝐴1(𝑗))|𝐴1(𝑞𝑗𝑤)|2𝐾()|
× 𝑅               (4.12) 

where 

 𝐾(𝜔) = 𝑔𝑚3 +
2

3
𝑔𝑚2
2 [

1

𝑌𝑇(2𝑗𝜔)+  1
+ 2

1

𝑌𝑇(𝑗∆𝜔)+  1
]          (4.13) 

and ∆𝜔  is the frequency difference of the two interfering frequencies. 

𝑌𝑇(2𝑗𝜔) and 𝑌𝑇(𝑗∆𝜔) are the admittance at 2𝜔 and ∆𝜔 separately.  

From Eq. 4.13, the IIP3 is limited by K(ω). IIP3 can be improved by minimizing the 

harmonic factor K(ω),which can be realized by decreasing gm3, as well as gm2 with YT (2jω) and 

YT (j△ω). This affirms the previous analysis that both the third-order and the second-order 

non-linear currents can reduce IIP3. The DS technology is adopted to improve gm3. The 

second-order part, as expected from Eq. 4.13, can be minimized by increasing YT (2jω) and YT 

(j△ω). This is achieved by adding one LC resonant tank in parallel to tune the input impedance 

[98]. The structure can provide high impedance at ω and small impedance paths to ground at △ω 

and 2ω. Since the admittance YT (2jω) and YT (2jω) will be very small. In other words, the 

second-order non-linear current will be minimized. 

4.3  Implementation and Measurement Results 

The proposed linearization technique was implemented on the cascode LNA. The designed 

cascode LNA was fabricated using IBM 0.13μm CMOS technology and the die microphotograph 

is shown in Figure 4.8 (a). The core size of the LNA is 0.61mm x 0.4mm. The LNA was 

simulated and fabricated as a standalone device. A separate buffer was adopted for 50Ω output 

impedance matching. Figure 4.8(b) is the microphotograph of the testing board. 
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 The LNA is powered by a 1.2V supply and the power consumption is 9.2mW. The input 

matching and the gain are indicated by S11 and S21 of the LNA. In Figure 4.9, S11 is simulated 

below -10dB ranging from 700MHz to 1GHz, with a bandwidth of 300MHz. However, the 

measured S11 was shifted to a higher frequency, which is ranged from 900MHz to 1.35GHz. 

Figure 4.10 shows a maximum measured gain S21 of 12.6dB at around 900MHz with a variation 

3dB over 1-1.3GHz. The measured peak appears around 1.3GHz.  

    

(a)                                 (b) 

 

Figure 4.8 (a) Microphotograph of the LNA, (b) Photograph of the Testing 

Board 
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As shown in Figure. 4.11, the minimum NF (3dB) also shifts to the higher frequency 

because of the shifted S11 and S21. The variations in the NF arise from the frequency-dependent 

gate induced noise and the load resistor noise. The cascode transistor also contributes a level of 

frequency-dependent noise. 
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Figure 4.9 S11 of the LNA 
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Figure 4.10 S21 of the LNA 
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The measured results shift to a higher frequency compared to the simulation results, which 

is mainly because the IC was tested using a printed circuit board instead of probe testing. All the 

inductance coming from the bonding wires and the traces on the PCB influence the resonant 

frequency of the LNA. To validate the analysis, simulation was performed with the consideration 

of the parasitic capacitance and inductance of the PCB board and bonding wires. The simulated 

S11 and S21 with parasitic parameters are shown by dotted lines in Figure 4.9 and Figure 4.10, 

respectively, and in general the results agree well with the measured results. Since S11 is shifted 

to the higher frequency, there will be lower power transferred in the lower frequency. Therefore, 

the S21 drops quite significantly in the lower frequency and the bandwidth is decreased. 

In the wideband operation, widely spaced tones dominate the IIP3 and IIP2. For example, 

the targeted standards in this design (GSM, Zigbee, and LTE) can interfere one to each other. 

Thus the intermodulation products from the interferences with frequency spacing around tens of 

MHz need to be considered. For IIP3 measurement, two tones with 50MHz spacing were used. 

The IIP3 was tested in different frequencies and the results are shown in Figure 4.12. In the 

bandwidth ranging from 0.7-1.1GHz, the IIP3 has the minimum value of 7.5dBm and reaches up 

to 13.6dBm at the frequency of 900MHz. Since the optimized linearity frequency for the CS and 

CG stage are assigned to 800MHz and 900MHz, respectively, the measured results indicate the 

effectiveness of CS and CG stage linearity enhancing technique. The high linearity frequency 

range does not shift since the optimized frequency is pre-determined by confirming the transistor 

size and bias voltage. 
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As for reference only, the performance of this work is compared with other high linear 

LNAs located in the 900MHz frequency range, as shown in Table 4.1. Most of the previous 

designs just targeted on improving the linearity on a specific frequency. For multi-standard 

applications, the proposed LNA achieves a bandwidth of 300MHz with comparable linearity 

8

2

0

0.5 1.5
Frequency (GHz )

N
F

 (
d

B
)

1

Measured Results

Simulated Results

4

6

 

 

Figure 4.11 Noise Figure of the fabricated LNA 
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Figure 4.12 IIP3 of the LNA 
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(>7.5dBm). Although the work in [87] has the highest IIP3, the power usage is very high because 

of the trade-off between linearity and power consumption. Besides, the linearity is only 

optimized at 900 MHz and the high linear bandwidth is limited. The LNA proposed in [80] has a 

very wide bandwidth, however, its IIP3 is the lowest and both the NF and the power 

consumption are relatively high. Because of the influence of bonding wire and parasitic, the 

input matching and gain of this design shifted to the higher frequency range 1-1.3GHz. 

 

However, the shifted value of S11 (<-10dB), S21 (>10dB), and NF (<4dB) are still 

comparable. To resolve the shifting problem, instead of using package, the future design can be 

measured using probe testing by arranging the pads properly to fit the probe size.  

Table 4.1. Performance Summary and Comparison with Previous Works 

 

Article [84] [86] [87] [80] [105] [106] This work 

Technology 
0.25μm 

CMOS 
Bipolar 

0.25μm 

CMOS 

65nm 

CMOS 

0.18μm 

CMOS 

0.35μm 

CMOS 

0.13μm 

CMOS 

Frequency 

(GHz) 
0.9 3 0.9 0.2-5.2 0.9 0.9 0.7-1 

IIP3 (dBm) 10.5 14 17.2 0-4 9.4 5 7.5-13.6 

Gain (dB) 14.6 6.5 15.5 15.6 14.9 18 >10 

Noise Figure 

(dB) 
1.8 1.9 1.6 2.9-3.5 1.8 2.6 3 

Power (mW) 5.4 0.6 23.4 14 5.6 22.5 9.2 
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4.4 Summary 

The effects of the CG stage nonlinearity on the linearity of the cascode LNA are 

investigated and analyzed in this chapter. For the traditional cascode LNA, decreasing the gain or 

putting the CG stage in a heavily-doped well can assist in improving the linearity at high 

frequency. However, each method has its own drawbacks and cannot effectively enhance the 

linearity. In this design, the cascode LNA is considered in two stages and the linearity of each 

stage is separately improved. For the CS stage, the MDS technology is adopted. For the CG stage, 

the DS technology is used along with the LC terminal, which can simultaneously decrease the 

third-order and second-order nonlinear current. The proposed cascode LNA was fabricated using 

IBM 0.13μm CMOS technology. The input matching S11 and gain S21 are shifted to the higher 

frequency range of 1-1.3GHz due to parasitic parameters of the testing PCB board. The 

fabricated LNA achieves a maximum gain of 12dB. The high linearity bandwidth still locates at 

the targeted frequency range of 0.7-1GHz because the optimized frequency is determined by the 

size and bias voltage of the transistors and the linearity is higher than 7.5dBm in the targeted 

range. The results indicate the effectiveness of the proposed linearity enhancing technology for 

wideband LNA. 
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CHAPTER 5 

A LOW NOISE FIGURE 2-GHZ BANDWIDTH LNA USING RESISTIVE 

FEEDBACK WITH ADDITION INPUT INDUCTORS 

 

During the transitional time from the existing 2G and 3G to 4G, the easiest way to 

implement a multi-standard receiver is to combine the existing receiver to a relatively 

narrowband receiver or LNA that is designed specifically for LTE, such as the LNA that was 

proposed in Chapter 4. However, chip area and system cost will be relatively high. A broadband 

low-noise amplifier that covers multiple standard bandwidths is preferred to reduce system 

complexity and have lower power consumption.  

Most of the wideband LNAs proposed in previous works targeted frequency ranges between 

3.1-10.6GHz, which is exceptionally defined by FCC for UWB (impulse pulse radio) 

applications [107]. The UWB system can only be used at a very low energy level for short-range, 

high-bandwidth communications with a large portion of the radio spectrum. Such wideband 

LNAs do not apply to the existing narrowband standards such as GSM, LTE, WCDMA, PCS, 

and WLAN, located in the lower frequency range and spanning from the 700MHz (GSM) up to 

2.4GHz (WLAN). Therefore, a wideband LNA (1-3GHz) is proposed and described in this 

chapter. A novel input inductive network for the wideband LNA is suggested to enlarge the 

bandwidth. A -10dB S11 is achieved in a wide range of frequency from 1GHz to 3GHz. Within 

this bandwidth, the LNA has a gain of 7.5dB and a minimum NF of 2.5dB, while consuming 

7mW of the power. The results indicate that the proposed input-network effectively alleviates the 

tradeoff between NF and bandwidth without requiring extra power consumption. 

http://en.wikipedia.org/w/index.php?title=Pulse_radio&action=edit&redlink=1
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5.1 Conventional LNA Topologies 

To enlarge the bandwidth of LNA, several topologies have been adopted for wideband 

impedance matching. For example, the common-source LNA combined with an LC filter [108], 

the common-gate LNA [109] and the resistive feedback LNA [110,111]. Each topology has 

distinct advantages and limitations. The common-source LNA with an LC filter can achieve 

broadband in the lower band range but consumes a substantial amount of DC power and chip 

area. The common-gate LNA and resistive shunt feedback LNA respectively suffer from big 

noise figure and high power consumption. 

 The inductively degenerated common-source LNA (CS-LNA), shown in Figure 5.1 (a), is 

the main topology due to its advantages such as low NF, ease of input matching, high gain, and 

low-power consumption. The input impedance is shown as: 
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(a)                                      (b) 

 

Figure 5. 1 (a) Inductively degenerated common-source LNA (CS-LNA) 

(b) Common-gate LNA (CG-LNA) 
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   =  (  +   ) +
1

    
+ (

  1

   
)                      (5.1) 

Since the pure real impedance is only achieved at the resonant frequency, where (  +

  ) + 1/s𝐶  = 0, the bandwidth of the CS-LNA is greatly limited. The common-gate (CG), as 

shown in Figure 5.1 (b), can provide a wide bandwidth using a small die area because no 

inductor is required for input matching, which is    = 1/𝑔𝑚. However, the pre-determined 

𝑔𝑚 limits the choice of the device size and power consumption. In addition, the CG amplifier has 

lower gain and poor NF when the operating frequency (𝜔0) is very high [112]. Resistive 

shunt-shunt feedback is a common technique for wideband amplifier design. Figure 5.2 (a) and 

(b) shows a typical common-source amplifier with the resistive feedback and its equivalent small 

signal circuit.  

M1 is the input transconductance device, RL represents the load resistance at the operating 

frequency, Rf is the feedback resistor and Cf is used just for DC blocking. When Cf is chosen to 

be large, it can be ignored in the analysis and the input impedance Zin of the shunt-shunt 

feedback amplifier is given by 

   = 𝑅𝐹𝐵//
1

    
=

𝑅𝐹𝐵

1+    𝑅𝐹𝐵
                       (5.2) 

where 𝑅𝐹𝐵 = (𝑅𝑓 + 𝑅𝐿)/( 1 + 𝑔𝑚1𝑅𝐿)) is the equivalent resistance looking into the feedback 

resistor Rf. Cgs and gm1 are the gate-source capacitance and transconductance of the transistor M1, 

respectively. At low frequency, Zin is dominated by 𝑅𝐹𝐵, which is pre-determined to be 50Ω as 

the real part of the input impedance to be the matched impedance.  
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However, as the frequency increases, the imaginary part coming from the intrinsic 

capacitance Cgs also increases. Good input matching cannot be realized in the higher frequency 

range. To alleviate this problem, a series input inductor LG is added in the gate of the transistor, as 

shown in Figure 5.2 (c) [113].  

   = (𝑅𝐹𝐵//
1

    
) +                           (5.3) 

According to [114], there are two frequencies at which a perfect match can be obtained. The 

first one is 𝜔1 = 0, and the second one is 𝜔2 = 1/√  𝐶  . If 1 and 2 is not too far apart, 

a good input matching is achieved from 𝜔1 to 𝜔2. However, the NF for this structure is still 

very large due to the feedback path.  

5.2 Proposed Low NF, High Gain LNA Architecture 

To alleviate the tradeoff between NF and input matching, a new input scheme is proposed in 

this work, as shown in Figure 5. 3 (a).  

Based on the resistive shunt-shunt feedback structure with the gate inductor LG, an extra 

inductor L2 is inserted in the feedback loop. The introduction of L2 provides more freedom while 

balancing the trade-off between NF, bandwidth, and gain. More detail analysis is to be followed in 

the next sections. 

5.2.1 Input Matching 

Figure 5.3 (b) shows the small signal equivalent of the proposed amplifier. The DC blocking 

capacitors, 𝐶   and 𝐶𝑓 in the feedback path are shorted since they have small impedance at the 
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operation frequencies. In addition, the impedance of M2, 1/ m2, is much smaller than RL and 

will be neglected in the following analysis. The input Zin of the amplifier can be expressed as 
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(a)                                     (b) 
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Figure 5. 2 (a) Schematic and (b) equivalent small signal circuit of the resistive 

shunt-shunt feedback amplifier. (c) Equivalent small signal circuit of resistive 

shunt-shunt feedback amplifier with additional series input inductor 
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   =   1 + [(
1

 𝐶  
+   2) ||𝑅𝐹𝐵] 

=  
 3𝐿1𝐿2   + 

2   (𝐿1+𝐿2)𝑅𝐹𝐵+ 𝐿1+𝑅𝐹𝐵

 2   𝐿2+    𝑅𝐹𝐵+1
           (5.4) 

There are three perfect input impedance matching frequencies can be derived as follows: 

𝜔1 ≈ 0                                  (5.5) 

𝜔2 =
−   𝐿1𝑅𝐹𝐵+√(   𝐿1𝑅𝐹𝐵)

2
−4𝐿1𝐿2   (1−   

2 𝑅𝐹𝐵)

2   𝐿1𝐿2
              (5.6) 

𝜔3 =
−CgsL1RFB−√(CgsL1RFB)

2
−4L1L2Cgs(1−Cgs

2 RFB)

2CgsL1L2
             (5.7) 

In which 𝜔1, 𝜔2, and 𝜔3 are the frequencies at which a perfect match can be obtained. At 

𝜔1 ≈ 0, the input impedance is chosen to be 50Ω to ensure the input  impedance of the 

amplifier is well matched at the lower frequency. The other two frequencies, ω2 and ω3, given 

by Eq. 5.6 and Eq. 5.7 are the two other points where the good input matching is achieved. As a 

result, the two dips in the frequency response of S11 are predicted, which is proven to be true in 

the simulation results, as shown in Figure 5.4. 
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In Figure 5.4 (a), L1 was set constant at 1.5nH and L2 was varied. It can be seen that the 

frequency with good S11 goes up with the decreasing in L2. However, the two dips also increase 

which indicates the input matching is getting worse when enlarging the bandwidth. Similarly, 

when L2 is constant and L1 is changed, it is can be seen that the lower edge of S11 is getting 

lower when the value of L1 increases, but S11 is, again, getting worse. Therefore, the two 
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Figure 5.3 (a) The proposed resistive feedback LNA with separate input 

inductors (b) Equivalent small signal circuit 
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solutions in Eq. 5.4, 𝜔2 and 𝜔3, can be regulated by varying the value of L1 and L2. As shown 

in Figure 5.4, in the design process, one can try to vary the value of L1 and L2 to get the best 

balance between the input matching and bandwidth.  

 

 

(a)  

 

                            

    (b) 

 

Figure 5. 4 Simulated S11 of the designed LNA for different inductors 



 

 

85 
 

5.2.2 Noise Figure 

The cascode structure can be viewed as a two-stage amplifier, where the first stage is a 

common-source amplifier and the second stage is a common-gate amplifier. According to Friis 

equation, the noise figure for a series system is dominated by the first stage, therefore the 

cascode transistor is neglected in the following noise analysis. The small signal model of Figure 

5.5 is employed to perform the noise analysis. R𝑙1 and 𝑅𝑙2 are the loss of the gate inductors L1 

and L2. RL is the load impedance. The noise factor of the proposed topology is given by 

𝐹 = 1 +
𝑅𝑙1

𝑅 
+

𝑅𝑙2

𝑅 (1+  𝑅𝐿)
+ 𝐹𝑓 + 𝐹 + 𝐹𝑑                 (5.8) 

The second term and third term 𝑅𝑙1/𝑅  and 𝑅𝑙2/𝑅 (1 + 𝑔𝑚𝑅𝐿) represent the noise factor 

contributed by the inductor loss. Since R𝑙1and R𝑙2  are much smaller compared with Rs, 

R𝑙1/R  and Rl2/Rs(1 +  mRL) will be much smaller than 1 and can be neglected. For the third 

term, Ff, which is the noise factor coming from the feedback resistor, can be expressed by  

𝐹𝑓 =
(𝑅𝑓+2𝑅𝐿)

2

𝑅𝐹𝑅𝐿
2(1+𝑄2)  

2 𝑅 
                         (5.9)  

However, this expression is generated only under the narrowband assumption, a 

parallel-to-series impedance conversion can be applied to the input matching network. In that 

case, the noise factor Ff can be simplified to 1/𝑔𝑚𝑅𝐿, which is relatively uncorrelated to the 

frequency and Q. For wide bandwidth, the case is similar and Ff  is relatively constant and also 

smaller than 1, which is about 0.2-0.4 [114]. In this analysis, the maximum 0.4 is used. The last 

two terms in Eq. 5.8 are the noise factor coming from the amplifying transistor gate and drain 

current and they are the main contribution to NF. Then, the noise factor is simplified to 
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 𝐹 = 1.4 +
𝛾

𝛼
[
1

𝑄
+ 2|𝑐|𝑄√

𝛿𝛼2

5𝛾
+

𝛿𝛼2

5𝛾
(
1+𝑄2

𝑄
)](

𝜔0

𝜔𝑇
)           (5.10) 

where α is the ratio between the device transconductance and the zero-bias drain conductance, 

γ is the factor of channel thermal noise, δ is the factor of the induced gate noise, and 𝑐 is the 

correlation coefficient between the induced gate noise and the drain noise. For long channel 

devices, α = 1, γ = 2/3, δ = 4/3, and 𝑐 = −𝑗0.395. 

From Eq. 5.10, one can see the noise factor F contains terms which are proportional to Q as 

well as inversely proportional to Q. Therefore, the minimum F exists for a particular Q. 

 

5.2.3 Gain 

Feedback analysis [115] can be done by opening the loop and determining the open-loop 

trans-resistance gain 𝑅𝑜𝑝𝑒 . The general feedback loop gain expression is given by 

 𝐴 =
1

𝛼𝑓

𝑇

1+𝑇
                           (5.11) 
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Figure 5. 5 Small signal model of the resistive feedback LNA for noise 

analysis 
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where 𝛼𝑓 is feedback transconductance,  𝑇 = 𝑅𝑜𝑝𝑒 𝛼𝑓 is the loop gain and 𝑅𝑜𝑝𝑒  is the open 

loop gain. In this design, the feedback type is shunt-shunt, whereas the input signal is a current 

quality. Therefore, 𝑉   and Rs are replaced by a Norton equivalent as shown in Figure 5.6, 

𝐼  = 𝑉  /𝑅 , and the feedback is broken for calculation.  

 

 

The open-loop gain, which is the trans-impedance of the transistor, can be expressed as  

𝑅𝑜𝑝𝑒 =
𝑉𝑜𝑢𝑡

𝐼𝑖𝑛
|𝑜𝑝𝑒 = −(𝑅 ||𝑅𝑓)𝑔𝑚1(𝑅𝐿||𝑅𝑓)                 (5.12) 

Since the feedback network consists of only 𝑅𝑓, the feedback transconductance can be 

expressed as 
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Iin
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Figure 5.6 Small signal model of the resistive feedback LNA for noise 

analysis. 
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𝛼𝑓 = −1/𝑅𝑓                             (5.13) 

and the loop gain is 𝑇 = 𝑅𝑜𝑝𝑒 𝛼𝑓. Thus the voltage gain is 

𝐴𝑣 =
𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
=

𝑉𝑜𝑢𝑡

𝐼𝑖𝑛𝑅 
=

1

𝑅 

−(𝑅 ||𝑅𝑓)  (𝑅𝐿||𝑅𝑓)

1+  (𝑅𝐿||𝑅𝑓)𝑅 /(𝑅 +𝑅𝑓)
           (5.14) 

Eq. 5.14 is only valid when the frequency is around zero, which is used for hand calculation 

to pre-determine the values of the resistors. When the frequency increases, according to [113], 

the voltage gain of the resistive feedback LNA can be expressed as  

Av =
−(𝑅 ||𝑅𝑓)(

1

𝑅𝑓
−  1)

 2+ (
𝜔𝑝𝑜𝑙𝑒

𝑄
)+𝑤𝑝𝑜𝑙𝑒

2
                      (5.15) 

where 𝜔𝑝𝑜𝑙𝑒 and 𝑄 represent the pole frequency and quality factor, respectively of the circuit 

of the LNA. From Eq. 5.15, it can be seen that the bandwidth of the LNA is determined by both 

𝜔𝑝𝑜𝑙𝑒 and 𝑄, which are mainly determined by of values of Cgs, L1 and L2. The value of Cgs 

cannot be changed once the size of the transistor is determined, therefore, the frequency response 

of the gain mainly comes from the inductors. 

 The quantitative analysis was given by doing simulation and observed that the gain peak 

and bandwidth is mainly determined by the inductor L2, as shown in Figure 5.7. It can be seen 

that as the inductance of L2 increases, the gain in high frequency is higher but the bandwidth is 

reduced.  
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5.3 LNA Design and Implementation 

Based on the above analysis, a LNA was designed. There are two approaches for NF 

optimization, which are the fixed transconductance and the fixed power consumption. For the 

wide bandwidth design, a fixed gain is difficult to implement. 

Therefore, in this design, the NF is optimized with a fixed power condition. According to 

the analysis in [53], the minimum NF and optimum Q factor are given by 

𝐹𝑚  ,𝑃𝐷 = 1 + 2.4
𝛾

𝛼
(
𝜔0

𝜔𝑇
)                         (5.16) 

and  

𝑄𝐿,𝑜𝑝𝑡. = |𝑐|√
𝛾

𝜎
[1 + √1 +

3

|𝑐|2
(1 +

𝜎

5𝛾
)]                  (5.17) 

in which 𝛾 = 2.5, 𝜎 = 5, |𝑐| = 0.395. The minimum NF and the optimum Q become 

 
 

Figure 5.7 S21 of the LNA 
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Fmin ≈ 1 +1.62(
ω0

ωT
), and  Qopt ≈ 3.9                 (5.18) 

 

 For wideband LNAs, a relatively low and flat NF is required instead of just a minimum F at 

a particular frequency. This can be realized by making the minimum F locate at the central 

frequency. Since Q can be expressed as 𝑄 = (ω0  𝑒𝑟)/R 𝑒𝑟 ,   𝑒𝑟 = L1 +   , R 𝑒𝑟 = (R𝑓 +

𝑅𝐿)/(1 + 𝑔𝑚𝑅𝐿) ≈ 50, the quality factor, Q is now expressed as 

𝑄 = 𝜔0
(𝐿1+𝐿2)

50
                           (5.19) 

By regulating the inductances of L1 and L2, one can make the optimized Q locate at the 

center frequency of the desired frequency range. Therefore a relatively flat and low noise factor 

can be achieved. In previous designs, as shown in Figure 5.2, the inductance of the input inductor 
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Figure 5.8 A complete schematic of the LNA. 
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LG is pre-determined for the input-matching consideration. The frequency location of optimized 

Q cannot be adjusted. 

After determining the minimum NF and optimum QL, the sum of L1 and L2 are confirmed 

as well. It is not the same as previous designs, there are more freedom in balancing the input 

matching, NF, and gain. As previously analyzed, both S11 and S21 can be adjusted by regulating 

L1 and L2 independently. Therefore, even the sum of L1 and L2 is pre-confirmed by the NF 

optimization, the value of L1 and L2 can also be regulated separately to get the best balance 

according to the specifications.  

Most of the existing wireless communication standards nowadays are located in the GHz 

range, such as 2GHz for the UMTS, 0.9 GHz and 1.9GHz for GSM in Canada and USA, 2.4GHz 

for WiFi, 1.7-1.9GHz for LTE, and so on. Therefore, in this design, the center frequency is 

chosen to be 2.4GHz with the attempt to cover most of the wireless standard ranges. To 

demonstrate the performance of the proposed LNA, the LNA was designed and fabricated in a 

standard 8-metal 0.13μm CMOS technology. The complete schematic of the LNA is shown in 

Figure 5.8. The core amplifier is a cascode structure, which can improve the reverse isolation and 

reduce the Miller effects. The input inductor L1 is formed by the bonding wire inductance for 

space saving. The ESD protection Pcell is included in the 0.13µm CMOS RF library, which are 

four bipolar transistors connected in series. The LNA has been designed using standard Vth 

transistors, metal-insulator-metal (MIM) capacitors, and standard spiral inductors. The output 

buffer is a source follower structure, which transfers the voltage to the power gain. Figure 5.9 is 

the photograph of the wideband LNA. The die has a small chip area of only 0.28x0.61mm
2
. The 

parameter of the components can be found in Table 5.1. 
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5.4 Simulation and Testing Results 

 To demonstrate the performance of the proposed technique, the LNA was designed and 

fabricated in the standard 8-metal 0.13µm IBM CMOS process. Figure 5.9 shows the photograph 

of the wideband LNA. The die was bonded in a high-frequency package (CQFP44) for testing. 

 

 

Figure 5.9 Die photograph of the LNA 

 

Table 5.1. Value of the components of the proposed LNA 

Component Value Component Value Component Value 

M1 0.12/250 μm Rf 280Ω CPCB,in 0.072pF 

M2 0.12/200 μm Cf 2pF Cpad+ESD By Spice 

L1 2nH LL 5nH LPCB,out 1nH 

L2 5nH CL 5pF CPCB,out 0.072pF 

Cin 10pF LPCB,in 2.9nH   
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The LNA is powered by a 1.2V supply and the current consumption of 6mA was measured. For 

S11 and S21, the simulation results are for both schematic and post-layout simulation results 

with consideration of the PCB parasitic parameters. Testing results are indicated by the lines with 

circle, rectangle and square respectively in Figure 5.10 and Figure 5.11. The simulated and tested 

S22 results are also shown in Figure 5.11. In the targeted frequency range (1-3GHz), the 

measured input reflection coefficient S11 is less than -10dB except for the small peak between 

2-2.3GHz due to the input matching influence coming from the testing PCB board. The 

measured small signal gain (S21) achieves a maximum value of 16.5dB at 2.2GHz, and has a 

minimum value of 7.5dB at 1.7GHz. In this frequency range, the measured output return (S22) is 

less than -10dB. 

In general, the test measurements agree well with the simulation results. However, at the 

frequency around 1.7GHz, the measured S11 goes up as shown in Fig. 9, which means there is 

lower signal power is transmitted into the LNA. Therefore, the S21 should also degrade at this 

frequency as shown in Figure 5. 11.  

The measured S21 agrees with the analysis, which decreases at near 1.7GHz range. The 

discrepancy between measured and simulated results mainly comes from the parasitics from the 

chip and the testing PCB board, as shown in Figure 5.8. The parasitic capacitance of the pads and 

ESD components on chip are mainly extracted and taken into post-layout simulation by Spectre. 

Since L1 is realized by the bonding wire, the equivalent capacitor of the pads and ESD cell is put 

after L1.  
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Figure 5.10 S11 of the LNA 

 

 

 

Figure 5.11 S21 and S22 of the LNA. 
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For the PCB parasitics, there are two main sources. One is the parasitic capacitance that 

mainly contributed by the sealing pads and another parasitic is the inductance coming from the 

PCB traces. The values can be approximated by the size of the PCB wires and sealing pads, as 

indicated in Table 5.1. After the parasitic parameters are taken into account, post-layout 

simulations and the simulation results are well aligned with the measurements except the 

sawtooth shape in the measured S21.  

The sawtooth is partly coming from the not so perfect input matching, which has been 

indicated in the post-layout simulation, where the S21 decreases in 1.4-2GHz. Besides, the 

sawtooth shape of the response can come from coupling problems on both the PCB and the chip, 

which is difficult to simulate. In the future design, the layout for both PCB and die should be 

more carefully considered.  

The simulated S22 is lower than -15dB in the 1-3GHz frequency range. The discrepancy 

can be attributed from the source follower used for output matching. It is worth to mention in the 

actual measurements, it is very difficult to bias the circuit exactly the same as it was used in the 

simulations. 

Figure 5.12 shows the schematic simulation, post-layout simulation, and measured NF from 

1 to 3GHz of the designed LNA. The results show a minimum NF of 2.1dB at 1.5GHz and a 

maximum NF of 5.4dB at 3GHz (within the 1-3GHz range as the design parameter). The sharp 

rise of the measured NF above 2GHz was not observed in simulations but appears in the 

measurement results. This is partly due to the degradation of S22 at higher frequency and is 

partly due to the high-frequency noise coming from the measurement setup. 
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The NF below 2GHz is measured by a NF testing function of the HP network analyzer. The 

NF in the frequency above 3GHz was measured by a noise source and a noise meter. The method 

may increase value of the measured NF. 

 Table 5.2 summarizes the performance of the designed LNA and compares with those of 

other recent designs. As shown in the table, the proposed design achieves the second highest gain 

and the second lowest NF with low power consumption. The wideband LNA with added inductor 

benefits the best trade-off between NF, wideband input matching, high gain, and moderate power 

consumption. 

5.5  Summary 

In this chapter, a novel input network for the wideband LNA is proposed combined with the 

conventional resistive feedback structure. By inserting two input inductors in and out of the 

feedback, more freedom of choices are introduced in the design process. This structure is 

 

Figure 5. 12 Noise Figure of the LNA. 



 

 

97 
 

applicable to the multi-standards applications due to its high performance in a very wide 

bandwidth. At first, the frequency range and central frequency are chosen according to the 

specifications. The optimized Q is chosen then the minimum NF is obtained in the central 

frequency. Since only the sum of L1 and L2 is limited by the optimum Q, the value of L1 and L2 

can also be regulated accordingly in order to get the best balance between input matching and 

gain. If the covered standards changing, the S11 and S21 edges can be adjusted easily by 

changing the value of L1 and L2. The cascode LNA was designed and fabricated using IBM 

0.13um CMOS technology. A high and flat gain (greater than 10dB) with a 16.5dB peak is 

achieved in a wide frequency range (1-3GHz), the S11 is below -10dB in this range and a 

minimum NF of 2.5dB is achieved. The power consumption is only 7mW on a 1.2V supply. The 

proposed input-network can be easily realized and effectively alleviates the tradeoff between NF, 

input matching and gain without extra power consumption. 
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Table 5.2 Performance Summary and Comparison with Previous Works 

Parameters [113] [116] [117] [89] [118] [119] This 

work 

CMOS 130nm 180nm 90nm 130nm 130nm 180nm 130nm 

Frequency (GHz) 2.4 2-4.6 2.5-4.0 0.8-2.1 0.2-3.8 1.05-3.05 1-3 

Supply Voltage (V) 
1.2 1.8 1 1.2 1 1.8 1.2 

Power (mW) 4.8 12.6 8.0 17.4 6 12.6 7 

Max. Gain (dB) 28 9.8 19.6 14.5 13 10.9 16.5 

Noise Figure (dB) 2.0 2.4 4.0 2.6 3.4 2.6 2.4 

Core Area (mm
2
) 0.578 0.6 0.2 0.9 0.025 0.073 0.7 
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CHAPTER 6  

A 0.1-8 GHZ WIDEBAND LOW-NOISE AMPLIFIER EXPLOITING 

GAIN-ENHANCED NOISE-CANCELLING TECHNIQUE  

 

Although LTE is generally considered to be the dominant wireless technology in the near 

future, WiMAX, the other candidate for 4G, is another promising technology. However, there is 

no uniform global licensed spectrum for WiMAX, the spectrums are very fragmented and vary 

from country to country. The bandwidth of the third design will be enlarged further to cover all 

the LTE and WiMAX frequency ranges. Targeted on the third design, an ultra-wideband LNA 

that can support the two different 4G standards (LTE and WiMAX) at the same time is presented.  

In this design, a modified noise cancelling architecture is exploited, which extends the 

bandwidth and a gain enhancing component is added for gain compensation. Conventional wide 

band LNAs suffer from serious tradeoff between the wide-band input matching and high gain. 

Based on the conventional noise cancelling technology, a gain enhanced noise cancelling 

architecture is proposed. For the input matching, a common source stage with active feedback is 

adopted to relax the trade-offs between gain and bandwidth. A peaking inductor is inserted to 

improve the gain flatness and the bandwidth. For the noise cancelling stage, a common gate 

stage is added in the forwarding path and therefore the overall signal gain is improved by the 

factor of the Av2, which is the gain of CG stage.  

Section 6.1 reviews wideband noise cancelling techniques. Section 6.2 presents and 

discusses in detail of the modified wideband noising cancelling architecture with higher gain and 

wider bandwidth. Section 6.3 is the experimental results and Section 6.4 gives the conclusions. 
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6.1 Detail Analysis of Existing Wideband Noise Cancelling Techniques 

The noise-cancelling technology is originally proposed in [120]. The basic concept is to 

generate the noises with the opposite phase and signals with the same phase in different paths. 

By summation at the output, the signals are added while the noises are cancelled with each other. 

Since the cancellation method has no relevance with the input impedance, the technique allows 

for simultaneously noise cancellation and impedance matching. The basic structure is shown in 

Figure 6.1. 

The channel thermal noise is considered as the dominant noise component in the CMOS 

device. Therefore, the common-source stage, M1, is modeled as a noise current source between 

the drain and the source. Rf is the feedback resistor, which is used for the wideband input 

matching. The feed-forward voltage amplifier has the gain of AV.  
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Figure 6.1 Simplified resistive shunt feedback LNA using a conventional 

noise cancelling technique 
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A portion of the noise current flows through the feedback resistor Rf  to the gate of the 

amplifier and generates the noise voltage VA, VB at the node A and B with the same phase polarity 

separately. Assuming the input impedance is Rs, the noise voltages at A and B can be expressed 

as 

𝑉𝐴, = ⍺𝐼 𝑅                                 (6.1) 

𝑉𝐵, = ⍺𝐼 (𝑅 + 𝑅𝑓)                             (6.2) 

where 0 < ⍺ < 1, which is the percentage of the noise current that flowing to the feedback 

resistor. 

On the other hand, the signal voltages at nodes A and B have the opposite polarity because 

the common-source amplifier has an inverting gain. The differences of signal and noise polarities 

at node A and B make it possible to cancel the noise while adding the signal contributions. This 

can be realized by the feed-forward amplifier, which adding one negative scale to the voltage at 

node A. The output noise voltage after the noise cancelling operation can be expressed as 

𝑉𝑜𝑢𝑡, = 𝛼𝐼 (𝑅 + 𝑅𝑓) − 𝐴𝑋(𝛼𝐼 𝑅 )                  (6.3) 

To ensure the 𝑉𝑜𝑢𝑡,  equals to zero, the gain of the feed-forward amplifier should be 

𝐴𝑋 = 1 +
R𝑓

𝑅 
                             (6.4) 

It can be shown that, when the AX equals to 1 + (R𝑓/𝑅 ), the noise of the input transistor 

M1 can be cancelled at the output, and the signal gain is enhanced. Assuming the input 

impedance of the amplifier matches the source impedance, the overall gain for the signal is  
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𝐴𝑣 =
𝑉𝑜𝑢𝑡

𝑉𝐴
− 𝑅𝑓(𝑔𝑚1 +

1

𝑅 
)                          (6.5) 

Assuming the input impedance    = 1/𝑔𝑚 = 𝑅  , Av can be expressed as:      

𝐴 = −2
𝑅𝑓

𝑅 
                               (6.6) 

To sum up, the noise cancelling architecture can be modeled as the combination of the input 

matching amplifier and the noise cancelling amplifier path, as indicated in Figure 6.2.  

Figure 6.3 shows the LNA designs in previous publications that exploiting thermal noise 

cancelling technique. In Figure 6.3 (a), the wideband input impedance matching path is realized 

by the common-source stage (M1) with local resistive shunt-shunt feedback. M2 is the cascode 

stage for isolation. For the noise cancelling concept, the noise current of M1 (and M2) flows out 

of node B through the feedback resistor Rf and therefore the noise voltage at node A and node B 

have equal sign. The combining stage is realized by M3 and M4. Both the signal and noise 

voltages at node A are amplified inversely by the common-source stage M3 while the signal and 

noise voltages at node B are just transferred by the source follower stage M4 with no inversion. 

Therefore, the equal signed signals and opposite-signed noise voltages are produced and added 

together at the output. To make sure the noise can be cancelled at the output, the voltage of 

common-source stage M3 should equal to AX, which is 1 + (𝑅𝑓/𝑅 ), as shown in Eq. 6.4. In the 

meantime, the overall signal gain is −2(𝑅𝑓/𝑅 ), as indicated in Eq. 6.6.    

From Eq. 6.6, it can be seen that the signal gain 𝐴𝑣 is proportional to Rf. However, a large 

Rf  induces much more thermal noise. Also, the bandwidth for the shunt-shunt feedback structure 
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is mainly determined by the resistance of Rf . As Rf is to be increased to improve the gain, the 

bandwidth will also be reduced. 

  

A noise cancelling configuration, as shown in Figure 6.3 (b) is proposed in [89]. Instead of 

using the resistive shunt feedback structure, a common-gate input stage is employed for the 

wideband input matching. The principle for noise cancelling is similar. The noise current of M1 

flows into node A but out of node B and therefore two fully correlated noise voltages with 

opposite phases are created. These two noise voltages are amplified by M2 and M3 respectively. 

By properly designing M2 and M3, the noise coming from the main transistor M1 can be 

cancelled at the output. On the other hand, the signals at nodes A and B have the same phase and 

are added together at the output. However, common-gate structure has the impedance matching 

problem in high frequency and cannot provide a very high gain.  

 
 

 

Figure 6.2 Basic structure of the noise cancelling method 
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 (a) 

 

 
 

(b) 

 

Figure 6. 3 (a) Common-source LNA and (b) Common-gate LNA exploiting 

noise cancelling 
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Therefore, for both noise cancelling architectures, there is less freedom in controlling the 

gain performance, especially in the high frequency range. The trade-off between gain and 

bandwidth for the noise cancelling technology is more serious, even if the input matching and 

noise cancellation are both completed. Based on the conventional noise cancelling technology, a 

gain enhancing technique is proposed in this design. 

6.2  Gain-Enhanced Wideband Noise Cancelling Technique 

6.2.1 Basic idea of the gain-enhanced noise cancelling technique 

Figure 6.4 shows the simplified schematic of the proposed modified gain-enhanced noise 

cancelling architecture. Compared with the traditional noise cancelling structure in Figure 6.1, 

there is an extra voltage amplifier AY is added in the feedforward path. 

 

  

The noise voltages at A and B are the same as calculated in Eq. 6.1 and Eq. 6.2 and have an 

opposite polarity. Because of the extra amplifier AY at the output, the output noise voltage will be  

M1
Vin

Rs

Rf

In,M
A
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Noise voltage

-AX

-AY

1

 

 

 

Figure 6. 4 Gain enhanced Common-source LNA 
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𝑉𝑜𝑢𝑡, = 𝐴𝑌𝛼𝐼 (𝑅 + 𝑅𝑓) − 𝐴𝑋(𝛼𝐼 𝑅 )                     (6.7) 

In order to make the output noise 𝑉𝑜𝑢𝑡, = 0, the relationship between 𝐴𝑋 and 𝐴𝑌 must 

satisfy  

𝐴𝑋 = 𝐴𝑌(1 +
𝑅𝐹

𝑅𝑆
)                             (6.8) 

and the gain Av will be  

𝐴𝑣 =
𝑉𝑜𝑢𝑡

𝑉𝐴
= 𝐴𝑌(1 − 𝑔𝑚𝑅𝑓) − 𝐴𝑋 = 𝐴𝑌𝑅𝑓(𝑔𝑚 +

1

𝑅 
)           (6.9) 

when 1/𝑔𝑚 = 𝑅 , the overall gain Av will be −2𝐴𝑌(𝑅𝐹/𝑅 ). Compared with the Eq. 6.6, the 

gain is amplified by 𝐴𝑌. 

Even if the overall gain is enhanced by this technology, there is still tradeoff between the 

gain and bandwidth. For the multi-standard applications, the high gain requirement for the LNA 

is not so critical because the gain can be supported by the subsequent stages. Therefore, a 

wideband LNA is to be designed to achieve a required bandwidth with a moderate gain and the 

gain enhanced technology can provide extra gain to be sacrificed for bandwidth extension.  

6.2.2 Circuit realization of the gain-enhanced technique 

Figure 6.5 shows the noise-cancelling LNA. The input matching is realized by a 

common-source stage with an active shunt-shunt feedback. M1 is the main amplifying transistor, 

and Mf, Rf, and Cf are the feedback source follower, resistor and capacitor respectively. A 

peaking inductor Lg is inserted in front of the gate of the amplifying transistor M1 to improve the 
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input matching and gain in the high frequency range. Rs is the 50Ω source impedance. A current 

mirror is used for biasing the source follower in the feedback loop.  

 

 

For the noise cancelling consideration, the principle is similar with the conventional noise 

cancelling method. The equal signed signals and opposite-signed noise voltages are produced on 

node A and B of the feedback common source stage. An additional CG stage is used to 

re-amplify the signal and noise voltages on node B without changing the phase. After that, the 

amplified voltages reach to the combination stage for noise cancellation. In the design of [120], 

the gain of the combining stage is constrained by the noise cancelling principle because gains of 

the two stages have to match to get equal-amplitude noise voltages for cancellation. By adding 

the extra CG stage, the gain of the combing stage can also be increased accordingly. Therefore, 

the gains in both paths are enhanced and the final signal gain is also greatly improved. 

M1
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Figure 6.5 Schematic of the gain-enhanced wideband LNA with 

noise cancelling 
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6.2.3 Input Matching Stage 

Instead of adopting the feedback resistor, in this design, a source-follower buffer is inserted 

in the feedback loop. By adopting the active feedback structure, the trade-off between bandwidth 

and gain is extremely relaxed. The detailed analyze is given in the followings. 

For the resistor feedback amplifier, the input impedance is  

𝑅  =    + (
1

    
||𝑅  ,𝑀1)                        (6.10) 

where 𝑅  ,𝑀1 is the input resistance of the CS stage M1 with shunt-shunt feedback, which is  

𝑅  ,𝑀1 =
𝑅𝑓+𝑅𝐿,𝑀1

1+  1𝑅𝐿,𝑀1
                           (6.11) 

where 𝑅𝐿,𝑀1 is the equivalent load resistance at the drain of M1. The resistance equals to the 

parallel combination of the RL and the input impedance of M2, 1/𝑔𝑚2 .  

Vin

Rs

Rf

gm1Vgs1
RL

Cgs Vgs1

Lg

1/gm2

Rin,M1

RL,M1

 

 

Figure 6.6 Equivalent small signal circuit for the input stage 
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𝑅𝐿,𝑀1 = 𝑅𝐿||
1

  2
=

𝑅𝐿

1+  2𝑅𝐿
                      (6.12) 

where the 𝑔𝑚1  is the transconductance of the input transistor M1. Meanwhile, the input 

impedance of the active feedback amplifier can be expressed as Eq. 10.  

𝑅  =    +
𝑅𝐿+𝑅𝑓(1+  2)𝑅𝐿

1+(  1+  2)𝑅𝐿+    [𝑅𝑓(1+  2)𝑅𝐿+𝑅𝐿]
        (6.13) 

When the frequency is around zero, 𝑅    equals to (𝑅𝐿 + 𝑅𝑓(1 + 𝑔𝑚2)𝑅𝐿)/1 +

(𝑔𝑚1 + 𝑔𝑚2)𝑅𝐿, which is set to 50Ω to achieve a perfect input matching. As the frequency 

increases, the imaginary part coming from the intrinsic capacitance Cgs also increases and the 

input impedance will derivate from 50Ω. Therefore, a gate inductor Lg is inserted to compensate 

the imaginary part generating by the parasitic capacitance and the bandwidth of the LNA can be 

extended. Besides, the high-frequency gain and gain flatness can also be enhanced by adding the 

peaking inductor in front of the transistor gate. Figure 6.7 shows the simulation results by 

adopting different Lg inductance.  

Compared with Figure 6.4, the bandwidth is increased and very good gain flatness is 

obtained. Furthermore, the input matching and noise performance are significantly improved. 

Besides, the gain and NF tradeoff can be clearly observed in Figure 6.7. As the gate inductance 

increases, the gain and bandwidth can both be effectively improved. However, a large gate 

inductor can lead to an over-peaking of the gain, and hence, circuit instability. Therefore, the 

inductance 3nH is chosen according to the simulation to balance the trade-off. 
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6.2.4 Gain-enhanced Noise Cancelling Stage  

For the noise cancelling consideration stage, the principle is similar to the conventional 

noise cancelling method. The feedforward amplifier AX in Figure. 6.1 is implemented in a 

common-source configuration by M3. Besides, an additional common-gate stage M2 is exploited 

 
 

(a)                                  (b)  

 

 
(c)  

 

Figure 6.7 Simulated (a) S11, (b) S21 and (c) Noise Figure with different Lg 
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in the feedforward path for gain enhancing. There are two main purposes of this gain-enhanced 

noise-cancelling technique; one is to increase the overall voltage gain, and the other is to match 

the phase delay for two paths. Assuming the gain of the CS stage M1, CG stage M2 and combing 

stage M3 are 𝐴𝑀1, 𝐴𝑀2, and 𝐴𝑀3, respectively. By using the similar calculations, according to 

Eq. 6.4, the output noise voltage is cancelled, when 

𝐴𝑀3 = 𝐴𝑀2(1 +
𝑅𝑓

𝑅 
)                           (6.14) 

and 𝐴𝑀3, 𝐴𝑀2 can be expressed as 

𝐴𝑀3 = 𝑔𝑚3𝑅𝐿3                            (6.15) 

𝐴𝑀2 =
𝑉𝐶

𝑉𝐵
≈

(1/  4)//𝑟𝑜3

𝑅𝐿/ /𝑟𝑜1//(1/  1)
                     (6.16) 

𝑅𝐿1 = 𝑅𝐿//(1/𝑔𝑚1)//𝑟𝑜1                       (6.17) 

𝑅𝐿3 = (1/𝑔𝑚4)/ /𝑟𝑜3//(𝑔𝑚2𝑟𝑜2𝑅𝐿1)                   (6.18) 

Where 1/𝑔𝑚1 is the equivalent resistance of the feedback looking back from point B. RL1 and 

RL3 are the equivalent load resistances at the drain of M1 and M3. The gain of M2 is 

approximated to the ratio of the resistance at the drain to the resistance at the source of M2. Take 

Eq. 6.11 to Eq. 6.14 into Eq. 6.10, the noise-cancelling condition becomes 

  3𝑅𝐿3(𝑅𝐿/ /𝑟𝑜1//(1/  1))

𝑟𝑜4//(1/  3)
= 1 +

𝑅𝑓

𝑅 
               (6.19) 
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In this condition, the signal gain equals to  

𝐴𝑉, =
𝑉𝑜𝑢𝑡

𝑉𝐴
= 𝐴𝑀2(1 − 𝑔𝑚1𝑅𝑓) − 𝐴𝑀3 = −𝑅𝑓

(1/𝑔𝑚4)//𝑟𝑜3

𝑅 / /𝑟𝑜1//(1/𝑔𝑚1)
(

1

  1
+

1

𝑅 
)  (6.20) 

6.3  Measuring Results 

The proposed low noise amplifier was implemented in the IBM 0.13μm CMOS technology. 

Figure 6.8 shows the die micrograph. The overall chip area is 0.58mm x 1mm and the core 

circuit area is only 0.46x0.67 mm
2
. Powered by a 1.2V supply and the simulated DC current 

consumption is only 17mA. The chip was tested by on-wafer coplanar probing.  

In Figure 6.9, S11 is below -10dB ranging from 0.1GHz to 8GHZ, with a bandwidth of 

around 8GHz. In the frequency range, the S21 is above 10dB with a 14.5dB peak, as shown in 

Figure 6.10. In general, the simulation results agree well with the measured results.  

Figure 6.11 shows both the simulated and measured NF in the frequency range with a 

minimum of 2.6dB and a maximum of 4.3dB. The relatively large discrepancy in NF can be 

attributed to the buffer added for testing. Simulation and testing results prove that the proposed 

noise cancelling technique is effective for wideband LNA. The circuit performances are 

summarized in Table 6.1 and compared with other designed wideband LNAs. Clearly, this design 

achieves the highest gain and widest bandwidth. The NF is also one of the lowest compared with 

the other designs. 
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Figure 6.8 Micrograph of the proposed LNA 

 

 

Figure 6.9 S11 of the LNA 
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6.4 Summary 

A compact 0.1-8GHz Ultra-Wideband LNA using gain enhanced noise cancelling technique 

is proposed and implemented in the IBM 0.13μm CMOS technology. For the input matching, a 

common source stage with an active feedback is adopted to relax the trade-off between gain and 

bandwidth. Besides, a peaking inductor is inserted to improve the gain flatness and the 

bandwidth. In the targeted bandwidth, the gain of >12dB (with a 14.5dB peak) is obtained and a 

minimum NF (2.6dB) is achieved. The total power consumption is only 17mW. The results 

indicated that the proposed gain enhanced noise cancelling technique effectively alleviated the 

tradeoff between gain, noise figure and bandwidth without extra power consumption. 

 

Table 6.1 Summary and Comparison with Previous Works  

 
References [4] [5] [6] [7] [8] This Work 

Technology 0.25µm 0.13 µm 0.18 µm 0.13 µm 90nm 0.13 µm 

Frequency (GHz) 0-1.6 0.8-2.1   1.2-11.9  2-9.6     2.5-4.0 0.1-8 

Supply Voltage (V) 2.5 1.2 1.5 1.5 1.2 1.2 

Power (mW) 35 11.7 20 19 16 17 

Max. Gain (dB) 13.7 14.5 9.7 11 10.6 14.5 

Noise Figure (dB) 2.4 2.6 4.5 3.6 4.0 2.6 

 



 

 

115 
 

 

 

 

 

Figure 6.10 S21of the LNA 

 

 

Figure 6.11 Noise Figure of the LNA 
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CHAPTER 7 

CONCLUSIONS AND FUTURE WORK 

 

This thesis work provides the ease and effective ways to implement a single front end of the 

receiver for the next generations of wireless communications. The work also helps to smooth out 

the transition between generations allowing the co-existing of different wireless communication 

standards.  

7.1 Conclusions  

Three LNAs are proposed for different considerations in order to assist the upgrading of the 

existing devices and systems to support 4G applications. In the proposed LNAs, the input 

matching network, noise and distortion cancelling techniques are analyzed and implemented to 

circuit designs to relax the tradeoff among low noise figure, high gain, high linearity, and wider 

bandwidth. The designs can be considered as pioneers that are proposed specific for the 4G 

wireless communications. 

The first design is optimized particularly for the LTE applications. The LNA is easily added in 

parallel with the existing dedicated circuit systems. For the classical cascode structure, the 

common source (CS) stage is considered to be the main nonlinearity contribution to the LNA. As 

the frequency increasing, the nonlinearity influence of the CG stage increases and limits the high 

linearity bandwidth. The nonlinearity coming from the common source (CS) and the common gate 

(CG) stage are analyzed in detail. The CS and CG stages are considered to be two separate stages 

in the design and different linear techniques are adopted to enhance the linearity of the LNA. For 

the CS stage, the MDS technology is adopted and for the CG stage, the DS technology is employed 
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along with the degenerated LC resonator. The use of both techniques simultaneously decreases the 

third-order and second-order nonlinear currents. The fabricated LNA has a bandwidth of 300MHz 

with the linearity of greater than 7.5dBm. The results indicate that the proposed structure 

effectively increases the linearity of the LNA and maintains the high linearity for a wide 

bandwidth. 

The second design targets the universal wideband LNA for the so-called transition time. 

Nearly all the existing wireless standards, such as LTE, RFID, Bluetooth, and others can share a 

single LNA in the system. The sharing not only reduces system cost but also saves the chip area 

and dramatically reduces power consumption. A novel input network for the wideband LNA is 

proposed combining with the conventional resistive feedback structure. By inserting two input 

inductors, one within and one out of the feedback path, more freedom of choices are introduced in 

the design process. This structure is applicable to the multi-standard applications due to its high 

performance in a very wide bandwidth. The cascode LNA was designed and fabricated using the 

IBM 0.13m CMOS technology. A high and flat gain (greater than 10dB) with a 16.5dB peak is 

achieved in a very wide frequency range (1-3GHz). The matching parameter, S11, is below -10dB 

in this frequency range and a minimum NF of 2.5dB is achieved. The power consumption of the 

LNA is only 7mW on a 1.2V supply. The proposed input-network using in this design effectively 

alleviates the tradeoff between NF, input matching, and gain without extra power consumption. 

The structure is very simple to implement in a multi-standard receiver. 

The bandwidth of the third design is enlarged to 8GHz in order to cover all the bandwidth, 

including the WiMAX standard. The conventional noise cancelling method has limitation in the 

gain of the LNA. An improved noise cancelling structure is proposed to enhance the gain of the 

conventional technique. The gain-enhanced noise-cancelling technique is illustrated by the design 
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and fabrication of a wideband 130μm CMOS LNA. The measured maximum power gain is 14.5dB 

and the NF is 2.6-4.3dB in the frequency ranging from 0.1GHz to 8GHz. The core area of the LNA 

is 0.46x0.67mm
2
 and the LNA consumes 17mW of power from a 1.2V supply. The testing results 

prove the effectiveness of the gain enhanced noise cancelling method for wideband LNAs to be 

used in the multi-standard wireless communications. As up to date, this s the first designs that 

proposed specific for the 4G wireless communications.  

The three novel techniques are proposed in the LNA to balance the trade-off among 

bandwidth, noise figure, and linearity. The proposed noise cancelling and linearity enhancing 

techniques can be very effective in a wide frequency range and can be widely implemented to the 

future wideband LNA designs. 

7.2 Future work 

The testing results of the LNAs in this design have relatively large discrepancy compared to 

the simulated results. The differences mainly come from the parasitics of the chip and of the testing 

printed circuit boards. In the future design, these parasitic parameters should be more carefully 

considered and probe testing should be used instead testing PCB. One of the most challenging 

works in future implementation is the integration of the LNAs into a CMOS receiver. A new 

architecture of the receiver should be proposed with better functionality to process signals from 

different standards effectively.  
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