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                                                               ABSTRACT 

This thesis research involved investigations into the effects of inflammation on 

maturation of L-carnitine homeostasis in developing rat neonates. The overall hypothesis was an 

inflammatory stimulus will alter the ontogeny of L-carnitine homeostasis pathways and this 

depends upon when the inflammatory stimulus occurs in postnatal development. The objective 

was to investigate the potential effect of inflammation on carnitine transporter expression in 

different age groups of neonates and evaluation of effect of inflammation on ontogeny and 

activity of enzymes involved in carnitine biosynthesis and whether this differs depending upon 

when in postnatal development the inflammatory stimulus occurs. 

Rat pups at postnatal day 3, 7, and 14 received an intraperitoneal injection of 

lipopolysaccharide (LPS) at a dose known to cause a febrile reaction in rat neonates. L-Carnitine 

homeostasis pathways underwent significant ontogenesis during postnatal development in the 

rat. LPS administration caused a significant decrease in free L-carnitine levels in serum and heart 

tissue and a decrease in mRNA expression levels of the high affinity carnitine transporter, Octn2, 

in kidney, heart and intestine at all postnatal ages. Furthermore, significant decreases in mRNA 

expression levels of key enzymes involved in carnitine biosynthesis was observed, while an 

increase in carnitine palmitoyltransferase mRNA levels were observed at all postnatal ages. 

Reductions in butyrobetaine hydroxylase mRNA expression were paralleled by reductions in 

enzyme activity only at postnatal day 3 and 7. Heart creatine phosphate levels were deceased 

significantly in LPS treated groups in all postnatal ages; however, ADP and ATP levels were 

unaffected. Collectively, this research provided experimental evidence for a significant effect of 

inflammation on changes in L-carnitine homeostasis maturation in early neonatal stages. The 

maturation of physiological processes may be altered by external factors in early postnatal life.  
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Chapter 1 

1. Introduction 

Carnitine (3-hydroxy-4-N-trimethylamino butyrate) is a low molecular weight, water 

soluble ubiquitous molecule that exists in nearly all plants (1), animals, and microorganisms (1, 

2). L-Carnitine is available as free L-carnitine (non esterified molecule; FC) and esterified 

derivatives (acylcarnitines; AC) in mammals (3, 4). Fatty acids are important energy metabolism 

substrates and mitochondrial β-oxidation of long chain fatty acids requires adequate amounts of 

L-carnitine. In neonates, L-carnitine has a crucial role in myocardial β-oxidation of long-chain 

fatty acids, elimination of toxic metabolites, ketogenesis, and regulation of nitrogen metabolism 

(5, 6).  

Neonates are particularly vulnerable to the development of L-carnitine deficiency and its 

associated physiological disorders since the biosynthetic enzymes and transporters responsible 

for maintenance of L-carnitine homeostasis undergo maturation in early stages of postnatal life. 

Neonates are often exposed to several acute pathological conditions while important 

physiological systems are still undergoing maturation. While much attention in neonatal 

therapeutics has focused on appropriate dosage regimens for this age group, less attention has 

been paid to understanding long-term and short-term effects of acute pathological conditions on 

the maturation of important physiological processes that may have a specific role in the 

development of chronic disease in later stages of life. Several pathological conditions can lead to 

inflammation during the neonatal stage and these conditions can alter the developmental program 

of physiological processes.  

This thesis work endeavours to advance our understanding of the possible effect of 

inflammation on maturation of L-carnitine homeostasis mechanisms in neonates. The effects of 
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an inflammatory stimulus on different elements of L-carnitine homeostasis at different stages of 

neonatal development will identify the influence of inflammatory disease on maturation of L-

carnitine homeostasis mechanisms.   

1.2. Literature Review  

1.2.1. Developmental Programming 

Developmental programming refers to characteristics of the environment that appear 

during fetal and neonatal development, which permanently alter the normal maturation of 

physiological and biochemical processes (7, 8). Developmental programming has the following 

characteristics: 1) Susceptibility of organism to external environment is restricted to a critical 

ontogenetic window during early development; 2) Persistent that continues into adult life; and 3) 

Unique and quantifiable result that can vary significantly among individuals. Several factors 

determine developmental programming including nutritional and disease states, environmental 

conditions, gynecological immaturity, and the maternal or fetal genotype (9).  

During early development, a window of plasticity exists, a period of time when the 

organism may still develop in various directions and has potential to adjust or adapt to its 

environment. Even though epidemiological research has mainly focused on the detrimental 

ramifications of programming, it is not predominantly an injurious phenomenon (10). The ability 

to adopt a phenotype to different conditions prevalent in early life is an important adaptive 

phenomenon particularly if the environment is comparatively stable. A mismatch between the 

environment in prenatal or early postnatal life and adult life may culminate in unsuitable 

adaptations in the organism (11-13). However, adjustments that occur in critical periods of 

maturation can also guarantee the preservation of homeostasis when the surroundings are 

jeopardised (10).   
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Substantial research has focused on prenatal (and to a lesser extent postnatal) nutritional 

status as this can have significant influence on the developing fetus and neonates (14). The 

developing system is highly adaptive to the available nutrition supply, a phenomenon referred to 

as nutritional programming (15, 16). When a discrepancy exists between early life nutrition and 

availability of macro- and micronutrients in adult life, the permanent alterations induced during 

nutritional programming may have detrimental consequences in adult life (15, 16). 

 

1.2.1.1 Evidence of programming during postnatal development   
 

Evidence for the ability of the environment in early life to increase risk for chronic disease 

in adult life emerged in ecological research that investigated the reasons for the north-south 

division of disease patterns in England and Wales (17). The research uncovered the importance 

of maternal nutritional state during fetal and neonatal development in coronary heart disease 

(CHD) (18). An augmented risk of CHD death, high blood pressure, type 2 diabetes, and 

metabolic syndrome was related to low birth weights (18). This is now termed the Barker theory 

where it is now widely accepted that fetal programming by nutritional stimuli or glucocorticoids 

(stress hormones) results in physiological adaptations of the fetus to its environment in utero to 

ensure its readiness for postnatal life (19). Data from the survivors of World War II and the 

Dutch Hunger Winter also provide clear evidence that malnutrition during neonatal development 

predisposes the offspring to risk of CHD, metabolic syndrome, diabetes, and other chronic 

diseases. A multitude of independent research in developed and developing countries have 

corroborated that chronic disease is connected with low birth weight and malnutrition during 

pregnancy (20, 21).   
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The notion of the effects of intrauterine life on adult health and on the incidence of late 

onset illnesses, such as hypertension and type II diabetes, is a comparatively more recent idea. 

Forsdahl and coworkers in 1977 reported that the incidence of arteriosclerotic heart disease in a 

particular age group could be associated with the degree of infant mortality of that same 

population (22). A few studies conducted in the 20th century showed that a relationship between 

birth weight and tendency of developing cardiovascular and metabolic diseases in adulthood (23) 

(24).  

Studies in primates demonstrate that over-nutrition during infancy in the female results in 

development of obesity in early adult life (25). Therefore, the question has been raised: “what is 

the place of epigenetic memory being stored in the intervening period?” Further research was 

conducted on baboons, which evaluated cholesterol levels on specific diets (26, 27). Higher 

plasma LDL and VLDL cholesterol, lower HDL cholesterol, and increased cholesterol was 

revealed in adult baboons that were breastfed in the early life as compared to bottle fed baboons 

suggesting primates may be programmed by breast-feeding (27). In fact, post-mortem 

evaluations showed that breastfed baboons had profoundly more atherosclerosis (26, 27). 

 

1.2.2 Epigenetics and its Importance during Postnatal Development 
 

It has become increasingly evident in recent years that development is under epigenetic 

control. Epigenetics explains the genetic modification in functions of genes which are 

independent of gene code or DNA sequences (28). Epigenetics defines changes in expression 

levels of functional genes over a particular period of time. According to the National Institutes of 

Health’s definition, epigenetics is the study of changes in the regulation of gene activity and 

expression that are not dependent on gene sequence (29, 30). Evidence is available that shows 
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changes in developmental programming due to altercations in epigenetics following from 

numerous external stimuli (29, 31-34).  

The relationship between the environmental conditions during development and 

developmental programming is very complex (35). Limited research has been conducted to 

identify the factors affecting the complex relationship between these mechanisms. The 

identification of links between external signals and the epigenetic machinery with specific 

physiological outcomes is an area of increasing importance because of its impact on 

developmental programming and child health (30, 36). Histone modifications and DNA 

methylation were two well studies mechanism in epigenetics. Only two of many factors, 

nutritional conditions and stress, have been studied and well documented.  It has been reported 

that these factors influence adult risk of developing metabolic disease, such as type 2 diabetes 

mellitus and cardiac diseases (37). High risk to develop cardiovascular morbidity and mortality 

during adult life is associated with individuals born small for gestational age (4 –7). This 

epidemiological evidence is now supported by an extensive experimental literature in animals. 

Evidence on the importance of prenatal and early postnatal growth for later morbidity suggests 

the existence of a link between developmental responses to early environments and adult 

biology. For instance, the roles of histone demethylases in the context of whole body physiology 

are now being uncovered (38, 39).  The histone demethylase, Jhdm2a, for instance, was recently 

identified as a crucial regulator of genes involved in energy expenditure and fat storage and, 

therefore, Jhdm2a may be a key factor in obesity and metabolic syndrome (38, 39).  

It is common knowledge in human history that a child’s development during the fetal and 

neonatal period is influenced by the environment and life events. In particular, inappropriate 

nutrition is an important causal element precipitating a developmental programming event that 
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may contribute to the risk of chronic disease (14). The foremost mechanistic hypothesis is that 

when a critical period of maturation is progressing under suboptimal circumstances, the 

organism adapts to ensure survival and to maintain vital functions at the expense of other less 

immediately critical functions (40). Nevertheless, the fetus’ metabolic economy mode that 

secures survival in response to prenatal adverse conditions becomes maladaptive in a postnatal 

world where nutritional resources are not limiting (40). Continued adaptations in postnatal life 

also play a role in further modulating antenatal programming.  

There are three intriguing and fascinating facets about the epigenetic state that are 

important to relate in the context of developmental programming (41). First, epigenetic states can 

be paradoxically both reversible and heritable. Second, epigenetic states can be both heritable 

across cell divisions in somatic cells and potentially “inherited” across several generations. 

Third, epigenetic states can be both carriers of “memory” of early life experiences and “triggers” 

of disease susceptibility in later life. Because of the reversible nature of epigenetics, it can be 

modified by many external factors, which may cause the development of an unusual phenotype 

(42). Standard physiological responses to these different stimuli also may be changed by 

epigenetic mechanisms (42). The Developmental Origin of Health and Disease (DOHaD) 

hypothesis proposes that some disorders, such as type 2 diabetes mellitus and cardiovascular 

disease, can result from an imbalance between the environments that are experienced in utero, in 

early infancy, and later in life (43). The key feature of the “epigenotype model” of DOHaD is 

largely based on the finding that the environment can modulate epigenetic states. Indeed, there is 

mounting evidence that links environmental stimuli and the epigenome. Examples include 

behavioral programming by maternal care in rats, and divergence between genetically identical 

inbred mice (44, 45). Furthermore, environmental influences in early life can induce permanent 
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alterations in the epigenotype and determine adult phenotypes and disease susceptibility. 

Epigenetic misprogramming may occur throughout development; however environmentally 

induced changes that affect programming during early development have a greater and more 

widespread effect than those that occur during less “plastic” times in development (46).  

 

1.2.3 Critical window of susceptibility 
 

Sensitive periods in fetal and postnatal developmental exist during which even minor 

interventions can have long lasting effects on adult physiology (47). Fetal or neonatal exposure 

to chemicals is an important concern since developing organisms are tremendously susceptible to 

perturbation by chemicals. Harmful effects may happen at concentrations of the chemical that are 

far below levels considered toxic in the adult (48). Furthermore, the timing of exposure is 

important as developing systems show critical periods of susceptibility to various chemicals such 

that an exposure during this critical period will lead to abnormalities in organ function, which 

may not occur when the exposure occurs at some other time of development (48). These critical 

windows of susceptibility can be explained by the fact that the protective techniques that are 

available to the adult, such as DNA repair mechanisms, a competent immune system, detoxifying 

enzymes, liver metabolism, and the blood/brain barrier as examples, are not completely 

functional in the prenatal or early postnatal period (49). Additionally, the developing organism 

has an enhanced metabolic rate as compared with an adult, which, in some cases, can result in 

increased toxicity (49). During a critical window, exposure to environmental factors will modify 

normal cellular and tissue development and function resulting in developmental programming 

and a risk for metabolic and hormonal ailments later in life. Therefore, exposures during critical 

windows of prenatal advancement usually do not manifest until much later in life (50).   
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Since each system of organs has various developmental trajectories, and the sensitive 

window for exposures to different factors varies relative to the stage of tissue development, the 

consequences of exposures depend not only on the type of exposure, but on the time when the 

exposure occurs (50). A number of studies illustrate that the in utero developmental period is a 

critically sensitive window of vulnerability (51, 52). Disturbances during the critical window of 

susceptibility can lead to subtle functional switches that may not appear until later in life. 

Mounting evidence also indicates that brief systemic inflammation during critical periods of 

development may results in long-lasting cerebral and peripheral vulnerability (programming or 

sensitization) well into adulthood (53).  

Heindel and Newbold showed several significant principles that depict how early life 

environmental vulnerabilities contribute to high risk of adult disease (54). Chemical exposures 

can have both tissue-specific and time-specific ramifications on growth and development (55). 

As long as tissue is developing, it is susceptible to disturbances from environmental 

vulnerabilities. These disturbances can result from alterations in gene expression, protein 

activity, cell communication or other mechanisms (54). The consequences of environmental 

chemical vulnerabilities can be transgenerational, therefore influencing future generations. 

 

1.2.4 L-Carnitine  
 
         1.2.4.1 General aspects of L-carnitine 
 

In early twentieth century, carnitine was first discovered in skeletal muscle extracts (56). 

Carnitine is a low molecular weight, quaternary ammonium compound and it is present in both 

Levo (L) and Dextro (D) forms. However, L-carnitine is the biologically active form. L-

Carnitine is a trimethylated amino acid that plays an important role in the transfer of long-chain 
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fatty acids (LCFAs) across the inner mitochondrial membrane. L-Carnitine is biosynthesized in 

mammals from two amino acids, L-lysine and L-methionine, and also is supplied from dietary 

sources (57). In mammals, L-carnitine is present as free L-carnitine, the major form in the total 

L-carnitine pool, and as esterified derivatives, which are the catalytic products of carnitine 

acyltransferases. The acylcarnitines appear as the result of the reaction when acyl moieties (short 

chain or long chain) are transferred to carnitine from acyl-CoA (58).  

 

1.2.5 L-Carnitine Functions 
 

L-Carnitine has a number of direct and indirect roles in many mammalian physiological 

systems and these essential functions directly or indirectly regulate overall energy metabolism 

(59). L-Carnitine plays a major role in mitochondrial β-oxidation of long-chain fatty acids by 

facilitating their transport across the inner mitochondrial membranes and is of utmost 

significance for maintaining normal mitochondrial function (3, 60, 61). It is also involved in the 

transport of peroxisomal β-oxidation products to the mitochondria, restoration of normal acyl-

CoA/CoA balance, and regulation of toxic effects of metabolites produced in fatty acid 

metabolism (61).  

Recent experiments and clinical studies have shown that mitochondrial dysfunction 

secondary to a disruption of L-carnitine homeostasis cause in decreased nitric oxide signaling 

and the advancement of endothelial dysfunction (62). L-Carnitine is transported via the 

circulation and is then taken up by other tissues through active transport systems. In the kidney, 

L-carnitine and butyrobetaine are reabsorbed efficiently to minimize urinary loss. Sodium-

dependent cationic transporter (OCTN2) is the primary known transporter responsible for both 

the active transport of L-carnitine to other tissues and reabsorption in kidney (63, 64). 
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1.2.5.1 Long-chain fatty acid oxidation 
 

The mitochondrial β-oxidation of long-chain fatty acids is the cardinal energy producing 

process for organs that require long-term energy. Long-chain fatty acids cannot cross the inner 

mitochondrial membranes for further metabolism due to structural limitations. Palmitoyl-CoA 

synthetase (PCS) is the first enzyme in the fatty acid transport process (65). PCS is located in the 

outer mitochondrial membrane and activates fatty acids that are present in the cytosol to produce 

coenzyme A-derivatives (acyl-CoA) of fatty acids. Carnitine palmitoyltransferase I (CPT I) 

located in the outer mitochondrial membrane facilitates the transesterification of acyl-CoA and 

produces acylcarnitines (66, 67). In transesterification, the acyl moiety of the long-chain fatty 

acids is transferred from CoA to the hydroxyl group of carnitine. Specific transporters mediate 

the transport of the long chain fatty acids into mitochondrial matrix such as carnitine-

acylcarnitine translocase (CACT), which exchanges one long-chain acylcarnitine for one 

carnitine. Carnitine palmitoyltransferase II (CPT II) facilitates the back conversion of 

acylcarnitine to carnitine and the particular long-chain acyl-CoA. Within the mitochondrial 

matrix acyl-CoAs undergo β-oxidation and enter the respiratory chain. L-Carnitine is 

subsequently translocated by translocase or modified to acylcarnitines in the matrix of 

mitochondria. Carnitine acyltransferases transfer the acyl group from acyl-CoA to L-carnitine. 

These enzymes can be divided into three types (58) : 1) carnitine palmitoyl transferase (CPT), 

which transfers medium and long-chain acyl-CoA with more than 12 acyl groups to L-carnitine 

with a preference for long-chain acyl-CoA, at least at physiological concentrations of L-

carnitine; 2) carnitine octanoyltransferase (COT), which uses both medium and long-chain fatty 

acids with 5-12 acyl groups having a preference for medium-chain acyl-CoA; and 3) carnitine 
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acetyltransferase (CrAT), on the basis of their specification to acyl groups and their cellular 

settling employs short-chain acyl groups (C1–C4) as substrate. The CPT system is a significant 

feature of the carnitine shuttle, which facilitates the transfer of long-chain fatty acids from 

cytosol into the mitochondrial matrix, the site of β-oxidation.  

The CPT system includes carnitine palmitoyltransferase 1 (CPT-1) localized in the outer 

mitochondrial membrane, the carnitine–acylcarnitine translocase (CACT), an integral inner 

membrane protein, and carnitine palmitoyltransferase 2 (CPT-2) localized on the inner 

mitochondrial membrane (68). CPT-1 conjugates L-carnitine with LCFAs, CACT transfers the 

acylcarnitine across the inner plasma membrane, and CPT-2 conjugates the fatty acid back to 

coenzyme A for subsequent β-oxidation. CPT-1 has various isoforms with tissue-specific 

expression, CPT-1A (liver), CP T-1B (muscle) and CPT-1C (brain) (69). Finally, CrAT, which is 

situated in the mitochondrial matrix, has the ability to reconvert the short and medium chain 

acyl-CoAs into acylcarnitines using intramitochondrial carnitine. Decreased CrAT activity 

results in increased levels of acyl-CoA, which causes in inhibition of many enzymatic processes 

involved in oxidative metabolism (70) (71-73).  

 

1.2.5.2 Regulating the mitochondrial acyl-CoA/CoA ratio and toxic effects 
 

In the process of long chain fatty acid transport, carnitine acyletransferase produces 

acylcarnitines and free coenzyme A (CoA) in the inner mitochondrial matrix. L-Carnitine acts as 

a buffer for free CoA (74). Through the action of CAT, L-carnitine and CoA pools are in close 

relationship. This reversible exchange allows the cell to regulate its levels of free CoA using L-

carnitine as a buffer, and since L-carnitine is present in most tissues at a much higher 

concentration than CoA, the extra mitochondrial acetylcarnitine/carnitine ratio will prevent 
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significant fluctuations in the mitochondrial acetyl-CoA/CoA ratio by formation of acyl-CoA 

(75, 76). L-Carnitine prevents the toxic effects of acyl groups, which are produced by poor 

metabolism of fatty acid oxidation, by converting those acyl groups into carnitine esters. Since 

L-carnitine exists as either free L-carnitine (nonesterified molecule; FC), or acylcarnitines 

(esterified form; AC), the AC/FC ratio is an important criterion for assessment of a functional L-

carnitine shortage (76). Enzymatic alterations in L-carnitine metabolism can result in higher 

levels of acylated carnitines and, hence, an elevated AC/FC ratio (76, 77).  

L-Carnitine mediated transport of LCFAs has 3 other distinct functions. A free CoA pool, 

both in the cytosol and within the mitochondrial membrane, is necessary for many metabolic 

processes and pathways, including the citric acid cycle, ketogenesis, and gluconeogenesis. When 

the acyl group of acyl CoA combines with carnitine, acylcarnitine esters are formed which can 

then be removed from the mitochondrial membrane and cell and thereby eliminated by liver or 

kidney. This transport of acylcarnitine esters out of the mitochondria serves 2 purposes. First, it 

maintains a pool of free CoA at the mitochondrial membrane, and second, it protects cells 

against high, and potentially toxic, concentrations of acyl CoA compounds that could inhibit 

enzyme activity in metabolic processes, thereby ultimately altering cellular ATP production (60). 

The interruptions in mitochondrial function have been identified as the main cause of 

several pathological conditions diabetes (58). L-Carnitine also removes the acyl groups from 

mitochondria as acylcarnitines. The increase in free fatty acid levels can induce mitochondrial 

dysfunction resulting in cell death and/or enhanced secondary generation of reactive oxygen 

species (ROS) (78). These effects can be attenuated with L-carnitine treatment. Studies have also 

shown that L-carnitine has a protective effect both on mitochondria and in whole cells by 

inhibiting free fatty acid induced mitochondrial membrane damage and/or its secondary effects 
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(79). The protective effects of L-carnitine and related metabolites have been postulated to be due 

to improved energy metabolism and the inhibition of electron leakage from mitochondrial 

electron transport systems. 

 
1.2.5.3 L-Carnitine Importance and Systemic Deficiency 
 

L-Carnitine deficiency was first described as a new syndrome in humans in 1973 (80). 

Until now, two types of L-carnitine deficiency have been observed: primary and secondary L-

carnitine deficiencies (81). These are commonly classified by the etiopathogenesis and organ 

involvement. Primary L-carnitine deficiency is caused by disturbances in the L-carnitine system 

itself and leads to impaired fatty acid oxidation. Primary L-carnitine deficiency is an autosomal 

recessive disorder of fatty acid oxidation, which can be associated with a novel mutation in 

SLC22A5, the gene encoding Sodium-dependent cationic transporter OCTN2 (81, 82, 83). 

Patients with primary L-carnitine deficiency have increased renal excretion of L-carnitine, and 

patients experience recurrent hypoketotic hypoglycemia and/or dilated cardiomyopathy.  

Secondary L-carnitine deficiencies are associated with an impaired mitochondrial 

oxidation of acyl-CoA intermediates, a limited supply of substrates for L-carnitine biosynthesis, 

or a dietary insufficiency (84). Secondary L-carnitine deficiency is characterized by free plasma 

L-carnitine concentrations less than 20 μmole/L or 0.39 mg/dL.  Toxicity caused by L-carnitine 

deficiency results from the accumulation of fatty acids or decreased energy production (85, 86). 

Impairment in mitochondrial fatty acid oxidation can lead to severe hypoglycemia and dilated 

cardiomyopathy. In addition, patients with inborn errors of long chain fatty acid oxidation 

present with a variety of severe clinical problems, such as cardiomyopathy, retinopathy, and 

peripheral neuropathy, presumably due to the accumulation of toxic long chain acyl CoA esters. 
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Symptoms related to a defect in OCTN2 may include fatty liver, growth retardation, 

hypoglycemia, and hyperammonemia (87). Many individuals with L-carnitine deficiency are 

generally normal at birth and may appear healthy for several years until overt clinical signs 

appear. Early identification of L-carnitine deficiency can be lifesaving because L-carnitine 

supplementation during the early stage of a L-carnitine deficiency can reverse certain 

pathological changes associated with cardiac, neural, and hepatic systems (87). 

 

1.2.6 L-Carnitine Homeostasis 
 

            1.2.6.1 De novo biosynthesis 
 

Human L-carnitine may derive from dietary sources or biosynthesis employing lysine and 

methionine. The main dietary sources of L-carnitine are red meat, fish and dairy products, which 

can provide 2–12 mmol per day per kg of body weight and 1–2 mmol of carnitine is 

endogenously synthesized (58). The kidney, liver, and brain are the main sites of L-carnitine 

synthesis. After synthesis, L-carnitine is transported via the circulation and is then taken up by 

other tissues through carrier-mediated transport systems. In the kidney, L-carnitine and 

butyrobetaine are reabsorbed efficiently to minimize urinary loss (63).  OCTN2 is the primary 

known active transporter responsible for both the transport of L-carnitine to other tissues and re-

absorption in kidney (63).   

Endogenous biosynthesis of L-carnitine involves a number of enzymatic steps (Figure 

1.1) (88, 89); however, this pathway consists of the rate-limiting enzymes, i.e  N’trimethyllysine 

dioxygenase (TMLD) and beta-butyrobetaine dioxygenase (BBH). TMLD mediates the 

hydroxylation of trimethyllysine (TML) to 3-hydroxy trimethyllysine (HTML) in mitochondria 

of liver, kidney, heart, muscle, and brain. TMLD is a non-haem ferrous-iron dioxygenase 
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requiring 2-oxoglutarate, Fe+ 2and molecular oxygen as supporting factors (90). Limited 

information is available on HTML aldolase (HTMLA) that catalyzes the aldolytic cleavage of 

HTML into 4-trimethylaminobutyraldehyde (TMABA) and glycine. TMABA dehydrogenase 

(TMABA-DH) requires NAD+ as a cofactor and liver and kidney express the highest level of 

TMABA-DH, which is low in brain, heart and muscle (90). BBH’s function is to catalyse the 

stereospecific hydroxylation of butyrobetaine to L-carnitine. BBH requires molecular oxygen, 

Fe+2 and ascorbate for activity. BBH is localized in the cytosol of mammalian cells and is 

primarily expressed in the liver, kidney, brain, testis, and epididymis (91).  
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Figure 1.1 De novo synthesis of L-carnitine.  

 

1.2.6.2 L-Carnitine absorption 
 

Dietary L-carnitine intake by humans ranges from less than 1 up to 15 μmol/kg body 

wt/day. Vegans typically acquire very little L-carnitine from diet, usually less than 1 μmol/kg 

body wt/ day. Individuals consuming dairy products obtain 1 to 8 μmol L-carnitine/kg body 

wt/day and 6 to 15 µmol L-carnitine/kg body wt/day for individuals that consume red meat (92) 

(93). The bioavailability of dietary L-carnitine ranges from 54–86% of dietary intake. In vivo and 

in vitro studies on L-carnitine uptake in the intestine reported two absorption modes, linear 

absorption and nonlinear absorption (92). Linear absorption of L-carnitine represents the 

unsaturable passive diffusion of L-carnitine across the intestinal epithelium, whereas nonlinear 

absorption represents the carrier mediated saturable and active uptake process by transporters. 

Studies of L-carnitine absorption and its components in humans, experimental animals, and cell 

culture models suggest that L-carnitine is transported from the intestinal lumen into the 

enterocyte by carrier-mediated processes, but passes across the serosal membrane into the 

circulation by simple diffusion (94). Consequently, L-carnitine is rapidly taken up from the 

gastrointestinal lumen, but is slowly released into the portal circulation. Studies with Caco-2 

polarized epithelial cell cultures and human muscle biopsy specimens suggest high-affinity, 

saturable, sodium-gradient-driven uptake of carnitine (95). Extensive intracellular acetylation of 

L-carnitine (50–60%) occurs in rat and guinea pig intestine and in isolated guinea pig 

Carnitine 
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enterocytes. In rat and guinea pig intestine, acetyl-L-carnitine is more readily released across the 

serosal membrane than is nonesterified L-carnitine (96). Intracellular acetylation of L-carnitine 

may facilitate its diffusion across the serosal membrane. In guinea pig intestine, luminal acetyl-

L-carnitine was taken up by intestinal mucosa at about the same rate as was nonesterified L-

carnitine, but the calculated efflux of total L-carnitine into the circulation was 4-fold greater for 

acetyl-L-carnitine compared to nonesterified L-carnitine (92, 97).  

 

1.2.6.3 Tissue Distribution and Renal Elimination 
 

L-Carnitine is distributed in various parts of the body with extensive distribution into 

skeletal muscle and heart. There are three distinctive pools in L-carnitine distribution in the 

human body (88). The principal pool represents muscle tissues and averages 95% of total body 

L-carnitine. The second pool consists of liver and kidneys and corresponds to total of 4% of total 

body L-carnitine. The small pool corresponds to extracellular fluids and it accounts for the 

remaining 1% of total body L-carnitine (88). The concentration in tissues such as muscle is 25-

50 fold higher than in plasma levels due principally to the activity of OCTN2 transporter that 

actively takes up L-carnitine from blood into tissues against a concentration gradient (63).  

The kidneys have a crucial and definitive role in the maintenance of L-carnitine 

homeostasis in mammals by minimizing the renal loss of L-carnitine. L-Carnitine is eliminated 

from the body primarily by renal excretion of nonesterified carnitine and acylcarnitine esters 

(63). As a small, water-soluble non protein-bound compound, L-carnitine is readily filtered by 

the renal glomerulus. The Na+ dependent active reabsorption of L-carnitine by OCTN2 occurs in 

the proximal renal tubule and helps to prevent the renal clearance of L-carnitine. The total renal 
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elimination of L-carnitine per day is estimated at approximately 100-300 μmol, which is 2-10% 

of total filtered L-carnitine (92, 98).  

L-Carnitine reabsorption and excretion rates are affected by diet and physiological and 

pathological factors (99, 100). Less efficient reabsorption of acylcarnitines and renal acylation of 

L-carnitine followed by leakage of the locally formed acylcarnitine products into urine can lead 

to the high acylcarnitine to carnitine ratio in urine compared to that of plasma (99, 100). The 

efficiency of carnitine reabsorption increases as dietary intake of L-carnitine decreases, 

independent of glomerular filtration rate and filtered load (98). This adaptive response serves to 

maintain circulating L-carnitine concentration in the face of decreased input from dietary intake. 

Conversely, the rate of L-carnitine excretion increases rapidly, and the efficiency of L-carnitine 

reabsorption decreases as the filtered load of L-carnitine increases above normal, as for example 

following ingestion of a dietary L-carnitine supplement or by intravenous infusion of L-carnitine 

(98).  A “threshold” effect is observed at near-normal plasma L-carnitine concentrations, above 

which the rate of L-carnitine excretion soon parallels the increase of filtered load. This 

homeostatic mechanism serves to maintain circulating L-carnitine concentrations in a narrow 

“normal” range (98).  

L-Carnitine is required as a cofactor in the transport of long-chain acyl groups (fatty acids) 

across the mitochondrial membranes to facilitate the β-oxidation of LCFA and hence ATP 

production. L-Carnitine uptake into tissues is mediated through different transporters; 1) organic 

cation/carnitine transporters (OCTNs), 2) neutral and cationic amino acid transporter, ATB0,+, 

and 3) carnitine transporter 2 (CT2). Polyspecific organic cation transporters belong to the 

SLC22 family and the MATE family (101). The SLC22 family contains the three subtypes of 

passive diffusion organic cation transporters called OCT1 (SLC22A1), OCT2 (SLC22A2) and 



20 
 

OCT3 (SLC22A3); Organic cation/carnitine transporter OCTN1 (SLC22A4) that may be a 

proton cation exchanger; the Na+-carnitine cotransporter OCTN2 (SLC22A5), which facilitates 

the Na+ independent transport for organic cations and L-carnitine; and organic cation transporter 

OCT6 (SLC22A16) (101). 

Apart from OCTNs, ATB0,+ also transports L-carnitine across cellular membranes. This 

transporter belongs to the SLC6A family of transporters (102). The letter B of ATB0,+ represents 

broad substrate specificity of the transporter system and the superscript represents both neutral 

and cationic amino acids as substrates to this transporter (102). ATB0,+  transports amino acids 

depending on Na+ and Cl- ion concentrations across the cell membrane. ATB0,+ has low affinity 

for L-carnitine and is expressed in the lung, colon, mammary gland, pituitary gland and ocular 

tissue (103-105). Furthermore, L-carnitine is transported by L-carnitine transporter 2 (CT2). This 

novel transporter belongs to the SLC6A family of transporters and is expressed in human testis. 

The localization of these transporters in tissues and at epithelial barriers is critical in 

understanding their endogenous role in cellular metabolism and function. For example, 

expression of OCTN3 in peroxisomal membranes plays a critical role in peroxisomal β-oxidation 

pathways (106). 

 

1.2.6.3.1 Organic Cation/Carnitine Transporters  
 

Organic Cation/Carnitine Transporters (OCTNs) are members of the Solute Carrier 

Transporter 22 (SLC22) family (107, 108). Although SLC22 members can transport cationic 

chemicals, OCTNs are most notably known for their ability to mediate the cellular uptake of L-

carnitine (107). OCTN class has three different transporters, OCTN1, OCTN2 and OCTN3. 

OCTN1 was first cloned from a human liver cDNA library, and rodent rat and mouse isoforms 
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were later isolated (109). OCTN1 transporter protein consisted of 11 transmembrane domains 

and one-nucleotide binding domain. OCTN1 is a sodium-independent organic cation transporter 

that transports cations in a bidirectional, pH dependent manner. It is a multispecific transporter 

and has low affinity for L-carnitine in species including rat and humans. It is abundantly 

expressed in intestine, liver, and kidney (110, 111).  

OCTN2 was cloned from a human kidney cDNA library and OCTN2 possibly has 12 

transmembrane domains (112). OCTN2 has high affinity for L-carnitine and transports L-

carnitine in a sodium-dependent manner. The unique aspect of this transporter is its dual mode of 

transport: it transports organic cations via a sodium independent process and L-carnitine via a 

sodium dependent process (113). It is widely expressed in tissues such as heart, skeletal muscle, 

kidney, intestine, placenta, brain and mammary gland. A mutation in the OCTN2 gene causes 

secondary L-carnitine deficiency (114). OCTN1 and OCTN2 transporters show more than 70% 

similarity in their amino acid sequence; however, it is identified that both transporters 

demonstrate differences in their function (115). OCTN3 was first detected in mouse kidney, and 

OCTN3 protein has later been detected in a human cell line (116). OCTN3 transports L-carnitine 

in a passive, sodium and pH independent manner. It has higher specificity for L-carnitine 

transport than OCTN1 and OCTN2. It is predominantly expressed in testis and in peroxisomes 

(117).  

 

1.2.6.3.2 OCTN2 (Slc22A5) transport 
 

OCTN2 has a relatively ubiquitous distribution and is expressed in epithelial cells, muscle 

cells, glial cells, macrophages, lymphocytes and sperm. In humans, the strongest expression of 

OCTN2 was found in liver (118), kidney (119) (120), skeletal muscle (121), heart, placenta, 
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brain (122), mammary glands (123), and blood-retinal barrier (124). As well OCTN2 is 

expressed in intestinal tissues (125) and contributes to the absorption of L-carnitine. In heart, 

OCTN2 protein is present in the vascular endothelium (124). OCTN2 transporter expression was 

also found in some cancer cell lines suggesting that L-carnitine has a crucial role in maintaining 

energy metabolism in cancer cells. In rodents, Octn2 was wider distribution than in human (126). 

Octn2 was found in blood vessels, and astrocytes. In kidney of rat Octn2 transporter is localized 

to the apical membrane of proximal tubular epithelial cells (126). In mice, octn2 has localized to 

the apical membrane of cells lining the epididymal ductules and of proximal tubular epithelium 

in kidney (126).   

Sodium-dependent, high-affinity carnitine transporter, OCTN2, is responsible for the active 

transport of L-carnitine into several tissues (Figure 2). Skeletal muscle and cardiac muscle utilize 

fatty acids as an energy source; therefore, a deficiency of L-carnitine in these tissues leads to 

cardiomyopathy and muscle weakness. In juvenile visceral steatosis (jvs) mice, which exhibit a 

Secondary Carnitine Disease (SCD) phenotype, alterations in intestinal absorption, tissue 

distribution, and elimination of L-carnitine have been observed (85, 127, 128). Pathologically, 

jvs mice display severe lipid accumulation in the liver, hypoglycaemia, hyperammonaemia, and 

growth retardation (129). It was confirmed that L-carnitine transport activity is impaired due to 

mutation of the octn2 gene in jvs mice and mutation of the OCTN2 gene in SCD patients. In 

addition, Japanese individuals and familial members who are affected by L-carnitine deficiency 

have various mutations in the OCTN2 gene, all of which are associated with a loss or decrease of 

L-carnitine transport activity (130, 131). OCTN2 is now generally accepted to be the causal gene 

of the genetic disease SCD (130, 131). 
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Figure 1.2  Schematic of the distribution and role of Octn2 in L-carnitine disposition and 

importance of L-carnitine in long-chain fatty acid oxidation. Octn2 facilitates the reabsorption of 

L-carnitine into the systemic circulation and also Octn2 mediated transport of L-carnitine from 

blood to various tissues. 

 

1.2.7 L-Carnitine Homeostasis in Neonates 
 

The shift in nutritional source from the maternal umbilical blood supply to milk causes 

important physiological changes in newborns. The source for metabolic energy for the fetus 

comes from carbohydrate sources, mainly glucose, whereas neonates rely less on carbohydrate 
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sources and more on fatty acids (132). The newborn must adapt to the shift in energy substrate 

supply. Development of fatty acid utilization mechanisms is requisite to guarantee appropriate 

physiological development. Moreover, fatty acid oxidation is the part of thermal homeostasis in 

neonates, and disorders in fatty acid oxidation predispose to a risk for sudden infant death 

syndrome (133). In neonates, L-carnitine is essential for long-chain fatty acid oxidation. Fatty 

acid oxidation rates increase in early stages of neonatal development and these results correlate 

with the evidence that show increased levels of L-carnitine concentrations in neonates (134).  

In neonates, the concentration of free L-carnitine in the plasma characterizes the balance 

between intestinal uptake, biosynthesis, and reabsorption by the kidney. The plasma L-carnitine 

concentration increases from postnatal day 8 of life and reaches adult levels at 4-7 months of age 

in human (134, 135). In early postnatal development, neonates depend on an exogenous source 

as enzymes required for L-carnitine biosynthesis are very immature. Hepatic γ-butyrobetaine 

hydroxylase (γ-BBH) levels are extremely low in early stages of life and the activity of BBH 

enzyme increases with age (136). Expression of BBH mRNA, however, was undetectable in 

foetuses and newborn rats (136). Gene expression of Bbh enzyme in rat shows an increase 

between postnatal day 4 and 20, but significant increases have been seen between postnatal day 4 

and 11. In addition to the maturation of Bbh enzyme, Cpt and trimethylamino hydroxylase 

(Tmlh) expression and enzyme activities increase during postnatal development (136).  

The kidneys play a dual role in body L-carnitine homeostasis. The kidneys efficiently 

reabsorb filtered L-carnitine via OCTN2 and, at least in humans, the kidneys are involved in L-

carnitine biosynthesis. Foetal rat kidneys express Octn2 mRNA and the same transcript is present 

in all ages studied (91). In human kidneys, however, neither BBH nor TMABA-DH activities 

were affected by age. Plasma L-carnitine concentration is maintained within a narrow range in 
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spite of the continuous supply of L-carnitine to the plasma under normal physiological 

conditions (137). Renal clearance is the determining factor in the maintenance of plasma levels 

of L-carnitine and renal clearance is largely determined by the kinetic properties of the brush-

border Na+/L-carnitine cotransporter, OCTN2. Renal reabsorption of free carnitine is 98% and 

99% of the filtered load, unless the transporters become saturated. Hence, the kidney has a dual 

role in L-carnitine homeostasis: it minimizes clearance of L-carnitine in the urine and also the 

kidney is involved in biosynthesis of L-carnitine in human (138-141). To our knowledge, limited 

data are available regarding: (i) at what stage of nephrogenesis the OCTN2 transporter is first 

apparent and at what stage its activity corresponds to that in adults, and (ii) whether renal 

expression of BBH and TMABA-DH mRNAs are affected by ontogeny. A systematic study on 

the ontogeny of Octn2, Bbh and Tmlh in foetuses, newborn, suckling, weaning and adult rats 

was conducted to develop concrete knowledge on ontogeny of L-carnitine mechanisms (136). 

The results suggest that the kidneys of rat foetuses have a functional OCTN2 transporter and that 

with development increases in the activity and mRNA expression of OCTN2 and the expression 

of BBH and TMABA-DH mRNAs is observed. 

 

1.2.7.1 Ontogeny of Bbh and Tmlh 
 

The renal expression of TMABA-DH and BBH undergoes a developmental maturation in 

human and rats (91). TMABA-DH mRNA was detected in foetuses and its abundance 

significantly increased from neonatal to adult rats. Renal BBH mRNA expression, however, was 

not detected until the suckling period and thereafter it was significantly modified by age in rats 

(91). Therefore, the kidney and liver tissue of foetuses and newborn rats cannot synthesize L-

carnitine or at least the turnover of L-carnitine during these periods is not sufficient to conduct 
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normal physiological functions. Although adult rat kidney expresses BBH and TMABA-DH 

mRNAs, this expression was much lower than that measured in liver, suggesting that in the rat at 

least, L-carnitine biosynthesis occurs mainly in the liver. In adult rat, it is reported that the 

activity and expression levels of these two enzymes in liver and kidney were increased at least by 

several fold suggesting clear ontogenic changes in L-carnitine biosynthesis maturation (91). In 

humans neither renal BBH nor TMABA-DH, activities were affected by age, whereas liver BBH 

activity and mRNA levels were increased by maturation.  

 

1.2.7.2 Ontogeny of Octn2 
 

The shift in nutritional source in neonatal diet necessitates the ontogenic changes in L-

carnitine homeostasis mechanisms. The neonatal diet has a considerably higher content of fatty 

acids originating from milk. Hence, neonates require maturation of fatty acid oxidation 

mechanisms to generate the energy from a fatty acid rich diet. Transporters, mainly OCTN2, 

involved in L-carnitine homeostasis, undergo changes in neonates to utilize the fatty acid rich 

diet during the postnatal development (126). In newborns, the uptake of exogenous L-carnitine 

from intestine in early postnatal days is necessary to maintain systemic L-carnitine levels as 

endogenous synthesis is limited. In vivo studies reported the postnatal development of key 

factors involved in L-carnitine homeostasis (136). Na+-Dependent L-carnitine uptake rate in 

intestine is significantly higher in both pre-term foetuses and newborn rats than in suckling rats. 

After weaning, Na+ dependent L-carnitine uptake is no longer measurable in any intestinal 

regions examined.  This is consistent with the peak in Octn2 expression in intestine in newborn 

rats with expression levels decreasing with age. Octn2 expression in the ileum was higher than in 

jejunum. In addition to the transporter expression data, the rate of Na+ independent L-carnitine 
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uptake also increased after birth, and thereafter it decreased during the suckling period until it 

reached adult values (91). Developmental maturation is associated with a decrease in the number 

(and/or activity) of the intestinal L-carnitine uptake carriers.  

Decreases in rat intestinal Octn2 expression with the age indicates that in rats, homeostatic 

control of serum L-carnitine concentration switches from dietary intake of L-carnitine in the 

intestine to de novo biosynthesis in liver and kidney (142) (143). During the late gestation period 

and early stage of life, the rat L-carnitine biosynthetic pathway is immature and the demand for 

L-carnitine may exceed its endogenous biosynthesis (142) (143). Foetuses and neonates would 

therefore depend upon external sources of L-carnitine to meet their metabolic needs. During 

these periods, the mother’s liver L-carnitine biosynthesis and intestinal Octn2 is up-regulated, 

and rat pups may receive most of their L-carnitine from their mother. Several studies suggested 

that foetal L-carnitine is derived from the mother via transplacental transfer of L-carnitine, which 

is supported by the observation that OCTN2 is expressed in human placenta (144). Age-

dependent changes in Octn2 transporter expression levels in rat kidney were reported previously 

in addition to the studies on intestinal Octn2 expression levels (91, 136). Foetal rat kidneys 

express Octn2 mRNA and the same transcript is present in all the ages studied. As previously 

reported, Octn2 mRNA abundance is up-regulated in kidney by maturation, mainly in the renal 

cortex (126, 145). These findings suggest that from the end of the gestation period to adulthood, 

Octn2 mediates renal Na+/L-carnitine transport and this corroborates the view that maturation 

increases the number of Octn2 transporters at the apical membrane.  

The findings of ontogenic changes of intestinal L-carnitine uptake and Octn2 transporter 

expression correlate with the maturation of L-carnitine biosynthesis mechanisms.  In the early 

stage of life, when the demand for systemic L-carnitine exceeds the endogenous capacity for its 
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biosynthesis, rat pups receive most of their L-carnitine from exogenous sources by active uptake 

by OCTN2 transporters. In the growing rat, however, the endogenous capacity for L-carnitine 

synthesis is increased sufficiently, and its intestinal Na+/L-carnitine transport activity is no 

longer measurable. Therefore, in the same individual, up-regulation of the liver L-carnitine 

biosynthesis is accompanied by the down-regulation of its intestinal Na+/L-carnitine transport 

activity (143, 146). In isolated brush-border membrane vesicles (BBMV), OCTN2 transporter 

expression was increased significantly in the postnatal stage. Between the postnatal day 5 and 11, 

heart, renal and intestinal OCTN2 mRNA levels showed significant changes and the expression 

increased to 80% of its adult levels (126). The observed changes in activity of transporters and 

enzymes involved in L-carnitine biosynthesis demonstrate the significant maturation of L-

carnitine hemostasis in neonates during the postnatal day 1 and 20. In addition, evidence 

suggests the ontogeny of transporters and enzymes can be modified by various effects, even 

though expression is genetically programmed (147). Furthermore, intestinal membrane lipid 

composition, fluidity and activity of Na+-dependent D-glucose transport are affected by dietary 

fat. It is inferred that the modifications in normal neonatal health during neonatal development 

may influence the ontogeny of transporters and enzymes.  

 

1.2.8 Inflammation and its effect on transporter expression and function 
 

The immune system is primarily responsible for the control or eradication of 

pathophysiological conditions that are established in mammalian system by a disease-causing 

organism or by processes that elicit an inflammatory response (148). The response of the 

immune system to pathogenic and pathophysiological conditions is activation of a series of 

events denoted as the inflammatory/immune response. The inflammatory response is coordinated 
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by an array of diverse mediators originating from diverse cell types. There is a large body of 

evidence in pharmacology suggesting that changes associated with the inflammatory response 

are responsible for significant changes in drug disposition (149). 

A considerable amount of attention has been given to the effect of inflammation on drug 

disposition mechanisms in recent years (150).  In the adult, effects of inflammation on 

transporters involved in uptake and disposition of various nutrients, mainly L-carnitine and drugs 

have been investigated (151, 152). In recent studies, it is reported that administration of 

endotoxin significantly decreased bile flow due to the effect of an inflammation-mediated down-

regulation of hepatic organic anion and renal glucose transporters (153, 154). As well, interferon-

γ (IFN- γ), a principle cytokine, is responsible for induction of the inflammatory response by 

increased expression of the di/tri-peptide transporter h-PEPT1 (SLC15A1) in cultured human 

intestinal cells (Caco-2) (155, 156). Pro-inflammatory cytokines, Tissue Necrosis Factor-Alpha 

(TNF)-alpha, Interklukin-6 (IL-6) and Interlukin-1 β (IL-1 β), decrease solute carrier (SLC) and 

multi drug resistant transporter (MRP) expression in primary human hepatocytes (157, 158). The 

expression profile of OCT1 (SLC22A1) is of particular interest because of its close relationship 

to OCTN family transporters (159, 160). OCT1 expression was decreased several fold when 

hepatocytes were exposed to IL-6 and IL-1β. It is reported that one of the major components 

responsible for developing the inflammatory response, TNF-α, induced a sustained decrease in 

Ntcp, Oatp1/Oatp1a1, and Bsep mRNA expression as well as a transient effect on expression of 

multidrug resistance associated protein 2 (Mrp2) (161). Studies reported that the decrease in 

mRNA expression of Octn2 transporter in rat colon is a significant factor for development of 

inflammatory bowel disease (162). Many transporters have been shown to be down regulated 

with LPS administration and in inflammatory diseases. Moreover, the effects of inflammation on 
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various drug transporters and the pharmacokinetic consequences of altered drug transporter 

expression have undergone some investigation (163).  

The identification of the complex relationship between inflammation and regulation of 

transporter expression is in its initial stages. However, evidence suggests the involvement of 

class II nuclear hormone receptors in transcriptional regulation in inflammatory conditions (164, 

165). The effects of endotoxin treatment on transporter expression and the activity of 

corresponding transcription factors have been studied in detail (166, 167). Endotoxin treatment 

leads to down regulation of sodium dependent taurocholate cotransporter Ntcp (Slc10a1) protein 

expression, mRNA levels, transcription initiation, and reduces nuclear levels of its key 

transactivators, hepatocyte nuclear factor 1 (HNF-1; TCF1) and the nuclear receptor heterodimer 

retinoid X receptor:retinoic acid receptor  (RXR:RAR) (168, 169). The mechanism of pro-

inflammatory cytokine-regulated regulation of transporter expression has been clearly 

investigated (170, 171).  However, the ability of the inflammatory stimulus to alter the ontogeny 

of enzymes and transporters involved in nutrient homeostasis in neonates has not received much 

attention. 

 

1.3. Rationale and Purpose: 
 

An important and yet to be answered question is the potential external factors that are 

likely to affect developmental programming of L-carnitine homeostasis. Many approaches are 

used to understand those factors involved in epigenetic regulation, but few studies evaluate 

importance of nutrition and macro- or micronutrients. Previous work in my laboratory assessed 

the impact of a drug on L-carnitine homeostasis pathways to provide perspective on the impact 
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of exogenous factors on the maturation of L-carnitine homeostasis processes and the possible 

long-term results of a drug exposure on the maturing physiological system.  

At present, very little information exists on the impact of disease on normal developmental 

programming. Inflammation is a common condition of neonatal disease and the adult literature 

clearly indicates that inflammation alters expression of various nutrient and xenobiotic 

transporters and enzymes. The purpose of this thesis is to resolve an important question, whether 

an inflammatory stimulus in neonates can cause significant changes in the ontogeny of L-

carnitine homeostasis and change the maturing physiological processes involved in L-carnitine 

homeostasis.  Regardless of the fact that we know much about L-carnitine homeostasis and 

biosynthesis and its physiological importance, we have much to learn about the mechanisms and 

regulatory signals of ontogeny of L-carnitine homeostasis mechanisms. Information about how 

factors associated with ontogeny change relative to each other under inflammatory conditions 

will offer an improved understanding of the processes involved in L-carnitine homeostasis and 

physiological maturation of organs crucially associated with fatty acid metabolism. The 

information which will be gathered from this research will have clinical significance.  

 

4. Hypothesis and Objectives  
 

At present, there is very little information on the potential ability of inflammation in 

neonates to cause alterations in the normal ontogeny of L-carnitine homeostasis mechanisms. 

The effect of inflammatory stimuli in neonates could differ depending on age, intensity of 

exposure, and the timing of that exposure during neonatal development. Such inflammatory 

stimulus effects may lead to adaptive approaches that alter the normal ontogenic pattern of L-

carnitine homeostasis in neonates. The overarching hypothesis of this thesis is as follows:  
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Hypothesis: An inflammatory stimulus will alter the ontogeny of L-carnitine homeostasis 

pathways and this depends upon when the inflammatory stimulus occurs in postnatal 

development. 

Objectives 
 

i. Evaluation of the effect of inflammation on Octn2 transporter expression in different 

age groups of neonates. 

ii. Evaluation of effect of inflammation on ontogeny and activity of enzymes involved in 

carnitine biosynthesis and whether this differs depending upon when in postnatal 

development the inflammatory stimulus occurs. 
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Chapter 2 
2. Materials and Methods 
 

2.1 Animals:  
 

Female Sprague-Dawley (SD) rats ordered at gestation day 14 (for pups at postnatal day 3, 

7 and 14) (n=4 of each postnatal stage) were obtained from Charles River Canada (St. Constant, 

PQ) and were housed singly in a room temperature and humidity controlled facility (22°C ± 2°C) 

on a 12-hour light:dark cycle (0700 h – 1900 h). All rats had free access to food (Prolab® RMH 

3000, Purina, Inc., Richmond, IN) and water throughout the study and were allowed a 7-day 

acclimatization period. All animal experimental procedures were approved by the University of 

Saskatchewan’s Animal Research Ethics Board, and adhered to the Canadian Council on Animal 

Care guidelines for humane and animal use. A MilliQ Synthesis (Millipore, Bedford, MA) water 

purification system provided purified deionized water. 

2.2 Materials 
 

Sterile 15 mL and 50 mL polypropylene centrifuge tubes, 12 well plates, 96 well plates, 

eppendorf tubes, bicinchoninic acid (BCA) protein assay kit, and 4 mL scintillation vials were 

purchased from Thermo Fisher Scientific (Ottawa, Ontario, Canada). Quantitative reverse 

transcription-polymerase chain reaction (QRT-PCR) tubes and two-step SYBR green RT-PCR 

kits were acquired from Applied Biosystems (Foster City, California, USA). Ribonucleic acid 

(RNA) isolation mini kit and reverse transcription kit were purchased from Qiagen Inc. (Toronto, 

Ontario, Canada). Enzyme-Linked Immuno Sorbent Assay (ELISA) kits for tumour necrosis 

factor alpha were purchased from Sigma-Aldrich (Toronto, Ontario, Canada). Adenosine 

triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP), creatine 

(Cr), creatine phosphate (CrP), L-carnitine, horse serum, trypsin, phosphate buffered saline, and 
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lipopolysaccharide (LPS: Escherichia coli strain O55:B5) were purchased from Sigma-Aldrich 

(Toronto, Ontario, Canada). High performance liquid chromatography (HPLC) grade methanol 

was purchased from Fisher Laboratories (Toronto, Ontario, CA). Highly purified deionized water 

was obtained from a MilliQ Synthesis water purification system (Millipore, Bedford, MA). All 

other solvents and reagents used were of the highest analytical grade available. 

2.3 Acute LPS Administration in Rat Pups 
 

Pregnant SD rats (14 days gestation) were obtained from Charles River and housed in pairs 

according to usual animal husbandry procedures. Two days prior to expected parturition, dams 

were housed individually. Pups culled from litters were humanely killed by isoflurane 

anaesthesia and exanguination by cardiac puncture. At postnatal day 3, 7 and 14, pups were 

removed from their dams for short duration (maximum 15 minutes). During this time body 

weight was measured. For each litter, half of the pups were randomly selected to receive an 

intraperitoneal injection (0.1 mL) of LPS and the other half saline (0.1 mL). LPS was 

administered at 0.1 mg/Kg bodyweight in 1 mL/Kg pyrogen-free saline. This dose (0.1 mg/Kg 

LPS) was reported in the literature to cause a febrile reaction in neonatal rat pups but not death 

due to endotoxaemia (172). The litter is considered an individual sample and four litters were 

used per postnatal treatment day (to give a sample size of n=4/group) and male/female pups from 

a single litter are considered a replicate within that individual sample.  

At 3 and 16 hours post-LPS administration, pups were humanely killed following 

isoflurane anesthesia and blood, heart, intestine, kidney and liver rapidly collected. The dosing 

schedules were considered from results obtained from careful review of literature (173) and from 

a pilot study to monitor short-term and long-term inflammatory effects and developmental 

maturation of L-carnitine biosynthesis pathways in rat pups (postnatal day 3, 7 and 14). Blood 
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samples were collected in glass tubes and left for 1 hour at 37°C to allow them to clot. The 

serum was separated from blood by centrifugation at 1700 x g for 20 minutes @ 4°C, and 

transferred to new eppendorf tubes with storage at -20°C. All tissues were snap frozen in liquid 

nitrogen and stored at -80ºC. Blood and tissues were pooled from 3-4 pups from a single dam at 

each time points such that the dam was considered the experimental unit. 

2.4 Serum Tumour Necrosis Factor – Alpha (TNF-α) Levels 
 

TNF-α activity in serum was measured using enzyme-linked immunosorbent assay 

(ELISA). Quantitative analysis of TNF-α was performed for pooled serum samples according to 

the manufacturer’s protocol. In brief, specific antibodies for rat TNF-α was coated on 96-well 

plate well. In the first step, standard samples were added to wells to develop a standard curve to 

calculate the TNF-α levels in samples. Standard samples were washed four times with wash 

buffer and then biotinylated anti-rat TNF-α antibody was added. The washing step was repeated 

to wash biotinylated anti-rat TNF-α antibodies, after washing away unbound biotinylated 

antibody, HRP-conjugated streptavidin was pipetted into the wells. A 3,3',5,5'-

tetramethylbenzidine (TMB) substrate solution was added to the wells and after one more 

washing step was employed, the color develops in proportion to the amount of TNF-α bound.  

The Stop Solution (0.2M Sulphuric acid) changes the color from blue to yellow, and the intensity 

of the color was measured at 450 nm. The same procedure was employed for serum samples. The 

slope and coefficient of determination values were found to be 0.2089 and >0.986, respectively. 

The standard curve range was linear (r2 >0.98) between 0.082-20.00 ng/mL.  

2.5 L-Carnitine Analysis in Serum and Heart 
 

Free L-carnitine present in rat serum and heart samples was measured using an HPLC-UV 

based pre column derivatization method that was previously established in our lab (136, 174). 
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The pooled heart samples were homogenized with phosphate buffer (50 mM, pH 7.4) and the 

homogenate was centrifuged (Accuspin Micro 17, Fisher Scientific) at 2500×g for 10 min at 4ºC. 

Proteins present in the heart homogenate supernatant or in serum samples were precipitated 

using acetonitrile:methanol in 9:1 v/v ratio.  For every 20 µL heart homogenate or serum, 180 µL 

of acetonitrile:methanol mixture was added. 300 mg mixture of Na2HPO4 and Ag2O (9:1 wt/wt) 

and then 300 mg of KH2PO4 was added and vortexed for 1 hour. Derivatization reagent (40 

mg/mL ρ-bromophenacyl bromide with 50 μL 40% tetrabutylammonium hydroxide solution) 

was added into the organic extract. The reaction mixture was incubated at 60ºC for 120 minutes 

in a water bath. The resulting reaction mixture was cooled immediately in cooled tap water and 

then centrifuged at 12,000×g for 15 min. Resulting final samples were filtered through micro 

filters into HPLC vials. L-Carnitine was analyzed using an Agilent 1200 HPLC system with 

Diode Array Detector (DAD), quaternary pump system and autosampler. Sample size of 10 μL 

was injected using an auto sampler onto a CN (cyano) column (HyperClone 5 μm, 250 × 4.6 

mm, Phenomenex, Torrance, CA) with detection wavelength set at 260 nm. The mobile phase 

(90% acetonitrile/10% mM citrate phosphate buffer, pH 3) was delivered at a flow rate of 1 

mL/min. Intra- and interassay accuracy and precision ranged from 0.4%- 9.6%. 

2.5.1 HPLC method validation parameters 
 

An HPLC method for free L-carnitine was validated using the standard addition method. 

The linearity of measurement was evaluated by analyzing different concentrations of the 

standard solutions of the L-carnitine hydrochloride in blank serum. The calibration curve was 

generated by subtracting peak area values obtained for standard samples from the peak area 

values of blank samples. The calibration curve was constructed by plotting average peak area 

against concentration and a regression equation was computed. The slope and coefficient of 
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determination values were found to be 12.602 and >0.99, respectively. The standard curve range 

was linear (r2 >0.99) between 1.03-66.7 μmol/L. 

2.6 Total mRNA Isolation and Quantitative RT-PCR Analysis   
 

Total RNA was extracted using RNeasy Midi Kits according to the manufacturer’s 

instructions. Frozen tissues were thawed for 15-20 min at room temperature. Cell lysate was 

homogenized with 350 μL of buffer RLT containing beta-mercaptoethanol (β-ME). To this 

homogenate, 1 volume of 70% ethanol was added to precipitate the nucleic acids. The cell lysate 

was applied to the RNeasy Midi column, and a series of buffers were added to remove the 

cellular contaminants according to the manufacturer’s instructions. The purified RNA was 

isolated from the column using a RNase-free water (30 μL). The concentration and purity of the 

isolated RNA was determined by using Nanoview spectrophotometer (GE Healthcare Life 

Sciences, Quebec, Canada). Total RNA was quantified by measuring the absorbance of a diluted 

RNA (RNA: RNase-free water) at 260 nm according to the following formula: 

Concentration of RNA = 40 μg/mL × A260 × Dilution factor 

RNA purity was assessed by measuring absorbance ratio (A260/A280) of a diluted sample of 

RNA (RNA: 10 mM TrisCl (pH-7.5)). Pure RNA has a ratio between 1.9- 2.1. All samples used 

for QRT-PCR were of high purity. Total RNA was stored at -80°C until analysis. 

2.6.1 Primer Design 
 

Gene sequences for Octn2 transporter, Tmlh, Cpt1b, Cpt2 and Bbh enzymes and β-actin 

were obtained from the National Center for Biotechnology Information Gene bank (NCBI) and 

specific primers were designed using Primer3 software (http://frodo.wi.mit.edu/) (Table 2.1). 

The primer pairs were selected using the following criteria: primer Tm (58–60°C), primer length 

(18–24 mer), limit repeats of guanosine and cytosine, and amplicon size (80–200 bp). 

http://frodo.wi.mit.edu/
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Table 2.1. Forward and reverse primer sequences, amplicon size, and predicted melt 

temperatures (Tm) for gene expression analysis of various transporters and enzymes important in 

the maintenance of L-carnitine homeostasis using QRT-PCR. 

 

Octn2: Organic cation/carnitine transporter 2; Bbh: Gamma-butyrobetaine hydroxylase; Tmlh: 

Trimethyllysine hydroxylase; CPt1b: Carnitine palmitoyltransferase 1b; Cpt2: Carnitine 

palmityolytransferase 2. 

 

Gene Accession 

number  

Forward primer  Reverse primer  Tm  

(ºC) 

Base 

pair 

β-actin  NM_001101.3  GGGAAATCGTG

CGTGCATT 

GCGGCAGTGGC

CATCTC 

86.1 76 

Octn2  NM_0006000.3  GATGGTGGAGA

AAGCCCAACGG 

GAGAGCATTTC

TGACTACACGC

AGG  

81.3 104 

Bbh NM_000576.2  ATTGAGCTGCA

TCCTCTGGT  

CATTCTGCCCC

ACCCTTCAT 

80.5 142 

Tmlh  NM_001166496  CAGCCCTCCTAC

AACTCCTG 

AGAGGTTCCTG

GACGATGTG 

81.6 190 

Cpt 1b  NM_145913.3  GGGCGTCAGAT

TTGGGGGTT 

TTGAAGATTAG

GAATGGGGAGC

G 

79.3 91 

Cpt2  NM_178498.3  GCCAGGTGAAC

CCTGCCACTTT 

GCTGGTTTGGG

GCTGGZGTGT 

83.2 145 
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2.6.2 Validation of the 2-ΔΔCT Method 
 

Primer pairs for QRT-PCR assays for Octn2 transporter, Tmlh, Cpt1b, Cpt2 and Bbh 

enzymes was initially validated to give PCR efficiency between 1.9 and 2.1 (standard curve 

using 3 serial dilutions of RNA). Serial dilutions of primer pairs (3 mM, 0.3 mM, 0.03 mM and 

0.03 M) were tested against different concentrations (2000 µg/mL, 1000 µg/mL, 500 µg/mL and 

250 µg/mL) of RNA samples. The best possible combination of primer concentration and 

template concentrations that produced the lowest Ct was selected. The PCR efficiency was 

determined from the slope of the standard curve generated with serial dilutions of cDNA 

template for each gene. It was calculated using the equation Ex = (10-1/slope) - 1, where Ex is the 

PCR efficiency. A slope of -3.32 is indicative of a PCR efficiency of 1 (100%). The PCR 

products of respective genes were verified by 2% agarose gel electrophoresis. The reactions were 

further optimized for usage of the 2-ΔΔCT method using β-actin as an endogenous standard. Only 

primers giving a PCR amplification close to 100% and the relative efficiencies between the 

target and β-actin that were approximately equal were used (i.e. the slope from log RNA 

concentration versus CT were < 0.1). Fold differences in mRNA expression between control and 

treated samples were calculated. 

QRT-PCR reactions consisted of two steps: 1) Reverse transcription (1 cycle at 48ºC for 30 

min) in order to make cDNA from RNA. 2) Real time PCR (Initial activation step (1 cycle at 

95ºC for 15 min) was followed by a three step thermal cycling (40 cycles; denaturing at 94ºC for 

15 s, annealing at 60ºC for 30 s, and extension at 60ºC for 30 s). Finally, a melt curve analysis 

from 65ºC to 95ºC at 0.5ºC/s was performed. 
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2.7 Liver γ-Butyrobetaine Hydroxylase (Bbh) Enzyme Activity 
 

γ-Butyrobetaine hydroxylase (Bbh) enzyme portion was extracted from homogenates of 

liver samples by employing two successive centrifugation steps. 100 mg of liver tissue was first 

homogenized in 100 mL of homogenization buffer (300 mM sucrose, 1 mM EGTA, and 50 mM 

Tris, pH 7.5). In the first centrifugation step, the liver homogenate was centrifuged at 13,000 ×g 

for 30 min at 4ºC. The supernatant of the first centrifugation step was transferred to new tubes 

and then centrifuged at 100,000 ×g for 1 h at 4ºC. The cytosolic fraction containing Bbh was 

then subjected to dialysis (molecular weight cutoff of 12,000 Da, D9777, Sigma, USA), and was 

placed in 5 L of dialysis buffer (75 mM KCl, 0.1mM DTT and 0.5 mM EDTA in sodium 

phosphate buffer, pH 7.4) in a glass beaker covered with parafilm for 12 hours at 4°C (175). The 

dialyzed samples (20 µL), which remains in dialysis tube, were tested for L-carnitine residue and 

the remaining dialysate was stored at -80ºC for Bbh testing (176). The optimal protein 

concentration, substrate concentration, and reaction time to give linear product formation were 

determined for each age group. For determination of Bbh activity in rat pup livers, 1 mL reaction 

buffer consisting of 0.2 mM γ-butyrobetaine, 20 mM potassium chloride, 3 mM 2-oxoglutarate, 

10 mM sodium ascorbate, 0.4 mg/mL catalase in 20 mM potassium phosphate buffer (pH 7.0) 

was prepared. The reaction was initiated by addition of 2 μL ferrous ammonium sulfate (FAS) 

(final concentration was 0.25 mM) and 20 μL enzyme into 78 μL reaction buffer and incubated 

for 25 min at 37ºC using a Boekel/Grant Orbital and Reciprocating Water Bath (Model ORS200, 

ExpotechUSA, Houston, TX). The reaction was then terminated by adding 10× volume of 

acetonitrile:methanol (9:1). The mixture was centrifuged at 13,000×g for 2 min and the 

supernatant was used for L-carnitine analysis by HPLC as described above. 
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2.8 Heart Carnitine Palmitoyltransferase (Cpt) Enzyme Activity 
 

Heart Cpt enzyme activity was measured using the spectrophotometric method previously 

established in the laboratory (177). Frozen heart tissue was homogenized in 10% (wt/v) 

homogenization buffer (20 mM HEPES, 140 mM KCl, 10 mM EDTA and 5 mM MgCl2, pH 7.4) 

supplemented with 3 mg nagarse using a Polytron homogenizer (Brinkmann Instruments, 

Rexdale, Canada). The homogenate was then centrifuged at 500×g for 10 min at 4°C. The 

supernatant was collected in new tubes and centrifuged at 9000×g for 35 min at 4°C. The pellet 

was then washed with the homogenization buffer without nagarse and centrifuged at 9000×g for 

35 min at 4°C. The pellets obtained from the above steps were resuspended in 200 µL isolation 

buffer without nagarse. Protein concentration was measured using the Advanced Protein Assay 

kit (Bio-Rad Laboratories Canada, Mississauga, ON) with bovine serum albumin as standard. 

The optimal protein concentration and reaction time to give linear product formation were 

initially determined. To determine total Cpt activity 20 μg protein was assayed in 200 μL ml 

reaction buffer containing 20 mM HEPES, 1 mM EGTA, 220 mM sucrose, 40 mM KCl, 0.1 mM 

5,5’-dithio-bis (2-nitrobenzoic acid) (DTNB), 1.3 mg/mL BSA, and 40 μM palmitoyl-CoA, pH 

7.4. The reactions were initiated by adding 1 mM L-carnitine and read at 412 nm after 5 min 

incubation at 37ºC using Synergy HT Multi- Mode Microplate Reader (Biotek instrument, USA). 

Cpt2 activity was determined using the same reaction conditions as total Cpt except 10 μL 

Cpt1 inhibitior, malonyl-CoA, was added into 200 μL of the reaction mixtures to obtain a final 

concentration of 10 μM. Cpt1 activity was calculated by subtracting the Cpt2 activity from the 

total Cpt activity. The Cpt activity was calculated as amount of CoASH released per min per mg 

protein, which is based on the 5-thio-2-nitrobenzoate formation from CoASH-DNTB reaction. 

The extinction coefficient for 5-thio-2-nitrobenzoate was 13.6 mM/cm (178, 179). 
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2.9 Heart High Energy Phosphate Substrate Determination 
 

High energy phosphate substrate levels (adenosone triphosphate (ATP), adenosine 

diphosphate (ADP), and adenosine monophosphate (AMP)) and creatine compound levels 

(creatine (Cr) and creatine phosphate (CrP)) in heart samples were measured using HPLC-UV as 

described previously by Olkowski et al (180). The 1200 series High Pressure Liquid 

Chromatography (HPLC) from Agilent Technologies (Mississauga, ON, Canada) was employed 

to carry out the following assays. The HPLC system is consisted of a series 1200 quaternary 

pump with an online degasser, autosampler and diode array detector. Processed samples (10 μL) 

were injected onto a C18 column (Pursuit XRs 5C18 250×3.0 mm) using auto sampler. The 

analytes were eluted under gradient conditions (table 5) at a flow rate of 0.7 mL/min and 

absorbance was monitored at 210 nm. The mobile phase was filtered through a 0.22 μm Nylon 

filter (Pall Scientific, Mississauga, ON) and degassed in an ultrasonic bath for 30 min prior to 

use. The column was maintained at 20°C and washed with water:methanol (50:50) after every 

use. 
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Table 2.2. Gradient assay of HPLC-UV method to measure Cr, Cr P, ATP, ADP and AMP levels 

in rat pup heart sample. 

Time 

(min)  

20 mM Phosphate 

buffer (pH-5.5) 

Methanol Water Flow rate 

(mL/min) 

0.0  100 0 0 0.7 

17.0  100 0 0 0.7 

17.5  0 95.0 5.0 0.4 

19.5  0 95.0 5.0 0.4 

20.0  0 5.0 95.0 0.4 

22.0  0 5.0 95.0 0.4 

23.0  100 0 0 0.5 

28.0  100 0 0 0.7 

 

For preparation of the standards, primary stock solutions for Cr, CrP, ATP, ADP, and AMP 

were prepared at a concentration of 1 mg/mL by dissolving in phosphate buffer (pH-5.5). From 

this stock solution, 10 μg/mL of Cr, CrP, ATP and ADP, and 20 μg/mL of AMP were prepared 

and diluted serially 2 times to get a standard curve for 6 different concentrations (10 to 0.312 

μg/mL for Cr, CrP, ATP, & ADP, and 20 to 0.625 μg/mL for AMP). High quality control 

(HQC), mid quality control (MQC) and low quality control (LQC) samples at 8, 4, and 0.5 

μg/mL for Cr, Cr P, ATP, and ADP and 16, 8, and 1.5 μg/mL for ATP were prepared using the 

stock solution independent of those concentrations used for the standard curve. Primary stock 
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solutions were stored at -20°C. The standard curve range was linear (r2 >0.99). Intra- and 

interday accuracy and precision was within 12%. 

For preparation of the samples, 100 mg of heart samples were homogenized in 1 mL 0.7 M 

ice cold perchloric acid (MW 100.46) with a final concentration 100 mg/mL. The homogenate 

was centrifuged at 12,000 rpm for 5 minutes. The supernatant was collected and neutralized with 

2M potassium hydroxide to bring pH near to 7.0. The supernatant was then filtered through 0.45 

μm filter (Nonsterile Syringe Filter Nylon, Chromatographic Specialties Inc. Brockville, Ontario, 

Canada) and 10 μL was injected onto a 3μ Luna C-18 (Phenomenex, Torrance, CA) column 

using gradient flow conditions. Two mobile phase components used included 20 mM potassium 

phosphate buffer (pH 7.0) and 100% methanol. The gradient was 100% phosphate buffer from 

0–6.5 min, 100% methanol from 6.5–12.5 min, and 100% phosphate buffer from 12.5 to 25 min 

for column re-equilibration, which was sufficient to achieve stable baseline conditions. The high 

energy phosphate substrates including CrP, Cr, ATP, ADP, and AMP were monitored at 210 nm.  

2.10 Statistical Analysis: 
 

The data received from different analysis were reported as mean ± standard error of the 

mean (SEM). Comparisons for all the parameters at different ages (Postnatal Days) and time 

points (treatment time)  were analyzed using two-way ANOVA with Bonferroni post-test. The 

effects of LPS on rat pups in each treatment duration period were analyzed by two-way 

ANOVA. Data used for this purpose include serum L-carnitine levels, mRNA expression level of 

Octn2, Tmlh mRNA expression, and Bbh mRNA expression and activity in control rats from 

postnatal day (PD) 3, 7, and 14.  
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Chapter 3 
 
 

3. Results 
 

To determine whether acute inflammatory stimuli can change the normal ontogeny of L-

carnitine homeostasis in neonates, rat pups at different age (PD3, 7 and 14) were treated with 

LPS. mRNA and enzyme activity expression levels of important components of L-carnitine 

homeostasis were evaluated at 3 h and 16 h post injection to capture early mRNA expression 

changes (3 h) and changes in enzyme activity that takes time to occur (16 h) following the 

inflammatory stimulus. The results section is divided into two parts: i) Ontogeny of L-carnitine 

homeostasis, and ii) Effect of inflammation on L-carnitine homeostasis. 

 

3.1 Ontogeny of L-Carnitine Levels, Octn2, Tmlh and Bbh 
 

The ontogenesis of critical components of the L-carnitine homeostasis was examined by 

evaluation of serum and heart free L-carnitine concentration as well as mRNA expression of 

Octn2, Bbh and Tmlh in different tissues of rat pups of different postnatal ages. Compared to 

PD3, (average 20 mmol/L), serum free L-carnitine concentrations were significantly higher at 

PD7, (average 30 mmol/L), which was further increased to an average value of 34 mmol/L at 

PD14 (Figure 3.1). Heart free L-carnitine levels also increased with postnatal age, but showed a 

significant increase between PD7 and PD14 (Figure 3.2).  
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Figure 3.1 Mean ± SEM free L-carnitine concentration in rat serum (n = 4) at postnatal day 3, 7 

and 14 (3 hour control – white bar; 3 hour treatment – light grey bar; 16 hour control – dark grey 

bar; 16 hour treatment – black bar).  L-Carnitine concentration was determined using HPLC-UV 

as described in the text. Two-way ANOVA with Bonferroni post hoc test was used for the 

comparisons between treatment groups and one-way ANOVA was used for the comparisons 

between ages and treatment. Bars with an asterick indicate significant difference relative to 

control, P<0.05. 
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Figure 3.2 Mean ± SEM free L-carnitine concentration in rat heart samples (n = 4) at postnatal 

day 3, 7 and 14 (3 hour control – white bar; 3 hour treatment – light grey bar; 16 hour control – 

dark grey bar; 16 hour treatment – black bar). L-Carnitine concentration was determined using 

HPLC-UV as described in the text. Two-way ANOVA with Bonferroni post hoc test was used 

for the comparisons between ages and treatment and bars with astericks indicate significant 

difference relative to controls, P<0.05. 

 

Heart and kidney Octn2 expression was increased with increasing postnatal age. Kidney 

and heart Octn2 mRNA expression were increased 8- and 13-fold between PD 3 and PD 14, 

respectively, although increases in expression in heart between PD 3 and PD 7 were not 

statistically significant (Figure 3.3). In the intestine, Octn2 expression was low at PD 3 and 

expression decreased insignificantly at PD 7 (Figure 3.3). Kidney and liver Tmlh mRNA 

expression increased between PD 3 and PD 14 (Figure 3.4). Kidney Tmlh mRNA expression 
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significantly increased postnatally (Figure 3.5). Bbh mRNA expression levels were increased 

insignificantly between PD 3 ad PD 7; however, significant increase (35-fold), in Bbh mRNA 

expression was found at PD 14. Bbh enzyme activity showed 2.5 and 5 times increase at PD 7 

and PD 14 relative to PD 3, respectively (P<0.05) (Figure 3.5 B). 

 

 

Figure 3.3 Mean ± SEM organic cation/carnitine transporter 2 (Octn2) (PD 3 – white bar; PD 7 

light grey bar; PD 14 – black bar) mRNA expression levels in rat pup kidney, heart, and intestine 

at different postnatal ages (n=4). mRNA expression was normalized to ß-actin. Bars with no star 

indicate no significant difference relative to PD 3, P<0.05. 
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Figure 3.4 Mean ± SEM Tmlh (PD 3 – white bar; PD 7 light grey bar; PD 14 – black bar) mRNA 

expression levels in rat pup kidney and liver at different postnatal ages (n=4). mRNA expression 

was normalized to ß-actin. Bars with no star indicate no significant difference relative to PD 3, 

P<0.05.  
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Figure 3.5 Mean ± SEM Bbh (PD 3 – white bar; PD 7 light grey bar; PD 14 – black bar) mRNA 

expression levels in rat pup liver (A) and liver Bbh activity (B) at different postnatal ages (n=4). 

mRNA expression was normalized to ß-actin. Bars with no star indicate no significant difference 

relative to PD 3, P<0.05. 

 

3.2 TNF-α Levels: 
 

To confirm the induction of inflammation, serum samples obtained from LPS and saline 

treated rat were evaluated for TNF-α activity. Serum TNF-α at 3 h was tested in treatment and 

control animals (Figure 3.6). Significant increases in serum TNF-α concentration were observed 

at 3 hours post LPS administered treatment groups at all age groups of rats. The TNF-α 

concentration was increased approximately 25-, 22-, and 42-times in 3 hours post LPS 

administered in PD 3, PD 7, and PD 14 rat pups, respectively.  

B 
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Figure 3.6 Mean ± SEM TNF-α concentrations in rat serum (Control Group – white bar; 

Treatment Group – grey bar). Student T-test was used for the comparisons between treatment 

groups and bars with three astericks indicate significant difference, P<0.05. 

 
3.3 Effect of acute inflammation on ontogeny of L-carnitine homeostasis mechanism 
 

LPS administration caused changes in free L-carnitine levels in serum and heart (Figure 

3.1). Serum free L-carnitine levels were significantly decreased in all LPS treated groups of all 

postnatal age rat pups. LPS caused no change in free L-carnitine levels in 3 h post LPS 

administration treatment group of PD 14 rat pups. Free L-carnitine levels in heart were 

significantly decreased in all LPS treated groups of all postnatal age rat pups. LPS caused no 

change in heart free L-Carnitine levels in 3 h post LPS administration treatment group of PD 3 

rat pups (Figure 3.2). 
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3.4 Effect of LPS on mRNA expression of Octn2 transporter in kidney, liver, heart and 

intestine 

 

To examine the ontogenesis of critical components of the L-carnitine homeostasis pathway 

we conducted an mRNA expression of one of the main components of the homeostasis pathway, 

Octn2, in different tissues of rat pups at 3 h and 16 h post LPS administration at PD 3, PD 7 and 

PD 14. LPS treatment caused a significant decrease in kidney, heart and intestinal Ocnt2 

expression (p<0.05) (Figure 3.7). Kidney Octn2 expression was decreased by 26, 25 and 24 

percent relative to control in 16 h post LPS administration in rats at PD 3, PD 7, and PD 14, 

respectively (Figure 3.7 A). Except in the 3 h post LPS administration treatment group at PD14 

rat pups, mRNA levels decreased by 20 percent, Octn2 expression levels in kidney did not show 

statistically significant changes in any remaining age groups (Figure 3.7 A). Intestinal Octn2 

expression was decreased by 45, 75 and 60 percent at 3 h post LPS administration in PD 3, PD 7 

and PD 14 rat pups, respectively (Figure 3.7 B). Intestinal Octn2 expression is decreased by 60, 

75 and 90 percent in 16 h post LPS administration in rat pups at PD 3, PD 7 and PD 14, 

respectively. Octn2 expression levels in heart and intestine were decreased significantly in 3 h 

post LPS administration and 16 h post LPS administration treatment groups of all postnatal age 

groups (figure 7.3 C). Heart Octn2 expression was decreased by 25, 50 and 27 percent at 3 h post 

LPS administration in rat pups at PD 3, PD 7 and PD 14, respectively (Figure 7.3 C). Heart 

Octn2 expression was decreased by 40, 80 and 70 percent at 16 h post LPS administration in rat 

pups at PD 3, PD 7 and PD 14, respectively (Figure 3.7 C). Except in the 16 h post LPS 

administration treatment group for PD 7 and PD 14, where a 64 percent decrease in Octn2 

mRNA expression levels was observed in liver, expression changes were not statistically 



53 
 

significant in both treatment groups (3 h post LPS administration and 16 h post LPS 

administration) at all postnatal ages (Figure 3.7 D).  
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Figure 3.7 Mean ± SEM organic cation/carnitine transporter (Octn2) mRNA expression (white 

bar – control; light grey bar – 3 h post LPS administration; dark grey bar – 16 h control; black 

bar – 16 h post LPS administration) in rat kidney (panel A), intestine (panel B), heart (panel C), 

and liver (panel D) at postnatal day 3, 7 and 14 (n = 4). mRNA expression was normalized to β-

actin and fold difference (FD) was determined by using 2-ΔΔCT method. Two-way ANOVA with 

Bonferroni post hoc test was used for the comparisons between ages and treatments and bars 

with the same symbols indicate no significant difference, P<0.05. 
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3.5 Effect of LPS on mRNA expression and activity of Bbh in liver 
 

LPS caused changes in Bbh mRNA expression levels and Bbh enzyme activity in all 

treatment groups (P<0.05) (Figure 3.8). Liver Bbh mRNA expression was decreased 

significantly (p<0.05) in all LPS treatment groups of all age groups, except in the 3 h post LPS 

treatment group at PD 3 and PD 14 (p>0.05) (Figure 3.8 A). Liver Bbh mRNA expression was 

significantly decreased by 32 and 25 percent in the 16 h post LPS treatment groups at PD 3 and 

PD 14, respectively, while it was significantly decreased 26 and 95 percent in both 3 h and 16 h 

post LPS treatment groups of PD 7, respectively. LPS caused no changes in liver Bbh activity in 

all treatment groups at PD 14 (Figure 3.8 B). At PD 3, LPS caused a significant decrease in Bbh 

activity in 3 h post LPS administration group (57 %) and in the 16 h post LPS administration 

treatment group (73 %). At PD 7, LPS only significantly decreased the 16 h post LPS 

administration treatment group (44 %) (Figure 3.8 B). 
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Figure 3.8 Mean ± SEM rat liver gamma-butyrobetaine hydroxylase (Bbh) (A) mRNA 

expression and (B) activity at postnatal day 3, 7 and 14 (n = 4) (white bar – control; light grey 

bar – l3 h post LPS administration; dark gray bar – 16 h control; black bar – 16 h post LPS 

administration). mRNA expression was normalized to β-actin and fold differences (FD) were 

determined by using 2-ΔΔCT method. Bbh activity was measured by quantifying the conversion of 

γ-butyrobetaine to L-carnitine by HPLC-UV. Two-way ANOVA with Bonferroni post hoc test 

was used for the comparisons between ages and treatments and bars with the same letters 

indicate no significant difference, P<0.05. 
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expression was decreased by 30 and 90 percent at 3 h and 16 h post LPS administration at PD 7, 

respectively. Liver Tmlh mRNA expression was decreased by 60% at 3 h post LPS 

administration at PD 14. LPS caused no changes in kidney Tmlh mRNA expression in all 

treatment groups at PD 3 and at 3 h post LPS treatment group at PD 7 (Figure 3.9 B). Tmlh 

mRNA expression in kidney was decreased by 45% at 3 h post LPS administration in in 16 h 

post LPS administration treatment groups at PD 3 by 35% in 16 h post LPS administration 

treatment groups at PD 14, and by 90% at 16 h post LPS administration treatment group at PD 7 

(Figure 3.9 B). 
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Figure 3.9 Mean ± SEM mRNA expression of Tmlh in rat pups (in liver (A) and kidney (B)) at 

postnatal day 3, 7, and 14 (n = 4) (white bar – control; light grey bar – 3 h post LPS 

administration; dark gray bar – 16 h control; black bar – 16 h post LPS administration treatment). 

mRNA expression was normalized to β-actin and fold difference (FD) was determined by using 

2-ΔΔCT method. Two-way ANOVA with Bonferroni post hoc test was used for the comparisons 

between ages and treatment bars with astericks indicate significant difference relative to control, 

P<0.05.   

 

3.7 Effect of LPS on mRNA expression and activity of Ct1b and Cpt2 in heart 
 

LPS caused a significant increase (3.6 fold in 3 h post LPS administered group and 3.8 fold 

in 16 h post LPS administered group) in heart Cpt1b mRNA expression levels at PD 7 (Figure 

3.10 A). Except in PD 7 treatment groups, heart Cpt1b mRNA expression levels did not show 

significant changes at all postnatal ages (figure 3.10 A). LPS caused no significant changes in 

heart Cpt2 mRNA expression in any of the treatment groups (figure 3.10 B)). 
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Figure 3.10 Mean ± SEM mRNA expression of heart carnitine palmitoyltransferase 1b (Cpt1b) 

(A) and carnitine palmitoyltransferase 2 (B) in rat pups at postnatal day 3, 7, and 14 (n = 4) 

(white bar – control; light grey bar – 3 h post LPS administration; dark grey bar – 16 h control; 

black bar – 16 h post LPS administration). mRNA expression was normalized to β-actin and fold 

difference (FD) was determined by using 2-ΔΔCT method. Two-way ANOVA with Bonferroni 

post hoc test was used for the comparisons between ages and bars with astericks indicate 

significant difference relative to control, P<0.05.   

 

LPS caused no significant changes in heart Cpt1b and Cpt2 enzyme activity levels at PD 3, PD 7 

and PD 14. (Figure 3.11). 

 

 

 

day 3 day 7 day 14
0.0

0.5

1.0

1.5

2.0

2.5

Postnatal Age (days, 3,7 and 15)

C
pt

2 
m

R
N

A 
ex

pr
es

si
on

in
 ra

t p
up

 h
ea

rt
(R

U
F*

ng
 m

R
N

A-1
)

co
m

pa
re

d 
to

 b
et

a 
ac

tin

B 



60 
 

 

 

 

 

Day 3 Day 7 Day 14
0

1

2

3

4

Postnatal Age

Cp
t2

 e
nz

ym
e 

ac
tiv

ity
in

 ra
t p

up
 h

ea
rt

(n
m

ol
e/

m
in

/m
g 

pr
ot

ei
n)

 

 

Figure 3.11 Mean ± SEM enzyme activity of heart carnitine palmitoyltransferase 1b (Cpt1b) (A) 

and carnitine palmitoyltransferase 2 (Cpt 2) (B) in rat pups at postnatal day 3, 7, and 14 (n = 4) 

(white bar – control; light grey  bar – 3 h post LPS administration; dark gray – 16 h control; 

black bar – 16 h post LPS administration treatment). Two-way ANOVA with Bonferroni post 
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hoc test was used for the comparisons between ages and treatment and bars with asterisks 

indicate significant difference, P<0.05.   

 

3.8 Effect of LPS on high energy phosphate substrate concentration in heart 
  

Significant changes in heart creatine phosphate was observed in 16 h post LPS 

administered treatment groups in all age groups of rats. However, significant changes in heart 

creatine, ATP, and ADP levels were not observed in LPS treated rat pups. At 16 h post LPS 

administration, creatine phosphate was decreased by 34% in PD 3 rat pups, 25% in PD 7 rat 

pups, and 30% in PD 14 rat pups (Figure 3.12). 

 

 

 

3 7 14
0

1

2

3

4

** ***

Postnatal Age (days)

H
ea

rt 
cr

ea
tin

e 
ph

os
ph

at
e

co
nc

en
tra

tio
n

( µ
g/

m
L)



62 
 

 

 

 

 

3 7 14
0

1

2

3

4

Postnatal Age (days)

H
ea

rt 
cr

ea
tin

e 
co

nc
en

tra
tio

n
( µ

g/
m

L)

3 7 14
0

1

2

3

4

*

Postnatal Age (days)

H
ea

rt 
AT

P 
co

nc
en

tra
tio

n
( µ

g/
m

L)



63 
 

 

Figure 3.12 Mean ± SEM heart high-energy phosphate substrate concentration in rat pups at 

postnatal day 3, 7 and 14 (n = 4) (white bar – control; light grey bar – 3 h post LPS 

administration; dark gray bar – 16 h control; black bar – 16 h post LPS administration treatment). 

The heart high energy phosphate substrate levels including creatine (Cr), creatine phosphate 

(CrP), ATP, and ADP were measured with HPLC-UV method as described by Olkowski et al. 

[24]. Two-way ANOVA with Bonferroni post hoc test was used for the comparisons between 

ages and treatment and bars with an asterisk indicate significant difference, P<0.05. (Cr – 

creatine; CrP -creatine phosphate). 
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Chapter 4 

4. Discussion 

The nutritional requirements for normal growth and development are often affected by 

ontogenic processes of several nutritional pathways during postnatal development. The 

developmental changes in these nutrient homeostasis pathways are usually genetically 

programmed (181). However, these processes can be affected by exogenous factors such as 

dietary components, environmental factors including chemicals, pathological conditions, and 

therapeutic drugs.  Since my laboratory is interested in understanding how external factors 

influence the ontogeny of important nutrient homeostatic processes, my thesis work involved the 

evaluation of the effect of acute inflammation on the developmental maturation of L-carnitine 

homeostasis pathways.  

I used the rat in my work as a previous study in the lab provided the ground work for the 

ontogeny of a number of L-carnitine homeostasis mechanisms in the rat (136). Previous studies 

on evaluation of key pathways in the L-carnitine homeostasis pathway provided the basis from 

which I conducted further evaluations regarding the effects of pathological factors on L-carnitine 

status during postnatal development and possible long-term consequences of any disturbance in 

the normal ontogeny of these pathways (182). My laboratory’s previous study did not assess 

potential gender effects on the ontogeny of and effects of a drug on L-carnitine homeostasis 

pathway development. Ethical considerations precluded an evaluation of gender effects in the 

current study as more that twice as many animals would be necessary in the study design. This 

may represent an important limitation of study design that we acknowledged at the start of the 

study. The information gleaned from my thesis work will begin the journey in understanding 
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how exogenous factors may alter maturation and the possible long-term consequences of such 

alterations.  

As mammalian foetuses transition to extrauterine life, the umbilical supply of essential 

nutrients is cut off, including glucose which serves as the major energy fuel of the fetus. During 

the neonatal period, fatty acid oxidation becomes the main source of energy for a number of 

tissues (183). A sufficient supply of L-carnitine is essential for efficient mitochondrial fatty acid 

utilization, as this nutrient facilitates the movement of long-chain fatty acids across the 

mitochondrial membrane making them available for β-oxidation. The foetus liver stores 

significant levels of L-carnitine during late gestation, and such stores assure adequate levels in 

the immediate postpartum period (136). However, these tissue stores quickly deplete, and the L-

carnitine homeostasis mechanisms begin to undergo maturational changes to ensure the 

physiological system has adequate L-carnitine to meet the energy needs of various tissues.   

Postnatal increases in serum free L-carnitine is reported in the literature and these increases 

correlate with maturation of a number of enzymes and transporter systems that critically 

determine L-carnitine levels in the body (136). Previous studies on evaluation of key pathways in 

the L-carnitine homeostasis pathway (136) provided a basis from which we conducted further 

evaluations regarding the effects of inflammation on L-carnitine status during postnatal 

development and this concept may be extended to evaluate possible long-term consequences of 

any disturbance in the normal ontogeny of these pathways. This corroboration was essential as it 

shows ability to reproduce previous work in the laboratory and suggests that outcomes of my 

evaluations regarding LPS administration have important value. Since very little work has been 

published in the literature regarding the effects of inflammation on the transporters and ontogeny 

of L-carnitine homeostasis, I have no basis for comparison. One study conducted in my 
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laboratory evaluated the effect of inflammation on activity of nutrient transporter (manuscript 

submitted), but my thesis work represents novel information. I was not able to repeat the 

evaluations to ensure reproducibility of experimental outcomes during my graduate program. 

Lower serum free L-carnitine levels in the early postnatal period is, in part, due to the 

limited capacity for endogenous biosynthesis by the young neonate (135).  As noted in other 

studies (90), my study showed that hepatic γ-Bbh and Tmlh mRNA expression and γ-Bbh 

activity was significantly lower at early postnatal development in rat pups, consistent with the 

lower serum free L-carnitine concentrations observed at younger neonatal ages.  The increase in 

serum free L-carnitine levels in rat pups with advancing age was matched with the maturation of 

hepatic γ-Bbh and Tmlh, suggesting that enhancements in endogenous L-carnitine biosynthesis 

contributes, in part, to the postnatal increase in L-carnitine levels in the body. However, 

evaluation of other critical mechanisms responsible for L-carnitine homeostasis suggests that 

maturation of other processes, namely renal reabsorption of L-carnitine, additionally contributes 

to the postnatal rise in serum L-carnitine. 

Absorption of dietary sources of L-carnitine requires the function of several transporter 

systems expressed at the gastrointestinal epithelial barrier. Expression of duodenal Octn2 did not 

change with postnatal development. This was not consistent with increases in Octn2 expression 

noted in the literature, but could be the result of different rat strains (Sprague Dawley vs. Wistar) 

or different portion of the small intestine (jejunum or ileum vs. duodenum) (143). I did not 

evaluate protein expression levels nor measure transporter activity in the intestine; hence, I 

cannot conclude with certainty whether the lack of changes in mRNA expression with 

development may suggest that the absorptive capacity of L-carnitine by these transporter systems 

remains unchanged.  
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In my study renal Octn2 expression was increased during postnatal development in the rat, 

which was consistent with my laboratory’s previous study and the literature (184). The increase 

in renal Octn2 expression was matched with the postnatal increase in serum L-carnitine levels. 

Hence, in addition to maturation of endogenous biosynthesis, maturation of renal Octn2 also has 

a significant role in the postnatal pattern of serum L-carnitine development. Overall, our data 

suggests the developmental changes in hepatic γ-Bbh and Tmlh expression and renal Octn2 

expression may contribute to the postnatal increase in serum L-carnitine levels.  

The highest concentrations of L-carnitine are primarily found in serum (136). In my study, 

heart L-carnitine levels increased during postnatal development (Figure 3.2). Evaluation of the 

expression of Octn2 in pup heart tissue also suggested that this postnatal increase corresponds to 

enhanced heart Octn2 expression with advancing postnatal age. The neonatal and adult heart 

relies on fatty acids as a principal energy substrate (185). Hence, L-carnitine has a significant 

role in energy production in neonatal cardiac tissue. The dramatic increase in fatty acid oxidation 

rates in early heart development after birth has been attributed to an increase in L-carnitine 

levels. Although we observed a significant increase in L-carnitine levels in the heart with 

advancing age of the neonate, cardiac ATP levels remained constant through postnatal 

development. My studies showed a trend towards increasing ATP levels but this was not 

significant. Interestingly, I found that Cpt1b and Cpt2 enzyme levels as well as creatine 

phosphate and creatine levels increased with postnatal development, which was consistent with 

my laboratory’s previous study (136). Unfortunately, I was unable to determine AMP levels with 

reliability due to HPLC assay interference as such information is important in understanding the 

energy charge of a tissue. These ontogenic changes suggest an increasing capacity of the heart to 

utilize fatty acids for energy production with advancing neonatal age. This maturation does 
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suggest that exogenous impacts (such as disease and drugs) that influence these systems, either 

through direct inhibition or altered genetic regulation, may have significant impacts on the ability 

of the heart to generate ATP through fatty acid oxidation. The overall significance of such 

developmental changes is not clear and requires investigation. 

In addition to my evaluation of the ontogeny of L-carnitine homeostasis mechanisms, the 

main objective of the work carried out in my thesis was to evaluate the effect of inflammation, a 

significant clinical factor, on the ontogeny of L-carnitine homeostasis mechanisms in neonates. 

The pathogenesis of inflammation due to the administration of LPS may involve different 

inflammatory stimuli, which in turn may alter the natural ontogenic process of L-carnitine 

homeostasis. Specifically, inflammation-mediated alteration in the expression and function of 

Octn2, enzymes involved in endogenous biosynthesis, and the enzymes involved in 

mitochondrial shuttling of acylcarnitines may have significant consequences on serum and tissue 

levels of L-carnitine and on ability of organs to utilize fatty acids for ATP generation. In my 

study, I conducted a systematic comparison of the gene expression and activity, where possible, 

of Octn2, Bbh, Tmlh, Cpt 1b and Cpt 2 enzymes between control and LPS treated rat pups at 

three different postnatal ages. LPS is a commonly employed substance to elicit an inflammatory 

response (186), and I utilized a neonatal rat inflammatory model well established in the literature 

to meet this objective (173). We have used SD rats at postnatal day 3, 7 and 14, as these ages 

provide several advantages when monitoring the ontogenic changes of L-carnitine mechanisms. 

In the rat, endogenous biosynthesis matures at PD 8 (91, 187, 188). Hence, these age groups 

capture the ontogeny of the L-carnitine biosynthetic enzymes and other key L-carnitine 

homeostasis mechanisms prior to and following maturation of endogenous L-carnitine 

biosynthesis. My findings can be used to postulate and predict the potential outcomes of the 
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effect of inflammation on ontogenic mechanisms. However, my work cannot elucidate the exact 

impact of the changes caused by an inflammatory stimulus and their overall contribution to L-

carnitine homeostasis during development and further studies will be required to clarify 

contributions. 

Several findings were generated in my work, which are summarized in the following 

discussion.  My thesis work suggests that development of inflammation in neonates can alter the 

normal ontogeny of L-carnitine homeostasis. My findings suggest that inflammation has 

statistically significant effects on the main elements of L-carnitine homeostasis and that 

inflammation is likely to have significant clinical relevance and relevance to the overall 

development of the neonate as it proceeds towards adult life stages. 

Acute inflammation caused a significant decrease in free L-carnitine levels in serum and 

heart tissue. Based on the results obtained from Octn2 gene expression experiments, the decrease 

in mRNA expression levels of renal and intestinal Octn2 might be the principle cause of 

depletion of serum and heart L-carnitine levels. Renal reabsorption of L-carnitine from the 

urinary filtrate plays a significant role in maintenance of L-carnitine levels in the body. Almost 

95% of the excreted L-carnitine is reabsorbed by transporters expressed in the proximal tubules 

of the kidney with Octn2 as the principal transporter involved in this process (189, 190). In my 

study renal Octn2 expression decreased following LPS administration in the rat pup. The 

decrease in renal Octn2 expression corresponded strongly with decrease in serum L-carnitine 

levels suggesting that renal Octn2 plays a significant role in the postnatal pattern of serum L-

carnitine development. In addition to kidney Ocnt2 levels, gene expression levels of intestinal 

Octn 2 might be an additional cause of the reduction in serum L-carnitine concentration.  

Absorption of dietary L-carnitine requires the function of several transporter systems expressed 
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at the gastrointestinal epithelial barrier. Expression levels of duodenal Octn2 were decreased 

with LPS administration and this might result in the decrease in L-carnitine absorption from the 

milk following suckling. The decrease in heart Octn2 gene expression (in conjunction with lower 

serum L-carnitine levels) likely explains the reduction in heart L-carnitine levels with LPS 

administration, since Octn2 mediates the uptake of L-carnitine into heart tissue.  

My study corroborated previous investigations in that hepatic γ-Bbh mRNA expression and 

activity levels were low in the first days of life and matured with postnatal age (187, 188).  The 

maturation of hepatic γ-Bbh contributes to the postnatal increase in L-carnitine levels in the 

body. However, my study on the effect of acute inflammation suggests that maturation of hepatic 

γ-Bbh was disturbed and this might play a significant role in the reduction of serum L-carnitine 

levels. Although inflammation caused alterations in hepatic γ-Bbh mRNA levels at all three 

postnatal age groups, hepatic γ-Bbh enzyme activities were not affected at PD 14. These results 

correlate with the serum L-carnitine levels at PD 14 post LPS administration suggesting that the 

γ-Bbh enzyme had matured to maximum levels prior to PD 14. Hepatic and renal Tmlh mRNA 

expression levels were significantly lower at early postnatal development in rat pups and 

matured with postnatal age. My study on the effect of acute inflammation suggests that 

maturation of hepatic and renal Tmlh mRNA expression changed with an inflammatory stimulus 

at all postnatal age groups. Without evaluation of Tmlh activity, it is difficult to speculate 

whether reduction in Tmlh mRNA expression translates into reductions in Tmlh activity. The 

literature suggests Tmlh is a rate-determining enzyme in the biosynthesis of L-carnitine (191). 

Consequently, any reduction in Tmlh activity following inflammation may result in a lowered 

capacity to synthesize L-carnitine de novo.  This could contribute to inflammation mediated 

reductions in serum L-carnitine levels noted in my study. 
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Since LPS causes differential changes in transporters that mediate the transport of critical 

substrates used in the generation of cellular energy, I next evaluated whether such changes could 

result in differences in mitochondrial ATP production. LPS significantly decreased CrP and 

caused a non-significant decrease in ADP levels. Reductions in CrP is generally considered a 

pathological indicator. Interestingly, in a previous study in the lab, chronic cefepime 

administration (cefepime is a competitive inhibitor of Octn2) caused histopathological changes 

in the heart at an early postnatal age, but not at older postnatal ages (136). This study also 

indicated reductions in CrP with chronic cefepime administration. Consequently, reductions in 

heart CrP may suggest early pathological changes with LPS administration. Furthermore, the 

decreased expression of Octn2 in LPS treated rats may suggest a reduction in the intracellular 

supply of L-carnitine and reduction in fatty acid oxidation. To maintain cellular ATP levels, 

heart tissue may have to increase glycolysis (and thus oxidative phosphorylation) to compensate 

for the lowered energy production by fatty acid oxidation. This may explain the minimum 

changes in ATP levels in LPS challenged rats.  

         Based on the results obtained from the present study, inflammation shows time dependent 

effect on the ontogeny of L-carnitine homeostasis in early neonatal stages. The overall results 

from the current study suggests that LPS induced inflammation has profound effect on ontogeny 

of L-carnitine homeostasis in early postnatal stages (PD 3 and PD 7). Since most of the elements 

in L-carnitine homeostasis are undergoing ontogeny before PD 14, inflammation caused less 

effects on PD 14 rats when compared to earlier postnatal age groups. 

L-carnitine homeostasis pathways underwent significant ontogenesis during postnatal 

development in the rat. However, the exact relationship between these pathways and their 

contribution to L-carnitine homeostasis during development is not completely known and further 
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studies are required to clarify their contributions. Such a clarification is necessary to understand 

the impact of exogenous and endogenous factors on L-carnitine status during development. 

 

4.1 Future Directions  
 

• The individual role of pro-inflammatory cytokines in LPS induced inflammation and its 

role in modulating the transporter expression at different stages of L-carnitine 

ontogenesis will be known by performing in vitro studies with radiolabelled substrates. 

• More experiments should be carried out to estimate the time required for translational 

changes in mRNA to provide a clearer picture on dosing and time elapse in similar 

experiments in future. 

• Experiments to assess cardiac oxygen consumption and high energy substrate levels 

should be carried for understand how inflammation modulates substrate energy levels and 

L-carnitine dependent energy producing pathways at the molecular level.  

• Radiolabelled studies are required to assess the Octn2 transporter activity in heart and 

kidney to determine whether inflammation-mediated reduction in transporter mRNA 

expression correlates with reduction in transporter activity.  

• In the neonate, my work suggested that inflammation resulted in changes in L-carnitine 

homeostasis pathways depending on timing and duration of inflammation to postnatal 

age. However, whether these changes are permanent or transient are unknown. Future 

studies are needed to investigate the potential for metabolic programming of L-carnitine 

and other nutrient homeostasis pathways following inflammation and the possible long-

term consequences of such interactions on the risk for adult onset disease. 
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• Separate experiments of similar kind should be conducted on male and female animals to 

classify unknown functional differences between the two genders. 
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