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ABSTRACT

In service-oriented environments, services are put together in the form of a workflow with the aim

of distributed problem solving. Capturing the execution details of the services’ transformations is a

significant advantage of using workflows. These execution details, referred to as provenance infor-

mation, are usually traced automatically and stored in provenance stores. Provenance data contains

the data recorded by a workflow engine during a workflow execution. It identifies what data is

passed between services, which services are involved, and how results are eventually generated for

particular sets of input values. Provenance information is of great importance and has found its

way through areas in computer science such as: Bioinformatics, database, social, sensor networks,

etc.

Current exploitation and application of provenance data is very limited as provenance systems

started being developed for specific applications. Thus, applying learning and knowledge discovery

methods to provenance data can provide rich and useful information on workflows and services.

Therefore, in this work, the challenges with workflows and services are studied to discover the

possibilities and benefits of providing solutions by using provenance data.

A multifunctional architecture is presented which addresses the workflow and service issues by

exploiting provenance data. These challenges include workflow composition, abstract workflow

selection, refinement, evaluation, and graph model extraction. The specific contribution of the pro-

posed architecture is its novelty in providing a basis for taking advantage of the previous execution

details of services and workflows along with artificial intelligence and knowledge management

techniques to resolve the major challenges regarding workflows. The presented architecture is
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application-independent and could be deployed in any area.

The requirements for such an architecture along with its building components are discussed.

Furthermore, the responsibility of the components, related works and the implementation details of

the architecture along with each component are presented.
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CHAPTER 1

INTRODUCTION

In this chapter, the basic concepts regarding the area of study are briefly introduced. These

concepts include service-oriented architecture, workflow, and provenance. First, information on

service-oriented environments are presented, and it is explained how services can be orchestrated

by exploiting workflows in service-oriented systems. Later, the requirements for considering the

origins and routes of data and its impact on service oriented systems is discussed. Next, the concept

of provenance is explained along with its application areas. The architecture of different prove-

nance systems, provenance lifecycle, and applications of provenance data are the topics which will

be investigated further in this chapter. Finally, we discuss the challenges in service oriented envi-

ronments and present our methodology in tackling these problems using provenance information

and provide an overview of the research that was conducted in this thesis.

1.1 Introduction

1.1.1 Service Oriented Architecture

Service Oriented Architecture (SOA) [Newcomer and Lomow, 2005] is an architectural discipline

appropriate for the infrastructures in which consumers or providers need to interact via services

across distributed domains of technology and ownership. Services are the building blocks of such
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infrastructures. The fact of service-orientation aims at the loose coupling of services with operating

systems, programming languages and other technologies that underlie the applications being run

on such environments. Services play either the role of a provider, which publishes its interface

and access information to service registries, or the role of a consumer (or requester), which locates

service providers and binds to a provider to invoke its operations [Srinivasan and Treadwell, 2005].

Services can be either individually useful as atomic services, or might be composed to provide

higher level composite services and other functionalities. They communicate with their clients by

exchanging messages and advertise their properties, such as their capabilities, policies, interfaces

and communication protocols.

A simple service interaction cycle is shown in Figure 1.1. A service provider advertises itself

through a registry service. A registry includes a list of services and the functionality they provide.

A client, i.e., service requester, queries the registry to search for a service that satisfies its require-

ments. The registry returns a list of services matched with the request and the requester selects

one.

Figure 1.1: Service interaction in a service-oriented environment [Srinivasan and Treadwell,
2005]
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1.1.2 Workflow

A Workflow can be defined as a sequence of tasks which are put together in a special order to

achieve a goal. The followings are different examples of a workflow:

• In machine shops, particularly job shops and flow shops, the flow of a part through the various

processing stations is a work flow. [Wik, 2009]

• The procedure of ordering a product from receiving the order to its shipment is an instance

of a workflow process.

Workflows can be presented in different levels of complexity. At the most basic level, the tasks

can be specified in a linear order. Each task transforms a data or control object to the next task.

At the next level of complexity, a workflow can be described by an acyclic graph where the nodes

represent a task and the edges represent the dependencies between tasks. Also, a workflow can be

represented as a cyclic graph, where the cycles represent the iteration control mechanism.

Workflow systems can be divided into two groups, namely scientific workflow and business

workflow systems [Tan and Zhou, 2013]. Scientific workflow systems adopt a dataflow model and

the order of executions in these systems is the same as the order of the flow of data through the

workflow. Business workflow systems, on the other hand, specify complex control flows, the orders

in which workflow tasks are executed.

In case of the service-oriented environment, the workflow is defined as the automation of the

processes and involves the orchestration of a set of services, agents and actors that must be com-

bined together to solve a problem or define a new service. The workflow graph describes a network

where the nodes are services and the edges represent messages or data streams that channel work
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or information between services. Each node processes a stream of messages and pushes the result

streams into its connected neighbors [Fox and Gannon, 2006].

1.1.3 SOA and Provenance

A service-oriented infrastructure exploits and shares resources for the purpose of problem solving.

This has led to a growing demand for tracking, recording and managing data sources and their

derivation process.

In such environments, great numbers of workflows are executed to perform computational and

business tasks. The workflow activities are run repeatedly by one or more users and large numbers

of result data sets in the form of data files and data parameters are produced. As the number of

such datasets increases, it becomes difficult to identify and keep track of them. In addition, in large

scale scientific computations, how a result dataset is derived is of great importance as it specifies

the amount of reliability that can be attributed to the results. Thus, information on data collection,

data usage and computational outcome of these workflows provide a rich source of information

[Altintas, 2008]. Capturing this information, which is regarded to as provenance information, is a

significant advantage of using workflows. To put it in a nutshell, provenance is the metadata that

tracks the steps by which the data was derived. It can provide significant value in data intensive

scenarios. It facilitates determining data dependencies, following the steps in the workflow design,

validation of the workflow results, workflow re-executions, and error recovery. Provenance also

enables users to trace how a particular result has been arrived at by identifying the individual

services and aggregation of services that produces such a particular output.

Many Grid-based applications for provenance exist that have different requirements but essen-

tial needs for provenance. For example, in aerospace engineering, components are combined for
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the purposes of simulation, pre- or post-processing and visualization. Provenance is then required

to maintain a historical record of the output of the components so that the customers can use the end

results of the simulations. In addition, provenance data of the aircraft’s structuring phases is kept

for a long time period for the purpose of selling them to other countries [Moreau and et al., 2008].

Another example of provenance concerns organ transplant management. Medical information sys-

tems rely on large amount of data. Organ transplant processes are an example of these information

systems which benefit from Grid technologies because of the large number of patient records and

tissue banks. In these scenarios, provenance data can be used to trace back previous decisions to

identify whether the best organ match was made or to aggregate partial results from searches in

different centres and maintain the validity of the results [Moreau and et al., 2008].

The concept of provenance is a broad concept and is opening its way throughout different areas

of computer science including databases systems [Greenwood and et al., 2003], bioinformatics

[Greenwood and et al., 2003], sensor networks [Ledlie and et al., 2006], social networks [Golbeck,

2006a], etc. In the following section, the concept of provenance, its origin, its different areas of

application along with provenance architectures and applications are discussed.

1.2 Provenance: Definition, Systems, and Applications

In this section, we focus on the concept of provenance. First, the definition of the word prove-

nance in the dictionary is presented. Later, the history of this word and its applications in different

sciences as well as computer science are explained. Next, the general architecture of provenance

systems is presented and information on current provenance systems, their life cycle and compo-

nents are provided. And finally, the various applications of provenance data are studied.
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1.2.1 Provenance: Definition and Examples

The word provenance comes from a French verb “provenir” which means “originate”. In the Oxford

English dictionary this word has been defined in two different ways [Simmhan et al., 2005]:

• The fact of coming from a particular source; origin.

• The history of ownership of a valued object or work of art or literature.

Two different understandings of “provenance” can be achieved from the definitions above.

“Provenance” can refer to either the source (or derivation) of an object or a record of such a deriva-

tion.

In real world problems, some organizations, like cultural and heritage ones, record the origin

of certain classes of objects. It is particularly important in museums where it can be used to help

understand the origin, transmission and the chain of ownership of the objects. Provenance data

can denote the location and date on which a particular object was found. This information is

very important for archaeological and geological purposes, where this data can be combined and

re-analyzed to help in developing deeper understandings. For example, provenance research in

archeology can help in discovering where raw materials are mined or manufactured. Some methods

like neutron activation analysis (NAA) are used to trace objects back to their first place of origin.

The same principles are applied in geology to find the composition of sandstones, etc. Provenance

has also become an important topic in art history, where it can help in investigating the chain

of ownership for providing information on the history of individuals. Provenance has also found

its way through the archival science. Archival records are the consequences of activities that are

defined by organizational functions. They started the archiving of record descriptions and later
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provenance authority records. [Day, 2005]

It can be seen that the concept of provenance is based on the principle of archiving. In scientific

experiments, provenance information can help in understanding the results of experiments, which

is done by investigating and following the steps, data and reasoning that has led to that result. Tra-

ditionally, publications were used to maintain and represent this information, but with the increase

in the complexity of analysis and the amount of data, it is desirable to capture provenance data

automatically and systematically.

Scientific domains exploit various forms of provenance in different domains and for different

purposes. For example, Geographic Information System (GIS) standards require a description of

the lineage of the data products to help the users in deciding whether the resulting dataset meets

their requirements. [Simmhan et al., 2005]

In materials engineering, it is essential to have the pedigree of the materials used for designing

critical components for the purpose of auditing and preventing system failures [Simmhan et al.,

2005]. In life sciences research, sharing of the biological and biomedical data and their transforma-

tion record provides information about the credit of the authors and the context in which this data

can be used. Uniform astronomical provenance data is shared publicly through archives to help

astronomers estimate the trust that can be placed on them.

Other than the scientific domain, provenance data has applications in the business domain. A

great amount of businesses deal with bad quality data. All data, including bad quality ones, are

gathered together in data warehouses. Later, business analytic and intelligence tools are used to

mine these data and help in decision making. In such an environment, lineage information is used

to trace the data in the warehouse and discover the source and origin of data and find additional

characteristics of data sources which are not available in the warehouse. It is also used to trace
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faulty data back to the source of the error and to make corrections to it; therefore, in computer

science, provenance is mainly concerned with data [Simmhan et al., 2005].

Provenance data is used in different architectures and for different purposes. SOA is an area in

which provenance is widely used. Grid and web services provide a rich platform for the scientific

community. The transformation of data in such environments is usually specified in the context of

workflows where different services of the workflow represent the transformation processes which

receive the data as input and produce a transformed version of that data as output [Simmhan et al.,

2005]. The execution details of the workflow are traced automatically and the metadata of the input

and output data of each service is gathered. Later, users can provide and add additional metadata

on the data or the execution process. In the context of SOA, “Provenance” was given the following

definitions:

• “Provenance of a piece of data is the process that led to that piece of data.” [Grawth et al.,

2006]

• “Provenance provides explanations about who, how, and what resources were used in a pro-

cess, and the processing steps that occurred to produce a result.” [Rajbhandari et al., 2008]

• “Provenance is described as the documentation of a process that led to a particular result.”

Provenance in SOA is mostly process-oriented, as the data lineage is deduced indirectly and

the deriving processes are the primary entities for which the provenance is collected. The input

and output products of these processes determine the data provenance. Workflow provenance is

also called coarse-grained provenance, as it records a complete history of the derivation of some

data and involves not only tracking of the interaction of programs but also the information of the
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external devices, such as sensors, cameras or other data collecting equipments. It may also involve

the recording of human interactions with processes.

Database architecture is another architecture in which provenance has substantial applications.

Recently, provenance has been shown to be important to understand the transport of annotation in

database views, data integration, view update and maintenance, and probabilistic databases. A data

product, which includes a table, a view, or a tuple, can have a lineage that can be traced back through

a series of functions and queries. Other than this, dataflow graphs can be built and executed by the

database as part of the query, which is analogous to the workflows in service oriented architectures.

Again, annotations can be added by users about data sources and queries. The techniques that are

usually used to trace the lineage are query inversion and function inversion [Cui and Widom, 2000].

In the context of databases, provenance is determined by the following definitions:

• “Provenance describes the source and derivation of data.” [Buneman and Tan, 2007]

• “Provenance describes how a data item came to existence, particularly if it was derived using

other data at some point in time.” [Widom, 2006]

In contrast to the process-oriented model, provenance in database architecture is explicit and

data-oriented. In this model, lineage metadata is specifically gathered about a data product. A

database’s provenance is also referred to as fine-grained provenance, as it concerns derivation of

part of the resulting data set. A fine-grained provenance is an account of the derivation of part of

the resulting data set.

Provenance of computational tasks can be in two different forms, including prospective prove-

nance, which captures the specifications of the individual tasks, and retrospective provenance that

captures the process and the steps executed as well as the information about the environment.
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Provenance can also be viewed from the two perspectives of execution or service provenance.

Execution Provenance relates to data recorded by a workflow engine during a workflow execution.

It identifies what data is passed between services, what services are available, and how results are

eventually generated for particular sets of input values, etc. Using execution provenance, a scientist

can trace the “process” that led to the aggregation of services producing a particular output. Service

Provenance relates to data associated with a particular service, recorded by the service itself or its

provider. Such data may relate to the accuracy of results a service had produced, the number of

times a given service has been invoked, or the types of other services that have made use of it.

A service provider may make such information available to other users to enable them to select

services that are more likely to produce the output they desire. [Moreau et al., 2013]

1.2.2 Provenance Application Areas

It was mentioned that provenance has found its application throughout different areas of science. In

this section, the main areas in which provenance is widely used and the various provenance research

that was done (or are being done) in these areas are introduced. Provenance is given different

definitions according to the domain it is applied to. Therefore, in the following, the definition of

provenance for different application areas is also discussed.

Databases

In databases, provenance is often used to recover the source data from the output data, avoid dupli-

cation of data, and assess the quality of databases. [Moreau et al., 2013] presents some applications

of provenance in databases. It provides information about the inspiration behind the current prove-

nance research works done in the area of databases. In [Wang and Madnick, 1990], a model was
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proposed in which provenance in the form of annotations was carried along with source attribu-

tions in the result of the queries. [Woodruff and Stonebraker, 1997] proposes the idea of merging

database management systems with the capability of returning fine-grained provenance, which can

be done by allowing weak function inversions. Applying weak inversions to functions returns some

approximation of provenance data as the results of the function. Some research, [Cui, 2000], in-

vestigated provenance computation by analyzing relational algebra and its extensions. The Trio

project [Greenwood and et al., 2003] introduced a new database system that provides management

as well as querying facilities for the lineage of data as well as the data itself. One of the recent ap-

plications of provenance in this project is toward probabilistic databases [Fuhr and Rolleke, 1997],

which are databases with uncertainty. In such databases, provenance is used to determine whether

the sources of tuples are independent. The provenance of tuples can also help in capturing the set

of possible instances in the result of a probabilistic query. Provenance can also help in describing

trust policies in collaborative data sharing systems. For this purpose, provenance is used to infer

the relationships between the source and target data in data exchange or integration scenarios. The

value of a curated database relies on their provenance. Data is entered and copied manually from

other sources; therefore, provenance data determines the reliability and the trust that can be put

on data. As mentioned before, annotations are one kind of provenance which add to or mark up

existing data. Capturing annotations of database data and propagating them from source to output

is desirable for many databases. Current emerging research in the area of databases concern the ap-

plication of provenance in the analysis of update query languages [P. Buneman and Vansummeren,

2008].
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Bioinformatics

e-Science is the use of electronic resources such as instruments, sensors, databases, computational

methods, and computers by scientists working and collaborating in large, distributed teams to solve

scientific problems. Data derived from e-science experiments is not valuable for further use if the

origin and provenance of that data is not known. For example, an in silico experiment, which ex-

ploits computer-based information repositories and analysis techniques to test a hypothesis, derive

a summary, or search for patterns, could use an open source workflow enactment engine. The my-

Grid [Greenwood and et al., 2003] project enables generation and management of provenance data.

It is developing service-based middle-ware to support construction, management, and sharing of

data-intensive experiments in biology. The project keeps track of the derivation path provenance.

These include the details of the execution process; information about the input data; information

about the workflow description, as well as all the actions of the user.

The derivation provenance can be exploited for:

• Repeating and validating an experiment; this requires the provenance to be expressive enough.

• Learning from the provenance history and disseminating best practices.

• Helping the scientists to know if the experiment they wish to run or their hypothesis has been

tested before.

• Automatically re-running an experiment when there is a change in data, tools, or data repos-

itory.

In many scientific databases, specifically the bioinformatics ones, there are database curators

who manually select, organize, classify and annotate data. The value of these curated databases
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relies on its provenance.

The numbers of available biological databases are rapidly increasing; therefore, obtaining knowl-

edge about a gene or protein from this data, requires going through information gathering pro-

cesses and navigating between databases. In order to identify how these data resources are linked

with each other, the Image Bioinformatics Research Group (IBRG) project [Zhao, 2009] proposes

recording the provenance of datalinks to maintain and link between related data items, which helps

in bringing trust to the data web by providing evidences for links or tracing how the data links have

been updated and maintained.

Sensor networks

In sensor networks, the events that are read from the sensors might be consumed immediately

or stored for later reasoning and analysis. In many of the situations, data from distinct sensor

networks are collected and combined for better reasoning. The collected sensor data is often useful

for historical analysis long after its collection. Following the example provided in [Ledlie and et al.,

2006], traffic data received from the London Congestion Zone’s sensors can be used immediately

to ticket non-paying drivers. It can also be combined geographically with data from other cities

to gather a broader picture of traffic. In addition, this historical traffic data can be merged with

historical weather data to gain deeper insights.

In such environments, naming and searching for sensor datasets is necessary. [Ledlie and et al.,

2006] investigates the data requirements such as storage, naming and indexing for sensor networks

and argues how these requirements can be targeted using provenance data. The descriptions of

sensors and annotations of data that are stored in sensor networks include information regarding the

replacement of sensors, software upgrades of sensor devices, etc. For the purpose of annotations,
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the right attributes to index this type of data should be selected. In addition, the granularity at

which indexing should be done plays an important role. Provenance can be helpful in indexing the

names given to sensor readings by presenting them with identifying information which provide a

unique identifier for that data. The specific details of the provenance metadata representation are

application-specific. As the complete provenance of reading sensor data is large, querying such

data will be more than a simple looking up a name, and requires searching for datasets based on

subsets of the attributes and values found in provenance metadata. Therefore, indexing structures in

sensor data storage systems should provide for efficient search and efficient recursive and transitive

queries.

Social Networks

Social networks are a popular phenomenon on the web and the semantic web is rich with social

network information. In social networks, there exist nodes, which are individuals or organizations,

and the relationships (friendship, kinship, common interest, etc.) between the nodes make up the

ties. Users in such an environment can use other ontologies to get more information about their so-

cial connections, such as the type of relationships or the trust value of other nodes. Ontologies are

formal representation of knowledge by a set of concepts and the relationships between those con-

cepts. Ontology languages are formal languages which are used to represent ontologies. The most

common ontology languages in semantic web include Resource Description Framework (RDF)

[RDF, 2004] and Web Ontology Language (OWL) [OWL, 2004]. OWL is based on RDF, which is

designed as a metadata data model and is based on XML [XML, 2013]. Trust and provenance can

be integrated in such networks and the trust relationships can be inferred using trust annotations

and provenance data. Trust annotations about nodes, i.e., services, are made by users and stored in
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a provenance store. These annotations include social relationships of services and are represented

using a vocabulary that is described by ontologies. The annotations are then used to infer how

much two users trust each other. For this purpose, the paths that are connecting these users are

investigated and the values of the trust of nodes along these paths are gathered [Golbeck, 2006b].

For inferring trust, different projects are working on new algorithms to find shorter paths, which

lead to more accurate information, and also puts a limit on the path sizes. The computation of trust

values in social networks is a use of provenance and annotations together, and the resulting trust

values are applicable for personalizing contents. Having provenance information for the annota-

tions which are found on the semantic web and a social network with trust values, the information

that is presented to the user can be ranked, sorted or aggregated according to trust. Examples of

such scenarios include the FilmTrust [Golbeck, 2006a], which is a website with a social network in

which users can rate movies and write reviews on films. The data in this system is all stored with

semantic web annotations and users rate the trustworthiness of their friends. These trust values are

used to present personalized views of movie pages.

1.3 Provenance Systems

In this section, the architecture of provenance systems along with their lifecycle are investigated.

The main focus is on current provenance systems and the way they are designed and implemented.

The on-going and previous research on different steps of the provenance lifecycle are studied and

the advantages and disadvantages of each approach are discussed. Generally, a provenance man-

agement system is composed of three components which are described as:

1. Capturing mechanism,
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2. Representation model,

3. And an infrastructure for storage, access and queries.

The capturing mechanism is responsible for gathering provenance information and needs access

to relevant details of computational tasks, such as the steps they follow, execution information and

user-specified annotations. The representation model provides support for representing retrospec-

tive and prospective provenance as well as annotations which as mentioned earlier are considered

part of provenance information. The model should present information on process and data depen-

dencies. Despite the base commonality in their functionality, provenance models vary according

to domain and user needs [Freire et al., 2008]. It is very advantageous if the model is structured

with a set of layers to enable configurable representations. The layered model also leads to simpler

queries and better results [et al., 2007].

In the following parts of this section, some of the most important provenance architectures and

their components are discussed. The provenance systems to be described include the Provenance-

Aware Service Oriented Architecture (PASOA) project [Groth et al., 2005], which aims at investi-

gating the concept of provenance and its application for reasoning about data and services in the

context of science. The architecture presented by this project designs a distributed cooperation

protocol for generating provenance data in workflow enactment. The architecture which is dis-

cussed afterwards is mostly based on the provenance system of the Kepler project [Kep, 2013].

The Kepler project is dedicated for furthering and supplying the capabilities and awareness of the

free and open-source scientific workflow application. The provenance architecture of this system

focuses more on data provenance, and investigates the components required for a provenance sys-

tem with regard to data collection, data usage, and data usage feedback. In the third architecture,
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the provenance manager of the VIsual sciEntific Workflow (VIEW) system is presented. VIEW

is a workflow system which uses semantic web technology to represent, store and query prove-

nance metadata, leading to an interoperable and extensible provenance system. It also supports the

visualization of provenance graphs.

Finally, the last architecture presents a Semantic Web Services (SWS) based system architec-

ture for modeling, capturing and querying augmented provenance in SOA. It uses ontologies for

provenance modeling and SWSs for capturing execution-independent metadata.

1.3.1 PASOA Architecture

PASOA is a project which aims at investigating the mechanisms necessary to support the notion of

provenance in Grid and web service environments. According to PASOA, the provenance lifecycle

is composed of four different phases which include:

1. Provenance creation.

2. Provenance recording.

3. Provenance querying.

4. Provenance management.

In the provenance creation phase, the provenance data, the concepts from which a result has

been achieved, are created. The generated provenance data is then collected and stored in a prove-

nance store, which is usually one or a combination of databases. The way this data is represented

depends on the way it is stored and vice versa. In some systems, it is represented as texts and stored

in files, while in others it might be stored in databases.
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The recording phase of the provenance lifecycle results in a set of provenance data represented

in a determined model in the provenance store. This data constitutes a documentation of workflow

executions and provides information from which a representation of the provenance data, in which

the users are interested in, can be derived. The gathered provenance can then be queried. In this

phase, the provenance queries select, scope, and filter out a subset of provenance data and make

them available in some representation. In order to support complex querying functionality, the

provenance data should provide complete and detailed enough information [Grawth et al., 2006].

According to the above lifecycle, a provenance system can be defined as a computer system

that deals with all issues of recording, maintaining, visualizing, reasoning, and analysis of the

documentation of the process that underpins the notion of provenance. Such a system will be based

on a provenance architecture that specifies the different roles of the system, their interactions, and

their provenance representation [Groth et al., 2005]. The actors involved in the lifecycle of such a

system define different roles. They are categorized as application actor, provenance store, recording

actor, querying, and managing actors. These actors undertake the responsibilities for executing

the application’s business logic, managing and providing access to the recorded provenance data,

submitting data to the provenance store, and issuing provenance queries to the provenance store.

In order to facilitate the recording and querying of provenance, PASOA has developed PReServ

[PRe, 2005] an implementation of the Provenance Recording Protocol.

1.3.2 Kepler Project

The research presented in [Altintas, 2008] investigates the lifecycle of scientific provenance sys-

tems from the data provenance perspective. The procedure starts with data collection of the work-

flow design and execution steps. This data include information about changes to workflow, work-
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flow versions, execution time parameters, inputs, outputs, intermediate results, etc. As the prove-

nance users fall into different categories and each have different requirements, provenance recorders

need to allow for a customized data collection through interfaces. The architecture emphasizes a

three stage recording model which starts during the design phase of a workflow, and continues dur-

ing the experiment operation. The recording process still continues even after the workflow results

and provenance information are published. The final stage enables verifying the scientific impacts

the workflow has made.

The recorded provenance data is then exploited for different purposes, such as monitoring work-

flows, re-running them, comparing different versions of them, fault-detection, etc. The data can also

be analysed and queried to find associations between workflow inputs and outputs, comparing the

results and performances of different workflow models, etc. The architecture also supports a data

usage feedback which learns what has worked for different runs. The feedback information is used

for similar design efforts in future for recording purposes.

The Kepler workflow system provides a reporting suite [Kep, 2011] which includes the ability to

create reports displaying workflow results, capture provenance of workflow execution, and manage

workflow runs.

1.3.3 The VIEW System

The work in [Chebotko et al., 2007] discusses a new workflow management system that supports

provenance. It introduces seven architectural requirements that such systems should have. These

requirements include support for user interaction, reproducibility, heterogeneous service and tool

integration, heterogeneous data product management, high-end computing support, monitoring and

interoperability. The proposed architecture is composed of four main layers:

19



• Operational layer: with subcomponents of task, provenance and data product management;

• Task management layer: which supports efficient management of tasks, data products, and

provenance metadata;

• Workflow management layer: with subcomponents for monitoring workflows and workflow

engines;

• Presentation layer: considered for visualization and design of workflows.

In an overall view, the workflow engine implemented in this project, supports the execution of a

workflow and the collection of provenance metadata in semantic languages. This metadata is stored

in the provenance server which provides 3 main functionalities: setup, recording and querying.

The setup creates a relational database in MySQL and generates its schema. The recorder uses an

interface engine to infer new data triples based on predefined semantics and additional interface

rules and stores them in the database. The Query component provides query interfaces to access

the provenance stored in a database. [Chebotko et al., 2007]

The architecture also supports a provenance manager which is composed of three layers: prove-

nance model, relational model, and model mapping. The Provenance model layer represents exe-

cution provenance domain ontologies. Web Ontology Language, OWL [OWL, 2004], is used for

expressing these ontologies and the SPARQL [SPA, 2004] Protocol and RDF Query Language, for

describing queries. The relational model layer includes relational provenance storage and SQL is

used for querying purposes. The model mapping layer, which is a layer between the two other

layers, can either map ontologies to database schemas or map provenance metadata into relational

tuples and store them in the database. This layer is also able to map SPARQL queries into relational

queries in SQL.
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1.3.4 Matrioshka

An architecture, Matrioshka, for controlling provenance in distributed systems is presented in [Cruz

et al., 2008]. This architecture, which has been implemented, consists of a set of services that can

be coupled to workflow management systems. Provenance is described in terms of data flow graphs

with nodes representing computations and edges representing data dependencies. Heterogeneity,

scalability, querying and different granularity levels are claimed to be supported in the architecture.

The whole architecture is composed of a provenance broker which is responsible for caching, secu-

rity and brokering, a provenance browser, provenance eavesdrop, and provenance repositories. The

provenance broker gathers data through event notifications. It also provides data transformations

and routes of the gathered data. The browser is a web interface that combines data into a tool for

presenting and searching provenance. The provenance eavesdrop service generates event notifica-

tions that publish details about the data being stored, the execution status of the remote application,

the location of the output results, execution times, security warnings, etc. A uniform data query

is offered by the broker. The provenance broker and eavesdrop are designed to be plugged into

workflow management systems and compliment them so that they do not need to be changed.

1.4 Applications

In the previous sections, we provided information regarding the concept of provenance, different

scientific areas which apply provenance, the architecture of provenance systems and the different

phases these systems are involved in. Producing provenance data is of no use if it is not being

exploited. In this section, the applications of provenance – along with the various types of reasoning
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and inference that can be applied to it – are presented.

1.4.1 Trust Assessment

Provenance data can be exploited for evaluating trust of workflows. Sequences of tasks, each

represented as a service, are put together in a special order to make a workflow for the purpose

of solving a problem or defining a new service. A trust value is associated to each service that

signifies the Quality of Service (QoS) provided by the service provider for that service. The QoS is

distinguished by several parameters, such as response time, availability, reliability, status, etc. The

trust degree of a service is the general estimation of the QoS values of that service and plays an

important role in service consumer selection. Providing the trust value for each service, the overall

trust value of a sequence of services can be evaluated.

In [Rajbhandari et al., 2006], a trust architecture is presented which exploits provenance data

for assessing service trust. The architecture utilizes both process and actor provenance for trust

evaluations. Three types of trust are distinguished, and a decision tree is modeled based on these

three categories to compute the value for the trust of the workflow.

Extending the work that was done in [Rajbhandari et al., 2006], a fuzzy model for calculating

the trust value for a workflow is presented in [Prat and Mandick, 2008]. In the decision tree model

the result value for trust was binary, while in this work a degree of trust was considered. The authors

have added an analysis tool to the model which is a Jess rule engine [JES, 2008]. For each analysis

node of the decision tree, the results are sent to this tool and are mapped to fuzzy membership

functions. The final decisions are made using Jess inference rules.

In another work, presented in [Rajbhandari et al., 2008], it is discussed how data believability

can be inferred from provenance information. Data believability, an important aspect of data qual-
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ity, is defined as the extent to which data is accepted or regarded as true, real and credible. As can

be inferred from this definition, believability of a data value depends on its origin and subsequent

processing history which is provided by provenance information.

Believability of data is a composed concept of the trustworthiness of source, reasonableness of

data, as well as temporality of data. To compute all the three sub-dimensions, [Prat and Mandick,

2008] provides a provenance model consisting of a database schema for processes, data values,

valid time of facts, transaction times and trustworthiness of agents. The quality of any data value

depends on the quality of source data and the processes. In order to assess believability, first

the believability of data sources is computed using the provenance information. Secondly, the

believability of process results are evaluated by measuring the weight of each data value and finally

the global believability of dimensions are assessed by averaging the temporal believability of all

values in the provenance for that data item.

1.4.2 Provenance Re-execution and Validation

In many different e-Science areas, experiments involve many distributed services maintained by

different organizations. After finishing the experiment, it is important to verify that the experiment

was performed correctly. There is no existing standard framework for validating experiments in

today’s e-Science frameworks. Two commonly used forms of validation include static and dynamic

validation [Miles et al., 2005]. Static validation operates on workflow source code, while dynamic

validation is performed at run-time. However, it is sometimes necessary to validate an experiment

after it has been executed. A provenance-based approach for workflow validation facilitates this.

In order to be able to validate and re-execute the workflow, sufficient provenance data should be

recorded to be able to re-create any dataset transformation. In [Szomszor and Moreau, 2003], a
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provenance system is presented which consists of validation and browsing of provenance data.

Validating the data is possible by doing reasoning on provenance data and it is used to verify, for

example, whether the services still produce the same results and the workflow is still valid. For

this purpose, the workflow is re-executed iteratively using the inputs that were recorded in the

provenance data. The outputs that are produced by the re-invocation of services are compared with

the output stored in the provenance trace. Provenance validation facility verifies whether the results

produced by a previous execution of a workflow are still up to date.

1.4.3 Workflow Reduction

Many scientific applications involve large amounts of computations operating on large volumes of

data. As the number and the size of computational jobs increase, the management of data becomes

more difficult without considering automatic refinement operations. One of the possible refinement

operations is called reduction. A reduction is performed when unnecessary tasks in a workflow are

pruned out. This is possible when the datasets to be generated by these tasks have already been

computed previously and it is more efficient to access them than to re-compute them. The system

provided in [et al., 2007] is also capable of reducing workflows before the execution by exploiting

the recorded provenance data. The workflow can be reduced by searching the provenance data for

the tasks that have been run previously and whose results are available. The system then registers

the jobs for which no result is available for their execution for the purpose of future exploitation.
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1.4.4 Data Replication

As provenance information includes the steps followed to derive the datasets, it can be used for

recreating the datasets. Having sufficient information regarding the operations, data sources and

parameters, the same data can be generated automatically using the provenance data. It is important

to consider that the availability of similar resources is a requirement for getting the same results.

Thus, it is possible and sometimes cost effective to use provenance data as a means of replicating

the data instead of transporting or storing it. In order to recreate the process, it is required to access

the same data and process, as well as the processing environment.

1.4.5 Informational Use of Provenance

Dataset discovery, knowledge extraction, and metadata exploration are generic applications of

provenance. Searching for the source of data or processing the steps used to produce the data

using querying mechanisms are the common uses of provenance data.

1.5 Problem Description

In this chapter, the concept of provenance was defined and its application in different areas of

computer science including databases, social networks, sensor networks, and Bioinformatics was

outlined. The research provided in this chapter shows that provenance is a broad concept and

various areas of computer science can take advantage of the benefits added by providing support

for it.

From the provenance applications discussed in this chapter, it is observed that in comparison
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to the efforts made to gather and store provenance data, not much research has been done on

discovering useful applications for the collected information. Therefore, it seems necessary to

explore and discover generic applications of provenance. As long as it is known what provenance

types are stored and gathered in provenance systems, it is possible to find applications that are

common for all types of provenance data, no matter to what specific area that data belongs.

Learning is one of the unexplored applications of provenance. A large store of the previous

executions of services and workflows, as well as their specifications, provides an appropriate data

set for learning and knowledge discovery. The provenance data can be explored using data mining

and pattern recognition methods to discover the patterns of interest in data. The store is also a

suitable source for learning probabilities. Therefore, probabilistic learning methods can be used to

produce the required parameters for the probabilistic decision making processes in order to learn

the workflow structures or compose workflows. To assess the probability values for these processes,

the Maximum Likelihood (ML) [ML, 2013] method or similar approaches can be applied on the

provenance data. ML learning is a data analysis approach for determining the parameters that

maximize the probability (likelihood) of the sample data. It is important to mention that this is

based on the assumption that the provenance data on which reasoning is performed does not include

missing data.

To be able to find the probabilities in case of missing data, the Expectation Maximization (EM)

[Boreman, 2009] learning algorithm can be used. The EM algorithm is an efficient iterative proce-

dure to compute the ML estimate in the presence of missing or hidden data. Using this algorithm,

the missing values are first predicted based on assumed values for the parameters. Later, these

predictions are used to update the parameter estimates. The sequence of parameters converges to

ML estimates and EM implicitly averages over the distribution of the missing values.
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1.5.1 Challenges

Applying learning and knowledge discovery methods to provenance data can provide rich and use-

ful information to workflows and services. Therefore, in this thesis, the challenges with workflows

and services are studied to discover the possibilities and benefits of providing solutions by exploit-

ing provenance data. These challenges mainly include composing services and creating workflows

automatically, assessing the performance of workflows and services, discovering workflow models,

and repairing them. In the following, we discuss these challenges:

1. Workflow Assessment and Evaluation

Most research on workflow systems focus on prediction, tracking and monitoring of work-

flows, and not on evaluation of these processes. The few works which studied evaluation,

accomplished a very narrow research goal aiming to improve performance or fault tolerance

of workflow systems [Aiello, 2004]. As the provenance information maintains the records

of previous execution details of workflows, it provides the facility to analyze, assess, and

evaluate the behavior of a workflow as well as its performance in terms of trust, usability,

and QoS assessment. The performance of a workflow, its believability, improvements, and

its future trend, etc. can be analyzed and evaluated through provenance data.

2. Mining Workflow Structures through multiple perspective

Workflow mining discusses techniques for acquiring a workflow model from a workflow

log. Workflows can be investigated from many perspectives: functional, behavioral, infor-

mational, organizational and operational. In case of the behavioral perspective, which looks

at control flow, workflow mining is done by following the order in which events for tasks
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are stored; for the informational perspective which looks for data flow, usually inputs/outputs

are being used; in case of the organizational perspective, participants of tasks and their roles

are being discovered in workflow mining. The workflow mining methods currently use the

event-logs for discovering the patterns and mining the workflows. Event logs keep track of

small amount of information which is not enough for mining workflows with regard to all

the mentioned workflow perspectives. Instead, the data presented in workflow provenance

provides a much stronger reasoning and mining ground.

3. Service Composition and Selection

Composing and selecting services dynamically for the purpose of achieving a goal is a prob-

lem of interest in service-oriented environments, as a composition of services can provide

higher functionalities compared to a single service. In addition, in these environments, there

are usually several services which are providing the same functionalities with different non-

functional parameters, such as quality of service values. Thus, service selection, which deals

with choosing from the services with the same functionalities but different quality guaran-

tees, is a challenge in service oriented environments. The current approaches perform service

composition and selection on the fly. The services’ specifications are retrieved from service

registries, which are repositories in which the service providers advertise themselves. As

provenance information provide functional and non-functional service specifications, it is a

suitable source of data for service composition and selection.
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1.6 Contributions and Thesis Overview

This thesis makes several contributions towards addressing current workflow challenges using

provenance information. These contributions mainly include:

1. A Provenance Architecture Addressing Workflow and Service Challenges

As mentioned, current challenges with workflows and services are being addressed using

various information sources. For example, assessing workflows is performed by workflow

monitoring systems. Mining workflow structure methods exploit workflow event logs gener-

ated by some workflow systems. Workflow composition techniques use service repositories

to retrieve service specifications. We argue that provenance data provides the required infor-

mation for all these problems and can be used to target all these challenges while maintaining

data consistency. In Chapter 2, a provenance architecture is proposed which addresses the is-

sues with workflows and services. The architecture is composed of 5 components for service

composition and selection, workflow structure mining, workflow refinement and evaluation.

The requirements for such an architecture along with the methods that can be exploited for

each component are discussed. For certain components, a novel approach is proposed and

briefly discussed. The work in this chapter has been published in [Naseri and Ludwig, 2010].

2. Workflow Trust Evaluation Using Provenance Information

As discussed, provenance is also a suitable source for performing evaluations on data. In

terms of workflows and services, the evaluation consists of QoS and trust measurements.

This is an important and less attended issue in the area of workflows. Workflows need to be

assessed and analysed to discover how trustful the composition of services is, therefore, in
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case the trust provided by a workflow is not satisfactory, the workflow sequence can be either

repaired or improved.

As the provenance data is recorded at regular intervals, and consists of values and events that

are changing with time, we believe that time series mining methods [Hamilton, 1994] are a

suitable choice for evaluating and describing the changes that occur in data with the passage

of time to identify the points in time at which a noticeable change in trust occurs. This infor-

mation can help us to identify which parts of the workflow are not providing the promised or

required level of trust. Just like workflows, the services are evaluated. The large fluctuations

of the QoS values of services are investigated to predict when in the future the service will

not provide the promised QoS. The evaluations are based on statistical approaches, to evalu-

ate the trust of the workflow, and also time series data mining methods, to discover the trend

of trust in workflows or services over time.

In case a workflow does not provide the required trust level, or it can not be executed due

to a lack of available services, the workflow needs to be repaired or refined. The extracted

policy graph of the workflow along with the assessment results of the evaluation component

can be used to refine the workflow. The policy graph is traced to find a path that can replace

the defective part of the workflow.

In Chapter 3, the workflow evaluation component is targeted. We propose a new approach

based on Hidden Markov Models (HMM) [Rabiner and Juang, 1986] for this purpose. The

HMM probabilities are learnt using the provenance information. The method is assessed

through a case study along with the experimental results. This chapter has been published as

a book chapter in [Naseri and Ludwig, 2012].
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3. Mining Workflows from Different Perspectives Using Provenance

Discovering workflow patterns has been previously studied using event logs, which provide

a very small amount of data for learning the workflow models, while provenance provides a

rich knowledge base for extracting hidden and unknown models. Learning and mining work-

flow patterns and policy graphs, representing the workflow policy, from provenance data is

another interesting application of provenance data. Workflow mining discusses techniques

for acquiring a workflow model from a workflow log. The process is usually done using an

algorithmic technique and/or statistical analysis. Usually machine learning, data mining and

workflow approaches are exploited for this purpose. As discussed earlier, workflows can be

investigated from many perspectives: functional, behavioral, informational, organizational

and operational. In case of the behavioral perspective, which looks at control flow, workflow

mining is done by following the order in which events for tasks are stored; for the informa-

tional perspective which looks for data flow, usually inputs/outputs stored at the start of event

logs are being used; in case of the organizational perspective, participants of tasks and their

roles are being discovered in workflow mining. The control flow patterns, which are being

discovered present direct, conditional, concurrent and sequential dependencies. Previously,

several research studies have been done to discover control flow patterns using event logs.

Process mining algorithms can extract the order of the execution of the activities and con-

struct the process model. But many systems are not aware of the tasks of the processes, but

instead have knowledge about the documents and the changes made to them. In case of these

systems, document versioning logs are often used to mine processes. The process of deriving

process models automatically from on-going executions of processes is referred to as incre-
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mental workflow mining [Braun, 2006]. This type of mining has the advantage of automatic

adaptation in case of changes in processes. The approaches taken are usually semi-automatic

and first activity mining from versioning logs is completed, later reverse engineering to de-

rive the overall process model and then the transformation from the system internal model

to the external model is performed. The model works incrementally and when new process

instances are executed, new records are added to the versioning log and the process model is

refined. Current techniques only consider the behavioural perspective (control flow). They

assume that the elements of the organizational frameworks are known in advance. On the

other hand, they do not address complex iteration constructs, dynamic changes, exceptions,

and noisy data, and this is required to investigate mining algorithms and to target these issues.

These issues can be targeted using provenance information.

In Chapter 4, we propose a new method for workflow structure learning component which

exploits Bayesian structure learning algorithms. Our approach not only considers the behav-

ioral perspective of workflows but also uses the data flow information. Two algorithms of

Parents and Children [Spirtes et al., 2000] and Max Min Parents and Children [Tsamardinos

and Brown, 2006] are selected for the purpose of this component. These algorithms are mod-

ified to support more efficient workflow structure learning. Experiments with different case

studies and structural constructs were performed and the results are discussed. This chapter

has been published in [Naseri and Ludwig, 2013a].

4. Service Composition and Selection Using Provenance Data in Dynamic Service Environ-

ments

Provenance information can also provide valuable information towards service composition
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and selection. Service composition is concerned with synthesizing a specification of how to

coordinate the component services to fulfill the client request. QoS in Web services encom-

passes various non-functional issues such as performance, availability, and security, etc. As

more services become available, QoS becomes a decisive factor for selecting services. Com-

position and selection of services requires information regarding services’ specifications and

their quality values, which are all provided by provenance data. In addition, a history of

previous workflow runs provides knowledge towards more intelligent composition. Thus,

Chapter 5 revolves around exploiting provenance towards workflow composition and selec-

tion. Using of a Partially Observable Markov Decision Process (POMDP) [Murphy, 1982] is

the approach we are proposing for this component. It has the advantage of composing and

selecting services in one algorithm while providing decision making facilities under the con-

dition of partial observability of services. This chapter was published in [Naseri and Ludwig,

2013b].

5. Conclusion and Future Direction

In the final chapter of this thesis, we discuss the conclusion and future directions of this

research. We outline our achievements through this research and provide information on

how this research work can be expanded and improved in the future.
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CHAPTER 2

A MULTI-FUNCTIONAL ARCHITECTURE ADDRESSING

WORKFLOW AND SERVICE CHALLENGES USING PROVE-

NANCE DATA

As discussed in Chapter 1, in service-oriented environments, services are put together in the

form of a workflow with the aim of distributed problem solving. Keeping track of the workflow

process along with the data transformations and services provides a rich amount of information

for later reasoning. This information, which is referred to as provenance, is of great importance

and has found its way through areas in computer science such as: bioinformatics, database, social,

and sensor networks, etc. Current exploitation and application of provenance data is very lim-

ited as provenance systems started being developed for specific applications. Therefore, there is a

need for a multi-functional architecture, which would be application-independent and could be de-

ployed regardless of the application area. In this chapter, we present an architecture which exploits

provenance information to target the current challenges of workflows and services in service ori-

ented environments. These challenges include workflow composition, abstract workflow selection,

refinement, evaluation, and graph model extraction. The proposed multi-functional architecture ad-

dresses these issues by accomplishing reasoning, data mining, and evaluation on provenance data.

The requirements for such an architecture along with its building components are discussed. Fur-
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thermore, the responsibility of the components, related work and the proposed implementation of

each component are presented. This chapter has been published in [Naseri and Ludwig, 2010].

2.1 Introduction

A workflow is defined as the automation of the processes and involves the orchestration of a set

of services, agents and actors that must be combined together to solve a problem or define a new

service. Different services of the workflow represent the transformation processes that receive the

data as input to produce the transformed data as output. The workflow graph often describes a

network where the nodes are services and the directed edges represent messages or data streams

that channel work or information between services. Each node processes a stream of messages and

forwards the resulting streams into its connected nodes.

In service-oriented environments, great numbers of workflows are executed to perform mostly

scientific experiments and business tasks.As the number of workflow result datasets increases, it

becomes difficult to identify and keep track of them. In addition, in these large-scale scientific

computations, how a result dataset is derived is of great importance as it specifies the amount of

reliability that can be attributed to the results. Thus, information on data collection, data usage and

computational outcome of these workflows provide a rich source of information.

Capturing the execution details of these transformations is a significant advantage of using

workflows. The execution details of a workflow, referred to as provenance information, is usually

traced automatically and stored in provenance stores. Provenance data contains the information

recorded by a workflow engine during a workflow execution. It identifies what data is passed be-

tween services, which services are involved, and how results are eventually generated for particular
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sets of input values. Data associated with a particular service, recorded by the service itself or its

provider, is also stored as provenance information. For instance, such data may relate to the ac-

curacy of results a service produces, the number of times a given service has been invoked, or the

types of other services that have made use of it.

The stored provenance data is queried and retrieved later for different purposes. This informa-

tion enables users to trace how a particular result has been arrived at by identifying the individual

or aggregation of service(s) that produces such a particular output. The exploitation of provenance

data is so limited in comparison to the efforts accomplished and the costs paid for gathering and

storing this data [Altintas, 2008]. The most major applications of provenance can be summarized

into trust assessment, workflow re-execution and validation, and workflow reduction. A brief in-

troduction of the most common applications of provenance can be summerized as:

• Assessing trust measurements and believability of data, workflows and services is the most

important application of provenance. The confidence in the workflow steps executed, the

trust of each individual service, and the trust of any data being generated or used can be

determined by using the information of the past data or previous executions of services and

workflow processes. This subject will be further discussed in the next chapter.

• In many different e-Science areas experiments involve many distributed services maintained

by different organizations. After finishing an experiment, it is important to verify that the

experiment was performed correctly. Validating the data is possible by doing reasoning on

provenance data and checking, for example, whether the services still produce the same re-

sults and the workflow is still valid.

• A workflow reduction is performed whereby unnecessary tasks in a workflow are pruned
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away. This is possible when the datasets to be generated by these tasks have been computed

previously, and it is more efficient to access them than to re-compute them. Therefore, the

workflow can be reduced by checking the provenance data and finding tasks that have been

run previously with their results still available and valid.

Although the mentioned applications provide rich and valuable usages of provenance data, more

can be done to take advantage of the stored history of the previous executions. The research done in

the area of provenance focuses mostly on the phases a provenance component goes through, such

as the capturing mechanisms as well as data retrieval, querying and visualization. Little effort has

been invested in discovering general applications for provenance.

One of the unexplored applications of provenance is exploiting it for the purpose of learning.

A provenance store provides data related to the previous executions of services and workflows

which makes it an appropriate data set for learning and knowledge discovery. The provenance

data can be explored using data mining and pattern recognition methods to discover the patterns of

interest in the data. These patterns can include workflow structures, trend of the workflow trust, etc.

As the store provides large amounts of information on previous executions, therefore, probability

learning methods can be used to produce the required parameters for the probabilistic decision

making processes. As the provenance data is recorded at regular intervals, and consists of values

and events that are changing with time, we believe time series mining methods [Last and Kandel,

2004] are a suitable choice for evaluating and describing the changes that occur in data within the

passage of time.

We believe, applying learning and knowledge discovery methods to provenance data can pro-

vide rich and useful information on workflows and services. Therefore, the challenges with work-
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flows and services will be studied in this chapter to discover the possibilities and benefits of pro-

viding solutions by using provenance data. Previously, a large amount of research has been done to

target workflow challenges such as composition, pattern discovery, service selection, and process

refinement. In this chapter, an architecture is presented which addresses these issues by exploiting

provenance data. The specific contribution of the proposed architecture is its novelty in providing

a solid basis for taking advantage of the previous executions of services and workflows along with

artificial intelligence and knowledge management techniques to resolve the major challenges re-

garding workflows. The solution provided for each component is based on data mining methods,

time series solutions, and probabilistic decision making processes. The following sections of this

chapter are organized as follows: in Chapter 2.2, the mentioned issues along with the motivation

and requirements for such an architecture is discussed; in Chapter 2.3, the architecture is presented,

along with explanation of its components, Chapter 2.4 presents the related works, Chapter 2.5 pro-

vides the implementation methods that can be applied to the architecture; and in the final section,

the conclusion is presented.

2.2 Motivation and Requirements

A service-oriented architecture provides an environment in which services are shared among dis-

tributed systems. Potentially, thousands of services are available, which can be discovered or com-

bined dynamically through appropriate mechanisms for the purpose of workflow selection, compo-

sition, or refinement. Thus, current major issues regarding workflow and services can be summa-

rized in service composition and selection, workflow model extraction, refinement, and evaluation.

In previous work, these problems are targeted via semantic descriptions of services and event logs
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[van der Aalst et al., 2004]. In this section, we are discuss the knowledge requirements of each

problem, and will argue how provenance data satisfies these requirements and provides a suitable

platform for improving as well as optimizing the quality of the solutions to these problems.

Workflow composition and selection methods require an expressive language that supports flex-

ible descriptions of models and data to facilitate reasoning and automatic discovery and composi-

tion. Therefore, they mostly exploit the semantic descriptions of services as well as their QoS spec-

ifications from service repositories or service providers to perform the composition or selection. In

[Gil, 2005], the authors discuss the requirements for workflow composition. These requirements

can be summarized as follows:

• Workflows must be described at different levels of abstraction that support varying degrees

of reuse and adaptation. It is important to mention that this requirement is based on the fact

that workflows can often be created by reusing existing workflows with minimal changes.

• Expressive descriptions of workflow components are needed to enable workflow systems to

reason about how alternative components are related, the data requirements and products for

each component, and any interacting constraints among them.

• Flexible workflow composition approaches are needed that accept partial workflow specifica-

tions from users and automatically transform them into executable workflows with reasonable

levels of certainty.

In order to satisfy these requirements, the authors consider three stages for the creation of the

workflows, which include: defining workflow templates, creating workflow instances that are exe-

cution independent (abstract workflows), and creating executable workflows (concrete workflows).
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We believe the three requirements mentioned above can be satisfied through provenance data. In

[et al., 2007], the authors argue that a robust provenance trace provides multiple layered presenta-

tion of provenance. A layered architecture and engine for automatically generating and managing

workflow provenance data is considered in provenance systems and can be used for interpreting the

services and datasets of the workflows. Provenance creation in such an architecture is performed by

following a layered approach which fulfills the requirements of the workflow composition process.

The first layer of the architecture represents an abstract description of the workflow, which consists

of abstract activities with the relationships that exist among them. The second layer provides an

instance of the abstract model by presenting bindings and instances of the activities. The third layer

captures provenance of the execution of the workflow, including specification of services and run-

time parameters. The final level captures execution time specific parameters, including information

about the internal state of the activities, machines used for running, status and execution time of

the activities.

As the execution time specific parameters are also gathered in provenance stores, provenance

data also includes the QoS specifications of services. Thus, service selection solutions can be

applied to this data in order to automatically select appropriate services that provide some QoS

requirements. Service providers may not be trustworthy enough to deliver the services based on the

agreed-on QoS. On the other hand, the “Validity period” of the agreement, which is the duration in

which the service provider agrees to provide certain QoS values to the service consumer, might have

come to an end and no agreement updates might have been made afterwards. The QoS specification

of service providers are described and presented in ontology languages and are stored in service

registries. These specifications are updated periodically. In case the QoS guarantees change during

a period, the providers will not be able to satisfy the agreed-on thresholds for the service requests
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which are made before the agreement updates. Using the history of previous executions overcomes

the inconsistencies between the guaranteed and delivered QoS values of services to some extent by

providing an estimate of the QoS parameters of the services with regards to time.

Most research on workflow systems focus on prediction, tracking and monitoring of workflows,

and not on trend analysis or trust evaluation of the workflow processes. The few works which stud-

ied evaluation, accomplished a very narrow research goal aimed at improving the performance or

fault tolerance of workflow systems [Aiello, 2004], [Truong and Fahringer, 2005]. As the prove-

nance information maintains the records of previous execution details of workflows, it provides

the facility to analyze, assess, and evaluate the behavior of a workflow as well as its performance.

The performance of a workflow, its believability, improvements, and its future trends, etc. can be

analyzed and evaluated through provenance data.

Workflow mining discusses techniques for acquiring a workflow model from a workflow log.

The workflow mining methods use the event-logs for discovering the patterns and mining the work-

flows. Compared to provenance data, event logs keep track of a small amount of information, in-

cluding mostly service names and execution time. The information provided in event logs is not

enough for mining workflows with regards to all the mentioned workflow perspectives, while much

stronger reasoning and mining can be done over the data presented in workflow provenance as they

provide service input/output information, QoS values, annotations, etc.

To improve the efficiency of the composition and selection processes, previous executions of

workflows and services can be used to augment these processes with more intelligence for service

composition or selection. Information is learnt from previous executions so that the future service

compositions (or selections) disregard the services that either do not have available resources, or

do not satisfy the promised trust levels at a particular time. In case of the service composition, the
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history of previous runs of the workflow processes can be analyzed to discover the possibilities that

a certain workflow composition structure would fail during executions.

As more provenance information is gathered through time, the currently in-use workflow pro-

cess models is refined over time and the structure is geared to improve the efficiency with regards to

updates in provenance data. These variations include updates of the most frequently chosen paths,

or assigning/changing the weights of the links in the workflow model with regards to their rate of

usage in time. These types of augmentations in the model also facilitate the process of refining or

repairing a workflow model.

The provenance information might be used to reduce a workflow process by exploiting the

information available in provenance store about service outputs. To refine a workflow and replace

some parts of the process which can not be executed or do not provide much efficiency, provenance

data will be searched in order to discover a more optimal path for the workflow model.

The history of previous executions of workflows and services satisfies the requirements of ad-

dressing the discussed challenges. Apart from the requirements, provenance data can address the

challenges with more intelligence, efficiency, and reliability. Thus, there is an opportunity for an

architecture that facilitates addressing and solving all these issues by exploiting the provenance

information.

2.3 Multi-Functional Provenance Architecture

In this section, the multi-functional architecture is presented along with its components.

Figure 2.1 shows the overall view of the architecture. The structure is composed of 5 compo-

nents that cooperate together along with the provenance store to provide different functionalities.
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Figure 2.1: Multi-Functional Provenance Architecture.

The responsibilities of each component, the way components collaborate to provide the promised

functionalities, and the approach taken to achieve the goals of the components are discussed:

1. Workflow Model Extraction and Discovery Component:

This component is responsible for extracting the workflow pattern and associations that exist

among the relevant workflows previously run and executed. Two workflows are considered

relevant if they are in the same area of interest. In a workflow management systems, work-

flows from different types of areas are executed which may contain no service overlaps. In

order for two workflows to be considered relevant, they should share some similar services

or have similar service connections in their worklfow model. Their workflow models might

contain the same abstract services but they have used different implementations of those ser-

vices. The extraction component discovers the hidden connections that might exist among
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services which have not been known beforehand. It generates a graph model of the relevant

services, with edges representing the associations between them. These associations can be

of data flow, or control flow types or combination of both. The output is a policy graph

including all observed paths that could exist between the relevant services that belong to a

certain area. The extracted policy graph can be used later for the purpose of workflow con-

struction and repair. The component is also able to receive a workflow pattern, and look for

the same pattern sequence in the store to discover if there is any information regarding its

previous executions in the provenance store.

2. Workflow and Service Evaluation Component:

Evaluating workflows and services in terms of trust and quality is an important and less stud-

ied issue in the area of workflows. Workflows need to be assessed and analyzed to discover

how trustful the composition of services are, therefore, in case the trust given by a workflow

is not satisfactory, the workflow sequence can be repaired and improved. Another respon-

sibility of this component is to identify the points in time at which a significant variation in

trust occurs. This information can help us in identifying the parts of the workflow that are not

providing the promised or required trust. Similar to workflows, the services are evaluated by

this component. Large fluctuations of the QoS values of services are investigated to predict

when in the future the service will not support the promised QoS. Based on the previous

executions, this component is also able to predict which services are potentially going to be

executed and in case the results of another instance of the same service are available, the pro-

cess of workflow execution can be possibly improved by exploiting those results. Apart from

the trust assessment, the performance of the workflow is evaluated in terms of the resource
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usage, and total time elapsed from the submission to completion.

3. Workflow Repair and Refinement Component:

In case a workflow does not satisfy the trust level requirements specified by the user, it

can not be trusted and needs to be refined. In addition, due to lack of available services

for a workflow, it can not be executed and needs to be repaired. The repairment/refinement

component takes advantage of the extracted policy network of the workflow model extraction

component along with the assessment results of the evaluation component. The extracted

network is traced to find a path that can replace the defective part of the workflow. The

defective path is either inefficient due to lack of trust provision, or can not be executed any

longer because of unavailable services. In case the evaluation component predicts that a

service will not provide its promised nonfunctional requirements, the workflow repair and

refinement component is responsible for replacing this service by another service or services

that provide similar functionalities but satisfy the promised nonfunctional requirements.

4. Workflow Composition and Generation Component:

Composing a set of services using provenance data is a very useful exploitation of the prove-

nance store. The stored specifications of services and their states, which evolve through

time, can help support of composing the services automatically. On the other hand, having

the previous history of executions, provides the data, i.e., service specification data, which

is essential for learning the workflow composition. Therefore, the composition will be done

in a more intelligent way by exploiting the provenance data. This component receives the

requirements and composes a workflow dynamically by taking advantage of the service spec-

ifications provided in the store. Previous execution of workflows enables the composition to
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be more robust as it exploits the evaluation results of services and workflows to generate a

well-designed workflow process.

5. Workflow Service Selection Component:

The problem of selecting a set of concrete services that provide the required QoS specifica-

tions for a complete abstract workflow is referred to as abstract workflow service selection

problem. The provenance data can be exploited to speed up this task. In order to find the set

of concrete services that match a single abstract service, service registries are looked at and

matchmaking algorithms are applied to discover matching services. The service discovery

phase is much simpler if provenance data is used. Previous executions of workflows along

with the workflow templates simplify the process of service discovery for a simple query.

The set of suitable concrete services for the abstract workflow can then be selected more op-

timally by using the selection mechanisms along with the evaluations of previous executions.

2.4 Related Works

The workflow model and policy graph extraction component can be implemented using different

methods and algorithms. Discovering models of processes, and mining sequences, are all relevant

areas and the techniques being applied for these purposes can be used for the case of workflow

model extraction. Therefore, methods and solutions exploited in these areas were studied. The cur-

rent solutions include data mining methods for discovering sequential patterns, statistical analysis

methods for building and extracting statistical dependencies, or a combination of both methods.

In [Altintas, 2008], the authors discuss the data mining algorithms to discover sequential patterns.

The algorithms include the Generalized Sequential Pattern (GSP) algorithm, which has the ad-
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vantage of taking the time constraints into account, and Apriori algorithm [Agrawal and Srikant,

1994]. Methods used for event-data analysis are a set of techniques which are used for process

discovery. These methods vary from purely algorithmic ones to purely statistical ones [Hwang and

Yang, 2002] or a combination [Gaaloul et al., 2005]. In [Gaaloul and Godart, 2005], the authors

propose an algorithm which assumes an interval for the execution of an activity instance. The re-

sulting extracted graph contains the control dependencies and conditions which are discovered by

the algorithm. Some of the methods used for discovering sequences and processes were previously

exploited by the research done in the area of workflow pattern discovery from event logs. In [Aalst

and Dongen, 2002], techniques were developed for discovering workflow models from timed logs.

In [Huang and Chang, 2008], the workflow patterns are discovered by mining frequent episodes.

As will be described in the following, many research efforts address the problem of workflow

composition. Theorem proving methods are used which describe the available services and user re-

quirements in a first-order language, and generate constructive service ordering proofs with theorem

proving. Service composition descriptions are then extracted from particular proofs [Waldinger,

2000a]. The work in [Narayanan and McIlraith, 2002], presents a logic programming language

built on top of the situation calculus. The web service composition problem is then addressed

through the provision of high-level generic procedures and customizable constraints. One of the

most studied areas of workflow composition is solving the problem via AI planning techniques.

The state change produced by the execution of the service is specified through the precondition and

effect properties which are provided in the semantic service descriptions [Wu et al., 2003]. A high-

level declarative description has been used in some works to achieve service composition through

rule-based planning. The method uses composability rules to determine whether two services are

composable [Medjahed et al., 2003a].
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In the case of abstract workflow selection, several works [Sannella, 1994], [Forman, 2003] have

addressed this issue, proposing exact algorithms or heuristics to determine the appropriate con-

crete services for each individual component invocation or over the complete composite request.

[Ardagna and Pernici, 2005] maps the service selection for workflows into a Multi-Objective Pro-

gramming model (MOP). [Berbner et al., 2006] models this problem as an optimization one and

adopts a genetic algorithm for solving it.

2.5 Methodology

In this section, we discuss our proposed approaches towards implementation of the architecture.

Chapters 3-5 will describe our methodologies and experimental results for these components in

more detail.

The architecture implementation is mostly based on artificial intelligence and statistical meth-

ods. Current workflow model discovery methods are not able to discover the workflows from dif-

ferent perspectives. In addition, not many of the current solutions can discover the parallel sections

of a workflow structure. Our process discovery method for workflow model extraction is based on

Bayesian reasoning. The method used by this component exploits the Bayesian structure discovery

technique “to learn” the workflow model and build the workflow graph. In order to model the prob-

lem as Bayesian structure discovery, the services serve as the nodes of the Bayesian network, each

having values representing service names. The links in the resulting graph represent the causal re-

lationships that exist among the services. Therefore, the graph extracted from the provenance data

depicts the workflow policy graph.

The evaluation component is based on statistical approaches such as HMM [Rabiner and Juang,
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1986] and multivariate time series methods [Hamilton, 1994]. These solutions are used for analyz-

ing and evaluating the trust of the workflow, or to discover the trend of trust in workflow or services

over time. This component evaluates the trust of a workflow using a HMM and specifies the trends

of changes in workflow trust over time. As the non-functional specifications of services, such as

execution time, are also gathered through provenance systems, QoS parameters of services can be

considered as time series data. Therefore, the time series evaluation method is applied on the data

to provide assessments for trust and QoS values of workflows and services. Event detection meth-

ods can be exploited to find the trend of services and predict when in future the services might not

be able to provide the promised values.

Our solution to the composition problem is based on POMDP [Murphy, 1982] techniques.

POMDPs provide a suitable approach for composing services. A discrete POMDP models the

relationship between an agent and its environment. The parameters of the POMDP – which include

conditional transition probabilities, conditional observation probabilities, and rewards– are learnt

through the data available in the provenance store. The planning process is augmented with learning

methods to make the composition as intelligent as possible.

The service selection component of the architecture will use the HMM [Rabiner and Juang,

1986] sensor scheduling approach [Guralnik and Srivastava, 1999]. Sensor scheduling is the prob-

lem of optimally choosing which single sensor to use at each time instance to minimize a cost

function. Past observations together with past choices of sensors affect which sensor to choose at

present. This problem perfectly matches the abstract workflow service selection. The sensors to

be chosen at each time represent the concrete service that should be chosen at that time instance.

The solution to the sensor scheduling problem selects an appropriate concrete service at each time

instance while keeping the total values of QoS specifications as low as requested. The sensor
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Figure 2.2: HMM for Service Selection.

scheduling problem proceeds in three stages for each time instance. The first phase, which is the

scheduling, determines the sensor that is to be used at the next time step given the information

available at the current time, which includes sensors chosen at previous times as well as the obser-

vations measured by the sensors. The next stage evaluates the observation of the sensor chosen for

the next time step. The final stage computes the optimal state estimate by using the HMM state

filter. Each states with regards the to service selection problem is represented by the state of each

concrete service. Figure 2.2 shows the HMM [Rabiner and Juang, 1986] sensor scheduling model.

2.6 Evaluation Design

In order to evaluate the architecture’s performance, different provenance systems were studied to

investigate the one which best satisfies the data requirements for the components. Taverna [Tav,

2013], Triana [Tri, 2003], and PASOA [Moreau et al., 2013] are the provenance systems studied.

Triana does not provide a separate provenance system, instead, it has a rudimentary history track-
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ing system that allows workflows to be stored with the interim states of the components in the

workflow. This annotated workflow can then be replayed to generate the same results. Taverna is

a workflow workbench that has a provenance model which captures both internal provenance lo-

cally generated in Taverna and external provenance gathered from data providers. The provenance

data gathered in Triana is very limited in comparison to Taverna and does not support annotations.

Although the PASOA project presents an architecture which addresses issues such as provenance

generation, representation and reasoning, its implementation is not complete and is just intended as

a technology preview. In order to perform real world and valuable experiments with the architec-

ture, Taverna was selected as a practical provenance system and was expanded to incorporate the

additional features of the proposed architecture.

The evaluations that will be considered for the architecture include evaluating the accuracy

and performance of the workflow model extraction component with regard to the graph provided.

The refinement component will be assessed to observe the rate of improvements of the workflow.

The behaviours of the components will be assessed in terms of scalability to observe the effect of

different number of services on the model. The performance of the components will be compared

with on the fly solutions to investigate the influence of learning as well as the feedbacks fed into

the components from previous executions.

2.7 Conclusion

In this chapter, a multi-functional architecture was proposed which addresses the current issues of

workflows and services using provenance data. The components of the architecture, and the pro-

posed implementation methods were briefly introduced. It can be seen that the provenance data can
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provide a richer knowledge base for workflow pattern discovery compared to event logs; therefore,

more inference can be done for extracting the workflow patterns. In case of service composition,

the provenance data can work as the semantic repository and by applying the learning methods

on the previous executions, a more efficient composition is achieved. Furthermore, little research

has been done on workflow evaluation and assessment, while, having the provenance information,

different types of analysis and reasoning can be performed on processes and services. More eval-

uation along with stronger and more intelligent reasoning leads to better results. The evaluation

component improves service operations by providing feedback to services about its behaviour, and

in cases in which the QoS values provided by a service violates its promises in terms of QoS guar-

antees. In addition, workflow assessment results enable comparing similar workflows with each

other in terms of resource usage, trust guarantee, and speed. These results are used in workflow

composition, service selection, and workflow refinement components and augment the architecture

with intelligence and robustness.

The different techniques applied to the same problem will be compared with each other in terms

of their execution time, support, and scalability. The proposed architecture will be augmented with

other services to provide more functionality, robustness, and reliability. Components will return

feedback to the provenance store to augment the data with information learnt. As a result, the stored

data will be updated dynamically through time and annotations will be added to the information.

Thus, the components will operate more intelligently. The provenance data will be preprocessed,

cleaned, and the possibilities of unknown, missing as well as erroneous data will be considered.

52



CHAPTER 3

EVALUATING WORKFLOW TRUST USING HIDDEN MARKOV

MODELING AND PROVENANCE DATA

In service-oriented environments, services provide different qualities in terms of parameters

like availability, cost, reputation, execution time, etc. A trust score can be derived from these QoS

parameters, which determines the rate of reliability in each service. This score can assist the service

consumer parties to decide whether or not to transact with that service provider in the future. In such

distributed environments, services with different functionalities are combined together to define

new services or provide higher level functionalities. Having a trust score for each service, the trust

level of a combination of services, i.e. a workflow, can be determined. Assessing the trust value

of a workflow helps to determine its rate of reliability. Therefore, the trustworthiness of the results

of a workflow will be inferred to decide whether the workflow’s trust rate should be improved.

The improvement can be done by replacing services with low trust levels with services with higher

trust levels. We provide a new approach for evaluating workflow trust based on an HMM. We first

present how the workflow trust evaluation can be modeled as an HMM and provide information on

how the model and its associated probabilities can be assessed. Then, we investigate the behavior

of our model by relaxing the stationary assumption of HMM and present another model based on

non-stationary HMMs. We compare the results of the two models and present our conclusions.

This chapter has been published in [Naseri and Ludwig, 2012].
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3.1 Introduction

A workflow is defined as the automation of the processes and involves the orchestration of a set

of services, agents and actors that must be combined together to solve a problem or define a new

service. Different services of the workflow represent the transformation processes that receive

the data as input to produce the transformed data as output. The workflow graph often describes

a network where the nodes are services and the edges represent messages or data streams that

channel work or information between services. Each node processes a stream of messages and

forwards the resulting streams into its connected nodes. The workflow activities are run repeatedly

by one or more users and large amounts of resulting provenance data are produced. Capturing

the execution details of the workflow transformations is very beneficial. They identify what data

is passed between services, which services are involved, and how results are eventually generated

for particular sets of input values. Such data may also relate to the accuracy of results a service

produces, the number of times a given service has been invoked, etc. [Naseri and Ludwig, 2010].

The provenance data can be explored using learning methods to discover the patterns of interest in

the data.

A description of QoS specifications as well as well-defined inputs and outputs is usually pre-

sented in the service ontologies provided in service registries. As the provenance store keeps the

specification of services such as input or output or service description, it can be regarded as a large

informational registry, providing the chance of workflow performance analysis using previous ex-

periences. Applying learning and knowledge discovery methods to provenance data can provide

rich and useful information on workflows and services. Among the workflow issues and challenges,

workflow analysis and evaluation, which mostly includes QoS assessment and trust measurements,

54



is the least-attended problem. Provenance provides a suitable resource of information for perform-

ing analytical evaluation. Thus, in this Chapter, we focus on this component and present how

workflow trust can be assessed using provenance information.

Execution of a sequence of services requires much more resources and time in comparison to

a single service. Thus, if a workflow is not very reliable, many resources and time will be wasted,

since the results of the workflow can not be trusted. Therefore, it is important to be able to evaluate

the trust of a workflow to find the degree of reliability of the workflow and its results. This also

helps to decide whether the workflow needs some refinement and whether less trustworthy services

should be exchanged with more trustworthy ones. Having the trust value of each service allows

evaluation of the overall trust value of a sequence of services, i.e., a workflow. Therefore, we can

determine the amount of trust that can be placed on the overall workflow as well as the results and

datasets generated during the workflow execution.

The remaining sections of this chapter are organized as follows: Chapter 3.2 outlines how

workflow trust can be evaluated using HMM; in Chapter 3.3, we discuss the procedure followed

for assessing the HMM probabilities, and in Chapter 3.4 the implementation details of the model

are provided. Chapter 3.5 presents a case study, as well, the stationary assumption of the model is

investigated and some experiments are performed to compare the Non-Stationary HMM (NSHMM)

trust evaluation results with HMM. In the final section, the conclusion and future work are given.

3.2 Related Works

There are very few approaches addressing the subject of workflow trust evaluation. One approach

uses a decision tree model, which is presented in [Rajbhandari et al., 2006], in which a decision
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tree is built out of a question sequence that will help in assessing the trust that can be associated

with the data produced from a process. The root node asks about the trust of the workflow and

has three child nodes, evaluating the trustfulness of services, data and the workflow process. Each

child node has a sub-tree, representing a set of yes/no questions. The decision making process starts

with one child node, traverses its sub-trees and continues to the next child node. This procedure

is followed continuously until all the sub-trees are investigated. The result of the investigation is

either a “yes” or “no”, determining whether the workflow can be trusted or not. This work has been

extended and an important shortcoming of it, the crisp result, has been addressed in [Rajbhandari

et al., 2008]. Therefore, the outcome of each analysis node of the trust decision tree is mapped to a

fuzzy membership function. Later, these values are combined together using fuzzy inference rules.

However, all the current solutions lack accuracy, automation, and reliability. They are based

on a decision tree model with categorical nodes that have been designed by the developers. The

decision nodes of the tree are simple sets of questions regarding the user’s views or behaviors to-

ward service, data or process trust. Besides, the trust value of each service or data is not considered

separately, but instead the overall trust level of services is involved in the decision making process.

We propose a new approach for the evaluation of trust of workflows, which is based on a

statistical model named HMM [Rabiner and Juang, 1986]. Rather than traversing a set of question

nodes, in our model, the trust will be assessed by solving a set of mathematical equations that

describe the behavior of the workflow trust in terms of random variables and their probability

distributions. Thus, our method is more accurate in comparison to the previous approaches and

will support automation.

Many approaches have been proposed to improve the predictive power of HMM in practice.

For example, a factorial HMM [JingHui et al., 2005] is proposed to decompose the hidden state
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representation into multiple independent Markov chains. In speech recognition, factorial HMMs

can help in representing the combination of multiple signals. An hierarchical HMM [Fine et al.,

1989] is another method that facilitates the inference of correlated observations over long periods

in the observation sequence via higher level hierarchy. However, from the essential definition of

HMM, there are other ways to improve the predictive power of HMMs. One approach is to relax

the stationary hypothesis of HMMs and make use of time information. This method is referred to

as Non-stationary Hidden Markov Models (NSHMM) [B. Sin, 2008]. To investigate this research

further and observe the behavior of our model with regards to the non-stationary assumption, the

workflow trust has also been evaluated using NSHMM.

3.3 Hidden Markov Modeling for the Evaluation of Workflow

Trust

In probability theory, a stochastic process [Karlin and Taylor, 1975] is a collection of random vari-

ables used to represent the evolution of some system over time. In a stochastic process, there is

some indeterminacy which results in several directions in which the process may evolve. A Markov

process [Karlin and Taylor, 1975] is a stochastic process that satisfies the Markov property which

states that the conditional probability distribution of future states of the process depends only upon

the present state, not on the sequence of events that preceded it. A model that assumes the Markov

property is referred to as a Markov Model [Karlin and Taylor, 1975]. An HMM is a statistical

Markov model in which the system being modeled is assumed to be a Markov process with unob-

served , i.e., hidden, states. In an HMM, the state is not directly observable, but the observation,

which is dependent on the state, can be observed. Each state has a probability distribution over the
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Figure 3.1: Basic HMM.

possible observations. Thus, the sequence of observations generated by an HMM provides informa-

tion about the sequence of states. Given an HMM, and a sequence of observations, the probability

of the observation sequence given the model can be evaluated. It is also possible to discover the

hidden state sequence that was most likely to have produced the observation sequence. Another

type of inference on HMMs can estimate the HMM model through training examples and learning

methods.

The HMM model basically consists of two finite sets of variables: state variables and evidence

variables, which are also called the observations. The state variables are the hidden variables that

change over time; while the evidence variables are the observable variables that are known in

advance at each time step. The challenge is to determine the hidden parameters from the observed

ones.

Figure 3.1 shows a simple first order HMM. The state variable xt is a hidden variable at time t

and can have a value from the domain of xt , i.e., xt ∈ x1,x2, ..xn , where n is the number of states.

The random variable yt denotes the observable parameter at time t. From the figure, it can be seen

that the value of the hidden variable at time t, i.e. xt , depends only on the value of the hidden

variable xt−1, and other previous parameters have no influence on it. This property is referred to as

the first order Markov property.
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HMM has become the method of choice for modeling stochastic processes and sequences in

applications such as speech and handwriting recognition [Rabiner, 1989], computational molecular

biology [Krogh et al., 1994], natural language modeling [Jelinek, 1985], etc. In this work, HMM

is used for the purpose of workflow trust evaluation.

In order to be able to assess the proposed HMM model, provenance information are exploited.

Provenance is one of the growing demands in distributed service oriented environments, which

supports the systems with documentation of the origin and the processing steps of data that is part of

a workflow execution process. It also provides explanations about which, how and what resources

and services were used to produce that data, and is referred to as provenance data that is captured

and stored in provenance stores for the purposes of reasoning, validation and re-execution. A

provenance store provides the necessary information that is exploited for the purpose of estimating

HMM probabilities.

It is important to mention that in a great many applications of HMMs, the latent states cannot be

observed. As a result, based on the observations, the probabilities involved are assessed using the

Maximum Likelihood (ML) method. But in case of our model, we are assuming that the provenance

information permits accurate enough information concerning the latent states to directly estimate

the transition probabilities using such data.

3.4 Methodology

The notion of trust of an enacted workflow is an important issue in distributed service oriented

environments. Trust evaluation aims at contributing in the discovery of how trustworthy the results

of a workflow are. It also helps the optimization of composite service executions. In this section, we
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are going to first present how the workflow trust can be evaluated using hidden Markov modeling.

Later, we explain how the model can be assessed by taking advantage of the previous history of the

execution of workflows.

In our multi-functional architecture which was discussed in the previous chapter, we mentioned

that workflows are composed and services are selected using the service composition and selec-

tion components. The goal of the service selection component is to find a service from the list of

available services, such that the users end-to-end QoS requirements are satisfied. Service selection

mechanisms are based on the prediction of services performance from the quality advertised by

providers as well as a service’s reputation. The selection accuracy of the service selection mecha-

nisms are improved by exploiting service trust values along with the QoS parameters. Thus, during

the workflow composition and selection processes, services are selected based on their QoS values

as well as the trust values. As a result, in order to model the workflow trust evaluation as an HMM,

the state and observable variables are mapped as follows:

• Trt : the trust state variable, represents the state of the trust of the workflow at time t. The

trust state is a continuous scalar quantity which holds a value within the range [0−1]. A trust

value of 1 presents a fully trustworthy service, while a value of 0 declares that the service can

not be trusted at all. For the sake of simplicity, the trust state variable used in experiments in

this research is considered a discrete variable of the domain set: Low, Medium, High.

• St : the evidence variable represents the service that is being executed at time t. As for the

evidence variables, QoS values of the services are taken into account. The evidence variable,

i.e. service, is a scalar discrete quantity.

Figure 3.2 depicts a simple linear workflow and the corresponding HMM, modeled to evaluate
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Figure 3.2: A sample workflow and the HMM for workflow trust evaluation.

the trust level of the workflow. As can be observed from the figure, the state of the trust of the

workflow at each time step, will be determined by investigating the state of the workflow trust at

the previous time step, and observing the service that was executed at that time.

In the theory of HMMs, some assumptions are made for the sake of mathematical and compu-

tational tractability. Here we present how these assumptions can be applied to our model:

1. The Markov assumption: It is assumed that the next state is dependent only upon the current

state. This is true in case of our model, as the state of the trust of the workflow at each time

only depends on the state of the trust at the previous time and not the other prior states.

2. The output independence assumption: This is the assumption that the current observation is

statistically conditionally independent of the previous observations. In case of our model, the

QoS values at time t are conditionally independent of the previous services given the current

state.

3. The stationary assumption: This assumption is based on the fact that the transition proba-
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bilities between the states are independent of the actual time at which the transitions take

place. In case of the workflow trust problem, we cannot say that transition probabilities are

completely independent of time. We suppose that this assumption will be true for our model

since we can take the average of the state transitions of all times and have one set of state

transition probabilities for the overall time period. In order to investigate this further, later

in this chapter, we will observe the behaviour of the model by relaxing this assumption and

having a non-stationary HMM.

Having defined the HMM and described how the HMM parameters and assumptions can be

mapped to the workflow trust evaluation parameters, we will now clarify how this model can be

exploited for the purpose of trust evaluation.

As mentioned earlier, different kinds of inference can be done on HMM structures. These

include methods for computing the posterior distribution over the current, future, or a past state, or

finding the sequence of states that is most likely to have generated those observations. The posterior

distribution is the distribution of an unknown quantity, the state of the the trust of the workflow,

conditional on the evidence obtained, i.e., the service observed. As for the word “Posterior” in this

context, it means after taking into account the relevant service related to the particular case being

examined.

Filtering or monitoring is the task of computing the posterior distribution over the current state,

given all evidences and observations to date. The following probability expresses filtering infer-

ence:

P(Xt | y1,y2, ...,yt) (3.1)

Using the filtering model, the probability of the state of the trust at the final state of the workflow
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can be roughly estimated given all the observations, which are the services seen so far. Therefore,

for the case of the trust evaluation, the following probability should be assessed:

P(Tr2 | s1,s2,s3) (3.2)

for different possible trust state levels. Evaluation of the above probability provides us with esti-

mations of probabilities for different trust levels at time t2. As mentioned above, in this work, the

state of the trust will be evaluated at three different levels of High, Medium and Low. The work can

later be extended to support further trust levels as well as continuous workflow states.

3.4.1 Trust Model Assessment

In order to be able to compute the filtering inference, two other probabilities should be assessed

beforehand. These probabilities are referred to as state transition probability and sensor probability.

The state transition probability is defined as the probability of being in the next state given the

current state, i.e. P(xt | xt−1), which in our case is the probability of being at a trust level at time t

given the level at the previous time, i.e. t−1. The sensor probability is defined as the probability of

the observation at time t, which is the service that was executed at time t, given the different level

of trustworthiness of the workflow at that time. To assess the state transition or sensor probabilities,

provenance data is being used.

It was mentioned earlier in Chapter 1 that in scientific computations using workflows how

a result dataset is derived is of great importance as it can specify the amount of reliability that

can be placed on the results. Thus, capturing provenance information is very advantageous in

this regards. Provenance information facilitates data dependency determination, workflow result
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validation, efficient workflow re-executions, error recovery, etc. [Altintas, 2008]. In this chapter,

we are exploiting the provenance data to evaluate the trust of the workflows by learning the HMM

probabilities.

Information of the previous executions of a certain workflow, provide us with the data about

workflow trust changes in history. We will be using this data to assess the HMM for the workflow

at run time.

Assessment of Transition Probabilities

In order to assess the transition probabilities, the trust state transitions, i.e. P(Trt | Trt−1), should

be computed for all pairs of workflow services that are being executed in sequence. Having a large

provenance record of the previous executions of workflows, we will be able to learn the transition

probabilities from the data.

To assess this probability, we determine the number of each trust state transition with regard to

the total number of transitions of that state. The transition probability estimation for our model is

computed based on Equation 3.3:

P(Trt = j | Trt−1 = i) =
ni j

ni
(3.3)

where ni j denotes the number of transitions from trust level i to trust level j, and ni denotes the

number of transitions from trust level i. These values are calculated through provenance informa-

tion using previous executions of services. For example, for the sample workflow in Figure 3.2,

which was composed of three services, the trust state transition from high to low will be computed

by first determining the number of high to low transitions for the service pairs (s1,s2) on transition
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from s1 to s2 and dividing it by the number of times the service s1 had high trust level. The same

will be done for the pair (s2,s3). The average of these values represents the transition probability

from high to low.

It is important to mention that the same pair of sequential services might be repeated in several

workflows, and the transition probabilities for these services will be learnt without considering

specific workflows. The average of all these probabilities will denote the final transition probability

for these pairs of services.

Assessment of Sensor Probabilities

To assess the sensor probabilities for each time instance t, the probability of observing an ev-

idence variable given the state at that time should be computed. Therefore, we should compute

P(St | Trt), which again will be learnt from the provenance data.

For this purpose, the number of times the trust state of service instance St was at each trust

level is estimated. This value is divided by the total number of times any service was at that trust

state. As before, the provenance history of the workflow will be used. Equation 3.4 represents the

assessment of the sensor probabilities for our model:

P(St = st | Trt = j) =
nst j

n j
(3.4)

where nst j denotes the number of times being in state j and observing service st , and n j denotes the

number of times a transition from state j has occurred.

Assessing the Trust Level
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The filtering method, also refered to as the forward algorithm, is used to calculate the probability

of a state at a certain time, given the history of evidence. To assess the workflow trust at a time that

all the services in a sequential workflow have been run and observed, we apply the filtering method.

Having assessed the sensor and transition probabilities, we will be able to assess the filtering model

of HMM and therefore evaluate the workflow trust using Equation 3.5:

P(Trt | S1 = s1,S2 = s2, ...,St = st) ∝ P(St = st | Trt)∑
t

P(Trt | Trt−1)

P(Trt−1 | S1 = s1,S2 = s2, ...,St−1 = st−1) (3.5)

The probability of P(Trt−1 | S1 = s1,S2 = s2, ...,St−1 = st−1) is computed recursively. Equation 3.5

evaluates the probability of different trust levels at time t having observed the services the workflow

is composed of until that time.

3.4.2 Cases with Dynamic or Parallel Sections

The presented trust model is compatible for workflows which contain not only sequential but also

parallel sections in the workflow. In case of non-sequential workflows, a sequential workflow is

extracted from them by selecting a subsection out of all parallel sections according to a policy, and

replacing that parallel subsection with the selected subsection. Starting with the parallel subsection

with maximum numbers of parallel levels, a subsection is chosen for parallel level by first applying

the HMM model to all the parallel sub-sections of that section, and then the trust level probabilities

of the sub-sections are compared with each other. For each section, the trust level is combined with

the frequency of executions of that section and and the parallel section is replaced by the subsection

that provides better results. By following this policy for all the parallel levels, the workflow is
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transformed to a sequential workflow, and finally the HMM model is applied to assess the trust

level.

It is important to mention that as the proposed approach exploits provenance information to get

an assessment of the QoS values, it works for the static scenarios.

3.5 Implementation

As mentioned earlier in this work, the trust of each service instance is categorized into three levels

of High, Medium, and Low and can be evaluated by aggregating the QoS parameters of the service.

These QoS parameters can include status, availability, reliability, execution time, reputation, etc.

The trust value is usually determined by assigning a weight to each parameter and the summation

of the multiplication of the parameters by their weights results in the final trust value. As in our

current model, we are concerned with trust levels rather than trust values, we determine the level

of the trust with regard to the level of the QoS parameters.

In our implementation, we have considered the QoS parameters of status, reliability and avail-

ability. The QoS parameter status is a binary value that represents the status of the execution of the

service. A value of 1 describes that the service was executed successfully and a value of 0 reports

unsuccessful execution. The QoS parameter availability presents an estimation of availability of a

certain service and its data, while reliability denotes the degree we can rely on the processing and

the response time of the service. Both parameters have a value in the range of [0,1].

In order to decide about the trust level of each service using these parameters, we followed a

table model, Table 3.1, in which the level of all QoS parameters of availability and reliability in

conjunction with the status of the execution determines the level of the trust. The table is referred
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Table 3.1: Trust level decision table, L, M, and H denote Low, Medium, and High. This table
represents how, in our implementation, the combination of several QoS values is mapped to
a trust state.

Trust Reliability Availability Status
L LL0
L LL1
L ML0
M ML1
L HL0
M HL1
L LM0
M LM1
L MM0
M MM1
L HM0
H HM1
L LH0
M LH1
M MH0
H MH1
M HH0
H HH1

to as the trust level decision table throughout this chapter. A sample row in this table represents the

associated trust level in combination with the discussed QoS parameters. For example, LL1 denotes

that the level of the reliability and availability of a service is Low, and the status is 1. According to

the table, the trust level of the service is assessed as Low.

The levels of reliability and availability of the services are determined according to a set of pre-

determined range levels. For the examples and experiments provided in this chapter, the following

range table (Table 3.2) was used.

As was discussed earlier, the probabilities are assessed by applying learning methods over the

provenance data. For the purpose of learning, we implemented a provenance store in MySQL [MyS,

2013] including tables for storing the information of workflows, services, workflow instances, and

68



Table 3.2: Range Level of the QoS parameters Availability

Trust
Level

Low Medium High

Availability [0,0.3] (0.3,0.7) [0.7,1]
Reliability [0,0.3] (0.3,0.7) [0.7,1]

workflow sequences. The provenance data is then generated by a random workflow generator

implemented to produce instances of a workflow. While the generated data does not consider all

aspects of real world workflows such as missing data, hidden correlations, etc, the approach can be

applied to real scenarios with preprocessed data. The generator asks for the following parameters

as input:

• Ns: the number of services the workflow should be composed of.

• Nw: the number of previously executed instances of the workflow.

In order to assess the HMM, we followed the algorithm which describes the sensor and transi-

tion models in form of matrices. The transition matrix denoted by Γ is a m×m (in our case 3×3)

matrix where m is the number of possible states. The probability of a transition from state i to state

j is denoted by the entry Γi j:

Γi j = P(Trt = j | Trt−1 = i) (3.6)

which, as discussed, will be evaluated using the generated provenance data along with the trust

level decision table (Table 3.1), QoS parameters range level (Table 3.2).

The sensor model is also put into matrix form. For each time step t, a diagonal matrix of size

n×m, Ot , is constructed whose diagonal entries are given by the values P(St | Trt = i), with the

other entities set to 0. Assuming to have m numbers of observations,each entry is the probability of
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the observed event given each state.

Now, to accomplish the filtering inference and represent the forward messaging in HMMs using

the matrix model, Equation 3.7 is applied recursively:

f1:t+1 = αOt+1Γ
T f1:t (3.7)

where α is the normalization factor and ΓT represents the matrix transpose of Γ. At each step, this

process is carried forward with additional observations. The probability vector that results contains

entries indicating the probability of being in each state conditional on the input seen thus far.

3.6 Case Study

In this section, we present a workflow scenario and describe how its trust can be evaluated using the

presented model. The sample workflow is the process of knowledge discovery in databases, which

is referred to as the KDD process [Fayyad et al., 1996]. The KDD process is composed of four

services for data selection and cleaning, data transformation, data mining, and data interpretation.

Figure 3.3 shows the process.
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Figure 3.3: A sample workflow scenario - KDD Process.

The following assumption is made. A distributed service-oriented environment is sharing ser-

vices for the purpose of knowledge discovery, and a workflow is executed using four different

services shared by service providers in the environment, each having different QoS values, and

therefore, different trust estimations. Using the workflow generator, the above workflow was de-

fined and 50 execution instances were generated, representing the provenance data. The workflow

data generator receives the following input parameters: minimum and maximum range for each

QoS parameter, the size of the workflow and the number of workflow instances that should be gen-

erated. It then creates a sequential workflow of the given size, and produces workflow instances

by generating random values between the minimum and maximum ranges for each QoS parameter.

Table 3.3 shows the average of the QoS parameters of the instances generated for the case study.

The QoS parameters availability and reliability were randomly generated in the range of 0.3 to

0.9, which mostly covers the medium and high trust levels. The status of the execution was set to

zero in less than 20% of the cases. It is important to emphasize that according to the trust level

decision table (Table 3.1), the state of the trust of a service instance is evaluated as Low if its status
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Table 3.3: The average of the values of the QoS parameters generated for the scenario.

QoS Parameter Reliability Availability Status
Data Selection 0.58 0.59 0.8
Data Transformation 0.7 0.7 0.88
Data mining 0.34 0.34 0.82
Interpretation 0.84 0.84 0.82

is zero. The reason for this decision is that if a service does not complete its execution successfully,

that service instance should not be trusted at all. Therefore, we evaluate the trust as low regardless

of the instance’s level of reliability and availability.

In the next step, the transition matrix is built by learning the probabilities from the generated

provenance data. Given the data, the transition matrix T , of the above example was estimated as

given in Figure 3.4.

Figure 3.4: Transition matrix of the example

L, M, and H represent the trust levels Low, Medium and High. An entry Γi j denotes the tran-

sition probability of being transferred from trust level i to j. For a better understanding, the state

transition diagram is also provided in Figure 3.5, which is the same as the transition matrix but

presents it in a graphical view which is easier to follow.
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Figure 3.5: The state transition diagram showing the transition probabilities for the above
example learnt.

Having learnt the transition matrix using the provenance information, the forward algorithm

starts with assessing the sensor probability at the first time step and forwards this information along

with the transition messages to the next time step. This process of forwarding messages continues

until the last service is observed, and therefore the overall trust of the workflow is evaluated. It

is important to mention that the prior belief about the trust state probabilities, i.e., the initial state

probabilities, is considered equal for all the three possible states and was set to 0.33 for all the trust

levels.

To investigate the behavior of the filtering method and observe the workflow trust level esti-

mations along time, the reader can refer to Figure 3.6. The figure shows how the trust state of the

workflow changes over time during the HMM assessment for the discussed example.
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Figure 3.6: The change of the trust state probabilities over time using an HMM.

It can be observed that using the filtering algorithm, the workflow trust state is evaluated as

Medium after observing the first service, it then heads toward High, then again Medium and finally

the workflow trust level is evaluated as High.

Taking a look at the average values of the QoS parameters of each service explains the behaviour

of the model. According to the QoS range evaluation 9 (Table 3.3), the trust level of the first service,

which is the data selection service, can be evaluated as Medium. The trust level of the third service

is also evaluated as Medium, and the trust level of the second and the fourth service is estimated as

High.

The explanation above and the transition matrix shown in Figure 3.4 describe the reason behind

the path taken in Figure 3.6. The path shows the route between the trust levels with the highest

probabilities at each time step. The transition probabilities with large probability values include

transitions from High to Medium, Low to High, and Medium to High. The evaluation process starts

with the first service which has an average of Medium trust level. As the transition probability of

Medium to High is the largest, this leads the state of the trust toward High. Being in state High
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and having observed a service with High trust level leads the trust level toward Medium as the

largest transition probability from High is the one toward Medium. The rest of the transitions can

be explained in the same way.

It should be considered that there is always a less than 20% probability for a low trust state to

be chosen for all the services. Because as discussed earlier, the status of the executions of services

were randomly set to zero in almost 10 to 20 percent of the cases. Therefore, the final trust level

probabilities will have a 10% low level probability on average.

3.6.1 Investigation of the Stationary Assumption

It was mentioned earlier that one of the assumptions of HMM is the stationary assumption. In

order to follow this assumption, the transition probabilities were assessed by taking the average of

the transitions between each pair of services to have the same state transition matrix at all times.

This can not be assumed to be true in case of the workflow trust problem. As a wokflow process

is composed of services which are connected and executed along the time, the workflow trust state

transitions are time-dependent. This section investigates how the model will behave if we relax this

assumption and transition probabilities are considered time-dependent. To achieve this goal, the

transition probabilities are computed separately for each time step. It is important to mention that

when a workflow is sent to a workflow management system, the sequence is known in advance.

Thus, the time dependency of services is given. However, the runtime workflow parameters, such

as the QoS values, are determined at run time.

In the theory of HMMs, it is assumed that state transition probabilities are independent of the

actual time at which the transitions take place. This assumption can be mathematically presented
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as:

P(xt1+1 = j | xt1 = i) = P(xt2+1 = j | xt2 = i) (3.8)

for any t1 and t2. Equation 3.8 states that the transition probabilities are constant over time which

means that the probability of transition between different trust levels is the same for all times.

Therefore, the Markov chain is described as stationary in the strictest sense. In general, it is possible

to lift the constancy constraint and define the transition probabilities as a function of time. This

model is referred to as the Non-Stationary Markov Model (NSMM) [Bongkee and Jin, 1995] and

has a set of transition probability distributions that vary over time. This means that, given a state

i, the probability of moving to another state j in the next time step is a function of time. The

time can be either absolute or relative. Equation 3.9 shows how the state transition function can be

estimated:

Pi jt =
C(i, j, t)
C(i, t)

(3.9)

where C(i, j, t) is the co-occurrence frequency of state i and state j at time t and it can be estimated

by counting the co-occurrence times of state i and state j at the tth time. C(i, t) is the frequency of

state i at time t and can be estimated by counting the occurrence times of state i in the tth time. And

Pi jt is the transition probability between state i and j at time t.

In case of the workflow trust evaluation, the trust state of a workflow process is affected by

the services which are the building blocks of the workflow. In a workflow graph, these services

are connected to each other and are executed in an specified order along time. Thus, the transition

probabilities can be considered as a function of time since the probability of transition from one

trust level to the other at time t depends on the services that are being executed at that time instance.

Therefore, it is important to investigate the behavior of the model this time using the NSHMM in
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order to observe the effect of the stationary assumption on the trust evaluation results.

In case of relaxing the stationary assumption for the workflow trust evaluation, the state transi-

tion probabilities are assessed separately at each time step and a transition matrix is built using the

provenance data representing the history of the observations seen previously at those time steps.

The transition probability from state i to state j at time t will be assessed as follows:

Pt(Trt = j | Trt−1 = i) =
ni jt

nit
(3.10)

where ni jt denotes the number of transitions from trust level i to trust level j at time t, and nit

denotes the number of transitions from trust level i at time t.

The non-stationary model was further implemented and the result of the same scenario studied

in the previous section was investigated using the new model. It is observed that the trust state

probabilities have not changed much as time elapses. The maximum trust level path follows the

same routine with very little changes in the state probabilities at each time. The evaluation result

of the NSHMM shows that the workflow can be trusted with a probability of 93%, while using the

HMM this probability was 83%.

To investigate this further, we ran experiments using both models and compared their results.

The experiments were done by creating workflows of sequential structures with 5 to 25 services in

increments of 5. The workflows were created using the discussed workflow generator and workflow

instances were produced. A previous execution history of 100 instances was randomly generated

for each workflow in order to learn the sensor and transition probabilities. For both HMM and

NSHMM models, the filtering algorithm was run for each workflow size. The average of the

resulting workflow trust level probabilities was then computed for each workflow instance. It was
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observed from the experiment results that for both models the distance between the same trust

levels was equal in 96% of the cases.

Figure 3.7 represents the average resulting trust level probabilities of the HMM and NSHMM,

assessed through the filtering method. It can be observed that the differences are very small. In all

the experiments, the level of the trust was estimated to be the same.

Figure 3.7: Comparing the average trust level of HMM vs. NSHMM for 5 to 25 numbers of
services with increments of 5.

In order to determine whether the results of the two models are the same, we ran the paired

t-test on the datasets of the two models. For each model, a data column is generated such that each

value in the column represents the average value of the resulting highest trust level probabilities

assessed for all the workflow instances of a certain size. The t-test is a statistical test that assesses

whether the means of two groups of data are statistically different from each other. The result was

a p-value of 0.78, which represents that the datasets are not significantly different from each other.

The chart in Figure 3.7 and the t-test results both verify that the stationary assumption does not have

a significant effect on the results of the trust level assessment, as both models provide estimations

for the same trust levels with very little difference.
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Experiments were done to compare both models in terms of the execution time and it was ob-

served that while there is not large differences between the execution times, the execution time of

the non-stationary model is larger. The reason for this observation goes back to the transition matri-

ces that should be computed for each time instance separately while for the HMM with stationary

assumption, the transition matrix is built once.

3.7 Conclusion

In this chapter, a multi-functional architecture was described that addresses the current research

issues of workflows and services using provenance data. The components of the architecture were

described consisting of model extraction and discovery, workflow evaluation, workflow repair and

refinement, workflow composition, and workflow service selection.

In addition, we focused on one component of the multi-functional architecture and put forward

an approach for evaluating workflow trust level using hidden Markov models and provenance data.

We discussed how the HMM assumptions can be applied to this problem, and we provided details

on how the model can be assessed using the provenance data.

In order to investigate the behaviour of the model, we provided a workflow scenario and ex-

pressed how its trust level is evaluated using the proposed model. In order to verify the effect of

the stationary assumption of HMMs for the trust evaluation problem, we investigated the results of

applying the non-stationary hidden Markov model to our problem.

The two models were then compared with each other. It was observed that the same trust level

was estimated by both models with a small difference in their probability values. Therefore, the

stationary assumption does not have a significant impact on the trust evaluation results. The non-
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stationary assumption of transition probabilities seems to be more accurate in case of our model

since the probability of moving from one state to the other at a time instance depends on the state

of the two services that are being executed at those times. Thus, for this problem, it is better to

consider the transition probabilities as time-dependent probabilities for more accurate results.

Future work involves performing a large number of experiments to evaluate the scalability and

accuracy of the system, preferably with real data. Various experiments will be done for different

workflow sizes, and the behavior of the system could be observed in response to larger workflows.

As the amount of provenance data affects the accuracy of the learnt probabilities, the reliability

of the system will be evaluated considering different learning data. The HMM parameters can be

learnt using the ML or EM mthods to improve the accuracy of the method provided.

The main concern of the current implementation was randomly generating a large amount of

valid provenance data for many workflows, each having similar structure with the others. The

future workflows ought to be realistic and consist of common services and patterns with reasonable

provenance values and data from a number of executions. The model will be improved to also

consider trust values of the workflow process and input data for the evaluations.

Furthermore, the fluctuation of trust with the Markov process needs to be investigated in order

to discover the points at which the workflow lacks trustworthiness and should be refined. It is

desired to automatically detect and replace less trustworthy services with trustworthy ones. This

part of the work can be extended by learning the workflow patterns from the provenance data and

substituting less trustful services or sections of the workflow with more trustworthy ones.
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CHAPTER 4

EXTRACTING WORKFLOW STRUCTURES THROUGH

BAYESIAN LEARNING AND PROVENANCE DATA

In this chapter, we investigate the workflow model extraction component. Mining workflow

models has been a problem of interest in literature for the past few years. Event logs have been

the main source of data for the mining process. Previous workflow mining approaches mostly

focused on mining control flows that were based on data mining methods, and exploited time

constraints of events to discover the workflow models. Using provenance information, we present

a mining approach which not only takes the behaviourial aspect of workflows into account, but

also considers their informational aspect. Thus, the resulting structure displays not only the control

flow information but also the data flow information. Provenance information is a proper source of

reasoning, learning, and analysis for this purpose since it provides information regarding the service

inputs, outputs and quality of service values. Therefore, provenance data along with Bayesian

structure-learning methods are exploited for process mining in this chapter. Two constraint-based

Bayesian structure-learning algorithms are investigated and modified to overcome the constraints

that might be implied in certain workflow models. The experiments show that the modifications

lead to better mining results on three common mining scenarios. This chapter has been published

in [Naseri and Ludwig, 2013a].
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4.1 Introduction

Combining a set of tasks together in a specific order for the purpose of achieving a specific goal is a

process taking place in all different areas of science, from business to chemistry, physics, math, etc.

During such a process, referred to as a workflow process, tasks, well-defined steps in a workflow

model, might have prerequisites and are run in sequential or parallel orders.

The most common form of representing a workflow model is the directed graph. Tasks or

activities are usually enclosed in boxes or circles and are referred to as vertices of the graph while

the arrows depict the edges, which represent the direction of the flow. As for some workflow

systems, the workflow events and their timing information are recorded sequentially into logs.

Keeping track of certain data attributes of a process being executed, and storing this information

into an event log is a procedure taking place in certain systems. These event logs usually contain a

limited amount of information about the process and mostly include the process id, the name of the

task, and the execution time of each task. Mining workflows and processes through event logs has

been a problem of interest in the literature. Event logs have been analyzed and searched in order

to analyze the effectiveness of a workflow process, to discover previous workflow models, to find

the hidden causal relationships existing among tasks, etc [Agrawal et al., 1993; Aalst and Dongen,

2002].

The process of workflow mining is referred to as the task of extracting process knowledge from

the event logs. It discusses techniques for acquiring a workflow model from a workflow log. As

mentioned in [Tiwari et al., 2008], the desire for companies to learn about their processes is the

main reason behind exploitation and development of process mining techniques.

The basic idea behind workflow mining is to construct the workflow’s directed graph from the
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information gathered through the workflow process’s run. This process is usually conducted using

an algorithmic technique or statistical analysis. Machine learning, data mining, genetic algorithms,

and sequence mining are the main approaches of workflow mining applied in the literature. Data

mining methods for discovering sequential patterns, statistical analysis methods for building and

extracting statistical dependencies, or a combination of both methods have been used.

As described in [van der Aalst and Weijters, 2004], some challenging problems usually dis-

cussed in the area of workflow mining include mining loops, incomplete data, and mining work-

flows from different perspectives. In addition, the current methods do not address complex iteration

constructs, dynamic changes, and noisy data. As workflows can be investigated from different per-

spectives, the mining process can focus on functional, behavioural, informational, organizational

or operational aspects of a workflow. It was briefly mentioned in Chapter 1 that the behavioural

perspective looks at the control flow and workflow mining inspects the order in which events for

tasks are stored. The control flow patterns discovered through process mining present direct, con-

ditional, concurrent and sequential dependencies. The informational perspective looks for the data

flow and exploits the inputs/outputs stored at the start of event logs for this purpose. In case of the

organizational perspective, participants of tasks and their roles are being discovered through the

workflow mining process.

In this chapter, we exploit Bayesian structure learning methods along with provenance informa-

tion to mine workflows from different perspectives. Bayesian learning benefits from great amounts

of data that is provided by provenance information. To use the combination of informational and

behavioural data, service outputs along with start and execution times of services are exploited

for workflow structure learning. The constraint-based Bayesian learning algorithms that will be

presented, use service output values to learn the causal relationships existing between services
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through evaluation of their information. Two constraint-based algorithms of Parents and Children

(PC) [Spirtes et al., 2000] and Max-Min Parents and Children (MMPC) [Tsamardinos and Brown,

2006] were selected for learning, and modified in order to improve the workflow mining task. Our

approach is different from the previous ones as it exploits both data and control aspects of work-

flows for mining, discovers concurrent processes, and supports structures with duplicate tasks.

The rest of this chapter is organized as follows: in Chapter 4.2 related works are discussed, our

methodology is described in Chapter 4.3 along with the constraints, conditions, and modifications

applied to the constraint-based algorithms. Chapter 4.4 provides the implementation details. In

Chapter 4.5, a case study is conducted showing three different cases, and the performance evalua-

tion results are presented. Chapter 4.6 presents the conclusion of the research provided.

4.2 Related Works

Data mining algorithms of Apriori basis [Gaaloul et al., 2005] have been used in literature to dis-

cover sequential patterns. Methods used for event-data analysis, from purely algorithmic ones

[Hwang and Yang, 2002] to purely statistical ones [Hwang and Yang, 2002], or a combination of

both techniques [Gaaloul et al., 2005] have been applied to this problem.

In [Aalst and Dongen, 2002], techniques were developed for discovering workflow models from

timed logs. The model presented is based on Petri Nets [Murata, 1989] and mining methods are

provided for discovering the transactions that occurred between tasks which rely on detecting the

causality. In [Huang and Chang, 2008], the workflow patterns are discovered by mining frequent

episodes and a statistical dependency table is constructed. The resulting extracted graph contains

the control dependencies and conditions held between the tasks.
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In [Agrawal et al., 1993], the sequential or concurrent nature of joins and splits of workflow

patterns are used for the purpose of finding the workflow model. The workflow mining technique

presented follows the three steps of constructing a statistical dependency table, discovering frequent

patterns, and mining patterns by combining the previous two steps. The workflow is discovered by

finding joins, sequential and fork patterns from the information stored in the event database.

Deriving process models automatically from on-going executions of processes is referred to

as incremental workflow mining [Braun, 2006]. This type of mining has the advantage of auto-

matic adaptation in case of changes in processes and workflows. The approaches taken are usually

semi-automatic. At first, activities are mined from the versioning logs, and afterwards, a reverse

engineering process is performed in order to derive the overall process model. The research pro-

vided in [Tiwari et al., 2008] presents a comparison of the current workflow mining approaches

and categorizes them based on the contribution of each work. Table 4.1 presents the approaches

and their contribution towards workflow mining. Some mining techniques, such as the one pre-

sented in [Herbst and Karagiannis, 2000], are limited to sequential models. Other approaches,

such as [Schimm, 2004] and [deMedeiros et al., 2004], support more complex structures, including

concurrent processes, but are limited to workflow models without repetitive or duplicate tasks. In

[Agrawal et al., 1998], [Herbst and Karagiannis, 2004], [van der Aalst and de Medeiros, 2005], and

[Dongen and van der Aalst, 2005], approaches are presented that allow the appearance of the same

task in the workflow model. Some methods, such as the Markovian approach [Doshi et al., 2005],

do not target any of the major workflow mining issues.

As the table presents, current approaches do not mine process models from different perspec-

tives. Also, there is no one single approach that targets many of the workflow mining issues. Thus,

new approaches are required that address these issues.
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Table 4.1: Comparison of some workflow mining approaches [Tiwari et al., 2008].

Data mining based Genetic algorithm Other approaches
Duplicate tasks [Agrawal et al., 1998],

[Herbst and Karagian-
nis, 2004]

[van der Aalst et al.,
2005]

[Dongen and van der
Aalst, 2005], our ap-
proach

Different perspectives Our approach
Heterogeneous data
sources

[Dongen and van der
Aalst, 2005]

Concurrent Processes [Schimm, 2004] [van der Aalst et al.,
2005]

[deMedeiros et al.,
2004], our approach

Process Rediscovery [van der Aalst et al.,
2002]

We believe that these challenges can be resolved if the logs provide more information. As

discussed in [van der Aalst and Weijters, 2004], a process data warehouse is required to apply

workflow mining. One of the components of our proposed architecture is the workflow policy

graph extractor, which learns and mines workflow patterns from provenance data. Following the

proposed architecture, in order to be able to mine workflow models using various perspectives and

to simplify the discovery of causal relations, we propose the exploitation of provenance information

for the purpose of process mining.

Provenance data is a suitable source of information for process mining since it provides vast

amounts of information about previous runs of services and workflows. This information ranges

from service specifications and Quality of Service (QoS) values to data and control flows gen-

erated during workflow execution runs. The input/output specifications and values recorded by

the provenance system during workflow executions facilitate mining workflows using the informa-

tional aspect. QoS parameters of time, availability, etc. enable applying time series methods for

the purpose of control flow mining.

As mentioned earlier, thus far, most research efforts have focused on the control-flow perspec-
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tive of workflows. The approach we are taking in this thesis, exploits data flow along with control

flow information to extract workflow models from provenance data. In order to discover workflow

models from data, the process variables and values are used along with service names and timing

information. The result is a process model that not only incorporates the control flow dependencies,

but also the informational dependencies of services.

4.3 Methodology

In this section, we discuss our methodology. Constraint-based Bayesian structure learning method

is introduced and the workflow extraction problem is modeled using this method. Later, we present

Bayesian structure learning algorithms we exploited through this thesis along with the modifica-

tions applied to them to improve their efficiency for our purpose.

4.3.1 Bayesian Structure Learning Methods

In order to extract control flow relations along with the data flow dependencies existing between ser-

vices, the workflow process discovery method proposed in this thesis is based on Bayesian learning

approaches. A Bayesian network is a probabilistic graphical model that represents a set of ran-

dom variables and their conditional dependencies via a directed acyclic graph (DAG). Directional

relationships in a DAG represent the cause-effect relationships in such networks. As discussed

in [Margaritis, 2003], learning Bayesian Networks is being used for inferring possible causal re-

lations. Many of the independencies in a domain can be presented through a Bayesian Network

structure.

A probability distribution assigns a probability to each measurable subset of the possible out-
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comes of a random experiment of statistical inference [Wik, 2011]. The following condition de-

clares the intuitions which connect the causal graphs with probability distributions [Spirtes et al.,

2000]:

Definition 1: Let P be the probability distribution. The causal structure represented by graph G

generated by G and P satisfies the Markov Condition if and only if

∀v⊂V,v is independent o f V\ (Dec(v) ∪ Pa(v)) given Pa(V ) where V denotes the set of graph

vertices, Dec(v) represents the descendants of node v and Pa(v) represents the parents of node v.

Basically, the Bayesian structure learning methods can be categorized into the two groups of

constraint and score-based algorithms. Constraint-based algorithms perform structure learning in

two steps. The first step discovers the skeleton using conditional hypothesis tests. The skeleton is

the undirected structure in which only the location of edges are determined with no directions. The

conditional independence can be defined as follows:

Definition 2: In a probability distribution P, two variables of X and Y are conditionally in-

dependent, Ind(X ,Y |Z), given variable Z if the following condition is satisfied: P(X ,Y |Z) =

P(X |Z)P(Y |Z). This condition states that X and Y are conditionally independent given Z if and

only if, given any value of Z, the probability distribution of X is the same for all values of Y and

the probability distribution of Y is the same for all values of X.

The second step finds the orientation of the edges in the skeleton. The scored-based methods

address structure learning as a model selection problem. After having defined a scoring function

that evaluates how well a structure matches the data, these methods search through all possible

network structures for the highest scored network, which results in an NP-hard (Non-deterministic

Polynomial-time hard) approach. Compared to score-based methods, constraint-based approaches

are more suitable for the purpose of knowledge discovery as they produce more accurate results.
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These methods, which are also referred to as conditional independence learners, use conditional

independence tests to detect the Markov blankets of the variables in order to compute the structure

of the Bayesian network. The Markov blanket for a node X in a Bayesian network is the set

of nodes composed of parents of X, its children, and its children’s other parents. Conditional

independence tests in structure learning are concerned with nodes/variables that are necessarily

independent given the structure of the underlying DAG. The independence assertions are learnt

from data and are used in both steps of these algorithms. The first phase exploits the conditional

independence test to determine whether an edge should exist between two nodes, and represents

the result as an undirected skeleton. In order to learn the structure of DAGs, a sufficient condition is

“faithfulness”. Given any graph the Markov condition determines a set of independence relations.

A probability distribution P on a causal graph G which satisfies the Markov condition may have

independence relations that have not been entailed by the Markov condition. If all the independence

relations of P are entailed by the Markov condition, it is said that P and G are faithful to one another.

A distribution P is said to be faithful if some DAG exists to which it is faithful. The faithfulness

assumption asserts that the conditional independences observed in the distribution of a network are

due to the structure of the network and are not accidental properties of the distribution. It allows us

to move from a probability distribution to a DAG.

4.3.2 Modeling the Workflow Model Extraction Problem as Bayesian Struc-

ture Learning

Constraint-based approaches in literature are different based on the type of independence test or or-

dering heuristics. Among the possible algorithms, we have selected the PC, as well as, the MMPC
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algorithms. Using statistical or information-theoretic tests, these algorithms estimate based on the

data whether certain conditional independencies between the variables hold. They start from a

complete, undirected graph and delete edges recursively based on conditional independence deci-

sions. This yields an undirected graph, which can then be partially directed and further extended to

represent the underlying DAG. The PC algorithm has an intuitive basis and guarantees the recovery

of the original causal structure under ideal conditions [Abellan et al., 2006]. It is faster than sim-

ilar approaches such as SGS [Daly et al., 2001] and produces better results. The other algorithm,

MMPC, outperforms on average several constraint-based algorithms such as PC, Sparse Candidate

[Friedman et al., 1999], etc. [Tsamardinos and Brown, 2006]. As both of these algorithms take a

similar approach towards structure learning, i.e., using conditional independence tests, they were

selected as the main methods applied to the workflow data for the aim of mining.

Constraint-based structure learning methods are based on the assumption of having a very large

database. This condition is satisfied since provenance information is being used for this purpose.

Provenance data provide us with great numbers of records of previous executions of services and

workflows. Thus, enough information on Service’s output values, execution time stamp, etc. are

available for the purpose of constraint- based learning. The other condition that should be sat-

isfied is the faithfulness condition. Thus, the independence relationships should have a perfect

representation of a DAG. In case of workflow mining, these relationships represent the data flow

connections that exist between services (tasks). This condition can not be assumed to be true, since

these relationships in a workflow structure might not necessarily represent a DAG depending on

the degree of “faithfulness” of the data. Thus, we will be presenting modified versions of these al-

gorithms called ModifiedPC and Modified MMPC. These algorithms provide better results in case

of unfaithful workflow models.
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In order to model the problem workflow mining as a Bayesian structure discovery, services

serve as the nodes of the Bayesian graph, each having values representing different states a service

provider provides. The links in the Bayesian graph represent the causal relationships that exist

among the services. Causation is a relation between particular events. Both the cause and effect of

a causal relation are particular events. In a workflow graph, services perform the role of the events

in a causal graph. As an example, consider two services of “WhatIsMyIP” and “WhatIsCity”. The

first service provides the Internet Protocol (IP) information of a certain internet user. The second

service, receives an IP address, and provides information about the city, the IP address refers. The

relation between these two services presents a causal relation. By applying the structure learning

methods on provenance information of services, the graph extracted from the provenance data

depicts the workflow policy graph.

To evaluate the degree of dependence between services using conditional independence tests,

the output parameters and values of services are taken into account. The values are matched against

each other to assess the mutual information the services provide, given the current discovered

structure, and investigate if dependencies can be found.

Current structure learning solutions discover the Bayesian model assuming the faithfulness con-

dition is true. In case of our model, we cannot assume to have a Bayesian structure in the data if the

workflows do not follow the conditions underlying such a structure. The faithfulness of the data can

not be guaranteed as it depends on the workflow models. Thus, the Bayesian learning algorithms

need to be modified in order to be able to discover the structure as accurately as possible even in

the absence of the faithfulness condition.

Assume a workflow consisting of 3 sequential services of A, B, and C for finding an Internet

Protocol (IP) address, searching for the city name based on the IP, and finding the weather forecast
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for that city. This workflow structure example will not satisfy the faithfullness condition as both

“IP” and “city” services’ output values provide the same mutual information for the “weather”

service. Thus, “weather” and “city” are assessed as independent given “IP”. Such issues prevent

the Bayesian structure learning algorithms to discover the whole model of a workflow. Given the

described example, the learnt model will only include arcs from A to B and to C, and services B and

C are assumed to be conditionally independent. This will result in a workflow structure represented

as B <- A ->C while the original model suggests A ->B ->C.

In order to overcome these issues, the original PC and MMPC algorithms are augmented with

certain heuristics that make their results more accurate in case of the unfaithfulness condition.

These heuristics exploit timing information provided in the provenance data, gathered during work-

flow executions, to identify the ordering of the variables for variable selection, to discover the

mutually exclusive or parallel services, and to find services that provide the same information.

In the following sections, we explain the proposed algorithms of Modified PC and Modified

MMPC. As mentioned earlier, these algorithms were built upon basic PC and MMPC algorithms

and have been changed to support the graph discovery in case the faithfulness condition does not

hold for the workflow model and data.

4.3.3 Parents and Children (PC) Algorithm

The first phase of the PC algorithm will be used for learning the structure of the graph. It starts

by forming the complete undirected graph. This algorithm thins this graph by omitting the edges

based on a conditional independence test, denoted as Ind(x,y|S) in the algorithm. In the beginning,

it removes the edges with zero order conditional independence relations. An nth order conditional

independence relation includes n variables in the conditional set. In the next step, the first order
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conditional independence relations are taken into account and so on. The set of variables condi-

tioned on need only be a subset of the set of variables adjacent to one or the other of the variables

conditioned, denoted by Ad j(x) function. As discussed in [Spirtes et al., 2000], the performance

of this phase of the algorithm can be improved by knowing the ordering of the edges. Since the

provenance information are used for learning, the timestamps including the starting time of ser-

vices and duration can be exploited for the purpose of ordering. This results not only in a better

performance of the algorithm with less time complexity, but also saves execution time of the second

phase of the algorithm that is aimed at discovering edge directions. The Modified PC algorithm is

shown in Algorithm 1. Apart from using a chronologically ordered set of nodes, the two functions

of “Check Splits” and “Check Same Info” are the main modifications applied to the original PC

algorithm. The first function, i.e., Check Splits, checks if the two variables being checked for in-

dependency are parallel-splits (and-splits or or-splits). A parallel split creates a split in a workflow

model. In case of and-split, all the branches will be active, as for an or-split only one branch is

active at a time. In order to check this, the starting time of the two variables, i.e., services, are taken

into account. If the time difference between the two starting times is less than a threshold, the two

services are considered parallel and based on their data values are added to the split-and or split-or

lists. The other function, “Check Same Info”, checks if the two variables x and y being checked

for independence given variable z provide the same information, i.e., fall into the same information

provider category. It performs the assessment by first checking if x belongs to y’s conditional set.

If this is not the case, y and z are tested for independence conditioned on x. If either of these tests

are true, then x and y and z provide the same information, and thus, the scenarios such as the one

presented in the previous subsection are discovered correctly.
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Algorithm 1 Our Proposed Modified PC Algorithm
function MODIFIED PC(G,O)

Input: Fully connected graph G, Timely Ordered Variables O
V : the set of node variables for graph G
i = 0
repeat

for all x ∈V do
for all y ∈ Ad jx do

if Check Splits(x,y,G,O) then
Continue

end if
Determine if S⊂ Ad j(x)ny with |S|= i and Ind(x,y|S)
if this set exists then

if CHECK SAME INFO(x,y,S) then
if time difference(x,y) < time difference(y,S) then

Remove S-y link from G
break

else
Remove x-y link from G
Add y-S link to G
break

end if
else

Make Sxy = S
Remove x-y link from G

end if
end if

end for
end for

until an i is found for which |Ad jx|<i∀x
end function
function CHECK SAME INFO(x,y,cond)

if !check mutual(x,cond) && !check mutual(y,cond) then
if x ∈Conditional Set(y,cond) then

return true
end if
if Ind(y,cond|x) then

Add x to Conditional Set(y,cond)
return true

end if
end if
return false

end function
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4.3.4 Max-Min Parents and Children (MMPC) Algorithm

This algorithm is based on the local discovery algorithm called Max-Min Parents and Children

(MMPC) [Tsamardinos and Brown, 2006]. The Max-Min part of the algorithm name refers to the

heuristic the algorithm uses, while the parents and children part refers to its output.

MMPC focuses on learning substructures around each variable. It is invoked by each variable

of the network, referred to as t, in order to identify the existence of edges to and from that variable,

and to discover the structure of the network. Similarly to PC, this algorithm starts with a fully

connected graph and exploits two heuristics to discover the dependencies. The first phase, which is

referred to as the forward phase, incrementally discovers edges using the Max-Min heuristic. The

Max-Min heuristic selects the variable that maximizes the minimum association with a selected

variable relative to the so far learnt graph. It uses the function Assoc(x, t|Z) which measures the

strength of dependency between x and t given a set of variables Z. As mentioned in [Tsamardi-

nos and Brown, 2006], the justification for the Max-Min heuristic is to select the variable that

remains dependent even after conditioning all the subsets of the so far discovered network. The

second phase removes the false positives that might have been entered in the first phase by running

conditional independence tests on x and t given any subset of the learned graph.

The mutual information existing between the output values of the two services is used as the

criteria evaluating the strength of the association. The MinAssoc function determines the minimum

dependency achieved between x and t over all the subsets of the variables discovered.

The modified MMPC algorithm is presented in Algorithm 2. The function Ind(X ,T | Z) re-

turn true if x and t are conditionally independent given Z. As for the modified PC algorithm, the

Check Splits function is used to discover the split-ands or split-ors of the workflow graph. The
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MaxMinHeuristic function is modified so that if two x variables are equally mutually informative,

the one which is closer in time to the selected t is chosen as the variable representing the maximum

association.

Algorithm 2 Our Proposed Modified MMPC Algorithm
function MODIFIED MMPC(t,D)

Input: target variable t, data D
Output: parents and children of t
G = emptyset
repeat

<F,assoF>= MAXMINHEURIST IC(t,G)
if assocF<>0 then

G = G∪F
end if

until G has not changed
for all x ∈ G do

if ∃S⊂ Gs.t.Ind(x, t | S) then
if Check Same In f o(x, t,s) then

if time di f f erence(x, t)>time di f f erence(t,S) then
G = G\{s}

else
G = (G\{x})∪{s}

end if
end if

end if
end for
return G

end function
function MAXMINHEURISTIC(t,G)

Input: variable t, subset of variables G
Output: maximum over all variables of the min association with t relative to G, and variable

that achieves the maximum
assoc f = max x ∈ v MinAssoc(x, t|G) i f !Check Splits(x, t)
f = arg max x ∈ v MinAssoc(x, t|G)
return < f ,assoc f>

end function
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Figure 4.1: Implementation Model.

4.4 Implementation

In order to perform real world and valuable experiments, Taverna (version 2.1) [Tav, 2013] was se-

lected as a practical provenance system to generate real provenance information and was expanded

to incorporate the additional features required for our experiments. Taverna does not record timing

information such as start or execution time of services during workflow runs. Since Taverna does

not record non-functional specifications of web services, Taverna’s provenance data model was

changed to allow the storage of the QoS values of services. A QoS tracker was added to Taverna

to record the QoS specifications of the WSDL services imported by Taverna. The QoS recorder

exploits WebInject [Web, 2012], a tool for automated testing of web applications and web services,

to monitor the services. We set up the transaction monitors for service-level monitoring of response

time and availability of web services. Apart from these parameters, the QoS tracker also keeps track
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of the execution time and status of execution of services. The conditional independence test from

the “bnlearn” library of the R [R, 2012] package was exploited to discover the causal dependencies

between services. The “Rserve” [Rse, 2013] server creates the facility to connect to R libraries

through our application.

An overview of the implementation model is shown in Figure 4.1. At the beginning, a workflow

is created by Taverna. The related services are added to WebInject to record QoS parameters such

as timing information. Every time a workflow instance is run, in our implementation model, the

provenance data regarding the functional aspects of the workflow are generated through the Taverna

system, and the nonfunctional parameters, i.e., QoS values, are produced by the WebInject. All this

information is stored in the provenance store and is exploited later by the modified PC and MMPC

algorithms for the learning of the workflow structure. These algorithms use R libraries through

Rserve to assess the conditional independence tests and discover the causal relationships.

4.5 Case Study and Performance Evaluation

In this section, the experimental results are provided. Three experiments of different scenarios were

tested using the proposed approach. Later, the performances of the modified algorithms versus the

original ones were assessed.

4.5.1 Three Scenarios

In order to observe the performance of the modified algorithms, 3 different workflow scenarios

were considered and tested. The first one consists of a sequential workflow scenario that does not

satisfy the faithfulness condition, the second one contains a parallel workflow structure, and the
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third includes a complex scenario composing of two split constructs.

The web services used by the three scenarios were selected from different service providers

available on the internet. the services were were placed together as a workflow in Taverna. Having

executed the workflows for multiple times, a dataset of 10,000 rows was created for the experi-

ments.

Case 1

The first scenario is a completely sequential workflow consisting of 4 web services of “WhatisMyIP”,

“GetCity”, “WhatsWeather”, and “WeatherImage”. The “WhatisMyIP” service finds the IP of the

customer, sends it to the “GetCity” service, which finds the city based on the IP address. The city

name is passed to the “WhatsWeather” service and the weather forecast of the city is predicted.

Having the forecast, the forecast image is shown to the workflow user presenting the weather con-

dition for his location.

Figure 4.2 shows the structure of the workflow as well as the experimental results. As can

be seen from the figure, the original “PC” and “MMPC” algorithms discover some of the edges,

while the modified PC and MMPC algorithms discover the complete workflow graph even though

the data for this scenario does not satisfy the faithfulness condition. The data stored by the orig-

inal workflow model represents the graph discovered by Modified algorithms. The relationship

between the “GetCity” and “WhatsWeather” is not discovered by the original PC and MMPC al-

gorithms as these two services are conditionally independent given the information provided by

the“WhatsMyIP” service. This is due to the similarity between the information that these two ser-

vices provide. As a result of this, the conditional independence relations in this model can not be

represented by a DAG. The modified algorithms extract this relationship.
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Figure 4.2: Case Study 1: a sequential workflow scenario.

Case 2

The next workflow scenario includes four services, two being run in parallel. Figure 4.3 shows the

scenario along with the results of the Bayesian structure learning algorithms. As can be seen from

the figure, the original PC and MMPC algorithms can not find the complete parallel structure. This

is due to the lack of the faithfulness condition in the structure of the workflow scenario graph. The

relation between the ”StockPrice” and ”ProductID” cannot be discovered, as given the ”ProductID”

information, these two services are independent. Again, this is due to the similarities between

the information these three, services provide. The “ProductID”, “SalePrice”, and “AveragePrice”

mutually provide the same information. Similarly, the original PC and MMPC algorithms find

the two services of “SalePrice” and “AveragePrice” independent given the “ProductID”. Thus, the

conditional independence relations in the data cannot be represented as a DAG.

These issues have been resolved with the modified algorithms by the two added functions. The

modified algorithms discover the two services of “SalePrice” and “StockPrice” as parallel, and thus,

they are removed from the each other’s conditional sets. Thus, the complete structure is discovered

via these modified approaches.
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Figure 4.3: Case Study 2: a workflow with parallel parts.

Case 3

As for the third scenario, three separate relevant workflows were considered and the structure learn-

ing algorithms were used to discover the graph policy from these workflows. The scenario involves

services for receiving and delivering an order in case of a valid credit card payment as well as the

availability of the product. Figure 4.4 shows the three paths that can be taken based on the service

outputs.

In this scenario, the distinguishable difference between the performances of the modified algo-

rithms versus the original algorithms shows the effects the modifications have had on the extraction

of more accurate graphs. Figures 4.5 and 4.6 display the results of the modified algorithms as well

as the original algorithms. This scenario includes a split-or, a split-and and a join. The original

algorithms can not extract many of the edges due to the large dependencies that exist within the

service data.
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Figure 4.4: Case Study 3: a more complicated scenario with a split-or, a split-and and a join.

Figure 4.5: Case Study 3: Workflow Results of Modified PC and MMPC

Figure 4.6: Case Study 3: Workflow Results of PC and MMPC
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4.5.2 Experimental Results

We evaluated the performance of the modified algorithms with regards to execution time. The origi-

nal algorithms of PC and MMPC were compared with the modified ones in terms of workflow sizes

and execution time. For the experiments, data values of sequential workflows of sizes 5 to 25, with

increments of 5, were randomly generated. The experiments were conducted 10 times on different

datasets. As can be seen from the graph shown in Figures 4.7 and 4.8, the modified algorithms have

a steeper slope, with the PC algorithm having the better performance overall. The modified PC and

MMPC algorithms consume more time since the Check SAME INFO and Check Mutual functions

increase the number of conditional independence tests the original algorithms use. The MMPC al-

gorithm uses more conditional tests compared to PC, since both the forward and backward phases,

perform tests of independence.

4.6 Conclusions and Future Work

In this chapter, we exploited constraint-based Bayesian structure learning algorithms to extract the

structure of workflows from provenance data. The output values of services were used to discover

the data flow between services along with timing information to provide control flow information.

Provenance information was used, since it provides the appropriate amount of data gathered over

time, and therefore, makes it suitable for learning. The two algorithms of PC and MMPC were

modified in order to better discover the workflow models of the scenarios which do not support the

faithfulness condition. PC, MMPC and the modified algorithms were assessed using 3 different

scenarios. As the results presented, despite of the fact that some workflow scenarios might not
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Figure 4.7: Performance Comparison of MMPC and modified MMPC

Figure 4.8: Performance Comparison of PC and modified PC
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follow the faithfulness condition, the changes applied to both algorithms (PC and MMPC) provide

complete and robust structures. The benefit of mining accurate workflow structures comes at the

price of higher execution times. Both modified algorithms take longer to find the correct workflow

structure.

The current algorithm has some limitations. For the workflow structures with multiple parallel

branches where each branch includes several sequential services, the proposed modifications need

to be extended. The “CHECK SAME INFO” function only considers one conditional variable and

thus the structures with multiple services in and-splits or or-splits can not be discovered properly.

In addition, assessing the threshold value for time difference calculations needs to be improved for

such structures.

Since we only considered services with one output, future work can involve running experi-

ments that include services with multiple output values. Having experimented with the constraint-

based Bayesian approaches, score-based algorithms can also be modified and compared against the

constraint ones in terms of performance and accuracy.
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CHAPTER 5

AUTOMATIC SERVICE COMPOSITION USING POMDP

AND PROVENANCE DATA

Service composition is the process of combining services in a specific order to achieve a spe-

cific goal, whereby the initial and goal states are determined in advance. The service composition

problem is very similar to standard planning problems, since the idea is to discover a path between

the initial and goal states. In service composition, the composition of services identifies this path.

In this chapter, we exploit provenance information along with Partially Observable Markov Deci-

sion Processes (POMDP) to compose services automatically. The POMDP method has been used

in the literature for the purpose of robot planning and navigation. In this research, we argue that

due to partial observability of service and system states, the POMDP approach provides better solu-

tions for the QoS-aware service composition in dynamic workflow environments. For the purpose

of solving the POMDP, service details and the POMDP distributions are learnt from the provenance

store. Provenance data contains information regarding workflows, services, their specifications and

execution details. This information facilitates the service composition process to be performed

more intelligently and efficiently. This chapter has been published in [Naseri and Ludwig, 2013b].
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5.1 Introduction

Service composition addresses the problem of automatically placing the services together in a spe-

cial order to achieve one or more predetermined goal(s). Since one single service is usually not

sufficient to fulfill the requirements of a user, thus, a set of appropriate services are selected and

composed. The composite service provides more valuable functionalities than a single service,

while enhancing the reusability of services as well. A composite service is also referred to as a

workflow and includes a set of atomic services together with the control and data flow.

As discussed in [Milanovic and Malek, 2004], a composition method should satisfy several re-

quirements, such as connectivity, non-functional QoS properties, and scalability. The connectivity

between the composed services should be reliable. The composition should also address the non-

functional QoS properties such as response time, availability, reliability, etc. And, finally, since

business transactions can be complex and composed of several services, the composition approach

should scale with increasing numbers of composed services.

In general, a service composition approach is performed in two main steps: the first phase,

which is referred to as the planning phase, discovers the services that provide the functionalities

required by the user. It then generates a set of plans based on the functional parameters of the

services. As there might be two or more service implementations for one task, a selection between

the execution plans for the service composition is required. The set of functionally equivalent

service implementations corresponding to an abstract task, i.e., abstract service, are referred to as

concrete services. The non-functional properties of services, QoS values, are used to differentiate

between these services. QoS parameters are used to evaluate how well a service composition serves

the customer. Generally, these values are presented by the service provider while publishing an
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advertisement as a service level agreement. The second phase, i.e., the selection phase, calculates

the aggregated QoS of the generated plans and selects the best plan that satisfies the non-functional

requirements, i.e., QoS specifications of services. The selection of the optimal execution plan

that maximizes the QoS values of the composition is an NP-hard problem. Since discovering the

optimal execution plan can be time consuming, some simplifications have been assumed for service

composition problems [Milanovic and Malek, 2004].

Some service composition approaches relax the QoS constraints to achieve better performance

in terms of time. A service composition without constraints can be solved more efficiently in time.

However, the optimal execution plan generated by these approaches might exceed the user’s budget

limit.

The other way of reducing the complexity is to exploit local maximization approaches instead

of global ones. The local maximization approaches look for the service implementation with the

best QoS for each task instead of evaluating the objective function for that particular QoS property

for each execution plan. These methods allow the modeling of the service composition problem

as dynamic programming methods [Gao et al., 2006], [Li et al., 2007], or Multi-Constraint Path

Problems (MCPP) [McIlraith, 2002].

On the other hand, as there are usually multiple QoS parameters, it is not possible to get the best

value for all properties without using multi-objective optimization approaches. Thus, in order to

relax the complexity of the service composition problems, single objective optimization approaches

are exploited versus the multi-objective ones. The mapping between these problems is done by

aggregating the multiple objective functions to a global one in order to use the principles of the

single objective optimization.

In this chapter, we exploit the Partially Observable Markov Decision Processes (POMDPs)
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method [Pom, 2013] along with provenance information for service composition and selection.

The POMDP framework has been used for modeling a variety of real-world sequential decision

processes. Its application areas mostly include robot navigation problems, machine maintenance,

and planning under uncertainty in general. For robot navigation, regardless of the quality or quan-

tity of the sensing hardware deployed on the robot, from its point of view, the robot will have an

incomplete view of its environment. With this partial observability, the POMDP model can provide

the formal basis for autonomous behaviour in these domains. Machine maintenance involves any

machine that requires periodic maintenance due to deterioration of its internal components over

time. For this application, POMDPs are used to obtain an inspection/replacement policy that either

optimizes the operating costs or the production capacity of the machine [Kaelbling et al., 1998].

The POMDP methods we exploit in this chapter use the basic dynamic programming ap-

proaches for solving POMDPs. For all algorithms, the approach solves one stage at a time and

works backwards in time. Many of the algorithms use Linear Programming (LPs) to solve POMDPs.

In order to assess the POMDP distributions, provenance information are exploited. As mentioned

in Chapter 2, in workflow systems, the provenance of a workflow presents information about the

workflow process, inputs/outputs of services, intermediate data objects and the QoS specifications

of services. Having a large provenance store of previous executions of services and workflows, we

plan to perform service composition and selection using the POMDP technique and provenance

data.

An expressive language, that supports flexible descriptions of models and data, facilitates rea-

soning and automatic discovery and composition. Therefore, the service composition approaches

mostly exploit the semantic descriptions of services as well as their QoS specifications from service

repositories or service providers to perform the composition or selection. The service composition
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requirements which are entitled in [Gil, 2005], can be satisfied through provenance information as

a robust provenance trace provides multiple layered presentation of provenance [et al., 2007]. A

layered architecture and engine for automatically generating and managing workflow provenance

data is considered in provenance systems which fulfills the requirements of the workflow compo-

sition process. These layers include: an abstract description of the workflow, an instance of the

abstract model by presenting bindings and instances of the activities, provenance of the execution

of the workflow, including specification of services and run-time parameters, and, finally, execu-

tion time specific parameters, including information about internal states of the activities. Thus, the

provenance information provides a rich source of data for service selection and composition pur-

poses and facilitates automatically composition of services and selection of appropriate services

that provide certain QoS requirements.

The remainder of this chapter is organized as follows: In Chapter 5.2, related work is described.

In Chapter 5.3, we present how service composition can be modelled as a POMDP and discuss

the process taken towards assessing the POMDP distributions using provenance information. In

Chapter 5.4, the implementation details of the model along with a case study are presented. In

Chapter 5.5, we present the experiments conducted with different numbers of abstract and concrete

services using various POMDP algorithms. The last section provides the conclusion of this study.

5.2 Related Work

Based on the simplifications discussed in the previous section and other criteria, service composi-

tion has been modeled by several approaches. As described in [Hoffmann et al., 2007], the service

composition problem can be viewed as a planning problem. Some of the research work, which
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exploit planning approaches for service composition include [McDermott, 2002], and [Medjahed

et al., 2003b]. Rule-based planning is an approach being used to generate composite services from

high level declarative descriptions. The method presented in [Lammermann, 2002] uses compos-

ability rules to determine whether two services are composable.

Some approaches such as the ones presented in [Waldinger, 2000b] and [Gil, 2005] exploit

theorem-proving for service composition. In [Waldinger, 2000b], the available services and user

requirements are described in a first-order language. Then, constructive proofs are generated with

certain theorem provers. At the end, service composition descriptions are extracted from particular

proofs. [Gil, 2005] uses propositional variables as identifiers for input/output parameters and uses

intuitionistic propositional logic for solving the composition problem.

A planning problem can be described as a multi-tuple characterized by the set of all possible

states of the world: the initial state of the planner, the set of goal states the planning system should

attempt to reach, the set of actions the planner can perform, and the transition relations which

specify the semantics of each action describing the state each action results in when executed. The

state of a service composition model, which interacts with services, is described by the messages it

sends and/or receives. The information contained in each message can be interpreted as the partial

description of the current world state. The set of actions the planner can perform is mapped to the

set of web service operations. A web service operation is specified by its name, and its input and

output message types. Service operations are considered as the actions available to the planning

system. Each action in a planning system has preconditions and effects. The preconditions should

hold prior to the execution of the action, while the post-conditions should hold after the execution

of the action. Service descriptions are used to interpret the states of a service. The input/output

messages, sent through service transactions, are used for describing the precondition/effects of
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service executions. [Hoffmann et al., 2007]

Some background knowledge regarding the semantics of the operations are required for de-

ducing the preconditions and effects of operations from the input and output document schemas.

Semantic mark-up languages such as OWL [OWL, 2004] have been used in literature for this pur-

pose.

The work presented in [Doshi et al., 2005] argues that classical planning approaches are not

suitable for web service composition as web service invocations are not deterministic. As dis-

cussed in this work, a decision-theoretic planning technique such as Markov Decision Processes

(MDPs) [Puterman, 1990] better address this issue. As mentioned in [Hoffmann et al., 2007], when

describing the state of the world, there is a problem that is not normally encountered in planning

systems which is the “partial observability of states”. We can only know as much about the cur-

rent state of the world as is described in the small set of documents. AI planning and Markovian

approaches have focused on the situations where the state of the environment is fully observable,

instead POMDPs provide a general planning and decision making framework for an agent to act

optimally in partially observable domains. It consists of a set of states, a set of actions that the

agent can execute, and a set of observations.

The POMDP model augments a well-researched framework of MDPs to situations where an

agent cannot reliably identify the underlying environment state. Thus, POMDPs expand the appli-

cation of MDPs to many realistic problems. It should be mentioned that the generality of POMDPs

has the drawback of high computational cost.

Thus, due to partial observability of service and system states, in this chapter, we argue that the

POMDP approach is a suitable model for the QoS-aware service composition problem compared

to other planning approaches. The POMDP methods can extract composition models that involve
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structures with non-deterministic branches. Most importantly, as services are unreliable, there

are many factors that can affect the status of a service. Thus, exploiting a solution that supports

partial observability of the results addresses the issues that would arise in the dynamic service

environment. In addition, a POMDP problem is the same as a planning problem, and similarly,

given a complete and correct model of the world dynamics and a reward structure, an optimal

policy is provided by this method.

5.3 Modeling and Methodology

5.3.1 POMDP Dynamics

The dynamics of the POMDP model are described by the set of states S, actions A, observations

O, along with state transition function T , observation function Z, and the reward function R. The

state transition function T : S×A 7−→4(S) represents a probability distribution over world states

(4(S) denotes the set of all probability distributions over S) for each world state and agent action.

T (s,a,s′) assesses the probability of ending in state s′ given that the agent starts in state s and takes

action a.

The reward function R : S×A 7−→ R maps the states and actions into numerical rewards. It

represents the expected immediate reward gained by the agent for taking each action in each state.

R(s,s′,a) represents the expected reward on state transition s to s′ given action a. Z : S×A 7−→4(O)

is the observation function, which for each action and resulting state provides a probability distri-

bution over possible observations. Z(s′,a,o) stands for the probability of making observation o

given that the agent took action a and reached state s′.
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The goal of the POMDP problem solving task is to select actions as to maximize the reward

collection. The optimal behavior in a POMDP requires access to the entire history of the process.

As the agent does not know the exact state it is in, it must maintain a probability distribution,

known as the belief state, over the possible states. A belief state is a statistic for the history. This

means that optimal behavior can be achieved using the belief state in place of the history. A belief

state b is simply a probability distribution over the set of states S with b(s) being the probability of

occupying state s.

Given a belief state b, in order to compute the resulting belief state b′, basic rules from prob-

ability theory, Bayes Rule and the independence assumption inherent in the POMDP model, are

used. The next belief state depends only upon the previous belief state and the immediate transi-

tion taken. Equation 5.1 depicts how transition and observation probability distributions are used

toward updating the belief state:

b′(s′) =
Z(s′,a,o)∑s∈S b(s)T (s,a,s′)

P(o|a,b)
(5.1)

Being in a particular belief state b, taking action a, and receiving observation o, the next belief

state can be determined. As we are having finite numbers of actions and observations, given a belief

state, the number of future belief states are finite.

The agents are desired to act in such a way as to maximize some measure of the long-run reward

received. To achieve this, the most straightforward farmework is the infinite-horizon discounted

model, in which we sum the rewards over the infinite lifetime of the agent, but discount them

geometrically using discount factor 0 < γ < 1. The agent should act so as to optimize the following

formula:
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According to this model, rewards which are received earlier in the agent’s lifetime have more

value to the agent. Although the infinite lifetime is considered, the discount factor ensures that the

sum is finite. The larger the discount factor (closer to 1), the more effect future rewards have on

current decision making.

5.3.2 Web Service Composition as POMDP

A Web services programming interface is described using WSDL [WSD, 2001], which specifies

properties of a web service such as its functionality, location and invocation interface. These inter-

faces are exploited for the automatic composition of services along with the services’ QoS proper-

ties, which facilitate dynamic service selection. As mentioned before, we exploit a single objective

function for composition purposes. In the context of QoS-aware service composition, there are n

QoS properties that have to be optimized. These QoS properties can have conflicts between each

other in a way that one, such as availability, should be maximized while another, such as response

time, has to be minimized. In order to map multi-objective optimization to single-optimization, the

Simple Additive Weighting (SAW) [Strunk, 2010] method is exploited. This method aggregates

the objective functions in order to use the principles of the single objective optimization function.

For this purpose, QoS properties have to be normalized and summed up to a global QoS value that

is then to be maximized.

As mentioned earlier, since the web service environment is dynamic, the agent would not be

able to guarantee successful service execution. On the other hand, the state information that we
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obtain cannot be complete due to the limitation of the document and dynamic nature of the envi-

ronment. On the other hand, the services are non-deterministic and might be unreliable. As a result,

the service invocation outcomes can not be fully known in advance, which make the states not fully

observable. Thus, the POMDP model is exploited and in order to model the service composition

as a POMDP, the following mappings are required: The status of each task node represents a state,

the operations the services perform are mapped to POMDP actions, and accordingly, the invocation

results of service operations are mapped to observations of actions. In this work, the service states

and invocation results are assumed to be discrete quantities. As for the rewards, the QoS values of

the services are to be used to accomplish the service selection. The SAW method is applied to the

values of the QoS parameters to obtain a global QoS value.

The dynamics of the POMDP model are to be learnt from the provenance store.We assume that

we have a large dataset of the previous executions of different types of workflows. The provenance

data required should include information about services, their executions (including input/output

parameters and data objects), and QoS parameters such as execution time, response time, cost,

status, etc. This information is being used for the POMDP modeling as well as the assessment.

The service operations’ information provide us with the list of actions, service outputs are used

to model the observations and service states are being extracted from the semantic descriptions of

services.

To calculate the probability distributions for the POMDP approach, provenance information is

exploited along with the ML method. Bayes Rule is applied to each probability, and along with the

ML method, the probability values are assessed. This process is performed automatically through

the system. First, the list of the service states and actions are extracted from the provenance store.

Then, using the list of states and actions, the transition and observation distributions are calculated.
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In the following, we describe the information and procedure we use to compute the POMDP

distributions. The transition probability for each action, i.e. T (s,a,s′) assesses the probability of

reaching state s′ given that the workflow policy starts in state s and takes action a. In order to assess

this probability using provenance information, the ML method is applied to the service states along

with timing information. To assess the ML method for the state transition probabilities, for each

action we determine the number of state transitions from state i to state j with regard to the total

number of transitions available from state i. The transition probability estimation for our model is

computed based on the following equation:

P(s′ | s,a) =
ni j

n j
(5.3)

where for service a, ni j denotes the number of transitions from state i to state j, and ni denotes

the total number of transitions from state i. The start and execution time of services decide about

the state orderings. For example, as for service a, the number of times a state transition from state i

to state to j has occurred is calculated using the starting and execution time of state i along with the

starting time of state j: i.e. for service a, the consequent state transitions from i to j are discovered

based on the following:

timestart( j) = timestart(i)+ timeexecution(i) (5.4)

The following equation states how this distribution is assessed:

T (s,a,s′) = P(s′|s,a) =
na

s′s
na

s
(5.5)

117



where na
s′s is the total number of data rows in the provenance data set with current state of s′ and

the previous state s for action a, and na
s is the total number of rows with state s for action a.

Having assessed the probabilities for all the individual states, for each action, the observation

matrix is calculated. As the modeling suggests, the observations are assumed to be discrete.

Similarly, as for the transition matrix, the observation matrix values are assessed through the

ML method and the status of the execution of services. The Z(s′,a,o) is determined by computing

the probability as follows:

P(o | s′,a) =
oi j

o j
(5.6)

where oi j denotes the number of data rows in the provenance dataset where being in state s′ and

taking service a, the observation o was recorded. The o j presents the total number of data rows

where, having been in state s′, action a was taken.

Reward(s,s′,a) is defined as the response time, cost, and or any aggregated QoS parameters

associated with service a during a state transition. The goal of the service selection phase of the

composition problem is to find the solution, which optimizes the aggregated QoS value. The ag-

gregated value of QoS parameters of all data rows associated with service a is averaged and stored

as the reward/cost for that service in the rewards matrix.

Having modeled the service composition as a POMDP, the composition is formed by solving

the model that generates the optimal service composition policy graph. POMDP models can be

solved using exact solution techniques.

An exact solution to a POMDP yields the optimal action for each possible belief over the world

states. The optimal action optimizes the expected reward of the agent over a possibly infinite

horizon. The sequence of optimal actions is known as the optimal policy of the agent for interacting
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with its environment. The exact method calculates the optimal policy by generating two arrays of

V , for the value, and Ω, for the policy. At the end of the algorithm, Ω contains the solution, and

V contains the discounted sum of the rewards to be earned on average by following that solution

from state s. As any POMDP can be reduced to a continuous belief-state MDP, the value iteration

phase for POMDPs is the same as continuous MDPs. It is a standard method for finding the optimal

infinite horizon policy using a sequence of optimal value functions.

The Value iteration algorithm will iteratively generate a set of vectors, V , which will be evolved

using the previous stage vectors. Each vector in the next stage, V ′, is constructed from the immedi-

ate rewards and the transformation of V using the POMDP functions. A vector in V has a particular

strategy associated with it. Each vector at a stage represents the value of acting according to the

particular current and future strategy for that vector. Selecting a vector at a stage is the same as

selecting a particular course of action at a stage and a particular future action strategy.

As for value iteration, it is important to be able to extract a policy from a value function. For

policy iteration, it is important to be able to represent a policy so that its value function can be

calculated easily. The policy iteration phase represents and improves the policy. The methods

applied on this phase usually consist of two steps of policy evaluation and policy improvement.

The policy evaluation phase discovers a policy tree by finding the action associated with each node

n and the successor node of n after receiving observation o. The policy improvement step performs

a standard dynamic programming backup during which the value function is transformed into an

improved value function [Braziunas, 2003].
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5.3.3 POMDP Algorithms

Several POMDP algorithms exist that are distinguished by the way the value iteration is performed.

The enumeration algorithm [Cassandra et al., 1994] is an exact POMDP algorithm and conceptually

the simplest of all the exact algorithms. It first generates all possible vectors by ignoring the belief

state and later on uses Linear Programming to discard useless vectors. In order to construct a vector,

an action and a vector in V for each observation should be selected. Thus, large numbers of vectors

can be generated, of which many are not useful, since they are dominated by other vectors over the

entire belief space. These vectors can be eliminated at the expense of some computing time, but,

regardless, enumerating over the vectors takes a long time even for some small problems.

The witness algorithm [Monahan, 1982] tries to find the best value function for each of the

actions separately. Unlike some algorithms, it does not consider all the actions all the time. As de-

scribed, we can represent V and V ′ using collections of policy trees, respectively. This algorithm,

first finds a collection of policy trees that represent the expected reward by taking action a from

belief state b. It then defines regions for a vector and looks for a point where that vector is not

dominant. Once these functions are discovered, they are combined into the final V ′ value function.

Simply put, the witness algorithm is using linear programming to find a single point called “wit-

ness” with the fact that V ′ 6=V . If a witness is found, it is used to determine a new vector by solving

a linear program and this process continues.

The incremental pruning algorithm [Zhang and Liu, 1996] combines elements of the enumer-

ation and the witness algorithms. Similar to the witness algorithm, it considers constructing sets

of vectors for each action individually and then focuses on each one observation at a time. The

incremental Pruning algorithm can solve the problems that cannot be solved within a reasonable
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time in the Witness algorithm. It breaks down the value function V ′ as a combination of simpler

value functions [Pom, 2013].

5.4 Implementation and Case Study

5.4.1 Implementation

Our implementation of the presented model exploits the POMDP solver presented in [POM, 2013]

to discover the policy graph and to perform the service composition. The solver has implementa-

tions of the enumeration algorithm, the witness algorithm, the incremental pruning algorithm, and

few more. The code uses linear programming to solve POMDPs. The POMDP solver receives

an input file of the POMDP problem in a certain format and solves it using the selected POMDP

algorithm, discount factor, and other settings. The discount factor is a value between 0 and 1 which

is used to make the total reward finite. It is used during the value iteration algorithm. This factor

dictates the relative usefulness of future rewards compared to immediate rewards. Based on the

value of this factor, the rewards received later get discounted, and contribute less than the current

rewards.

In order to model the service composition as a POMDP and to save the model in the appropriate

file format, we implemented a Java program which extracts the services, states, and observations

from the provenance data. We exploited the Taverna provenance system [Tav, 2013] to generate

provenance information, but since Taverna does not support QoS recording, Taverna’s provenance

information was augmented with state variables and QoS values which were measured and gener-

ated using other measuring tools, such as WebInject [Web, 2012]. Our program then assesses the
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POMDP probabilities from the provenance store, creates the transition and observation matrices

using the proposed model, normalizes each matrix row, and calculates the rewards. These val-

ues are then formatted into the POMDP solver input file, which is then solved by the solver. The

enumeration algorithm, the witness algorithm, and the incremental pruning algorithm are the three

POMDP approaches exploited for the purpose of evaluation.

5.4.2 Case Study

To better present how the service composition can be modeled and solved through a POMDP, a

case study is provided which addresses the following scenario:

A manufacturer wants to deliver an order to a retailer. The manufacturer might satisfy the order

in one of several ways. He first checks for the availability of the order in his inventory. If the order

is available in his stock, he will then assemble the order and ship it to the retailer’s address. In

case the manufacturer is out of stock, he checks his supplier for availability. The last option would

be to check the market stock availability for the order.

Based on the described case study, the services for this scenario include abstract services for

checking the inventory, checking the supplier, checking the stock market, assembling the order, and

shipping the good. The results of these services would be either yes or no entries. In case of the

availability of the stock, or successful assembly and shipment, the result would be a yes entry, and

in the other cases a no entry. The QoS values associated with each service include the service cost

and execution time.

The following model suggests the list of POMDP actions, observations, and states that are

modeled for this scenario. According to our described model, the services are mapped into POMDP

actions. Since each action can result in a success or failure, the observations for each action include
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Figure 5.1: Case study scenario

a {YES,NO} set. As for the states, the initial state starts with checking the availability of the stock

in the inventory. Each action based on its success or failure would result in a new state that is

described according to the actions. An end state is considered as a dummy state.

The following are the states, observations, and actions for this case study.

States: Invent Avail (inventory is available); Supp Avail (supplier is available); Market Avail

(market is available); Shipped Order (order is shipped); Assemble Order (order is assembled);

End (final state).

Observations: Inv avl Y ES (inventory is available); Inv avl NO (inventory is not available);

Sup avl Y ES (supplier is available); Sup avl NO (supplier is not available); Mar avl Y ES (market

is available); Mar avl NO (market is not available); Assmbl Y ES (good is assembled); Assmbl NO

(good is not assembled); Ship Y ES (good is shipped); Ship NO (good is not shipped).

Actions: Check Inventory Availability (check availability of inventory); Check Supplier Availability

(check availability of supplier); Check Market Availability (check availability of market); Assmble Order

(assemble order); Ship Order (ship order).

Figure 5.1 displays the scenario.
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5.5 Experiments and Results

A provenance store of previous executions of the workflow paths using different concrete services

and the POMDP parameters and input file were generated. The QoS of response time was the only

QoS parameter used in this experiment. The experiments were done on an Intel Pentium 4 CPU

2.4 GHz machine with 1 GB of RAM.

First, the three POMDP algorithms were verified with the case study shown in the previous

section. Then, in order to evaluate the scalability of the proposed service composition approach, a

set of experiments were performed scaling different numbers of abstract and concrete services.

5.5.1 Verification of Method

To perform the verification experiment, for each abstract service, 5 concrete services providing the

same functionality but different QoS values were considered. The discount factor was set to 90%.

The results presented in Figure 5.2 are the POMDP policy graph generated by the solver, which

depict the service composition with optimal services. The figure shows the structure of the service

composition found by the generated POMDP policy. As can be seen, the services have been com-

posed correctly and the exact model structure is discovered since Figures 5.1 and 5.2 are identical.

As the workflow model in the case study presents, the POMDP approach is able to discover

complex structures with parallel or-splits, a split at which just one branch is active at a time. The

POMDP can also extract the parallel and-splits, a split at which all branches are active at a time.

Since POMDP treats and-splits the same way as or-splits, they are discovered similarly.

As for the selection phase, the POMDP approach selects the optimal path by choosing the
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Figure 5.2: Policy graph generated by the POMDP solver

concrete services that provide the least cost and response time for each abstract service. The total

execution time for solving this scenario was 1.5 seconds.

5.5.2 Scalability Analysis

Typically, organizations have many processes consisting of different numbers of activities in the

form of services. The number of activities will be very different depending on the process ap-

plication area. In this section, we present the scalability results of the algorithm along with the

experiments done using the different POMDP algorithms. Since POMDP is solved using linear

programming methods, the scalability of our approach was assessed by three sets of experiments.

The first experiment was performed with a constant number of abstract services and variable

numbers of concrete services. The same scenario presented in the case study with 6 abstract ser-

vices was used for this experiment. The number of concrete services was set to 5 at the beginning

and was incremented by 5 consecutively up to 25 services. The discount factor was set to 80%. The

POMDP algorithm selected for this experiment was the incremental pruning algorithm. Figure 5.3

shows the results. To assess the scalability of the approach with regards to the number of concrete

services, the total number of services involved in each experiment is determined. For the first mea-
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Figure 5.3: Performance evaluation for different numbers of concrete services with a con-
stant number of abstract services

surement point, 6 abstract services times 5 concrete services results in 30 services in total. As for

the last measurement point, where we have 6 abstract services and 25 concrete services for each

abstract service, the number of services in total is 120. Therefore, for 5 concrete services a total

of 30 services, and for 25 concrete services a total of 120 services are involved when searching for

the appropriate policy graph. These experiments suggest that the POMDP approach is capable of

providing scalability with regards to realistic numbers of concrete services.

For the second experiment, we enlarged the size of the service composition problem by chang-

ing the number of abstract services incrementally by 5, while keeping the number of concrete

services to 5. The POMDP algorithm selected for this experiment was the incremental pruning

algorithm. The experimental results are displayed in Figure 5.4. For a workflow size of 5 abstract

services, each having 5 concrete services, the execution time is 1.8 seconds, whereas for 25 abstract

services the execution time is 27.8 seconds.

The last experiment assesses the performance of the three POMDP algorithms (enumeration,

incremental pruning, and witness) on the service composition. The number of abstract services
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Figure 5.4: Performance evaluation for different numbers of abstract services with a constant
number of concrete services

Figure 5.5: Performance evaluation with regard to various POMDP algorithms

are increased by 5 services and the execution time is evaluated. The graph in Figure 5.5 displays

the results. It can be observed that all three algorithms show a similar trend, with the enumeration

algorithm performing slightly better compared to the others for the experiments.

should comment *on what ranges of services would commonly be encountered in practice *how

things would be different if had much greater degrees of uncertainty
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5.6 Conclusion

This Chapter showed an approach to service composition and selection by exploiting the prove-

nance information along with partially observable Markov decision processes to compose the ser-

vices of a workflow automatically. Provenance data contains information regarding workflows,

services, their specifications and execution details. We modeled the QoS-aware service composi-

tion as a POMDP, learning the service details from the provenance store. In particular, we presented

how the service composition problem can be modeled as a POMDP. We argued that since service

composition can be seen as a planning problem, due to the dynamic environment of services and

the uncertainty, POMDP is an appropriate approach for service composition. It is important to

mention that as a Web service environment is a dynamic environment, provenance data might not

have the information of all the possible states for a certain service. On the other hand, the services

are dynamic as well and they might change through time. This information might not be available

in the provenance store. As a result, the observability of states are partial and the agent cannot

reliably identify the underlying environment state.

Experiments were performed to assess the scalability of the model, and the performance of

several POMDP algorithms was evaluated. The method showed reasonable scalability and the

algorithms provide similar performance in terms of execution time. The proposed approach is also

applicable to QoS-aware composition cases where the optimal selection of services is not desired

but instead a range of required QoS values are specified. This requires a small modification on the

reward assessment.

As the degrees of uncertainty in a structure increases, the search for discovering the policy graph

becomes more difficult. As a result, the execution time of the POMDP methods would increase. A
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future experiment would include assessing the performance of the model with regards to increasing

degrees of uncertainty for a workflow structure. Applying hierarchical POMDPs to the composition

problem, which is likely to result in better performance, is another research exoeriment which will

be followed in the future work. Since hierarchical POMDPs require an abstract hierarchy of actions,

they provide a suitable approach to improve the scalability of the proposed method.
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CHAPTER 6

CONCLUSIONS AND FUTURE DIRECTIONS

6.1 Conclusions

In this research, we discussed the concept of provenance, provenance application areas and some

of the architectures and systems which provide facilities for presenting, recording, and querying

this information. The literature review reveals that not much research has been devoted to the ap-

plications of provenance data. We discussed that a large provenance store of previous executions

of services and workflows provides an appropriate environment for reasoning and learning. Thus,

having discussed the motivations and requirements, we proposed an architecture that addresses the

current challenges with workflow and services using provenance information. The architecture is

composed of components for workflow and service trust or performance evaluations, automatic

selection and compostion of services, workflow mining and pattern discovery, as well as a work-

flow structure refinement. The connection and interactions between components suggest that each

component can provide lower level functionalities individually or a more complex functionality in

combination with other components. We demonstrated four of the main components of the archi-

tecture and proposed a novel approach to address the issues with regards to each component. The

list of major contributions made in this thesis are the following:

• Exploiting provenance information to address the current challenges and problems in service
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oriented environments. These challenges include service composition and selection, work-

flow mining, workflow evaluation, and refinement.

• Proposing a multifunction architecture which applies statistical learning methods along with

provenance information to solve the services and workflow problems.

• Presenting a new approach for evaluating trust of services and workflows which is based

on HMMs. The trend of trust of the workflow was assessed and the effect of the stationary

assumption in the HMM model was investigated.

• Mining workflow structures using Bayesian structure learning approaches and provenance

information. The main contribution is the exposition of a new approach that discovers the

causal relationships between the services using the data flow as well as control flow informa-

tion stored in provenance information. The proposed method can discover workflows with

sequential and parallel structures. In addition, it is capable of discovering the service graph

composed of workflows and services that are related and belong to the same subject or area.

• Exploiting the POMDP solutions towards automatic composition and selection of services

using the previous history of workflow runs. The proposed method takes the partial observ-

ability of services environments into account for service composition and selection.

6.2 Future Directions

The research provided in this thesis suggested an architecture for targeting the current issues and

problems with web services and workflows based on provenance information. While studies were

run and new approaches were followed for most of the components of the architecture, however,
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some problems and issues still remain open. The proposed architecture can be augmented with

other services to provide more functionality, robustness, and reliability. To increase the stability

and intelligence of the architecture, each component can provide feedback to the provenance store

to feed the provenance data with the information learned through the process the component follows

to achieve its goal. The recorded data can be exploited to train the system dynamically through time.

As a result of this process, the components will operate in a more intelligent and robust manner.

As for the components individually, more research can be done to provide each component

with more functionality. The workflow evaluation component can be expanded to give informa-

tion on performance of each service individually over time, as well as the changes occurring in

services’ QoS trends. In order to compose services more efficiently, the information provided by

the evaluation component could be used to compose more robust workflows. In addition, the com-

ponent’s functionality can be improved in a way that it generates various service compositions, if

possible, along with the probability values for overall workflow QoS values. As for the workflow

structure learning component, the approach presented can be developed to also identify implicit

novel relationships referred to as hidden connections between services.The research in this thesis

did not focus on the workflow refinement component. This component could also be added to a

future version of the architecture and can cooperate with both the structure learning and evaluation

components.

Further on, the usability of new approaches for each component could be investigated. Time

series and other statistical methods could be studied to be exploited for the purpose of workflow

evaluation.

As for the experiments, the Taverna workflow system was used to create workflows and prove-

nance data automatically. The new architecture could provide services on top of the Taverna system
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so that the components could be used along with the Taverna workflow System. Experiments and

scenarios could be designed to assess the performance of the architecture and investigate how effi-

ciently the components cooperate.
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