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ABSTRACT 

 Some areas near Flin Flon, MB and Creighton, SK are devoid of vegetation due to a 

variety of mining, smelting, forestry activities and forest fires that have occurred since the 

1930’s. This study investigated the use of soil amendments to enhance revegetation in these 

areas. The study was comprised of two main components, an in situ study and a growth chamber 

trial. The in situ component was conducted to determine the efficacy of soil amendments that 

could be utilized in a revegetation program. The growth chamber trial examined if the amount of 

moisture present in the soil would have an influence on the success of vegetation survival and 

growth.  

 The in situ study was conducted near Flin Flon, MB and Creighton, SK over two growing 

seasons and consisted of replicated treatments imposed at 12 sites. Tree seedlings [trembling 

aspen (Populus tremuloides Michx.) and jack pine (Pinus banksiana Lamb.)] and understory 

species [tufted hairgrass (Deschampsia cespitosa L.) and American vetch (Vicia americana 

Muhl.)] were planted at each site. Each site also received soil amendments; bone meal and meat 

biochar (BMB), compost, commercial mycorrhizal inoculant (EMF) and, willow biochar (WB) 

in combination with dolomitic limestone and fertilizer. Each site also had a control that received 

an application of only dolomitic limestone and fertilizer. The growth chamber trial utilized the 

same plant species and soil amendments as the field trial with the exclusion of willow biochar.  

 In general, soil amendments did not influence the survival or growth of the tree seedlings 

in situ or in the growth chamber trial. However, the compost amendment increased survival and 

growth of the tufted hairgrass significantly in the growth chamber trial and to a lesser extent in 

the field trial. Compost also positively influenced the pH and base saturation of the soil 

compared to the other amendments. The mycorrhizal inoculant increased the rate of mortality of 

tree species in the growth chamber trial. Moisture did not influence the survival and growth of 

the seedlings or understory species or the efficacy of the amendment treatments in this study.  
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1. INTRODUCTION 

 Mining activities, such as refining and smelting of base metals, commonly result in the 

development of areas devoid of vegetation due to aerial deposition of pollutants from the mining 

practices that contribute to forest dieback and soil erosion. This anthropogenic aerial deposition 

can include sulfur dioxide, heavy metals and can subsequently lead to soil acidification. 

Government regulations regarding mining activities have become more stringent over time, 

thereby curbing the rate of emissions but not eliminating the damage to vegetation and soil 

completely.   

 Flin Flon, MB and Creighton, SK are neighboring communities that have been affected 

by mining and smelting activities since the 1930’s. The mining and smelting activities were 

occurring long before significant environmental regulations were in place. Consequently, the 

area was subject to considerable damage before more stringent regulations were enacted 

(HudBay Minerals, 2009). Specifically the area is affected by sulfur dioxide (SO2) deposition 

resulting in increased acidification of soils. Metal contaminated sites are challenging to 

revegetate because metals cannot be degraded. Sites are often complex with variable amounts of 

deposition and more than one type of metal present (Dermont et al., 2008).  

 In restoration and reclamation projects the end goal can be to reclaim an area back to the 

original ecosystem or to increase the visual appeal and function (Environmental Protection 

Agency, 2007). The goal should be predetermined prior to the planning and initiation of the 

project. The reclamation or remediation of base-metal contaminated sites is often very expensive 

and difficult due to the expansive areas that are affected. Commonly, ex situ methods, that 

involve removing the contaminated soil from the area, are used. However, an increasingly 

common approach is to utilize in situ methods of remediation that use strategies that alter the 

form of contaminate in the soil into less available and less toxic forms on-site, commonly 

through the application of soil amendments and vegetation establishment (Environmental 

Protection Agency, 2007; Dermont et al., 2008).    

 The area surrounding Flin Flon/Creighton is dominated by jack pine (Pinus banksiana 

Lamb.), black spruce (Picea mariana Mill.), white spruce (Picea glauca Moench), green alder 

(Alnus viridis Chiax.) and trembling aspen (Populus tremuloides Michx.) comprising a mixed 

coniferous forest cover (Hogan and Wotton, 1984; McLaughlan et al., 2010). The area has 
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experienced vegetation dieback due to logging, forest fires and mining activities. Many soils in 

the vicinity of the mine are smelter-impacted and have higher levels of metal deposition then 

those found in the nearby natural forest area. The copper smelter was shut down in June 2010 

due to costs of upgrading (HudBay Minerals, 2009). However, during operation of the smelter 

the area received deposition of airborne contaminants including zinc (Zn), lead (Pb), magnesium 

(Mg), iron (Fe), copper (Cu), cadmium (Cd) and arsenic (As). These contaminants are present in 

the highest concentrations in the first 3 km from the smelter stack where the impact of 

contamination is visually noticeable in the vegetation patterns (Henderson et al., 1998). 

Vegetation in the smelter-impacted area, where present, is dominated largely by a non-native 

bent grass (Agrostis capillaris L.) (originally identified by Professor Winterhalder of Laurentian 

University, pers. comm. R. Farrell) which is relatively metal tolerant, and inclusions of some 

stunted willow (Salix), birch (Betula) and poplar (Populus) trees (Henderson and McMartin, 

1995).  

 There is a strong desire to revegetate Flin Flon/Creighton (The Green Project, 2010). The 

use of soil amendments has been attempted in areas with similar disturbances (Kumpiene et al., 

2008). Some of the benefits of revitalizing land using amendments include providing wildlife 

habitat, increased evapotranspiration, improved water quality, decreased mobility of 

contaminants and restored soil health and function (Environmental Protection Agency, 2007). 

Immobilization of metals can be facilitated by the use of amendments through processes such as 

adsorption to mineral surfaces and through the formation of complexes with organic ligands, 

which can lead to improved soil quality and improved potential for revegetation (Kumpiene et 

al., 2008). The pH of soil in Flin Flon/Creighton is low (3.83 to 5.84) and it is thought to be a 

contributing factor in vegetation dieback. Thus, application of amendments to increase soil pH 

may be utilized as an integral component of a successful revegetation strategy in Flin 

Flon/Creighton.  

 Based on research conducted in Sudbury, ON which demonstrated the positive effects of 

spreading dolomitic limestone, The Green Project was established in Flin Flon/Creighton (The 

Green Project, 2010). The Green Project is comprised of a group of active residents that have 

been spreading dolomitic limestone throughout the area of Flin Flon/Creighton since 1999 to 

help decrease the level of soil acidity to aid in revegetation (The Green Project, 2010). Areas 

have been successful in regaining vegetation from seeds blowing in and establishing, although, 
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some areas have not been responsive to the liming. These unresponsive areas in Flin 

Flon/Creighton have been compared to a similar site in Sudbury, ON and the lack of response in 

Flin Flon/Creighton has been attributed to the different parent materials from which the Flin 

Flon/Creighton soils developed (Winterhalder, 2000). The first application of dolomitic 

limestone was tested in Flin Flon/Creighton in 1994 by Professor Keith Winterhalder from 

Laurentian University, and who also conducted the initial liming research in Sudbury (The Green 

Project, 2010). Limestone is still currently being spread in Flin Flon/Creighton due to the success 

it has had over the past 13 years (The Green Project, 2010). The Green Project is run by 

community volunteers who spread the dolomitic limestone; however, due to safety concerns, 

volunteers are not allowed access to the mine property, which limits area being treated.  

 The study described herein was initiated to examine the impact of various soil 

amendments including bone meal and meat biochar (BMB), willow biochar (WB), municipal 

compost and a commercial mycorrhizal product (EMF) containing endo- and ectomycorrhizae on 

the survival and growth of the tree species trembling aspen and jack pine, and the understory 

species tufted hairgrass (Deschampsia cespitosa L.) and American vetch (Vicia americana 

Muhl.), in situ with the goal of identifying effective revegetation strategies. The success of the 

revegetation strategies was evaluated using a variety of measurements including plant root and 

shoot biomass, shoot heights and basal diameters, percent ground cover and visual measurements 

of plant health in the field.  

  Soil collected from a healthy forest system in a similar environment was used as a 

baseline thereby providing comparative information. Assessing soil properties post-amendment 

application might help in determining strategies that are likely to promote revegetation. 

Furthermore, observing changes associated with the addition of different amendments provides a 

quantitative measure of success of the soil amendments relative to soil properties conducive to 

supporting revegetation. In this study, soil measurements included pH, base saturation, effective 

CEC, available metals, total organic carbon, available sulfur, nitrate and ammonium.  

 The impact of soil moisture on the efficiency of the various amendments was studied in a 

growth chamber experiment using the same tree and understory species as were used for the in 

situ trial. The same amendments were also studied in the growth chamber trial as in the in situ 

trial with the exception of WB. Different soil moisture levels were imposed and plant growth 
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was measured to determine if moisture influenced the relative success of the amendments for 

revegetation using soil collected from Flin Flon/Creighton.   

 The overall objective of this study was to determine the effectiveness of various organic 

and microbial amendments to aid in the revegetation of smelter-impacted soils. This study 

represents a first step in creating a revegetation strategy that could be implemented in the future 

to improve the visual appearance and possibly return the area to a state similar to that of a non-

smelter affected landscape. The specific objectives and hypothesis of this study were to:  

  

 Objective 1: Determine which combinations of soil amendment and vegetation species 

are most viable (increase survival/growth of vegetation, practicality) for in situ remediation of 

smelter-impacted soils. 

  Hypothesis 1: Sites with higher available heavy metal concentrations will have less 

vegetation survival and growth. 

 Hypothesis 2: Soil amendments, dolomitic limestone and fertilizer will increase overall 

soil pH and base saturations towards a level similar to that of a healthy forest stand. 

 Hypothesis 3: Amended plots will have decreased plant metal uptake and greater 

vegetation survival and growth than the unamended control plots.   

 

 Objective 2: Identify if moisture is a limiting factor for revegetation in smelter-impacted 

soils when utilizing soil amendments.  

 Hypothesis 4: The amount of available soil metal and plant metal uptake will be 

influenced by the amount of moisture present in the soil. 

 Hypothesis 5: Vegetation biomass will be influenced by the moisture present in the soil in 

combination with amendments used.   

 

 The thesis is written in “paper format” with the introduction (Chapter 1) that discusses 

the main concepts behind the project. This is followed by a literature review (Chapter 2) relevant 

to both research chapters (Chapter 3 and 4). Chapter 3 describes a field trial (objective 1) and 

chapter 4 focuses on a growth chamber trial (objective 2). Chapter 5 provides a synthesis and 

conclusion of the entire project. Chapters 6 and 7 are references and appendices, respectively.  
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2. LITERATURE REVIEW 

2.1 Environmental Impact of Smelting Operations  

 Smelting operations create aerial deposition of SO2 and trace metals and lead to changes 

in the landscape environment surrounding the smelting complexes (Rigina and Kozlov, 2000). 

Although smelting operations occur worldwide, there are a few large smelting complexes in the 

northern hemisphere in northwest Russia on the Kola Peninsula, in Sudbury, ON and in 

northwest and southwest Finland that are notable for the environmental impact that these 

operations have produced. For example, smelting operations created an area in Russia where the 

area of forest dieback is 600 to 1000 km
2
 due to the inability of the soil system to support plant 

survival and growth (Rigina and Kozlov, 2000).  Forest dieback at Sudbury is estimated to be 

170 km
2
 and less than 1 km

2
 in Finland (Kiikkila, 2003). Remediation projects have been 

established in Finland and Sudbury with the largest scale remediation project conducted in 

Sudbury, ON (Kiikkila, 2003).  

 HudBay Minerals Inc. (formerly Hudson Bay Mining and Smelting Co. Ltd.) has 

operated a mine and associated Zn and Cu processing facility in the vicinity of the communities 

of Flin Flon, MB and Creighton, SK, Canada since 1930. The original smelting stack was 30 m 

high and was replaced by a stack that is 251 m in 1974 to meet environmental regulations (Shaw, 

1981). These operations released particulate matter through aerial emissions and have 

contributed to die back of the surrounding boreal forest. As a result the area lacks plant 

biodiversity and has limited new plant growth. Zinc processing continues to this day, though Cu 

smelting operations ceased in 2010 (HudBay Minerals Inc., 2009).  

 Areas that have significant forest dieback such as Kola Peninsula, Sudbury, Harjavalta 

Finland and Flin Flon/Creighton also have all been influenced by accompanying disturbances. 

Kozlov and Zvereva (2007) denote accompanying disturbances as other human caused 

disturbances that have contributed to the overall impact of the mining and smelting activities in 

non-ferrous metal operations. The landscape of Flin Flon/Creighton had accompanying 

disturbances of forest logging and forest fires that contributed to the amount of forest dieback 

(Kozlov and Zvereva, 2007). Logging and forest fires can lead to sequential soil erosion from 

areas with sloped landscapes like those in Flin Flon/Creighton.   
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2.1.1 Vegetation 

 The native vegetation in the area of Flin Flon/Creighton is typical of a mixed coniferous 

forest. Tree species in the non-impacted surrounding area include white spruce, aspen, birch 

[Betula paperifera (Marsh) Spach] and black poplar (P. balsamifera L.) (Mycock, 2011). Soil 

metal contamination that is distributed aerially from a point source is highly variable due to wind 

directions and uneven distribution (MacDonald and Hendershot, 2003). The metal concentration 

within the soil decreases as the distance from the stack increases (Henderson and McMartin, 

1995). At a distance of 37.5 km from the smelter there is little impact to vascular plants and 

cryptogams whereas close to the smelter, vascular plants and cryptogams are now absent (Scott 

and Orlandini, 2002). Within 6 km from the smelter, soil is present only in small depressions or 

rock outcrops representing mineral soil deposits that have occurred as a result of water and wind 

erosion that has been exacerbated by the lack of stabilizing plant cover (Fig. 2.1) (Scott and 

Orlandini, 2002). 

 

 

Figure 2.1 Photograph of the smelter and the surrounding area in Flin Flon displaying areas 

devoid of vegetation and resulting rock outcrops with soil pockets 

.  
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2.1.2 Soil pH  

 Smelter activities frequently result in significant changes in soil pH. The pH of the soil 

influences the availability of metals in soil: Al, Cu, Ni and Zn are all more toxic where soil pH is 

less than 5.5 (Environmental Protection Agency, 2007).  For example, in Sudbury, the pH of the 

soil decreased as distance to the smelter decreased (Winterhalder, 2000). However, some studies 

show the pH of the soil is unaffected by the distance from the smelter when the area sampled is 

on the same bedrock (Hogan and Wotton, 1984; Derome and Lindroos, 1998; Scott, 2000). 

Hogan and Wotton (1984) suggested that there were no changes in soil pH during smelting 

activities in Flon Flon/Creighton due to the ability of Zn deposition to increase the soil pH even 

though the SO2-SO4 inputs from smelting activities are known to decrease soil pH. The loss of 

vegetation could be attributed more to the atmospheric inputs of base metals and sulfur on plants 

and soil microbes than the soil pH (Scott, 2000).   

2.1.3 Cation exchange  

 The cation exchange capacity (CEC) of a soil is a measure of the ability of a soil to retain 

cationic nutrients. Cation exchange capacity and base saturation can be influenced by pH, soil 

organic matter and erosion. The CEC of the soil can influence the metal uptake by plant roots. 

As CEC of the soil increases the CEC of the roots also increases and the uptake of metals into 

the plant increases (Greger, 2004). The CEC in heavy metal contaminated sites can also be 

affected by the presence of Cu and Ni which bind to cation exchange sites, which in some studies 

create an underestimation of CEC values (Derome and Lindroos, 1998). A study conducted at the 

smelter on the Kola Peninsula showed that the CEC decreased with a decreasing amount of 

organic matter due to lower plant biomass inputs from vegetation loss in areas with higher levels 

of metal contamination (Lukina and Nikonov, 2001). However, a study conducted by Anderson 

et al. (2009) found that CEC increased within the contaminated sites compared to the control site 

and the calcium concentrations varied from high to low between contaminated and control sites, 

respectively. The difference between the studies suggests that other environmental factors may 

be of more importance than the amount of contamination present in an area and that 

contamination may be influencing other factors that can affect CEC such as organic matter inputs 

from vegetation.  
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2.2 Revegetation Strategies 

 Phytotechnologies are green methods of remediation and reclamation that are becoming 

increasingly common due to their cost effectiveness and ease of application (ITRC, 2009). In 

1989 there were only 11 published articles on phytoremediation; as of May 2009 there were  

10, 684 published articles (Prasad et al., 2010). Phytotechnology methods are carried out in situ, 

which decreases the amount of disruption that takes place during the reclamation or remediation 

process compared to ex situ methods that ruin the natural on-site properties of the site (Farrell et 

al., 2010b). One type of phytotechnology is phytostabilization that involves growing vegetation 

in contaminated areas to contribute to slowing erosion, runoff and increased visual appeal and 

decreasing dust movement (Frerot et al., 2006). Phytostabilization often includes 

phytosequestration in which the contaminants are contained or changed into less available forms 

by utilizing plant species (ITRC, 2009). Benefits of in situ remediation include no transportation 

and no excavation of contaminated soil and ease of application in large sites; however, some 

limitations include difficulties verifying how efficient the techniques are and site specific 

conditions can affect the success of the strategy (Dermont et al., 2008).  

 A number of issues need to be considered when developing an in situ remediation plan. 

Some of the considerations include site selection, seedbed preparation, plant selection, need to 

irrigate, weed problems, access to sites and managing wildlife (Environmental Protection 

Agency, 2007). One of the challenges that may restrict revegetation success in a contaminated 

area is a low number of vegetation propagules present to be able to move back into the disturbed 

area. Propagules often have been absent for too long in the region; however, in situ techniques 

can mitigate this problem by introducing new or existing species by the use of seed application 

or tree planting (Helmisaari et al., 2007). Other factors that can contribute to the success or 

failure of phytotechnologies include physiology of vegetation, moisture, root length, temperature 

and growing season (ITRC, 2009). Field studies focused on in-field trials around smelting 

complexes can be difficult to conduct due to the amount of variability between sites. 

Consequently, many studies are conducted within a laboratory setting to minimize variability and 

therefore less research has been conducted at a field scale in smelter-impacted areas (Hermle et 

al., 2006).  

 Sudbury, ON had similar disturbance characteristics to those found in Flin 

Flon/Creighton including forest fires, logging and heavy metal contamination. A variety of 
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different measurements were used in Sudbury, ON to record the native vegetation and newly 

established vegetation in the area. Measurements including density, percent cover, basal diameter 

and frequency of the plants were used collectively to form an index to help represent the 

vegetation of a given area and comparisons were made from one growing season to the next 

which is of importance for revegetation projects (Amiro and Courtin, 1981). Another study 

conducted near Sudbury compared a revegetation strategy of using only liming techniques to one 

that used a combination of liming, seeding of understory species and fertilization (Winterhalder, 

1983). The areas that were seeded with understory species had less movement of woody species 

into the area compared to the unseeded areas. However, seeded areas had 50% more percent 

cover after two years but a decreased presence of woody species (Winterhalder, 1983). Applying 

fertilizer when reforesting can improve photosynthetic activity, improve water efficiency, 

increase stem growth and increase the overall amount of foliage (Kozlowski et al., 1991). 

2.2.1 Tree species used in phytoremediation 

 Trees of the Populus species are known to support relatively high absorption, 

accumulation, storage and degradation of environmental contaminants, making aspen trees a 

viable option when choosing a species for in situ designs in contaminated areas. Trembling aspen 

trees are, however, not a hyper-accumulating species (Mala et al., 2006). Hyperaccumulator 

species tend to be small and slow growing which in field studies is not ideal if biomass 

production is important (Kumar et al., 1995). Trembling aspen can grow in soils that are low in 

nutrients. Trembling aspen also can have a deep root system, be fast growing, and be resistant to 

contamination, when nutrient and moisture requirements are met, which are all traits of trees that 

are favored for phytoremediation practices (Pulford and Watson, 2003). Trembling aspen trees 

are known as a free growth species meaning that the shoots are partially developed in the buds 

the previous growing season and then expand and continue to grow in the next season 

(Kozlowski et al., 1991).  Fast growing tree species are particularly favored for revegetation in 

areas that are devoid of vegetation, as improvements in visual appeal occur more quickly.  

 Jack pine is a tree species that is native to the Flin Flon/Creighton area and is typical of 

mixed coniferous forests in the northern hemisphere (Hogan and Wotton, 1984). Jack pine had 

the greatest survival rate in the Sudbury project for pine species (Winterhalder, 2000). Trees of 

the Pinus genus have a pre-determined growth rate, therefore, the shoots are fully developed as 

buds during the late part of the previous growing season and then emerge and elongate during the 
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next growing season (Kozlowski et al., 1991). There have been numerous studies that examined 

the uptake of metals by species from the Pinus genus. Pinus genus uptake metals into the needles 

of the plant as well as the bark, stem and roots (Gratton et al., 2000, Saarela et al., 2005, Walsh 

and Redente, 2011). Jack pine, white spruce and white pine have been found to be more tolerant 

to heavy metal accumulation in soil than red pine, black spruce and birch tree species (Patterson 

and Olson, 1983). Wotton et al. (1986) found that seed survival of jack pine was not affected in 

soils that were impacted by smelting operations but root growth within 5 km of the stack was 

found to be inhibited.   

2.2.2 Understory species 

 Tufted hairgrass is a bunch grass species that is capable of growing in areas that are 

highly disturbed as well as in areas of heavy metal contamination and may therefore colonize 

areas in which other plants are unable to grow (Winterhalder, 2000). Tufted hairgrass is fast 

growing and produces large amounts of biomass which makes it a favourable option for projects 

that want to quickly develop a visual appeal of greening an area (McIntyre, 2003). Tufted 

hairgrass reportedly grows near Sudbury which has a similar smelting operation and landscape to 

that of Flin Flon/Creighton (Winterhalder, 2000). Known by many common names including 

blue-green hairgrass and fescue-leaved hairgrass, the plant grows between 20 and 60 cm in 

height and can be grown in a wide range of soil types as well as in soils with pH values between 

3.5 and 7.5 (Darris and Gonzalves, 2009; St. John et al., 2011). 

 American vetch is a forb that has purple flowers and can grow between 30 and 60 cm in 

height. Other common names include purple vetch and American deer vetch (Kirk and Belt, 

2010). American vetch is similar to tufted hairgrass in that it has proven ability to grow in 

disturbed areas and spreads through the root system, establishing new plants. American vetch is 

also a nitrogen fixing plant species that can be grown in different soil textures and moisture areas 

(Kirk and Belt, 2010).  

2.3 Heavy Metal Contamination 

2.3.1 Soil metal concentrations  

 Both wet and dry heavy metal deposition from smelting complexes is known to 

negatively affect seedling establishment, growth and plant survival through soil contamination. 

Deposition can be variable within a small area due to a variety of influencing factors. For 

example, amount of deposition is influenced by wind direction, precipitation, stack height and 
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smelting operations (Hutchinson and Whitby, 1977). The amount of available metal in the soil 

can be influenced by the amount of soil organic matter and pH, and is important as it is available 

for plant uptake and movement into water systems. Negative correlations between amounts of 

available metals Ni, Cd, Cu, Pb and Fe and distance from the smelter have been reported with 

metal levels increasing as distance decreases (Hutchinson and Whitby, 1977; Derome and 

Lindroos, 1998). This correlation was not found for Zn and Al. This has been attributed, in part, 

to particle size of the different metals being carried different distances from the smelter 

(Hutchinson and Whitby, 1977; Derome and Lindroos, 1998). A study conducted at Flin 

Flon/Creighton generally found there to be no strong directional effects from the smelter for total 

cation exchange capacity (CEC), calcium (Ca
2+

), magnesium (Mg
2+

), aluminum (Al
3+

), percent 

base saturation (%BS), total sulfur (TS), carbon to nitrogen ratio (C:N) and pH (Mycock, 2011). 

Aluminum is considered to be a key element in smelter-impacted sites due to mobility and its 

phytotoxic affects as it is available for plant uptake in acidic soils (Hutchinson and Whitby, 

1977).  

2.3.2 Vegetation and metal interactions  

  Plants growing in areas of metal contamination will often take up metals into their tissues 

including the stems, leaves, roots and bark, with different plant species differing in their abilities 

to do so (Kozlov et al., 1995; Saarela et al., 2005). Heavy metals react differently with plants 

depending on the available metal concentration, soil pH and texture, and presence of other 

metals. Less is known about how vegetation responds in a natural setting with variant climate 

and soil factors under mixed metal contamination as compared to controlled laboratory settings 

(Hagemeyer, 1999; Hermle et al., 2006). Heavy metal concentrations can reduce seedling 

survival and establishment. Around smelting complexes where there has been SO2 deposition the 

soils are often acidic and heavy metals are more soluble under acidic conditions (Patterson and 

Olson, 1982). The concentration of heavy metals that is damaging to plants varies depending on 

the species of plant. Some plant species are more sensitive to soil metal concentrations while 

others have the ability to adapt to higher levels of metals. Generally, deciduous tree species are 

known to have a higher metal tolerance than coniferous trees with the exception of those of the 

betula genus (Patterson and Olson, 1982).  Translocation and storage mechanisms of heavy 

metals to roots and shoots vary between tree species and metals (Pulford and Watson, 2003). 
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 Copper and Zn are essential elements for plant growth meaning that a certain level is 

necessary for plant growth and survival; however, these elements can also be toxic to plants at 

high concentrations (Pahlsson, 1989). Zinc is involved in protein synthesis and nucleic acid and 

lipid metabolism. Zinc toxicity can affect root and shoot growth by stunting growth, causing 

chlorosis, decreasing leaf chlorophyll and thus affecting rate of photosynthesis (Pahlsson, 1989). 

Copper is important for metabolism of the plant as well as seed production and disease resistance 

(Pahlsson, 1989). Copper toxicity can reduce stem growth and biomass in woody plant species 

and can cause stunting of root growth and discolouration (Heale and Ormrod, 1982). Studies 

have also shown that Zn and Cu can inhibit photosynthesis in plants leading to reduced 

development and growth (Clijsters and Van Assche, 1985).     

 Aluminum and Cd are non-essential for plant survival and growth. Nickel is also 

considered a non-essential element; however, it is essential for some plant species but is required 

at the lowest level of the essential elements for plant survival in those specific species and is 

toxic at higher levels (Environmental Protection Agency, 2007). Cadmium toxicity can cause 

plants to have curled and smaller leaves that show signs of chlorosis. In studies using deciduous 

and coniferous tree species and grass species, biomass was reduced as the amount of Cd applied 

increased (Pahlsson, 1989).  Aluminum toxicity can restrict root growth as well as inhibit the 

uptake of other nutrients, and is dependent upon the Ca to Al ratio (Environmental Protection 

Agency, 2007; Wit et al., 2010).  Nickel was more toxic than Cu and Co in a study conducted on 

four different woody species (Patterson and Olson, 1982). In Sudbury, the liming of soil 

decreased the amount of Ni taken up by at least half indicating that the mobility of Ni is 

influenced by the pH of the soil (Hutchinson and Whitby, 1977).  

2.4 The Use of Soil Amendments in Revegetation 

 Soil amendments are useful in revegetation projects due to the ability of soil amendments 

to improve fertility, change the availability of metal contaminants, increase water retention and 

improve soil stability (Gadapalle et al., 2007). Organic soil amendments improve soil properties 

mainly by the addition of organic matter to the soil. The type of amendment being used can have 

varying benefits on the revegetation process depending on the soil type, moisture regime and 

contaminants present. Amendments are most effective in acidic and low nutrient areas (Park et 

al., 2011). One of the practical benefits of soil amendments is that they can be used in situ 

compared to having to treat the soil ex situ, which is an expensive remediation technique. This 
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makes using soil amendments a cost effective form of remediation. Amendments such as 

compost and biochars can be made locally on site if necessary using potential waste materials 

which also reduces the cost of remediation (Environmental Protection Agency, 2007) 

 In some studies, application of soil amendments has increased the amount of microbial 

diversity and activity present in the soil which has been found to be reduced in contaminated soil 

areas (Farrell et al., 2010a). Farrell and Jones (2010) conducted a greenhouse trial using five 

different amendments including green waste and municipal derived composts in a heavy metal 

(As, Cu, Pb, Zn) contaminated soil. Plants had increased root and shoot yield over the control for 

all of the soil amended treatments. Another study using contaminated mine waste used a variety 

of organic amendments (greenwaste compost, peat, wood bark) in a greenhouse trial concluded 

that application of organic amendments increased biomass over the controls as well as led to a 

reduction in the amount of extractable metals (Zn, Cu and Pb) (Nwachukwu and Pulford, 2009).  

2.4.1 Compost 

 Compost is a common and affordable soil amendment that is very high in organic matter. 

Compost has been used as a fertilizer and as mulch in remediation of disturbed and contaminated 

areas as it has positive effects on soil properties. The chemical, physical and biological changes 

in soil properties associated with the amendments are largely attributed to changes in organic 

matter content (Borken et al., 2002). Improvement in physical soil properties such as porosity, 

stability, water content and erosion can occur when compost is used. Compost can reduce the 

impact of heavy metal contamination by immobilization or reduction of the heavy metals in the 

soil (Park et al., 2011).  

 Compost can increase root and shoot biomass of plants grown in contaminated soil but 

success is dependent on a specific case by case basis (Farrell et al., 2010b). The properties of the 

compost are important to ensure that the amount of heavy metal in the compost is not going to 

become detrimental to the environment in which the compost is being applied (Pinamonti et al., 

1997). Applying municipal compost to areas of contamination can reduce solubility and leaching 

of Cu, Pb and Zn by providing binding sites for these heavy metals in the organic matter (Brown, 

2003; Paradelo et al., 2011).  

 Compost can reduce the availability of heavy metals through binding to the organic 

matter; however, the positive effects of the addition of the organic matter in the compost may 

decrease as the organic matter decomposes over time. Benefits over the long term still exist as 
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compared to unamended control sites (Borken et al., 2002). Other site conditions can also reduce 

the effectiveness of compost. Factors such as salt concentrations and combinations of metals 

within the soil were found to decrease binding of Zn, Cu and Pb (Nwachukwu and Pulford, 

2008).   

2.4.2 Biochar  

 Applying commercially produced biochar as a soil amendment on metal contaminated 

areas is a fairly new concept. Biochar is a charred material that is made by pyrolysis of different 

types of materials under low temperatures for a set period of time (Kloss et al., 2011). Biological 

materials used for this process include, but are not limited to wood (e.g. willow and spruce), 

railway ties, cereal straw, fish meal and bone meal and meat. The temperature used influences 

the end properties of the biochar including the EC, pH, ash content, C, P and N contents (Kloss 

et al., 2011). However, the main influencing factor for the composition of biochar is the starting 

product used to create the biochar. For example, biochar made from animal bi-products have 

much higher P content then biochar produced from wood products (Chan and Xu, 2009). This 

makes comparing biochars between studies more difficult as products can vary depending on 

initial product sources.    

 Applying biochar can increase the soil pH, increase water retention capacity, increase 

bulk density, improve cation exchange capacity and reduce the leaching of nutrients from the soil 

(Beesley and Marmiroli, 2011; Karami et al., 2011; Ennis et al., 2012). Many organic 

amendments decompose over time so reapplication is necessary; however, biochar has been 

found to be stable, have increased nutrient retention and have greater resistance to microbial 

decomposition making it a longer lasting soil amendment option compared to greenwood and 

compost (Chan and Xu, 2009). A laboratory study was conducted comparing green waste 

compost and biochar in an area contaminated with Zn, Cd, As and Cu; both of the amendments 

were found to have a positive effect on the plant growth in the area but biochar was able to better 

reduce the bioavailability in the area that had multiple contaminants (Beesley et al., 2010). 

Biochar has been found to be effective in areas that have organic and inorganic contamination 

(Beesley et al., 2011). 

 There are many different possible methods of applying biochar including application as 

liquid slurry, deep banded rows, uniformly mixing with topsoil or top dressing (Blackwell et al., 
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2009). It is not known how quickly the biochar moves downwards into soil but biochar has been 

found at depths suggesting that it does move vertically downwards (Blackwell et al., 2009).  

2.4.3 Fungal amendment  

 Mycorrhizal fungi develop a symbiotic relationship with plant rooting systems and help 

the host plants gain nutrients and moisture from the soil. Ectomycorrhizal fungi (EMF) and 

arbuscular mycorrhizal fungi (AMF) have different mechanisms of interacting with the plant. 

Ectomycorrhizal fungi form symbiotic relationships around the outside of the root and AMF 

form within the cells of the root (Bundrett et al., 1996). Tree species commonly interact with 

EMF, and grasses and forbs form association with AMF due to the difference in symbiotic 

associations. There are commercially developed inoculant products of EMF/AMF that can be 

added to landscapes. Some vegetation species, however, can form relationships with both AMF 

and EMF (Hoeksema et al., 2010).   

 Inoculation with EMF have resulted in positive effects on plant growth, including 

improved phosphorus and water uptake, increased soil stability and increased plant tolerance in 

polluted or contaminated sites (Dodd and Thomson, 1994; Wilkinson and Dickinson, 1995). 

Fungi may be resistant to metal contamination as a result of the fungi having a short life cycle. 

The short life cycle would allow for genetic changes to occur rapidly and adapt to a heavy metal 

contaminated soil to help protect the plant from the heavy metal environment (Wilkinson and 

Dickinson, 1995). The affect that mycorrhizal colonization has on plants in heavy metal 

contaminated areas can be influenced by the concentrations of metal, fungi species and pH and is 

not always successful in mitigating toxicity (Shetty et al., 1994).  

2.5 Moisture in Revegetation of Smelter-impacted Soils 

 When considering the use of phytotechnologies it is important to consider the availability 

of soil moisture for plant use. It is also important that the amount of moisture present in an area 

is adequate for the plant species chosen for the project (ITRC, 2009). The moisture present in an 

area can affect the availability of metals in the soil, the amount of metal found within the plant 

and the plant biomass. In a study comparing the effects of moisture levels on both 

hyperaccumulating plant species and non-hyperaccumulating species, availability of metals in 

the soil, the metal in the plant and the plant biomass all increased as the amount of moisture 

increased (Angle et al., 2003). In this study it was also found that the moisture had no influence 

on the availability of Zn to plants but extractable Ni decreased as soil moisture increased (Angle 
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et al., 2003). A one-year ex situ study conducted using willow and poplar trees found that height, 

stem diameter and plant biomass all decreased in a high water regime compared to a lower water 

regime in an soil impacted by heavy metals from sludge waste (Guidi and Labrecque, 2010). 

Seedlings, however, need radicle growth to be able to access available moisture in order to 

survive in areas of low moisture. Heavy metals in soil can reduce the radicle length of plants 

which can contribute to moisture stress of young plants (Patterson and Olson, 1982).   

2.5.1 Precipitation patterns in Flin Flon/Creighton 

 The area of Flin Flon/Creighton receives an average annual precipitation of 463.1 mm. 

The summer months average between 40.9 mm to 75.5 mm of rainfall. The monthly average 

temperatures throughout the year in Flin Flon/Creighton range from -20.4°C to 18.5°C 

(Environment Canada, 2011). These types of conditions can potentially influence plant growth 

and success due to the variability from one month to the next and are important to consider when 

setting up a field study within the area. It is unknown if the amount of moisture is a factor in the 

revegetation process of the smelter-impacted areas in Flin Flon/Creighton.  
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3.  THE USE OF SOIL AMENDMENTS FOR IN SITU REVEGETATION OF SMELTER-IMPACTED 

SOILS  

3.1 Preface  

 A field experiment was conducted to examine the impact of various soil amendments on 

the survival and growth of vegetation in smelter-impacted soils in situ. The amendments were 

chosen on the basis of a preliminary growth chamber screening experiment, conducted as part of 

a larger study, in which several amendments were screened for efficacy. Success was measured 

in the field by the survival and growth of the vegetation, change in soil properties (pH and base 

saturation) and the influence the amendments had on uptake of metals into the plant biomass. In 

doing this it becomes possible to choose the most effective field amendment for a potential 

revegetation plan in Flin Flon/Creighton.   
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3.2 Abstract 

 An in situ trial was established in Flin Flon/Creighton in July 2011 consisting of 12 sites 

chosen based on conditions that were representative of the larger landscape. At these 12 sites, 60 

plots (5 plots/site) were established and soil amendments (microbial inoculant, compost, bone 

meal and meat biochar and willow biochar) were applied to examine the impact of soil 

amendments on vegetation survival in smelter-impacted soils. All 12 sites also received an 

application of dolomitic limestone and fertilizer at the time of planting. The survival and growth 

of tree species (trembling aspen and jack pine) and understory species (tufted hairgrass) was used 

as a measure of success of the soil amendments. Although the amendments had been chosen on 

the basis of a prescreening bioassay in which all amendments enhanced growth and survival 

under controlled growth chamber conditions, no significant enhancements of survival or growth 

were detected in the field study. The soil amendments had some influence on the soil physical 

properties but the soils were not uniformly affected across all 12 sites.  

3.3 Introduction  

 The impact of heavy metal contamination on soils and plant growth has been studied in 

depth by many different researchers although studies are commonly conducted in controlled 

laboratory settings and less commonly studied in situ (Hermle et al., 2006). In developing a 

revegetation strategy for an area such as Flin Flon/Creighton it is important to take into 

consideration the environment of the area including climate, topography, the geographic extent 

of the contamination and local vegetation. Often as metal concentrations in an area increase so 

do vegetation mortality rates; however, some understory and some tree species have the ability to 

store metals in the root or shoot biomass depending on the type and availability of the metal 

present (Patterson and Olson, 1982). Trees such as trembling aspen (Populus tremuloides 

Michx.) are able to rapidly transition into areas and grow quickly to help improve the visual 

appeal of an area (Pulford and Watson, 2003). Consequently, they are good candidates for 

revegetation programs. The addition of soil amendments to soil can alter the physical and 

chemical properties of the soil by changing the bioavailability of the metals and/or increasing 

water retention, among other effects (Borken et al., 2002). Soil amendments that are locally 

available for use should be selected for field trials so there is potential to use them in subsequent 

landscape-scale reclamation projects (ITRC, 2009). 
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3.4 Materials and Methods 

 A field study was conducted to assess the impact of various soil amendments on the 

revegetation of smelter-impacted soils near Flin Flon, MB/Creighton, SK. The experiment 

included 12 experiment sites in and around Flin Flon/Creighton. The sites were established to 

represent the diverse areas that are devoid of vegetation that potentially could be included in a 

subsequent landscape-scale reclamation program, if it were to occur. The tree species used at 

each site were jack pine (Pinus banksiana Lamb.) and trembling aspen and the understory 

species were tufted hairgrass (Deschampsia cespitosa L.) and American vetch (Vicia americana 

Muhl.). Each plant species was grown under one of five treatments. The treatments included an 

unamended control and four amendments, namely municipal compost, willow biochar, bone 

meal and meat biochar and a commercial mycorrhizal product. The trial ran for the duration of 

14 months and trees and understory were destructively harvested upon completion. Throughout 

the trial survival and growth rates were recorded. Soil samples pre-plant growth and post-plant 

growth were collected for further laboratory analysis.  

3.4.1 Site selection and characterization 

 Figure 3.1 shows the relationship of the 12 study sites to the smelting stack which was 

the emission source for the pollution. The sites are located in different soil types, elevations, 

distances from the smelter and varying distances from other vegetation. Sites were randomly 

selected. The amount of soil present (i.e., area and depth) within the area was very important as 

the soil needed to be deep enough in which to plant tree plugs, as well as be accessible by foot. A 

healthy mixed wood boreal forest that is out of the range of contamination from the smelting 

complex, located near Sherridon, MB, was used as a comparison for the soil properties. 

Sherridon was used as a reference site for previous projects done in the Flin Flon/Creighton area 

(Bentz, 2013).  

3.4.2 Plot design 

 At each of the 12 study sites there were five experimental plots (0.5 m x 0.5 m) 

established with a total of 60 plots for the entire study. Plot size was constrained by the area 

available.  Each of the 60 plots received a base treatment of 75 g of slow release fertilizer (20-

17-10) and 4 g of dolomitic limestone that had been crushed and sieved to 0.5 mm. The 

amendment treatments were bone meal and meat biochar (BMB), willow biochar (WB), a 

commercial combination of endomycorrhizal and ectomycorrhizal inoculant (EMF) and compost 
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(Table 3.1). The compost was a class A product meaning there was no significant amounts of 

heavy metals. The untreated control received only the slow release fertilizer and the dolomitic  

 

Figure 3.1 Aerial photograph of Flin Flon/Creighton displaying 12 field sites indicated by green 

circles and smelting stack indicated by a red circle. Direction and distance from the smelting 

stack is indicated. 

limestone. The amendments were chosen based on success from a preliminary trial conducted as 

a component of a larger research project (Gord Andersoff, pers. comm.). The BMB, WB and 

compost amendments were applied to the surface of each plot. Amendments were not 

incorporated into the soil because mixing in the amendments, if applied on a large scale, would 

not be practical in Flin Flon/Creighton due to the variability and extent of area that would need 

to be treated.  

 The BMB, WB and compost application rate was calculated based on the plot area, 2.5 

cm depth, amendment bulk density and 10% w/w. The quantity of each amendment applied 

varied depending upon bulk density: 900 g of compost (36,000 kg ha
-1

); 160 g of WB  



 

 

21 

 

 (6,400 kg ha
-1

); and 340 g (13,600 kg ha
-1

) of BMB. 

Table 3.1.  Description of amendments used in field trial, including source, type of amendment, 

pH and Al, Cd, Cu and Zn concentrations in the amendment.   

 

Amendment 

 

Trade 

Name 

Source 

 

Amendment 

Type 

 

pH 

Metal Concentrations 

Al Cd Cu Zn 

     -------- mg kg
-1

 ---------- 

Bone meal 

and meat 

Biochar; 

BMB 

 

-- 

Titan Clean 

Energy, 

Saskatoon, SK 

 

Organic 

 

8.39 

 

0 

 

0 

 

0 

 

0 

 

Willow 

Biochar; 

WB* 

 
Titan Clean 

Energy, 

Saskatoon, SK 

 

Organic  

 

9.28 

 

0 

 

0 

 

0.01 

 

0 

Compost ;  

 

-- 

City of 

Saskatoon 

Compost Depot, 

Saskatoon, SK 

 

 

Organic 

 

6.98 

 

0 

 

0 

 

0.03 

 

0 

Mycorrhizal 

Inoculant; 

EMF †‡ 

Myke
®
Pro 

Landscape 

Premier Tech 

Biotechnologies 

Ltd., Quebec, 

Canada 

 

Fungal
‡
 

 

6.73 

 

0 

 

0 

 

1.00 
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† Mycorrhizal inoculant (Zn) was analyzed by ALS Laboratories, Inc., Saskatoon, SK. All other 

amendments were analyzed, as part of current project, at the University of Saskatchewan. 

‡ Fungal content (approximate spores g
-1

) Ectomycorrhizal fungi: Pisolithus tinctorius 

(100,000), Scleroderma cepa (7500), S. citrinni (7500), Rhizopogon roseolus (3750), R. 

subscaerelescens (3750), R. villosulus (3750), R. vulgaris (3750), Laccaria laccata (2250). 

Endomycorrhizal fungi: Glomus intradadices (15) 

 

The Mycorrhizal inoculant used was a commercial product with active endomycorrhizae 

(Glomus intraradices) and ectomycorrhizae (Pisolithus tinctorius, Scleroderma cepa, S. citrinni, 

Rhizopogan roseolus, R. subscaerelescens, R. villosulus, R. vulgaris, Laccaria laccata) 

(MykePro Mycorrhizal inoculant, Premier Tech Biotechnologies, Riviere-du-Loup, QC, 

Canada). The manufacturer’s recommended rate of application for the EMF product was 28.4 

mL per 10.16 cm
2
 area which is equivalent to 40 g per understory area (0.25 m x 0.5 m) as a 

surface amendment. In addition, 5 g was put directly into each of the holes where the tree plug 

was planted.  
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 Each experimental unit receiving one amendment measured 0.5 m x 0.5 m, and was 

divided into four equal quadrants. Each quadrant was planted to one of four plant species. The 

understory quadrants were combined and planted to a mix of the two species treatments. Each 

tree species was planted separately in the remaining quadrants (Fig. 3.2). The planting density 

was higher than typical in a revegetation program to ensure replication was possible in the 

smaller areas that were restricted by the amount of soil present.   

 Both tree species were planted as one-year-old rooted seedlings of jack pine (~18 cm tall) 

and trembling aspen (>50 cm tall). Tree seedlings were acquired from Tree Time Services Inc. 

(Edmonton, AB, Canada) as fresh stock (which had not been frozen). There were four jack pine 

and four trembling aspen plugs planted in each of the 60 plots. The plugs were planted so the top 

of the root ball was flush with the soil surface. The understory species were seeded at a rate of 

3.6 kg ha
-1

 for the tufted hairgrass (Olge et al., 2010) and 36 kg ha
-1

 for American vetch (Kirk 

and Belt, 2010). The plant species were chosen based on being native to the area, past success in 

Sudbury, ON project, fast growing and ability to survive in contaminated areas. The location of 

each amended plot at each site was recorded. At the time of planting each of the plots was 

moistened with 7.5 L of water. Soil was sampled at each location (0.5 m depth or until bedrock 

was reached).  

3.4.3 Field measurements 

 At the time of planting in late June 2011 the basal diameter of each of the tree seedlings 

was measured using a digital caliper, and seedling heights were recorded. Each of the seedlings 

in the plot was tagged with a different color of plastic ribbon and planted in a recorded 

arrangement so that measurements could be made throughout the growing season for each 

individual tree. The sites were re-visited in July 2011 and September 2011 and the tree diameters 

and heights were recorded. The survival rate was also recorded for each of the plots in July 2011 

and September 2011. The estimated percent ground cover was recorded for each of the plots in 

July and September based on a visual estimate of the amount of the 0.25 m x 0.5 m understory 

area that was covered in understory vegetation. Prior to harvesting the plots in August 2012 the 

overwinter survival rate was recorded as well as the heights and diameter of the tree species. 

 At the time of harvest, soil samples to a depth of 15 cm (or to bedrock of less than 15 cm) 

were collected from each experimental plot and from the Sherridon reference site. Soil from 

Sherridon was collected in July 2012 to be used as a comparison of a healthy forest stand to the 
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soils in the experimental sites. Sherridon soil was collected to a 15-cm depth excluding the leaf 

litter layer.  

              

 

 

Figure 3.2 Plot configuration at each of the 12 sites showing the arrangement of the four soil 

amendments and control areas. The upper part of the figure shows the configuration of each of 

the five plots including four plugs of each tree species as well as half of the plot designated to 

understory species.  

    

 

 The precipitation and temperature for the years 2011 and 2012 when the field trial 

occurred were recorded and compared to the long-term averages (1981-2010) by month (Table 

3.2) (Environment Canada, 2011). Above normal precipitation occurred in July and August of 

2011. Due to an extreme rainfall event on July 20
th

 in 2011, where the area received 72 mm of 

precipitation in a 24 h period, the applied amendments on sites 2, 3, 4, 6, 7, 9 and 11 were 

washed away due to the slope positions of these sites. These sites were re-amended on July 24
th

, 

2011. The temperatures during the field season were around normal and represented what is 

typical of Flin Flon/Creighton.  

 

 

 

X 5 
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Table 3.2. Monthly (years 2011 and 2012) and average (years 1981 to 2010) monthly 

temperatures and precipitation recorded for Flin Flon, MB.  

 
† Environment Canada does not record mm of precipitation in winter months, (only cm of snow 

on the ground for the Flin Flon station), therefore data is not included in table.  

3.4.4 Plant preparation for laboratory analysis 

 In August 2012, at final harvest, the trees and understory vegetation were excavated and 

brought to the University of Saskatchewan where the soil was washed from the roots and the 

biomass was weighed. For the trees, roots were separated from the shoots then dried and re-

weighed separately. For the understory biomass the roots were not separated from the shoots 

because the root biomass in most cases was not sufficiently large enough to use for analysis so 

analysis was done on the whole plant. At the time of washing, a 5 g (fresh weight) sample of root 

was subsampled from each tree species from each plot to complete ectomycorrhizal counts. 

Roots were stored in distilled water at room temperature (~20
o 

C) and were analyzed within 48 h 

(section 3.4.5.3). The dry root and shoot biomass was recorded for both tree species and the 

understory. The shoots, roots from the trees were bulked and finely ground using a plant matter 

grinder for laboratory analysis. The understory was ground as a whole plant sample using a 

coffee grinder due to the small amount of biomass in some plots.  
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3.4.5 Laboratory analysis 

3.4.5.1 Soil characteristics 

 Soil pH was measured on 1:2 (w/w) soil:water extracts using a Symphony meter and 

SymphonyTM Gel 2-in-1 pH electrode (VWR International, USA). Soils were extracted with 

double-deionized water (Hendershot et al., 2008).  Soils at the time of planting and the time of 

harvest were air dried and ground and analyzed using the C632 Carbon Determinator (Leco 

Corporation, St. Joesph, Missouri USA) to determine percent total carbon (TC) through 

combustion at 1100°C.  

 To determine cation exchange capacity elements (Ca, K, Mg, Na and Al) , soil was 

analyzed using a procedure adapted from Meyer and Arp (1994), Schoning and Brummer (2008) 

and Skinner et al. (2001). The method was consistent with previous research done within the 

larger Flin Flon project by Mycock (2011) and Bentz (2013). Briefly, air-dried soil (2 g) was 

agitated with 80 mL of 1M NH4Cl for 24 h at 150 rpm in a 200 mL polypropylene container. The 

solution was filtered through a Whatman #42 filter (Whatman, Piscataway, NJ). Standards (1 to 

20 µg/L) created in 1M  NH4Cl were analyzed with samples and blanks using the Microwave 

plasma–atomic emission spectrometer (Agilent 4100 MP-AES, Australia). Available ammonium 

(NH4
+
) and nitrate (NO3

-
) were extracted from 5.0 g air-dried ground soil with 50 mL of 2M KCl 

and agitated for 1 h at 142 rpm (Hendershot et al., 2008). Extract was filtered through VWR 454 

(VWR International, USA) filter paper into vials and analyzed on an auto analyzer (WestCo 

Scientific Instruments, Inc., USA).  

3.4.5.2 Metal analysis (soil and plant) 

 Available metals (Al, Cd, Cu, Ni) and S were extracted from the soil samples based on 

the adapted extraction method of Wightwick et al. (2010).  Air-dried soil (2 g) was weighed into 

a 250 mL polypropylene container to which 200 mL of 0.01M CaCl2 extraction reagent was 

added. Containers were agitated at 300 rpm for 12 h at room temperature (20 ºC). Bottles were 

left to settle (1 h) prior to being filtered through a millipore (2.5 µm) vacuum filter (Millipore 

Corporation, Billerica, MA). Available metal in the extract was measured using the Microwave 

plasma-atomic emission spectroscopy (Agilent 4100 MP-AES, Australia).  

 Elements (Al, Cd, Cu, Ni, and Zn) in plant tissues were analyzed using a procedure 

adapted from Ippolito and Barbarick (2000) and Lesniewicz and Zyrnicki (2000). Ground plant 

sample (1 g ± 0.05 when sufficient plant matter was available) was measured into 100 mL glass 
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digestion tubes and 6 mL HNO3 was added and heated to 90 ºC for 75 min for digestion to occur. 

Hydrogen peroxide (5 mL) was added and the mixture was left to digest for 30 min. After 

cooling, the solution was brought up to 25 mL using distilled water and gravity filtered through a 

Whatman #5 filter. Metals were measured in solution using microwave plasma–atomic emission 

spectroscopy (MAP-AES 4100; Agilent Technologies, Mississauga, ON, Canada); solutions 

were syringe filtered to 0.1 µm (Whatman, Piscataway, NJ).  

3.4.5.3 Ectomycorrhizal colonization 

 Tree roots were examined for ectomycorrhizal colonization according to the method 

developed by Bundrett et al. (1996) using a gridline intersect method. Roots (5 g) collected at the 

time of harvest are laid across a 9 cm petri dish with 0.5 cm grid lines. Counts were performed 

using a 10x dissecting microscope on the number of times a mycorrhizal root tip crossed a line in 

comparison to the amount of times a non-mycorrhizal tip crossed over a line. A minimum of 100 

crosses were counted to ensure results were representative of the sample. The root samples used 

were dried and weighed to give an estimate of the percent of colonization present in the entire 

root ball of each tree. 

3.4.6 Statistical analysis 

 Statistical analysis was performed using IBM® SPSS© Statistics (Version 20). None of 

the results for the field trial were normally distributed or had homogeneous variances (Levene’s 

test; p≤ 0.05) or normality (Shapiro-Wilk test; p≤ 0.05).  The results did not meet criteria for 

homogeneity of variance or normality using log transformations. Non-parametric statistics were 

utilized for data analysis. The Kruskal-Wallis (p ≤ 0.05) test was used to analyse data and means 

separation was performed using the Games-Howell test (p≤ 0.05). Correlations between 

variables (plant biomass, soil available metals, plant metals and baseline soil properties) were 

determined using Pearson Product Moment Correlation.  
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3.5 Results 

3.5.1 Initial soil characteristics 

 Initial soil characterization (Table 3.3) before the establishment of field plots and for the 

Sherridon reference site was important to quantify the changes in soil properties throughout the 

duration of the field trial and relate vegetation response to the amendments and soil 

characteristics. The reference site, which was far enough away from the smelting complex as to 

not be affected by the smelting activities, had a well-established healthy mixed-wood coniferous 

forest stand containing jack pine and a understory with bearberry (Arctostaphylos uva-ursi L.) 

and grey reindeer lichen (Cladina rangiferina L.). The soil at the reference site was an Eluviated 

Dystric Brunisol. Comparing initial site characterization to the reference site can help develop 

ideas of what some of the measurable components may be that are influencing the success or 

failure of vegetation establishment and growth at the 12 study sites within the affected smelting 

area.   

 The pH of the 12 study sites (Table 3.3) ranged from 3.83 at site 9 to 5.84 at site 12 and 

the reference site had a pH of 4.15. The CECe for the reference site was 3.21 cmolckg
-1

. The 

experimental sites had a range of CECe of 2.08 cmolckg
-1

 at site 2 to 8.98 cmolckg
-1

 at site 11. 

Exchangeable Na, Ca, Mg, Al and K were used to calculate the base saturation values. 

Exchangeable Na, Ca, and Mg in most cases were higher in the reference site than in the 12 

study sites. The reference site therefore also presented a higher base saturation than the 12 sites. 

The Ca:Mg ratio for the reference site was 3:1 and for the experimental sites ranged from 2:1 to 

12:1. 

 In the 12 sites available metal concentration range of Cu was 8.82 to 1181.18 mg kg
-1

, Zn 

5.12 to 663.27 mg kg
-1

, Cd < 0.10 to 7.58 mg kg
-1

 and Al 3.36 to 58.48 mg kg
-1

 (Table 3.3). 

Typically, the smelter-affected soils had higher levels of Cu, Zn and Cd than the reference site. 

Available Al was higher in the reference site than in the 12 study sites with the exception of site 

3 which had almost two times the amount of Al present compared to the reference site at the 

beginning of the field trial. Nickel levels in all sites, including the reference site, were below the 

detection limit of 0.05 mg kg
-1

 and therefore Ni was not quantified. Total carbon was lower in 

the Sherridon site than in the 12 sites except sites 1 and 2. The available S ranged from 477 mg 

kg
 -1 

at sites 2 and 6 to as high as 2250 mg kg 
-1

 in site 4.  The amount of NO3
-
 was higher in all 

sites. 
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Table 3.3. Physical and chemical characteristics and metal concentrations in soils from 

 the Sherridon site (reference) and 12 study sites. Sampled in 2011 at the initiation of the study. 

 
     CL = clay loam; LS = loamy sand SC= sandy clay; SCL = sandy clay loam; SL = sandy loam  

     † CECe= effective cation exchange capacity 

     ‡ Blanks spaces indicate that levels were below detection limits  
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in comparison to the Sherridon site; similarly, NH4
+ 

was also higher in all 12 sites compared to 

the Sherridon site with the exception of sites 1 and 11 that were lower. 

3.5.2 Vegetative survival and growth 

 The survival and growth of the tree and understory species were variable among sites 

(Fig. 3.3). There was variation between the types of sites that were selected and the local 

vegetation present at the time of planting as well as the position of the site in the landscape (i.e., 

rock outcrop soil pocket compared to larger general soil area) which could account for variation 

between the success at the different sites. Visual observations allow for an assessment of health 

that may not be detected through height, basal diameter and biomass measurements, alone. 

Visual assessments confirmed that sites 1, 2, 6, 9, 10, 11 and 12 had more vegetation survival 

and growth for the tree species as well as the understory species over the course of the trial than 

the other sites. Visual assessment included observations of color and overall health of tree 

seedlings. 

 There were no strong relationships between soil available metal and change in growth for 

trembling aspen and jack pine species (Fig. A.1.). However, there was an apparent relationship 

between increased growth of trembling aspen and jack pine in relationship to the sites that had 

lower available metal concentrations (Al, Cd, Cu, Ni) compared to sites that had higher 

concentrations of available metals (Fig. 3.4). Sites 3 and 4 were almost completely dead by the 

time of harvest, whereas sites 5 and 8 were not completely dead but did not have the same 

understory survival and the trees did not show the same amount of growth as some of the other 

sites. Site 7 had a small amount of understory present but the trees were showing signs of 

necrosis as can be seen by the darker orange color of the jack pine trees in the photograph (Fig. 

3.3). 
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Figure 3.3 Example photographs of successful sites (site 10) and sites that had minimal survival 

and growth (Site 3) planted in Flin Flon/Creighton at the time of planting (top) and prior to 

harvest (bottom).  
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Figure 3.4 Growth (change in height from time of planting to harvest) (cm) of trembling aspen 

and jack pine and the available soil metal concentration (averaged Al, Cd, Cu, Ni, Zn). Letters 

represent significant (p≤ 0.05) differences in growth between sites based on Kruskal-Wallis and 

Games-Howell tests. No significant differences (p> 0.05) in available soil metal among sites 

detected. Error bars represent ± 2 standard errors of the mean. 
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 Trembling aspen biomass (root, shoot and total) was negatively correlated with soil 

available metals (Table B.1) and all correlations were significant with the exception of Zn, for 

which root biomass was negatively correlated to available soil Zn (r = -0.26 to r = -0.49; 

 p≤ 0.05). Smelter deposited metals (Cd, Cu, Zn) in trembling aspen roots generally correlated to 

the TC, CECe, NO3
-
, NH4

+
 and soil available S. The non-smelter metals (Al and Ni) in trembling 

aspen roots correlated to NO3
-
 and available S. Trembling aspen shoot metals Cu and Zn 

generally correlated significantly to soil available metals, TC, NO3
-
, NH4

+
 and available soil S. 

Trembling aspen shoot Cd did not correlate to any of the measured soil properties. Soil available 

Al behaved differently from the other soil available metals and did not correlate with any of the 

biomass metals except for root Al and Cd.  

 Jack pine biomass (root, shoot and total) was negatively correlated to the soil available 

metals (Table B.2). Generally, soil available metals were (r = -0.47 to r = -0.58; p≤ 0.05,) 

correlated to metals in the biomass (root and shoot) of jack pine trees. However, available soil Al 

was not correlated to the metals in the biomass of jack pine trees. The soil properties, NO3
-
 and 

available soil S, were correlated to the root and shoot biomass metals for jack pine.        

 There were no significant (p> 0.05) correlations between biomass (total, root and shoot), 

root or shoot metals (Cd, Cu, Zn, Al, Ni) and the soil pH, ectomycorrhizal colonization for 

trembling aspen and jack pine (data not shown).        

 No differences were detected in biomass of tufted hairgrass grown with or without 

amendments (Fig. 3.5) (p >0.05), although there was a trend of increased biomass where 

compost was applied compared to other amendments. An in situ experiment could be conducting 

using a compost and tufted hairgrass combination to examine if there is the potential for 

significant revegetation. American vetch survived and grew in five of the 12 sites in the first year 

of the field trial but comprised less than 5% vegetative cover in any individual plot. Overwinter 

survival rate was zero. 
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Figure 3.5 Biomass (g) of tufted hairgrass grown with soil amendments [ectomycorrhizal fungi 

inoculant (EMF), compost, willow biochar (WB), bone meal and meat biochar (BMB)] and 

control. No significant (p> 0.05) differences were detected between amendments based on 

Kruskal-Wallis and Games-Howell tests. Error bars represent ± 2 standard errors of the mean. 

 Similar, to the tree species, the understory total biomass (tufted hairgrass) was (r = -0.27 

to r = -0.32; p≤ 0.05) negatively correlated to the amount of available soil metal (Al, Cd, Cu, Zn) 

(Table B.3). There was no correlations between the amount of metals present in the biomass and 

total biomass of tufted hairgrass except for Ni where there is a significant correlation with total 

biomass ( r = 0.40; p≤ 0.01).  The soil CECe and soil pH did not correlate to the tufted hairgrass 

biomass or to the metal concentrations of the biomass (data not shown).  

3.5.3 Change in base saturation, pH, and available soil metal 

 All of the base saturations of all soils increased from the initial levels (i.e., pre-

amendment and pre-planting) to the final sampling time (i.e., after 14 months) (Fig. 3.6). The 

magnitude of the increase was generally less under the EMF amendment than the other 

amendments. Site 1 had a smaller increase in percent base saturation under all amendments than 

the other sites, except for site 6 which had minimal increase in the control treatment. The control 

had an increase in base saturation for all sites indicating that the liming and fertilizing of the soil 

can increase the percent base saturation without further amendments being added. 
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Figure 3.6 Initial soil base saturation and final soil base saturation (%) plotted for each site (12) 

in Flin Flon/Creighton under each amendment [ectomycorrhizal fungi inoculant (EMF), 

compost, willow biochar (WB) and bone meal and meat biochar (BMB)] and control.  

 

 The amendment treatments and the controls plots did not have uniform increases in soil 

pH at all sites from planting to harvest (Fig. 3.7). Some of the sites had a reduction in soil pH 

from the time of planting to harvest. Soil pH increased in more plots (6 of 12) under the compost 

amendment than under the other amendment treatments. Soil pH in the EMF plots increased in 

the fewest number of plots (2 of 12) for the amendment treatment plots. The control treatment 

had only one site that experienced an increased pH throughout the field trial. The effect of the 

addition of fertilizer on the change in pH is unknown for this experiment due to it being a slow 

release product but could have potentially decreased the pH in some sites.   
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Figure 3.7 Initial soil pH and final soil pH values plotted for each field site (12) in Flin 

Flon/Creighton under each amendment [ectomycorrhizal fungi inoculant (EMF), compost, 

willow biochar (WB) and bone meal and meat biochar (BMB)] and control.
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3.5.4 Plant metals 

 There were no increases in growth (cm) of either tree species (trembling aspen or jack 

pine) associated with any soil amendment (p> 0.05) (Fig. 3.8).  

 The uptake of metal (Al, Cu, Ni, Zn, Cd) into the biomass of the trembling aspen and 

jack pine trees was not influenced by the application of amendments (Fig. 3.9 and Fig. 3.10). The 

vegetation planted under the control treatment did not have significantly different metal uptake 

from the plants grown under amendments (p> 0.05).  

 

 

Figure 3.8 Growth (cm) of tree species trembling aspen and jack pine from amended 

[ectomycorrhizal fungi inoculant (EMF), compost, willow biochar (WB), bone meal and meat 

biochar (BMB)] and control field sites. No significant (p> 0.05) differences between 

amendments based on Kruskal-Wallis and Games-Howell tests. Error bars represent ± 2 standard 

errors of the mean.   
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Figure 3.9 Trembling aspen biomass metal concentrations (Cd, Cu, Zn, Al and Ni) from control 

and amended [ectomycorrhizal fungi (EMF), compost, willow biochar (WB), bone meal and 

meat biochar (BMB)] sites. No significant (p> 0.05) differences between amendments based on 

Kruskal-Wallis and Games-Howell tests. Error bars represent ± 2 standard errors of the mean.  

  

 

Figure 3.10 Jack pine biomass metal concentrations (Cd, Cu, Zn, Al and Ni) from control and 

amended [ectomycorrhizal fungi (EMF), compost, willow biochar (WB), bone meal and meat 

biochar (BMB)] sites. No significant (p> 0.05) differences between amendments based on 

Kruskal-Wallis and Games-Howell tests. Error bars represent ± 2 standard errors of the mean. 
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3.6 Discussion  

 The study sites represented a varying range of landscapes and distances from the smelter 

stack. The result was different soil characteristics between the 12 field sites. Others have 

reported that the cation exchange capacity of Dystric Brunisols, determined by assessing the 

exchangeable cation capacity via extraction using NH4NO3 had a range of 2.93 to 9.55 cmolckg
-1

 

for the eluviated layer of the profile and a range of 1.41 to 5.20 cmolckg
-1

 for horizons at greater 

depths (Borge, 1997). The CECe range of the reference and field sites in our study, was from 

2.08 to 8.98 cmolckg
-1

, and thus are within the range of typical CECe values for Dystric 

Brunisolic soils for the soils at the initial time of planting. As expected, the Ca, Mg, Na and K 

values for the field study soils also fell into the same ranges as found in the research conducted 

by Borge (1997). The Ca:Mg ratio should be no greater than 20:1 as it can create a Mg 

deficiency for plants (Borge, 1997). This risk can be minimized by using dolomitic limestone 

such as the limestone applied in Flin Flon/Creighton. None of the sites at the initial time of 

planting had a high Ca:Mg ratio. Generally, the TC content was higher in the study sites 

compared to the Sherridon reference site. Mycock (2011) accounted for variation in TC by peaty 

phase soils that are underlain by mineral soils.    

 In Sudbury, jack pine had a survival rate of 78% after seven years of growth and annual 

average height increase of 41 cm (Winterhalder, 2000). In Flin Flon/Creighton the survival rate 

of jack pine at the end of the field trial was 77% with an average height increase of 32.3 cm for 

the 240 jack pine trees planted under all amendments.  The growth of jack pine and trembling 

aspen was expected to be the highest in the first growth season as both species growth are 

influenced, at least in part, by bud formation in the previous year. The one year-old seedling 

plugs planted in the first growing season in Flin Flon/Creighton had been grown in ideal 

conditions in a nursery; therefore, the bud formation did not have the same environmental 

stresses that would be imposed on bud formation on these trees once planted and growing in Flin 

Flon/Creighton for a complete season. Also, because the roots are transplanted in soil from the 

nursery and need time to grow and adapt to the soil in Flin Flon/Creighton, outside of the 

original transplanted root ball, more damage may occur subsequent to the first growing season. 

Visible injury and retarded growth and development are two of the responses of stress in plants 

identified by Kozlowski et al. (1991). The visible injury and retarded growth and development 

between the time of planting and the time of harvest were clearly identified in the photographs in 
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Fig. 3.3 for some of the sites. One of the benefits of planting a variety of species in the area as 

tree plugs or understory establishment is it creates a seed source for other areas to establish 

(Winterhalder, 2000).  

 The correlations between growth responses and soil characteristics (Table B.1 and Table 

B.2) generally were weak, ranging from r = 0.25 to r = 0.81. In some instances, these 

relationships were reflected in positive correlations between soil metal and corresponding shoot 

metal uptake, particularly for Cu and Zn. Significant, although weak, correlations between 

variables such as soil Zn and shoot Cu suggest that some relationships were not necessarily 

causal, but occurred because soil Zn and Cu levels varied together as a consequence of the mode 

of deposition. This was particularly evident in terms of correlations between levels of metals in 

the root tissue and soil metal levels. In general, these correlations were relatively strong and 

highly significant.  

 There were no significant differences in growth for the trees or the understory under the 

different soil amendments. This data suggests that no additional benefits were achieved beyond 

those associated with applying dolomitic limestone and fertilizer. Additionally, surface applying 

amendments may have limited efficacy compared to mixing them into the soil which would 

allow more immediate effects to the root zone of the plants, which is a challenge commonly 

encountered with in situ remediation (Environmental Protection Agency, 2007).   

 The reference site, which was located a considerable distance away from the 12 field sites 

in Flin Flon/Creighton, was classified as a Dystric Brunisol due, in part, to the pH being less than 

5.5 and supported a well-established forest stand, common for these types of soils in Canada. 

The pH of the A horizon in a typical Dystric Brunisol typically ranges from 3.5 to 3.7 and 

increases with increased depth in the profile. The C horizon below 25 cm may have a pH higher 

than 5.5 as Brunisolic soils can have a calcareous parent material (Smith et al., 2011). The pH is 

not considered to be the main cause of vegetation dieback around Flin Flon/Creighton and the 

low pH values are not a direct result of smelter deposition affecting the soil (Scott, 2000). The 

pH data from this study supports this contention because the Sherridon reference site has a pH 

value (4.15) which is within the range of pH values from the study sites (3.83 to 5.84) that were 

devoid of vegetation closer to the smelter. However, one consideration is that very few of the 

Flin Flon/Creighton sites developed exhibited soil horizons that were similar to the observed 

typical horizon formation at the reference site due to past erosion activity. The plants therefore 
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may not have the same rooting zone in which to establish and grow, as would be the case in an 

established forest stand. 

 The pH of the soil was expected to increase from the start of the field trial to the 

completion of the field trial due to the addition of dolomitic limestone, fertilizer and 

amendments; however, there were no trends observed among the sites that supports this 

expectation. Winterhalder (2000) experienced similar results with the pH of the soil not 

increasing one year after liming in Sudbury. The pH in some areas of Sudbury actually decreased 

initially but saw the increase in pH occur after a few years (Winterhalder, 2000). The delayed pH 

response was attributed to plants changing the total base levels over time (Winterhalder, 2000). 

The process of changing the total base levels is described as a cation pump which, in the 

presence of neutralizing species (such as trembling aspen), can create and maintain a more 

neutral forest floor then pine species which will increase the acidity of the forest floor through 

biological activities (Aber, 1987). The effects of a cation pump system may potentially be 

limited in Flin Flon/Creighton due to the shallow soil profiles and farther experimentation would 

need to be conducted to assess potential limitations. Sites 2 and 12 originally had the highest pH 

values of 4.48 and 5.84, respectively, and had a decrease in pH throughout the field trial under 

all of the amendments.  

  A study looking at chemical properties of forest soils reported a base saturation range of 

44.1 to 58.2 % (Schmidt et al., 1996). The percent base saturation was higher in Flin 

Flon/Creighton for the reference site in comparison to the pre-planted site soils. The same 

observation was made by Schmidt et al. (1996) that base saturation decreased after an area was 

disturbed. Therefore the lower base saturation was expected from Flin Flon/Creighton due to soil 

being disturbed and smelter-impacted.  

 The base saturation of all sites increased from the initial time of planting to the time of 

harvest. This increase was expected as a consequence of the extent of disturbance in the area, 

however, the increase in base saturation was not consistent with the soil pH as base saturation 

will generally increase as pH increases. In this experiment, there was not uniform increase in pH 

across all sites, as was observed for base saturation. This suggests that there were other factors 

involved with the increase of base saturation created by the amendments, liming, fertilizer and 

plant growth. One of the known benefits of amendments is the addition of organic matter to the 

soil which can lead to an increased base saturation. Although this study did not measure soil 
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organic matter directly, this contention is supported by the observation that EMF, which did not 

add appreciable organic matter, had less of an impact on base saturation than the other soil 

amendments. In contrast, the control sites generally had increased base saturation although no 

other amendment was applied to those areas.    

 The practicality of applying the amendment was a component of this field research 

because it is important to consider feasibility when developing a remediation plan. The WB 

amendment was not well suited for field application because it is relatively light and the majority 

applied was lost from the site by wind or water within 30 d after planting. The other three 

amendments were unaffected by heavy rains and wind in most cases. The EMF for the trees 

needed to be placed in the transplant hole compared to the other amendments that are amendable 

to surface application.  
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3.7 Conclusion 

 The reference soil from Sherridon, which supports a healthy forest stand, was used as a 

standard to which certain soil properties for the Flin Flon/Creighton area were compared. 

Comparisons indicate that decreased available soil metal content needs to be achieved along with 

an increased base saturation and pH of the soil to achieve revegetation goals. Building on this 

concept, it is suggested that the compost amendment increased pH in the greatest number of sites 

and increased base saturations to levels closer to that found in the reference site. Compost also 

had the best understory establishment in many of the sites. These observations suggest that 

compost application may be one of the most beneficial for Flin Flon/Creighton revegetation in 

areas currently devoid of vegetation, when used in combination with dolomitic limestone and 

fertilizer.  

 The variable results between sites indicate that there are challenges in the revegetation of 

Flin Flon/Creighton due to the past influence of the activities within the area and that further 

research is necessary. The relationship between increased soil available metals and decreased 

plant growth indicated that this may be one of the greater factors influencing the revegetation of 

Flin Flon/Creighton. Of particular interest is the relationship between soil available Cu and 

biomass Cu in the tree species. The time frame for this project was relatively short and it would 

be interesting to examine the results of a project similar to this to see if the depth of soil in Flin 

Flon/Creighton will influence tree survival over time.  
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4. THE EFFECT OF DIFFERENT MOISTURE REGIMES ON THE EFFICACY OF SOIL 

AMENDMENTS USED TO ENHANCE PLANT SURVIVAL AND GROWTH IN SMELTER-

IMPACTED SOILS 

4.1 Preface 

 The influence of moisture on the success of a revegetation project in Flin Flon/Creighton 

is of interest. Different moisture regimes may influence the efficacy of different amendment 

treatments. The same amendments that were used in the field trial (not including willow biochar) 

of this study (Chapter 3) were used in a growth chamber trial to determine if soil moisture affects 

the success of amendments intended to enhance plant survival and growth. Success was 

measured by assessing the survival and growth of vegetation, ectomycorrhizal fungi 

colonization, levels of plant uptake of metals, and residual soil metal levels. In doing this, it will 

be known if moisture in combination with amendments will affect the success of a revegetation 

project in Flin Flon/Creighton.   
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4.2 Abstract 

 A growth chamber trial was set up at the University of Saskatchewan to determine the 

effect of moisture on the revegetation of smelter-impacted field soils from Flin Flon/Creighton, 

treated with different amendments. Soil amendments [microbial inoculant (EMF), compost and 

bone meal and meat biochar (BMB)] were selected based on use from a field trial. Each pot had 

one 1-yr- old seedling [trembling aspen (Populus tremuloides. Michx.) or jack pine (Pinus 

banksiana. Lamb.)] and two understory species [tufted hairgrass (Deschampsia cespitosa L.) and 

American vetch (Vicia americana Muhl.)] as seeds planted in it. Two different moisture regimes 

(low and high) were established and measures of plant survival and growth were used to 

determine the impact of the different moisture regimes. Other measurements used to assess the 

influence of moisture were soil and plant metal concentrations and ectomycorrhizal fungal 

colonization in the roots of the plants. It was generally found that moisture had no influence on 

biomass, production, amendment success, or soil and biomass metal concentrations. There was 

significantly more growth of understory species (tufted hairgrass) when compost and BMB were 

applied compared to the control or the commercial mycorrhizal inoculant.  

4.3 Introduction 

 Soil moisture is an important factor to be considered in remediation projects because the 

successful establishment of tree species and efficacy of amendments can be influenced by 

available moisture in site areas. Because examining moisture relationships can be difficult on 

sites with variable terrain it is more practical to the relationships in the controlled setting of a 

growth chamber where the temperature and moisture levels can be regulated. Organic soil 

amendments are known to enhance water retention and therefore the relationship between 

contaminated soil, soil amendments and vegetation may provide valuable information about the 

likely success of an amendment in a proposed revegetation plan. Ectomycorrhizal fungi are also 

known to increase the ability of a plant to adapt to different moisture levels (Dodd and Thomson, 

1994; Wilkinson and Dickinson, 1995).  Soil moisture can influence the survival and growth of 

vegetation. Metal mobility and the uptake into plants can be influenced by soil moisture (Angle 

et al., 2003). A growth chamber experiment was conducted to examine the influence of different 

levels of moisture on survival and growth of two tree species and two understory species treated 

with different amendment applications. 
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4.4 Materials and Methods 

4.4.1 Soil collection and plant preparation 

 Soils were collected from Flin Flon/Creighton in August 2011 from a variety of site 

areas. Sites 1, 2, 3, 4, 7 and 8, described in Chapter 3 (Fig. 3.1), were selected because the 

volume of soil available at those sites was large enough to support a growth chamber experiment 

and the sites were accessible by road to facilitate soil collection. Soils were collected to a 15-cm 

depth where possible; where soils were shallower than 15 cm, the soil was collected until 

bedrock was reached. Some soils were collected in areas where bent grass (Agrostis capillaris) 

was established. In these areas the bent grass was removed by hand prior to soil collection but 

some dormant seeds were collected along with soil samples. Soils were air dried and bulked for 

the growth chamber experiment. The soil was sieved to 5 mm and thoroughly mixed using a 

drum barrel mixer. Soil also was collected from a reference site (Sherridon, MB) which was 

located far enough away from the smelter complex to not be visually affected by the smelting 

operation. Sherridon soil is classified as an Eluviated Dystric Brunisol. Soil from Sherridon was 

collected to a 15-cm depth and was analyzed as a comparison of a healthy forest stand soil 

compared to the smelter-impacted soils that were used in the growth chamber trial.  

 The shipment of 1-yr-old seedlings (trembling aspen and jack pine) was received in 

September of 2011 from Tree Time Services Inc. (Edmonton, Alberta, Canada).  The trees were 

headed into dormancy and were put through the winter season planted outdoors in topsoil in 

sunken pots for easy extraction in spring. The trees were then slowly warmed to 20°C over a 

period of 7 d to bring them out of dormancy and were planted in the growth chamber in early 

spring of 2012.  

4.4.2 Experimental design 

 There were a total of 96 15-cm diameter pots, containing 1450g of air dried soil (± 10 g 

in the root ball), used in the growth chamber trial. Amendments used in the growth chamber trial 

were a commercial ectomycorrhizal inoculant (EMF), municipal compost, and bone meal and 

meat biochar (BMB) (Table 3.1). Each pot received fertilizer, crushed dolomitic limestone and 

an amendment, with the exception of the control pots which received only the fertilizer and 

crushed dolomitic limestone application. The amount of fertilizer used was 2.74 g of slow-

release fertilizer (20-17-10) and 0.15 g of crushed dolomitic limestone per pot. The municipal 

compost and BMB application rates were calculated based on the pot diameter (15 cm), 2.5 cm 
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soil depth, amendment bulk density and 10% w/w, and were intended to simulate field 

application rates. 

 The mycorrhizal inoculant was a commercial product with active endomycorrhizae 

(Glomus intraradices) and ectomycorrhizae (Pisolithus tinctorius, Scleroderma cepa, S. citrinni, 

Rhizopogan roseolus, R. subscaerelescens, R. villosulus, R. vulgaris, Laccaria laccata) 

ingredients (Myke
®
 Pro Landscape, Premier Tech Biotechnologies, Riviere-du-Loup, Quebec, 

Canada). The manufacturers’ rate of application for the EMF product was 28.4 mL per 10.16 cm
2
 

area which equaled 1.5 g per understory area as a surface amendment. An additional 5 g was put 

directly into each of the holes where the tree plug was planted (manufacturers’ rate chosen based 

on height and diameter of seedlings). Each pot had one tree species (trembling aspen or jack 

pine) as a 1-year old seedling and both understory species [Tufted hairgrass (0.0055g) and 

American vetch (0.044g)] as seeds planted in it.   

 The trial ran for 90 d and had two different watering treatments used with six replicates 

of each tree species (trembling aspen and jack pine), with each amendment and a control. The 

trees were grown with an 18 h daylight/6 h night cycle. The growth chamber had a day 

temperature of 24 ºC and a night temperature of 18 ºC. Half of the pots were watered at a low 

watering regime and half the pots were watered at a high application rate. The low watering 

regime was achieved by allowing the pots to dry down to 35 % field capacity and then wetting 

them back to 100 %. For the high watering regime, the pots dried down to 75 % field capacity 

and then rewetted back up to 100 % field capacity. The pots were re-randomized at the time of 

watering. The soil for each pot was weighed at the time of planting and the weights at 100 % 

field capacity were determined.   

4.4.3 Growth measurements 

 Each seedling (combined soil, root and shoot) was weighed individually before being 

planted. The root and shoot biomass and understory weights were recorded at the time of harvest 

(90 d). The height and basal diameter of the tree seedling shoots were measured at 60 d and 90 d. 

Chlorophyll readings were taken using a SPAD-502 chlorophyll meter (Konica Minolta Sensing 

Inc.) for each trembling aspen tree at 60 d and 90 d. The meter takes a reading of how much light 

is able to pass through the leaf tissue. Thirty measurements were recorded from each tree at 60 d 

and 90 d.  
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 At time of harvest (90 d) a 5 g (wet weight) sample of each tree root mass was taken and 

stored in distilled water at 20°C until ectomycorrhizal counts were completed. The leaf area of 

each trembling aspen tree was determined using the LI-3100C area meter (LI-COR Inc.) and 

recorded at the time of harvest. The plant matter (root and shoot separately) was ground to 2 mm 

for laboratory analysis. 

 Visual observations of the health of the trees were recorded at 0, 30, 60 and 90 d. Visual 

observations included the colour of leaves for trembling aspen and needles for jack pine; wilted 

leaves and leaves/needles that were experiencing necrosis were recorded based on percent 

compared to the visually healthy leaves/needles. The percentage of the surface area of the soil 

covered by understory was also recorded at 0, 30, 60 and 90 d.     

4.4.4 Laboratory analysis 

 A soil sample from before the trial began at 0 d (baseline) was analyzed for pH, total 

carbon (TC), base saturation, exchangeable cation exchange capacity (CECe), NH4
+
, 

exchangeable Ca, Mg, K, Na, and available S, Al, Cd, Cu, and Zn. The analyses performed on 

the soil samples were completed as previously described (Section 3.4.5.1). The metal analysis 

performed on the plant biomass was conducted as for the field trial (Section 3.4.5.2). A sample 

of trees (trembling aspen and jack pine) were randomly selected at day 0 to be analyzed to 

provide baseline data of the metal concentrations in the biomass prior to being grown in smelter-

impacted soils. Mycorrhizal analysis was completed for all plants at the time of harvest, as 

previously described (Section 3.4.5.3). 

4.4.5 Statistical analysis  

 Statistical analysis was performed using IBM® SPSS© Statistics (Version 20). All data 

were tested for homogeneity of variance using Levene’s test (p≤ 0.05), and normality using the 

Shapiro-Wilk test (p≤ 0.05) because the data did not meet the criteria for homogeneity of 

variance nor normality, nor could the data be transformed to meet the criteria. Non-parametric 

statistics were utilized. Data were analysed using the Kruskal-Wallis test (p≤ 0.05) and means 

separation using the Games-Howell test (p≤ 0.05). 
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4.5 Results  

4.5.1 Baseline soil characteristics  

 Initial soil characteristics and metal concentration prior to planting are reported in Table 

4.1. In comparison to the Sherridon site the soil utilized in the growth chamber trial has a lower 

pH, base saturation and CECe and higher available metal concentrations, more sulfur and higher 

levels of NO3
-
 and NH4

+
.  

 

Table 4.1. Chemical characteristics and metal concentrations in soils for bulked growth chamber 

soil.  

 

Soil Property 

(n=2) 

 

Growth chamber soil 
Sherridon reference site 

soil  

pH 3.98 4.15 

 ------------------ % --------------------- 

Total Carbon  4.85 0.93 

Base Saturation 15.0 72.14 

 ------------ (cmolckg
-1

) --------------- 

CECe † 2.48 3.21 

Exchangeable Ca  0.12 0.58 

Exchangeable Mg  0.03 0.16 

Exchangeable K  0.07 0.07 

Exchangeable Na  0.02 1.50 

 ---------------- (mg kg
-1

) ---------------- 

NH4
+
  1.05 0.48 

Available S 1410 898.8 

Available Al  41.3 32.78 

Available Cd  7.30 - 

Available Cu  210 1.20 

Available Zn  730 2.14 

† effective cation exchange capacity 

4.5.2 Change in available soil metal  

 Figure 4.1 reports the change in available soil metal from initial time of planting (0 d) to 

harvest (90 d) for each treatment. The initial available soil metal content was determined before 

amendments were added. There was a decrease in available metal in the soil over 90 d but there 

were no significant (p> 0.05) differences between amendments or watering regimes. Planting 

different tree species similarly had no detectable significant impact on soil metal concentrations 

(p> 0.05) (data not shown).  



 

 

49 

 

 
Figure 4.1 Available soil metal concentrations (Cd, Cu, Zn, Al) at the initiation of the study (0 

d) and 90 d under each treatment [ectomycorrhizal fungi (EMF), compost, control and bone meal 

biochar (BMB)] and high and low watering regimes. Letters represent significant (p≤ 0.05) 

differences between amendments based on Kruskal-Wallis and Games-Howell test. Error bars 

represent ± 2 standard errors of the mean. 

  

 

4.5.3 Ectomycorrhizal colonization 

 Ectomycorrhizal colonization of tree roots was determined at 90 d (Fig. 4.2). 

Colonization was enhanced in trembling aspen by application of EMF relative to all other 

amendments. Application of EMF similarily enhanced colonization of jack pine relative to the 

compost treatment, although no other significant differences were detected.  Jack pine had no 

differences between the treatments at a high water regime.   

  



 

 

50 

 

 

Figure 4.2 Percent colonization of ectomycorrhizal fungi in roots of trembling aspen and jack 

pine in the high (n=6) and low watering regime (n=6) after 90 d growth with amendments. 

Letters above bars represent significant differences (p ≤0.05) based on Kruskal-Wallis and 

Games-Howell test. Lower case letters represent low watering rate and upper case letters 

represent high watering rates. Error bars represent ± 2 standard errors of the mean. 

4.5.4 Survival and growth of understory and tree species  

 Biomass of roots and shoots of trembling aspen were not affected by amendment 

(p> 0.05) (Fig. 4.3). None of the amendments significantly enhanced shoot growth of jack pine 

relative to the control, whereas application of EMF resulted in a significant reduction in shoot 

growth. Similarly, application of EMF reduced root biomass relative to the control, which did 

not differ significantly from any other treatment (Fig. 4.3). The differences between high and 

low watering regimes on biomass production were analyzed and no differences (p> 0.05) were 

detected for the Kruskal-Wallis and Games Howell tests (data not shown). 
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Figure 4.3 Average weight of roots (n=12) and shoots (n=12) of trembling aspen and jack pine 

grown with amendments [bone meal and meat biochar (BMB), ectomycorrhizal fungi inoculant 

(EMF), compost] and control averaged across watering regimes. Letters above the bar represent 

significant differences (p≤ 0.05) based on the Kruskal-Wallis and Games-Howell test. Capital 

letters apply to roots while lower case letters apply to the shoots. Error bars represent ± 2 

standard errors of the mean. 

 Necrosis was observed (Fig. 4.4) in the leaves of the trembling aspen planted under the 

EMF treatment starting at 30 d and became more severe through the duration of the growth 

chamber trial (Table 4.2). Chlorosis and necrosis was observed among all treatments at 90 d but 

was first observed in the EMF treatment and was most prevalent in the EMF treatment at the 

time of harvest with greater than 70% of the plants showing signs (Table 4.2). Surprisingly, the 

chlorophyll readings did not indicate any differences (p> 0.05) in the amount of chlorosis and 

necrosis between treatments. There was no difference between treatments or watering regimes in 

the total leaf area at 90 d for trembling aspen (p> 0.05) (data not shown).    
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Figure 4.4 Photographs of trembling aspen in growth chamber trial a) left tree planted under 

ectomycorrhizal fungi inoculant (EMF) amendment showing signs of necrosis at 45 d compared 

to a tree typical of those growing under three other treatments (compost, BMB, control); b) 

Trembling aspen leaf displaying necrosis grown with the EMF amendment at 90 d. 

 Jack pine trees subject to the low watering regime, amended with EMF, compost or the 

control, yellowed and then turned orange within 60 d as signs of necrosis leading to the death of 

the trees. At 90 d, for both high and low watering regimes, jack pine displayed signs of necrosis 

with at least 70 % of the plants affected except for the compost treatment receiving the low water 

regime, that had slightly less observed damage (between 50 to 70 % of plants showing signs of 

necrosis) (Fig. 4.5). Jack pine grown with BMB amendment and the low watering regime 

compost and control did not show signs of stress until 90 d.   

 

a 

b 
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Table 4.2. Plants showing signs of necrosis throughout the growth chamber trial at 0, 30, 60 and 

90 days for trembling aspen and jack pine species. – none, + 0 to 10 %, ++ 10 to 30 %, +++ 30 to 

50 %, ++++ 50 to 70 %, +++++>70 %. Data provided for control, bone meal and meat biochar 

(BMB), ectomycorrhizal fungi inoculant (EMF) and compost amendments.  

Days Control BMB EMF Compost 

 

---Trembling Aspen - High watering regime--- 

0 - - - - 

30 - - +++ - 

60 - - +++ - 

90 ++++ +++++ +++++ ++++ 

 

---Trembling Aspen - Low watering regime---  

0 - - - - 

30 ++ - ++++ - 

60 ++ - ++++ ++++ 

90 ++++ +++++ +++++ +++++ 

 

--- Jack Pine - High watering regime--- 

0 - - - - 

30 - - - - 

60 - - +++ - 

90 +++++ +++++ +++++ +++++ 

 

--- Jack Pine - Low watering regime--- 

0 - - - - 

30 - - - - 

60 ++++ - + ++ 

90 +++++ +++++ +++++ ++++ 
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Figure 4.5 Photographs of jack pine in growth chamber trial grown with ectomycorrhizal fungi 

inoculant (EMF), compost, bone meal and meat biochar (BMB) and control from left to right a) 

low watering regime; b) high watering regime. 

 Amendments did not affect the growth of bent grass (Fig. 4.6). Bent grass was found in 

the growth chamber trial because the seeds were dormant in the bulk soil collected and seeds 

germinated during the trial. Tufted hairgrass had significantly (p≤ 0.05) more growth under the 

compost and BMB treatments than the control or EMF treatments (Fig. 4.6 and Fig. 4.7). The 

success is also shown visually in Fig. 4.7, in which the compost and BMB are displaying a 

healthy understory community in comparison to the control and EMF treatments. Similarly, the 

understory associated with jack pine was most successful under the BMB and compost 

amendments (Fig. 4.5). American vetch had no survival under any of the conditions.   

 

a 

b 
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Figure 4.6 Average biomass of understory species bent grass (n=24) and tufted hairgrass (n=24) 

grown with amendments, ectomycorrhizal inoculant (EMF), compost, bone meal and meat 

biochar (BMB) and control. Letters above bars represent significant differences (p≤ 0.05) based 

on Kruskal-Wallis and Games-Howell test. Error bars represent ± 2 standard errors of the mean.  

 

 

Figure 4.7 Photograph of tufted hairgrass from the growth chamber trial. Treatments from left to 

right are ectomycorrhizal inoculant (EMF), compost, bone meal and meat biochar (BMB) and 

control grown with trembling aspen. 

4.5.5 Plant metals 

 Few significant differences between amendments for the low and high water regimes 

were detected for metal concentration in shoots and roots of trembling aspen (Fig. 4.8 and Fig. 

4.9) or jack pine (Fig. 4.10 and Fig. 4.11). There were no significant differences in plant metal  
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Figure 4.8 Metal concentration (Al, Cd, Cu, Ni, Zn) in roots for trembling aspen with 

amendments [ectomycorrhizal fungi inoculant (EMF), compost, control and bone meal and meat 

biochar (BMB)] and high and low watering regimes. Lower case (high) and capital (low) letters 

represent significant (p≤ 0.05) differences between amendments based on Kruskal-Wallis and 

Games-Howell test. Error bars represent ± 2 standard errors of the mean. Note differences of 

scale on y-axis. 
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Figure 4.9 Metal concentration (Al, Cd, Cu, Ni, Zn) in shoots for trembling aspen with 

amendments [ectomycorrhizal fungi inoculant (EMF), compost, control and bone meal and meat 

biochar (BMB)] and high and low watering regimes. Lower case (high) and capital (low) letters 

represent significant (p≤ 0.05) differences between amendments based on Kruskal-Wallis and 

Games-Howell test. Error bars represent ± 2 standard errors of the mean. Note differences of 

scale on y-axis. 
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Figure 4.10 Metal concentration (Al, Cd, Cu, Ni, Zn) in roots for jack pine with amendments 

[ectomycorrhizal fungi inoculant (EMF), compost, control and bone meal and meat biochar 

(BMB)] and high and low watering regimes. Lower case (high) and capital (low) letters represent 

significant (p≤ 0.05) differences between amendments based on Kruskal-Wallis and Games-

Howell test. Error bars represent ± 2 standard errors of the mean. Note differences of scale on y-

axis. 
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Figure 4.11 Metal concentration (Al, Cd, Cu, Ni, Zn) in shoots for jack pine with amendments 

[ectomycorrhizal fungi inoculant (EMF), compost, control and bone meal and meat biochar 

(BMB)] and high and low watering regimes. Lower case (high) and capital (low) letters represent 

significant (p≤ 0.05) differences between amendments based on Kruskal-Wallis and Games-

Howell test. Error bars represent ± 2 standard errors of the mean. Note differences of scale on y-

axis. 
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concentrations between the low and high watering regimes (p> 0.05) (data not shown). The only 

differences between amendments for trembling aspen (p≤ 0.05) (Fig. 4.8) were observed for Ni 

in roots where trees grown under the EMF and control amendments had reduced metal levels 

compared to the compost and BMB amendments. The Zn concentration in roots significantly 

differed between the compost treatment and the control treatment, with the control having greater 

metal concentration levels. Trembling aspen roots typically had greater metal concentrations for 

each metal then the shoots. 

 Significant differences between amendments were detected more frequently for jack pine 

than for trembling aspen (Fig. 4.10 and Fig. 4.11). All metals (Al, Cd, Cu, Ni, Zn) had increased 

concentrations in roots in the high watering regime where EMF was applied compared to the 

other amendments and the control. Nickel levels in roots exposed to the low watering regime 

also were higher in the roots exposed to EMF than the other amendments and the control. 

Similarly, greater metal concentrations were observed in the roots of jack pine compared to the 

shoots.  

4.6 Discussion 

 It is difficult to establish the exact roles of amendment and plants in a system that is 

complex with multiple soil metals and other management factors (tree, understory, amendment, 

dolomitic limestone and fertilizer) present concurrently.  It was expected that the amount of 

moisture present would influence the rate of uptake and movement of available metals in the soil 

in the growth chamber trial thereby influencing the efficacy of the amendments. There were 

reductions of available metals in soil from 0 d to 90 d (p≥ 0.05), however, no significant 

differences occurred between amendments or water regimes. This could indicate that all the 

amendments resulted in less available metal in the soil through mechanisms such as binding or 

plant uptake. However, since there were no differences detected between the control that 

received only application of dolomitic limestone and fertilizer it could be that the amendments 

were having no effect on available soil metal and that effects were a result of the dolomitic 

limestone and fertilizer application. Interestingly, the compost and BMB amendments which had 

success with understory survival and growth did not have less available soil metals at the end of 

the trial compared to the EMF and control amendments. This could indicate that the amount of 

available soil metal was not a factor in the survival and growth of the understory.  
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 In both trembling aspen and jack pine trees there was higher concentration of metals in 

the below ground biomass (roots) then the aboveground biomass (shoots), indicating that metals 

are being taken up into the roots and stored within root tissues at a higher concentration rather 

than being translocated into the stems and leaves of the plant. There were no significant 

differences in biomass metal between the high and low watering regimes under any amendment 

or for any metal. It was expected that there would be a change in the response of biomass metal 

concentrations due to different soil moistures.   

 Trembling aspen had significantly more Ni uptake into the roots under the compost and 

BMB amendments than under the control and EMF amendments and significantly less uptake of 

Zn under the compost amendment than the control treatment. The properties of compost could be 

causing decreased availability of Zn and increased availability of Ni to the plants.   

 Generally, there were no significant differences for biomass (roots and shoots) of jack 

pine or trembling aspen with the high and low watering regimes. In comparing amendments, jack 

pine trees grown with the EMF amendment lost significantly (p≥ 0.05) more root and shoot 

biomass throughout the duration of the trial than the trees grown with the other amendments. 

Jack pine species lost biomass over the course of the trial with the exception of shoots grown 

with compost. Trembling aspen had increased biomass with each amendment and the control. 

Trembling aspen had no significant differences (p< 0.05) between amendments. The lack of 

difference in the total leaf area at 90 d between treatments indicated that there was not a 

reduction or increase of leaf area for trembling aspen and suggests that the soil did not cause a 

reduction in the trees ability to leaf out but that the damage was in the continued survival of the 

tree.  

 Bent grass was not affected by the different amendments. Bent grass is an invasive 

species commonly found in Flin Flon/Creighton. It already survives in the soil on site without the 

aid of fertilizer and/or amendments. There were no significant differences for understory 

biomass between the high and low watering regimes. It was expected that there would be a 

change in plant survival and growth due to drought stress (low watering regime) or saturation 

(high watering regime). There was significant (p≥ 0.05) biomass increase for the tufted hairgrass 

under the compost and BMB amendment in comparison with the EMF and control treatments.  

 Studies using either birch trees or trembling aspen trees with ectomycorrhizal 

colonization used in a heavy a metal contaminated soil found that the fungi minimized the uptake 



 

 

62 

 

of metals into the aboveground part of the plant (Bojarchzuk and Kieliszewska-Rokicka, 2010; 

Langer et al., 2012). This was not consistent for trembling aspen or jack pine grown with the 

EMF amendment. Trembling aspen or jack pine did not have significantly lower shoot metal 

concentrations in comparison to the control pots. Langer et al. (2012) observed that the 

protection capacities of mycorrhizal fungi may be limited in young trees by toxic environment 

and subsequent nutrient deficiencies that may be present in environments that are less than ideal 

such as areas like Flin Flon/Creighton. Several studies suggest that the main factor of metal 

uptake and plant success is the metal concentration of the soil before remediation as well as 

selecting metal tolerant tree genotypes (Shetty, 1994; Hartley, 1999).   

 Increased ectomycorrhizal colonization was observed for the EMF amendment for 

trembling aspen under both high and low water regimes compared to the compost amendment 

and control. Increased colonization also was observed compared to BMB, but differences were 

not statistically significant. There was also an increase in colonization under the low watering 

regime for EMF compared to compost for jack pine. This was expected as the EMF provides 

inoculant for the tree species as spores applied in the commercial product used. The expected 

consequential result of increased colonization would be increased nutrient and water uptake by 

the plant which would consequently could lead to increased plant survival and growth 

particularly in situations where there are not ideal growing conditions (Auge, 2001; Sylvia 

2005). Rousseau et al. (1994) applied ectomycorrhizal fungi to Pinus taeda L. and found that the 

inoculation increased the overall surface area of the roots resulting in increased nutrient and 

water uptake. This was not observed in this study as jack pine (roots and shoots) and understory 

species had less biomass survival and growth under the EMF amendment in comparison to the 

other amendments. Alternatively, increased colonization might lead to a greater uptake of metals. 

Heggo and Angle (1990) found, in soybeans, that ectomycorrhizal response to heavy metals 

present in soil is related to the metal concentration initially in the soil. Soils that initially have 

high levels of heavy metals reduce the amount of colonization of the fungi and then then the 

foliar concentration of metals increases and where the colonization is not reduced there is less 

metal uptake into the plant (Heggo and Angle, 1990). Trembling aspen (i.e., both roots and 

shoots) did not have increased metal uptake from colonization. Observed necrosis for trembling 

aspen grown with the EMF amendment compared to other amendments and the control was 

expected to be related to increased metal uptake. Jack pine roots, however, had significantly 
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increased metal concentrations for every metal under the high watering regime and the EMF 

amendment and for Ni under the low watering regime. A study conducted using Pinus sylvestris 

grown with ectomycorrhizal fungi found that Cd was the most toxic to the trees and the multiple 

metal sites had lower toxicity then the single metal trials, due to metal binding. However, there 

was an overall reduction in plant growth when grown in the contaminated sites (Hartley et al., 

1999). Necrosis was observed in the jack pine trees under the EMF amendment at 60 d and was 

thought to be a product of metal intolerance in the trees in the trial. 

 It would have been interesting to analyze plant samples from the affected EMF colonized 

trembling aspen compared to trembling aspens grown under other amendments at 30 and 60 d for 

metals to observe any effect of early uptake due to colonization of ectomycorrhizae. The effect 

of early uptake may not be clearly observed at the time of harvest, as many of the trees had 

significant necrosis by the end of the trial; however, EMF displayed earlier signs of necrosis 

compared to all other treatments, suggesting that colonization enhanced early metal uptake and 

toxicity.  
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4.7 Conclusion 

 Moisture regime had no effect on the amount of biomass survival and growth under with 

the trees or the understory species or on the amount of metals in the biomass. The  pots that had 

EMF amendment applied had earlier onset of necrosis (high watering regime) and significantly 

more loss of biomass for the jack pine individuals compared to the other amendments. Necrosis 

also was observed earlier in the low watering regime for the trembling aspen. Generally, trees 

developed some levels of necrosis by the end of the 90 d growth trial. Therefore, none of the 

amendments in combination with the watering regimes provided a viable amendment option for 

a revegetation program. The jack pine seedlings lost biomass (roots and shoots) throughout the 

growth chamber trial under all treatments, with the exception of the shoots under the compost 

amendment. Trembling aspen had increase although not significant in all treatments throughout 

the growth chamber trial indicating that trembling aspen has more potential for revegetation 

practices in Flin Flon/Crieghton. 

 One area of important findings was the increased growth and survival of the understory 

species under the BMB and the compost treatments compared to the control and EMF 

treatments. This indicates that in terms of understory growth, the BMB and compost 

amendments are the most viable option for revegetation in Flin Flon/Creighton and their 

sequential success is not influenced by soil moisture. Since no American vetch survived, it is not 

a species that should be selected for a remediation project in Flin Flon/Creighton.   
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5.  SYNTHESIS AND CONCLUSIONS 

 Flin Flon/Creighton has many areas that are devoid of vegetation due to past smelting, 

mining and forestry activities. The overall objectives of this study, as part of a larger study being 

conducted in Flin Flon/Creighton, were to determine if there is a combination of soil 

amendments and vegetation that would be viable and practical for in situ revegetation in Flin 

Flon/Creighton. An extension of that objective was to identify whether soil moisture would 

affect the efficacy of the amendments for remediation in Flin Flon/Creighton. 

 A relationship was found between available heavy metal concentrations of the soil and 

the growth of the tree species in the field. Typically, as the concentration of available soil metals 

increased a decrease in the amount of tree growth was observed. One goal in remediating this 

area would be to decrease the amount of available metals present in the soils, to concentrations 

similar to those that were observed in the reference (Sherridon) soils, in order to promote plant 

establishment and growth. In particular, focusing on the areas in Flin Flon/Creighton where 

survival and growth was minimal in the field trial. Other features of the soil that were examined 

were the differences in the soil pH and base saturation between Sherridon and the Flin 

Flon/Creighton sites. Compost was the most successful amendment in increasing soil pH and 

base saturation towards values similar to that of Sherridon. The other amendments (i.e. WB, 

BMB and EMF) and control did not have the same influence on the pH and base saturation 

values.      

 Generally, there were no significant differences in metal uptake into plant biomass 

between any of the amendments in the field trial. However, in the field trial there were 

significant correlations (r=0.66 to r = 0.86) between soil Cu and biomass (root and shoot) Cu. 

There was also a significant negative correlation between total biomass of the tree species and 

available soil Cu. This indicates that there was increased uptake of Cu into the roots and shoots 

of the plant and decreased plant biomass where there was increased available soil Cu. Pahlsson 

(1989) concluded that vascular plants generally are species affected when Cu is between 15 and 

25 mg kg
-1

 dry weight in the plant shoot biomass. The values in field study exceeded 100 mg kg
-

1
 Cu in both plant species but was measured for total biomass (root and shoot) Cu and root Cu is 

known to display higher concentrations than the shoot biomass. A better comparison may be 

made between the soil concentrations of Cu where Pahlsson (1989) found that soil Cu 
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concentrations between 100 to 200 mg kg
-1

 were found to disturb the growth of plants. The soil 

Cu levels in the 12 study sites ranged from 8.82 to 1181.18 mg kg
-1

 therefore some sites had 

levels of Cu that could disturb plant growth. The amount of Cu taken up into the plants in these 

sites would also be influenced by a variety of other factors (i.e. availability of metals, 

interactions with other metals and exposure time). Visual symptoms of Cu toxicity in plants 

include small chlorotic leaves, dropped leaves, stunted growth and discoloration (Heale and 

Ormrod, 1982; Pahlsson, 1989). Trees in the field trial were observed with these symptoms but 

given the multi-metal contamination and growing conditions in Flin Flon/Creighton it cannot be 

concluded that these symptoms were a direct result of only Cu toxicity.    

 It was expected that soil moisture would influence the amount of plant biomass, the 

amount of available metal in the soil and the amount of metal in the plant biomass (Guidi and 

Labrecque, 2010). Angle et al. (2003) studied hyperaccumulating plant species and non-

hyperaccumulating plant species and found increased plant biomass and metal in the plant as the 

amount of moisture increased in both types of species. There were two moisture regimes 

examined in the growth chamber trial of this study and there were no significant differences 

between the high and low watering regimes for plant biomass, plant survival or metal 

concentrations under individual amendments. As a result it can be concluded that the moisture 

present in Flin Flon/Creighton will not normally be a major concern for in situ revegetation 

assuming there are no extreme drought or saturation events. 

 Survival and growth of the tree species (trembling aspen and jack pine) and understory 

species (tufted hairgrass and American vetch) were expected to increase under soil amendments 

in comparison to the control. In the growth chamber trial, generally for all amendments, the jack 

pine trees lost biomass and the trembling aspen trees gained biomass, although not significantly 

(p> 0.05). This indicates that, of the two tree species, trembling aspen is a more viable option. 

The reason for decreased biomass is not known but can likely be attributed to increased necrosis 

in the jack pine trees compared to the trembling aspen trees. In contrast, the understory species 

had better survival and growth when grown with compost or BMB in the growth chamber trial. 

No amendment significantly increased growth of any of the plant species in the field but there 

was a trend of increased growth of tufted hairgrass grown with compost. 

 Application of EMF or only dolomitic limestone and fertilizer (control) limited the 

growth and establishment success of tufted hairgrass. Species diversity is important for trying to 
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restore the area to a natural forest ecosystem or for visual appeal. Sudbury, ON had success in 

revegetating areas with tree species but was not reported as having successful understory 

establishment (Santala, 2014). Secondary studies using vegetation mats, transplanted from a 

forest community that was not smelter-affected, have been conducted to try to increase 

understory survival and diversity (Santala, 2014). These observations of the Sudbury, ON 

projects increased interest in having understory species as a part of the revegetation plan for Flin 

Flon/Creighton. The vegetation mats implemented in Sudbury, ON were found to be more 

successful in areas where there was greater than 60% canopy cover already existing (Santala, 

2014). Therefore, these mats may not be successful in Flin Flon/Creighton for the sites examined 

in this study as the sites had no pre-existing canopy cover. American vetch was initially selected 

for its ability to fix nitrogen and to grow in a variety of soil textures and moistures (Kirk and 

Belt, 2010). The field trial baseline study concluded that there was more ammonium and nitrate 

present in the study sites then in the Sherridon reference site indicating that the nitrogen fixing 

capabilities of American vetch may not be of an importance for Flin Flon/Creighton. American 

vetch is not a viable understory species for Flin Flon/Creighton as it had no survival in either of 

the experiments (growth chamber or field trial). Different understory species should be examined 

for remediation of Flin Flon/Creighton to create species diversity in the understory. 

  In the field trial there were sites with trees that appeared to be surviving and healthy at 

the time of harvest. The growth chamber trial trees had a high rate of mortality by 90 d. It could 

be suggested that these results were influenced by the bulked growth chamber trial soil that had a 

greater amount of available soil metal present as well as lower pH and CECe values than the 

majority of the field sites used in the field study. However, the increased understory biomass 

under BMB and compost treatments in the growth chamber still provides valuable information 

on the potential use of these amendments in an in situ remediation plan.   

 There was indication that the rate of necrosis was higher under the EMF amendment in 

comparison to the other amendments utilized in the growth chamber component of this study 

which indicates that EMF is not a favourable choice for use in a revegetation plan for Flin 

Flon/Creighton. Further research should be conducted on the tree species with ectomycorrhizal 

fungi in heavy metal contaminated soils. A review of literature on the ability for EMF to 

ameliorate metal toxicity in trees grown in temperate forests found that there were a number of 

factors influencing the success of this mechanism, but overall that EMF do have the ability to 
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improve plant survival and growth in heavy metal contaminated areas (Jentschke and Godbold, 

2000). Influencing factors included the strain or species of EMF, the type and concentration of 

metal and its speciation in the rhizosphere (Jentschke and Godbold, 2000). Therefore, further 

research should be conducted to examine if a different strain or species of EMF would be 

successful for improving the survival and growth of trees grown in Flin Flon/Creighton. Finding 

a beneficial combination of plant species and EMF strain may be useful for revegetation as was 

done in Portugal where Erica andevalensis was found to be successfully growing near a pyrite 

mine in an area with acidic and metal contaminated soils due to the symbiotic relationship with 

EMF species Hymenoschyphus ericae (Turnau et al., 2007). It would also be interesting to 

examine the metal uptake into the biomass at intervals prior to the completion of 90 d in relation 

to the amount of colonization as the amount of colonization and metal uptake could be 

influenced by the amount of metal present in the soil (Heggo and Angle, 1990).   

 The practicality of applying the amendments was an important component of research to 

develop potential solutions or programs for the revegetation of Flin Flon/Creighton and/or other 

smelter-impacted landscapes. The WB amendment was too light-weight for application in the 

field study. The WB did not stay in place on site and therefore is not a practical choice, alone, for 

in situ revegetation in that type of landscape.  There may be potential to mix WB, and/or other 

amendments with a tackifying agent to help hold them in place. The challenge with doing this 

and why it was not explored for this study was because of the variable terrain in Flin 

Flon/Creighton. The terrain makes it hard to get a vehicle into the remote locations in order to 

apply the mixture on a large scale. The EMF amendment required slightly more work in 

application as it needed to be placed in the tree seedling planting hole. Furthermore, research 

should be conducted to determine the long term effect of planting trees and vegetation in the rock 

outcrop soil pockets.  

 The small area of these soil pockets could potentially have long-term detrimental effects 

on the survival of the vegetation planted. It is probable that the root growth of the tree species 

will become restricted by the amount of soil present in the soil pockets and will have reduced 

access to essential nutrients in the small areas. The pre-treatment of areas to allow the 

amendments to act on the soil prior to planting the tree plugs may also create a more conducive 

environment to tree survival initially when planted. Winterhalder (2000) observed in Sudbury, 

ON that the effects of the dolomitic limestone on the soil took a few years to increase the soil 
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pH. Further research could therefore be conducted to find the effects of applying soil 

amendments and leaving them for a period of time before planting the tree seedlings and 

understory species to allow the amendments to act upon the soil properties and potentially 

increase the survival rate of the vegetative species.    

 The variation present throughout the Flin Flon/Creighton area may be one of the major 

complicating factors in an in situ remediation project. Some areas had overall more survival and 

growth than others indicating that one treatment may not be effective across the entire landscape. 

For the amendments examined in this project, it was found that compost had the greatest overall 

positive contributions including increased understory survival and growth and the ability to 

increase the pH and base saturation of the soils. 

 Recommendations based on this study for Flin Flon/Creighton would be to establish a 

secondary in situ trial that focuses on trembling aspen seedlings and tufted hairgrass in 

combination with compost, dolomitic limestone and fertilizer. Different techniques for applying 

compost could be experimented with, for examples, mixing the amendment into the soil or 

applying the amendment prior to planting or seeding the area. Allowing an in situ project to 

remain in place for a longer period of time would also help determine if there will be 

complications with the amount of soil present in the rock outcrop areas.  

 Other remediation techniques such as transplanting soil containing propagule banks from 

healthy forest systems within the area to assist in natural recovery of the site may be an option. 

Research has been successfully conducted on the use of donor soils for many other mine 

impacted sites but only recently has research began to look at boreal forest communities 

(Holmes, 2001; Mackenzie and Naeth, 2010). This method transports and deposits soil on the 

landscape that has not been smelter-impacted. This increases the amount of soil present and the 

number of propagules present in the area. A few considerations with this type of revegetation 

project would be access to equipment that can maneuver through the landscape and the 

associated cost of this type of project. 
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7. APPENDICES 

  APPENDIX A 

 

Figure A.1. Growth (change in height from time of planting to harvest) (cm) of trembling aspen 

and jack pine and the available soil metal concentration (averaged Al, Cd, Cu, Ni, Zn).  

 

 

 

 

 



 

 

 

 

APPENDIX B 

Table B.1  Pearson product moment correlations between root, shoot or total plant biomass, metal concentrations in shoots and roots 

for trembling aspen and soil chemical properties including soil extractable metal concentrations in the field trial experiment at Flin 

Flon/Creighton. Values are correlation coefficients ‘r’.   

 
*, ** Significant at the 0.05 and 0.01 probability levels, respectively  
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Table B.2. Pearson product moment correlations between root, shoot or total plant biomass, metal concentrations in shoots and roots 

for jack pine and soil chemical properties including soil extractable metal concentrations in the field trial experiment at Flin 

Flon/Creighton. Values are correlation coefficients ‘r’

 
*, *, ** Significant at the 0.05 and 0.01 probability levels, respectively  
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Table B.3. Pearson product moment correlations between total plant biomass, biomass metal 

concentrations and soil properties (available metals, total carbon, NO3
-
, NH4

+
, CECe, and soil 

available S) for tufted hairgrass in the field trial experiment at Flin Flon/Creighton. Values are 

correlation coefficients ‘r’.   

 

*, ** Significant at the 0.05 and 0.01 probability levels, respectively 
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 APPENDIX C 

C.1. Photographs of  various sites in Flin Flon/Creighton at the time of planting (a) and the time 

of harvest (b).   
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