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ABSTRACT 

Vegetation reclamation in oil-sands requires a consistent and adequate supply of seeds of 

native shrubs. However, annual seed production is erratic and seeds are usually short 

lived and insufficient for the reclamation projects. Seeds of six native shrub species 

including: Prunus virginiana, Prunus pensylvanica, Arctostaphylos uva-ursi, Shepherdia 

canadensis, Cornus sericea, and Viburnum edule were used to analyze physiological 

changes during storage and artificial aging processes. The shrub seeds were studied for 

one year during storage under eight different combinations of temperature (-20, 4, 

22.5 °C), atmosphere (Air / N2) and relative humidity  (RH; 7-8 % / 3-4 %). No 

significant differences were detected among the storage parameters after one year; 

however, sub-zero and N2 environments showed a potential in maintaining a higher seed 

vigour during storage. In the artificial aging experiment, seeds were subjected to 45 oC, 

60 % RH for 5-25 d. For most shrub species, the seed viability decreased significantly 

after 10-15 d artificial aging and was down to 0 % after 20 d. The germination percentage 

declined already after 5 d; therefore, there was a delay in detecting viability loss using the 

tetrazolium test. Non-aged seeds and aged seeds of most collections showed significantly 

different seedling lengths, which indicated a negative effect of accelerated aging process 

on the seedling growth. The electrolyte conductivity, as well as seed dehydrin protein 

expression, is strongly correlated with the seed vigour, which can be used as seed quality 

assessment methods in seed longevity predicting. A loss of membrane integrity occurred 

during the accelerated seed aging processes, as indicated by an increased electrolyte 

conductivity that was negatively correlated with the seed viability and germination. 

During artificial aging process, heat stress of Prunus virginiana induced expression of 

dehydrins with a molecular mass of 27 kDa, which reached a detectable level after 5 d. 



iii 

The storage protocol developed in this study would benefit the adequate supply of viable 

shrub seeds for reclamation. With species-specific parameters taken into consideration, 

the artificial aging technique to predict seed longevity can be further expanded to other 

non-crop species used in reclamation of lands after oil extraction. 
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1      INTRODUCTION 

The Alberta oil-sands contain an estimated 1.7 to 2.5 trillion barrels of oil (Alberta, 

1999). Utilization of this vast natural reserve is contingent upon oil extraction, during 

which all vegetation and soil cover is removed. Therefore, responsible utilization of this 

resource requires adequate strategies to reclaim the oil-sands to their original boreal 

forest ecosystem. The boreal forest ecosystem is complex and primarily made up of 

grasses, forbs, shrubs, trees and other life forms including animals. Over the last 30 years, 

oil-sands reclamation in Alberta had been focusing more on grasses and forbs but less on 

shrubs and trees (Rowland et al., 2009). Shrubs are key to the successful re-establishment 

of the boreal forest ecosystem, but the natural regeneration of shrubs is low at oil-sands 

sites (Mackenzie et al., 2010). Successful establishment of native shrubs by planting 

accelerates soil development, plants and animals diversity and forage production and 

provides faunal cover and food for wildlife (Booth, 1985; Mech, 2011). A major 

limitation preventing the use of shrubs for oil-sands reclamation project is the 

unavailability of a consistent supply of high quality native shrub propagules. Native 

shrubs in this region are erratic in their seed production; the seed collection is costly, and 

the seeds have a relatively short longevity (Way, 2003; Price et al., 2010). Therefore, an 

understanding of the seed aging mechanism and proper storage protocols is ecologically 

and economically critical for efficient reclamation of oil-sands sites.  

Seed aging during storage is a complex process (Walters et al., 2010) that is affected by 

seed quality (Probert et al., 2009b), pre-storage treatments (drying process and 

desiccation tolerance of seeds), seed moisture content, storage temperature (Walters et 

al., 1998; Ellis et al., 2006), and the make-up of storage containers (Gómez-Campo, 

2006). Generally, seeds from cool and wet environments are more short-lived than those 
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from hot and dry environments (Probert et al., 2009b). Seeds showing higher longevity at 

reduced moisture content and temperature are called orthodox seeds (Ellis et al., 1981; 

Mohammadi et al., 2011), which can be stored over a wide range of environments. 

However, the longevity of orthodox seeds differs quantitatively among diverse species 

and among seed lots within a species (Dickie et al., 1990; Bewley et al., 2013).   

The knowledge of physiological and biochemical changes during seed storage for non-

agricultural crops, such as native shrubs in the boreal forest. In addition, there are no 

guidelines showing how to evaluate the variation in seed longevity within species. 

Therefore, understanding the process and mechanisms underlying seed aging will not 

only help to predict longevity of seeds and optimize seed storage protocols, but also to 

help the conservation of plant diversity. 

Subjecting seeds to elevated temperature and/or moisture (referred to as accelerated or 

artificial aging conditions) is often used to evaluate the seed responses to more 

conventional storage conditions (Powell et al., 1977; Hay et al., 2003; Rao et al., 2006). 

The procedure of accelerated seed aging has been standardized for several crops 

(Priestley, 1986; Rodo et al., 2003), but not for non-crop species.  

Objectives 

Six native shrub species from the boreal forest were selected for this study and included 

Prunus virginiana, Prunus pensylvanica, Arctostaphylos uva-ursi, Shepherdia 

canadensis, Cornus sericea, and Viburnum edule. For these native shrub species, the 

objectives of this study were to:  

1) evaluate the effects of different storage conditions on seed viability, 

germination, and seedling vigour;  
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2) identify biophysical parameters for the prediction of seed viability loss by 

analysing physiological and biochemical changes in seeds exposed to 

accelerated aging; and   

3) determine the optimal temperature，seed moisture content, and optimal 

atmosphere  for seed storage with  focus  on identifying  physiological and 

biochemical changes affecting  seed longevity.  

Hypothesis 

It was hypothesized that: 

 1) low temperature and low oxygen and low seed moisture contents prolong seed 

viability during storage;  

2) decreased viability in accelerated seed aging process is associated with the loss 

of membrane integrity; and  

3) accumulation of LEA protein (dehydrins) is associated with seed viability loss.  
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2 LITERATURE REVIEW 

2.1 Importance of shrubs in oil sand reclamation 

 Alberta oil-sands mining and the disturbance of boreal forest ecosystem 

Oil-sands contain an estimated 1.7 to 2.5 trillion barrels of oil in the north-eastern Alberta 

(Kelly et al., 2009). For oil extraction, all vegetation and soil cover is removed to create 

open pits several kilometers wide and up to 100 m deep (Rowland et al., 2009). Without a 

reclamation programme, the development scale of Alberta oil sand industry would lead to 

the loss of biodiversity and irreversible ecological damage of boreal forest ecosystem. 

However, the oil industry is obliged to reclaim land to its original state prior to oil 

extraction according to Land Surface Conservation and Reclamation Act 1973 and the 

Environmental Protection and Enhancement Act 1992 (Goverment-Alberta, 1999). 

Currently, only 1.04 km2 out of 686 km2 of land disturbed by oil-sands mining is certified 

as reclaimed by the Alberta government (Mech, 2011). 

 Conservation and reclamation of boreal forest  

Barley (Hordeum vulgare L.) is always planted to provide a quick vegetation cover and 

soil erosion control during the first growing season after capping (Goverment-Alberta, 

1999).  However, barley is a poor competitor and could be invaded readily by domestic 

flora within the first year.  Although reclamation in these areas has been underway since 

1970s, reclamation treatments have left more bare ground, some grasses and forbs, but 

less shrubs, trees, woody debris, moss, and lichen than natural forests (Rowland et al., 

2009). 

 Shrubs as a key component of boreal forest 

Succession is a slow, natural, orderly change in plant and animal communities that occurs 

over time (Pérez et al., 2013). The earliest succession stage is dominated by herbs and 
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small shrubs, followed by an intermediate stage dominated by tall shrubs and young 

trees, and the final stage resulting in a mature forest. Fire, resource mining, flood, or 

extreme weather can disturb the existing environment. As a result, the ecosystem reverts 

to its earlier succession stage. The establishment of native shrubs accelerate soil 

development, enhance plant and animal diversity, and provide faunal cover and wildlife 

food (Booth, 1985; McKell, 2012). In a reclaimed ‘Mixed Wood Region’ of Alberta, 

shrubs enhance the development of soil organic matter (Rowland et al., 2009), which is 

the key component for a successful reestablishment of the natural ecosystem. 

 Challenges in shrub reclamation 

There is a considerable variation in annual seed production in shrubs, thus often creating 

uncertain supply of seeds for a particular year when needed for reclamation. Seed 

collection of native shrub species is a resource demanding work, and seed longevity of 

native shrub species from this area is usually limited to 2-3 years after harvesting 

(Stevens et al., 1996; Shaw et al., 2012).  

 Ecology of native shrub species 

2.1.5.1 Bearberry (Arctostaphylos uva-ursi) 

Bearberry (Arctostaphylos uva-ursi) is a prostrate evergreen shrub with a number of 

ecotypes (Stebel et al., 2013). Bearberry can stay out of the wind chill and is widely 

distributed in Canada and the northern United States (Kaplan, 2012). Shade intolerant 

bearberry grows best in open areas and tolerant a wide range of soil type and pH. The 

species is frequently found on nutrition-poor dry soil with limited clay and silt (Kaplan, 

2012) such as beaches, dunes and mountains where it may play an important role in 

preventing soil erosion (Stebel et al., 2013). Bearberry propagates vegetatively and 

regenerates rapidly from dormant buds especially after forest fires. Flowering occurs 
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between March and June (the precise period depends on location and altitude), and fruits 

ripen in autumn and stay on the plant throughout the winter (Kaplan, 2012; Stebel et al., 

2013).  

2.1.5.2 Buffalo berry (Shepherdia canadensis Nutt.) 

Buffalo berry (Shepherdia canadensis) is a native deciduous shrub present across the 

entire forest region in Canada and northern United States (Hamer, 1996). Buffalo berry’s 

height ranges from 1-9 m and is ideal for reclamation of disturbed areas as it provides 

food and cover for wildlife (Riedl et al., 2013). Buffalo berry can grow well in nutrient 

poor soils because of its nitrogen fixing ability, which also enhances the growth of 

associated species by enriching soil with nitrogen around its perimeter (Bourassa et al., 

2011). Buffalo berry can regenerate by both sexual and vegetative means. Seed 

production begins at four to six years of age; the small seed size is always associated with 

delayed germination that requires 40 to 60 d cold stratification for embryo development 

(Rosner et al., 2003; Morales et al., 2012b). This species can also regenerate by 

producing sprouts from surviving root crowns and dormant buds. Buffalo berry plays a 

dominant role in all successional stages and it is also a dominant species in climax 

vegetation of ponderosa pine forest (Morales et al., 2012a; Morales Rivera, 2012).   

2.1.5.3 Chokecherry (Prunus virginiana L.) 

Chokecherry is a medium to large multi-stemmed fruiting shrub (1-7 m) or a small tree 

(9-13 m) (St-Pierre, 1993). It is native to Canada with distribution from British Columbia 

to Newfoundland (Bainard et al., 2011). Chokecherry can out-compete shade-loving 

plants in well-lighted openings and clearings of forests (Wang et al., 2012). Chokecherry 

is usually dominant during secondary succession, since it is well adapted to disturbance 
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by fire and can recover rapidly (Webb et al., 1985; Wang et al., 2012). When light 

increases after opening of the forest canopy, sprouts can develop from the root crown of 

chokecherry stumps and dying bushes. Chokecherry can dominate a site for a prolonged 

period of time by continuously producing new sprouts (Johnson et al., 1995; Suarez-

Gonzalez et al., 2013).  When a large group of chokecherries grows together, they can 

provide habitat for larger mammals (Rurek, 2010). The fruit of chokecherry is a single-

seed of 4-9 mm in diameter with color varying from yellow, orange, red to purple-black 

(St-Pierre et al., 2005). Preliminary experiments in our group showed that the thousand 

seed weight of chokecherry seed is usually between 60 g to 65 g. Optimal conditions for 

the germination of chokecherry seed require nine weeks of warm stratification at 30/20 

°C day/night followed by 10 weeks of cold stratification at 4 °C (Lockley, 1980; Rowley 

et al., 2007). Chokecherry seeds can be subsequently germinated at 30-20 °C with 14 h 

photoperiod (Lockley, 1980; Wang et al., 2012). A previous study showed that 

subsequent growth conditions of 7/-4 °C day/night temperatures in vermiculite promoted 

maximal root growth and minimal root-tip browning (St-Pierre, 1993). 

2.1.5.4 Dogwood (Cornus sericea L. ssp. sericea) 

Dogwood (Cornus sericea) is a medium to large multi-stem deciduous shrub with 

average height from 1.6 - 4 m (Shannon et al., 2012). This shrub is not only a beautiful 

ornamental for its red branches, but it also provides food and protection for wildlife 

(Charles-Dominique et al., 2014). North American aboriginal people use dogwood 

branches to make baskets, and fruit as food and in traditional medicine. The plant has 

also been combined with grasses to make a ceremonial tobacco (Fuchigami et al., 1971). 

Dogwood is a native species that is most common in boreal, temperate, and cool meso-
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thermal climates (Davis et al., 2014). Dogwood can tolerate a wide range of soil 

conditions, ranging from moderately acidic to alkaline with moderate to high nutrient 

levels (Woźnicka et al., 2014). Dogwood is shade tolerant, however, generally grows 

better in intermediate to high light conditions. It occurs around communities such as 

grassland, forest, shrub land, and woodland (Shannon et al., 2012).  Dogwood starts to 

produce seed at the age of three to four years and seeds require 60-90 d cold stratification 

before germination. Birds and mammal disperse dogwood seeds that naturally establish 

within one year (Woźnicka et al., 2014). Even though dogwood is typically present 

throughout all stages of succession, it is more abundant in the earlier stages (Shannon et 

al., 2012).    

2.1.5.5 Low bush cranberry (Viburnum edule (Michx.) Raf. ) 

Low bush cranberry (Viburnum edule) is an erect, deciduous shrub with height from 0.6 

to 2 m (Chai et al., 2013). It is widely distributed throughout Alaska and across Canada. 

Low bush cranberry is an important component of the forest edge and hedgerow habitats 

that provides cover for small mammals and birds (Wiese et al., 2012). The late fall 

ripened fruits are consumed by small mammals and foliage serves as habitat for beavers 

and rabbits (Solarik et al., 2010). Low bush cranberry can reproduce vegetatively by 

sprouting from damaged rootstock and stumps (Daust, 2013). Seeds are produced at the 

age of five years (Solarik et al., 2010) and require a two-stage stratification (a warm 

period followed by cold stratification) to break dormancy (Chai et al., 2013). Low bush 

cranberry is a seed banking species, as the cleaned and air-dried seeds can be stored up to 

10 years without losing viability (Wiese et al., 2012). Low bush cranberry is moderately 

shade tolerant and important during all stages of forest succession (Clement et al., 2011).    
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2.1.5.6 Pin cherry (Prunus pensylvanica) 

Pin cherry is a short-lived native shrub or small tree, which has a narrow, round-topped 

crown (Allison et al., 2003).  Pin cherry regenerates both by seeds and sprouts (Ghayyad 

et al., 2010). Seedlings of pin cherry have been found one year after clear-cut in a 25-

year-old Maine hardwood forest (White, 1991; Ghayyad et al., 2010). Sexual maturity 

can be reached as early as two years growth resulting in abundant seed production at 

early ages (Wendel, 1990).  

Pin cherry seeds are 4-6 mm in diameter with a thick seed coat (Halls, 1977; Belcher, 

1985; Ghayyad et al., 2010). Dormancy of pin cherry seeds is usually caused by several 

years’ initial physiological inhibition and followed by a secondary dormancy that remains 

until germination is stimulated by disturbance (Marks, 1974; Ghayyad et al., 2010). Thus, 

there is often a long delay between pin cherry seed dispersal and germination. Germinate 

is stimulated by changes in light and soil temperature (Marks, 1974; Willis et al., 2012), 

but the specific aspect of the changed environment that triggers germination is not known 

(Canham et al., 1985). A break down of germination inhibitor or increase permeability is 

proposed mechanisms for germination initiation (Marks, 1974; Wendel, 1990; Callahan 

et al., 2009). A study in Nova Scotia on pin cheery stand development found higher 

frequency of regeneration on soil disturbed by logging machine than on undisturbed soil 

(Allison et al., 2003). Laboratory experiments revealed that germination in open areas 

might be related to more extreme temperature fluctuations (Marks, 1974; Callahan et al., 

2009). According to Peterson et al., (1995), germination of pin cherry may also be 

promoted by nitrogen (especially nitrate) fertilization.  
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2.2 Storage conditions affecting seed longevity 

Seed storage is a major contributing factor to the quality of planting materials for 

propagation in subsequent seasons, and food storage and conservation of genetic 

recourses. The aging process of seeds during storage is complex (Walters, 2007) and it is 

affected by seed quality at harvest (Probert et al., 2009b), pre-storage treatments (drying 

process and desiccation tolerance of seeds) (Hong et al., 1998), seed moisture content, 

temperature (Walters et al., 1998; Willis et al., 2012), and type of seed containers used to 

maintain optimal moisture levels (Gómez-Campo, 2006; Walters, 2007). Probert et al., 

(2009a) concluded the three important environmental factors affecting seed storage: 

moisture content (RH), temperature, and gaseous environment.  

 Effects of temperature on seed longevity  

The longevity of orthodox seeds decreases as the temperature increases when relative 

humidity is constant during storage (Dickie et al., 1990; Balešević-Tubić et al., 2010). 

This is primarily due to a higher respiration rate at higher temperature causing increased 

utilization of storage proteins and carbohydrates (Kochanek et al., 2009). High 

temperature also promotes protein denaturation and lipid peroxidation in seeds (Probert et 

al., 2009a) and increases infections by fungi, bacteria, and pests with negative effects on 

seed longevity. As orthodox seeds are well tolerant to low temperature, the use of 

subfreezing temperature may prolong seed life by up to 20 years (Nagel et al., 2010).  

 Effects of seed moisture levels and humidity on seed longevity  

The relative humidity and seed moisture content are other important factors that affect the 

maintenance of seed viability. In a closed environment, seed moisture content changes 

according to the relative humidity in the storage container (Mayer et al., 2014).  

Therefore, in a high humidity environment, seed moisture content will increase due to 
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water absorption (Probert et al., 2009b). As seed moisture levels increase, the respiration 

rate increases and this activates various catabolic enzymes, which accelerate the 

consumption of storage proteins and carbohydrates (Bass, 1980; Nagel et al., 2010). A 

high relative humidity level in the storage environment also increases the activity of 

microorganisms, which severely affect seed storage life (Mayer et al., 2014). At ambient 

temperature, a reduction of seed moisture content by 4-7% essentially assures retention of 

high germination percentage for one or more years (Roberts, 1972). 

 Effects of storage atmosphere on seed longevity 

Besides temperature and relative humidity, the gaseous composition of the storage 

environment has also been implicated in seed longevity. Under constant temperature and 

moisture conditions in a closed environment, the gaseous environment changes due to 

respiration by the seeds and associated micro-flora (Rao et al., 2006). For many species, a 

high oxygen concentration reduces seed viability (Bewley et al., 1982; Schwember et al., 

2010). Thus, many seeds retain their viability better in sealed containers than in open 

storage conditions (Schwember et al., 2011). Roberts (1961) found that rice seeds were 

better preserved in N2 atmosphere with 12% relative humidity than stored with oxygen or 

air.  In case of lettuce, seed of 5-6% moisture content deteriorates slower in sealed 

containers with CO2 atmosphere than in air (Pérez-García et al., 2009). However, 

Schwember et al. (2011), argued that there was limited advantage in using a controlled 

atmosphere for seeds stored at low temperature and low moisture conditions.  

2.3 Changes of seed viability and vigour during the aging process 

The mechanisms by which seeds lose their germination potential are not well understood 

(Walters et al., 2010; Walters et al., 2011). Therefore, the knowledge of physiological 

and structural changes at the biochemical and molecular level during seed aging process 
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can help understand the reasons of seed viability loss and can be used to optimize seed 

storage protocols.  

Seed vigour is the sum of all seed properties and it can be used to determine the potential 

activity and performance of seeds (Baalbaki et al., 2009). To get accurate information on 

seed performance in storage or field, germination test, viability test, as well as other seed 

characteristics are needed to be assayed (Thuzar et al., 2010). The standard germination 

test is designed to provide a first and final count of germinated seeds, which are then 

interpreted as the germination percentage; it is the sum of both strong and weak seedlings 

(Pérez-García et al., 2009).  Seed germinability represents the capacity of seed to retain 

enzymes activities needed to catalyze metabolic reactions, which determine the 

germination and seed growth (Basra, 1995).  

Seed viability test is a measure of viable and dead seeds. A viable seed is one that 

germinates under favorable conditions. Seeds that cannot germinate due to their age and / 

or dormancy, but have viable tissues and cells capable of metabolism are also considered 

viable (Priestley, 1986). There is no doubt that reduced seed vigour decreases the field 

emergence. A Strong but non-linear correlation is observed between percentage seed 

viability and various attributes of seed vigour (McDonald Jr et al., 1986; Pérez-García et 

al., 2009). Aged seeds that retain their capacity to germinate generally show a postponed 

and slower germination with an enhanced sensitivity to external stress. Aging is just one 

determinant of vigour, which is also influenced by seed genotype, degree of maturation, 

and physical integrity (Roberts, 1972; Mayer et al., 2014). Seed deterioration is used in 

this thesis in a general sense to indicate declining vigour or viability (Baalbaki et al., 

2009). The relationship between the seed viability and the vigour of a hypothetical seed 
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lot with increasing seed deterioration is illustrated in Figure 2-1 (Ritenour et al., 2001). 

Since the standard germination test is conducted under optimal conditions, even weak 

seeds have the ability to germinate. In a vigour test, low quality seeds with reduced 

vigour will deteriorate more rapidly over time. 

 

 

 

Figure 2-1. The relationship among seed vigour, viability, deterioration and the area 

application of seed vigour test (Delouche, 1960) 
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 Seed dormancy 

The term seed dormancy that may last for several hours to several years has been used to 

describe two inactive conditions, one resulting from unfavourable environmental 

conditions and the other due to cellular metabolism imposed germination blocks (Baskin 

et al., 1998; Nambara et al., 2010).  In non-growing conditions, seed moisture content and 

metabolism rate are low, thus, seeds can survive on their nutrient reserves (Dickie et al., 

1990; Desai, 2004). This process is a remarkably complex, effective, and the protective 

mechanism would ensure the long survival of seeds until when favourable conditions of 

germination and growth are available (Baskin et al., 1998; Desai, 2004). Such prolonged 

survival of the embryo within the seed ensures dispersal and distribution to long distance 

destinations. Many seeds have the ability to adapt to seasonal changes. For example, they 

have a delayed action mechanism that ensures that the seeds will remain dormant until 

another growing season comes. The length of dormancy differs greatly among various 

species and cultivars. For example, lotus seed can remain viable for hundreds of year 

(Desai, 2004).  According to Black et al. (2000) the following factors may prevent the 

embryo germinate: interference with water uptake and gaseous exchange, presence of 

chemical inhibitors, seed coats functions as a barrier for release of inhibitors from the 

embryo, modification of light reaching the embryo, and seed coats exerting a mechanical 

restraint (Bewley et al., 1982; Dickie et al., 1990; Nambara et al., 2010). 

The dormancy process is reversible; sometimes, the seed may turn in to secondary 

dormancy by exposure to oxygen deficiency, an excess of water, or a temperature too 

high for germination (Desai, 2004). Dormancy can be terminated by some factors that are 

not required for germination, but are needed to prime the seed so that it can respond to 

conditions favourable for germination. Some seeds may need several weeks chilling at 
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4°C before germination; however, a higher temperature is generally needed to support 

germination (Baskin et al., 1998; Desai, 2004). Also dormancy can be broken by light, 

however, most seed germinate under a dark condition (Dickie et al., 1990).  Previous 

studies suggest that chilling and light are factors not strictly required throughout 

germination but only to trigger or potentiate the process (Bewley et al., 1982; Walck et 

al., 2011).   

The mechanisms of dormancy and its release involve the interaction of inhibitors and 

growth-promoting hormones, such as gibberellins (GA), cytokines, ethylene, and abscisic 

acid (ABA) (Desai, 2004). According to this model illustrated in Figure 2-2, ambient 

environmental factors affect the balance of ABA and GA. The dormant state is induced 

by ABA synthesis and GA catabolism, whereas germination is promoted by ABA 

catabolism and GA synthesis. Hence the dormancy cycling is caused by a complex 

interplay among hormone degradation and synthesis pathways in accordance with 

ambient environmental changes (Finch‐Savage et al., 2006). 
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Figure 2-2 Model for the regulation of dormancy and germination by abscisic acid (ABA) 

and gibberellin acid  (GA) in response to the environment (Finch-Savage et al., 2006).  
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 Seed membrane integrity 

Cellular membranes are proposed as the primary sites of injury during storage of seeds 

(Bailly, 2004). The accelerated seed aging treatment reduces the cell membrane 

phospholipids, which leads to a reduction in seed viability. However, such marked 

changes do not occur during normal long-term aging. Seed aging at high relative 

humidity may cause hydrolysis of important cellular component including membranes, 

which cannot be replaced or repaired due to insufficient activity of appropriate synthetic 

processes (Powell, 1986; Morales et al., 2012b). Also, along the aging process, free 

radicles are formed and may cause damages to the membrane lipids. Therefore, the slow 

germination and growth, abnormal growth, or even no growth could have a strong link to 

fundamental changes in membranes and macromolecules (Bewley et al., 1982). 

 Protein expression  

Changes characterized during the aging process in seeds include alterations in membrane 

protein composition, protein degradation, decreases in lipid content and decreases in 

mRNA translation (Noodén, 2012; Delahaie et al., 2013). Increased accessibility of 

proteins to proteinases due to decompartmentation, enhanced proteolysis by molecular 

modifications to polypeptides, and the increased activity of proteinases are considered to 

be three main leading reasons for protein degradation (Kumar et al., 1999; Shaban, 2013).  

Proteins in dry seeds are considered to be resistant to degradation in adverse environment 

conditions (Golovina et al., 1997) although current hypotheses on seed aging have 

implicated per-oxidative damage to enzymes as a major cause of seed aging (Walters, 

2007).  In orthodox seeds, the presence of specific proteins such as the late 

embryogenesis abundant (LEA) proteins, heat shock proteins (HSPs), and some seed 

storage proteins are associated with desiccation tolerance and maintenance of a quiescent 
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state. A close relationship seems to exist between the abundance of some of these stress 

proteins and seed longevity (Rajjou, 2008a). One of the most striking characteristics of 

mature orthodox seeds is their ability to withstand severe desiccation，as water content 

decreases during the late maturation stage of seed development. The ‘late embryogenesis 

abundant’ (LEA) proteins have been found associated with several kinds of desiccation 

tolerance, and they are especially more abundant during late embryogenesis than during 

mid-embryogenesis as their name indicates (Shih et al., 2008). Under stress conditions in 

seeds, specific stress proteins may be formed and be involved in avoiding stress, 

repairing damage, or protecting cellular machinery from the effects of stress (Rajjou, 

2008b). 

2.4 Detecting seed aging  

Because a standard germination test is a less sensitive index of seed quality than the 

vigour test, many studies suggest that the loss of germination could serve as a basis for 

vigour test.  According to ISTA (International Seed Testing Association), vigour test can 

be classified into various categories based on the method (Baalbaki et al., 2009).  For 

example, vigour test can be classified into physiological and biochemical test based on 

which component is measured. Biochemical tests look at protein analysis, respiration 

analysis, or reactions related to the gene expression, while physiological tests measure 

seedling vigour and viability (Moore, 1973). 

 Seed vigour measurements 

The test relies on activity of dehydrogenase enzymes in the embryo tissue (Moore, 1973; 

Baalbaki et al., 2009) and provides a quick estimate of seed viability (Neljubow, 1925). 

In 2000, both AOSA (Association of Official Seed Analysts) and ISTA recommended the 
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Tetrazolium test (Baalbaki et al., 2009) for seed viability determination. All living tissues, 

display dehydrogenase activity, which in highly reduced state produces hydrogen ions 

that reduce the colorless tetrazolium salt 2,3,5-triphenyl-tetrazolium-chloride (TTC) to 

generate the stable, red-coloured product formazan (Figure 2-3). Five classes of staining 

patterns can be distinguished according to the intensity of red color by formazan in the 

seed tissues (Steiner, 2003). 

 

Figure 2-3 Mechanism showing the role of dehydrogenase in the reduction of 2,3,5-

triphenyl-tetrazolium-chloride (TTC) to triphenyl formazan (TF) (Brooks, 2011) 

        

When formazan is formed in the seed tissue, the resulting red colour is a positive 

indication of viability by indirectly detecting cellular respiratory activity occurring in the 

mitochondria. The non-viable seed and low-viable seed do not react with TTC and 

consequently do not show the red colour. Respiring tissue in seed can be found within the 

embryo of a seed, in cotyledons and radicle, in some nutritive endosperm tissues, and 

also in the female gametophyte tissue of gymnosperms. 
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The Tetrazolium test generally shows a significant correlation between reduction of the 

dye, respiration and seedling vigour. However, under aging treatments and particularly 

during accelerated seed aging, a loss of seed viability occurs without concomitant loss of 

dehydrogenase enzymes leading to an overestimating of seed viability (Bewley et al., 

1982). 

 Electrolyte conductivity test 

The electrolyte conductivity (EC) test is a simple valuable quantitative test to assess seed 

vigour for many plant species. The test measures seed electrolyte leakage caused by 

inorganic ions passing through cell membranes (Baalbaki et al., 2009). During seed 

soaking, ions diffuse out through the cell membrane that can be detected by monitoring 

electrolytes.  Low quality seeds with membrane damage caused by stress or aging leak 

high amounts of solutes (Powell, 1986). In contrast, seeds with high vigour and 

germination ability show low electrolyte conductivity.  

In living cells, membrane integrity is not only important for keeping cellular 

compartmentalization but is also the site for biochemical reactions (Abdul-Baki, 1980). 

Leakage of soluble compounds also occurs during the rehydration of dry seeds.  Seed 

membrane reorganize during this process, which means the sooner the seed membranes 

are reestablish, the lower is the electrolyte conductivity (Black et al., 2000). 

There are many factors that affect seed electrolyte conductivity test results. Since seed 

membrane integrity changes during the seed development as well as during storage, the 

seed mortality and quality are strongly associated with seed solute leakage (Powell, 

1986). Loss of protection by seed coat or the presences of mechanically damaged seed 

significantly increase seed conductivity. To keep the accuracy of the electrolyte 

conductivity test, damaged seeds should be removed before the test (Desai, 2004). Large 
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seeds leak more electrolyte than the small seeds of equivalent quality. To eliminate the 

difference in seed size, the electrolyte conductivity tests are usually expressed per gram 

seeds. If the seeds have been fungicide treated before the test, the treated seeds need to be 

washed prior to the test (Baalbaki et al., 2009).  

 Methods of seed protein analysis 

2.4.3.1 SDS-PAGE 

Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) is a widely 

used method to separate proteins according to their molecular mass (Schägger et al., 

1987).  It is reliable for determination of molecular weights for most polypeptides, but 

can also be used for assay of protein purity (Cohen et al., 1987). Protein samples are 

mixed with Tris buffer containing SDS and the reducing agent β-mercaptoethanol 

followed by boiling to denature the proteins and reduce their disulphide bonds. The 

anionic detergent SDS aids in the denaturation of secondary and non-disulphide- linked 

tertiary structures and adds negative charges to each polypeptide in proportion to their 

mass (Pitt-Rivers et al., 1968) (Bergfors, 2009).          

Electrophoresis using a gel composed of a lower resolving gel and an upper stacking gel 

with pH 8.8 and 6.8, respectively, separates individual polypeptides. The gel sections are 

made up by an acrylamide: bisacrylamide mixture that is polymerized to a network by the 

action of APS (Amonium persulphate) and TEMED (Tetramethylethylenediamine) in the 

presence of 10 % SDS and appropriate Tris-HCl buffer. The concentration of acrylamide 

in resolving gel may vary from 5% to 25 % (w/v) to generate different resolution power 

during electrophoresis (Raymond et al., 1959). A low percentage polyacrylamide gel 

generates larger pore sizes, which is preferred for separation of high molecular weight 

proteins. Bromophenol blue is commonly used as tracking dye for the electrophoresis as 
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the small negatively charged dye molecules migrate faster than the SDS-coated 

polypeptides (Flores, 1978). The separated polypeptides can subsequently be visualized 

as distinct bands in the gel with low background using the Coomassive brilliant blue 

staining technique (Steinberg, 2009). For low-abundant polypeptides, silver staining is 

preferred as it is a more sensitive protein staining method than Coomassive staining 

(Bergfors, 2009).  

2.4.3.2 Two-dimensional polyacrylamide gel electrophoresis (2D–PAGE) 

Two dimensional gel electrophoresis (2-DE) is a well-established method for high 

resolution profiling of low abundance proteins (Issaq et al., 2008). 2-DE starts with one-

dimensional gel electrophoresis, and followed by separation of molecules are isoelectric 

point (isoelectric focusing, IEF) in a direction 90 degree from the first separation (Janson, 

2012). Thereby, a gradient of pH is applied to the gel besides the applied electrical 

potential. In the pH gradient gel, proteins will be charged if the pH value different than 

their isoelectric points (Janson, 2012). The positive charged proteins will migrates 

towards the negative side of the gel according to their mass to charge ratio. Protein can be 

detected after the separation by silver or Commasive brilliant blue staining (Issaq et al., 

2008). Even though the 2-DE technique is relative sensitive for protein analysis, however, 

it is still considered to be a time consuming and labour intensive technique. Also the 

potential of 2-DE for proteome analysis is limited to proteins of medium to low 

abundance (Janson, 2012). The difficulty in reproducibility between gels leads to 

increased system variations, which made it more difficult to tell whether the difference 

was caused by system or the biological change (Rabilloud et al., 2010).   
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2.4.3.3 Zymography 

Zymography is a widely used functional assay for analysing proteolytic activity; in 

particular for the matrix metalloproteinases (MMPs) (Kupai et al., 2010). This simple, 

sensitive quantitative standard method was first introduced by Granelli-Piperno and 

Reich, and modified by Heussen, which then became a routine technique in cancer 

research around the world (Granelli-Piperno et al., 1978; Heussen et al., 1980; Leber et 

al., 1997). The zymography provides reliable identification of proteolytic active 

polypeptide based on the molecular mass of inactive and active forms after SDS-PAGE. 

Proteases analyzed by zymography cleave protein by peptide bond hydrolysis, but can 

also after gel separation re-nature as well as exert proteolytic activity on a copolymerized 

substrate upon removal of the SDS (Hu et al., 2010). The size of proteolysis product can 

be revealed by Commasive blue staining of SDS-PAGE gel. The amount of proteases 

correlates linear with the band intensity within a certain size range (Leber et al., 1997). 

The zymography techniques offers several benefits features when compare to other 

methods, for example: no requirement of expensive materials such as antibodies, as well 

as the flexibility in changing of substrate types, and reaction buffers, etc. However, there 

still some concern about the accuracy of proteolytic activity determination (Hu et al., 

2010). Besides, the two-steps standing/ distaining is critical and complicated for the 

accurate measurement of proteolytic activity (Hughes et al., 2010).   

2.4.3.4 Western blot assay 

The Western blot (also called protein immunoblot) is a widely used technique to detect 

specific proteins in given samples, which was developed by Harry Towbin (Towbin et al., 

1979). Proteins are separated by SDS-PAGE, and then transferred from gel to membrane 
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by electrophoretic transfer. Generally, two type of membranes are used in the western 

blot, the nitrocellulose and polyvinylidene fluoride (PVDF) membranes. The 

nitrocellulose membrane has high affinity for protein and preserves protein integrity and 

gives low background signals (Fernandez et al., 1992). However, nitrocellulose is fragile 

and does not allow for re-probing of membrane. Compared with the nitrocellulose 

membrane, PVDF membrane has a superior on protein retention capacity, and has high 

mechanical strength, but gives higher background signals  (Fernandez et al., 1992). 

The membrane containing bound proteins is incubated with primary antibody specific for 

the target protein (Towbin et al., 1979). Subsequently, un-bound proteins are washed off 

before membrane is incubated with the secondary antibody specific for target primary 

antibody.   The identification of the target is ensured by the specificity of the antibody-

antigen interaction, and the thickness of the band can be a good indicator of protein 

concentration.   

2.4.3.5 MudPIT (Multidimensional Protein Identification Technology)  

Multidimensional protein identification technology is a widely used non-gel technique for 

separating and identifying individual components of the mixture of protein and peptide 

(Kislinger et al., 2005). It has been proven to be a qualitative and quantitative tool for 

proteomic analyses (Chen et al., 2006). In MudPIT, a complex mixture of protein and 

peptide is digested and loaded directly to a triphasic micro capillary column packed with 

reversed phase, strong cation exchange, and high-pressure liquid chromatography 

(HPLC) grade materials (Delahunty et al., 2007). The column is placed directly in-line 

with a tandem mass spectrometer after the load of complex peptide mixture onto the 

triphasic micro capillary column. The tandem mass spectrometry peptide data generated 
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from a MudPIT run is then analyzed to determine the protein composition of the original 

sample (Delahunty et al., 2007). 

 Artificial aging tests 

Seeds can be subjected to rapid aging processes (artificial aging) by accelerated seed 

aging, saturated salt seed aging or controlled seed deterioration procedures. In most 

artificial aging tests, seeds are exposed to high temperature and high humidity conditions, 

followed by physiological and biochemical tests. High quality seed lots can withstand 

those stress conditions and show slower deterioration rate and germinate faster than seeds 

with poor vigour (Ching, 1972; Rice et al., 2001; Rodo et al., 2003).  Thus, artificial 

aging test is an indicator of seed quality and vigour. Compared with the natural aging 

test, artificial aging tests are rapid and correlate with field performance of seeds.  

Therefore, artificial aging can provide valuable information of both storage potential of 

seeds and their field emergence (Baalbaki et al., 2009). 

2.4.4.1 Accelerated aging test 

Accelerated seed aging test was initially developed to estimate the longevity of seed in 

commercial storage (Delouche et al., 1973), but has also been used to predict the life span 

of a number of other seeds. In the accelerated aging test, seeds are exposed to high 

temperature (45C) and high humidity (95% RH), which are the two main factors causing 

seed aging (Walters, 1998).  When conducting accelerated seed aging test, seeds are place 

inside a two layer sealed plastic box (one layer is for water) or a desiccator. The two layer 

plastic box/desiccator is placed in a water jacketed accelerated aging chamber. The 

temperature is controlled at 41-45 C and relative humidity is maintained at 95%. Seeds 
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are sampled during the selected aging period and tested by germination and seedling 

number as well as by biochemical tests (Baalbaki et al., 2009). 

2.4.4.2 Saturated salt accelerated seed aging test 

Saturated salt accelerated seed aging test is a modification of accelerated seed aging, 

where saturated salt solutions such as LiCl, NaCl or KCl are used instead of water to 

create a suitable aging environment for both large and small seeds. The saturated salt 

solution reduces the relative humidity, allowing soaking, and thus slows down the seed 

deterioration rate. The relative humidity below 80% prevents the storage fungal growth, 

which can influence the accelerated seed aging process (Zhang et al., 1997). 

2.4.4.3 Controlled deterioration test 

The controlled deterioration test was initially developed to estimates the difference in 

seed vigour among small seeded species (Hampton et al., 1995). It is also a modification 

of accelerated seed aging test where seeds are placed in high temperature and high 

humidity stress for a short period of time. The main difference between controlled 

deterioration and accelerated seed aging tests is that in the controlled aging test, seeds are 

pre-moist at a certain level before being subjected to high temperature stress conditions. 

The equilibrium process minimizes the seed moisture change that would cause the 

difference in seed deterioration but not the real difference in seed quality (Baalbaki et al., 

2009). Besides, the equilibrated seeds eliminate the difference in water absorbance, 

electrolyte leakage and conductivity test, thus enhancing the accuracy of the test. One 

limitation of controlled deterioration test is that it may need a long time to reach the 

equilibrium moisture stage (Rodo et al., 2003).  



 27 

3 MATERIALS AND METHODS 

3.1 Plant materials 

Six shrub species identified by the vegetation cooperative of CONRAD (Canadian Oil-

sands Network for Research and Development) were used in this study. The species 

included Prunus virginiana, Prunus pensylvanica, Arctostaphylos uva-ursi, Shepherdia 

canadensis, Cornus sericea, and Viburnum edule.  Seeds were collected from the species 

grown in the central mix-wood region of north-eastern Alberta during 2009 to 2012 

(Table 3-1) and seed lots were cleaned following the procedures described in the fact 

sheets from Wild Rose Consulting. Cleaned seeds were air dried at room temperature to 

constant weight (approximately 7-8% dry weight water content) and then transported to 

Department of Plant Sciences, University of Saskatchewan for initial seed quality 

assessment and storage.  
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Table 3-1 Shrub seed lots collected from central mixed-wood region of north-eastern 

Alberta from 2009 to 2012 used in the study.  

Species 
Seed lot and collection year 

1984 2009 2010 2012 

Bearberry 

 (Arctostaphylos uva-ursi) 
    

BEAR 1117 
  

BEAR 1618 

Buffalo berry 

 (Shepherdia canadensis) 
BUF 8484 

BUF 14093 
 

BUF 9134 

BUF 4906 
 

BUF 1424 

Chokecherry 

 (Prunus virginiana)   

CHK 1410 
CHK 1114 

CHK 6259 

Dogwood  

(Cornus sericea)  

DOG 3914 DOG 3119 

 DOG 6930 DOG 3259 

Low bush cranberry  

(Viburnum edule)   

LBC 3119 

 LBC 7278 

Pin cherry  

(Prunus pensylvanica) 
PIN 8484   PIN 1298   

 

Table 3-2. Seed germination conditions.  

Species 

Stratification 

(weeks) 
Light 

Germination 

temperature 

day/night (°C) 
Wa

rm 
Cold 

Bearberry (Arctostaphylos uva-ursi) 9 7 NO 15/5 

Buffalo berry (Shepherdia canadensis) 0 3 YES 15/5 

Chokecherry (Prunus virginiana) 9 8 NO 30/20 

Dogwood (Cornus sericea) 3 0 NO 30/20 

Low bush cranberry (Viburnum edule) 16 2 NO 15/5 

Pin cherry (Prunus pensylvanica) 9 10 NO 15/5 

Warm stratification was conducted at 30/20 °C and cold stratification was conducted 

at 4°C. 
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3.2 Methods 

 Initial seed quality assessments 

3.2.1.1 Determination of seed moisture content 

Determination of the initial seed moisture content (MC) by the oven-drying method 

(Baalbaki et al., 2009) was done before storage and within one month of seeds being 

received. The analysis included three samples of 10-30 seeds per collection depending on 

seed size and seed availability. Moisture content was calculated using the formula:  

𝑀𝐶 % =
𝐹𝑟𝑒𝑠ℎ 𝑊𝑒𝑖𝑔ℎ𝑡 −  𝐷𝑟𝑦 𝑊𝑒𝑖𝑔ℎ𝑡

𝐹𝑟𝑒𝑠ℎ 𝑊𝑒𝑖𝑔ℎ𝑡
× 100 Equation 3-1 

3.2.1.2 Determination of thousand seed weight    

According AOSA (Baalbaki et al., 2009), the determination of thousand seed weight was 

completed by weight 100 seeds for eight replicate samples, separately; then calculate the 

average weight of 100 seeds, and multiply by 10.   

3.2.1.3 Analysis of seed viability by TZ test 

Tetrazolium (TZ) tests were conducted to assess seed viability following procedures 

established by the International Seed Testing Association (1985). Three replicates of 10 

seeds were placed in Petri dishes containing two layers of filter papers soaked with 5 mL 

distilled water. Upon 24 h incubation at room temperature, the seeds were cut and 

submerged in a 1% (w/v) solution of 2,3,5 triphrnyl tetrazolium chloride (TTC) for 24 h 

at room temperature. The production of the red substance formazan from TTC in living 

tissues by the action of dehydrogenase enzymes was examined on the radicle, plumule 

and cotyledons.  
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3.2.1.4 Cold and warm stratification of seeds 

Seeds of all shrub species were in different degrees of dormancy. Thus, treatments such 

as cold stratification (4 °C) and/or warm stratification (30/20 °C, 12/12 h) were required 

to break dormancy before subjecting the seeds to germination tests (Table 3-1) (Baskin et 

al., 1998).  

3.2.1.5 Seed germination 

Seeds were germinated at different sets of alternating temperatures (15/5, 20/10, 25/15, 

30/20, and 35/25 °C) with or without light (12 h) depending on the dormancy-breaking 

requirements of each species. The seeds were placed on top of two layers of filter papers 

moistened with 5 mL distilled water and kept in 9 cm Petri dishes. The Petri dishes were 

enclosed in clear plastic bags to reduce the evaporation. During the course of the 

experiments, the seeds with any sign of fungal infection were sprayed with 0.05% 

Benomyl 50 Systemic Fungicide solution. The germinated seeds were counted and 

removed every 24 h. The seeds were considered germinated when the radicle was no less 

than 2 mm in length. These Un-germinated seeds at the end of the germination test were 

used by TZ test for viability. The seed viability of each collection was then corrected 

using germination data. The germinated seeds were incubated at 30/20 °C with light. 

Seedling length, as an indicator of seed vigour, was measured after 7 d (Vertucci et al., 

1990). 

 Seed storage conditions 

3.2.2.1 Effects of moisture and temperature on seed longevity during storage  

Two chokecherry and two pin cherry seed collections: CHK 1410, CHK 6259, PIN 1298, 

PIN 1618 were used for this experiment (Table 3-1). The seeds obtained from 2010 were 
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stored at various storage conditions with target seed moisture contents (MC) of 1-3% and 

7-8%, respectively, within one month after receiving. The target seed moisture content 

was achieved by placing seeds in sealed glass desiccators with re-generable humidity 

sponges (VWR international, Mississauga, Ontario, Canada).  They were then stored in 

separate vacuum desiccators. Six spot humidity indicator cards (6HIC200-SCC, Static 

Control Components, USA) and Incand multi-channel in-out thermo-hydrometers 

(Traceable® 15551-258, Control Company, USA) were placed in desiccators to monitor 

relative humidity (RH) and temperature, respectively. The RH inside desiccators was 

maintained at 20 % and 30 % for target seed moisture contents 1-3 % and 7-8 %, 

respectively, by changing humidity sponges when needed. Three replicates were used for 

each storage treatment. 

3.2.2.2 Gas storage experiment 

In the N2 treatment, air in desiccators was drawn out and N2 was injected into desiccators, 

which was repeated three times. A small balloon was placed inside the desiccator as an 

indicator for air pressure. N2 was replaced monthly. The seeds with moisture content of 7-

8% and stored at room temperature in air are set to be the control group.  

 Artificial aging 

Seventeen collections of six native shrub species from boreal forest region, BEAR 1117, 

BEAR 1618, BUF 14903, BUF1424, BUF 4906, BUF 9134, BUF8484, CHK 1410, CHK 

1114, PIN 1298, PIN 8484, DOG 3119, DOG 3259, DOG 6930, DOG 9314, LBC 7278 

and LBC 3119, were used for this experiment. The seeds were first rehydrated at 22.5 °C 

with 45% RH, and then aged at 45 °C with 60% RH by using lithium chloride to provide 

the desired RH environments (Zhang et al., 1997; Rodo et al., 2003). 
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3.2.3.1 Rehydration 

Seeds were placed in paper envelopes over chemical-porcelain desiccator plates placed in 

sealed KIMAX desiccators with detachable stopcock valve (VWR international, 

Mississauga, Ontario, Canada) for four weeks, following a procedure developed by 

Butler (2009). The 45% RH inside the desiccator was generated by placing 1L 40.5 % 

w/v lithium chloride solution at the bottom of the desiccator. Seed moisture content was 

monitored every two days. 

3.2.3.2 Accelerated seed aging  

Equilibrated seeds were subject to accelerated aging treatments in growth chamber 

(Sanyo Versatile Environment Chamber MLR-350H, Sanyo Scientific, USA) set at 60 % 

RH, 45°C on chemical-porcelain desiccator plates (VWR desiccator plates, VWR 

International, Mississauga, Ontario, Canada) in sealed glass desiccators (KIMAX 

Desiccators with detachable stopcock valve, Kimble Chase) following a method 

described by Kochanek (2009).  The 60 % RH was generated by 1L, 30 % w/v LiCl 

solution placed at the bottom of the desiccator.  The relative humidity and temperature 

inside the desiccator monitored by using radio-signal remote hygrometer/thermometer 

(Traceable® 15551-258, VWR International, Mississauga, Ontario, Canada).  Three 

samples of 25-30 seeds for each collection were removed after each of 0, 5, 10, 15, and 

20 d, respectively, for seed viability, germination, electrolyte conductivity and protein 

analysis. This experiment was repeated once. 0 d aged seeds are considered to be 

controlled group.  
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 Biochemical and molecular changes during seed storage 

3.2.4.1 Analysis of electrolyte conductivity 

Three replicates of 15 seeds were weighted and soaked in 10 mL distilled water for 48 h 

at 22.5 °C (Baalbaki et al., 2009). The conductivity of seed soaked water was measured 

using an Oakton portable waterproof pH/CON 300 Meter (Oakton Instruments, Vernon 

Hills, IL, USA) after 0, 2, 5, 12, 24 and 48 h soaking, respectively. Total ion leakage was 

expressed as per g of seeds (μS cm-1g-1). Average electrolyte conductivity was calculated 

using mean and SE of 0, 2, 5, 12, 24 and 48 h ion electrolyte conductivity measurements. 

3.2.4.2 Phenol extraction of seed proteins 

Total proteins from seeds were extracted using a modified phenol extraction procedure 

described by Van Etten et al (1979). Seed samples (0.5 g) were pulverized by mortar and 

pestle grinding, and then transferred to test tubes containing 50 mg 

polyvinylpolypyrrolidone (PVPP). In rapid succession, 2.5 mL of cold (4 °C) extraction 

buffer (250 mM Tris-HCl, pH 7.5, 700 mM sucrose, 100 mM KCl, 50 mM EDTA) and 

25 μl β-mercaptoethanol were added. Samples were then homogenized for 30 sec using a 

Polytron homogenizer  (Polytron Corp, Elkhart, Ind. USA) at high-speed setting. 

Thereafter, 5 mL of Tris-HCl (Molarity mass: 121.4 g mol−1) buffered phenol (pH 7.9) 

was added and homogenates were vortexed for 2 min. After centrifugation at 5,000 ×g for 

30 min, the upper phenol layer was recovered. To further purify the phenol-soluble 

proteins, the phenol solution was re-extracted twice adding an equal volume extraction 

buffer, vortexing for 1 min followed by 20 min centrifugation at 5,000 ×g.  A 12.5 mL 

cold methanol solution containing 100 mM ammonium acetate and 10 mM β-
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mercaptoethanol was added to the phenol solution followed by overnight precipitation of 

proteins at 4 °C.  

Precipitated proteins were recovered by centrifugation at 12,000 ×g for 10 min and 

washed twice with 1 mL methanol, and twice with 1 mL acetone containing 10 mM β-

mercaptoethanol. Sample protein (dissolved in sample buffer) concentration was 

determined in triplicates by a dye-binding assay (Bradford, Bio-Rad. Hercules, CA, 

USA) using Coomassie Blue reagent (Bradford, 1976).  

3.2.4.3 Tris-HCl buffer extraction of seed proteins 

Seed samples (1 g) were crushed in liquid nitrogen into fine powder using a mortar.  

Proteins were extracted from 500 mg powder by re-suspension in 2 mL extraction buffer 

(0.5 M Tris-HCl pH 6.8, 10 % (w/v) sodium-dodecyl-sulphate, 10 % (v/v) glycerol, 25 

μL β-mercaptoethanol and 0.05 % bromophenol blue) followed by  boiling for 5 min, 

cooling on ice for 5 min and centrifugation at 12,500 ×g, 12 min, room temperature. The 

protein concentration in soluble extract was determined in triplicates using a Coomassie 

brilliant blue dye-binding assay (Bradford, 1976). 

3.2.4.4 SDS-PAGE 

Protein samples (35 μg) were analyzed by one-dimensional sodium-dodecyl-sulphate 

polyacrylamide gel electrophoresis (SDS-PAGE), as described (Demeke et al., 1997).  

For SDS-PAGE, the seed protein pellet was air-dried, re-suspended in SDS buffer (25 

mM Tris, pH 7.5, 1% (w/v) SDS, 10% (v/v) glycerol, 5% (v/v) β-mercaptoethanol, and 

0.002% (w/v) bromphenol blue), and boiled for 2 min. The 12% resolving gel contained 

acrylamide/ bis-acrylamide (37.5:1), 1.5 M Tris-HCl pH 8.8, 10% (w/v) sodium-dodecyl-

sulphate, 10% ammonium persulphate, and 0.05% N, N, N’, N’-
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tetramethylethylenediamine (TEMED). The 5% stacking gel contained 30% acrylamide/ 

bisacrylamide, 1 M Tris-HCl pH 6.8, 10% (w/v) sodium-dodecyl-sulphate, 10% 

ammonium persulphate and 0.05% TEMED. Running buffer contained 25 mM TRIS-

base, 192 mM glycine and 0.1% sodium-dodecyl-sulphate. A 35 μL of the extracted 

protein was loaded and proteins were separated using a Bio-Rad electrophoresis unit 

(Protean II, Bio-Rad. Hercules, CA, USA) for 15 h at 10 mA.  

Following electrophoresis, the stacking gel was removed and resolving gel was soaked in 

fixative (40% methanol, 10% glacial acetic acid) for 1/2 h. Separated polypeptides were 

then visualized by Coomassie blue staining as described by Fenner (1975). The gel was 

destained by agitation in 40% methanol, 10% glacial acetic acid) solution for 4 to 8 h as 

described by Demeke (1997). 

3.2.4.5 Western blotting of dehydrins  

The stacking gel was removed from the SDS-PAGE gel with separated polypeptides and 

a notch was made at the bottom left corner to mark gel orientation. The gel was 

equilibrated in transfer buffer (40 mM TRIS/ 20 mM NaAc3H2O pH 7.4, 2 mM EDTA, 

20% methanol, 0.05% (w/v) sodium-dodecyl-sulphate) for 30 min. Four, 1.5 mm blotting 

papers and 1 nitrocellulose (NC) membrane (0.45 m, GE Healthcare, Montreal, Quebec, 

Canada) pre-soaked in transfer buffer were assembled into a sandwich in tray with 

transfer buffer to minimize the risk of trapping bubbles during assembly. The transfer 

sandwich was assembled as follows: support pad, two sheets blotting paper, 

nitrocellulose membrane, polyacrylamide gel, two sheets blotting papers and support pad. 

The complete sandwich was placed in the transfer tank (Protean II, Bio-Rad. Hercules, 

CA, USA) with the membrane closest to the positive electrode, and the tank was filled 
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with cooled transfer buffer (4 °C). Electro-blot was done at 10 volts with 1.4-1.7 v/cm for 

at least 4 h. Membrane was dried at room temperature and stored in a dry place 

(Ganeshan et al., 2008). 

The membrane was placed in 200 mL blocking buffer [5% (w/v) low fat Carnation Milk, 

137 mM NaCl, 2.68 mM KCl, 10 mM Na2HPO4/1.76 mM KH2PO4 pH 7.4, 0.1% Tween 

20], and incubated with slow agitation for at least 2 h at room temperature Then the 

nitrocellulose membrane was incubated with 50 mL 1:5,000 diluted anti-dehydrin 

antibodies (StressGen, Ann Arbor, Michigan, USA) in blocking buffer for at least 2 h 

(Ganeshan et al., 2008).  

To remove excess primary antibodies, the membrane was washed four times with 

blocking buffer. The membrane was then incubated for 2 h with 50 mL 1:5000 diluted 

secondary antibodies (alkaline phosphatase labelled goat anti-rabbit IgG (KPL, Inc., 

Maryland, USA) in blocking buffer with slow agitation. The membrane was washed four 

times with blocking buffer, and then washed three times with New Buffer [50 mM Tris-

HCl (pH 7.5), 150 mM NaCl]. 

The BCIP (5-bromo-4-chloro-3'-indolyphosphate p-toluidine salt) -NBT (nitro-blue 

tetrazolium chloride) color substrate solution was prepared just prior to use and protected 

from light. NBT stock (75 mg/mL Nitroblue tetrazolium in 70% N, N-

dimethylformamide) was diluted in color development solution to a final concentration of 

0.3 mg/mL BCIP (50 mg/mL) was added to a final concentration of 0.15 mg/mL.  To 

remove excess buffer, the membrane was blotted with Whatman 3 mm paper, and then 

immersed in 25 mL color development solution for color band developement in darkness. 

When desired development was reached, usually within 20-30 min, membrane was rinsed 
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twice with New buffer before immersing the membrane in (20 mM Tris-HCl (pH 2.9), 1 

mM EDTA) to stop color development (Ganeshan et al., 2008).  

 Data analysis 

The speed of germination was calculated by using germination rate index (G.R.I.) 

(Caldwell, 1960; Brar et al., 1991), which is computed by using the following formula: 

 

G.R.I=∑
𝑁𝑖

𝑁𝑡∗𝑇𝑖

𝑐
𝑖=1 *100% Equation 3-2 

Where, Ni is the number of seeds germinated in day i, Nt is the total number of seed 

germination, Ti is the ith day since germination started and c is the number of days 

counted in the experiment (Baalbaki et al., 2009). 

Seed vigour index (S.V.I) was calculated using the following formula (Baalbaki et al., 

2009): 

 

S.V.I= Final germination percentage* Seedling length Equation 3-3 

Mean seeds germination time (MGT) was proposed by Ellis and Roberts (1980) as an 

indicator of vigour, calculated as following: 

 

MGT =
∑ Ni Ti

∑ Ni
 

Equation 3-4 

where Ni is the number of normal seedlings present on day i, Ti is the ith day since 

germination begins and ΣNi is final germination. 

The Viability after germination (including germinated seeds) after germination test 

(VAG) was calculated as following: 
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VAG =
𝑁𝐺+𝑁𝑉

𝑁𝐴
 *100 % 

Equation 3-5 

where NG is the number of total germinated seeds; NV is the number of viable un-

germinated seeds, NA is the total number of seeds.  

Analysis of Variance was conducted using general linear model (GLM) to determine the 

difference in one-year storage experiment and artificial aging treatments on seed 

viability, final germination percentage, mean germination time, electrolyte conductivity, 

Germination rate index and vigour index for shrub species. Seed species, storage 

temperature, germination temperature, gas, and moisture content were considered as 

fixed factors in the storage experiment; while duration of aging and species were 

considered as fixed factors in artificial aging test. Final germination percentage, viability, 

electrolyte conductivity value, mean germination time, un-germinated viable seeds, 

germination rate index, vigour index and radicle / hypocotyl were treated as response 

variables. Pearson’s bivariate correlations were performed for all the measurement in 

accelerated seed aging test. All analysis for this study was done using in R 3.0.2 (R 

Development Core Team 2013).   
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4 RESULTS 

4.1 Effect of seed storage conditions on seed physiological properties 

 Storage of chokecherry seeds  

Storage of two chokecherry collections under different conditions revealed no significant 

difference (P>0.05) on most vigour and viability attributes of seeds after one-year (Figure 

4-1, Table 4-1, Table 4-2). Furthermore, total germination percentage was not 

significantly (P>0.05) altered upon one-year storage. For the CHK 1410 seed lot, the 

viability after germination percentage (including germinated seeds) was 30-58% at 

5/15 °C, and 7-61% at 15/25 °C, respectively. For CHK 6259, seed viability after 

germination percentage (including germinated seeds) was 40-67% at 5/15 °C, and 45-71% 

at 15/25 °C, respectably. 

For CHK 1410, seeds stored in air at 22.5 °C with 7-8% as well as seeds stored in N2 at 

4 °C showed significant higher values in percentage of un-germinated but viable seeds 

than seeds stored in air at -20 °C with 1-3% moisture content when germinated at 15/5 

°C. For CHK 6259, seeds stored in air at 4 °C with 7-8% moisture content showed 

significantly higher percentage of un-germinated but viable seeds than seeds stored in air 

at -20 °C with 1-3% moisture content, 25 °C with two moisture contents and in N2 at 4 

°C when germinated at 25/15 °C. 
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Figure 4-1 Effects of one-year storage treatments on seed viability after germination 

percentage (including germinated seeds) (right) and percent of un-germinated but viable 

seeds (left) in two collections of chokecherry at two germination temperatures. Means 

with same letters within a collection, germination temperature and parameter are not 

significantly different at p≤0.05
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Table 4-1 Effects of one-year storage treatments on seed vigour and viability in CHK 1410. Data are Means ± SE. Means with the 

same letters within a collection and parameter are not significantly different at P≤0.05. 

Gas T(°C) 
MC 

(%) 

EC 

(μS*cm-

1g-1) 

V (%) 

GT (15/5°C) GT (15/25°C) 

G (%) 
UVS 

(%) 

GRI 

(%*d-1) 

VI 

(mm*%) 
G (%) 

UVS 

(%) 

GRI 

 (%*d-1) 

VI 

(mm*%) 

Initial 
 

- 93±3a 10±2a - - - 33±17a - - - 

Air 

-20 
 7/8 109±14a 92±5a 37±34a 29±34ab 1.3±1.1a 831±774a 28±36a 15±23a 3.7±3.4a 801±959a 

 1/3 104±14a 96±4a 30±27a 23±5b 1.5±1.4a 731±635a 38±33a 12±14a 2.3±2.1a 1067±929a 

22.5 
 7/8 106±3a 92±2a 16±17a 49±2ab 0.6±0.6a 393±352a 12±21a 3±5a 1.2±2.1a 474±822a 

 1/3 112±25a 93±5a 10±9a 53±9a 1.1±1.5a 206±189a 27±29a 0±0a 2.1±2.6a 662±657a 

4 
 7/8 87±5a 83±5a 30±7a 43±21ab 1.5±0.2a 710±570a 32±41a 9±8a 2.3±3.1a 833±976a 

 1/3 106±9a 96±2a 32±30a 28±18ab 1.0±1.0a 621±928a 24±29a 7±8a 1.9±1.9a 745±757a 

N2 
4  7/8 91±23a 93±7a 17±15a 54±9a 1.5±1.9a 373±578a 8±7a 20±28a 0.8±0.7a 255±274a 

22.5  7/8 105±12a 93±5a 26±37a 20±19b 1.6±2.7a 805±961a 28±45a 3±5a 3.0±4.9a 1043±1794a 

T= storage temperature, MC=Seed moisture content, G=Final germination percentage, EC=Electrolyte conductivity,  

UVS= Un-germinated viable seeds, GT= Germination temperature, V= Viability, GRI= Germination rate index, VI= Vigour 

index 

 

 

 

 

 



 

4
2
 

Table 4-2 Effects of one-year storage treatments on seed vigour and viability in CHK 6259. Data are Means ± SE. Means with the 

same letters within a collection and parameter are not significantly different at P≤0.05. 

Gas 
T 

(°C) 

MC 

(%) 

EC 

(μS*cm-

1g-1) 

V (%) 

GT (15/5°C) GT (15/25°C) 

G (%) UVS (%) 
GRI 

(%*d-1) 
VI (mm*%) G (%) 

UVS 

(%) 

GRI 

(%*d-1) 

VI 

(mm*%) 

Initial 
 

- 98±1a 16±5a - - - 53±4a - - - 

Air 

-20 
 7/8 96±13a 95±3a 21±20a 38±3a 1.6±1.5a 478±500a 35±42a 

6±5a

b 
2.3±2.0a 793±807a 

 1/3 93±17a 95±4a 29±26a 26±13ab 2.4±2.6a 1040±979a 24±37a 2±3b 1.5±2.3a 936±1502a 

22.5 
 7/8 107±23a 97±1a 17±22a 27±14ab 1.1±1.0a 233±222a 20±22a 2±3b 1.6±1.7a 958±1223a 

 1/3 115±16a 100±0a 13±22a 44±32a 0.7±1.3a 388±672a 25±25a 2±3b 2.2±2.0a 688±678a 

4 

 7/8 98±14a 97±1a 37±36a 31±8ab 1.5±1.6a 699±623a 21±28a 
17±2

2a 
1.8±2.6a 320±437a 

 1/3 93±17a 99±1a 45±40a 19±3b 3.8±3.3a 940±851a 33±29a 
4±7a

b 
1.9±1.9a 877±774a 

N2 
4  7/8 115±11a 95±3a 31±28a 38±20a 2.4±2.5a 774±677a 28±26a 2±3b 2.2±1.9a 806±750a 

22.5  7/8 126±5a 98±2a 46±40a 31±28ab 2.0±1.8a 1364±1186a 28±37a 0±0b 2.1±2.5a 300±325a 

T= storage temperature, MC=Seed moisture content, G=Final germination percentage, EC=Electrolyte conductivity,  

UVS= Un-germinated viable seeds, GT= Germination temperature, V= Viability, GRI= Germination rate index, VI= Vigour index 
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 Storage of pin cherry seeds  

The germination and viability of PIN 1298 did not show any significant difference 

(P>0.05) between fresh and one-year-stored seeds (Table 4-3, Table 4-4). The highest 

vigour and highest total germination percentage was found in PIN 1298 stored at -20 °C 

with 1-3% moisture content comparing to other storage treatments (Figure 4-2). The seed 

viability after germination (including germinated seeds) was significantly lower than the 

viability before germination. For PIN 1298, seed viability after germination percentage 

(including germinated seeds) was 9-60% at 5/15 °C, and 17-34% at 15/25 °C, 

respectively. For PIN 1298, seeds stored in air with 1-3% at – 20 °C and 4 °C showed 

higher percentage in un-germinated but viable seed than seeds stored in N2 at 22.5 °C.  

For PIN 1618, seeds stored in air with 1-3% moisture content at – 20 °C had higher value 

in un-germinated but viable seeds than seeds stored at 22.5 °C. There was no germination 

at 25/15 °C for PIN 1298 stored at 4 °C with 1-3% moisture content, and PIN 1618 stored 

at 4 °C with 7-8% moisture content at both 15/5 °C and 25/15 °C, or stored at 22.5 °C 

with 1-3% moisture content, stored in nitrogen with germination temperature of 15/5 °C. 
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Figure 4-2 Effects of one-year storage treatments on seed viability after germination 

percentage (including germinated seeds) (right) and percent of un-germinated but viable 

seeds (left) in two collections of pin cherry at two germination temperatures. Means with 

same letters within a collection, germination temperature and parameter are not 

significantly different at p≤0.05. 
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Table 4-3 Effects of one-year storage treatments on seed vigour and viability in PIN 1298. Data are Means ± SE. Means with the same 

letters within a collection and parameter are not significantly different at P≤0.05.  

Gas 
T 

(°C) 

MC 

(%) 

EC 

(μS*cm-

1g-1) 

V (%) 

GT (15/5°C) GT (15/25°C) 

G (%) 
UVS 

(%) 

GRI 

(%*d-1) 

VI 

(mm*%) 
G (%) 

UVS 

(%) 

GRI 

(%*d-1) 

VI 

(mm*%) 

Initial - 95±2a 8±2b 
 

- - 5±3a 
 

- - 

Air -20 7/8 190±28a 88±4ab 9±8b 15±4bc 0.5±0.5a 476±541b 7±3a 26±16ab 0.5±0.3a 62±17a 

  
1/3 204±14a 96±4a 24±4a 35±13a 1.9±1.3b 1354±56a 3±5a 29±18ab 1.2±2.1a 96±166a 

 
22.5 7/8 206±39a 93±4ab 1±8b 8±0c 0.1±0.2a 27±46b 1±2a 27±22ab 0.2±0.3a 129±223a 

  
1/3 189±37a 92±4ab 4±9b 17±12bc 0.2±0.2a 246±262b 4±0a 29±19ab 0.4±0.1a 74±27a 

 
4 7/8 185±16a 87±5ab 5±5b 21±13bc 1.8±2.8a 485±767b 3±0a 16±18ab 1.0±1.1a 258±357a 

  
1/3 219±52a 92±0ab 8±4b 31±10ab 0.6±1.1a 116±200b 0±0a 35±25a - - 

N2 4 7/8 182±4a 83±4b 7±2b 12±7c 0.3±0.3a 114±130b 8±5a 33±16a 0.2±0.4a 59±102a 

 
22.5 7/8 192±24a 97±1a 13±2b 16±6bc 0.3±0.2a 143±58b 7±2a 11±3b 0.7±0.5a 305±384a 

T= storage temperature, MC=Seed moisture content, G=Final germination percentage, EC= Electrolyte conductivity,  

UVS= Un-germinated viable seeds, GT= Germination temperature, V= Viability, GRI= Germination rate index, VI= Vigour index 
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Table 4-4 Effects of one-year storage treatments on seed vigour and viability in PIN 1618. Data are Means ± SE. Means with the same 

letters within a collection and parameter are not significantly different at P≤0.05. 

Gas 
T 

(°C) 
MC (%) 

EC 

(μS*cm-

1g-1) 

V (%) 

GT (15/5°C) GT (15/25°C) 

G (%) 
UVS 

(%) 

GRI 

(%*d-1) 

VI 

(mm*%) 
G (%) 

UVS 

(%) 

GRI 

(%*d-1) 

VI 

(mm*%) 

Initial - 98±1a 25±3a 
 

- - 8±1a 
 

- - 

Air -20 7/8 165±30a 97±1a 3±5b 9±11ab 0.1±0.1a 19±32a 1±2b 19±10a 0.2±0.3a 70±121a 

  
1/3 158±11a 95±3a 2±3b 18±14a 0.3±0.5a 116±202a 3±5b 19±18a 0.5±0.8a 61±105a 

 
22.5 7/8 145±10a 99±1a 0±2b 8±4ab 0.1±0.1a 5±9a 1±0b 8±11b 0.1±0.2a 7±12a 

  
1/3 168±24a 97±3a - 7±4b - - 1±4b 8±0b 0.2±0.4a 21±36a 

 
4 7/8 166±19a 97±3a - 14±12ab - - - 10±6ab - - 

  
1/3 156±13a 94±6a 1±0b 7±6b 0.1±0.1a 35±61a 3±2b 13±4ab 0.1±0.2a 59±102a 

N2 4 7/8 190±12a 94±6a - 8±8ab - - 1±6b 13±10ab 0.4±0.6a 28±48a 

 
22.5 7/8 175±4a 97±1a - 15±9ab - - 4±2ab 3±5b 0.5±0.7a 110±156a 

T= storage temperature, MC=Seed moisture content, G=Final germination percentage, EC=Electrolyte electrolyte conductivity, 

UVS= Un-germinated viable seeds, GT= Germination temperature, V= Viability, GRI= Germination rate index, VI= Vigour index 
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 Analysis of seed protein profiles after one-year storage treatments 

4.1.3.1 Comparison of two protein extraction methods 

Two methods were tested and compared for protein extraction from chokecherry and pin 

cherry seeds. Analysis of proteins extracted by phenol and Tris-HCl extraction methods 

by SDS-PAGE revealed both methods extracted polypeptides with a wide range of 

molecular weights from 10 to 120 kDa (Figure 4-3). However, the phenol extraction 

method showed slightly more polypeptide bands in the 15 and 80 kDa size range, and 

was therefore used in subsequent experiments. 

4.1.3.2 Analysis of seed protein profiles after one year storage treatments 

Total phenol-soluble proteins were extracted from chokecherry seeds stored for one year 

under different combinations of temperature, humidity and gaseous environments. 

Western blot analyses using dehydrin specific antibodies revealed detecteble amounts of 

dehydrin proteins in seeds stored under different storage conditions (Figure 4-4). The 

highest abundance of the 25.9 kDa polypeptide band was observed in two N2 treatments 

stored at different temperatures with 7-8% moisture content, and air treatment stored at -

20 °C with 7-8% moisture content; no band was detected above the 25.9 kDa for these 

three treatments. Seeds stored at room temperature (22.5°C ) in the air showed lower 

accumulation of 25.9 kDa dehydrin protein and seeds stored with 1-3% moisture content 

tended to have less dehydrin polypeptides with molecular masses lower than 25.9 kDa. 

Therefore, the different storage conditions had effects on the production of dehydrins.  
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Figure 4-3 SDS-PAGE analysis of chokecherry and pin cherry seed proteins. The 

proteins were extracted using Tris-HCl buffer (M2) or phenol (M1) extraction method. 

The left lane indicates unigram of standard polypeptides.  CHK: chokecherry, PIN: pin 

cherry.  

 

Figure 4-4 Immunoblot analysis of dehydrins in chokecherry seeds upon different one-

year storage treatments. The western blot of total protein (35 μL/lane) was probed with 

antibodies against dehydrin proteins. The right lane indicates unigram of standard 

polypeptides 
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4.2 Accelerated seed aging 

 Seed viability and germination changes during accelerated seed aging  

Seed viability before germination test decreased with increasing aging duration in both 

pin cherry and chokecherry collections (Figure 4-5). A significant decrease in viability 

and germination showed after 10 d aging PIN 1298 and CHK 1410. No seeds were viable 

in chokecherry and pin cherry after 25 d aging treatment. Both germination and viability 

(before and after germination test) declined during accelerated seed aging duration with 

high R2 (0.59-0.86) (Table 3-1). Seed viability after germination test, which included 

germinated seeds and un-germinated but viable seed, was lower than the viability before 

germination test. CHK 1410 collection showed a significant (P≤0.05) decline in seed 

viability after 5 d accelerated aging. The percentage of viable un-germinated seed was 

also significantly reduced after 10 d aging treatment in two chokecherry collections, and 

after 15 d in pin cherry (Table 4-5)
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Figure 4-5 Observed (symbol) and simulated (solid line) seed viability and germination in chokecherry and pin cherry collections 

during artificial aging process at 45°C with 60 % RH. Values are mean ± SE (n=6). 
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No germination was found in CHK 1410 and PIN 1298 collection after 10 d aging 

treatments (Figure 4-5). For CHK 1410, the total germination percentage was 

significantly reduced from 25% to 10% (P≤0.05); the germination rate index declined 

from 1.0 to 0.4% / d, and the vigour index decreased from 279 to 26 mm×% after 5 d 

aging treatment (Table 4-5). The length of radicle and hypocotyl also decreased with 

accelerated aging from 7 mm to 1 mm, and 9 mm to 1 mm after 5 d aging, respectively. 

No significant increase was found in the mean germination time between non-aged and 

5 d aged seeds.  

For PIN 1298, the total germination percentages were 15% for 0 d and 5 d aged seeds 

(Table 4-5, Figure 4-5). No germination was observed after 10 d aging duration. No 

significant (P≤0.05) difference was found between non-aged and 5 d aged seeds in 

germination rate index, seedling length, vigour index, and mean germination time. 

Regression equations represent total germination percentage and viability [before and 

after (including germinated seeds) germination test] list in the Table 4-6. 
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Table 4-5 Seed germination rate index, seedling vigour and seed viability after various duration of accelerated seed aging treatment for 

chokecherry and pin cherry collections.  

Collections Duration (d) GRI (% *d-1) R (mm) H (mm) TT (mm) VI (mm*%) UVS (n) MGT (d) 

CHK 1410 0 1.0±0.6a 7±6a 9±7a 16±12a 279±209a 3±1a 27±7a 

 

5 0.4±0.3b 1±0b 1±0b 2±0b 26±15b 3±1a 19±10a 

 

10 - - - - - 1±1b - 

 

15 - - - - - 0±1b - 

  20 - - - - - - - 

PIN 1298 0 0.7±0.7a 6±4a 9±5a 15±6a 262±264a 3±1a 30±8a 

 

5 0.6±0.7a 4±4a 7±4a 11±8a 183±292a 2±1ab 25±6a 

 

10 - - - - - 2±1bc - 

 

15 - - - - - 0±1c - 

  20 - - - - - - - 

R=Radicle length, H=Hypocotyl length, TT =Total seedling length, GRI = Germination rate index, VI = Vigour index, UVS = Un-

germinated viable seed, MGT=Mean germination time; “-” indicates data are not available.  

Values are mean ± SE; values with the same letter within a collection and parameter are not significantly different at p≤0.05.  
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TZ tests showed evenly stained entire embryo in non-aged chokecherry seeds (Figure 

4-6.). After 10 d aging treatment, part of the embryo and cotyledon could not be stained. 

Embryo was completely unstained after 20-25 d aging treatment, which indicated the 

total loss of seed viability. 

 

Figure 4-6 Seed viability evaluation of chokecherry. Half seeds of CHK 1410 accession 

stained with TZ at various days of aging.  
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Table 4-6 Regression equations for seed viability and total germination percentage as a 

function of artificial aging time.  

Species Equation R2 P-value 

CHK 1410 

VBG=88.04-2.65t-0.03t2 0.84 <0.0001 

VAG=55.62-5.36t+0.13 t2 0.84 <0.0001 

G=22.56-2.76t-0.08 t2 0.60 <0.0001 

PIN 1298 

VBG=100-3.89t-0.02 t2 0.81 <0.0001 

VAG=44.43-3.41t+0.06 t2 0.76 <0.0001 

G=18.25-1.89t-0.05 t2 0.59 <0.0001 

BUF 1424 

VBG=91.67-2.15t-0.06 t2 0.93 <0.0001 

VAG=68.80-5.15t+0.09 t2 0.84 <0.0001 

G=57.23-4.50t+0.08 t2 0.75 <0.0001 

BUF 14903 

VBG=92.86-2.21t+0.06 t2 0.92 <0.0001 

VAG=67.57-5.01t+0.08 t2 0.75 <0.0001 

G=51.69-4.43t+0.08 t2 0.69 <0.0001 

BUF 9134 

VBG=97.20-1.59t+0.09 t2 0.97 <0.0001 

VAG=47.39-3.91t+0.09 t2 0.73 <0.0001 

G=29.81-3.27t+0.09 t2 0.79 <0.0001 

BUF 4096 

VBG=90.89-2.16t-0.07 t2 0.91 <0.0001 

VAG=67.34-5.71t+0.12 t2 0.76 <0.0001 

G=52.82-4.62t+0.09 t2 0.68 <0.0001 

DOG 3259 

VBG=61.24-2.47t+0.26 t2 0.82 <0.0001 

VAG=59.64-5.03t+0.11 t2 0.75 <0.0001 

G=36.98-3.43t+0.13 t2 0.69 <0.0001 

DOG 3119 

VBG=76.00-1.21t+0.13 t2 0.78 <0.0001 

VAG=72.64-6.71t+0.16 t2 0.87 <0.0001 

G=33.02-4.11t+0.12 t2 0.82 <0.0001 

DOG 6930 

VBG=64.38-0.52t+0.12 t2 0.87 <0.0001 

VAG=59.01-4.44t+0.08 t2 0.76 <0.0001 

G=55.67-6.65t+0.19 t2 0.89 <0.0001 

DOG 3914 

VBG=71.62-0.15t+0.18 t2 0.94 <0.0001 

VAG=51.18-5.15t+0.10 t2 0.78 <0.0001 

G=41.81-5.01t+0.14 t2 0.74 <0.0001 

VAG: Viability after germination (including germinated seeds), VBG: Viability 

before germination, G: total germination percentage 
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All buffalo berry collections showed high viability before aging treatment, especially 

BUF 14903 with 100% viability before germination test (Figure 4-7). Seed viability of 

BUF 1424 and BUF 4096 showed significant (P≤0.05) decline after 10 d aging while that 

of BUF 14093 and BUF 9134 decreased after 5 d aging treatment. All buffalo berry 

collections lost their viability after 25 d accelerated aging. Seed viability after 

germination (including germinated seeds) was lower than the viability before germination 

test in all buffalo berry collections. In BUF 4096, BUF 1424, and BUF 14093 collections, 

viability after germination (including germinated seeds) decreased significantly after 10 d 

aging; seed viability after germination (including germinated seeds) declined after 5 d 

aging in BUF 9134 (Table 4-7). The percentage of viable but un-germinated seeds was 

also significantly reduced after 5 d for BUF 9134, 15 d for BUF 14093, BUF 1424, and 

BUF 4906, respectively. Regression equations represent total germination percentage and 

viability [before and after (including germinated seeds) germination test] list in the Table 

4-6. 
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Figure 4-7 Observed (symbol) and simulated (solid line) seed viability and germination in 

four buffalo berry collections and during artificial aging process at 45 °C with 60% RH. 

Values are mean ± SE (n=6). 
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Seeds failed to germinate in BUF 1424 and BUF 4906 after 20 d aging treatments, and 

BUF 14903 and BUF 9134 after 15 d aging treatments (Figure 4-7). The total 

germination percentage of non-aged seeds was high, 50%, 42%, 45%, for BUF 1424, 

BUF 14093, and BUF 4906 collection, respectively. In BUF 1424, BUF 14903, and BUF 

4906, no significant decrease was found between 0 d and 5 d aged seeds in total 

germination percentage (P≤0.05). After 10 d of aging treatment, however, the total 

germination percentage was reduced significantly (P≤0.05). In BUF 9134 collection, total 

germination percentage was significantly reduced from 30% to 19% after 5 d of aging 

treatment (P≤0.05). 

The germination rate index was significantly (P≤0.05) decreased from 2.7-5.2 to 0.2-0.4 

%/d after 10 d accelerated seed aging treatments (Table 4-7). In BUF 9134 collection, the 

vigour index was significantly decreased from 249 to 103 mm*% after 5 d aging 

treatments. In BUF 14093, BUF 4906, and BUF 1424 collections, the average vigour 

index was significantly decreased from 348-532 to 18-20 mm*% after 10 d aging 

treatment (P<0.05). Hypocotyl and seedling length was significantly reduced after 15 d 

aging treatment in BUF 1424 and BUF 4096 (P<0.05). However, no significant 

difference was found in radicle length in the accelerated aging duration in all buffalo 

berry collections (P >0.05). No significant difference was found in the mean germination 

for BUF 1424 collection. After 10 d aging treatments, the mean germination time 

increased significantly from 11 to 26 d in BUF 14903 and from 10 to 21 d in BUF 9134, 

respectively. In BUF 4906 collection, significant difference was found after 15 d aging 

treatment with an increase in the meantime from 12 d (non-aged) to 21 d (15 d aged).
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Table 4-7 Seed germination rate index, seedling vigour and seed viability after various durations of accelerated seed aging treatment 

for four buffalo berry collections 

Collections Duration (d) GRI (% *d-1) VI (mm*%) UVS (%) R (mm) H (mm) TT (mm) MGT 

BUF 1424 0 4.8±1.3a 348±96a 13±6a 3±3a 5±4a 8±6a 13±4a 

 

5 4.8±1.1a 284±93a 4±3ab 2±1a 3±3ab 6±4ab 14±2a 

 

10 0.4±0.5b 32±50b 10±13ab 2±1a 2±2ab 4±2ab 18±5a 

 

15 0.2±0.4b 28±45b 3±5b 1±1a 1±1b 2±1b 18±0a 

  20 - - 3±4b - - - - 

BUF 14093 0 5.0±1.2a 403±195a 16±4a 4±4a 6±5a 10±8a 11±2a 

 

5 4.7±2.1a 447±272a 12±8ab 3±2a 6±4a 9±6a 13±2a 

 

10 0.2±0.3b 18±21b 11±12ab 3±2a 4±2a 7±3a 26±12b 

 

15 - - 7±4b - - - - 

  20 - - 4±5b - - - - 

BUF 4096 0 5.2±2.4a 532±409a 15±13a 4±3a 7±5a 11±7a 12±3a 

 

5 3.9±1.1a 399±195a 8±12ab 3±2a 5±4ab 8±5ab 15±3a 

 

10 0.3±0.3b 20±30b 9±10ab 2±2a 3±1ab 5±3ab 15±5a 

 

15 0.1±0.2b 13±33b 2±4b 1±1a 1±1b 2±0b 31±9b 

  20 - - 3±4b - - -   

BUF 9134 0 2.7±1.5a 249±144a 22±9a 3±2a 6±3a 8±5a 10±2a 

 

5 2.0±0.8a 103±88b 11±5b 2±1a 3±3a 5±3a 11±3a 

 

10 0.2±0.5b 13±22b 13±9b 2±1a 2±2a 4±2a 21±14b 

 

15 - - 8±10b - - - - 

  20 - - 3±6b - - - - 

R=Radicle length, H=Hypocotyl length, TT =Total seedling length, GRI = Germination rate index, VI = Vigour index, UVS = Un-

germinated viable seed, MGT=Mean germination time; “-” indicates data are not available.  

Values are mean ± SE; values with the same letter within a collection and parameter are not significantly different at p≤0.05.  
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The initial seed viability (before germination test) was around 80% before the aging test, 

and then decreased in all collections of dogwood with increased aging duration (Figure 

4-8). After 10 d aging treatment, DOG 3914, DOG 6930 and DOG 3119 showed 

significant decline in seed viability (before germination test) (P<0.05); and DOG 3259 

decreased after 15 d accelerated aging. After 25 d aging, all dogwood collections lost 

their viability. In non-aged seeds, the viability after germination (including germinated 

seeds) was similar to before germination viability in non-aged DOG 3119, DOG 3259 

and DOG 6930 collections, while the viability after germination (including germinated 

seeds) of DOG 3914 was significant lower than the original one. Seed viability after 

germination (including germinated seeds) decreased after 5 d aging for DOG 3119 and 

DOG 3419, and 10 d aging for DOG 3259 and DOG 6930, respectively. The percentage 

of un-germinated but viable seeds declined after accelerated aging of 10 d for DOG 3259, 

and 20 d for DOG 6930, DOG 3914, DOG 3119, respectively. Regression equations 

represent total germination percentage and viability [before and after (including 

germinated seeds) germination test] list in the Table 4-6. 
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Figure 4-8 Observed (symbol) and simulated (solid line) seed viability and germination in 

four dogwood collections during artificial aging process at 45 °C with 60 % RH. Values 

are mean ± SE (n=6). 
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No seeds germinated for DOG 6930 and DOG 3259 collections after 15 d aging treatment 

and for DOG 3119 and DOG 3914 after 10 d aging treatments (Figure 4-8). The total 

germination percentage of non-aged seeds were 53% for DOG 6930, 42% for DOG 3914, 

32% for DOG 3119, and 36% for DOG 3259, respectively. Total germination percentage 

were significantly reduced to 36% for DOG 6930 (P<0.05), 28% for DOG 3914, and 20 

for DOG 3119 after 5 d aging treatments, respectively.  In DOG 3259 collection, no 

significant difference was observed between 0 d and 5 d aged seed in total germination 

percentage (P>0.05), and significant difference was found after 10 d aging treatments 

(P<0.05).  

There was significant (P<0.05) difference in germination rate index of all dogwood 

collections after 10 d accelerated aging treatments (Table 4-8). The four collections 

gradually reached their germination peak around 40-45 d after three weeks warm 

stratification with the average germination index of 0.1-10.8 %/d.  Seed vigour index was 

observed significantly decreased in DOG 6930, DOG 3914, and DOG 3119 after 5 d 

aging treatments (P<0.05), and 10 d for DOG 3259. Seed radicle length, hypocotyl 

length, seedling length, and radicle -hypocotyl length also showed significant decrease 

after the 10 d aging treatments (P<0.05). No significant increase was observed in mean 

germination time for all dogwood collections in non-aged and 5 d aged seeds. The mean 

germination time increased significantly from 10 to 23 d for DOG 6930 and DOG 3259 

after 10 d accelerated aging (P<0.05), respectively.  
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Table 4-8 Seed germination rate index, seedling vigour and seed viability after various duration of accelerated seed aging treatment for 

four dogwood collections.  

Collections Duration (d) GRI (%*d-1) R (mm) H (mm) TT (mm) VI (mm* %) UVS (n) MGT (d) 

DOG 6930 0 10.8±6.7a 7±3a 13±6a 19±8a 1003±225a 3±1a 11±5a 

 
5 4.4±0.8b 4±2a 9±5a 13±6a 457±79b 1±1b 12±5a 

 
10 0.1±0.2b 0±1b 2±4a 2±5a 14±35c 2±1b 24±2b 

 
15 - - - - - 1±1b - 

  20 - - - - - 1±1b - 

DOG 3259 0 4.7±3.1a 4±2a 15±12a 20±13a 577±247a 2±1a 14±2a 

 
5 3.4±0.4a 3±2a 9±5ab 12±7ab 450±208a 1±1b 14±8a 

 
10 0.1±0.3b 2±1a 2±1b 4±2b 9±22b 1±1b 24±1b 

 
15 - - - - - 1±1b - 

  20 - - - - - - - 

DOG 3914 0 9.9±3.6a 5±3a 12±6a 17±8a 625±182a 2±1a 11±9a 

 
5 7.1±6.2a 4±2a 10±5a 14±6a 393±114b 2±1ab 10±4a 

 
10 - - - - - 2±2ab - 

 
15 - - - - - 1±1ab - 

  20 - - - - - -   

DOG 3119 0 7.4±4.6a 5±3a 13±10a 18±12a 570±259a 2±1a 10±2a 

 
5 3.4±1.2a 3±2a 9±5a 12±7a 252±199b 2±1a 10±3a 

 
10 - - - - - 1±1a - 

 
15 - - - - - 1±1a - 

  20 - - - - - - - 

R=Radicle length, H=Hypocotyl length, TT =Total seedling length, GRI = Germination rate index, VI = Vigour index, UVS = 

Un-germinated viable seed, MGT=Mean germination time; “-” indicates data are not available.  

Values are mean ± SE; values with the same letter within a collection and parameter are not significantly different at p≤0.05.  
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 Electrolyte conductivity changes during accelerated seed aging 

The electrolyte conductivity of buffalo berry seeds soaked in water increased with 

increasing aging and soaking time in all collections (Figure 4-9). Significant difference 

was found in electrolyte conductivity after accelerated aging of 20 d for BUF 4093, 15 d 

for BUF 4096, 5 d for BUF 1424, 10 d for BUF 9134 comparing to the control (P<0.05), 

respectively. After 20 d aging treatment, average electrolyte conductivity was elevated to 

632, 276, 312, and 539 μS∙cm-1g-1 in BUF 1424, BUF 14093, BUF 4906, and BUF 9134, 

respectively. For BUF 9134 and BUF 1424, seed electrolyte conductivity was 

significantly higher in 20 d aged seeds than the 0 d aged seeds when soaked for 48 h with 

distilled, deionized water (P<0.05). For BUF 9134, significant difference was found after 

10 d ageing treatments after soaked for 2-48 h (P<0.05).  For BUF 4906, however, only 

the electrolyte conductivity of 0 h and 12 h soaking didn’t show significant difference 

among different aging duration. In BUF 4096, no significant difference was found in 

electrolyte conductivity among 0-10 d aged seeds after soaked for 0-12 h. However, 

significant difference was found between 0 d and aged seeds after soaked for 48 h 

(P<0.05). In BUF 14903, no significant difference was found in electrolyte conductivity 

of 0-15 d aged seed’s when soaked for 0-24 h. After soaked for 48 h, significant 

difference was found between non-aged and aged seeds (P<0.05). 
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Figure 4-9 Electrolyte conductivity of four buffalo berry collections during artificial 

aging at 45°C with 60% RH. Values are mean ± SE (n=6). ‘*’ indicates significant 

difference among aging time within the same soaking time (P ≤ 0.05). 
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The electrolyte conductivity of dogwood seed increased with soaking time in all 

collections (Figure 4-10). For DOG 3914, the highest electrolyte conductivity appeared to 

20 d aged seeds, however, 5 d and 10 d aged seeds showed significantly higher than other 

aged seeds after soaking for 24 h (P<0.05).  In DOG 3119, significant difference was 

found after 10 d aging treatment in 0 h soaking, after 20 d aging during 2-5 h soaking, 

and after 15 d aging treatment during 12-48 h soaking (P<0.05). For DOG 3259, 

significant difference was observed after 5 d aging treatment during 0 and 12-48 h’s 

soaking; significant difference was also found after 10 d aging during 2-5 h soaking 

(P<0.05). For DOG 6930, no significant difference was found among electrolyte 

conductivity of different aging duration when soaking for same time until 24 h’s soaking. 

After 20 d aging treatments, the average electrolyte conductivity was elevated to 201, 

168, 296, and 118 μS∙cm-1g-1 in DOG 6930, DOG 3259, DOG 3914 and DOG 3119 

respectively .The leakage was significantly elevated after 15 d aging treatment for DOG 

3119, 5 d for DOG 3259, and 10 d for DOG 3914, respectively (P≤0.05).  
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Figure 4-10 Electrolyte conductivity of four dogwood collections during artificial aging 

at 45°C with 60% RH. Values are mean ± SE (n=6). ‘*’ indicates significant difference 

among aging time within the same soaking time (P ≤ 0.05). 
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The electrolyte conductivity in all chokecherry and pin cherry collections increased with 

soaking time (Figure 4-11). Electrolyte conductivity significantly increased after 5 d 

aging for CHK 1410, and 10 d for PIN 1298. For CHK 1410 and PIN 1298, the 

electrolyte conductivity significantly increased with the increment of the aging duration 

after the same soaking time (P≤0.05). After 15 d aging treatment, significant differences 

were detected in seed electrolyte conductivity for CHK 1410, and PIN 1298(P≤0.05). In 

CHK 1410, electrolyte conductivity of 5 d and 10 d aged seeds showed significantly 

higher values than seeds of other durations. For PIN 1298, no significant difference was 

detected between 0 d and 5 d, 10d and 15 d aged seeds at any soaking time. Due to the 

increased leakage, aged pin cherry seeds (5 d &10 d) became more vulnerable to fungi 

infection during the germination period than non-aged seeds (0 d). (Figure 4-12, A)
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Figure 4-11 Electrolyte conductivity of a chokecherry and a pin cherry collection during artificial aging at 45°C with 60%RH. Values are 

mean ± SE (n=6). ‘ * ’ indicates significant difference among aging time within the same soaking time (P ≤ 0.05) 
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Figure 4-12 Aged seeds were more vulnerable to fungal infection than non-aged seeds during germination. A: PIN 1298; B: LBC 7278, 0: 

0 d, 5: 5 d, and 10: 10 d. Petri-dishes in the same column are aged for same duration. 
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 Effects of accelerated seed aging on seed properties 

For BUF 14903, significant correlations were observed between aging durations (Table 

4-9). Electrolyte conductivity showed a strong, negative correlation with seed viability, 

and positive correlations with aging duration and mean germination time. Viability before 

and after (including germinated seeds) germination test showed strong correlations with 

most parameters, except mean germination time.  

For BUF 4096, negative correlations were found between aging duration and most 

measurements; strong, positive correlations were observed between aging duration and 

mean germination time and electrolyte conductivity (Table 4-10). Positive correlation 

was also found between electrolyte conductivity and mean germination time. The 

viability after germination (including germinated seeds) showed significant correlations 

with germination rate index, viability before germination test, and aging duration.
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Table 4-9 Simple correlation coefficients between various measures of seed quality for BUF 14903 during accelerated seed aging.  

Correlations 

BUF 14903 UVS VAG GRI G V EC TT VI MGT 

AD -.82** -.86** -.81** -.81** -.89** .49** -.59* -.55* .67** 

UVS 1 .86* .89** .85** .71** -0.2 0.39 .52* -.58* 

VAG 
 

1 .90** .84** .73** -0.3 0.43 .52* -.62* 

GRI 
  

1 .82** .66** -0.29 0.18 0.34 -.66** 

G 
   

1 .71** -0.36 .63** .88** -.63* 

V 
    

1 -.54** .63** .48* -0.21 

EC 
     

1 -0.17 -0.29 .51* 

TT 
      

1 .87** -0.42 

VI 
       

1 -0.48 

MGT                 1 

** Significant at P ≤ 0.01 (2-tailed). 

*. Significant at P ≤ 0.05 (2-tailed). 

UVS= Un-germinated but viable seeds, VAG= Viability after germination (including germinated seeds), GRI=Germination rate index, 

G= Total germination percentage, V=Viability before germination, EC=Electrolyte conductivity, TT= Seedling length, VI=Vigour 

index, MGT=Mean germination time. 
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Table 4-10 Simple correlation coefficients between various measures of seed quality for BUF 4096 during accelerated seed aging.  

Correlations 

BUF 

4096 
UVS VAG GRI G V EC TT VI MGT 

AD -.83** -.85** -.81** -.80** -.81** .78** -.66** -.58* .82** 

UVS 1 .96** .86** .78** .61** -.68** 0.42 0.39 -.54* 

VAG 
 

1 .81** .85** .60** -.69** .58* .62** -.56* 

GRI 
  

1 .73** .54** -.63** 0.15 0.12 -.54* 

G 
   

1 .55** -.65** .62** .84** -0.37 

V 
    

1 -.76** 0.29 0.12 -.78** 

EC 
     

1 -0.46 -0.36 .80** 

TT 
      

1 .86** -0.42 

VI 
       

1 -0.28 

MGT                 1 

** Significant at P ≤ 0.01 (2-tailed). 

*. Significant at P ≤ 0.05 (2-tailed). 

UVS= Un-germinated but viable seeds, VAG= Viability after germination (including germinated seeds), GRI=Germination 

rate index, G= Total germination percentage, V=Viability before germination, EC=Electrolyte conductivity, TT= Seedling 

length, VI=Vigour index, MGT=Mean germination time. 
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For BUF 9134, negative correlations were found between aging duration and most 

measurements (UVS, VAG, G, V), and a strong, positive correlation was observed 

between aging duration and electrolyte conductivity; however no significant correlations 

were found with mean germination time (Table 4-11). Mean germination time did not 

show any significant correlation with any measurements. Electrolyte conductivity showed 

significant negative correlations with percentage of un-germinated but viable seeds, 

germination rate index, total germination percentage and viability after germination. 

For BUF 1424, a strong, positive correlation was observed between aging duration with 

electrolyte conductivity, and negative correlations were found between aging duration 

and most measurements (Table 4-12). However, no significant correlation was found 

between aging duration with seedling length and mean germination time. Electrolyte 

conductivity showed significant negative correlations with viability after germination, 

percentage of un-germinated but viable seeds, and final germination percentage. No 

significant correlation was found between seedling lengths and all other measurements. 
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Table 4-11  Simple correlation coefficients between various measures of seed quality for BUF 9134 during accelerated seed aging.  

Correlations 

BUF 

9134 
UVS VAG GRI G V EC TT VI MGT 

AD -.81** -.83** -.77** -.82** -.85** .92** -.58* -.61* 0.52 

UVS 1 .95** .71** .74** .69** -.82** 0.26 0.22 -0.06 

VA

G  
1 .61** .78** .69** -.82** .63* .56* -0.21 

GRI 
  

1 .78** .64** -.79** -0.19 0.01 -0.48 

G 
   

1 .68** -.82** .53* .85** -0.45 

V 
    

1 -.83** 0.47 0.21 -0.16 

EC 
     

1 -0.13 -0.26 0.42 

TT 
      

1 .87** -0.26 

VI 
       

1 -0.34 

MG

T 
                1 

** Significant at P ≤ 0.01 (2-tailed). 

*. Significant at P ≤ 0.05 (2-tailed). 

UVS= Un-germinated but viable seeds, VAG= Viability after germination (including germinated seeds), 

GRI=Germination rate index, G= Total germination percentage, V=Viability before germination, EC=Electrolyte 

conductivity, TT= Seedling length, VI=Vigour index, MGT=Mean germination time. 
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Table 4-12 Simple correlation coefficients between various measures of seed quality for BUF 1424 during accelerated seed aging.  

Correlations 

BUF 

1424 
UVS VAG GRI G V EC TT VI MGT 

AD -0.91** -0.90** -.84** -.84** -.92** .93** -0.32 -.80** 0.48 

UVS 1 .92** .94** .94** .81** -.85** 0.28 .85** -.59* 

VAG 
 

1 .92** .92** .81** -.82** 0.28 .84** -.66** 

GRI 
  

1 .90** .70** -.81** 0.13 .62** -.72** 

G 
   

1 .75** -.82** 0.18 .83** -0.44 

V 
    

1 -.88** 0.26 .77** -0.39 

EC 
     

1 -0.2 -.69** 0.33 

TT 
      

1 .58* -0.14 

VI 
       

1 -0.42 

MGT                 1 

** Significant at P ≤ 0.01 (2-tailed). 

*. Significant at P ≤ 0.05 (2-tailed). 

UVS= Un-germinated but viable seeds, VAG= Viability after germination (including germinated seeds), GRI=Germination 

rate index, G= Total germination percentage, V=Viability before germination, EC=Electrolyte conductivity, TT= Seedling 

length, VI=Vigour index, MGT=Mean germination time. 
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For CHK 1410, negative correlations were found between aging duration and most 

measurements (Table 4-13). However, no significant positive correlation was found 

between aging duration and electrolyte conductivity and mean germination time 

Electrolyte conductivity showed strong, negative correlations with germination rate index, 

final germination percentage, and viability before germination. The viability after 

germination (including germinated seeds) showed positive correlations with germination 

rate index, viability before germination, and seedling length. The total germination 

percentage showed strong negative correlation with electrolyte conductivity and aging 

duration; and strong positive correlations with the percentage of un-germinated but viable 

seeds, and viability before germination. 

For PIN 1298, strong negative correlations were found between aging duration with the 

percentage of un-germinated but viable seeds, viability before / after germination, final 

germination percentage, and positive correlations between aging duration and electrolyte 

conductivity (Table 4-14). Electrolyte conductivity tests showed strong negative 

correlations with the percentage of un-germinated but viable seeds, viability before/ after 

germination, and final germination percentage.  
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Table 4-13 Simple correlation coefficients between various measures of seed quality for CHK 1410 during accelerated seed aging.  

Correlations 

CHK 

1410 
UVS VAG GRI G V EC TT VI MGT 

AD -.88** -.89** -.74** -.67** -.86** 0.36 -0.58 -.66* -0.34 

UVS 1 .90** .76** .64** .77** -0.29 .64* 0.37 0.42 

VAG 
 

1 .78** .67** .78** -0.32 .61* 0.37 0.47 

GRI 
  

1 .85** .65** -.49** 0.2 0.35 0.02 

G 
   

1 .63** -.53** 0.22 0.53 0.49 

V 
    

1 -.56** .68* .76** 0.47 

EC 
     

1 0.14 -0.06 -0.05 

TT 
      

1 .88** .65* 

VI 
       

1 .61* 

MGT                 1 

** Significant at P ≤ 0.01 (2-tailed). 

*. Significant at P ≤ 0.05 (2-tailed). 

UVS= Un-germinated but viable seeds, VAG= Viability after germination (including germinated seeds), GRI=Germination 

rate index, G= Total germination percentage, V=Viability before germination, EC=Electrolyte conductivity, TT= Seedling 

length, VI=Vigour index, MGT=Mean germination time. 
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Table 4-14 Simple correlation coefficients between various measures of seed quality for PIN 1298 during accelerated seed aging.  

Correlations 

PIN 

1298 
UVS VAG GRI G V EC TT VI MGT 

AD  -.75**  -.74** -0.45  -.54**  -.87** .77** -0.04 0.02 -0.39 

UVS 1 .94** 0.42 .63** .70**  -.55** 0.23 0.56 .70* 

VAG 
 

1 .57* .84** .68**  -.63** 0.54 .85** 0.4 

GRI 
  

1 .62** 0.42  -.51* 0.32 0.48 -0.03 

G 
   

1 .47**  -.62** .78** .96** -0.17 

V 
    

1  -.75** 0.06 0.21 0.44 

EC 
     

1  -.68* -0.26 0.67 

TT 
      

1 .81** -0.38 

VI 
       

1 -0.03 

MGT                 1 

** Significant at P ≤ 0.01 (2-tailed). 

*. Significant at P ≤ 0.05 (2-tailed). 

UVS= Un-germinated but viable seeds, VAG= Viability after germination (including germinated seeds), GRI=Germination 

rate index, G= Total germination percentage, V=Viability before germination, EC=Electrolyte conductivity, TT= Seedling 

length, VI=Vigour index, MGT=Mean germination time. 
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For DOG 3119, strong negative correlations were observed between aging duration and 

most measurements (Table 4-15). The electrolyte conductivity showed a strong positive 

correlation with aging duration, and negative correlation with viability before 

germination. No significant correlations were found between mean germination times and 

other measurements.  

For DOG 6930, negative correlations were found between aging duration and most 

measurements; however, no significant positive correlation was found between aging 

duration and electrolyte conductivity, and mean germination time (Table 4-16). Negative 

correlation was observed between electrolyte conductivity and viability before 

germination.   

For DOG 3914, negative correlations were found between aging duration and most 

measurements (Table 4-17); however, no significant strong positive correlations were 

found between aging duration with before germination viability, electrolyte conductivity, 

and mean germination time. Strong negative correlations were also observed between 

electrolyte conductivity and total germination percentage and viability before 

germination. The viability after germination (including germinated seeds) was positively 

correlated with germination rate index, seedling length, and vigour index. 

For DOG 3259, negative correlations were found between aging duration and most 

measurements (Table 4-18). However, a strong positive correlation was observed 

between aging duration and electrolyte conductivity, and no significant correlations were 

found between aging duration and vigour index and mean germination time. Strong 

negative correlations were observed between electrolyte conductivity with the percentage 

of un-germinated but viable seeds, viability before/ after germination, final germination 

percentage, and germination rate index.  
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Table 4-15 Simple correlation coefficients between various measures of seed quality for DOG 3119 during accelerated seed aging.  

Correlations 

DOG 

3119 
UVS VAG GRI G V EC TT VI MGT 

AD -.87** -.84** -.72** -.83** -.90** .47** -0.51 -.60* -0.11 

UVS 1 .96** .79** .89** .72** -0.24 0.31 0.48 0.09 

VAG 
 

1 .69** .83** .69** -0.34 -0.25 -0.06 0.41 

GRI 
  

1 .90** .62** -0.18 0.47 .77** -0.49 

G 
   

1 .71** -0.22 0.52 .84** -0.04 

V 
    

1 -.63** 0.54 .59* 0.25 

EC 
     

1 .66* 0.36 -0.29 

TT 
      

1 .87** -0.21 

VI 
       

1 -0.22 

MGT                 1 

** Significant at P ≤ 0.01 (2-tailed). 

*. Significant at P ≤ 0.05 (2-tailed). 

UVS= Un-germinated but viable seeds, VAG= Viability after germination (including germinated seeds), GRI=Germination 

rate index, G= Total germination percentage, V=Viability before germination, EC=Electrolyte conductivity, TT= Seedling 

length, VI=Vigour index, MGT=Mean germination time. 
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Table 4-16 Simple correlation coefficients between various measures of seed quality for DOG 6930 during accelerated seed aging.  

Correlations 

DOG 

6930 
UVS VAG GRI G V EC TT VI MGT 

AD -.89** -.88** -.72** -.87** -.66** 0.25 -.91** -.89** 0.42 

UVS 1 .97** .83** .92** .52** -0.19 .81** .84** -0.36 

VAG 
 

1 .79** .92** .57** -0.27 .63* .78** -0.27 

GRI 
  

1 .82** .41* -0.07 .68* .71** -0.42 

G 
   

1 .51** -0.16 .68* .93** -0.37 

V 
    

1 -.62** -0.05 0.08 0.37 

EC 
     

1 0.41 0.31 -0.53 

TT 
      

1 .88** -0.48 

VI 
       

1 -0.41 

MGT                 1 

** Significant at P ≤ 0.01 (2-tailed). 

*. Significant at P ≤ 0.05 (2-tailed). 

UVS= Un-germinated but viable seeds, VAG= Viability after germination (including germinated seeds), GRI=Germination 

rate index, G= Total germination percentage, V=Viability before germination, EC=Electrolyte conductivity, TT= Seedling 

length, VI=Vigour index, MGT=Mean germination time. 
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Table 4-17 Simple correlation coefficients between various measures of seed quality for DOG 3914 during accelerated seed aging.  

Correlations 

DOG 

3914 
UVS VAG GRI G V EC TT VI MGT 

AD -.88** -.89** -.74** -.79** -0.34 0.14 -.76** -.83** -0.09 

UVS 1 .95** .74** .75** 0.2 0.17 .89** .61* 0.17 

VAG 
 

1 .75** .85** 0.3 -0.14 .69** .75** 0.3 

GRI 
  

1 .85** .48** -0.21 0.42 .74** -0.31 

G 
   

1 .53** -.36* 0.31 .94** 0.04 

V 
    

1 -.52** -0.34 0.32 0.03 

EC 
     

1 0.33 -0.37 0.05 

TT 
      

1 .54* 0.04 

VI 
       

1 0.02 

MGT                 1 

** Significant at P ≤ 0.01 (2-tailed). 

*. Significant at P ≤ 0.05 (2-tailed). 

UVS= Un-germinated but viable seeds, VAG= Viability after germination (including germinated seeds), GRI=Germination 

rate index, G= Total germination percentage, V=Viability before germination, EC=Electrolyte conductivity, TT= Seedling 

length, VI=Vigour index, MGT=Mean germination time. 
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Table 4-18 Simple correlation coefficients between various measures of seed quality for DOG 3259 during accelerated seed aging.  

Correlations 

DOG 

3259 
UVS VAG GRI G V EC TT VI MGT 

AD -.86** -.85** -.76** -.81** -.93** .49** -.62* -0.51 0.25 

UVS 1 .96** .83** .85** .74** -.42* 0.55 0.51 -0.11 

VAG 
 

1 .83** .82** .74** -.49** 0.09 0.04 0.31 

GRI 
  

1 .87** .63** -.47** -0.01 0.32 -0.13 

G 
   

1 .72** -.48** 0.14 .69** -0.55 

V 
    

1 -.54** 0.43 0.25 -0.4 

EC 
     

1 0.08 0.02 -0.23 

TT 
      

1 .79** -0.43 

VI 
       

1 -.61* 

MGT                 1 

** Significant at P ≤ 0.01 (2-tailed). 

*. Significant at P ≤ 0.05 (2-tailed). 

UVS= Un-germinated but viable seeds, VAG= Viability after germination (including germinated seeds), GRI=Germination rate 

index, G= Total germination percentage, V=Viability before germination, EC=Electrolyte conductivity, TT= Seedling length, 

VI=Vigour index, MGT=Mean germination time. 
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 Seed protein changes during accelerated seed aging 

Proteins extracted from all treatments in chokecherry and pin cherry showed a 25.9 kDa 

polypeptide that reacted with dehydrin antibodies (Figure 4-13). In chokecherry species, 

the dehydrin antibodies recognized two clear bands around 25.9 kDa non-aged seeds. 

One clear band appeared above the two already exsisting bands after 5 d aging treatment. 

For the pin cherry collection, the protein patterns of seed changed after artificial aging. 

The concentration of 25.9 kDa protein increased steadily with aging period, and a new 

protein band appeared after 10 d aging treatments at 19.4 kDa.  
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Figure 4-13. Accumulation of dehydrins during seed aging. The western blot of total protein (35 μL/ lane) was probed with antibodies 

against dehydrin protein. Numbers on the left indicate the approximate molecular weights. CHK = chokecherry; PIN = pin cherry. 
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5 DISCUSSION 

5.1 Seed properties as affected by one year storage under various temperature/ 

RH/ gas conditions 

One-year storage of two chokecherry collections and two pin cherry collections did not 

reveal any significant differences in most seed biochemical and physiological properties 

with the exception of total seed viability. Seeds stored at -20 C had higher final 

germination and vigour index, and lower percentage of un-germinated but viable seeds 

than seeds stored at room temperature (22.5 C). Seeds lose vigour and become more 

sensitive to stresses during storage (Butler et al., 2009; Ballesteros et al., 2011). Storage 

temperature, relative humidity, and atmosphere are considered to be the main factors 

affecting seed aging (Ballesteros et al., 2011). Elevated temperatures can increase seed 

deterioration rate (Priestley, 1986; Ballesteros et al., 2011) while sub-zero temperatures 

may prolong seed survive for several decades (Roberts, 1972; Vertucci et al., 1990; 

Walters, 2007). According to Stevens et al. (1981), shrub seeds can maintain germination 

ability up to 10 years when stored in an open, unheated and uncooled warehouse.  

The two seed moisture contents tested in these experiments, 3~4% (ultra-dry) and 7~8% 

(normal), did not have significant effects on seed properties after one-year storage. Seeds 

with high moisture content may be damaged during freezing due to the presence of free 

water (Roberts, 1972; Vertucci et al., 1990; Coolbear, 1995; Schwember et al., 2011). On 

the other hand, desiccation damage may occur when seeds are too dry (Hong et al., 1996; 

Bewley et al., 2013).  

One year after storage, N2 treatment showed a trend of higher total germination 

percentage and seed vigour index. The presence of O2 during storage not only accelerates 

seed respiration rate, but also stimulates the growth of aerobic microorganisms (Roberts, 
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1961; Osonubi et al., 1980; Schwember et al., 2011). CO2 can also promote the growth of 

obligate anaerobes (Negm et al., 1972; Reilly, 1980; Mohammadi et al., 2011). Hence, 

the replacement of O2 and CO2 with N2 in storage can extend seed viability (Bass et al., 

1978; Bass, 1980; Schwember et al., 2011) 

Even though one-year storage is not long enough to observe significant changes in seed 

quality of native shrubs, the trends observed in sub-zero temperature N2 treatments 

showed potential to slow down seed deterioration rate and prolong seed longevity.  

5.2 Seed viability and germination as affected by artificial aging process 

Seed vigour can be predicted by subjecting seeds to a precise degree of aging in 

controlled deterioration tests (Ching, 1972; Gidrol et al., 1989; Rao et al., 2006). In the 

current study, native shrub seeds showed a decline in seed vigour after artificial aging 

treatment based on germination and tetrazolium tests. Most seeds failed to germinate 

after 10 to 15 d aging treatments at 45 oC and 60% RH.  Seeds deteriorate rapidly after 

exposure to both high temperature and high humidity under laboratory conditions (Gidrol 

et al., 1989; Hyatt et al., 2008). Vegetative seeds such as carrot (Daucus carota), onion 

(Allium cepa), or lettuce (Lactuca sativa) lose vigour rapidly after being exposed to high 

temperature (45 oC) and high humidity (100%) conditions for 72 h (Delouche et al., 1973; 

Bailly et al., 1996; Rodo et al., 2003). Shrub seeds are more resistant than crop seeds to 

accelerated aging since most of them have hard seed coats. Generally seeds with hard 

seed coats are long lived (Bass, 1980; Priestley, 1986; Rao et al., 2006) because hard seed 

coats prevent seeds not only from mechanical injury, but also temperature and humidity 

stress as well as the invasion of microorganisms (Mohamed-Yasseen et al., 1994). 

Aged seeds exhibited delayed and reduced germination especially after 10 d aging 

treatments. Slower germination is considered an indicator of vigour loss (Ching, 1972; 
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Carjuzaa et al., 2008; Hyatt et al., 2008). The prolonged germination period /slower 

growth caused by artificial aging in soybean (Glycine max II Mef. var. Wayne) and onion 

seeds is contributed by reduced vigour (Berjak et al., 1972; Parrish et al., 1978; Priestley, 

1986; Rice et al., 2001). Fresh seeds usually germinate faster and more uniformly than 

stored / aged seeds (Demir et al., 2008). This kind of delay is considered to be associated 

with the time required for internal repair of damaged membranes (Rice et al., 2001). In 

most shrub species in this study, no germination was observed after 15 d aging, possibly 

due to degradation of nucleic acids, proteins and/or membranes (Priestley, 1986; Mtwisha 

et al., 1998; Bewley et al., 2013), accumulation of toxic compounds (Butler et al., 2009), 

and loss of vitamins or hormones (Walters, 2007). There was a delayed response to aging 

treatments in seed viability compared to germination as reported by several researchers 

(Delouche et al., 1973; Rodo et al., 2003; Hyatt et al., 2008).  

Accelerated aging reduced seedling length of shrubs, likely due to degradation of 

mitochondria DNA in membrane (Gidrol et al., 1989; Bailly, 2004; Bewley et al., 2013). 

DNA degradation leads to impaired transcription causing incomplete or faulty enzyme 

synthesis essential for earlier stages of germination (Walters et al., 2010; Schwember et 

al., 2011).  

5.3 Seed electrolyte conductivity as affected by aging process 

During accelerated seed aging process, the electrolyte conductivity was negatively 

correlated with seed viability and germination. Aging can cause inability of seeds to 

maintain membrane integrity and cause reduction in germination ability (Fessel et al., 

2006). Seeds lose vigour and become more vulnerable to stresses due to leaky 

membranes, accumulated chromosome mutations, and enzymes losing catalytic activity 

(Walters, 1998). Biological membranes support the transportation of chemicals and ions 
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thus play a key role in maintaining seed vigour (Rahoui et al., 2010). The damage on cell 

membrane determines the rate of solute leakage in response to seed aging, which can be 

an indication of seed deterioration (Priestley et al., 1979; Thuzar et al., 2010).  The 

increased leakage associated with aging may be the result of a more permeable 

membrane or a larger pool of electrolytes (Powell, 1986; Takos et al., 2012). Ching (1972) 

considered this possibility in amino acid leakage studies of vigorous and aged, non-

germinable seeds. 

The increase of membrane permeability caused by artificial aging was also indicated by 

the stimulated fungal infection in our study. Leakage substances include ionic solutes, 

small organic molecules such as amino acids and sugar (Lee et al., 1995), which are 

favourable for fungi growth (Overath et al., 1973; Rahoui et al., 2010).  

5.4 Rate of aging between species 

Buffalo berry and dogwood have thin seed coats and lower electrolyte leakage rates than 

other shrub species studied. The hard, thick seed coat serves as primary defense against 

adverse environmental conditions and leakage, but also inhibits germination (Mohamed-

Yasseen et al., 1994; Butler et al., 2009). Seeds of dogwood and buffalo berry are 

‘shallow’ dormant than other shrub species studied and only required 2-3 weeks of 

stratification to break the dormancy. These two species also showed a more uniform and 

rapid seedling growth.      

5.5 Seed protein changes as affected by aging process 

Dehydrins are proteins that are induced and accumulate during seed maturation, which 

protect tissues from abiotic stresses (Delahaie et al., 2013). According to Yamane et al. 

(2006), dehydrins play an important role in Prunus species during the dormancy period. 

Cold stress can induce dehydrins production, which can enhance the performance of 
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future seedlings (Delseny et al., 2001; Brooks, 2011). After one-year storage treatments, 

the accumulation of dehydrins was greater in chokecherry seeds that were stored with N2 

at room temperature, as well as seeds stored at sub-zero temperature.  

In response to stress, plants may produce specific proteins to protect the cellular 

machinery and damage repair (Rajjou, 2008b). Immunological detection by western blot 

revealed the expression of dehydrins with a molecular mass of ~27 kDa under heat stress. 

In both species chokecherry and pin cherry, the concentration of dehydrins increased 

after aging treatments, indicating a protective role of these proteins just like other heat 

stress proteins (Wang et al., 2003; Rurek, 2010). Dehydrins share many physiological 

properties such as function and structure with small heat shock proteins (Mtwisha et al., 

1998; Delahaie et al., 2013). This kind of water-soluble and heat stable proteins showed 

maintenance of structural stability under a variety of stresses (Delseny et al., 2001). 

According to Wahid et al. (2007), an increase in leaf water pressure potential is correlated 

with the expression of dehydrins and heat shock proteins under heat stress. It has been 

suggested that dehydrins can bind to macro molecular structures to prevent cellular 

damage during stresses conditions, serving as molecular chaperones and being associated 

to the cytoplasmic membranes (Sales et al., 2000; Wahid et al., 2007; Carjuzaa et al., 

2008; Delahaie et al., 2013).  

5.6 Discussion on methods 

The extraction and preparation of protein samples are two critical steps in the proteomic 

study. Different protein extraction methods promote certain groups of proteins, which 

may not be identified by all extraction methods. There is no universe protein extraction 

method that can capture all the proteomes due to the diversity of cellular proteins 

(Saravanan et al., 2004). Degradation minimization, reproduction comprehensiveness and 
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contaminant removal are considered to be the main characteristics of ideal extraction 

methods. In this study, two widely used protein methods were assessed by examining 

characterises of extracts quantitatively and qualitatively. Different solubilisation of 

protein in different extraction buffers are the foundation of protein extraction protocols 

(Isaacson et al., 2006).  Unlike Tris-HCl buffer extraction method, in which proteins are 

obtained from cellular extracts used directly for further analysis, the phenol extraction 

method result relies on precipitating proteins from the phenol extract. According to 

Saravanan (2004), the phenol extraction method is ideal to extract proteins from resistant 

tissues such as wood, olive leaves and seeds (Ritenour et al., 2001; Saravanan et al., 

2004). Phenol extraction method is more time consuming and laborious than the Tris-HCl 

extraction method. However, the phenol extraction is more efficient than Tris-HCl in 

generating high purity protein as determined by SDS-PAGE analysis, especially in the 

region 14.5 kDa to 82.2 kDa. The high protein purity obtained by phenol extraction is 

mainly because the water-soluble contaminants are eliminated from the non-water based 

protein-enriched phenol layer (Benndorf et al., 2009).   

Seeds viability from tetrazolium test after artificial aging test showed a delay and 

overestimation in viability as validated by germination. The level of overestimation in 

triphenyl-tetrazolium chloride assay was greater for heat tolerance estimates than for salt 

and freezing tolerance estimates (Ishikawa et al., 1995). According to (Bewley et al., 

1982), the overestimating of seed viability using TZ test was caused by the delay in 

concomitant loss of dehydrogenase enzymes. Similar observation was also found in 

accelerated aging experiments in pea and onion seeds (Bass et al., 1978; Rodo et al., 2003; 

Hyatt et al., 2008). 
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5.7 Conclusions and practical implications 

Six shrub species identified by the vegetation cooperative of CONRAD, Prunus 

virginiana, Prunus pensylvanica, Arctostaphylos uva-ursi, Shepherdia canadensis, 

Cornus sericea, and Viburnum edule were used in this study. Two Prunus virginiana and 

two Prunus pensylvanica collections were stored under different gas-temperature-RH 

conditions for one year. The mechanism of seed aging was studied by subjecting 

seventeen collections of all the shrubs mentioned above to the accelerated aging test.   

In general, the duration seeds can be stored without serious loss of viability is determined 

largely by storage environment. The effects of storage conditions including the 

combination of gas, relative humidity, as well as temperature on seed physiological 

properties did not show significantly different changes after one-year storage. However, 

seed storage at room temperature with N2, as well as sub-zero temperature showed a 

trend of reduced deterioration. One year aged pin cherry showed significant decrease in 

total germination percentage after one year storage while seed viability remains very 

high, which indicate the low vigour seeds might experience deep dormancy.  

Aged seeds consistently exhibited lower performance when controlled and aged seeds 

were compared on the basis of several criteria of seed vigour. Changes in seeds of native 

shrub species that occur during accelerated aging (45oC, 60% relative humidity) showed 

subsequent loss of vigour, a decline in seedling length, germination percentage, viability， 

and overexpression of protein band at 27 kDa that was recognised by dehydrin antibody.   

The current study also suggests that electrolyte conductivity values were strongly 

correlated with seed vigour. Increased leaching of electrolytes was observed in the 

artificial aged seeds. High electrolyte conductivity in solution of aged seeds indicates 

faster deterioration. The weakening of cell membrane might have caused increased 
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leaching of metabolites and electrolyte through the semi permeable membrane into the 

inhibiting medium.  

 In conclusion, this study found the trend of optimal storage protocol for seed storage and 

improved the basic understanding of physiological and biochemical for native shrub 

species. The storage protocol developed by this study can ensure an adequate supply of 

viable shrub seeds for reclamation, which can be immediately transferred for the use by 

industrial partner. Artificial aging technique for predict seed longevity can also be 

expended for other non-crop species that can be used in reclamation of lands related to oil 

extraction; however, species specific parameters must be taken into consideration.  
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7 APPENDIX 

 

Appendix 1: Influence of one-year storage treatments on protein patterns of chokecherry collected in 2010. An equal amount (35 μL) 

of total soluble protein extracts was loaded on each lane.  Numbers on the left lane indicates the approximate molecular weights. 
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Appendix 4: Observed (symbol) and simulated (solid line) viability before germination and viability after germination (including 

germinated seeds) test  of two low bush cranberry collections during artificial aging process at 45 °C with 60 % RH. Data are Means ± 

SE. Bars are standard errors (n=6). 
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Appendix 5:  Observed (symbol) and simulated (solid line) viability before germination test and viability after germination (including 

germinated seeds) test  of two bearberry collections during artificial aging process at 45°C with 60%RH. Data are Means ± SE (n=6). 
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Appendix 6: Electrolyte conductivity of two bearberry collections after different artificial aging duration at 45°C with 60% RH. Bars are 

±SE (n=6). ‘ * ’ indicates statistically significant difference in same soaking time (P < 0.05). 
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Appendix 7: Electrolyte conductivity of two low bush cranberry collections after different artificial aging duration at 45°C with 60% RH. 

Bars are ±SE (n=6). ‘ * ’ indicates statistically significant difference in same soaking time (P < 0.05). 
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Appendix 8:  Electrolyte leakage conductivities of low bush cranberry collections after different artificial aging duration at 45°C with 60% 

RH. Bars are ±SE (n=6). ‘ * ’ indicates statistically significant difference in same soaking time (P < 0.05). 
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Appendix 9: Simple correlation coefficients between various measures of seed quality for several low bush cranberry, bear berry  and 

chokecherry collections during accelerated seed aging. VAG= Viability after germination, V=Viability before germination, 

EC=Electrolyte conductivity 

Correlation 

Species 
 

VAG V EC Species 
 

VAG V EC 

LBC 3119 

AD -.50** -.85** -0.02 

LBC 7278 

AD -.61** -.82** .12 

VAG 1.00 .34 .24 VAG 1.00 .43* -.06 

V 
 

1.00 -.38* V 
 

1.00 -.53** 

EC 
  

1.00 EC 
  

1.00 

BEAR 1117 

AD -.76** -.94** -.11 
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V 
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EC 
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CHK 1114 

AD -.62** -.88** .67** 
     

VAG 1.00 .55** -.44* 
     

V 
 

1.00 -.87** 
     

EC 
  

1.00 
     

**. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed).     
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Appendix 10: Accumulation of dehydrins in dogwood seeds during seed aging process. The western bolt of total protein (35 μL/lane) was 

probed with antibodies against dehydrin protein. Numbers on the right lane indicate approximate molecular weights. 
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Appendix 11: Protein profiles of two dogwood collections during seed aging process. An equal amount (35 μL) of total soluble protein 

extracts was loaded on each lane. Numbers on the left indicate the approximate molecular weights. 
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Appendix 12: Changes of protein patterns of CHK 1410 and CHK 1114 after different aging duration. Numbers on the left indicate the 

approximate molecular weights. M: Marker, lane 1-5： 0 day aged CHK 1410 with different loading concentration; lane 1: 10 μL, lane 2: 

15 μL, lane 3: 25 μL, lane 4: 30 μL, lane 5: 20 μL. Lane 6-7：5 d aged CHK 1410 with different loading concentration，lane 6: 30 μL, 

lane 7: 20 μL. Lane 8-13: CHK 1114 with different aging duration, an equal amount (35 μL) of total soluble protein extracts was loaded 

on each lane; lane 8: 0 d aged, lane 9: 5 d aged, lane 10: 10 d aged, lane 11: 15 d aged, lane 12: 20 d aged, lane 13: 25 d aged. 
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Appendix 13 Protein profiles of chokecherry and pin cherry seeds samples collected at different accelerate aging duration. An equal 

amount (35 μL) of total soluble protein extracts was loaded on each lane.  Numbers on the left indicate the approximate molecular 

weights. 

 


