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ABSTRACT 

 

Many experimental therapies have been used in the search for effective approaches to improve 

recovery after spinal cord injury (SCI). One of the most promising approaches is the 

augmentation of spontaneously occurring plasticity in uninjured neural pathways. Acute 

intermittent hypoxia (AIH-brief exposures to reduced O2 levels alternating with normal O2 

levels) elicits plasticity in respiratory and non-respiratory spinal systems in experimental 

animals. AIH treatment has also been shown to improve walking abilities in persons with 

chronic incomplete SCI.  In this thesis, I first examined the effect of AIH treatment, alone or in 

combination with motor training, on functional recovery in a rat model of incomplete cervical 

SCI. Second, I examined the effect of AIH on the expression of plasticity- and hypoxia-related 

proteins in the spinal cords of SCI rats. In a randomized, blinded, normoxia-controlled study, rats 

were trained to cross a horizontal ladder and footslip errors were measured before surgery for 

SCI, 4 wks post-surgery, each day of daily AIH treatment, and 1, 2, 4 and 8 weeks after 

treatment. dAIH treatment consisted of 10 episodes of AIH: (5 min 11% O2: 5 min 21% O2) for 7 

days beginning at 4 wks post-SCI. AIH-treated rats made fewer footslips on the ladder task 

compared to normoxia-treated control rats after 4 days of treatment and this improvement was 

sustained for 8 wks post-treatment. Importantly, daily ladder training was required for AIH 

treatment to facilitate recovery. AIH treatment + motor training also increased the expression of 

Hypoxia-inducible factor-1α (HIF-1α), Vascular endothelial growth factor (VEGF), Brain-

derived neurotrophic factor (BDNF), tyrosine kinase B receptors (trkB) and phospho-trkB  in 

spinal motor neurons in SCI rats compared to normoxia-treated SCI rats. In particular these 

hypoxia- and plasticity-related proteins were differentially expressed both temporally and 
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spatially in the spinal cord during AIH treatment. These findings demonstrate that AIH + motor 

training can augment neural plasticity and improve motor recovery in an animal model of SCI. 

Taken together with the promising findings from human SCI studies, the results of this thesis 

suggest that AIH has potential as an effective therapy to restore motor function after nervous 

system injury. 
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CHAPTER 1  

REVIEW OF LITERATURE 

 

1.1 Introduction 

Spinal cord injury (SCI) is a serious devastating global problem, which mostly affects young 

persons aged 16 to 30 (NSCISC 2013). It is estimated that more than 2.5 million people live with 

spinal cord injury, with more than 130,000 new injuries reported each year worldwide 

(http://www.rickhansen.com; NSCISC 2009). In North America, SCI affects over 41,000 

Canadians and 259,000 persons in the U.S.A., with approximately 1,100 and 12,000 new injuries 

occurring each year in Canada and the US respectively (http://www.rickhansen.com; Sekhon and 

Fehlings 2001; NSCISC 2009). The most common cause of spinal cord injuries is motor vehicle 

accidents, which account for 42% of reported SCI. The second most common cause of SCI are 

falls, accounting for 27% of reported SCI. The remaining causes include gunshot wounds 15%, 

sports related injuries 8% and non-traumatic injuries including spinal stenosis and spinal tumors, 

9% of total SCI.  SCI damages axonal pathways and interrupts synaptic transmission between 

brain and spinal cord and subsequently alters the motor, sensory and autonomic functions below 

the level of injury. These alterations abruptly affect multiple body systems, including respiration, 

limb movement, muscles, sexual function, bowel and bladder movement. Persons living with 

SCI, thus experience devastating physical, psychological, emotional and social consequences. 

 

Importantly, most SCIs are incomplete and leave some uninjured axonal pathways. The sparing 

of undamaged pathways contributes to spontaneous recovery of some limb and respiratory 

function following SCI (Raineteau and Schwab 2001; Fouad and Tse 2008). This recovery is 

thought to be a result of spontaneous, but limited plasticity in uninjured spinal synaptic pathways 

(Goshgarian 2003).  This partial and limited recovery can be slow and is often inadequate to 

restore normal function, so methods designed to enhance spinal plasticity might further improve 

recovery (Raineteau and Schwab 2001; Baker-Herman, Fuller et al. 2004; Golder and Mitchell 

2005). Therefore new strategies to enhance endogenous mechanisms of spinal plasticity and 

restore normal function following SCI are critically needed. Strategies to enhance plasticity in 

the spinal cord following SCI include: 
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1) neurorehabilitative or functional training, (Dietz and Fouad 2014).  

2) electrical stimulation (Carmel, Berrol et al. 2010; Onifer, Smith et al. 2011; Dietz and 

Fouad 2014).  

3) pharmacological stimulation (Dietz and Fouad 2014). 

4) acute intermittent hypoxia (AIH) (Dale-Nagle, Hoffman et al. 2010; Dale, Ben Mabrouk 

et al. 2014).  

All these plasticity promoting strategies are being found to facilitate plasticity by enhancement 

of synaptic transmission of spared pathways, alone or in combination (Onifer, Smith et al. 2011). 

 

This thesis examines acute intermittent hypoxia as a therapy to enhance spinal plasticity in a rat 

model of experimental spinal injury. Acute intermittent hypoxia (AIH) is repetitive exposure to 

reduced oxygen levels for brief periods. In this chapter, I will first review the progression of 

cellular events after traumatic SCI, and then I will discuss the different rat models and 

experimental treatments that have been used to investigate SCI. I will then outline the evidence 

for contribution of neural plasticity to recovery from SCI and finally focus on what is known 

about acute intermittent hypoxia, particularly the evidence that AIH might be a good candidate 

treatment for enhancing plasticity and improving functional recovery after SCI.  

 

1.2 Spinal Cord Injury 

The spinal cord contains neural circuitry and motoneurons in the central core of grey matter and 

axonal pathways in the surrounding white matter. Many of the consequences of spinal cord 

injury arise from the interruption of the white matter axonal connections between the brain and 

spinal cord, resulting in paresis or paralysis and loss of sensation to the different parts of the 

body controlled by the spinal cord segments below the injury. An injury at the cervical level may 

cause paralysis of both arms and legs resulting in quadriplegia, whereas lower injuries may 

affect only the lower part of the body causing paraplegia (Tetzlaff, Fouad et al. 2009). Spinal 

cord injuries also can lead to other complications, including respiratory insufficiency, the leading 

cause of death in patients with high-cervical spinal cord injuries, sexual impotence, muscle 

spasticity and loss of bladder and bowel control (Winslow and Rozovsky 2003; Sipski, 

Alexander et al. 2006; Francis 2007; Opperman, Buchholz et al. 2010). The physical disabilities 
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associated with SCI vary greatly depending on the type and severity of the injury, the level of the 

spinal cord at which injury occurs, and the nerve fibers pathways that are damaged due to injury. 

 

Spinal cord injuries in general can be classified as either complete injuries or incomplete 

injuries.  With complete SCI, there is total loss of sensation and voluntary movement below the 

level of injury. Incomplete SCI is more common and is characterized by some degree of 

sensation and movement below the level of injury. It is possible that the classification of the 

injury might change during recovery (Kirshblum, Millis et al. 2004).  Each type of SCI occurs in 

two phases primary and secondary phase of SCI, discussed in detail in the following Section 1.3. 

 

1.3 Phases of Spinal cord Injury 

There are two mechanisms by which SCI damages the spinal cord, a primary or mechanical 

injury and a secondary injury process. Primary injury causes damage locally, namely in the area 

of the vertebral fracture, and it is characterized by acute hemorrhage and ischemia. Secondary 

damage is mediated through multiple processes, including inflammation, apoptotic cell death, 

excitotoxicity within the first week following SCI, causing further destruction of neuronal and 

non-neuronal cells (Liu, Zhang et al. 2006). Secondary mechanisms of injury exacerbate lesion 

size and severity, which ultimately increases the functional deficits (Tator and Fehlings 1991). 

The identification and understanding of mechanisms which initiate and sustain the inflammatory 

response, apoptosis, excitotoxicity, could help us to develop new treatment strategies which 

prevent or reduce this secondary damage and improve functional recovery (Zhang, Yin et al. 

2012). These primary and secondary mechanisms of spinal cord damage are described in more 

detail below. 

 

1.3.1 Primary injury 

The causes of SCI are diverse in origin and can result from contusion, compression, penetrations 

or maceration of the spinal cord (Kwon, Tetzlaff et al. 2004; Onifer, Rabchevsky et al. 2007). 

Acute SCI is a bi-phasic process involving primary and secondary mechanisms. The primary 

injury to the spinal cord occurs at the instant of impact and is commonly due to mechanical 

damage. This damage can be contusion resulting in cavity formation, compression caused by 
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increased pressure to the spinal tissue, laceration from sharp bone fragments or foreign objects, 

and shearing caused by bullets (Blight 2000). The most common cause of primary SCI is 

vertebral fracture, which typically tears the spinal cord tissues and produces characteristic 

damage of the gray and white matter (Choo, Liu et al. 2007; Rowland, Hawryluk et al. 2008; 

Choo, Liu et al. 2009). In addition to disrupting axons, mechanical damage causes death of 

neurons, oligodendrocytes and astrocytes, and endothelial cells located at the site of the lesion. 

Disruption of blood vessels also causes hemorrhage (Rowland, Hawryluk et al. 2008).  

 

1.3.2 Secondary Injury 

The secondary injury is a progressive degeneration beginning immediately after the primary 

injury and may last for days, weeks or months. It is a highly complex process and involves 

numerous mechanisms including ischemia, inflammation, generation of free radical species, 

necrosis and apoptosis, and dysregulation of ionic hemostasis (Kwon, Tetzlaff et al. 2004).   

 

1.3.2.1 Ischemia 

SCI induces changes in spinal cord blood flow at the systemic and local level and a major 

reduction in blood flow (ischemia) occurs at the lesion site (Sekhon and Fehlings 2001). There 

are several mechanisms that are responsible for ischemia, including vasospasm due to release of 

vasoactive amines, hemorrhages, endothelial swelling and thrombosis through platelet 

aggregation (Dohrmann and Allen 1975; Nemecek 1978; de la Torre 1981; Wallace, Tator et al. 

1986; Tator and Fehlings 1991). Neurons are critically dependent on oxygen and glucose. 

Damage to blood vessels causing oxygen and nutritional insufficiency can lead to neuronal 

apoptosis (Tator and Koyanagi 1997). 

 

1.3.2.2 Inflammation 

The blood brain barrier is highly selective barrier that is responsible for preventing blood cells 

from invading spinal tissue. Following SCI, this barrier is physically broken, causing an increase 

in permeability, allowing the cells from the blood to invade and initiate the inflammatory 

response. This contributes to secondary damage in the spinal cord (Popovich, Yu et al. 1997; 

Bareyre and Schwab 2003).  Inflammation is a universal defense response to tissue injury and is 
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initiated after SCI (Kwon, Tetzlaff et al. 2004). The inflammatory response includes the invasion 

of inflammatory cells (neutrophils, T-lymphocytes), and macrophages, and release of noncellular 

inflammatory components such as cytokines, prostaglandins, interleukins. The cellular and 

noncellular components mediate the inflammatory response and contribute to further tissue 

damage (Rowland, Hawryluk et al. 2008).  

 

1.3.2.3 Excitotoxicity 

Ionic homeostasis is necessary to maintain the calcium gradient across the cell membrane. This 

homeostasis of calcium ion gradients can be disrupted due to mechanical changes in the 

microvasculature and hemorrhage, which can lead to increased intracellular calcium ion 

concentration, causing the depolarization of the cell membrane (Choi 1988; Wells, Hurlbert et al. 

2003; Kusters, Dernison et al. 2005). This in turn can cause increased release of the most 

prevalent excitatory neurotransmitter, glutamate, into the synaptic cleft. Regulation of glutamate 

concentration is necessary to maintain the normal cellular function of neurons. Glutamate 

activates NMDA receptors, which allow massive influx of calcium ions into the cell. This 

triggers calcium-induced calcium release from the intracellular calcium store into the cytoplasm 

(Mody and MacDonald 1995; Kwon, Tetzlaff et al. 2004). This elevated concentration of 

calcium ions in cytosol can trigger many calcium-dependent intracellular pathways and activate 

the lytic enzymes such as proteases, caspases, caplains, phospholipases, endonucleases, and 

lipoxygenase that alter cellular metabolism and cause dysregulation of mitochondrial oxidative 

phosphorylation leading to apoptotic cell death of neurons (Choi 1988; Dusart and Schwab 1994; 

Mody and MacDonald 1995; Wells, Hurlbert et al. 2003). 

  

1.3.2.4 Apoptotic cell death 

Apoptosis is a programmed cell death and it occurs around the lesion epicenter as well as within 

the areas of Wallerian degeneration in both ascending and descending tracts of white matter in 

the spinal cord (Emery, Aldana et al. 1998). Apoptosis has been identified in the spinal cord of 

rats  and humans after SCI (Crowe, Bresnahan et al. 1997; Emery, Aldana et al. 1998; Wada, 

Yone et al. 1999; Mattson 2000; Byrnes, Stoica et al. 2007) .  It may occur as a result of adverse 

changes in the cellular environment as described above, resulting in axonal demyelination or as a 
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result of Wallerian degeneration or by a combination of both (Barres, Jacobson et al. 1993; 

Dusart and Schwab 1994; Liu, Zhang et al. 2006; Whalley, O'Neill et al. 2006; Titsworth, Cheng 

et al. 2009). After traumatic SCI in rats, apoptotic pathways are activated in neurons in the first 

hours after injury, and hours to days later in oligodendrocytes adjacent to and distant from the 

injury site (Springer, Azbill et al. 1999; Mattson 2000; Soini, Kahlos et al. 2005).  

 

1.4 Experimental rodent models of spinal cord injury 

A variety of animal models including dogs, cats, guinea pig, primates and rodents have been 

developed to examine the mechanisms, pathophysiology and functional deficits following SCI, 

and also to test intervention strategies to develop effective therapies for the treatment of SCI. 

Rodents, such as rats and mice, have emerged as the main animal used in spinal cord injury 

research, making up 90% of laboratory animals used in SCI research. The advantages of using 

rodents include low costs of purchasing and housing, as well as a short life span. 

 

Rat models of SCI are the most widely used to study the mechanism and consequences of SCI 

because many of the morphological, biochemical, functional and behavioural changes that occur 

after SCI are similar to those seen in humans after SCI. The most commonly used rat models of 

spinal cord injuries are transection models, compression models, contusion models and 

chemically-induced models  (Geissler, Schmidt et al. 2013). Compression and contusion injuries 

are most common in humans (Geissler, Schmidt et al. 2013). There is no single model that has 

dominated in the field of SCI research and each model has advantages and disadvantages. 

 

1.4.1 Contusion 

The production of an experimental spinal contusion injury is the most commonly used method 

because these injuries are clinically relevance to SCI occurring in humans  (Blight 2000). This 

method relies on an impactor device that hits the spinal cord and produces either a defined force 

upon or a defined displacement of the cord. The contusion model of spinal cord injury was first 

developed by Allen, who used a weight drop technique on the spinal cord in dogs (Allen 1911). 

This weight drop technique was later developed in rats to deliver a blunt contusive force to the 

spinal cord (Wrathall, Pettegrew et al. 1985). This weight drop technique is now widely used to 
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produce contusion models of SCI, and several devices are designed to produce blunt contusive 

injury in animals. The New York University (NYU) Impactor is a sophisticated device 

introduced by Gruner in 1992 (Gruner 1992). The NYU Impactor drops a 10-gram weight from 

6.25, 12.5, 25 or 50 mm directly onto the exposed spinal cord.  This weight impacts the spinal 

cord with a defined force and induces contusion injury quickly. A modified version of weight 

drop impactor was introduced at the Ohio State University Spinal Cord Research Centre, where 

researchers developed the Ohio  State University (OSU) electromechanical spinal cord impactor, 

a device which induces the injury by solenoid-controlled air cylinder (Noyes 1987). The severity 

of injury depends on the velocity and height of weight drop onto the exposed spinal cord. Both 

NYU and OSU impactors apply and remove force within one second and so induce contusion 

quickly. These impactor produce contusion injury in animals that allow to study the mechanism 

of secondary damage to spinal cord. 

 

The majority of SCI in humans is contusive in nature and a contusion model of SCI is generally 

accepted as being clinically relevant to SCI (Norenberg, Smith et al. 2004; Kwon, Hillyer et al. 

2010). Contusion SCI models are ideal for study of the pathologies and mechanisms of 

secondary damage to the spinal cord (Nobunaga, Go et al. 1999). Moreover, contusion models of 

SCI have been useful for the study of neuroprotective strategies, plasticity and demyelination 

after SCI (Blight 2000; Onifer, Rabchevsky et al. 2007).  Nevertheless, contusion models do not 

completely mimic clinical occurrences of SCI in that the contusion models require pre-injury 

laminectomy, including surgical removal of muscles, ligaments and part of the vertebra (Fukuda, 

Nakamura et al. 2005). The technique used to produce contusion injury by impactor also induces 

some undesirable damage to soft tissue in surrounding areas (Fukuda, Nakamura et al. 2005). 

Finally, the contusive injury model is not a good model for investigation of axonal regeneration 

due to incomplete nature of the injury and the complexity of the tracts (Talac, Friedman et al. 

2004; Lee and Lee 2013) 

 

1.4.2 Compression 

The compression model of SCI delivers a sustained and static force to the spinal cord for a 

specific duration of time, in contrast to the contusion models that deliver a single rapid blunt 
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force to the exposed spinal cord. Compression models of SCI are highly reproducible and useful 

to study the secondary mechanisms and pathophysiology following SCI. They are used to 

examine the effect of potential therapeutic agents to protect neuronal and non-neuronal cell loss 

due to secondary injury, with the aim to limit the severity of injury and minimize functional 

deficit following SCI. Compression models produce a glial scar similar to those seen in human 

SCI (Rivlin and Tator 1978). Compression can be produced by balloon compression clip 

compression or a forceps compression. 

 

Tarlov and his colleagues developed the balloon catheter technique, the first compression model 

of SCI (Tarlov, Klinger et al. 1953). The balloon catheter is a catheter placed within the spinal 

canal, and when expanded, can induce a slowly developing compression such as seen in spinal 

tumour. The severity of injury produced by balloon catheter can be controlled by the pressure of 

inflated balloon and duration of application or by both (Martin, Schoenen et al. 1992; Vanicky, 

Urdzikova et al. 2001). This balloon catheter technique produce slow compression SCI, and 

allow to study the mechanism of SCI produce by spinal tumour.  

 

Rivilin and Tator developed a calibration clip compression model of SCI (Rivlin and Tator 1978; 

Rivlin and Tator 1978). In this model, the spinal cord is exposed by performing a laminectomy 

and the blades of an aneurysm clip are placed on both dorsal and ventral surfaces of spinal cord. 

Force is applied by closing the clip to compressing the spinal cord in a dorso-ventral direction 

(Fehlings, Tator et al. 1989; Onifer, Rabchevsky et al. 2007). The severity of the injury produced 

by calibrated clip compression can be controlled by adjustment of closing forces of the clip, the 

application time for compression or by controlling both (Onifer, Rabchevsky et al. 2007).  

 

A compression injury model of SCI has also been produced using modified surgical forceps. 

Blight developed this technique to produced lateral spinal compression injury in the guinea pig 

(Blight 1991). This calibrated forceps compression produced a larger volume of tissue 

compression and displacement of spinal column as compare to aneurysm clip compression. 

Taken together compression models of SCI are highly reproducible and useful to study the 

mechanism of pathophysiology following SCI, and are used to develop potential therapies to 

protect the spinal tissue from secondary damage after injury. 
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1.4.3 Transection 

In animal models of transection injuries, the transection is generally performed manually to 

either completely or partially severe the spinal cord. With incomplete models, one can severe 

both ascending and descending axonal pathways in specific area of spinal cord white matter i.e. 

hemisection, dorsal hemisection, lateral hemisection, dorsal quadrant. Transection models of SCI 

are less clinically relevant to human SCI compared to contusion injuries, as transection injuries 

are rarely seen in clinics (Onifer, Rabchevsky et al. 2007). Transection models of SCI are not 

useful to study the complex mechanism of pathophysiology of spinal cord or to examine the 

effect of neuroprotective strategies. Transection models have become popular and useful to study 

the functional recovery of specific axonal pathways, axon regeneration, cell transplantation, 

multiple treatment in combination or alone, biomaterial, drugs and growth factors (Bregman, 

Coumans et al. 2002; Shumsky, Tobias et al. 2003; Tobias, Shumsky et al. 2003; Knudsen, 

Moxon et al. 2011). The injury in this model can be induced without use of any special device. 

 

1.4.4 Chemical-mediated spinal cord injury 

1.4.4.1 Photochemical Ischemia Model of SCI 

An ischemia model of SCI was first developed in rabbits (DeGirolami and Zivin 1982). This   

model was produced by occlusion of the abdominal aorta just below the renal arteries. 

Unfortunately, the spinal arterial system of rabbits is segmental and unlike that of humans and 

rats. In the latter, it is not possible to produce local ischemia in the spinal cord with occlusion of 

the aorta (Fazio 1971; Kanellopoulos, Kato et al. 1997). Moreover this model was invasive and 

required abdominal surgery to ligate the abdominal aorta to interrupt the blood flow 

(Kanellopoulos, Kato et al. 1997). The model was refined to produce local ischemia by  

photochemically-produced blood clots in rats (Watson, Prado et al. 1986; Prado, Dietrich et al. 

1987). In this model, the photosensitive dye rose Bengal or erythrosine B  is injected  

intravenously and enters the systemic circulation (Watson, Prado et al. 1986; Cameron, Prado et 

al. 1990; Hao, Xu et al. 1991). The spinal cord is irradiated with a laser light, and this laser light 

interacts with rose Bengal or erythrosine B dye, which activates the dye, inducing endothelial 

damage with platelet activation and thrombosis, resulting in local blood flow interruption. The 

laser light-dye interactions induces primary microvascular occlusion and produces an ischemia 
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model of SCI (Watson, Prado et al. 1986; Prado, Dietrich et al. 1987; Cameron, Prado et al. 

1990; Hao, Xu et al. 1991). This model of SCI is highly reproducible, minimally invasive and 

represents the ischemic component of SCI (Hao, Xu et al. 1991; Onifer, Rabchevsky et al. 2007). 

Moreover, unlike other models of SCI, i.e. contusion, compression and transection, the ischemia 

model of SCI does not require laminectomy, thus reducing collateral damage to the spinal cord 

(Prado, Dietrich et al. 1987; Onifer, Rabchevsky et al. 2007). The major disadvantage of 

photochemically induced ischemia is that this type of injury in not clinically relevant to SCI. In 

addition, the size and volume of the lesion are difficult to control in this injury model (Kundi, 

Bicknell et al. 2013). This model allows the study of the secondary spinal tissue damage as a 

result of ischemia. 

 

1.4.4.2 Chemical Excitotoxicity Model of SCI 

Traumatic SCI causes the release of excitatory amino acids (EAAs) from neurons and the 

concentration of these EAAs rapidly rises to produce excitotoxicity. This excitotoxicity causes 

neuronal cell death and plays a major role in gray and white matter pathology (Park, Velumian et 

al. 2004; Onifer, Rabchevsky et al. 2007). Animal models have been developed to study the 

contribution of excitotoxicity to the secondary injury phase in traumatic SCI. The excitotoxic 

model of SCI can be produced by the administration of EAAs such as glutamate, aspartate, N-

methyl-D-aspartate (NMDA), or α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid 

(AMPA) receptor agonist kainate. Administration of these chemicals into the spinal cord causes 

the death of both oligodendrocytes and neurons. Application of kainate or quisqualic acid, both 

agonists of AMPA receptors, induces degeneration of gray matter (Yezierski, Santana et al. 

1993; Onifer, Cannon et al. 1997; Magnuson, Trinder et al. 1999; Onifer, Rabchevsky et al. 

2007). 

 

Applications of chemicals other than EAAs have also been used to induce spinal injury. 

Administration of the free redical peroxynitrite, calpain, hydrogen peroxide or the microglia 

activator zymosan into spinal cord causes damage to lipids and proteins, cell death of 

oligodendrocytes and neurons, and produces inflammation that ultimately develops into the 

pathology similar to that seen in secondary phase of traumatic SCI (Liu 1993; Hall 2001; 
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Popovich, Guan et al. 2002). In addition, micro-injection of lysolecithin or ethidium bromide 

causes demyelination  and death of oligodendrocytes  (Onifer, Rabchevsky et al. 2007).  

 

Chemical models of SCI are not physically invasive and are useful to study the pathophysiology 

of secondary mechanisms of spinal cord injury, because they produce inflammation, 

demyelination of axons, cell death of both oligodendrocytes and neurons, and degeneration of 

both gray and white matter in spinal cord, all events which occur in secondary phase of traumatic 

SCI. Chemical models of SCI allow to study the contribution of excitotoxicity to the secondary 

injury phase in traumatic SCI. 

 

1.5 Current approaches to treat experimental spinal cord injury 

A variety of approaches have been used to treat experimental spinal cord injuries. These 

approaches are listed below and explained in detail in the sections 1.5.1-1.5. 

 

1) Neuroprotective treatments which are focussed on reducing secondary damage (Yang and 

Piao 2003; Hall and Springer 2004; Thuret, Moon et al. 2006). 

2) Regenerative treatments which focus on promotion of axonal regrowth and neuronal 

replacement through the application of neurotrophic factors, blocking of inhibitory factors 

and cell transplantation (McTigue, Horner et al. 1998; Simonen, Pedersen et al. 2003; 

Fouad, Klusman et al. 2004; Kim and Jahng 2004; Kocsis, Akiyama et al. 2004; Li, Liu et 

al. 2004; Schwab, Conrad et al. 2005; Thuret, Moon et al. 2006; Rossignol, Schwab et al. 

2007; Bull, Johnson et al. 2008; Cao, Onifer et al. 2008; Ying, Roy et al. 2008; Li, Li et al. 

2009; Sieck and Mantilla 2009; Stavridis, Dehghani et al. 2009; Ronaghi, Erceg et al. 2010).  

3)  Plasticity promoting treatments that focus on enhancing endogenous mechanisms of 

recovery. Some degree of spontaneous functional improvement is generally observed within 

one year of injury in spinal cord-injured patients (Mansel and Norman 1990; Fouad, 

Krajacic et al. 2011; Dale, Ben Mabrouk et al. 2014; Dietz and Fouad 2014). It is thought 

that this recovery arises from cellular, molecular and synaptic changes in spared axonal 

pathways, collectively termed plasticity. Approaches which enhance these processes are 

under investigation for their potential to improve functional recovery. 
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All of these experimental approaches have demonstrated therapeutic potential alone or in 

combination with other treatments (Tohda and Kuboyama 2011; Wang, Zhai et al. 2011).  Many 

have been applied and tested in vitro and as well in animal models and a few have been 

translated into human clinical trials (Onifer, Smith et al. 2011; Ruff, Wilcox et al. 2011; Tohda 

and Kuboyama 2011; Dietz and Fouad 2014).  

 

1.5.1 Neuroprotective treatments 

As described in Section 1.3.2, a cascade of secondary injury events is initiated following the 

primary phase of spinal cord injury, including ischemia, electrolyte imbalance, production of 

free radicals, Wallerian degeneration, and inflammation which causes the death of neuronal and 

non neuronal cells. Collectively, this leads to significant increases in the severity and volume of 

the injury. The main objective of neuroprotective treatments is to reduce cell death of neurons, 

oligodendocytes and astrocytes, prevent vascular damage, excitotoxicity, and inflammation, and 

eventually reduce the lesion volume after primary SCI.  

 

1.5.1.1 Neuroprotective effects of anti-inflammatory agents 

Numerous strategies have been reported to provide neuroprotection in animal models of SCI. 

The use of corticosteroids has been well researched. Methylprednisolone is one of the most 

commonly investigated steroid agents for its neuroprotective effects, which have been shown to 

reduce inflammation, edema, release of free radicals and the excitatory neurotransmitter 

glutamate (Tohda and Kuboyama 2011; Zhang, Fang et al. 2014; Yilmaz and Kaptanoglu 2015) 

Application of methylprednisolone within eight hours of acute SCI has shown significant 

improvement in motor and sensory function in patients with complete or incomplete spinal cord 

injury (Bracken 2012; Chikuda, Yasunaga et al. 2013). The beneficial effects of high-dose  

methylprednisolone reported in a series of studies conducted by National Acute Spinal Cord 

Injury studies (NASCIS) in last decade of 20th century (Bracken, Shepard et al. 1990; Bracken, 

Shepard et al. 1997; Bracken 2012). According to NASCIS three phase randomized trial research 

report, a high-dose of methylprednisolone steroid therapy is the only drug therapy used 

worldwide for acute SCI shown to have efficacy when administered within eight hours of acute 
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SCI. The patients who received high-dose (30 mg/kg as a bolus followed by infusion 5.4 

mg/kg/hr) methylprednisolone within the first eight hours of injury have been shown to have 

greater neurologic improvement (Bracken, Shepard et al. 1990; Bracken, Shepard et al. 1997). 

Research reports also indicate additional benefits of methylprednisolone when the maintenance 

dose is extended from 24 to 48 hours (Bracken 2012). Methylprednisolone is one of the most 

effective drug therapy investigated for its neuroprotective effects, and used worldwide for the 

treatment of acute SCI. 

 

The disadvantages of using high-dose methylprednisolone to treat SCI are the adverse effects 

which include gastrointestinal bleeding or ulcers, respiratory tract infection, urinary tract 

infection, high blood glucose level and altered immune response due to decreased helper T-cells 

responses (Galandiuk, Raque et al. 1993; Suberviola, Gonzalez-Castro et al. 2008; Chikuda, 

Yasunaga et al. 2013). For more than decade, there has been  ongoing debate about the beneficial 

effects and clinical impact of methylprednisolone in neurological recovery from SCI (Breslin 

and Agrawal 2012). The high incidence of complications and adverse side effects in patients 

treated with high-dose methylprednisolone have made its use controversial and debatable 

(Pandya, Weant et al. 2010). 

 

There has been some research using agents directed at specific molecules in the secondary injury 

cascade. Spinal  cord injury induces the expression of several inflammatory molecules including 

tumor necrosis factor alpha (TNF-α), interleukin (IL-1, IL-6, IL-10) and chemokines MIP-1 

alpha and MIP-1 beta (Bartholdi and Schwab 1997; Bethea, Nagashima et al. 1999; Hausmann 

2003). These inflammatory molecules may reduce functional recovery by contributing to the 

formation of a glial scar in addition to causing necrosis or apoptosis of neurons and 

oligodendrocytes (Hausmann 2003). Administration of the anti-inflammatory cytokine 

interleukin-10 results in neuroprotective effects by reducing the production of TNF-α, resulting 

in improved functional recovery following SCI in rodents (Bethea, Nagashima et al. 1999; 

Brewer, Bethea et al. 1999; Abraham, McMillen et al. 2004; Jackson, Messinger et al. 2005; 

Thompson, Zurko et al. 2013). 
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Spinal cord injury also leads to release of the excitatory neurotransmitters glutamate and 

aspartate, resulting in hyperactivity of neurons which can lead to neuronal death. Studies have 

shown that treatment with the glutamate receptor antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-

benzo[f]quinoxaline-2,3-dione (NBQX) can minimize the excitotoxic damage and reduce 

functional deficits in an animal model following SCI (Wrathall, Teng et al. 1997). 

 

1.5.1.2 Neuroprotective effects of growth factors  

Administration of growth factors including brain-derived neurotrophic factor (BDNF), nerve 

growth factor (NGF), neurotrophin-3 (NT-3), basic fibroblast growth factor (bFGF), insulin-like 

growth factors (IGF), glial cell-derived neurotrophic factor (GDNF) and vascular endothelial 

growth factor (VEGF) have all demonstrated therapeutic potential in experimental SCI, 

(Houweling, van Asseldonk et al. 1998; Lee, Green et al. 1999; Rabchevsky, Fugaccia et al. 

2000; Ding, Mao et al. 2005; Sharma 2005; Hung, Tsai et al. 2007). It is thought that the primary 

role of these growth factors in SCI is to promote survival of the neuronal cells and later they play 

a role in axonal regrowth and neuronal sprouting (Rosner, Avalos et al. 2012).  

 

Neurotrophic and growth factors have been shown to promote survival and protection of neurons 

following SCI (Kelamangalath and Smith 2013). Exogenous application of either BDNF or NT-3 

through infusion into the lumbar subarachnoid space exerts neuroprotective effects and prevents 

neuronal cell death of axotomized rubrospinal neurons in rats (Novikova, Novikov et al. 2000). 

Application of BDNF in close proximity to cell bodies of rubrospinal neurons promoted survival 

of rubrospinal neurons in SCI rats (Ruitenberg, Blits et al. 2004; Kwon, Liu et al. 2007). In 

addition, exogenous administration of BDNF and NT-3 in newborn rats promoted survival of 

axotomized neurons following mid-thoracic SCI (Diener and Bregman 1994). Moreover, 

exogenous infusion of BDNF through an implanted cannula at the site of injury showed 

neuroprotective effects following thorasic SCI (Namiki, Kojima et al. 2000). Exogenous 

intrathecal administration of bFGF following SCI significantly reduces tissue damage and 

enhances functional recovery in a contusion model of SCI in rats (Rabchevsky, Fugaccia et al. 

1999). Intravenous injection of nerve growth factor (NGF) increased the survival of neurons by 
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reducing the apoptosis signal and improved motor function recovery in the contusion model of 

SCI in rats (Zhang, Wu et al. 2014).  

 

In addition to its role as angiogenic factor, vascular endothelial growth factor (VEGF) appears to 

play neurotrophic and neuroprotective roles in spinal cord and brain injury (Krum and 

Rosenstein 1998; Facchiano, Fernandez et al. 2002; Svensson, Peters et al. 2002). Furthermore, 

application of VEGF in neuronal cell culture of embryonic spinal cord of rats has demonstrated a 

neuroprotective effect on rat spinal cord neurons. VEGF mediates this neuroprotective effects by 

activating its VEGFR-2 receptors (Ding, Mao et al. 2005). 

 

1.5.2 Treatment strategies to promote regeneration  

Traumatic SCI initiates a number of cellular and molecular changes in and around the injury site. 

These cellular and molecular changes contribute to axonal damage and neuronal and non-

neuronal cell death that leads to functional deficits. Degeneration of axons occur both below and 

above the level of injury (Rosner, Avalos et al. 2012). Apoptotic cell death of oligodendrocytes 

causes demyelination and degeneration of axons. This demyelination ultimately affects the 

conduction properties of intact axons, and reduces the transmission of electrical impulses 

(Hunanyan, Garcia-Alias et al. 2010). Another major change that occurs following SCI is 

formation of a glial scar. This glial scar is formed by reactive astrocytes, which secrete a number 

of extracellular matrix growth inhibitory molecules. These create an inhibitory environment and 

play a critical role in the failure of axonal regeneration, the most important inhibitory molecules 

being semaphorin-3, keratin, tenacin and chondroitin sulphate proteoglycans (Silver and Miller 

2004; Fitch and Silver 2008; Rosner, Avalos et al. 2012). 

 

Regenerative therapeutic strategies focus on functional recovery by promoting regrowth of 

axons, sprouting and growth of new axons from the cell body of neurons and the re-myelination 

of axons to allow conduction of electrical impulses. Regenerative therapeutical strategies can be 

categorized into three classes: 

1) Strategies to block or neutralize inhibitory molecules in order to change the non-permissive 

growth environment to a permissive growth environment. 
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2) Application of growth factors to promote regeneration of axons, and  

3) Transplantation of various types of cells to replace lost neurons and/or oligodendrocytes.  

 

1.5.2.1 Strategies to block or neutralize inhibitory molecules 

Growth inhibitory molecules such as chondroitin sulphate proteoglycans (CSPGs) and myelin-

associated inhibitors play a role to make impermissive conditions for axon growth following SCI 

(Meves and Zheng 2014; Gundimeda, McNeill et al. 2015). Numerous studies have shown that 

the blocking of growth inhibitory molecule, such as CSPG, Nogo, Myelin-associated 

glycoprotein (MAG), and oligodendrocytes myelin glycoprotein (OMgp) are able to promote 

axonal growth and functional recovery to some extent following SCI in animals (Bregman, 

Kunkel-Bagden et al. 1995; Chen, Huber et al. 2000; GrandPre, Nakamura et al. 2000; Bradbury, 

Moon et al. 2002; Meves and Zheng 2014). Blocking of inhibitory molecules neutralizes the 

effect of inhibitory glycoproteins and chondroitin sulphate proteoglycans (CSPG) in the 

extracellular matrix to allow the growth of axons (Yiu and He 2006; Hunanyan, Garcia-Alias et 

al. 2010; Lee, McKeon et al. 2010).  

 

Chondroitin sulfate proteoglycans (CSPGs) are present in the extracellular matrix of the glial 

scar and are up-regulated after SCI, blocking the regeneration of axons (Davies, Goucher et al. 

1999; Kottis, Thibault et al. 2002; Jones, Margolis et al. 2003; Jones, Sajed et al. 2003; Barritt, 

Davies et al. 2006; Massey, Amps et al. 2008). Chondroitinase-ABC (ChABC) is a bacterial 

enzyme which acts on chondroitin sulphate proteoglycans to neutralize its inhibitory effect, 

which in turn improves functional recovery and promotes regeneration in injured spinal cord in 

various animal models (Bradbury, Moon et al. 2002; Chau, Shum et al. 2004; Houle, Tom et al. 

2006; Galtrey, Asher et al. 2007; Hunanyan, Garcia-Alias et al. 2010; Lee, McKeon et al. 2010). 

In addition to this, treatment with ChABC promoted the sprouting of intact and injured axons in 

a rat model of SCI (Barritt, Davies et al. 2006). Treatment with ChABC enhanced the sprouting 

of intact corticospinal tract axons and promoted recovery of forelimb function following 

unilateral pyramidotomy in a mouse model of SCI (Starkey, Bartus et al. 2012). 
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In addition to CSPGs, a number of inhibitory molecules are expressed on myelin, including 

Nogo, myelin-associated glycoprotein (MAG), oligodendrocytes myelin glycoprotein (OMgp) 

(McKerracher, David et al. 1994; Chen, Huber et al. 2000; GrandPre, Nakamura et al. 2000; 

Kottis, Thibault et al. 2002). All three myelin associated proteins, Nogo, MAG and OMgp 

mediate their inhibitory effects through common receptor known as NgR1 (Cafferty, Duffy et al. 

2010) 

 

Nogo is a transmembrane myelin associated growth inhibitory protein. The Nogo gene encodes 

three major proteins, Nogo-A, Nogo-B and Nogo-C. Nogo-A is the most studied inhibitory 

molecule expressed in oligodendrocytes and exerts inhibitory effects on axonal and neurite 

outgrowth by activating its receptor NgR1 (Spillmann, Bandtlow et al. 1998; Chen, Huber et al. 

2000; Pernet and Schwab 2012).  Monoclonal antibody IN-1 raised against myelin-associated 

Nogo proteins NI-35 and NI-250, neutralizes the inhibitory effect of Nogo protein, and promotes 

neurite growth of sensory and sympathetic neurons in culture (Caroni and Schwab 1988; Schwab 

and Caroni 2008). IN-1 also enhances the regeneration of axons and functional recovery of 

locomotion in skilled forelimb reaching task in rats and monkeys following SCI and stroke 

lesion (Pernet and Schwab 2012). IN-1 application in a rat model of SCI neutralized the 

inhibitory effect of Nogo protein and promoted neurite and axonal regeneration of corticospinal 

tract axons over distance of 5-11 mm in rats (Schnell and Schwab 1990; Schnell and Schwab 

1993; Brosamle, Huber et al. 2000). 

 

Myelin-associated glycoprotein (MAG) was the first identified myelin-associated growth 

inhibitory protein and is expressed in oligodendrocytes and Schwann cells of CNS and PNS 

respectively (Filbin 1995). Like Nogo, it is also a transmembrane protein that exerts its neurite 

and axon growth inhibiting effects by activating its receptor NgR (McKerracher, David et al. 

1994). 

 

Oligodendrocyte-myelin glycoprotein (OMgp) is a third member of myelin-associated inhibitory 

protein. It is expressed in both neurons and oligodendrocytes in the CNS (Vourc'h and Andres 

2004; Lee, Case et al. 2009). OMgp is a growth inhibitory protein that inhibits the neurite and 

axon outgrowth by activating NgR receptors (McKerracher, David et al. 1994; Kottis, Thibault et 



18 
 

al. 2002). Triple knockout mice for Nogo, MAG and OMgp myelin-associated inhibitory 

proteins exhibits axon growth above and below a spinal injury and promote behavioural recovery 

in a mouse SCI  model (Cafferty, Duffy et al. 2010). 

 

Taken together, the previous studies suggest that a variety of growth inhibitory molecules 

including CSPGs, Nogo, MAG and OMgp are released following SCI. Strategies which aim to 

neutralize or attenuate the effects of growth inhibitory molecules have the potential to promote 

regeneration and growth of axons and promote functional recovery in animal models of SCI.  

 

1.5.2.2 Application of growth factors to promote regeneration 

The application of growth factors alone or in combination to promote axonal regeneration 

following SCI has been studied in various experimental models (Giger, Hollis et al. 2010). These 

growth factors include brain-derived neurotrophic factors (BDNF), nerve growth factor (NGF), 

neurotrophin-3 (NT-3) and glial cell-derived neurotrophic factor (GDNF) and each has 

demonstrated some potential to promote axonal sprouting and re-growth of damaged axon in 

vivo and in vitro. These growth factors not only promoted axonal growth in motor axons but also 

in sensory axons as well (Liu, Kim et al. 1999; Namiki, Kojima et al. 2000; Blesch and 

Tuszynski 2003; Tobias, Shumsky et al. 2003; Brock, Rosenzweig et al. 2010). 

 

Brain-derived neurotrophic factor (BDNF) is an important member of the neurotrophin family. 

In addition to its role in neuronal survival, neuroprotection, neuronal differentiation and 

plasticity, it also plays a crucial role in axonal sprouting and regeneration  (Hiebert, Khodarahmi 

et al. 2002; Vavrek, Girgis et al. 2006; Waterhouse and Xu 2009; Ma, Wang et al. 2011; 

Nagahara and Tuszynski 2011; Park and Poo 2013; Liao, Bouyer et al. 2015). Numerous studies 

have shown that BDNF plays an important role in axonal sprouting and regeneration following 

SCI in animals (Liu, Kim et al. 1999; Namiki, Kojima et al. 2000; Hiebert, Khodarahmi et al. 

2002; Jin, Fischer et al. 2002; Lu, Jones et al. 2005). Exogenous application of BDNF by 

osmotic pump to the corticospinal neurons in the motor cortex enhanced the sprouting of injured 

corticospinal axons in rats following SCI (Hiebert, Khodarahmi et al. 2002). Furthermore, 

transplantation of BDNF-secreting fibroblast cells to the site of injury in a rat model of SCI 
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promoted regeneration of rubrospinal tract (RST) axon through and around the graft and also 

improved the functional recovery of forelimb use in a rat model of SCI (Liu, Kim et al. 1999; 

Jin, Fischer et al. 2002). Continous administration of BDNF for 14 days at the injury site 

promoted regeneration of axons in a rat clip compression model of SCI (Namiki, Kojima et al. 

2000). Moreover, transplantation of BDNF-secreting bone marrow stromal cells at the site of 

injury has been shown to promote growth of axons in SCI rats (Lu, Jones et al. 2005). 

 

Application of neurotrophin-3 (NT-3) at the site of injury in injured spinal cord has been shown 

to promote axonal sprouting and regeneration of transected and spared CST axons following SCI 

in rats (Schnell, Schneider et al. 1994; Grill, Murai et al. 1997; Zhou, Baumgartner et al. 2003; 

Ramu, Bockhorst et al. 2007). Furthermore, transplantation of NT-3 secreting fibroblasts at the 

site of injury promoted axonal growth of corticospinal neurons and improved functional recovery 

following SCI in rats (Tuszynski, Grill et al. 2003) 

 

NGF is an important regulator and is widely located throughout the PNS and CNS (Aloe, Rocco 

et al. 2012). NGF plays a critical and important role in neuronal development, survival, axonal 

regeneration and synaptic plasticity (Chen, Zhang et al. 2013; Zhang, Wu et al. 2014). Although 

NGF is expressed in injured tissues after SCI,  several studies have shown exogenous application 

of NGF reduced secondary damage and promoted neural regeneration and functional recovery 

following SCI in rats (Chen, Zhang et al. 2013; Zhang, Wu et al. 2014). Administration of NGF 

by implantation of a graft of genetically modified NGF-secreting fibroblast cells at the site of 

injury induced axonal growth in SCI rats (Tuszynski, Gabriel et al. 1996; Grill, Blesch et al. 

1997). 

 

Glial cell-derived neurotrophic factor GDNF belongs to a family of growth factors, transforming 

growth factor β (TGF-β). GDNF mediates its biological effect by activating its receptors in the 

glycosyl-phosphatidylinositol-linked family of receptors (GFR) α1–4 (Lin, Doherty et al. 1993; 

Iannotti, Li et al. 2003; Zhang, Ma et al. 2009). Placement of GDNF saturated gel foam at the 

site of lesion right after the injury has been shown to promote axonal regeneration in rats with 

cervical SCI (Dolbeare and Houle 2003). Furthermore, co-administration of a GDNF and 

Schwann cell graft at the site of injury has been shown to promote propriospinal axonal 
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regeneration and remyelination following SCI in rats (Iannotti, Li et al. 2003; Zhang, Ma et al. 

2009; Deng, Hu et al. 2011; Deng, Deng et al. 2013). Taken together, it is apparent that 

application of various growth factors to the site of injury in SCI animals has the potential to 

promote neurite and axonal regeneration and this regeneration can be associated with improved 

functional recovery following SCI. 

 

1.5.2.3-Transplantation of various types of cells 

Primary and secondary mechanisms of SCI cause the progressive tissue damage and loss of 

neurons and oligodendrocytes (Rosner, Avalos et al. 2012). Spared axons lose their myelin 

sheaths due to the death of oligodendrocytes which ultimately disrupts the conductance of axonal 

pathways (Totoiu and Keirstead 2005). The aim of cell transplantation therapy following SCI is 

to provide direct replacement of lost cells, provide guidance elements, create a growth 

permissive environment for axon regrowth and sprouting, and provide remyelination of axons 

and release of variety of growth factors. A variety of cells have been used for cell transplantation 

following SCI, including Schwann cells, induced pluripotent stem cells (IPS), embryonic stem 

cells (ESCs) and olfactory ensheathing cells (OECs) (Blakemore 1975; Li, Field et al. 1997; 

Ramon-Cueto, Plant et al. 1998; Thomson, Itskovitz-Eldor et al. 1998; McDonald, Liu et al. 

1999; Ramon-Cueto, Cordero et al. 2000; Reubinoff, Pera et al. 2000; Pinzon, Calancie et al. 

2001; Keirstead, Nistor et al. 2005; Oudega and Xu 2006; Johnson, Parker et al. 2010; Tsuji, 

Miura et al. 2010; Nori, Okada et al. 2011; Rosner, Avalos et al. 2012; Guest, Santamaria et al. 

2013).    

 

The Schwann cell which forms myelin sheaths in the peripheral nervous system is one of the 

most widely studied cell types for cellular transplant therapies to repair spinal cord. Schwann 

cells have the ability to differentiate, migrate, proliferate, express variety of growth promoting 

trophic factors including NGF, BDNF (Park, Lim et al. 2010), adhesion molecules and 

extracellular matrix proteins such as laminin, integrins, N-cadherin, N-CAM, L1, contactin, 

laminin, and collagens to support axonal growth (Pierucci, Duek et al. 2009; Ghosh, Tuesta et al. 

2012) and remyelination of axons (Biernaskie, Sparling et al. 2007; Rosner, Avalos et al. 2012; 

Guest, Santamaria et al. 2013). Schwann cells have great potential for repair of the injured spinal 
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cord. In animal models of SCI, Schwann cell transplantation into the lesion site has been shown 

to promote axonal regeneration, remyelination and significant improvement in hindlimb function 

in rats (Takami, Oudega et al. 2002; Zaminy, Shokrgozar et al. 2013). Large numbers of 

transplanted Schwann cells  can also serve to fill the cystic cavities in injured spinal cord 

(Zaminy, Shokrgozar et al. 2013). 

 

Embryonic stem cells (ESCs) are pluripotent stem cells that can be harvested from the inner cell 

mass (blastocyst) of developing embryos (Li and Lepski 2013). ES cell - derived progenitors are 

one of the most important cell sources of cell transplantation therapies to treat SCI (Okada, 

Shimazaki et al. 2004; Kumagai, Okada et al. 2009).  Previous studies have demonstrated that 

ESCs transplanted into injured rat spinal cord differentiated into neurons, astrocytes and 

oligodendrocytes (McDonald, Liu et al. 1999; Keirstead, Nistor et al. 2005). Transplantation of 

mouse ESCs and human ESCs in rodent models of spinal cord injury promote functional 

recovery (McDonald, Liu et al. 1999; Keirstead, Nistor et al. 2005; Kumagai, Okada et al. 2009). 

Human ESCs-based therapies have advanced from pre-clinical towards clinical treatment of SCI 

(Keirstead, Nistor et al. 2005; Kumagai, Okada et al. 2009) although the use of human ESCs-

base therapies have some complications due to ethical concerns in certain countries of the world 

(Nori, Okada et al. 2011). 

 

To avoid concerns associated with ESC-based therapies, induced pluripotent stem cells (IPS) 

were established by Yamanaka and colleagues (Takahashi and Yamanaka 2006; Okita, Ichisaka 

et al. 2007; Takahashi, Tanabe et al. 2007; Nori, Okada et al. 2011). IPS cells can be generated 

by introducing genes into mouse / human skin fibroblast and blood cells (Takahashi, Tanabe et 

al. 2007; Nakagawa, Koyanagi et al. 2008; Li and Lepski 2013; Nakamura and Okano 2013). IPS 

cells demonstrate a proliferative and differentiation capacity almost comparable to ESC 

(Takahashi and Yamanaka 2006; Nori, Okada et al. 2011; Li and Lepski 2013).  IPS cells are 

pluripotent cells and have the potential to generate various cell types including neurons, 

astrocytes and oligodendrocytes when differentiated (Takahashi, Tanabe et al. 2007; Tsuji, 

Miura et al. 2010). 
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Transplantation of human and mouse IPS-derived neurospheres (a cluster of neural stem cells) 

into a mouse model of SCI has shown survival, migration and differentiation of transplanted IPS 

cells into neurons, astrocytes and oligodendrocytes (Tsuji, Miura et al. 2010; Rosner, Avalos et 

al. 2012). In addition to this, expression of neurotrophic factors, angiogenesis, axonal regrowth 

and remyelination and synapse formation between transplanted neurons and host mouse neurons 

was also observed in injured areas (Tsuji, Miura et al. 2010; Nori, Okada et al. 2011). Moreover, 

significant functional recovery of locomotion was also observed in a mouse model of SCI 

receiving IPS –derived neurospheres (Tsuji, Miura et al. 2010; Nori, Okada et al. 2011). IPS 

cells are expected to overcome the ethical issues and immunological rejection that were 

associated with ESC-based therapies (Nori, Okada et al. 2011). IPS cells are expected to open a 

new era in biomedical science and regenerative medicine (Nakamura and Okano 2013).  

 

Olfactory ensheathing cells (OECs), also known as olfactory ensheathing glia, are one of the 

most promising candidates for cell transplantation-based therapies to treat spinal cord injury. 

OECs are specialized glia of the olfactory system and are found along the olfactory nerve (Tohda 

and Kuboyama 2011) (Rosner, Avalos et al. 2012). The most important property of olfactory 

neurons is that neurogenesis can occur throughout life (Barnett and Riddell 2004). Numerous 

studies from animal models of SCI have demonstrated that OECs from the olfactory bulbs of 

adult rats transplanted into spinal cord lesion appear to promote axonal regeneration, 

remyelination and functional recovery of locomotion in rat model of spinal cord injury (Lu, 

Feron et al. 2001; Nash, Borke et al. 2002; Li, Decherchi et al. 2003; Torres-Espin, Redondo-

Castro et al. 2014). In addition to the beneficial effect of OECs transplantation in an animal 

model, recent OEC transplantation in a human patient with complete SCI has shown some 

neurological benefits without adverse effects (Tabakow, Jarmundowicz et al. 2013).  

 

Contrary to this, some studies have shown, after implantation of propria OECs 1 mm above and 

below the lesion site at C4  in SCI rats, that OECs failed to exhibit migration to the lesion site 

and these cells were also unable to promote axonal growth into the SCI (Lu, Yang et al. 2006). 

Moreover, transplantation of mucosal OECs in cervical SCI rats with a unilateral CST lesion 

improved forepaw reaching in rats with SCI but failed to exhibit the regeneration of severed CST 

axonal fiber to form the bridge across the lesion site (Yamamoto, Raisman et al. 2009).  
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In summary, some controversy exists over whether implantation of OECs promotes axonal 

regeneration following SCI in animals, in that some studies demonstrated that OEC implantation 

did not promote axonal regeneration in SCI animal models. This controversy may be due to the 

use of different OEC cell populations (OECs from the olfactory bulbs or from mucosa), the 

different SCI model used in various studies, difference in preparation of grafts, time of 

transplantation and the procedure to transplantation of OECs at the site of lesion in SCI animals 

(Riddell, Enriquez-Denton et al. 2004; Richter, Fletcher et al. 2005; Steward, Sharp et al. 2006; 

Munoz-Quiles, Santos-Benito et al. 2009; Zhang, Huang et al. 2011; Zhang, Huang et al. 2011; 

Chhabra and Sarda 2015)  

  

1.5.3 Plasticity 

Neurons communicate with each other by highly specialized structures known as synapses. 

These synapses are not static but dynamic in nature and show a high degree of plasticity (Tsanov 

and Manahan-Vaughan 2007; Mehta, Luck et al. 2013). The ability of neurons to rearrange their 

anatomical and functional connectivity in response to environmental input or based on previous 

experience is known as plasticity and it is a key feature of the central nervous system (Dietz 

2006). Plasticity is the mechanism by which the nervous system fine-tunes its structure and 

function to meet the demands of the body in its environment (Blight 2004). The circuits within 

the spinal cord are capable of significant reorganization, in the form of both activity-dependent 

and injury-induced plasticity (Muir and Steeves 1997). Previous studies have shown that spinal 

neurons exhibit changes in neuronal processes in response to various stimuli (Edgerton, Roy et 

al. 1992; Harkema, Hurley et al. 1997; Harkema 2001). These rearrangements of neuronal 

circuits within the brain and spinal cord are possibly involved in recovery in both humans and 

animal models (Fouad and Tse 2008). Plasticity encompasses axonal sprouting, synaptic 

rearrangements and changes in cellular properties of neurons in the brain, brainstem and in 

spared neuronal circuits rostral and caudal to a spinal cord lesion (Fouad and Tse 2008).  Axonal 

sprouting is generally defined as the outgrowth of branches from an axon that can occur in 

unlesioned axons or in lesioned axons but proximal to the injury site. The occurrence of 

spontaneous sprouting of axons has been shown after spinal cord lesion for a number of axonal 

pathways, including the corticospinal tract (Weidner, Ner et al. 2001; Bareyre, Kerschensteiner 
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et al. 2004; Fenrich and Rose 2009). The corticospinal tract (CST) is a descending fiber system 

known to be involved in fine motor control and often is examined in rodent models of SCI. 

Following incomplete thoracic SCI in rats, transected CST axons sent collaterals sprouting into 

the cervical gray matter to make new synapses with long and short propriospinal neurons 

(Bareyre, Kerschensteiner et al. 2004). Twelve weeks after the lesion, hindlimb CST contacts 

with short propriospinal neurons had been lost whereas contacts with long propriospinal neurons 

were maintained. These new anatomical contacts formed a novel circuit.  Electrophysiology and 

behavioral testing confirmed that recovery was mediated to some extent through collateral 

sprouting of the CST and most likely involved the newly formed spinal alternative circuit 

(Bareyre, Kerschensteiner et al. 2004). Axonal sprouting is part of a general rewiring of cortical, 

supra- and intraspinal connections that at least to some extent explains functional recovery after 

spinal cord injury and it is thought to be an important constituent of rehabilitation in humans 

(Bareyre, Kerschensteiner et al. 2004). 

 

Regardless of level or severity of SCI, some degree of motor, sensory and autonomic functional 

recovery has been observed in humans and animals due to spontaneous plasticity (Onifer, Smith 

et al. 2011). Nevertheless, this spontaneous plasticity is frustratingly slow and takes days, weeks 

or even months to manifest and is inadequate to completely restore normal function following 

SCI. Many pharmacological and activity-based approaches are available to promote naturally 

occurring repair mechanisms in injured and spared synaptic circuitries of the spinal cord (Fouad, 

Krajacic et al. 2011). Plasticity-promoting approaches exploit and enhance endogenous repair 

mechanisms in the CNS and could open up new avenues to treat traumatic injuries and diseases. 

 

The endogenous mechanism of plasticity can be facilitated by pharmacological means. Various 

neuromodulators or pharmacological agents have been delivered through intravenous, 

intrathecal, gelfoam, cell grafting modes in different animal models (Dietz and Fouad 2014). 

Neurotrophic factors such as BDNF, NGF, and NT-3 are promising candidates to induce 

plasticity and regeneration (Ye and Houle 1997; Onifer, Smith et al. 2011; Dietz and Fouad 

2014). Other pharmacological agents are used to inhibit or block molecules which inhibit axonal 

sprouting. One example is chondroitinase ABC, a bacterial enzyme which digests the inhibitory 

chondroitin sulphate proteoglycans, and promoted neuronal sprouting, axonal regeneration and 
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functional recovery in an animal model of SCI (Onifer, Smith et al. 2011). Similarly, 

administration of antibodies against the myelin-associated protein Nogo-A, neutralized the 

effects of Nogo-A and facilitated axon and neuronal sprouting in rats (Zorner and Schwab 2010). 

Applications of various pharmacological agents alone or in combination have been shown to 

promote plasticity in animal models of SCI (Onifer, Smith et al. 2011). 

 

Activity-based therapeutic approaches have been also used both clinically and in experimental 

models of SCI to further enhance the spontaneous recovery of sensory, motor and autonomic  

functional recovery following SCI. Rehabilitative training is the most current and well 

established approach to promote plasticity and functional recovery in both spinal-injured humans 

and animal models of SCI (Behrman and Harkema 2000; Ying, Roy et al. 2005; Ying, Roy et al. 

2008; Dietz and Fouad 2014).  

 

Similar to activity-based or rehabilitative training, electrical stimulation can also induce 

plasticity in spinal cord circuitry (Carmel, Berrol et al. 2010; Dietz and Fouad 2014). Electrical 

stimulation of the forelimb area of motor cortex in rats triggered the expression of BDNF and 

improved functional recovery of skilled paw placement over a horizontal ladder following 

corticospinal tract (CST) SCI in rats (Carmel, Berrol et al. 2010; Fritsch, Reis et al. 2010). In 

addition to this, electrical stimulation also promoted the outgrowth of CST axonal termination 

ipsilateral to the injury side of SCI (Carmel, Berrol et al. 2010). Electrical stimulation of CST 

axons in the medullary pyramid in a unilateral pyramidal lesion  enhanced the axonal sprouting 

and strengthened connections with spinal motor circuits ipsilateral to injury in rats (Brus-Ramer, 

Carmel et al. 2007). Taken together, electrical stimulation promoted axonal outgrowth and 

improved skilled motor function in rats with pyramidal lesions (Brus-Ramer, Carmel et al. 2007; 

Carmel and Martin 2014). Therefore electrical stimulation of motor cortex could be an effective 

approach to promote sprouting of spared CST axons to promote functional motor recovery in rats 

(Carmel and Martin 2014) 
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1.6 Intermittent hypoxia  

Another method to induce spinal plasticity is intermittent hypoxia, the focus of this thesis. 

Intermittent hypoxia (IH) is repetitive exposure to brief periods (i.e. minutes) of low oxygen 

alternating with periods of exposure to normal oxygen levels. Intermittent hypoxia has been used 

to train competitive athletes (Zhu, Yan et al. 2010), to enhance the ventilatory output in healthy 

humans (Serebrovskaya, Karaban et al. 1999; Serebrovskaya 2002) and to improve high altitude 

adaptation (Gorbachenkov, Tkachuk et al. 1994). Intermittent hypoxia has also been applied to 

the treatment and prevention of human diseases including to combat bronchial asthma 

(Serebrovskaya 2002), ischemic coronary artery disease (Zhu, Xie et al. 2006), Parkinson’s 

disease (Lin, Chen et al. 2002), and leukemia (Liu, Guo et al. 2006).  Importantly for this thesis, 

two recent reports demonstrate the effectiveness of IH to improve leg function after SCI 

(Trumbower, Jayaraman et al. 2012; Hayes, Jayaraman et al. 2014).  In spinal injured persons, 

acute intermittent hypoxia (AIH) treatment for five days increased walking speed and endurance 

in a randomized, placebo controlled, blinded cross-over design study (Hayes, Jayaraman et al. 

2014). Functional benefits lasted up to one week post-treatment (Hayes, Jayaraman et al. 2014).  

 

1.6.1-Chronic intermittent hypoxia (CIH) 

Chronic intermittent hypoxia (CIH) is an experimental protocol that aims to reproduce many of 

the pathophysiological consequences of obstructive sleep apnea. In sleep apnea, the obstruction 

of the airway occurs repeatedly throughout the sleep period, resulting in intermittent reductions 

in blood oxygen levels.  Severe protocols of CIH in animal models have deleterious side effects 

including systemic hypertension (Fletcher, Lesske et al. 1992; Fava, Montagnana et al. 2011; 

Lurie 2011; Ramar and Caples 2011; Nanduri, Makarenko et al. 2012) impaired baroreflex 

control of heart (Gu, Lin et al. 2007), metabolic syndrome (Tasali and Ip 2008), cognitive 

impairment (Row 2007; Grigg-Damberger and Ralls 2012; Bucks, Olaithe et al. 2013), neuronal 

death in hippocampus and neurobehavioral dysfunction (Hambrecht, Vlisides et al. 2007), 

synaptic transmission in the nucleus of the solitary tract (Kline, Ramirez-Navarro et al. 2007), 

neurodegeneration, oxidative stress and inflammatory responses (Row, Kheirandish et al. 2007). 
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Alongside these pernicious side effects, CIH protocols induce robust plasticity in the spinal cord. 

Chronic intermittent hypoxia elicits plasticity at multiple sites of the respiratory control system 

including carotid body chemosensitivity (Peng, Kline et al. 2001; Peng and Prabhakar 2004), 

increased synaptic strength in the nucleus tractus solitarious (Kline, Ramirez-Navarro et al. 

2007), and increased synaptic strength in spinal pathways to phrenic motor neurons (Fuller, 

Johnson et al. 2003; Dale-Nagle, Hoffman et al. 2011). CIH given for 7 days (alternating 11% O2 

and air; 5 min periods; 12 hr per night; 7 nights) following C2 hemisection has been 

demonstrated to enhance spontaneous plasticity and improve phrenic motor output (Fuller, 

Johnson et al. 2003). This CIH mediated enhancement in spontaneous plasticity has been 

demonstrated to be serotonin dependent (McGuire, Zhang et al. 2004; McGuire and Ling 2005). 

Pre-treatment with CIH increases the sensitivity and phrenic response during hypoxia and 

augments the effect of an acute intermittent hypoxia (Ling, Fuller et al. 2001). Nevertheless, the 

deleterious side effects of CIH make it inappropriate to use as a therapeutic regime for spinal 

cord injury. Recent studies have demonstrated that there are more acute IH protocols which can 

elicit plasticity in spinal cord without pernicious side effects (Dale-Nagle, Hoffman et al. 2010). 

 

1.6.2 Acute intermittent hypoxia (AIH) 

Acute intermittent hypoxia (AIH) protocols involve exposure to fewer hypoxic episodes 

compared with chronic protocols. Daily acute intermittent hypoxia (dAIH), for example, is a 

paradigm in which the animal is exposed to 10 hypoxic episodes per day for 7 days (total 70 

episodes of hypoxia in one week) when in comparison, a CIH protocol might consist of 504 

episodes of hypoxia during the same time period (Vinit, Lovett-Barr et al. 2009; Wilkerson and 

Mitchell 2009). A variety of acute intermittent hypoxia paradigms can induce spinal plasticity by 

augmenting spared synaptic pathways in intact and spinally injured animal models (Bach and 

Mitchell 1996; Ling, Fuller et al. 2001; Fuller, Johnson et al. 2003; Golder and Mitchell 2005; 

Wilkerson and Mitchell 2009; Dale-Nagle, Hoffman et al. 2010). A single acute protocol 

composed of 3, 5-min episodes of AIH (35–45 mmHg arterial PO2 , 25–30 mmHg arterial PO2 )  

in rats can induce spinal plasticity in respiratory motoneurons in the spinal cord for a short 

period of time (30-90 minutes) (Dale-Nagle, Hoffman et al. 2011; Hoffman and Mitchell 2011; 

Nichols, Dale et al. 2012). The duration of AIH-induced plasticity can be prolonged and 



28 
 

enhanced by repetitive use of AIH, such as daily exposure (dAIH; 10 episodes per day, 7 d) for 

one week (dAIH) (Dale-Nagle, Hoffman et al.) or exposure to AIH for three times per week for 

3-10 weeks (3xwAIH) (Satriotomo, Dale et al. 2012; Dale and Mitchell 2013). dAIH elicits 

comparable effects to CIH such as increases in the expression of BDNF within the phrenic motor 

nucleus (Satriotomo, Dale et al. 2007) without deleterious side effects such as systemic 

hypertension and hippocampal cell death (Ling, Fuller et al. 2001; McGuire, Zhang et al. 2002). 

 

The most thoroughly studied model of AIH-induced plasticity is long-term facilitation (LTF),  

the strengthening of synapses onto respiratory motor neurons (Mitchell, Baker et al. 2001; 

MacFarlane and Mitchell 2008; Mahamed and Mitchell 2008). Long-term facilitation is manifest 

as a progressive increase in the output of phrenic or hypoglossal motoneurons in response to 10 

alternating exposures to 5 minute episodes of moderate hypoxia (e.g. 11% inspired oxygen) 

alternating with 5 minutes of normoxic exposure  (Bach and Mitchell 1996; Ling, Fuller et al. 

2001; Fuller, Johnson et al. 2003; Golder and Mitchell 2005).  This increase in motoneuron 

output is sustained for at least 2 hours following the end of AIH exposure. LTF can be evoked in 

both anaesthetized (Wilkerson and Mitchell 2009; Sandhu, Lee et al. 2010) and unanaesthetized 

(McGuire, Zhang et al. 2003; McGuire and Ling 2005; Nakamura, Olson et al. 2010) rats and in 

humans during sleep (Pierchala, Mohammed et al. 2008; Vinit, Lovett-Barr et al. 2009). It is 

important that sustained exposure to hypoxia for the same duration, i.e. without alternation with 

normoxia, cannot induce LTF (Pamenter and Powell 2013). The episodic exposure to hypoxia is 

therefore, necessary to evoke the response and it has been demonstrated that at least three 

episodes of alternating exposures to low oxygen are required to evoke LTF in the respiratory 

motor system (Dale-Nagle, Hoffman et al. 2011; Nichols, Dale et al. 2012). Physiologically,  

long-term facilitation may serve as a compensatory mechanism to stabilize the respiratory output 

following periods of hypoxia (Wilkerson and Mitchell 2009).  

 

In addition to effects in intact animals, AIH elicits recovery of both respiratory and forelimb 

function in rodent models of incomplete cervical SCI (Lovett-Barr, Satriotomo et al. 2012). In 

separate experiments, rats exposed to 10 episodes of 5 min 11% oxygen alternating with 5 min 

normoxia for 7 days at 4 wks post-SCI, showed sustained improvement in respiratory output or 
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skilled forelimb function during a ladder walking task. The latter results are from our lab and the 

confirmation and expansion of these results form the basis for this thesis. 

 

1.6.3 Cellular / synaptic mechanisms of AIH-induced Plasticity 

Current studies in animal models have revealed the cellular and synaptic mechanisms of LTF. 

AIH activates multiple cellular pathways, which are named, the Q pathway, S pathway, V 

pathway, and E pathway. Several of these pathways require synthesis of BDNF and / or 

activation of tyrosine kinase receptor B (trkB) (Dale, Ben Mabrouk et al. 2014). These cellular 

pathways all ultimately induce a change of excitability in motor neurons via phosphorylation and 

insertion of glutamate receptors in the post-synaptic membrane at the premotor neuron : motor 

neuron synapse (Fuller, Bach et al. 2000; Mahamed and Mitchell 2007; McGuire, Liu et al. 

2008; Dale-Nagle, Hoffman et al. 2011). 

 

1.6.3.1 Q pathway 

The term Q pathway refers to the involvement of Gq protein-coupled metabotropic 5-

HT2a receptors (Vinit, Lovett-Barr et al. 2009; Dale-Nagle, Hoffman et al. 2011; Dale, Ben 

Mabrouk et al. 2014). AIH treatment triggers the episodic release of serotonin in the vicinity of 

phrenic motor neurons in the spinal cord, thereby activating the serotonin receptor 5-HT2a, 

which, via a PKC pathway, results in increased synthesis of new BDNF (Vinit, Lovett-Barr et al. 

2009).  This BDNF, through its high affinity receptor trkB on the same or adjacent neurons, 

initiates a cascade of signalling through ERK and MAP kinase pathways (Fig, 1.1) (Baker-

Herman and Mitchell 2002; Hoffman and Mitchell 2011). The end result is a form of plasticity 

known as pLTF, the increase in the output of phrenic motoneurons (Baker-Herman and Mitchell 

2002; Vinit, Lovett-Barr et al. 2009; Dale-Nagle, Hoffman et al. 2011; Dale, Ben Mabrouk et al. 

2014). This pathway induces spinal plasticity and strengthening the synaptic output in spinal 

motor neurons. 

 

1.6.3.2 S pathway 

The S-pathway is a cellular pathway known to induce pLTF independent of BDNF synthesis 

following AIH (Vinit, Lovett-Barr et al. 2009; Dale, Ben Mabrouk et al. 2014).  Gs protein-
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coupled metabotropic receptors such as adenosine A2A receptors or serotonin  type 7 (5HT7) are 

involved in this pathway, which also requires the synthesis of an immature trkB receptor isoform 

and phosphoinositide 3 (PI3) kinase / protein kinase A signaling (Fig, 1.1) (Golder, Ranganathan 

et al. 2008; Dale-Nagle, Hoffman et al. 2011; Dale, Ben Mabrouk et al. 2014).  

 

1.6.3.3 V pathway 

AIH upregulates vascular endothelial growth factor (VEGF) and VEGF-R2 expression in 

phrenic motor neurons and nonrespiratory spinal motor neurons (Dale and Mitchell 2013). 

VEGF-R2 is a member of the receptor tyrosine kinase family which activates signaling cascades 

similar to trkB (Zachary 2005; Dale-Nagle, Satriotomo et al. 2011). VEGF-R2 mediates 

signaling cascade via ERK and Akt activation (Fig, 1.1) (Zachary 2003). This signaling cascade 

induces pLTF similar to BDNF administration (Dale-Nagle, Satriotomo et al. 2011).  

 

1.7.3.4 E pathway 

AIH increases the expression of erythropoietin (EPO) in spinal motor neurons and its expression 

is regulated by HIF-1 (Dale, Ben Mabrouk et al. 2014). EPO and its receptor EPO-R are present 

in phrenic motor neurons (Dale, Satriotomo et al. 2012; Dale and Mitchell 2013). Cervical spinal 

injection of EPO activates the EPO-R and initiates an intracellular signaling cascade via ERK 

and Akt activation, which induces pLTF similar to BDNF / trkB and VEGF administration (Fig, 

1.1) (Dale, Satriotomo et al. 2012; Dale, Ben Mabrouk et al. 2014).  

 

In summary, several distinct intracellular signalling pathways associated with different 

growth/trophic factors are involved the production of LTF (Dale-Nagle, Hoffman et al. 2011; 

Dale-Nagle, Satriotomo et al. 2011; Dale, Satriotomo et al. 2012; Dale and Mitchell 2013). The 

activation of one pathway versus another following AIH appears to depend on factors such as 

intensity and / or duration of hypoxia (Mitchell and Terada 2011). Moderate form of AIH (AIH; 

3, 5-min episodes; 35–45 mmHg arterial PO2) induced serotonin dependent pLTF through the Q 

pathway whereas a more intense and severe form of AIH (AIH; 3, 5-min episodes; 25–30 mmHg 

arterial PO2) shifts the mechanism of pLTF from serotonin-dependent to an adenosine-dependent 
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pLTF mechanism through the S pathway (Nichols, Dale et al. 2012). It is possible that each of 

these pathways has the potential to induce functional recovery following SCI. 

 

 

 

 

Figure 1.1: Working model of phrenic motor facilitation (pMF).1 The “Q” pathway is elicited 

by intermittent activation of Gq-coupled metabotropic receptors 5-HT2, which, via a PKC 

pathway, results in increased synthesis of new BDNF.  This BDNF through its trkB, initiates a 

cascade of signalling through ERK and MAP kinase. The “S” pathway is elicited by Gs-coupled 

metabotropic receptors 5-HT7 and A2A, PKA activation, new synthesis of an immature trkB 

isoform, and downstream signaling via Akt phosphorylation/activation. The “V” and “E” 

pathways are activated by hypoxia-sensitive VEGF and EPO growth/trophic factors elicit pMF 

via ERK- and Akt-dependent mechanisms. Modified from E. A. Dale et al. Physiology 

2014;29:39-48. 
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1.7 Neurotrophins 

Changes in neurotrophin expression, particularly BNDF, play an important role in AIH-induced 

plasticity. The following section reviews the current knowledge on the contributions of 

neurotrophins to neural plasticity.  

 

1.7.1 Importance of neurotrophins in plasticity 

Neurotrophins are proteins that are secreted and synthesized by neurons and non-neuronal cells 

and subsequently bind to their appropriate receptors located on the target cell membrane. The 

neurotrophins are a family of neurotrophic factors that play a versatile role in the developing and 

mature nervous system including: development, survival, differentiation, migration, 

proliferation, maintenance, regeneration of neurite outgrowth and sprouting, and functional 

plasticity of CNS and PNS (Schinder and Poo 2000; Poo 2001; Thuret, Moon et al. 2006).  

 

1.7.2 Neurotrophins and their receptors 

The first member of the neurotrophin family to be described was nerve growth factor (NGF) and 

it was identified by Levi-Montalcini and Hamburger over 60 years ago (Levi-Montalcini and 

Hamburger 1951). Since then, NGF has become the prototypic neurotrophic factor (Levi-

Montalcini 1987). Following its discovery, other members of the neurotrophin family have since 

been described, and the family now consists of NGF, brain-derived neurotrophic factor (BDNF), 

neurotrophin-3 (NT-3), and neurotrophin-4/5 (Huang and Reichardt 2001). Members of the 

neurotrophin family exert their effects through the interactions with two distinct classes of 

neuronal cell surface receptors, a high affinity tyrosine receptor kinase (trk) and a low affinity 

pan-neurotrophin receptor (p75). All neurotrophins are capable of binding to the low affinity p75 

(p75RN) neurotrophin receptor (Chao 1992; Lu 2003) and each neurotrophin can also bind to a 

specific corresponding high affinity tyrosine kinase receptor, NGF with trkA, BDNF and NT-4/5 

with trkB, and NT-3 with trkC (Barbacid 1993). 

 

1.7.3 Nerve growth factor (NGF) 

Nerve growth factor (NGF) is an important regulator of the central and peripheral nervous 

systems and it is widely located in the PNS and CNS (Aloe, Rocco et al. 2012). The largest 
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amount of NGF is produced in cortex, hippocampus, pituitary gland, thalamus, basal ganglia, 

retina and spinal cord (McAllister 2001). NGF is a polypeptide and exerts its biological effects 

through its specific tyrosine kinase receptor A (trkA). NGF also bind and activates the non-

specific low affinity transmembrane glycoprotein pan-neurotrophin receptor (p75) (Huang and 

Reichardt 2001; Huang and Reichardt 2003; Schor 2005; Reichardt 2006; Aloe, Rocco et al. 

2012). Subsequent to its binding with its receptors, NGF activates multiple cytosolic and / or 

endosomal signalling pathways. NGF controls and regulates the synthesis of neurotransmitters 

such as norepinephrine in sympathetic and sensory neurons (Otten, Schwab et al. 1977), 

neuropeptide expression such as Substance P (SP) in dorsal root ganglion, and calcitonin gene-

related peptide from primary sensory neurons (Mearow and Kril 1995; Aloe, Rocco et al. 2012). 

NGF plays a critical and important role in neuronal development, survival, axonal regeneration 

and synaptic plasticity (Chen, Zhang et al. 2013; Zhang, Wu et al. 2014).  

 

Exogenous administration of NGF through intracerebroventricular injection in postnatal day 

(PD) 7 rat pups exerted neuroprotective effects and reduced neurological deficits following 

hypoxic-ischemic brain injury (Holtzman, Sheldon et al. 1996).  Although NGF is expressed in 

injured tissues after SCI,  several studies have shown exogenous application of NGF reduced 

secondary damage and promoted neural regeneration and functional recovery following SCI in 

rats (Chen, Zhang et al. 2013; Zhang, Wu et al. 2014). This suggests that the normal expression 

level of NGF was not high enough to prevent or minimize the secondary damage to the tissues at 

the site of injury (Chen, Zhang et al. 2013). In addition to this, some deleterious effects are also 

linked with administration of NGF. Exogenous administration of NGF in rodents and humans 

can lead to a rapid activation and sensitization of cutaneous nociceptors causing hyperalgesia 

and pain (Andreev, Dimitrieva et al. 1995; Dyck, Peroutka et al. 1997). NGF increases the 

excitability of sensory neurons and induces peripheral sensitization that can lead to enhanced 

nocioception (Nicol and Vasko 2007). Moreover, exogenous administration of NGF causes 

extensive axonal sprouting of nociceptive primary sensory neurons in the spinal dorsal horn 

(Romero, Rangappa et al. 2000). Therefore, exogenous application of NGF to treat SCI is not a 

viable option for the reason that it causes hyperalgesia and pain. 
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1.7.4 Brain derived neurotrophic factor (BDNF)  

BDNF is a second member of the neurotrophin family, discovered in 1982. BDNF has diverse 

roles as a neuronal modulator and plays a pivotal role in synaptic plasticity. BDNF regulates 

neuronal structure, function and connectivity through its high affinity receptor tyrosine kinase 

trkB and triggers the downstream signaling cascades that cause modifications in cellular function 

(Lu 2003; Massa, Yang et al. 2010). Increased excitatory activity induced by pharmacological 

agents, physical activity, and intermittent hypoxia will increase BDNF concentration in the 

hippocampus, cortex and spinal cord (Hartmann, Heumann et al. 2001; Baker-Herman, Fuller et 

al. 2004; Mattson, Duan et al. 2004). BDNF may also enhance synaptic input by increasing the 

strength of pre-existing synaptic connections and / or increasing sprouting and generation of new 

synaptic connection of spared neurons (Sieck and Mantilla 2009). BDNF plays an important role 

in neural plasticity and improves functional recovery following SCI through multiple 

mechanisms. 

 

Earlier studies have demonstrated the essential role of BDNF in respiratory plasticity (Baker-

Herman, Fuller et al. 2004).  BDNF is required for synaptic plasticity associated with long-term 

facilitation in phrenic motoneurons. This effect is mediated through trkB (Baker-Herman, Fuller 

et al. 2004).  Brief episodes of hypoxia in rats initiate the synthesis of new BDNF in the cervical 

cord, rather than release of existing BDNF (Baker-Herman, Fuller et al. 2004; Wilkerson and 

Mitchell 2009). It would be important to determine whether BDNF also mediates recovery of 

non-respiratory function after intermittent hypoxia treatment in rats with SCI. 

 

1.7.5 Neurotrophin-3 (NT-3) 

Neurotrophin-3 is the third member of the family of neurotrophins, discovered in 1990. NT-3 

shares the properties of both BDNF and NGF. NT-3 plays an important role in survival, 

proliferation of neurons and neurite outgrowth (Arenas and Persson 1994; Barres, Raff et al. 

1994; Beggs, Alvares et al. 2012). NT-3 is the first neurotrophin to be expressed in the PNS 

during embryogenesis and plays an important role in the survival and differentiation of PNS 

neurons during the perinatal development (Lessmann, Gottmann et al. 2003). During 

development, NT-3 shows the highest level of expression compared to BDNF and NGF, with 
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most prominent expression levels in the hippocampus, the neocortex, and the cerebellum (Zhou 

and Rush 1994). NT-3 is also produced by skin and muscle cells and is retrogradely transported 

by sensory neurons to the neuronal cell body (Helgren, Cliffer et al. 1997; Zhou, Deng et al. 

1999; Jerregard, Akerud et al. 2000; Marconi, Terracina et al. 2003). NT-3 can bind with each 

member of the trk receptor family, but its primary biological role is mediated through the trkC 

receptors (Huang and Reichardt 2001). NT-3 also plays an important role in synaptic plasticity.  

Application of NT-3 on Xenopus neuromuscular junctions in culture results in an increase in 

amplitude of the excitatory post-synaptic current (Xie, Wang et al. 1997). In spinal neurons, NT-

3 also promotes the maturation of synapses by increasing the levels of synaptic vesicle proteins, 

including synaptophysin, and synapsin 1 (Wang, Xie et al. 1995).  After experimental SCI in 

rats, NT-3 appears to promote survival of neurons and axonal regeneration and improves 

locomotor performance (Dreyfus, Dai et al. 1999; Yang, Yang et al. 2009; Wang, Zhang et al. 

2014).  

 

1.7.6 Neurotrophin-4/5 (NT-4/5) 

Neurotrophin-4/5 is the fourth member of the neurotrophin family to be discovered in 1991 

(Hallbook, Ibanez et al. 1991). It is also known as NT-4, NT-5 and NT-4/5. Expression of NT-

4/5 is prominent in the postnatal hippocampus, neocortex, cerebellum and thalamic nuclei and it 

continues to be prominent until adulthood (Friedman, Black et al. 1998). NT-4/5 exerts its 

biological effects through trkB receptors, and also binds with the low affinity receptor p75. NT-

4/5 supports the survival of primary somatic and visceral sensory neurons and it also promotes 

the survival of axotomized developing or mature spinal motor neurons (Friedman, Kleinfeld et 

al. 1995; Erickson, Conover et al. 1996). Another study has demonstrated that grafted fibroblasts 

modified to secrete NT-4/5 promote axonal regeneration in rat model of SCI (Blesch, Yang et al. 

2004). 

 

1.8 Hypoxia-associated Proteins 

To begin to understand the underlying mechanism of AIH-induced plasticity at the cellular level, 

we need to understand the cellular response to hypoxia. Cellular responses to changes in oxygen 

levels are essential for maintenance and survival of cells. Hypoxia is known to alter the 
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expression of many cellular proteins and their respective mRNAs, including Hypoxia-inducible 

factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) (Nordal, Nagy et al. 2004; Ke 

and Costa 2006; Xiaowei, Ninghui et al. 2006; Dale-Nagle, Satriotomo et al. 2011; Dale and 

Mitchell 2013).  

 

1.8.1 Vascular endothelial growth factor (VEGF) 

Vascular endothelial growth factor (VEGF) is a 45 Da dimeric glycoprotein and a fundamental 

regulator of  pathological and physiological angiogenesis (Rosenstein and Krum 2004). VEGF 

promotes endothelial cell formation and proliferation in several organ systems during embryonic 

development and after injury in many tissues, including the central nervous system (Skold, 

Cullheim et al. 2000). VEGF is critical for blood vessel growth in the developing and adult 

nervous system of vertebrates (Mackenzie and Ruhrberg 2012). In addition to its role as 

angiogenic factor, it also promotes neurogenesis, neuronal patterning, neuroprotection and 

neuronal migration in the embryonic brain (Rosenstein, Krum et al. 2010).  

 

The VEGF family consists of six different members, VEGF-A, VEGF-B, VEGF-C, VEGF-D, 

VEGF-E and Placental growth factor (PlGF) (Ferrara, Gerber et al. 2003). VEGF-A is the most 

dominant member of VEGF family and key regulator of angiogenesis in the nervous system. The 

other growth factors in the VEGF family are found less frequently in the nervous system 

(Ferrara, Gerber et al. 2003; Rosenstein and Krum 2004). VEGF-A is composed of a collection 

of three isoforms. The human isoforms consist of 121, 165, 189 and 206 amino acids and are 

therefore termed VEGF121, VEGF165, and VEGF189. Mouse isoforms are VEGF120, 

VEGF164, VEGF188 (Ferrara and Alitalo 1999; Mackenzie and Ruhrberg 2012). VEGF165 is the 

most predominant isoform produced in tissues including brain, although each isoform is able to 

support angiogenesis. Most biological effects of VEGF are mediated through an interaction with 

three VEGF receptor subtypes, VEGFR-1 or Flt-1 (Fetal liver kinase-1) and VEGFR-2 or FLK-1 

(fms-like tyrosine kinase-1) and VEGFR-3 or neuropilin-1 NRP-1 (Millauer, Wizigmann-Voos 

et al. 1993; Mackenzie and Ruhrberg 2012). VEGF receptors are mainly expressed on 

endothelial cells of blood vessels and capillaries during embryogenesis. Animals with VEGF 

receptor defects die in utero (Fong, Rossant et al. 1995). Although VEGF isoforms display 



37 
 

differential affinities for VEGF receptors, all VEGF-A isoforms bind to the transmembrane 

tyrosine kinase receptors VEGFR-1 (FLT1) and VEGFR-2 (FLK1). The non-tyrosine kinase 

receptor VEGFR-3 or neuropilin-1, (NRP-1), preferentially binds with the VEGF164 isoform 

and activates several downstream pathways (Ruhrberg 2003; Rosenstein, Krum et al. 2010; 

Mackenzie and Ruhrberg 2012). 

 

1.8.2 Role of VEGF in the CNS 

VEGF was originally recognized for its role in angiogenesis, but it is no longer characterized 

solely as an endothelial mitogen. VEGF is known to play a versatile role in the central and 

peripheral nervous systems both in vitro and in vivo (Rosenstein and Krum 2004; Mackenzie and 

Ruhrberg 2012). These functions include neurogenesis, neuronal patterning, neuroprotection, 

axon guidance, neurotrophic, gliotrophic action, and anti-apoptotic action, (Mackenzie and 

Ruhrberg 2012). VEGF plays a significant role during development of the nervous tissue and 

directly influences Schwann cells, neuronal progenitor cells, astrocytes and microglia 

neurogenesis, as well as initiating endothelial differentiation and formation of vessels in the 

brain (Mackenzie and Ruhrberg 2012; Nowacka and Obuchowicz 2012). Current studies have 

shown that VEGF also improves cellular and behavioural function. In vitro studies have shown 

that application of VEGF increases survival and enhances neurite growth in dopaminergic 

neurons (Pitzer, Sortwell et al. 2003) and neocortical neurons (Khaibullina, Rosenstein et al. 

2004) independent of its effect on blood vessels.  

 

1.8.3-Role of VEGF in Spinal Cord Injury 

Apart from its role in angiogenesis, VEGF appears to play neurotrophic and neuroprotective 

roles in spinal cord and brain injury (Krum and Rosenstein 1998; Facchiano, Fernandez et al. 

2002; Svensson, Peters et al. 2002). Expression of VEGF is regulated by HIF-1α following SCI. 

VEGF, as a master regulator of angiogenesis, modulates the microcirculation and 

revascularization to restore blood flow, and  revascularization can be seen the 3rd day after SCI. 

Revascularization reduces secondary damage after SCI and plays an important role in tissue 

repair and regeneration (Zhang, Magovern et al. 1997). Exogenous applications of VEGF 

through intrathecal injection at C4 in rats exerted neurotrophic and neuroprotective effects in the 
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CNS and elicited respiratory plasticity through ERK and Akt signalling pathways (Dale, 

Satriotomo et al. 2012; Dale and Mitchell 2013). In addition to this, exogenous application of 

VEGF exerted a neuroprotective effect and suppressed apoptosis in rat retinal neuron culture 

through ERK and Akt signalling pathways (Shen, Wu et al. 2010). Exogenous application of 

VEGF through intrathecal injection  at C4 exerted neurotrophic and neuroprotective effects and 

induced spinal plasticity (pMF) in rats and enhanced the activity of the phrenic motor nerve 

(Dale, Satriotomo et al. 2012; Dale and Mitchell 2013) 

 

1.8.4 VEGF after intermittent hypoxia 

VEGF expression increases in spinal motoneurons in response to hypoxia in a manner thought to 

be neuroprotective in motoneurons (Sato, Morimoto et al. 2012). VEGF expression is regulated 

by hypoxia-Inducible Factor-1α (HIF-1α), a transcription factor activated in response to low 

oxygen (Rosenstein and Krum 2004; Xiaowei, Ninghui et al. 2006). AIH increases the 

expression of HIF-1α, which translocates to the nucleus and binds with HIF-1β, which in turn 

initiates the transcription of the VEGF gene to upregulate the expression of VEGF. After AIH, 

VEGF and its receptor VEGFR-2 were upregulated in both respiratory and non-respiratory 

motoneurons in the spinal cord and in neurons in the motor cortex (Sato, Morimoto et al. 2012; 

Dale, Ben Mabrouk et al. 2014). Recent studies have shown that VEGF and VEGFR-2 are both 

expressed in phrenic motoneurons where they induced phrenic motor facilitation (pMF) via ERK 

Akt intracellular pathways (Dale, Ben Mabrouk et al. 2014). 

 

1.9 Hypoxia-inducible factor-1α (HIF-1α)  

The cellular response to hypoxia is mediated through a transcription factor known as hypoxia 

inducible factor-1 (HIF-1). HIF-1 is a master transcriptional regulator of genes that control a 

number of adaptive responses to low oxygen tension in order to maintain oxygen homeostasis. 

HIF-1 regulates the expression of several dozen target genes including VEGF, erythropoietin 

(EPO), inducible nitric oxide synthase (iNOS) and heme oxygenase-1 (Semenza, Nejfelt et al. 

1991; Melillo, Musso et al. 1995; Stein, Neeman et al. 1995; Lee, Jiang et al. 1997; Kimura, 

Weisz et al. 2000; Ke and Costa 2006; Xiaowei, Ninghui et al. 2006; Xiong, Mahmood et al. 

2010). The HIF-1 protein is a heterodimer and composed of two subunits: the HIF-1α subunit 
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and the constitutively expressed HIF-1β subunit (Wang, Jiang et al. 1995). Both subunits belong 

to the basic helix-loop-helix-PAS (bHLH-PAS) superfamily. HIF-α exists as multiple isoforms 

known as HIF-1α, HIF-2α, and HIF-3α (Ema, Taya et al. 1997; Flamme, Frohlich et al. 1997; 

Tian, Wu et al. 1997; Gu, Moran et al. 1998; Wenger 2002). HIF-1α is oxygen sensitive and it is 

activated under hypoxic conditions and is degraded in normoxic conditions by proteasomes. It 

has a very short half life (8 minutes) under normoxic conditions (Jewell, Kvietikova et al. 2001). 

In hypoxia conditions, HIF-1α translocates from the cytoplasm to the nucleus and dimerizes with 

HIF-1β subunit to form the active HIF heterodimer complex (Lando, Peet et al. 2002). This 

dimer complex binds with hypoxia response elements (HRE) in target genes to induce gene 

expression (Lando, Peet et al. 2002).    

 

1.9.1 Importance of HIF-1α in SCI 

Spinal cord injury increases the expression of both HIF-1α protein and HIF-1α mRNA (Ju, He et 

al. 2002; Xiaowei, Ninghui et al. 2006). HIF-1α is expressed in neuronal and non-neuronal cells 

in the spinal cord following SCI. HIF-1α mRNA also significantly increases following SCI 

(Xiaowei, Ninghui et al. 2006). The transcription of HIF-1α mRNA was initiated 6 hours post-

SCI and reached a maximum on day 3 post-SCI, while HIF-1α protein levels increased 1-7 days 

following SCI and gradually reduced thereafter (Xiaowei, Ninghui et al. 2006). HIF-1α and its 

target genes could have an important impact on secondary damage after SCI because HIF-1α is 

responsible for activation of genes that facilitate the adaptation and survival of cells and tissue in 

low oxygen conditions. The most important of these genes is erythropoietin (EPO). Originally 

known to play a role in erythropoiesis (Ke and Costa 2006), EPO also has neuroprotective 

effects in the hippocampus and spinal motoneurons (Mennini, De Paola et al. 2006; Naganska, 

Taraszewska et al. 2010; Xiong, Mahmood et al. 2010; Dale, Ben Mabrouk et al. 2014).  HIF-1α 

has the ability to activate the transcription of several glycolytic enzymes (Xiaowei, Ninghui et al. 

2006). These enzymes further enhance the glycolysis pathway to supply energy to the cells to 

maintain their physiological functions for survival following SCI. The activity of these 

glycolytic enzymes lasts for several days. 
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Together, the overall effects of both hypoxia-associated proteins, VEGF and HIF-1α,  appears to 

be beneficial for reducing secondary damage following SCI, and these hypoxia related proteins 

also appear to facilitate the process of repair. Therapies that augment the levels of these factors 

locally in the spinal cord might be beneficial for repair and recovery of SCI.  

 

1.10 Summary and rationale for current studies 

There are many animal models and experimental therapies that have been used in the search for 

effective approaches to improve recovery after spinal cord injury. One of the most promising 

approaches is the augmentation of spontaneously occurring plasticity in uninjured neural 

pathways. Current evidence strongly suggests that AIH is able to induce spinal plasticity by 

strengthening synapses onto respiratory motor neurons and enhancing motor output to the 

phrenic nerve.  Moreover, AIH alters the expression of plasticity- and hypoxia-related proteins in 

respiratory motoneuron pools in the spinal cord.  In animal SCI models, acute intermittent 

hypoxia improves respiratory and forelimb motor function (Lovett-Barr, Satriotomo et al. 2012) 

(Vinit, Lovett-Barr et al. 2009). Critically, AIH improves lower limb function and walking in 

spinal-injured humans (Trumbower, Jayaraman et al. 2012; Hayes, Jayaraman et al. 2014). 

Therefore, although there is still much to be investigated regarding the nature of AIH-induced 

motor recovery and the mechanisms underlying the effects of AIH, it is clear that AIH is a novel 

non-invasive experimental therapy for SCI that has strong potential for use in clinical SCI.  
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CHAPTER 2  

AIMS AND OBJECTIVES 

 

2.1 Aims and Objectives 

The main aim of this research was to investigate whether acute intermittent hypoxia improves 

forelimb functional recovery in a rat model of spinal cord injury. AIH is a promising non-

invasive therapy for spinal cord injury that has shown clinical benefits in persons with SCI.   

Preliminary work also showed that AIH improved forelimb function in rats with incomplete 

cervical spinal cord injury. This thesis extends this work to investigate the robustness of forelimb 

recovery in AIH-treated SCI rats, and the cellular changes which occur in spinal neurons in 

response to AIH treatment.  

 

2.2 Rationale for current studies 

There are many animal models and experimental therapies that have been used in the search for 

effective approaches to improve recovery after spinal cord injury. One of the most promising 

approaches is the augmentation of spontaneously occurring plasticity in uninjured neural 

pathways. Current evidence strongly suggests that AIH is able to induce spinal plasticity by 

strengthening synapses onto respiratory motor neurons and enhancing the motor output of the 

phrenic nerve.  Moreover, AIH alters the expression of plasticity- and hypoxia-related proteins in 

respiratory motoneuron pools in the spinal cord.  In animal SCI models, acute intermittent 

hypoxia improves respiratory and forelimb motor function (Lovett-Barr, Satriotomo et al. 2012) 

(Vinit, Lovett-Barr et al. 2009). Critically, AIH improves lower limb function and walking in 

spinal-injured humans (Trumbower, Jayaraman et al. 2012; Hayes, Jayaraman et al. 2014). 

 

2.3 General Hypothesis 

Acute intermittent hypoxia was initially investigated in the context of plasticity in spinal 

respiratory motor neuron pools. Although there is still much to be investigated regarding the 

nature of AIH-induced motor recovery and the mechanisms underlying the effects of AIH, it is 
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clear that AIH is a novel non-invasive experimental therapy for SCI that has strong potential for 

use in clinical SCI.  

 

The purpose of this study is to investigate the effectiveness of a novel treatment, acute 

intermittent hypoxia (AIH), toward enhancing spinal plasticity after spinal injury.  

Therefore, I proposed the general hypothesis that acute intermittent hypoxia induces spinal 

plasticity and improves forelimb function in rats with cervical spinal cord injury. 

 

2.4 Specific Aims 

My dissertation has two specific aims. The first specific aim focuses on investigating the effect 

of AIH on functional recovery of forelimb in a rat model of cervical spinal injury. The second 

aim focuses on determining the effect of AIH on expression of spinal cord proteins. 

 

Specific Aim #1: To address the hypothesis that acute intermittent hypoxia improves 

recovery of limb function in rats with cervical dorsolateral funiculus lesions. 

 

The following questions were addressed: 

1. Does acute intermittent hypoxia (AIH) improve recovery of ladder walking in rats with 

SCI?  

2. Is concomitant motor training required to facilitate the effect of AIH on recovery of 

ladder walking in rats? 

3. Does AIH improve recovery of skilled paw use in rats with SCI? 

 

Specific Aim #2: To address the hypothesis that AIH alters the expression of hypoxia- and 

plasticity-related proteins in a rat model of cervical spinal injury.  

 

The following questions were addressed: 

1. Does AIH alter the expression of hypoxia-related proteins, specifically hypoxia-inducible 

factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) in the spinal cord of 

SCI rats? 
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2. Does AIH alter the expression of plasticity-related proteins, specifically brain-derived 

neurotrophic factor (BDNF) and trkB, in the spinal cord of SCI rats? 
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in a rat model of cervical spinal injury 
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Transition Statement 

This chapter focuses on the first of the two specific aims in this thesis, to address the hypothesis 

that acute intermittent hypoxia improves recovery of limb function in rats with cervical 

dorsolateral funiculus lesions. 
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3.1 Introduction 

Spinal cord injury damages the axonal connections between the brain and the spinal cord, and 

the subsequent alteration of motor, sensory and autonomic function below the level of the injury 

has devastating consequences. More than 50% of injuries occur in the cervical region of the 

spinal cord, causing reduced motor control and sensory feedback from arms and hands as well as 

the legs (Devivo 2012). Most spinal injuries are anatomically incomplete, and spontaneous 

functional recovery does occur in the weeks or months after injury, attributed to plasticity in 

uninjured pathways in the spinal cord and throughout the central nervous system (Onifer, Smith 

et al. 2011; Cadotte and Fehlings 2013; Silva, Sousa et al. 2013).  Nevertheless, rarely does 

motor and sensory function return completely and the focus of much of the contemporary 

research in this field, both pre-clinical and clinical, is directed toward enhancement of CNS 

plasticity after SCI in order to augment functional recovery.  

 

Many different therapies and training regimes have been investigated (Kwon, Okon et al. 2011; 

Cadotte and Fehlings 2013; Dietz and Fouad 2014; Wilson, Forgione et al. 3013). Unfortunately, 

the majority of the pre-clinical therapies that have shown some success in a particular animal 

model have not proven robust enough to be replicated in other animal models, much less 

translated to the clinic (Heinemann, Steeves et al. 2012; Wilson, Forgione et al. 3013).  A recent 

report has demonstrated the effective use of acute intermittent hypoxia (AIH) to improve motor 

function in persons with partial spinal injury (Hayes, Jayaraman et al. 2014). In an ongoing 

study, persons with incomplete SCI were able to walk faster and for longer distances after 

receiving AIH compared to normoxia treatment. This effect lasted for up to one week after 

treatment, the duration of the study so far (Hayes, Jayaraman et al. 2014). The current study 

focuses on a novel, non-invasive therapy AIH that has already shown some success in clinical 

investigation. 

 

Acute intermittent hypoxia was initially investigated in the context of plasticity in spinal 

respiratory motor neuron pools (Dale, Ben Mabrouk et al. 2014). In a well-established animal 

model, brief  (5 min) exposures to reduced oxygen levels (10.5% inspired O2) in rats, alternating 

with exposures to normal levels (20% O2), results in a sustained increase in phrenic motor 
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neuron output that outlasts the stimulus (Devinney, Huxtable et al. 2013). The mechanism of 

action is complex, but it is known to involve episodic increases in spinal serotonin, triggered by 

AIH-induced activation of carotid afferents. Spinal serotonin in turn stimulates new synthesis of 

brain-derived neurotrophic factor (BDNF) and activation of trkB receptors in spinal motor 

nuclei, resulting in strengthened synaptic input onto spinal motoneurons (Devinney, Huxtable et 

al. 2013). 

  

Importantly, AIH has also been shown to promote plasticity after experimental SCI (Lovett-Barr, 

Satriotomo et al. 2012). Our laboratory has collaborated on a recent report demonstrating that 

repetitive treatment with AIH facilitates recovery of both respiratory function and forelimb 

function in rodent models of incomplete cervical SCI. This recovery is accompanied by long-

term changes in neurotrophin expression in spinal motoneuron pools (Lovett-Barr, Satriotomo et 

al. 2012).  In particular, we showed that AIH treatment initiated 4 wks after experimental SCI in 

laboratory rats produces a sustained improvement in skilled forelimb use. 

 

Here we replicate these preclinical findings, in a randomized, blinded, normoxia-controlled study 

as outlined in the ARRIVE recommendations (Kilkenny, Browne et al. 2010) to show that 

animals receiving AIH treatment for 7 days at 4 wks post-injury made fewer footslip errors 

during ladder crossing for up to 4 wks post treatment compared to animals receiving normoxia-

treatment. The current study differs from many pre-clinical studies of new therapies for SCI in 

that the onset of experimental treatment, in this case AIH, is delayed until 4 weeks after the 

injury, at a time when much spontaneous recovery has already occurred. This allowed us to 

assess the effect of AIH on residual functional deficits, in part to emulate the clinical situation 

more closely. This delay in the onset of treatment also revealed the variability in the amount of 

spontaneous recovery between animal subjects, requiring an extra methodological step in order 

to appropriately randomize treatment assignments (see methods). 

 

Additionally, we investigated the role of motor training on AIH-induced recovery. In our 

original study, the assessment of footslip performance required that the rats voluntarily traverse a 

ladder multiple times for a food reward (Lovett-Barr, Satriotomo et al. 2012). Ladder 

performance was measured daily during the treatment week, which in itself constituted a form of 
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motor training.  Task-specific training and other forms of exercise are well known to affect 

recovery after spinal injury (Kanagal and Muir 2009; Krajacic, Weishaupt et al. 2010; Alluin, 

Karimi-Abdolrezaee et al. 2011; Cote, Azzam et al. 2011; Fouad and Tetzlaff 2012). Therefore, 

in order to distinguish the effects of AIH from those of motor training, we examined the effect of 

AIH treatment on SCI rats with or without motor training. We also investigated the effect of AIH 

treatment on recovery of motor tasks other than ladder locomotion, tasks that required highly 

skilled use of the forepaw (two different reach-to-grasp tasks). For the ladder task, we 

hypothesized that rats with no motor training during the week of AIH treatment would not show 

improved performance, but that rats with concomitant ladder training (task specific) would show 

improvements in ladder performance. In brief, and consistent with Hayes et al (Hayes, 

Jayaraman et al. 2014), and others, our results indicate that task-specific training is required for 

AIH to improve ladder performance in this animal model of cervical SCI.  

 

3.2 Materials and methods 

3.2.1 Animals and Housing 

Lewis male rats, 225-250g, were obtained from Charles River Laboratories (Quebec) and they 

were housed 3 rats/cage upon arrival to our facility and allowed to acclimate to the colony room 

for 5 days prior to handling. Temperature of the room was maintained at 20 °C and lights were 

on an automated cycle of 12hL: 12hD in a controlled room at the Animal Care Facility, Western 

College of Veterinary Medicine, University of Saskatchewan. Cages measured 51cm long x 

28cm wide and contained wood chip bedding, PVC tubes for hiding and sleeping in, and wood 

blocks for chewing. Rats were fed rodent chow ad libitum until an approximate weight of 320g 

was reached, at which time they were restricted to 4 pellets/rat/day. Rats had ad libitum access to 

water throughout the study. Prior to initiation of behavioural training, rats were handled gently 

10 min/day for approximately 3 days or until deemed comfortable with the handler.  Individual 

animals were handled by the same person for all procedures. All animal procedures were 

approved by the University of Saskatchewan Committee on Animal Care and Supply and carried 

out in accordance with standards set out by the Canadian Council on Animal Care.  
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3.2.2 Experimental Design 

Experiments were carried out in cohorts of 12 rats at a time. For the ladder task, each cohort was 

placed in two experimental groups (Gp): 1. ladder training during AIH / normoxia treatment 

week (task-specific), 2.  No training during AIH / normoxia treatment week.  For the other two 

different reach-to-grasp tasks, animals in Gp 3 were conditioned and assessed in the single-pellet 

reaching task, Gp 4 in the Montoya staircase task. The experimental timeline is illustrated in Fig 

3.1A. At the start of each experiment, prior to SCI surgery, all animals were conditioned for the 

appropriate task as described below. Once the experiment began, animals in Gp 1 were exposed 

to the ladder task daily during the treatment week (at 4 wks post-SCI). For the two different 

reach-to-grasp tasks, animals in Gp 3 and 4 received daily training in either single pellet 

reaching task or Montoya staircase task during the AIH treatment week at 4 wks post-surgery.  

 

3.2.3 Ladder-Walking Task 

The horizontal ladder test was used for behavioral assessment of skilled locomotor ability of the 

rats. Rats were trained to cross a horizontal runway, the ladder apparatus was 120 cm in length, 

with 20 cm opaque plexiglass platforms at either end allowing the rats to turn around.  The 

central ladder portion (80 cm in length) consisted of 2 mm diameter wire rungs spaced 2 cm 

apart. The ladder was positioned above the 45° angled mirror so both lateral and ventral aspects 

of the rat movements were visible in the digital video camera so movements of each rat were 

recorded by using a digital video camera.  

 

Ladder conditioning and testing took place at the same time each day for each group of animals. 

Animals were initially conditioned by placing cage mates (3 rats) together in the apparatus with 

a food reward (several Cheerios) present on the platforms at either end for approximately 20 min 

per day. After 1-2 days, the food reward was only presented when animals had traversed the 

ladder from the opposite platform.  After rats were consistently moving across the ladder, they 

were placed in the apparatus individually, and the food reward was similarly offered after the rat  

had traversed the length of the ladder. The ladder apparatus was wiped with 70% alcohol after 

each individual conditioning session. At the end of the 2 wk training period, rats would 

repeatedly cross the ladder consistently and quickly with very few long pauses or hesitations. 
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Performance on the ladder-task was assessed at the following time points: pre-surgery, pre-

treatment, D 1 – 7 of Treatment (for experimental group #1 only), 1 day following treatment, and 

1, 2, 4, and 8wk following treatment. These sessions were recorded at 60 frames/sec (EOS 

Rebel, T2i EOS 550D Canon). At each collection session, at least 12 complete crossings, without 

stops or hesitations by the subject, were recorded per rat.  

 

All video analyses were performed by an assessor blinded to the treatment group. For each 

session, 10 crossings with no stops or hesitations were analyzed. Two non-consecutive complete 

stepping cycles were examined for each crossing, for a total of 20 samples per paw per animal 

per session. Paw placement of each paw was categorized as follows (Fig 3.1B): Grasp: contacts 

rung with both the digits and palmar/plantar surface of the paw; Digits: uses digit(s) only to 

contact rung, Wrist: rests palmar-carpal or plantar-tarsal area against rung rather than grasping; 

Error: paw does not bear weight but slips through rungs; Correction: paw is initially placed on a 

bar but immediately moved to a second bar within the same step. When an Error placement by 

any paw occurred, no further steps were analyzed until one complete stride cycle had taken 

place, so as to remove the confound of immediate subsequent paw placements being influenced 

by the foot slip. Once 20 full stride crossings were analyzed per rat, the occurrence of each of the 

4 categories of paw placement was calculated as a percentage of total paw placements for each 

of the 4 paws. For each of the 4 experimental groups, repeated measures analysis of variance 

(RM-ANOVA,  IBM SPSS Statistics 20 Software)  was performed on each of the measures of 

Grasp, Digits, Wrist and Error steps for each paw, with treatment (AIH or normoxia) and time 

(pre-sx, pre-tx, post-tx, and 1wk, 2 wk, 4 wk and 8 wk post-tx timepoints) as variables.  

 

3.2.4 Single pellet reaching task 

Rats were conditioned to reach for a sugar pellet (45mg; Bioserve Inc., Frenchtown, NJ, USA) 

through a narrow opening in a reaching box as previously described (Whishaw, Pellis et al. 

1993; Kanagal and Muir 2009). In brief, rats were placed individually into the reaching box with 

dimensions 45cm long x 13 cm wide, and a sugar pellet was placed in a small depression in the 

shelf positioned just outside the opening. The pellet was immediately replaced when the rat 

obtained the pellet by reaching through the opening with a forepaw. Each conditioning session  
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Figure 3.1: Summary of methodology used to investigate the contribution of motor training 

to AIH-induced recovery in SCI rats.2 Outcome measure for Groups 1 and 2 was ladder 

performance, so these animals were initially acclimated on the ladder task, and assessed at 7 

different timepoints in the study (A).  Group 1 was additionally trained /assessed on the ladder 

each day of the AIH/normoxia treatment week (not shown). Group 2 received no training during 

treatment week.  The outcome measure for Groups 3 and 4 was reaching performance, so these 

animals were acclimated on the reaching task, and assessed on reaching performance at 7 

different timepoints in the study (A). Illustration of paw placement classification for ladder 

performance assessment (B).  Grasp: rat contacts rung with both the digits and palmar/plantar 

surface of the paw; Digits: uses digit(s) only to contact rung; Wrist: rests palmar region of the 

carpal area against rung rather than grasping; Error: slips through rungs without bearing weight 

on the paw.  All assessors were blind to the experimental treatment. 

GRASP DIGITS 

WRIST ERROR 

A 
Ladder                  Reach‐to‐grasp 
    Gp 1                       Gps 3+4 
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consisted of 20 pellets placed successively on the shelf.  When rats were reaching consistently, 

they were conditioned to retrieve a food reward at the back of the reaching box after each reach 

before approaching the reaching shelf at the front for the subsequent pellet. This ensured that 

each reach was independent of the previous attempt. For a reach to be considered successful, rats 

had to extend their forelimb through the slot, grasp the pellet in their paws, retract the pellet 

without dragging it along the shelf or dropping it, and then eat it, all in a single attempt. Multiple 

attempts at a single pellet were considered failed attempts. Rats could use a combination of 

different forelimb movements and all were considered successful if the above criteria were met. 

Conditioning was considered complete when each rat could obtain at least 10 of 20 pellets 

successfully, which required at least 4 – 6 weeks of conditioning at 5 sessions per week.  

 

For each testing session, rats were acclimated by allowing them to reach for 5 pellets and then 

were digitally videotaped at 60 frames/sec (EOS Rebel, T2i EOS 550D Canon) as they reached 

for a further 20 pellets. Digital videos were examined by an assessor blinded to the treatment 

group. For each data timepoint, reaching performance was recorded and assessed over 3 testing 

sessions on each of 3 consecutive days and an average of the successful reaches over three days 

was used. This accounted for intra-individual variability in performance between days, as we 

have described (Kanagal and Muir 2009). Single pellet reaching performance was recorded pre-

sx, pre-tx (pre-treatment), post-tx (post-treatment), and 1wk and 4 wk post-tx timepoints. Each 

post-treatment data timepoint was expressed as % successful reaches (= # successful reaches/20 

pellets).   

 

3.2.5 Montoya staircase task 

The apparatus consists of a box (30 cm x 10 cm, 11 cm heights) with a staircase positioned along 

either side of the length of the box. Each staircase consisted of 7 steps, the highest steps 

positioned closest to the animal’s nose. Three sugar pellets were placed on each step, each of 

which represented an increase in reaching difficulty. Conditioning sessions consisted of placing 

the animals inside the boxes daily for 15 min/day. The rats used their forelimbs to retrieve the 

pellets from the stairs. After 15 min, the number of pellets remaining was recorded. Rats were 

conditioned for 4 – 6 wks until each rat could achieve 70% successful reaches.  Testing sessions 
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were carried out similarly to conditioning sessions and data expressed as the percentage of 

pellets eaten out of 42 total pellets provided. Animals were tested for the same timepoints as 

animals in the single-pellet reaching task, and data for each timepoint was expressed as the 

percentage of pellets eaten out of 42 total pellets provided.  

 

3.2.6 Surgery 

Rats were pre-medicated with glycopyrrolate (Sabex Inc., Boucherville, QC, Canada, 

0.03mg/kg) to decrease oral secretions. Animals were placed under isoflurane anaesthesia, 

administered an antibiotic (trimethoprim and sulfadoxine (TMS), Trivetrin, Schering Canada 

Inc., QC, Canada, 30mg/kg SC) and pre-emptive analgesia (buprenorphine, Buprenex; Reckitt 

Benckiser Pharmaceuticals Inc., Richmond, VA, USA, 0.05mg/kg SC). The surgical site over the 

dorsum of the neck was prepared by removing fur with clippers and cleaning the skin with 

stanhexidine and 70% isopropyl alcohol. Under an operating microscope, the spinal laminae of 

the 2nd and 3rd cervical vertebrae were exposed using sterile technique, and a laminectomy and 

durotomy performed to expose the 2nd cervical spinal segment. The dorsolateral funiculus was 

transected unilaterally on the left side using a modified 25-gauge bevel tipped needle. For rats in 

Gps 3 and 4, assessed on skilled reaching performance, the spinal lesion was performed on the 

side ipsilateral to the paw preferentially used for reaching. The muscle and skin were closed with 

a subcuticular suture technique. The entire time spent under anaesthetic was approximately 20 

min. Following surgery, rats were administered 3 ml subcutaneous sterile saline and housed 

individually in cages equipped with wood chip bedding, a plastic tube and an extraneous heat 

source. Post-operative analgesia (buprenorphine 0.05mg/kg) and antibiotic (TMS, 30mg/kg) 

were administered for 48h post-surgery, and longer if necessary. Rats were monitored several 

times daily for 5 days post-surgery and assessed for change in weight, presence and severity of 

porphyrin, hydration, healing of the incision site, mobility, and general behavior. At day 3 post-

surgery, rats were rehoused with their original cage mates as described earlier (Animals and 

housing). 
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3.2.7 Intermittent Hypoxia Treatment 

3.2.7.1 Assignment of treatment groups 

Four weeks post-surgery, rats were assessed for pre-treatment task performance as described 

earlier (ladder task, skilled reaching tasks). Due to the range in task performance after 4 weeks 

post-surgery, the following 2 steps were taken to ensure that the functional deficits between the 

treatment groups (AIH and normoxia) were equivalent.  First, those rats that performed at 50% - 

100 % of pre-surgery performance (e.g. that made fewer than 50% footslip errors on the ladder, 

or had less than a 50% decrease in reaching success) at this pretreatment time point were deemed 

not sufficiently injured and were removed from the study.  Our previous experience with the 

ladder task shows that animals making less than 50% footslip errors at this timepoint continue to 

spontaneously improve over the subsequent weeks to make fewer and fewer errors over the 

following weeks. Therefore, only rats making between 50% and 100% footslip errors at 4 wks 

post-surgery were deemed sufficiently injured to be included in the study. Second, due to the 

range in task performance amongst those rats which successfully met the inclusion criteria, 

animals in each cohort were distributed between 2 different treatment groups, initially labelled A 

or B. The distribution was such that the ranges and average % footslip errors or successful 

reaches were equal between group A and B.  One group in the cohort was then randomly 

assigned, using a coin toss, to receive AIH treatment and the other assigned to receive normoxia 

(normoxia) treatment.  

 

3.2.7.2 Treatment  

Rats were acclimated to the treatment apparatus by placing them for 30 min into custom-made 

Plexiglas chambers (1 rat per chamber; 30cm x 17cm x 12cm) under normoxia (21% inspired 

O2), 1 d prior to the first treatment day as previously described (Lovett-Barr, Satriotomo et al. 

2012). Subsequently, on each day of 7 days treatment, the rats were placed into the Plexiglas 

chamber and then exposed to AIH, consisting of ten 5 minutes hypoxic episodes (11% inspired 

O2), alternating with 5 min normoxic intervals. Alteration in normoxic and hypoxic conditions 

were established by automatically switching the incoming air between premixed O2 and N2 gas 

(FlO2 = 0.11) and medical air (FlO2 = 0.21). Control animals were included in each set of 

experiments and they were simultaneously placed in adjacent chambers for the same total 
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duration of time under continuous normoxic conditions (FlO2 = 0.21). The oxygen levels in the 

chambers were continuously monitored using an oxygen analyzer (AX300-1 Portable Oxygen 

Analyzer; Teledyne Analytical Instruments). 

 

3.2.8 Histology 

Rats were humanely euthanized following the 4wk or 8wk post-treatment time point. Animals 

were placed under deep isoflurane anaesthetic and trans-cardially perfused with saline and 4% 

paraformaldehyde. Spinal cords were removed, post-fixed overnight, processed and embedded in 

paraffin. Spinal cord was serially sectioned transversely at 8 µm throughout the injury site, 

sections stained with eriochrome cyanine and neutral red. Slides were examined under the light 

microscope (Zeiss Axioscop, Germany) to determine extent of damage at the lesion epicenter as 

previously described (Webb and Muir 2003; Webb and Muir 2004). 

 
3.2.9 Statistical Analysis 

For each of the 2 experimental groups AIH with and without ladder, repeated measures analysis 

of variance (RM-ANOVA, IBM SPSS Statistics 20 Software)  was performed on footslip errors 

with treatment (AIH or normoxia) and time (pre-sx, pre-tx, post-tx, and 1wk, 2 wk, 4 wk and 8 

wk post-tx timepoints) as variables. Bonferroni correction was used to compare measures at 

different time points. For each of the 2 reaching experimental groups, RM-ANOVA was carried 

out on the % successful reaches, with treatment (AIH or normoxia) and time (post-tx, and 1wk 

and 4 wk post-tx timepoints) as variables. All results are shown as mean  + SEM. 

 
3.3 Results 

In the first several days after surgery, most SCI rats had a detectable abnormality with the left 

forelimb when moving around their cages or on a flat surface. Signs included curled digits when 

non-weightbearing or weightbearing and moderate paralysis of the left forelimb segments. Some 

animals showed mild to moderate paralysis of the left hindlimb immediately post-surgery. After 

4 wks post-surgery, however, animals did not show visible limb deficits except when tested on 

different motor tasks. For rats assessed on the ladder task, the only consistent change in limb 

usage was the increase in the number of footslip errors made by the left forelimb. For ladder Gp 



55 
 

2 (AIH without Ladder Training), there was no difference between treatment groups for the left 

forelimb performance. Histology revealed that all animals used in this study sustained damage to 

the left dorsolateral funiculus at the second cervical segment.  

 

3.3.1 Experimental Group 1: AIH with Ladder Training  

The result of RM-ANOVA indicate that there was a significant effect of AIH+ ladder training 

and time (p < 0.05). Result of RM-ANOVA revealed that rats treated with 7 days of AIH and 

daily ladder training initiated at 4 wks post-SCI made significant fewer footslip errors with the 

left forelimb after the treatment week when compared to control, normoxia-treated animals {F 

(1, 20) = 8.692, p < 0.05}, (Fig 3.2A).  During the treatment week, AIH rats made fewer left 

forelimb errors than normoxia-control rats beginning at 4 days of treatment and this did not 

change throughout the week (Fig 3.2B). After treatment, AIH rats continued to make fewer 

footslips than control animals up to 4 wks post-treatment.  At 8 wk post-tx, the range of footslip 

errors was large in the normoxia-treated group and there were no differences between AIH rats 

and normoxia rats. Analysis of the movements of the left forelimb in AIH-treated animals 

showed that there were more grasp steps, i.e. more normal steps compared with that of 

normoxia-treated controls following treatment {F (1, 20) = 9.123, p < 0.05, AIH n = 12; 

normoxia n = 10} (Fig 3.3).  
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Figure 3.2: Delayed treatment with AIH improves skilled ladder locomotion in rats with 

incomplete cervical SCI.3 Rats receiving daily AIH treatment and concomitant ladder training for 

7 days made fewer footslip errors on a ladder-walking task for up to 4 wks post-treatment 

compared to rats receiving normoxia (control) treatment (A).  During the treatment week, AIH-

treated rats made fewer footslip errors than normoxia-treated rats beginning at 4 days of 

treatment (B).  Pre-sx: 1 day before surgery; Pre-tx: 4 wks after surgery and 1 day before the first 

treatment day; D = day of treatment; Post-tx: 1 day after the last treatment day; Wk Post-tx: 

number of weeks after last treatment day; * p < 0.05 difference between treatment groups, AIH n 

= 12; normoxia n = 10 (except at 8 Wk Post-tx: AIH n= 8, normoxia n = 7) 
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Figure 3.3: Rats treated with AIH and ladder training use more normal steps to cross the 

ladder compared to normoxia-treated controls.4 Rats receiving daily AIH treatment and 

concomitant ladder training for 7 days made more grasp steps on a ladder-walking task 

compared to rats receiving normoxia treatment.  These differences first appeared during the 

treatment week and continued for up to 4 wks post-treatment.  Pre-sx: 1 day before surgery; Pre-

tx: 4 wks after surgery and 1 day before the first treatment day; D = day of treatment; Wk Post-

tx: number of weeks after last treatment day; * p < 0.05 difference between treatment groups, 

AIH n = 12; normoxia n = 10. 
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3.3.2 Experimental Group 2: AIH without Ladder Training 

Rats treated with 7 days of AIH without concomitant daily ladder training initiated at 4 wk post-

SCI made the same number of footslip errors with the left forelimb after the treatment week as 

normoxia-treated animals (Fig 3.4). There were no significant differences in errors made by the 

left forelimb (the injured limb) between AIH and normoxia-treated animals at any timepoint {F 

(1, 19) = 0.677, p > 0.05, AIH n = 10; normoxia n = 11}.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 



59 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.4: Delayed treatment with AIH without concomitant motor training does not 

improve skilled ladder locomotion in rats with incomplete cervical SCI.5 Rats receiving daily 

AIH treatment for 7 days without any form of daily motor training made the same number of 

footslip errors on a ladder-walking task compared to rats receiving normoxia (control) treatment.  

There were no differences in footslip errors between AIH and normoxia-treated animals at any 

timepoint. Pre-sx: 1 day before surgery; Pre-tx: 4 wks after surgery and 1 day before the first 

treatment day; Post-tx: 1 day after the last treatment day; Wk Post-tx: number of weeks after last 

treatment day (p > 0.05; AIH n = 10; normoxia n = 11). 
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3.3.3 Skilled reach-to-grasp tasks  

Rats treated with daily AIH (7 days) plus daily task training at 4 wks post-SCI in either the 

single pellet reaching task (Figure 3.5A) or the Montoya staircase task (Figure 3.5B) did not 

show improved reach-to-grasp performance versus normoxia-treated, task-trained animals. 

Reaching success was not significantly different between AIH-treated and normoxia-treated rats 

at any time point. During the single-pellet reaching task (Figure 3.5A), rats used several different 

movement strategies, including shovelling or scooping movments, to successfully retrieve the 

food reward (see Methods). AIH-treated rats showed some improvement in reaching success 

versus normoxia-treated rats, but this did not reach statistical significance {F (1, 18) = 2.911, p > 

0.05, n = 10/gp}.  In contrast, the Montoya staircase task is designed to allow only one series of 

forelimb movements to retrieve the food reward and thus is a more demanding reaching task. 

AIH had no effect on reaching success in this task {F (1, 22) = 0.677, p > 0.05, n=12/gp}.  
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Figure 3.5:  Delayed AIH treatment does not improve reach-to-grasp success in SCI rats 

receiving task specific motor training.6 (A) On the single-pellet reaching task, rats treated with 

AIH and daily reaching training showed a trend toward increased reaching success after the 

treatment week, but were not statistically different from normoxia-treated rats (p=0.10, 

n=10/gp). (B) On the staircase task, rats treated with AIH and daily staircase task training did not 

show improved reaching success, and there were no differences between AIH- and normoxia-

treated rats (n=12/gp). Post-Tx: 1 day after the last treatment day; Wk Post-Tx: number of weeks 

after last treatment day. 
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3.4 Discussion 

In summary, our results indicate that 7 days of AIH treatment initiated 4 wk after incomplete 

cervical spinal injury will improve footslip performance on a ladder task in SCI rats when 

combined with daily ladder task training. This improvement in performance was retained up to 4 

wks after the end of treatment but was not present at 8 wks post-treatment. Rats that received 

AIH treatment without task training during the treatment week did not improve their footslip 

performance over that of normoxia-treated animals. One week of delayed AIH treatment also 

does not improve skilled reach-to-grasp performance in cervical SCI rats. Therefore, AIH 

treatment facilitates recovery of footslip performance on the ladder task only when treatment is 

accompanied by specific ladder-task training. 

 

3.4.1 Daily AIH – possible mechanism of action 

Our finding that ladder performance improves with daily AIH and daily ladder training in SCI 

rats is consistent with earlier findings that AIH improves both ladder performance and breathing 

in rats with cervical SCI (Lovett-Barr, Satriotomo et al. 2012). As described in the methods, the 

current experimental design included randomized treatment assignment and blinded assessments 

to strengthen the reliability of our findings. These results are also consistent with the recent 

report of AIH-induced improvements in human subjects with incomplete SCI (Hayes, Jayaraman 

et al. 2014). In a placebo-controlled, randomized double-blind study, treatment with AIH 

improved walking speed in SCI subjects. When combined with locomotor training, AIH also 

improved walking distance for up to one week post treatment, the latest time point reported. 

Importantly, the treatment paradigm in this clinical study differed only slightly from that our 

current study. Human SCI subjects received 5 days of AIH treatment, consisting of breathing 9% 

O2 for 90s alternating with 21% O2 for 60s, repeated 15 times. The paradigm in the current 

study, modelled after earlier animal studies, was 7 days of 11% O2 for 5 min alternating with 5 

min 21% O2, repeated 10 times. Clinical locomotor training was carried out 1 hour after the end 

of AIH treatment, as was the ladder task training during the present study.  The comparable 

results between the clinical and pre-clinical studies, in light of the shared methodology, suggest 

that similar mechanisms may be responsible for AIH-induced recovery in both situations.   
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Although the mechanisms for AIH-induced locomotor enhancements are not known, there is 

strong evidence that AIH-induced recovery of breathing after SCI is a result of enhancement of 

synaptic input onto spinal motoneurons (Devinney, Huxtable et al. 2013). It is well established in 

rats that AIH triggers episodic spinal serotonin release, resulting in increased expression of 

BDNF and phosphorylated trkB in spinal motor nuclei (Devinney, Huxtable et al. 2013). The 

activation of trkB elicits downstream intracellular cascades eventually leading to enhanced 

synaptic inputs on spinal motoneurons. Important for the present study, serotonin, BDNF and 

trkB show increased expression in motor nuclei throughout the spinal cord after AIH treatment 

(Lovett-Barr, Satriotomo et al. 2012; Satriotomo, Dale et al. 2012), suggesting that similar 

mechanisms could be involved in AIH-induced recovery of both respiratory and forelimb 

function. In addition, exposure to the specific regime of AIH used in the present study (5 min 

11% O2: 5 min 20% O2) results in improved oxidative phosphorylation in rat liver, cardiac and 

skeletal muscle tissue, a change which lasts up to 3 months after treatment (Serebrovskaya, 

Nosar et al. 2013). Although not yet investigated, it is possible that similar effects occur in 

neural tissue, forming part of the underlying mechanisms for AIH-induced recovery.  

 

3.4.2 Delayed treatment compared to immediate treatment 

As described earlier, treatment with AIH did not commence until 4 wks after surgery, at a time 

point when much spontaneous recovery had already occurred in this rodent model of incomplete 

SCI.  Essentially, this allowed us to examine the effect of AIH on residual deficits after recovery 

from SCI, a situation that differs from many experimental pre-clinical studies and is arguably 

more relevant to the clinical condition. For any particular lesion model, the amount of recovery 

and the time required for spontaneous recovery to occur will depend upon a number of factors, 

including the severity and type of lesion, rat strain, housing conditions and of course the 

particular outcome measures assessed. In our experience with the lesion model in this study, 

most spontaneous recovery has occurred by 4 wks post-injury, although recovery is not 100% 

complete. In particular, we know that animals making fewer than 50% footslip errors on the 

ladder at 4 wk post-surgery will continue to improve over the following weeks without any 

experimental intervention, whereas animals making more than 50% footslip errors do not 

improve consistently. Since we were interested whether AIH could facilitate recovery in subjects 
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with residual deficits, we focused on those animals which were less likely to recover 

spontaneously, i.e. those which met an inclusion criteria of >50% footslip errors at 4 wks post-

injury. We also applied this inclusion criteria to the skilled reach-to-grasp motor tasks, in that 

only animals with a reaching performance at 4 wks post-injury of less than 50% compared to 

pre-surgery would be included in the experimental groups.  Our decision to use inclusion criteria 

based on functional abilities, rather than anatomical lesion size, is strengthened by recent 

findings that behavioural recovery is not correlated with lesion size for incomplete cervical 

lesions in rats (Fouad, Hurd et al. 2013; Hurd, Weishaupt et al. 2013). In future studies, more can 

be done to examine the effect of treatment on sets of animals with more closely matched 

abilities, to determine whether AIH facilitates recovery better in animals with more, or less, 

severe deficits. 

 

One major consequence of the delay in treatment onset was a variation in the amount of 

spontaneous recovery between individual animals that had received the same spinal lesion 4 wk 

earlier. Each cohort of animals had a range of functional abilities at the start of treatment, and 

this variability needed to be managed in order to effectively compare AIH and control 

treatments. The first step was, as described above, to include only those animals that, from our 

best information, would retain residual functional deficits. Even within this set of animals with 

greater than 50% errors, random assignment of individual animals to either AIH or control 

treatment would not necessarily result in a pair of treatment groups with equivalent abilities. 

Instead, for each experimental cohort, we first assigned animals to one of two groups based on 

their motor performance so that the groups were matched as closely as possible for the mean and 

range of errors. AIH or control treatment was then randomly assigned to the group, satisfying 

our requirements for random assignment of treatment while still maintaining valid comparisons 

of treatment effects within each cohort.  

 

3.4.3 Task-specific exercise facilitates AIH-induced recovery of ladder performance  

The results from experiments 1 and 2 and from earlier findings strongly suggest that concomitant 

training in the ladder task is necessary for AIH-induced recovery of ladder performance in SCI 

rats (Figs 3.2, 3.3).  Footslip errors were reduced only when animals received both AIH 
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treatment and ladder training. We considered our method of recording ladder performance in SCI 

rats as a form of ladder task training largely because of some key characteristics of our ladder 

task methodology, which differ from the methods used in most other studies of footslip errors on 

a horizontal ladder or grid. For a detailed description, see (Metz and Whishaw 2009). In the 

present study, animals were conditioned to repeatedly cross the ladder voluntarily while 

recording occurred and as such, were not repeatedly handled during the recording sessions as is 

necessary with unconditioned animals. In the present study, animals would cross the ladder at 

least 10 – 12 times each recording/training session, and the data were averaged from at least 20 

steps per session. Finally, the ladder used in the present study had regularly placed rungs rather 

than having irregularly spaced rungs (Metz and Whishaw 2009), as pilot studies in our lab 

showed the same number of footslip errors and forepaw grasping postures made by either 

uninjured rats or SCI rats regardless of the rung spacing.  Rats in the present study voluntarily 

crossed the ladder many times during each recording session, which effectively also comprised 

the training sessions. Similarly, task training in the form of overground walking combined with 

AIH treatment also improved walking distance more than did AIH alone in human SCI subjects 

(Hayes, Jayaraman et al. 2014), although, unlike in the present study, AIH alone also improved 

walking speed in human SCI subjects. 

 

3.4.4 AIH for 1 wk does not improve reach-to-grasp  

The fact that AIH did not significantly improve skilled reach-to-grasp performance indicates as 

much about the nature of these tasks as it does the robustness of AIH effects.  Reach-to-grasp 

movements with the forepaws require specific brainstem-spinal pathways, including the 

rubrospinal axons, which are directly affected by the dorsolateral funicular lesion used here. In 

contrast, ladder locomotion involves some grasping but also more general limb movements, 

subserved by pathways more widely distributed in spinal white matter. It is therefore, not 

surprising that reach-to-grasp tasks are affected more severely after SCI than is ladder 

locomotion. During recovery of ladder locomotion, rats would be able to access multiple neural 

pathways to achieve appropriate paw placements, and plasticity in these pathways, possibly 

facilitated by AIH, contributed to fewer errors.  



66 
 

Reach-to-grasp movements require plasticity in a more limited number of pathways and thus 

recover less well than ladder locomotion after dorsolateral cervical SCI.  Nevertheless, we can 

see parallel comparisons between the two different reach-to-grasp tasks, in that more recovery 

occurs in the task that allows for more behavioral plasticity, the single pellet task, compared to 

the more restrictive Montoya staircase task (Fig 3.5). The single pellet task allows the animal to 

use different combinations of forelimb segment movements to accomplish a ‘successful reach’. 

Whereas uninjured animals tend to use a similar series of movements to obtain the food pellet, 

motor deficits in SCI rats prompts them to compensate with a range of movement combinations. 

This behavioural plasticity presumably reflects underlying neural plasticity.  Although our 

results are suggestive that AIH might enhance this plasticity, reaching success in AIH-treated 

rats did not differ from normoxia-treated rats at 4 wk post-tx (Figure 3.5A).  Longer treatments 

with AIH might allow AIH-induced plasticity to improve performance in the single-pellet 

reaching task.  In contrast, the Montoya staircase task is a less permissive task. The design of the 

apparatus restricts the action of the limbs to a particular series of movements in order to obtain a 

sugar pellet. Less behavioural plasticity is allowed and thus recovery on this task requires 

plasticity in a limited number of neural pathways.  

 

3.5 Sources of potential systematic error 

There is a growing acknowledgement in the field of preclinical biomedical research that many 

animal studies are not carried out with sufficient methodological rigour or at least with the 

reporting of such standards (Kilkenny, Browne et al. 2010; Landis, Amara et al. 2012). The lack 

of methodological standards, required in clinical research, has undoubtedly contributed to the 

lack of reproducibility for many pre-clinical animals’ studies in the spinal cord injury field, one 

of several biomedical areas that have been investigated (Steward, Popovich et al. 2012). We 

have addressed these issues in the present study by employing and reporting recommended 

methods such as randomization of treatment assignment, use of placebo or normoxia treatments, 

and blinded assessments, as described in Methods. Nevertheless, there are still issues of potential 

error or systematic bias that might affect our findings. For example, animals were pre-selected 

for inclusion in each of the experiments based on their functional abilities at 4 wk post-SCI. 

Although we felt this was a justified inclusion criteria because our previous experience 
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demonstrated that animals with smaller deficits would continue to recover, there was still a range 

of individual functional abilities even within the groups of animals that met the inclusion criteria.  

 

In summary, we have found that delayed treatment with AIH and task-specific training facilitates 

recovery on a ladder task in rats with cervical SCI. These findings, in conjunction with the 

successful use of AIH in a recent clinical study, point to the potential of AIH as an effective 

treatment to augment plasticity and improve functional recovery after SCI. 
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Transition Statement 

This chapter focusses on the second specific aims in this thesis, to address the hypothesis that 

AIH alters the expression of plasticity- and hypoxia-related proteins in a rat model of cervical 

spinal injury. 
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4.1 Introduction 

Spinal cord injury damages axonal pathways, interrupts synaptic transmission between the brain 

and spinal cord and subsequently alters the motor, sensory and autonomic functions below the 

level of injury. Most SCIs are incomplete and leave some uninjured synaptic axonal pathways. 

The sparing of undamaged pathways contributes to spontaneous recovery of some limb and 

respiratory function following SCI although this spontaneous recovery of function can be 

frustratingly slow and inadequate to restore normal function following SCI.  

 

A variety of approaches have been used to enhance functional recovery in animal models of SCI, 

including methods to enhance plasticity in spared synaptic neural pathways (Dale, Ben Mabrouk 

et al. 2014). Plasticity is a fundamental property of the CNS, by which the nervous system fine 

tunes and rearranges synaptic connectivity in response to both changes in synaptic activity, 

injury or both. 

 

Intermittent hypoxia (IH), is well known to induce plasticity in multiple physiological systems 

(Navarrete-Opazo and Mitchell 2014). Intermittent hypoxia is the exposure of persons or animals 

to periods of low oxygen levels.  IH protocols vary greatly in terms of O2 % in inspired air, 

number of episodes, and duration of episodes, but can generally be divided into chronic IH 

(CIH) and acute IH (AIH) protocols (Ling, Fuller et al. 2001; Dale-Nagle, Hoffman et al. 2011; 

Devinney, Huxtable et al. 2013). Chronic IH protocols are associated with both detrimental and 

beneficial effects in multiple physiological systems whereas AIH protocols are reported to elicit 

beneficial effects without showing detrimental effects (Navarrete-Opazo and Mitchell 2014). In 

particular, AIH has been shown to induce spinal plasticity in respiratory and non-respiratory 

motor systems and to improve functional recovery following SCI. AIH-induced plasticity in 

respiratory motor systems has been well-documented and thoroughly studied (Baker-Herman, 

Fuller et al. 2004; Golder and Mitchell 2005; Wilkerson and Mitchell 2009; Dale, Ben Mabrouk 

et al. 2014). The impact of AIH on non-respiratory motor systems has been recently reported in 

persons with chronic SCI and in animals with experimental SCI. A single AIH exposure 

increases ankle strength in patients with incomplete chronic spinal cord injuries, and daily 

exposure to AIH (dAIH) for 5 days has shown that dAIH enhances walking speed and endurance 
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in persons with chronic incomplete spinal cord injuries (Trumbower, Jayaraman et al. 2012) 

(Hayes, Jayaraman et al. 2014).  Work from our lab has shown that delayed exposure to dAIH in 

rats with incomplete cervical spinal injuries will improve ladder performance when combined 

with ladder training (Lovett-Barr, Satriotomo et al. 2012); Chapter 3 of this thesis). 

 

The mechanism associated with AIH-induced facilitation of non-respiratory motor function in 

SCI animals has not been previously investigated. More information is known about AIH-

induced changes in respiratory motor systems. AIH induces a form of respiratory motor 

plasticity in intact animals known as long-term facilitation (LTF).  LTF is a progressive increase 

in respiratory motor output that lasts for at least one hour, and may serve physiologically as a 

compensatory mechanism to stabilize the respiratory motor output following AIH (Fuller, 

Johnson et al. 2003; Golder and Mitchell 2005; Devinney, Huxtable et al. 2013; Dale, Ben 

Mabrouk et al. 2014).   Multiple convergent intracellular pathways are able to induce LTF in 

spinal motoneurons, which involve signalling through serotonin-PKC-BDNF-trkB-pERK; 

adenosine-PKA-pAkt; VEGF-pAkt pathways, among others (for review, see (Dale, Ben 

Mabrouk et al. 2014). 

 

Although it is not known whether the same pathways underlying LTF are involved in motor 

plasticity after AIH treatment in spinal-injured animals, the expression of several proteins 

associated with these pathways are increased after AIH treatment in rats. After repetitive acute 

intermittent hypoxia (rAIH) (10 weeks of 3 x weekly AIH consisting of 10, 5-min episodes of 

10.5% inspired O2), 5HT2A, BDNF and its high affinity receptor trkB among other proteins, are 

increased in spinal motoneurons (Satriotomo, Dale et al. 2012).  Similarly, BDNF and trkB 

expression are increased after dAIH, (7 days of 10, 5-min episodes of 10.5% inspired O2) in 

spinal motor neurons at C4 and C7 spinal segments.  

 

I was interested to determine whether the protocol of training and AIH, which facilitated motor 

recovery in SCI rats, described in Chapter 3 of this thesis, also induced changes in expression of 

plasticity- and hypoxia- related proteins in the spinal cord of SCI rats.  In order to compare 

findings with published studies, I chose to examine changes in expression of BDNF, and its high 

affinity receptor trkB, the phosphorylated form of trkB, and VEGF. I also chose to examine 
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changes in the expression levels of hypoxia-induced protein HIF-1α. HIF-1α is a transcription 

factor which is activated in response to low oxygen and regulates the expression of many target 

genes, including VEGF, to maintain oxygen homeostasis (Calvani, Comito et al. 2012). In 

addition, I examined the expression of cell specific markers for astrocytes and microglia (GFAP 

and ED-1, respectively) to assess the response of these non-neuronal cells to AIH and motor 

training in SCI rats. 

 

The protocol used in Chapter 3 showed improvements in ladder performance beginning at 4 days 

of AIH + motor training.  In the current study, I was interested to determine whether changes in 

expression of proteins were evident early versus late in the treatment week. For that reason, the 

current study examines protein expression after only one day of AIH + training and compares 

this to protein expression after 7 days of AIH + training. Furthermore, to assess whether the 

treatment affects motoneurons in the cervical spinal cord only (the only location examined in 

published studies) or at different segmental levels, I examined protein expression in cervical 

motoneurons as well as lumbar motoneurons.  In short, the current study shows that hypoxia- and 

plasticity-related proteins are differentially expressed both temporally and spatially within the 

spinal cord after dAIH + motor training in a rat model of incomplete cervical SCI.  

 

4.2 Materials and Methods 

4.2.1 Animals and Housing 

Animal were housed as described in Section 3.2.1. A total of 12 animals were used in this study. 

After ladder training and testing, SCI surgery, animals were randomly assigned to receive either 

AIH or normoxia treatment (n = 6 per treatment group), and within each treatment group, 

animals were randomly assigned to receive either 1 day or 7 days of AIH + ladder training (n = 6 

per group). The experimental groups were therefore 1 day normoxia; 7 day normoxia; 1 day 

AIH; or 7 day AIH (n = 3 per experimental group). The experimental timeline is shown in Figure 

4.1. 
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Pre Sx             Pre Tr 
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Ladder task 
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Daily AIH/Normoxia 
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Daily training 

Perfusion Day 7 Perfusion Day 1 Task conditioning  

 3-8 wks             4 wks                        1 wk 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Summary of methodology used to investigate acute intermittent hypoxia-

induced plasticity and hypoxia-related protein expression.7 All animals were initially 

conditioned on the ladder task, and were trained on the ladder task before spinal surgery (Pre 

Sx), 4 weeks after surgery (Pre-Tr), and every day of the 7 day AIH treatment. Spinal cord tissue 

was taken from a subset of animals (n = 6) euthanized and perfused after 1 day of treatment and 

training (Perfusion Day 1), and from the remaining animals (n = 6) after 7 days of treatment and 

training (Perfusion Day 7).   
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4.2.2 Ladder-Walking Task 

Ladder acclimation, training, recording and analysis was carried out as described in Section 

  3.2.3. 

 

4.2.3 Surgery 

Surgery was carried out as described in Section 3.2.6. 

 

4.2.4 Intermittent Hypoxia Treatment 

Intermittent hypoxia treatment was carried out as described in Section 3.2.7. 

 

4.2.5 Tissue Preparation  

At day 1 and day 7 of AIH+training treatment, animals in the appropriate group were deeply 

anaesthetized with isoflurane and perfused by trans-cardial perfusion with heparinized 

phosphate-buffered saline followed by 4% paraformaldehyde. The vertebral column containing 

the spinal cord was removed and post-fixed overnight in 4% paraformaldehyde. The spinal cord 

was extracted from vertebral column and segments C6-C7 (containing motoneurons innervating 

the forelimb) and segments L4-L5 (containing motoneurons innervating the hindlimb) were 

postfixed for 1-1.5h in 4% paraformaldehyde and cryoprotected in 10% sucrose followed by 

20% sucrose overnight at 4oC. Subsequently, segments of spinal cord from AIH and control 

(normoxia) groups were embedded in a cryomold covered in OCT compound (Tissue Tek; Miles 

Laboratories, Elkhart, IN), then carefully frozen by immersing the mold in which they were 

frozen in isopentane cooled in a slurry of dry ice and acetone. The individual pieces of frozen 

spinal cord were subsequently released from the mold and annealed together with OCT 

compound, creating a larger block containing 8 pieces of spinal cord, representing each of the 4 

experimental conditions (1 day normoxia; 7 day normoxia; 1 day AIH;7 day AIH) from  2 spinal 

cord regions (C6-7 and L4-5). With all 12 animals, this resulted in 3 blocks, each containing 

spinal cords from 4 experimental conditions x 2 spinal regions. Blocks were then stored at -80°C 

until sectioning. Tissues were sectioned at 10μm thickness with a Microm cryostat and thaw-

mounted onto slides (VWR Superfrost Plus) and stored at -80°C until further processing for 

immunofluorescence. Thus, each slide contained eight sections. Each section represented each 
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experimental group, so that sections from the normoxia and AIH-treated (day 1 and day 7) 

animals, sampled from each of the forelimb and the hindlimb, were mounted on the same slides 

and processed under identical conditions to minimize processing variations. 

 

4.2.6 Immunofluorescence  

Slides were removed from -80°C refrigerator and allowed to air dry and reach room temperature 

for 30 minutes, then washed in 0.1M PBS, pH 7.4, for 30 minutes. PBS was changed every 10 

minutes and excess liquid was removed from sections by suction. Prior to incubation with 

primary antibodies for BDNF or trkB, citrate antigen retrieval was performed. Briefly, slides 

were placed in 0.01M citrate buffer (10% 0.1M sodium citrate buffer in ddH2O, pH 6) at 50°C 

and then warmed to 90°C over 45min. Slides were then allowed to cool for 20min.  

 

All slides were then incubated with blocking solution containing Sea Block buffer (Abcam) in 

primary diluent (0.1% Triton X-100 in 0.1M PBS) for 1hr at room temperature. Primary 

antibodies used in this study were diluted with 10 % Sea Block in primary diluent to the 

following concentrations: mouse anti-HIF-1α (NB 100-105, Novus Biological) 1:200, rabbit 

anti-VEGF (A-20, sc-152, Santa Cruz Biotech, Inc) 1:200, chicken anti-BDNF (Promega) 1:200, 

rabbit anti-trkB (794, sc-12, Santa Cruz Biotech, Inc) 1:100, rabbit anti ptrkB (phosphor Y705, 

abcam) 1:400, rabbit anti-GFAP (Dako Canada, Inc) 1:800, mouse anti-ED-1 (Cedarlane) 1:300. 

After 24hr incubation at 4°C in a humidified chamber, slides were washed for 30min in 0.1M 

PBS.  Slides exposed to the various primary antibodies were then incubated with the appropriate 

secondary fluorescent antibodies. The following secondary antibodies were used in this study: 

goat-anti-rabbit Alexa Fluor 488, donkey-anti-mouse Alexa Fluor 488, DyLight 594 donkey-

anti-mouse (Jackson Immuno Research Laboratories, Inc) at 1:2000, Cy3 Donkey-anti-rabbit 

(Jackson Immuno Research Laboratories, Inc) at 1:4000, goat-anti-chicken (F-1005, aves labs, 

Inc) 1:1000 diluted in 0.1M PBS. After 1hr incubation in the dark at room temperature, slides 

were washed for 30min in 0.1M PBS, and then coverslipped using ProLong Gold Antifade 

Reagent (P36931, Molecular Probes, Invitrogen).  

 



75 
 

4.2.7 Image Analysis / Quantification 

Immunofluorescence-processed sections were examined using a Zeiss Axioskop with appropriate 

filters and photographs of all spinal cord regions of interest of sections mounted on the same 

slide were taken with the 20x objective under identical conditions. Six slides (two slides/animal) 

from each experimental group (representing different animals per group), were then used for 

quantification. Image analysis was performed in a blinded fashion in the region of interest (i.e. 

ventral grey matter) in all photographs of both C6-C7 and L4-L5 levels of spinal cords. To 

examine the degree of astrocyte reactivity or macrophage/microglia activation, GFAP and ED1 

images respectively were analyzed using Image J software: 4 boxes (100m X 100m) each 

were placed at approximately equal intervals over ventral horn regions of spinal cord of each 

section and the mean gray value was obtained for each box. To examine expression of HIF-1α, 

VEGF, BDNF, trkB and ptrkB in motoneurons, images were analyzed using Northern eclipse 

software. Motor neurons in ventral grey matter on both sides of the spinal cord were 

circumscribed and the mean gray value for the marker being examined was obtained for each 

motor neuron. Background mean gray background values were determined and subtracted from 

the mean gray value for each motoneuron analyzed in that spinal cord section and then the net 

mean gray value determined for that grouping of motoneurons. For the 3 animals in each of 4 

experimental groups  (1 day normoxia; 7 days normoxia; 1 day AIH; 7 day AIH) mean gray 

values were averaged to obtain mean gray value for each group.  

 

4.2.8 Statistical Analysis 

Statistical analysis was performed with IBM SPSS Statistics v20 for windows Software. 

Differences between the mean gray values for each experimental group  (1 day normoxia; 7 days 

normoxia; 1 day AIH; 7 days AIH) at C6-7 or L4-5 spinal segments for each of BDNF, trkB, 

phospho-trkB, HIF1-alpha, VEGF, GFAP and ED-1 were examined by using one-way analysis 

of variance (ANOVA) and Tukey HSD test was used for post hoc analysis. Differences were 

considered significant if p<0.05. 
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4.3 Results 

For every marker examined in this thesis, controls without primary antibodies were performed to 

verify the authenticity of the positive immunofluorescence signal and to also ascertain that there 

was no nonspecific staining by the secondary antibodies used to visualize where the primary 

antibodies had bound antigen.  For each marker examined, there was no detectable positive 

immunofluorescence signal detected when the primary antibody was omitted from the 

procedure.  A representative image of what was observed can be seen in Fig 4.2.  

 

4.3.1 AIH and motor training increases HIF-1α protein expression in spinal motor neurons 

at spinal segments C6-7 and L4-5. 

Hypoxia-inducible factor-1α (HIF-1α) is a transcription factor that regulates the expression of 

multiple genes in response to hypoxia. AIH treatment and motor training for 1 or 7 days 

increases HIF-1α protein expression in spinal motor neurons at C6-7 and L4-5 segments of 

spinal cord (Figs 4.3 – 4. 6). Photomicrographs of ventral grey matter of spinal cord processed 

for HIF-1α immunofluorescence show increased immunoreactivity in AIH-treated spinal-injured 

rats compared to normoxia-treated spinal-injured rats after 1 day (Day-1) and 7 days (Day-7) of 

treatment in both C6-7 (Fig 4.3) and L4-5 (Fig 4.4) spinal segments.  

 

Quantitative analysis confirms that AIH treatment plus motor training for either 1 day or 7 days 

significantly increases HIF-1α protein levels in the motor neurons of ventral grey matter of C6-7 

and L4-5 spinal segments in AIH-treated rats versus normoxia-treated rats (p < 0.05) (Fig 4.4, 

4.6)  
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Figure 4.2: Representative Immunofluorescence control.8 Representative photomicrograph of 

spinal ventral horns at the C6-7 segment of spinal cord processed for HIF-1α protein expression 

without primary antibody (control). Note the lack of positive immunofluorescence signal in 

either 1 day (Day-1) or 7 day (Day-7) normoxia-treated (A,C) versus dAIH-treated (B,D) spinal-

injured rats. Arrows identify representative motor neurons. Scale bar = 50 µm. 
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Figure 4.3: AIH treatment for either 1 or 7 days increases HIF-1α protein levels in the 

spinal segments C6 -7.9 Representative photomicrographs of the ventral grey matter in C6-7 

spinal segments sections processed for HIF-1α immunofluorescence from 1 day (Day-1) or 7 day 

(Day-7) in normoxia-treated (A,C) versus AIH-treated (B,D) spinal injured rats. Arrows indicate 

representative motor neurons. Scale bar = 50 µm. 
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Figure 4.4: AIH treatment for either 1 or 7 days increases HIF-1α protein levels in 

motoneurons at spinal segments C6 -7.10 Histograms summarize the mean immunofluorescence 

signal intensity detected + SEM as measured in gray values over individual motoneurons within 

the ventral horn from normoxia- and AIH-treated spinal injured rats [n=3 rats per experimental 

group analysed; 60-65 neurons analysed/time point/experimental condition]. Asterisks indicate 

significant differences between experimental groups; * p < 0.05. 
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Figure 4.5: AIH treatment for either 1 or 7 days increases HIF-1α protein levels in the L4-5 

spinal segments.11 Representative photomicrographs of the ventral grey matter in L4-5 spinal 

segments sections processed for HIF-1α immunofluorescence from 1 day (Day-1) or 7 day (Day-

7) in normoxia-treated (A,C) versus AIH-treated (B,D) spinal injured rats. Arrows indicate 

representative motor neurons. Scale bar = 50 µm. 
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Figure 4.6: AIH treatment for either 1 or 7 days increases HIF-1α protein levels in 

motoneurons at L4-5 spinal segments.12 Histograms summarize the mean immunofluorescence 

signal intensity detected + SEM as measured in gray values over individual motoneurons within 

the ventral horn from normoxia- and AIH-treated spinal injured rats [n=3 rats per experimental 

group analysed; 80-85 neurons analysed/time point/experimental condition]. Asterisks indicate 

significant differences between experimental groups; * p < 0.05. 
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4.3.2 AIH and motor training increases VEGF protein expression in spinal motor neurons 

at spinal segments C6-7 and L4-5. 

Vascular endothelial growth factor (VEGF) is a dimeric glycoprotein and a fundamental 

regulator of angiogenesis (Rosenstein and Krum 2004). Apart from its role in angiogenesis, 

VEGF appears to play neurotrophic and neuroprotective roles in spinal cord and brain injury 

(Krum and Rosenstein 1998; Facchiano, Fernandez et al. 2002; Svensson, Peters et al. 2002). 

Recent studies have shown that AIH induces the expression of VEGF and its receptors VEGFR-

2 in phrenic motoneurons where they induced phrenic motor facilitation (pMF) via ERK Akt 

intracellular pathways (Dale, Ben Mabrouk et al. 2014).  

 

To examine the possible effect of AIH treatment plus motor training for 1 day or 7 days on 

VEGF protein expression in spinal motor neurons, I processed the C6-7 and L4-5 segments of 

spinal cord for immunofluorescence for VEGF protein. AIH treatment and motor training for 7 

days increased the expression of VEGF protein in spinal motor neurons at C6-7 and L4-5 

segments of spinal cord but there was no marked change in VEGF immunoreactivity following 1 

day of treatment and training. (Figs 4.7 - 4.10). Photomicrographs of spinal ventral grey matter 

processed for VEGF protein immunofluorescence show increased VEGF immunoreactivity in 

AIH-treated spinal-injured rats compared to normoxia-treated spinal-injured rats after Day-7 of 

treatment in C6-7 (Fig 4.7) and L4-5 (Fig 4.9).     

 

Quantitative analysis confirms that AIH treatment plus motor training for 7 days significantly 

increases protein expression of VEGF levels in the motor neurons of ventral grey matter of 

spinal segments C6-7 and L4-5 in AIH-treated rats versus normoxia-treated rats (p < 0.05) (Fig 

4.8, 4.10)  
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Figure 4.7: AIH treatment for 7 days increases VEGF expression in ventral grey matter of 

C6-7 spinal segments.13 Representative photomicrographs of the ventral grey matter in C6-7 

spinal segments sections processed for VEGF immunofluorescence from 1 day (Day-1) or 7 day 

(Day-7) normoxia-treated (A,C) versus AIH-treated (B,D) spinal injured rats. Arrows indicate 

representative motor neurons. Scale bar = 50 µm. 
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Figure 4.8:  AIH treatment for 7 days increases VEGF protein levels in motoneurons at 

spinal segments C6-7.14 Histograms summarize the mean immunofluorescence signal intensity 

detected + SEM as measured in gray values over individual motoneurons within the ventral horn 

from normoxia- and AIH-treated spinal injured rats [n=3 rats per experimental group analysed; 

60-65 neurons analysed/time point/experimental condition]. Asterisks indicate significant 

differences between experimental groups; * p < 0.05. 
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Figure 4.9: AIH treatment for 7 days increases VEGF expression in ventral grey matter of 

spinal segments L4-5.15 Representative photomicrographs of the ventral grey matter in L4-5 

spinal segments sections processed for VEGF immunofluorescence from 1 day (Day-1) or 7 day 

(Day-7) normoxia-treated (A,C) versus AIH-treated (B,D) spinal injured rats. Arrows indicate 

representative motor neurons. Scale bar = 50 µm. 
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Figure 4.10: AIH treatment for 7 days increases VEGF protein levels in motoneurons at 

spinal segments L4-5.16 Histograms summarize the mean immunofluorescence signal intensity 

detected + SEM as measured in gray values over individual motoneurons within the ventral horn 

from normoxia- and AIH-treated spinal injured rats [n=3 rats per experimental group analysed; 

80-85 neurons analysed/time point/experimental condition]. Asterisks indicate significant 

differences between experimental groups; * p < 0.05. 
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4.3.3 AIH treatment and motor training for 7 days increases BDNF protein expression in 

the ventral grey matter at spinal segments C6-7 and L4-5.  

Brain-derived neurotrophic factor (BDNF) is an important member of the neurotrophin family 

and plays a diverse role in modulating neural plasticity and enhancing functional recovery 

following SCI (Hiebert, Khodarahmi et al. 2002; Vavrek, Girgis et al. 2006; Waterhouse and Xu 

2009; Ma, Wang et al. 2011; Nagahara and Tuszynski 2011; Park and Poo 2013; Liao, Bouyer et 

al. 2015).  BDNF mediates signaling through its high affinity receptor tyrosine kinase receptor B 

(trkB) (Weishaupt, Blesch et al. 2012; Mantilla, Gransee et al. 2013). Brief episodes of hypoxia 

in rats initiate the synthesis of new BDNF in the cervical cord, rather than release of existing 

BDNF (Baker-Herman, Fuller et al. 2004; Wilkerson and Mitchell 2009). It would be important 

to determine whether BDNF also mediates recovery of non-respiratory function after intermittent 

hypoxia treatment in rats with SCI. 

 

To assess the possible effect of AIH treatment plus motor training for 1 day or 7 days on BDNF 

protein expression in spinal motor neurons, I processed sections from the C6-7 and L4-5 

segments of spinal cord for immunofluorescence for BDNF protein. AIH treatment and motor 

training for 7 days increased the expression of BDNF protein in spinal motor neurons in the C6-7 

and L4-5 segments of spinal cord but there was no change in BDNF immunoreactivity following 

one day of treatment and training (Figs 4.11 - 4.14). However, after 7 days of AIH treatment, 

BDNF immunoreactivity in AIH-treated spinal-injured rats was elevated compared to normoxia-

treated spinal-injured rats at both C6-7 (Fig 4.11) and L4-5 (Fig 4.13) spinal levels.  

 

Quantitative analysis confirms that AIH treatment plus motor training for 7 days significantly 

increases protein expression of BDNF levels in the motor neurons of ventral grey matter of 

spinal segments C6-7 and L4-5 in AIH-treated SCI rats versus normoxia-treated SCI rats (p < 

0.05) (Fig 4.12, 4.14)  
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Figure 4.11: AIH treatment for 7 days increases BDNF expression in ventral grey matter of 

C6-7 spinal segments.17 Representative photomicrographs of the ventral grey matter in C6-7 

spinal segments sections processed for BDNF immunofluorescence from 1 day (Day-1) or 7 day 

(Day-7) normoxia-treated (A,C) versus AIH-treated (B,D) spinal injured rats. Arrows indicate 

representative motor neurons. Scale bar = 50 µm. 
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Figure 4.12: AIH treatment for 7 days increases BDNF protein levels in motoneurons at 

spinal segments C6-7.18 Histograms summarize the mean immunofluorescence signal intensity 

detected + SEM as measured in gray values over individual motoneurons within the ventral horn 

from normoxia- and AIH-treated spinal injured rats [n=3 rats per experimental group analysed; 

60-65 neurons analysed/time point/experimental condition]. Asterisks indicate significant 

differences between experimental groups; * p < 0.05. 
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Figure 4.13: AIH treatment for 7 days increases BDNF expression in ventral grey matter of 

L4-5 spinal segments.19 Representative photomicrographs of the ventral grey matter in L4-5 

spinal segments sections processed for BDNF immunofluorescence from 1 day (Day-1) or 7 day 

(Day-7) normoxia-treated (A,C) versus AIH-treated (B,D) spinal injured rats. Arrows indicate 

representative motor neurons. Scale bar = 50 µm. 
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Figure 4.14: AIH treatment for 7 days increases BDNF protein levels in motoneurons at 

spinal segments L4-5.20 Histograms summarize the mean immunofluorescence signal intensity 

detected + SEM as measured in gray values over individual motoneurons within the ventral horn 

from normoxia- and AIH-treated spinal injured rats [n=3 rats per experimental group analysed; 

80-85 neurons analysed/time point/experimental condition]. Asterisks indicate significant 

differences between experimental groups; * p < 0.05. 

 

 

 

 

 

 

 

 

 

 

 

 

*



92 
 

4.3.4 AIH treatment and motor training for 7 days increases trkB protein expression in 

ventral grey matter at spinal segments C6-7 and L4-5.  

The tyrosine kinase B receptors (trkB) are transmembrane proteins that belong to the trk family 

of receptors for neurotrophins (Spencer-Segal, Waters et al. 2011). Similar to other tyrosine 

receptors, trkB receptors are activated by ligand-induced formation of receptor dimers 

(Schecterson and Bothwell 2010). BDNF-trkB signaling pathway is a key signaling pathway 

involved in activity dependent processes such as neural plasticity. Although it has been 

previously demonstrated that AIH exposure requires the activation of trkB receptors in spinal 

motor neurons to induce pLTF in phrenic nerve, it is also known that AIH increases both BDNF 

expression and extracellular adenosine levels in the spinal cord. (Baker-Herman, Fuller et al. 

2004; Wilkerson and Mitchell 2009; Hoffman and Mitchell 2011; Lovett-Barr, Satriotomo et al. 

2012; Satriotomo, Dale et al. 2012). 

 

To assess the possible effect of AIH treatment plus motor training for 1 day or 7 days on trkB 

protein expression in spinal motor neurons, I processed the C6-7 and L4-5 segments of the spinal 

cord for immunofluorescence for trkB protein. AIH treatment and motor training for 7 days 

increased the expression of trkB protein in spinal motor neurons at C6-7 and L4-5 spinal 

segments but there was no change in trkB immunoreactivity following one day of treatment and 

training (Figs 4.15 - 4.18). Photomicrographs of spinal ventral grey matter processed for trkB 

protein immunofluorescence show increased trkB immunoreactivity in AIH-treated spinal-

injured rats compared to normoxia-treated spinal-injured rats after Day-7 of treatment in C6-7 

(Fig 4.15) and L4-5 (Fig 4.17).  

 

Quantitative analysis confirms that AIH treatment plus motor training for 7 days significantly 

increases protein expression of trkB levels in the motor neurons of ventral grey matter of spinal 

segments C6-7 and L4-5 in AIH-treated rats versus normoxia-treated rats (p < 0.05) (Fig 4.16, 

4.18)  
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Figure 4.15: AIH treatment for 7 days increases trkB expression in ventral grey matter of 

C6-7 spinal segments.21 Representative photomicrographs of the ventral grey matter in C6-7 

spinal segment sections processed for trkB immunofluorescence from 1 day (Day-1) or 7 day 

(Day-7) normoxia-treated (A,C) versus AIH-treated (B,D) spinal injured rats. Arrows indicate 

representative motor neurons. Scale bar = 50 µm. 
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Figure 4.16: AIH treatment for 7 days increases trkB protein levels in motoneurons at 

spinal segments C6-7.22 Histograms summarize the mean immunofluorescence signal intensity 

detected + SEM as measured in gray values over individual motoneurons within the ventral horn 

from normoxia- and AIH-treated spinal injured rats [n=3 rats per experimental group analysed; 

60-65 neurons analysed/time point/experimental condition]. Asterisks indicate significant 

differences between experimental groups; * p < 0.05. 
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Figure 4.17: AIH treatment for 7 days increases trkB expression in ventral grey matter of 

L4-5 spinal segments.23 Representative photomicrographs of the ventral grey matter in L4-5 

spinal segments sections processed for trkB immunofluorescence from 1 day (Day-1) or 7 day 

(Day-7) normoxia-treated (A,C) versus AIH-treated (B,D) spinal injured rats. Arrows indicate 

representative motor neurons. Scale bar = 50 µm. 
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Figure 4.18: AIH treatment for 7 days increases trkB protein levels in motoneurons at L4-5 

spinal segments.24 Histograms summarize the mean immunofluorescence signal intensity detected 

+ SEM as measured in gray values over individual motoneurons within the ventral horn from 

normoxia- and AIH-treated spinal injured rats [n=3 rats per experimental group analysed; 80-85 

neurons analysed/time point/experimental condition]. Asterisks indicate significant differences 

between experimental groups; * p < 0.05. 
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4.3.5 AIH treatment and motor training for 7 days increases phosphorylated trkB protein 

expression in ventral grey matter at spinal segments C6-7 and L4-5.  

Since I observed increased expression of the BDNF receptor trkB and because the BDNF-trkB 

signaling pathway is a key signaling pathway involved in activity dependent processes such as 

neural plasticity, I decided to also examine the phosphorylation state of these BDNF receptors, 

as this would imply that the receptors had been activated. BDNF can induce rapid 

phosphorylation of trkB receptors (Klein, Nanduri et al. 1991; Jia, Chen et al. 2008; Guo, Ji et al. 

2014). Phosphorylation of trkB is necessary for activation of many of the downstream pathways 

linked to BDNF’s function (Babaei Bourojeni 2014). To assess the possible effect of AIH 

treatment plus motor training for 1 day or 7 days on phosphorylated trkB (ptrkB) protein 

expression in spinal motor neurons, I processed sections from the C6-7 and L4-5 segments of the 

spinal cord for immunofluorescence for ptrkB protein. AIH treatment and motor training for 7 

days increased the expression of ptrkB protein in spinal motor neurons at C6-7 and L4-5 

segments of spinal cord but there was no change in ptrkB immunoreactivity following one day of 

treatment and training and this may reflect the lack of notable increase in BDNF expression that 

I observed at this timepoint. (Figs 4.19 - 4.22). Photomicrographs of spinal ventral grey matter 

sections processed for ptrkB protein immunofluorescence show increased ptrkB 

immunoreactivity in the spinal motoneurons and surrounding neuropil in AIH-treated SCI rats 

compared to normoxia-treated SCI rats after 7 days of treatment at C6-7 (Fig 4.19) and L4-5 (Fig 

4.21) spinal segment levels.  

 

Quantitative analysis confirms that AIH treatment plus motor training for 7 days significantly 

increases the ptrkB levels in the motor neurons of C6-7 and L4-5 ventral grey matter of spinal 

segments when compared to normoxia-treated rats (p < 0.05) (Fig 4.20, 4.22)  
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Figure 4.19: AIH treatment for 7 days increases ptrkB expression in ventral grey matter of 

C6-7 spinal segments.25 Representative photomicrographs of the ventral grey matter in C6-7 

spinal segments sections processed for ptrkB immunofluorescence from 1 day (Day-1) or 7 day 

(Day-7) normoxia-treated (A,C) versus AIH-treated (B,D) spinal injured rats. Arrows indicate 

representative motor neurons. Scale bar = 50 µm. 
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Figure 4.20: AIH treatment for 7 days increases ptrkB protein levels in motoneurons at 

spinal C6-7 segments.26 Histograms summarize the mean immunofluorescence signal intensity 

detected + SEM as measured in gray values over individual motoneurons within the ventral horn 

from normoxia- and AIH-treated spinal injured rats [n=3 rats per experimental group analysed; 

60-65 neurons analysed/time point/experimental condition]. Asterisks indicate significant 

differences between experimental groups; * p < 0.05. 
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Figure 4.21: AIH treatment for 7 days increases ptrkB expression in ventral grey matter of 

L4-5 spinal segments.27 Representative photomicrographs of the ventral grey matter in L4-5 

spinal segments sections processed for ptrkB immunofluorescence from 1 day (Day-1) or 7 day 

(Day-7) normoxia-treated (A,C) versus AIH-treated (B,D) spinal injured rats. Arrows indicate 

representative motor neurons. Scale bar = 50 µm. 
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Figure 4.22: AIH treatment for 7 days increases ptrkB protein levels in motoneurons at L4-

5 spinal segments.28 Histograms summarize the mean immunofluorescence signal intensity 

detected + SEM as measured in gray values over individual motoneurons within the ventral horn 

from normoxia- and AIH-treated spinal injured rats [n=3 rats per experimental group analysed; 

80-85 neurons analysed/time point/experimental condition]. Asterisks indicate significant 

differences between experimental groups; * p < 0.05. 
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4.3.6 AIH treatment for 7 days attenuates GFAP protein expression in ventral grey matter 

at C6-7 segment of spinal cord. 

Astrocytes play an important role in inflammatory process following SCI and treatments or 

factors that reduce the activation of astrocytes improve functional recovery following injury 

(Kang, Balordi et al. 2014). Astrocytes become activated following CNS lesions and express 

higher levels of the intermediate filament glial fibrillary acidic protein (GFAP), which is a 

marker for reactive astrocytes. AIH treatment and motor training for 7 days attenuated the 

expression of GFAP detected in ventral grey matter at the level of the C6-7 spinal segments, 

though there was no change in GFAP immunoreactivity following one day of treatment and 

training (Figs 4.23 – 4.26). Photomicrographs of ventral grey matter of spinal cord processed for 

GFAP immunofluorescence show decreased GFAP immunoreactivity in AIH-treated spinal-

injured rats compared to normoxia-treated spinal-injured rats after 7 days of treatment (Day-7) in 

sections from the C6-7 spinal segments (Fig 4.23). Quantitative analysis confirmed that AIH 

treatment plus motor training for 7 days significantly decreased protein expression of GFAP in 

the ventral grey matter of spinal segments C6-7 in AIH-treated rats versus normoxia-treated rats 

(p < 0.05) (Fig 4.24). 

 

Interestingly, AIH treatment and motor training for 1 day or 7 days did not alter the expression 

of GFAP in ventral grey matter at the L4-5 spinal segment level (Fig 4.25 – 4.26). 

Representative photomicrographs of ventral grey matter of L4-5 spinal cord processed for GFAP 

immunofluorescence reveal no difference in the levels of GFAP immunoreactivity detected in 

AIH-treated spinal-injured rats compared to normoxia-treated spinal-injured rats after either one 

day or 7 days of treatment (Fig 4.25). Quantitative analysis confirmed that AIH treatment and 

motor training for either 1 or 7 days had no quantifiable effect on GFAP protein expression in 

ventral grey L4-5 spinal segments (Fig 4.26).  
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Figure 4.23: AIH treatment for 7 days decreases GFAP expression in ventral grey matter 

of C6-7 spinal segments.29 Representative photomicrographs of the ventral grey matter in C6-7 

spinal segments sections processed for GFAP immunofluorescence from 1 day (Day-1) or 7 day 

(Day-7) normoxia-treated (A,C) versus AIH-treated (B,D) spinal injured rats. Scale bar = 50 µm. 
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Figure 4.24: AIH treatment for 7 days decreases GFAP protein levels in ventral grey 

matter of C6-7 spinal segments.30 Histograms summarize the mean immunofluorescence signal 

intensity detected + SEM as measured in gray values within the ventral horn from normoxia- and 

AIH-treated spinal injured rats [n=3 rats per experimental group analysed; 48 boxes (100m X 

100m) analysed/time point/experimental condition]. Asterisks indicate significant differences 

between experimental groups; * p < 0.05. 
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Figure 4.25: AIH treatment for either 1 or 7 days does not alter GFAP protein levels in the 

L4-5 spinal segments.31 Representative photomicrographs of the ventral grey matter in L4-5  

spinal segments sections processed for GFAP immunofluorescence from 1 day (Day-1) or 7 day 

(Day-7) normoxia-treated (A,C) versus AIH-treated (B,D) spinal injured rats. Scale bar = 50 µm. 
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Figure 4.26: AIH treatment for either 1 or 7 days does not increase GFAP protein levels in 

ventral grey matter of L4-5 spinal segments.32 Histograms summarize the mean 

immunofluorescence signal intensity detected + SEM as measured in gray values within the 

ventral horn from normoxia- and AIH-treated spinal injured rats [n=3 rats per experimental 

group analysed; 48 boxes (100m X 100m) analysed/time point/experimental condition].  
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4.3.7 AIH treatment for 1 or 7 days does not alter the ED-1 protein expression in the 

ventral grey matter of either C6-7 or L4-5 spinal segments. 

Microglia cells are resident immune cells in central nervous system which play an important role 

in inflammation in the CNS. Microglia cells are present in resting states and become activated in 

response to brain or spinal cord injury. Reactive microglia cells accumulate at the site of injury, 

where they engulf damaged tissue or cell debris and can also play neuroprotective roles. ED-1 

(aka CD-68) is a marker for activated microglia and can be used to detect activated microglia.  

There was no detectable ED-1 immunoreactivity in ventral grey matter of either AIH or 

normoxia-treated SCI rats after either 1 or 7 day of treatment at the C6-7 or L4-5 spinal 

segments, and thus AIH treatment and motor training did not appear to invoke this type of 

immune response in the spinal ventral grey matter at these levels (Figs 4.27 – 4.30). This can be 

visualized in photomicrographs of sections from the C6-7 and L4-5 ventral grey matter of spinal 

cord processed for ED-1 protein expression immunofluorescence which show no detectable ED-

1 immunoreactivity in either the AIH-treated spinal-injured rats or the normoxia-treated spinal-

injured rats following 1 day (Day-1) or 7 days (Day-7) of treatment.(Fig 4.27, 4.29).  

 

Quantitative analysis confirms that there is indeed no discernible ED-1 detected in these animals 

at the levels analysed. (Fig 4.28, 4.30).  

 

In contrast, ED-1 immunoreactivity is readily detectable in sections of the ventral grey matter 

from the C2-3 spinal segments, just proximal to the original spinal lesion. Representative 

photomicrographs of ventral grey matter sections of spinal cord processed for ED-1 protein 

expression immunofluorescence reveal that at all time points examined there are activated 

microglia/macrophages that can be discerned likely due to the proximity of this tissue to the 

original lesion site and also confirm that the ED-1 antibody employed was valid (Fig. 4.31). 
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Figure 4.27: ED-1 protein expression was not detectable in the C6-7 spinal segments 

following AIH treatment for either 1 or 7 days.33 Representative photomicrographs of the 

ventral grey matter in C6-7 spinal segments sections processed for ED-1 immunofluorescence 

from 1 day (Day-1) or 7 day (Day-7) normoxia-treated (A,C) versus AIH-treated (B,D) spinal 

injured rats. Scale bar = 50 µm. 
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Figure 4.28:  AIH treatment for either 1 or 7 days does not increase ED-1 protein levels in 

ventral grey matter of C6-7 spinal segments.34 Histograms summarize the mean 

immunofluorescence signal intensity detected + SEM as measured in gray values within the 

ventral horn from normoxia- and AIH-treated spinal injured rats [n=3 rats per experimental 

group analysed; 48 boxes (100m X 100m) analysed/time point/experimental condition].  
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Figure 4.29: ED-1 protein expression was not detectable in the L4-5 spinal segments 

following AIH treatment for either 1 or 7 days.35 Representative photomicrographs of the 

ventral grey matter in L4-5 spinal segments sections processed for ED-1 immunofluorescence 

from 1 day (Day-1) or 7 day (Day-7) normoxia-treated (A,C) versus AIH-treated (B,D) spinal 

injured rats. Scale bar = 50 µm. 
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Figure 4.30: AIH treatment for either 1 or 7 days does not increase ED-1 protein levels in 

ventral grey matter of L4-5 spinal segments.36 Histograms summarize the mean 

immunofluorescence signal intensity detected + SEM as measured in gray values within the 

ventral horn from normoxia- and AIH-treated spinal injured rats [n=3 rats per experimental 

group analysed; 48 boxes (100m X 100m) analysed/time point/experimental condition].  
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Figure 4.31: ED-1 protein expression was detectable in the C2-3 spinal segments proximal 

to lesion site.37 Representative photomicrographs of the ventral grey matter in C2-3 spinal 

segments sections processed for ED-1 immunofluorescence from 1 day (Day-1) or 7 day (Day-7) 

normoxia-treated (A,C) versus AIH-treated (B,D) spinal injured rats. Scale bar = 50 µm. 
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4.4 Discussion  

In the present study, I assessed the combined effect of AIH and motor training on expression of 

hypoxia-associated (HIF-1α, VEGF) and plasticity-associated proteins (BDNF, trkB, ptrkB) in 

the spinal motor neurons of cervical SCI rats. I found that AIH (10 episodes of AIH, 5 min 

duration per day) plus motor training for 7 days significantly increased the expression of HIF-1α, 

VEGF, BDNF, trkB and ptrkB in spinal motor neurons of cervical SCI rats at spinal segments 

C6-7 and L4-5. The expression of the oxygen-sensitive transcription factor HIF-1α was also 

increased after only one day of AIH and motor training in C6-7 and L4-5. In contrast, AIH and 

motor training for 7 days reduced the expression of GFAP in the C6-7 spinal segments, although 

GFAP expression in L4-5 level spinal segments did not change. Similarly, there was no change 

in ED-1 expression, a marker for active microglia, as result of AIH treatment and motor training 

in SCI rats. 

 

4.4.1 AIH and motor training increased hypoxia-associated protein expression 

Hypoxia-Inducible Factor-1α (HIF-1α) is a master transcriptional regulator of genes controlling 

a number of adaptive responses to low oxygen tension in order to maintain oxygen homeostasis 

in mammalian cells. The HIF-1 protein is a heterodimer and composed of two subunits: the HIF-

1α subunit and the constitutively expressed HIF-1β subunit (Wang, Jiang et al. 1995). HIF-1α is 

oxygen sensitive and it is stabilized and activated under hypoxia conditions and degraded in 

normoxia condition by proteasomes (Rosenstein and Krum 2004; Xiaowei, Ninghui et al. 2006). 

In hypoxic conditions, HIF-1α translocates from the cytoplasm to the nucleus and dimerizes with 

HIF-1β to form the active HIF heterodimer complex (Lando, Peet et al. 2002). This dimer 

complex binds with hypoxia response elements (HRE) in target genes to induce gene expression 

(Lando, Peet et al. 2002).  

    

HIF-1 binds to promoter/enhancer elements and regulates the transcription of several dozen 

hypoxia-inducible target genes including VEGF,  EPO,  inducible nitric oxide synthase (iNOS),  

heme oxygenase-1, glucose transporter-1 and the glycolytic enzymes (Semenza, Nejfelt et al. 

1991; Melillo, Musso et al. 1995; Stein, Neeman et al. 1995; Lee, Jiang et al. 1997; Kimura, 

Weisz et al. 2000; Ke and Costa 2006; Xiaowei, Ninghui et al. 2006; Xiong, Mahmood et al. 
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2010). Hypoxia induces the expression of HIF-1α in various cell types of the CNS including 

neurons, astrocytes, oligodendrocytes and microglia (Bergeron, Yu et al. 1999; Chavez and 

LaManna 2002). The present study demonstrates that the AIH treatment for either day 1 or day 7 

enhances the expression of HIF-1α protein in spinal motor neurons at both C6-7 and L4-5 level 

of spinal segments. This enhancement of HIF-1α protein in spinal motor neurons supports the 

efficacy of the AIH protocol used in present study. Previous studies have shown that 1 hour of 

systemic hypoxia (6% O2) is sufficient to increase HIF-1α protein expression in brain tissues of 

mice, especially in the neurons of cerebral cortex, granular layer of dentate gyrus and the 

hippocampus (Stroka, Burkhardt et al. 2001).  Only a few minutes of hypoxia induces the 

expression of HIF-1α proteins in the human epithelial carcinoma cell line HeLaS3, and after one 

hour of anoxic hypoxia, HIF-1α protein expression reached its maximum level, and this 

maximum level was maintained for 4 hours (Jewell, Kvietikova et al. 2001). Moreover, exposure 

to low oxygen (6% to 7% O2) for 30 minutes increased the expression of HIF-1α protein, but not 

its mRNA, 7 fold in rat retina, followed by a further increase after 3 hours of hypoxia to 15 fold 

compared to control animals (Crosson, Kroes et al. 2009). In short, exposure to low oxygen for 

only minutes to hours is sufficient to enhance HIF-1α protein levels. Therefore, the finding of the 

present study that HIF-1α protein expression increased in spinal motor neurons after only 1 day 

of AIH treatment is consistent with the published literature.  

 

HIF-1α regulates the expression of VEGF, which is generally known for its role in angiogenesis 

and cell permeability but it is also known, through in vitro and in vivo studies, to play versatile 

roles in the central and peripheral nervous system (Senger, Perruzzi et al. 1986; Connolly, 

Heuvelman et al. 1989; Rosenstein and Krum 2004; Zachary 2005; Mackenzie and Ruhrberg 

2012; Nowacka and Obuchowicz 2012). VEGF is a 45 Da dimeric glycoprotein and a 

fundamental regulator of pathological and physiological angiogenesis (Rosenstein and Krum 

2004). VEGF promotes endothelial cell proliferation in several organ systems during embryonic 

development and after injury in various type of tissues, including the central nervous system 

(Skold, Cullheim et al. 2000). VEGF is critical for blood vessel growth in the developing and 

adult nervous system of vertebrates (Mackenzie and Ruhrberg 2012). Apart from its role in 

angiogenesis, VEGF appears to play neurotrophic and neuroprotective roles in spinal cord and 
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brain injury (Facchiano, Fernandez et al. 2002) (Krum and Rosenstein 1998; Svensson, Peters et 

al. 2002).  

 

VEGF and its high affinity receptor VEGFR-2 are expressed in spinal motor neurons (Dale-

Nagle, Satriotomo et al. 2011). Thrice-weekly AIH exposure (3x/week AIH: 10, 5-min episodes 

of 10.5% O(2); 5-min normoxic intervals) upregulated the expression of VEGF and its receptors 

in respiratory and non-respiratory motor neurons in the spinal cord (Dale-Nagle, Satriotomo et 

al. 2011; Satriotomo, Dale et al. 2012). Consistent with these previous findings, the current study 

shows that AIH treatment for 7 days also significantly enhanced the expression of HIF-1α and 

VEGF at both C6-7 and L4-5 levels in the spinal cord (Figs, 4.3-4.10). Interestingly, AIH 

exposure for 1 day altered the expression of HIF-1α but was not sufficient to alter the expression 

of VEGF in spinal motor neurons at C6-7 and L4-5. It is possible that more sustained elevation 

in HIF-1α levels beyond that produced by one day of AIH treatment is required to induce 

downstream increases in VEGF expression.  

 

Whether the increased VEGF expression is related to improvements in ladder performance is not 

yet known.  One series of studies has shown that exogenous application of VEGF elicits phrenic 

motor plasticity via the ERK/Akt intracellular pathways in respiratory motor systems (Dale-

Nagle, Satriotomo et al. 2011; Satriotomo, Dale et al. 2012; Dale, Ben Mabrouk et al. 2014). 

These studies, in conjunction with the current finding of increased  expression of VEGF protein 

at multiple levels of the spinal cord in response to AIH in the current study suggests that VEGF 

might have an important role in spinal plasticity and could contribute to facilitation of  functional 

recovery in SCI animals (Sato, Morimoto et al. 2012; Dale, Ben Mabrouk et al. 2014). 

  

4.4.2 AIH and motor training enhance the spinal expression of BDNF  

Plasticity is a fundamental property of nervous system (Mitchell and Johnson 2003). Plasticity 

may involve alterations in circuitry within nervous system, such that neurons rearrange and fine 

tune their structural and/or functional connectivity based on previous experience. Circuitry 

within the spinal cord shows a high degree of plasticity, which can be induced by hypoxia, 

exercise, injury, stress, and pharmacological interventions or conditioning (Mitchell and Johnson 
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2003). Growth factors and trophic factors, including BDNF, play important roles in multiple 

forms of neural plasticity. BDNF mediates its effects through its high affinity receptor trkB. 

Exogenous application of BDNF promotes neuroprotection, axonal regeneration, survival of 

neurons and axonal sprouting at the site of injury in SCI animals (Bregman, McAtee et al. 1997; 

Novikova, Novikov et al. 2002; Weishaupt, Blesch et al. 2012; Mantilla, Gransee et al. 2013; 

Weishaupt, Li et al. 2013) and has been reported to improve  functional recovery in SCI animals 

(Boyce, Park et al. 2012; Mantilla, Gransee et al. 2013). Nevertheless, there are recent reports of 

detrimental functional effects of exogenous BDNF, in that increases in spasticity were seen in 

SCI rats after BDNF administration (Fouad, Bennett et al. 2013). Additionally, exogenous 

administration of BDNF must overcome difficulties related to access across the blood brain 

barrier, down-regulation of BDNF receptors, and triggering of immune responses (Banks and 

Erickson 2010; Toth, Veszelka et al. 2011; Satriotomo, Dale et al. 2012). Whether the elevated 

levels of endogenous BDNF associated with AIH treatment are having a negative impact in these 

spinal injured animals is not evident as it is associated with improved behavioral outcomes. 

 

My findings support treatments that increase BDNF levels endogenously might be more 

effective methods by which to manipulate BDNF levels to facilitate functional recovery. This is 

also observed in other studies. For example, treadmill training in rats is one method which has 

been shown to reduce spasticity through a BDNF-dependent mechanism (Tashiro, Shinozaki et 

al. 2014). AIH also increases the endogenous expression of BDNF and its high affinity receptors 

in spinal motor neurons and this BDNF is sufficient and necessary to induce respiratory 

plasticity (Baker-Herman, Fuller et al. 2004). Various protocols of AIH, i.e. dAIH and rAIH (10 

episodes per day; 5 min of hypoxia with 5 min normoxia 3 times exposure per week for 10 

weeks) increased the expression of BDNF, trkB and ptrkB in the phrenic motor nuclei 

(Wilkerson and Mitchell 2009; Lovett-Barr, Satriotomo et al. 2012; Satriotomo, Dale et al. 

2012). The current study extends these previous findings by examining BDNF expression at 

multiple levels of the spinal cord and after 1 and 7 days of treatment after AIH treatment. In 

addition, animals were treated with both AIH and motor training. 

   

Motor training alone has the potential to increase BDNF and  promote plasticity in the brain and 

spinal cord (Vaynman and Gomez-Pinilla 2005; Skup, Ziemlinska et al. 2014). It is well 
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documented that motor training following SCI enhances BDNF protein expression and this 

increase in BDNF expression is associated with  locomotor functional recovery following SCI in 

animals (Ying, Roy et al. 2005; de Leon, See et al. 2011). Various paradigms of locomotor 

training, including voluntary wheel running and forced treadmill training, enhanced the 

expression of BDNF protein, BDNF mRNA in spinal motor neurons and/or in their peripheral 

target skeletal muscles in spinal injured rats (Gomez-Pinilla, Ying et al. 2002; Dupont-

Versteegden, Houle et al. 2004; Hutchinson, Gomez-Pinilla et al. 2004; Macias, Nowicka et al. 

2009; de Leon, See et al. 2011; Joseph, Tillakaratne et al. 2012; Keeler, Liu et al. 2012). 

Furthermore, weight-supported treadmill training, either 100 or 1000 steps/training session daily 

for 4 weeks, has been shown to increase the BDNF expression in ventral grey matter of  SCI rats 

(de Leon, See et al. 2011).  Of particular interest to the current study, four weeks of treadmill 

training initiated one month after injury increased BDNF expression in the lumber spinal motor 

neurons in spinally transected rats (Joseph, Tillakaratne et al. 2012).  Our current results show 

that one week of ladder training alone, initiated 4 weeks after injury, is not sufficient to increase 

BDNF expression in spinal motoneurons in SCI rats, though BDNF levels do increase when 

combined with concomitant AIH treatment (Figs 4.11 – 4.14).  

 

In summary, our results suggest that AIH + motor training may be an effective method to 

endogenously increase BDNF levels to improve functional recovery after SCI and avoid the 

potential detrimental effects of exogenous BDNF administration. 

  

4.4.3 AIH and motor training enhance the spinal expression of trkB and ptrkB  

The tyrosine kinase B receptors (trkB) are transmembrane proteins which belong to trk family of 

receptors for neurotrophins (Spencer-Segal, Waters et al. 2011). These receptors are located in 

dendritic spines, axons and neuronal cell bodies (Gomes, Hampton et al. 2006; Samarajeewa, 

Goldemann et al. 2014). BDNF-trkB receptor signaling plays important roles in 

neurodevelopment, neuroprotection, differentiation, proliferation, activation of synaptic proteins, 

dendritic arborisation and neural plasticity (Kang and Schuman 1995; Chao 2003; Jia, Chen et al. 

2008; Luikart, Zhang et al. 2008; Ohira and Hayashi 2009; Fenner 2012; Ma, Savas et al. 2012; 

Guo, Ji et al. 2014). 
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Similar to other tyrosine receptors, trkB receptors are activated by ligand-induced formation of 

receptor dimers, whereupon the dimerized trkB receptors rapidly phosphorylate each other and 

activate signaling pathways (Schecterson and Bothwell 2010). BDNF can induce rapid 

phosphorylation of trkB receptors, regulated by cyclic AMP signaling (Ji, Pang et al. 2005; 

Samarajeewa, Goldemann et al. 2014). Further, phosphorylation of trkB plays a significant role 

in regulating the functional properties of trkB receptors and its downstream pathways (Babaei 

Bourojeni 2014).   

 

The increased spinal expression of both trkB and ptrkB after AIH and motor training in SCI rats 

found in the current study strongly suggests that this combined treatment increases both receptor 

expression and activation of trkB signalling pathways. While this is consistent with increased 

BDNF expression described in the previous section, it is important to note that trkB signaling 

pathways can also be activated in the absence of the ligand BDNF, through a G-protein coupled 

receptor (GPCR) mechanism such as that involving the A2a adenosine receptor (Lee and Chao 

2001; Golder, Ranganathan et al. 2008). Activation of Gs protein-coupled A2a receptor 

increased trkB expression in the spinal cord and also increased the transactivation of trkB 

(Wiese, Jablonka et al. 2007; Golder, Ranganathan et al. 2008). Activation of A2a receptors 

increased the synthesis of immature trkB protein and phosphorylation of trkB in rat cervical 

spinal cord (Golder, Ranganathan et al. 2008). While BDNF-activated trkB receptors are present 

in the plasma membrane, GPCR activation of trkB occurs intracellular, particularly in the Golgi 

apparatus (Chao 2003; Rajagopal, Chen et al. 2004). 

 

Whereas it has been previously demonstrated that AIH exposure requires the activation of trkB 

receptors in spinal motor neurons to induce pLTF in phrenic nerve, it is also known that AIH 

increases both BDNF expression and extracellular adenosine levels in the spinal cord. (Baker-

Herman, Fuller et al. 2004; Wilkerson and Mitchell 2009; Hoffman and Mitchell 2011; Lovett-

Barr, Satriotomo et al. 2012; Satriotomo, Dale et al. 2012). This suggests that there are two 

possible mechanisms for activation and phosphorylation of trkB receptors that may contribute to 

enhancement of neuronal activity and respiratory plasticity. Although not investigated in the 

current study, it is possible that AIH and motor training in SCI rats increased the spinal 
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expression of trkB and ptrkB through both BDNF-dependent and BDNF-independent 

mechanisms.  

 

4.4.4 Effect of AIH and motor training on glial cells following SCI 

Astrocytes are multifunctional cells that become active in response to brain and spinal cord 

injury (Kang, Balordi et al. 2014; Lee and MacLean 2015). Astrocyte activation, termed 

astrogliosis, plays an important role in neurological disorders including trauma, infections, 

stroke, and neurodegeneration (Sofroniew and Vinters 2010; Kang, Balordi et al. 2014; Lee and 

MacLean 2015). Activated astrocytes express high level of intermediate filament known as 

GFAP and it is thought that excessive or sustained activation of astrocytes contribute to chronic 

inflammation and neural dysfunction and can be deleterious to functional recovery. 

 

The current results demonstrate that AIH and motor training in general has no effect on the 

activation of glial cells in SCI rats, with the exception that 7 days of AIH and motor training 

reduced the activation of astrocytes in the cervical spinal cord. This is consistent with previous 

studies that have demonstrated that AIH treatment does not alter the protein expression of 

astrocytes and microglia in the brain. (Lovett-Barr, Satriotomo et al. 2012; Satriotomo, Dale et 

al. 2012). Furthermore, chronic IH treatment (10 episodes per day, 3 x per week for 4 weeks) 

initiated 3 days after experimental SCI suppressed the inflammatory response by reducing the 

expression of inflammatory genes below and above the injury (Small, Nikodemova et al. 2014). 

It is not clear from the current results why 7 days of AIH plus motor training would reduce 

GFAP expression in the cervical cord but not in the lumbar cord, then this may have something 

to do with proximity to the injury site.  

 

Microglia cells are resident immune cells in central nervous system which play an important role 

in inflammation in the CNS (Perry and Teeling 2013). Microglia exist in resting states but can 

become activated in response to brain or spinal cord injury (Watanabe, Yamamoto et al. 1999; 

Loane and Byrnes 2010). Reactive microglia cells accumulate at the site of injury, where they 

engulf damaged tissue or cell debris and play a neuroprotective role (Fu, Shen et al. 2014). At 

the same time, pro-inflammatory factors continuously released by activated microglia have 
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detrimental effects on neuronal function and survival (Iwama, Sugimura et al. 2011; Fu, Shen et 

al. 2014). A number of neurological disorders such as Alzheimer’s disease, multiple sclerosis, 

Parkinson’s disease, traumatic brain injury, ischemic and other brain diseases are linked with 

chronic activation of microglial cells (Fu, Shen et al. 2014). In the present research, AIH 

treatment and motor training did not alter ED-1 protein expression and thus did not increase 

microglial activation, in spinal ventral grey matter at segments C6-7 or L4-5 (Figs 4.27-4.30). 

The low expression levels of ED-1 in at C6-7 and L4-5 prompted the examination of ED-1 

expression near the spinal lesion site, to serve as a positive control. ED-1 immunoreactivity was 

detectable in the ventral grey matter of spinal segments C2-3, adjacent to the spinal lesion, at 5 

weeks post-injury (Fig 4.31). Thus, activated microglia are still present at the lesion site 5 weeks 

post-injury but AIH and motor training did not increase the levels of ED-1 immunoreactivity in 

any region of the spinal cord.  

 

In summary, in the light of previous studies and the outcome of present research, it is likely that 

AIH treatment does not increase and may, in some instances, suppress activation of glial cells. 

This in turn might help to mitigate the detrimental effects of inflammation in the CNS by 

maintaining the normal non-reactive state of astrocytes and microglia. Further research is 

necessary in future to examine the effect of AIH on activation of astroglia and microglia.  

 

4.4.5 Conclusion  

In the present study, I have shown that a low-dose protocol of AIH treatment when combined 

with motor training in SCI rats, produced temporal and spatial differential expression of 

hypoxia- and plasticity-related proteins in spinal motor neurons. The pattern of expression of 

these proteins is consistent with the possibility that these changes underlie some of the functional 

improvements shown in Chapter 4 of this thesis.  These findings, taken together with the 

capacity of AIH and motor training to improve walking abilities in persons with chronic 

incomplete SCI, suggests that AIH has great potential as a safe and effective therapy to restore 

motor function after nervous system injury.   
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CHAPTER 5  

GENERAL DISCUSSION 

 

5.1 Summary of findings 

This thesis examined the use of acute intermittent hypoxia (repetitive exposure to reduced 

oxygen levels for brief periods, AIH) to enhance spinal plasticity at system and cellular levels 

and improve forelimb functional in a rat model of experimental cervical spinal injury. In the first 

part of the study, I examined the effect of AIH on behavioural recovery in cervical SCI rats.  I 

then examined the effect of AIH on the expression of hypoxia- and plasticity-related proteins in 

spinal motor neurons of cervical SCI rats. This chapter of my dissertation summarizes the 

findings of my research and discusses the results of the behavioural study (chapter 3rd) and 

cellular study (chapter 4th) in general; I will also discuss the potential therapeutic role of acute 

intermittent hypoxia and possible future applications of AIH.  

 

5.1.1 Summary of behavioural study 

In the third chapter of this thesis, I tested the hypothesis that acute intermittent hypoxia 

improves forelimb function in a rat model of cervical spinal injury. This study, conducted in 

a randomized, blinded, normoxia-controlled manner, showed that animals receiving AIH 

treatment for 7 days at 4 wks post-injury made fewer footslip errors during ladder crossing for up 

to 4 wks post-treatment compared to animals receiving normoxia-treatment. In this case 

treatment is delayed until 4 weeks after the injury, at a time when much spontaneous recovery 

had already occurred. This allowed us to assess the effect of AIH on residual functional deficits, 

in part to emulate the clinical situation more closely. This delay in the onset of treatment also 

revealed the variability in the amount of spontaneous recovery between animal subjects, 

requiring an extra methodological step in order to appropriately randomize treatment 

assignments. The results of the behavioural the study addressed the hypothesis from section 2.4, 

Specific Aim # 1: 

 

1. Delayed AIH treatment for 7 days combined with ladder training improved skilled ladder 

locomotion in rats with incomplete cervical SCI. 
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2. Delayed treatment with AIH for 7 days without concomitant motor training did not 

improve skilled ladder locomotion in rats with incomplete cervical SCI. 

3. Delayed treatment with AIH for 7 days did not improve reach-to-grasp success in SCI 

rats receiving task-specific motor training. 

 

In summary, the main finding of the third chapter of this thesis was that that delayed treatment 

with AIH and task-specific training facilitated recovery on a ladder task in rats with cervical 

SCI, though the same treatment did not improve recovery on reach-to-grasp tasks. These 

findings, in conjunction with the successful use of AIH in a recent clinical study (Hayes, 

Jayaraman et al. 2014), point to the potential of AIH as an effective treatment to augment 

plasticity and improve functional recovery after SCI. 

 

5.1.2 Summary of cellular study 

The fourth chapter of this thesis examined the changes in protein expression in response to AIH 

treatment and motor training, specifically changes in plasticity- and hypoxia-related proteins 

(HIF-1α, VEGF, BDNF, trkB and ptrkB) in motor neurons of the spinal cord at different 

segmental levels in spinal-injured animals. The purpose of this research was to determine 

whether AIH-induced plasticity in spinal motor neurons was limited to a specific segment or 

region of spinal cord or could be induced in entire spinal cord. In this chapter I have tested the 

hypothesis that AIH alters the plasticity-related and hypoxia-related protein expression in 

different regions of the spinal cord in a rat model of cervical spinal injury. 

 

The results of the cellular study addressed the hypothesis from section 2.4, Specific Aim #2: 

 

1. AIH treatment and motor training for either 1 or 7 days significantly increased hypoxia-

associated HIF-1α protein expression in the spinal motor neurons of rats with incomplete 

cervical SCI. AIH treatment and motor training for 7 days significantly increased 

hypoxia-associated VEGF protein expression in the spinal motor neurons of rats with 

incomplete cervical SCI. 
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2. AIH treatment and motor training for 7 days significantly increased the expression of 

plasticity-related proteins BDNF, trkB and ptrkB in the spinal motor neurons in rats with 

incomplete cervical SCI. 

 

In addition, I have found the: 

 

1. AIH treatment and motor training for 7 days significantly decreased the expression of 

GFAP, a marker for activated astrocytes, in the ventral grey matter of C6-7 spinal 

segments in rats with incomplete cervical SCI. 

2. AIH treatment and motor training for 1 or 7 days did not alter the expression of GFAP in 

ventral grey matter at L4-5 spinal segment in rats with incomplete cervical SCI. 

3. AIH treatment and motor training for 1 or 7 days did not alter the expression of ED-1, a 

marker for microglia, at C6-7 and L4-5 spinal segments of rats with incomplete cervical 

SCI. 

 

Taken together, these findings suggesting that AIH treatment and motor training for 7 days has 

the potential to induce plasticity at the cellular level by altering the expression of major 

plasticity- and hypoxia-related proteins at multiple spinal segmental levels in incomplete cervical 

SCI rats. In addition to this AIH treatment for 7 days does not alter the inflammatory response at 

C6-7 and L4-5 segments of spinal cord in rats with incomplete cervical SCI. 

 

5.2 AIH induces plasticity and improves functional recovery in SCI rats 

Intermittent hypoxia (IH) treatment has been a focus of research in the field of spinal plasticity 

for several decades (Navarrete-Opazo and Mitchell 2014). Various IH protocols from chronic IH 

to acute IH have been used to examine the effect of IH on physiological systems (Dale, Ben 

Mabrouk et al. 2014; Navarrete-Opazo and Mitchell 2014). AIH treatment has received 

considerable attention in recent years in the field of spinal plasticity (Navarrete-Opazo and 

Mitchell 2014). AIH is a novel non- invasive protocol which involves exposure to fewer hypoxic 

episodes compared with chronic protocols of IH. AIH can induce spinal plasticity by augmenting 

spared synaptic pathways in intact and spinal-injured animal models (Bach and Mitchell 1996; 



124 
 

Ling, Fuller et al. 2001; Fuller, Johnson et al. 2003; Golder and Mitchell 2005; Wilkerson and 

Mitchell 2009; Dale-Nagle, Hoffman et al. 2010). AIH induced spinal plasticity was initially 

investigated in the context of respiratory plasticity in spinal motor neurons. The most thoroughly 

studied model of AIH-induced plasticity is long-term facilitation (LTF),  the strengthening of 

synapses onto respiratory motor neurons (Mitchell, Baker et al. 2001; MacFarlane and Mitchell 

2008; Mahamed and Mitchell 2008). Physiologically,  long-term facilitation may serve as a 

compensatory mechanism to stabilize the respiratory output following AIH (Wilkerson and 

Mitchell 2009).  

 

In the current study, I have explored the effect of AIH on limb function in SCI rats. This is the 

first study to examine the effect of AIH on forelimb functional recovery in SCI rats by assessing 

performance on multiple behaviour tests in response to AIH alone or in combination with motor 

training i.e. ladder training and reaching task. I have demonstrated that AIH treatment for 7 days 

initiated 4 wks after incomplete cervical experimental SCI in laboratory rats, produce sustained 

improvement in forelimb performance on a ladder walking task when combined with daily 

ladder task training. These findings  are consistent with a previous study from our laboratory that 

AIH elicits recovery of both respiratory and forelimb function in rodent models of incomplete 

cervical SCI (Lovett-Barr, Satriotomo et al. 2012). The outcome of the current study extended 

confidence in these earlier findings because in the current study I used randomized treatment 

assignments and blinded experimental design. Therefore the findings of both studies together 

strongly suggest that AIH, as a modest form of intermittent hypoxia can elicit beneficial effects 

when it combined with task-specific motor training.  

 

Nevertheless, AIH treatment for 7 days did not significantly improve skilled reach-to-grasp task 

performance in cervical SCI rats. This may be due to the fact that  multiple neural pathways are 

involved in the performance of ladder locomotion and AIH-induced plasticity in those multiple 

neural pathways likely contributed to improved ladder performance (Webb and Muir 2003; Muir, 

Webb et al. 2007). In contrast, the reach-to-grasp tasks are under the control of a limited number 

of spinal neural pathways and as such recovery requires plasticity in specific tracts (Whishaw, 

Gorny et al. 1998; Kanagal and Muir 2009; Hurd, Weishaupt et al. 2013). The smaller amount of 
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redundancy in the neural connections underlying reach-to-grasp movement might have 

contributed to lack of recovery on these tasks compared to ladder locomotion.  

 

The lack of recovery of reach-to-grasp performance after 7 days of AIH and task training does 

not necessarily mean that AIH cannot facilitate recovery on these tasks. Results from Chapter 3 

show a trend toward recovery on the single pellet reaching task, so it is possible that more than 7 

days of AIH treatment might improve reach-to-grasp task performance in cervical SCI rats. 

Future experiments involving longer AIH treatments or a booster dose of AIH after 7 days of 

treatment i.e. every other week, might induce sufficient plasticity in neural pathways responsible 

for reaching movements to improve performance of reach-to-grasp task in SCI rats. 

 

5.3 AIH improves motor functions in human patients with incomplete SCI  

A variety of strategies have been used to treat experimental SCI, either alone or in combination 

(Kwon, Okon et al. 2011; Onifer, Smith et al. 2011; Tohda and Kuboyama 2011). Unfortunately, 

not many of these experimental strategies have been translated to the clinic. AIH is a novel non-

invasive treatment strategy that is now advancing towards clinical application due to its 

therapeutic potential (Fields and Mitchell 2015).  The first study to use AIH as a therapy for SCI  

reported that a single AIH exposure increased the ankle strength and plantar flexor torque in 

human patients with incomplete chronic spinal cord injury (Trumbower, Jayaraman et al. 2012). 

More recently, AIH treatment improved over-ground walking and endurance in persons with 

chronic incomplete SCI, and the impact of AIH treatment was enhanced when AIH treatment 

was combined with walking practice (Hayes, Jayaraman et al. 2014). Walking distance was 

increased more than 37%  with combined AIH + walking practice (Hayes, Jayaraman et al. 

2014). 

 

The findings of the current study that footslip performance on a ladder walking task significantly 

improved with combined AIH treatment and ladder training in cervical SCI rats is consistent 

with the clinical study conducted with human subjects with chronic incomplete SCI (Hayes, 

Jayaraman et al. 2014). The treatment paradigm used in the current study on rats with cervical 

SCI is only slightly different from the clinical study. Human patients with SCI received AIH 
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treatment for 5 days, each day consisting of 15 AIH episodes of 9% O2 for 90 seconds 

alternating with 60 seconds 21% O2, and training occurred 1 hour after treatment. The paradigm 

used in present study consist of AIH treatment for 7 days, consisting of 10 episodes of 11% O2 

for 5 minutes alternating with 5 minutes of 21% O2, with locomotor training in form of ladder 

task also carried out 1 hour following AIH treatment. All together, the evidence shows that AIH 

is a moderate form of intermittent hypoxia that has therapeutic potential to induce spinal 

plasticity and improve functional recovery, suggesting that AIH treatment with combinatorial 

therapies may promote greater functional recovery following SCI.     

 

5.4 The role of BDNF and trkB signaling in spinal plasticity 

Brain-derived neurotrophic factor (BDNF) plays an important role in modulating neural 

plasticity and enhancing functional recovery following SCI (Hiebert, Khodarahmi et al. 2002; 

Vavrek, Girgis et al. 2006; Waterhouse and Xu 2009; Ma, Wang et al. 2011; Nagahara and 

Tuszynski 2011; Park and Poo 2013; Liao, Bouyer et al. 2015).  BDNF mediates signaling 

through its high affinity receptor tyrosine kinase receptor B (trkB) (Weishaupt, Blesch et al. 

2012; Mantilla, Gransee et al. 2013). The findings of Chapter 4, that AIH treatment + training for 

7 days enhances the expression of BDNF, trkB and ptrkB in spinal motor neurons at C6-7 and 

L4-5 spinal levels is consistent with published findings that AIH induces neurochemical changes 

in expression levels of. BDNF and trkB in spinal segments C4-5 (Lovett-Barr, Satriotomo et al. 

2012; Satriotomo, Dale et al. 2012). These plasticity-related proteins may contribute to spinal 

plasticity following AIH. The fact that AIH elicits similar neurochemical changes within 

respiratory and non-respiratory motor nuclei within the spinal cord suggests that similar 

mechanisms might contribute to AIH-induced recovery of both respiratory and forelimb motor 

functions in SCI animals. 

 

Previous studies have reported that SCI elevates the spinal expression of neurotrophins including 

BDNF, and that this increase in BDNF levels may contribute to spontaneous recovery in animal 

models of SCI (Dougherty, Dreyfus et al. 2000; King, Bradbury et al. 2000; Widenfalk, 

Lundstromer et al. 2001; Mantilla, Gransee et al. 2013). It is well documented that BDNF plays 

an important role  in plasticity and improves functional recovery following SCI in experimental 
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animals (Joseph, Tillakaratne et al. 2012; Weishaupt, Blesch et al. 2012; Mantilla, Gransee et al. 

2013; Dale, Ben Mabrouk et al. 2014; Gransee, Zhan et al. 2015). BDNF induces neuroplasticity 

through  multiple mechanisms, including changes in excitability of spinal neurons, enhancing 

synaptic output, strengthening the existing synaptic connections, increasing new synaptic 

connections by axonal sprouting (Mitchell, Baker et al. 2001; Ying, Roy et al. 2005; Sasaki, 

Radtke et al. 2009; Boyce, Park et al. 2012; Weishaupt, Blesch et al. 2012; Gransee, Zhan et al. 

2013; Mantilla, Gransee et al. 2013).  

 

BDNF availability at the site of injury can be increased by two methods; 1) exogenous BDNF 

delivery to the site of injury, such as intrathecal injection, 2) endogenous mechanisms to increase 

local productivity or synthesis of BDNF, such as neural activity including AIH. Exogenous 

application of BDNF by intrathecal injection increases the BDNF and trkB signaling at the level 

of phrenic motor neuron and enhances functional recovery of rhythmic diaphragm activity in 

cervical SCI rats (Mantilla, Gransee et al. 2013). Exogenous application of BDNF to the lesion 

site promote hindlimb locomotor functional recovery in rats with complete thoracic spinal cord 

transection injuries (Boyce, Park et al. 2012). Furthermore transplantation of BDNF-secreting 

fibroblast cells to the site of injury in rat model of SCI promotes regeneration of rubrospinal tract 

(RST) axon through and around the graft and also improves the functional recovery of forelimb 

in rat model of SCI(Liu, Kim et al. 1999; Jin, Fischer et al. 2002). In addition to the beneficial 

effects of exogenous application of BDNF, there are several complications and difficulties linked 

with exogenous applications of BDNF, including inability of BDNF to cross the blood brain 

barrier, down-regulation of BDNF receptors, and immune responses triggered by delivery of 

foreign proteins (Banks and Erickson 2010; Toth, Veszelka et al. 2011; Satriotomo, Dale et al. 

2012). In addition,  adverse effects such as increased pain and muscle spasticity are also linked 

with exogenous BDNF application to treat SCI in experimental models (Groth and Aanonsen 

2002; Coull, Beggs et al. 2005; Fouad, Bennett et al. 2013; Gransee, Zhan et al. 2015). Thus, 

exogenous BDNF application will not be a viable therapeutic strategy unless these adverse 

effects can be addressed. 

 

In contrast to exogenous administration of BDNF, methods to enhance endogenous BDNF levels 

have shown more promise for promotion of beneficial effects after SCI. Exercise, electrical 
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stimulation and, as reported in this thesis, dAIH have all been demonstrated to  increase 

endogenous levels of BDNF (Baker-Herman, Fuller et al. 2004; Wilkerson and Mitchell 2009; 

Carmel, Berrol et al. 2010; Fritsch, Reis et al. 2010; Joseph, Tillakaratne et al. 2012; Tashiro, 

Shinozaki et al. 2014).   With respect to dAIH, it is important to distinguish acute intermittent 

hypoxia protocols from chronic intermittent protocols (CIH), the latter of which can produce 

deleterious side effects unrelated to endogenous BDNF. These deleterious effects include: 

systemic hypertension,  impaired baroreflex control,  cognitive impairments metabolic 

syndrome, neuronal death in the hippocampus, and neurobehavioural dysfunction, impaired 

synaptic transmission in the nucleus of the solitary tract, neurodegeneration, oxidative stress, and 

pro-inflammatory responses (Fletcher, Lesske et al. 1992; Gu, Lin et al. 2007; Hambrecht, 

Vlisides et al. 2007; Kline, Ramirez-Navarro et al. 2007; Row 2007; Row, Kheirandish et al. 

2007; Tasali and Ip 2008; Fava, Montagnana et al. 2011; Lurie 2011; Ramar and Caples 2011; 

Grigg-Damberger and Ralls 2012; Nanduri, Makarenko et al. 2012; Bucks, Olaithe et al. 2013).  

In contrast, AIH is a moderate form of intermittent hypoxia that has the potential to induce spinal 

plasticity and improve functional recovery without showing detrimental effects (Trumbower, 

Jayaraman et al. 2012; Hayes, Jayaraman et al. 2014). 

 

Taken together, the evidence from this thesis and others strongly suggests that AIH can enhance 

endogenous BDNF and trkB signaling at multiple levels of the spinal cord and that this 

signalling might play an important role in the recovery of forelimb motor function in cervical 

SCI rats (Lovett-Barr, Satriotomo et al. 2012; Satriotomo, Dale et al. 2012; Hayes, Jayaraman et 

al. 2014). The use of AIH presents an exciting therapeutic option to potentially harness neural 

plasticity and improve functional recovery in persons with chronic SCI. 

 

5.5 Potential cellular and molecular mechanisms of AIH-induced plasticity 

To understand the possible mechanisms of AIH-induced plasticity at the cellular level, it is 

necessary to understand the cellular response to hypoxia. Cellular adaptation to changes in 

oxygen level is essential for maintenance and survival of cells in physiological and pathological 

states. Hypoxia is known to change cellular functions by altering the expression of hypoxia-

associated proteins and their mRNAs, including HIF-1α and VEGF (Nordal, Nagy et al. 2004; 
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Lovett-Barr, Satriotomo et al. 2012; Satriotomo, Dale et al. 2012; Dale and Mitchell 2013). The 

findings of this thesis demonstrated that AIH enhanced the spinal expression of key molecules 

known to play important role in spinal plasticity, including HIF-1α, VEGF, BDNF, trkB and 

ptrkB, consistent with earlier findings (Ke and Costa 2006; Xiaowei, Ninghui et al. 2006; 

Lovett-Barr, Satriotomo et al. 2012; Satriotomo, Dale et al. 2012; Dale and Mitchell 2013).  

 

Cellular and molecular mechanisms of AIH-induced plasticity in respiratory motor neurons are 

well documented (Dale-Nagle, Hoffman et al. 2010; Dale, Ben Mabrouk et al. 2014). Ongoing 

studies have revealed that multiple converging cellular pathways, named the Q, S, V, and E 

pathways, are involved to induce spinal plasticity in response to AIH (Dale-Nagle, Hoffman et 

al. 2010; Dale-Nagle, Satriotomo et al. 2011; Dale, Satriotomo et al. 2012; Dale, Ben Mabrouk 

et al. 2014). Several of these pathways require BDNF synthesis and / or activation of its high 

affinity receptor trkB (Vinit, Lovett-Barr et al. 2009; Dale-Nagle, Hoffman et al. 2011; Dale, 

Ben Mabrouk et al. 2014).  

 

The first and most thoroughly studied pathway, known as the Q pathway, is serotonin-dependent. 

The term Q pathway refers to the involvement of Gq protein-coupled metabotropic 5-

HT2a receptors (Vinit, Lovett-Barr et al. 2009; Dale-Nagle, Hoffman et al. 2011; Dale, Ben 

Mabrouk et al. 2014). AIH treatment triggers the episodic release of serotonin in the vicinity of 

phrenic motor neurons in the spinal cord, thereby activating the serotonin receptor 5-HT2a, 

which, via a PKC pathway, results in increased synthesis of new BDNF.  This BDNF through its 

high affinity receptor trkB on the same or adjacent neurons, initiates a cascade of signalling 

through ERK and MAP kinase pathways (Baker-Herman and Mitchell 2002; Hoffman and 

Mitchell 2011). The end result is a form of plasticity known as pLTF, the increase in the output 

of phrenic motoneurons  (Vinit, Lovett-Barr et al. 2009; Wilkerson and Mitchell 2009; Dale-

Nagle, Hoffman et al. 2010).   

 

A second cellular pathway, known as the “S Pathway,” induces serotonin-independent 

respiratory plasticity. This pathway does not require synthesis of new BDNF protein, but does  

require synthesis of new immature trkB receptor isoform, and phosphoinositide 3 (PI3) kinase / 

protein kinase B signaling (Golder, Ranganathan et al. 2008; Hoffman and Mitchell 2011). 
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Activation of either Q or S pathways is known to induce respiratory spinal plasticity resulting in 

LTF  (Dale-Nagle, Hoffman et al. 2011; Dale-Nagle, Satriotomo et al. 2011; Dale, Satriotomo et 

al. 2012; Dale and Mitchell 2013). The BDNF and / or trkB signaling system is the centre of 

both pathways and also plays a critical role in multiple forms of spinal plasticity (Baker-Herman, 

Fuller et al. 2004; Dale-Nagle, Hoffman et al. 2010). In this thesis, I have found that AIH 

treatment and training enhances the expression of BDNF, trkB, ptrkB, in motor neurons at 

multiple spinal segments, and so it is possible that activation of the Q or S pathway might 

underlie improvements in motor performance in AIH-treated SCI rats. 

 

This thesis also demonstrated that AIH treatment altered the expression of hypoxia-related 

proteins, HIF-1α and VEGF. Hypoxia-Inducible Factor-1α (HIF-1α) is a heterodimeric master 

transcriptional regulator of genes that controls a number of adaptive responses to low oxygen 

tension in order to maintain oxygen homeostasis in mammalian cells. The HIF-1 protein is a 

heterodimer and composed of two subunits: the HIF-1α subunit and the constitutively expressed 

HIF-1β subunit (Wang, Jiang et al. 1995). HIF-1α is oxygen sensitive and is stabilized and 

activated under hypoxia condition and degraded in normoxia condition by proteasomes 

(Rosenstein and Krum 2004; Xiaowei, Ninghui et al. 2006). In hypoxia conditions, HIF-1α 

translocates from the cytoplasm to the nucleus and dimerizes with HIF-1β subunit to form the 

active HIF heterodimer complex (Lando, Peet et al. 2002). This dimer complex binds with 

hypoxia response elements (HRE) in target genes to induce gene expression (Lando, Peet et al. 

2002).  

 

HIF-1 binds to promoter/enhancer elements and regulates the transcription of hypoxia-inducible 

target genes expression of several dozen target gene including VEGF, EPO, inducible nitric 

oxide synthase (iNOS), heme oxygenase-1 (Semenza, Nejfelt et al. 1991; Melillo, Musso et al. 

1995; Stein, Neeman et al. 1995; Lee, Jiang et al. 1997; Kimura, Weisz et al. 2000; Ke and Costa 

2006; Xiaowei, Ninghui et al. 2006; Xiong, Mahmood et al. 2010).  

 

HIF-1α regulates the expression of vascular endothelial growth factor (VEGF). VEGF is a 45 Da 

dimeric glycoprotein and a fundamental regulator of  pathological and physiological 
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angiogenesis (Rosenstein and Krum 2004). VEGF promotes endothelial cell  formation and 

proliferation in several organ systems during embryonic development and after injury in various 

type of tissues, including the central nervous system (Skold, Cullheim et al. 2000). VEGF is 

critical for blood vessel growth in the developing and adult nervous system of vertebrates 

(Mackenzie and Ruhrberg 2012). Apart from its role in angiogenesis, VEGF appears to play 

neurotrophic and neuroprotective roles in spinal cord and brain injury (Facchiano, Fernandez et 

al. 2002) (Krum and Rosenstein 1998; Svensson, Peters et al. 2002).  

 

VEGF and its high affinity receptors VEGFR-2 both are expressed in phrenic motor neurons 

(Dale-Nagle, Satriotomo et al. 2011; Satriotomo, Dale et al. 2012). AIH is also able to increase 

VEGF expression and mediate respiratory spinal plasticity through activation of the VEGF 

receptors VEGFR-2. The  intracellular signalling pathways ERK and Akt are involved in this 

“V” pathway, activation of which will induces spinal plasticity (Dale-Nagle, Satriotomo et al. 

2011; Sato, Morimoto et al. 2012; Satriotomo, Dale et al. 2012).  

 

In addition to VEGF, HIF-1α  also regulates the expression of erythropoietin factor (EPO) 

(Wang, Jiang et al. 1995; Wang and Semenza 1995). EPO and its receptors (EPO-R) are 

expressed in the brain but also in spinal motor neurons (Celik, Gokmen et al. 2002; Iwasaki, 

Ikeda et al. 2002; Mennini, De Paola et al. 2006; Dale, Ben Mabrouk et al. 2014). AIH increases 

the expression of EPO and its receptors EPO-R in phrenic motor neurons (Dale, Satriotomo et al. 

2012). Through its receptor EPO-R, EPO initiates a signaling cascade via ERK and Akt 

activation and induces a form of respiratory plasticity similar to BDNF / trkB and VEGF (Dale, 

Satriotomo et al. 2012; Dale, Ben Mabrouk et al. 2014). This last pathway also known as the “E 

Pathway”. 

 

The final outcome of all of these cellular pathways, Q, S, V and E pathways is hypothesized to 

be the phosphorylation and/or insertion of glutamate receptors at the synaptic sites between pre-

motor and motor neurons (Fuller, Bach et al. 2000; Mahamed and Mitchell 2007; McGuire, Liu 

et al. 2008; Dale-Nagle, Hoffman et al. 2011). AIH could thus change the excitability of motor 

neurons by increasing the strength of the synaptic connections between motoneurons and their 

premotor inputs. In this manner, all 4 cellular pathways which can produce pLTF have the 
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potential to induce functional recovery following SCI (Dale-Nagle, Hoffman et al. 2011; Dale-

Nagle, Satriotomo et al. 2011; Dale, Satriotomo et al. 2012; Dale and Mitchell 2013). 

 

While this thesis has not addressed in detail the cellular or molecular mechanisms that might 

underlie AIH-induced improvements in ladder locomotion in SCI rats, the results shown Chapter 

4 suggest that at least the Q and V pathways and their downstream effectors might be involved to 

increase motoneuron output and improve recovery after SCI.  

 

5.6 AIH and brain plasticity  

Long term potentiation (LTP), the most widely studied form of synaptic plasticity,  is a long 

lasting increase in synaptic efficacy between neurons that are activated simultaneously, and it 

forms the basis of learning and memory (Minichiello 2009). Repetitive activation of excitatory 

synapses in the hippocampus causes an increase in synaptic strength that could last for hours or 

even days (Bliss and Gardner-Medwin 1973; Bliss and Lomo 1973). Previous studies in rodents 

and higher primates, including humans, showed that the hippocampus is a critical component in 

various forms of long-term memory (Zola-Morgan and Squire 1993; Alvarez, Zola-Morgan et al. 

1995; Nadel 1995). Furthermore, LTP provides an important insight into molecular mechanisms 

by which memories are formed (Eichenbaum 1995; Ajay and Bhalla 2006).  

 

The hippocampus is the region in the brain where LTP has been most thoroughly studied. It is 

known that hippocampal BDNF plays an important role in both LTP and learning and memory 

formation (Minichiello, Korte et al. 1999).  BDNF is expressed in many areas of CNS including 

the hippocampus where it is involved in both learning and memory formation (Lee, Everitt et al. 

2004; Li, Peng et al. 2005; Minichiello 2009). Numerous studies have shown that endogenous 

BDNF, through its high affinity receptor trkB,  plays  a crucial role  in the mediation and 

regulation of  LTP in the hippocampus (Korte, Carroll et al. 1995; Chen, Kolbeck et al. 1999; 

Minichiello, Korte et al. 1999; Lu, Christian et al. 2008; Cowansage, LeDoux et al. 2010; Park 

and Poo 2013). Furthermore, blockade of endogenous BDNF-trkB signaling completely 

abolished LTP induction in Xenopus laevis retinotectal synapses (Du, Wei et al. 2009). Blockade 

of endogenous BDNF or its receptor trkB signaling by genetic mutation or by application of 
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specific monoclonal antibodies against BDNF or trkB–IgG protein, impaired LTP induction, 

demonstrating that secreted BDNF and trkB signaling is important for the induction of LTP 

(Korte, Carroll et al. 1995; Figurov, Pozzo-Miller et al. 1996; Kang, Welcher et al. 1997; Chen, 

Kolbeck et al. 1999). Exogenous application of BDNF or virus-mediated gene transfer of BDNF 

restored this impairment of LTP (Korte, Carroll et al. 1995; Patterson, Abel et al. 1996). 

Activity-based neural activities such as high-frequency stimulation (HFS) promotes synaptic 

activity and triggers the secretion of endogenous BDNF at  synaptic hippocampal sites where it 

mediates LTP (Balkowiec and Katz 2000; Lu, Park et al. 2013). 

 

An important avenue of research for the future would be an examination of the effect of AIH on 

hippocampal plasticity, including hippocampal LTP.  The collective findings of the current thesis 

and previous work show that the expression of hypoxia and plasticity-related proteins, 

particularly VEGF, BDNF, trkB and ptrkB, are enhanced at multiple levels of the spinal cord in 

response to AIH treatment. AIH treatment exposes the whole body of the animal to low oxygen, 

including the brain, and so it is likely that AIH enhances the expression of hypoxia- and 

plasticity-associated proteins in the brain, including in the hippocampus. Multidisciplinary 

approaches could be used, including patch-clamp or intracellular recording in hippocampal cell 

culture or slice culture from animals treated either with AIH or normoxia. The relative 

expression of plasticity-associated proteins in hippocampus need to be examined in AIH and 

normoxia treated animals using immunofluorescence as described in Chapter 4 of this thesis for 

the spinal cord. The behavioural effect of AIH on learning and memory can be tested using 

running and swimming mazes.  Studies such as these could open up new possibilities in the field 

of learning and memory research, including the examination of the effect of AIH as a novel 

therapy for learning and memory-related disorders. 

 

5.7 Conclusion 

AIH is a non-invasive treatment that can induce spinal plasticity by strengthening the spared 

synaptic pathways to respiratory and somatic motor neurons, and can also improve motor 

function following incomplete spinal cord injury in animals and in humans. AIH induction of  

plasticity and enhancement of recovery of respiratory and limb functions after SCI is associated 
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with up-regulation of hypoxia- and plasticity-related proteins, including BDNF and its high 

affinity trkB receptors, in motor neurons in ventral gray matter of spinal cord. These proteins 

also play important roles in the intra-cellular signalling pathways known to mediate increases in 

respiratory motoneuron output after AIH treatment in rats. In addition to altering protein 

expression at multiple levels of the spinal cord, it is likely that AIH affects plasticity-related 

protein expression in the brain and as such, could mediate changes in learning and memory 

processes.   

 

5.8 Significance and Future Directions 

The main aim of the proposed research was to investigate whether acute intermittent hypoxia can 

improve forelimb functional recovery in a rat model of spinal cord injury. The present research 

has used a multidisciplinary approach to begin to investigate the neural mechanisms that target 

spinal plasticity and offer a new basis for promoting significant recovery of forelimb function 

following cervical SCI. I have demonstrated the potential benefit of AIH training as a novel 

rehabilitation intervention for facilitating the restoration of forelimb function following cervical 

SCI in rats in safe and meaningful ways. The outcome of the present research will contribute to  

a growing body of work which aims to determine the optimum AIH dose to use in safe and 

significant ways to restore motor function in humans after incomplete spinal cord injury.  

 

Future research in the area of AIH can follow three main directions. First, more research can be 

done on the clinical application of AIH in persons with SCI, such as determination of optimum 

doses for efficacy and safety and to combine AIH with other therapies. For example, AIH 

treatment can be used in combination with rehabilitation training or neuroprotective treatments, 

or with regenerative treatments which include application of neurotrophic factors, and cell 

transplantation to treat SCI. Second, more pre-clinical research needs to be carried out 

investigating the upstream and downstream effects of changes in BDNF-dependent and BDNF-

independent mechanisms which underlie AIH-induced neural plasticity. Better understanding of 

the mechanisms by which AIH has its effects could lead to more refined or more efficacious 

treatment strategies. Finally, it is necessary to explore AIH-induced effects on brain plasticity, 
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including LTP, and the possible therapeutic applications which could be beneficial in a variety of 

nervous system disorders, including those related to learning and memory.   

 

The above mentioned approaches to study the role and effects of this novel non-invasive 

treatment are yet to be explored and these possibilities open up promising potential therapies for  

a variety of disorders of the nervous system.  
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