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Abstract 

 
Horses are at high risk to develop systemic inflammation due to the release of bacterial 

endotoxin from an inflamed gastrointestinal tract. Neutrophils are critical for mounting an 

immune response to bacterial endotoxins. Neutrophil activation following engagement of 

bacterial endotoxin expands their lifespan through suppression of their constitutive apoptosis. 

The prolonged lifespan of neutrophils propagates acute inflammation and delays the resolution of 

inflammation.  Since equine neutrophil lifespan has not been well-studied, I investigated the 

occurrence of equine neutrophil apoptosis in vitro and in vivo.   

 First, I investigated the effect of Escherichia coli lipopolysaccharide (LPS) treatment on 

the occurrence of equine neutrophil apoptosis in vitro.  LPS treatment delayed in vitro equine 

neutrophil apoptosis in a dose-dependent manner at concentrations of 0.1-10 μg/ml through toll-

like receptor (TLR)-4 signaling and down-regulation of the intrinsic pathway of apoptosis, 

specifically through reduced caspase-9 activity.  

 Next, I found that ex vivo neutrophil apoptosis was delayed in two models of intestinal 

inflammation, jejunal ischemia and reperfusion (IR) and oligofructose-induced colitis, through 

down-regulation of both the intrinsic and extrinsic apoptosis pathways via reduced caspase-3, -8, 

and -9 activities. Pulmonary intravascular macrophages (PIMs) depletion with systemic 

gadolinium chloride (GC) prevented the prolongation of ex vivo neutrophil lifespan in horses 

undergoing jejunal IR through modulation of caspase-3, -8 and -9 activities. PIM depletion in IR 

horses resulted in an earlier and greater increase in tumor necrosis factor-alpha and a 

concomitant decrease in interleukin-10 to suggest an enhanced systemic pro-inflammatory 

response.  
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I examined the effect of neutrophil concentration and co-incubation with aged, apoptotic 

neutrophils on the occurrence of neutrophil apoptosis in vitro.  Neutrophil apoptosis was delayed 

with increasing concentrations of neutrophils in vitro, which may contribute to delayed 

neutrophil apoptosis in systemic inflammation.  However, co-incubation with aged, apoptotic 

neutrophils did not alter in vitro neutrophil lifespan. 

Taken together, the data show that LPS delays equine neutrophils apoptosis in vitro in a 

TLR4-dependent manner through inhibition of caspase-9. Ex vivo neutrophil apoptosis was also 

delayed with systemic inflammation via down-regulation of caspase activity. A novel finding of 

this work was the reversal of delayed neutrophil apoptosis by depletion of PIMs in horses 

experiencing intestinal IR. 
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Chapter 1: Review of the Literature 

1.1 Introduction 

The innate immune response has evolved to effectively handle immediate threats, be it 

pathogenic or physical, to the body.  Upon introduction of a foreign entity, immune cells within 

the vicinity recognize the threat using pattern-recognition receptors (PRR), such as Toll-like 

receptors (TLR), and initiate a coordinated response to neutralize the threat. Neutrophils serve as 

one of the primary effector cells of this immediate immune response. They may be activated by 

cytokines and chemokines released from resident macrophages, or primarily activated through 

PRRs. Upon activation, they are involved in neutralizing pathogens via phagocytosis and 

oxidative burst.  They also potentiate the immune response by releasing cytokines and 

chemokines to attract more immune cells, primarily neutrophils, into the area. 

As a sequela to activation by various stimuli, neutrophil life span is prolonged (Savill et al. 

2002).  Normally, neutrophils are short-lived cells, undergoing constitutive apoptosis at the end 

of their lives followed by their removal via phagocytosis by macrophages residing in the spleen, 

liver, and bone marrow (Akgul et al. 2001, Jia et al. 2008, Edwards et al. 2004, Tak et al. 2013).  

Prolongation of neutrophil lifespan conserves the neutrophil population in times of need, such as 

during sepsis, but at the same time can prove detrimental due to the non-specific method by 

which neutrophils neutralize threats through the release of histotoxic contents that induces 

further inflammatory cell infiltration (Colotta et al. 1992, Jia et al. 2008, Milot et al. 2012, Sano 

et al. 2005, Savill et al. 2002, Sweeny et al. 1998, Yamamoto et al. 1993). Additionally, the 

phagocytosis of apoptotic neutrophils causes the polarization of macrophage phenotype from an 

inflammatory to anti-inflammatory (Fadok et al. 1998, Huynh et al. 2002, Lucas et al. 2003).  
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Taken together, delayed neutrophil apoptosis contributes to the potentiation of an inflammatory 

response, possibly to the detriment of the body. 

Targeting neutrophil apoptosis may prove to be an effective mechanism to control acute 

inflammation and promote healing during multiple disease processes; but before neutrophil 

apoptosis is used as a therapeutic target, the mechanisms by which neutrophil apoptosis is 

delayed in various situations must be understood. 

1.2 Constitutive neutrophil apoptosis  

 

Apoptosis is also defined as programmed cell death and involves various cellular pathways that 

ultimately cause nuclear DNA fragmentation and cessation of cellular processes without 

disturbing tissue homeostasis. There are two classical cellular pathways by which a cell may 

undergo apoptosis.  The extrinsic pathway involves activation of membrane receptor proteins by 

an extracellular signal, such as tumor necrosis factor-alpha (TNF-α) or Fas ligand, that initiates a 

cascade of enzymatic reactions that are propagated by proteases called initiator caspases (e.g. 

caspase-8).  Alternatively, the intrinsic pathway involves an intracellular signal, such as 

irreparable damage to DNA or severe cell stress, which changes the balance of the B cell 

lymphoma (Bcl)-2 family of proteins to increase mitochondrial permeabilization, allowing 

release of cytochrome c into the cytosol and activation of the apoptosome and initiator caspase-9.  

The extrinsic and intrinsic pathways are also linked through activation of the pro-apoptotic Bcl-2 

homology-3-interacting domain death agonist protein (Bid) by caspase-8.  As a final step in both 

pathways, the effector caspases, caspase-3, -6, and -7, enter the nucleus and cause DNA 

fragmentation leading to characteristic changes in nuclear morphology including karyorrhexis 

and pyknosis (Savill et al. 1989, Kamada et al. 2005).  The effector caspases also activate 
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proteins that dissemble components of the cytoskeleton, such as actin, resulting in cell shrinkage 

and blebbing (Brown et al. 1997, Knepper-Nicolai et al. 1998).   

Neutrophils undergo constitutive apoptosis via the intrinsic pathway at the end of their 

normal lifespan without the influence of extracellular signals (Akgul et al. 2001, Fox et al. 2010).  

Neutrophil lifespan is thought to be regulated by the balance between pro-apoptotic and anti-

apoptotic proteins of the Bcl-2 family (Figure 1.1), particularly myeloid cell lymphoma (Mcl)-1 

(Fox et al. 2010, Edwards et al. 2004).  In homeostatic conditions, there is a greater 

concentration of pro-apoptotic proteins compared to anti-apoptotic proteins to result in a 

shortened life span (Akgul et al. 2001).  The phosphoinositide 3-kinase (PI3K) and mitogen-

activated protein kinase (MAPK) signalling pathways are thought to play a role in regulation of 

Bcl-2 protein production through nuclear factor kappa (NFκ)-B activation, accounting for 

changes in neutrophil lifespan during inflammatory conditions (Akgul et al. 2001).   

The Bcl-2 family of proteins is responsible for maintaining mitochondrial membrane 

potential.  There are two arms to this protein family.  One arm promotes apoptosis and includes 

Bid protein, Bcl-2 associated X protein (Bax), Bcl-2 homologous antagonist/killer protein (Bak), 

Bcl-2-associated death promoter protein (Bad), Bcl-2 interacting protein (Bim), and Bcl-2 killer 

protein (Bik).  The other arm prevents apoptosis and includes Bcl-2, Bcl-xL, Mcl-1, and A1. In 

human neutrophils, Mcl-1 has been identified as the most important inhibitor of neutrophil 

apoptosis, especially in response to LPS treatment as discussed later in this review (Edwards et 

al. 2004, François et al. 2005, Wardle et al. 2011). The apoptotic state of a neutrophil relies on 

the balance of these proteins. In normal neutrophils, anti-apoptotic proteins have a rapid turnover 

compared to the pro-apoptotic proteins, which tends to keep the balance shifted toward 

apoptosis, making neutrophil lifespan relatively short (Geering and Simon 2011).  With the 



4 
 

balance in favor of the pro-apoptotic members of the Bcl-2 family, mitochondrial membrane 

potential is lost leading to the release of cytochrome c into the cytosol and activation of the 

apoptosome, apoptotic protease-activating factor 1 (Apaf-1), and caspase-9 that initiates caspase-

3 to induce apoptosis.  Neutrophil mitochondria are unique in that they are primarily involved in 

death-mediated processes, and less so in energy production (Maianski et al. 2004).   It has been 

demonstrated that neutrophils may undergo caspase-9 activation and subsequent apoptosis, 

independent of mitochondrial permeabilization and cytochrome c activation of the apoptosome 

as part of an alternative intrinsic pathway, which may also contribute to their relatively short 

lifespan compared to other leukocytes (Maianski et al. 2004).   

Cell death by apoptosis provides a means by which a cell may die while maintaining the 

integrity of its membrane, thereby preventing the release of its cellular contents.  Once a 

neutrophil has become apoptotic, its membrane undergoes changes, such as externalization of 

phosphatidylserine, to provide a signal to professional phagocytic cells, namely macrophages, to 

remove it from the circulation or tissue (Savill and Fadok 2000).  Macrophages are then able to 

recognize apoptotic neutrophils and phagocytose them prior to the release of their histotoxic 

contents (Savill et al. 1989).  Interestingly, CD14, a surface molecule traditionally involved in 

LPS activation of TLR4, is important for tethering non-inflamed apoptotic cells to macrophages 

during the course of phagocytosis (Devitt and Marshall 2011).  

Concomitantly, neutrophil function is abrogated upon the induction of apoptosis. The 

neutrophil cytoskeleton is disabled as a result of apoptosis in order to maintain cell shape and 

prevent de-granulation and chemotaxis (Whyte et al. 1993, Brown et al. 1997).  Respiratory burst 

and phagocytic functions are also impaired (Whyte et al. 1993).  A hallmark of delayed 
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neutrophil apoptosis is the ability for neutrophils to maintain their capacity for effector functions, 

such as respiratory burst (Koedel et al. 2009, Watson et al.1997). 

Another set of cytosolic proteases, called calpains, have also come under investigation for 

their role in constitutive neutrophil apoptosis.  Calpains are regulated by intracellular calcium 

concentration and act as non-specific proteases to cleave target proteins that are involved with 

maintaining and regulating cytoskeleton structure (Knepper-Nicolai et al. 1998).  Indeed, it has 

been shown that calpains are involved in multiple processes of neutrophil apoptosis including the 

processing of Bax, alteration of nuclear morphology, and phosphatidylserine exposure (Knepper-

Nicolai et al. 1998, Geering and Simon 2011).  Inhibition of calpain activity is associated with 

delayed neutrophil apoptosis (van Raam et al. 2008).  Cathepsins are another type of protease, 

located in neutrophil granules, which are involved in apoptotic processes including the 

processing of caspase-8 and Bid that ultimately leads to activation of caspase-3 (Geering and 

Simon 2011).  Recently, another cytosolic protease called serine protease proteinase 3 (PR3) was 

identified as playing a key role in caspase-3-dependent constitutive apoptosis of human 

neutrophils in vitro independent of caspase-8 or caspase-9 activation (Loison et al. 2014). 

Neutrophils have other unique apoptotic pathways compared to other cells.  Traditionally, 

tumor necrosis factor (TNF)-α initiates apoptosis via the extrinsic pathway.  In neutrophils, this 

holds true for early or high concentration TNF-α exposure (Fox et al. 2010, Murray et al. 1997, 

Salamone et al. 2001).  Additionally, exposure to high concentrations of TNF-α reduces Mcl-1 

through increased turnover to induce apoptosis (Cross et al. 2008).  However, late survival (after 

12 h) is promoted simultaneously through activation of the NF-κB pathway and subsequent up-

regulation of the anti-apoptotic members of the Bcl-2 family, particularly A1 (Cross et al. 2008). 

Another unique contribution to neutrophil apoptosis involves reactive oxygen species (ROS) that 
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are produced by the neutrophils themselves upon TNF-α stimulation.  It is currently thought that 

most of the molecular pathways causing neutrophil apoptosis are dependent upon ROS 

generation; however, ROS can have alternative effects on neutrophils, such as interference with 

caspase activities causing delayed apoptosis or the initiation of cell necrosis rather than apoptosis 

(Fadeel et al. 1998, Geering and Simon 2011, Scheel-Toellner et al. 2004). 

In conclusion, constitutive neutrophil apoptosis is not as straight-forward as other cell 

types, likely involving alternative pathways to the classically described pathways of apoptosis.  

Consequently, the process by which neutrophils undergo apoptosis is still under investigation in 

all species.  Additionally, the process by which extravasated neutrophils undergo apoptosis in 

tissues remains largely unknown (Tak et al. 2013). 

1.3 Models used to evaluate neutrophil apoptosis: in vitro and in vivo  

 

Thus far, the most common method utilized to evaluate neutrophil apoptosis has been culturing 

isolated neutrophils in vitro.  However, when evaluating neutrophil physiology in vitro, it is 

essential to create standard culture conditions due to the highly reactive nature of this cell type.  

One troublesome contaminant of neutrophil processing and culture is bacterial endotoxin, a 

substance that is ubiquitous in the environment and that requires additional steps to remove 

compared to traditional sterilization methods.  The variability in results reported in the literature 

from studies on neutrophils is potentially due to unintentional activation with substances, such as 

LPS (Haslett et al. 1985).  However, neutrophils can also become activated by seemingly 

innocuous stimuli, including changes in temperature, pipetting, and isolation technique (Freitas 

et al. 2008, Hannah et al. 1998, Haslett et al. 1985, Tennenberg et al. 1988, Watson et al. 1992). 

Similar to other immune cells, functional in vivo studies on neutrophils are traditionally 

performed using knockout mice.  Genetically modified mice have been used to evaluate the 
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contribution of various components of the known apoptosis pathways.  For example, knockout 

mice for the various Bcl-2 family of proteins have been used to assess the relative importance 

and redundancy of each protein (Geering and Simon 2011).  Though mice models are invaluable 

for studying cellular pathways, it must be understood that these models are substantially removed 

from the physiology of wild type mice or other species.  Antibodies and silencing RNA may be 

used to selectively knockout proteins or genes in cells from non-laboratory animals to further 

study cellular pathways. 

Studies have also been performed using humans and animals with known genetic defects 

of leukocytes, such as human chronic granulocytic leukemia and bovine leukocyte adhesion 

deficiency (Hasegawa et al. 2003, Naghata et al. 2004).  Studies are also commonly performed 

using neutrophils isolated from humans and animals suffering from clinical diseases that involve 

neutrophil activation (Jimenez et al. 1997, Krista et al. 2013, McCracken and Allen 2014).   

Overall, models that use clinical disease are useful in evaluating neutrophil physiology and 

lifespan; however, the use of control neutrophils from normal humans and animals for 

comparison is less than ideal as there is significant variation among neutrophil response by 

individual (first author’s unpublished observation). 

1.4 Inflammatory mediators that delay neutrophil apoptosis in vitro 

As primary effectors cells of the innate immune response, neutrophils are integral in neutralizing 

pathogenic and non-pathogenic threats to the body. Neutrophils may be activated by a variety of 

substances through PRRs, such as TLRs. PRR activation initiates intra-cellular signaling 

pathways involved in altering cellular processes, including apoptotic pathways, to neutralize the 

perceived threat. Alteration of apoptotic pathways may lead to prolongation of neutrophil 

lifespan via delayed apoptosis. This section will focus on inflammatory mediators that have been 
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identified in causing delayed neutrophil apoptosis in vitro and, if they are known, the proposed 

mechanisms by which these mediators act to delay neutrophil apoptosis. 

Bacterial lipopolysaccharide (LPS) has been evaluated extensively for its effect on neutrophil 

lifespan both in vitro, and to a lesser extent, in vivo.  It has been shown to consistently delay 

neutrophil apoptosis in vitro in multiple species, except the horse (Brazil et al. 2014, Colotta et 

al. 1992, Jia et al. 2008, Milot et al. 2012, Sweeny et al. 1998, Sano et al. 2005, Yamamoto et al. 

1993).  The mechanism of delayed neutrophil apoptosis involves a shifting of balance from pro-

apoptotic to anti-apoptotic processes of the intrinsic pathway of apoptosis via TLR4 activation 

(Edwards et al. 2004, François et al. 2005, Figure 1.1).  Upon TLR4 activation, two interrelated 

intracellular transcriptional pathways have been shown to be involved in LPS-delayed apoptosis 

including the NF-κB and PI3K  pathways (François et al. 2005, Sweeney et al. 1998, Figure 1.1). 

These pathways are involved in regulating the balance of the Bcl-2 family of proteins at the 

transcriptional level.  Specifically, the anti-apoptotic protein Mcl-1 has been shown to be up-

regulated to tip the balance of the Bcl-2 family of proteins into an anti-apoptotic state (Edwards 

et al. 2004, François et al.   2005). Within canine neutrophils, Bcl-xL was identified to be highly 

expressed in neutrophils exhibiting LPS-delayed apoptosis (Sano et al. 2005). 
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Figure 1.1 Potential mechanism of LPS-delayed neutrophil apoptosis 
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Other ligands of TLRs have also been implicated in causing delayed human neutrophil 

apoptosis in vitro (François et al., 2005, El Kebir et al. 2014, Sabroe et al. 2005).  These include 

peptidoglycan (ligand for TLR2), flagellin (ligand for TLR5), R-848 (ligand for TLR7/8), and 

CpG DNA (ligand for TLR9, François et al., 2005, El Kebir et al. 2014, Salamone et al. 2010).  

Similar intracellular signalling pathways are activated compared to TLR4 signaling, resulting in 

increased concentrations of the anti-apoptotic Bcl-2 proteins Mcl-1 and A1 and phosphorylation 

of the pro-apoptotic Bcl-2 protein Bad (François et al., 2005, El Kebir et al. 2014). 

Interleukin (IL)-1β is an important pro-inflammatory cytokine that is produced by 

granulocytes and mononuclear cells upon PRR activation. The production of IL-1β is a caspase-

1-dependent process.  In mononuclear cells, IL-1β production results in cell death via pyroptosis; 

but in neutrophils, IL-1β is produced without inducing pyroptosis (Chen et al. 2014).  

Additionally, IL-1β delays in vitro human neutrophil apoptosis via inhibition of Fas-mediated 

apoptosis by the IL-1β converting enzyme (caspase-1) (Colotta et al. 1992, Tatsuta et al. 1996, 

Watson et al. 1998). 

Other cytokines and growth factors that delay in vitro neutrophil apoptosis include IL-2, IL-

8, TNF-α, interferon (IFN)-γ, granulocyte macrophage colony stimulating factor (GM-CSF), 

granulocyte colony stimulating factor (G-CSF), and complement 5a (Colotta et al. 1992, Fox et 

al. 2010, Lee et al. 1993, Sakamoto et al. 2003).  As discussed previously, TNF-α has variable 

effects on neutrophil apoptosis; however, it apparently increases the occurrence of apoptosis in 

the face of treatment with substances that typically delay neutrophil apoptosis, such as GM-CSF 

(Salamone et al. 2001).  GM-CSF and G-CSF delay apoptosis through modulation of the intrinsic 

pathway of apoptosis as evidenced by reduced cytochrome c release and reduced caspase-3 and -

9 activities (Molloy et al. 2005).  
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Adhesion molecules involved in neutrophil extravasation and activation also play a role in 

determining neutrophil lifespan. Cross-linking of adhesion molecules, such as β2 integrin 

CD11b/CD18, activates neutrophils through outside-in signaling to produce and release ROS and 

myeloperoxidase (MPO).  MPO, in turn, delays spontaneous neutrophil apoptosis via 

stabilization of mitochondria membrane potential and inhibition of the intrinsic pathway of 

apoptosis through ERK 1/2 and Akt signaling pathways (El Kebir et al. 2008), while ROS has 

variable effects on neutrophil apoptosis (Geering and Simon 2011). LPS also up-regulates β2 

integrins, contributing to delayed apoptosis, although cross-linking of β2 integrins alone causes 

delayed apoptosis (Watson et al. 1997).  Alternatively, apoptosis is delayed in neutrophils 

isolated from calves with bovine leukocyte adhesion deficiency that have CD18-deficient 

neutrophils and in CD18 knockout mice, both of which lack the ability to implement β2 integrin  

signaling pathways (Nagahata et al. 2004, Weinmann et al. 2003).  In animals with dysfunctional 

CD18, neutrophils are unable to leave the bloodstream leading to a profound neutrophilia.  It is 

likely that the increased concentration of neutrophils in this scenario is the cause of delayed 

apoptosis rather than a manifestation of the missing receptor (discussed later in this review).  

Another integrin, α9β1 integrin, also delays in vitro neutrophil apoptosis through the PI3K and 

MAPK pathways and NF-κB-dependent increased production of anti-apoptotic protein Bcl-xL 

(Saldanha-Gama et al. 2010). Vitronectin, a component of the extracellular matrix that modulates 

neutrophil adhesion and chemotaxis, also delays neutrophil apoptosis in vitro (Bae et al. 2012).  

Taken together, it is evident that activation of adhesion molecules leads to neutrophil activation 

and delayed apoptosis, which allows the prolongation of neutrophil lifespan as it enters into the 

inflammatory milieu outside of the circulation. 
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Pathogens themselves have a variable effect on human neutrophil apoptosis.  The effect of 

bacteria on neutrophil apoptosis in vitro is dependent upon the bacterial species and strain, 

duration of exposure, multiplicity of infection, and the cell culture conditions (Fox et al. 2010). 

There are at least four possible outcomes following phagocytosis of bacteria by neutrophils.  One 

outcome, which occurs after phagocytosis of most bacteria, results in phagocytosis-induced cell 

death and ROS production where neutrophils undergo apoptosis without releasing their cellular 

contents and are then cleared by macrophages (Kobayashi et al. 2003).  A second outcome, 

which occurs after the phagocytosis of Streptococcus pyogenes by human neutrophils, results in 

rapid neutrophil death via necrosis with limited ROS production leading to pathogen release 

from the neutrophil and its survival (Kobayashi et al. 2003).  A third outcome, which occurs after 

the phagocytosis of Chlamydia pneumoniae by human neutrophils, causes a temporary 

prolongation of neutrophil survival, likely mediated by LPS and IL-8, to allow the intracellular 

pathogen to multiply within the cell; after which time, the neutrophil undergoes apoptosis and an 

unsuspecting macrophage phagocytoses the apoptotic neutrophil with the hidden pathogen and 

polarizes to an anti-inflammatory phenotype (Fox et al. 2010).  A fourth outcome has been 

described after phagocytosis of Staphylococcus aureus, where neutrophil lifespan may be 

prolonged or shortened based on the specific toxins carried by the bacteria (Fox et al. 2010).  

Taken together, it is obvious that neutrophil responses and lifespan may differ significantly by 

pathogen and may not relate directly to what occurs upon exposure to various components of a 

pathogen, such as LPS.  Additionally, the behavior of neutrophils in vivo could potentially have 

even greater discrepancies than what has been observed in vitro. 
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1.5 Non-inflammatory causes of delayed neutrophil apoptosis 

From the previous section, it is clear that exposure to inflammatory mediators and substances 

that promote neutrophil activation delay neutrophil apoptosis.  However, the causes of delayed 

neutrophil apoptosis encompass even simpler mechanisms, including concentration- or density-

dependent delayed neutrophil apoptosis, highlighting the highly reactive properties of 

neutrophils and their complex life and death balance. 

A physiologic response to inflammation in the tissues or systemic inflammation is the 

accumulation of neutrophils through increased extravasation and increased release from the bone 

marrow, respectively.  As neutrophils accumulate in tissues or the circulation, their concentration 

increases leading to their delayed apoptosis by a unique mechanism.  This is in direct contrast to 

the majority of cell types that increase their apoptotic rate due to contact inhibition as their cell 

numbers increase.  Overall, there has been very little research into concentration-dependent 

delayed neutrophil apoptosis.  However, an elegant study performed by Attalah et al. (2012), 

demonstrated a clear relationship between increasing neutrophil concentration and delayed 

apoptosis in vitro.  They identified the importance of cytosolic proteins S100A8 and S100A9 as 

having a clear role in delaying neutrophil apoptosis in highly concentrated cell cultures through 

CD11b/CD18 and TLR4 ligation and MAPK pathway activation without up-regulation of anti-

apoptotic Bcl-2 proteins (Attalah et al. 2012).  

Another group previously investigated the effect of neutrophil density and concentration 

on neutrophil lifespan in vitro (Hannah et al. 1998).  This group determined that increased 

density was more influential than increased cell concentration on prolonging neutrophil lifespan 

in vitro, where the rate of apoptosis was inversely proportional to the number of cells per unit 

surface area.  In addition, this group determined that density-delayed apoptosis was independent 



14 
 

of β2 integrin adhesion and that neutrophils did not secrete “survival factors” to delay apoptosis 

in a paracrine or autocrine fashion.  They concluded that localized hypoxia and pH changes 

likely contributed to the effect of density-delayed apoptosis, although these parameters were not 

specifically tested (Hannah et al. 1998).  The concept of concentration- or density-delayed 

neutrophil apoptosis should be considered in any disease process that causes an increase in 

circulating neutrophils, from acute inflammatory diseases to genetic leukocyte adhesion 

deficiency diseases. 

A plethora of substances and culture conditions have been evaluated for their effect on 

neutrophil apoptosis in vitro, but only a selected few that are directly related to inflammation will 

be discussed herein.  Hypoxia delays neutrophil apoptosis through up-regulation of Mcl-1 via the 

p38 MAPK and NF-κB signaling pathways through an unknown receptor (Hannah et al. 1995, 

Leuenroth et al. 2005, Walmsley et al. 2005).  Additionally, neutrophils have a ferroprotein 

oxygen-sensing mechanism, comparable to the mechanism for erythropoietin regulation in 

kidney fibroblasts, which causes up-regulation of hypoxia inducible factor-1 to contribute to 

hypoxia-delayed apoptosis (Mecklenburgh et al. 2002).  Most wounds are considered to be 

hypoxic due to disruption of blood supply. As first responders in the inflammatory response to a 

wound, neutrophils would be exposed to these hypoxic conditions in addition to inflammatory 

mediators, thus prolonging their lifespan and potentially prolonging the inflammatory stage of 

inflammation, which could delay healing.  Therapeutic regimens, such as hyperbaric oxygen 

therapy, have been developed to address the hypoxic conditions within a wound or during 

inflammatory diseases with varying success indicating that the effects of hypoxia during 

inflammatory processes are complex (Kranke et al. 2015). A recent study reported that bovine 

neutrophil apoptosis was enhanced in neutrophils treated with hyperbaric oxygen compared to 
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cells cultured in normoxic and hypoxic conditions in vitro (Almzaiel et al. 2015). Wounds and 

inflammatory environments are also considered to be acidic and acidity (pH 6.5) has also been 

shown to delay neutrophil apoptosis (Negrotto et al. 2006).  Alternatively, alkaline conditions 

promote rapid neutrophil apoptosis in vitro (Leblebicioglu et al. 1999). 

Dexamethasone, a corticosteroid commonly used in veterinary practice, delays neutrophil 

apoptosis in vitro in multiple species via activation of the PI3K and MAPK pathways and up-

regulation of Mcl-1 via NF-κB transcription (Barnes 2011, Brazil et al. 2014, Cox et al. 1997, 

Kettritz et al. 2006, Liles et al. 1995, Marwick et al. 2013, Saffar et al. 2008).  However, the anti-

apoptotic effect of dexamethasone on neutrophil apoptosis is abrogated in hypoxic conditions 

(<1% oxygen tension) to the point that it can rescue hypoxia- and GM-CSF-delayed neutrophil 

apoptosis (Marwick et al. 2013).  This finding may have implications in ischemic disease 

processes that may be treated with glucocorticoids, but are characterized by extensive neutrophil 

accumulation.  Additionally, the ability of glucocorticoids to prolong neutrophil lifespan has 

implications in acute inflammatory diseases where animals become stressed, further exacerbating 

delayed neutrophil apoptosis. 

Similarly, non-steroidal anti-inflammatory drugs (NSAIDs) have also been shown to 

affect neutrophil apoptosis, although relatively few studies are available. Acetaminophen delayed 

human neutrophil apoptosis in vitro (Freitas et al. 2013); however, in another study, ibuprofen 

had no effect on LPS-delayed apoptosis, while aspirin and its metabolite, salicylate, rescued 

delayed neutrophil apoptosis due to multiple conditions including LPS and IL-1α treatment and 

hypoxia (Negrotto et al. 2006).  Furthermore, humans who ingested aspirin had markedly 

reduced ex vivo LPS-delayed neutrophil apoptosis and mice pre-treated with aspirin had 

increased apoptotic neutrophils in their peritoneal cavity after a thioglycolate-induced peritonitis 
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model (Negrotto et al. 2006).  Similarly, pre-treatment with aspirin reduced post-

cardiopulmonary bypass delayed ex vivo neutrophil apoptosis (Bates et al. 2004).  Another study 

evaluating neutrophil apoptosis after treatment with racemic mixtures of various NSAIDs 

demonstrated an increase in neutrophil apoptosis in vitro (Zielińska-Przyjemska et al. 2008). 

 Lastly, and a point of consideration when designing in vivo and ex vivo neutrophil 

experiments, a difference in the occurrence of neutrophil apoptosis has been observed between 

genders in humans (Molloy et al. 2003).  Spontaneous neutrophil apoptosis was reduced in 

women compared to men mediated by estradiol and progesterone reducing cytochrome c release 

from the mitochondria (Molloy et al. 2003).  Female sex hormones have been evaluated for their 

immunomodulatory effects due to the fact that women of reproductive age are less susceptible to 

sepsis and its accompanying complications; however, delayed neutrophils apoptosis would have 

a seemingly negative effect on septic process as discussed in a later section.  

 In conclusion, this section further highlights the complexities of neutrophil lifespan and 

demonstrates that the occurrence of neutrophil apoptosis in disease processes is affected by many 

factors.  When evaluating neutrophil apoptosis in in vivo models, it is important to attempt to 

control for variables that might have a confounding effect on results. 

1.6 Other immune cell involvement in neutrophil apoptosis 

Macrophages play a critical role in managing circulating neutrophil concentration in vivo.  As 

stated previously, macrophages in the spleen, liver, and bone marrow remove apoptotic 

neutrophils from the circulation.  In a mouse model, where mice lacked macrophages in the 

spleen and bone marrow, the clearance of apoptotic neutrophils was delayed causing an 

increased production of G-CSF to drive granulopoiesis and delay neutrophil apoptosis (Gordy et 

al. 2011).  Additionally, when macrophages fail to phagocytose neutrophils in CD18-deficient 
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mice that have delayed neutrophil apoptosis, they produce increased amounts of IL-23 that, in 

turn, drives IL-17-dependent granulopoiesis (Stark et al. 2005).  These responses by 

macrophages could significantly contribute to a neutrophilic response during disease processes 

by increasing neutrophil concentration and further contributing to concentration-delayed 

neutrophil apoptosis. More work is needed to confirm these findings in wild type animals using 

in vivo inflammatory models. 

Macrophages rely on the apoptosis of neutrophils to direct the resolution of inflammation 

(discussed below); however, they also play a key role in the induction of neutrophil apoptosis 

through the release of death receptor ligands, such as TNF-α and Fas-ligand (Brown and Savill 

1999, Meszaros et al. 2000, Salamone et al. 2001).  In a mouse wound model, macrophage-

induced neutrophil apoptosis was dependent upon direct cell-to-cell contact via cell adhesion 

molecules, such as β3 integrin, and membrane-bound, not soluble, TNF-α (Meszaros et al. 2000). 

Similarly, in a mouse model of Leishmania major infection, ex vivo neutrophil apoptosis was 

positively correlated with the amount of co-cultured macrophages and was dependent on 

membrane-bound TNF (Allenbach et al. 2006). 

Although not widely accepted, there is evidence that monocytes are necessary to facilitate 

neutrophils’ responses to LPS, such as delayed apoptosis.  One group reported a difference in in 

vitro LPS-delayed neutrophil apoptosis between isolated neutrophils cultured with and without 

contaminating monocytes (Sabroe et al. 2002).   When monocytes were removed from neutrophil 

isolates via magnetic activated cell sorting, LPS failed to delay neutrophil apoptosis in vitro.  

The results of this study highlight an inherent problem when working with primary isolated cells.  

In general, purities of greater than 90% are considered to be acceptable when working with 

primary isolated neutrophils and the predominant contaminating cell types are other 
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granulocytes, such as eosinophils and basophils.  Regardless, primary cell behavior may be 

altered by minute amounts of contaminating cell types unbeknownst to the investigator. 

A unique type of macrophage, called the pulmonary intravascular macrophage (PIM), 

exists in the capillaries of the alveolar septal in select animals, including the horse (Brain et al. 

1999, Aharonson and Singh 2010).   Similar to Kupffer cells in the liver, PIMs are intimately 

associated with the endothelium of the alveolar capillaries where they phagocytose blood-borne 

foreign substances, pathogens, and apoptotic cells, including neutrophils (Brain et al. 1999).  

Because of their location, they are exposed to the entire blood volume as it passes through the 

alveolar capillaries for oxygen exchange. Therefore, PIMs are potentially influential cells in 

mounting a systemic inflammatory response (Aharonson and Singh 2010).   In vivo studies in 

horses have demonstrated that significant pulmonary injury and inflammation occur in horses 

administered systemic lipopolysaccharide (LPS) and pulmonary intravascular macrophages 

(PIMs) are integral in potentiating these effects in the lung (Parbhakar et al. 2005).  To the 

authors’ knowledge, the involvement of PIMs in the regulation of neutrophil apoptosis during 

inflammatory conditions has not been investigated.  

A recently identified pseudocytokine that is secreted and regulated by activated T 

lymphocytes, called pre-B cell colony enhancing factor, has also been identified for its role in 

inflammation-delayed neutrophil apoptosis (Jia et al. 2004, Sun et al. 2013).  It has since been 

identified in a variety of tissues and cells, including the liver, lung, muscle, and leukocytes (Sun 

et al. 2013).  In addition to its role in the development of B and T lymphocytes, PBEF interacts 

with multiple pro-inflammatory cytokines including IL-1β, IL-6, IL-8, and TNF-α.  It acts on 

cellular processes through the PI3/MAPK pathway and NF-κB activation.  In neutrophils, PBEF 

is synthesized and released upon activation and is associated with reduced caspase-3 and -8 
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activities, not caspase-9, in its role as an inhibitor of neutrophil apoptosis (Jia et al. 2004).  

Additionally, it is highly expressed in neutrophils isolated from septic human patients (Jia et al. 

2004). 

1.7 Apoptosis of neutrophils is required for the resolution of inflammation 

One of the key elements of the inflammatory process is the ability for the immune system to 

switch from a pro-inflammatory state to and an anti-inflammatory state, thereby bringing about 

the resolution of inflammation and the initiation of healing.  Macrophages are considered to be 

the orchestrators of this process.  A fundamental signal for a macrophage to initiate the 

resolution of inflammation is to phagocytose apoptotic neutrophils.  As discussed above, when 

an inflammatory process proceeds in an ideal manner, neutrophils undergo apoptosis after 

phagocytosing a pathogen or at the end of their short lifespan.  Once neutrophils undergo 

apoptosis, they send out “eat me” signals or apoptotic cell-associated molecular patterns, 

attracting macrophages to them and initiating the process of efferocytosis (Savill et al. 1989).  

These signals involve changes in the neutrophil cell membrane, such as phosphatidylserine 

translocation to the outer leaflet of the plasma membrane, and may be modulated by charged 

glucose and amino acid molecules or pH (Fadok et al. 1992, Frasch et al. 2011, Huynh et al. 

2002, Savill et al. 1989).  A recent study identified the down-regulation of a surface receptor, 

CD47 as a signal for apoptotic neutrophil phagocytosis (Lawrence et al. 2009). Apoptosing 

neutrophils can express “find me” signals to attract macrophages, including 

lyophosphatidylserine, annexin-1, thrombospondin 1, and soluble IL-6R, or macrophages can 

secrete molecules to attract apoptosing neutrophils, such as MFG-8E (Silva 2011).  The process 

by which apoptotic neutrophils and macrophages communicate to cause efferocytosis is still 

under investigation. 
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Macrophages bind to apoptotic neutrophils through bridging molecules, such as 

thrombospondin 1 via specific surface molecules, which have not been fully identified (Savill 

and Fadok 2000).  A recent study identified the mechanism by which efferocytosis of apoptotic 

neutrophils is enhanced in macrophages (Frasch et al. 2011).  Briefly, lysophophatidylserine, a 

form of phosphatidylserine produced by NADPH oxidase, signals to macrophages via a G-

protein-coupled receptor, G2A, to enhance efferocytosis.  G2A activation, in turn, enhances 

production of prostaglandin (PG) E2 via a calcium-dependent cytosolic phospholipase 

A2/cyclooxygenase (COX)-mediated mechanism within the macrophage. PGE2 causes enhanced 

activity of Rac1 via adenyl cyclase and protein kinase A activation to increase macrophage 

efferocytosis of apoptotic neutrophils (Frasch et al. 2011). 

 Upon efferocytosis of apoptotic neutrophils, intracellular signaling blocks the release of 

pro-inflammatory mediators while up-regulating anti-inflammatory mediators to cause a change 

in macrophage phenotype from pro-inflammatory to anti-inflammatory (Fadok et al. 1998, 

Huynh et al. 2002).  Specifically, the pro-inflammatory cytokines including IL-1β, IL-8, IL-10, 

GM-CSF, and TNF-α are inhibited while the robust anti-inflammatory cytokine TGF-β1 is 

maximized (Fadok et al. 1998).  Additionally, it has been demonstrated that the cytosolic protein 

S100A9 is involved in suppression of the production of pro-inflammatory mediators nitric oxide 

(NO), hydrogen peroxide, and TNF-α and inhibition of macrophage phagocytic activity (De 

Lorenzo et al. 2010). Alternatively, a subset of macrophages may also undergo cell death by 

autophagy, apoptosis, or oncosis upon efferocytosis of apoptotic neutrophils; however the 

contribution of these processes to the resolution of inflammation is not well-understood (Wang et 

al. 2014). 
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 Phagocytosis of neutrophils by macrophages, in the face of ongoing microbial infection, 

enhances macrophage killing abilities.  Macrophages lack useful antimicrobial substances that 

neutrophils contain including cathelicidins, permeability-increasing protein, lactoferrin, and 

MPO (Silva 2010).  Upon phagocytosis of apoptosing neutrophils, neutrophilic granules, or 

neutrophil apoptotic bodies, macrophages may adopt some portion of neutrophil antimicrobial 

function, thereby improving their destruction of invading microbes (Silva 2011). 

 In conclusion, the interaction of apoptotic neutrophils and macrophages is critical for 

orchestrating a concerted inflammatory response.  In cases where these interactions are out of 

concert, asynchronous inflammation may ensue that could negatively affect the clearance of an 

infection and may contribute to an excessive inflammatory response that is detrimental to the 

body.  Ultimately, the efferocytosis of apoptotic neutrophils shifts the balance of inflammation 

toward resolution and healing. 

1.8 Neutrophil apoptosis associated with inflammatory disease 

It has been well-established in human medicine that ex vivo neutrophil apoptosis is delayed in 

patients experiencing inflammatory diseases ranging from sepsis to inflammatory bowel disease 

(Hofman 2004). For this reason, modulating neutrophil apoptosis has become a focus of 

inflammation researchers, which will be discussed in a later section.  However, before drugs can 

be developed to modulate neutrophil apoptosis, the mechanisms leading to delayed neutrophil 

apoptosis in the face of inflammatory conditions must be explicated, both in the circulating and 

extravasated neutrophil populations. 

The systemic inflammatory response syndrome (SIRS) was a term developed by human 

practitioners to describe a set of clinical parameters they noticed in severely ill patients, 

including alterations in body temperature, heart rate, respiratory rate, white blood cell count, and 
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underlying pathologic mechanism (Bone et al. 1992).  In general, patients must present with at 

least two abnormal parameters to be diagnosed with SIRS.  The term SIRS has also been adopted 

by veterinary practitioners and is defined by the same criteria as for human patients.  One of the 

most common causes of SIRS in humans and animals is sepsis, or in the case of horses, 

endotoxemia.  It has come to the attention of the authors that the terms sepsis and endotoxemia 

are used to describe a patient’s clinical presentation, where supporting diagnostics may be 

lacking.  In these cases, SIRS is probably a more appropriate term.  Nevertheless, it is well-

established that neutrophil apoptosis is invariably delayed in patients experiencing SIRS 

(Fanning et al. 1999, Jimenez et al. 1997, Shang et al. 2007). 

As stated previously, delayed neutrophil apoptosis has two major effects on inflammatory 

processes.  First, an increase in number of neutrophils initiating an inflammatory response can 

cause collateral damage to nearby tissues due to their non-specific methods of killing resulting in 

further recruitment of neutrophils into a site of inflammation.  Second, efferocytosis of apoptotic 

neutrophils by macrophages is a key component from shifting an inflammatory response from 

pro- to anti-inflammatory to initiate the resolution of inflammation.  Taken together, delayed 

neutrophil apoptosis propagates an inflammatory response. 

Delayed neutrophil apoptosis during SIRS is likely multifactorial due to the broad range 

of disease processes that can cause SIRS.  Substances that have been identified in patients with 

SIRS and are also known inhibitors of neutrophil apoptosis include GM-CSF, IL-6, IL-1β, TNF-

α, LPS, complement 5a (C5a), various pathogens, and Fas ligand (Fanning et al. 1999, Guo et al. 

2006, Hofman 2004, Shang et al. 2007).  Specifically, treatment with neutrophils isolated from 

healthy humans with plasma from patients with SIRS resulted in delayed ex vivo neutrophil 

apoptosis that was abrogated by co-incubation with a neutralizing antibody against GM-CSF 
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(Fanning et al. 1999).  Interestingly, this group also demonstrated that neutrophil lifespan in vitro 

could be rescued by treating with recombinant IL-10 in the face of GM-CSF treatment via 

alteration of ROS generation (Fanning et al. 1999). 

There has been a great deal of research evaluating neutrophil apoptosis in patients 

diagnosed with sepsis.  C5a has been identified as playing a key role in delayed neutrophil 

apoptosis in septic rats and human patients through reduction of neutrophil C5a receptor (Guo et 

al. 2006, Unnewehr et al. 2013).  C5a is a strong activator of neutrophils and has been shown to 

be up-regulated in multiple tissues in patients with sepsis (Riedemann et al. 2002).  C5a has 

recently been evaluated as a potential biomarker for prognosticating the outcome of sepsis in 

human patients (Xu et al. 2015).  C5a delays neutrophil apoptosis via the PI3K and MEK/ERK 

signaling pathways, Bad inactivation via phosphorylation, decreased Bim expression, increased 

Bcl-xL expression,  and suppression of procaspase-3 and -9 cleavage into active caspase-3 and -

9, respectively (Perianayagam et al. 2004, Guo et al. 2006).  In addition, treatment of rats with 

anti-C5a antibody during a cecal-ligation-puncture model, abolished sepsis-delayed neutrophil 

apoptosis (Guo et al. 2006).   

Another cause of delayed neutrophil apoptosis in septic patients involves the upregulation 

of Mcl-1 by myeloid nuclear differentiation antigen (MNDA), a protein that has been described 

as a “master regulator of monocytic and granulocytic lineages” (Milot et al. 2012). However, 

Paunel-Görgülü et al. (2009) demonstrated that ex vivo Fas stimulation can overcome Mcl-1-

mediated delayed neutrophil apoptosis in neutrophils isolated from critically ill patients. 

A hallmark of SIRS is alterations of white blood cell count, which can include leukopenia 

or leukocytosis with or without a left shift toward an increase in immature neutrophils.  

Immature neutrophils have a slightly retarded ability to perform normal functions in the face of 
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sepsis or SIRS, such as migration; however, they demonstrated the same capability to prolong 

their lifespan ex vivo following in vivo activation (Drifte et al. 2013).  A trait that is not generally 

evaluated clinically in neutrophils from patients with SIRS is the presence of apoptotic 

neutrophils in circulation; however, a recent study demonstrated that in patients with severe 

trauma or hemorrhagic shock that required emergency surgery, increased neutrophil apoptosis in 

the early post-operative period was associated with a lower incidence of post-operative infection 

and, as expected, the occurrence of neutrophil apoptosis was inversely proportional to the 

severity of SIRS (Morrison et al. 2013).   The authors of this study proposed that neutrophil 

apoptosis likely reduces early tissue injury, which then decreases the susceptibility to subsequent 

infection (Morrison et al. 2013). Taken together, neutrophil apoptosis, or lack thereof, plays a 

significant part in the development of SIRS and its associated sequelae during many disease 

processes. 

1.9 The equine systemic inflammatory response syndrome 

Similar to other species, equine SIRS is defined using clinical parameters with an underlying 

disease process including hyperthermia, tachycardia, tachypnea, leukocytosis or leukopenia with 

a left shift, with only two of these parameters needing to be present to make a diagnosis of SIRS 

(Epstein et al. 2011, Moore and Vandenplas 2014).  Equine practitioners commonly use the 

terms “endotoxemia” and “SIRS” interchangeably, which has been brought to light by a recent 

review by Moore and Vandenplas (2014).  Often time, horses are diagnosed as being 

“endotoxic,” despite the fact that plasma endotoxin is rarely quantified in clinical cases.   Indeed, 

in horses described clinically as being “endotoxemic,” the sensitivity and specificity for the 

limulus amebocyte lysate assay, the assay of choice to identify plasma endotoxin, was only 
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58.4% and 87.5%, respectively (Senior et al. 2011).  Therefore, we propose that the term SIRS 

should be used unless plasma endotoxin has been quantified.  

Additional confusion in terminology involves the use of the term sepsis, which is defined 

by medical dictionaries as a bacterial infection in the tissues or bloodstream. In equine medicine, 

the term sepsis is used rigorously to define cases where bacteria have been cultured; whereas, the 

term sepsis appears to be used interchangeably with SIRS and endotoxemia in human medicine 

and basic research.  Sepsis and endotoxemia both result in the development of SIRS, but SIRS 

can have other etiologies, such as extensive burns or other types of severe trauma independent of 

infection.  A recent study identified activation of the MAPK pathway as a method to differentiate 

SIRS versus sepsis (West et al. 2007); however, we propose that the etiology of the disease needs 

to be considered when defining a disease.  Ultimately, the discrepancy in terminology and 

evaluation of disease processes is important to realize and consider when assessing research on 

SIRS. 

Equine SIRS can be caused by many disease processes; but by far, it is most commonly 

associated with gastrointestinal disease, otherwise known as colic.  In horses admitted to a 

referral hospital for all types of colic, 28% had examination parameters meeting the SIRS criteria 

(Epstein et al. 2011).  Traditionally, SIRS in colic patients is associated with the development of 

endotoxemia due to bacterial translocation after intestinal compromise from intestinal 

strangulation resulting in ischemia and reperfusion injury or from severe intestinal inflammation, 

such as acute colitis (Senior et al. 2011, Moore and Vandenplas 2014).  However, it is likely that 

other factors come into play in the development of SIRS in these cases, one of which could 

include delayed neutrophil apoptosis.  Regardless of the cause, the development of SIRS in 
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horses experiencing colic is associated with a significant increase in morbidity and mortality 

(Epstein et al. 2011, Moore and Vandenplas 2014).   

The end organ affected in severe cases of SIRS that develops to multi-organ dysfunction 

(MODS) in horses tends to be the lamina within the hoof rather than internal organs, such as the 

lung that are affected in other species (Belknap et al. 2009, Suratt and Parsons 2006). 

Interestingly, horses do not develop laminitis from intravenous infusion of LPS alone, but only in 

cases where true gastrointestinal compromise has occurred, such as oligofructose-induced colitis 

(Belknap and Black 2012).  The development of laminitis is one of the major causes of mortality 

in horses experiencing SIRS. 

In conclusion, SIRS from multiple etiologies is a devastating process in the horse and 

requires further investigation into mechanisms that contribute to its development in order to 

develop an effective treatment regimen as currently utilized treatments are often ineffective.  One 

method to investigate the innate immune response associated with the development of equine 

SIRS is to selectively deplete certain leukocytes.  For example, it is possible to deplete 

intravascular macrophages using gadolinium chloride or deplete all types of macrophages using 

liposome-encapsulated bisphosphonates (Parbhakar et al. 2005, Van Rooijen and Sanders 1994).  

Experiments where selected leukocytes are depleted during established inflammatory models 

could contribute significantly to the advancement of knowledge of the innate immune response 

in horses, making the development of targeted therapeutics possible. 

1.10 Equine neutrophil apoptosis 

Neutrophil apoptosis in inflammatory conditions has recently gained attention by equine 

researchers (Brazil et al. 2014, Krista et al. 2013, Niedzwiedz et al. 2014, Turlej et al. 2001, 

Wauters et al. 2012). Brazil et al. (2014) evaluated constitutive equine neutrophil apoptosis in 
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vitro.  As expected, neutrophils became apoptotic over time.  Concurrently, neutrophils 

maintained their ability to generate respiratory burst upon phorbol myristate acetate (PMA), but 

not zymosan-activated serum (ZAS), a form of complement 5a.  Expectedly, ZAS and 

dexamethasone inhibited apoptosis, but LPS unexpectedly increased the occurrence of neutrophil 

apoptosis in a dose-dependent manner. The authors of this study did not attempt to elucidate 

mechanisms of the various treatments for their effect on neutrophil apoptosis. 

 Neutrophil apoptosis has been evaluated in clinical scenarios in the horse.  Wauters et al. 

(2012) demonstrated that neutrophils isolated from septic joints in clinical cases had greater 

viability than neutrophils isolated from healthy joints.  Somewhat unexpectedly, neutrophils 

from septic joints had a higher percentage of apoptotic neutrophils while neutrophils from 

healthy joints had a higher percentage of dead neutrophils.  An important consideration when 

interpreting the results of this study is that the septic joints were infected with multiple types of 

bacteria.  It is known that microbial pathogens have different effects on neutrophil recruitment, 

activation, and lifespan depending on how they have adapted to evade the immune system (Fox 

et al. 2010, Kobayashi et al. 2003).  In addition, it is important to distinguish between viable 

cells, where the cell membrane remains intact, but the stage of cell cycle may be unknown, 

compared to apoptotic cells, where the cell membrane is also intact, but with concomitant 

phosphatidylserine exposure indicating the induction of cell death via apoptotic pathways.  These 

characteristics of cellular lifespan are discussed in the following section for their effect on the 

inflammatory process.  Ideally, neutrophil apoptosis in septic joints should be evaluated using a 

more controlled in vivo model to identify the true pathophysiology of neutrophil lifespan in the 

face of sepsis. 
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 Krista et al. (2013) examined the occurrence of ex vivo neutrophil apoptosis in horses 

undergoing elective orthopedic surgical procedures (little to no systemic inflammatory response) 

compared to horses undergoing abdominal exploratory surgery to correct colic (significant 

systemic inflammatory response).  They further divided the colic surgery group into 

strangulating (high risk of endotoxemia) and non-strangulating (low risk of endotoxemia) 

groups.  There was no difference in the ex vivo occurrence of neutrophil apoptosis between the 

elective orthopedic and colic surgery groups; however, horses with strangulating lesions had 

significantly delayed neutrophil apoptosis compared to horses with non-strangulating lesions.  

Again, mechanisms of apoptosis were not explored in this study.  From the results of this study, 

it is important to recognize that even minor or local inflammation could have a global effect on 

circulating neutrophil lifespan. 

 Lastly, Niedzwiedz et al. (2014) evaluated percentages of apoptotic neutrophils in 

bronchoalveolar lavage fluid (BALF) from healthy horses compared to horses afflicted with 

recurrent airway obstruction (RAO).  RAO horses had reduced amounts of apoptotic neutrophils 

compared to healthy horses.  This is an expected finding based on the fact that horses with RAO 

have inflamed airways with increased neutrophil concentrations that would likely result in 

neutrophil activation and prolongation of neutrophil lifespan. Additionally, GM-CSF 

concentrations are increased in BALF from horses with RAO, which would further delay local 

neutrophil apoptosis (Turlej et al. 2001).  

 Taken together, there is paucity of data on the occurrence of neutrophil apoptosis and 

associated mechanisms in equine inflammatory diseases.  Considering the role of neutrophils in 

inflammatory diseases and the impact of many inflammatory diseases on the horse, it is critical 

to undertake studies to explore the biology of neutrophil apoptosis. Data generated from such 
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studies could also lead to the development of the horse as model for studying neutrophil biology 

as horses are subject to many of the same inflammatory responses as humans and can provide a 

large number of cells for experiments. 

1.11 The induction of neutrophil apoptosis as a future therapeutic target 

Many acute inflammatory diseases are characterized by neutrophil infiltration, particularly those 

involving extracellular pathogens.  One reason that neutrophils are so effective at neutralizing 

pathogens is due to their shear increase in number that allows them to overwhelm the pathogen.  

However, within the process of neutralizing a pathogen, neutrophils cause collateral damage to 

tissues through the release of their cytotoxic granules.  So while they may effectively neutralize 

pathogens, they also potentiate an inflammatory response through damage to neighboring cells 

that then send out danger signals to recruit additional inflammatory cells.  Additionally, in the 

face of neutrophil activation and accumulation, the prolongation of neutrophil lifespan has a 

significant effect on the overall prolongation of the inflammatory response due to inhibition of 

macrophage polarization from a pro- to anti-inflammatory phenotype.  Therefore, the modulation 

of neutrophil apoptosis is an attractive alternative to reducing inflammation in neutrophil-driven 

inflammatory processes, such as sepsis and SIRS. Modulation of neutrophil apoptosis to reduce 

inflammation can potentially be mediated through two separate mechanisms.  One mechanism 

would involve the induction of neutrophil apoptosis at the specific site(s) of inflammation.  A 

second mechanism would be to introduce apoptotic neutrophils into the site of inflammation to 

influence macrophage polarization and, potentially, neutrophil lifespan. 

Within the context of inducing neutrophil death to stimulate an anti-inflammatory 

response, it is important to differentiate apoptosis from necrosis.  Necrosis is characterized as a 

passive, accidental death from environmental perturbations that disrupt tissue homeostasis, while 



30 
 

apoptosis is characterized as an active, purposeful death that is beneficial to tissue homeostasis 

(Fink and Cookson 2005). The induction of neutrophil death by necrosis is associated with the 

propagation of inflammation primarily through the lack of membrane integrity causing the 

release of cytotoxic contents; whereas, the induction of neutrophil death by apoptosis is 

associated with the reduction of inflammation through maintenance of membrane integrity and 

subsequent macrophage efferocytosis.   

 The timing of inducing neutrophil apoptosis as part of a therapeutic regimen must be 

developed in order to allow enough time for neutrophils to neutralize the pathogen, but before 

they have accumulated to such a degree as to generate an inappropriate or excessive 

inflammatory response.  It is well-documented that neutropenia, both congenital and iatrogenic, 

leads to increased risk for bacterial and fungal infections (Geering and Simon 2011).  Therefore, 

it is critical that neutrophils are available in the immediate inflammatory period to do their 

intended duties, while later on it may be advantageous to induce apoptosis as a method to 

promote the resolution of inflammation. 

 The induction of neutrophil apoptosis has been initiated using various pharmacologic 

agents that have been used with success in vitro and, to a lesser extent, in vivo in laboratory 

animal models (Duffin et al. 2010, Hallet et al. 2008).  The ideal pharmacologic agent should 

alter a pathway involved in initiating neutrophil apoptosis without causing neutrophil necrosis or 

affecting non-target cells.  As discussed earlier in this review, neutrophil apoptosis is a complex 

process that may utilize multiple pathways to promote or delay apoptosis, including NF-κB, 

MAPK, and PI3K, that ultimately regulate the Bcl2 family of proteins (Hallet et al. 2008). 

Indeed, inhibitors of these pathways have been evaluated, at least in vitro, for their ability to 

modulate neutrophil apoptosis (Hallet et al. 2008).  Thus far, only modulation of NF-κB and the 
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Bcl2 family of proteins have demonstrated promising results in in vivo rodent models of 

inflammation. 

 A physiological inhibitor of NF-κB has been identified as prostaglandin (PG)D2 and its 

metabolite PGJ2 (Hallet et al. 2008, Lawrence et al. 2002). These metabolites of the arachidonic 

acid pathway have been shown to inhibit NF-κB activation and induce caspase-dependent 

apoptosis in neutrophils in vitro (Ward et al. 2004).  Additionally, pre-treatment with PGJ2 

reduced LPS-induced acute lung injury in a rat model (Liu et al. 2014) and post-treatment with 

PGJ2 dramatically improved survival and reduced neutrophil infiltration into tissues in an 

endotoxic shock mouse model (Kaplan et al. 2005).  Products of the arachidonic acid pathway, 

specifically those produced by cyclooxygenases (COX), have been historic targets of drugs 

designed to reduce inflammation, namely corticosteroids, such as dexamethasone, and non-

steroidal anti-inflammatory drugs (NSAIDs).  Indeed, both classes of drugs are commonly used 

to treat inflammatory conditions in veterinary patients.  However, a well-known consequence of 

altering COX function in order to reduce inflammatory metabolites, such as PGE2, is 

interference with production of anti-inflammatory metabolites, including PGD2.  This highlights 

the need to develop more targeted therapeutics in order to circumvent unintentional side effects 

of currently used drugs. 

 Related products of arachidonic metabolism produced through the lipoxygenase (LOX) 

arm of the pathway, called lipoxins (LX), have also been identified as potent anti-inflammatory 

mediators, in part through their ability to modulate neutrophil apoptosis and promote 

macrophage efferocytosis (Hallet et al. 2008, Lawrence et al. 2002).  Specifically, aspirin-

triggered lipoxins (ATL) induce neutrophil apoptosis via activation of Annexin-1, which 

concurrently enhances macrophage efferocytosis to promote the resolution of inflammation 
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(Hallet et al. 2008).  Treatment with aspirin increased concentrations of ATL, which in turn 

reduced platelet-neutrophil aggregation and lung injury in a mouse model of LPS-induced lung 

injury (Ortiz-Muñoz et al. 2014).  

 Perhaps the most promising substance being evaluated for modulation of neutrophil 

apoptosis is R-roscovitine, a cyclin-dependent kinase (CDK).  R-roscovitine has been historically 

investigated as a chemotherapeutic drug in treating cancer and is currently undergoing human 

clinical trials for this purpose.  However, in multiple in vitro studies R-roscovitine induced 

neutrophil apoptosis by down-regulating the anti-apoptotic member of the Bcl2 family Mcl-1, 

even being able to override delayed neutrophil apoptosis caused by GM-CSF and LPS (Gautam 

et al. 2013, Leitch et al. 2010, Rossi et al. 2006).  R-roscovitine has been further evaluated in 

rodent models with promising results by enhancing the resolution of established inflammation 

through the promotion of neutrophil apoptosis (Rossi et al. 2006, Koedel et al. 2009). 

 The second mechanism by which disease process may be modulated by neutrophil 

apoptosis involves the administration of apoptotic neutrophils as a therapy in itself.  The ability 

of apoptotic neutrophils to polarize macrophage phenotype from pro-inflammatory to anti-

inflammatory has been discussed above, and so it follows that investigators have exploited this 

effect to promote the resolution of inflammation in various rodent models (Miles et al. 2009, Ren 

et al. 2008).  Miles et al. (2009) discovered that apoptotic and necrotic neutrophils released α–

defensins from their azurophilic granules, which, in addition to being antibacterial, reduce 

production of pro-inflammatory cytokines and NO from macrophages.  Intra-peritoneal injection 

of necrotic neutrophils containing α-defensins, but not whole apoptotic neutrophils, reduced 

inflammatory cell influx in a mouse thioglycolate model of peritonitis. (Miles et al. 2009).  
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In a study by Ren et al. (2008), the administration of apoptotic neutrophils up to 24 h 

after inducing endotoxic shock in mice reduced circulating pro-inflammatory cytokines, 

neutrophil infiltration in target organs, and serum LPS concentration.  The positive effects of 

administering apoptotic neutrophils in this model are likely multimodal due to non-functional 

apoptotic neutrophils binding and neutralizing LPS and the efferocytosis of apoptotic neutrophils 

driving macrophages toward an anti-inflammatory phenotype.  Esmann et al. (2010) 

demonstrated that neutrophils themselves phagocytose apoptotic neutrophils in vitro leading to 

an inhibition of pro-inflammatory neutrophil functions, such as respiratory burst.  Taken 

together, the administration of apoptotic neutrophils could serve as a simple, yet useful treatment 

modality in treating neutrophilic inflammatory diseases. 

In conclusion, the modulation of neutrophil lifespan as a therapeutic target is in its 

infancy of investigation.  In the future, targeted modulation of an inflammatory response will 

hopefully comprise targeted therapeutic regimens, moving away from the currently used 

nonspecific and generally ineffective methods to reduce severe, life-threatening inflammation. 

 1.12 Summary 

Despite having a relatively short lifespan compared to other leukocytes, the ability of neutrophils 

to alter their lifespan to suit the situation at hand is unique and involves a complex process 

involving multiple intracellular signaling pathways.  Within the scope of an inflammatory 

response, the ability to modulate neutrophil lifespan is an attractive option to better coordinate an 

acute inflammatory response and promote the resolution of inflammation as required. 

 Neutrophil apoptosis has received limited attention by equine researchers; however, the 

horse could serve as an ideal model to study neutrophil lifespan in inflammatory conditions.  The 

following chapters of this thesis form the groundwork for confirming that equine neutrophil 
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lifespan is prolonged in various inflammatory scenarios with the goal of providing a place from 

which further detail of the mechanisms of inflammation-delayed neutrophil may be elucidated 

and then manipulated as part of a multimodal therapeutic regimen for the treatment of 

inflammatory conditions. 
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CHAPTER 2: HYPOTHESES AND OBJECTIVES 

2.1 Hypotheses 

1. Lipopolysaccharide will delay equine neutrophil apoptosis in vitro via down-regulation of 

the intrinsic pathway of apoptosis. 

2. Ex vivo equine neutrophil apoptosis will be delayed following intestinal ischemia and 

reperfusion. 

3. Treatment with parenteral gadolinium chloride to deplete pulmonary intravascular 

macrophages will modulate inflammation associated with intestinal ischemia and 

reperfusion in horses.  

4. Ex vivo equine neutrophil apoptosis will be delayed following the induction of colitis 

with oligofructose overdose. 

5. Treatment with apoptotic equine neutrophils in vitro will rescue LPS- and systemic 

inflammation-delayed neutrophil apoptosis. 

2.2 Objectives 

1. Determine if Escherichia coli lipopolysaccharide delays equine neutrophil apoptosis in 

vitro in a dose-dependent manner.  

2. Investigate mechanisms by which lipopolysaccharide delays equine neutrophil apoptosis 

in vitro. 

3. Determine if ex vivo neutrophil apoptosis is delayed following intestinal ischemia and 

reperfusion. 

4. Determine if depletion of pulmonary intravascular macrophages affects systemic 

inflammation and ex vivo neutrophil apoptosis during an equine intestinal ischemia and 

reperfusion model 
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5. Determine if ex vivo neutrophil apoptosis is delayed following the induction of colitis 

with oligofructose overdose. 

6. Determine if co-incubation of apoptotic neutrophils with freshly isolated neutrophils will 

affect the occurrence of apoptosis in vitro and rescue lipopolysaccharide- and systemic 

inflammation-delayed apoptosis in vitro. 

2.3 Rationale 

Neutrophils are one of the primary cells involved in mounting an acute inflammatory response; 

however, their non-specific methods of neutralizing threats may propagate an overzealous 

inflammatory response, often to the detriment of the body.  It has been shown in humans and 

laboratory animals that neutrophil lifespan is prolonged during inflammatory conditions through 

alteration of apoptotic pathways.  The prolongation of neutrophil lifespan delays the resolution of 

inflammation and may contribute to a prolonged, counter-productive, inflammatory state.   

Therefore, the modulation of neutrophil lifespan has come under investigation as a tool to control 

inflammatory conditions.   

Neutrophil lifespan in inflammatory conditions has received limited attention by equine 

researchers, despite the propensity for horses to develop inappropriate inflammatory responses 

resuling in increased morbidity and mortality.  Lipopolysaccharide entering the bloodstream 

(endotoxemia) is one of the most significant contributors to the development of an inappropriate 

inflammatory response in horses.  The most common cause of equine endotoxemia is from 

gastrointestinal barrier compromise due to infectious or non-infectious intestinal inflammation.  

The focus of the work presented herein is to confirm that equine neutrophils experience 

prolongation of lifespan in the face of inflammatory conditions, specifically those associated 

with endotoxin, and to examine the mechanisms of such an alteration of their lifespan.    
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CHAPTER 3: LIPOPOLYSACCHARIDE DELAYS EQUINE 

NEUTROPHIL APOPTOSIS IN VITRO 
 

3.1 Abstract  

Horses are particularly susceptible to lipopolysaccharide (LPS) endotoxin, generating a robust 

systemic inflammatory response resulting in serious, often life threatening, consequences.  

Delayed neutrophil apoptosis has been implicated, in part, as a contributing factor to the 

development of an inappropriate systemic inflammatory response to LPS in other species, but 

has not been well-studied in horses.  Our objective was to evaluate equine neutrophil apoptosis in 

response to LPS treatment in vitro.  Neutrophil apoptosis was assessed with cytology; Annexin V 

and propidium iodide staining quantified with flow cytometry; caspase-3, -8, and -9 activities; 

and western blotting for NF-κB and A1 proteins in neutrophil lysates.  In vitro treatment with 

LPS resulted in delayed apoptosis after 12 and 24 h incubation in neutrophils isolated from 44 

horses on 79 occasions (12 h: P = 0.008, 24 h: p < 0.001). There was a significant correlation 

between increasing LPS dose and decreasing occurrence of apoptosis after 24 h incubation (r = -

0.67, P < 0.0001). Caspase-9 activity was significantly reduced in LPS-treated neutrophils after 

12 h incubation (P = 0.006).  Treatment with an inhibitor of toll-like receptor 4 (TLR4) and 

inducers of apoptosis rescued LPS-delayed apoptosis.  We conclude that in vitro LPS treatment 

delays equine neutrophil apoptosis for up to 24 h in a dose-dependent manner, and the delay is 

dependent upon TLR4 signaling and alteration of the intrinsic pathway of apoptosis. 

 

 

 

This work has been accepted for presentation at the American College of Veterinary Surgeon 

Surgical Summit.  Nashville, TN, USA.  October 22-24, 2015.   
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3.2 Introduction 

Horses are extremely sensitive to endotoxin in the blood, generating a robust systemic 

inflammatory response to as little as 20 ng/kg of lipopolysaccharide (LPS) endotoxin 

administered systemically (Moore and Vandenplas 2014, Tadros et al 2013).  Horses may 

become endotoxemic from various disease processes, the most common being from lesions 

affecting the gastrointestinal tract including colitis and strangulating intestinal lesions (Moore 

and Vandenplas 2014, Senior et al 2011).  Endotoxemia results from the compromise of the 

intestinal epithelial barrier and subsequent bacterial translocation, ultimately leading to a 

systemic inflammatory response (Moore and Vandenplas 2014, Senior et al 2011, Werners et al 

2005).  Neutrophils are important for the propagation of an inappropriate systemic inflammatory 

response to endotoxin because of their non-specific methods of antigen neutralization, often 

leading to collateral damage to nearby cells and tissues (Werners et al 2005).    

There are two classically described pathways by which a cell may undergo apoptosis.  

The extrinsic pathway involves activation of cell membrane receptors by specific ligands, such 

as tumor necrosis alpha (TNF-α), followed by activation of a cascade of intracellular proteases, 

called caspases, that initiate apoptosis (Fox et al. 2010).  The intrinsic pathway involves a 

shifting of a balance of the B cell lymphoma 2 (Bcl2) family of proteins that maintain 

mitochondrial membrane potential.  An intracellular signal, such as cell stress, activates various 

intracellular signaling pathways, such as mitogen-activated protein kinases (MAPK), that 

ultimately change the balance of the Bcl2 family through changes in specific protein production 

to pro-life or pro-death depending on the situation at hand (Fox et al. 2010). 

 Although not specifically studied in the horse, in other species it is understood that 

neutrophils have a relatively short circulatory lifespan (6-8 h half-life in circulation), which ends 
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with the induction of apoptosis via the intrinsic pathway of apoptosis (Edwards et al 2004, Jia et 

al 2008, Tak et al 2013).   The abbreviated life span of neutrophils may be a mechanism by 

which the body removes a potentially activated cell population, thereby having a role in anti-

inflammatory processes (Savill et al 2002).  Indeed, the phagocytosis of apoptotic neutrophils by 

macrophages results in release of anti-inflammatory cytokines such as TGF-β and the inhibition 

of pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-8, and tumor necrosis factor 

(TNF)-α (Fadok et al 1998, Huynh et al 2002, Lucas et al 2003).  In addition, neutrophil 

apoptosis is the primary signal for their removal from the blood by professional phagocytic cells, 

especially macrophages, located in the spleen, liver, and bone marrow (Hofman 2004, Tak et al 

2013).   

Delayed neutrophil apoptosis has been implicated in the development of an inappropriate 

systemic inflammatory response to endotoxin and the prevention of the resolution of 

inflammation (Hofman 2004, Milot et al 2012, O’Brien and Kirby 2008, Serhan and Savill 

2005).  It is well-accepted that bacterial LPS or sepsis delays neutrophil apoptosis in laboratory 

mammals and humans in vitro and in vivo (Colotta et al 1992, Jia et al 2008, Milot et al 2012, 

Sano et al 2005, Sweeny et al 1998, Yamamoto et al 1993). The proposed mechanism of delayed 

neutrophil apoptosis in response to LPS is influenced by activation of the nuclear factor kappa B 

(NF-κB) and phosphoinositide 3-kinase (PI3) pathways via toll-like receptor (TLR) 4 signaling 

leading to an increase in anti-apoptotic proteins, such as B-cell lymphoma (Bcl)-2, myeloid 

leukemia cell (Mcl)-1, and A1, that down-regulate the intrinsic pathway of apoptosis (Edwards, 

et al., 2004, François et al., 2005).   

To the authors’ knowledge, there is only a single study in the literature evaluating the 

effect of LPS treatment on equine neutrophil lifespan in vitro (Brazil et al. 2014).  This group 
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demonstrated an increase in neutrophil apoptosis upon LPS treatment, which is in direct contrast 

to results from all other species.  Because horses are highly susceptible to the effects of 

endotoxin, further evaluation of the effect of LPS on neutrophil lifespan was needed.  The 

objective of this study was to investigate the effect of LPS treatment on the occurrence of 

apoptosis in equine neutrophils in vitro.  We hypothesized that LPS would delay apoptosis in 

equine neutrophils in a dose-dependent manner via down-regulation of the intrinsic pathway of 

apoptosis.  

3.3 Materials and Methods 

3.3.1 Animals 

Healthy adult horses were used for all experiments.  All procedures and experimental protocols 

were approved by the University of Saskatchewan Committee on Animal Care and Supply and 

the University of Saskatchewan Animal Research Ethics Board. 

3.3.2 Neutrophil isolation 

Neutrophils were isolated using a previously reported protocol with minor modification (Cook et 

al. 2009).  Blood was collected aseptically from a jugular vein into vacuum tubes containing 

ethylenediaminetetraacetic acid (EDTA, Vacutainer™, BD, Mississauga, ON, Canada).  Isolation 

was performed at room temperature (20-22°C) immediately after blood collection.  The blood 

was allowed to separate into plasma and red cell fractions for 30-45 min at room temperature.  

Plasma was layered onto 10 ml Ficoll-Paque™ Plus (GE Healthcare, Mississauga, ON, Canada) 

and centrifuged for 30 min at 400 x g.  The subsequent pellet, containing erythrocytes and 

granulocytes, was retained after aspirating the supernatant and washed with Hank’s Buffered Salt 

Solution (HBSS) without phenol, magnesium, or calcium for 10 min at 200 x g.  Erythrocytes 

were lysed with 2 ml sterile distilled water with pH of 7.4 for 25 s and restored to normotonicity 



41 
 

with an equal volume of hypertonic (2x) HBSS.  Cells were washed 3 times with HBSS at 200 x 

g for 10 min, suspended in culture medium (Roswell Park Memorial Institute (RPMI) 1640 

medium containing 10% fetal bovine serum, 2 mM L-glutamine, 100 IU/ml penicillin, 50 μg/ml 

streptomycin, and 25 mM Hepes, Lonza BioWhittaker®, VWR, Edmonton, AB), assessed for 

viability using Trypan blue staining, and counted with a hemocytometer.  Cell purity was 

determined on cytology preparations made with a cytocentrifuge  (Shandon Cytospin 4, Thermo 

Scientific, Waltham, MA, USA) at 1000 rpm for 4 min with medium acceleration and stained 

with a modified Giemsa stain (Hemacolor®, EMD chemical, Gibbstown, NJ). Experiments 

proceeded if viability was greater than 98% and purity was greater than 90%. 

3.3.3 Neutrophil culture conditions 

Neutrophils were suspended in culture medium in plastic 24-well cell culture plates at a 

concentration of 2 x 106 cells/ml.  Cells were left untreated or were treated with various 

concentrations of LPS (Escherichia coli 055:B5, Sigma-Aldrich Canada, Oakville, ON, Canada). 

For mechanistic experiments, neutrophils were cultured with LPS and inducers of apoptosis 

gambogic acid (GA, 2 μg/ml, apoptosis inducer via inhibition of anti-apoptotic Bcl2 proteins, 

Enzo, Farmingdale, NY, USA) or staurosporine (Stauro, 2 μM, apoptosis inducer via pan-

caspase activation, Biovision, Milpitas, CA, USA); with TLR4 inhibitor CLI-095 (1 μg/ml, 

Invivogen, San Diego, CA, USA); or with the dissolving agent dimethyl sulfoxide (1 μl/ml 

DMSO, Sigma-Aldrich Canada, Oakville, ON, Canada).  For all experiments, cells were 

incubated at 37°C in 5% CO2 for various times depending on experiment.  Prior to performing 

apoptosis assays, neutrophils were taken out of culture, pelleted, and washed twice with HBSS at 

400 x g for 8 min.   
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3.3.4 Apoptosis assays 

3.3.4.1 Cytology 

Cytology preparations were prepared as for assessment of sample purity after neutrophil 

isolation.  Neutrophil nuclear morphology was evaluated by the first author, who was blinded to 

treatment, with light microscopy at 100X magnification.  Neutrophils were classified as 

apoptotic if they were karyorrhectic or pyknotic (Savill et al., 1989). Five hundred neutrophils 

were counted in multiple random fields to provide a percentage of apoptotic neutrophils out of 

normal neutrophils. 

3.3.4.2 Flow cytometry 

Neutrophils were stained with CF™488-conjugated Annexin V (AV) and propidium iodide (PI) 

per manufacturer’s instructions (CF™488A-Annexin V and PI Apoptosis Assay Kit, Biotium, 

Hayward, CA, USA).  Staining controls included unstained untreated cells, untreated cells 

stained with AV only, and untreated stained with PI only. A flow cytometer (CyFlow®, Partec, 

Swedesboro, NJ, USA) was used to quantify negatively stained (live cells), AV positively 

stained (apoptotic cells), or AV and PI positively stained (dead) cells. Flow cytometry data were 

analyzed with commercial software (FlowMax Software © Version 2.6, Quantum Analysis 

GmbH, Münster, Germany).  The gated population was determined with unstained cells based on 

size (forward scatter) and granularity (side scatter).  Quadrants to set threshold of fluorescence 

intensity for both Annexin V and PI were determined using untreated cells stained with only AV 

or PI. Data were acquired on at least 10,000 gated events.   

3.3.4.3 Caspase activity assay 

Caspase-3, -8, and -9 activities were indirectly measured using a commercially available kit per 

manufacturer’s instructions (Caspase-3, -8, or -9 Colorimetric Assay Kit, Biovision, Milpitas, 
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CA, USA).  Caspase-3 activity was measured to determine overall apoptotic activity, caspase-8 

activity was measured to assess the contribution of the extrinsic pathway, and caspase-9 activity 

was measured to assess the contribution of the intrinsic pathway on the occurrence of neutrophil 

apoptosis.  Neutrophils were lysed using the manufacturer’s lysis buffer following removal from 

culture and washing as described above. Cell lysates were stored at -80°C until processing.  

Upon thawing, protein concentration in cell lysates was quantified using a commercial kit (DC™ 

Protein Assay, Bio-Rad Laboratories, Mississauga, ON, Canada). Cell lysates were incubated 

with a manufacturer’s reaction buffer containing dithiothreitol (DTT) and each caspase’s 

substrate: DEVD-pNA (caspase-3), IETD-pNA (caspase-8), or LEHD-pNA (caspase-9) in 96-

well plates for 2 h at 37°C. Immediately after incubation, free pNA was quantified by measuring 

absorbance at 405 nm in a microtiter plate reader. Levels of free pNA were corrected for protein 

concentration in cell lysates.  

3.3.4.4 Immunoblotting for inflammatory and apoptotic proteins 

Western blots were performed on neutrophils lysed with radioimmunoprecipitation assay (RIPA) 

buffer (Sigma-Aldrich Canada, Oakville, ON, Canada) containing protease inhibitor (cOmplete 

protease inhibitor cocktail tablets, Roche, Mississauga, ON, Canada).  Protein concentrations in 

cell lysates were quantified using the DC™ Protein Assay (Bio-Rad Laboratories, Mississauga, 

ON, Canada) and cell lysates were diluted to a standard protein concentration using RIPA buffer.  

Lysates were diluted and boiled with Laemmli sample buffer (Bio-Rad Laboratories, 

Mississauga, ON, Canada) containing 10% 2-mercaptoethanol (Sigma-Aldrich Canada, Oakville, 

ON, Canada) at 95°C for 5 min, run on a 12% SDS-PAGE gel, transferred to a low-fluorescent 

polyvinylidene fluoride (PVDF) membrane (Amersham Hybond™-LFP, GE Healthcare, 

Mississauga, ON, Canada), and immunoblotted with antibodies against anti-apoptotic protein A1 
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(Santa Cruz Biotechnologies, Dallas, TX, USA), nuclear factor kappa B (NFκB, Abcam Inc, 

Toronto, ON, Canada), and housekeeping protein beta-actin (Abcam Inc, Toronto, ON, Canada).  

Species- and immunoglobulin-appropriate fluorescent-labeled secondary antibodies were used to 

label primary antibodies (Santa Cruz Biotechnologies, Dallas, TX, USA).  Blots were developed 

using a fluorescent membrane reader (Typhoon 9400, GE Healthcare, Mississauga, ON, 

Canada).  Densitometry was performed by comparing relative fluorescence of protein of interest 

to the housekeeping protein using imaging software (ImageJ, National Institutes of Health, 

USA). 

3.3.5 Statistical analysis 

Data were analyzed with a commercial software package (Graphpad Prism, Graphpad Software, 

Inc. La Jolla, CA, USA). For all comparisons, a P-value of < 0.05 was considered significant.  A 

Shapiro-Wilk test of normality was performed on all dependent variables.  A Spearman’s rank 

correlation was performed to assess correlation of flow cytometry data with light microscopy.  

Linear regression and a Spearman’s rank correlation were used to assess the effect of LPS 

concentration on the occurrence of neutrophil apoptosis.  For normal data, multiple comparisons 

among continuous variable were assessed with one-way ANOVA with Bonferroni’s post-hoc 

analysis and comparisons between two continuous variables were assessed with a Student’s t-

test.  Data are reported as mean with standard deviation (SD).  For non-normal data, multiple 

comparisons among continuous variables were assessed with a Kruskal-Wallis rank test with a 

Dunn’s multiple comparisons test and comparisons between two continuous variables were 

assessed with a Mann-Whitney U test.  Data are represented by median and range. 
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3.4 Results 

3.4.1 LPS treatment delays equine neutrophil apoptosis in vitro in a dose-dependent manner 

For determination of dose dependency of the effect of LPS on apoptosis, neutrophils were 

isolated for 3 separate experiments using 3 horses.  Neutrophils were treated with 0.001 μg/ml, 

0.01 μg/ml, 0.1 μg/ml, 1 μg/ml, or 10 μg/ml LPS or left untreated and cultured for 24 h.  

Neutrophil apoptosis, as determined by Annexin V and PI staining, was reduced by LPS 

treatment in a dose-dependent manner where increasing dose of LPS was significantly correlated 

with reduced apoptosis (r = -0.97, P = 0.003, Figure 3.1).  Treatment with LPS concentrations of 

0.1, 1, and 10 μg/ml significantly reduced apoptosis in neutrophils after 24 h in culture compared 

to untreated cells (0.01 μg/ml LPS: P = 0.037, 0.1 μg/ml LPS: P = 0.003, 1 μg/ml LPS: P < 

0.001, 10 μg/ml LPS: P < 0.001, Figure 3.1). 

Neutrophils were isolated from 44 horses on 79 occasions.  Following isolation, 

neutrophil viability was greater than 99% and purity averaged 93.5% (SD: 2.3%) with 

eosinophils serving as the primary contaminating cell type.  Neutrophils were cultured for 12 or 

24 h with or without 1 μg/ml LPS.  There was a significant reduction in the occurrence of 

apoptosis as measured by Annexin V positive and PI negative staining at both time points for 

cells treated with LPS compared to untreated cells (12 h: P = 0.008, 24 h: P < 0.001, Figure 3.2).  

There was no difference in percentages of live cells (Annexin V negative and PI negative) or 

dead cells (Annexin V positive and PI positive) after 12 h of culture; but after 24 h, there were 

significantly more live cells with LPS treatment (P < 0.001, Figure 3.2).   

Nuclear morphology was concurrently assessed in neutrophils isolated from 8 horses 

following culture for 12 or 24 h with or without 1 μg/ml LPS.  There was a significant reduction 

in apoptotic neutrophils as measured by altered neutrophil nuclear morphology at both time 
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points. (Figure 3.3, 12 h: P = 0.0008, 24 h: P = 0.0002).  Light microscopy results were highly 

correlated with flow cytometry results at 12 h (r = 0.66, P = 0.006) and 24 h (r = 0.90, P < 

0.001).  

 3.4.2 LPS treatment modifies the intrinsic pathway of equine neutrophil apoptosis via TLR4 

signaling 

Evaluation of caspase activity was used to identify the involvement of the intrinsic and extrinsic 

pathways.  Caspase-8 and -9, both initiator caspases, were chosen to identify activation of the 

extrinsic and intrinsic pathways, respectively.  Caspase-3 activity was used to identify overall 

apoptotic activity as it is an effector caspase for both the extrinsic and intrinsic pathways. When 

caspase activity was compared between untreated and LPS-treated cells isolated from 16 horses 

after 12 h of incubation, there was no difference in caspase-3 or caspase-8 activity between 

untreated and LPS-treated cells, but there was a significant reduction in caspase-9 in LPS-treated 

compared untreated cells (P = 0.012, Figure 3.4).  After 12 h of incubation, treatment with LPS 

resulted in increased total NF-κB and decreased A1protein expression, although the difference 

was not statistically significant (NF-κB: P = 0.24, A1: P = 0.18, Figure 3.5). 

Co-incubation of neutrophils with CLI-095, a chemical that blocks the intracellular 

domain of TLR4, and LPS for 24 h reduced LPS-delayed neutrophils apoptosis (1 experiment in 

7 horses, P < 0.05, Figure 3.6).   

In neutrophils isolated from 6 horses and cultured for 12 h with pan-caspase activator 

staurosporine or inhibitor of the anti-apoptotic Bcl2 proteins gambogic acid and LPS increased 

apoptosis compared to LPS treated cells, as measured by Annexin V and PI staining and flow 

cytometric quantification (P < 0.05, Figure 3.7). 
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Figure 3.1 Apoptosis is reduced in equine neutrophils by in vitro LPS treatment in a dose-

dependent manner. Data pointes represent the mean and standard deviation from 3 separate 

experiments in 3 horses. Data were analyzed with linear regression.  P-values represent 

difference in the occurrence of apoptosis from untreated neutrophils. 
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Figure 3.2 LPS delays equine neutrophil apoptosis in vitro. Incubation of equine neutrophils for 

12 or 24 h with or without 1 μg/ml LPS. a) Representative results for flow cytometric 

quantification of Annexin V and PI staining. Live neutrophils are Annexin V and PI negative 

(Q3), apoptotic neutrophils are Annexin V positive and PI negative (Q4), and dead neutrophils 

are Annexin V positive and PI positive (Q2). b) Graphic representation of flow cytometric 

quantification of neutrophil apoptosis.  Data represents mean ± SD from 79 neutrophil isolations 

from 44 horses.  Comparison between untreated and LPS treated cells for each neutrophil 

outcome was assessed with a Student’s t-test. 
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Figure 3.3 a) Representative cytology preparations evaluating neutrophil nuclear morphology 

after 12 and 24 h incubation.  Arrows indicate apoptotic neutrophils. b) Graphic representation of 

cytology data. Bar represents median and data represents 1 experiment on neutrophils isolated 

from 8 horses.  Comparisons between treatments for each time point were assessed with a Mann-

Whitney U test. 
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Figure 3.4 Caspase-9, but not Caspase-3 or Caspase-8, activity was reduced in equine neutrophils 

treated with LPS (1 μg/ml) for 12 h. Bar represents median. Data represents 1 experiment on 

neutrophils isolated from 16 horses.  Comparison between treatments was analyzed with a Mann-

Whitney U test. 
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Figure 3.5 There was no difference in NF-κB and A1 protein expression in equine neutrophils 

treated with LPS for 12 h in culture compared to untreated cells. a) Representative immunoblots 

from equine neutrophil lysates after 12 h of incubation. b) Relative expression of NF-κB and A1 

based on densitometry.  Data are corrected with density of the corresponding β-actin band. Data 

represent 1 experiment in 6 horses. Bar represents the median. Data were analyzed with the 

Mann-Whitney U test. 
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Figure 3.6 LPS-delayed neutrophil apoptosis is dependent upon TLR4 signaling.  Treatment with 

CLI-095 inhibited LPS-delayed neutrophil apoptosis during 24 h in culture. Bar represents 

median. Data represents 1 experiment on neutrophils isolated from 7 horses.  Data were analyzed 

with a Kruskal-Wallis rank test with a Dunn’s multiple comparisons test. Difference in letters 

denotes significant difference among groups (P < 0.05).   
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Figure 3.7 Inducers of apoptosis effectively rescued LPS-delayed neutrophil apoptosis.  a) 

Treatment with 2 μg/ml gambogic acid (GA), 2 μg/ml gambogic acid and 1 μg/ml LPS (GA + 

LPS). Data represent 1 experiment in 6 horses. b) Treatment with 2 μM staurosporine (Stauro), 

or 2 μM staurosporine and 1 μg/ml LPS (Stauro + LPS). Data represent 1 experiment in 6 horses. 

Bars represent medians for each treatment. Data were analyzed with a Kruskal-Wallis rank test 

with a Dunn’s multiple comparisons test.  Difference in letters denotes significant difference 

among groups (P < 0.05).   
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3.5 Discussion 

The results of our study support the hypothesis that LPS delays apoptosis in a dose-dependent 

manner in equine neutrophils in vitro.  Though the mechanism by which LPS delays apoptosis in 

equine neutrophils was not fully elucidated, our results suggest that LPS treatment interferes with 

the intrinsic pathway of apoptosis through reduced caspase-9 activity and is dependent on TLR4 

signaling.   

Recently, Brazil et al. (2014) reported that treatment of equine neutrophils with multiple 

types of LPS in vitro promoted neutrophil apoptosis, which is in direct contrast to our results and 

findings in other species, including humans (Colotta et al. 2012, François et al. 2005, Jia et al. 

2008, Milot et al. 2012, Sano et al. 2005, Sweeny et al. 1998, Yamamoto et al. 1993). It must be 

stated that there was substantial inter-horse and, to a lesser extent, inter-experiment variability, in 

the effect of LPS treatment on equine neutrophil apoptosis in our study. Therefore, it is possible 

that a lower number of experimental units (especially biologic units represented by number of 

horses) could lead to the opposite result, such as reported by Brazil et al. who reported results for 

triplicate experiments in 10 horses.  In select horses, we performed up to six replicates of the 

experiment to assess the occurrence of apoptosis after 12 and 24 h of incubation using Annexin 

V and propidium iodide. 

The discrepancy in our results compared to Brazil et al. could be due to the challenges in 

working with neutrophils. Neutrophils are highly reactive cells, so small differences in the health 

status of a horse, neutrophil isolation procedures, contamination, type of LPS, and culture 

conditions could have a profound effect on their short life span in culture (Attalah et al. 2012, 

Freitas et al. 2008, Hannah et al. 1998, Haslett et al. 1985, Sabroe et al., 2002, Tennenberg et al. 

1988, Watson et al. 1992).  Activation, or lack thereof, may have an effect on neutrophil’s 
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responsiveness to LPS leading to differential responses to the in vitro occurrence of apoptosis.  

To the authors’ knowledge, there are no studies that have specifically addressed the occurrence 

of neutrophil apoptosis in vitro after pre-stimulation with an activating substance, such as LPS.  

In this study, neutrophil apoptosis was delayed in a dose-dependent manner, which has 

been previously demonstrated in human neutrophils (Sweeney et al. 1998).  However, the 

concentration of LPS (1 μg/ml) to which neutrophils were exposed to in prolonged culture 

conditions to reliably delay apoptosis in this study would be difficult to achieve in a horse 

systemically.  First, LPS is rapidly removed from the equine blood compartment after 

intravenous infusion (Fessler et al. 1989); and second, if such a concentration was achieved in 

the blood, it would be approaching the lethal dose of LPS for a horse (150-175 μg/kg or ~2 

μg/ml blood volume, Burrows 1981).   However, it is possible that activation of a small 

population of neutrophils by a relatively high concentration of LPS could lead to a global effect 

on neutrophil lifespan in vivo through intercellular signaling via cytokine production and 

mononuclear cell activation.  Further investigation is required to evaluate ex vivo neutrophil 

lifespan following in vivo LPS challenge.  

We further explored the mechanisms of LPS-delayed neutrophil apoptosis. As expected 

based on known pathways of LPS activation, delayed equine neutrophil apoptosis was dependent 

upon TLR4 signaling.  These results support the current mechanism proposed in other species for 

LPS-delayed neutrophil apoptosis (Figure 3.8).  We used a TLR4 inhibitor that is a cyclohexene 

derivative, called CLI-095 or TAK-242.  This substance was first identified for its ability to 

modulate sepsis and later it was found to suppress TLR4 signaling by blocking its intracellular 

domain (Kawamoto et al. 2008).  To our knowledge, CLI-095 has not been used to evaluate 
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neutrophil apoptosis, but it has been used to evaluate other neutrophil signaling pathways 

involving TLR4 (Lefebvre et al. 2011). 

One of the end pathways of neutrophil TLR4 activation involves NF-κB formation to up-

regulate protein transcription; however in our study, the results of western blot analysis for anti-

apoptotic protein A1 and NF-κB are equivocal.  This result is somewhat unexpected based on 

known pathways of LPS-delayed apoptosis in human neutrophils where both NF-κB and A1 

expression have been shown to be elevated (Chuang et al. 1998, François et al. 2005, Figure 3.8).  

NF-κB is considered to be the major regulator of production of the Bcl2 family of proteins, 

which are vital for determining pro-life vs pro-death in neutrophil survival (Fox et al. 2010). For 

example, A1 protein expression is considered to be dependent upon NF-κB translocation, so it is 

difficult to explain the tendency for an opposite level of expression in our results (Vogler 2012).  

However, A1 is an extremely unstable protein with a short half-life of approximately 3 h 

(Moulding et al. 2001).  Therefore, the discrepancy in these results is more likely due to the 

choice of sampling time in the continuum of in vitro neutrophil apoptosis.  The data presented 

for these proteins represents one point in time.  It is possible that if the expression of these 

proteins was evaluated over time, a difference in expression with LPS treatment would become 

evident.  Ideally, more proteins of the Bcl2 family would have been evaluated, however we 

struggled to find antibodies that were compatible with equine proteins of interest.   

The reduction in caspase-9 activity and increased occurrence of apoptosis upon 

concurrent LPS and gambogic acid treatment suggests that the intrinsic pathway is affected by 

LPS treatment as has been previously demonstrated in other species (Edwards et al. 1992, 

François et al. 2005, Figure 3.8).  Caspase-9 is the main initiator caspase for the intrinsic 

pathway of apoptosis.  It has previously been reported that caspase-9 activity was reduced in 
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neutrophils isolated from septic human patients supporting the importance of its role in LPS-

delayed neutrophil apoptosis (Taneja et al. 2004).  However, to the authors’ knowledge, this is 

the first study that has demonstrated reduced caspase-9 activity upon treatment of neutrophils 

with LPS in vitro. In a human melanoma cell line, gambogic acid induces apoptosis through 

regulation of the pro-apoptotic Bcl2 protein Bax and the anti-apoptotic protein Bcl2 (Xu et al. 

2009); although to the authors’ knowledge, there are no studies evaluating the effect of gambogic 

acid treatment on neutrophil apoptosis in vitro.  Further investigation is required to identify the 

effect of gambogic acid on Bcl2 family protein expression in equine neutrophils. 

It is becoming apparent that neutrophil apoptosis or delayed apoptosis occurs via 

alternative pathways in the face of various substances.  For example granulocyte colony-

stimulating factor delays neutrophil apoptosis independently of the Bcl-2 family of proteins by 

inhibiting calcium-dependent cysteine proteases called calpains while stabilizing X-linked 

inhibitor of apoptosis that, in turn, inhibits caspase-3 and -9 in human neutrophils (van Raam et 

al. 2008). It is possible that an alternative method of apoptosis inhibition occurred due to LPS 

treatment in equine neutrophils.  Further experiments need to be performed to further investigate 

apoptosis in equine neutrophils, including the evaluation of additional proteins and signaling 

pathways that might be involved. 

In conclusion, equine neutrophil apoptosis was delayed in vitro after treatment with >1 

μg/ml LPS from Escherichia coli 055:B5 through reduced capase-9 activity, dependent upon 

TLR4 signaling.   Further work is necessary to fully elucidate the mechanisms involved in LPS-

delayed apoptosis in equine neutrophils.  From the results presented here, it is conceivable that 

alteration of the classical intrinsic apoptotic pathway is not the only cause of LPS-delayed 

apoptosis in neutrophils. 
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Figure 3.8.  Proposed mechanism of LPS-delayed apoptosis in equine neutrophils. 
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3.6 Contineo to in vivo models reported in Chapters 4 and 5 

After verifying that treatment with LPS, albeit at a relatively high dose, did in fact delay equine 

neutrophil apoptosis in vitro, the next step was to assess neutrophil apoptosis in equine models 

that are associated with “endotoxemia.”  Chapter 4 contains data on the occurrence of ex vivo 

neutrophil apoptosis associated with intestinal ischemia and reperfusion, a commonly used 

model of intestinal inflammation and a model that has reported measurable concentrations of 

endotoxin in the blood (Moore et al. 1981).  Chapter 5 has data on the occurrence of ex vivo 

neutrophil apoptosis associated with an oligofructose-induced colitis, a model that creates 

significant signs of systemic inflammation that are conventionally attributed to endotoxemia. 

We chose these models of gastrointestinal inflammation over an LPS-infusion model for 

2 reasons.  First, equine LPS-infusion models do not mimic a true clinical scenario as has been 

demonstrated by the fact that horses do not experience laminitis, a complication of clinical cases 

of endotoxemia.  Horses demonstrate a multitude of clinical signs including tachycardia, 

tachypnea, colic, hyperthermia, and neutropenia followed by rebound neutrophilia that are 

consistent with SIRS.  However, all of these signs are transient and horses rapidly recover 

following LPS infusion, which does not mimic the clinical scenario of a horse diagnosed as 

having endotoxemia, most commonly from underlying gastrointestinal disease. 

Second, we were interested in evaluating the role of pulmonary intravascular 

macrophages (PIMs) in systemic inflammation associated with intestinal ischemia and 

reperfusion injury.  PIMs are a unique type of macrophage that are attached intimately to the 

endothelium of the alveolar capillaries.  Similar to Kupffer cell, they are exposed to the entire 

blood volume as it passes through the lung for oxygenation.  Therefore, they may play a 

significant role in modulating an inflammatory response, including neutrophil apoptosis. 
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CHAPTER 4: EQUINE NEUTROPHIL LIFESPAN IS 

PROLONGED IN HORSES EXPERIENCING JEJUNAL 

ISCHEMIA AND REPERFUSION  

4.1 Abstract 

Dysregulation of neutrophil apoptosis may contribute to the development of an excessive 

systemic inflammatory response in horses as in other species, but requires further investigation 

especially because horses are highly sensitive to systemic endotoxemia. The objective of this 

study was to determine the effect of systemic inflammation, using an experimental model of 

intestinal ischemia and reperfusion injury, on ex vivo neutrophil apoptosis in horses. Neutrophils 

were isolated before and after surgery from horses that were randomized to 3 treatment groups:  

sham celiotomy (CEL, n=4), intestinal ischemia and reperfusion (IR, n=6), intestinal ischemia 

and reperfusion with gadolinium chloride treatment to deplete pulmonary intravascular 

macrophages (IRGC, n=6). Neutrophil apoptosis was assessed with Annexin V and propidium 

iodide staining quantified with flow cytometry and caspase-3, -8, and -9 activities in neutrophil 

lysates. All horses experienced a systemic inflammatory response following surgery without 

detectable plasma endotoxin concentrations 2 h following reperfusion (<0.06 EU/ml).  Caspase-3 

activity was reduced in freshly isolated neutrophils from IR horses (P = 0.03). Following 

surgery, neutrophil apoptosis was significantly delayed after 12 or 24 h in culture, except in 

IRGC horses (12 h: CEL: P = 0.03, IR: P = 0.05, IRGC: P =0.2; 24 h: CEL: P = 0.001, IR: P = 

0.004, IRGC: P = 0.3). Caspase-3, -8, and -9 activities were significantly reduced in neutrophils 

isolated after surgery and cultured for 12 h in IR horses, but not IRGC horses (IR caspase-3: P = 

0.002, IR caspase-8: 0.002 P =, IR caspase-9: P = 0.04). Following surgery, ex vivo equine 

neutrophil apoptosis was delayed via down-regulation of caspase activity, which could have 

implications for the development and progression of systemic inflammatory responses.  



61 
 

Additionally, PIM depletion may rescue neutrophil apoptosis through the modulation of plasma 

cytokines and reduced down-regulation of caspase activity. 

This work has been presented as a poster at Experimental Biology, Boston, MA, USA, April 1, 

2015 and the American College of Veterinary Surgeon Surgical Summit, Nashville, TN, USA, 

October 22-24, 2015.   

 

4.2 Introduction  

Neutrophils serve as one of the primary effector cells of the innate immune response triggered by 

danger- or pathogen-associated molecular patterns. Upon neutrophil activation with substances, 

such as lipopolysaccharide (LPS), there is a concomitant prolongation of lifespan through 

delayed constitutive apoptosis, although this has not been fully established in horses (Brazil et al. 

2014, Colotta et al. 1992, Lee et al. 1993).  Delayed neutrophil apoptosis has a direct effect on 

the magnitude and duration of the innate immune response as a whole, which may contribute to 

the development of a highly exuberant innate immune response, also known as the systemic 

inflammatory response syndrome (SIRS), in two ways (Fanning et al. 1999, Jimenez et al. 1997, 

Shang et al. 2007).  First, neutrophils are histotoxic due to their non-specific method of 

neutralizing threats through de-granulation, which may result in further inflammation with 

additional neutrophil activation and recruitment (Wright et al. 2010).  Second, the resolution of 

inflammation begins, in large part, with the efferocytosis of apoptotic neutrophils by 

macrophages causing their phenotype to change from an inflammatory M1 phenotype to an anti-

inflammatory M2 phenotype (Fadok et al. 1998, Hofman 2004, Lucas et al. 2003).  Therefore, 

the delay in neutrophil apoptosis slows the onset of macrophage-driven resolution of 

inflammation (McCracken and Allen, 2014). 

One of the most common causes of SIRS in horses is endotoxemia from gastrointestinal 

compromise (Moore and Vandenplas 2014).  In the case of small intestinal strangulation, 
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endotoxin (bacterial LPS) enters the circulation through a compromised intestinal epithelial 

barrier (Moore et al. 1981).  The inflammatory response to endotoxemia in the horse is profound 

and carries increased morbidity and mortality in horses with gastrointestinal disease.  In a recent 

study, horses with strangulating intestinal lesions had delayed ex vivo neutrophil apoptosis 

compared to horses with non-strangulating lesions, however the mechanisms as to why 

neutrophil apoptosis was delayed were not fully explored (Krista et al. 2013). 

Compared to the study on the role of extravascular tissue macrophages in inflammatory 

processes, including delayed neutrophil apoptosis, the biology of pulmonary intravascular 

macrophages (PIMs) has not received the same attention for their contribution to a systemic 

inflammatory response in any species (Ahronson-Raz et al. 2010). Equine PIMs up-regulate their 

expression of toll-like receptors (TLR)2, 4 and 9, and cytokines interleukin (IL)-1β and tumor 

necrosis factor alpha (TNF-α) during intravenous Escherichia coli LPS challenge (Parbhakar et 

al. 2005, Schneberger et al. 2009, Suri et al. 2006); but, parenteral treatment with gadolinium 

chloride (GC), a chemical used to induce apoptosis in PIMs, reduces IL-1β and TNF-α 

expression by PIMs, as well as total lung TLR4 and TLR9 expression, in this model (Parbhakar 

et al. 2005).  Depletion of PIMs reduces migration of neutrophils into the alveoli of horses with 

recurrent airway obstruction (Aharonson-Raz et al. 2012). However, there are no data on the role 

of PIMs in modulating neutrophil apoptosis in SIRS.  

We hypothesized that ex vivo neutrophil apoptosis would be delayed in horses following 

intestinal ischemia and reperfusion (IR) and that treatment with GC would reduce the systemic 

inflammatory effects associated with intestinal IR, including delayed neutrophil apoptosis.  

Therefore, our objective was to evaluate the effect of intestinal inflammation, using a model of 

equine intestinal ischemia and reperfusion (IR) that has previously been shown to cause 
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endotoxemia (Moore et al. 1981), on ex vivo neutrophil apoptosis. In addition, we wanted to 

determine the effect of depleting PIMs using GC on the systemic inflammatory response 

following intestinal IR, including ex vivo neutrophil apoptosis.   

4.3 Materials and Methods 

4.3.1 Animals  

Adult horses, quarantined for at least three weeks and determined to be healthy by physical 

examination and complete blood cell count, were used for the study. Throughout the study 

period, horses were offered hay and water ad libitum. At least 2 weeks prior to the study, horses 

were de-wormed with ivermectin (Eqvalan, Merial, Baie-d'Urfé, QC, Canada). Three days prior 

to surgery, horses were hospitalized to become acclimatized to their environment.  A physical 

examination was performed daily while the horses were hospitalized prior to surgery.  Horses 

were randomized to one of three groups using an on-line random number generator program 

(http://www.randomizer.org/form.htm).  One group received only a ventral midline celiotomy (n 

= 4, CEL), a second group received intestinal ischemia and reperfusion (n = 6, IR), and a third 

group received intestinal ischemia and reperfusion and were administered gadolinium chloride 

(GC) to deplete intravascular macrophages (n = 6, IRGC).  All procedures and experimental 

protocols were approved by the University of Saskatchewan Committee on Animal Care and 

Supply and the University of Saskatchewan Animal Research Ethics Board. 

4.3.2 Intestinal ischemia and reperfusion model and sample collection 

Forty-eight hours prior to surgery, a catheter was placed into the right jugular vein. Blood was 

collected for “pre” neutrophil isolation, measurement of plasma endotoxin and cytokines, and 

complete blood cell count.  Samples for plasma endotoxin quantification were prepared by 

aseptically collecting  6-ml of blood into endotoxin free tubes containing 
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ethylenediaminetetraacetic acid (Sarsdet, Montreal, QC, Canada), separating the plasma by 

centrifugation (100 x g for 10 min), diluting the plasma 1:10 with endotoxin free water (Lonza, 

Allendale, NJ, USA), and heat inactivating for 60°C for 15 min.  Presence of endotoxin in the 

plasma was detected at 0.06 EU/ml or 0.25 EU/ml using a commercially available limulus 

amebocyte assay (Lonza, Allendale, NJ, USA) using manufacturer’s directions. Gadolinium 

chloride (Sigma Aldrich Canada, Oaksville, ON, Canada) in 60 ml of 0.9% sodium chloride was 

administered twice to IRGC horses (10 mg/kg bwt i.v.), while CEL and IR groups received 60 

ml of 0.9% sodium chloride, 24 and 48 h pre-operatively.   

Horses were anesthetized, placed in dorsal recumbency on an equine surgical table, and 

the ventral abdomen was clipped and prepared for aseptic surgery.  A 25-cm incision was made 

along the ventral midline through the linea alba.  The peritoneal cavity was entered using blunt 

dissection.  For IR and IRGC horses, a 3-m section of jejunum was isolated 9-m oral to insertion 

of the ileocecal band on the proximal ileum.  Sterile 0.9% sodium chloride solution was used 

throughout the procedure to moisten the intestine.  Doyen intestinal clamps were placed across 

the lumen at each end of the isolated segment.  Mesenteric vessels were occluded with temporary 

ligatures of latex penrose drains and hemostatic forceps to induce ischemia.  After 2 h, the 

clamps and ligatures were removed. Celiotomies were closed routinely in 3 layers using various 

sutures sizes in a simple continuous pattern. Horses were allowed to recover unassisted from 

anesthesia. Following recovery from anesthesia, horses received butorphanol (Torbugesic,10 mg 

IM, Zoetis Canada, Kirkland, QC, Canada) every 4-6 h for pain management.  Horses exhibiting 

high levels of pain received a single dose of detomidine (Dormosedan,1 μg/kg bwt IV, Zoetis 

Canada, Kirkland, QC, Canada).  
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A physical examination was performed every 6 h post-operatively.  Blood was collected 

at 2 h and 6 h after the start of reperfusion for plasma endotoxin quantification and neutrophil 

isolation, respectively.  Plasma was collected at 2, 6, 12, and 18 h after the start of reperfusion 

and stored at -80°C until quantification of plasma cytokines including equine interleukin (IL)-1 

beta, equine tumor necrosis factor (TNF) alpha, equine IL-10, and human transforming growth 

factor-beta 1 (TGF-β1), was performed using commercially available enzyme-linked 

immunosorbent assays (ELISA) as per manufacturer directions (Duoset ELISA, R & D Systems, 

Minneapolis, MN, USA). At 18 h after ischemia, a post-operative complete blood cell count was 

performed and horses were euthanized with an overdose of pentobarbital.  

Lung samples were collected and fixed as previously described (Johnson et al. 2014).  

Briefly, the left lung was fixed in situ by instilling 0.1% glutaraldehyde, 4% paraformaldehyde in 

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) into the left main bronchus, 

clamping the bronchus, and submerging the lung in an air-tight plastic bag.  After 24 h of 

fixation at 4ºC, the left lung was sectioned by a randomized fractionation method to achieve 

appropriate sized tissue for paraffin embedding.  Samples of the right lung and intestine were 

fixed by submersion in 4% paraformaldehyde in phosphate buffered saline (PBS).  After 24 h of 

fixation at 4ºC, tissues were trimmed, dehydrated, and embedded in paraffin.  Tissues were 

sectioned at a thickness of 7 μm.  Additional samples of lung and intestine, from lesion and non-

lesion areas of jejunum, were snap frozen on dry ice and stored at -80ºC. 
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4.3.3 Assessment of pulmonary inflammation and presence of pulmonary intravascular 

macrophages  

 4.3.3.1 Lung histology 

Multiple lung sections from the cranial and caudal lobes of the left and right lungs were stained 

routinely with hematoxylin and eosin (H and E).  A pathologist, blinded to treatment group, 

examined all sections by light microscopy.  Lung sections were graded on a scale of 0-3 (0 = 

absent, 1 = mild, 2 = moderate, 3 = severe) for degree of inflammation based on amount of 

edema, septal thickening, and cellular infiltration.   

4.3.3.2 Myeloperoxidase activity in lung samples 

Myeloperoxidase (MPO) activity was assessed in fresh frozen lung tissues.  Briefly, 500 mg of 

tissue was homogenized in 50 mM HEPES (Sigma-Aldrich Canada, Oakville, ON) using 

stainless steel beads (Qiagen Sciences, Germantown, MD).  Tissues were re-homogenized to lyse 

cells in 0.5% cetyltrimethylammoniumchloride (Sigma-Aldrich Canada, Oakville, ON).  

Supernatants were diluted 1:50 in phosphate citrate buffer and protein concentration in 

supernatants was quantified using a commercial kit (DC™ Protein Assay, Bio-Rad Laboratories, 

Mississauga, ON, Canada).  Diluted samples were incubated for two minutes with substrate 

solution containing resorcinol (Fischer Scientific Company, Ottawa, ON), tetramethylbenzidine 

(Sigma-Aldrich Canada, Oakville, ON), and hydrogen peroxide (Sigma-Aldrich Canada, 

Oakville, ON) in distilled water in a 96-well plate.  The reaction was stopped with sulfuric acid 

and the color change was measured at an absorbance of 405 nm using a microtiter plate reader.  

Results for MPO activity was compared to a standard of known MPO concentration and 

corrected for protein concentration in the sample. 
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4.3.3.3 Immunostaining with anti-macrophage antibody 

Lung sections were deparaffinized and fixed with ethanol.  Endogenous peroxidase activity was 

inhibited (0.5% hydrogen peroxide in methanol) before incubating in pepsin to unmask antigens 

(2mg/ml pepsin in 0.01N HCl).  Tissues were incubated in pepsin at room temperature for 60 

minutes.  Non-specific binding was blocked using bovine serum albumin (1% in PBS buffer) for 

30 minutes prior to application of primary antibodies. Lung sections were evaluated for the 

primary antibody anti-human macrophage IgG1 antibody (MAC387, AbD Serotec®, Raleigh, 

NC, USA), an antibody that binds to calprotectin, a protein present in many inflammatory cells 

including macrophages and neutrophils.  This antibody has previously been used to identify 

equine pulmonary intravascular macrophages (Parbhakar et al. 2005, Schneberger et al. 2012). 

Following incubation with the primary antibody overnight at 4oC, horseradish peroxidase (HRP)-

conjugated secondary antibodies were applied and incubated at room temperature for 30 minutes.  

Color was developed using a substrate peroxidase kit (Vector Laboratories, Ontario, Canada), 

washed, and counterstained with methyl green (Vector Laboratories, Ontario, Canada).  Two 

negative controls were prepared by omitting the primary or secondary antibody and an isotype 

control was prepared for the primary antibody.  The primary antibody concentration was 

standardized using three serial concentrations.  Mononuclear cells stained positive for MAC387 

were counted by an observer blinded to treatment in 10 fields at 60x magnification in at least 3-4 

different lung sections.  Cells were counted only within the alveolar septum and mononuclear 

cells were differentiated from polymorphonuclear cells by nuclear morphology. 

 4.3.3.4 Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)  

The TUNEL assay was performed using a commercially available kit per manufacturer’s 

directions (Roche Applied Science, Laval, QC, Canada) to determine the extent of apoptosis in 
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PIMs. Briefly, lung sections were deparaffinized and fixed with ethanol.  Tissues were 

permeabilized with proteinase K (20 μg/ml in 10 mM TrisHcl, Sigma-Aldrich Canada, Oakville, 

ON) for 30 minutes at 37°C.  The TUNEL enzyme solution was diluted to 1:10 with label 

solution.  Tissues were incubated with the diluted enzyme solution for one hour at 37°C.  The 

slides were washed and the fluorescent signal was converted to a color signal using 

manufacturer’s directions.  A negative control was prepared by eliminating the enzyme solution.  

TUNEL stained cells were counted by an observer blinded to treatment in 10 fields at 60x 

magnification in at least 3-4 different lung sections.  Only cells contained within the alveolar 

septum were counted. 

4.3.4 Assessment of intestinal inflammation 

4.3.4.1 Intestine histology 

Intestinal sections were stained routinely for hematoxylin and eosin (H and E).  A pathologist, 

blinded to treatment group, examined all sections by light microscopy.  Intestinal sections were 

graded on a scale of 0-3 (0 = absent, 1 = mild, 2 = moderate, 3 = severe) for degree of 

inflammation.  The presence of villous atrophy, epithelial degeneration, and hemorrhage were 

evaluated with a yes/no score.  Predominate infiltrating cell type was also recorded.   

4.3.4.2 Myeloperoxidase activity in intestine samples 

MPO activity was measured in intestinal samples using the same protocol as for lung samples. 

4.3.5 Neutrophil isolation and culture 

Neutrophils were isolated using a previously reported protocol with minor modification (Cook et 

al. 2009).  Blood was collected aseptically from a jugular vein into vacuum tubes containing 

EDTA (EDTA, Vacutainer™, BD, Mississauga, ON, Canada).  Isolation was performed at room 

temperature (20-22°C) immediately after blood collection.  The blood was allowed to separate 
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into plasma and red cell fractions for 30-45 min at room temperature.  Plasma was layered onto 

10 ml Ficoll-Paque Plus (GE Healthcare, Mississauga, ON, Canada) and centrifuged for 30 min 

at 400 x g.  The subsequent pellet, containing erythrocytes and granulocytes, was retained after 

aspirating the supernatant and washed with Hank’s Buffered Salt Solution (pH 7.4, HBSS) 

without phenol, magnesium, or calcium for 10 min at 200 x g.  Erythrocytes were lysed with 

sterile distilled water for 25 s and restored to normotonicity with an equal volume hypertonic 

(2x) HBSS.  Cells were washed 3 times with HBSS at 200 x g for 10 min, suspended in culture 

medium (Roswell Park Memorial Institute (RPMI) 1640 medium containing 10% fetal bovine 

serum, 2 mM L-glutamine, 100 IU/ml penicillin, 50 μg/ml streptomycin, and 25 mM HEPES, 

Lonza BioWhittaker®, VWR, Edmonton, AB, Canada) assessed for viability using trypan blue 

staining, and counted with a hemocytometer.  Cell purity was determined on cytology 

preparations made with a cytocentrifuge (Shandon Cytospin 4, Thermo Scientific, Waltham, 

MA, USA) at 1000 rpm for 4 min with medium acceleration and stained with a modified Giemsa 

stain (Hemacolor® EMD chemical, Gibbstown, NJ).  

Neutrophils were suspended in culture medium in plastic multi-well cell culture plates at 

a standard concentration of 2 x 106 cells/ml and cells were incubated at 37°C in 5% CO2.  To 

assess the effect of gadolinium chloride on neutrophil apoptosis, cells were treated in culture 

with 270 μM gadolinium chloride or were left untreated for 24 h.  For ex vivo experiments, 

neutrophils isolated before and after surgery were cultured for 12 or 24 h.  Prior to performing 

apoptosis assays, neutrophils were taken out of culture, pelleted, and washed twice with HBSS at 

300 x g for 8 min.   
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4.3.6 Apoptosis assays 

4.3.6.1 Flow cytometry 

Neutrophils (1 x 106 cells/ml) were stained with CF488-conjugated Annexin V (AV) and 

propidium iodide (PI) apoptosis kit per manufacturer’s instructions (CF™488A-Annexin V and 

PI Apoptosis Assay Kit, Biotium, Hayward, CA, USA).  Staining controls included unstained 

untreated cells, untreated cells stained with AV only, and untreated stained with PI only. A flow 

cytometer (CyFlow®, Partec, Swedesboro, NJ, USA) was used to count negatively stained (live 

cells), AV positively stained (apoptotic cells), or AV and PI positively stained (dead) cells. Flow 

cytometry data were analyzed with commercial software (FlowMax Software© Version 2.6, 

Quantum Analysis GmbH, Münster, Germany).  The gated population was determined with 

unstained cells based on size (forward scatter) and granularity (side scatter).  Quadrants were 

determined using untreated cells stained with only AV or PI. Data were acquired on at least 

10,000 gated events.   

4.3.6.2 Caspase activity assay 

Caspase-3, -8, and -9 activities were indirectly measured using a commercially available 

colorimetric assay kit per manufacturer’s instructions (Caspase-3, -8, or -9 Colorimetric Assay 

Kit, Biovision, Milpitas, CA, USA).  Caspase-3 activity was measured to determine overall 

apoptotic activity.  Caspase-8 activity was measured to assess the contribution of the extrinsic 

pathway and Caspase-9 activity was measured to assess the contribution of the intrinsic pathway 

on the occurrence of neutrophil apoptosis.  At least 1 x 106 neutrophils were lysed using the 

manufacturer’s lysis buffer following removal from culture and washing as described above. Cell 

lysates were stored at -80°C until processing.  Upon thawing, protein concentration in cell 

lysates was quantified using a commercial kit (DC™ Protein Assay, Bio-Rad Laboratories, 
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Mississauga, ON, Canada). Cell lysates were incubated with the manufacturer’s reaction buffer 

containing dithiothreitol (DTT) and each Caspase’s substrate: DEVD-pNA (Caspase-3), IETD-

pNA (Caspase-8), or LEHD-pNA (Caspase-9) in 96-well plates for 2 h at 37°C. Immediately 

after incubation, free pNA was quantified by measuring absorbance at 405 nm in a microtiter 

plate reader. Levels of free pNA were corrected for protein concentration in cell lysates.  

4.3.7 Statistical analysis 

Data were analyzed with commercial software packages (StataIC 13, StataCorp, College Station, 

TX, USA and Graphpad Prism, Graphpad Software, Inc. La Jolla, CA, USA).  For all 

comparisons, a P-value of < 0.05 was considered significant. Differences in physical 

examination parameters and plasma cytokine concentrations over time were compared among 

groups using a repeated-measure ANOVA.  Differences in physical examination parameters and 

plasma cytokine concentrations from baseline within a group and differences in physical 

examination parameters and plasma cytokine concentrations among groups at each time point 

were analyzed using a Kruskal-Wallis rank test with a Dunn’s multiple comparisons test.  

Difference in complete white cell and neutrophil counts before and after surgery was assessed for 

each group by comparing the difference in the means before and after surgery using a one-sided 

t-test.  Difference in complete white cell and neutrophil counts among groups was assessed using 

a Kruskal-Wallis rank test with a Dunn’s multiple comparisons test. A Kruskal-Wallis rank test 

with a Dunn’s multiple comparisons test was used to assess differences in histology scores, MPO 

activity, MAC387 staining, and TUNEL staining among groups.  A Wilcoxon rank sum test was 

used to compare inflammation scores and MPO activity between lesion and non-lesion intestinal 

samples within the IR and IRGC groups. To assess differences in ex vivo neutrophil apoptosis 

and caspase activity before and after surgery within a group, difference in the means were 
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calculated from before and after surgery, then a one-sided t-test was performed. Differences in ex 

vivo neutrophil apoptosis and caspase activity among groups, before or after surgery, were 

assessed with a Kruskal-Wallis rank test with a Dunn’s multiple comparisons test. A Mann-

Whitney U test was used to assess the effect of treatment with gadolinium chloride on in vitro 

neutrophil apoptosis.   

4.4 Results 

4.4.1 Clinical data 

All horses exhibited various clinical signs of a systemic inflammatory response, including 

depression, tachycardia, hyperthermia, and to a lesser extent tachypnea at some point post-

operatively. There was no difference in body temperature, heart rate, or respiratory rate among 

groups at any single time point or over time after surgery (Figure 4.1).  Body temperature was 

significantly elevated above baseline for IR and IRGC horses at 12 h post-reperfusion (IR: P < 

0.001, IRGC: P = 0.002, Figure 4.1). Heart rate was significantly elevated from baseline in CEL 

and IR horses at 12 h post-reperfusion (CEL: P = 0.008, IR: P = 0.002, Figure 4.1).  Respiratory 

rate was not different from baseline in any group (Figure 4.1). Horses in the CEL and IRGC 

groups had a significant increase in total white blood cell count after surgery (CEL: P = 0.02, 

IRGC: P = 0.008, Figure 4.2), but all groups had a significant increase in total circulating 

neutrophils after surgery (CEL: P = 0.007, IR: P = 0.01, IRGC: P = 0.0006, Figure 4.2).  There 

was no difference in total white cell counts or neutrophils counts among groups before or after 

surgery.  There was no difference over time for IL-1β, TNF-α, IL-10, or TGF-β concentrations 

among groups.  IRGC horses had greater plasma IL-1β concentration compared to IR horses 18 h 

after surgery (P = 0.03, Figure 4.3) and greater TNF-α concentrations compared to IR horses 2 

and 6 h after surgery (2 h: P = 0.03, 6 h: P = 0.03, Figure 4.3).  In IRGC horses, TNF-α was 
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significantly increased from baseline at post-reperfusion hours 6, 12, and 18 and IL-10 was 

significantly decreased from baseline at post-reperfusion hours 12 and 18 h (P < 0.05, Figure 

4.3).  No horses had measurable endotoxin (>0.06 EU/ml) in their plasma before surgery or 2 h 

after the start of reperfusion. 

4.4.2 Intestinal ischemia and reperfusion failed to induce significant intestinal inflammation or 

remote lung injury   

There was no difference among groups for total pulmonary inflammatory scores or lung MPO 

activity (Figure 4.4a).  There was no difference among groups for total intestinal inflammation 

scores or intestine MPO activity (Figure 4.4b).  Additionally, there was no difference in total 

intestinal inflammation scores or MPO activity between lesion and non-lesion areas of jejunum 

with IR and IRGC groups.  The primary infiltrating cell type in areas of the IR lesion consisted 

of lymphocyte plasma cells. 

4.4.3 Treatment with gadolinium chloride reduces MAC387 positive mononuclear cell 

infiltration associated with intestinal ischemia and reperfusion 

There was no difference in histologic grades of lung inflammation among groups and, overall, 

horses had very mild pulmonary inflammation (Figure 4.5a). There were significantly fewer 

alveolar septal mononuclear cells in pulmonary sections from IRGC compared with IR horses 

following intestinal ischemia and reperfusion (P = 0.02, Figure 4.5b).  There was no difference 

in TUNEL positive cells within the alveolar septum among groups (Figure 4.5c). 

4.4.4 Ex vivo neutrophil apoptosis is reduced following surgery due to reduced caspase activity 

except in horses treated with gadolinium chloride 

There was no difference among percentage of apoptotic neutrophils as measured by flow 

cytometry immediately after isolation before and after surgery for each group (Figure 4.6). 



74 
 

However, there was a significant reduction in caspase-3 activity in freshly isolated (0 h 

incubation) neutrophils in the IR group, but not the CEL and IRGC groups post-operatively (P = 

0.03, Figure 4.7).   

Neutrophil apoptosis was significantly delayed ex vivo after 12 or 24 h of culture in 

neutrophils isolated from horses after the induction of systemic inflammation compared to 

baseline for all groups, except IRGC (12 h: CEL: P = 0.03, IR: P = 0.05, IRGC: P =0.2; 24 h: 

CEL: P = 0.001, IR: P = 0.004, IRGC: P = 0.3, Figure 4.6).  There was no difference in the 

occurrence among groups pre- or post-operatively; however when IR and IRGC groups were 

compared without CEL group, IRGC horses had greater percentage of apoptotic neutrophils in 

post-operative samples incubated for 24 h (P = 0.04, Figure 4.6). 

Caspases are important proteases involved in both the classical intrinsic and extrinsic 

pathways of apoptosis.  Caspase-3 is the end effector caspase for both pathways, caspase-8 is an 

initiator caspase involved in the extrinsic pathway, and caspase-9 is an initiator caspase involved 

in the intrinsic pathway.  Caspase-3, -8, and -9 activities were reduced in neutrophils isolated 

from IR horses after surgery compared to before surgery (caspase-3: P = 0.002, caspase-8: P = 

0.002, caspase-9, P = 0.04, Figure 4.7).  Horses in the CEL group only had reduced caspase-3 

activity after surgery as compared to before surgery (P = 0.04, Figure 4.7), while caspase activity 

was not reduced in IRGC horses.   

4.4.5 Gadolinium chloride does not affect the occurrence of neutrophil apoptosis in vitro 

When neutrophils were incubated with concentrations of gadolinium up to 270 μM for 24 hours, 

there was no effect on the occurrence of apoptosis compared to untreated cells (P = 0.39, Figure 

4.8). 
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Figure 4.1.  Physical examination parameters recorded following surgery for sham celiotomy 

(CEL) or intestinal ischemia and reperfusion (IR) or IR with administration of gadolinium 

chloride (IRGC).  Data represents the median with range. Differences for each group’s 

parameters for each time point compared to baseline and difference among groups at each time 

point was assessed with a Kruskal-Wallis rank test with a Dunn’s multiple comparisons test. 

Difference among groups over time for each physical examination parameter was analyzed with 

a repeated-measure ANOVA.  Stars represent difference from baseline (*P<0.05, **P<0.01). 
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Figure 4.2. Total white blood cell counts and total neutrophil counts for horses receiving sham 

celiotomy (CEL) or intestinal ischemia and reperfusion without (IR) or with administration of 

gadolinium chloride (IRGC) before and after surgery.  Bar represents the median. Difference in 

the means before and after surgery was assessed using a one-sided t-test.  Difference groups 

before and after surgery was assessed using a Kruskal-Wallis rank test with a Dunn’s multiple 

comparisons test. 
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Figure 4.3.  Plasma cytokine concentrations for horses receiving sham celiotomy (CEL) or 

intestinal ischemia and reperfusion without (IR) or with administration of gadolinium chloride 

(IRGC) before and after surgery. Difference among groups at each time point and difference 

within a group among time points were assessed with a Kruskal-Wallis rank test with a Dunn’s 

multiple comparisons test.  Difference among groups over time for each cytokine was analyzed 

with a repeated-measure ANOVA.  Data represent median and range. Stars represent 

significance from pre-operative values (P < 0.05). 
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Figure 4.4.  Assessment of pulmonary and intestinal inflammation.  a) Representative 

photomicrographs of pulmonary H & E stained slides, total lung inflammation scores, and lung 

MPO activity. b) Representative photomicrographs of intestinal H & E stained slides, total 

intestinal inflammation scores, and intestinal MPO activity.  Difference among groups was 

assessed with Kruskal-Wallis rank test with a Dunn’s multiple comparisons test.  Difference 

between lesion and non-lesion inflammation scores were compared for each group using a 

Wilcoxon Rank Sum Test.  Data are represented by the median and range.  Bar represents the 

median. 
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Figure 4.5 Parenteral administration of gadolinium chloride reduces mononuclear cell infiltration 

associated with intestinal ischemia and reperfusion.  Photomicrographs of representative 

pulmonary sections stained with a) calprotectin (MAC387) or against b) TUNEL with 

corresponding positive cell counts in 10 fields counted at 60x. Data are represented by the 

median and range. Data were analyzed using a Kruskal-Wallis rank test with a Dunn’s multiple 

comparisons test. 
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Figure 4.6 Ex vivo neutrophil apoptosis is delayed following surgery, except in horses 

administered parenteral gadolinium chloride.  Differences in mean occurrence of apoptosis 

before and after surgery were calculated then a one-sided t-test was performed to assess 

difference before and after surgery within a group.  A Kruskal-Wallis rank test with a Dunn’s 

multiple comparisons test was used to assess difference among groups in the occurrence of 

neutrophil apoptosis before or after surgery.  For 24 h incubation, IR and IRGC groups were 

compared without CEL group using a Mann-Whitney U test. Bar represents the median. 
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Figure 4.7 Neutrophil caspase activities are reduced in horses undergoing celiotomy and 

intestinal ischemia and reperfusion, but not in horses that received parenteral gadolinium 

chloride.  Differences in mean occurrence of apoptosis before and after surgery were calculated 

then a one-sided t-test was performed to assess difference before and after surgery within a 

group.  A Kruskal-Wallis rank test with a Dunn’s multiple comparisons test was used to assess 

difference among groups in caspase activity. Data are represented by the median and range. 
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Figure 4.8 Gadolinium chloride treatment has no effect on the occurrence of neutrophil apoptosis 

in vitro.  Data were analyzed with a Mann-Whitney U test and is represented by the median (n = 

6 horses). 

 

 

  



86 
 

4.5 Discussion 

This study supports our hypothesis that ex vivo neutrophil apoptosis is delayed following 

intestinal IR due to reduced caspase activity and parenteral administration of GC reduced 

delayed ex vivo neutrophil apoptosis and reduced pulmonary mononuclear infiltration into the 

lung following intestinal IR; however, treatment with GC did not alter the measured parameters 

of systemic inflammation. In addition, control horses undergoing a sham celiotomy unexpectedly 

experienced a mild systemic inflammatory response and delayed ex vivo neutrophil apoptosis 

following surgery. 

Gadolinium chloride is a chemical that may be used to preferentially inactivate and 

deplete intravascular macrophages, specifically equine PIMs, with the intent to study the 

contribution of these cells to inflammatory processes in horses (Parbhakar et al. 2005). GC 

causes mononuclear cell apoptosis in a dose- and time-dependent manner starting 8 h after 

administration with near complete depletion occurring by 72 h (Mizgerd et al. 1996, Parbhakar et 

al. 2005).  In our horses, treatment with GC significantly reduced mononuclear cell counts in 

lungs of horses that underwent IR, representing the first time this has been observed in an equine 

systemic inflammatory model. The reduction in mononuclear cell counts could be due to 

depletion of constitutive PIMs and reduced infiltration of new cells following induction of IR. 

However, there was no difference in the number of apoptotic septal cells within the lung as 

demonstrated by TUNEL staining. This finding could be explained by the fact that PIMs were 

already dead, having been depleted by two doses of GC administered 66 and 42 hours prior to 

euthanasia and lung fixation, rather than apoptotic, which is required for positive TUNEL 

staining. Nevertheless, the use of GC resulted in significant depletion of PIMs in IR horses. 
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 Contrary to another study published by our research group, horses in this study did not 

develop significant pulmonary inflammation following intestinal ischemia and reperfusion or 

anesthesia (Montgomery et al. 2014). One explanation for this difference is that samples in the 

previous report were taken one hour after the start of reperfusion; whereas, the samples in the 

current study were taken 18 hours following reperfusion, potentially giving the lung time to 

“recover” from the effects of anesthesia and remote injury.  Even so, the majority of lungs had 

evidence of dorsal bruising at necropsy, which would be considered a normal sequela to 

undergoing prolonged anesthesia in dorsal recumbency in the horse.   

 In addition to the lack of pulmonary inflammation, there was an unexpected lack of 

inflammation on histologic examination in areas of the jejunum that experienced ischemia and 

reperfusion despite grossly visible lesions observed at necropsy.  In addition, the primary 

infiltrating cell types consisted of lymphocytes and plasma cells, which is different than the 

previously reported primary infiltrating cell type of neutrophils (Cook et al. 2009, Little et al. 

2005).  Despite the lack of local inflammation observed in intestinal and pulmonary tissues, 

horses did develop a systemic inflammatory response following surgery that met the criteria of 

SIRS. 

It has been demonstrated in multiple models and clinical cases, that SIRS delays 

neutrophil apoptosis in humans and laboratory mammals (Fanning et al. 1999, Jimenez et al. 

1997, Shang et al. 2007). Though all horses in this study experienced only a mild systemic 

inflammatory response with minimal local intestinal inflammation, they would have met the 

classification for SIRS (having 2 of the following:  tachycardia, tachypnea, fever, leukopenia or 

leukocytosis with or without a left shift) between12-18 h post-operatively. Concomitantly, there 

was a significant delay in ex vivo neutrophil apoptosis in neutrophils isolated following surgery 
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in CEL and IR horses, but not IRGC horses, due to reduced intrinsic and extrinsic caspase 

activity. 

Despite failing to identify the precise mechanism of delayed ex vivo neutrophil apoptosis 

following intestinal IR, we were able to determine that delayed ex vivo neutrophil apoptosis 

following the induction of systemic inflammation from intestinal IR involved reduction in both 

intrinsic (caspase-9) and extrinsic (caspase -8) initiator caspase activities that likely culminated 

in a significant reduction in effector caspase-3 activity based on known pathways of apoptosis 

(Figure 4.9).  These data suggest that both the intrinsic and extrinsic pathways of apoptosis are 

affected in neutrophils isolated from horses experiencing intestinal IR.  Similarly, in humans, 

delayed ex vivo neutrophil apoptosis in neutrophils isolated from septic patients, who are 

invariably experiencing concurrent SIRS, was associated with reduced caspase-3 and -9 activities 

(Taneja et al. 2004).   

This is the first report investigating the role of PIMs in the modulation of neutrophil 

apoptosis.  The parenteral administration of GC rescued ex vivo delayed neutrophil apoptosis, 

apparently through less suppression of caspase-3, -8, and -9 activities allowing neutrophils to 

undergo apoptosis in vitro at a similar rate as before surgery.  However, GC had no effect on the 

occurrence of in vitro neutrophil apoptosis or in vitro neutrophil caspase activity (data not 

shown).  Further investigation is warranted to characterize the role of PIMs in modulating 

neutrophil lifespan. 

 We have demonstrated that delayed ex vivo equine neutrophil apoptosis is associated 

with the development of SIRS; and due to the multifactorial etiology of SIRS the exact cause of 

delayed ex vivo neutrophil apoptosis cannot be surmised from the data collected in this study; 

however, certain causes may be ruled out or postulated.  First, it is possible that delayed ex vivo 
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neutrophil apoptosis was independent of endotoxemia as our horses did not have measurable 

endotoxin 2 h after the start of reperfusion.  It is also possible that the development of 

endotoxemia could have been missed due to incorrect time of sampling.   However, we chose the 

time point based on work performed by Moore et al. (1981), where they quantified endotoxin at 

60 and 120 minutes following the start of intestinal reperfusion after 50 or 180 minute period of 

ischemia.  In a clinical study, the sensitivity and specificity of detecting endotoxin in the plasma 

of horses that were clinically classified as being endotoxic was only 58.4% and 87.5%, 

respectively, suggesting that plasma endotoxin quantification is not straightforward or the term 

endotoxemia is improperly used in clinical cases where horse are experiencing SIRS rather than 

endotoxemia (Moore and Vandenplas 2014, Senior et al. 2011).  Endotoxemia is transient as LPS 

is rapidly removed from the equine blood compartment (Fessler et al. 1989), so ideally multiple 

samples should have been collected over time to more accurately measure the presence of 

endotoxin in the plasma in the horses in this study.  Furthermore, there may other microbial 

molecules in the blood of horses experiencing IR that may activate neutrophils, similarly to LPS.  

Second, the cytokine profile was opposite of what was expected given the ex vivo 

neutrophil apoptosis results; namely, IRGC horses had greater concentrations of IL-1β and TNF-

α compared to IR horses post-operatively with a concomitant reduction in IL-10 concentration 

from baseline.  Unfortunately, there is a distinct void in the equine literature on the plasma 

cytokine profile of horses undergoing experimental intestinal ischemia and reperfusion, so we 

cannot relate our results to previous studies.  In a rat model of intestinal ischemia and 

reperfusion, plasma concentrations of IL-1β and TNF-α peaked at 1 h and 3 h, respectively, 

which is much sooner than what we measured in horses undergoing intestinal ischemia and 
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reperfusion, but is similar in the fact that IL-1β peaks prior to TNF-α (Guzma´n-de la Garza et al. 

2013).   

Inflammatory cytokines, including IL-1β and TNF-α, have been shown to delay 

neutrophil apoptosis in vitro (Colotta et al. 1992).  However, we have failed to delay equine 

neutrophil apoptosis with treatment of recombinant equine IL-1β in vitro (unpublished data) and 

TNF-α has been shown to have variable effects on neutrophil apoptosis depending on 

concentration and time of exposure (Cross et al. 2008, Fox et al. 2010, Murray et al. 1997, 

Salamone et al. 2001).  In fact, early exposure to low concentrations of TNF-α induces 

neutrophil apoptosis; and when neutrophils are pre-treated with TNF-α, apoptosis is accelerated 

when exposed to substances that commonly delay neutrophil apoptosis, such as Escherichia coli 

(Salamone et al. 2001). In IRGC horses, TNF-α concentrations increased from 2 h up to the last 

time point measured at 18 h post-reperfusion; whereas TNF-α concentrations started to increase 

in IR horses at 12 h post-reperfusion.  Given that neutrophils were isolated 6 h post-reperfusion, 

when TNF-α was beginning to increase in IRGC horses and not measurable in IR horses, 

variable effects of TNF-α on neutrophil lifespan would be expected.  In IRGC horses, 

neutrophils were being exposed to a low level of TNF-α during the early inflammatory phase, 

which may have contributed to the observed difference in ex vivo neutrophil apoptosis. 

Additionally, IL-1β and TNF-α activate equine neutrophils to promote reactive oxygen species 

(ROS) production (Benbarek et al. 2008).  It is currently thought that most of the molecular 

pathways causing neutrophil apoptosis are dependent upon ROS generation; however, ROS can 

have alternative effects on neutrophils, such as interference with caspase activities causing 

delayed apoptosis or the initiation of cell necrosis rather than apoptosis (Fadeel et al. 1998, 
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Geering and Simon 2011, Scheel-Toellner et al. 2004).  Based on our results, the effect of TNF-α 

and ROS production on equine neutrophil apoptosis deserves further evaluation.  

It has previously been shown by our research group that depletion of PIMs reduces the 

expression of IL-1β and TNF-α in lung cells following parenteral endotoxin challenge; however, 

circulating cytokines were not measured (Parbhakar et al. 2005).  Our findings suggest that PIMs 

are not a primary source of circulating cytokines during inflammatory processes.  However, it is 

possible that by depleting PIMs a shift toward resolution of inflammation may have been 

impaired within the scope of the inflammatory response, which could explain why IRGC horses 

experienced similar signs of systemic inflammation as IR horses and why the inflammatory 

cytokines, TNF-α and IL-1β, were elevated and the anti-inflammatory cytokine, IL-10, was 

reduced in IRGC.  For example, in mice depleted of intravascular macrophages and subjected to 

intestinal ischemia and reperfusion, TNF was increased and IL-10 was decreased compared to 

non-depleted mice (Ellet et al. 2010). Additionally, because PIMs are important for removal of 

foreign entities, such as LPS, from the bloodstream, their depletion could result in a greater 

inflammatory response. Further work is needed to elucidate the plasma cytokine profile, both 

pro- and anti-inflammatory, in horses undergoing inflammatory models to provide a basis from 

which modulation of the innate immune response can be assessed. 

Third, another contributor to delayed neutrophil apoptosis, which has received limited 

investigation, has been coined the “community effect,” whereby neutrophil apoptosis is delayed 

by increased concentration and density in vitro (Attalah et al. 2012, Hannah et al. 1998).  To the 

authors’ knowledge, concentration- and density-delayed neutrophil apoptosis have not been 

studied in vivo nor have they been investigated in equine neutrophils; however, the results of our 

study, where horses experienced a significant increase in circulating neutrophil concentrations 



92 
 

after surgery and concomitant delayed ex vivo apoptosis without measurable plasma endotoxin, 

support this mechanism of delayed neutrophil apoptosis.  Indeed, we have supporting data that 

demonstrate the occurrence of equine neutrophil apoptosis is concentration dependent in vitro 

(Chapter 5). 

Finally, there are other inflammatory mediators that were not measured in this study that 

might have contributed to the observed delay in ex vivo neutrophil apoptosis in CEL and IR 

horses.  Granulocyte macrophage-colony stimulating factor (GM-CSF) is a powerful inhibitor of 

neutrophil apoptosis and has been shown to play a significant role in SIRS-delayed neutrophil 

apoptosis in vivo (Fanning et al. 1999).  Also, complement 5a (C5a) has been identified as a key 

mediator of delayed neutrophil apoptosis in septic rats and human patients (Guo et al. 2006, 

Unnewehr et al. 2013).   

It is important to notice that horses in the CEL group also experienced a significant 

increase in systemic neutrophils and delayed ex vivo neutrophil apoptosis, even though they were 

considered to be controls.  This observation serves two purposes, first it highlights the need for 

appropriate controls in inflammatory models.  To the authors’ knowledge, this is the first study 

that has included a sham celiotomy group in an equine intestinal IR model.  Secondly, it is 

important to realize that performing any type of surgery will lead to some amount of systemic 

inflammatory response, which could explain, in part, why Krista et al. failed to show a difference 

in the occurrence of ex vivo neutrophil apoptosis between horses undergoing elective orthopedic 

procedures and abdominal exploratory surgery (Krista et al. 2013). 

In conclusion, the induction of systemic inflammation in horses undergoing celiotomy 

and intestinal ischemia and reperfusion resulted in delayed ex vivo neutrophil apoptosis via 

down-regulation of caspase activity. Ultimately, delayed neutrophil apoptosis may have a 
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significant impact on the progression of many inflammatory disease processes due to the 

potential for inadvertent tissue damage to occur during neutrophil activation and the reduction of 

apoptotic neutrophils that are necessary for macrophage-driven resolution of inflammation.  

Therefore, the selective induction of neutrophil apoptosis could prove to be a potential 

therapeutic target to treat diseases associated with excessive neutrophil activation and 

accumulation, such as SIRS. 
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Figure 4.9 Potential mechanism for delayed ex vivo equine neutrophil apoptosis following 

intestinal ischemia and reperfusion.  
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CHAPTER 5: EX VIVO NEUTROPHIL APOPTOSIS IS 

DELAYED IN AN EQUINE COLITIS MODEL 

5.1 Abstract 

Horses that develop colitis invariably exhibit signs of a systemic inflammatory response 

syndrome (SIRS).  A significant contributor to the development of SIRS in humans is delayed 

neutrophil apoptosis, but this has not been specifically studied in horses.  The objective of this 

study was to evaluate the occurrence of ex vivo neutrophil apoptosis upon the SIRS from an 

equine colitis model.  Neutrophils were isolated before and after the induction of colitis using an 

oligofructose-overdose model, placed into culture for 12 or 24 h with or without 

lipopolysaccharide (LPS), and then assessed for the occurrence of apoptosis using Annexin V 

and propidium iodide staining with flow cytometric quantification.  Caspase-3, -8, and -9 

activities were measured after 12 h of incubation.  Ex vivo neutrophil apoptosis was significantly 

delayed in neutrophils isolated after the induction of colitis (12 h incubation: P = 0.004, 24 h 

incubation: P = 0.003) with concomitant reduction in caspase-3, -8, and -9 activities (caspase-3: 

P = 0.004, caspase-8: P = 0.02, caspase-9: P = 0.02). The data show that neutrophil apoptosis is 

delayed in horses with induced colitis, which may contribute to the development of SIRS. 

5.2 Introduction 

Horses experiencing colitis are at increased risk of developing a systemic inflammatory response 

syndrome (SIRS), an overzealous inflammatory response that is associated with increased 

morbidity and mortality (Moore and Vandenplas 2014).  SIRS in adult horses is defined using 

clinical parameters including hyperthermia, tachycardia, tachypnea, leukocytosis or leukopenia 

with a left shift, with only two of these parameters needing to be present to make a diagnosis of 

SIRS (Epstein et al. 2011, Moore and Vandenplas 2014). In cases of colitis, SIRS is thought to 

develop from endotoxin (bacterial lipopolysaccharide, LPS) entering the vascular compartment 
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from a compromised intestinal epithelial barrier (Senior et al. 2011).  Horses with colitis 

generally exhibit profound clinical signs of SIRS that may progress to multiple organ 

dysfunction syndrome (MODS), which in the horse is evidenced by the development of laminitis 

(Belknap 2009).  Indeed, models used to study laminitis include models of colitis, such as 

inducing colitis by oligofructose-overdose (Kalck et al. 2009, Nourian et al. 2007). 

In humans, circulating neutrophil apoptosis is delayed in patients experiencing SIRS and 

is thought to contribute to an inappropriate inflammatory response (Fanning et al. 1999, Jimenez 

et al. 1997, Paunel-Görgülü et al. 2012, Shang et al. 2007).  The increased life span of activated 

neutrophils is associated with exacerbation of inflammation and tissue damage caused by 

cytotoxic molecules released by the neutrophils. Furthermore, delayed efferocytosis of apoptotic 

neutrophils delays the initiation of macrophage-orchestrated resolution of inflammation (Fadok 

et al. 1998, Hofman 2004, Lucas et al. 2003, Wright et al. 2010).   

The cause of delayed neutrophil apoptosis in cases of SIRS may be from any number of 

substances that activate neutrophils, thereby prolonging their lifespan.  One substance that has 

been evaluated extensively in vitro for its effect on neutrophil lifespan and has been identified as 

a cause of SIRS in vivo is LPS (Colotta et al. 1992, Hofman et al. 2004, Sweeny et al. 1998, Sano 

et al. 2005).  The mechanism of LPS-delayed neutrophil apoptosis has been studied in humans 

and involves a shifting of balance from pro-apoptotic to anti-apoptotic processes of the intrinsic 

pathway of apoptosis via TLR4 activation (Edwards et al. 2004, François et al. 2005).  It is 

thought that LPS plays a significant role in delaying neutrophil apoptosis in human patients with 

sepsis and endotoxemia, both of which are also associated with the development of SIRS 

(Hofman 2004); however, this has not been demonstrated in the horse. 
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To the authors’ knowledge, ex vivo neutrophil apoptosis has not been examined in an 

equine model of colitis. We hypothesized that ex vivo apoptosis would be delayed in neutrophils 

isolated from horses following the induction of colitis by oligofructose overdose due to the 

development of SIRS and endotoxemia.  Therefore, our goal was to study the occurrence of ex 

vivo neutrophil apoptosis in horses before and after the induction of oligofructose-overdose 

colitis.  Additionally, we evaluated the effect of in vitro LPS treatment in neutrophils isolated 

before and after the induction of colitis and the effect of in vitro neutrophil concentration on the 

occurrence of apoptosis. 

5.3 Materials and methods 

5.3.1 Animals  

Adult horses, determined to be healthy by physical examination or complete blood cell count, 

were used for the study. Throughout the study period, horses were offered hay and water ad 

libitum.  Horses served as their own controls by comparing the occurrence of ex vivo apoptosis in 

neutrophils isolated before and after the induction of colitis.  All procedures and experimental 

protocols were approved by the University of Saskatchewan Committee on Animal Care and 

Supply and the University of Saskatchewan Animal Research Ethics Board. 

5.3.2 Oligofructose-induced colitis model 

Blood was collected for neutrophil isolation immediately prior to sedation with xylazine (0.5 

mg/kg IV).  Horses were administered an overdose of oligofructose (10 g/kg bwt) dissolved in 

water via nasogastric tube.   Colitis developed over the next 12-15 hours.  Blood was collected 

18-20 h after oligofructose administration for neutrophil isolation.  In 6 horses, blood was 

collected for complete blood count and plasma endotoxin quantification before and 18-20 h after 

oligofructose overdose.  For plasma endotoxin quantification blood was collected aseptically 
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from a jugular vein into endotoxin free tubes containing ethylenediaminetetraacetic acid (EDTA, 

Sarsdet, Montreal, QC, Canada).  Plasma was separated by centrifugation (100 x g for 10 min), 

diluted 1:10 with endotoxin free water (Sigma Aldrich Canada, Oaksville, ON, Canada), and 

heat inactivated for 60°C for 15 min.  Presence of endotoxin in the plasma was detected at 0.25 

EU/ml concentration using a commercially available limulus amebocyte assay using 

manufacturer’s directions (Lonza, Allendale, NJ, USA). 

5.3.3 Neutrophil isolation 

Neutrophils were isolated using a previously reported protocol with minor modification (Cook et 

al. 2009).  Blood was collected aseptically from a jugular vein into vacuum tubes containing 

EDTA (Vacutainer™, BD, Mississauga, ON, Canada).  Neutrophil isolation was performed at 

room temperature (20-22°C) immediately after blood collection.  The blood was allowed to 

separate into plasma and red cell fractions for 30-45 min at room temperature.  Plasma was 

layered onto 10 ml Ficoll-Paque™ Plus (GE Healthcare, Mississauga, ON, Canada) and 

centrifuged for 30 min at 400 x g.  The subsequent pellet, containing erythrocytes and 

granulocytes, was retained after aspirating the supernatant and washed with Hank’s Buffered Salt 

Solution (pH 7.4, HBSS) without phenol, magnesium, or calcium for 10 min at 200 x g.  

Erythrocytes were lysed with 2 ml sterile hypotonic distilled water with pH of 7.4 for 25 s and 

restored to normotonicity with an equal volume hypertonic (2x) HBSS.  Cells were washed 3 

times with HBSS at 200 x g for 10 min, suspended in culture medium (Roswell Park Memorial 

Institute (RPMI) 1640 medium containing 10% fetal bovine serum, 2 mM L-glutamine, 100 

IU/ml penicillin, 50 μg/ml streptomycin, and 25 mM Hepes, Lonza BioWhittaker®, VWR, 

Edmonton, AB, Canada), assessed for viability using Trypan blue staining, and counted with a 

hemocytometer.  Cell purity was determined on cytology preparations made with a 
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cytocentrifuge  (Shandon Cytospin 4, Thermo Scientific, Waltham, MA, USA) at 1000 rpm for 4 

min with medium acceleration and stained with a modified Giemsa stain (Hemacolor® EMD 

chemical, Gibbstown, NJ, USA).  

5.3.4 Neutrophil culture 

For ex vivo experiments, neutrophils were suspended in culture medium in plastic multi-well cell 

culture plates at a concentration of  2 x 106 cells/ml with or without lipopolysaccharide from 

Escherichia coli  (LPS, 1 μg/ml, Escherichia coli 055:B5, Sigma-Aldrich Canada, Oakville, ON, 

Canada) for 12 or 24 h at 37°C in 5% CO2. For in vitro experiments to assess the effect of 

neutrophil concentration on the occurrence of neutrophil apoptosis, neutrophils were cultured at 

concentrations of 2, 5, and 8 x 106 cells/ml for 12 and 24 h. For all experiments, neutrophils were 

taken out of culture, pelleted, and washed twice with HBSS at 300 x g for 8 min. prior to 

performing assays.   

5.3.5 Apoptosis assays 

5.3.5.1 Flow cytometry 

Neutrophils were stained with CF™488-conjugated Annexin V (AV) and propidium iodide (PI) 

per manufacturer’s instructions (CF™488A-Annexin V and PI Apoptosis Assay Kit, Biotium, 

Hayward, CA, USA).  Staining controls included unstained untreated cells, untreated cells 

stained with AV only, and untreated stained with PI only. A flow cytometer (CyFlow®, Partec, 

Swedesboro, NJ, USA) was used to count negatively stained (live) cells, AV stained (apoptotic) 

cells, or AV and PI stained (dead) cells. Flow cytometry data were analyzed with commercial 

software (FlowMax Software © Version 2.6, Quantum Analysis GmbH, Münster, Germany).  

The gated population was determined with unstained cells based on size (forward scatter) and 
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granularity (side scatter).  Quadrants were determined using untreated cells stained with only AV 

or PI. Data were acquired on at least 10,000 gated events.   

5.3.5.2 Caspase activity assay 

Caspase-3, -8, and -9 activities were indirectly measured using a commercially available kit per 

manufacturer’s instructions (Caspase-3, -8, or -9 Colorimetric Assay Kit, Biovision, Milpitas, 

CA, USA).  Caspase-3 activity was measured to determine overall apoptotic activity.  Caspase-8 

activity was measured to assess the contribution of the extrinsic pathway and Caspase-9 activity 

was measured to assess the contribution of the intrinsic pathway on the occurrence of neutrophil 

apoptosis.  One million neutrophils were lysed using the manufacturer’s lysis buffer following 

removal from culture and washed as described above. Cell lysates were stored at -80°C until 

processing.  Upon thawing, protein concentration in cell lysates was quantified using a 

commercial kit (DC™ Protein Assay, Bio-Rad Laboratories, Mississauga, ON, Canada). Cell 

lysates were incubated with a manufacturer’s reaction buffer containing dithiothreitol (DTT) and 

each Caspase’s substrate: DEVD-pNA (Caspase-3), IETD-pNA (Caspase-8), or LEHD-pNA 

(Caspase-9) in 96-well plates for 2 h at 37°C. Immediately after incubation, free pNA was 

quantified by measuring absorbance at 405 nm in a microtiter plate reader. Levels of free pNA 

were corrected for total protein concentration in cell lysates.  

5.3.6 Statistical analysis 

Data were analyzed with a commercial software package (Graphpad Prism, Graphpad Software, 

Inc. La Jolla, CA, USA) using non-parametric methods. For all comparisons, a P-value of < 0.05 

was considered significant.  The Wilcoxon matched-pairs signed rank test was used to compare 

data before and after the induction of colitis.  The Mann-Whitney U test was used to compare 

flow cytometry data between untreated and LPS-treated cells.  The Kruskal-Wallis rank test with 
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a Dunn’s multiple comparisons test was used to compare difference among in vitro treatment 

groups for LPS experiments.  The effect of neutrophil concentration on the occurrence of 

apoptosis was assessed with a Spearman’s rank correlation. 

5.4 Results 

5.4.1 SIRS developed in horses following the induction of oligofructose-induced colitis 

All horses developed severe diarrhea within 12 h of oligofructose administration.  In the six 

horses evaluated, heart rate and total white cell count were significantly increased from baseline 

values 18 h after the administration of oligofructose (heart rate: P = 0.03, total white cell count: 

P = 0.03, Figure 5.1).  There was a significant increase in the absolute number of neutrophils 

isolated per ml of blood after the induction of colitis compared to baseline in all 16 horses (P < 

0.0001, Figure 5.2).  None of the horses had measurable endotoxin (>0.25 EU/ml) before or 18 h 

after the induction of colitis.   

5.4.2 Ex vivo neutrophil apoptosis is delayed following the induction of colitis through reduced 

caspase activity 

Ex vivo neutrophil apoptosis was significantly reduced after 12 and 24 h in culture in neutrophils 

isolated after the induction of colitis compared to those isolated before the induction of colitis 

(12 h (n=10): P = 0.004, 24 h (n=16): P = 0.003, Figure 5.3).  Concomitantly, caspase-3, -8, and 

-9 activities were reduced after 12 h in culture in neutrophils isolated after the induction of colitis 

compared to those isolated before the induction of colitis (n =10, caspase-3: P = 0.004, caspase-

8: P = 0.02, caspase-9: P = 0.02, Figure 5.4).  
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5.4.3 LPS-delayed apoptosis is abrogated in neutrophils isolated following the induction of 

colitis 

After 24 h incubation, treatment with LPS in vitro significantly reduced the occurrence of 

apoptosis in neutrophils isolated from healthy horses prior to the induction of colitis (P <0.0001, 

Figure 5.5). However, in vitro LPS treatment failed to delay apoptosis in neutrophils isolated 

following the induction of colitis compared to untreated neutrophils (P = 0.83, Figure 5.5).  

Additionally, there was an increased occurrence of apoptosis in LPS-treated neutrophils isolated 

after the induction of colitis compared to LPS-treated neutrophils isolated before the induction of 

colitis (P = 0.013, Figure 5.5).   

5.4.4 Equine neutrophil apoptosis is delayed by increased concentration in vitro 

Increasing neutrophil concentration was significantly correlated with a reduced occurrence of 

apoptosis in vitro after 12 or 24 h in culture (12 h: r = -0.67, P < 0.0001, 24 h: r = -0.54, P = 

0.004, Figure 5.6). 
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Figure 5.1. Heart rate and total white blood cell count for 6 horses before and 18 h after the 

administration of oligofructose.  
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Figure 5.2 Total neutrophil count increased following the induction of colitis. Blood was 

collected for neutrophil isolation immediately before and 18 h after the administration of 

oligofructose.  Data were analyzed with a Wilcoxon matched-pairs signed rank test (n = 16).  
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Figure 5.3 Ex vivo neutrophil apoptosis was delayed following the induction of colitis.  . Blood 

was collected for neutrophil isolation immediately before and 18 h after the administration of 

oligofructose.  Data were analyzed with the Wilcoxon matched-pairs signed rank test (12 h: n = 

10, 24 h: n = 16). 
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Figure 5.4 Caspase-3, -8, and -9 activities were reduced in neutrophils isolated following the 

induction of colitis and 12 h incubation.  . Blood was collected for neutrophil isolation 

immediately before and 18 h after the administration of oligofructose.  Data were analyzed with 

the Wilcoxon matched-pairs signed rank test (n = 10). 
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Figure 5.5 LPS-delayed apoptosis was abolished in neutrophils isolated after the induction of 

colitis.  Data were analyzed with Kruskal-Wallis rank test with a Dunn’s multiple comparisons 

test (n = 16). 
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Figure 5.6 Neutrophil apoptosis is dependent upon concentration in vitro. Data were analyzed 

with a Spearman’s rank correlation. 
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5.5 Discussion  

In support of our hypothesis, ex vivo neutrophil apoptosis was significantly delayed following the 

induction of colitis by oligofructose overdose with a concomitant reduction in neutrophil caspase 

activity (Figure 5.6).  In the horses evaluated, SIRS developed, but plasma endotoxin was not 

detected.  We demonstrate that LPS treatment delays neutrophil apoptosis in vitro; but for the 

first time, we demonstrate that the effect of in vitro LPS treatment was abolished in neutrophils 

isolated after the induction of colitis.  In addition, we demonstrate that the occurrence of 

neutrophil apoptosis is dependent on concentration in vitro. 

Ex vivo neutrophil apoptosis was clearly delayed following the induction of colitis and 

SIRS, which is similar to what has been reported in the human literature (Fanning et al. 1999, 

Jimenez et al. 1997, Paunel-Görgülü et al. 2009, Shang et al. 2007). The cause of SIRS-related 

delayed neutrophil apoptosis may be multifactorial and is still under investigation.  However, 

sepsis and exposure to endotoxin is a well-established cause of delayed neutrophil apoptosis in 

species other than the horse (Brazil et al. 2014, Colotta et al. 1992, Milot et al. 2012, Paunel-

Görgülü et al. 2009, Sano et al. 2005).  Sepsis in humans results in a significant systemic 

inflammatory response, similar to what occurs in horses with oligofructose-induced colitis.  

Horses that are overdosed with oligofructose demonstrate signs of systemic inflammation in 

addition to severe colitis, which are generally attributed to endotoxemia and bacterial 

translocation through a compromised intestinal epithelial barrier (Senior et al. 2011).   

In this study, all horses, where parameters were evaluated, developed SIRS; however, 

measurable endotoxin was not detected in the same horses.  We cannot rule out that the horses in 

this study were not experiencing endotoxemia as the correct time point for measurable endotoxin 

load may have been missed due to endotoxin concentrations being measured at a single time 
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point.  In addition, endotoxin is rapidly cleared from the circulating blood volume, potentially 

making it difficult to detect when blood is collected from a peripheral site at a single time point 

(Fessler et al. 1989).  Also, the exact concentration of endotoxin required to activate circulating 

neutrophils in vivo and cause delayed ex vivo apoptosis is unknown. However, additional 

mechanisms other than endotoxemia could have contributed to the ex vivo delayed neutrophil 

apoptosis observed herein. 

Caspase-3, -8, and -9 activities were reduced in neutrophils isolated following the 

induction of colitis and cultured for 12 h.  Similarly, humans diagnosed with sepsis have reduced 

neutrophil capsase-3 and -9 activities that contribute to delayed ex vivo neutrophil apoptosis 

(Paunel-Görgülü et al. 2009, Taneja et al.2004).  The reduction in both caspase-8 (extrinsic 

initiator caspase) and caspase-9 (intrinsic initiator caspase) indicates that both the extrinsic and 

intrinsic pathways of neutrophil apoptosis are affected in neutrophils isolated from horses 

experiencing oligofructose-induced colitis.  We have found a similar reduction in caspase-3, -8, 

and -9 activities in neutrophils isolated from horses following the induction of intestinal ischemia 

and reperfusion (Chapter 4).  In contrast, our data show that in vitro LPS-delayed equine 

neutrophil apoptosis primarily affects the intrinsic pathway of apoptosis, ultimately resulting in 

reduced caspase-9 activity (Anderson et al. unpublished data).  Taken together, our results 

suggest that additional unknown factors other than endotoxin exposure are contributing to 

delayed equine neutrophil apoptosis in vivo. Additional investigation is necessary to further 

elucidate the mechanism of delayed neutrophil apoptosis in horses experiencing a systemic 

inflammatory response due to colitis. 

Interestingly, in vitro LPS treatment failed to delay apoptosis in neutrophils isolated 

following the induction of colitis.  One reasonable explanation, which requires further 
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investigation, is that neutrophils were exposed to LPS in vivo and then developed tolerance, 

which abrogated the effects of LPS in vitro. Tolerance by immune cells is thought to prevent an 

overzealous, detrimental immune response and leads to the development of a compensatory anti-

inflammatory response syndrome or CARS (Bone 1996, Cavaillon and Adib-Conquy 2006, 

Kopanakis et al. 2013, Medvedev et al. 2006).  Much less is known about LPS tolerance in 

neutrophil biology compared to other immune cells, such as macrophages and monocytes.  

Additionally, the concept of tolerance to endotoxin is well-accepted by equine researchers, 

however the mechanisms behind this phenomenon have not been thoroughly investigated (Allen 

et al. 1996). 

The induction of LPS tolerance in neutrophils is associated with reduced TLR4 surface 

expression and results in diminished neutrophil function, but maintenance of a pro-inflammatory 

phenotype (Parker et al. 2005).  Similar to our results, neutrophil function in response to LPS 

stimulation in vitro was dampened in neutrophils isolated from septic humans (McCall et al. 

1993).  In contrast, another study demonstrated that activated neutrophils isolated from the lungs 

of horses with recurrent airway obstruction express high levels of TLR4 and retain the ability to 

respond to LPS ex vivo (Aharonson-Raz et al. 2012). It is possible that there is a difference in 

neutrophil tolerance to LPS when neutrophils migrate into tissues compared to those in 

circulation. 

Endotoxin tolerance can also provide protection against non-endotoxin inflammatory 

disease processes, such as thermal or ischemia and reperfusion injury (Colleti et al. 1994, He et 

al. 1992).  In these scenarios, inflammatory cytokine concentrations, such as TNF-α, and 

physical manifestations of inflammation are reduced with pre-LPS exposure, but the underlying 

mechanisms are unknown at the cellular and molecular level (Colleti et al. 1994, He et al. 1992).  
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Intracellular signaling during inflammatory processes is complex, but also redundant allowing 

for cross-activation of many cell processes.  It is likely that multiple factors play a role in 

inflammation-delayed neutrophil apoptosis.  Taken together, neutrophil function is altered by 

pre-treatment with LPS.  To the authors’ knowledge, this is the first study in any species 

demonstrating a tolerogenic response to in vitro LPS-delayed neutrophil apoptosis.   

It is possible that the delayed ex vivo neutrophil apoptosis observed in the horses with 

colitis in this study was due to increased neutrophil concentration and density in vivo, as these 

factors have been shown to delay apoptosis in vitro (Hannah et al. 1998, Attalah et al. 2012).    

Indeed, all of the horses in this study had a significant increase in circulating neutrophil 

concentration following the induction of colitis. To the authors’ knowledge, this mechanism of 

delayed apoptosis has not been explored using an in vivo inflammation model.  An inflammation 

model introduces many confounding variables that make it less than ideal to study this 

mechanism of delayed neutrophil apoptosis in vivo; however, it more closely mimics a true 

clinical scenario.  In live animals, concentration-dependent delay in neutrophil apoptosis may be 

due to dysfunction of neutrophil adhesion genes as is observed in profound neutrophilia that 

occurs in bovine leukocyte adhesion deficiency disease (Nagahata et al. 2004).  

  In conclusion, ex vivo neutrophil apoptosis was delayed following the induction of 

colitis and SIRS in horses.  The role of delayed neutrophil apoptosis in the development of SIRS 

deserves further study in the horse as a potential therapeutic target, similar to what is already 

being performed in human medicine.  The modulation of neutrophil apoptosis could prove to 

reduce inflammation and promote the resolution of inflammation all at once, mitigating the 

effects of an overzealous and life-threatening inflammatory response. 
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Figure 5.7 Potential mechanism for delayed ex vivo equine neutrophil apoptosis following the 

induction of colitis. 
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5.6 Contineo to Chapter 6 

After determining that neutrophil apoptosis was delayed ex vivo following the induction 

of inflammation secondary to gastrointestinal insult, we were interested in exploring mechanisms 

to modulate neutrophil apoptosis.  To our knowledge, the effect of co-incubation of apoptotic 

neutrophils with freshly isolated neutrophils has never been evaluated for its contribution on 

acceleration of neutrophil apoptosis in vitro.  Therefore, a starting point was to determine if there 

were survival or non-survival signals that occur among neutrophil in the presence of apoptotic or 

aged neutrophils in vitro by assessing the occurrence of neutrophil apoptosis with co-incubation 

with 24 h-aged neutrophils.  A similar phenomenon has been demonstrated for concentration-

delayed neutrophil apoptosis where culture of freshly isolated neutrophils in supernatants from 

highly concentrated aged neutrophils prolonged lifespan due to a “community effect” (Atallah et 

al. 2012). 

In addition, we were interested in evaluating the effect of apoptotic neutrophils on 

neutrophil lifespan with concurrent LPS treatment or neutrophils isolated from horses 

experiencing systemic inflammation.  The administration of apoptotic neutrophils to mice 

experiencing endotoxic shock reduced inflammation and improved survival due to an as yet to be 

defined mechanism (Ren et al. 2008).  The effect of administering apoptotic neutrophils on ex 

vivo neutrophil survival was not specifically evaluated in that study, but it is possible that the 

administration of apoptotic neutrophils could cause increased apoptosis of circulating 

neutrophils, accounting for the measured anti-inflammatory effects.  
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CHAPTER 6: LPS- OR SYSTEMIC INFLAMMATION-

DELAYED EQUINE NEUTROPHIL APOPTOSIS IS NOT 

AFFECTED BY CO-INCUBATION WITH APOPTOTIC 

NEUTROPHILS   

6.1 Abstract  

Delayed neutrophil apoptosis may contribute to the development of a systemic inflammatory 

response syndrome (SIRS) in horses.  Modulation of neutrophil apoptosis may prove to be an 

effective treatment, but requires investigation.  We hypothesized that incubation of freshly 

isolated equine neutrophils with 24 h-aged autologous neutrophils would increase the occurrence 

of neutrophil apoptosis in vitro and rescue the delay in neutrophil apoptosis induced by LPS and 

inflammation.  Neutrophils were isolated and placed into culture for 24 h at a low concentration 

(5x105 cells/ml) to induce apoptosis.  Freshly isolated neutrophils from healthy horses were 

added to the 24 h-aged neutrophils with or without 1 μg/ml lipopolysaccharide (LPS).  In another 

experiment, freshly isolated neutrophils from horses with oligofructose-induced colitis were 

added to the 24 h-aged neutrophils.  The occurrence of apoptosis was assessed with Annexin V 

and propidium iodide staining and flow cytometric quantification after 24 h in culture.  

Neutrophil apoptosis was delayed in LPS-treated neutrophils and neutrophils isolated from 

horses after the induction of colitis (LPS: P = 0.0003, colitis: P = 0.03), but there was no effect 

of co-incubation with 24 h-aged neutrophils on the occurrence of apoptosis. Based on these 

results, apoptotic neutrophils do not appear to accelerate the occurrence of neutrophil apoptosis 

in vitro.    

6.2 Introduction 

Though not specifically studied in the horse, delayed neutrophil apoptosis contributes to 

collateral damage to tissues and delays macrophage-driven resolution of apoptosis, thereby 
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propagating an inflammatory response (Wright et al. 2010, Lucas et al. 2003).  We have 

demonstrated that neutrophil apoptosis is delayed ex vivo in two separate intestinal inflammation 

models (Anderson et al. unpublished data).  Horses subjected to these models developed clinical 

signs consistent with systemic inflammatory response syndrome (SIRS), including elevated heart 

rate, elevated neutrophil counts, and elevated body temperature. 

Typically, horses that develop SIRS are treated with non-specifically acting non-steroidal 

anti-inflammatory drugs (NSAIDs) that may reduce inflammation, but may also delay the 

resolution of inflammation.  Specifically, prostaglandin (PG) D2 and PGJ2, products of the 

arachidonic acid pathway that are inhibited by NSAID administration, have been shown to 

promote neutrophil apoptosis through inhibition of nuclear-factor kappa B (NF-κB, Ward et al. 

2004).  Therefore, administering NSAIDs during an inflammatory response may contribute to a 

prolonged neutrophil lifespan, delaying the resolution of inflammation.   

Designing therapeutics that modulate neutrophil apoptosis may serve as an effective 

method to control an inflammatory process (Savill et al. 2002).  Data from mice and human 

studies show that administration of apoptotic neutrophils into in vivo inflammation models 

modulates an inflammatory response (Ren et al. 2008, Morrison et al. 2013).  Specifically, Ren et 

al. (2008) demonstrated that administering apoptotic neutrophils up to 24 h after inducing 

endotoxic shock in mice reduced circulating pro-inflammatory cytokines, neutrophil infiltration 

in target organs, and serum LPS concentrations.  Thus far, similar in vitro or in vivo studies have 

not been performed in the horse. 

The determination of neutrophil lifespan is complex and is significantly affected by a 

neutrophil’s environment (Fox et al. 2010).  However, to the authors’ knowledge, it is unknown 

whether apoptotic neutrophils can influence the lifespan of non-apoptotic neutrophils in vitro.  
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We hypothesized that co-incubation of 24 h-aged equine neutrophils that have begun the process 

of apoptosis would increase the occurrence of apoptosis in freshly isolated equine neutrophils.  

Additionally, we hypothesized that 24 h-aged neutrophils would rescue LPS- and inflammation-

delayed neutrophil apoptosis.   

6.3 Materials and Methods 

6.3.1 Animals, model of systemic inflammation, and sample collection 

For in vitro experiments, blood was collected from healthy horses used for teaching purposes at 

the Western College of Veterinary Medicine (n=12).  Six healthy research horses were used for 

creating a model of systemic inflammation using an overdose of oligofructose (OGF) to induce 

colitis.  Briefly, horses were sedated with xylazine (0.5 mg/kg IV) and administered OGF (10 

g/kg bwt, OraftiP95®, Bene, Pemuco, Chile) dissolved in water via nasogastric tube intubation.   

Colitis developed over the next 12-15 hours.  Blood was sampled for ex vivo experiments 

immediately before and 18 h after challenge with oligofructose (OGF).  A physical examination 

was performed 1 h prior to and 18 h following OGF overdose.  Throughout the study period, 

horses were offered hay and water ad libitum. All procedures and experimental protocols were 

approved by the University of Saskatchewan Committee on Animal Care and Supply and the 

University of Saskatchewan Animal Research Ethics Board. 

6.3.2 Neutrophil isolation 

Neutrophils were isolated using a previously reported protocol with minor modification (Cook et 

al. 2009).  Blood was collected for neutrophil isolation aseptically from a jugular vein into 

vacuum tubes containing EDTA (Vacutainer™, BD, Mississauga, ON, Canada).  Isolation was 

performed at room temperature (20-22°C) immediately after blood collection.  The blood was 

allowed to separate into plasma and red cell fractions for 30-45 min at room temperature.  
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Plasma was layered onto 10 ml Ficoll-Paque™ Plus (GE Healthcare, Mississauga, ON, Canada) 

and centrifuged for 30 min at 400 x g.  The subsequent pellet, containing erythrocytes and 

granulocytes, was retained after aspirating the supernatant and washed with Hank’s Buffered Salt 

Solution (pH 7.4, HBSS) without phenol, magnesium, or calcium for 10 min at 200 x g.  

Erythrocytes were lysed with 2 ml sterile hypotonic distilled water for 25 s and restored to 

normotonicity with an equal volume hypertonic (2x) HBSS.  Cells were washed 3 times with 

HBSS at 200 x g for 10 min, suspended in culture medium (Roswell Park Memorial Institute 

(RPMI) 1640 medium containing 10% fetal bovine serum, 2 mM L-glutamine, 100 IU/ml 

penicillin, 50 μg/ml streptomycin, and 25 mM Hepes, Lonza BioWhittaker®, VWR, Edmonton, 

AB, Canada), assessed for viability using Trypan blue staining, and counted with a 

hemocytometer.  Cell purity was determined on cytology preparations made with a 

cytocentrifuge  (Shandon Cytospin 4, Thermo Scientific, Waltham, MA, USA) at 1000 rpm for 4 

min with medium acceleration and stained with a modified Giemsa stain (Hemacolor® EMD 

chemical, Gibbstown, NJ, USA).  

6.3.3 Neutrophil culture 

For all experiments, neutrophils were suspended in culture medium in plastic multi-well cell 

culture plates. To assess the effect of co-incubation of apoptotic neutrophils on the occurrence of 

freshly isolated neutrophils in vitro, neutrophils were first cultured at a concentration of 5 x 105 

cells/ml for 24 h to allow cells to become apoptotic (24-h autologous neutrophils).  Then freshly 

isolated neutrophils were cultured at a concentration of 2 x 106 cells/ml with no treatment, 

treatment with 1 μg/ml LPS (Escherichia coli 055:B5, Sigma-Aldrich Canada, Oakville, ON, 

Canada), co-incubation with 24 h-aged autologous neutrophils (1:8 ratio of aged:fresh 
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neutrophils), or co-incubation with 24 h-aged autologous neutrophils and 1 μg/ml LPS for 24 h at 

37°C in 5% CO2.  

For ex vivo experiments, neutrophils were isolated prior to OGF overdose and cultured at 

a concentration of 5  x105 cells/ml for 24 h to allow cells to become apoptotic (24-h autologous 

neutrophils) or a standard concentration 2x106 cells/ml to assess baseline occurrence of ex vivo 

apoptosis.  Neutrophils were isolated 18 h after OGF overdose, placed into culture at a 

concentration of 2 x 106 cells/ml, and left untreated or co-incubated with 24 h-aged autologous 

neutrophils for 24 h at 37°C in 5% CO2.  Prior to performing apoptosis assays, neutrophils were 

taken out of culture, pelleted, and washed twice with HBSS at 400 x g for 8 min.   

6.3.4 Determination of apoptosis 

Neutrophils were stained with CF™488-conjugated Annexin V (AV) and propidium iodide (PI) 

per manufacturer’s instructions (CF™488A-Annexin V and PI Apoptosis Assay Kit, Biotium, 

Hayward, CA, USA).  Staining controls included unstained untreated cells, untreated cells 

stained with AV only, and untreated stained with PI only. A flow cytometer (CyFlow®, Partec, 

Swedesboro, NJ, USA) was used to count negatively stained (live) cells, AV positively stained 

(apoptotic) cells, or AV and PI positively stained (dead) cells. Flow cytometry data were 

analyzed with commercial software (FlowMax Software © Version 2.6, Quantum Analysis 

GmbH, Münster, Germany).  The gated population was determined with unstained cells based on 

size (forward scatter) and granularity (side scatter).  Quadrants were determined using untreated 

cells stained with only AV or PI. Data were acquired on at least 10,000 gated events.   

6.3.5 Statistical analysis 

Data were analyzed with a commercial software package (Graphpad Prism, Graphpad Software, 

Inc. La Jolla, CA, USA). For all comparisons, a P-value of < 0.05 was considered significant. All 



120 
 

data were analyzed using non-parametric tests.  Differences among in vitro groups were assessed 

with a Kruskal-Wallis rank test with a Dunn’s multiple comparisons test. The Wilcoxon 

matched-pairs signed rank test was used to compare occurrence of neutrophil apoptosis before 

and after the induction of colitis.  The Mann-Whitney U test was used to compare untreated cells 

with cells co-incubated with 24-h autologous neutrophils in neutrophils isolated following the 

induction of colitis. 

6.4 Results 

6.4.1 Clinical data 

See Chapter 5 for clinical data results. 

6.4.2 Co-incubation of apoptotic equine neutrophils failed to rescue LPS- or systemic 

inflammation-delayed equine neutrophil apoptosis 

LPS treatment delayed in vitro apoptosis (P = 0.0003, Figure 6.1); however, co-incubation with 

24 h-aged neutrophils failed to rescue LPS-delayed neutrophil apoptosis (Figure 6.1).  When 

colitis and SIRS were induced, ex vivo neutrophil apoptosis was delayed compared to baseline (P 

= 0.03, Figure 6.2); but, co-incubation with 24 h-aged neutrophils had no effect on the 

occurrence of ex vivo neutrophil apoptosis before or after the induction of colitis and SIRS 

(Figure 6.2). There was no significant difference in concentration of cultured neutrophils among 

treatment types for the in vitro or ex vivo experiments (Figure 6.3). 
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Figure 6.1 Co-incubation of freshly isolated neutrophils with apoptotic neutrophils failed to 

abolish LPS-delayed apoptosis after 24 h in culture.  Data were analyzed with a Kruskal-Wallis 

rank test with a Dunn’s multiple comparisons test.  Bars represent median. Difference between 

letters indicates significant difference (P < 0.01). 
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Figure 6.2 Co-incubation of freshly isolated neutrophils with apoptotic neutrophils fails to 

abolish inflammation-delayed apoptosis after 24 h in culture.  Data in 6.2a were analyzed with a 

Wilcoxon matched-pairs signed rank test. Data in 6.2b were analyzed with a Mann-Whitney U 

test.  Bars represent median. 
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Figure 6.3 There was no difference in cell concentrations after 24 h incubation among treatments 

for in vitro experiments (a) or between treatments for ex vivo experiments (b) indicating that the 

24-h aged neutrophils could not have contributed to concentration-delayed apoptosis.  Data in 

figure 6.3a were analyzed with a Kruskal-Wallis rank test with a Dunn’s multiple comparisons 

test and data in figure 6.3b were analyzed with a Mann-Whitney U test.  Bars represent median. 
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6.5 Discussion 

In contrast to our hypothesis, co-incubation of neutrophils, both LPS-activated and inactivated, 

with 24 h-aged neutrophils failed to have an effect on the occurrence of apoptosis in vitro.  In 

addition, there was no difference in cell concentrations upon treatment with apoptotic 

neutrophils, indicating that an artificial increase in percentage of apoptotic cells was negligible.   

To the authors’ knowledge, this is the first report to evaluate the effect of co-incubation 

of aged neutrophils with freshly isolated neutrophils in order to determine the effect on the 

occurrence of neutrophil apoptosis in vitro.  We chose to evaluate the effect of co-incubation of 

apoptotic neutrophils with fresh neutrophils because there is potentialp intercellular signaling 

that could occur amongst a population of neutrophils to control lifespan.  Previous research has 

demonstrated that increased concentration or increased density of neutrophils significantly 

prolongs neutrophil lifespan (Attalah et al. 2012, Hannah et al. 1998).  We have confirmed this 

finding with equine neutrophils (Anderson et al. unpublished data).  For this reason, we chose to 

incubate our originally isolated neutrophils in this study at a low concentration and low density 

to rapidly promote apoptosis (data not shown).  Attalah et al. 2012 demonstrated that human 

neutrophil apoptosis was delayed by increasing concentration in vitro via proteins S100A8 and 

S100A9, which were released into the supernatant to initiate intercellular signaling and the 

promotion of neutrophil survival. Therefore, we thought it possible that an opposite effect could 

occur whereby neutrophil apoptosis could be induced by co-incubating freshly isolated 

neutrophils with 24 h-aged neutrophils in their original media.  However, that hypothesis was 

disproven by our results. 

The use of apoptotic neutrophils to treat LPS-induced inflammation has shown promising 

results in mice (Ren et al. 2008).  The mechanism underlying the effect of administering 
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apoptotic neutrophils in the face of LPS challenge is primarily due to modulation of monocyte 

cytokine secretion (Fadok et al. 1998, Ren et al. 2008).  However, another mechanism by which 

apoptotic neutrophils modulate an inflammatory response may involve the neutralization of LPS 

(Ren et al. 2008).  While apoptotic neutrophils have the capacity to bind LPS, they will lack the 

ability to de-granulate making this a potential method of neutralizing LPS in vivo.  Co-incubation 

with apoptotic neutrophils has also been shown to reduce the pro-inflammatory functions of 

neutrophils, as measured by reactive oxygen species (ROS) production, in the face of LPS 

treatment (Esman et al. 2010).  

From the results of this study, it is evident that apoptotic neutrophils do not induce 

apoptosis in normal neutrophils, LPS-activated freshly isolated neutrophils, or neutrophils 

isolated from horses experiencing systemic inflammation due to colitis suggesting that this 

mechanism is not important in modulating neutrophil lifespan.  However, additional work needs 

to be performed to evaluate the effect of apoptotic equine neutrophils on macrophage function 

and LPS neutralization in vitro and in vivo. 
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CHAPTER 7: SUPPLEMENTAL DATA 

7.1 Abstract 

A horse from the sham celiotomy group for the third chapter of this thesis experienced severe 

acute aspiration pneumonia following general anesthesia.  Lung sections obtained from the horse 

were stained for hematoxylin and eosin, revealing severe suppurative aspiration pneumonia 

characterized by a marked accumulation of neutrophils into the affected portion of the lung.  

Immunohistochemical staining was performed against the anti-apoptotic protein A1 and anti-

calprotectin (MAC387) and revealed a marked expression of these proteins in neutrophils 

infiltrating the affected portions of the lung.  This is the first report evaluating apoptotic protein 

expression in a severe neutrophilic inflammatory condition in the horse. 

Accepted, in part, by the Journal of American Veterinary Medicine as a Pathology “What is 

Your Diagnosis?”  

 

7.2 Case Details 

An 8-year-old Quarter Horse gelding weighing 527-kg (1,161-lb) was placed under general 

anesthesia to undergo a research procedure via a ventral median celiotomy with approval by the 

institution’s animal care and ethics committee.  The horse was determined to be healthy by 

physical examination and complete blood count prior to surgery.  The horse was fasted, but 

allowed access to water, over night before the induction of anesthesia and received no pre-

operative treatments.   Following general anesthesia where a ventral midline celiotomy was 

performed, the horse had a prolonged recovery from anesthesia (1 h and 40 min.) and required 

considerable encouragement to stand.  Gastric contents were observed exiting from the nostrils 

during the early part of recovery. 
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Following recovery from anesthesia, the horse was moved to a stall for observation. 

Within 6 hours following recovery, the horse became febrile (102.1ºF), tachycardic (60 

beats/minute), tachypneic (28 breaths per minute), the mucous membranes became injected, and 

he became markedly depressed.  At 12 h post-operatively, his lung sounds became harsh on 

auscultation of the cranioventral thorax; and by 18 h post-operatively, harsh lung sounds could 

be heard throughout the entire thorax. A complete blood count performed 18 h post-operatively 

revealed a leukocytosis, neutrophilia with left shift, lymphopenia, and monocytosis. 

The horse was euthanized for the purpose of research and a necropsy was performed.  On 

gross examination, the cranial lobe and craniodorsal and caudodorsal parts of the caudal lobes of 

the right and left lung were firm, failed to collapse, discolored yellow and covered by an 

adherent layer of friable material (fibrin).  There was marked congestion of the caudal dorsal 

surface of both lungs.   On cut sections, feed material could be grossly observed within the large 

bronchi and marked separation of the interlobular septa (pulmonary edema) was present.   

On histology, alveoli within affected areas were filled with large numbers of viable and 

degenerate neutrophils, fine fibrilar eosinophilic material (fibrin), protein rich edema fluid, and 

small amounts of hemorrhage (Figure 7.1A).  Occasionally, alveoli were filled with cellular and 

nuclear debris (necrosis).  Alveolar septa were moderately congested, and frequently necrotic.  

Interlobular septa were markedly expanded and filled with fibrin, edema and a similar 

inflammatory population to that seen in alveoli.  Similar changes were present on the pleural 

surface of affected sections.  Airways were largely clear of material and epithelium was intact.  

These changes are consistent with a severe acute multifocal to coalescing fibrinonecrotizing, 

suppurative pneumonia with marked pulmonary edema and fibrinous pleuritis.   
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Immunohistochemical staining was performed using primary antibodies against B-cell 

lymphoma (Bcl2)-related protein A1 (Santa Cruz, CA, USA), an anti-apoptotic proteins of the 

Bcl2 family, and anti-human macrophage antibody (MAC387, AbD Serotec®, Raleigh, NC, 

USA) that binds to calprotectin, a protein present in many inflammatory cells including 

macrophages and neutrophils.  Affected lung sections had marked staining for both proteins in 

neutrophils (Figure 7.1B and 7.1C). 
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Figure 7.1 Photomicrographs of representative sections stained with hematoxylin and eosin (A) 

or with immunohistochemistry against the anti-apoptotic protein A1 (B) or anti-macrophage 

antibody MAC387 (C).    
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7.3 Discussion 

Regurgitation leading to aspiration of stomach contents during anesthesia is exceedingly 

rare in horses due to the unique muscular distribution within their esophagus and strong cardiac 

sphincter, which prevents regurgitation of stomach contents, unlike carnivores (Carpenter and 

Hall 1981, Cunningham 2002, Davies et al. 2015, Taylor and Clarke 2007).  However, it is 

common practice to induce a horse with an indwelling nasogastric tube for colic surgery to 

reduce the risk of aspiration from spontaneous gastric reflux that may occur from an overly 

distended stomach (Cunningham 2002, Taylor and Clarke 2007). 

In humans and dogs, reflux of gastric contents during anesthetic events is not uncommon 

and aspiration of gastric acid may cause acute lung injury (Galato and Raptopoulos 1995, Many 

et al. 1986, Suratt and Parsons 2006, Warner et al. 1993).  Acute lung injury (ALI) is defined 

clinically in veterinary patients by acute onset tachypnea and labored breathing, hypoxemia, 

evidence of pulmonary capillary leakage without increased pulmonary capillary pressure, and a 

known risk factor, such as SIRS, with or without evidence of diffuse pulmonary inflammation 

(Wilkins et al. 2007).  Some of the criteria listed above were either not assessed or not present in 

this case; so based on clinical signs, it is difficult to state that the horse was experiencing ALI.  

However, to the authors’ knowledge, ALI has never been reported in an adult horse in a clinical 

case.  Additionally, based on the authors’ research, it is possible that adult horses are highly 

resistant to developing clinically apparent ALI, as compared to other species and foals (Dunkel 

et al. 2007).  

Regardless, it is clear that this horse suffered from severe aspiration pneumonia, which 

resulted in a marked neutrophilic inflammatory response in the lung and a systemic 

inflammatory response syndrome (SIRS).  It has been shown that neutrophil apoptosis is delayed 
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upon activation with many substances (Fox et al. 2010).  The increased expression of the anti-

apoptotic protein A1 would suggest that the neutrophils infiltrating the lung in this case would be 

resistant to apoptosis.  Similarly, in mice, installation of LPS into the lung resulted in increased 

expression of A1in lung neutrophils (Kupfner et al. 201). In the horse presented here, A1 

expression was likely increased in neutrophils that had infiltrated into the lung due to neutrophil 

activation by the aspirated foreign material and gastric acid. The expression of anti-apoptotic 

proteins and other markers of apoptosis should be further evaluated in neutrophils taken from 

equine inflammatory models to further assess the contribution of delayed neutrophil apoptosis to 

inflammatory processes. 

 

  



132 
 

CHAPTER 8: DISCUSSION AND CONCLUSIONS 

8.1 General Discussion 

The goal of the research presented in this thesis was to investigate equine neutrophil lifespan in 

the face of inflammatory conditions. The majority of experiments were designed based on 

previously established protocols using human neutrophils, with additional experiments designed 

to investigate specific pathways of interest and the effect of inflammatory processes unique to 

the horse.  We report for the first time that equine neutrophils experience delayed apoptosis in 

the face of various inflammatory scenarios in vitro and in vivo.  

 Neutrophils have short lifespans that may be prolonged upon activation to allow them to 

neutralize threats to the body (Fox et al. 2010).  However, by prolonging their lifespan 

neutrophils potentiate an inflammatory process through release of their cytotoxic contents and 

production of reactive oxygen species (Jimenez et al. 1997).  At the same time, macrophage-

dependent resolution of inflammation is delayed when apoptotic neutrophils are unavailable for 

efferocytosis (Fadok et al. 1998, Huynh et al. 2002, Lucas et al. 2013).  The mechanisms by 

which neutrophil lifespan is prolonged during inflammatory processes is still under investigation, 

and is relatively unknown in the horse. 

 One of the most commonly used substances to activate neutrophils in vitro is the bacterial 

endotoxin, LPS.  In turn, LPS activation prolongs neutrophil lifespan in vitro by upregulating 

anti-apoptotic proteins of the Bcl2 protein family (Colotta et al. 1992, Jia et al. 2008, Milot et al. 

2012, Sweeny et al. 1998, Sano et al. 2005, Yamamoto et al. 1993).  However, an opposite effect 

of in vitro LPS treatment was recently demonstrated using equine neutrophils where neutrophils 

had increased occurrence of apoptosis with LPS treatment (Brazil et al. 2014). To assess the 

effect of LPS activation on equine neutrophil lifespan in vitro, experiments were designed to 
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measure the occurrence of neutrophil apoptosis in vitro using Annexin V and propidium iodide 

staining quantified with flow cytometry.  Additionally, the mechanisms of apoptosis involved 

with LPS-treated neutrophils were explored.   

 As expected, LPS treatment delayed the occurrence of equine neutrophil apoptosis in a 

concentration-dependent manner.  Though we were unable to demonstrate the involvement of 

specific Bcl2 proteins due to difficulties finding equine-compatible antibodies, we added novel 

insight into mechanisms that contribute to LPS-delayed neutrophil apoptosis by confirming 

TLR4 involvement and measuring reduced caspase-9 activities in equine neutrophils treated with 

LPS in vitro (Figure 3.8).   

 Neutrophil apoptosis is delayed in human patients suffering from sepsis, which may be 

attributed to endotoxemia (Jimenez et al. 1997).  However, sepsis is also invariably associated 

with the development of SIRS, in which neutrophil apoptosis is delayed (Fanning et al. 1999, 

Jimenez et al. 1997, Shang et al. 2007).  We used two equine models of intestinal inflammation 

that are associated with the development of endotoxemia and SIRS to evaluate neutrophil 

lifespan in vivo.  Because apoptotic neutrophils are rapidly removed from the circulation, it is 

necessary to isolate neutrophils activated in vivo and culture them to assess the length of their 

lifespan.  We failed to measure endotoxin in plasma from horses undergoing jejunal ischemia 

and reperfusion or oligofructose-induced colitis.  However, it is possible that our method of 

detection plasma endotoxin was ineffective and circulating endotoxin was present.  Regardless, 

horses with intestinal inflammation developed SIRS and ex vivo neutrophil apoptosis was 

delayed through reduced intrinsic and extrinsic caspase activity following the induction of 

intestinal inflammation.  
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 The mechanism underlying delayed neutrophil apoptosis in these horses may be 

independent of endotoxemia, and may instead involve a cell concentration effect because data 

show that increased concentration of neutrophils delays apoptosis in vitro.  We also demonstrate 

for the first time that the depletion of pulmonary intravascular macrophages, through 

administration of parenteral gadolinium chloride, rescues delayed ex vivo neutrophil apoptosis 

associated with intestinal ischemia and reperfusion injury. PIMs are a unique type of macrophage 

that, similar to Kupffer cells in the liver, are attached intimately to the endothelium of the 

alveolar capillaries and are exposed to the entire blood volume as it passes through the lung for 

oxygenation.  Their proposed function is to sample the blood searching for pathogen- or danger-

associated molecular patterns in order to mount an inflammatory response (Atwal and McDonell 

2005).  In addition, because of their attachment to the endothelium, it is possible that PIMs are 

involved in vascular inflammatory responses (Aharonson-Raz and Singh 2010). Their role in 

lung disease has been investigated in multiple species; however, their involvement in systemic 

inflammatory responses has not been studied. 

The inflammatory (TNF-α and IL-1β) and anti-inflammatory (IL-10 and TGF-β) cytokine 

profile in PIM-depleted horses experiencing intestinal IR was significantly different than horses 

only experiencing IR, where PIM-depleted horses had a greater inflammatory response.  These 

results could, in part, explain the difference measured in ex vivo neutrophil lifespan.  

Specifically, TNF-α is important in regulating neutrophil apoptosis (Fox et al. 2010, Murray et 

al. 1997, Salamone et al. 2001).  Early or high concentration TNF-α exposure stimulates 

neutrophil apoptosis (Fox et al. 2010, Murray et al. 1997, Salamone et al. 2001).  Indeed, Brazil 

et al. demonstrated enhanced apoptosis with early treatment (8 h) with equine recombinant TNF-

α, but no effect after 20 h treatment (Brazil et al. 2014).  However, late survival (after 12 h) is 
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promoted simultaneously through activation of the NF-κB pathway and subsequent up-regulation 

of the anti-apoptotic members of the Bcl-2 family, particularly A1 (Cross et al. 2008). Plasma 

TNF-α concentrations increased earlier in PIM-depleted horses, which would potentially induce 

apoptosis earlier in circulating neutrophils as evidenced in our experiment. Further experiments 

are necessary to evaluate the effect of TNF-α on equine neutrophil apoptosis.  

Delayed neutrophil apoptosis is a self-propagating phenomenon.  Based on the results 

from the in vivo models presented in this thesis, a potential scenario involves the exposure of 

neutrophils to a signal that delays their apoptosis (e.g. LPS), which, in conjunction with 

increased entry of new neutrophils into circulation, increases their concentration in the system, 

further prolonging their life through a currently undetermined mechanism.  The prolongation of 

neutrophil lifespan then propagates an inflammatory response and contributes to the 

development of SIRS. 

8.2 Future Directions 

We still have insufficient understanding of neutrophil lifespan during inflammatory conditions in 

the horse (and other species) to achieve the ultimate goal of designing targeted therapeutics to 

modulate neutrophil apoptosis as a multimodal approach to treating inflammatory conditions.  

Many new questions were generated by the results presented in this thesis, which may be 

answered through further experiments. 

A critical subsequent experiment must be performed to answer one of the main questions 

generated from the results of the in vivo models reported herein:  Does endotoxemia cause 

delayed ex vivo neutrophil apoptosis?  This experiment would evaluate the occurrence of equine 

neutrophil apoptosis before and after the administration of intravenous LPS.  This model will 

remove confounding etiologies, such as local organ injury, from the development of a systemic 
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inflammatory response.  At the same time, neutrophil tolerance may be assessed by performing a 

second in vivo LPS challenge or treating neutrophils isolated following LPS challenge with LPS 

in vitro.  Similarly, the effect of concomitantly depleting PIMs using gadolinium chloride could 

potentially provide additional information on their role in determining neutrophil lifespan during 

systemic inflammation due to endotoxemia.  Outcomes of these experiments need to focus on 

proteins involved in intracellular signaling of inflammation and apoptotic pathways, ideally 

using multiplex technology to assess multiple genes of interest over multiple time points. 

8.3 Limitations of the Studies 

Though we chose models that mimic clinical scenarios of endotoxemia, we failed to measure 

endotoxin in any horses at any time points.  As previously discussed, it is possible that we 

missed the appropriate time point for measurement, so ideally endotoxin concentrations should 

have been measured over time.  Also, it is possible that endotoxin is removed so rapidly from the 

blood that it is difficult to measure.  Therefore, we would recommend using a non-terminal LPS 

infusion SIRS model to further evaluate the effects of LPS on in vivo neutrophil lifespan.   

 Additionally, more horses are required to lend sufficient power to the data presented in 

the intestinal ischemia and reperfusion model chapter.  It is always a struggle to justify the 

sacrifice of animals to provide adequate power to a study; however, based on the interesting 

results with gadolinium chloride treatment, the sacrifice of additional animals is warranted to 

fully evaluate the effects of this treatment. 

8.4 Concluding remarks 

The study of delayed neutrophil apoptosis is a highly complex process that cannot be completed 

by simply exposing neutrophils to various cytokines, bacterial products, or conditions.  In vivo 

neutrophil lifespan is most likely also affected by other immune cell signaling, particularly from 
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macrophages and monocytes.  There is a distinct void in the literature on innate and adaptive 

immune cell signaling and its effect on neutrophil lifespan; therefore, this area requires 

additional study in all species. 

Because delayed neutrophil apoptosis is an important process for the body to maintain a 

large effector cell population to deal with threats to the body, redundant mechanisms likely exist.  

Within this thesis, we focused on very specific causes for delayed neutrophil apoptosis. 

However, the major conclusion one should garner from this body of work is that neutrophil 

apoptosis was delayed in inflammatory conditions originating from the gastrointestinal tract, and 

the delay in neutrophil apoptosis may be an important contributor to SIRS.  

The contribution of delayed neutrophil apoptosis on the propagation and resolution of 

inflammation is still under investigation.  Intuitively, promoting neutrophil apoptosis would 

seem to reduce inflammation, but at what cost to the effectiveness of the innate immune 

response? The ability to induce neutrophil apoptosis, whether locally or systemically, may prove 

to be an important therapeutic target in treating inflammatory diseases; however, the timing of 

promoting neutrophil apoptosis will be critical in developing effective treatment regimens. 

This body of work contributes significantly to the literature on the equine innate immune 

system.  Despite the horses’ propensity to experience life-threatening inflammation, there is a 

distinct void in research into the equine innate immune system.  Rather, researchers focus on 

treatment regimens that have been extrapolated from human medicine, where similar basic 

knowledge on the innate immune response may be lacking.  Before effective treatments can be 

developed, understanding of the equine innate immune response must be more complete.  

Additionally, we propose that the horse could serve as a valuable model for studying 

inflammatory diseases in humans, specifically sepsis and endotoxemia. 
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8.5 Conclusions 

 LPS treatment delays equine neutrophil apoptosis in vitro through reduced caspase-9 

activity and TLR4 signaling. 

 Ex vivo equine neutrophil apoptosis is delayed following the induction of intestinal 

inflammation and SIRS through reduced caspase activity. 

 Pulmonary intravascular macrophages are involved in modulating systemic inflammatory 

cytokine concentrations that may affect neutrophil apoptosis. 

 Equine neutrophil apoptosis is delayed by increased cell concentration in vitro. 

 Equine neutrophils become refractory to the in vitro effect of LPS on their lifespan 

following the induction of SIRS in vivo. 
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8.1 Pathophysiology of delayed equine neutrophil apoptosis originating from intestinal 

inflammation. 
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