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Abstract 

 

Orthogonal Frequency Division Multiplexing (OFDM) plays an important role in the 

implementation of high data rate communication. In this thesis, the problems of data detection 

and channel and carrier frequency offset estimation in OFDM systems are studied. 

 Multi-symbol non-coherent data detection is studied which performs data detection by 

processing multiple symbols without the knowledge of the channel impulse response (CIR).   

For coherent data detection, the CIR needs to be estimated. Our objective in this thesis is 

to work on blind channel estimators which can extract the CIR using just one block of received 

OFDM data. A blind channel estimator for (Single Input Multi Output) SIMO OFDM systems is 

derived. The conditions under which the estimator is identifiable is studied and solutions to 

resolve the phase ambiguity of the proposed estimator are given. 

A channel estimator for superimposed OFDM systems is proposed and its CRB is 

derived. The idea of simultaneous transmission of pilot and data symbols on each subcarrier, the 

so called superimposed technique, introduces the efficient use of bandwidth in OFDM context. 

Pilot symbols can be added to data symbols to enable CIR estimation without sacrificing the data 

rate.  

Despite the many advantages of OFDM, it suffers from sensitivity to carrier frequency 

offset (CFO). CFO destroys the orthogonality between the subcarriers. Thus, it is necessary for 

the receiver to estimate and compensate for the frequency offset. Several high accuracy 

estimators are derived. These include CFO estimators, as well as a joint iterative channel/CFO 
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estimator/data detector for superimposed OFDM. The objective is to achieve CFO estimation 

with using just one OFDM block of received data and without the knowledge of CIR. 
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Chapter One: Introduction  

 

1.1  Background and motivation  

The need for wireless connections with different systems and devices has been growing 

spectacularly in the past several years. In particular, there is a need to access high speed wireless 

internet to exchange media such as photos, music and video. Inter-symbol Interference (ISI) is a 

common problem in high speed wireless data transmission. Among the various transmission 

techniques to overcome ISI and meet high data rate demand, Orthogonal Frequency Division 

Multiplexing (OFDM) is a promising candidate. 

Although the basic concept of OFDM was proposed almost fifty years ago, it was not 

widely utilized because its implementation required a large number of analog devices. The idea 

of using the Discrete Fourier Transform (DFT) for the implementation of the modulation and 

demodulation of OFDM signals has made OFDM technologically practical and commercially 

affordable. Currently, OFDM has been widely adopted and implemented in wired and wireless 

communication systems. It has been exploited for various wideband data communications, such 

as mobile radio FM channels, high bit rate digital subcarrier lines (HDSL, 1.6 Mbps) [47], 

asymmetric digital subcarrier lines (ADSL, up to 6 Mbps) [48], very high speed digital subcarrier 

lines (VHDSL, 100 MHz) and digital audio broadcasting (DAB) [49]. It is used in high data rate 

wireless local area network (WLAN) standards, such as HIPERLAN and IEEE 802.11a, 

providing data rates of up to 54Mbits/s and is being considered for the fourth generation (4G) 

mobile wireless systems and beyond [51].  

OFDM is a multicarrier transmission technique which divides the available spectrum into 

many subcarriers. Each one is modulated by a low data rate stream. OFDM is similar to 
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Frequency Division Multiplexing Access (FDMA) in that multiple access is achieved by 

subdividing the available bandwidth into multiple channels, which are then allocated to users. 

However, OFDM uses the spectrum much more efficiently by spacing the channels much closer 

together. This is achieved by making all subcarriers orthogonal to one another, preventing 

interference between the closely spaced carriers.  

In the concept of OFDM, there are some issues at the receiver to be considered. Data 

detection is one of those issues and it is the first problem to be studied in this thesis. Data 

detection algorithms can be categorized in two groups: Coherent and Non-coherent. A Non-

coherent algorithm detects transmitted data without requiring the knowledge of the channel. In 

chapter two, we study a non-coherent multi symbol data detection algorithm for OFDM systems. 

When the data detection is coherent, the knowledge of channel impulse response (CIR) is 

needed, so the channel estimation is the second issue to be investigated. Channel estimators 

which don’t use pilots (blind channel estimators) are of great interest. Our objective in this thesis 

is to develop blind channel estimators which use a very short amount of OFDM blocks of 

received data to extract the CIR. In chapter three, we study the problem of blind channel 

estimation for SIMO OFDM systems. Then, we develop a channel estimator for superimposed 

OFDM systems in chapter four. Both of our estimators use just one OFDM block of data so that 

they don’t introduce large delay to the process of estimation. The third problem we worked on is 

the carrier frequency offset (CFO) estimation; which is necessary to compensate the non 

orthogonality between subcarriers and it is the subject of chapter five. Our objective for CFO 

estimation is to develop estimators which don’t require the knowledge of CIR and those which 

require a very limited amount of OFDM blocks of received data to perform the estimation.  
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In the coherent data detection algorithms, the known (estimated) CIR is used for data 

detection. Thus, channel estimation is necessary ahead of data detection. The use of pilot tones 

for channel estimation constitutes a significant overhead or bandwidth loss, motivating the 

development of blind techniques for OFDM. Several blind channel estimators have been 

proposed by using statistical or deterministic properties of the transmitted and received signals. 

However, most of these blind estimators typically use averaging techniques over a large number 

of OFDM blocks (up to several thousands in some cases). These estimators thereby introduce a 

considerable latency into the overall system and have high complexity. Besides, because of the 

time varying nature of wireless channels, these averaging techniques are not feasible. We will 

develop a blind channel estimator for SIMO OFDM systems requiring only one OFDM block in 

chapter three. Thus, this estimator suits for communication over time varying channels.  

The next channel estimator presented in chapter four is for superimposed OFDM 

systems. The idea of superimposed pilot and data was first proposed for analog communication 

and was later extended to digital signal carrier systems. The implementation of superimposed 

techniques in OFDM systems has attracted attention since they allow the simultaneous 

communication of data and pilots on the same subcarriers. Therefore they use the bandwidth 

more efficiently. Our estimator can estimate CIR using just one block of OFDM received data, 

thus it doesn’t introduce large latency.  

Although OFDM has many advantages over single carrier transmission, the desirable 

features of OFDM also come with some disadvantages. Being a multi carrier system, one major 

disadvantage of OFDM is its sensitivity to carrier frequency offset (CFO). Frequency offsets 

cause the loss of orthogonality among the subcarriers and result in intercarrier interference 

between subcarriers [52]. Hence the receiver needs to estimate and compensate the CFO before 
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taking the DFT on received samples. In Chapter 5, we will develop several CFO estimators for 

OFDM and superimposed OFDM systems. 

Next, we will describe wireless channel models and OFDM principles.  

 

1.2 Wireless Channel Model 

The design of spectrally efficient wireless communication systems requires a good understanding 

of the physical properties of the wireless propagation environment. The following is a brief 

review of major concepts of wireless communication channels. 

1.2.1 Multipath fading 

When a signal is transmitted over a wireless channel, in most applications, there is no line of 

sight (LOS) path between the transmitter and receiver. Consequently, the receiver signal consists 

of multiple copies of the transmitted signal reflection, refraction and diffraction. At some times, 

the randomly distributed amplitudes, phases and arrival angles of these multipath copies may add 

destructively and result in weak received signal. At other times, they may add constructively, 

which result in a strong received signal. Physical factors in the propagation channel influence 

multipath fading. First, the time spread of the channel causes the transmitted signal to undergo 

either flat or frequency selective fading; second, the Doppler spread determines whether the 

signal undergoes a slow or fast fading.  

1.2.2 Delay spread 

The channel impulse response (CIR) can be written as  

 ( ) ( )∑
−

=
−=

1

0
)()(

L

l
ll ttthth τδ      (1.1)     
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where )(thl  is the complex gain of the lth path and )(tlτ  is the time delay for the lth path. The 

total number of paths is L. Usually; we assume that )(thl  and )(tlτ  are constant over one 

OFDM block. So, we can omit the variable t  in the following. Then, the frequency response of 

the channel is given by  

 ( ) ∑
−

=

−=
1

0

2
L

l

fj
l

lehfH τπ .      (1.2)   

The weighted average delay is given by 

 

∑

∑
−
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−
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0
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0
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L

l
l

L

l
ll

h

h τ
τ .       (1.3)      

The rms delay spread is defined as  

222 τττ −=
−

rms .        (1.4)  

where 

∑

∑
−

=

−

=
−

= 1

0

2

1

0

22

2
L

l
l

L

l
ll

h

h τ
τ .   (1.5) 

Analogous to the delay spread parameter in the time domain, the coherence bandwidth is 

used to characterize the channel in the frequency domain. Coherence bandwidth is a statistical 

measure of the range of frequencies over which the channel can be considered flat and there are 

different definitions for it. When the coherence bandwidth is defined as the bandwidth over 

which the frequency correlation is above 90%, the coherence bandwidth is approximately [1] 
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rms

cB
τ50
1

≈ .     (1.6) 

When the transmitted signal has its spectrum bandwidth greater than the coherence bandwidth of 

the channel, frequency components of the signal separated by more than cB  are subject to 

different amplitude gains and phase rotations. In such a case, the channel is called frequency 

selective. In other words, frequency selective fading is caused by multipath delays which 

approach or exceed symbol period of the transmitted symbol. In OFDM systems, since a high-

speed data sequence is split into a number of parallel subcarriers, the symbol period on each 

subcarrier is usually much larger than the delay spread of the channel, so the fading on each 

subcarrier is always flat fading. On the other hand, the total bandwidth of all subcarriers is larger 

than the channel coherence bandwidth, which means different subcarrier suffer from different 

fading factors, when their difference is larger than cB . 

1.2.3 Doppler spread  

Doppler spread gives us information about the time varying nature of the channel, which is 

measured by coherence time. The Motion of the receiver, transmitter or reflectors results in a 

Doppler shift of the frequency. If cT  is defined as the time over which the time correlation 

function of channel is above 0.5  

  
d

c f
T

π16
9

=        (1.7) 

where 
c

vff c
d = , cf  is carrier frequency, v is the velocity of the transmitter relative to the 

receiver, c is speed of light ( s
m8103× ). The definition of coherent time implies that two 

received signals have a strong potential for amplitude correlation if they arrive within a time 
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duration less than Tc. If Ts denotes sampling period, then a signal will undergo fast fading if Ts> 

Tc, and a signal will undergo slow fading if Ts<< Tc.  

1.2.4 Channel Model realization  

A very effective and widely applied method to simulate a fading channel is based on the sum of 

sinusoids, which is known as the Jakes’ Model [2]. It is a widely used method for simulating 

time-correlated Rayleigh fading waveforms. The model assumes that scattered signals are 

distributed uniformly around the mobile.  

 

1.3  OFDM principles  

The principles of orthogonal frequency division multiplexing (OFDM) modulation have been in 

existence for several decades. However, in recent years these techniques have quickly moved out 

of textbooks and research laboratories and into practice in modern communications systems. The 

techniques are employed in data delivery systems over the phone line, digital radio and 

television, and wireless networking systems. In what follows, we will review the principal of 

OFDM.  

A single carrier system modulates information onto one carrier using frequency, phase, or 

amplitude adjustment of the carrier. For digital signals, the information is in the form of bits, or 

collections of bits called symbols, that are modulated onto the carrier. As higher bandwidths 

(data rates) are used, the duration of one bit or symbol of information becomes smaller. The 

system becomes more susceptible to loss of information from impulse noise, signal reflections 

and other impairments. These impairments can impede the ability to recover the information 

sent. In addition, as the bandwidth used by a single carrier system increases, the susceptibility to 

interference from other continuous signal sources becomes greater.  
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Frequency division multiplexing (FDM) extends the concept of single carrier modulation 

by using multiple subcarriers within the same single channel. The total data rate to be sent in the 

channel is divided between the various subcarriers. The data do not have to be divided evenly 

nor do they have to originate from the same information source. Advantages include using 

separate modulation/demodulation customized to a particular type of data, or sending out banks 

of dissimilar data that can be best sent using multiple, and possibly different, modulation 

schemes. FDM offers an advantage over single-carrier modulation in terms of narrowband 

frequency interference since this interference will only affect one of the frequency sub-bands. 

The other subcarriers will not be affected by the interference. Since each subcarrier has a lower 

information rate, the data symbol periods in a digital system will be longer, adding some 

additional immunity to impulse noise and reflections. FDM systems usually require a guard band 

between modulated subcarriers to prevent the spectrum of one subcarrier from interfering with 

another. These guard bands lower the system effective information rate when compared to a 

single carrier system with similar modulation. If the FDM system above had been able to use a 

set of subcarriers that were orthogonal to each other, a higher level of spectral efficiency could 

have been achieved. The guard bands that were necessary to allow individual demodulation of 

subcarriers in an FDM system would no longer be necessary. The use of orthogonal subcarriers 

would allow the subcarriers spectra to overlap, thus increasing the spectral efficiency. As long as 

orthogonality is maintained, it is still possible to recover the individual subcarriers signals 

despite their overlapping spectrums.  

Recall from signals and systems theory that the sinusoids of the DFT form an orthogonal 

basis set, and a signal in the vector space of the DFT can be represented as a linear combination 

of the orthogonal sinusoids. One view of the DFT is that the transform essentially correlates its 
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input signal with each of the sinusoidal basis functions. If the input signal has some energy at a 

certain frequency, there will be a peak in the correlation of the input signal and the basis sinusoid 

that is at that corresponding frequency. This transform is used at the OFDM transmitter to map 

an input signal onto a set of orthogonal subcarriers, i.e., the orthogonal basis functions of the 

DFT. The orthogonal and uncorrelated nature of the subcarriers is exploited in OFDM with 

powerful results. Since the basis functions of the DFT are uncorrelated, the correlation 

performed in the DFT for a given subcarrier only sees energy for that corresponding subcarrier. 

The energy from other subcarriers does not contribute because it is uncorrelated. This separation 

of signal energy is the reason that the OFDM subcarriers spectrums can overlap without causing 

interference. Figure 1-1 shows the resultant frequency spectrum. In the frequency domain, the 

resulting sine function side lobes produce overlapping spectra. The individual peaks of sub-

bands all line up with the zero crossings of the other sub-bands. This overlap of spectral energy 

does not interfere with the system’s ability to recover the original signal. 

 

Figure 1-1: Overall spectrum of OFDM signal shown with five subcarriers 
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The idea behind the analog implementation of OFDM can be extended to the digital 

domain by using the Discrete Fourier Transform (DFT) and its counterpart, the Inverse Discrete 

Fourier Transform (IDFT). The IDFT is used to take in frequency-domain data and convert it to 

time-domain data. In order to perform that operation, the IDFT correlates the frequency-domain 

input data with its orthogonal basis functions, which are sinusoids at certain frequencies. This 

correlation is equivalent to mapping the input data onto the sinusoidal basis functions. In 

practice, OFDM systems are implemented using a combination of Fast Fourier Transform (FFT) 

and Inverse Fast Fourier Transform (IFFT) blocks that are mathematically equivalent versions of 

the DFT and IDFT, respectively, but more efficient to implement.  

An OFDM system treats the source symbols (e.g., the QPSK or QAM symbols that 

would be present in a single carrier system) at the transmitter as though they are in the 

frequency-domain. These symbols are used as the inputs to an IFFT block that brings the signal 

into the time domain. The IFFT takes in N symbols at a time where N is the number of 

subcarriers in the system. Each of these N input symbols has a symbol period of Ts seconds. 

Recall that the basis functions for an IFFT are N orthogonal sinusoids. These sinusoids each have 

a different frequency and the lowest frequency is DC. Each input symbol acts like a complex 

weight for the corresponding sinusoidal basis function. Since the input symbols are complex, the 

value of the symbol determines both the amplitude and phase of the sinusoid for that subcarrier. 

The IFFT output is the summation of all N sinusoids. Thus, the IFFT block provides a simple 

way to modulate data onto N orthogonal subcarriers. The block of N output samples from the 

IFFT make up a single OFDM block. The length of the OFDM block is NTs where Ts is the IFFT 

input symbol period mentioned above. 
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After some additional processing, the time-domain signal that results from the IFFT is 

transmitted across the channel. At the receiver, an FFT block is used to process the received 

signal and bring it into the frequency domain. Ideally, the FFT output will be equal to the 

original symbols that were sent to the IFFT at the transmitter. When plotted in the complex 

plane, the FFT output samples will form a constellation, such as 16-QAM.  

 A major problem in most wireless systems is the presence of a multipath channel. In a 

multipath environment, the transmitted signal reflects off of several objects. As a result, multiple 

delayed versions of the transmitted signal arrive at the receiver. The multiple versions of the 

signal cause the received signal to be distorted. Inter-symbol Interference (ISI) is the problem 

caused by multipath characteristics of wireless channel. It is the result of interference amongst 

consequent OFDM subcarrier. The solution is to insert the guard interval at the beginning of each 

OFDM block. 

Recall that in continuous time, a convolution in time is equivalent to a multiplication in 

the frequency domain. This property is true in discrete time only if the signals are of infinite 

length or if at least one of the signals is periodic over the range of the convolution. It is not 

practical to have an infinite length OFDM block; however, it is possible to make the OFDM 

block appears periodic. This periodic form is achieved by replacing the guard interval with 

something known as a cyclic prefix of length Ng samples. The cyclic prefix is a replica of the last 

Ng samples of the OFDM block. Since it contains redundant information, the cyclic prefix is 

discarded at the receiver. This step removes the effects of inter-symbol interference. Because of 

the way in which the cyclic prefix was formed, the cyclically-extended OFDM block now 

appears periodic when convolved with the channel. An important result is that the effect of the 

channel becomes multiplicative.  
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Denoting the block of symbols of length N by TNXXX ]]1[...,],1[],0[[ −=X , and CIR 

length with L, we create an N+L-1 input block of (data symbol plus guard interval)  

TNXXXNXLNXLNX ]]1[...,],1[],0[],1[...,],2[],1[[ −−+−+−=d   (1.8)  

i.e., we add a prefix of length L-1 consisting of data symbols rotated cyclically. With this input to 

the channel and considering channel model as a finite impulse response channel,  

∑
−

=
−=

1

0
)()(

L

l
l lnhnh δ , the output of the channel is  

n

L

l
lnln wdhy += ∑

−

=
−

1

0
.        (1.9) 

The ISI extends over the first L-1 symbols and the receiver ignores it by considering only the 

output over the time interval [ ]1, −+∈ LNLn . Due to the cyclic prefix, the output over this time 

interval (of length N) is 

  ∑
−

=
+−−=

1

0
]mod)[(

L

l
nln wNlLnXhy .    (1.10) 

Denoting the output of length N by TLNyLy ]]1[...,],[[ −+=y  and the channel by a vector of 

length N 

T
Lhhh ]0...,,0,...,,,[ 110 −=h        (1.11) 

(1.10) can be written as  

  wXhy +⊗=         (1.12) 
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where TLNwLw ]]1[...,],[[ −+=w  denotes a vector of i.i.d. ( )2,0 wCN σ  random variables. The 

notation ⊗  is used for cyclic convolution in (1.12). There are two definitions for DFT, in order 

to make the DFT a unitary transfer, we scale it by 
N
1 . Thus, DFT of X  is defined to be [19]  

∑
−

=
−=

−
=

1

0
1...,,0),2exp(1 N

n
nk Nk

N
nkjX

N
x π .    (1.13) 

Taking the DFT of both sides of (1.12) and using the identity 

 1....,,1,0,)()()( −=×=⊗ NnDFTDFTNDFT nnn XhXh ,  (1.14) 

we can write (1.12) as  

 1...,,1,0, −=+= NkWXHY kkkk       (1.15) 

where we denote 10 ...,, −NWW  as the N point DFT of the noise vector TNww ]][...,],1[[=w . The 

vector TNHH ]][...,],1[[=H  is defined as the DFT of the L tap channel h , scaled by N   

 ∑
−

=
−=

−
=

1

0
1...,,0),2exp(

L

l
lk Nk

N
lkjhH π      (1.16) 

These operations are illustrated in Figure 1-2 which has the following interpretation: The 

binary stream of data ( MN 2log×  bits where M is the size of constellation Q) are mapped into N 

data symbols in constellation Q and form data symbols on N tones or subcarriers. Then a Serial 

to Parallel converter makes a group of N subcarriers ready for IDFT. The data symbols on the 

subcarriers are then converted (through the IDFT) to time domain. The procedure of introducing 

the cyclic prefix (guard interval) before transmission allows for the removal of ISI. Then the 

Parallel to Serial converts the group of data to a stream that passes through the channel. The 

receiver ignores the part of the output signal containing the cyclic prefix (along with the ISI 



 14

terms) and converts the length N symbols back to the frequency domain through the DFT. The 

data symbols on the subcarriers are maintained to be orthogonal as they propagate through the 

channel and hence go through narrowband parallel channels. This interpretation justifies the 

name of OFDM for this communication scheme.  

 
Figure 1-2: Baseband OFDM system model 
 

In a digital communication system, the symbols that arrive at the receiver have been 

convolved with the time domain channel impulse response of length L samples. Thus, the effect 

of the channel is convolutional. In order to undo the effects of the channel, another convolution 

must be performed at the receiver using a time domain filter known as an equalizer. The length 

of the equalizer needs to be on the order of the length of the channel. The equalizer processes 

symbols in order to adapt its response in an attempt to remove the effects of the channel. Such an 

equalizer can be expensive to implement in hardware and often requires a large number of 
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symbols in order to adapt its response to a good setting. In OFDM, the time domain signal is still 

convolved with the channel response. However, the data will ultimately be transformed back into 

the frequency domain by the FFT in the receiver. Because of the periodic nature of the 

cyclically-extended OFDM symbol, this time domain convolution will result in the 

multiplication of the spectrum of the OFDM signal (i.e., the frequency domain constellation 

points) with the frequency response of the channel. The result is that each subcarrier symbol will 

be multiplied by a complex number equal to the channel’s frequency response at that subcarrier 

frequency [(1.15)]. Each received subcarrier experiences a complex gain (amplitude and phase 

distortion) due to the channel. In order to undo these effects, a frequency domain equalizer is 

employed. Such an equalizer is much simpler than a time domain equalizer. The frequency 

domain equalizer consists of a single complex multiplication for each subcarrier. For the simple 

case of no noise, the ideal value of the equalizer’s response is the inverse of the channel’s 

frequency response. Thus the receiver needs to know (or estimate) the CIR so that it can detect 

data symbols. At the end, the stream of data symbols can be demapped to stream of binary data 

according to constellation Q.  

To detect the transmitted data, coherent and non-coherent algorithms can be established. 

In general, coherent algorithms give better error rate performance [19]. In chapter two, we will 

study two non-coherent data detectors. For the case of coherent data detection, the channel 

impulse response (CIR) should be estimated. In chapter three and four we will study two channel 

estimation algorithms.  

 

1.4 Detection Problem 

The detection problem for a MIMO system (or a multicarrier system) can be formulated as  
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 wHxr +=         (1.17) 

where mn RZ ∈∈ wrx ,,  denote the system input, output and additive noise, and nmR ×∈H  

represents the transfer matrix, and nZ  denotes the n-dimensional integer lattice and mR  denotes 

the m-dimensional real space. Generally, the noise terms miwi ...,,1, =  are independent and 

identically distributed (i.i.d) zero mean Gaussian random variables with variance 2
wσ . If we 

assume that mn ≥  and H  has full column rank and is perfectly known at the receiver, the 

optimal ML detector that minimize the average error probability is given by so called integer 

least square problem 

2minargˆ Hxrx
x

−=
∈ nZ

,      (1.18) 

where .  denotes the Euclidean norm. Eq. (1.18) is known as the closest vector problem in the 

lattice theory. The lattice generated by a generation matrix H  is [3]  

}:{)( nZ∈=Δ xHxH .      (1.19) 

The columns of H  are called basis vectors of Δ  and the number n is called the dimension of Δ . 

Eq. (1.17) is a model for real signal. Often complex signal constellations such as quadrature 

amplitude modulation (QAM) are used. In this case, the resulting complex detection problem can 

be transformed into an equivalent real problem as  

 
2

~
~~~minarg~ xHrx

x
−=

′∈ nQ
      (1.20) 

where   

⎥
⎦

⎤
⎢
⎣

⎡
ℑ
ℜ

=⎥
⎦

⎤
⎢
⎣

⎡
ℑ
ℜ

=
}{
}{~,

}{
}{~

x
x

x
r
r

r       (1.21) 
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and  

⎥
⎦

⎤
⎢
⎣

⎡
ℜℑ
ℑ−ℜ

=
}{}{
}{}{~

HH
HH

H       (1.22) 

Q’ denotes the real constellation after the transformation and {.}ℜ , {.}ℑ  denote the real and 

imaginary part of a function respectively. For example, a square QAM constellation is 

transformed to a pulse amplitude modulation (PAM) constellation in (1.20). Since (1.20) is 

similar to (1.18), we will concentrate on how to solve (1.18) in the following using two classic 

detection algorithms in communication theory. The vertical Bell Laboratories Layered Space-

Time Architecture (V-BLAST) detection algorithm [4], which is suboptimal, and the optimal 

sphere decoding algorithm [5]. 

1.4.1 V-BLAST algorithm  

The V-BLAST detection algorithm consists of nulling and interference cancellation. Nulling is 

performed by linearly weighing the received symbols to satisfy the zero forcing (ZF) or 

minimum mean square error (MMSE) performance criterion [4]. Denoting the ith column of H  

as i)(H , the zero forcing nulling vector nii ...,,1, =w  is chosen such that  

⎩
⎨
⎧

=
≠

=
ji
ji

j
T
i 1

0
)(Hw        (1.23) 

For interference cancellation, the effect of already detected symbols can be subtracted from 

symbols yet to be detected. This improves the overall performance when the order of detection is 

chosen carefully. For example, denoting the received vector r  by 1r , if the nulling vector is 1w , 

the first symbol is then detected by  

 
2

111 minargˆ rw H

Qx
xx −=

∈
      (1.24) 
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The interference due to 1x̂  on the other symbols can be subtracted by taking 1112 ˆ hrr x−= . 

Assuming 11ˆ xx =  (i.e., the decision is correct), the next symbol 2x  is then detected using 2w . 

The detection process consists of n iterations. In the kth iteration, the signal with maximum post 

detection SNR among the remaining n-k+1symbols is detected, which is known to be the optimal 

detection order. The post detection SNR for the kth detected symbol is given by 

  
{ }

22

2

kn

k
k

xE

wσ
ρ = .      (1.25) 

From (1.25), maximizing kρ  is equivalent to minimizing 2
kw . The whole algorithm is 

described as follows 

• Initialization: 

rr =1          (1.26) 

+= HG1         (1.27) 

2
11 )(minarg j

j
k G=        (1.28) 

• Recursion: for ni ,...,1=  

ii kik )(Gw =         (1.29) 

2
minargˆ i

H
k

Qx
k ii

xx rw−=
∈

      (1.30) 

ii kkii x )(ˆ1 Hrr −=+        (1.31) 

+
+ =

iki HG 1         (1.32) 
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ikkj
jiik

,...,{

2
11

1

)(minarg
∉

++ = G       (1.33) 

where ji )(G  is the jth row of matrix iG  and 
ikH  is obtained by zeroing the k1, …, kith columns 

of H . Assuming Π  is the column permutation matrix obtained from optimum order, we apply 

Π  to H . Let the QR factorization of HΠG =  be  

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
=

0
R

QQG 21,        (1.34) 

where R  is an nn×  upper triangle matrix, 0  is the nnm ×− )(  all zero matrix, 1Q  is an nm×  

unitary matrix and 2Q  is an )( nmm −×  unitary matrix. Eq. (1.17) is equivalent to  

vRxy +=         (1.35) 

where rQy T
1=  and wQv T

1=  is also an i.i.d complex Gaussian vector with mean zero and 

variance 2
wσ . The second description of V-BLAST algorithm is given by  

• for ni ,....,1=  

2
,minargˆ xryx iii

Qx
i −=

∈
      (1.36) 

ii x̂)(Ryy −=        (1.37) 

 end 

where iir , is the (i,i)th entry of R . 

1.4.2 Sphere Decoding (SD) algorithm 

Another important algorithm for solving (1.18) is sphere decoding. SD only tests the lattice 

points lying inside a hypershpere. The popularity of the SD stems from the fact that the SD offers 
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ML decoding at lower complexity, as opposed to the exponential complexity incurred by the 

exhaustive search. In [6], it has been proven that for a wide range of SNR and lattice dimension, 

the expected complexity of SD is polynomial, often cubic in the lattice dimension. Following the 

formulation in (1.35), the lattice point Rx  lies in a sphere of radius d, if and only if 

22 d≤− Rxy .       (1.38) 

Eq. (1.38) can be written as  

 ∑ ∑
= =

≤−
n

i

n

j
jjii dxry

1

2
2

1
,       (1.39) 

where jir ,  denotes the (i,j)th entry of R . The left hand side of the above inequality can be 

expanded as   

∑ ∑
= =

−−−−− ≤−++−−+−
n

i

n

j
jjnnnnnnnnnnn dxryxrxryxry

1

2
2

1
,11

2
11,1,11

2
, ...)()(   (1.40) 

where the first term depends only on nx , the second term on 1, −nn xx  and so forth. Therefore a 

necessary condition for Rx  to lie inside the sphere is that 2
,

2 )( nnnn xryd −≥ , which is 

equivalent to nx  belonging to the interval  

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢ +−
≤≤

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡ +−

nn

n
n

nn

n
r

yd
x

r
yd

,,
     (1.41) 

where ⎡ ⎤.  denotes the smallest integer greater than or equal to its argument and ⎣ ⎦.  denotes the 

largest integer less than or equal to its argument. 

For each candidate nx  satisfying the above bound, we define 2
,

22
1 )( nnnnn xrydd −−=− . We 

can get the following stronger necessary condition for 1−nx  
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2
1

2
11,1,11 )( −−−−−− ≤−− nnnnnnnn dxrxry     (1.42) 

which leads to the following bound  

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢ −+
≤≤

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡ −+−

−−

−−−
−

−−

−−−

1,1
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1

1,1

,111

nn

nnnnn
n
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nnnnn

r
xryd

x
r

xryd
  (1.43) 

The SD chooses a candidate for 1−nx  from the above region. We continue in the same fashion for 

2−nx  and so on. The bounds for kx  are  

⎥
⎥
⎥

⎦

⎥

⎢
⎢
⎢

⎣

⎢ −+
≤≤

⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢

⎢

⎡ −+− ∑∑ +=+=

kk

n
kj jjkkk

k
kk

n
kj jjkkk

r

xryd
x

r

xryd

,

1 ,

,

1 ,
  (1.44) 

where 2
1 ,11

2
1

2 )( ∑ += +++ −−= n
kj jjkkkk xrydd . If there is no lattice point within the bounds for 

nx , the SD goes back to 1+kx  and chooses another candidate value from the corresponding region 

for 1+kx . If the SD reaches 1x , the SD finds a candidate lattice point x′  within the hypersphere of 

radius d. SD checks the value of 2xRy ′− . If this value is less than d, it updates the radius d 

which means the search space is limited by new radius. The above process continues until no 

further lattice points are found within the hypersphere. The lattice point that achieves the 

smallest value of  2Rxy −  within the hypersphere is deemed as the ML solution. If no point in 

the sphere is found, the sphere is empty and search fails. In this case, the initial search radius d 

must be increased and the search is restarted with the new squared radius. In [6], the authors 

analyzed the complexity based on the statistical property of the problem. They choose an initial 

radius based on the statistics of the problem. 
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1.5 Literature review and Thesis Outline 

In OFDM systems, data detection can be done either coherently or non-coherently. Non-coherent 

data detection, allows the receiver to process the received data entirely without the knowledge of 

the channel impulse response (CIR). Two multi-symbol non-coherent data detection algorithms 

will be introduced in Chapter two.   

 Alternatively, coherent data detection in OFDM systems requires the CIR. The use of 

pilot tones for channel estimation [30][53][54] constitutes a significant overhead or bandwidth 

loss, motivating the development of semi blind and blind techniques for OFDM. They use 

statistical or deterministic properties of the transmit and receive signals; properties such as cyclic 

prefix (CP) and pilot induced redundancy, cyclostationarity, finite alphabet and virtual carriers 

have been exploited in [55][56][57].  

 Joint estimation of CIR and data detection has been proposed in [66]. Several semi blind 

data detection and channel estimation techniques has been given in [60][61][62][64]. In [59], 

channel estimation improvement is done by using noise reduction. In Chapter three, we will 

develop a blind channel estimator for SIMO OFDM systems and discuss the identifiablity 

conditions.  

The idea of superimposed training; i.e., simultaneous information and pilot transfer, was 

first used for analog communications and then was advocated for digital communication 

systems. Superimposed pilots have been exploited for the purpose of channel estimation [63]. In 

Chapter four, we first explain the idea of superimposed pilots in OFDM systems, and then we 

develop an approximately ML channel estimator for superimposed OFDM. 

Despite its several advantages, OFDM suffers from sensitivity to synchronization errors. 

A ML carrier frequency offset (CFO) estimator has been proposed in [65]. In [67], a joint 

channel and CFO estimator has been developed. In Chapter five, we first formulate the CFO 
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problem in OFDM and then develop several CFO estimators. Conclusion and future work are 

given in Chapter 6. 
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Chapter Two: Multi symbol data detection in OFDM  

 

This chapter develops two ML multi symbol data detectors for OFDM. The chapter organization 

is as follows. Section 2.1 develops the system model of a ML non-coherent multi symbol 

detector in OFDM and afterwards it discusses two efficient detection algorithms. In Section 2.2, 

the ML multi symbol differential detector is derived. Section 2.3 gives the numerical results and 

Section 2.4 concludes the chapter. 

 

2.1 Non-coherent Maximum Likelihood Multi Symbol decoder 

In the previous chapter, we have seen that a time-dispersive (frequency selective) channel in time 

domain is transferred into a flat (one tap) channel in frequency domain in an OFDM system. 

Therefore we have [Eq. (1.15)], 

10,)()()()( −≤≤+= NkkWkXkHkY     (2.1) 

where N  is the DFT length, )(kX  is pre-DFT transmitted data on subcarrier k drawn from 

constellation Q, )(kY  is the post-DFT received data on subcarrier k, )(kH  is the frequency 

response of channel for subcarrier k, and )(kW  is DFT of channel noise for subcarrier k, which 

are given by the following equations : 

 ∑
−

=

−=
1

0

/2)(
L

l

Nlkj
lehkH π      (2.2) 
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−

=

−=
1

0

/21)(
N

n

Nnkj
new

N
kW π      (2.3) 

where 1...,,1,0,),0( 2 −=∈ LlCNh ll σ  are independent CIR coefficients and have been 

considered Rayleigh fading and 1...,,1,0,),0( 2 −=∈ NnCNw wn σ  is AWGN.  

 In what follows we derive a data detector which combines several received data (multi 

symbol) to detect the transmitted data [7][8]. This detector doesn’t need to know the CIR (non-

coherent). 

At the receiver, the multiple symbol decoder processes N' consequently received symbols  

T
k kNYNkNY )])1((...,)),1()1(([ −′−′−−′=Y  

 to obtain ML estimate kX̂  of the corresponding N' transmitted symbols 

[ ]Tk kNXNkNX ))1((...,)),1()1(( −′−′−−′=X  .  

The non-coherent detector at the receiver will try to detect the transmitted data with no 

knowledge of [ ]Tk kNHNkNH ))1(()),...,1()1(( −′−′−−′=H  . 

The value of N' is referred to as the observation window size, and window size can be considered 

less than DFT length. With growing window size, the memory of the process is more completely 

taken into account so the performance of the decoder will be improved with increasing window 

size. In following, the non-coherent ML estimate of  kX  based on the observation of kY  will be 

formulated while the window size is equal to DFT length (N'=N). 

Vectorizing equation (2.1), we have  

kkDkk WHXY += ,        (2.4) 

where  
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)))1(()),...,1()1((()(, kNXNkNXdiagdiag kDk −−−−== XX , 

hFH Lk = , [ ] LT
L Chhh ∈= −110 ...,,,h , 

F  is the DFT matrix ( ( )klNj
lk e

N
/2

,
1][ π−=F , 1...,,1,0, −∈ Nlk ),  

LF  is a LN×  submatrix (first L columns) of DFT matrix F  scaled by N  and 

T
k kNWNkNW )])1(()),...,1()1(([ −−−−=W . Considering the model of channel and noise 

explained in previous chapter (channel and noise are both vectors of CGRV), kY  is a vector of 

complex Gaussian random variables (CGRV) (since it is a linear combination of CGRVs) and 

the pdf of kY  given kX  can be written (for simplicity, we will discard subscript k): 

)exp(
)det()(

1)|( 1YRY
R

XY YY
YY

−−
×

= H
Nf

π
   (2.5) 

where correlation matrix YYR is: 

 }))({(}{ H
DD

H EE WHXWHXYYR YY ++== .  (2.6) 

Since 1...,,1,0, −= Nnwn  are uncorrelated CGRVs and DFT is a unitary transformation 

( IFFFF == HH ), 1...,,1,0, −= NkWk  are also uncorrelated CGRVs [19]. Therefore, 

IWW 2}{ w
HE σ= . Then, 

 IXRXYYR HHYY
2}{ w

H
DD

HE σ+==    (2.7) 

where  

H
L

H
L

H EE FhhFHHR HH }{}{ ==      (2.8) 

and ),...,(}{ 2
1

2
0 −== L

H diagE σσhhRh .     (2.9) 
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If we consider transmitted data are drawn from a unitary constellation, we will have 

H
DwD XIRXR HHYY )( 2σ+=      (2.10) 

In this case, we can say )det()det()det()det( 2 H
DwD XIRXR HHYY σ+=  is independent of 

transmitted data. Removing terms which are independent of transmitted data, maximizing ML 

estimation equation (2.5) is equivalent to minimizing YRY YY
1−H . Therefore, the decision rule 

for data detection will be  

}{minargˆ 1 YRYX YY
X

−= H
D

D

.      (2.11) 

Since IRC HH
2
wσ+=  is Hermitian and positive definite, we can apply Cholesky factorization 

[46] on its inverse, so that   

HLLC =−1         (2.12) 

where L  is a lower triangular matrix. Replacing (2.10) and (2.12) into (2.11), we can rewrite 

decision rule as  

}{minarg}{minargˆ 1 YXLLXYYXCXYX
XX

H
D

H
D

HH
DD

H
D

DD

== − . (2.13) 

Defining  TkNXNkNX )])1((...,)),1()1(([ −−−−=X  

 and )))1((...,)),1()1((()( kNYNkNYdiagdiagD −−−−== YY , we can rewrite (2.13) as 

}{minarg}{minargˆ 2** UXXYLLYXX
XX

== D
HH

D
T   (2.14) 

which is a quadratic form in X  , where D
H YLU = . 
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Thus the maximum likelihood data detection can be regarded as integer shortest vector 

problem [9]. The Cholesky decomposition doesn’t need to be repeated provided that channel 

statistics and SNR are constant. The brute-force solution which is to test 1−NM  vector X  (where 

M is the size of constellation Q) is computationally infeasible in the casa of large window size 

(N) because the complexity grows exponentially in N. Two efficient data detection algorithms, 

Sphere Decoding and V-BLAST solution, will be discussed in next section. 

From equation (2.14), we can see that our data detector has phase ambiguity. In other 

words, if X̂  is a solution for (2.14), any rotation of X̂  ( πθθ 20,ˆ ≤≤jeX ) is another solution as 

well. In order to resolve this ambiguity there are 2 solutions: 

2.1.1 Differential encoding of transmitted data  

At the transmitter, we can apply classical M-ary differential phase shift keying (DPSK) over 

adjacent subcarriers. )(log2 M  binary data symbols are Gray mapped to M-ary data symbols 

)(kv   taken from MPSK signal constellation { }1,...,1,0|/2 −==≡ MmevQ Mmj π . From )(kv , 

the transmitted symbol on subcarrier k is obtained via differential encoding )1()()( −= kXkvkX . 

At the receiver, from detected vector X̂ , and via differential decoding kv̂  of  the N-1 differential 

symbols [ ]Tk kNvNkNv ))1((...,)),2()1(( −−−−=v  can be obtained. 

2.1.2 Insertion of embedded pilot symbols 

At the transmitter at least one of the subcarriers should be embedded to a known a priori symbol 

(pilot) so that the receiver can solve the ambiguity based on it. In our simulation, we will 

investigate both solutions. 
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2.1.3 V-BLAST detection 

A more detailed explanation of V-BLAST has been given in section 1.4.1. In following we will 

give the algorithm steps briefly.  

The V-BLAST algorithm is based on detecting data symbols from the strongest to the 

weakest. This means it needs a permutation matrix Π  to rearrange the columns of matrix U  in 

Eq. (2.14). Afterwards, we can do a QR decomposition on permuted matrix, UΠMQR == , 

where Q  is unitary and ][ ijr=R  is upper triangular. Since Q  is unitary, it will be ignored in 

norm Eq. (2.14). Permutation matrix U  guarantees R  has the property that ii
Ni

r
≤≤1

min  is 

maximized over all column permutations. For 1,...,1, −= NNk , the algorithm chooses )(kπ  

such that 

( )
{ }

2

)1(),...,1(

minarg)(
−∉

=
kj

jkk
ππ

π G      (2.15) 

where ( ) jkG  is the jth  row of kG , kG  is the pseudo inverse of kU , and kU  denotes the matrix 

obtained by zeroing columns )1(),...,1( −kππ  of U . So (2.14) can be expressed as 

⎭
⎬
⎫

⎩
⎨
⎧=

2*minargˆ RXX
X

.      (2.16) 

Because R  is upper triangular matrix, the kth element of X  is given by  

2

1

**minargˆ
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+=
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ki
ikikkk

X
k XrXrX      (2.17) 
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where kir  is the (k,i)th entry of matrix R . Processing in the order 1,..., XX N  and assuming 

correct previous detection, transmitted symbols can be detected. 

The original V-BLAST ordering requires N matrix inversion. In [10], a new low 

complexity ordering was proposed. The ordering )(),...,1( Nππ  is obtained by sorting ( )j
+U  

in an ascending order for Nj ...,,1=  in this technique where +U  is the pseudo inverse of U . 

Then QR decomposition will be done on the permuted matrix and the same steps will be 

followed to estimate transmitted symbols. The advantage of this method is that it requires only 

one matrix inversion and its complexity is lower that the original V-BLAST. Simulations in [10] 

show that degradation in performance is not significant. In our simulation, we will compare the 

performance and complexity of both ordering algorithms. 

2.1.4 Sphere Decoding detection 

More detailed explanation of SD has been given in section 1.4.2. In following we will give the 

algorithm steps briefly.  

Eq. (2.14) for data detection is a discrete (integer) problem as data are drawn from a 

specific constellation. SD is an efficient method for solving an integer problem (finding the 

closest lattice point in N dimensions to a given point). SD searches the lattice inside a hyper 

sphere of radius “r” instead of searching the whole lattice: 

22* r≤UX        (2.18) 

Because U  is upper triangular, the key idea is to generate boundary condition for 

11,ˆ +≤≤ ilX l  based on the previously detected symbols Ni XX ˆ,...,ˆ . To see this, let iju  be the 

entry U  in row i and column j where Nji ≤≤ ,1 . By defining 1+id  like 
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SD is the method to estimate the transmitted symbols that progressively satisfy: 

22
1

2

1

**2 rdXuXud i

N

ij
jijjiii ≤++= +

+=
∑     (2.20) 

Radius r can be dynamically updated whenever one lattice point found. 

Although SD reduces the complexity significantly comparing to brute-force search, still the 

complexity might be high for the case of big window size N.  

It can be seen that the brute-force search is like searching in a tree with N Node and M 

branch in each Node (Figure 2-1). We can split this tree to several sub-trees of the length w 

(w<N), at the expense of degradation in performance (Figure 2-2). This way, we actually split 

search space to several smaller ones with lower complexity. Then we can use SD in each of sub-

spaces fixing the detected data symbols from previous sub-spaces [11]. In other words, in each 

step it can be supposed that symbols detected using SD in previous steps are correct and can be 

used as the initial state for the next subspaces. Thus the complexity will decrease dramatically. 

The smaller the size of the sub-tree, the lower the complexity and the higher the degradation. In 

our simulation, we will compare the performance and complexity of both algorithms. 
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 Figure 2-1: Search tree, M=2, N=3 

 

Figure 2-2: Splitting search tree, M=2, N=3, w_1=1,w_2=2 

 

2.2 Multi Symbol Differential detection in OFDM 

Conventional differential detection for OFDM suppose that CIR is constant for 2 consecutive 

OFDM blocks and differential encoding and decoding are considered for data on the same 

subcarriers but in adjacent blocks. In case of large DFT length and in wireless system, this 

assumption can’t be true anymore.  

In next section, we will show that when the CIR length is much smaller than DFT length, 

channel frequency response for consecutive subcarriers are highly correlated and can be 

considered constant so that the differential encoding-decoding can be done over adjacent 

subcarriers in one OFDM block. In section 2.2.2, we will look at the maximum likelihood 

detection of MPSK for differentially encoded OFDM symbols. 
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2.2.1 Channel frequency response autocorrelation 

Using the channel model ( ) ( )∑
−

=
−=

1

0

L

l
ll thth τδ , the channel frequency response on tone k  

becomes 

∑
−

=

−=
1

0

)/(2)(
L

l

Nkj
l

lehkH τπ .       (2.21) 

Assuming lτ ’s are independent, the correlation matrix for frequency response vector H ,  

][}{ ,nm
H rE == HHR HH   can be expressed as 
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  (2.22) 

where )(τhhr  is the multipath power profile and )( kk
f ττ  is the pdf of kτ . For the case of 

uniform delay profile  

1...,1,0
0

]1,0[/1
)( −=

⎩
⎨
⎧ −∈

= Lk
otherwise

LifL
f k

kk

τ
ττ     (2.23) 

and exponential decaying power profile rmsCerhh
τττ /)( −= , so by substituting in (2.22)  

)21(

1 )/)(2)/1)((1(

,

N
nmj

e
L
Cr

rms

NnmjL

nm
rms

−
+

−
=

−+−−

π
τ

πτ
     (2.24) 

and normalizing kkr ,  to unity gives us, 
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Figure 2-3 shows the magnitude of nmr ,  for different values of N for a typical channel profile of 

indoor office area as is modeled in [12].The rms delay spread of this channel is 35ns and the 

maximum delay spread is 100ns, assuming sampling period of 20ns, 2,5 ≈= rmsL τ . The figure 

shows for small values of m-n, correlation is high and as N increases; the range of m-n with 

highly correlated channel frequency response will increase as well. We will use this 

characteristic to assume constant value of channel frequency response for adjacent subcarriers. 

 

2.2.2 Maximum Likelihood Multiple symbol Differential detection in OFDM 

Consider the transmission of MPSK signals for subcarriers in an OFDM block, 

{ }1,...,1,0|,)( /2 −==≡∈ MmevQQkv Mmj π . From )(kv , the transmitted symbol on subcarrier 

k is obtained via differential encoding )1()()( −= kXkvkX . The corresponding received signal 

is then 10,)()()()( −≤≤+= NkkWkXkHkY . Now consider a received sequence of length 

P+1 and assume that )(kH  is independent of k over the length of this sequence, i.e., HkH =][ . 

Now the received sequence TPkYkYkY )](...,),1(),([ ++=Y  is expressed as  

WXY += H          (2.26) 

where TPkXkXkX )](...,),1(),([ ++=X  and TPkWkWkW )](...,),1(),([ ++=W . 
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Figure 2-3: Amplitude of channel frequency response correlation matrix’s elements 
for different values of N  when 2,5 == rmsL τ  

 

Following the same model for channel and noise as given in previous section [13],  

)exp(
)(

1),|( 2

2

w
P

w

H
Hf

σπσ

XY
XY

−
−= .     (2.27) 

To maximize this likelihood function, H should be selected such that 

∑
=

+−+=−=
P

pHH
pkHXpkYHH

0

22 ][][minargminargˆ XY .   (2.28) 

Since the constellation is unitary, 
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Then ∑
=

++=
P

p
pkYpkXH

0

* ][][ˆ . Replacing Ĥ  from (2.29) into (2.28), our cost function for 

data detection is 

2
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         (2.30) 

In (2.30), we have used the fact that )1( += PH XX . 

Note that this decision rule has a phase ambiguity associated with it. Since the transmitted data 

has been differentially encoded, this ambiguity won’t affect decoding of 

TPkvkv ]][],...,1[[ ++=v . In [9], BER analysis for BPSK case has been done and it has been 

shown that the performance of multiple symbol differentially detected BPSK approaches that of 

ideal coherent detection BPSK with differential encoding in the limit as the observation interval 

P approaches infinity provided that channel response won’t change during this interval. But in 

the developed model, because we can assume constant frequency response for limited number of 

subcarriers, we can not consider a very large observation interval P.    
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2.3 Simulation and results 

Simulation results are given for the proposed data detectors. In simulation, an OFDM system has 

been developed over a frequency selective Rayleigh fading channel with 4 independent complex 

Gaussian taps with exponential power decay. The DFT length is considered to be 32 and data are 

from BPSK constellation. The length of CP is L+1 where L is the maximum length of CIR. CIR 

is constant over each block of OFDM data but can be varied from one block to another.  

The SNR axis is in dB scale in our figures and explains the relation of the power in 

received signal to the power of noise. In the first simulation, differential coding has been used 

over data to solve the ambiguity. Figure 2-4 compares the performance of different data 

detectors.  

 

Figure 2-4: BER performance comparison of different multi symbol data detectors 
with differential coding for ambiguity solution 
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SD algorithm needs the initial radius to start the search with. We choose a relaxation 

approach to choose the initial radius. For OFDM symbol from MPSK, we relax (2.14) as 

NTHT === **2* },{minarg}{minargˆ XXUXUXUXX
XX

 where the vector NC∈X . The 

Lagrangian for this minimization problem is )(),( ** Nl THT −+= XXUXUXX λλ . The optimal 

λ  here is the minimum eigenvalue of matrix UU H  and X~  is the eigenvector corresponding to 

λ . We then quantize X~  into a point in NQ  as X̂ . By substituting X̂  into (2.14), the initial 

radius is given by *2 ˆˆ XUUX HTr = . In Figure 2-4, the performance of SD when we split the 

search space to two subspace (w=16) has been shown. In high SNR, it performs very close to the 

original SD while in lower SNR the degradation can be up to 1 dB comparing to the original SD. 

Also, we simulated SD with two steps of splitting the search space (w=8). 

 

Figure 2-5: Complexity comparison between different algorithms proposed for 
multi symbol data detection 
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In low SNR, its performance is quite close to V-BLAST but in high SNR it works almost 1 dB 

better than V-BLAST and it shows almost 3dB degradation comparing to one step splitting SD 

the original SD. For V-BLAST algorithm, we have shown the BER performance of the original 

one and the comparison with the one in [10] (labelled simple V-BLAST). The simple V-BLAST 

works at most 2 dB worse than the original V-BLAST. Figure 2-5 compares the complexity 

(computation time) of different data detection algorithms. It shows there is a trade off between 

the complexity and accuracy. At the expense of degradation in BER, splitting SD algorithms 

suggest significant reduction in complexity (especially in lower SNR). As we can see, the 

complexity is not a function of SNR for V-BLAST algorithms.  

 

Figure 2-6: BER performance comparison of different algorithms and different 
ambiguity solutions  
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In low SNR regime, original SD has more complexity than VBLAST. The simplified V-

BLAST has the minimum complexity which is significantly less that original V-BLAST 

algorithm. In fact the complexity of SD is a function of the size of constellation. For BPSK case, 

form Figure 2-5, we can see in high SNR the complexity of SD is even less than V-BLAST but 

for higher constellation size (like 4PSK in [8]), SD complexity can be always more than V-

BLAST. Figure 2-6 compare the performance of 2 different ambiguity solutions: embedded pilot 

and differential coding. To make the comparison fair, there is one subcarrier dedicated to pilot in 

each OFDM block. No matter what solution has been applied to solve the ambiguity, SD 

outperforms V-BLAST in all SNR range. Simulation results in Figure 2-6 suggest that 

differential coding solution outperforms embedded pilot solution. The reason is that the error in 

ambiguity detection will not propagate in differential solution. 

 

Figure 2-7: The effect of mismatch of channel power profile and noise power in 
receiver 
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As Eq. (2.10) shows, the proposed data detection algorithms require the receiver to know the 

channel power profile and noise power. However simulation results in Figure 2-7 show that the 

proposed data detectors are robust to mismatch in both power profile and noise power. We 

simulated the detector with perfect knowledge of channel power profile and noise power. In the 

other simulation the noise power has been fixed to 20 dB SNR value, and we can see the 

degradation in performance is insignificant. Since in low SNR the error caused from the 

mismatch will be concealed in noise, the receiver should pick a noise power value related to high 

SNR in case it is not aware of the real value of noise power. In the other simulation, receiver 

uses a unitary power profile instead of exponential decay to investigate the effect of channel 

power profile mismatch. Again, the data detector performs robust to this mismatch.   

  

Figure 2-8: Multi symbol differential data detection BER performance with 
different window size 
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In Figure 2-8, we have compared the performance of multi symbol differential detector proposed 

in 2.2.2 for two different window sizes. Results show that multi symbol differential data 

detection over three consequent subcarriers outperforms the one over two. Although, as it has 

been mentioned before, we can’t make the window size large, since the channel frequency 

response may not stay constant over a large window.  

 

2.4 Conclusion 

We have investigated two ML multi symbol data detector for OFDM systems. For the first data 

detector, we suggested two different solutions to resolve the phase ambiguity. As the cost 

function for this data detector is an integer quadratic, we have used V-BLAST and SD algorithm 

to solve it. We also used less complexity version of V-BLAST and SD algorithms. We 

investigated the performance and computation complexity of different algorithms. Because of the 

trade of between accuracy and complexity, based on the application somebody can pick a 

specific algorithm.  Although the detection algorithm requires the receiver to know the channel 

power profile and noise power, simulation shows that it is robust to mismatch. We also derived a 

differential multi symbol detector and compared the performance of the detector for different 

window size.   
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Chapter Three: Blind channel estimation for an SIMO 
OFDM system 

 

This chapter develops a channel estimator for a Single Input Multi Output (SIMO) OFDM 

system. The chapter organization is as follows. Section 3.1 develops the base band system model 

of an OFDM system and afterwards it discusses a SIMO OFDM model. In Section 3.2, we will 

derive the blind channel estimator for SIMO system. Section 3.3 gives identifiability conditions 

of estimator. Section 3.4 gives the numerical results and Section 3.5 concludes the chapter. 

 

3.1 OFDM SISO base band model 

In an OFDM system, the binary source data are mapped into symbols from a constellation Q and 

then grouped to blocks of length N. Each group is modulated by inverse discrete Fourier 

transform (IDFT) on N parallel subcarriers. The resulting time domain samples are  

 ∑
−

=
−==

1

0

)/2( 1...,,1,0,1 N

k

Nknj
kn NneX

N
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Id is the index set of data subcarriers with Nd elements, Ip is the index set of subcarriers 

reserved for pilot symbols with Np elements, and Iv is the index set of virtual carriers with Nv 

elements and NNNN vpd =++ . The symbols 1...,,1,0, −= NkXk  are called OFDM input 

symbols. 

The symbols after IDFT are denoted as 1,...,1,0, −= Nnxn . The term “OFDM block” 

denotes the entire IDFT output { }110 ,...,, −Nxxx . The input symbol duration is Ts and the OFDM 

block duration is NTs. One transmitted OFDM block duration usually consists of a regular 

symbol interval and a guard interval (GI). Assuming that GI length is greater than or equal to the 

channel impulse response (CIR) length, Inter-symbol Interference (ISI) is completely eliminated 

and the orthogonality between the subcarriers can be maintained [14]. 

There are different alternatives for the GI. In Cyclic prefix OFDM (CP-OFDM), a copy 

of the last part of OFDM block is pre-appended to the transmitted block as the GI. In Zero 

padding OFDM (ZP-OFDM), zeros are pre-appended to the transmitted block as GI. In [14] it 

has been shown that ZP-OFDM can be converted to CP-OFDM at the receiver. It also shows that 

insertion of CP can convert linear convolution of data and CIR to circular convolution. 

Time domain transmitted samples are appropriately pulse shaped to construct the time 

domain signal x(t) for transmission. Typically pilots pk IkX ∈,  known a priori at the receiver, 

remain fixed from one OFDM block to the next one. Pilot arrangement can be such that Np << 

N. Alternatively, entire OFDM block can be pilots and be transmitted periodically. In Semi Blind 

estimation and detection techniques, the former is studied. 

It has been assumed that the composite CIR which includes transmit and receive pulse shaping 

and the physical channel response between the transmitter and receiver can be modeled as 
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where ( )2,0~ ll CNh σ , lτ  is the delay of the lth tap and L is the total number of paths. The 

],...,[ 2
1

2
0 −Lσσ  and ],...,[ 10 −Lττ  constitute the power delay profile (PDP). The received signal after 

sampling is given by  
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where ( )2,0~ wn CNw σ  is an additive white Gaussian noise (AWGN) and ⎣ ⎦sll Td /τ=  is the 

delay normalized by Ts. We assumed that ld ’s are integers otherwise there is a leakage of energy 

to all the channel frequency taps [15][16]. We assume perfect synchronization and that channel 

remains constant during each OFDM block, but it might varies between OFDM blocks. 

After removing the guard interval and taking the discrete Fourier transform (DFT) (N points) on 

the remaining samples at the receiver, the post-DFT received samples kY  can be expressed as 

follows: 

10, −≤≤+= NkWXHY kkkk     (3.5) 

where )/2( NkjHHk π=  is the complex channel frequency response at subcarrier k, )( jwH  is 

the Fourier transform of the CIR. 10, −≤≤ NkWk  are the Fourier transform of nw  and are 

independent and identically distributed (i.i.d) complex Gaussian random variables (CGRV), each 

of which also has zero mean and variance 2
wσ . Assuming sl lT=τ , we find hFH L=  where 

[ ]TNHHH 110 ...,,, −=H , [ ] LT
L Chhh ∈= −110 ...,,,h  is the CIR, F  is the DFT matrix 
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( )klNj
lk e

N
/2

,
1][ π−=F , 1...,,1,0, −∈ Nlk ), LF  is a LN×  submatrix (first L columns) of 

DFT matrix F  scaled by N . We can vectorize (3.5) as  

WhFXY += LD       (3.6) 

where ( )110 ,...,, −= ND XXXdiagX  is a diagonal matrix. Figure 1-2 shows the principal blocks 

in a baseband OFDM system. 

 

3.2 Blind LS channel estimator for SIMO OFDM system 

We will derive a lease square (LS) blind channel estimator for a single input multi output 

(SIMO) OFDM system [17]. It will basically take the advantage of the correlation between the 

received data at different receivers. It exploits the cross relation between each channel output 

pair, which is the basis of the approach in [18] and extends the idea to the OFDM systems. The 

channel estimator we will develop is not only for the case of spatial diversity [19]; it can be also 

used for an OFDM system with time diversity. We will concentrate on the former case though. 

In a SIMO system, transmitted data are passed through different channels, which are 

supposed to be independent and uncorrelated, and are received at the different receivers. Suppose 

we have mr receivers (Figure 3-1), and the maximum CIR length of the mr channels is L. in other 

words, if we define the CIR length of ith channel by Li , we know ri miLL ≤≤= 1,)max( .  
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Figure 3-1: SIMO system with mr receivers  
 

The equation (3.6) can be written for each channel  

mmLD WhFXY +=m   rmm ≤≤1    (3.7)  

where mh  is the CIR of channel m and mY  is the post-DFT received data at the receiver m. In the 

noise free case, we have  

 ( ) ( ) ( ) rii mikHkXkY ≤≤= 1,       (3.8)  

where ( )kX  is the transmitted symbol at the subcarrier k and ( )kHi  is the frequency response of 

the ith channel at the subcarrier k and ( )kYi  is the post-DFT received data at the subcarrier k at the 

ith  receiver. It is easy to show that in noise free case  

 ( ) ( ) ( ) ( )kHkYkHkY ijji =   rmjiji ≤≤≠ ,1, .  (3.9) 

Defining ( )iiD diag YY =  and using equation (3.9), we can write  

 iLjDjLiD hFYhFY =  rmjiji ≤≤≠ ,1, ,   (3.10) 

if we replace LiDFY  with iY~ , last equation can be rearranged to  

:
Tx 

Rx

Rx

Rx

h1 

h2 

hi 

hmr 

mr 
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 0~~ =− ijji hYhY  rmjiji ≤≤≠ ,1, .  (3.11) 

For a fixed value of i, if we write (3.11) for all possible values of j; considering 
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and when all received data are taken into consideration, 
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in the absence of noise, we construct the following equation : 

0hY =~
.       (3.14) 

Hence the channel coefficient vector h  can be identified by solving (3.14). In other words, h  is 

in the null space of Y~ . 

As with any deterministic blind identification method, in order to ensure the 

identifiability, it is necessary to impose conditions upon the channels and the source data. In the 

following, we will show that the condition about the channel is that there is no common zero 

among all the channels, where a zero of the channel m is defined by ∑
−

=

− ==
1

0
00 0)()(

L

n

n
mm znhzH . The 

condition about the source data is that none of the data on different subcarriers are zero. 
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3.3 Identifiability of blind SIMO estimator 

Matrix iY~  can also be expressed by  

   LiDDi FHXY =~   rmi ≤≤1  (3.15) 

where ( )1,1,0, ,...,, −= NiiiiD HHHdiagH . 

Thus, if we consider LiDi FHH =~ , then  
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where )2/)1(()2/)1((),...,(~ −×−∈= rrrr mNmmNm
DDD Cdiag XXX . 

Now the identification equation (3.14) can be rewritten as  

  0hHXhY == ˆ~~~
D     (3.18) 

where ĥ  is the nontrivial solution to 0hY =~ . If ( ) 1,...,1,0,0 −=≠ NkkX , then DD XX ~,  are 

non-singular and it follows  

0hH =ˆ~
        (3.19) 

which means  

 0ˆ~ˆ~ =− ijji hHhH   rmjiji ≤≤≠ ,1, .  (3.20) 
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By expanding the last equation we will have  

 1,...,1,0,)(ˆ)()(ˆ)( −== NkkHkHkHkH ijji   (3.21) 

which means )(ˆ)()(ˆ)( zHzHzHzH ijji = . Because there is no common zero among all the 

channels, it means for any value of 0z , if 0)( 0 =zHi  then 0)(ˆ
0 =zHi . So if )(zH i  is of order 

L, )(ˆ zHi  is also of order L, then )(ˆ)( zHzH ii α= , where α is a nonzero complex constant. It 

yields that rii mi ,...,1,ˆ == hh α . We can conclude: 

The nontrivial solution ĥ  to 0hY =ˆ~ uniquely (up to a complex scalar constant) determines the 

channel impulse response{ } rm
ii 1=h , if there is no common zero among all the channels and none of 

the data on different subcarriers are zero. 

 

 In the presence of noise, when the received data are corrupted by noise, the channel 

estimate ĥ  is obtained by solving the LS problem of 

1

2

2

~minargˆ

=

=
h

hYh        (3.22) 

The above formula is a quadratic form in h  and is the basis of our channel estimator. ĥ  can be 

computed as the eigenvector of  corresponding to the minimum eigenvalue of  [20]. 

Remarks: 

 It is well known that blind techniques for channel identifications inherit the phase 

ambiguity (channel can be identified uniquely up to a complex nonzero constant). In order to 
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solve phase ambiguity, two different algorithms will be used. They will be illustrated in 

simulation results section. 

 It has been mentioned that identifiability condition requires the transmitted data not to be 

zero on all subcarriers.  Virtual carriers (VC) have been used in application (IEEE 802.11a [21] 

standards) for the purpose of mitigation of inter block interference (limiting the transmit 

spectrum) and frequency offset synchronization. It means that in presence of VC, just Nd+Np 

subcarriers are carrying data and zero will be allocated to the rest of subcarriers. In that case, our 

estimator should use just Nd+Np non-zero subcarriers to ensure identifiability and N should be 

replaced by Nd+Np in our formulation. 

 Estimated channel ĥ  can be used for data detection.  Defining 
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, we have  

WXHY += D
ˆ .       (3.23) 

Therefore Maximum ratio combining (MRC) algorithm can be used to detect the transmitted data 

[19]. 

3.4 Simulation and results 

Simulation results are given for the proposed channel estimator. In simulation, an SIMO OFDM 

system with 4 receive antennas ( 4=rm ) has been developed and frequency selective static 
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channels have been considered. An OFDM system with 16 subcarriers and BPSK is simulated. 

The length of CP is L+2 where L is the maximum length of CIRs and it is considered 4 in our 

simulation. CIR is constant over each block of OFDM data but can be varied from one block to 

another. The performance of equalizer with perfect knowledge of the CIR provides the 

benchmark. Figure 3-2 shows the mean square error (MSE) of channel estimation which is 

defined as  ∑
=

−=
R

i
iR

dBMSE
1

2
10 )ˆ1(log10)( hh   (3.24) 

where R is the number of Monte Carlo runs. In this simulation, we used static channels with 

channel coefficients shown in Table 3-1. There is no common zero among the channels so the 

identifiability condition for the channels is satisfied. Any sort of random coefficients (non- LOS 

scenario) can be used for CIR of different channels as long as they have no common zero among 

them. 

 

 )(1 nh  )(2 nh  )(3 nh  )(4 nh  

0=n  -0.049+0.395i 0.443-0.0364i -0.211-0.322i 0.417+0.030i 

1=n  0.482-0.569i 1 -0.199+0.918i 1 

2=n  -0.556+0.578i 0.921-0.194i 1 0.873+0.145i 

3=n  1 0.189-0.208i -0.284-0.524i 0.285+0.309i 

4=n  -0.171+0.061i -0.087-0.054i 0.136-0.19i -0.049+0.16i 

 

Table 3-1: CIR (channel coefficients) of 4 channels 
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In order to solve phase ambiguity of the blind estimator we used one embedded pilot. 

Using this pilot, the ambiguity is estimated and CIR is adjusted. In order to improve the channel 

estimation, we used the estimated channel to detect the data and detected data were iterated back 

to estimate the channel (Decision Directed algorithm). Simulation shows one step of iteration 

improves estimation by almost 10dB. 

 The second algorithm for solving the phase ambiguity is to modulate the adjacent 

subcarriers in an OFDM symbol differentially. This way, as long as data detection is of concern, 

the amount of rotation in channel estimation will not affect data detection. It worth mentioning 

that data detection is still coherent and the differential coding of data is just to combat the phase 

ambiguity. Figure 3-3 shows BER performance of SIMO OFDM system. In this figure the 

performance of two different phase ambiguity solutions have been compared with that of the 

benchmark. In order to make the comparison fair, just one pilot has been inserted in an OFDM 

symbol for the case of pilot embedded solution (so that both ambiguity solutions use the same 

amount of bandwidth). 
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Figure 3-2: MSE of blind channel estimator 
 

It can be seen that differential solution outperforms pilot solution in low SNR range. It is because 

in low SNR, just one pilot may not be able to compensate the phase ambiguity completely and 

the error will propagate through the OFDM symbols while in differential case, the error will not 

propagate through the whole OFDM symbols and is limited to the two consequent subcarriers.  

Figure 3-4 shows the BER performance of the estimator in the case that only 12 of 16 subcarriers 

have used for data and the rest have been allocated to VCs. It can be seen that in presence of VC, 

detection performance degrades because less amount of data are available to be used for channel 

estimation.  
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Figure 3-3: BER performance comparison of two different phase ambiguity solution 
with perfect channel knowledge 
 

 



 56

 

Figure 3-4: BER performance comparison of OFDM with VC and without VC 
 

3.5 Conclusion 

We have developed a blind channel estimation algorithm for SIMO OFDM systems. The 

algorithm exploits the relation between received data at different receivers. We then investigated 

the idetifiability condition of transmitted data and channel for the estimator. As the estimator is a 

blind one, it inherits the phase ambiguity and we used two different solutions to solve it. The 

performance of these two solutions has been compared in our simulations.  Simulations also 

show that the iteration of estimated channel with data improves the performance of channel 

estimator. 
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Chapter Four: Superimposed OFDM and channel estimation 

 

This chapter develops an approximately ML channel estimator and data detector for 

superimposed OFDM system. The chapter organization is as follows. Section 4.1 introduces the 

idea of superimposed data transmission. Section 4.2 develops the system model of a 

superimposed OFDM. In Section 4.3, the joint ML channel estimator and data detector are 

derived and discussed and the CRB of the estimator is presented in Section 4.4. Section 4.5 gives 

the numerical results and Section 4.6 concludes the chapter. 

 

4.1 Introduction 

The idea of superimposed training; i.e., simultaneous information transfer and channel 

sounding, was first described in [22], albeit for analog communications. It was advocated for 

digital communication systems by Farhang Boroujeny in [23] and more investigations followed 

in [24]– [27].The main advantage of superimposed pilot scheme is that the information symbols 

can be transmitted over all time-frequency slots, hence saving the bandwidth compared to time-

multiplexed pilot scheme. In addition to this, in the OFDM context, none of the subcarriers need 

to be dedicated completely or partially for the pilots. In rapidly varying channels (in time or in 

frequency) superimposed pilots have an advantage in terms of improved channel tracking 

performance [28]. In [29], the potential of the superimposed pilot scheme for high data rate 

transmission has been demonstrated. Pilot-based channel estimation for OFDM has thus been 

widely studied [30], where pilots and data symbols are placed in separate subcarriers by periodic 

insertion of pilot symbols. The receiver estimates the channel at the pilot subcarriers first, and 
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these estimates are interpolated to estimate the channel at the data subcarriers. In mobile radio 

environments, the time-varying channel requires closely-spaced pilot symbols, resulting in a 

significant bandwidth loss. Semi-blind and blind equalization and channel estimation methods, 

however, need several OFDM blocks for channel estimation and exhibit both high complexity 

and phase ambiguities. On the other hand, pilot symbols can be added to data symbols to enable 

CIR estimation without sacrificing the data rate. In [31], a two-dimensional Wiener filter is 

employed to obtain the initial frequency domain channel estimate using second order statistics. 

In [32], periodic pilots are added to data symbols in time domain before transmission, and first 

order statics are exploited to identify the CIR. As adding pilots can increase the peak-to-average 

power ratio (PAPR), superimposed pilots must be carefully chosen to mitigate this problem. In 

[33], the data vector is distorted so that its discrete Fourier transform (DFT) at the pilot 

frequencies is zero, which cancels the performance degradation by the embedded unknown data. 

In [34], channel estimators and data detectors have been proposed for superimposed OFDM 

systems. The channel estimation is based on iterative ML and MMSE algorithms. The data and 

CIR estimates are then updated using a decision directed algorithm.   

In this chapter, we derive an approximately ML channel estimator and data detector for 

superimposed training based OFDM. We propose channel estimator based on iterative maximum 

likelihood (ML). ML algorithm is used to obtain the initial estimate of the time domain CIR. The 

data and CIR estimate are then updated using a decision directed (DD) algorithm to improve the 

performance of channel estimator and data detector. Then we will derive the CRB of the 

approximately ML CIR estimator and optimize the superimposed pilots to attain the minimum 

MSE. We also derive the CRB for the CIR estimation of the joint iterative channel estimator and 

data detector.  



 59

 

4.2 Superimposed OFDM system model  

We consider the discrete-time equivalent baseband model of an OFDM system over frequency-

selective channels. Data are mapped into a finite constellation Q. We consider a generalized 

training strategy in which the transmitted symbol kX  at the kth subcarrier is a linear combination 

of a pilot symbol and a data symbol  

1...,,1,0, −=+= NkPSX kkkkk φϕ     (4.1) 

where QPk ∈  is the known pilot, QSk ∈  is a zero-mean randomly distributed data symbol, and 

both kP  and kS  have the unity average power. The coefficients kφ  and kϕ  specify the power of 

the pilot and data symbols, respectively. The signal to pilot power ratio (SPR) for the kth 

subcarrier is defined as kkkSPR φϕ /= . The power kkkE φϕ +=  is the total power for the kth 

subcarrier and ∑ −
=

= 1
0

N
k kEE is the total power for an OFDM block. If 0=kϕ , for pIk∈ , Eq.  

(4.1) reduces to the separated training scheme in [30], where Ip denotes the index set of Np pilot 

subcarriers. Transmit symbols kX ’s are modulated by an inverse DFT (IDFT), and the resulting 

time domain signal samples are 

∑
−

=
−==

1

0

)/2( 1...,,1,0,1 N

k

Nknj
kn NneX

N
x π .    (4.2) 

Note after IDFT, pilots and data symbols are superimposed in both time domain and frequency 

domain. A guard interval includes a cyclic prefix of { })1(....,),1( −+− NxNNx g  where Ng is the 

number of samples in the guard interval. These samples are appropriately pulse shaped to 

construct the time domain signal x(t) for transmission. 



 60

The composite response including transmit and receive nyquist pulse shaping response 

(provided that their length is less than L) and the physical channel response between the 

transmitter and the receiver may be modeled as  

( ) ( )∑
−

=
−=

1

0

L

l
llhh ττδτ         (4.3) 

where ( )2,0~ ll CNh σ , lτ  is the delay of the lth tap. Typically, it is modeled using sl lT=τ , and 

this results in a finite impulse response filter with an effective length L. We consider that the 

channel taps lh  remain constant in each block so that inter-carrier interference (ICI) is 

negligible. Assuming perfect synchronization, the received signal after sampling can be 

represented as  

n

L

l
lnln wxhy += ∑

−

=
−

1

0
       (4.4) 

where ( )2,0~ wn CNw σ  is an additive white Gaussian noise (AWGN). After removing the guard 

interval and performing DFT demodulation, we can get  

10,1 1

0

)/2( −≤≤+== ∑
−

=

− NkWXHey
N

Y kkk

N

k

Nknj
kk

π   (4.5) 

where ∑
−

−

−=
1

0

/2
L

l

Nlkj
lk ehH π  and ∑

−

−

−=
1

0

/21 N

n

Nnkj
nk ew

N
W π  with zero mean and variance 2

wσ . 

We define [ ] hFH L
T

NHHH == −110 ...,,, , where [ ] LT
L Chhh ∈= −110 ...,,,h  is the CIR 

and F  is the DFT matrix ( ( )klNj
lk e

N
/2

,
1][ π−=F , 1...,,1,0, −∈ Nlk ), LF  is a LN×  

submatrix (first L columns) of DFT matrix F  scaled by N . We can vectorize (4.5) as  
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WhFΨSΦPWhFXY ++=+= LDDLD )(     (4.6) 

or equivalently 

 WΨSΦPHWXHY ++=+= )(DD    (4.7) 

where 

[ ]TNXX 10 ...,, −=X , [ ]TNYY 10 ...,, −=Y , [ ]TNPP 10 ...,, −=P , 

[ ]TNSS 10 ...,, −=S , { }10 ...,, −= Ndiag φφΦ , 

{ }10 ...,, −= Ndiag ϕϕΨ .     (4.8) 

 

4.3 Iterative approximately ML channel estimator    

In what follows, we derive maximum likelihood estimation for CIR of a superimposed OFDM 

system. The information symbols are considered as unknown random variables. The ML channel 

estimator then can be used for decision directed algorithm to detect the information data. 

Considering 1....,,0, −= NkSk  as zero-mean randomly distributed data symbols and 

noise w  as a vector of complex Gaussian random variables and CIR h  as a CGRV vector, Y  is 

a CGRV vector so that we can write its pdf given h  as  

))()(exp(
)det()(

1)|( 1 μYRμY
R

hY YY
YY

−−−
×

= −H
Nf

π
  (4.9) 

where the mean matrix μ  is: 

hFΦPhWhFΨShFΦPhYμ LDLDLDEE =++== }|{}|{  (4.10) 

and correlation matrix  YYR  is 
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IHΨhWhFΨSWhFΨShμYμYRYY
22}|))({(}|))({( wabs

H
LDLD

H EE σ+=++=−−=
           (4.11) 

where }...,,{ 2
1

2
0 −= Nabs HHdiagH . Note that expectation in (4.11) is over information 

symbols. Now, we take an extra step of expectation over channel for correlation matrix  YYR  

and we rewrite (4.9) approximately as  

))(ˆ)(exp(
)ˆdet()(

1)|( 1 μYRμY
R

hY YY
YY

−−−
×

≈ −H
N

f
π

  (4.12) 

where }{}{ˆ 22 IHΨRR hYYhYY wabsEE σ+== . Defining ∑ −
=

= 1
0

2 /L
l l Nσα , we have  

IΨRYY
22ˆ
wσα += .        (4.13) 

which is independent of h . 

If the CIR remains the same during K OFDM blocks, and if the delay is tolerable, the K 

consequent OFDM blocks can be combined for CIR estimation. Let kY  denotes the kth received 

OFDM block, since the kY ’s for Kk ...,,1=  are independent (it is true because information 

symbols are independent of pilot symbols), the join pdf function of )...,,,( 21 KYYY  

approximately is  
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∏
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kK ff
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11
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hYhYYY YY
YYπ

           (4.14) 

 Removing terms which are independent of CIR, the log likelihood function is  

∑
=

− −−−==Λ
K

k
k

H
kKK f

1

1
2121 )(ˆ)()|...,,,(ln)|...,,,( μYRμYhYYYhYYY YY  (4.15) 
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Approximately maximum likelihood estimation ĥ  for CIR is obtained by maximizing (4.15). 

Thus, we need to take the derivative of log likelihood function with respect to CIR and find its 

zero  

0))ˆ|...,,,(())ˆ|...,,,(( 2121 =Λ
∂
∂

=Λ
∂
∂ hYYY

h
hYYY

h KHK    (4.16) 

From [35], we know 
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=

− −=Λ
∂
∂ K

k
LDk

H
LDKH

1

1
21 )(ˆ)())|...,,,(( hFΦPYRFΦPhYYY

h YY .  (4.17) 

Therefore the ML estimation is   

0)ˆ(ˆ)(
1

1 =−∑
=

−
K

k
LDk

H
LD hFΦPYRFΦP YY      (4.18) 

or equivalently, 

)(ˆ)()ˆ)((ˆ
1

111 ∑
=

−−−=
K

k
k

H
LDLD

H
LD K YRFΦPFΦPRFΦPh YYYY .  (4.19) 

Next we use the estimated channel to form a joint channel estimator and data detector following 

decision directed technique.  

The pdf of the received signal Y  conditioned on h  and S  is 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−−= 2
2

1exp
)(

1),|( hFXYShY LD
w

N
w

f
σπσ

    (4.20) 

so the joint channel estimator and data detector is given by  

2

,
)(minarg}ˆ,ˆ{ hFΨSΦPYhS

hS
LDD

CQ LN
+−=

∈∈
.    (4.21) 
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Starting from (4.19) as 0ĥ , a decision directed (DD) technique can be used to improve the 

performance of both channel estimation and data detection. In the ith iteration, data symbols S  

can be estimated via  

 [ ]))((ˆ 111
D

i
DQ

i M ΦPYHΨS −= −−−    (4.22) 

where { }11 ˆ −− = i
L

i
D diag hFH , and (.)QM quantize (.) to the nearest element in Q. The CIR 

estimation given iŜ  follows as (LS solution to (4.21)) 

  YXFFXXFh H
D

H
LLD

H
D

H
L

i 1)(ˆ −=    (4.23) 

where  

  i
DDD ΨSΦPX +=      (4.24) 

 

4.4 Cramer-Rao bound of the ML channel estimator 

Cramer-Rao bound establishes a lower bound on the error covariance matrix of any unbiased 

estimator ( θ̂ ) of a parameter (θ ) [35]: 

)(})ˆ)(ˆ{( 1 θJθθθθ −≥−− HE      (4.25) 

where J  is called Fisher information matrix (FIM). 

In order to evaluate the performance of our approximately ML estimator, we derive its CRB. We 

first derive the CRB of the initial approximately ML channel estimator given in (4.19) and then 

we derive the CRB of the joint channel estimator and data detector given in (4.23). 

The FIM associated with a complex stochastic parameter vector θ  is defined as [36]                           
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where hθ =  for the channel estimator in (4.19).  

Using [35, p. 237, eq. (6.134)] yields 
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Again we replace 1−
YYR  with 1ˆ −

YYR  so that the derivative of 1−
YYR  with respect to h  is zero 

and the expression of (4.27) can be simplified to  

)(ˆ)( 1
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H
LDK FΦPRFΦPJ YY

−≈      (4.28)   

Considering that CIR is a zero mean CGRV we will have  
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 therefore 

11221122 )()()()}()()({)( −−−− ++=++≈ hhh RFΦPIΨFΦPRFΦPIΨFΦPhJ LDw
H

LDLDw
H

LD KKE σασα
.          (4.30)  

The approximation of the CRB for the MSE of approximately ML channel estimation is then 

given by  

 }))()()({( 11122 −−− ++≈ hh RFΦPIΨFΦP LDw
H

LDKtraceCRB σα   (4.31) 
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Since the trace in (4.27) is always positive, the actual CRB will always be tighter than 

the approximated CRB given in (4.31). However the difference is not negligible in realistic 

situations. 

 

The place of pilots and power distribution of data and pilots can be optimized to 

minimize the CRB subject to the power constraint D
N

k
k∑

−

=
=

1

0
ϕ  and P

pIk
k∑

∈
=φ  where Ip is the 

index of Np subcarriers with superimposed pilot ( 0≠kφ ) and P and D are the total power on 

pilots and data symbols respectively. The problem of optimal pilot design becomes 
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From [37], the lower bound on the MSE of channel estimation is attained if and only if 

)()()( 122
LDw

H
LD FΦPIΨFΦPA −+= σα  is diagonal. The ),( sr th ( 1,0 −≤≤ Lsr ) entry of A  

can be written as  
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therefore we require 
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Eq. (4.34) is satisfied if the following conditions are satisfied  
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}1...,,1,0{},1...,,1,0,{/ 00 −∈−=′′+=Ζ∈= zzNkzkzINNz ppp  (4.35) 

p
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.      (4.36) 

In case we want to design the power allocation independent of SNR, condition (4.36) becomes 

pkkk IkconsconsP ∈== ϕφ ., .     (4.37) 

Also we should consider the amount of pilots (Np) to follow 

pNL <−1         (4.38) 

to make sure that equation (4.34) is always true.  

Conditions (4.34) and (4.37) and (4.38) mean that pilots must be equispaced and the 

power of signal and pilot should be the same for all subcarriers in Ip and we need at least L 

superimposed pilots. These conditions lead us to the initial channel estimation with minimum 

MSE. 

Next we derive the CRB for the joint channel estimator and data detector given in (4.21). 

Starting from (4.26), where TTT ],[ Shθ =  for the channel estimator in (4.21), we have 
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and 
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thus the CRB is defined as 

1,21,1
1 }{~),~( JJJJh +== − EtraceCRB .   (4.41) 

From (4.20) and [35] we know 
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Since the information data is independent of CIR, 
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therefore 
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Therefore we have 
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4.5 Simulation results 

Simulation results are given for the proposed channel estimator. In simulation, a superimposed 

OFDM system with 32 subcarriers has been developed. A COST 207 6-ary channel model with 

power profile [ ]0.037095,0.061,9,0.239,0.0.189,0.37  is considered. Each path is an 

independently generated complex Gaussian random process. CIR is constant over K consequent 

OFDM blocks but can vary from one K blocks to another. Both information data and pilot data 

have been drawn form BPSK constellation. We compare the performance of 8 equispaced 

superimposed pilots with that of 16 equispaced superimposed pilots and with different number of 

iterations. The total power at each subcarrier is 1 and the superimposed pilot subcarriers have 0.7 

power. The notation i=n denotes the performance in nth iteration. Ideal detectors, assuming the 

availability of perfect CIR knowledge, are used as benchmarks.  

Figure 4-1 shows the mean square error (MSE) of channel estimation which is defined as 

 ∑
=

−=
R

i
iR

MSE
1

2
)ˆ1( hh       (4.47) 

where R is the number of Monte Carlo runs. In first simulation K=1 and 8 out of 32 subcarriers 

have superimposed pilots. Superimposed pilots are equispaced and equipower.  It also includes 

the CRB of the initial estimation (Eq. (4.31)) and the iterated estimation (Eq. (4.46)). As it can be 

seen, in high SNR, one step of iteration improves the MSE of estimator significantly (almost 10 

dB) but the 4th iteration doesn’t do more than 3rd iteration. In high SNR, estimators with 3 or 4 

iterations get quite close to the CRB of iterated estimation. 

 

 



 70

 

Figure 4-1: MSE of proposed channel estimator with different number of iteration 
and CRB of estimator vs. SNR 

 

Figure 4-2: MSE of channel estimator vs. K 
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Next we investigate the effect of number of OFDM blocks included in estimation (K) 

on MSE of our estimator. Figure 4-2 shows that increase of K from 1 to 10 improve MSE by 

almost 9 and 10 dB for initial estimation CRB and channel estimator with no iteration 

respectively while the improvement is about 1 dB provided that 3 or more iterations are done. 

This means for the case of time varying channel, when we can’t assume channel is unchanged 

for big value of K, iteration should be done to get good estimation of channel. In this simulation, 

we fixed the value of SNR to 20dB. 

Since the proposed channel estimator needs to know the noise power (Eq. (4.19)), we 

investigate the robustness of our estimator to mismatch. Figure 4-3, shows the MSE of channel 

estimator with zero and one iteration and compares them with the MSE for the case with a 

mismatch. The mismatched value of noise power is the noise power related to SNR equal to 20 

dB. As it can be seen both of the estimators perform robust to this mismatch provided that the 

approximated noise power is related to a high SNR. 

 
Figure 4-3: Comparison of MSE of channel estimator with perfect knowledge of 
noise power and mismatch 



 72

Next, we would like to see the effect of number of superimposed pilots on MSE of 

proposed estimators. Figure 4-4 compares the performance of CRB and estimator with different 

number of iterations between the system with 8 superimposed pilots and 16 pilots. As it can be 

seen CRB of system with 16 pilots is almost 2 dB better than the one with 8 pilots for the case of 

zero iteration while the difference increase as the number of iterations increase. It suggests that 

performing iteration can save the transmitted power. In other words, instead of increasing the 

number of pilots for better estimation, we can use decision directed algorithm and iteration. MSE 

of the estimator with 16 superimposed pilots with 3 or more iteration has less than 1 dB 

difference with the CRB in high SNR. This figure also includes the CRB of the initial estimation 

for 8 and 16 superimposed pilots. Not that the CRB of iterated estimator is not a function of the 

number of pilots, instead it is a function of the total power on each subcarrier.  

 
Figure 4-4: Comparison of MSE of channel estimator with different numbers of 
superimposed pilots   
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The last simulation compares the BER performance of our channel estimator and data 

detector for different number of iteration and 8 and 16 superimposed pilots. The estimated 

channel has been used to detect the information symbols. The performance of equalizer with 

perfect knowledge of the CIR provides the benchmark. Figure 4-5 shows that in high SNR the 

difference between zero and one iteration is almost 6 dB while it decreases to 4 dB going from 

1st iteration to the 2nd one. Eventually the improvement caused by increasing the number of 

iterations from 3 to 4 is insignificant. Data detector with perfect knowledge of CIR performs just 

3 dB better than the one with 16 superimposed pilots and more than 3 iterations. 

 

Figure 4-5: BER performance of estimated channel used for data detection 
 



 74

4.6 Conclusion 

We have proposed an iterative ML channel estimator and data detector for superimposed OFDM 

system. Since we have approximated the correlation matrix in derivative of our ML estimator, it 

shows an error floor in high SNR. To improve the MSE of the channel estimator we used a 

decision directed algorithm to ensure good performance. We have derived the CRB for our 

approximately ML channel estimator and optimized the allocation and the power distribution of 

superimposed pilots such that the MSE (CRB) is minimized. We also derived the CRB of our 

iterative channel estimator. We investigated the effect of the amount of superimposed pilots and 

also number of OFDM blocks and number of iterations on our estimator’s performance in our 

simulations.   
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Chapter Five: Carrier Frequency Offset in OFDM  

 

This chapter presents several algorithms for carrier frequency offset (CFO) estimation in OFDM. 

Section 5.1 introduces the CFO issue in OFDM and addresses some of the present estimation 

algorithms and formulates CFO in OFDM. Section 5.2 and 5.3 and 5.4 and 5.5 present several 

algorithms for CFO estimation and Section 5.6 introduces a joint channel and CFO estimator. 

Section 5.7 gives the numerical results and Section 5.8 concludes the chapter. 

 

5.1 Introduction 

5.1.1 Literature review 

OFDM introduces spectral efficiency (no guard bands are needed between adjacent frequency 

channels). More importantly, its implementation simplicity compared to traditional time domain 

modulation methods in channels with severe inter-symbol interference (ISI), is huge. OFDM 

does have its drawbacks relative to time domain modulation, most significantly its extreme 

sensitivity to time varying multiplicative effects such as fast fading, Doppler shifts, and oscillator 

jitter. The latter two effects lead to a mismatch between the carrier frequencies of the received 

signal and the local oscillator, so that a frequency offset is created.  

OFDM provides an efficient way to combat multipath fading by dividing one high bit rate 

data stream into multiple low bit rate streams for simultaneous transmission on multiple 

subcarriers. However, as a multicarrier transmission technique, OFDM is more susceptible to the 

carrier frequency offset (CFO) than single carrier systems [38]. A carrier offset at the receiver 

can destroy the mutual orthogonality between subcarriers and thus introduce inter-channel 

interference (ICI) and cause severe degradation in system performance [38]. Consequently, 
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accurate estimation and compensation of CFO is necessary at the receiver before OFDM 

demodulation. 

CFO estimation algorithms can be divided into two categories: data aided and blind 

schemes. Data aided schemes exploit the training sequence known to the receiver while blind 

schemes utilize the redundant information in the received sequence such as virtual carrier (VC). 

Blind algorithms are more efficient in the view of bandwidth usage of the system. In [39], a non-

blind scheme was proposed where repeated symbols were used for estimation. The algorithm in 

[40] exploits cyclic prefix (CP) preceding the OFDM symbols for CFO estimation, thus reducing 

the need for pilots, but mostly developed for flat fading channels. Another solution to the 

estimation problem was proposed in [43] which take the advantage of virtual carriers. A ML 

estimator was proposed in [41] and it was shown that it is equivalent to the MUSIC-like 

algorithm in [42][43].  

In what follows, we will develop several CFO estimators and derive their CRB and use 

this bound to optimize the parameters existed in the estimators. 

5.1.2 Background 

In the presence of CFO, every sample at the receiver is modulated with a complex exponential 

which is a function of sample index and frequency offset. In other words, CFO causes a rotation 

in received samples. Let 0ε  denotes the normalized CFO, which is the actual CFO divided by the 

subcarrier spacing. In the presence of carrier offset, we have  

∞≤≤∞−+−= ∑
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),()()(
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0

2 0πε

   (5.1) 
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where )(ny , )(nx  and )(nw  are the nth received sample, transmitted sample and noise sample 

respectively and lh  is the CIR for lth tap . Thus, in an OFDM system, from (5.1), after 

discarding CP, the pre-DFT data can be rewritten as 
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where m is the block interval index. 

Now, if we group the pre-DFT data in blocks of length N, we will have  

mmD
HNNNmNj

m
gge wXHVFy += ++ /))((2 0πε     (5.3) 

where ),...,,1( /)1(2/2 00 NNjNj eediag −= πεπεV . The definition of other matrixes is the same as 

per previous chapters. 

 

5.2 Frequency Offset Estimation by exploiting correlation of CP carrying received data 

In this section, we will develop cyclic prefix based CFO estimator for OFDM symbols over 

multipath fading channels. The key is to use the fact that CP contains the repeated samples which 

introduces a special correlation structure on the received samples. The correlation between each 

received signal sample over the CP interval and its corresponding sample at the end of the 

OFDM block will be used to estimate CFO. 
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The nth OFDM symbol during the mth block interval is denoted as )(nxm  and the received 

signal is denoted as )(nym . At the border between two OFDM blocks ( 0<≤− nNg ), the 

received signal samples can be written as  
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where (.)U  is the step function.  The correlation between the samples of received data over the 

beginning and end of OFDM block can be given by   
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where ∑
−

=
=

1

0

22
L

l
lh σσ . Note that the expectation is taken with respect to both data and channel. 

From the Eq. (5.5), it can be seen that the angle of { })()( * kNykyE mm −−  is a function of CFO 

and therefore it can be considered as an estimator for CFO. Note that this estimator doesn’t need 

to have any knowledge of SNR and channel power delay profile but the length of CIR. 

In practical implementation, expectation is replaced with averaging over M consecutive values. 

In other words, 

{ } ∑
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M

m
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M
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1

** )()(1)()(   (5.6) 

while we assumed that CFO is invariant within M OFDM symbols. 



 79

After estimation and compensation of CFO, channel power delay profile and noise power can 

be estimated using the algorithm in [44]. 

Looking back at Eq. (5.4), for 0)1( <<−− nNL g , the received signal sample over the 

CP interval is just a function of the current block of transmitted OFDM symbols provided that 

gNL <− )1( . In other words, 
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We know 
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therefore in the noise free case (or the high SNR regime) ,  

02
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)( πεj

m

m e
ny

nNy −=
+    (5.9) 

This equation shows when the GI length ( gN ) is longer than CIR length ( 1−L ), the CFO can be 

estimated by taking the difference of the angle of the received data sample over the CP interval 

and its corresponding sample at the end of OFDM block. 

 

5.3 Superimposed training aided Carrier Frequency Offset Estimation by exploiting cross 
correlation of consequent OFDM blocks 

In this section, we will propose a method which utilizes superimposed training data for 

frequency offset estimation. Our estimator doesn’t require knowing the CIR [50]. 
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Let [ ]Tiiii NSSS )1(),...,1(),0( −=S  denote the ith block of information data to 

be transmitted which is assumed to consist of independent identically distributed (i.i.d) random 

variables with zero mean ( 1....,,0,)( −=∈ NkQkS i  are zero-mean randomly 

distributed data symbols and have the unity average power) and covariance matrix 
jiSSR  

{ }
⎩
⎨
⎧

=
≠

==
ji
ji

E
N

NH
jiji I

0
SSR SS     (5.10) 

Let [ ]TNPPP )1(),...,1(),0( −=P  represent the pilot vector which is independent of the 

information data and is superimposed onto it. If we assume the same pilot vector for different 

OFDM blocks, the OFDM block to be transmitted can be written as  

[ ] i
T

iiii NXXX ΨSΦPX +=−= )1(),...,1(),0(   (5.11) 

where Φ  and Ψ  are given in (4.8). From (5.10) and our assumptions above, we can write the 

covariance matrix 
ji XXR  as  
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After taking the N-point IFFT, the resulting signal can be expressed by i
H

i XFx = . One 

transmitted OFDM block period usually consists of a regular symbol interval and a guard 

interval (CP). Assuming that the CP length (Ng) is greater than or equal to the CIR length (L), ISI 

is completely eliminated. The last Ng samples of OFDM block ix  are duplicated and appended to 

the beginning of the OFDM block to form CP, and then the OFDM symbols are transmitted 

serially on the channel. Composite CIR modeled has been considered the same as (4.3). 
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At the receiver, the CP will be discarded from the received OFDM block. In the presence of 

carrier offset, the received signal is modulated by a residual carrier Nnje /2 0πε . After removing 

CP, the ith N-point received OFDM symbol block can be expressed by  

iiD
HNNNiNj

i
gge wXHVFy += ++ /))((2 0πε     (5.13) 

where { })1(),...,1(),0( −= NHHHdiagDH  and iw  is a white Complex Gaussian noise 

vector, with zero mean and variance of 2
,iwσ . 

If the channel is static, and CFO can be assumed the same for two consequent OFDM blocks 
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We know 
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Then taking the average both over OFDM symbols and channel and considering the fact that 
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and defining ∑ −
=

= 1
0

2 /L
l l Nσα   and using (5.16) and (5.17), we will have 
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Since DFT is a unitary transform, the diagonal elements of 
1+iiyyR  can be written as 
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(5.19) suggests using the angle of the diagonal elements of 
1+iiyyR  to estimate the normalized 

CFO 0ε , 
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so (5.20) is the basic of CFO estimator. 

Now we want to use the same procedure for slowly time varying channels. Actually we 

want to know how slow the channel should change if we want to use the same equations. Eq. 

(5.13) can be written equivalently as 

 iiLiD
HNNNiNj

i
gge whFXVFy += ++
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where iDDiD ,, ΨSΦPX +=  and [ ] LT
iiii CLhhh ∈−= )1(...,),1(),0(h . 

Considering two consequent OFDM blocks, we next derive the cross correlation as: 
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Taking the average both over OFDM symbols and channel and defining }{ 11
H
iiE

ii +=
+

hhR hh , we 

have 
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This equality follows from the fact that data and channel are statistically independent. 

Assuming that channel taps are uncorrelated, and from Jakes’ model [2], we have  
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where (.)0J  denotes the zeroth order Bessel function of first kind and df  is Doppler frequency 

in hertz. If we use the Taylor series expansion of ...)()()2( 2
2100 +Δ×+Δ×+=Δ trtrrtfJ dπ , 

since the correlation function is an even function, ...,1,0,012 ==+ kr k . The zeroth order Bessel 

function of the first order can be expanded as 2
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where sd NTf  is the normalized Doppler frequency. When 1.0<sd NTfπ  or 03.0<sd NTf , the 

second term can be neglected and then we have  
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Again because matrix ΦFPFRFΦPF hh
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 is Hermitian and V is diagonal, the diagonal 

elements of matrix HH
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This means as long as 03.0<sd NTf , our estimator can be used for a time varying channel as 

well. 

 

5.4 ML Frequency Offset Estimation  

In this section, we will develop ML estimation of CFO considering that CSI is unknown for the 

receiver for the case of superiompsed and nonsuperimosped OFDM symbols. 

 

 To use the ML principal, we need to derive the autocorrelation of the received vector as 

function of  tranmistted data, channel and frequency offest. Given the CFO ( 0ε ), the received 

symbol vector y , 

whFXVFy += LD
H       (5.28) 

is approximately Gussian wih zero mean (because h  is CGRV with zero mean and covariance 

vector hhR ) and covariance (autocorrelation) vector yyR , so its distribution is written  
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where }|{ 0ε
HE yyR yy =  (the expectation is over both OFDM symbol and channel). We now 

consider two different OFDM symbol configuration : 

 

5.4.1 Non-superimposed combination of pilot and data  

Defining Id as the index set of data subcarriers with Nd elements , Ip as the index set of subcarriers 

reserved for pilot symbols with Np elements, and Iv as the index set of virtual subcarriers with Nv 
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elements ( vdp NNNN ++= ), the OFDM symbol’s elements selected from a unitary 

constellation are  
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In Eq. (5.31), we used the fact that channel and data are independent and the same procedure as 

Eq. (5.17) has been followed. 

yyR  can be written equivalently as  
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which shows )det( yyR  is independent of CFO. We drop the terms in (5.29) that are 

independent of CFO and derive the log likelihood function as  
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So now maximizing the log likelihood function is equivalent to  
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 If the CFO is the same during K OFDM symbols, and if the delay is tolerable, the K 

consequent OFDM symbols can be combined for frequency offset estimation. Let ky  denotes 

kth received OFDM symbol. Since ky ’s for Kk ...,,1=  are independent, the joint pdf function of 
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So the cost function (5.38) will be  
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Since the receiver knows the pilots and their positions, provided that the receiver knows hR  

and 2
wσ , matrix 1−G  can be pre-computed. The cost function (5.40), can be written as 
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which is a polynomial of CFO, where kib ,  is the (i,k)th entry of B . Since B  is Hermitian, the 

cost function can be written as  
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We add (m-1)N zeros to the end of sequence ]...,,,[ 110 −Naaa  and perform the mN point DFT, 

which yields 
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ij

i

π

.  (5.44) 

Let the index of the minimum ))(( kAℜ  denote k̂ , therefore the 0ε  that minimizes (5.42) can be 

approximated as mk /ˆ
0 =ε . The value of m should be chosen in according to the amount of 

complexity we can afford and accuracy we desire. The larger the m, the better the estimation, but 

the higher the complexity. 
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Remarks 

• No pilot case(Np =0) 

In case that there is no pilot in the transmitted symbol (Np =0), the matrix G  can be written as 

FIΛFG 12 )( −+= wd
H σα . Thus the cost function can be written as  

yBFVVFy HHHg =)( 0ε      (5.45) 

where ]...,,,[)( 110
12

−
− =+= Nwd bbbdiagIΛB σα  and 
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In high SNR 22
11

ww σσα
<<

+
, hence we can accept vk Ikb ∉= ,0 . Denoting the kth column of 

the IDFT matrix HF  with kw , the cost function (5.45) becomes 

∑
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−− ==
vIk
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w
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Hg yVwVwyyVwwwBwwwVy 21211210
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Then the CFO can be estimated as 

∑ ∑∑
∈ ∈∈

===
v vv Ik Ik

k
HHH

kk
H

Ik

HH
kk

H VwyyVwVwyyVwVwy
000

minargminargminargˆ
2

0
εεε
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            (5.48) 

which is the same as the cost function given in [43]. Therefore this CFO estimator in absence of 

pilots and in high SNR is equivalent to the one in [43].   
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• At least one pilot case(Np >0) 

When pilots exist, H
LL FRF h  is a circulant matrix of rank L. If LN p ≤ , H

Dp
H
LLDp XFRFX h  has 

Np nonzero columns and rows, the Np columns are independent. Since dΛα  is a diagonal matrix, 

H
Dp

H
LLDpd XFRFXΛA h+= α  has rank Np+ Nd. Let the singular value decomposition (SVD) of 

A  be denoted as ΛUUA H= , where the first Np+ Nd diagonal elements of Λ  are nonzero. Then 

)( 0εg  can be rewritten as  

yCEVVEy HHHg =)( 0ε      (5.49) 

where UFE =  and }...,,,{)( 110
12

−
− =+= Nw cccdiagIΛC σ  and  
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Again in high SNR regime, 22
,

11

wwkk σσλ
<<

+
. Let ke  denotes the kth column of matrix  HE . 

Eq. (5.49) becomes  

∑
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=
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1)(

N

NNk
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kk

H

w pd

g yVeVey
σ

ε .    (5.51) 

Since there are vdp NNNN =−−  terms in (5.51), it acts as a subspace based frequency offset 

estimator with vN  virtual carriers. Thus when LN p ≤ , the pilots can not improve the 

performance of the frequency offset estimator in high SNR. However, improvement is possible 

in low SNR. When LN p > , H
Dp

H
LLDp XFRFX h  is of rank L and A  has rank dNL + . Therefore 
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there are LNNNLN pvd −+=−−  terms in cost function )( 0εg  and the CFO estimator is 

the same as estimator in [43] with LNN pv −+  virtual carriers. It means with taking the 

advantages of pilots when LN p > , this estimator can outperforms the one in [43] in high SNR 

regime. 

 It can be seen in (5.42) that the cost function )( 0εg  is periodic with the period N, which 

means that the range of frequency offset estimator is wider than and not limited to the half of the 

frequency separation between adjacent subcarriers. It means this estimator doesn’t divide the 

frequency offset into an integer part and a fraction part. 

 Next we will show this estimator is unbiased, and then will find the Cramer-Rao bound 

for it. [45] shows that the expectation of the estimate in high SNR is approximated as  

)}({
)}({}ˆ{

0

0
00 ε

εεε
gE
gEE
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′

−=      (5.52) 

where )( 0εg ′  and )( 0εg ′′  are the first and second derivatives of )( 0εg . From [46], we know the 

derivative of a quadratic form CxxH  provided that C  is Hermitian can be written as  

)(2)( xCxCxx ∂ℜ=∂ HH      (5.53) 

therefore 
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and since yMVyV H
H

N
j )2()(

0

π
ε

−=
∂

∂  where }1...,,1,0{ −= NdiagM  
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if x  is a complex Gaussian vector with mean m  and covariance matrix S , and A  is a matrix, 

we have AmmASAxx HH trE += )(){  [46] so 
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The last equalities come from the trace property )()( CBBC trtr = . 

From (5.52) and (5.56), we have 00}ˆ{ εε =E  , which means the estimator is unbiased. 

For any unbiased estimation 0ε̂ , from the Cramer-Rao lower bound theorem we know  

CRB≥}ˆvar{ 0ε      (5.57) 

where CRB for a scalar parameter is defined as 

)}({
1

}),({

1

0
2
0

0
2 ε

ε
ε gE

E
CRB

′′
=

∂

Λ∂
−=

y
  (5.58) 

Now we will use the first derivative of cost function to derive the second derivative. We have 
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j
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Since LL −=H , we have 
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and eventually using (5.59), we will have 
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so 
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0
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πε
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When there are neither pilots nor virtual carriers, the cost function (5.38) can be written as 

yyyFVVFy H
w

HHH
wg 1212

0 )()()( −− +=+= σασαε , which is independents of CFO. 

Therefore, in order to have an estimator of CFO, we need to either have embedded pilots or 

virtual carriers. 
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5.4.2 Superimposed data and pilot 

When data and pilot are superimposed ( DDD ΨSΦPX += ), we have 

IFVΦPFRFΦPΨVFR hyy
22 )( w
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H
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H σα ++=    (5.64) 

or equivalently   
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Again since 
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is independent of CFO, the log likelihood function is 
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 (5.67) 

where FIΦPFRFΦPΨFG h
122 )( −++= w

H
D

H
LLD

H σα  and the other vectors have the 

same definition as the previous section. 

Again if the CFO is the same during K OFDM symbols, and if the delay is tolerable, the K 

consequent OFDM symbols can be combined for frequency offset estimation. The same sort of 

equation are true in superimposed case provided that 

FIΦPFRFΦPΨFG h
122 )( −++= w

H
D

H
LLD

H σα . Equations (5.40) to (5.44) are applicable to the 

superimposed case with the new matrix G . 

 



 94

5.5 Superimposed training aided Carrier Frequency Offset Estimation by exploiting the 
correlation between different received data samples 

The correlation between adjacent subcarriers can be exploits in superimposed OFDM for the 

purpose of CFO estimation. We will investigate this idea in this section. 

For the pre-DFT data at the receiver, we have 

)()(1)()()()(
1

0

)(21

0

21

0

2 00

nweXnhe
N

nwlnxnheny
N

k

N
lnkj

k

L

l
l

N
njL

l
l

N
nj

+=+−= ∑∑∑
−

=

−
−−

=

−

=

ππεπε

. 

         (5.68) 

The correlation between )( 1ny and )( 2ny , using Eq. (5.68) and (5.24), can be written as 
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         (5.69) 

Assuming uncorrelated data symbols 
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In the case that data is from a unitary constellation so that }{ 2
kXE   is the same for all the 

subcarriers, ∑
−

=

−

≠=
1

0
21

)(2
2 ,0}{

21N

k

N
nnkj

k nneXE
π

; which means the correlation between 

subcarriers can’t be used for this CFO estimation. Still unitary constellations can be used for the 
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superimposed case provided that the total power for each subcarrier is not the same for 

different subcarriers. It means that if both data and pilot are drawn from a unitary constellation, 

pilots shouldn’t be superimposed on all subcarriers. Assuming that the aforementioned condition 

is true, for the superimposed OFDM data  

1...,,1,0,}{ 2 −=+= NkXE kkk φϕ     (5.71) 

and from (5.24), we know 

2
2121021 ))((1))(2())(( nnTfnnTfJTnnr sdsdsh −−≈−=− ππ  (5.72) 

so when 1.0<sd NTfπ , 1))(( 21 ≈− sh Tnnr  and we have 
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         (5.73) 

Therefore the autocorrelation matrix yyR  of the received signal y , where 

[ ]TNyyy )1(...,),1(),0( −=y , can be written as  

H
w

H
w

HH VIΩFFVIΩFVVFR yy )( 22 σασα +=+=   (5.74) 

where kkkNdiag φϕ +=ΩΩΩ= − ),...,,( 10Ω  

The pdf of y  conditional on the carrier offset is therefore 
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 96

and as we know )det()det()det()det( 2 VIΩFFVRyy w
H σα +=  which is independent of carrier 

offset. Ignoring terms that are independent of carrier offset, we find that maximizing the log 

likelihood function is equivalent to minimizing the following cost function  

yVIΩFFVyyRy yy
H

w
HHH 121

0 )(minargminargˆ
00

−− +== σαε
εε

. (5.76) 

Solving (5.76) is equivalent to solving  

*12*
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    (5.77) 

where TNNjNj ee ]...,,,1[ /)1(2/2 00 −= πεπεβ  and ]...,,[ 10 −= ND yydiagy .  

For the case that 1.0<sd NTfπ , the cost function remains the same which means the estimator 

(5.77) is robust for normalized Doppler frequencies less than 0.03. 

Again if the CFO can be supposed to be the same for K different OFDM symbols, assuming that 

these symbols are independent, the joint pdf is the multiplication of the individual pdfs so that 

the cost function can be written as  
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Or equivalently 
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Again we can write the cost function as a polynomial  
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where kib ,  is the (i,k)th entry of B . Following the same equations as (5.42) to (5.44), the CFO 

can be estimated by an FFT based algorithm. 

In order to find the CRB, we need to compute the second derivative of the cost function. 

Following the same procedure as in (5.54) to (5.63), we have  
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where IΩFFG 2
w

H σα += . 

Note that if all the subcarriers have the same amount of power we will have IG β= , where β is a 

real number, and therefore 0)( 21 =−− MMGMGtr . It means the variance of our estimator will 

be infinity and it is the same as the fact that the cost function will be independent of CFO in this 

case. 

The place of pilots and power distribution of data and pilot can be optimized to minimize the 

CRB subject to the power constraint D
N

k
k∑

−

=
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1

0
ϕ  and P

pIk
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∈
=φ  where Ip is the index of Np 

subcarriers with superimposed pilot ( 0≠kφ ) and P  and D  are the total power on pilots and 

data symbols respectively. From (5.81), minimizing CRB is equivalent to maximizing 

)( 21 MMGMG −−tr  and consequently, it is equivalent to maximize )( 1MGMG−tr  
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 We can rewrite matrix G  as FIΩFG )( 2
w

H σα +=  and so FIΩFG 121 )( −− += w
H σα  . 

Therefore we have 
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We defined }...,,{ 10 −= NaadiagM , so   
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which means the elements of sum when sr =  are positive. 

Therefore to maximize the trace, we need  
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If 
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so the condition (5.87) is satisfied. 

(5.88) means that the total power on the subcarriers with superimposed pilots should be equal 

and also the power on subcarriers without pilot should be equal. (5.89) means that the 

superimposed pilots should be equispace. In the separate training scheme, (5.88) and (5.89) agree 

with the equipower and equispace conditions. Note that (5.88) doesn’t assign the power allocated 

to pilots but the total power allocated to each subcarrier. 

 

5.6 Iterative Joint channel and CFO estimation and data detection for superimposed 
training aided OFDM systems 

Starting form (5.28), since the noise vector is i.i.d Gaussian, the ML joint estimators of the CSI 

and CFO and transmitted symbols are given by 
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The minimization in (5.91) is a complex LS problem for ĥ  and 0ε̂  and an integer LS problem 

for DŜ  . Given 0ε̂  and DŜ  (we assume that 00ˆ εε =  and DD SS =ˆ ), the channel response that 

minimizes (5.91) is given by the LS estimate 
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Substituting (5.92) into (5.91), we obtain 
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Denoting hFXVFyA ˆ
LD

H−= , we have 
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So the decision function for data and CFO detection will be, 
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           (5.96) 

From this decision rule, we can use the iteration algorithm as follow 

 Initialization: 

DD ΦPX =0           (5.97)  

 Recursion: for Ii ,...,1=  
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5.7 Simulation and Results 

Simulation results are given for the proposed CFO estimators. In first simulation, we compared 

the performance of the CFO estimators given in section 5.2. An OFDM system with 32 

subcarriers has been developed and frequency selective channel with exponential power 

decaying profile have been considered. The length of CP is L+3 where L is the maximum length 

of CIRs and it is considered 4 in our simulation. CFO is assumed constant over 25 blocks of 

consequent OFDM symbols [M=25 in (5.6)]. Data symbols have been drawn form BPSK 

constellation.  
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Figure 5-1: MSE comparison of CFO estimators presented in (5.5) and (5.9) 
 

Figure 5-1 shows the mean square error (MSE) of CFO estimation which is defined as 

 ∑
=

−=
M

i

i
M

MSE
1

2
00 ))ˆ(1( εε   (5.105) 

where M is the number of Monte Carlo runs and 15.00 =ε . As it can be seen, correlation based 

CFO estimator [Eq. (5.5)] shows a good performance over the whole range of SNR. At the 

expense of insertion of extra 3 CP, the likelihood base CFO estimator [Eq. (5.9)] shows even less 

MSE in high SNR. Note that estimator in (5.9) needs just one OFDM symbol block to work. 



 103

 

Figure 5-2: MSE vs. SNR for the CFO estimator in superimposed OFDM presented 
in (5.20) for different values of K 
 

Figure 5-2 shows MSE of the estimator presented in (5.20) as a function SNR for three 

different values of K. A superimposed OFDM system with 64 subcarriers and 15.00 =ε  has 

been considered in next four simulation results. 16 out of 64 subcarriers have superimposed 

pilots for the first one. Superimposed pilots are equispaced and equipower.  As it can be seen, 

increase of K form 15 to 25 improves the MSE of estimator about 2 dB but further increase 

doesn’t do more. Figure 5-3 shows the effect of number of superimposed pilots on accuracy of 

estimator. As it can be increase form 8 pilots to 16 pilots makes the MSE 4 dB less. Figure 5-4 

represents the MSE as a function of K. Simulation results in the figure suggests that a fair 

amount of K (K=25) should be considered for estimation but increase in K after that doesn’t 

improve the MSE significantly.  
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Figure 5-3: MSE comparison of CFO estimator presented in (5.20) for two different 
amount of superimposed pilots 

 

Figure 5-5 shows the MSE of the estimator in (5.20) for two different channels. One of the 

channel is static (fd=0) and for the other one  03.00288.0 <=sd NTf  which means it meets the 

requirement given in (5.25). Simulation results shows that the degradation in performance is 

insignificant (about 3 dB) as long as 03.0<sd NTf . 
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Figure 5-4: MSE vs. K  for two different amount of superimposed pilots for CFO 
estimator in (5.20) 
 

 Next simulation is done for the ML CFO estimator presented in Section 5.4. An OFDM 

system with 64 subcarriers and 25.00 =ε  has been implemented. It has 16 VCs and channel’s 

model is the same as previous simulations. Figure 5-6 compares the MSE of CFO estimator 

(denoted by ML) and CRB for different number of pilots. CRB of estimator with 4 pilots is 

almost 11 dB better than the one with no pilots. This difference decreases to 5 dB when the 

number of pilots changes from 4 to 8 and reduces to 3 dB when number of pilots changes from 8 

to 16. The true MSE of ML estimator approaches the CRB in high SNR for every number of 

pilots. Figure 5-7 shows the effect of the number of the blocks (K) on the MSE of estimator with  

4 pilots and 16 VCS.  The use of K=8 blocks yields a 2 dB gain over the use of  K=4 blocks and 

a 7 dB gain over the use of  K=2 blocks at SNR = 25 dB. Note that the CRB for (5.39) using K  
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Figure 5-5: MSE of CFO estimator for two channels with different Doppler shift 
 

OFDM blocks can be readily obtained as 1/K times of (5.63).  The gap between the MSE and the 

CRB decreases with the increase of K. This gap is almost 1 dB when K=8 while it is about 2 dB 

when K=4 at SNR=25 dB. 
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Figure 5-6: Comparison of MSE of ML CFO estimator for different pilot numbers 
 

Figure 5-8 compares the MSE performance of CFO estimators presented in Sections 5.4.1 

and 5.4.2 and 5.5. Different CRBs and MSEs are marked by their section number. Note that the 

estimator in Section 5.4.2 doesn’t need an embedded subcarrier for pilot since the pilots are 

superimposed. The total amount of subcarriers is 64 in this simulation. When there is no VCs, for 

4 pilots, CRB of 5.4.1 and 5.4.2 are almost the same but by the increase of pilots to 8, the 

estimator in 5.4.1 outperforms the other one in very high SNR by almost 1 dB. The true MSE 

(noted by ML) approaches the CRB and the difference is less for more number of pilots. Results 

show that the performance of ML CFO estimator presented in 5.5 is quite poor comparing to the 

ones presented in 5.4.1 and 5.4.2 (even with 32 pilots) but its advantage is its lower complexity 

and independency from channel power profile. 
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Figure 5-7: Comparison of MSE of ML CFO estimator in (5.39) for different values 
of K  
 

Figure 5-9 investigates the effect of number of OFDM block on MSE of CFO estimator 

in 5.5. . It show the use of K=4 blocks improves the MSE about 10 dB over the use of K=1 

blocks. Since the performance of this estimator comparing to the other ones is poor, it sounds 

that using more than one block of OFDM symbols is necessary for obtaining a fair amount of 

MSE.   
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Figure 5-8: comparison of MSE of the CFO estimators presented in 5.4.1 and 5.4.2 
and 5.5  

 

Figure 5-9: MSE of CFO estimator presented in 5.5 for different values of K 
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Figure 5-10: BER of iterative joint estimator and detector for different numbers of 
superimposed pilots and iterations  
 

Figure 5-10 shows the BER performance of proposed joint iterative CFO and CIR 

estimator and data detector for a superimposed OFDM system with 64 subcarriers. A COST 207 

6-ary channel model with power profile [ ]0.037095,0.061,9,0.239,0.0.189,0.37   is considered. 

Each path is an independently generated complex Gaussian random process. Both information 

data and pilot data have been drawn form BPSK constellation. We compare the performance of 8 

equispaced superimposed pilots with that of 16 equispaced superimposed pilots and with 

different number of iterations. The total power at each subcarrier is 1 and the superimposed pilot 

subcarriers have 0.7 power. The notation i=n denotes the performance in nth iteration. Ideal 

detectors, assuming the availability of perfect CIR knowledge and CFO, are used as benchmarks. 

The data detector with 4 iterations performs almost 2 dB and 4 dB better than the one with 1 



 111

iteration in high SNR for the case of  8 pilots and 16 pilots respectively. The detector with 8 

superimposed pilots with 3 iterations performs quite the same as the one with 8 superimposed 

pilots and 4 iterations. Data detector with 16 pilots and 4 iterations approaches the benchmark in 

high SNR. Figure 5-11 and Figure 5-12 show the MSE of CIR estimator and CFO estimator 

respectively. More than 3 iterations don’t improve the MSE of CIR significantly. The MSE of 

the CFO estimator improves almost 14 dB from 2nd iteration to the 3rd one for the system with 16 

pilots in SNR=25 dB but extra iteration after that makes not more than 1 dB improvement. 

 

 

Figure 5-11: MSE of CIR of iterative joint estimator and detector for different 
numbers of superimposed pilots and iterations 
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Figure 5-12: MSE of CFO of iterative joint estimator and detector for different 
numbers of superimposed pilots and iterations 
 

5.8 Conclusion 

We have developed several carrier frequency offset estimators for OFDM and superimposed 

OFDM systems. We have derived the CRB for our ML CFO estimators and in the case of 

superimposed OFDM; we optimized the allocation and the power distribution of superimposed 

pilots such that the MSE (CRB) is minimized. We investigated the effect of the amount of 

superimposed pilots and also number of OFDM blocks on our estimator performance in our 

simulation. We also compared the performance of different proposed CFO estimators. We 

developed a joint iterative CFO and channel estimator and data detector for superimposed 

OFDM systems. We compared the performance of this joint estimator for different number of 

iterations and pilots. Simulations show good performance of this joint estimator and detector. 
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Chapter Six: Conclusion  

 

Both 4th generation and beyond 3rd generation cellular networks are characterized by their ability 

to provide high data rates over wireless links. Multiple antennas and orthogonal frequency 

division multiplexing (OFDM) are emerging as key technologies for high data rate 

communication. OFDM has high spectral efficiency, and it is robust to frequency selective 

fading. Moreover, it permits one-tap equalization. In this thesis, we have studied the data 

detection, CFO estimation, and channel estimation, which is critical in coherent detection.  

 In Chapter 2, we developed a ML multi-symbol non-coherent data detector. We used two 

different algorithms to solve the phase ambiguity problem. Then, we compared the performance 

of two efficient detection algorithms: V-BLAST and SD. Also, we studied a multi-symbol 

differential data detection algorithm.  

 Pilot based channel estimation entails a significant bandwidth loss, motivating blind 

methods. In Chapter 3, we introduced a semi-blind channel estimator for SIMO OFDM systems. 

We pointed out the phase ambiguity, which is common to all blind techniques. Then, we 

discussed identifiability conditions of the estimator. 

 The idea of superimposed data and pilot transmission has received attention in digital 

communication systems. In OFDM, it can enable CIR estimation without sacrificing the data 

rate. In Chapter 4, we developed a joint iterative channel estimator and data detector for a 

superimposed OFDM system. We also derived the CRB of our estimator and optimized pilot 

placement in order to minimize the MSE of our estimator.  

 While OFDM comes with so many advantages, its sensivity to carrier offset is an issue. 

CFO destroys the orthogonality between subcarriers and introduces inter-carrier interference. In 
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Chapter 5, we investigated several techniques to estimate CFO. We derived CRB for ML 

estimators. We also developed a joint channel and CFO estimator and data detector for 

superimposed OFDM systems.  

 The study in this thesis might be continued by research to solve the following problems:  

• Our channel estimator and data detectors may be extended to MIMO OFDM 

systems. Also, CFO estimators can be developed over MIMO systems. 

•   The joint channel and CFO estimator and data detector is an open problem that 

hasn’t been investigated vastly. It would be interesting to derive such a joint estimator. 

• Superimposed transmission is a relatively new idea in digital communication.  We 

explored its benefit in channel and CFO estimation. However, there is a good potential 

for improvements on the use of the superimposed techniques. It is worth developing new 

algorithms for detectors and estimators in superimposed OFDM systems.  
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