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ABSTRACT 

This study was designed to determine if Alberta's sulfur blocks were inhabited by 

microorganisms which contribute to oxidation of elemental sulfur. The first objective 

was to elucidate a functional method of differentiating between viable and non-viable 

organisms in environmental samples. The second objective was to use this and other 

more established microbiological analyses to characterize the microbial population 

inhabiting the block and determine if they influence elemental sulfur oxidation. 

In order to differentiate between viable and non-viable microorganisms, I relied 

on a DNA binding agent called ethidium monoazide bromide (EMA). Based on previous 

literature, I was able to test its activity in different environmental samples. Treatment 

with EMA inhibits the amplification of free DNA, whereas DNA protected by the 

membranes of viable cells is not affected. After finding that killed pure culture cells had 

a substantial reduction in their DNA amplification I proceeded to inoculate the same 

species of killed and viable cells into either soil, biofilm, or elemental sulfur samples 

obtained from Syncrude's Phase I sulfur block.  I have found the EMA treatment to be 

sufficient at inhibiting amplification of DNA from non-viable cells inoculated into both 

the soil and sulfur samples, but not in the biofilms.  

In achieving the second objective I designed experiments which tested in vitro 

and in situ samples of the sulfur block. Bioreactors containing microbiological 

inoculants from water running off the sulfur block were compared to sterile bioreactors 

for levels of acidity, sulfate accumulation and microbial population. Comparison 

between the surface block samples and the matrix samples showed a higher number of 

bacteria in the surface samples; however, the differences between the two bioreactor 
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treatments were not significant. Bioreactors which received sterile water did not increase 

in acidity or sulfate accumulation. The two treatments which were inoculated with 10% 

sulfur block run off increased by 3 and 4.3 mM sulfate, and 8.6 x 10-3 and 1.8 x 10-2 

hydronium ion concentration, in the surface and matrix treatments respectively.  In situ 

samples obtained by coring the sulfur blocks showed that microbial inhabitants are 

present throughout the block depth profile with a discontinuous pattern, which could be 

attributed to the fractures associated with the solidification of the block and subsequent 

colonization. The level of microbiological inhabitants ranged from 2.5 to 5.5 log 

heterotroph colony forming units g-1 sulfur,  and 3.19 x 101 to 1.62 x 102 A. thiooxidans 

amplified copy numbers, and 1.23 x 103 to 1.11 x 104 Eubacteria  amplified DNA copy 

numbers μg-1 of extracted DNA from EMA treated sulfur block samples. Most probable 

number counts for autotrophs only detected organisms along the 0-10 cm depth of the 

block.  

The results of this study suggest that the use of ethidium monoazide bromide is a 

suitable method of detecting the large and varied microbial population inhabiting 

Alberta's sulfur blocks which can influence the level of block oxidation. The level of 

microorganisms present in the block is varied, which may parallel the varied pockets of 

air and water collected in the geomorphic fractures. Microbial communities residing in 

the sulfur block are partially responsible for sulfur oxidation. Methods aimed at reducing 

the level of sulfur oxidation must aim to reduce both the chemical and biological 

pathways leading to sulfur oxidation.
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1.0 INTRODUCTION 
 

Global mining and extraction processes are responsible for mobilizing 1.5 x 1011 

kg of sulfur per year (Edwards et al., 2000). Because of the current global surplus of 

elemental sulfur, the industry finds it more economical to store the commodity until 

market values improve. The expectant storage period could extend up to 100 years or 

more. Current methods of storing elemental sulfur, by pouring the molten form into 

large exposed depositories threaten to contaminate the surrounding environment with 

acidic drainage. Natural chemical reactions from the exposure of air and water oxidize 

the elemental sulfur into sulfuric acid, which risks seeping to surrounding areas of the 

block. Both the elemental sulfur and rain water effluent is suspected of harboring 

microorganisms, which may contribute to the production of sulfuric acid. Elucidating the 

role of the microbial inhabitants of the block will lead to the development of methods 

aimed at reducing sulfate accumulation and release into the environment.  

One of the most significant environmental anthropogenic impacts is acid mine 

drainage, which is formed from the oxidation of exposed metal ores (Bridge, 2004; 

Leduc, 2002). Alberta's elemental sulfur blocks are enormous, man-made landmarks 

which are characteristic of the landscape found in the oil sands, north of Fort McMurray. 

Oil sweetening processes involve removing sulfur impurities from crude oil, resulting in 

an excess of purified elemental sulfur. When exposed to the atmosphere, elemental 

sulfur undergoes biological and geological oxidation producing sulfuric acid, which can 

leach into the soils and water surrounding the block. Stockpiles of elemental sulfur from 

mining and extraction processes account for approximately 50% of  net river transport of 

sulfate to the oceans (Edwards et al., 2000). Elevated levels of sulfuric acid reduce 

ecosystem pH with detrimental effects on the flora and fauna of the area. Current 
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methods used to decrease the amount of sulfuric acid being produced involve the 

limitation of oxygen to the tailings areas by providing a vegetative cover (Brooks et al., 

1989). However, these methods are often not rapid enough to prevent acid rock drainage 

and are sometimes ineffective, because the vegetative cover has very slow growing root 

systems which are incapable of effectively removing the oxygen containing pores 

(Brooks et al., 1989). 

The many thin layers that form from different pouring events are exposed to the 

elements and windblown dust, before being sealed with the next molten sulfur coating. 

Solidification and settling processes cause the pure elemental sulfur blocks to fracture 

and shift, providing more surface area for water and gas contact. It is these surfaces 

which are most suspect of harboring microorganisms which can contribute to oxidation 

processes. Microorganisms are capable of thriving in some of the most extreme 

environments on the planet; therefore the possibility of certain species inhabiting the 

nutrient poor sulfur blocks is quite likely. Microbial communities expected within the 

sulfur block profile include both chemolithotrophs, capable of fixing carbon dioxide as a 

source of carbon, and heterotrophs, which rely on organic sources obtained from detritus 

and windblown fragments.  

It is unknown whether microorganisms are in fact thriving in the depths of the 

sulfur block, and if these microorganisms are capable of a significant contribution to 

sulfuric acid run off. In order to develop a more successful method of limiting sulfuric 

acid discharge, the biological parameters involved in the process must be further 

investigated.
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2.0 LITERATURE REVIEW 

2.1 Economics of elemental sulfur 

2.1.1 The global sulfur market 

The environmental benefits from burning fossil fuels with decreased sulfur 

contents have long been realized by the petroleum industry. The burning of fuels which 

are high in sulfur results in elevated sulfur dioxide (SO2) emissions, which contribute to 

acid rain and climate change. A high atmospheric content of sulfate particles increases 

the reflection of sunlight, and contributes to cooling the atmosphere (Smith et al., 2001). 

Since a greater awareness of global warming and concern regarding emission controls, 

environmental mandates have come into place forcing the hydrocarbon industry to reduce 

emission levels of harmful gases. Many oil companies have since invested in the 

development of economical methods used to detoxify combustion gases released into the 

environment (Bejarano et al., 2001).  

Removal of impurities from fuel by the hydrocarbon industry leads to the 

acquisition of more sulfur than the market demands, particularly because of the increase 

in demand for clean fossil fuels in the last few decades. As of 2003, sulfur produced from 

the  oil and gas industries represented two-thirds of all global sources of sulfur (Chasez, 

2003). Before this massive addition to sulfur production from the hydrocarbon industry 

the sulfur market was relatively balanced with a controlled production of sulfur relying 

on mining and smelting operations (Chasez, 2003). With the vast oversupply of sulfur 

across the globe, environmentally and economically feasible means of indefinite storage 

for this commodity must be determined. 
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  Elemental sulfur is an essential and convenient form of sulfur which can be used 

by a variety of different industries. Elemental sulfur can be easily converted into forms 

and compounds which are widely used, particularly in construction, metal refining, and 

agriculture (Nakamura, 2003). It is the raw material of choice for most sulfur containing 

products because it is easy to store and transport (Bejarano et al., 2001). The majority of 

the elemental sulfur trade ends in the conversion to sulfuric acid. Sulfuric acid, a mineral 

acid derived from elemental sulfur, is among the most economically important inorganic 

chemicals on the market (Bejarano et al., 2001). Sulfuric acid is commonly used in 

fertilizers. 

The increase in demand for oil has since changed into an increase in demand for 

clean burning oil. The hydrocarbon industry has been steadily growing since the 1980's 

and with that has faced stricter environmental emission controls. Before this oil boom, the 

global sulfur supply retained a functional balance. Voluntary sulfur producers, which 

dominated the market in the past, were capable of curtailing production when market 

demand was low, and production costs exceeded gains (Chasez, 2003). However, the 

growth in the hydrocarbon industries has resulted in a growth in forced sulfur production, 

and an oversupply in the sulfur market. This oversupply resulted in the closure of most 

voluntary producers, with only a small proportion of mining operations still existing in 

countries such as Poland (Chasez, 2003). Canada plays a dominant role in the forced 

production of sulfur, achieved almost exclusively through the involuntarily production 

from our oil sands developments. Both Canada and the United States provide a total of 

40% of global sulfur production (Chasez, 2003). Canada is the world's largest elemental 
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sulfur exporter, with target markets primarily in China and the United States (Chasez, 

2003).  

Three quarters of North American sulfur is used in the phosphate industry, and 

phosphate operations are projected to increase, so this may decrease the current market 

strain for sulfur (Chasez, 2003). Exploration of new niche markets could and should 

occur. However, the gross oversupply will need to be stored until such favorable changes 

in the market begin to take place. 

The current sulfur surplus is predicted to grow as the oil and gas industry will be 

pressured to have even stricter regulations on sulfur content in fossil fuels and developing 

countries who have otherwise not controlled the sulfur content of their produced fuels 

will need to develop new limitations. With the growing concern in the developed world 

on environmental conservation, industries will find stricter regulations for production of 

clean burning fuels. This greater demand on refined fuels will lead to additional supplies 

of elemental sulfur. Future clean fuel regulations adopted by developing countries could 

lead to an additional global sulfur increment of 1.8 million tons per year (Nakamura, 

2003). 

2.1.2 Elemental sulfur storage depositories  

 The economic demand for sulfur has been oversupplied since the early 1990’s 

and future predictions indicate little change in this market for the upcoming decades 

(McKenna, 2004). Because of this, prices have dropped significantly, forcing companies 

to stockpile the sulfur that they would normally sell. One of the most common methods 

of stockpiling sulfur is in the form of large blocks. 
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Canada’s largest crude oil producer, Syncrude Canada Ltd., produces ~7.5 Kg of 

elemental sulfur for each barrel of crude oil they process (McKenna, 2004). The low 

market prices and high transportation costs have forced them to store the sulfur in above 

ground blocks. Elemental sulfur blocks  can range in size between 100-400 meters long, 

50-200 meters wide, and 6-15 meters high (McKenna, 2004). In 2002, Kazakhstan 

poured 1.4 million tonnes of sulfur, followed by Syncrude, with 0.5 million tonnes, and 

Iran with 0.4 million tonnes (Chasez, 2003). Syncrude’s sulfur blocks are located in north 

eastern Alberta’s Athabasca river basin, near Fort McMurray, Canada. 

The sulfur is stored by the Claus process, which involves transporting and pouring 

molten sulfur (melted at ~150 ºC) into large moldings by free lifts, and allowing it to cool 

at ~115 ºC, which results in the characteristic bright yellow color (Laishley and Bryant, 

1987; McKenna, 2004). The sulfur block that results from the Claus process contains 

99.8% pure elemental sulfur (McKenna, 2004). An aerial photograph of some of the 

exposed sulfur blocks at Syncrude is shown in Figure 2.1.  

The sulfur blocks are prone to cracks and fines, which are a part of the crystalline 

modification caused by the sulfurs monoclinic and orthorhombic forms, and occur even 

with proper maintenance (Clark, 2005). These cracks are of particular interest for they are 

likely areas of microbial growth as they are protected from harsh environmental 

conditions, such as direct sunlight and strong winds, and may contain an elevated level of 

water availability. The sulfur blocks contain black layers along the cracks and fines of the 

top plateau, typically one centimeter below the surface, this discoloration is believed to 

be attributed to bacterial activity, but has not been confirmed (McKenna, 2004). 
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Figure 2.1. Picture of an aerial view of exposed sulfur blocks at Syncrude taken in 1998 
(Tyler Birkham).  
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2.2 Oxidation of elemental sulfur 

2.2.1 Environmental impact of sulfuric acid accumulation 

Alberta's sulfur blocks can pose a great environmental risk. The sulfate produced 

on and around the sulfur-blocks is transported to the surrounding environment via high 

intensity rainfall and leaching. Additionally, sulfur dust can be wind swept off the sulfur 

blocks and accumulate further down-wind, resulting in other environmental disturbances 

(Maynard et al., 1986; Laishley and Bryant, 1987; Crescenzi et al., 2006).  

The Athabasca river basin, where Syncrude's sulfur blocks are located, 

experiences average temperatures ranging from -20˚C in January, to 15˚C in July, and an 

annual rainfall precipitation of <300 mm (Akre, 2004). The accumulation of water 

through the fractures of the block increases the likelihood of oxidation, and results in a 

highly acidic sulfate discharge from the base of the blocks. The accumulation of high 

levels of sulfuric acid damages the environment by increasing levels of toxic metals and 

decreasing essential nutrient concentrations. Toxic metals become mobilized by 

decreasing metal sorption to clays and as a result, metal concentrations in the 

environment increase, becoming toxic to the surrounding plants (Laishley and Bryant, 

1987). Similarly, protons replace colloidally-bound Ca2+, K+, and Mg+ ions and these 

essential nutrients leach out of the system (Laishley and Bryant, 1987). Finally, plants 

can also become directly damaged from the acidity, and be physically incapable of taking 

up nutrients (Laishley and Bryant, 1987). The most direct biological impact from 

accumulating acidity is on the microflora, which will demonstrate decreased levels of 

diverse heterotrophic organisms (Laishley and Bryant, 1987). 
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Small particles of sulfur can be windswept off the blocks and settle kilometers 

away from the site. Accumulation of sulfur particles in the soil will impact microbial 

communities and levels of plant available sulfur. The sulfur dust off the blocks also 

contains sulfur oxidizing organisms which may be swept to the new areas promoting 

sulfur bio-oxidation by the native communities. A study performed in the Whitecourt, 

Alberta area showed that soils downwind from a sulfur stockpile demonstrated higher 

levels of sulfur oxidizing autotrophic Acidithiobacilli than the control sites (Laishley and 

Bryant, 1987); however, these results were not consistent with in situ experiments 

performed which examined the sulfur surface colonization of these species (Lawrence 

and Germida, 1991). Studies using Saskatchewan agricultural soils supplemented with 

sulfur beads have shown that the microbial population shifted toward a sulfate producing 

community predominantly composed of thiosulfate-oxidizing autotrophs, but  sulfur 

oxidizing autotrophs, like Acidithiobacilli were not detected (Lawrence et al., 1988, 

Lawrence and Germida, 1991). Without the addition of sulfur, the most abundant sulfur 

oxidizing population of the agricultural soils is heterotrophic (Lawrence and Germida, 

1991). 

 

2.2.2 Sulfur oxidizing microorganisms 

Oxidation of the elemental sulfur blocks compromises the integrity of the 

structures and releases environmentally harmful effluent to the surroundings. Oxidation 

can occur by chemical and biological means. Chemical sulfur oxidation is a spontaneous 

reaction requiring the presence of both water and oxygen. Biological oxidation can be 

much more complicated, as it varies between organisms which rely on different 
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enzymatic processes. The unique environment that is formed directly around and within 

the profile of the sulfur blocks selects for certain species of microorganisms which can 

benefit from the available nutrition. Sulfur oxidizing microorganisms can be divided into 

two main groups: autotrophs and heterotrophs. Autotrophs are capable of fixing carbon 

dioxide for their carbon requirements, and heterotrophs utilize carbon from organic 

matter. Inhabitants of the sulfur blocks are believed to predominantly include autotrophic 

sulfur oxidizing microorganisms, such as Acidithiobacilli (Table 2.1).  

Microorganisms are major contributors to sulfur oxidation processes. Researchers 

estimate that 90% of the acid that is generated from mine tailings can be attributed to 

bacterial action (Brooks, 1989). These organisms have adapted unique methods for 

achieving acidic products, and are capable of oxidizing sulfur under aerobic or anaerobic, 

and light or dark conditions (Laishley and Bryant, 1987). The oxidation of inorganic 

sulfur to sulfate is a major component of the biological sulfur cycle, shown in Equation 

2.1 (Friedrich, 2001).  

    2S + 3O2 + 2H2O → 2H2SO4   

Eq. 2.1 

 

Some of the important organisms which have been found to oxidize inorganic 

sulfur are shown in Table 2.1. These organisms have been found in a range of 

environments, and they have unique mechanisms of sulfur oxidation. They are capable of 

sulfur oxidation when directly attached to sulfur compounds, or in certain cases, when 

they are free in the system (Ceškova, 2002).  
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Eukaryotic acidophiles have been shown to have a greater energetic cost in 

surviving low pHs as they require the maintenance of a very high proton gradient through 

their membranes (Messerli, 2005). Nonetheless, this group of organisms is found thriving 

in extreme acidic environments. The presence of acidic fungi may be apparent by the 

green slime build up along the edges of the effluent catchments around the sulfur blocks. 

Strings of this eukaryotic fungus are present along the run-off streams, which have been 

measured below a pH of zero. Though the acidophilic fungi are capable of thriving along 

the block and within the effluent streams, there is little evidence in the literature of their 

contribution to sulfur oxidation. 

Sulfur oxidization is performed by Bacteria and Archaea (Johnson, 2003). 

Archaea are classified into either Euryarchaeota or Crenarchaeota, and these kingdoms 

are further divided into 8 orders, comprising of a total of 17 families (Elshahed, 2004). 

Archaea are generally associated with the most extremophilic environments. Archaeal 

sulfur oxidizers have the highest temperature tolerances and are capable of growing at the 

most extreme acidic pHs (Johnson, 2003). The genus Sulfolobus is composed of archaeal 

members. Archaea are distinguishable from Bacteria because they possess ether linked 

cell walls, lack a peptidoglycan layer and have long hydrocarbon chained cytoplasmic 

membranes (Laishley and Bryant, 1987). These unique physiological structures aid in 

withstanding high temperatures and low pHs, and render them capable of oxidizing H2S 

to elemental sulfur, and subsequently sulfate, in extreme environments that other 

microorganisms may not tolerate (Laishley and Bryant, 1987). 
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Table 2.1. Important chemolithotrophic microorganisms capable of oxidizing inorganic sulfur. 

 
 

Genus Species  Description References 
Acidithiobacillus ferrooxidans, 

thiooxidans, 
caldus 

aerobic, γ Proteobacteria, acidophilic, optimum temperature is 
28-45°C, no SOX proteins, GC content 52-63.9 mol% , not 
tolerant to NaCl, colorless, metal tolerant 

(Ceškova et al., 2002; 
Friedrich et al., 2001; 
Friedrich et al., 2005; 

Harrison, 1984; Johnson 
and Hallberg, 2003; Kelly 
and Wood, 2000; Laishley 
and Bryant, 1987; Leduc, 

2002; Suzuki et al., 1999a)
Thiobacillus denitrificans 

thioparus 
neopolitanus 
acidophilus 

facultative anaerobe, γ Proteobacteria, neutrophilic, transient 
sulfur depositor, uses thiosulfate as an electron donor 
 
 

(Friedrich et al., 2001; 
Friedrich et al., 2005; 

Kelly and Wood, 2000; 
Leduc, 2002) 

Acidianus ambivalens  
tengchongensis

facultative anaerobe, Archaea, member of the Sulfolobales order 
and Crenarchaeota kingdom, acidophilic, optimum temperature is 
>60°C, contains SOR, GC content 31 mol%, coccoid 
morphology 

(Friedrich et al., 2001; 
Friedrich et al., 2005; 

Fuchs et al., 1996; Johnson 
and Hallberg, 2003; 

Kletzin et al., 2004) (Fuchs 
et al., 1996) 

Aquifex aeolicus 
pyrophilus 

aerobic, neutrophilic, optimum pH of 6.8, thermophile, 
incomplete SOX clusters, GC content 40 mol%, isolated from hot 
marine sediments 

(Friedrich et al., 2001; 
Friedrich et al., 2005; 

Huber et al., 1992) 
Beggiatoa  aerobic, mixotrophic, filamentous, difficult to culture, found in 

freshwater, rely on oxidation of H2S and S0  for energy, but 
organics for carbon 

(Friedrich et al., 2001; 
Laishley and Bryant, 1987; 

Ruby et al., 1981) 
Chlorobium tepidum 

acidophilium 
aerobic, phototrophic, SOX and DSR clusters, oxidizes H2S and 
S0 , maximum sulfide tolerance of 4-8 nM  
 

(Friedrich et al., 2001; 
Friedrich et al., 2005; 

Laishley and Bryant, 1987)
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salicylatoxidans
Rhodovulum sulfidophilum aerobic, phototrophic, SOX enzyme system (Friedrich et al., 2001; 

Friedrich et al., 2005) 
Rhodobacter capsulatus aerobic, phototrophic (Friedrich et al., 2001) 
Paracoccus denitrificans,  

pantotrophs 
aerobic, first characterized SOX enzyme system 

 
 

(Friedrich et al., 2001; 
Friedrich et al., 2005) 

Starkeya novella aerobic, neutrophilic, SOX enzyme system, formerly 
Thiobacillus novellas 

 

(Friedrich et al., 2001; 
Friedrich et al., 2005; 

Ravenschlag et al., 2001)

Methylobacterium extorquens aerobic, SOX enzyme system (Friedrich et al., 2001; 
Friedrich et al., 2005) 

Rhodopseudomonas palustris aerobic, phototrophic, SOX enzyme system (Friedrich et al., 2001; 
Friedrich et al., 2005) 

Allochromatium vinosum facultative anaerobe, phototrophic, γ Proteobacteria, anoxygenic, 
DSR system, purple sulfur bacteria  

(Friedrich et al., 2001; 
Friedrich et al., 2005) 

Thiomicrospira chilensis 
pelophila 
thioparus 

originally described from estuarine environments, thiosulfate as 
electron donor, oxidizes H2S and S0,  mesophilic, motile, 
optimum growth between 5.3 – 8.5, rod shaped  

(Brinkhoff et al., 1999; 
Laishley and Bryant, 1987; 

Ruby et al., 1981) 

Sulfolobus sulfataricus 
tokodaii 

aerobic, acidophilic, optimum temperature is >60°C, contains 
SOR, oxidizes H2S and S0   

(Friedrich et al., 2001; 
Friedrich et al., 2005; 
Johnson and Hallberg, 

2003; Kletzin et al., 2004; 
Laishley and Bryant, 1987)

Thermithiobacillus  aerobic (Friedrich et al., 2001) 
Thiocapsa roseopersicina aerobic, phototrophic (Friedrich et al., 2001) 
Thiomonas cuprina 

intermedia 
neutrophilic, optimum temperature is <40°C, formerly 
Thiobacillus intermedia 

(Johnson and Hallberg, 
2003; Leduc, 2002; 

Ravenschlag et al., 2001)
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Hydrogenobacter acidophilus optimum temperature is 40-60°C (Johnson and Hallberg, 
2003) 

Metallosphaera  optimum temperature is >60°C (Johnson and Hallberg, 
2003) 

Xanthobacter  aerobic (Friedrich et al., 2001) 
Thiovirga sulfuroxydans microaerophilic, γ Proteobacteria, neutrophilic pH 7.5, 

mesophilic (30-34°C), 16SrRNA sequenced, GC content 47.1 
mol% sensitive to NaCl, found in wastewater biofilm 

(Ito, 2005) 

Pseudaminobacter salicylatoxidans contains SOX enzyme system (Friedrich et al., 2005) 
Silicibacter pomeroyi contains SOX enzyme system (Friedrich et al., 2005) 

Acidiphilium acidiphilum facultative anaerobe, acidophilic, formerly known as 
Thiobacillus acidophilus 

(Leduc, 2002) 
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2.2.2.1 Autotrophic and heterotrophic sulfur oxidizers 

Autotrophic, or lithotrophic, sulfur oxidizers obtain energy from the oxidation of reduced 

sulfur compounds. This energy can be used to fix atmospheric CO2, enabling these 

microorganisms to survive in nutrient poor, sulfur-dominated environments, such as the sulfur 

block. Autotrophic sulfur oxidation is performed through the transport of electrons to oxygen, 

generating a proton motive force which produces energy in the form of adenosine triphosphate 

(ATP) (Laishley and Bryant, 1987). Autotrophic microorganisms capable of oxidizing sulfur can 

use the electrons for respiratory chain energy transformation and for reduction of carbon dioxide 

(Friedrich et al., 2005). The electrons obtained from the reduced sulfur compounds flow to the 

electron transport chain, entering at either the flavoprotein or cytochrome c. Autotrophic fixation 

of carbon dioxide requires reverse electron flow through the electron transport chain which will 

lead to the formation of a reduced nicotinamide-adenine dinucleotide (NADH). The Calvin cycle 

can then use this NADH and ATP to fix the carbon dioxide. 

The number of autotrophs is generally low in nutrient rich environments, such as soils, as 

their growth is inhibited by an abundance of organic compounds. This sensitivity has made 

autotrophs reliant on heterotrophs to decrease the levels of organic compounds in their 

surrounding environment (García et al., 1996). Consequently, environments such as soils are 

generally dominated by heterotrophic populations, and sulfur oxidation processes are controlled 

by these organisms. However, environments which had a substantial addition of reduced sulfur 

have shown that autotrophic microorganisms dominate oxidative activities and as such increase 

the rate of sulfur oxidation (Germida, 2005). Populations of autotrophic sulfur oxidizers were 

found to increase in agricultural soils only after the addition of elemental sulfur (Lawrence and 

Germida, 1991).   
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Acidithiobacilli, previously known as Thiobacilli, are key producers of sulfuric acid, as 

they are the most common sources of sulfate bioleaching, and also the most studied (Clark, 2005; 

Laishley and Bryant, 1987). There are three different sub classes of Acidithiobacilli, Type I, II 

and III, segregated based on their lipid compositions (Harrison, 1984). Acidithiobacilli have 

different pH optimums for biological activity, generally in the neutral or acidic pH range 

(Laishley and Bryant, 1987). Because of their pH preferences, these sulfur oxidizing organisms 

grow in species successions depending on the level of sulfate that has accumulated (Laishley and 

Bryant, 1987). The acid loving, A. thiooxidans can oxidize sulfur at a range of pH levels, but 

they cannot grow at a pH above 5 (Chen et al., 2004; Suzuki et al., 1999a). Though commonly 

associated with acid mine drainage environments, the presence of A. thiooxidans and A. 

ferrooxidans in Canadian agricultural soils is rare (Lawrence and Germida, 1991). A. thiooxidans 

and A. ferrooxidans, are tolerant to high levels of certain metals, however their ability to oxidize 

sulfur is limited by high metal concentrations (Suzuki et al., 1999a). 

Another type of autotroph which can be capable of survival within the adverse 

environment of the sulfur block is the methylotrophic methanogen. Recent evidence of methane 

percolating through the block from the ground surface has shown concentrations approaching 1% 

(personal communication by Tyler Birkham). Methylotrophic methanogens are capable of 

surviving by obtaining energy from the minute amounts of methane that is found distributed 

within the block. Methylotrophic microorganisms are capable of utilizing reduced carbon 

substrates with no carbon-carbon bonds as their single energy source (Lidstrom, 1991). This 

provides evidence suggesting that the blocks contain suitable means for the growth of 

methylotrophs which are capable of utilizing the methane as a carbon source. 
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Heterotrophic organisms are dominant contributors to microbial community structure. 

They do not obtain any energy from sulfur oxidation (Laishley and Bryant, 1987), but are the 

principal sulfur oxidizers in soils low in sulfur (Lawrence and Germida, 1991). Different species 

of heterotrophs oxidize different forms of reduced elemental sulfur. For example, members of 

the following genera: Bacillus, Arthrobacter, and Flavobacterium can oxidize elemental sulfur 

or thiosulfate to make sulfate, and Achromobacter spp. and Pseudomonas spp. can oxidize 

thiosulfate to tetrathionate (Laishley and Bryant, 1987). Heterotrophic sulfur oxidizers, 

producing thiosulfate, were found to be the most abundant sulfur oxidizers in Saskatchewan 

agricultural soils (Lawrence and Germida, 1991).  

In nutrient poor environments such as the sulfur block, heterotrophs can be nourished by 

the exudates of the autotrophs, which can maintain a low concentration of organic carbon in the 

environment (Johnson and Hallberg, 2003; Mahmoud et al., 2005). Though, they represent a  

lower sulfur oxidation activity in environments containing high levels of reduced sulfur, there are 

quite a few species of heterotrophs which are associated with sulfuric acid waste. These include 

the fungi Aspergillus sp. and Penicillium sp., and the bacteria Flavobacterium acidurans, 

Bacillus sp., and certain heterotrophic Acidiphilum sp. (Leduc, 2002).  

2.2.2.2 Acidophiles of the sulfur block 

The extreme temperature shifts, low organic carbon, high acidity, and high purity of the 

elemental sulfur block make this a very unique environment. There are few similar study sites to 

that of the sulfur blocks, but certain qualities make it comparable to acid mine drainage sites. 

One of the most well studied extreme microbial communities was that of the acid mine drainage 

of Iron Mountain, California.  
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The Richmond mine at Iron Mountain has the lowest pH of acid water recorded, which 

approaches -4 (Bond et al., 2000; Johnson and Hallberg, 2003). The lowest pH known to support 

microbial growth is 0, harboring two different types of Thermoplasmales, which belong to the 

genus Picrophilus (Edwards et al., 2000). Organisms found around the Richmond mine area 

were dominated by Eubacteria, but low levels of rainfall during warm summer months caused 

archael numbers to increase by ten times their standard numbers, Ferroplasma acidiphilum, 

being the most dominant archaeon (Johnson and Hallberg, 2003). The community shift of the 

acid mine drainage community at Iron Mountain may be analogous to that of the sulfur block, 

which also experiences large temperature increases in the spring and summer months. The rain 

water which percolates through the cracks and crevices through the sulfur block accumulates 

enough sulfuric acid that the pH of the effluent at the base of the blocks has also reached levels 

below zero (personal communication with Tyler Birkham).  

Typical acidophilic microorganisms grow at a pH optimum around 2 to 4 (Matin, 1999) 

but they maintain an internal pH ranging from 6 to 7 (Booth, 1985). In some instances, 

membrane bound enzymes of acidophilic bacteria, such as thiosulfate dehydrogenase of A. 

thiooxidans, can have optimum activity in acidic conditions (Messerli et al., 2005). Acidophiles 

are capable of withstanding the extreme environment because of specialized membrane 

structures which help them tolerate the acidity and maintain a positive internal membrane 

potential  ( Matin, 1999; Edwards et al., 2000).  

An internal pH below 5 can result in the disintegration of proteins, and so maintenance of 

a neutral cytoplasmic pH becomes critical (Goulbourne, 1986). This can be accomplished by 

preventing the entrance of hydrogen ions (Goulbourne, 1986; Suzuki et al., 1999a; Messerli et 
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al., 2005) and maintained by the extrusion of protons, through regulation of cation passage and 

proton efflux systems (Booth, 1985; Handelsman, 2004).  

Passive processes involved in membrane potential maintenance are determined by proton 

diffusion and the Donnan potential (Goulbourne, 1986; Matin, 1999). Factors which cause an 

increase in the proton diffusion rate and in turn increase the membrane potential, include a low 

external pH and a progressive inhibition of respiration (Booth, 1985; Matin, 1999). The Donnan 

potential considers the influence of positively charged macromolecules which are impermeable 

to the cell wall. The positive charge of these macromolecules influences the net proton influx, 

and in this way increases the membrane potential (Goulbourne, 1986; Suzuki et al., 1999a). At 

low pHs the positive charge of titratable molecules in the cytoplasm will increase as the carboxyl 

groups become protonated because of the accumulation of protons (Matin, 1999).  

The environment created at the sulfur storage blocks is much more extreme than the 

typical acidophilic environment, suggesting that the organisms capable of surviving here must be 

highly specialized for the conditions. In this environment, acid tolerating physiological 

adaptations become critical for the organism’s survival. 

2.2.3 Biochemistry of sulfur oxidation 

Biochemical sulfur oxidation follows the same path as chemical oxidation, however the 

enzymatic reactions involved add complexity to the system by changing the rate and level of 

chemical reactivity among the intermediates ( Suzuki, 1999; Masau et al., 2001). The 

biochemical processes involved in sulfur oxidation differ among different sulfur oxidizing 

organisms, but they all demonstrate derivatives of one of two main processes either involving or 

not involving polythionates (SxO6
2-), molecules composed of a sulfur chain terminated at each 

end with a SO3
- group ( Kelly et al., 1997; Druschel et al., 2003a ).   
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Sulfide (S2-) oxidation is catalyzed by sulfide oxidase and yields monoclinic elemental 

sulfur (S0), that spontaneously converts to orthombic elemental sulfur (S8) (Figure 2.2) (Suzuki, 

1999). Oxidation of elemental sulfur or thiosulfate (S2O3
2-) to sulfite (SO3

2) is thought to occur 

by a sulfur oxygenase enzyme (Suzuki, 1965; Takakuwa, 1992). Some doubt exists about the 

importance of sulfur oxygenase because this enzyme is metabolically inefficient for autotrophs 

and therefore its existence is questionable in many autotrophs (Kelly, 1999). The accumulation 

of sulfite in the presence of sulfur results in the formation of thiosulfate, a reaction which is 

reversible with the help of rhodanese or thiosulfate cleaving enzyme (Laishley and Bryant, 1987; 

Suzuki, 1994; Suzuki, 1999).  
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Figure 2.2.Simplified reactions involved in biological oxidation of sulfur, including the 
enzymatic (black arrows) and the chemical (clear arrow) reactions. The common known 
enzymes involved are circled and named. The route of a reaction depends on the 
organism and availability of substrates. 
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The oxidation pathways which emerge from thiosulfate can be differentiated by their 

involvement of polythionates (SxO6
2-) (Kelly et al., 1997). Bio-oxidation of thiosulfate through 

the non-polythionate pathway results in the formation of sulfate (SO4
2-)  via sulfite, catalyzed by 

either a sulfite-oxidizing enzyme or adenosine phosphosulfate reductase (APS) ( Suzuki, 1965; 

Suzuki et al., 1992). The formation of sulfate is the major energy generating reaction (Laishley 

and Bryant, 1987; Suzuki, 1999) for organisms such as Thiobacillus denitrificans  and T. 

thioparus which are autotrophs capable of oxidizing sulfite through the use of the adenosine 

monophosphate (AMP) dependant APS that generates energy through substrate level 

phosphorylation (Takakuwa, 1992; Friedrich, 1998; Suzuki, 1999; Harahuc and Suzuki, 2001; 

Kletzin et al., 2004).  

Alternatively, a second non-polythionate pathway exists in some facultative autotrophs, 

such as Paracoccus sp., in which thiosulfate undergoes oxidation by the periplasmic thiosulfate 

oxidizing multi-enzyme system (TOMES) which produces sulfate without any detectable 

intermediates (Kelly et al., 1997). The non-polythionate utilizing microorganisms contain a 

complex of proteins within TOMES which are referred to as the SOX cluster. The SOX cluster 

contains a repressor (SoxR), membrane proteins (SoxV), periplasmic thioredoxins (SoxS and 

SoxW), sulfide dehydrogenase (SoxF) and the other periplasmic proteins SoxXYZABCD which 

form various complexes within TOMES (Friedrich et al., 2005). One of the essential enzymes 

involved with TOMES is SoxB, which has been utilized as a functional marker for sulfur 

oxidizing bacteria (Wodara et al., 1994; Friedrich et al., 2000; Petri et al., 2001). 

Microorganisms which oxidize reduced sulfur compounds via TOMES include: Paracoccus (or 
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Thiobacillus) versutus, P. denitrificans, and possibly Thiobacillus novellas and Xanthobacter sp. 

(Kelly et al., 1997). 

The polythionate pathway begins with the combination of two molecules of thiosulfate to 

form tetrathionate (S4O6
2-) (Kelly et al., 1997). Cleavage of tetrathionate by tetrathionate 

hydrolase produces thiosulfate, sulfur and sulfate (Meulenberg et al., 1993; DeJong et al., 1997). 

This reaction takes place in the periplasm under high sulfate and low pH conditions (DeJong et 

al., 1997; Suzuki, 1999). In the cytoplasm, tetrathionate can react with ten molecules of water 

and be hydrolyzed into four sulfate molecules (Kelly et al., 1997; Druschel et al., 2003b). In 

conditions of accumulating sulfite, tetrathionate converts to thiosulfate and trithionate (S3O6
2-). 

Trithionate can be hydrolysed by trithionate hydrolase, making thiosulfate and sulfate (Suzuki, 

1999). The polythionate pathway occurs in the autotrophs: T. acidophilus, T. aquaesulis, T. 

tepidarus, T. neapolitanus, Acidithiobacillus ferrooxidans, and A. thiooxidans ( Lu and Kelly, 

1988; Friedrich, 1998; Suzuki, 1999). It is characteristic of obligate and facultative 

chemoautotrophs, but evidence of certain steps of this pathway has been found in Klebsiella 

aerogenes, Bacillus globigii, B. megaterium, Pseudomonas putida, P. fluorescens, P. 

aeruginosa, Aeromonas sp. and some marine and haloalkaliphilic heterotrophs (Mason and 

Kelly, 1988; Sorokin, 2003). 

Different organisms have different variations of the reactions or components of the 

reactions shown in Figure 2.2 (Laishley and Bryant, 1987). For example, all thiobacilli require 

reduced glutathione for the activity of their sulfur-oxidizing enzymes, which are responsible for 

oxidizing elemental sulfur to sulfite (Suzuki, 1994). Oxygen is also a key requirement in the 

biochemical reaction for all thiobacilli, aside from A. ferrooxidans which is capable of utilizing 

ferrous iron in anaerobic conditions.  
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2.3 Microbial characterization techniques 

Cultivation of acidophilic chemolithotrophs can be extremely difficult (Leduc, 2002; 

Gonzàlez-Toril et al., 2003). In some cases the acidophilic sulfur oxidizers, like Acidithiobacilli 

can be out-competed by other faster growing organisms like fungi, or they can be inhibited by 

the impurities of the medium, particularly from the agar (Harrison, 1984; Leduc, 2002). Leduc et 

al. (2002) used an MPN method to quantitate both neutrophilic and acidophilic sulfur oxidizing 

organisms, but was unsuccessful in cultivating acidophiles. Such culturing difficulties have led 

characterization of these fastidious microbial communities to depend on the use of molecular 

analysis and microscopy, in addition to, or instead of, culture based methods. Non-culturable 

microorganisms can represent up to 99% of microbial communities in some environments 

(Schloss and Handelsman, 2003). This makes molecular techniques a fundamental practice in 

community characterization studies, and nucleic acid probing is one of the fastest, and most 

precise quantitative descriptors of microbial communities (Amann and Ludwig, 2000; Mahmoud 

et al., 2005).  

Researchers have had great success in molecular studies on extremophilic 

microorganisms, and there have been extensive biodiversity studies on the organisms living in 

acidic rock drainage environments which share similarities to the sulfur blocks. Through the use 

of such techniques researchers were able to determine many of the dominant communities that 

inhabit extremophilic environments. Past research has shown that acid mine drainage 

communities are dominated by only a few different species of prokaryotes (such as 

Acidithiobacillus, Thiobacillus, Leptospirillum, Acidiphilum, and Thiomonas) and Archaea (such 

as Thermoplasmatales and Sulfolobales) (Baker and Banfield, 2003; Gonzàlez-Toril et al., 2003; 

Handelsman, 2004; Tyson et al., 2004). These organisms form a pink biofilm which floats along 
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the surface of the mine water, generating heat and decreasing the pH of the water (Handelsman, 

2004; Tyson et al., 2004).  The specific conditions of each acid mine drainage system determines 

which organisms can survive there. 

Genomic characterization of microbial communities residing in the sulfur blocks is much 

more feasible than it would be for more complex communities, which have complicated 

sequence variations from the high number of horizontal gene transfer partners. This is because of 

the relative physiological similarity and the low number of species diversity in extreme 

environments. Though the costs of such analysis can be very high, it is diminishing with further 

advances in sequencing technology, which also improve the rapidity and accuracy of assays 

(Handelsman, 2004). 

Molecular methods used to quantitate and identify environmental microorganisms 

involve a group of methods which aim to answer different questions about the community found 

in a sample. The techniques used in this study include: amplifying the genetic information to 

workable concentrations using the polymerase chain reaction (PCR), quantifying the level of 

amplicons with fluorescence intensity using quantitative PCR (Q-PCR), and processing DNA 

fingerprints of different communities and individual species based on GC content with 

denaturing gradient gel electrophoresis (DGGE).  

2.3.1 Polymerase Chain Reaction 

Amplification of specific targets of DNA utilizes natural replication mechanisms to 

produce a high number of DNA copies which can be used for further analysis. The polymerase 

chain reaction (PCR) is one of the most widely used techniques in molecular biology, and has 

proven to be a highly sensitive process.  There are three main steps to each PCR reaction: 

denaturation, annealing and extension. These are achieved by changing the temperature of the 

25 
 



reaction mixture. The reaction mixture must contain the template DNA, reverse primers, forward 

primers, DNA deoxynucleotides and a heat stable DNA polymerase. Additional reaction 

components may be required in order to maximize efficiency.  

The primers are single strands of DNA, measuring approximately 20 nucleotides in 

length. The forward primer anneals to the negative DNA template strand and the reverse primer 

anneals to the positive strand, both primers will run towards each other, i.e. 5’to 3’. (Marcheesi, 

2001). Upon denaturing the double stranded DNA, the single stranded primers can then anneal to 

their complementary region. The sensitivity of this process is dependent on the primer selection, 

reaction component concentrations, and temperature controls. The GC content is critical in the 

primer used. Long stretches of G or C should be avoided and overall content should not be 

higher than 45-65% in the primers (Marcheesi, 2001).  

The DNA sequence of the 16S rRNA molecule provides species specific information. It 

is typically used for targeting prokaryotes, because it is structurally and genetically constant. It 

contains both conserved and variable regions with sufficient information for accurate statistical 

analysis, lacks horizontal gene transfer artifacts and has a high copy number rendering it a major 

component of cellular mass (Olsen et al., 1986; Moter and Göbel, 2000). Studies involving the 

extraction of RNA, instead of DNA from samples of interest, are useful to detect active enzymes 

or microorganisms. RNA molecules are relatively unstable in the environment, as they are 

constantly under attack by RNases. This makes RNA techniques more useful at providing 

information on viable microorganisms, as the molecule is protected by the cellular membranes of 

live cells, but it also makes RNA extractions more complex requiring the pretreatment of every 

object which comes in contact with the sample (Nogva et al., 2003; Rudi et al., 2005a). In order 

to PCR amplify the molecules using standard practices, it is necessary to first convert the RNA 
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into a more laboratory stable DNA form. This is achieved using the viral enzyme, reverse 

transcriptase. For this reason, investigation of alternative methods used to identify viable 

populations is of interest, and in this study the ethidium monoazide bromide (EMA) technique 

was optimized and used.  

The chemical structure of EMA (Figure 2.3) enables it to successfully intercalate double 

stranded DNA by structural changes induced by high intensity light. The EMA dye can enter 

cells with damaged membranes and link to the DNA of those cells (Nogva et al., 2003; Rudi et 

al., 2005b). It is excluded from live cells by a passive process through diffusion barriers. The 

almost linear azide moiety is attached to the eighth position of the phenanthridinium ring, and it 

is positioned away from the phenyl substituent (Sternglanz et al., 1978). Experiments performed 

in the dark showed that both ethidium bromide and ethidium monoazide have identical activities, 

but upon light exposure the azide derivative showed enhanced mutation rates (Sternglanz et al., 

1978). Nogva et al. (2004) have found that EMA crosslinking, using 100 μg ml-1 of EMA 

irradiated for >30 s, gave a maximum PCR signal reduction of -4.5 log units. The use of EMA 

with the viable and non cultivable food pathogen Campylobacter jejuni and Listeria 

monocytogenes has been successful with quantitative PCR methods (Rudi et al., 2005a; Rudi et 

al., 2005b). However, recent evidence suggests that EMA does not exclusively inhibit the 

amplification of DNA from dead or damaged cells of Campylobacter jejuni and Listeria 

monocytogenes (Flekna et al., 2007).  
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Figure 2.3. The structure of ethidium monoazide bromide. 
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2.3.2 Quantitative PCR 

Real-time quantitative PCR (Q-PCR) is an accurate and reproducible PCR-based 

molecular tool, which proceeds on the assumption that each DNA molecule is duplicated once 

during one cycle of amplification, resulting in an exponential accumulation of product ( Nogva 

and Rudi, 2004; Dorigo et al., 2005) . The PCR reaction is monitored by fluorescence that is 

measured at each stage of the reaction, and compared to that of a standard curve generated by a 

dilution series of known amounts of DNA targets (Rutledge and Cote, 2003; Nogva and Rudi, 

2004).  This method is advantageous over regular PCR because it is an automated method which 

detects DNA amplification during the exponential phase where there is an exact doubling of 

product, rather than at the end where degradation begins to take place and variability increases. 

Both TaqMan and Sybr Green I Q-PCR product detectors are equally rapid and sensitive, 

but they differ in optimization and price (Ponchell et al., 2003).  The fluorescent dye, Sybr Green 

I green binds to the minor groove of double stranded DNA and emits fluorescence (Pfaffl, 2001). 

The TaqMan dual labeled fluorogenic probe system emits fluorescence after 5’ nuclease 

polymerase activity cleaves off the quencher allowing expression of the reporter signal. The 

TaqMan fluorogenic probe system is much more difficult to optimize than Sybr Green I, 

requiring specific buffer concentrations and reaction temperatures (Yin et al., 2001), but Sybr 

Green I non-specifically binds to all double stranded DNA products, including primer dimers and 

secondary structures. High primer concentrations can lead to increased fluorescent signals when 

using Sybr Green I (Ponchell et al., 2003). These potential errors in signal representation must be 

considered when designing an assay involving the inexpensive Sybr Green I. Three different 

types of products dominate in the first cycles of Q-PCR, they include the original target, 

undefined long products, and PCR accumulated non-specific products (Nogva and Rudi, 2004). 
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The standard curve is generated based on the threshold cycle (Ct) at which first detection of 

fluorescence occurs and the concentration of target DNA.  From this curve a slope and intercept 

is obtained using linear regression analysis (Nogva and Rudi, 2004; Rutledge and Cote, 2003). 

The slope obtained from the standard curve is used to calculate the PCR reaction efficiency using 

the formula shown in Equation 2.2 ( Klein et al., 1999; Pfaffl, 2001; Nogva et al., 2003; Fey et 

al., 2004; Nogva and Rudi, 2004;).  

 

    Efficiency = 10 -1/slope -1    

Eq. 2.2 

 
 

At 100% efficiency each cycle of PCR would theoretically produce a doubling of the 

DNA copy number (Klein et al., 1999; Rutledge and Cote, 2003; Larionov et al., 2005). The 

accuracy of efficiency calculations is often disputed, as the efficiency of the PCR reaction is not 

uniform throughout the different stages of the reaction, being highly efficient during the 

exponential phase and declining in efficiency through the stationary phase (Larionov et al., 

2005). The efficiencies of the Q-PCR reaction are based on various reaction parameters, 

including temperature and concentration of reaction components, which control the primer 

binding and subsequent amplification (Nogva and Rudi, 2004). Reaction efficiencies are usually 

below 0.9 because of factors affecting the amplification rate (Nogva and Rudi, 2004).  

2.3.3 DNA Fingerprinting 

DNA fingerprinting techniques used in this study include examining community and 

species profiles by using DGGE. The PCR products are clamped with repeated GC sequences 

and then run on an acrylamide gel with a DNA denaturing gradient made with urea and 

formamide. As the PCR products migrate toward the positive charge they encounter greater 
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concentrations of chemical denaturant, where weaker bonded strands begin to separate slowing 

the passage of the PCR products through the acrylamide matrix. The double stranded DNA 

products separate at different levels within the gradient based on their guanine and cytosine 

concentration and assortment. The GC clamps provide a molecular anchor to slow the DNA’s 

passage through the gel. This technique is used to determine sequence variations and species 

diversity within a community (Muyzer et al., 1993). This is a popular method used to analyze 

microbial diversity and community dynamics (Dorigo et al., 2005). Lyautey et al. (2005) found 

that the concentration of DNA added to DGGE gels which yielded the highest amount of 

recoverable bands was obtained from 30-50 ng. Different banding patterns can be analyzed using 

the Jaccard similarity index, which considers the similarities between columns adjusted to a 

percentage (Fromin et al., 2002; Lyautey et al., 2005). The Jaccard similarity index equation is 

shown in Equation 2.3, it equals the number of bands that are present in both samples A and B 

(c) divided by the total number of bands in A and B (a and b respectively), minus c, the product 

of which is all multiplied by 100.  

J = (c/[a+b-c])100 

Eq. 2.3 

 

The techniques outlined here are used to develop a means of differentiation of viable and 

non-viable microbial communities, and to apply those techniques to the sulfur blocks. The first 

objective of this study involves formulating a method, such as EMA-Q-PCR, applicable to 

complex environmental samples. The second objective utilizes this technique in combination 

with other more standard microbiological examinations to identify and quantify inhabitants of 

the sulfur blocks. 

31 
 



3.0 DIFFERENTIATION OF GENES EXTRACTED FROM NON-VIABLE VERSUS 
VIABLE MICROORGANISMS IN ENVIRONMENTAL SAMPLES USING 

ETHIDIUM MONOAZIDE BROMIDE 
 

3.1 Introduction 

Molecular analysis of bacterial communities in the environment is an important 

tool for the advancement of modern microbial ecology.  However, it is often limited by 

the inability to differentiate between genes extracted from non-viable versus viable 

organisms. Many techniques have been developed for mono-cultural applications, such 

as flow cytometry, single cell sorting, and autoradiography, but are rarely successful in 

mixed microbial populations (O'Brien and Bolton, 1995; Rudi et al., 2005a). For 

functional genes such as ammonia mono-oxygenase, current methods, such as mRNA 

extractions, are technically challenging. Recently an intercalating ethidium bromide 

derivative has gained attention for use in quantitative gene assays (Lee and Levin, 2006; 

Nogva et al., 2003; Rudi et al., 2005a; Rudi et al., 2005b; Wang and Levin, 2006).  

Ethidium monoazide bromide (EMA) (Invitrogen, Burlington, ON) is unable to 

enter cells with intact membranes, and so it can only attach to free DNA or DNA that is 

present within cells with compromised membranes. Upon exposure to high intensity 

visible light, EMA produces a highly reactive nitrene which covalently binds to DNA. 

Unbound EMA converts to a hydroxylamine derivative, rendering it incapable of further 

binding (Nogva et al., 2003).  Thus, after intense light exposure, EMA bound to DNA 

becomes covalently linked and unbound EMA remaining in the solution is inactivated 

(Bolton and Kearns, 1978; Nogva et al., 2003). The irreversible binding of EMA to 

DNA prevents the DNA from being PCR amplified.  The addition of EMA to 
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environmental samples followed by PCR analysis could allow one to differentiate 

between genes present in viable and non viable organisms. Such a method has already 

proven successful in cod fillets, drinking-water biofilms, processed chicken breasts and 

chicken legs spiked with common food pathogens (Lee and Levin, 2006; Nocker and 

Camper, 2006; Rudi et al., 2005b), but little is known about how useful the EMA 

protocol is in environmental samples.  

Environmentally derived samples for molecular analysis differ markedly from 

the more commonly studied food or body tissue samples. Many PCR inhibitors, such as 

humic and fulvic acids, can be present within environmental matrices and are co-

extracted with the DNA. Soils and biofilms contain substantial organic matter which acts 

as cation exchange sites.  Soils also contain clay which is another strong cation exchange 

site. As EMA in solution is cationic, it is possible that cation exchange sites in soil and 

biofilms may interfere with the concentration of EMA available to enter cells.  I wished 

to evaluate if EMA would work in various soils, an elemental sulfur block, and three 

Saskatchewan River biofilms. To test the efficacy of EMA in soils, elemental sulfur and 

biofilms we: 1) added killed cells to all three matrices and determined the suppression of 

PCR amplification of a marker gene 2) correlated between a specific microbial activity, 

nitrification, with gene enumeration from viable populations using the EMA approach in 

Antarctic soil, and 3) compared soil microbial community profiles by denaturing 

gradient gel electrophoresis using PCR products derived from DNA, EMA treated DNA 

and 16S rRNA.
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3.2 Materials and Methods 

3.2.1 EMA Q-PCR Suppression in Pure Culture 

 Culture conditions. To determine if EMA is successful at suppressing PCR 

amplification of DNA from killed E. coli LKI gfp+ in environmental samples, it must 

first be shown to be effective in pure cultures. The cells contain a green fluorescent 

protein, which was originally isolated from the jellyfish Aequorea victoria, and it is used 

as a distinguishing marker (Chalfie et al., 1994). The E. coli LKI gfp+ strain was 

constructed by mating an isolate from a beef packing plant in Lacombe, Alberta, 

Canada, with a donor, E. coli S17-λpir, containing a mini-transposon harboring the gfp 

gene (Suarez et al., 1997; Tallon, 2006). Pure cultures of E. coli LKI gfp+ cells were 

grown in 20 ml of tryptic soy broth (TSB) overnight at 24°C. The final concentration of 

cells had an optical density of 0.828 at 650 nm. Half of the viable cultures were 

centrifuged and then killed by resuspending them in 70% ethanol and incubating for 20 

min. This was confirmed by plate counts on tryptic soy agar to determine the colony 

forming units. 

EMA treatment. From both the viable and killed cultures, half were subjected to 

~100 μg ml-1 EMA treatment. This involved vortexing for 5 s, incubation in the dark for 

5 min, and subsequent photoactivation by placing the sample tubes (15 ml Blue Falcon, 

High-Clarity Polypropylene Conical Tube, VWR Canada) 20 cm away from 500 watts 

of light (400-700 nm, UL Portage Worklight) for 60 s. Samples were then kept at -20 °C 

until time of extraction. The other half of the cultures did not receive EMA treatment. 

DNA extraction. DNA was extracted from 0.5 ml of sample with three separate 

intervals of 30 second bead-beating in extraction  buffer (5% (w/v) 
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hexadecyltrimethylammoniumbromide (CTAB) Sigma, 0.35 M NaCl, 120 mM K2HPO4 

[pH 8.0]) and phenol:chloroform:isoamyl alcohol (25:24:1 v/v, Sigma, OmniPur EM 

Science Gibbstown, NJ) using a FastPrepTM FP120 (Bio101 Savant Instruments, 

Holbrook, NY) homogenizer at a machine speed setting of 4.5 m s-1 (Griffiths et al., 

2000; Kowalchuk et al., 1998). The aqueous phase was obtained after centrifuging for 3 

min at 14 100 x g and an equal volume of chloroform:isoamyl (24:1 v/v) was used to 

remove the remaining phenol. Precipitation of the DNA was achieved after mixing the 

aqueous layer with 2 equal volumes of 30% (w/v) polyethylene glycol 6000-1.6 M NaCl 

and allowing it to stand at room temperature for a minimum of 2 hours. The samples 

were centrifuged 14100 x g for 10 min, and washed with ice cold 70% ethanol. The 

samples were then air dried, and resuspended in water. The extracted DNA was 

subsequently cleaned by centrifuging through a spin column  filled with ~750 μl of 

polyvinylpyrrolidone (Aldrich, Milwaukee, WI) slurried in 20 mM K2HPO4 [pH 7.4] 

(Berthelet et al., 1996).  

Q-PCR amplification. The gfp gene prevalence was determined using 

quantitative-polymerase chain reaction (Q-PCR) with Sybr Green I stain using the 

Quantitect SYBR Green PCR Kit (Qiagen, Mississauga, ON), the forward gfp-F (5’ 

CCA TGG CCA ACA CTT GTC AC 3’), and the reverse gfp-R (5’ CTT TCG AAA 

GGG CAG ATT GT 3’) primers (all primers used in this study were purchased from 

Invitrogen). An ABI 7300 Real Time PCR system (Applied Biosystems, Foster City, 

CA) was used for all Q-PCR runs. The thermal cycling program consisted of an initial 

hotstart at 94°C for 5 min; followed by 50 cycles of 94°C for 15 s, annealing at 60°C for 

40 s and elongation at 72°C for 45 s. Standard concentrations with ten fold dilutions of 

cleaned and spectrophotometrically (UV/Visible spectrophotometer, Ultrospec 2000, 
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Pharmacia Biotech, Picataway, NJ) determined GFP PCR products were used to make a 

standard curve with the generated fluorescence and cycle threshold (Ct). Linear 

regression analysis was performed on the slopes of the standards using Sequence 

Detection Software, 7500 System SDS Version 1.2.2 (Applied Biosystems). 

3.2.2 EMA Q-PCR dose response in soil and sulfur.  

Soil and sulfur samples. Subsequent to pure culture evaluation, the EMA 

concentration necessary to suppress PCR amplification of gfp in soil and elemental 

sulfur samples was determined. Two Saskatchewan prairie soils, a silty clay-loam with a 

pH of 6.6 and a loamy clay-loam texture with pH of 6.8 were used for the following 

experiment. Elemental sulfur was obtained from Syncrude’s sulfur storage system in the 

northern Alberta oil sands.  The sulfur was ground in a mortar and pestle and sieved 

through a 2 mm passing screen. Five milliliters of distilled water was used to suspend 5 

independent replicates of 0.5 g of each soil type and sulfur, and this was amended with 

0.1 ml of killed or viable E. coli LKI gfp+ cell suspension. Soil slurries were treated 

with 0, 0.5, 25, 40, 72, 90 μg ml-1 of EMA, and sulfur slurries were treated with 0, 0.5, 

25, 40, 72, 100 μg ml-1 of EMA. DNA was extracted from 0.5 g of spiked soil sulfur 

slurry and Q-PCR amplification followed using the methods described above. 

3.2.3 EMA Q-PCR suppression of E. coli LKI gfp+ in soil, sulfur and river 

biofilms.  

Biofilm samples. After optimizing the EMA concentration required for each 

type of environmental sample, I assessed the effectiveness of PCR suppression by EMA 

treatment in environmental samples of soil, elemental sulfur, and river biofilm. Samples 

were amended with either live or killed E. coli LKI gfp+ cells. Sulfur and soil 

suspensions were prepared as described above. Scrapings of three separate river biofilms 
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were used for this experiment: one control river biofilm, and two river biofilms treated 

with 100 ppb of either Triclosan, an antimicrobial agent used in personal care products 

such as toothpaste, and Carbamazepine, a common pharmaceutical used for both human 

mental health and for convulsion prevention in epileptic patients (Lawrence et al., 2005; 

Morrall et al., 2004). One of the many bactericidal modes of action of Triclosan is the 

breakdown of membrane integrity (Russell, 2004). Biofilms were 8 week old river 

communities grown in rotating annular reactors fed with South Saskatchewan River 

water as described by Lawrence et al. (2005). 

Biofilm suspensions were prepared by scraping the biofilms with sterile 

polypropylene silicone tubing and rinsing in distilled water making a final volume of 

one milliliter. They were amended with 20 μl of live or killed E. coli LKI gfp+ cells. 

After a brief vortexing, EMA was added to the samples. The soil samples were treated 

with 90 μg ml-1 and the sulfur and biofilm samples were treated with 100 μg ml-1 of 

EMA. Light activation and photolysis followed, and the DNA was extracted, and 

cleaned using polyvinylpolypyrrolidone (PVPP) spin columns (Berthelet et al., 1996; 

Hugenholtz and Goebel, 2001). The cleaned DNA was then used for Q-PCR specific for 

gfp quantification, as described above.  

3.2.4 EMA Q-PCR suppression and amoA activity.  
 

Nitrification activity measurements. Subsequent to determining the optimal 

EMA concentration for soil samples, I wished to evaluate if the EMA technique was 

providing information congruent with other, more established, techniques in soil 

microbiology. PCR detected EMA gene suppression of amoA, a sub-unit of ammonia 

mono-oxygenase, was compared to nitrification activity in soil microcosms. Nitrification 
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activity was measured in sub-Antarctic soil samples containing increasing levels of 

Special Antarctic Blend (SAB) fuel. Treatments were prepared by a 1:1 serial dilution 

beginning at 50 000 mg fuel kg-1 soil. Ten different concentrations of SAB diesel fuel 

spiked soil were created by mixing 220 g soil with 11 g SAB. Treated soil (110 g) was 

placed in a 1 L Schott bottle, covered in tinfoil, and incubated at 6 ± 0.02oC for 21 days 

before measuring activity. Activity was assessed by levels of potential nitrification, 

which has been shown as a highly sensitive method for detecting nitrification in soils 

(Gong et al., 1999). Soil samples were mixed in a 1:4 ratio with a test solution 

containing 4 mM (NH4)2SO4 as growth substrate, 15 mM NaClO3 for inhibition of nitrite 

oxidation and 1 mM KH2PO4 for a buffer as described by Schafer et al. (2007). 

Termination of ammonia oxidation was achieved by adding 2 ml of KCl. Samples were 

centrifuged for 3 min at 14000 rpm and filtered through 0.45 μm syringe filters before 

colorimetric analysis. Nitrite content was determined by linear regression of the 

concentration of nitrite g-1 soil over time as measured by absorbance at 543 nm using a 

Beckman DU® 650 Spectrophotometer (Mississauga, ON) (Schafer et al., 2007).  

DNA extraction and Q-PCR amplification. Prior to duplicate DNA 

extractions, 0.5 g soil samples were suspended in 5 ml distilled water containing 72 μg 

EMA ml− 1 for 10 min at room temperature shaking horizontally (100 rpm). After 

10 min, EMA was inactivated by placing the sample tubes (15 ml Blue Falcon, High-

Clarity Polypropylene Conical Tube, VWR Canada) 20 cm away from 500 W of light 

(400–700 nm, UL Portage Worklight) for 60 s. Sample tubes were then centrifuged at 

800 rpm for 10 min, the supernatant was removed and DNA was extracted from the soil 

pellet as described above. Quantification of amoA was performed using amoA-1F (5’ 

GGG GTT TCT ACT GGT GGT 3’) and amoA-2R  (5’ CCC CTC (G/T)G(G/C) AAA 
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GCC TTC TTC 3’) primers (Rotthauwe et al., 1997) in Q-PCR reactions using the same 

components as described above. The Q-PCR had the following thermal cycles repeated 

35 times:  94ºC for 40 s, 60ºC for 40 s, and 72ºC for 60 s. 

3.2.5 EMA treated soil community DNA fingerprinting.  

If the EMA technique is successfully differentiating between viable and non-

viable cells, then the viable EMA treated community should closely resemble the active 

population. To assess this, we compared a segment of the16S RNA gene profiles using 

DNA, cDNA, and DNA extracted from EMA treated samples of loamy clay-loam 

Saskatchewan soil. We assessed microbial community diversity using denaturing 

gradient gel electrophoresis.  DNA from samples treated with and without 90 μg ml-1 of 

EMA was extracted in triplicate following the same procedure as described above.  

RNA extraction and reverse transcription. Four separate RNA extractions 

were performed on the non-EMA treated samples by homogenizing 5 g of soil in 10 ml 

of water for 5 min, subsequent centrifugation at 800 rpm for 10 min and using the 

supernatant for RNA extraction using the QIAamp®Viral RNA MiniKit (Qiagen). All 

nucleic acids were cleaned using PVPP columns, the RNA samples were treated with 

Deoxyribonuclease I (Invitrogen) before a two step reverse transcription. Reverse 

transcription was performed using the SuperscriptTM II Reverse Transcriptase kit 

(Invitrogen) following the manufacturer's instructions.  

PCR amplification. PCR amplification followed, using the Bacteria domain 

specific primers 338F (5’ ACT CCT ACG GGA GGC AGC AG 3’) and 518R (5’ ATT 

ACC GCG GCT GCT GG 3’) with Taq PCR Master Mix Kit (Qiagen) in a Robocycler 

PCR (Stratagene, La Jolla, CA) machine with 30 cycles of 94ºC for 1 min, 50ºC for 1 

min, and elongation at 72ºC for 1 min. These samples, including negative controls, were 
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run on a 1% agarose gel for confirmation of product. The diluted (1/100) PCR products 

were then amplified again with the same conditions but with a GC clamped forward 

primer, 338F-GC.  

 Denaturing gradient gel electrophoresis. The products were separated on a D-

CodeTM Universal Mutation Detection System (16 cm, 120 V, Bio-Rad, Hercules, CA) 

denaturing gradient gel. The method used was a modified version of that outlined by 

Muyzer et al. (1993) with a 10% (w/v) polyacrylamide gel and a 40-60% denaturing 

gradient created by formamide and urea (Pynaert et al., 2003). The length of 

electrophoresis was 16.5 hours at 60ºC and 45 V in a 1x TAE (20 mM Tris, 10 mM 

acetate, and 0.5 mM EDTA [pH 7.4]) buffer. Then the gels were removed from the 

apparatus and immersed for 30 min in a 0.01% diluted solution of Sybr Green I, 

subsequently rinsed and photographed on a UV gel dock (GelDocMega, 

BioSystematica, Wales, UK) using a digital camera (Nikon CoolPix 995, Melville, NY). 

Statistical analysis was performed using the Jaccard band based similarity coefficient as 

determined by Bionumerics Applied Maths software (BioSystematica, Wales, UK). 

 

3.3 Results and Discussion 

EMA suppressed 99.99% of DNA amplification from killed pure E. coli LKI 

gfp+ culture with a reduction in copy number of greater than 5 logs (data not shown). 

The killed E. coli LKI gfp+ still produced 3700 copies of amplified DNA ng-1 total 

extracted DNA despite plate counts indicating that no culturable E. coli remained. This 

amplification of killed E. coli LK1 gfp+ may be due to cells that retained their 

membrane integrity after ethanol treatment. Alternatively, injured cells that were still 

viable may have been able to grow on solid media. 
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In soil and sulfur, the greatest suppression of amplified E. coli LKI gfp+ DNA 

was achieved with 90 μg ml-1 of EMA, which suppressed 100% of PCR amplification in 

soil, and with 100 μg ml-1 which suppressed 100% of PCR amplification in sulfur 

(Figure 3.1). The soil samples inoculated with live culture had a relatively constant 

average amplified DNA copy number with increasing concentrations of EMA, the 

numbers ranging between 6.4 and 7.8 logs. After approximately 25 μg ml-1 the 

difference between the viable and non-viable samples does not increase with increasing 

concentration of EMA. This indicates that if DNA amplification of all viable 

microorganisms within a soil sample is to be examined, a concentration of 25 μg ml-1 of 

EMA may be sufficient.  

In contrast to the soil treatments, the sulfur samples inoculated with live culture 

decreased in amplified copy number with EMA concentrations below ~40 μg ml-1, 

whereas the higher concentrations had amplifications closer to those without EMA 

treatment (Figure 3.1). The reduction of amplified copy number in the sulfur samples 

correlates with the findings of Rueckert et al. who found that EMA penetrated the 

membranes of a viable culture of Anoxybacillus flavithermus, crosslinking the DNA, and 

decreasing  subsequent PCR amplification (Rueckert et al., 2005). Alternatively, the 

sulfur may have been toxic to the E. coli and thus, confounded our results. It is not clear 

from our results, why gene amplification of viable E. coli in sulfur was initially 

suppressed but then returned to the expected level. 

Other studies have shown evidence that in certain species and exposure 

conditions EMA treatment can lead to a loss of extracted genomic DNA from viable 

cultures (Nocker and Camper, 2006) and significant staining of viable cell membranes 

(Nocker et al., 2006; Flekna et al., 2007). However in our hands, the amount of DNA 
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extracted from soil amended with killed cells treated with 90 μg ml− 1 of EMA (146 ng 

DNA g− 1 soil (standard deviation = 40)) had little difference from the non-EMA treated 

killed E. coli LKI gfp+ amended soil samples (92 ng DNA g− 1 soil (standard 

deviation = 29)). Similarly in sulfur, 52 ng DNA g− 1 sulfur (standard deviation = 23) 

was extracted from EMA treated samples compared to 76 ng DNA g− 1 sulfur (standard 

deviation = 9) in non-EMA sulfur samples. Previous studies, (Nocker and Camper, 

2006; Nocker et al., 2006]), did not investigate soil or elemental sulfur matrices which 

may be the reason why we did not observe a decrease in the amount of extracted DNA 

when samples were treated with EMA.
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Figure 3.1. Decrease in killed E. coli LKI gfp+ DNA amplification with an increase in 
EMA concentration in two different Saskatchewan soils (Panel A) and elemental 
sulfur (Panel B). The points represent the average of amplified gfp copy numbers 
from two soils with silty clay-loam and loamy clay-loam texture. Error bars are 
the standard deviation of the mean. 
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EMA treatments decreased the amount of amplified DNA in sulfur and soil 

samples from killed E. coli LKI gfp+ by ~2 to 3 logs compared to live cells (Figure 

3.2A). In contrast, killed and viable samples of sulfur and soil had the same amount of 

amplified copy number in non-EMA treated samples. EMA treated biofilm samples 

containing either Triclosan or Carbamazepine and spiked E. coli demonstrated little 

difference between the live and killed EMA treated samples (Figure 3.2B). The river 

control samples had a spike of amplification for the viable non-EMA treated samples, 

with a large significant error, compared to the non-viable samples. The reason for this is 

unclear, but it suggests that the composition of the biofilms, particularly their 

extracellular polymeric substances, may interfere with either DNA binding or 

photoactivation of EMA. This interference may be similar to the way extracellular 

polymers protect biofilm bound extracellular DNA from environmental nucleases 

(Steinberger and Holden, 2005). The presented results are in direct contrast to a recent 

report that 100 µg ml-1 EMA suppressed amplification of spiked E. coli in resuspended 

biofilm samples (Nocker and Camper, 2006). This difference may be biofilm specific 

and highlights the need for more detailed biofilm investigations. 

Other authors have noted that EMA may reduce PCR amplification of DNA, 

penetrate viable organisms and thus give misleading results (Nocker and Camper, 2006; 

Nocker et al., 2006; Rueckert et al., 2005).  Matrices studied here also demonstrated 

suppression of viable cultures, i.e. elemental sulfur, or resulted in no suppression of non-

viable organisms DNA, i.e. biofilms supporting the observations of other investigators.  

However in our hands, the EMA technique appeared to be successful in soil samples.  

To support the Q-PCR findings, I evaluated if the EMA technique in soil was providing 

information congruent with other established techniques in soil microbiology.    
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Figure 3.2. Amplification of E. coli LKI gfp+ from 99.4% pure elemental sulfur and in 
soil (Panel A) and three different river biofilms (Panel B).  Sulfur and biofilm 
samples were treated with 100 μg ml-1 whereas soil samples were treated with 90 
μg ml-1. Viable or non-viable (ethanol killed) E. coli LKI gfp+ were added to 
each matrix type, they were EMA treated, and DNA was extracted followed by 
quantitative PCR.  Each bar represents the average of 5 independent extractions 
with error bars indicating the standard error of the estimate. 
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Amplification of a portion of the nitrification gene, amoA, from the viable 

microbial population, as assessed by the EMA-technique, decreased in response to diesel 

fuel as did potential nitrification activity (Figure 3.3). In contrast, gene prevalence in 

total community DNA from these soils did not change with increasing fuel 

concentrations. Amplified prevalence of amoA treated with EMA was negatively 

correlated (r = − 0.20) with nitrification activity. In contrast, amplified prevalence of 

amoA without EMA was not related to nitrification activity (r = − 0.001). The decrease 

in nitrification activity in response to petroleum hydrocarbons has been observed 

previously (Deni and Penninckx, 1999) and is linked to metabolites released from the 

heterotrophic microorganisms which are themselves inhibited by the petroleum 

contamination (Deni and Penninckx, 2004). The relatively low copy number of 

nitrifying bacteria, as represented by the amoA gene amplification correlates with the 

low number of nitrifiers found in continental and maritime Antarctica soils (Wilson et 

al., 1997).  
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Figure 3.3. Potential nitrification activity (solid squares), EMA viable amoA gene 
prevalence (solid circles), gene prevalence of amoA in total community DNA 
(open circles), in a sub-Antarctic soil exposed to increasing concentrations of 
Special Antarctic Blend (SAB) diesel fuel for 21 days. Points represent the 
average of two determinations for gene prevalence at each SAB concentration.  
Error bars represent the standard error of the estimate. 
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Independently extracted replicates of community 16S rRNA profiles obtained 

with EMA treated soil samples were 47% similar to those obtained from the cDNA 

(Figure 3.4).  In contrast, total community DNA profiles were only 27% similar to 

cDNA profiles.  The difference between the EMA treated and cDNA fingerprints is at 

least partially attributable to the different extraction procedures, which may have 

different extraction efficiencies and biases and used different amounts of soil (0.5 g for 

DNA and 10 g for rRNA). However, attempts to use techniques that simultaneously 

extracted RNA and DNA from soils (Griffiths et al., 2000) were not successful in this 

soil type. 
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Figure 3.4. Dendrogram of Jaccard similarity analysis of 16S rRNA eubacterial 
community DGGE profiles obtained using primers 338f-518r. DNA was 
extracted from soil previously treated (+EMA) and not treated (-EMA) with 90 
μg ml-1 of EMA. From the samples not treated with EMA, rRNA was also 
extracted and reverse transcribed (cDNA). Each separate branch represents one 
independently extracted replicate.  
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The use of EMA to differentiate between viable and non-viable organisms 

appears to be matrix dependent.  Spikes of a non-viable gfp carrier were effectively 

suppressed in pure culture as well as in elemental sulfur, two different Saskatchewan 

soils and one sub Antarctic soil. However, the EMA based amplification suppression of 

spiked E. coli was not successful in the three different Saskatchewan River biofilms. 

Further, EMA appeared to partially inhibit amplification of E. coli LK1 gfp+ in 

elemental sulfur samples.   

 In two different Saskatchewan soils and one sub Antarctic soil, the EMA 

technique appeared to be highly successful. Using EMA to inhibit the amplification of 

non-viable organisms DNA, and hence non-active genes, resulted in quantitative PCR 

results very similar to traditional activity assessments.  Further, community fingerprints 

obtained from DNA treated with EMA were much closer to those obtained from rRNA.  

It appears that the use of EMA can be an effective tool in soil to monitor viable gene 

prevalence in mixed communities. 
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4.0 DISTRIBUTION OF MICROORGANISMS WITHIN THE HIGHLY 
FRACTURED MATRIX OF AN ELEMENTAL SULFUR STORAGE BLOCK 

4.1 Introduction 

 Processing of oil sands bitumen to high quality crude oil has resulted in an 

excessive accumulation of elemental sulfur stock, creating an increasingly large global 

surplus. In general, it is viewed that long-term economic storage is required until market 

opportunities improve. Currently, storage involves melting, concentrating, pouring and 

solidifying the elemental sulfur in large repositories measuring ~200 x 400 x 15 m and 

containing 99.8% pure elemental sulfur (McKenna, 2004). These uncovered blocks are 

directly exposed to precipitation and freeze-thaw cycles characteristic of the northern 

Canadian climate. Left exposed the blocks are at risk being degraded and oxidized by 

physical, chemical and biological means, which decrease the value of the blocks and 

threaten the surrounding environment.  

 Biochemical sulfur oxidation follows the same path as chemical oxidation; 

however, the biochemical reactions increase the rate and level of chemical reactivity 

among intermediates (Pepper and Miller, 1978; Suzuki, 1999; Masau et al., 2001). Non-

phototrophic autotrophic sulfur oxidizing bacteria rely on sulfur oxidation as their sole 

source of energy for growth and proliferation, whereas heterotrophic bacteria use sulfur 

oxidation for supplemental energy (Mason and Kelly, 1988; Sorokin, 2003). Autotrophs 

and heterotrophs share many of the same enzyme pathways and there is no definitive 

pathway for either group of organisms.  Among the different microorganisms associated 

with sulfur oxidation, the colorless autotrophic Gram-negative acidophile, 

Acidithiobacillus thiooxidans is a model representative of sulfur oxidation reactions 

(Pronk et al., 1990; Konishi et al., 1995; Kelly et al., 1997; Kelly and Wood, 2000). This 
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rod shaped bacterium is capable of growth in mesophilic and extremely acidic 

conditions, with pH levels reaching 0.5, and temperatures of up to 40ºC (Takakuwa, 

1992; Konishi et al., 1995). These same conditions can be found in the rain water 

effluent and summer temperatures of Alberta's sulfur blocks. 

 Due to the extreme nature of the sulfur blocks, 99.8% pure sulfur, and the harsh 

northern environment in which these blocks reside, the type and importance of 

organisms involved in sulfur oxidation is unclear.  Characterizing these organisms is an 

important component in the design of effective strategies to preserve sulfur block 

integrity and prevent acid drainage.  Here, I specifically investigated the nature of the 

microbial community colonizing and carrying out sulfur oxidation in different regions of 

these large blocks of sulfur. In order to determine if native sulfur block microorganisms 

contribute to sulfur oxidation it is necessary to compare a system populated with 

microorganisms to that of a sterile system. For this purpose an in vitro study was 

designed to create sterile and non-sterile conditions, and compare the level of sulfate, 

acidity and microbial populations. 

4.2 Materials and Methods 

4.2.1 Detection of Microbial Sulfur Oxidation in Sulfur Bioreactors 

 Bioreactor setup. Effluent was obtained from the run off of Syncrude's Phase I 

sulfur block, north of Fort McMurray Alberta, and kept in clean plastic containers at 4ºC 

prior to use. Sulfur obtained from exposed surfaces or unexposed matrix material at the 

same block was granulated into a powder using a mortar and pestle, and subsequently 

sieved through a sieve with a 2 mm opening. Fifty grams of sulfur was submerged in 

500 ml of either sterile water or 10% effluent, and incubated on a rotary shaker set at 
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~230 rpm and maintained between 24-27ºC. The treatments were: matrix sulfur and 

water, matrix sulfur and 10% effluent, sterilized matrix sulfur and water, and surface 

sulfur and 10% effluent. Matrix sulfur was obtained from the inner unexposed matrix of 

the block and surface sulfur was obtained from the exposed dusty rind of cracks and 

crevices of the block. The sterile sulfur was prepared by washing it with 1.8% sodium 

hypochlorite, followed by a sterile water rinse, and subsequent washing with 95% 

ethanol, and air dried under a sterile Whatman filter paper. Three replicate bioreactors of 

each treatment were prepared and sampled at 0, 1, 2, 4, 6, 8, 10, 16, 25, 33 and 40 

weeks. Two 15 ml samples were obtained from each treatment at each time interval, and 

stored in blue Falcon tubes (15 ml, High-Clarity Polypropylene Conical Tube, VWR 

Canada) at -20ºC until chemical and microbial analyses were performed.  

 Sulfate concentration and pH analysis. The bioreactor samples were filtered 

through a 0.45 μm filter to remove any particulates. The pH was determined using an 

Orion glass combination electrode (Model 9102BN) which was calibrated with buffers 

at pH 7, 4, and 1 prior to every seventh reading depending on the level of acidity in the 

sample. The pH was measured in a 5 ml sample that was aseptically removed from each 

bioreactor. From the pH measurements hydronium ion concentration was calculated 

using Equation 4.1. Sulfate concentrations were determined using the standard 

turbidometric procedure (Clesceri et al., 1989). Calibration of the spectrophotometer was 

achieved with a series of known sulfate concentrations, and set at 420 nanometers (nm), 

with a light path at 2.5 to 10 cm.   

[H3O+]  = 10- pH 

Eq. 4.1 
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 Enumeration of bacteria and fungi in bioreactors. Plate counts for selected 

bacteria and fungi were performed at the beginning and end of the incubation period. 

Time 0 measurements were also taken from 10% and 100% effluent, before inoculating 

the bioreactors. The microbial populations in the effluent containing sulfur bioreactors 

were enumerated by determining colony forming unit (CFU) counts on three different 

media types. Three replicates of three different dilutions were spread plated on 1/10 

trypticase soy agar (1/10 TSA) , heterotrophic sulfur medium (HSM) (0.1% peptone, 

0.05% yeast extract, 0.003% Bromophenol Blue, pH 6.8,  with 0.002% 2X water rinsed 

and pre-autoclaved flowable sulfur (Stoller Chemicals, Burlington, ON) added after 

autoclaving) and acidified Czapek Dox (pH 3) agar plates to enumerate the CFUs for 

total heterotrophs, sulfur oxidizing heterotrophs, and total acidophilic fungi, 

respectively. Increased surface area of sulfur supplementation to soil has been shown to 

increase sulfur oxidation by up to 31% (Lawrence et al., 1988). For this reason a fine 

particulate flowable sulfur product was used for media preparation (Lawrence and 

Germida, 1991). Standard error of the mean was calculated as outlined by Koch (1994) 

in which the square root of the total counts was divided by the volume of solution. 

 Autotrophic sulfur oxidizing microorganisms were enumerated using the most 

probable number (MPN) technique. Five different dilutions of each bioreactor were 

plated on three replicate plates. The MPNs were performed on week 0 and week 40 

samples. The samples from week 0 were analyzed for total sulfur oxidizing autotrophs 

and the samples from week 40 were analyzed for total sulfur and thiosulfate oxidizing 

autotrophs. The liquid mineral salts medium was modified from ATCC #125 medium 

designed for Thiobacilli, it contained the following in 1.0 L of water:  0.2 g (NH4)2SO4,  

0.5 g MgSO4 . 7H2O, 0.25 g CaCl2, and 5.0 mg FeSO4. After autoclaving, 5 ml of 0.22 
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μm filter sterilized KH2PO4 solution (0.3 g ml-1) and 1 ml of the color indicator, a filter 

sterilized Bromocresol green solution (0.015 g ml-1) was added. The media for 

thiosulfate oxidizers had 5 ml of  sterilized (NH4)2S2O3 solution (0.5 g ml-1) added after 

autoclaving; whereas, the media for sulfur oxidizing autotrophs had 0.002% of 2X 

washed sterilized flowable sulfur added.  

 EMA treatment and DNA extraction. After 40 weeks of incubation, 10 ml of 

each bioreactor was transferred to a sterile 15 ml Falcon tube which was centrifuged at 

2500 x g for 10 min.  A sterile pipette was used to remove 7.60 ml of supernatant. The 

remaining slurry was amended with 100 μg ml-1 of EMA to allow for selection for DNA 

from viable microbial populations (Nogva et al., 2003). EMA treatment involved 

vortexing for 5 sec, incubation in the dark for 5 min, and subsequent photoactivation by 

placing the sample tubes 20 cm away from 500 watts light (400-700 nm, UL Portage 

Worklight) for 60 s. Samples were then stored at -20 ºC overnight, until DNA extraction. 

 DNA extractions were carried out on 0.5 g of EMA treated sulfur slurry. Samples 

underwent three separate intervals of 30 second bead-beating in extraction  buffer (5% 

(w/v) hexadecyltrimethylammoniumbromide (CTAB) Sigma, 0.35 M NaCl, 120 mM 

K2HPO4 [pH 8.0]) and phenol:chloroform:isoamyl alcohol (25:24:1 v/v, Sigma, 

OmniPur EM Science Gibbstown, NJ) using a FastPrepTM FP120 (Bio101 Savant 

Instruments, Holbrook, NY) homogenizer at a machine speed setting of 4.5 m s-1 

(Griffiths et al., 2000; Kowalchuk et al., 1998). Samples were also boiled for five min 

between the final two homogenizations. The aqueous phase was obtained after 

centrifuging for 3 min at 14100 g. An equal volume of chloroform:isoamyl (24:1 v/v) 

was then added to the combined aqueous phases to remove the remaining phenol, which 

was achieved by inverting the tubes 3X to mix, centrifuging for 3 s, and removing the 
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top phase. Precipitation of the DNA was achieved after mixing the aqueous layer with 2 

equal volumes of 30% (w/v) polyethylene glycol 6000-1.6M NaCl and allowing it to 

stand at room temperature (22 ºC) overnight. The samples were then centrifuged 14 100 

x g for 10 min, and washed with ice cold 70% ethanol. The samples were then air dried, 

and resuspended in water. Triplicate extractions were pooled together. DNA extraction 

from the sulfur block samples provided an average yield of 150 ng DNA ml-1. 

Quantitative PCR analysis. Q-PCR amplification followed on uniform dilutions 

achieved by adding varying amounts of sterile water to 10 μl of DNA extraction to get 

equal final concentrations of DNA extracts among samples based on spectrophotometer 

readings at OD 260 (UV/Visible spectrophotometer, Ultrospec 2000, Pharmacia 

Biotech, Picataway, NJ). Primers used are listed in Table 4.1 and the cycle conditions 

listed in Table 4.2. The primers used target 16S rDNA sequences for Eubacteria, and 

Archaea, 18S rDNA sequences for Fungi, the conserved region of the SoxB enzyme in 

the multi-enzyme thiosulfate oxidizing complex and 16S rDNA of A. thiooxidans ATCC 

19377. Each Q-PCR reaction contained 5 mM of forward and reverse primer sets, 1 x 

Quantitect SYBR Green PCR master mix (Qiagen, Mississauga, Ontario) and 

appropriately diluted DNA extract. An ABI 7300 Real Time PCR system (Applied 

Biosystems, Foster City, CA) was used for all Q-PCR runs. Standard concentrations 

with ten fold dilutions of cleaned (QIAquick PCR purification kit, Qiagen) and 

spectrophotometrically determined PCR products were used to make a standard curve 

with the generated fluorescence and cycle threshold (Ct). Positive controls for ARC344-

ARC915R, 338F-518R, soxB432F-soxB1446R, EF4-EF3, Thiox1F-Thiox1R were 

Halobacterium hispanicum, Escherichia coli LKI gfp+, Paracoccus pantotrophus ATCC 

35512, Penicillium bilaii, Acidithiobacillus thiooxidans ATCC 19377, respectively. 
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Linear regression analysis was performed on the slopes of the standards using Sequence 

Detection Software, 7500 System SDS Version 1.2.2 (Applied Biosystems). 

4.2.2 Detection of Microbial Growth in the Sulfur Blocks 

 Sampling conditions. Sulfur samples were obtained directly from the Phase 1 

sulfur block at the Syncrude site. Three separate cores were made at locations 143-D, 

144-E, and 145-D. A 2.5 inch diameter hand-held power auger was used to drill the 

block to a depth of up to 6 m. Samples were collected through polypropylene tubing, 

using a shop vacuum.  Samples recovered for analysis were sub-sampled from bulk 

drilled depths of 0-10, 40-50, 90-100, 190-200, 290-300, 490-500, 590-600 cm depths. 

The auger, tubing, and collection bucket were rinsed with 95% ethanol between samples. 

Sub-samples were stored in sterile 50 ml Falcon tubes at -20 ºC for 24-48 hours, at 

which point they were transferred to a cooler with ice packs for 48 hours during 

transportation and subsequently placed in a -80 ºC freezer for long term storage. 

 CFU and MPN analysis, isolate purification, and storage. Total heterotrophic 

populations were enumerated using 1/10 TSA, and total sulfur heterotrophs were 

enumerated on HSM (described above). MPN counts followed the procedure outlined in 

section 4.2.1. Purification of isolates of interest was achieved after 6 weeks of growth, at 

which time colonies were aseptically transferred to fresh media. Colonies were first 

inoculated onto solid media by spreading with a sterile metal loop, and those that grew 

were subjected to successive culturing until pure colonies were isolated, these were then 

transferred to 5 ml of liquid media. After one week of growth, the colonies were 

transferred to cryogenic storage vials with 1% glycerol, and stored at -80 ºC. 

 Molecular analysis. The samples from the sulfur block which had high levels of 

microbial counts based on the CFU plates, were selected for molecular analysis to 
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determine the quantity of different organisms and diversity of the resident communities. 

Nine samples were chosen for molecular analysis. These included: 0-10 and 590-600 cm 

of drill hole 143-D, 0-10, 90-100, 190-200, and 590-600 cm of drill hole 144-E, and 0-

10, 40-50, and 590-600 cm of drill hole 145-D. Five grams of each sample was 

suspended in 5 ml sterile distilled water, and underwent EMA treatment and six separate 

DNA extractions (described above) which were pooled together.  DNA was subjected to 

PCR using the primers listed in Table 4.1 and conditions outlined in Table 4.2. 

Successfully amplified samples were used for Q-PCR and sequence analysis. 
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Table 4.1. PCR primers which were used in the amplification of DNA extracted from the 
sulfur bioreactors and the sulfur blocks. 

 
 
Primer Target Sequence (5’ to 3’) Specificity Reference 

ARC344F ACGGGGYGCAGCAGGCGCGA Most Archaea (Gonzàlez-Toril et al., 
2003; Koizumi et al., 

2004) 
ARC915R GTGCTCCCCCGCCAATTCCT Most Archaea (Gonzàlez-Toril et al., 

2003; Koizumi et al., 
2004) 

EUB338F ACTCCTACGGGAGGCAGCAG Most Bacteria (Fierer et al., 2005; 
Gonzàlez-Toril et al., 

2003) 
EUB518R ATTACCGCGGCTGCTGG Most Bacteria (Fierer et al., 2005) 
soxB432F GAYGGNGGNGAYACNTGG Sulfur oxidizing 

enzyme 
(Petri et al., 2001) 

soxB1446R CATGTCNCCNCCRTGYTG Sulfur oxidizing 
enzyme 

(Petri et al., 2001) 

EF4F GGAAGGGRTGTATTTATTAG Fungi (Anderson et al., 
2003; Smit et al., 

1999) 
EF3R TCCTCTAAATGACCAAGTTTG Fungi (Anderson et al., 

2003; Smit et al., 
1999) 

Thiox1F TGGGGAGCAAACAGGATTAG A. thiooxidans 
ATCC 19377 

- 

Thiox1R ACTTCCCAGGCGGAATACTT A. thiooxidans 
ATCC 19377 

- 
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Table 4.2. PCR conditions for the different primer sets. The same times and 
temperatures were used for those involving their corresponding GC clamps (for 
DGGE). 

 
 

Denaturation Annealing Elongation   Primers 
Temp. 
(ºC) 

Time 
(min.) 

Temp.  
(ºC) 

Time 
(min.) 

Temp. 
(ºC) 

Time 
(min.) 

# of 
cycles 

ARC344F-
ARC915R 

94 2 56 1.5 72 2 30 

EUB338F-
EUB518R 

94 1 50 1 72 1 30 

94 0.5 55 0.66 72 0.5 10 soxB432F-
soxB1446R 94 0.5 47 0.66 72 0.5 25 
EF3F-EF4R 94 1 48 1 72 3 40 
Thiox1F-
Thiox1R 

95 1 56 1 72 1 43 
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 DNA Cloning. PCR products which have demonstrated successful amplification 

with the Eubacterial primers were ligated into pCR®2.1-TOPO® vector (Invitrogen) and 

cloned into One Shot® Mach1TM-T1R competent cells using TOPO TA Cloning Kit 

(Invitrogen) as per manufacturer's instructions. The cloned cell suspensions were 

transferred to 1.5 ml Eppendorf tubes and shaken at 200 rpm for 1 hour at 37 ºC. The 

cultures were subsequently spread plated on pre-warmed low salt LB + kanamycin 

plates (1% Tryptone, 0.5% Yeast Extract, 0.5% NaCl, 1.5% agar, 0.25 μg ml-1 

kanamycin, pH 7.5) and incubated at 37 ºC for up to 2 days until visible colonies were 

formed. Using sterile toothpicks the white and light blue colonies were used to inoculate 

200 μl of SOC (2% Tryptone, 0.5% yeast extract, and 0.05% NaCl, 2.5 mM KCl, 

adjusted to pH 7.5 with NaOH). After autoclaving sterile solutions of MgCl2, glucose 

and kanamycin were added at final concentrations of 10 mM, 20 mM and 25 μg ml-1 

respectively. Clones were incubated at 37 ºC for two days. Confirmation of successful 

clones was achieved by PCR using M13-R (5' CAG GAA ACA GCT ATG AC 3') and 

M13-F (5' GTA AAA CGA CGG CCA G 3') primers and the following reaction 

conditions: initial hot-start at 97 ºC for 15 min, 35 cycles of 94 ºC for 40 s, 53 ºC for 60 

s, 72 ºC for 60 s and a final 10 min elongation at 72 ºC. PCR reactions were performed 

as described above. The entire PCR reactions were analyzed using 1% agarose gel 

electrophoresis, to confirm the presence of the correct sized DNA insert. Clones which 

contained the DNA insert were sent for high-throughput sequencing to the Plant 

Biotechnology Research Institute, National Research Council, Saskatoon, SK. 
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DNA sequencing. DNA sequences of all successful clones were analyzed using 

the following web based bio-informatics software: NCBI Blast, GeneDoc, CLustalX, 

Bioedit, and Phylip (http://www.uk.plbio.kvl.dk/bioinfo.htm). 

4.3 Results 

4.3.1 Detection of Microbial Sulfur Oxidation in Sulfur Block Bioreactors 

Bioreactors amended with 10% of the block effluent produced greater 

concentrations of sulfate (ca. 5.1 mM) than bioreactors amended with sterile water 

(0.007 mM) (Figure 4.1A).  Surface sulfur inoculated with 10% block effluent began 

with an average of 1.4 mM sulfate (standard error = 0.37) and increased to 4.4 mM 

sulfate (standard error = 1.78).  Matrix sulfur samples produced greater amounts of 

sulfate, beginning at 1.5 mM sulfate (standard error = 0.06) and reaching 5.8 mM 

(standard error = 2.75) after 40 weeks. There was no significant difference between the 

surface and matrix sulfur samples. The highest sulfate concentration, 11.3 mM, was 

found after 40 weeks of incubation in one of the replicates of the matrix sulfur, while the 

other two matrix sulfur reactors were 3.1 mM and 2.9 mM. The surface sulfur showed a 

similar pattern, in which one of the replicates attained 7.9 mM and the other two 

replicates were 2.0 mM and 3.3 mM.  

 Throughout the incubation, the concentration of hydronium ions steadily 

increased for the bioreactors inoculated with 10% effluent (Figure 4.1B). Non-sterile 

bioreactors containing the matrix sulfur began with a 6.69 x 10-3 (standard error = 7.82 x 

10-4) hydronium ion concentration, and increased by ~1.8 x 10-2, reaching 2.47 x 10-2 

(standard error = 3.08 x 10-2). The non-sterile bioreactors which contained the surface 

sulfur began with 5.95 x 10-3 (standard error = 1.01 x 10-3) but increased by only ~8.6 x 
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10-3 reaching 1.46 x 10 -2.  These surface sulfur bioreactors reached a final hydronium 

ion concentration of 1.46 x 10-2 (standard error = 5.56 x 10 -3). The average hydronium 

ion concentration throughout the entire incubation period of the bioreactors containing 

sterilized matrix sulfur amended with sterile water was 1.6 x 10-7 (standard error = 9.2 x 

10-8) and for non-sterile matrix sulfur amended with sterile water was 1.8 x 10-5 

(standard error = 8.40 x 10-6). The lowest pH reached 1.22, an equivalent to 6.0 x 10-2 

hydronium ion concentration, which was measured in one of the replicates of the matrix 

sulfur and 10% effluent bioreactor. Similar to the sulfate release, there was large 

variation between the different replicates of bioreactors.  

When expressed in terms of hydronium and sulfate production per unit sulfur 

block, the surface sulfur samples produced ten times less, 6.17 x 10-7 [H3O+] per gram 

sulfur per day, than matrix sulfur samples, 1.28 x 10-6 [H3O+] g-1 day-1. However, there 

was no statistically significant difference in hydronium ion concentration between the 

surface and matrix bioreactors at the final sampling period, where the t-test probability 

was 0.618 (p<0.05).  Sulfate production was at 2.11 x 10-1 μM sulfate per gram sulfur 

produced per day by surface samples and 2.83 x 10-1 μM g-1 day-1 for matrix sulfur 

samples. Statistical analysis performed on the matrix and surface samples containing the 

10% effluent at the final sampling period showed that the difference in the mean values 

of the two groups is not significant (p<0.05).  

The increased sulfur oxidation in matrix sulfur samples seemed to parallel the 

distribution of culturable sulfur oxidizing heterotrophs. The matrix sulfur bioreactors 

contained more sulfur heterotrophs 27 CFU ml-1 (standard error = 3.3) and acidophilic 

fungi 97 CFU ml-1 (standard error = 6.3) compared to surface sulfur bioreactors which 

had only 6 CFU ml-1 (standard error =1.5) sulfur heterotrophs and 12 CFU ml-1 (standard 
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error = 2.2) acidophilic fungi (Figure 4.2). However, these trends were also not 

statistically significant. Total heterotrophs were relatively equal between the matrix and 

surface sulfur bioreactors containing 10% effluent. 
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Figure 4.1. Average sulfate concentration (A) and hydronium ion concentration in the 
matrix (closed circles) and surface (open circles) sulfur bioreactors containing 10% 
effluent throughout 40 weeks of incubation. The error bars represent the standard error 
determined from three independent replicates.
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Figure 4.2. Colony forming units of different types of heterotrophs present in the matrix 
and surface bioreactors containing 10% effluent after 40 weeks of incubation. 
Error bars represent the standard error from three independent bioreactor 
replicates and three independent plate counts. 
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Autotrophic sulfur or thiosulfate oxidizing microorganisms such as A. 

thiooxidans were not detected by the MPN method.  However, when the same samples 

were analyzed using primers designed specifically for A. thiooxidans ATCC 19377 there 

was a small proportion of these autotrophs found in all four different treatments, with the 

greatest DNA copy number detected in surface sulfur bioreactors (Figure 4.3). The 

surface sulfur bioreactors contained 17 A. thiooxidans DNA copy numbers g-1 extracted 

DNA ml-1 sulfur slurry (standard error = 2.0). A similar trend was observed with the 16S 

rDNA Q-PCR results for the general Eubacterial population, which showed that the 

surface sulfur bioreactors had almost double amplified Eubacterial DNA, with 96 DNA 

copy numbers g-1 extracted DNA ml-1 sulfur slurry (standard error = 1.1) compared to 

matrix samples which had only 55 DNA copy numbers g-1 extracted DNA ml-1 sulfur 

slurry (standard error = 1.5). Both the sterile water bioreactor treatments had total 

Eubacterial DNA copy number counts similar to the bioreactors containing matrix sulfur 

and 10% effluent suggesting that the non-sterile effluent contained within it, some 

organisms that initiated the sulfur oxidation. The presence of amplified DNA in the 

sterile water samples suggests that sulfur oxidizing bacteria may be present within the 

sulfur matrix, possibly associated with thin fracture surfaces.   
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Figure 4.3. Amplified DNA copy numbers of bacterial 16S rDNA and A. thiooxidans 
16S DNA obtained by quantitative PCR counts from the four sulfur bioreactor 
treatments. Error bars represent the standard error from six independent PCR 
reactions. 
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4.3.2 Detection of Microbial Growth in the Sulfur Blocks 

The microbial plate counts of samples taken directly from the sulfur blocks 

supported the bioreactor results (Figure 4.4). Total heterotrophs were generally higher in 

matrix sulfur samples compared to surface samples; however, the differences between 

the groups were not statistically significant. The large variation between depth matrix 

samples could be attributed to fracture patterns within the block. As a percentage of the 

total heterotrophic community, sulfur heterotrophs in the bottom three samples (> 390 

cm) comprised 37% of the community compared to only 3% in the top three samples (< 

100 cm). The MPN technique detected 18 MPN g-1 sulfur (standard error = 6.4) 

culturable autotrophic sulfur oxidizers and 3 MPN g-1 sulfur (standard error = 2.0) 

thiosulfate oxidizers only along the 0-10 cm profile of the block after 7 weeks of 

incubation (Figure 4.5). There were no autotrophic organisms culturable by this method 

in any of the matrix sulfur samples.  

 Similar to the bioreactors, autotrophic A. thiooxidans were greatest in the surface 

samples, however these trends were not statistically significant due to the large variation 

between replicates (Figure 4.6). The highest level of A. thiooxidans was found in the 0-

10 cm samples of the 143-D drill hole which contained 1.62 x 102 A. thiooxidans 

amplified copy numbers μg-1 of extracted DNA.  The lowest level of  A. thiooxidans was 

found in the 590-600 cm matrix samples of drill hole 145-D, which contained 3.19 x 101 

A. thiooxidans amplified copy numbers μg-1 of extracted DNA.  In contrast there were 

approximately 10 times more general Eubacteria present in the sulfur block than A. 

thiooxidans with values ranging from 1.23 x 103 to 1.11 x 104 amplified DNA copy 

numbers μg-1 extracted DNA. 
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Sequence analysis of 48 cloned Eubacterial 16S DNA amplicons did not match 

sequences available in GenBank that were specific for any particular organisms. Most 

matches were for unidentified, uncultured bacteria obtained from various environmental 

samples. No matches were made with known sequences of A. thiooxidans available with 

GenBank, however some of the isolates did show similarity to bacterial isolates obtained 

from deep sea hydrothermal vents. The relation to microorganisms that rely on oxygen 

and hydrogen sulfide to produce energy required to fix carbon dioxide, coincides with 

the metabolic properties of elemental sulfur oxidation that would be expected of the 

microorganisms inhabiting the block.  
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Figure 4.4. Average of heterotrophic colony forming unit counts from a matrix profile of 

the Phase 1 sulfur block. Standard error of the estimate is too small to be visible 
on the log scale. 
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Figure 4.5. Average of most probable number of three independent replicates of sulfur 
and thiosulfate oxidizers found in the 0-10 cm matrix samples of the sulfur 
block. Error bars represent the standard error of the mean. 
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Figure 4.6.  Amplified DNA copy numbers of 16S rDNA and 16S A. thiooxidans from 
different depths of the sulfur blocks. 
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4.4 Discussion 

Here, I present for the first time, evidence that microorganisms are thriving 

within the depths of an elemental sulfur block and that these organisms are 

physiologically capable of contributing to the production of sulfuric acid. Heterotrophs 

dominated the oxidation of sulfur samples in laboratory bioreactors, and also 

numerically dominated those water and sulfur samples taken directly from the field.  

Autotrophic sulfur oxidizers were found in both laboratory bioreactors and sulfur block 

samples, however they appeared to be in greater concentration along the surface 

samples. Their prevalence at the surface of the block is consistent with aerobic 

microorganisms. Oxygen levels decrease and carbon dioxide levels increase with 

increasing depth through the sulfur block profile (Tyler Birkham, personal 

communication).  

It has been well established that both heterotrophs and autotrophs contribute to 

the oxidation of reduced sulfur compounds in natural systems (Wainwright and Killham, 

1980; Kelly, 1982; Grayston et al., 1986; Pronk et al., 1990; Jannasch et al., 1991; 

Hallberg et al., 1996; Friedrich et al., 2000; Friedrich et al., 2001; Sorokin, 2003; Kletzin 

et al., 2004). The methods of microbial sulfur oxidation remain elusive with complex 

pathways catalyzed by different means in different species (Kelly et al., 1997; Suzuki, 

1999). It is surprising that sulfur heterotrophs were found in high numbers deep within 

the sulfur block, as the level of utilizable carbon substrates and available oxygen would 

likely be lower with increasing depth. There was only a one log difference in CFU g-1 

sulfur between the 0-10 cm and 590-600 cm depth samples. 
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The sulfur blocks represent an unique environment that contain almost no carbon 

and extreme acidity (Crescenzi et al., 2006). Previous investigations of microbial growth 

in acidic environments have concentrated on acid mine drainage, which normally 

contains a variety of other reduced sulfur compounds, such as pyrite, not found in the 

sulfur block (Bond et al., 2000; Baker and Banfield, 2003; Gonzàlez-Toril et al., 2003; 

Johnson and Hallberg, 2003; Baker et al., 2004). Acid mine drainage often contains high 

concentrations of metals such as aluminum, copper, zinc and manganese, which are also 

not normally found in the sulfur block (Johnson and Hallberg, 2003). Microorganisms 

commonly associated with environments such as acid mine drainage include the 

autotrophs: Leptospirillum spp., Ferroplasma spp., and Acidithiobacillus spp., as well as 

the heterotrophs: Acidocella spp., Acidobacterium spp., and Acidomonas spp. (Bond et 

al., 2000; Johnson and Hallberg, 2003).  

The sulfur blocks are a hydrologically active environment, because of direct 

exposure to precipitation, and as such generate large amounts of run off or effluent. This 

effluent appears to be a critical component in initiating substantial sulfur oxidation.  

Despite also containing strains of A. thiooxidans, only those bioreactors which received 

10% effluent had a rapid increase in acidity and sulfate production, whereas those 

containing sterile water did not. Typically, autotrophic microorganisms oxidize sulfur at 

a greater rate than heterotrophic sulfur oxidizers (Pepper and Miller, 1978). Yet in the 

presented experiments, surface sulfur bioreactors containing more A. thiooxidans than 

matrix sulfur bioreactors initially produced similar amounts of sulfate and hydronium 

ions, although after 30 weeks, matrix sulfur bioreactors began to surpass surface 

bioreactors in sulfur and hydronium production.  Further, both surface sterilized sulfur 

samples and non-sterilized sulfur samples amended with sterile water produced very 
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little sulfate and hydronium ions.  This suggests that the effluent running through the 

block may influence initiating and sustaining sulfur oxidation by providing the right 

composition of microbial population to maximize sulfur oxidation and by transporting 

sulfur oxidizing microorganisms to different levels of the block.  

Typically, heterotrophic sulfur oxidizers play a dominant role in oxidation in 

habitats such as agricultural soil (Lawrence and Germida, 1988), which are considerably 

more complex than the relatively pure S blocks. When heterotrophs are isolated from 

extremely acidic environments, their survival is primarily dependent on lysis products of 

other organisms, such as the autotrophs which could more readily colonize the system 

(Johnson, 1998). One possible source of these lysis products could be fungi (Sorokin, 

2003). There are large amounts of fungal hyphae in the sulfur blocks.  Though little 

convincing evidence of fungal sulfur oxidation has been published to date, it seems 

possible that they can participate in oxidation reactions such as those observed in the 

bioreactors (Yagi et al., 1971; Wainwright and Killham, 1980; Grayston et al., 1986).   

During sulfur block construction in which layers of molten sulfur are poured 

sequentially 2-12 cm each time, windblown debris settles upon each layer.  Thus, when 

investigating this habitat it was essential to use a sensitive molecular technique that 

would only detect active organisms.  I used ethidium monoazide bromide (EMA) as a 

dye that would only allow the amplification of the viable microbial community (Nogva 

et al., 2003; Rudi et al., 2005a). Ethidium monoazide bromide will also introduce some 

biases into the molecular results, but due to the difficulty in cultivating acidophiles, 

which are known to have fastidious responses to different growth media and conditions, 

molecular techniques can provide important supplemental information.  For example, 

the EMA-Q-PCR method detected viable A. thiooxidans at low copy numbers 
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throughout the block, whereas the cultivation techniques could not detect any autotrophs 

below the surface of the sulfur block.   

Through both cultivable and molecular examination of microbial communities it 

can be concluded that the sulfur block harbors a large number of successfully thriving 

and sulfur oxidizing microorganisms. The various surfaces of the block provide ideal 

habitats for autotrophic sulfur oxidizers. Though, autotrophs, such as A. thiooxidans are 

the major sulfur oxidizing microorganisms which could potentially grow on the block, 

this research has shown that it is the heterotrophs which numerically dominate the 

microbial population of the block. Also, the effluent from the sulfur block has been 

shown to have a pivotal role in contributing to sulfur oxidation and acid production. 

Both heterotrophic and autotrophic sulfur oxidizing organisms are associated with 

degradation of the sulfur block, the specific mechanisms should be further investigated 

to help develop technologies that minimize environmental harm and retain useful 

elemental sulfur for future generations. 
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5.0 GENERAL DISCUSSION 
 

This study is the first in depth look at the microbiological communities inhabiting 

elemental sulfur repositories, providing information relevant for both oil industry 

operations which may be concerned with maintenance of product value and microbial 

ecology research concerned with sulfur oxidation. Methods developed in this study have 

provided valuable information for future molecular research in environmental sciences 

and the microbial analysis of the elemental sulfur block has explored a unique living 

environment where little was known before.  

The use of EMA in differentiating between viable and non-viable microorganisms 

in environmental samples was shown to be effective at limiting the amplification of 

DNA from non-viable microorganisms; however the efficiency of the method appeared 

to be matrix dependent where it was most efficient in pure culture, soils and sulfur but 

not in biofilms. Nogva et al. (2003) have shown that pure DNA suspensions treated with 

100 µg ml-1 EMA had a 4.5 log reduction in amplification compared to untreated DNA. 

The non-viable pure culture suspensions presented in this study agreed with these 

results, they showed that EMA treatment reduced the level of PCR amplification by >5 

logs.  Low concentrations of EMA can be used to decrease the level of amplification. 

Lee and Levin (2006) have shown that EMA was effective at suppressing amplification 

of DNA from killed cells at concentrations of 0.8 µg ml-1.  I have not found such dilute 

amounts to provide sufficient suppression in the environmental matrices tested. 

Inhibition of DNA amplification was not achieved until 25 µg ml-1 in soil slurry and 72 

µg ml-1 in sulfur suspensions.  
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Unlike the published results of Nocker and Camper (2006) which showed that EMA 

treatment of a mixed population drinking-water biofilm containing a large proportion of 

non-viable cells had a community fingerprint quite different than that of the non-EMA 

treated portion, I was unable to adapt the method to inhibit the amplification of DNA 

from non-viable cells in Saskatchewan river biofilm communities. However, I did find 

that DGGE community fingerprints of non-EMA treated soil samples were different than 

those of EMA-treated soil samples and the 16S RNA profiles of the same samples. 

Research which questions the efficiency of the EMA methods became available 

during the time of this study. Nocker et al (2006) have shown that propidium monoazide 

was more efficient than EMA at selectively removing DNA from non-viable cells 

because once intercalated the DNA becomes insoluble and is removed from suspension 

during DNA extraction procedures. They argued that certain species of viable cells may 

be ineffective at removing EMA from their cytoplasm with efflux pumps, which would 

lead to a misrepresentation of the true viable population. It should not be expected that 

activity of EMA would be the same in each type of biofilm. Biofilms are unique 

complex systems and the methods used in the preparation, harvest, DNA extraction and 

PCR amplification conditions can provide different results.  

DNA amplification of killed pure cultures of E. coli LK1 gfp+ were sufficiently 

suppressed with EMA when extracted from soil and elemental sulfur. The different 

experiments performed here have confirmed the reliability of this method in these 

systems, and so the EMA technique could be used with assurance that PCR 

amplification would be limited to the DNA from a predominantly viable microbial 

population. The use of the EMA method is desirable for its rapidity and simplicity in 

comparison to other established methods aimed at examining the active microbial 
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populations. This method was particularly useful in elemental sulfur samples taken from 

the block, and so it was used in downstream research with the sulfur bioreactors and 

block profile samples.  

The presence, distribution, and influence of microorganisms in sulfur blocks has 

been a serious consideration, but little work has been published which thoroughly 

examines this area (Clark, 2005; Crescenzi et al., 2006; Laishley and Bryant, 1987; 

McKenna, 2004). McKenna (2004) suspected that darkened films visible within ~2 

centimeters below the surface of the block could be indicative of microbial growth, but 

this was not further examined. The experiments presented here did not examine the 

darkened films, but did show that throughout a depth profile in the matrix of the block, 

there was no particular area which had a significant majority of microorganisms. The 

relative numbers of viable microorganisms was variable and dispersed throughout the 

block profile up to six meters in depth. 

Microorganisms were detected in bioreactors inoculated with 10% effluent, 

however there was little difference between the bioreactors containing sulfur from the 

matrix or surface of the block. Bioreactors that did not receive effluent inoculant did not 

change in hydronium ion and  sulfate concentration within the 40 week incubation 

period, whereas the effluent inoculated bioreactors increased in concentration of these 

compounds. The only known published study which examines the microbiological 

properties of the runoff block effluent, simply states that the presence of microorganisms 

and sulfur particles has been confirmed, the extent of which was not revealed (Crescenzi 

et al., 2006). Researchers were also particularly interested in examining the growth of 

the sulfur oxidizing autotroph,  A. thiooxidans. Crescenzi et al. (2006) have examined 
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the effects of acidity and ionic strength on the attachment and sulfur oxidizing ability of 

A. thiooxidans on the sulfur blocks. Such respiratory and growth inhibition was found to 

be strain dependent, as there have been reported A. thiooxidans strains which contain 

alophilic properties (Crescenzi et al., 2006). 

The trends shown in the different bioreactors suggest that the effluent acts as a 

microbial inoculant for sulfur oxidation. There was extreme variation between all 

bioreactor samples. One of the three replicates had extreme increases in hydronium ion 

and sulfate concentration, whereas the other two had more subtle increases. Because of 

this, standard errors were high and there was no statistical difference between groups of 

treatments. The EMA-Q-PCR method was successful at detecting A. thiooxidans in all 

bioreactor treatments; however, there was no correlation with the number of A. 

thiooxidans and the level of acid and sulfate accumulation. This suggests that the 

increase in acidity and sulfate experienced in the effluent bioreactors is not achieved 

because of the growth of the detected strain of A. thiooxidans. 

Microbial growth within the sulfur blocks follows a random pattern as would be 

expected from the natural fractures formed during elemental sulfur solidification. 

Growth was detected up to 6 m in depth, with sporadic pockets of uninhabited areas, 

believed to coincide with solid non fractured block matrix. Cracking patterns which 

inevitably form in the sulfur blocks during solidification processes between the two 

different geomorphic sulfur forms collect water through the surface fractures and 

hydrostatically extrude the effluent from the base (Clark, 2005). No clear definition of 

growth trends was observed in the block, however it is believed that it follows a 

distribution similar to that of oxygen and water.  
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The organism which was suspected of inhabiting the sulfur block and 

contributing to sulfur oxidation is A. thiooxidans (Crescenzi et al., 2006). A. thiooxidans 

was found predominantly along the surface of the block, but more sensitive detection 

methods have shown that there was growth of the acidophile throughout the depth 

profile of the sulfur block. Crescenzi et al. (2006) have found that the block can be 

inoculated with A. thiooxidans, which is capable of colonizing the surfaces. This 

research shows that this sulfur oxidizing acidophile is naturally present on the surfaces 

and throughout the depth of the block. A variety of microorganisms capable of oxidizing 

sulfur were found throughout the block profile. 

The research presented here shows a novel molecular method which can be used in 

characterizing the active microbial population in Alberta's sulfur blocks. The EMA 

technique is suitable for studying the viable microbial populations of this extreme 

environment. In utilizing this and other established microbial techniques it was 

determined that microorganisms play an important role in biological oxidation of the 

block. Microbial distribution throughout the sulfur block is sporadic, likely depending 

on the availability of moisture and gas present throughout the fractures of the block. 

Also, the accumulation of sulfuric acid in the rain water effluent could be attributed to 

sulfur oxidizing activity of the residential microorganisms. Thus, designing methods 

aimed at reducing the level of sulfur block oxidation must consider the biological sulfur 

oxidation parameters as well as the chemical pathways. 
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