
Algorithms and Architectures for Decimal

Transcendental Function Computation

A Thesis Submitted to the

College of Graduate Studies and Research

in Partial Fulfillment of the Requirements

for the degree of Doctor of Philosophy

in the Department of Electrical and Computer Engineering

University of Saskatchewan

Saskatoon, Saskatchewan, Canada

By

Dongdong Chen

c©Dongdong Chen, January, 2011. All rights reserved.

Permission to Use

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree

from the University of Saskatchewan, I agree that the Libraries of this University may make

it freely available for inspection. I further agree that permission for copying of this thesis in

any manner, in whole or in part, for scholarly purposes may be granted by the professor or

professors who supervised my thesis work or, in their absence, by the Head of the Department

or the Dean of the College in which my thesis work was done. It is understood that any

copying or publication or use of this thesis or parts thereof for financial gain shall not be

allowed without my written permission. It is also understood that due recognition shall be

given to me and to the University of Saskatchewan in any scholarly use which may be made

of any material in my thesis.

Requests for permission to copy or to make other use of material in this thesis in whole

or part should be addressed to:

Head of the Department of Electrical and Computer Engineering

57 Campus Drive

University of Saskatchewan

Saskatoon, Saskatchewan

Canada

S7N 5A9

i

Abstract

Nowadays, there are many commercial demands for decimal floating-point (DFP) arith-

metic operations such as financial analysis, tax calculation, currency conversion, Internet

based applications, and e-commerce. This trend gives rise to further development on DFP

arithmetic units which can perform accurate computations with exact decimal operands.

Due to the significance of DFP arithmetic, the IEEE 754-2008 standard for floating-point

arithmetic includes it in its specifications. The basic decimal arithmetic unit, such as dec-

imal adder, subtracter, multiplier, divider or square-root unit, as a main part of a decimal

microprocessor, is attracting more and more researchers’ attentions. Recently, the decimal-

encoded formats and DFP arithmetic units have been implemented in IBM’s system z900,

POWER6, and z10 microprocessors.

Increasing chip densities and transistor count provide more room for designers to add

more essential functions on application domains into upcoming microprocessors. Decimal

transcendental functions, such as DFP logarithm, antilogarithm, exponential, reciprocal and

trigonometric, etc, as useful arithmetic operations in many areas of science and engineering,

has been specified as the recommended arithmetic in the IEEE 754-2008 standard. Thus, vir-

tually all the computing systems that are compliant with the IEEE 754-2008 standard could

include a DFP mathematical library providing transcendental function computation. Based

on the development of basic decimal arithmetic units, more complex DFP transcendental

arithmetic will be the next building blocks in microprocessors.

In this dissertation, we researched and developed several new decimal algorithms and

architectures for the DFP transcendental function computation. These designs are com-

posed of several different methods: 1) the decimal transcendental function computation

based on the table-based first-order polynomial approximation method; 2) DFP logarithmic

and antilogarithmic converters based on the decimal digit-recurrence algorithm with selec-

tion by rounding; 3) a decimal reciprocal unit using the efficient table look-up based on

Newton-Raphson iterations; and 4) a first radix-100 division unit based on the non-restoring

algorithm with pre-scaling method. Most decimal algorithms and architectures for the DFP

transcendental function computation developed in this dissertation have been the first at-

ii

tempt to analyze and implement the DFP transcendental arithmetic in order to achieve

faithful results of DFP operands, specified in IEEE 754-2008.

To help researchers evaluate the hardware performance of DFP transcendental arithmetic

units, the proposed architectures based on the different methods are modeled, verified and

synthesized using FPGAs or with CMOS standard cells libraries in ASIC. Some of implemen-

tation results are compared with those of the binary radix-16 logarithmic and exponential

converters; recent developed high performance decimal CORDIC based architecture; and

Intel’s DFP transcendental function computation software library. The comparison results

show that the proposed architectures have significant speed-up in contrast to the above

designs in terms of the latency. The algorithms and architectures developed in this dis-

sertation provide a useful starting point for future hardware-oriented DFP transcendental

function computation researches.

iii

Acknowledgements

It is a pleasure to express my sincere appreciation to the people who have assisted me

throughout the years of research that have led to this Ph.D dissertation at University of

Saskatchewan.

First and foremost, I sincerely thank my supervisor, Dr. Seok-Bum Ko, who has sup-

ported me throughout this dissertation with his expertise, understanding, and patience whilst

allowing me the room to work in my own way. Without his constant guidance, advice and

encouragement, this dissertation would not have been possible.

Second, I would like to thank the members of my dissertation committee, Dr. Daniel

Teng, Dr. Khan Wahid and Dr. Derek Eager, for the invaluable suggestions for my Ph.D

dissertation. Also, I would like to thank Dr. Tor Aamodt from the University of British

Columbia for taking time out from his busy schedule to serve as my external examiner.

Third, I thank all people in the Department of Electrical and Computer Engineering for

providing such a great academic environment, in which I can carry out this dissertation. In

particular, I would like to thank the faculties and staff of VLSI research group; and thank

all workmates for collaborations on several research projects.

Fourth, I would appreciate the anonymous reviewers from IEEE Symposium on Computer

Arithmetic and IEEE Transactions on Computer for their invaluable comments. I am very

grateful to the Dr. Ivan Godard for his insightful advice and brilliant idea for several future

research projects. I would like to mention Dr. Liang-Kai Wang, Dr. Mark A. Erle and Dr.

Álvaro Vázquez for their impressive Ph.D works in the area of the DFP computer arithmetic,

which continually inspire me on doing my Ph.D research.

Fifth, I would to deliver my thanks to my friends in 2C60 for their friendship and help;

special thanks to my beloved family for their love and support. They always encouraged me

and asked me to be patience and work harder, and that is the thing I really kept in mind.

Finally, I am grateful to the College of Graduate Studies and the Department of Electrical

and Computer Engineering for providing financial assistance through scholarships that were

invaluable to me.

iv

Dedicate to my beloved family

v

Contents

Permission to Use i

Abstract ii

Acknowledgements iv

Contents vi

List of Tables x

List of Figures xi

List of Abbreviations xii

I Preface 1

1 Introduction 2
1.1 Why Decimal Arithmetic . 2
1.2 Motivation . 4
1.3 Research Overview . 7
1.4 Research Contributions . 9

II Research Background 12

2 Decimal Transcendental Arithmetic 13
2.1 DFP Formats in IEEE 754-2008 Standard 13

2.1.1 DFP Formats and Encodings . 14
2.1.2 DFP Arithmetic Operations . 17
2.1.3 DFP Rounding Modes . 19
2.1.4 Exception Handling . 20

2.2 Decimal Transcendental Unit Design . 20
2.2.1 Some Details of DFP Transcendental Operations 21
2.2.2 Classification of Hardware Approaches in BFP 23
2.2.3 Considerations of Hardware Implementation 26
2.2.4 Related Basic Decimal Arithmetic . 28

III Table-based First-Order Polynomial Approximation 29

3 A Dynamic Non-Uniform Segmentation Method 30

vi

3.1 Introduction . 30
3.2 Minimax Polynomial Approximation . 32

3.2.1 Notations . 32
3.2.2 Minimax Error Analysis in One Segment 33

3.3 A Non-Uniform Segmentation Method . 35
3.3.1 Determination of Initial UFB by MiniBit Approach 37
3.3.2 Evaluation of Bit-Width of Segment Boundary 38
3.3.3 Partition of Non-Uniform Segments by BSPS 39

3.4 Hardware Architecture . 40
3.4.1 Segment Index Encoder . 41
3.4.2 Estimation of Memory Sizes . 42

3.5 Experimental Results . 43
3.5.1 Comparison Results . 43
3.5.2 Evaluation Results for More Functions 44
3.5.3 Memory Sizes for Two Methods . 45
3.5.4 CPU Time Consumed . 46

3.6 Summary . 47

4 Decimal Logarithmic and Antilogarithmic Converters 50
4.1 Introduction . 50
4.2 Decimal Logarithm and Antilogarithm Conversion 51

4.2.1 Binary-based Decimal Logarithm Conversion (Alg. 1) 51
4.2.2 Decimal Logarithm Conversion (Alg. 2) 52
4.2.3 Decimal Antilogarithm Conversion (Alg. 3) 53

4.3 Piecewise Linear Approximation Method . 54
4.3.1 Notations . 54
4.3.2 Decimal Minimax Error Analysis in One Segment 54
4.3.3 Decimal Dynamic Non-Uniform Segmentation Method 55
4.3.4 Approximation Results for Decimal Logarithm 57
4.3.5 Approximation Results for Decimal Antilogarithm 60

4.4 Error Analysis of Two Algorithms . 60
4.5 Hardware Architecture . 63

4.5.1 Binary-based Decimal Logarithmic Converter (Alg. 1) 63
4.5.2 Decimal Logarithmic Converter (Alg. 2) 64
4.5.3 Decimal Antilogarithmic Converter (Alg. 3) 65
4.5.4 Decimal Segment Index Encoder . 66
4.5.5 Coefficients Look-up Table . 67
4.5.6 Decimal Linear Approximation Unit 68
4.5.7 Design Example . 69

4.6 Experimental Results and Analysis . 70
4.6.1 Implementation Results and Analysis 70
4.6.2 Tradeoff Analysis of Hardware Implementation 71
4.6.3 Scale up to a Higher Required Accuracy 72
4.6.4 Hardware Performance Comparison in Two Algorithms 74

4.7 Summary . 75

vii

IV Digit-Recurrence with Selection by Rounding 76

5 Decimal Floating-Point Logarithmic Converter 77
5.1 Introduction . 77
5.2 DFP Logarithm Operation . 79

5.2.1 Exception Handling . 79
5.2.2 Range Reduction . 79

5.3 Digit-Recurrence Algorithm for Logarithm 80
5.3.1 Overview . 80
5.3.2 Selection by Rounding . 82
5.3.3 Index of Initial Iteration . 84
5.3.4 Approximation of Logarithm . 85
5.3.5 Error Analysis and Evaluation . 86
5.3.6 Guard Digit of Scaled Residual . 89

5.4 Architecture of DFP Logarithmic Converter 90
5.4.1 Datapath . 92
5.4.2 Hardware Implementation . 97

5.5 Implementation and Comparisons . 108
5.6 Summary . 112

6 Decimal Floating-Point Antilogarithmic Converter 113
6.1 Introduction . 113
6.2 DFP Antilogarithm Operation . 114

6.2.1 Exception Handling . 114
6.2.2 Range Reduction . 115

6.3 Digit-Recurrence Algorithm for Antilogarithm 116
6.3.1 Overview of Algorithm . 116
6.3.2 Selection by Rounding . 117
6.3.3 Approximation of Logarithm . 119
6.3.4 Error Analysis and Evaluation . 120
6.3.5 Guard Digit of Scaled Residual . 124

6.4 Architecture of DFP Antilogarithmic Converter 125
6.4.1 Datapath . 127
6.4.2 Hardware Implementation . 130

6.5 Implementation and Comparisons . 138
6.6 Summary . 141

V Decimal Reciprocal and Radix-100 Division Units 143

7 Design and Implementation of Decimal Reciprocal Unit 144
7.1 Introduction . 144
7.2 Initial Reciprocal Approximation . 146

7.2.1 Algorithm . 146
7.2.2 An Efficient Look-up Table Creation 147

viii

7.3 Newton-Raphson Iteration . 148
7.4 Hardware Implementation . 150
7.5 Implementation Results . 152
7.6 Summary . 153

8 Design and Implementation of A Radix-100 Decimal Division 154
8.1 Introduction . 154
8.2 Algorithm . 155

8.2.1 Radix-100 Non-Restoring Decimal Division 155
8.2.2 Pre-scaling method . 156
8.2.3 Analysis of Look-up Table Size . 157

8.3 Architecture . 158
8.4 Analysis of Implementation Results . 161
8.5 Summary . 162

VI Conclusion 164

9 Summary and Future Research 165
9.1 Summary . 165
9.2 Future Research . 167

9.2.1 Decimal Logarithmic Arithmetic Unit 167
9.2.2 A Combined DFP Division/Square Root Unit 169
9.2.3 DFP Transcendentals via BID Encoding 170

References 172

ix

List of Tables

2.1 Decoding of the combination field. 15
2.2 Parameters in DFP interchange formats. 16
2.3 DFP arithmetic functions included in this dissertation. 21
2.4 Reduced intervals for considered transcendental functions. 22

3.1 Number of non-uniform segments obtained by Static Method and Dynamic
Method. 48

3.2 Estimated memory sizes (bits) obtained based on Static Method and Dynamic
Methods. 49

4.1 Parameters of decimal logarithm linear approximation (Alg. 2). 58
4.2 Comparsion of two decimal logarithm algorithms. 62
4.3 Details of combinational delay. 70
4.4 Tradeoff analysis of hardware implementation. 72
4.5 Implementation results in different accuracy constraints. 73
4.6 Hardware performance comparison in two algorithms. 74

5.1 Digit e1 selection of DFP logarithm. 84
5.2 Selection of Index jinit. 85
5.3 Error Analysis for DFP Interchange Formats 89
5.4 Example of a Decimal64 logarithm operation. 98
5.5 Delay and area of Decimal64 logarithmic converter. 109
5.6 Details of critical path of Decimal64 logarithmic converter. 109
5.7 Comparison results for the delay of Decimal64 logarithmic converter. 111

6.1 Digit e1 selection of DFP antilogarithm. 119
6.2 Error analysis of DFP antilogarithm for DFP interchange formats. 124
6.3 Example of a Decimal64 antilogarithm operation. 130
6.4 Delay and area of Decimal64 antilogarithmic converter. 139
6.5 Details of critical path of the Decimal64 antilogarithmic converter. 139
6.6 Comparison results for the delay of Decimal64 antilogarithmic converter. . . 141

7.1 Evaluation of different size of look-up table. 148
7.2 Hardware implementation results. 153

8.1 Adjustment of divisor. 157
8.2 Details of critical path on FPGA. 162
8.3 Hardware performance comparison. 163

9.1 Operations by decimal logarithmic arithmetic unit. 169

x

List of Figures

2.1 DFP interchange format with DPD encoding. 14

3.1 FPGA implementation for function evaluations. 41
3.2 SIE circuit by the LUT cascade. 42
3.3 Non-uniform segmentation results vs. varied εn. 43
3.4 CPU time analysis of Dynamic Method. 46

4.1 Optimization of linear approximation in one segment of decimal logarithm. . 55
4.2 Proposed dynamic non-uniform segmentation method. 56
4.3 Exact error analysis of linear approximation of decimal logarithm. 59
4.4 Exact error analysis of linear approximation of decimal antilogarithm. 59
4.5 Exact error analysis of Alg. 2 for integer and fraction cases. 61
4.6 Exact error analysis of Alg. 1: a)integer case; b) fraction case. 61
4.7 Block diagram of binary-based decimal logarithmic converter. 63
4.8 Block diagram of the proposed decimal logarithmic converter. 65
4.9 Block diagram of the proposed decimal antilogarithmic converter. 66
4.10 Details of decimal linear approximation unit. 68
4.11 Normalized hardware performance in different accuracy constraints. 73

5.1 Improved architecture of DFP logarithmic converter. 91
5.2 Decimal carry-save representation of W [j]. 92
5.3 Data-path of the computation of L and L′. 96
5.4 Hardware implementation of Stage 1 in DFP logarithmic converter. 99
5.5 Hardware implementation of Stage 2 in DFP logarithmic converter. 102
5.6 Hardware implementation of Stage 3 in DFP logarithmic converter. 104
5.7 Hardware implementation of Stage 4 in DFP logarithmic converter. 106
5.8 Portion of a trailing zeros detector for Decimal64. 107

6.1 Improved architecture of DFP antilogarithmic converter. 126
6.2 Hardware implementation of Stage 1 in DFP antilogarithmic converter. . . . 132
6.3 Hardware implementation of Stage 2 in DFP antilogarithmic converter. . . . 134
6.4 Hardware implementation of Stage 3 in DFP antilogarithmic converter. . . . 136
6.5 Hardware implementation of Stage 4 in DFP antilogarithmic converter. . . . 137

7.1 Data-path of the reciprocal computation. 149
7.2 Architeture of the proposed reciprocal unit. 151

8.1 Scaling parameters in the look-up table. 159
8.2 Architecture of decimal radix-100 divider. 160

9.1 Decimal logarithmic arithmetic unit. 168

xi

List of Abbreviations

ALU Arithmetic Logic Unit
ASIC Application Specific Circuit
BCD Binary Coded Decimal
BFP Binary Floating-Point
BID Binary Integer Decimal
BSPS Binary Search Partition Scheme
BXP Binary Fixed-Point
CS Carry-Save Number System
DCC Decimal Carry Counter
DCFA Decimal Carry-free Adder
DCLA Decimal Carry-look-ahead Adder
DCSA Decimal Carry-save Adder
DFP Decimal Floating-Point
DLAU Decimal Linear Approximation Unit
DLAU Decimal Logarithmic Arithmetic Unit
DMUL Decimal Multiply Logic
DPD Densely Packed Decimal
DPPG Decimal Partial Product Generation
DSP Digital Signal Processing
DXP Decimal Fixed-Point
FLP Floating-Point Number System
FPGA Field-Programmable Gate Array
IP Intellectual Property
LNS Logarithmic Number System
LOD Leading One Detector
LSB Least Significand Bit
LSD Least Significand Digit
LUTs Look-up Tables
LZD Leading Zero Detector
MSB Most Significand Bit
MSD Most Significand Digit
MTBDD Multi-terminal Binary Decision Diagram
MiniBit Static Bit-width Optimization Approach
NaN Not-a-Number
ROM Read Only Memory
SD Signed-Digit Number System
SIE Segment Index Encoder
SIMD Single Instruction Multiple Data
UFB Uniform Fractional Bit-width
ulp Unit in the Last Place

xii

Part I

Preface

1

Chapter 1

Introduction

This chapter discusses the importance of Decimal Floating-Point (DFP) arithmetic and

the necessity that existing computer processors support DFP arithmetic. Based on the

existing basic decimal arithmetic units, more complex DFP transcendental arithmetic could

be built in computer processors to meet the strict requirements on computational speed and

accuracy for tomorrow. This motivates the need to create DFP transcendental arithmetic

in hardware, which is the focus of this dissertation. Section 1.1 presents an overview of the

necessity of decimal arithmetic. Section 1.2 discusses the motivation of this research work.

Section 1.3 describes the road-map of this research dissertation. Section 1.4 summarizes

research contributions.

1.1 Why Decimal Arithmetic

We will start this chapter with a story shown in a design article in EETimes [1]:

“If you ask engineers how numbers are represented, stored, and manipulated
in computers and calculators, most will reply: “as signed or unsigned binary
integers or as binary fixed-point (BXP) or floating-point (BFP) values.” (...)
And even if one should happen to enquire about Binary Coded Decimal (BCD)
representations, the response is almost invariably: ”Oh, that went out of style
25 to 30 years ago; no one uses it now.” Is that true?”

Decimal number is a whole lot simpler for people to understand and use than binary

number, because it is basically based upon the decimal arithmetic that we have learned in

school. In the early computers, the decimal arithmetic units were implemented in micro-

processors, however, they have not been popular due to its lower computation speed and

2

larger hardware cost compared with binary arithmetic. The reasons are evident, first, binary

arithmetic is more suitable for scientific computations than decimal, due to its mathematical

properties and performance advantage; second, the substrate of digital systems is based on

two-state transistors so that binary number can be stored more efficiently and processed

faster than decimal number in hardware. We realize the advantages of the binary compu-

tation, however, we intend to show in this section that the decimal computation still has

its significance on many financial, commercial and Internet business applications, such as

banking, accounting, tax calculation, currency conversion, insurance, marketing, retail sales,

e-commerce and e-banking [2]. The following is more comprehensive reasons for the need of

decimal arithmetic.

First of all, numbers in commercial databases are primarily decimal. Dr. M. F. Cowlishaw

in his paper [2] cites a survey of commercial databases reported by Tsang [3]. The databases

in this survey cover a wide range of applications, including airline systems, banking, financial

analysis, insurance, inventory control, management reporting, marketing services, order entry

and processing, pharmaceutical, and retail sales. In those databases, over 456,420 columns

contained numeric data and of which 55% are decimal, and the further 43.7% are integer

types which could have been stored as decimal numbers. Dr. M. F. Cowlishaw concludes

that the extensive use of decimal numbers in these commercial databases suggests that it is

worthwhile to study how the decimal data are used and how decimal arithmetic should be

defined.

Second, most decimal fractional numbers can not be exactly represented or exactly

rounded by BFP numbers. In [4], Dr. M. F. Cowlishaw presents several examples to show

computation problems. The first example shows that the decimal number 0.1 requires an

infinitely recurring binary number (0.00011001...), which can only be approximated to a

decimal number (0.09765...) instead of the exact value of 0.1. It is evident that a conversion

error between the decimal and binary format can not be avoided, so using BFP to com-

pute decimal is not possible to guarantee the same results as those from decimal arithmetic.

Another potential problem may be produced later on when rounding the BFP result after

the decimal computation by binary. For example, consider a calculation, 0.70×1.05, us-

ing the most widely used double-precision BFP format, the exact result is little less than

3

0.73499999999999999. This result, rounded to a decimal number with two decimal fraction

digits, is 0.73, which is 0.01 less than manual computation result (0.735), rounded to the

same fraction digits, 0.74. Although the error in a single operation shown in above examples

is very small, these tiny errors may accumulate and lead to a large error after several oper-

ations. Dr. M. F. Cowlishaw presents a study [4] which shows that a large telephone billing

system can accumulate errors of up to 5 million dollars per year, if using BFP arithmetic

(the telco benchmark [5]).

Third, decimal arithmetic could be a significant part of commercial workloads with the

increasing use of DFP format. In [2], Dr. M. F. Cowlishaw presents a case study about a

new benchmark, designed to model an extreme case such as a telephone company’s daily

billing application. This case study indicates that the decimal processing overhead in the

benchmark could reach over 90% and very time consuming. Therefore, he predicts that this

kind of applications would clearly benefit from the hardware component of DFP arithmetic

units built in microprocessors. Such a hardware could be two to three orders of magnitude

faster than software.

1.2 Motivation

In today’s world, few microprocessors have instructions or dedicated hardware components

for DFP arithmetic. In a microprocessor without DFP support, decimal numbers are usually

processed with two methods. One method is to convert the decimal numbers to binary

numbers before computation in binary hardware arithmetic units, and then the binary format

results are converted back to decimal format. The other method is to store the data in

decimal format and process data using decimal software arithmetic library, such as the Java

BigDecimal class [6] and the C/C++ decNumber library [7]. The first method is error-

prone because BFP format can not exactly represent decimal fractions, while the software

based method is typically 100 to 1000 times slower than binary arithmetic implemented in

hardware [2]. These problems give rise to the need to develop hardware DFP arithmetic

components in microprocessors for accurate and fast calculation fully in decimal. Due to

the significance of DFP arithmetic, it is included in the specifications of the IEEE 754-2008

4

standard [8], which defines three decimal data formats that can be used for decimal integer,

decimal fixed-point (DXP), and DFP computer arithmetic. For the same reason, the DFP

arithmetic units have been implemented in IBM’s microprocessors POWER6 [9], system

z9 [10] and z10 [11] microprocessors.

Most microprocessors in computer systems usually include the basic arithmetic units,

such as adder, subtracter, multiplier, divider and square-root unit (+, −, ×, ÷ and
√

).

These basic decimal arithmetic units, as the main components of a decimal microprocessor,

have been designed and implemented to be compliant with the DFP arithmetics defined

in IEEE 754-2008 standard by recent works. Examples include the decimal adders in [12,

13, 14, 15, 16, 17, 18, 19], the decimal multipliers [20, 21, 22, 23, 24], the decimal dividers

in [25, 26, 27, 28, 29] and the decimal square-root unit in [30]. A complete survey of hardware

designs for the basic decimal arithmetic is summarized in [31].

The transcendental functions, such as logarithm, antilogarithm, exponential, and trigono-

metric, defined in the Dr. J-M Muller’s book [32], are useful arithmetic concepts in many

areas of science and engineering. Some applications, such as computer 3D graphics, scientific

computing, artificial neural networks, logarithmic number system (LNS), digital signal pro-

cessing (DSP) [33, 34, 35, 36, 37] are implemented in hardware by using binary transcendental

arithmetics to replace the basic computer arithmetic units. For instance, the multiplication

and division can be simplified to the level of addition and subtraction by using logarithmic

units [33]. The decimal transcendental function computation is also very useful for some

specific applications, such as some computations used in financial applications in banks [38]

(eg. the compound interest computation), the scientistic decimal calculator [39], and some

pocket computers [40]. Furthermore, with the continuous reduction of the size of the tran-

sistor and the scale of the integration, the decimal transcendental arithmetic units are more

likely to be cheap enough to be implemented in microprocessors, and its performance could

be close to the performance of the binary units. And then, maybe the decimal transcendental

arithmetic units will finally replace or co-exist with binary units in all applications because

of the human preference for the decimal representation.

The decimal transcendental functions, as recommended decimal arithmetic operations,

have been specified in the IEEE 754-2008 standard [8]. Therefore, virtually all the computing

5

systems that are compliant with the IEEE 754-2008 standard should provide a software or

hardware solution for the decimal transcendental function computation. Recently, Intel

Cooperation provides the first software solution to compute DFP and DXP transcendental

functions using an existing and well-established BFP transcendental function mathematical

library [41]. However, with the strict requirement on computational speed and accuracy in

the future, the hardware components may be included in the high-end microprocessor to

support the decimal transcendental computation.

The previous hardware implementations of the decimal transcendental function compu-

tation are reported in several patents [42, 43, 44, 45, 46] in which the decimal transcendental

function computation is based on a binary arithmetic, rather than decimal. Therefore, they

are not compliant with the DFP formats specified in the IEEE 754-2008 standard. In [40], a

radix-10 BKM algorithm is presented for an efficient computation of DXP exponential and

logarithm results. Unfortunately, this radix-10 BKM algorithm is not built according to the

IEEE 754-2008 DFP standard. Recently, based on the recent development of basic decimal

arithmetic units, more complex decimal transcendental arithmetic would be the next useful

hardware components built for the future microprocessors. Therefore, the decimal transcen-

dental arithmetic, as one of the hottest topic in decimal computer arithmetic, is attracting

more and more researchers’ attentions.

Some new algorithms and architectures, that are based on the IEEE 754-2008 stan-

dard, are developed for the computation of the DXP or DFP transcendental functions.

In [47, 48, 49, 50, 51], the CORDIC-based architectures for a high performance decimal

computation are described. The CORDIC-based methods have the potential to be modified

for the computation of more transcendental functions in further development. However, since

the CORDIC-based method needs to apply decimal multiplication and division operations,

it has a large latency and hardware complexity. All of these considerations motivate us to

design and implement the more efficient architectures for DFP or DXP units to satisfy the

increasing potential demands of high-performance decimal transcendental computations.

6

1.3 Research Overview

A set of new algorithms and architectures for the DFP and DXP transcendental function

computation based on different approaches are investigated in this dissertation. We mainly

focus on the following DFP or DXP transcendental operations in this dissertation: the DFP

and DXP based-10 logarithms (log10) and the antilogarithms (exp10), where v presents

the DFP or DXP operands. The proposed algorithms and architectures of the based-10

logarithms and antilogarithms can be easily modified to compute the DXP natural logarithms

(log) and the exponential (exp) operations. Moreover, the DXP reciprocal (rootb(v,-1)) and

division (div(v1, v2)), which are considered as the most complex basic decimal arithmetic

operation, are also investigated in this dissertation. This dissertation is structured in six

parts with nine chapters shown as follows:

-Part I: Preface includes:

Chapter 1: Introduction presents the background, motivation, overview and contribu-

tions of this dissertation.

-Part II: Research Background includes:

Chapter 2: DFP Transcendental Arithmetic gives the overview about the DFP stan-

dard specified in IEEE 754-2008 and the common issues of DFP transcendental arith-

metic design.

From this point, this dissertation is an original research, starting with:

-Part III: Table-based First-Order Polynomial Approximation includes:

Chapter 3: A Novel Dynamic Non-Uniform Segmentation presents a novel dynamic

non-uniform segmentation method for the first-order polynomial elementary function

approximation.

Chapter 4: Efficient Decimal Logarithmic and Antilogarithmic Converters present the

new algorithms and architectures of DXP logarithmic and antilogarithmic converters

based on the decimal first-order approximation polynomial method.

7

In Chapter 3, a novel dynamic non-uniform segmentation method is presented in detail,

which can approximate the transcendental function by an optimized linear approximation

with few non-uniform segments. Compared with previous non-uniform static method, the

proposed method can significantly reduce the memory size occupied in hardware. Moreover,

the proposed dynamic method can approximate the function to satisfy accuracy by the linear

approximation in which the input, coefficients, and intermediate values are rounded to least

bit-width, and this can not be achieved by the previous static non-uniform segmentation

method.

In Chapter 4, we analyze the tradeoff of the hardware performance, and scale up the

proposed architecture to achieve a higher precision of accuracy (obtain faithful results up to

the precision of 10−7). Moreover, a binary-based decimal linear approximation algorithm and

its architecture are simulated as a benchmark to evaluate the performance of the proposed

design. As far as we know, this work is the first attempt to study the decimal logarith-

mic and antilogarithmic converters based on the decimal piecewise first-order polynomial

approximation method.

-Part IV: Digit-Recurrence with Selection by Rounding includes:

Chapter 5: Improved Design of Decimal Floating-Point Logarithmic Converter presents

the algorithm and architecture of the DFP logarithmic converter, based on digit-

recurrence algorithm with selection by rounding.

Chapter 6: Improved Design of Decimal Floating-Point Antilogarithmic Converter

presents the algorithm and architecture of DFP antilogarithmic converter, based on

digit-recurrence algorithm with selection by rounding.

In Chapter 5 and Chapter 6, the proposed algorithms and architectures can compute

faithful DFP logarithm and antilogarithm results for any one of the three DFP formats, which

are specified in the IEEE 754-2008 standard. These two designs make the first attempt to

comprehensively analyze and implement the DFP logarithmic and antilogarithmic converters

based on digit-recurrence algorithm with selection by rounding. The rough delay estimation

results of the proposed architectures indicate that the latencies are close to or shorter than

that of the binary radix-16 logarithmic and exponential converters, and that they have a

8

significant decrease in terms of the latency in contrast with our original published designs,

the recent decimal CORDIC design, and the software implementation.

-Part V: Function Iteration Method includes:

Chapter 7: A Decimal Reciprocal Unit Using Efficient Table Look-up presents the

efficient design and implementation of a 16-digit DXP decimal reciprocal unit based

on Newton-Raphson iteration method.

Chapter 8: Design and Implementation of A Radix-100 Decimal Division presents a

new algorithm and architecture of the 16-digit DXP radix-100 decimal divider based

on the decimal non-restoring algorithm with pre-scaling method.

In Chapter 7, we analyze the computation error for the look-up tables with different sizes,

in order to find the smallest size of look-up table for the efficient hardware implementation.

The proposed design can utilize a half size of the look-up table as that used in the previous

design to compute a faithful reciprocal result.

In Chapter 8, we design and implement a new radix-100 divider, which can can reduce

the clock cycle to 1/4 of the previous radix-10 design, while maintaining accuracy of the

result. As far as we know, this is the first work to research the algorithm and architecture of

the radix-100 division. In addition, we would appreciate Mr. Yu Zhang’s help for this work.

-Part VI: Conclusion includes:

Chapter 9: Summary and Future Research includes a summary of research, and thoughts

on related future research.

1.4 Research Contributions

In this dissertation, we have researched and developed several new decimal algorithms and

architectures for the DFP transcendental function computation. Some of them are the first

published designs which can achieve faithful logarithm or antilogarithm results of DFP or

DXP operands, specified in the IEEE 754-2008 standard. The algorithms and hardware

designs presented in this dissertation provide a basis for the future hardware-oriented DFP

or DXP transcendental function computation research. To help researchers evaluate the

9

performance of the proposed DFP transcendental arithmetic, we analyze the hardware im-

plementation results of these arithmetic units, and compare the hardware performances of

the proposed architectures with the binary based architectures, the recent decimal CORDIC

designs, and the Intel’s DFP software library. Our research on DFP transcendental arith-

metic serves as a useful starting point for researchers who are interested in this area. In

the future, as the performance gap between BFP and DFP arithmetic becomes smaller,

DFP arithmetic units may replace or co-exist with BFP arithmetic units in the micropro-

cessor. This dissertation may also be useful in guiding the design of future hardware and

instruction set extensions for the computation of the decimal transcendental function in the

microprocessor.

List of Publications:

We show next a list of the publications, arranged according to their correspondence to the

different chapters of this dissertation.

Chapter 4: Efficient Decimal Logarithmic and Antilogarithmic Converters

• D. Chen and S. Ko, et al “A novel decimal-to-decimal logarithmic converter,” Proc. IEEE

Symp. on Circuit and System (ISCAS’08), Seattle, Washington, pp. 688-691, May 2008.

• D. Chen and S. Ko, et al “A decimal-to-decimal antilogarithmic converter”, Proc. IEEE

Canadian Electrical and Computer Engineering (CCECE’08), Niagara Falls, Ontario, Canada,

pp. 1223-1226, May 2008.

Chapter 5: Improved Design of Decimal Floating-Point Logarithmic Converter

• D. Chen, Y. Zhang and S. Ko, et al “A 32-bit decimal floating-point logarithmic converter,”

Proc. 19th IEEE Symp. on Computer Arithmetic (ARITH’19), Portland, Oregon, pp. 195-

203, June 2009.

• D. Chen and S. Ko, et al “Improved decimal floating-point logarithmic converter based on

selection by rounding”, accepted for publication, IEEE Trans. on Computers, to appear,

2011.

Chapter 6: Improved Design of Decimal Floating-Point Antilogarithmic Converter

10

• D. Chen and S. Ko, et al “A new decimal antilogarithmic converter,” Proc. IEEE Symp.

on Circuit and System (ISCAS’09), Taipei, Taiwan, pp. 688-691, May 2009.

Chapter 7: A Decimal Reciprocal Unit Using Efficient Table Look-up

• D. Chen and S. Ko, “Design and implementation of decimal reciprocal unit”, Proc. IEEE

Canadian Electrical and Computer Engineering (CCECE’07), Vancouver, British Columbia,

Canada, pp. 1094-1097, Apr. 2007.

Chapter 8: Design and Implementation of A Radix-100 Decimal Division

• Y. Zhang, D. Chen and S. Ko, et al “Design and implementation of a radix-100 decimal

division”, International Workshop on Multimedia Signal Processing and Transmission, Seoul,

Korea, pp. 123-126, Sep. 2009.

The following papers are also published, but not considered to be the part of this disser-

tation.

• D. Chen, B. Zhou, Z. Guo and P. Nilsson, “Design and implementation of reciprocal unit”,

48th Midwest Symp. on Circuits and Systems (MWSCAS’05), Cincinnati, Ohio, pp. 1318-

1321, Aug. 2005.

• A. Malik, D. Chen and S. Ko, et al “A study on the design trade-off analysis of floating-

point adders in FPGAs,” Canadian J. Electrical and Computer Engineering, Vol. 33, No.

3/4, pp. 169-175, Summer/Fall 2008.

• K. Muma, D. Chen and S. Ko, et al “Combining ESOP minimization with BDD-based

decomposition for improved FPGA synthesis,” Canadian J. Electrical and Computer Engi-

neering, Vol. 33, No. 3/4, pp 177-182, Summer/Fall 2008.

• Y. Zhang, D. Chen and S. Ko, et al “A high performance pseudo-multi-core ECC processor

over GF(2163)”, Proc. IEEE Symp. on Circuit and System (ISCAS’10), pp 701-704, May

2010.

• Y. Zhang, D. Chen and S. Ko, et al ”A high performance ECC hardware implementation

with instruction-level parallelism over GF(2163)”, Elsevier J. Microprocessors and Microsys-

tems, vol. 34, pp. 228-236, Apr. 2010.

11

Part II

Research Background

12

Chapter 2

Decimal Transcendental Arithmetic

This chapter provides background information and discusses related fundamental con-

cepts about the DFP and DXP transcendental function computation described in this dis-

sertation. Section 2.1 gives an overview of DFP standard specified in IEEE 754-2008, which

includes DFP formats and encoding, DFP arithmetic operations, DFP rounding modes,

DFP special values and exception handling. Section 2.2 presents the common issues of the

decimal transcendental arithmetic design, which include 1) the computation of DFP tran-

scendental operations; 2) different types of hardware methods and their main features; and

3) the considerations of hardware implementation of DFP transcendental arithmetic.

2.1 DFP Formats in IEEE 754-2008 Standard

The IEEE 754 standard for floating-point arithmetic is the most widely-used standard for

floating-point computation, and is implemented for many microprocessor designs and soft-

ware mathematical libraries. The current version, IEEE 754-2008 [8], is the revision to

the original IEEE 754-1985 [52] standard for BFP arithmetic and IEEE 854-1987 [53] for

radix-independent floating-point arithmetic. One of the most important revisions to IEEE

754-1985 is the introduction of DFP formats and operations, which includes:

• DFP formats: which consist of finite numbers (including signed zeros and subnormal

numbers), infinities, and special not-a-number (NaN).

• DFP arithmetic operations: which include basic DFP arithmetic operations, two

decimal-specific operations, different types of conversions and some recommended DFP

operations (transcendental operation).

13

Sign
S

Combination
G

Trailing Significand
T

Width
1 bit w+5 bits t=(10 x J) bits

=(3 x J) digits

Field

MSB MSBLSB LSB

0 4 5 4
...... wG G G G

Figure 2.1: DFP interchange format with DPD encoding.

• DFP rounding modes: which include five rounding modes (roundTiesToEven (RNE),

roundTiesToAway (RNA), roundTiesToPositive (RPI), roundTiesToNegative (RMI)

and roundTowardZero (RNZ)) to guarantee the exactly or faithful rounded results for

the inexact computation and conversion.

• DFP exceptions handling: which include the invalid operation, division by zero,

overflow, underflow and inexact.

2.1.1 DFP Formats and Encodings

The encodings for DFP operands allow for a range of positive and negative values together

with values of ±0, ±∞, and not-a-number (NaN). Three interchange DFP formats are

specified in the IEEE 754-2008 standard, which includes a storage format (Decimal32) and

two basic computational formats (Decimal64 and Decimal128) as follows:

• Storage format is an interchange format not required by DFP arithmetic. The stan-

dard defines one decimal storage floating-point format encoded in 32-bit (Decimal32).

• Basic format is an interchange format available for DFP arithmetic. The standard

defines two basic decimal computational floating-point format encoded in 64-bit (Dec-

imal64) and 128-bit (Decimal128) respectively.

Figure 2.1 shows the basic DFP interchange format specified in the IEEE 754-2008 stan-

dard, which includes:

• 1-bit Sign Field: 1-bit field S, which indicates the sign of the number in the same

way as BFP numbers.

• w+5-bit Combination Field: w+5-bit field G, and can be considered as two subfields:

first, the five most significant bits (MSBs) of the Combination Field, G0...G4, is defined

14

Table 2.1: Decoding of the combination field.

G0G1G2G3G4 Type Exponent MSBs (2-bit) Coefficient MSD (4-bit)

a b c d e d0 < 8 a b 0 c d e

1 1 c d e d0 > 7 c d 1 0 0 e

1 1 1 1 1 Infinity - - - - - -

1 1 1 1 0 NaN - - - - - -

as one subfield, which 1) encodes two MSBs of the nonnegative biased exponent and

the most significant digit (MSD) of the decimal significand, d0, 2) indicates the Not-a-

Number (NaN) and infinite number (±∞); second, the remaining w-bit of Combination

Field, G5...Gw+4, is defined as a suffix to the two MSBs derived from G0...G4, which

consists of w+2-bit nonnegative biased exponent. The whole encoded exponent is an

unsigned binary integer with the largest unsigned value. The value of the exponent is

calculated by subtracting an Exponent Bias from the value of the encoded exponent,

in order to represent both negative and positive exponents. Table 2.1 shows the detail

of the encoding for the 5-bit MSBs of the Combination Field, G0...G4, where a, b, c, d, e

are used to represent the value (0 or 1) of G0...G4.

• J×10-bit Trailing Significand Field: J×10-bit field T can be specified by Densely

Packed Decimal (DPD) encoding [54] or Binary Integer Decimal (BID) encoding [55]

in IEEE 754-2008. In this dissertation, the DPD encoding is chosen to represent

Trailing Significand Field, as a suffix to the MSD derived from Combination Field

to construct q-digit decimal significand, (q = 3×J +1). Trailing Significand Field

(J×10-bit) is a multiple of 10-bit, and the most significant group is on the left. Every

10-bit group represents three decimal digits, using DPD encoding and can be decoded

to a 12-bit binary-coded decimal (BCD) representation. The DPD encoding has the

advantage of straightforward decimal rounding and shifting, so it is usually used in

the hardware implementations of decimal arithmetic units. The BID encoding has the

advantage of using the current high-speed binary integer arithmetic logic unit (ALU)

in the microprocessor, so it is usually used in the software implementations [55] for

decimal computations. For more fundamental concepts of the BID encoding, refer

15

Table 2.2: Parameters in DFP interchange formats.

Format Name Decimal32 Decimal64 Decimal128

Storage Width (bit) 32 64 128

Trailing significand field (J×10-bit) 20 50 110

Combination Field (w+5-bit) 11 13 17

Decimal Significand (q-digit) 7 16 34

Exponent bias 101 398 6176

emax +96 +384 +6144

emin −95 −383 −6143

to [8]. Table 2.2 provides important parameters used in the standard for different DFP

interchange formats. In this dissertation, the DFP format in the DPD encoding is

selected for all research works so that the decimal significand of a DFP operand can

be decoded to binary-coded decimal (BCD) representation in hardware.

In the IEEE 754-2008 standard, the value of the decimal significand is a non-normalized

unsigned decimal fraction in the form of d0.d1d2...dq−1, 0 ≤ di < 10. In decimal computer

arithmetic, the decimal significand is usually represented as an integer. The value of a DFP

number is represented as follows:

v = (−1)S × 10e × significand (2.1)

In (2.1), S is the sign of the DFP number; the value of the real exponent e is in the range

of (emin−q+1)≤ e≤ (emax−q+1); and the decimal significand, significand, is represented

as a non-normalized decimal integer. Since the decimal significand is non-normalized, DFP

number may have multiple representations, which is called DFP number’s cohort. For

example [8], if significand is a multiple of 100 and e is less than its maximum allowed value,

then (S, e, significand) and (S, e+2, significand/100) are two representations for the same

DFP number which are members of the same cohort.

Based on an example shown in [56], we illustrate how the decimal number v=−8.35=
−835×10−2 is encoded in the Decimal64 format using the DPD encoding.

16

1. The decimal significand can be represented using BCD encoding, significand=00000000

00000835radix-10, except the most significand digit (MSD), the remaining fifteen decimal

digits are represented using the 50 bits DPD encoding (T =000...001000111101).

2. The w+5-bit combination field G = 0100010001100 where the two MSBs and eight

least significand bits (LSBs) of G are from the biased exponent e, and the middle three

bits of G are from the MSD of the significand.

3. The sign bit S=1 represents the negative DPF number, thus, the representation of DFP

number v=−835×10−2 in the DPD format is: 10100010001100000...001000111101radix−2.

The interpretation of the combination of the various fields in a DFP special value is as

follows:

• Not-a-Number (NaN): If G0 through G4 are 11111 (refer to Table 2.1), then v is

NaN regardless of S. Furthermore, if G5 is 1, then v is a signaling NaN (sNaN);

otherwise, v is a quiet NaN (qNaN). The remaining bits of G are ignored, and T

constitutes the NaN’s payload, which can be used to distinguish various NaNs.

• Infinite number: If G0 through G4 are 11110, then v represents +∞ or −∞, accord-

ing to the sign bit. The values of the remaining bits in G, and T , are ignored.

• Overflow: If DFP numbers with absolute values are larger than the largest DFP

number (|vmax|=(10q−1)×10emax−q+1) then overflow occurs.

• Underflow and Subnormal: If DFP number is less than the smallest DFP number

(|vmin|=10emin−q+1) then underflow occurs. If the absolute value of DFP number is less

than 10emin and larger than 10emin−q+1, it produces subnormal.

• Normal number: The remaining exponent values and significands represent normal

numbers.

2.1.2 DFP Arithmetic Operations

The hardware implementations of DFP arithmetic units, which are compliant with the IEEE

754-2008 standard, must provide support for at least one basic computational format (Dec-

imal64 and/or Decimal128). For each of specified DFP operation, first, DFP operands with

the external format (DPD or BID) are converted to the internal format (BCD or binary),

17

accompanied with sign bit, unsigned binary exponent and exception flag; second, the DFP

operation is computed to produce an intermediate result correct to infinite precision without

rounding; third, the intermediate result is rounded to a target finite digit-width of decimal

significand; fourth, if necessary, the rounded results are packaged back to the destination’s

DFP format. The decimal arithmetic operations specified in IEEE 754-2008 are mainly

classified as follows:

• Basic DFP arithmetic operations: include DFP addition, subtraction, multiplica-

tion, division, square-root and fused multiply addition, which are usually implemented

in most today’s microprocessors. The standard recommends to provide exactly rounded

DFP computation results for these basic DFP arithmetic operations.

• Two decimal-specific DFP operations: SameQuantum(v1,v2) compares the ex-

ponents of v1 and v2 and the output true if they are the same and false if they are

different. Quantize(v1,v2) generates a DFP number that has the same value as v1 and

the same exponent as v2, unless rounding or an exception occurs.

• DFP comparison operations: Comparison(v1,v2) compares the numerical values of

v1 and v2. The comparison operations do not differentiate the redundant representa-

tions of the same number.

• DFP conversion operations: Conversion(v) supports the conversions among the

decimal integer, BFP and DFP formats. The conversions between DFP and BFP

must be exactly rounded.

• Recommended DFP operations: decimal transcendental arithmetic operations are

defined as recommended operations, such as logarithms, exponentials, trigonometric

functions as so on. The standard recommends to provide exactly rounded DFP com-

putation results for these transcendental functions.

Since a DFP number might have multiple representations (DFP number’s cohort), the

value of a DFP result is not only determined by the operation and the DFP operands’ values,

but also depends on the selection of the proper representation of DFP numbers. Because of

this characteristic, the standard defines the preferred representation exponent, which refers

to a required exponent (quantum). The selection of a particular representation for a DFP

18

result is dependent on whether the representation of operation result is exact or inexact:

• Exact DFP operation result: If the DFP arithmetic operation result is exact, the

cohort member is selected based on the preferred exponent (quantum) for a DFP

result of that operation. The preferred exponents have been specified in the standard

for different operations. For DFP addition, if the result is exact, the preferred exponent

is the minimum quantum of the operands for a DFP addition, that is eR=min(ev1 , ev2).

• Inexact DFP operation result: If the DFP arithmetic operation (except for quan-

tize operation) result is inexact, the cohort member of the least possible exponent is

used to get the maximum number of significant digits. For DFP addition, if the re-

sult is inexact, the preferred exponent may be decreased to keep the MSD of decimal

significand not zero.

2.1.3 DFP Rounding Modes

Rounding is often done on purpose to obtain a finite number that can exactly represent the

closest value to the exact infinite result. In general, since the result of floating-point operation

is not a finite number, the inexact result must be converted to a close representable floating-

point number in a given finite precision format, which is referred as rounding. The IEEE

754-2008 standard specifies five types of active rounding modes for the DFP arithmetic:

• roundTiesToEven: rounds the result to the nearest representable DFP number. The

number with an even least significant digit (LSD) should be selected, if a tie occurs.

• roundTiesToAway: rounds the result to the nearest representable DFP number.

The number with a larger magnitude should be selected, if a tie occurs.

• roundTiesToPositive: rounds the result toward positive infinity. The closest DFP

number, which is greater than the exact result, should be selected.

• roundTiesToNegative: rounds the result toward negative infinity. The closest DFP

number, which is lower than the exact result, should be selected.

• roundTowardZero: truncates the result. The closest DFP number, which is lower

in magnitude than the exact result, should be selected.

19

2.1.4 Exception Handling

The exceptions happen when the result of an operation is not the expected floating-point

number. In this case, the default non-stop exception handling delivers a default result, and

raises the corresponding status flag for exceptions. The IEEE 754-2008 standard specifics

five kinds of exceptions, shown as follows:

• Invalid operation: is signaled when there is no usefully definable DFP result. The

invalid operation usually happens if the operand is invalid, such as the NaN or infinite

operand, or if the operation is invalid, such as quare-root of negative operands. In this

case, the default result is a qNaN.

• Division by zero: is signaled only if an operation with finite operands produces an

exact infinite result. For example, the dividend is a finite non-zero operand and the

divisor is zero. The default result may be plus or minus infinity.

• Overflow: is signaled if the magnitude of a result exceeds the largest finite repre-

sentable number in the format of the operation. The default result may be plus or

minus infinity, or plus or minus the largest representable number in the format, de-

pending on the rounding mode.

• Underflow: is signaled if the magnitude of a result exceeds the smallest finite rep-

resentable number in the format of the operation. This is detected before rounding

examining the precision digits and the exponent range. The default result may be zero,

a subnormal number or a smallest finite number representable in the format.

• Inexact: is signaled if the rounded result of an operation differs from the infinite

precision result. The default result is the rounded or the overflowed result.

2.2 Decimal Transcendental Unit Design

In this section, some considerations about the design and implementation of DFP and DXP

transcendental arithmetic units are presented. First, the description of DFP transcenden-

tal operations covered in this dissertation is described in terms of the exception handling,

the range reduction, and the rounding. Second, different types of BFP hardware-oriented

20

Table 2.3: DFP arithmetic functions included in this dissertation.

Operations Domain Exceptions

log10 [0,+∞] invalid operation, divideByZero, inexact

exp10 [−∞,+∞] invalid operation, overflow, underflow, inexact

rootn(v,-1) [−∞,+∞] invalid operation, divideByZero

div(v1, v2) overflow, underflow, inexact

methods and their main features are presented based on the summary in [32, 57].

2.2.1 Some Details of DFP Transcendental Operations

In this dissertation, the decimal arithmetic functions include the DFP and DXP based-10

logarithm (log10) and the antilogarithm (exp10), the DXP reciprocal (rootb(v,-1)) and the

DXP division (div(v1, v2)) as shown in Table 2.3, where v presents the DFP or DXP operands.

More decimal transcendental functions (not covered in this dissertation) are specified in the

IEEE 754-2008 standard as the recommended DFP operations [8].

Exception Handling

All the exceptions for the each specific transcendental function are shown in Table 2.3.

Details about the exception handling of the based-10 logarithm and antilogarithm operations,

can be referred to Section 5.2.1 and Section 6.2.1. However, since the DFP computation for

reciprocal and division operations is not covered in this dissertation, more details about the

exception handling of these two operations can be referred to the description in [8, 28].

Range Reduction

To compute a DFP transcendental function, f(v), over a range v∈ [a, b] with a given target

precision requirement, the range reduction leads to compute the transcendental function in

a smaller interval, [a′, b′], which can simplify the function approximation, reduce the size

of tables, and achieve the faster speed for the hardware implementation [32]. Table 2.4

presents the reduced intervals we will use throughout this dissertation for approximating

21

Table 2.4: Reduced intervals for considered transcendental functions.

Functions Domain Reduced Interval

log10(v) [0,+∞] [0.1, 1)

10v [−∞,+∞] (−1, 1)
v−1 and v1/v2 [−∞,+∞] [0.1, 1)

considered DFP transcendental functions. For the DFP based-10 logarithm operation, the

non-normalized decimal significand of DFP operand, which is in the range of [0,+∞], should

be adjusted into the range of [0.1, 1) before it is computed. For the DFP antilogarithm

operation, the non-uniform decimal significand of DFP operand, which is in the range of

[−∞,+∞], should be adjusted into the range of (−1, 1) before it is computed. For DFP

reciprocal and division operations, the non-uniform decimal significand of DFP operand,

which is in the range of [−∞,+∞], should be adjusted into the range of [0.1, 1) before it

is computed [28]. More details about the range reduction of DFP based-10 logarithm and

antilogarithm operations are presented in Section 5.2.2 and Section 6.2.2.

Rounding

The arithmetic operation in systems must behave as if the results are first computed exactly

with infinite precision, and then rounded. In terms of exact rounding, the operation result

provided by an algorithm computing a certain operation is always the floating-point number

which is closest to the exact result. Another frequently used notion is faithful rounding, which

happens when the intermediate result is in the interval between the two closest floating-point

numbers surround the exact result. The unit in the last place ulp, denotes the absolute value

of the difference between the two numbers in a given finite numerical representation which

are closest to a given number [58]. It is used as a measurement of precision in numeric

calculations. If the floating-point arithmetic computation error from the exact result is less

than 0.5 ulp, it means that the exactly rounded result in the round-to-nearest rounding mode

is always provided. On the other hand, the faithful rounding means that the computation

error from the exact result is less than one unit in the last place (1 ulp) [57].

For DFP basic arithmetic operations, such as addition, multiplication, division and square

22

root, defined in the IEEE 754-2008 standard must provide exactly rounded results. Although

the DFP recommended (transcendental) operations specified in the standard are required to

provide exactly rounded results, it has been believed for many years that the exact rounding

of transcendental functions would be too much expensive in terms of either speed or hardware

requirements [59]. To achieve exactly rounded results by any one of rounding modes, it is

needed to determine whether the value of the exact result (infinite precision) is less or higher

than the midpoint between the two nearest DFP numbers. However, when the exact result is

so close to the midpoint, exact rounding is difficult to perform, except that we can determine

the maximum length of chain of nine or zero after rounding digit for every possible DFP

results (Table Maker’s Dilemma [60]). A study of worst cases for exact rounding of the

exponential function in the IEEE 754-2008 Decimal64 format is presented in [61], in which

all the bad cases whose distance from a breakpoint are computed. In this dissertation,

we concentrate on the delay optimization of the proposed DFP transcendental arithmetic,

so that we design the algorithms and architecture to guarantee faithfully rounded results

(within 1 ulp of precision) using the roundTiesToEven mode.

2.2.2 Classification of Hardware Approaches in BFP

Both software and hardware-oriented algorithms to compute transcendental functions, and

issues related to accurate binary floating-point (BFP) implementations of these functions are

presented in the Dr. J-M Muller’s book [32]. Most BFP transcendental functions are firstly

considered and implemented by the software-oriented methods [62, 63, 64], due to their ad-

vantage of using large look-up tables and of providing more accurate results. However, some

applications which require high-speed solutions for the computation of these transcendental

operations, such as computer 3D graphics, scientific computing, artificial neural networks,

logarithmic number system (LNS), digital signal processing (DSP) [33, 34, 35, 36, 65, 37],

have led to the development of the new dedicated hardware to be implemented. Accord-

ing to the summarization in the Dr. A. Pińeiro’s Ph.D dissertation [57], the main types of

approaches used for the transcendental function computation in hardware can be separated

into two groups: non-iterative and iterative methods.

23

• Non-iterative Method: mainly includes direct table-lookup, polynomial and rational

approximations [66, 67, 68, 69, 70, 71, 72], and table-based methods [73, 74, 75, 76,

77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87].

• Iterative Method: mainly includes digit-recurrence and on-line algorithms [88, 89,

90, 91, 92, 93, 94, 95], and functional iteration methods, such as Newton-Raphson and

Goldschmidt algorithms [96, 97, 65, 98, 99, 100, 101].

The non-iterative methods are usually adopted to compute low-precision, up to single-

precision BFP operations or 32-bit BXP computations. In particular, if the objective is to

implement transcendental arithmetic units for high-speed and low-power applications, the

units have some tolerance for computational errors. On the other hand, iterative methods

can be applied to both low-precision and high-precision transcendental function computa-

tions, including double-precision or double-extended precision BFP operations, and 64-bit

or even more bit-width BXP computations. Thus, the transcendental arithmetic units im-

plemented based on iterative methods are mainly for high-precision scientific computations

which are impracticable for non-iterative methods.

Non-iterative method

-Direct table-lookup method needs to store all the computation results in the memory for

the corresponding input operands. Thus, the huge memory requirements of such technique

make this method impracticable for the computation with the large precision of accuracy. For

example, for a single-precision BFP transcendental computation, the required table-lookup

size is 224×24-bits, which is too large to be implemented in hardware [57].

-Polynomial and rational approximation method [66, 67, 68, 69, 70, 71, 72] mainly uses

a finite number of additions and multiplications, which are available in the microprocessors,

to approximate transcendental functions by combinations of these operations. If a fast

enough division is also available in the microprocessor, rational approximations can also

be applied for the computation to other transcendental functions, such as exponentials,

logarithms, trigonometric functions, etc. [57]. To achieve a high precision of the accuracy

for the computation, the degree of the polynomial is usually selected with a large number,

which leads to a very complex and time-consuming hardware implementation.

24

-Table-based method includes the piecewise linear and quadratic approximations algo-

rithm [82, 85, 86, 87] and the bipartite tables method [73, 74, 75, 76, 77, 78, 79, 80, 81, 83, 84].

The piecewise linear and quadratic approximations algorithm splits the interval where the

function is to be linearly or quadratically approximated into several smaller subinterval so

that it is sufficient to store the coefficients of a low-degree approximation for each subinter-

val in a table. While the bipartite table method approximates the transcendental function

based on two parallel tables, in that case, two approximations are usually provided in a

carry-save format, and then these two approximations are added in a carry propagate adder

to produce the final approximation of the transcendental function [74]. Table-based method

is a very popular method for the transcendental function computation with a low accuracy

(currently up to 24-bit), since this kind of method allows the hardware implementation with

significantly lower hardware cost than that of a straightforward table implementation, and

at the same time keeping a faster speed than digit-recurrence algorithms, CORDIC algo-

rithms or polynomial and rational approximations. Table-based methods can not only be

applied perfectly in such applications as computer 3D graphics, artificial neural networks,

and logarithm number systems, but also function in providing initial seed values to iterative

methods, such as the Newton-Raphson algorithms for division and square root [98, 99].

Iterative Method

-Digit-recurrence method [88, 89, 90, 91, 92, 93, 94, 95] is also known as the digit-by-digit

iterative method, which allows the use of a simple shift-and-add implementation in each it-

eration to achieve a fixed precision of accuracy of the result. As for the implementation cost,

the digit-recurrence algorithm has its advantage in achieving high precision results in con-

tract to the table-based and functional iteration method. In terms of execution time, since

the digit-recurrence algorithm can only achieve radix-r digit in each iteration (linear conver-

gence), it takes more execution time to achieve a certain precision of the accuracy compared

with other methods. To develop and implement the efficient arithmetic unit based on this

method, the radix r=2b applied in this algorithm must be selected carefully [57]. Increasing

the value of b can reduce the latency of algorithm, but it costs more implementations, leads

to a slower cycle time, and increases the complexity of the selection function for the digits,

25

which is usually the most time-consuming part in the architecture.

-Functional iteration method includes the Newton-Raphson [88, 96, 97, 65, 98, 99] and

the Goldschmidt algorithms [100, 101]. This type of method is iteration-based method

based on the multiplication operation, which makes this method more advantageous to uti-

lize the multiplier built in microprocessors. Unlike the digit-recurrence algorithm (linear

convergence), this type of method can achieve double precision of results in each iteration

(quadratic convergence). To achieve a certain precision of accuracy, the function iteration

method usually adopts the table-based method to generate an initial approximation (seed

value) at the very beginning, and then achieves the final accuracy by couple of iterations.

Thus, the number of iterations of this type of method depends on the precision of the accuracy

of the initial approximation. For example, with the precision of the initial approximation as

2−8, the function iteration method requires three iterations to achieve a double precision of

accuracy, 2−53 (2−8 → 2−16 → 2−32 → 2−64). Since the function iteration method can not

directly obtain the remainder of the operation, the straightforward rounding is difficult to

be achieved.

2.2.3 Considerations of Hardware Implementation

To design and implement the proposed decimal transcendental arithmetic in hardware, the

straightforward idea is to take the well-established hardware-oriented algorithms, adopt the

techniques used in BFP or BXP transcendental functions, and then transfer them with the

necessary changes [41]. However, processing this idea would be major challenges that can not

be overcome and implemented quickly because that all aspects between the decimal and bi-

nary transcendental computation are different in detail. In this section, some considerations

in terms of hardware implementation of the proposed decimal transcendental arithmetic are

listed as follows:

10’s Complement Number

In the computer arithmetic, the complement representation method is a technique which

allows subtracting one number from another using only addition of positive numbers. This

26

method has been commonly used in modern computer arithmetic, such as the 2’s complement

number. In this dissertation, all the intermediate variables in the hardware implementation

are represented with 10’s complement number in the BCD encoding. The reason for choosing

10’s complement format is that the decimal subtraction operation can be replaced by a

decimal addition in 10’s complement format, and all decimal digits, including the sign digit,

can be operated in the decimal addition or subtraction.

In mathematics, the 10’s complement of a n-digit decimal number X can be obtained as

10n−X [102]. In the hardware implementation, the 10’s complement of a number is usually

obtained by adding ’1’ to its 9’s complement [28]. The 9’s complement of a number X is

obtained by subtracting each digit in X from 9, which is usually implemented by a very small

look-up table. In the data path of the architecture, adding ’1’ to obtain the 10’s complement

can be done separately with the 9’s complement conversion, which is mostly often added

with the carry in the least significand digit (LSD) of the decimal addition.

Non-redundant and Redundant Number System

The number systems of the computer arithmetic design can be referred to the non-redundant

and redundant number systems. In the non-redundant decimal number system, every

decimal number has unique representation in the conventional 8421 BCD encoding; in

other words, no two sequences represent the same numerical value. For example, a non-

redundant representation of an n-digit unsigned integer X is given in decimal by a digit-

vector: X=(xn−1, ...x1, x0), where ⌈n=log10(X)⌉, and X=
∑n−1

i=0 xi10
i, with xi∈{0, 1...8, 9}

for 0≤ i ≤n−1. The redundant decimal number system has multiple valid representation for

the same numerical value, such as decimal carry save number system, decimal 5211 and 4221

signed-digit number system, and decimal septa signed-digit number system, which have been

widely used in current basic decimal computer arithmetic designs [17, 18, 22, 23, 24, 27, 29].

For example, a redundant representation of X in carry-save form is given by two digit-

vectors, (XS, XC), with XS = (xsn−1, ...xs1, xs0) and XC = (xcn−1, ...xc1, xc0), such that

X = (XS+XC) mod 10n, where the + symbol represents the decimal addition.

In both decimal and binary arithmetic, partial products in multipliers and partial remain-

ders in dividers or transcendental arithmetic units are usually represented via a redundant

27

number system (e.g., binary signed-digit [94, 92], decimal carry-save [23, 29], and decimal

signed-digit [25, 27, 18, 24]). The number of redundant digits is sufficiently more than that

of the radix, which allows the carry-free addition and subtraction as the basic sub-operations

implemented in the data-path. In this dissertation, the redundant carry-save representation

presented in Chapter 5 and Chapter 6 is used to improve the hardware performance of the

proposed DFP transcendental arithmetic in terms of the computation latency. It makes the

addition time independent of the operand’s precision in the proposed architecture. When

performing accumulation of values or computation of partial remainders in the proposed

architecture, it is desirable to keep the intermediate sum and carry in (XS, XC) carry-

save form, and only convert the final result to the non-redundant decimal 10’s complement

number system at the end.

2.2.4 Related Basic Decimal Arithmetic

The computation of decimal transcendental arithmetic operations is based on the combina-

tion of the basic decimal computer arithmetic operations, such as shift operation, addition,

substraction, multiplication etc. In order to develop and implement the architecture of

the decimal transcendental arithmetic, we need to implement some decimal basic computer

arithmetic (as the subcomponents of the proposed architecture) by our own work based on

the basic binary arithmetic in the textbook [103, 58], as well as other recently published

designs, such as the decimal adder [104, 105, 20, 16], the decimal multiplier [23, 20], the

decimal multiple logic [23, 24], the decimal multiplier, and the BCD-to-binary and binary-to

BCD converters [103] etc. The detailed information about these basic decimal arithmetic is

presented in the architecture section of each chapter.

28

Part III

Table-based First-Order Polynomial

Approximation

29

Chapter 3

A Dynamic Non-Uniform Segmentation Method

This chapter presents a dynamic non-uniform segmentation method for the first-order

polynomial transcendental function approximation. The proposed method can approximate

the transcendental function by the optimized linear approximation with very few non-uniform

segments. While the previous method is based on a static bit-width analysis, the proposed

method is mainly based on the dynamic bit-width analysis and capable of reducing the

number of segments, which in turn can significantly reduce the memory size occupied in

hardware. The proposed dynamic method can approximate the function to satisfy accuracy

requirement by employing a process of linear approximation, in which the input, coefficients,

and intermediate values are rounded to the least bit-width that can not be achieved by

previous static non-uniform segmentation methods.

3.1 Introduction

Transcendental functions, such as logarithm, exponential, trigonometric, square root etc, and

combinations of these functions (compound functions) are essential in digital signal process-

ing, computer 3D graphics, scientific computing and so on. Computing the transcendental

functions effectively and accurately has been one of the major goals in computer arithmetic.

The piecewise polynomial approximation algorithm is an attractive method because all tran-

scendental or compound functions can be evaluated by a set of simple linear or quadratic

approximations. Based on the polynomial approximation algorithm, the function evaluation

in hardware [74, 75, 106, 107, 108, 109, 110, 111] has been employed on a field-programmable

gate array (FPGA).

To achieve a required accuracy, the interval of the function can be split into a set of

30

segments with a same size. Such an approach is called uniform segmentation method [74, 75,

106, 107, 108, 109]. However, the shortcoming of this approach is that numerous segments

make the size of the look-up table become too large to be actually practical. By way of

contrast, a more effective approach is to determine the segment that has the largest size while

maintaining the specified approximation accuracy. Such an approach in which segments have

different width is called a non-uniform segmentation method [110, 111].

Main challenges for designing a polynomial structure based on the non-uniform segmen-

tation method stem from the following three aspects. The first challenge is to determine

the minimum number of the bit-width for internal signals in the fixed-point data path. The

most commonly used approach for bit-width optimization is a dynamic method in which the

bit-width of each signal is gradually adjusted to a point where all inputs meet the precision

requirement [34, 37, 112, 113]. In [114], a static bit-width optimization approach (MiniBit)

is proposed, which is adopted in the static non-uniform segmentation methods [110, 111]

to compute the bit-width for each signal in mathematical manner. The second challenge

is to select the best scheme to partition the interval of the function to the fewest number

of segments, which can produce a minimum look-up table size for storing the coefficients

and a relative simple segment index encoder (SIE). In [110], the domain of the function is

partitioned at the point where the maximum absolute error occurs. A two-level hierarchical

partition scheme is adopted in [111]. The third challenge is to compute the best-fit linear ap-

proximation with finite precision internal signals in each segment so that a faithful rounding

can be guaranteed for accuracy.

In this chapter, we propose a new dynamic non-uniform segmentation method for linear

approximation function evaluation. The main advantages of this method are:

• it can optimize the uniform fractional bit-width (UFB) determined by MiniBit to less

one by a dynamic bit-width analysis;

• it can limit the number of non-uniform segments to minimum by a binary search

partition scheme (BSPS) [115];

• it can compute the best-fit optimized linear approximation in which internal signals

are rounded to finite precision in each segment.

31

This chapter is organized as follows: Section 3.2 presents the notations and analyzes the

minimum maximum (minimax) linear approximation in one segment. In Section 3.3, we

present the proposed dynamic non-uniform segmentation method for linear approximation

function evaluation. Section 3.4 shows a hardware architecture for function evaluation. In

Section 3.5, we present experimental results, which are then compared with the results ob-

tained from the previous static method. Section 3.6 gives summary. While the proposed

dynamic non-uniform segmentation method is evaluated by approximating binary transcen-

dental functions in this chapter, it is then modified and applied to the designs and implemen-

tations of decimal logarithmic and antilogarithmic converters based on the piecewise linear

approximation algorithms in the following Chapter 4.

3.2 Minimax Polynomial Approximation

3.2.1 Notations

In this chapter, we deal with the linear approximation evaluation of the function f(x) with

its input and output in the BXP format. The input value of x is a m-bit BXP number

in the domain [a, b]; the function evaluation result is a n-bit BXP number. To achieve a

specified accuracy, the interval of x is typically split into a set of subintervals, [ai, bi], where

a≤ai< bi≤ b, and i is the segment index. According to [32], in each subinterval, there are

many straight lines, defined as P1 that can evaluate the function f(x), and of which only

p∗(x) is the best-fit linear approximation, c0ix+c1i, for achieving the minimax absolute error:

‖f(x)−p∗(x)‖∞= min
p(x)∈P1

max
ai≤x≤bi

|f(x)− p(x)| (3.1)

With the piecewise linear approximation, errors are produced in three ways. The first one

is the maximum linear approximation error, εa, resulted from the difference of the function

f(x) and its minimax linear approximation:

εa = max
ai≤x<bi

|f(x)− (c0i×x+ c1i)| (3.2)

The second one is the quantization error, εq, as shown in (3.3), produced by the finite

precision of rounded inputs, x′=round(x), coefficients, c′0i=round(c0i) and c′1i=round(c1i),

32

and intermediate values, D′
i = round(c′0i×x′), in the hardware implementation. Note that

in this chapter, x, c0i, c1i and Di = c0i×x represent infinite precision inputs, coefficients

and intermediate values respectively, while x′, c′0i, c′1i and D′
i represent rounded inputs,

coefficients and intermediate values respectively.

εq = (c0i×x+ c1i)− (D′
i + c′1i) (3.3)

The third one is the final output rounding error, εr, whose maximum value is 0.5 unit in

the last place (ulp). In order to obtain a n-bit accuracy, the following condition must be

satisfied:

εt = εa + εq + εr ≤2−n (3.4)

3.2.2 Minimax Error Analysis in One Segment

In each segment, the best-fit straight line can be found by Chebyshev theorem [32] which

gives a characterization of the minimax approximations to a function.

Chebyshev Theorem: p∗ is the minimax degree-n approximation to f on [ai, bi], if and

only if there are at least n+2 values, ai≤x0<x1<...< xn<xn+1≤bi, such that:

p∗(xi)−f(xi)=(−1)i[p∗(x0)−f(x0)]=±‖f−p∗‖∞ (3.5)

In this section, we analyze the evaluation of f(x) in one segment, [ai, bi], by its minimax

linear approximation. Based on Chebyshev theorem, there are at least three values, x0, x1

and x2, where the minimax approximation error, εa, is kept balanceable and reached with

alternate signs. The convexity of the function f(x) implies that the differences between f(x)

and p∗(x) at the starting (x0 = ai), ending (x2 = bi) and tangent (f ′(x1) = c0i) points are

equal, and represent the minimax error. Thus, we obtain:

f(ai)−(c0i×ai+c1i) = −εa
f(x1)−(c0i×x1+c1i) = εa

f(bi)−(c0i×bi+c1i) = −εa
f(x1)

′−c0i = 0

(3.6)

According to (3.6), the coefficients c0i and c1i, the value x1 and the minimax error εa are

computed so that the best-fit minimax linear approximation in [ai, bi] is determined. Since,

33

Algorithm 1 Determination of Coefficients c
′

0i
and c

′′

1i
in One Segment

Inputs: 1) Function, f(x); 2) one segment, [ai, bi]; 3) precision of c′0i in bits, q; 4) precision
of c′1i and D′

i(x
′) in bits, p; 5) precision of x in f(x), m.

Outputs: 1) Best-fit coefficients c′0i and c′′1i ; 2) Minmax error, |ε′a|
1: [c0i, c1i]← Chebyshev(f(x), [ai, bi])
2: c′0i ← round(c0i, q)
3: x′ ← round(x, p)
4: c′1i ← round(c1i, p)
5: D′

i(x
′) = round(c′0i × x′, p)

6: max← max
{xi=ai to bi steps 2−m}

(f(xi)−D′
i(round(xi, q)))

7: min← min
{xi=ai to bi steps 2−m}

(f(xi)−D′
i(round(xi, q)))

8: c′′1i ←
max+min

2

9: |ε′a| ←
max −min

2

the infinite precision input, coefficients and intermediate values have to be rounded to the

finite precision x′, c′0i, c′1i and D′
i in hardware. As a result, a quantization error, εq, is

produced, and the best-fit linear approximation line obtained by Chebyshev theorem is

moved to p∗(x′) as shown in (3.7), which is not a minimax linear approximation anymore,

and the minimax approximation errors are not balanceable.

Di = c′0i × x′

p∗(x′) = D′
i + c′1i

(3.7)

To redetermine a new best-fit linear approximation, p∗r(x
′), with these rounded values of x′,

c′0i, c
′
1i and D′

i, we keep the value of c′0i and adjust the value of c′1i to c′′1i according to (3.8):

c′′1i =
max(f(x)−D′

i) + min(f(x)−D′
i)

2
(3.8)

Thus, a new best-fit linear approximation p∗r(x
′) is obtained, which leads to reoccupy a

balanceable minimax approximate error, ε′a:

p∗r(x
′) = D′

i + c′′1i (3.9)

The approach, with the aim of achieving coefficients c′0i and c′′1i which lead to the best-fit

linear approximation, p∗r(x
′), in one segment is summarized in Algorithm 1 and illustrated by

Example 1. In Algorithm 1, the symbols of← indicate assignments; Chebyshev(f(x), [ai, bi])

34

is the application of the Chebyshev’s theorem according to (3.6); round(x, y) is the rounding

of the value of x to y bits; {xi=ai to bi steps 2
−m} means traversing all the numbers in the

range of [ai, bi] with the step of 2−m; and values of parameters p and q are achieved based

on the MiniBit approach presented in Section 3.3.1.

Example 1: Based on the assumption that the evaluation of the logarithm function f(x)=

ln(1 + x), here x is a 16-bit BXP number, and [ai, bi] is in the domain of [0, 1−2−16], we

obtain the best-fit linear approximation, p∗(x), with infinite precision of x, c0i, c1i and Di

according to (3.6), and the minimax error εa = 0.0298. After rounding c′0i to the finite

precision of 2−3, x′ to 2−5, c′1i and D′
i to 2−8, p∗(x) is changed to p∗(x′) = D′

i +0.03125,

where D′
i = round((0.75×x′), 8), and then the maximum absolute error becomes 0.0959.

To re-determine the best-fit p∗r(x
′), we keep c′0i=0.75 and adjust the value of c′1i. First, we

compute all the differences between f(xi) andD′
i in [0, 1−2−16]; and then the maximum value

of (max(f(x)−D′
i)) and the minimum value of (min(f(x)−D′

i) are obtained. According to

(3.8), rounded c′′1i is achieved, c′′1i =−0.0078125. Thus, a new best-fit linear approximation

p∗r(x
′) is obtained, p∗r(x

′) = D′
i− 0.0078125, where D′

i = round((0.75×x′), 8), and a new

balanceable minimax approximate error is achieved, ε′a=0.0572.

3.3 A Non-Uniform Segmentation Method

The proposed dynamic non-uniform segmentation method for the linear approximation func-

tion evaluation is summarized in Algorithm 2, where Minibit(f(x), [a, b], εcon) is the MiniBit

approach presented in Section 3.3.1; and BoundaryWidth(f(x), [a, b]) is the method to eval-

uate the bit-width of the segment boundary described in Section 3.3.2. First, the design

specifications, which include 1) a transcendental or compound function f(x) to be evalu-

ated, where x is a m-bit precision BXP operand; 2) a domain [a, b] for the x; and 3) a

required accuracy εcon = 2−n for evaluation results, are supplied by the user. Second, we

adopt MiniBit approach to evaluate the initial UFB, p-bit, of x′, c′0i, c
′
1i and D′

i. Meanwhile,

the bit-width of the segment boundary, r-bit, is determined by evaluating the function f(x)

in the most gradient segment, where the maximum value of the first derivative of function,

f(x)′, occurs. Third, since the value if r is smaller thanm, the value z is set as z=2−r−2−m to

35

Algorithm 2 A dynamic non-uniform segmentation method

Inputs: 1) function f(x) to be evaluated; 2) a domain [a, b]; 3) a required accuracy εcon =
2−n; 4) precision of x in f(x), m.

Outputs: 1) non-uniform segment boundaries, [a0, b0], ..., [ai, bi]; 2) linear approximation
coefficients in each segment, [c′00, c

′′
10], ..., [c

′
0i, c

′′
1i].

1: p← Minibit(f(x), [a, b], εcon)
2: r ← boundaryWidth(f(x), [a, b])
3: z ← 2−r − 2−m

4: Manually select q, such that q ≤ p
5: kn ← a
6: ln ← a+b

2

7: lown ← kn
8: upn ← ln
9: i← 0
10: repeat
11: [ai, bi]← [0, 0]
12: repeat
13: kc ← kn
14: lc ← ln
15: lowc ← lown

16: upc ← upn
17: [[c′0i, c

′′
1i], |εt|]← Alg1(f(x), [kc, lc + z], q, p)

18: [[kn, ln], lown, upn, [ai, bi], [c
′
0i, c

′′
1i]]← Alg3([kc, lc], εcon, |εt|, lowc, upc, [ai, bi], [c

′
0i, c

′′
1i])

19: until |ln − lc| < 2−r

20: if [ai, bi] = [0, 0] then
21: the step size 2−r is too large, so increment r and go back to step 2.
22: end if
23: kn ← bi + 2−r

24: ln ← b
25: lown ← kn
26: upn ← ln
27: i← i+ 1
28: until kn ≥ b

supplement the right boundary of segments in order to traverse all the BXP input operands.

The precision of c′0i, q-bit, is also selected so that the value of q is always smaller than or

eauql to that of p. Fourth, the new segment boundary kn and ln, and the new lower and

upper limit, lown and upn, (as the initial outputs of BSPS method, refer to Algorithm 3)

are set as the point of a and a+b
2
, respectively. Moveover, the initial obtained boundary is

set as [ai, bi] = [0, 0] to detect the valid bit-width of the segment boundary, r-bit. Fifth,

the current segment boundary kc and lc, and the current lower and upper limit, lowc and

36

upc, are set as the values of the initial outputs of Algorithm 3. Then, the current tested

segment boundary [kc, lc + z], and the precision of c′0i and c′′1i in bits, p and q, as the inputs

of Algorithm 1, are sent to achieve the best-fit coefficients, [c′0i, c
′′
1i], and the minimax error

|εt| in the current tested segment. Sixth, the current tested segment boundary, [kc, lc], the

current lower limit and up limit, [lowc, upc], the required accuracy, εcon, the minimax error,

|εt|, and initial [ai, bi], as the input of Algorithm 3, are sent to generate the new boundary kn

and ln, and the new lower and upper limit, lown and upn, the updated boundary, [ai, bi], and

the updated [c′0i, c
′′
1i]. If |ln− lc| < 2−r is satisfied, the first segment [ai, bi] and corresponding

coefficients [c′0i, c
′′
1i] are obtained, and Algorithm 2 sets the new segment boundary kn and ln,

and the new lower and upper limit, lown and upn, as the value of bi+2−r and b respectively,

then Algorithm 2 begins to search the second segment and the corresponding coefficients.

Finally, once kn > b, Algorithm 2 stops. As a result, 1) the boundaries of all segments,

[ai, bi], are determined; and 2) the optimized coefficients, c′0i and c′′1i with less bit-width in

each segment are obtained.

3.3.1 Determination of Initial UFB by MiniBit Approach

A static bit-width optimization approach, MiniBit [114], can compute the required integer

and fractional bits for each signal. This approach can quickly determine the UFB for each

signal to guarantee a faithful rounding (1 ulp) for approximated results, but it can cause a

problem in which a lager (suboptimal) bit-width for each signal obtained by this approach

makes the hardware implementation for function evaluation more complicated. Thus, the

proposed dynamic method uses the MiniBit approach to obtain the initial p-bit UFB of x′,

c′0i, c
′
1i and D′

i, and then optimizes the bit-width of c′0i to a less q-bit one.

We denote the rounding errors of x′, c′0i, c
′
1i, and D′

i as εx, εc0i, εc1i and εDi
respectively.

According to (3.7), εDi
is computed as:

εDi
= c0iεx + xεc0i + εc0iεx + 0.5× 2−FBDi (3.10)

In (3.10) 0.5×2−FBDi is the maximum rounding error of Di. Thus, the error analysis of εp∗(x′)

is represented as:

εp∗(x′) = εDi
+ εc1i + |εr|+ |εa| (3.11)

37

Where the εDi
+εc1i is the quantization error, |εq|; |εa| is the linear approximation error; and

|εr| is the final rounding error. To guarantee a n-bit accuracy, the maximum absolute error

needs to satisfy:

max(εp∗(x′)) ≤ 2−n (3.12)

To compute the maximum absolute error of εp∗(x′), we consider the following worst cases:

1) the maximum rounding error of εx=0.5×2−FBx , εc0i =0.5×2−FBc0i and εc1i =0.5×2−FBc1i ;

2) the maximum absolute value of x, |xmax|; 3) the maximum absolute value of c0i, |cmax
0i |;

4) the maximum final rounding error, 0.5×2−n (0.5 ulp). Under the worst conditions, we

substitute (3.11) to (3.12) and obtain:

|cmax
0i |×2−FBx−1+|xmax|×2−FBc0i

−1+

2−FBx−FBc0i
−2+2−FBDi

−1+2−FDc1i
−1≤2−n−1−|εa|

(3.13)

In (3.13), we consider a simple solution by using UFB for all signals. Then, (3.13) can be

written as:

(|cmax
0i |+|xmax|+2+2−UFB−1)×2−UFB−1≤2−n−1−|εa| (3.14)

Since |εa|>0, the initial UFB of x′, c′0i, c
′
1i and D′

i, p-bit, is computed in order to satisfy the

condition (3.14).

3.3.2 Evaluation of Bit-Width of Segment Boundary

Less bit-width of the segment boundary can not only speedup the dynamic non-uniform

segmentation method, but also simplify the hardware implementation of the SIE circuit.

However, if the bit-width of the segment boundary is too small, the minimal distance of the

segment is too large to allow the best-fit optimized linear approximation, p∗r(x
′), to guarantee

the accuracy in this segment. Thus, we propose an approach to evaluate the minimal bit-

width of the segment boundary. First, we compute the point, xh, where |cmax
0i | occurs, in

the domain [a, b]. Second, the minimum distance that we can obtain in the most gradient

segment of the function f(x) is 2−r, the domain of [xh, xh+2−r] or [xh−2−r, xh]. Third, we

evaluate the function by Algorithm 1 in which x′, c′′1i, D
′
i are rounded to the precision of

2−p, and c′0i to 2−q. Then, we increase the distance, 2−r, by decreasing the value of r-bit,

38

the bit-width of the segment boundary. Note that the value of r-bit is decreased from the

value of m-bit bit by bit. Once the approximation results, p∗r(x
′), can not guarantee εcon,

we can obtain a r-bit bit-width of the segment boundary. Since εq is produced by rounding

errors, the value of r-bit we obtained would be too small to make p∗r(x
′) satisfy εcon in other

segments. To avoid such conditions, the bit-width of segment boundary, r-bit, needs to be

further increased.

3.3.3 Partition of Non-Uniform Segments by BSPS

By BSPS, summarized in Algorithm 3, the proposed dynamic non-uniform segmentation

method can evaluate the function f(x) by the minimum number of non-uniform segments

[ai, bi], because BSPS is an efficient traversal method which can partition the domain [kc, lc]

to all the segments. In this section, we present an example, Example 2, to illustrate the

process of partitioning non-uniform segments by BSPS:

Example 2: Evaluate the function f(x) = ln(1+x) in the domain [0, 1) to guarantee a

required accuracy, εcon=2−8, where x is a 16-bit BXP operand.

To guarantee a 2−8 accuracy, the initial p-bit UFB of x′, c′0i, c
′
1i and D′

i computed by

MiniBit is 11-bit, because |cmax
0i |= 1 and |xmax|= 1−2−16 (refer to (3.14)). Since |cmax

0i | is
achieved at the point, xh=0, the most gradient segment of the function, ln(1+x), is [0, 2−r].

Then, we evaluate ln(1+x) by Algorithm 1 in [0, 2−r] in which x′, c′′1i, D
′
i are rounded to the

precision of 2−11, and c′0i to 2−4. When r-bit is decreased to 3-bit, p∗r(x
′) can not guarantee

the 2−8 accuracy. Thus, the minimum bit-width of the segment boundary, r-bit, is 4-bit.

Since, 4-bit segment boundary is too small to make p∗r(x
′) satisfy εcon in all segments, we

increase it to 5-bit in the non-uniform segmentation.

To partition the non-uniform segments, first, c01 is obtained in the initial segment [kc, lc+

z]=[0, 0.5+z], where z=2−5−2−16; second, c′01 is rounded to the precision of 2−4, c′01=0.8125,

and x′ and D′
i are rounded to the precision of 2−11, where Di = 0.8125×x′; third, the

optimized c′′11=0.00732421875 with the precision of 2−11 is computed by Algorithm 1, thus,

p∗r(x
′)=D′

1+0.00732421875 in the domain [0, 0.5+z]; fourth, since after the final rounding,

|εt| = 0.014646, the maximum absolute error between f(x) and p∗r(x
′) is larger than the

required accuracy, εcon = 2−8, we reduce the segment [0, 0.5] to [kn, ln] = [0, 0.25] based on

39

Algorithm 3 Binary search partition scheme (BSPS)

Inputs: 1) The current segment boundary, [kc, lc]; 2) a required accuracy, εcon; 3) the current
accuracy, |εt|; 4) the current lower limit, lowc; 5) the current upper limit, upc; 6) the
currently approved boundary, [ai, bi].

Outputs: 1) The new segment boundary, [kn, ln]; 2) the new lower limit, lown; 3) the new
upper limit, upn; 4) the newly approved boundary, [ai, bi];

1: if |εt| ≥ εcon then
2: kn ← kc
3: ln ← lowc+lc

2

4: lown ← lowc

5: upn ← lc
6: [ai, bi]← [ai, bi]
7: keep [c′0i, c

′′
1i]

8: else // |εt| < εcon
9: kn ← kc
10: ln ← lc+upc

2

11: lown ← kc
12: upn ← upc
13: [ai, bi]← [kc, lc]
14: updated [c′0i, c

′′
1i]

15: end if

BSPS, and re-compute p∗r(x
′) and |εt| in the segment [0, 0.25]. Fifth, after evaluating ln(1+x)

by Algorithm 1 in segments [kn, ln] ([0, 0.5], [0, 0.25], [0, 0.125], [0, 0.1875] and [0, 0.15625])

obtained by Algorithm 3, the first segment [0,0.125] and the coefficient c′00 = 0.9375 and

c′′01=0.00048828125 are obtained. Sixth, we change the initial domain to [kc, lc]=[0.15625, 1],

and the proposed method starts to partition the second segment. Thus, the function ln(1+x)

is split into 6 segments, in each of which c′0i with the precision of 2−4, and x′, c′′1i and D′
i

with the precision of 2−11 can satisfy the required accuracy, 2−8.

3.4 Hardware Architecture

Figure 3.1 shows the hardware architecture for function evaluations, which mainly consists

of six units: 1) an input rounding register for rounding m-bit x to p-bit x′; 2) a SIE circuit

for producing the segment index, i, according to r-bit most significant bits (MSBs) of x; 3) a

coefficients look-up table for storing the q-bit c′0i and p-bit c′′1i in each segment; 4) a multiplier

for computing p-bit D′
i=Round(c′0i×x′); 5) an adder for computing p-bit p∗r(x

′)=D′
i+c

′′
1i; and

40

Segment Index Encoder

Coefficients Lookup Table

Input Rounding Register

Multiplier
0ic ' x'

Adder

index

p-bitq-bit

h-bit

r-bit

m-bit
x

MSBs of x

p-bit

1ic ''
p-bit

p-bit*

rp (x')

Final Rounding Register

n-bit

Evaluation Result

Input

iD '

Figure 3.1: FPGA implementation for function evaluations.

6) a final output rounding register for rounding p-bit p∗r(x
′) to n-bit exact evaluation results.

All signals in the data-path are represented by the 2’s complement number. The BXP

input/output rounding register, multiplier and adder in the architecture can be realized by

Xilinx intellectual property (IP) core and look-up tables (LUTs) on FPGA. The coefficients

look-up table and SIE circuit are implemented by the read only memory (ROM) on FPGA.

3.4.1 Segment Index Encoder

The most complicated unit in the architecture is the SIE circuit. The function of SIE is

shown in (3.15):

SIEfunc(x) : {0, 1}r→{0, 1, ..., i−1} (3.15)

In (3.15), the input of the SIE function is r-bit MSBs of m-bit x, and the output is the

segment index, i, a h-bit BXP number, applied to the address of the coefficients look-up

table.

The SIE circuit can be realized by the LUT cascade as shown in Figure 3.2. The LUT

41

LUT
1

LUT
2

LUT
j

…...

…
.
.
.

…
.
.
.

…...

…
.
.
.

…
.
.
.

…...

…...

…
.
.
.

S
e
g

m
e

n
t

In
d

e
x

,
i

1 2 2, rr-bit MSBs of x (x x ,..., x)

rails in each level of LUT cascade

…...

1
Lx

2
Lx

jLx

1
Lp

2
Lp

1jLp

r-bit

Figure 3.2: SIE circuit by the LUT cascade.

cascade is achieved by a functional decomposition based on the multi-terminal binary decision

diagram (MTBDD) approach [110]. The architecture of the SIE circuit is a combinational

logic in which each LUT can be realized by a block RAM on FPGA. In the leftmost LUT1,

all the inputs come from r-bit MSBs of x, xL1
. For the other LUTj , some inputs come from

r-bit MSBs of x, xLj
, and the others come from the output of the previous LUTj−1 stage,

pLj−1
, which is called rails. The outputs of the rightmost LUTj then represent h-bit segment

index, i.

3.4.2 Estimation of Memory Sizes

In [110], each LUT is restricted to h+2-bit inputs and h-bit outputs, where h= ⌈log2(i)⌉,
and i is the number of non-uniform segments. In this chapter, we use the same LUT cascade

approach as [110] to implement the SIE circuit. Thus, the estimated memory size of the LUT

cascade (ROM1) is determined by the number of segment, i, and the bit-width of segment

boundary, r-bit:

ROM1=2⌈log2(i)⌉+1×⌈log2(i)⌉×(r−⌈log2(i)⌉) (3.16)

In Figure 3.1, the coefficients look-up table has 2h words, in which the coefficients, q-bit

c′0i and p-bit c′′1i, are stored respectively. The memory size of the coefficients look-up table

(ROM2) is estimated as follow:

ROM2=2⌈log2(i)⌉×(p+q) (3.17)

42

1 2 3 4 5 6 7 8
0

20

40

60

80

100

120

140

Required Accuracy

N
o

.
o

f
N

o
n

-U
n

if
o

rm
 S

e
g

m
e

n
ts

L1 Obtained by Static Method

L2 Obtained by Dynamic Method

L3 Obtained by Dynamic Method

82 132 122 112 102 92 152 142

12
8

17
23

33

46

65

90

5 7 9
13

18

25

35

49

5 7
10

15

24

34

55

121

()
n

 !32 n()a: round the precision of all parameters to

 6
0 2icb: round the precision of ' to , and keep

a

b

a

 !3n()the precision of other parameters to 2

Figure 3.3: Non-uniform segmentation results vs. varied εn.

Thus, the total memory size (ROMt) for implementing the coefficients look-up table and the

SIE circuit is:

ROMt=2⌈log2(i)⌉×(2r×⌈log2(i)⌉−2 ⌈log2(i)⌉2+p+q) (3.18)

3.5 Experimental Results

3.5.1 Comparison Results

The previous static non-uniform segmentation methods presented in [110], [111] mainly have

the following four features: 1) the function f(x) is divided into non-uniform segments by

a specified partition scheme; 2) the infinite best-fit linear approximation is determined by

Chebyshev theorem in each segment; 3) the optimized UFB of the internal signals is analyzed

using MiniBit in order to satisfy the required accuracy; 4) the internal signals are rounded

to the finite precision of 2−UFB in the hardware implementation.

In this section, we evaluate the function ln(1+x) of Example 2 based on the previous

static non-uniform segmentation method [110] (namely Static Method) and the proposed

dynamic non-uniform segmentation method (namely Dynamic Method) to satisfy different

required accuracy in two experiments. Note that the domain of the function is partitioned

43

at the point where the maximum absolute error occurs in Static Method. According to the

MiniBit approach, the precision of the internal signals has to be at least 2−(n+3) in order

to guarantee the 2−n accuracy. In the first experiment, the internal signals are rounded to

the precision of 2−(n+3), and then we evaluate the function ln(1+x) by Static Method and

Dynamic Method to obtain L1 and L2 respectively as shown in Figure 3.3. It is proved that

Dynamic Method obtains less segments than Static Method when the internal signals are

rounded to the same precision. In the second experiment, we round the precision of c′0i to

2−6 and keep the precision of x′, c′′1i and D′
i to 2−(n+3). As a result, we acquire another line,

L3, as shown in Figure 3.3, which indicates that Dynamic Method still satisfy the required

accuracy, even though the precision of internal signals is smaller than 2−UFB, which is not

achievable from the previous Static Method.

3.5.2 Evaluation Results for More Functions

To further analyze the performance of the proposed dynamic non-uniform segmentation

method, we evaluate more elementary and compound functions (chosen based on [110]) with

two required accuracy cases: 2−15 (namely case 1) and 2−23 (namely case 2). By way of

contrast, we evaluate the functions through two experiments. In the first experiment, since

the rounding error of x is not considered in [110] (εx=0), and the precision of the internal

signals has to be rounded to the precision of 2−(n+3) based on the MiniBit approach, we

keep m-bit x to the precision of 2−m, and round the precision of c′0i, c
′′
1i and D′

i to 2−(n+3)

(2−18 in case 1, 2−26 in case 2) to evaluate all the functions by Dynamic Method for a fair

comparison. In the second experiment, we round the precision of c′0i to 2−6, c′′1i and D′
i to

2−16 in case 1 ; c′0i to 2−10, c′′1i and D′
i to 2−24 in case 2 ; and keep m-bit x to the precision of

2−m to evaluate the functions by Dynamic Method.

In Table 3.1, the function evaluation results of the two experiments by Dynamic Method

are compared with the results in [110]. The results indicate that 1) Dynamic Method can

evaluate all the functions by less segments in both case 1 and case 2 in the first experiment.

The average ratio are R1ave = 47% in case 1 and R1ave = 52% in case 2 ; 2) although the

precisions of c′0i, c
′′
1i and D′

i are rounded to a number that smaller than 2−n−3 for all the

functions in the second experiment, Dynamic Method still meet the accuracy requirement

44

for both cases, which is impractical in Static Method. The number of segments obtained by

Dynamic Method in the second experiment is larger than the one in the first experiment,

but for the most of functions, it is still smaller than the one obtained in Static Method [110].

The average ratio are R2ave =69% in case 1 and R2ave =81% in case 2. Dynamic Method

has its own advantages because: 1) it is a non-uniform segmentation method mainly based

on a dynamic bit-width analysis; 2) it can determine the best-fit linear approximation, in

which x′, c′0i, c
′′
1i and D′

i can be rounded to the less bit-width in each segment.

3.5.3 Memory Sizes for Two Methods

The memory resources on FPGA are occupied by two blocks in the proposed architecture for

function evaluations: the SIE circuit and the coefficients look-up table. The memory sizes

occupied by these two blocks are determined by the following parameters: 1) the number of

segments, i; 2) the bit-width of segment boundary, r-bit; and 3) the bit-width of coefficients,

q-bit c′0i and p-bit c′′1i, which are achieved by the proposed dynamic non-uniform segmentation

method. In Table 3.2, we compare the estimated memory sizes for Dynamic Method with

those for Static Method [110]. By way of contrast with Static Method, we estimate the

memory sizes for two required accuracy, 2−15 in case 1 and 2−23 in case 2 through two

experiments in Section 3.5.1. The values of estimated memory sizes are achieved according

to equation (3.18) derived in Section 3.4.2.

The comparison results indicate that 1) the memory sizes for all functions evaluated by

Dynamic Method are smaller than those for Static Method in both case 1 and case 2 in the

first experiment. The average ratio are R1ave = 48% in case 1 and R1ave = 38% in case 2 ;

2) the memory sizes for Dynamic Method in the second experiment are larger than those

in the first experiment, but most of which are still smaller than the memory size in [110].

The average ratio are R2ave =56% in case 1 and R2ave =71% in case 2. Dynamic Method

needs less memory sizes due to the following reasons: 1) the proposed Dynamic Method can

evaluate functions using fewer segments, i; 2) it can determine the minimum bit-width of

segment boundary, r-bit; 3) it enables c′0i, c
′′
1i stored in coefficients look-up table, to have the

minimum bit-width in each segment.

45

10 15 20 25
0

100

200

300

400

500

600

700

Bit-Width of Input x (m-bit)

C
P

U
 T

im
e

C
o

n
s
u

m
e

d
 (

m
in

.)

 d

 d

 d

8 12 14 16 18 22 24

1 / x

ln(x)

sin(x)

(bit)

Figure 3.4: CPU time analysis of Dynamic Method.

3.5.4 CPU Time Consumed

The CPU time consumed by Dynamic Method to evaluate the functions in the first exper-

iment is demonstrated in Table 3.1. Compared with Static Method [110], the CPU time

consumed by Dynamic Method is much longer due to its basis of a dynamic bit-width anal-

ysis, in which the design is simulated over all input values and the maximum absolute errors

at the outputs are monitored. Note that the CPU time is evaluated in different computer

systems and software compilers. Figure 3.4 shows the CPU time, consumed by evaluating

the most time-consuming functions, 1/x, the least time-consuming function, sin(πx), and

the average time-consuming function, ln(x) (refer to Table 3.1), for different bit-widthes

of the input x, m-bit. The specified accuracy in this experiment for evaluating results is

2−m+1. According to Figure 3.4, if the bit-width of the input, x, is less than 20-bit, the CPU

time consumed by Dynamic Method is within 10 min. When the bit-width of the input x

is 20-bit, the CPU time consumed by evaluating functions 1/x, sin(πx) and ln(x) are 9.93,

0.23 and 4.5 min. respectively. If the bit-width of the input, x, is larger than 20-bit, the

CPU time consumed by Dynamic Method increase drastically. Thus, Figure 3.4 indicates

that if the bit-width of the input is relatively small, for example, less than 20-bit in this

46

experiment, Dynamic Method is efficient for function evaluations in hardware or a specific

computer arithmetic design.

3.6 Summary

In this chapter, we develop a dynamic non-uniform segmentation method for the first-order

polynomial-based function evaluation. First, we analyze the minimax linear approximation

in one segment. Second, we present this method in detail, and illustrate it by an example.

Third, we provide the architecture for function evaluations, and analyze the memory size

occupied by the SIE circuit and the coefficients look-up table. Fourth, we evaluate more

functions through two experiments to compare the performance of the proposed dynamic

non-uniform segmentation method and the previous static method. Compared with the

static method [110], the proposed method can achieve fewer segments, and at the same

time, satisfy the required accuracy. Also, the input, coefficients, and intermediate values in

each segment can be rounded to a smaller bit-width, which is impractical in the previous

static method. The advantage of the proposed method leads to a significant reduction of

memory size for a simpler and faster function evaluations or a specific computer arithmetic

implementation on FPGAs.

47

Table 3.1: Number of non-uniform segments obtained by Static Method and Dynamic Method.

Function Domain Case 1: Accuracy Constraint 2−15 Case 2: Accuracy Constraint 2−23

f(x) [a, b] (x is a 16-bit BXP Number; εx=0) (x is a 24-bit BXP Number; εx=0)

No. of Segments R1 R2 Time (sec) No. of Segments R1 R2 Time (sec)

SM DM1 DM2 % % SM DM SM DM1 DM2 % % SM DM

ex [0, 1) 128 90 197 70 154 0.01 0.67 2,048 1,478 3,113 72 152 0.06 2,476

1/x [1/32, 1] 1,721 766 965 45 56 0.07 7.80 28,010 14,319 19,430 51 69 1.04 37,684

1/
√
x [1/32, 1] 620 319 448 51 72 0.03 3.36 9,946 5,227 8,282 53 83 0.31 14,206

√
x [0, 1] 231 118 272 51 117 0.01 1.32 3,941 2,039 4,801 52 122 0.12 5,484

ln(x) [1/256, 1] 726 337 476 46 66 0.04 4.03 11,761 5,820 8,931 49 76 0.48 17,982

x ln(x) (0, 1) 282 132 232 47 82 0.01 1.44 4,535 2,184 4,210 48 93 0.13 5,697
√
− ln(x) (0, 1) 584 286 439 49 75 0.04 3.11 12,089 6,044 9,303 50 77 1.71 17,279

sin(πx) [0, 1/2] 127 94 138 74 109 0.01 0.34 2,027 1,407 2,489 69 123 0.07 974

arcsin(x) [0, 1] 260 128 272 49 105 0.02 0.67 4,415 2,268 5,036 51 114 0.17 1,628

tan(πx) [0, 31/64] 1,328 579 701 44 53 0.10 1.21 20,770 11,427 14,681 55 71 1.34 3,738

Avg. null 601 285 414 47 69 0.03 2.40 9,954 5,221 8,017 52 81 0.54 10,715

SM : Static Method [110]; DM1 and DM2: Dynamic Method in experiment 1 and 2; R1: DM1

SM
×100; R2: DM2

SM
×100;

*
T ime: CPU time for Static Method and Dynamic Method conducted on the following environments respectively: Static Method :

System: Sun Blade 2500 (Sliver), CPU: UltraSPARC-IIIi 1.6GHz, Memory: 6GB, OS: Solaris 9, C complier: gcc -O2 [8]. Dynamic

Method : System: Lenovo ThinkCentre M55-8811, CPU: Intel(R) Core(TM)2 CPU 6600 2.4GHz, Memory: 3GB, Os: Microsoft

Windows XP, Matlab complier: R2009a.

48

Table 3.2: Estimated memory sizes (bits) obtained based on Static Method and Dynamic Methods.

Function Case 1: Accuracy Constraint 2−15 Case 2: Accuracy Constraint 2−23

f(x) (x is a 16-bit BXP Number; εx=0) (x is a 24-bit BXP Number; εx=0)

Estimated ROM Sizes (bit) R1 R2 BTSB (r-bit) Estimated ROM Sizes (bit) R1 R2 BTSB (r-bit)

SM DM1 DM2 % % DM1 DM2 SM DM1 DM2 % % DM1 DM2

ex 20,096 9,984 17,920 50 89 10 11 681,984 241,664 630,784 35 92 14 17

1/x 317,440 159,744 145,408 50 46 16 16 11,108,352 3,604,480 7,012,352 32 63 20 21

1/
√
x 168,960 55,296 57,344 33 34 13 14 5,718,016 1,703,936 3,309,568 30 58 19 20

√
x 44,288 20,736 75,776 47 171 16 16 1,462,272 692,224 2,621,440 47 179 24 24

ln(x) 168,960 73,728 75,776 44 45 15 16 5,718,016 2,129,920 3,768,320 37 66 21 21

xln(x) 78,336 33,792 34,340 43 44 14 15 2,695,168 1,196,032 2,408,448 44 89 22 23
√
− ln(x) 168,960 82,944 75,776 49 45 16 16 5,718,016 2,768,896 5,144,576 48 90 24 24

sin(πx) 20,096 8,192 22,016 41 110 9 12 681,984 241,664 827,392 35 121 14 19

arcsin(x) 87,552 20,736 75,776 24 87 16 16 2,908,160 1,392,640 2,621,440 48 90 24 24

tan(πx) 227,328 159,744 145,408 70 64 16 16 9,142,272 3,604,480 4,227,072 39 46 20 22

Avg. 130,202 62,490 72,554 48 56 14 15 4,583,424 1,757,593 3,257,139 38 71 21 22

SM : Static Method [110]; DM1 and DM2: Dynamic Method in experiment 1 and 2; R1: DM1

SM
×100; R2: DM2

SM
×100; BTSB : bit-width of

segment boundary, r-bit.

49

Chapter 4

Decimal Logarithmic and Antilogarithmic Con-

verters

This chapter presents decimal logarithmic and antilogarithmic converters based on the

decimal first-order polynomial (linear) approximation algorithm. The proposed approach is

mainly based on a look-up table, followed by a decimal linear approximation step. Com-

pared with a binary-based decimal linear approximation algorithm (Alg. 1), the proposed

algorithm (Alg. 2) is error-free in the conversion between decimal and binary format. The

proposed architectures are implemented only by the combinational logic in the binary coded

decimal (BCD) encoding on FPGAs. In this chapter, we analyze the tradeoff of the hardware

performance, scale up the proposed logarithmic architecture to achieve a higher accuracy.

Finally, we compare the hardware performance of Alg. 1 and Alg. 2, the results show that

although it occupies 1.14 times more area, the proposed decimal logarithmic converter (Alg.

2) can run 2.15 times faster than the binary-based decimal logarithmic converter (Alg. 1).

4.1 Introduction

The piecewise linear approximation algorithm is an attractive method because logarithm

and antilogarithm functions can be evaluated by a set of simple linear approximations.

In particular, if the objective is to use the logarithmic unit to implement high-speed and

low-power applications, which have some tolerance for errors. In this chapter, the decimal

piecewise linear approximation algorithm based approach is proposed to implement decimal

logarithmic and antilogarithmic converters. The number format used in the converter is a

32-bit decimal DFP storage format specified in IEEE 754-2008, Decimal32, in which the

50

decimal significand is defined as a 7-digit non-normalized DXP number based on the BCD

encoding. Thus, we focus on the algorithm and architecture of the 7-digit DXP logarithmic

and antilogarithmic converters that can compute the required accuracy of faithful logarithm

and antilogarithm results. The architectures of the proposed converters are combinational

logics which take a single clock cycle to compute a decimal result. As far as we know, this

work is the first study for the decimal logarithmic and antilogarithmic converters based on

the decimal piecewise linear approximation algorithm.

This chapter is organized as follows: Section 4.2 describes two straight-line approximation

algorithm based on approaches for computing the decimal logarithm and antilogarithm. In

Section 4.3, we present a dynamic non-uniform segmentation method (modified method

based on Chapter 3) to evaluate the decimal logarithm and antilogarithm function based on

linear approximation. Section 4.4 describes the comparison in terms of the error analysis for

two algorithms for the decimal logarithm computation. In Section 4.5, the architecture of

the proposed decimal logarithmic and antilogarithmic converters are presented. Section 4.6

analyzes the implementation and comparison results on FPGA. Section 4.7 gives conclusions.

This chapter is an extension of the research presented in [116, 117].

4.2 Decimal Logarithm and Antilogarithm Conversion

4.2.1 Binary-based Decimal Logarithm Conversion (Alg. 1)

Mitchell [118] presented a straight-line approximation method to obtain logarithms of a

binary operand. Based on Mitchell’s algorithm, several techniques to compute binary loga-

rithm results based on a piecewise linear approximation and the hardware implementations

are presented in [119, 120, 82, 85, 87]. The computation of log10(dec) can be achieved by

a simple transformation from the approximation of log2(bin) to log10(bin) as shown in (1),

where dec and bin are used to present a decimal and BXP number respectively.

log10(dec) ≈ log10(bin) = log2(bin)× log10(2) (4.1)

However, it is evident that the method described above is error-prone because many frac-

tions such as 0.1 can not be exactly represented as binary numbers. Using this approach,

51

the errors generated by conversion between decimal and binary format can not be avoided.

Therefore, there is a need for a new decimal logarithm algorithm which is error-free in the

conversion between decimal and binary format. The binary-based decimal linear approxi-

mation algorithm (referred to as Alg. 1) is simulated using MATLAB as a benchmark to

compare with the following decimal linear approximation algorithm in Section 4.4.

4.2.2 Decimal Logarithm Conversion (Alg. 2)

The linear approximation algorithm to compute log10(dec) is summarized as follows: since the

decimal significand, N, is a 7-digit non-normalized DXP number in the range of 0≤N≤107−1,
N can be represented by:

N =
k∑

i=j

10izi (4.2)

Where, zi is a decimal digit, ′0′,′ 1′, ...,′ 8′,′ 9′, and 0 ≤ j ≤ k ≤ 6. Since N is a 7-digit

non-normalized DXP operand, it should be adjusted into the range of [0.1, 1) before it is

computed. Thus, N can be written as:

N = 10k+1

k∑

i=j

10i−k−1zi (4.3)

Factoring by 10k+1, (4.3) becomes:

N = 10k+1(0 +
k∑

i=j

10i−k−1zi) (4.4)

Let the term
k∑

i=j

10i−k−1zi = m (4.5)

Where m is in the interval 0.1 ≤ m < 1, thus,

N = 10k+1(m) (4.6)

The logarithm of N is computed as:

R=log10(N) = k + (1 + log10(m)) (4.7)

52

Since 1+log10(m) are in the range of [0, 1), the integer portion of the logarithm or charac-

teristic is k, and the fraction portion of the logarithm or mantissa is only a function of m.

Thus, the term 1+log10(m) can be computed by its piecewise linear approximation:

1 + log10(m)≈ c0i×m+c1i (4.8)

Where c0i and c1i are coefficients in each piecewise segment, and i represents the index of

different segments. Thus, the logarithm result, R, is achieved as:

R=log10(N)=k+(1+log10(m))≈k+c0i×m+c1i (4.9)

4.2.3 Decimal Antilogarithm Conversion (Alg. 3)

Let R be the logarithm of a decimal operand in which the characteristic of the logarithm is

represented by k and the mantissa is represented by c0i×m+c1i . R is given in as equation

(4.9). The decimal antilogarithm calculations are based on piecewise approximations to the

antilogarithm curve of the decimal logarithm. A linear approximation algorithm to calculate

the antilogarithm of R (Antilog10(R)) is summarized as follows:

Antilog10(R) = 10R (4.10)

According to (4.9), we obtain,

10R = Antilog10(R) = 10k × 10c0i×m+c1i (4.11)

To achieve the antilogarithm approximation, 10k is obtained by shifting the result since

characteristic k is a 1-digit integer. The approximation of logarithm c0i×m+c1i is a 6-digit

fraction bounded by 0≤c0i×m+c1i<1, so 10c0i×m+c1i is obtained by approximation:

Antilog10(R) = 10k(d0i×m+d1i) (4.12)

Assuming that a decimal logarithm R is 4.514562, it represents the logarithm of a 7-

digit DXP number. According to the algorithm described above, the formula should be

10R =Antilog10(R) = 10k10c0i×m+c1i =104100.514562, where 10c0i×m+c1i is achieved by the linear

approximation (d0i×m+d1i), and 10k is obtained by a shift operation.

53

4.3 Piecewise Linear Approximation Method

4.3.1 Notations

In this section, we deal with the linear approximation evaluation of the function, f(m) =

1+log10(m), with its input and output in a 7-digit DXP format. With the piecewise linear

approximation, errors are produced in three ways. The first one is the maximum linear

approximation error, εa, because of the difference of the function 1+log10(m) and its minimax

linear approximation:

εa = max
ai≤m<bi

|(1 + log10(m))− (c0i×m+ c1i)| (4.13)

The second one is the quantization error, εq, as shown in (4.14), produced by the finite pre-

cision of rounded inputs, m′= truncate(m), coefficients, c′0i=round(c0i) and c′1i=round(c1i),

and intermediate values, D′
i= truncate(c′0i×m′), in the hardware implementation. Consid-

ering a truncation mode for inputs, m′, and intermediate values, D′
i, instead of a rounding

mode is because that the truncation mode can reduce the rounding delay resulting from an

extra decimal addition in the hardware architecture. Note that in this work, m, c0i, c1i and

Di = c0i×m represent infinite precision inputs, coefficients and intermediate values, while

m′, c′0i, c
′
1i and D′

i represent rounded coefficients, truncated inputs and intermediate values.

εq = (c0i×m+ c1i)− (D′
i + c′1i) (4.14)

The third one is the final output rounding error, εr, whose maximum value is 0.5 unit in

the last place (ulp). In order to obtain a n-digit accuracy, the following condition must be

satisfied:

εt = εa + εq + εr ≤10−n (4.15)

4.3.2 Decimal Minimax Error Analysis in One Segment

In each segment, the best-fit straight line can be found by Chebyshev theorem [32] which

gives a characterization of the minimax approximations to a function. The detail of the

minimux error analysis is given in Section 3.2.2 by Algorithm 1. Figure 4.1 demonstrates

54

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

m

Minimax

Rounded

Optimized

Minimax

Absolute Error

Absolute Error

Minimax p*(m)
Rounded p*(m’)
Optimized p*r (m’)
Abs. error p*(m)

1+log10 (m)

1
+

lo
g

1
0

(m
)

Exa. error p*(m’)

Exa. error p*r (m’)

Figure 4.1: Optimization of linear approximation in one segment of decimal loga-
rithm.

the optimization of linear approximation for minimax absolute error in the largest segment

[0.1, 1) for the decimal logarithm. Assuming m′, c′1i and D′
i are rounded to the finite digit-

width of 4-digit, and c′0i is rounded to the finite digit-width of 1-digit, the original minimax

linear approximation p∗(m), achieved by Chebyshev theorem based method is rounded to

p∗(m′), 1×m′+0.0233, and the maximum absolute error is increased from the original linear

approximations’ 0.134 to 0.180. Thus, the value of c′0i is kept and the value of c′1i is adjusted

to c′′1i, which is 0.0518. Then, the new linear approximation, p∗r(m
′) = 1×m′+0.0518, is

determined and the maximum absolute error is decreased from 0.180, given by the linear

approximations, to 0.152.

4.3.3 Decimal Dynamic Non-Uniform Segmentation Method

To achieve a specific accuracy, the interval of m can be split into a set of segments with the

same size. Such an approach is called uniform segmentation method [106, 109]. However,

by this method, the numerous segments make using look-up table for storing the coefficients

impractical. A more effective approach is to determine the segment that has the largest size

while maintaining the specified approximation accuracy. Such an approach with different

55

Determine the bound of segment

 Initial , ; .

 Compute coefficients and by Chebyshev;

 round them to and in the current segment.

Maximum

error<Accuracy

constraint

START

[,]i ia b

 1 0.1a !1 0.1b step

0 ic

!

!

1

1

i i

i i

a b

b b step

 !

i i

i i

a a

b b step

 1?ib 1?ib

Set the accuracy constraint as ; we evaluate

 the function in the domain .

 10 n

! 10 rstep

 101 log ()m [0.1,1)

1ic

0 'ic 1 'ic

 Adjust the coefficient to for achieving

 the best-fit linear approximation .
1 'ic 1 ''ic

*(')rp m

NOYES

END

NO

YESYES

NO

Figure 4.2: Proposed dynamic non-uniform segmentation method.

widthes is called a non-uniform segmentation method and the examples are presented in [110,

111] in detail.

In this work, a new dynamic non-uniform segmentation method is proposed to obtain

the linear approximation of the decimal logarithm and antilogarithm operations as shown in

Figure 4.2. Since the proposed method uses a dynamic error analysis instead of a static error

analysis [114], it can determine the least number of segments as well as give a smaller digit-

width of the coefficients in each segment. The first step of this method is to set the accuracy

constraint. Any accuracy constraint can be set in the proposed method, for instance, we can

set the accuracy constraint as 10−n to achieve the n-digit fractional accuracy of logarithm

and antilogarithm results. The second step is to determine the current bound of segment

[ai, bi], initialized as a1=0.1 and b1=0.1+step, where step is defined as 10−r to adjust the

segment region in each iteration, and the value of r represents the digit-width of the segment

boundary. The third step is to obtain the best coefficients c0i and c1i by Chebyshev theorem

based method in the current segment, then c′0i and c′1i are rounded to the finite digit-width

56

of q-digit and p-digit respectively. The fourth step is to adjust the rounded coefficient c′1i

to optimized c′′1i, which can achieve the minimax absolute error operated with the rounded

input, m′, and intermediate values, D′
i. Then, the linear approximation of decimal logarithm,

D′
i+c′′1i, is finally rounded to the specific n-digit and the final rounding error is considered.

In the fifth step, if the maximum absolute error, |εt|, is smaller than accuracy constraint,

the current segment, [ai, bi], is enlarged to [ai, bi+step], and the method goes back to the

second step. Otherwise, the next segment, [ai+1, bi+1], is set as [bi, bi+step] and one bound of

segment, [ai, bi−step], is obtained. Finally, when bi=1 or bi+1=1, the method is completed.

The decimal logarithm curve is divided into several segments in each of which the rounded

input m′, optimized coefficients c′0i and c′′1i, and intermediate value D′
i can acquire the best-fit

linear approximation to satisfy the accuracy constraint.

4.3.4 Approximation Results for Decimal Logarithm

To compute the decimal logarithm operation, we evaluate the function 1+log10(m) on the

interval [0.1, 1) using the proposed dynamic non-uniform segmentation method. First, the

accuracy constraint, 10−3, is set in order to guarantee the precision of 10−3 decimal accuracy,

which has the same dynamic range as the precision of 2−9 binary accuracy. Second, the initial

bound of segment [a1, b1], is set as [0.1, 0.101], in which the best-fit infinite coefficients c00

and c01 are obtained by Chebyshev theorem based method. Third, the coefficient c′01, the

input value x′, and intermediate values D′
0 are rounded to the finite digit-width of 4-digit,

and the coefficient c′00 is rounded to the finite digit-width of 3-digit. Fourth, the value of

c′01 is optimized to c′′01 for achieving the best-fit linear approximation, p∗r(m
′). Fifth, since

the maximum absolute error, |εt|, is smaller than the error constraint, 10−3, we enlarge the

current segment to [0.1, 0.102] and and re-compute p∗r(m
′) and |εt|. After several iterations,

the first segment [0.1, 0.107] and the coefficients, c′00=4.18 and c′′01=−0.4176, are obtained.

Sixth, we change the initial domain to [0.108, 0.109], and the proposed method starts to

partition the second segment. Finally, the function 1+log10(m) on the interval [0.1, 1) is

split into 20 segments. Table 4.1 demonstrates the optimized coefficients, the boundaries of

each segment, and the maximum absolute errors of the linear approximation for a decimal

logarithmic converter.

57

Table 4.1: Parameters of decimal logarithm linear approximation (Alg. 2).

Index Segments c′0i c′′1i |εt|
1 [0.100, 0.107] 4.18 -0.4176 0.875209E-3

2 [0.108, 0.119] 3.81 -0.3775 0.995479E-3

3 [0.120, 0.132] 3.44 -0.3331 0.950724E-3

4 [0.133, 0.148] 3.08 -0.2852 0.985012E-3

5 [0.149, 0.168] 2.74 -0.2345 0.958700E-3

6 [0.169, 0.189] 2.42 -0.1805 0.932669E-3

7 [0.190, 0.210] 2.17 -0.1331 0.923420E-3

8 [0.211, 0.236] 1.94 -0.0845 0.985260E-3

9 [0.237, 0.266] 1.73 -0.0348 0.976984E-3

10 [0.267, 0.302] 1.53 0.0185 0.993057E-3

11 [0.303, 0.341] 1.35 0.0729 0.990850E-3

12 [0.342, 0.388] 1.19 0.1276 0.973767E-3

13 [0.389, 0.439] 1.05 0.1820 0.949947E-3

14 [0.440, 0.501] 0.923 0.2379 0.988938E-3

15 [0.502, 0.568] 0.812 0.2936 0.964066E-3

16 [0.569, 0.647] 0.715 0.3488 0.961491E-3

17 [0.648, 0.733] 0.629 0.4045 0.956102E-3

18 [0.734, 0.833] 0.555 0.4588 0.990199E-3

19 [0.834, 0.952] 0.487 0.5156 0.999405E-3

20 [0.953, 0.999] 0.445 0.5551 0.564950E-3

Based on the proposed 20-segment straightforward decimal logarithm linear approxima-

tion algorithm, a MATLAB simulation model is established, which is completely consistent

with the hardware implementation of the proposed 7-digit DXP logarithmic converter. Fur-

thermore, 100,000 7-digit DXP operands are simulated as test vectors in the MATLAB

simulation model for this algorithm. The exact error of the decimal logarithm operation is

demonstrated in Figure 4.3, and it is in the range of −0.000998≤ εt≤ 0.000988. Thus, the

final rounded outputs of D′
i(4-digit)+c′′1i(4-digit) (Di= c′0i(3-digit)×m′(4-digit)) can satisfy

58

10
0

10
1

10
2

10
3

10
4

10
5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x 10
-3

Random Test Vectors

A
b

s
o

lu
te

 E
rr

o
r

Exact Values of Test Vectors

E
x
a

c
t E

rro
r

Figure 4.3: Exact error analysis of linear approximation of decimal logarithm.

10
0

10
1

10
2

10
3

10
4

10
5

-1.5

-1

-0.5

0

0.5

1

1.5
x 10

-3 Decimal Linear Approximation Absolute Error Analysis

The N value

A
b
s
o
lu

te
 E

rr
o
r

Absolute Error

Max.+ Absolute Error

Max. - Absolute Error

Exact Values of Test Vectors

E
x
a

c
t E

rro
r

Max. + Exact Error

Max. - Exact Error

Exact Error

Figure 4.4: Exact error analysis of linear approximation of decimal antilogarithm.

the precision of 10−3 decimal logarithm results for any 7-digit DXP operand. The parameters

shown in Table 4.1 are adopted for a design example in Section 4.5.7. Also, we analyze the

tradeoff between the digit width of c′0i and the number of segments in terms of the hardware

implementation of the decimal logarithmic converter in Section 4.6.2.

59

4.3.5 Approximation Results for Decimal Antilogarithm

To compute the decimal antilogarithm operation, we evaluate the function 10m on the interval

[0, 1) using the proposed dynamic non-uniform segmentation method. To minimize the

complexity of the implementation of the antilogarithmic unit while keeping the precision

of 10−3 accuracy of antilogarithm results, the function 10m on the interval [0, 1) is split

into 45 segments to achieve the precision of 10−3 accuracy of antilogarithm results with

the coefficients, with d0i and d1i being truncated to 5-digit respectively. The MATLAB

simulation models based on decimal linear approximation algorithm is thus set up. It is

completely consistent with a hardware implementation of a 7-digit DXP antilogarithmic

converter. Furthermore, the 100,000 7-digit decimal logarithm results as test vectors are

tested in the MATLAB simulation model based on this algorithm. The exact error of the

decimal antilogarithm operation is demonstrated in Figure 4.4. The maximum error obtained

by using this algorithm ranges over −0.000999≤Eabsolute≤0.000857. Thus, the final rounded

outputs of D′
i(5-digit)+d

′′
1i(5-digit) (Di=d′0i(5-digit)×m′(5-digit)) can satisfy the precision of

10−3 decimal antilogarithm results for any 7-digit DXP operand. The details of the optimized

coefficients, the boundaries of each segment, and the maximum absolute errors of the linear

approximation for a decimal antilogarithmic converter can be found in [117]. The hardware

implementation of the decimal antilogarithmic converter is given in Section 4.5.3.

4.4 Error Analysis of Two Algorithms

Using Alg. 1 to operate a decimal logarithm computation, we consider a straightforward

approach: 1) convert decimal operands to the binary format; 2) perform a binary-based

decimal logarithm operation; and 3) convert binary-based decimal logarithm results back to

the decimal format. The errors in this approach are produced in three ways. First, since

the fractional part of most decimal operands can not be exactly represented by the finite

width of binary numbers, the initial decimal-to-binary conversion generates a conversion

error, |εc1|. Second, the binary-based decimal logarithm operation gives an computational

error, |εt|. Third, the final binary-to-decimal conversion produces another conversion error,

60

10
0

10
1

10
2

10
3

10
4

10
5

-5

-4

-3

-2

-1

0

1

2

3

4

5
x 10

-3

Random Test Vectors

A
b

s
o

lu
te

 E
rr

o
r

Exact Values of Test Vectors

E
x
a

c
t E

rro
r

Figure 4.5: Exact error analysis of Alg. 2 for integer and fraction cases.

(a) (b)

10
0

10
1

10
2

10
3

10
4

10
5

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

Random Test Vectors

A
b
s
o
lu

te
 E

rr
o
r

10
0

10
1

10
2

10
3

10
4

10
5

-5

-4

-3

-2

-1

0

1

2

3

4

5
x 10

-3

Random Test Vectors

A
b
s
o
lu

te
 E

rr
o
r

Exact Values of Test Vectors

E
x
a
c
t E

rro
r

Exact Values of Test Vectors
E

x
a
c
t E

rro
r

Figure 4.6: Exact error analysis of Alg. 1: a)integer case; b) fraction case.

|εc2|, because the binary fractional part of most decimal logarithm results also can not be

exactly represented by the finite width of decimal numbers. However, compared with Alg.

1, the straightforward decimal logarithm conversion (Alg. 2) does not have any conversion

error, |εc|, produced because it can directly compute decimal operands without the binary

and decimal format conversion. To conduct a fair comparison, 1) we convert the 7-digit

decimal non-normalized significand, N , to the 24-bit BXP number because they have similar

dynamic ranges for the normalized mantissa (223 < 107 < 224); 2) we constrain the same

61

Table 4.2: Comparsion of two decimal logarithm algorithms.

Algorithm 2 Algorithm 1

case 1 case 2 case 1 case 2

No. of Segments 7 6

Max +Exa. Error 0.367E-2 0.390E-2 0.390E-2

Max -Exa. Error -0.388E-2 -0.398E-2 -0.483E-1

Exa. Error Range 0.755E-2 0.788E-2 0.522E-1

case 1: 7-digit decimal integer; case 2: 7-digit decimal fraction.

maximum absolute computational error, |εt|, for decimal logarithm conversions based on

Alg. 1 and Alg. 2. Two MATLAB simulation models based on Alg. 1 and Alg. 2 are

set up respectively. For Alg. 1, the conversion between 7-digit decimal operands and 24-

bit binary numbers is realized based on the shift-and-add algorithm in [103]. A 24-bit

binary logarithm conversion is implemented according to the 6-segment error correction

algorithm described in [85] as a key computational component to compute binary-based

decimal logarithm operation. For Alg. 2, since the maximum absolute computational error

of the binary-based decimal logarithm conversion in Alg. 1 is equal to 0.00399, we evaluate

the decimal logarithm function to keep the same maximum absolute computation error, |εt|,
by the proposed dynamic non-uniform segmentation method for Alg. 2.

Thus, the decimal logarithm function, 1+log10(m), on the interval [0.1, 1) is split into

number of 7 segments. Then, 100,000 7-digit DXP operands as test vectors are tested in the

MATLAB simulation model based on Alg. 2 for two cases (case 1 : 7-digit integer; case 2 :

7-digit fraction), while the corresponding 24-bit binary numbers, after being converted from

7-digit decimal operands in case 1 and case 2, are tested in MATLAB simulation model

based on Alg. 1. The exact errors of calculation of 1+log10(m) based on Alg. 1 and Alg.

2 are demonstrated in Figure 4.5 and Figure 4.6 respectively, while the comparison results

are given in Table 4.2. The comparison results indicate that 1) the maximum exact error

resulted from Alg. 2, −0.00388≤εt≤0.00367, keeps the same for both integer and fraction

cases; 2) the exact error range of the 7-segment Alg. 2 is constrained to 0.00755, which is

similar to Alg. 1’s error range of 0.00778 for case 1, but is much less than Alg. 1’s error

62

24

 7 4N

24

24

24

5

6

24 24

20

7 4

4

10
2log ()

BCD-to-Binary Converter

LOD Circuit

Characteristic Detector

Log_Shifter

Correction Circuit
-region Error6

Multiplier

Binary-to-BCD Converter

Figure 4.7: Block diagram of binary-based decimal logarithmic converter.

range of 0.0522 for case 2 because the conversion error is unavoidable. Thus, it is shown

that the proposed straightforward decimal logarithm conversion (Alg. 2) is error-free in the

conversion between decimal and binary format.

4.5 Hardware Architecture

4.5.1 Binary-based Decimal Logarithmic Converter (Alg. 1)

Figure 4.7 shows the hardware architecture of the binary-based decimal logarithmic con-

verter based on the binary-based decimal linear approximation (Alg. 1). The binary-based

converter consists of four stages. First, a 7-digit non-normalized integers N is converted to a

24-bit BXP number by a combinational BCD-to-Binary converter. Second, the 24-bit BXP

63

number is computed in a 24-bit BXP logarithmic converter which is implemented based on

the 6-region error correction algorithm described in [85]. This binary logarithmic converter is

constructed by a leading one detector (LOD) circuit, a characteristic detector, a log shifter,

and a 6-region error correction circuit. For more details, we would refer the reader to [85].

Third, the 24-bit results of the 6-region error correction circuit are multiplied with a 24-bit

constant log10(2) to obtain decimal logarithm results, (log10(dec)). The decimal logarithm

results obtained by the combinational multiplier are truncated to 20-bit, and then combined

with 4-bit characteristic to achieve 24-bit binary-based decimal logarithm results, where

the combinational multiplier is implemented by the multiplier IP core on FPGA. Fourth,

the 24-bit results are converted back to decimal BCD representation by a combinational

binary-to-BCD converter. The combinational BCD-to-binary and binary-to-BCD converters

are implemented based on shift-and-add algorithms represented in [103]. This binary-based

decimal logarithmic converter, as a benchmark, is implemented on FPGA to compare with

the proposed decimal logarithmic converter in Section 4.6.4.

4.5.2 Decimal Logarithmic Converter (Alg. 2)

Figure 4.8 shows the hardware architecture of the proposed 7-digit decimal logarithmic

converter based on the decimal linear approximation (Alg. 2). The hardware implementation

of the proposed converter mainly consists of 1) a leading-zero detector (LZD) to compute the

1-digit decimal logarithm characteristic, k; 2) a decimal normalizer to shift non-normalized

integers N to normalized DXP operands m; 3) a segment index encoder (SIE) to produce the

segment index, i, according to r-digit most significant digits (MSDs) of m; 4) a coefficients

look-up table to store the coefficients, q-digit c′0i and p-digit c′′1i, in each segment; and 5)

a decimal linear approximation unit (DLAU) to compute n-digit accurate approximation

results of decimal logarithm mantissa. Thus, the accurate n+1-digit final decimal logarithm

result, log10(N), is achieved by combining 1-digit decimal logarithm characteristic and n-digit

decimal logarithm mantissa in the final output register.

All signals in the architecture are represented with 10’s complement number system.

Each digit of positive DXP number is represented by 4-bit BCD code, whereas each digit

of negative number is represented by its 10’s complement format. The reason for choosing

64

 7 4
N

 7 4
N

 7 4
N

 7 4m

4 r
MSDs

h Index

 p 4

 p 4
1ic ''

 p 4
 p 4 *

rp (m')

 n 4 mantissaChar

 1 4

 q 4

0ic ' m'

3

1 4 (n) 10log (N)

Input Register

LZD Normalizer

SIE

Coefficients

ROM

DMUL

Output Combine Register

DCLA

Rounding

iD '

Figure 4.8: Block diagram of the proposed decimal logarithmic converter.

10’s complement format is the decimal subtraction operation can be replaced by a decimal

addition in 10’s complement format, and all decimal digits, including the sign digit, can be

operated in the decimal addition or subtraction.

4.5.3 Decimal Antilogarithmic Converter (Alg. 3)

Figure 4.9 shows the hardware architecture of the proposed 7-digit decimal antilogarithmic

converter based on the decimal linear approximation. The hardware implementation of the

proposed converter mainly consists of 1) a characteristic decoder that tells the shifter register

how many digits should be shifted according to the characteristic part of logarithm results;

2) a coefficient look-up table that stores the coefficients, q-digit d′0i and p-digit d′′1i, in each

segment; 3) a decimal linear approximation unit (DLAU) that computes n-digit accurate

65

Character

 7 4

1-digit
Mantissa 6-digit

SIE

 3 4

7

 p 4

 p 4
1ic ''

 p 4
 p 4 *

rp (m')

 n 4 mantissa

 q 4

0ic ' m'

Coefficients

ROM

DMUL

DCLA

Rounding

iD '

Shifter Detector

 1 4

4

Shifter Register

7 4 10N

N

Figure 4.9: Block diagram of the proposed decimal antilogarithmic converter.

approximation results of decimal antilogarithm mantissa. 4) a right shifter that can shift

the linear approximation result to the correct antilogarithm.

4.5.4 Decimal Segment Index Encoder

The most complicated unit in the proposed architecture is the SIE circuit, in particular

when the decimal logarithm function is divided into large number of segments for a higher

computational accuracy. The function of SIE is shown in:

SIEfunc(m) : {0, 1, ..., 8, 9}r→{0, 1, ..., i−1} (4.16)

In (4.16), the input of the SIE function is r-digit MSDs of 7-digit m, and the output is the

segment index, i, a h-bit BXP number, applied to the address of the coefficients look-up table.

The SIE circuit can be realized by the LUT cascade given in Figure 3.2. The LUT cascade is

achieved by a functional decomposition based on the multiterminal decimal decision diagram

(MTBDD) approach [110]. The architecture of the SIE circuit is a combinational logic in

66

which each LUT can be realized by the distributed memory on FPGA. In the leftmost LUT1,

all the inputs come from most significant bits (MSBs) of r×4-bit x, xL1
. For the other LUTj ,

some inputs come from x, xLj
, and the others come from the output of the previous LUTj−1

stage, pLj−1
, which are called rails. The outputs of the rightmost LUTj then represent h-bit

segment index, i.

In [110], each LUT is restricted to h+2-bit inputs and h-bit outputs, where h=⌈log2(i)⌉,
and i is the number of non-uniform segments. In this work, we adopt the same LUT cascade

approach to evaluate the distributed memory size of the SIE circuit. Thus, the estimated

memory size of the LUT cascade (ROM1) is determined by the number of segment, i, and

the digit-width of the segment boundary, r×4-bit:

ROM1=2⌈log2(i)⌉+1×⌈log2(i)⌉×(4r−⌈log2(i)⌉) (4.17)

Since it is impractical to restrict the same bit-width as the estimated LUT cascade in the

actual implementation of the SIE circuit, we proposed an optimum decomposition approach

to determine the actual LUT cascade strategy, using the minimum size of the distributed

memory, and to implement the SIE circuit. Note that the actual distributed memory size is

a bit larger than the estimated memory size.

4.5.5 Coefficients Look-up Table

In Figure 4.8, the coefficients look-up table has 2h words, in which the coefficients, q-digit c′0i

and p-digit c′′1i, are stored respectively. Since the values of c′0i are same in several adjacent

segments when the digit-width of c′0i, q-digit, is rounded to a relative small value, the memory

size occupied by the coefficients look-up table can be reduced by only storing one c′0i for these

adjacent segments. In this work, we consider the maximum estimated memory size of the

coefficients look-up table, (ROM2), which is:

ROM2=2⌈log2(i)⌉×(p+q)×4 (4.18)

Thus, the total estimated memory size (ROMt) for implementing the coefficients look-up

table and SIE circuit is:

ROMt=2⌈log2(i)⌉+1×(4r×⌈log2(i)⌉−⌈log2(i)⌉2+2p+2q) (4.19)

67

…

!

!

…

…
…

mantissa

…

4 p

4 n

4 p4 p

4 pp4 p

4 !(p q) 4 !(p q) p q

2 p2 4 !(p)2 4 !(p) 2 p

1 p1 4 !(p)1 p1 4 !(p)1 p1 4 !(p)1 p1 4 !(p)

4 p4 p 4 p 4 p

!p q!p q4 !(p q)4 !(p q) p q …

DPPG DPPG DPPG DPPG

3:2 DCSA3:2 DCSA

3:2 DCSA DCC

3:2 DCSA

3:2 DCSA

DCLA

Rouning

Figure 4.10: Details of decimal linear approximation unit.

4.5.6 Decimal Linear Approximation Unit

The hardware architecture of the DLAU circuit in the proposed decimal logarithmic and

antilogarithmic converters is shown in Figure 4.8 (dotted line). It mainly consists of three

units from the function view: 1) a DXP combinational multiplier1 (DMUL) for computing

p-digit D′
i = truncate(c′0i×m′); 2) a DXP carry-look-ahead adder (DCLA) for computing

p-digit p∗r(m
′)=D′

i+c′′1i; and 3) an output rounding unit for rounding p-digit p∗r(m
′) to the

precision of 10−n exact logarithm mantissas.

To decrease the carry propagation delay resulted from the decimal carry-propagating

adder (DCPA) in the final level of DMUL, we replace this DCPA by a decimal carry-save

adder (DCSA) in order to fuse DMUL and DCLA in the architecture of DLAU. The details

of the DLAU architecture are shown in Figure 4.10, where cq−10i

′
represents the qth-digit of

1Note that when the digit-width of c′
0i
is rounded to 1-digit, DMUL can be simplified to a decimal multiple

logic.

68

c′0i. Thus, the DLAU circuit mainly consists of five parts: 1) the decimal partial product

generation (DPPG) units to multiply inputs m′ by each digit of c′0i; 2) a ⌈log2(q)⌉+2-level

DCSA tree, comprised of the 3:2 DCSA counters and a decimal carry counter (DCC), to

compute p-digit p∗r(m
′); 3) a p-digit DCLA to convert p∗r(m

′) from the decimal carry-save

representation to the BCD representation; 4) a final rounding logic to obtain n-digit exact

logarithm mantissas. The DPPG unit and DCSA tree are implemented based on a decimal

combinational multiplier in [23]. The DCLA and DCSA are implemented based on the 1-digit

DCLA adder described in [104]. The subtraction operations in the algorithm are carried out

by this DCLA adder due to the 10’s complement decimal format used in the architecture.

4.5.7 Design Example

Based on the evaluation results demonstrated in Table 4.1, we present a decimal logarithmic

converter as a design example to compute the precision of 10−3 decimal logarithm results for

any 7-digit DXP operand. The proposed design example can be implemented based on the

block diagram of the proposed decimal logarithmic converter as shown in Figure 4.8. Since

the decimal logarithm function is partitioned into i= 20 segments; and the digit-width of

the segment boundary is r = 3-digit (refer to Table 4.1), we obtain a 4-level LUT cascade

for the SIE circuit based on the optimum decomposition approach. According to (4.17), the

estimated memory size of the LUT cascade for implementing the SIE circuit is obtained:

ROM1=25+1×5×(12−5)=2240 bits (4.20)

The coefficients look-up table has 25 words, in each of which the coefficients, q=3-digit

c′0i and p= 4-digit c′′1i, are stored respectively. According to (4.18), the estimated memory

size of the coefficients look-up table is:

ROM2=25×(3+4)×4=896 bits (4.21)

Thus, the total estimated memory size of the decimal logarithmic converter is ROMt=3136

bits.

To compute the decimal linear approximation results in the DLAU circuit, first, 4-digitm′

is multiplied by each digit of 3-digit coefficient c′0i in the DPPG; second, 7-digit intermediate

69

Table 4.3: Details of combinational delay.

Reg LZD Norm SIE ROM DLAU Comb Total (ns)

1.01 1.66 1.28 3.76 1.04 8.77 0.39 17.9

value, Di, is computed in a 3-level DCSA tree; third, Di is truncated to 4-digit D′
i, and then

added with the 4-digit coefficient c′′1i to achieve the 4-digit p
∗
r(m

′) in another DCSA; fourth, 4-

digit p∗r(m
′) in the decimal carry-save representation is converted to the BCD representation

in a DCLA; fifth, 4-digit p∗r(m
′) is rounded to 3-digit accurate logarithm mantissa in the

final rounding logic. Thus, the accurate 4-digit final decimal logarithm result, log10(N), is

obtained by combining 1-digit decimal logarithm characteristic and 3-digit decimal logarithm

mantissa in the output register.

4.6 Experimental Results and Analysis

4.6.1 Implementation Results and Analysis

The proposed 7-digit DXP logarithmic converter, to compute the precision of 10−3 accurate

logarithm results (refer to the design example), is modeled with VHDL and implemented on

Virtex5 XC5VLX110T FPGA configuration [121]. The discussion about how we scale up the

proposed converter to compute a higher precision of decimal logarithm results is presented

in Section 4.6.3.

The proposed 7-digit DXP logarithmic converter is implemented only by a combinational

architecture, which is firstly synthesized with XST, and then placed and routed by Xilinx

ISE 11.3. The circuits of LZD, decimal normalizer, and DLAU in the proposed architecture

are realized by look-up tables (LUTs) on FPGA, while the SIE circuit and coefficients look-

up table are implemented by the distributed memory on FPGA. The implementation results

on FPGA show that the proposed combinational architecture occupies 1 out of 32 GCLK

I/O block, 46 out of 680 I/O blocks, and 384 out of 17,280 slices; and it takes a single clock

cycle, running at 55.9 MHz, consuming 40 mW dynamic power, to achieve a precision of

10−3 logarithm result. The combinational delays of each block in the proposed architecture

70

are available in Table 4.3. It is evident that the two most time consuming blocks in the

proposed architecture are SIE and DLAU circuits. The reasons are that 1) the SIE circuit

is realized by a multi-level LUT cascade in which each level of LUT is implemented by a

distribute memory on FPGA; 2) the DLAU circuit consists of a more complex DPPG, DCAS

tree, DCLA adder and a final rounding block implemented based on BCD encoding.

The proposed architecture based on decimal linear approximation algorithm for DXP

antilogarithmic converter is modeled in VHDL and implemented using the same Virtex5

XC5VLX110T FPGA device as that used for DXP logarithmic converter. The implementa-

tion results show that the proposed combinational architecture occupies 406 out of 17,280

slices; and it takes a single clock cycle, running at 59.3 MHz to achieve a precision of 10−3

antilogarithm result.

4.6.2 Tradeoff Analysis of Hardware Implementation

To reduce the combinational delay of the DLAU circuit in the proposed architecture, we keep

the digit-width of m′, c′′1i and D′
i as 4-digit and decrease the digit-width of c′0i from 4-digit

to less in order to adopt a faster less-level DCSA tree to compute the linear approximation,

p∗r(m
′) of decimal logarithm results. However, when the digit-width of c′0i is decreased,

the decimal logarithm function has to be partitioned into more segments in order to keep

the accuracy constraint. This result leads to a more-level LUT cascade and larger size of

distribute memories occupied on FPGA for implementing the SIE circuit.

Table 4.4 shows the evaluation and hardware implementation results on Virtex5 XC5VLX

110T FPGA for the different digit-width of the coefficient c′0i. The results indicate that 1)

the proposed architecture, in which the digit-width of c′0i is 2-digit, is 1.02 times faster and

1.47 times smaller than the architecture, and the digit-width of c′0i is 4-digit; 2) it is 1.09

times faster and 1.21 times smaller than the architecture, in which the digit-width of c′0i

is 3-digit; 3) it is 1.05 times faster and 1.07 times smaller than the architecture, in which

the digit-width of c′0i is 1-digit; and 4) the dynamic power consumption is reduced with the

decrease of the digit-width of c′0i.

The reasons are that 1) since the number of level of DCSA tree in DLAU, which is equal

to ⌈log2(q)⌉+2, is decreased accordingly when the digit-width of c′0i is rounded from 4-digit

71

Table 4.4: Tradeoff analysis of hardware implementation.

Accuracy constraint Digit-width of q-digit c′0i

precision of 10−3 4-digit 3-digit 2-digit 1-digit

Segments (No.) 19 20 23 94

Actual memory size (Byte) 448 488 584 3,112

Occupied slices (No.) 490 384 317 338

Combinational delay (ns) 16.8 17.9 16.4 17.3

Power consumption (mW) 45 40 35 33

to 1-digit, the combinational delay and area of DLAU are reduced. However, 2) since the

decimal logarithm function is partitioned into more segments, the number of level and size

of the LUT cascade obtained by the optimum decomposition approach for implementing

the SIE circuit, and the size of the coefficient look-up table for storing the coefficients is

increased, which lead to an increase of the combinational delay and the distribute memory

size. Note that the number of level of DCSA tree are 4, 4, 3 and 2; and the number of level

of LUT cascades are 3, 4, 4 and 6 when the digit-width of c′0i is rounded from 4-digit to

1-digit respectively.

4.6.3 Scale up to a Higher Required Accuracy

Since any accuracy constraint, 10−n, can be set in the proposed non-uniform segmentation

method for the decimal logarithm computation by Alg. 2, we can easily scale up the proposed

architecture to achieve a higher fractional accuracy of logarithm results.

In this section, we analyze the function evaluation and hardware implementation results

of the scaled-up architecture to achieve a higher precision of decimal logarithm results.

During the decimal logarithm function evaluation by the proposed dynamic non-uniform

segmentation method, first, we set the accuracy constraint as 10−n, where the value of n

is set as from 4 to 7 in order to achieve a higher fractional accuracy from the precision of

10−4 to 10−7 respectively; second, we constrain the digit-width of the rounded q-digit c′0i as

4-digit, the digit-width of the rounded p-digit m′, c′1i and D′
i as n+1-digit. Note that since

72

Table 4.5: Implementation results in different accuracy constraints.

Accuracy constraint 10−4 10−5 10−6 10−7

Segments (No.) 66 204 662 2,310

Segments boundary (r-digit) 3 4 4 5

LUT cascade (No.) 3 5 5 6

Actual memory size (Byte) 3,136 7,264 17,120 127,584

Occupied slices (No.) 753 884 1,848 4,059

Combinational delay (ns) 20.1 25.6 29.9 35.7

Power consumption (mW) 51 55 73 112

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Parameters

N
o

rm
a

liz
e

d
 P

e
rf

o
rm

a
n

c
e

Normalized Performance in Different Accuracy Constraint

data1

data2

data3

data4

data5

310

410

510

610

710

Figure 4.11: Normalized hardware performance in different accuracy constraints.

the full digit-width of the input m is 7-digit, the rounding error of m′ is not considered when

the accuracy constraint is set as 10−7.

The scaled-up architectures of decimal logarithmic converters are modeled with VHDL

and implemented on Virtex5 XC5VLX110T FPGA. Table 4.5 gives the evaluation and hard-

ware implementation results of scaled-up architectures in the different accuracy constraints.

Figure 4.11 shows a normalized hardware performance comparison. The results indicate

that 1) the number of segment is increased with the more precision of the required fractional

73

Table 4.6: Hardware performance comparison in two algorithms.

Approaches Algorithm 1 Algorithm 2

Segments (No.) 6 7

Occupied slices (No.) 300 343

Max. frequency (MHz) 29.4 63.3

Clock cycles (No.) 1 1

Latency (ns) 34.0 15.8

Power consumption (mW) 25.8 36.4

accuracy, which leads to the increase of actual memory size occupied by the SIE circuit and

coefficient look-up table; 2) the number of level of LUT cascade obtained by the optimum

decomposition approach [110] is increased with more segments and the digit-width of the

segment boundary, which leads to an increment of the combinational delay of the SIE cir-

cuit; 3) since the digit-width of the rounded p-digit m′, c′1i and D′
i is increased 1-digit with

one more precision of fractional accuracy, which lead to a more complex architecture of the

DLAU so that its combinational delay, area and dynamic power consumption are increased

accordingly. Therefore, with the increasing precision of the required accuracy, the memory

size occupied by the SIE circuit and the coefficient look-up table could become too large to

be implemented by the limited resources on FPGA.

4.6.4 Hardware Performance Comparison in Two Algorithms

For further analysis, we compare the hardware performance of the proposed architecture

(Alg. 2) and the binary-based architecture (Alg. 1), which is described in Section 4.5.1. In

order to conduct a fair comparison, we scale up the two architectures to compute with the

same maximum absolute computation error, then synthesize, place and route them using the

same tools on Virtex5 XC5VLX110T FPGA. Table 4.6 shows hardware performances of the

two architectures. The comparison results indicate that the proposed architecture based on

the decimal linear approximation algorithm (Alg. 2) only occupies 1.14 times more slices,

and consumes 1.41 times more dynamic power, but runs 2.15 times faster than the binary-

74

based decimal logarithmic converter. The reasons lie in that 1) the form of BCD encoding

used in the proposed architecture (Alg .2) needs more resource to be implemented compared

with binary format used in the binary-based architecture (Alg. 1); 2) the proposed decimal

logarithmic converter (Alg. 2) can directly compute the decimal logarithm results, and

that Alg. 2’s architecture needs neither combinational BCD-to-binary nor binary-to-BCD

converters, the factors that slow down the performance of Alg. 1.

4.7 Summary

In this chapter, we present a new approach to compute the decimal logarithm and antiloga-

rithm function based on the decimal first-order polynomial approximation in hardware. This

new approach is error-free in the conversion between decimal and binary format, and can

be scaled up to compute any accuracy of decimal logarithm and antilogarithm results in the

BCD encoding. Moreover, we analyze the tradeoff of the hardware performance in order

to determine the most suitable digit-width of coefficients so that the proposed architecture

can achieve the smallest area and fastest speed. Finally, we make a hardware performance

comparison between the two algorithms, and its results show that the proposed decimal loga-

rithmic converter (Alg. 2) runs significantly faster than the binary-based decimal logarithmic

converter (Alg. 1). As long as enough distributed memory is available on FPGA, the preci-

sion of accuracy can be increased by using the proposed architecture that has the potential

of achieving a higher speed and throughput on the decimal logarithm computation.

75

Part IV

Digit-Recurrence with Selection by

Rounding

76

Chapter 5

Decimal Floating-Point Logarithmic Converter

In this chapter, we present the algorithm and architecture of the decimal floating-point

(DFP) logarithmic converter, based on digit-recurrence algorithm with selection by rounding.

The proposed converter can compute faithful DFP logarithm results for any one of the three

DFP formats, which are specified in the IEEE 754-2008 standard. In order to optimize the

latency for the proposed design, we integrate the following novel features: 1) using signed-

digit redundant digits, and redundant carry-save representation of the data-path; 2) reducing

the number of iterations by determining the number of initial iteration; and 3) retiming and

balancing the delay of the proposed architecture. The proposed architecture is synthesized

with STM 90-nm standard cell library, and results show that the critical path delay and

latency of the proposed Decimal64 logarithmic converter are 1.55 ns (34.4 FO4) and 19

clock cycles respectively; and the total hardware complexity is 43572 NAND2 gates. The

rough delay estimation results of the proposed architecture show that its latency is close to

that of the binary radix-16 logarithmic converter, and that it has a significant decrease on

latency in contrast to a recently published high performance CORDIC implementation.

5.1 Introduction

In Chapter 4, a low-accuracy DXP logarithmic converter, based on linear approximation

algorithm, is described. Although the logarithmic converter based on linear approximation

method is fast and consumes low power, it will produce some errors that lead to inaccurate

computation results. The hardware-oriented algorithms based on digit-recurrence with se-

lection by rounding are introduced for high-radix binary division, square-root [89, 90, 91],

CORDIC [93], logarithm [94] and exponential [92] operations respectively. This method can

77

efficiently decrease the cost of implementation, and the complexities of the selection func-

tion for redundant digits in particular. In this chapter, a radix-10 digit-recurrence algorithm

based on the selection by rounding approach is presented to implement the DFP logarithmic

converter in order to achieve faithful logarithm results of DFP operands, specified in IEEE

754-2008 standard. The design described in this chapter is an improved work based on our

previous research [122], and includes the following new features:

1. signed-digit redundant digits;

2. redundant carry-save representation of the data-path;

3. reducing the number of iterations by determining the number of initial iteration;

4. selecting redundant digits by rounding estimated residuals;

5. retiming and balance the delay of the proposed architecture;

6. novel implementations of operation blocks in the carry-save data-path;

7. normalization, parallel final addition and rounding operation to display DFP logarithm

results.

This design makes the first attempt to analyze and implement a DFP logarithmic converter

that can compute the DFP based-10 logarithm operation specified in the IEEE 754-2008

standard.

This chapter is organized as follows: In Section 5.2 we give an overview of the DFP

logarithm operation. Section 5.3 presents the proposed algorithm and error analysis for a

DFP logarithm computation. Section 5.4 describes the improved architecture based on the

redundant data-path with details of its hardware implementation. In Section 5.5, first, we

analyze the area-delay evaluation results of the proposed architecture; second, we compare

the performance of the proposed design with the binary radix-16 converter [94], our original

design [122], the recent decimal CORDIC design [49], and the software implementation [41]

in terms of the latency; third, we discuss the various characters of the DFP logarithmic

converter for three different DFP formats. Section 5.6 gives conclusions. In Chapter 5 and

Chapter 6, for details about the DFP operands and rounding for decimal based-10 logarithm

operation, please refer to Section 2.1.1 and Section 2.2.1.

78

5.2 DFP Logarithm Operation

5.2.1 Exception Handling

A valid DFP logarithm operation is defined as:

R = log10(v) = log10(10
e) + log10(significand). (5.1)

In (5.1), the exponent is in the range of (emin−q+1)≤ e≤ (emax−q+1), and the decimal

significand is a q-digit non-normalized integer in the range of 1≤significand≤10q−1. There
are some exceptional cases that need to be dealt with during a DFP logarithm operation:

• v must be a positive DFP operand (S = 0), otherwise the DFP logarithm operation

simply returns NaN and signals the invalid operation exception;

• if v is a NaN, the DFP logarithm operation returns NaN and signal the invalid operation

exception;

• if v is ±0, the DFP logarithm operation returns −∞ and signals the divideByZero

exception;

• if the DFP logarithm result is inexact, the DFP logarithm operation signals the inexact

exception;

• if v is +∞ or +1, the DFP logarithm operation returns +∞ or +0 respectively with

no exception;

• since all of valid DFP logarithm results are obtained in the representable range of the

DFP numbers, the overflow, underflow and subnormal exceptions are not produced

during the DFP logarithm operation.

5.2.2 Range Reduction

The computation of log10(significand) is a q-digit DXP logarithm operation. Since the deci-

mal significand of DFP operand is defined as a non-normalized integer, it should be normal-

ized into the range of [0.1, 1) before it is computed by the proposed algorithm. As a result,

(5.2) is obtained:

R = log10(v) = e+ k + log10(m). (5.2)

79

In (5.2), k is the number of significant digits of the decimal significand, and equal to q less the

number of leading zeros of the decimal significand, where 1 ≤k≤q; m is a normalized decimal

fractional number that consists of the k-digit significant digits of the decimal significand

followed by (q−k)-digit zeros, where 0.1 ≤ m < 1. After range reduction, the logarithm

operation, log10(m), may produce at most q-digit leading zeros or q−1-digit leading nines,

when the value of m is very close to 1 or 0.1. Since the target is a DFP logarithm operation,

the DFP logarithm operation, log10(v), should be capable of achieving a q-digit decimal

significand without leading zeros.

A straightforward approach, similar to [123], is required to guarantee at least a twice

precision of 2q-digit DXP logarithm results at first, and then the normalization can be

performed by shifting the leading zeros of 2q-digit results to the left to obtain q-digit results

without leading zeros, which then represent the decimal significand of DFP logarithm results.

However, this approach makes the computational delay extremely large, since it doubles the

number of iterations and the data-path width. To avoid the computation of the leading zeros

for DFP logarithm results, we use a similar approach as [49], which start the first iteration

with the index j = jinit (refer to Section 5.3.3), and only compute the q+1-digit decimal

logarithm result log10(m) with at most 1-digit leading zero in the number of q+1 iterations.

For example, the proposed approach can achieve a q+1-digit result with the 2q-digit accuracy

from the number of qth to 2qth iteration for an operand, m, whose fractional digits are all

equal to nine.

5.3 Digit-Recurrence Algorithm for Logarithm

5.3.1 Overview

A digit-recurrence algorithm to calculate log10(m) is derived based on [94], which is summa-

rized as follows:

log10(m) = log10(m
∏

fj)−
∑

log10(fj) (5.3)

80

where 0.1 ≤m< 1. If the following condition is satisfied:

lim
j→∞
{m

j∏

j=1

fj} → 1 (5.4)

Then

lim
j→∞
{log10(m

j∏

j=1

fj)} → 0 (5.5)

Thus,

log10(m) = 0−
∞∑

j=1

log10(fj) (5.6)

fj is defined as fj =1+ej10
−j by which m is transformed to 1 through successive multipli-

cations. This form of fj allows the use of a decimal shift-and-add implementation.

The corresponding recurrences for transforming m and computing the logarithm are

presented in (5.7) and (5.8), where j≥1, E[1]=m and L[1]=0.

E[j + 1] = E[j](1 + ej10
−j) (5.7)

L[j + 1] = L[j]− log10(1 + ej10
−j) (5.8)

The digits ej are selected so that E(j + 1) converges to 1. A 1-digit accuracy of the calcu-

lation result is, therefore, obtained in each iteration. After performing the last iteration of

recurrence, the results are:

E[N + 1] ≈ 1 (5.9)

L[N + 1] ≈ log10(m) (5.10)

Although the proposed algorithm is designed for the computation of DXP logarithm

results in base 10, the logarithm results in any base β can also be achieved by simply

changing the base ’10’ to ’β’ as shown in (5.11):

L[j + 1] = L[j]− logβ(1 + ej10
−j) (5.11)

Thus, after performing the last iteration of recurrence, the final results are transformed to:

L[N + 1] ≈ logβ(m) (5.12)

81

To have the selection function for ej dependent on the same digit positions in all iterations,

a scaled remainder is defined as:

W [j] = 10j(1− E[j]) (5.13)

Thus,

E[j]=1−W [j]10−j (5.14)

To substitute (5.14) in (5.7), the recurrence on E is replaced by the residual recurrence:

W [j + 1] = 10(W [j]− ej + ejW [j]10−j) (5.15)

According to (5.15), the digits ej are selected as a function of leading digits of the scaled

residual in a way that the residual W [j] remains bounded.

5.3.2 Selection by Rounding

The selection of the digits ej is achieved by rounding to the integer part of the scaled residual.

To reduce the delay of selection function, the rounding is performed on an estimated Ŵ [j],

which is obtained by truncating W [j] to t fractional digits (truncating W [j] at the position

10−t). The selection function is indicated as:

ej = round(Ŵ [j]) (5.16)

In (15), round indicates that if the digit of Ŵ [j] at the position 10−1 is larger than or equal

to 5, the digit ej is obtained by adding the integer part of Ŵ [j] and 1; otherwise it is directly

obtained by the integer part of Ŵ [j]. In this work, the selection by rounding is performed

with the maximum redundant set ej∈{−9,−8, ..., 0, ...8, 9}. Since |ej |≤9,

− 9.5 < Ŵ [j + 1] < 9.5 (5.17)

thus,

− 9.5− 10−t < W [j + 1] < 9.5 + 10−t (5.18)

and,

− 0.5− 10−t < W [j]− ej < 0.5 + 10−t (5.19)

82

equation (5.15) can be represented as:

W [j + 1]=10(W [j]−ej)+ej10
1−j(W [j]−ej+ej) (5.20)

According to (5.18), (5.19) and (5.20), the numerical analysis is processed as follows:

−5−10−t+1+ej10
1−j(−0.5−10−t+ej)>−9.5−10−t (5.21)

5+10−t+1+ej10
1−j(0.5+10−t+ej)<9.5+10−t (5.22)

The results in numerical analysis show that if and only if j≥ 3, t≥ 1 the conditions (5.21)

and (5.22) are satisfied. In doing so, the selection by rounding is only valid for iterations

j ≥ 3, and e1 and e2 can be only achieved by look-up tables. However, using two look-up

tables for j=1, 2 will significantly increase the overall hardware implementations. Therefore,

the restriction for e1 is defined so that e2 can be achieved by selection by rounding and one

look-up table will be saved. Because W [1]=10(m−1), W [2] can be achieved as:

W [2]=100−100×m−10e1 ×m (5.23)

When the value of j equates to 2, the value of e2 is in the range of −6<e2<6 so that (5.21)

and (5.22) are satisfied. Substituting −6<e2<6, and t=1 in (5.19) yields:

− 5.6 < W [2] < 5.6 (5.24)

According to (5.23) and (5.24), we obtain:

100−100×m−10e1 ×m > −5.6 (5.25)

100−100×m−10e1 ×m < 5.6 (5.26)

The results in numerical analysis of (5.25) and (5.26) show that 1) the decimal input

operand m is restricted in the range of 0.5 ≤ m′ ≤ 1.05 so that e2 can be achieved by

selection by rounding; 2) 3-digit MSDs of the input operand m are necessary to address the

initial look-up table for selection of the digit e1. The look-up table I for selection of e1 is

shown in Table 5.1. Since the value of m is in the range of 0.1≤m<1, if the input operand is

in the range of 0.1≤m<0.5, it is necessary to be scaled to the range of 0.525≤m′<1.05 by

multiplying with 2, 4, 5 or 10 for the proper recurrence; otherwise, it keeps the same value.

83

Table 5.1: Digit e1 selection of DFP logarithm.

The range of m′
e1 (BCD)

[0.95, 1.05) 0(0000)

[0.86, 0.95) 1(0001)

[0.79, 0.86) 2(0010)

[0.73, 0.79) 3(0011)

[0.68, 0.73) 4(0100)

[0.63, 0.68) 5(0101)

[0.60, 0.63) 6(0110)

[0.56, 0.60) 7(0111)

[0.53, 0.56) 8(1000)

[0.50, 0.53) 9(1001)

The input operand, in the range of 0.1≤m<0.105, is scaled by multiplying with 10 instead of

5 because scaling by 5 would not produce log10(m
′) with any leading nines that only happens

after subtracting log10(5) to obtain the final result. To avoid the recurrence of these leading

nines of the final result in the proposed algorithm, the operand (0.1≤m< 0.105) needs to

be scaled to the range of 1≤m′ < 1.05. The scaled numbers m′ which are in the range of

0.5≤m′<1.05 are computed by the proposed algorithm. Then, the final logarithm result of

log10(m) is achieved by subtracting log10(m
′) with the scaled constant (0, 1, log10(2), log10(4)

or log10(5)).

5.3.3 Index of Initial Iteration

When the value of e+k is equal to zero or one, the q-digit decimal logarithm operation,

log10(m
′), is required to compute the decimal logarithm result with at most 2q-digit accuracy,

so that the q-digit decimal significand without leading zeros for a DFP logarithm operation

can be achieved. To avoid the computation of leading zeros, the proposed algorithm starts

the first iteration with the index j=jinit so that the value of the digit ejinit
, obtained in the

first iteration, is not zero. The index of the initial iteration, j = jinit, is determined based

on the value of the q-digit scaled operand m′ as shown in Table 5.2. If the initial iteration

84

Table 5.2: Selection of Index jinit.

The range of q-digit m′ jinit

[0.5000...000, 0.9500...000] 1

[0.9500...001, 0.9950...000] 2

... ...

[0.9999...951, 0.9999...995] q−1
[0.9999...996, 1.0000...004] q

[1.0000...005, 1.0000...049] q−1
... ...

[1.0005...000, 1.0049...999] 3

[1.0050...000, 1.0499...999] 2

is not started from the first iteration, jinit 6= 1, the digit ejinit
is obtained by rounding the

estimated value of W [jinit]=10jinit×(1−m′); if the initial iteration is started from the first

iteration, jinit=1, the digit ejinit
is obtained from look-up table I. The corresponding L[jinit],

log10(1+ejinit
10−jinit) without jinit−1-digit leading zeros, as the first item of L[j], is selected

from the look-up table II to achieve the q-digit decimal signifincand of DFP logarithm results.

Since the value of the digit ejinit
may equal to ±1 or ±2, the corresponding L[jinit], may

still include at most 1-digit leading zero after shifting out jinit−1-digit leading zeros. Thus,

to avoid this 1-digit leading zero, the proposed algorithm needs to operate at least q+1

iterations to obtain a q-digit decimal significand for a DFP logarithm operation.

5.3.4 Approximation of Logarithm

The logarithm result can be achieved by accumulating the values of − log10(1+ej10
−j) in each

iteration, and these values are stored in the look-up table II. With the increasing number of

iteration, however, the size of the table will become prohibitively larger and larger. Therefore,

there is a need for a method that can reduce the table size and achieve a significant reduction

in the overall hardware requirement. A Taylor series expansion of the logarithm function

log10(1+x) is demonstrated in (5.27):

log10(1 + x) = (x− x2

2
+)/ ln(10) (5.27)

85

After j=h iterations, the values of log10(1+ej10
−j) can be approximated by ej10

−j/ ln(10).

Since an at most 2q-digit accuracy needs to be guaranteed for achieving the q-digit decimal

significand of DFP logarithm results, the series approximation can be used in the iterations

when the following constraint is satisfied,

e2j10
−2j

2 ln(10)
< 10−(2q+2) (5.28)

Considering the case (ej=9 or −9), the numerical analysis of (5.28) shows that:

h=⌊q+1.6⌋=q+1 (5.29)

Therefore, after h = q+1 iterations, while the values of − log10(1+ ej10
−j) do not need

to be stored in the look-up table II, the values of −ej10−j/ ln(10), instead, will be used for

approximation. Note that the values of h are equal to 8, 17 and 35 for Decimal32, Decimal64

and Decimal128 formats respectively in the proposed logarithm digit-recurrence algorithm.

5.3.5 Error Analysis and Evaluation

The errors in the proposed algorithm can be produced in four ways. The first type of error

is the inherent error εi resulted from the difference between the logarithm results obtained

from finite iterations and the exact results obtained from infinite iterations. The second one

is the approximation error εa produced by approximating the values of −log10(1+ej10
−j)

with the values of −ej10−j/ ln(10). The third one is the quantization error εq generated from

the finite precision of the intermediate values in the hardware implementation. The fourth

one is the final rounding error εr, whose maximum value is 0.5 ulp (|εr| ≤ 0.5×10−2q). In

order to achieve a q-digit decimal significand of the faithful DFP logarithm result, we analyze

the maximum absolute error in terms of the worst case that requires 2q-digit accuracy to be

guaranteed by the DXP logarithm operation from the qth to the 2qth iteration. Thus, the

following condition must be satisfied:

|εt|= |εi|+|εa|+|εq|≤0.5 × 10−2q (5.30)

86

Inherent Error

Since the DXP logarithm result of the worst case is achieved after the 2qth iteration, εi can

be defined as:

εi =−
∞∑

j=2q+1

log10(1+ej10
−j) (5.31)

In order to use the static error analysis method, we choose the cases (ej=9 or −9) to analyze

the maximum εi:

εi=−
∞∑

j=2q+1

log10(1±9×10−j) (5.32)

Using Taylor series expansion of (5.27), we obtain:

εi < ±9× (10−2q−1 + 10−2q−2 + ...)/ ln(10) (5.33)

Then, the absolute maximum εi is in the range:

|εi| ≤ 4.34× 10−2q−1 (5.34)

Approximation Error

We use an approximated value, ej10
−j/ ln 10, to estimate log10(1+ej10

−j) from q+2nd to

2qth iteration. According to the series expansion of logarithm function in (5.27), it produces

an approximation error, εa:

εa=

2q∑

j=q+2

(−(ej10
−j)2

2
+
(ej10

−j)3

3
−...)/ ln(10) (5.35)

Since
2q∑

j=q+2

(
(ej10

−j)3

3
−...)/ ln(10)≪10−2q−3 (5.36)

we keep −(ej10−j)2/2 ln(10) to analyze εa:

εa ≤
2q∑

j=q+2

(−(ej10
−j)2

2
)/ ln(10) (5.37)

Considering the case (ej=9 or −9) in (5.37), we obtain the maximum εa:

|εa| ≤ 1.74× 10−2q−3 (5.38)

87

Quantization Error

Since only those intermediate values that have finite precision are operated in the hardware

implementation, three quantization errors occur. In this work, we define FDs-digit as the

minimal data-width of fractional digits for each of the intermediate values. First, since

logarithm results are achieved by accumulating FDs-digit rounded values of − log10(1+ej10
−j)

from the qth to the (q+1)th iteration, the maximum rounding error of − log10(1+ej10
−j) is

±0.5×10−FDs in each iteration, and the maximum εq1 is:

|εq1|≤
q+1∑

j=q

0.5×10−FDs= 1×10−FDs (5.39)

Second, the logarithm results are achieved by accumulating FDs-digit truncated values of

−ej10−j/ ln(10) from q+2nd to 2qth iteration. FDs-digit rounded values ej/ln(10) are stored in

a look-up table, so the maximum quantization error of the value ej/ln(10) is ±0.5×10−FDs.

When ej=9 or −9, the maximum ε1q2 is:

∣∣ε1q2
∣∣≤

2q∑

j=q+2

±9×10−j×0.5×10−FDs≪10−FDs (5.40)

Another quantization error, ε2q2, is produced by the finite FDs-digit precision when trun-

cating the value of −ej10−j/ ln(10). In each iteration, the maximum truncating error of

−ej10−j/ ln(10) is ±1×10−FDs, so the maximum ε2q2 is:

∣∣ε2q2
∣∣≤

2q∑

j=q+2

1×10−FDs=(q−1)×10−FDs (5.41)

Third, the logarithm result log10(m
′) is adjusted by a finite FDs-digit rounded scaled constant

(0, log10(2), log10(3) or log10(5)) in the last iteration, so the quantization error, εq3, occurs.

The maximum εq3 is:

|εq3|≤0.5×10−FDs (5.42)

Therefore, the maximum quantization error, εq, is:

|εq|≤|εq1|+
∣∣ε1q2

∣∣+
∣∣ε2q2

∣∣+|εq3|≈(q+0.5)×10−FDs (5.43)

88

Table 5.3: Error Analysis for DFP Interchange Formats

Format Names Decimal32 Decimal64 Decimal128

Significand (q-digit) 7 16 34

Num. of Iteration (q+1) 8 17 35

Accuracy (2q-digit) 14 32 68

FD-digit (2q+3-digit) 17 35 71

Max. Error (|εt|×10−2q) 0.444 0.453 0.471

Error Evaluation

Since the DXP logarithm result is required to guarantee at least 2q-digit accuracy, having

εi, εa, εq obtained in (5.34), (5.38) and (5.43) respectively, we achieve the maximum total

error εt as:

|εt|= |εi|+|εa|+|εq|≤0.436×10−2q+(q+0.5)×10−FD (5.44)

We substitute the digit-width of the decimal significand of the three DFP formats, q=7,

16 and 34, into (5.44) respectively. The results indicate that the maximum absolute errors |εt|
obtained in the three DFP formats are smaller than 0.5 ulp, which can satisfy the condition

(5.30). Thus, the final rounded results are smaller than accuracy requirement within 1 ulp

after considering the final rounding error. Table 5.3 shows the error analysis of the worst

case for three different DFP interchange formats. The error analysis in Table 5.3 proves

that only when the minimal data-width of the fractional digits for each intermediate value

(FD-digit) is larger than or equal to 2q+3-digit, the proposed algorithm can guarantee at

most 2q-digit accuracy for the DXP logarithm operation, and therefore a q-digit decimal

significand of the faithful DFP logarithm result can be achieved.

5.3.6 Guard Digit of Scaled Residual

Since only the finite precision scaled residual W [j] is operated in the hardware implemen-

tation, we need to analyze how many guard digits, g, are enough to prevent the truncation

error of the residual, εw, from affecting the correct selection of digits ej , where the digit-

width of the fractional part of W [j] is assumed as the q+g-digit. Since the digit-width of

89

the fractional part of W [1] is q-digit, the digit-width of the fractional part of W [j]ej10
−j is

q+j-digit in each iteration. According to (16), the truncation error, 10−q−g+1, is produced

when the q+g-digit fractional part of W [j] is not enough to represent q+j-digit ejW [j]10−j.

Thus, we conclude that from j=g+1 to j=g+q+1 iterations, the truncated error of W [j],

10−q−g+1, is produced in each iteration. Thus, before the last iteration, j = g+q+1, the

truncation error of W [j], εw, is obtained as:

εw=10−q−g+q+10−q−g+q−1...+10−q−g+1 (5.45)

Since the digit ej is selected by rounding the scaled residual Ŵ [j] to its integer part in each

iteration, εw needs to satisfy the condition of εw < 0.1 in order to prevent the truncation

error of W [j], εw, from affecting the value of Ŵ [j]. To satisfy such a condition, the guard

digit, g, should be at least 2-digit for three different DFP interchange formats in order to

guarantee the correct selection of digit ej .

5.4 Architecture of DFP Logarithmic Converter

Figure 5.1 shows the architecture of the proposed DFP logarithmic converter in the top

level. Since such issues as the exception handling, the packing and the unpacking from IEEE

754-2008 DFP format are straightforward, we focus particularly on the architecture for the

computation of the sign bit (Rsign), the real exponent (Rexp) and the decimal significand

(Rsignificand) of DFP logarithm results. To represent the signed decimal intermediate value,

all variables in the architecture are represented with 10’s complement number system in

the BCD encoding. The reason for choosing 10’s complement format is that the decimal

subtraction operation can be replaced by a decimal addition in 10’s complement format,

and all decimal digits, including the sign digit, can be operated in the decimal addition or

subtraction.

In the data-path of the proposed architecture, the residualW [j] is represented by the q+g+

2-digit intermediate value (including 1-digit sign, 1-digit integer, q-digit fraction, and g-digit

guard digit); the decimal significand L[j] is represented by the q+4-digit intermediate value

(including only q+4-digit fraction); and the digit ej is represented by a 5-bit intermediate

90

st1 clock cycle (Stage 1)

significand 4q

Range Scale

'm 4q

Detector
Table ICounter1

ssss c

Rounding
e
initj

1e

1e

[]s initW j []c initW j

2p q g! " "

ssss cccc

4p

Mux 2 Mux 3

4p p
4p p

#10(')
initj se m

4p p

exponent 2w "

m 4q
k

" 2w

e k"

Rounding
ej

[]sW j []cW j []sW j []cW j
 []sW j

 []cW j

#10([]10)jj seW j

je

ssss ccccssssc

12 34p p 4p p

Counter2Mult2

Mult1

4p

ssss ccccssss c p

4p 4p

4p

e k"

Table II Table IIIM
u
x
 4

Mux 5

10log (1 10)jje
#

/ ln(10)je#

(4) 4q "

5

Mux 6

4q "

(4) 4q "

(4) 4q "

10

10

10

log (2)

log (4)

log (5)

#

#

#

(4) 4q "

(4) 4q " (4) 4q " (4) 4q "

initj

2w "

0

ssss c

significandR signR expR

je je

5

 initj -1
Shifter 10 initj -1- j

Shifter 10

Exponent Adjustment

 Shifter 10 Shifter 10

(2 3) 4q ! (2 3) 4q !

Decimal 3:2 CSA Counter

Decimal 4:2 CSA Compressor

1" "

()Shifter 10 j

p4p

 Shifter 10

4p 4p

nd th2 to (q+1) clock cycle (Stage 2)

nd th2 to (q+2) clock cycle (Stage 3)

th(q+3) clock cycle (Stage 4)

init
j

5

je

5

10 []s initW j 10 []c initW j

initj
e

"10(')
initj ce m

initj

"10([]10)jj ceW j "10([])j sW j e "10([])j cW j e

[]sL j []cL j

Range Reductione

5

Pre-Normalization

Compound

 Adder

2w !

Round

 Logicinc

L
 !

4q

modeR

q+3 clock cycleth(2) 4q ! 2q !

(2) 4q ! 2q !

2 2 4

4q

Exponent & Sign
Generator

Conditional Converter
4q

fraclog

()intsign log

initj

BintoBCD

intlog

q 4q

LD

Post-Normalization

1 2w !

Mux 1
55

1

4n

sL
 !

cL
 !

()intDW log

F
ig
u
re

5
.1
:
Im

p
roved

arch
itectu

re
of

D
F
P
logarith

m
ic

con
verter.

valu
e
(in

clu
d
in
g
1-b

it
sign

an
d
1-d

igit
ab

solu
te

valu
e
of

e
j).

T
o
sp
eed

-u
p
th
e
ex
ecu

tion
of

recu
rren

ces,
all

in
term

ed
iate

valu
es

in
th
e
d
ata-p

ath
are

rep
resen

ted
u
sin

g
th
e
red

u
n
d
an

t

d
ecim

al
carry

-save
rep

resen
tation

.
F
or

ex
am

p
le,

th
e
resid

u
al

W
[j]

w
ith

th
e
d
ecim

al
carry

-

save
rep

resen
tation

is
sh
ow

n
in

F
igu

re
5.2,

w
h
ere

ssss
rep

resen
ts

a
1-d

igit
W

s [j],
c
rep

resen
ts

91

(power of 10)s
W

(power of 10)c
W

[]
s
W j

[]
c
W j

sign

ssss

c

(0)s
W (1)s

W

...

...

...

(0)c
W

(1)c
W

.ssss ssss

c.c

 []W j 1t !

(2)s q g
W

ssss

c

(2)c q g
W

Figure 5.2: Decimal carry-save representation of W [j].

a 1-bit Wc[j], and Ŵ [j] represents an estimated value of the residual W [j] (including 3-

digit most significand digits (MSDs) of W [j]). As a consequence of this representation, the

delay of the addition and the multiply operation in the recurrence are independent of the

computational precision.

5.4.1 Datapath

The data-path of the proposed architecture is pipelined and re-timed into four stages in

order to minimize and balance the critical path delay. The initial processing stage (stage

1) aims to obtain the initial digit ejinit
, and then the digit recurrence stage (stage 2) is for

achieving the remaining digits ej . The logarithm computation stage (stage 3) is to achieve

the q+4-digit decimal significand of the DFP logarithm result. Finally, 1-bit Rsign, w+2-bit

Rexp and q-digit Rsignificand of the DFP logarithm result are achieved in the final processing

stage (stage 4). The cycle-based sequence of operations is summarized as follows:

- Stage 1, In 1st clock cycle (In iteration (j=jinit)):

• The w+2-bit real exponent, and the q-digit non-normalized decimal significand, as

input operands, are obtained from input registers. Since DFP input operands should

be positive, the sign bit (S=0) is ignored.

• The q-digit decimal significand is normalized to a q-digit m in the range of [0.1, 1) by

a range reduction logic. Meanwhile, the value of e+k, as one of inputs of stage 4, is

achieved in an exponent adjustment logic and then stored in a register.

• The normalized m is scaled to m′ in the range of 0.5≤m′<1.05 (selected from m, 2m,

4m, 5m and 10m) in a range scale logic.

• The index of the initial iteration, jinit, is obtained based on values of m′ (refer to Table

92

2) and e+k in a jinit detector.

• The initial residual W [j] in the carry-save representation is achieved based on the value

of jinit in a residual counter (counter1). If jinit =1, the digit ejinit
is obtained from a

look-up table I (refer to Table 5.1) based on the value of m′; otherwise, it is obtained

by rounding 3-digit Ŵ [j] in a rounding ejinit
logic.

(Ws[j],Wc[j]) = 10jinit(1−m′)

ej = mux(e1, round(Ŵ [j]), jinit)

• The −ejm′ out from a multiply logic (Mult1) is shifted 1-digit to the left to achieve

−10ejm′, and W [j] out from the residual counter is shifted 1-digit to the left to achieve

10W [j]. The 10W [j] and −10ejm′ are sent to the stage 2 by registers.

(10Ws[j], 10Wc[j]) = 10jinit+1(1−m′)

(−10ejm′
s,−10ejm′

c) = −10ej×m′

- Stage 2, From 2nd to (q+1)th clock cycle (In iterations j=jinit+1 to j=jinit+q):

• In the 2nd clock cycle, the residual W [j] is obtained by adding 10W [j−1] (selected from

Mux2) and −10ej−1m′ (selected from Mux3) together in a decimal 4:2 CSA compressor.

Thus, the digit ej is obtained by rounding 3-digit Ŵ [j] in a rounding ej logic.

(Ws[j],Wc[j]) = 10W [j − 1]−10ej−1×m′

ej = round(Ŵ [j])

• The intermediate value of ejW [j] out from a multiply logic (Mult2) is shifted jinit-digit

to the right to obtain 10ejW [j]10−j in a barrel shifter, while the intermediate value of

W [j]−ej out from a residual counter (counter2) is shifted 1-digit to the left to achieve

10(W [j]−ej).

(10ejW [j]10−j
s , 10ejW [j]10−j

c)=10ej×W [j]10−j

(10(W [j]−ej)s, 10(W [j]−ej)c)=10(W [j]−ej)

93

• The intermediate values of 10(W [j]−ej) and 10ejW [j]10−j are sent back to the stage

2 by registers for the recurrence in the next iteration.

(Ws[j+1],Wc[j+1])=10(W [j]−ej+ej×W [j]10−j)

ej+1 = round(Ŵ [j + 1])

After the q+1st clock cycle, all the digits ej are achieved with the selection by rounding.

- Stage 3, From 2nd to (q+2)th clock cycle (In iterations j=jinit to j=jinit+q):

• In the 2nd clock cycle, ejinit
out from the stage 1, is sent to the stage 3, so that the

corresponding value of 2q+3-digit − log10(1+ej10
−j), stored in a look-up table II, is

obtained.

• To decrease the data width of the decimal addition in the stage 3, the value of

− log10(1+ ej10
−j) is shifted jinit−1-digit to the left, so that jinit−1-digit leading

zeros or leading nines of this value is eliminated.

• The q+4-digit MSDs of −10(jinit−1) log10(1+ ej10
−j) and adjusted constant (0, −1,

− log10(2), − log10(4) or− log10(5)) are selected by Mux5 and Mux6 respectively. Thus,

the q+4-digit decimal significand of the DFP logarithm result is obtained in a q+4-digit

decimal 3:2 CSA counter.

(Ls[j+1], Lc[j+1])=L[j]−10(jinit−1) log10(1+ej10
−j)

• From the 3rd to (q+2)th clock cycle, the digits ej out from the stage 2 are selected by

Mux4, and the value of L[j] is selected by Mux6 for the computation of L[j+1] in the

next iteration.

• From the number of j = (q+2)th to j = (q+jinit)
th iteration, the value of 2q+3-digit

−ej/ ln(10) is obtained from a look-up table III, and then shifted j-digit to the right to

achieve the value of −10−jej/ ln(10) for approximating the value of − log10(1+ej10
−j).

• The q+4-digit MSDs of −10(jinit−j−1)ej/ ln(10) (after eliminating jinit−1-digit leading
zeros) and L[j] is added together to achieve L[j+1] in the decimal 3:2 CSA counter.

(Ls[j+1], Lc[j+1])=L[j]−10(jinit−1)ej10
−j/ ln(10)

After the (q+2)th clock cycle, the q+4-digit decimal significand of DFP logarithm

results with at most one leading zero or one leading nine is obtained.

94

-Stage 4, In (q+3)th clock cycle:

• In the (q+3)th clock cycle, since the Rsignificand consists of the integral part logint

(formed from the value of e+k) and the fractional part logfrac (formed from the value

of log10(m)), the q+2-digit MSDs of the decimal significand (Ls[j], Lc[j]) are pre-

normalized based on the value of e+k out from the stage 1 in order to determine the

rounding position of Rsignificand. Figure 5.3 shows the data-path of the computation of

the
−→
L . The values of Ls[j] and Lc[j] (obtained from the stage 3) should be shifted to

the right properly based on the digit width of the integral part, and then the rounding

position is on the second last significand digit (LSD) or LSD (rd or r′d) of the shifted

fractional part (
−→
Ls,
−→
Lc). The shift amount is obtained based on:

shift amount=

digit width(e+k−1) if e+k>0

digit width(e+k) if e+k≤0

Then,

−→
Ls=r shift(Ls, shift amount)

−→
Lc=r shift(Lc, shift amount)

• The values of
−→
Ls and

−→
Lc are added together to obtain the value of L in a q-digit decimal

compound adder. At the same time, the L is rounded to the faithful result based on

the value inc of the rounding position in a rounding logic. Since we only consider the

roundTiesToEven mode in this design, the rounding logic generates an increment inc

based on:

inc=

1 if rd>5 or (rd=5 and LSB(L)=1)

0 if rd<5 or (rd=5 and LSB(L)=0)

The other rounding modes can be implemented in a similar manner. To remove the

possible one leading zero or nine in the L, a duplication of the decimal compound

adder and the rounding logic are placed to obtain the value of L′, and then the correct

result,
−→
L , is selected by the multiplexer based on the value of LD:

−→
L =

−→
Ls(16:1)+

−→
Lc(16:1)+inc0 if LD=0

−→
Ls(17:2)+

−→
Lc(17:2)+inc1 if LD=1

95

qinc

 digit q L

mux

dr

LD

L L!

L
 !

(1)s q
L

 !

(1)sL
 !

(0)sL
 !

(1)c q
L

 !

(1)cL
 !

(0)cL
 !

...

...

...

0inc1inc

()s q
L
 !

()c q
L
 !

(2)sL
 !

(2)cL
 !

2 digitq and s cL L
 ! !

right shift

2 digitq

(2)s qL (2)sL (1)sL

(2)c qL (2)cL (1)cL

...

...
(1)s qL

(1)c qL

(3)sL

(3)cL

(2)s qL (2)sL (1)sL

(2)c qL (2)cL (1)cL

...

...
(1)s qL

(1)c qL

(3)sL

(3)cL

 shift

amount

 digit 'q L

'dr

1qinc "

Figure 5.3: Data-path of the computation of L and L′.

Where, the value of LD is achieved based on:

LD=

1 if (e+k=1 and
−−−−−→
L(MSD)=9) or

(e+k=0 and
−−−−−→
L(MSD)=0)

0 otherwise

• If the integral part of the decimal significand, e+k≥1, the fractional part of the decimal

significand, logfrac, is obtained by the 10’s complement conversion of
−→
L , otherwise it

is directly obtained from the value of
−→
L in a conditional converter.

logfrac=

10’s com(
−→
L) if e+k≥1

−→
L if e+k<1

• The binary value of w+2-bit e+k is converted to the n-digit BCD encoding as the

integral part of the DFP logarithm result (logint) in a binary to BCD converter. Note

that n is equal to 3, 3 and 4 for Decimal32, Decimal64 and Decimal128 DFP formats

respectively. Then, the values of logint and logfrac are postnormalized to obtain the

final decimal significand of the DFP logarithm result (Rsignificand).

96

• The 1-bit sign Rsign is obtained:

Rsign=

0, if e+k>0

1, if e+k≤0

Then, the w+2-bit exponent Rexp is obtained based on:

Rexp=

−(q+LD+jinit−1) if e+k=0 or 1

−(q−DW (logint)) otherwise

Table 5.4 shows some iterations of a 64-bit DFP logarithm operation executed in the

proposed architecture.

5.4.2 Hardware Implementation

The details of the hardware implementation for the each stage of the proposed DFP loga-

rithmic converter are presented in this section. In the rest of this section, the symbols of ⊕,
∧, ∨ and & represent the logical-XOR, logical-AND, logical-OR and logical-concatenation

respectively. The symbol of (A)yx refers to the y-th bit in digit position, x, in a decimal

number, A, where the least significant bit and the least significant digit have the index of

0. For example, (W [j])32 is the third bit of the second BCD digit in W [j]. The symbol of A

refers to the logic-NOT of a number of A.

Initial Processing Stage

Figure 5.4 shows the details of the hardware implementation of the initial processing stage

(stage 1).

-In the stage 1: The range reduction logic consists of a leading-zero-counter (LZC) and

a decimal barrel shifter. The LZC is applied to count the number of leading zeros (z-digit)

of a non-normalized input decimal significand. These leading zeros are shifted z-digit to the

left by the decimal barrel shifter to achieve a normalized m. While the LZC is implemented

based on [124], the decimal barrel shifter that can shift a decimal significand by any amount

from 0 to q−1 digits is implemented by a log2(q) levels of multiplexors. The exponent

adjustment logic is implemented by a binary CLA adder to achieve the value of e+k, where

k=q−z which is obtained from the LZC.

97

Table 5.4: Example of a Decimal64 logarithm operation.

0 16(1) 9986451368175534 10 ,v
! " " ! # # ! #10 10log () 16 16 log (0.9986451368175534),R k e m

0.9986451368175534, ' 0.9986451368175534, 3initm m j$! ! !

 []W j

!
3[3] 10 (1 ')sW m

[3]cW

013

000

13# $! #3 1e

01.354863182446500000

00.000000000000100000

[]W j []L j

10 [3]sW

10 [3]cW

310(')se m

310(')ce m

[4]sW

[4]cW

035
000

35#

Adjusted Constant

[3] .04340774793186406689sL !

[3] .00000000000000000000cL !

4
410([4] 10)sW e

4
410([4] 10)cW e

 410([4])sW e

 410([4])cW e

[5]sW

[5]cW

00.014148711825151853

00.110010010011111100

95.511794552893548900

00.000100010000010010

95.635042283729711863
00.001011001000110000

956
000

 44

[4] .01001101100110010110cL !

[4] .05076504277725584805sL !

[18]sW

[18]cW

00.762902058900277420

00.000000000000000000

007

000

#07

[17] .05888085715297893522sL !

[17] .00000000000000000000cL !

99.986451368175534000

00.000000000000000001

13.548631824465000000

00.000000000001000000

03.551179455289354890
00.011001001001111110

In 1 clock cycle (3 iteration)st rd

18
1810([18] 10)sW e

18
1810([18] 10)cW e

 1810([18])sW e

 1810([18])cW e

[19]sW

[19]cW

00.000000000000000007

00.000000000000000000

97.629020590002774200

00.000000000000000000

97.629020590002774207
00.000000000000000000

976

000

 24

[18] .05888085715297897864sL !

[18] .00000000000000000000cL !

...

(Recurrence starts from 3 Iteration)rd

In 2 clock cycle (4 iteration)nd th

 [3]W

 [4]W

 [5]W
5

510([5] 10)sW e

5
510([5] 10)cW e

 510([5])sW e

 510([5])cW e

00.014148711825151853

00.110010010011111100

95.511794552893548900

00.001011001000110000 In 3 clock cycle (5 iteration)rd th

.00000000000000000000!

#

#

#

In 16 clock cycle (18 iteration)th th
#

 [18]W

 [19]W

In 17 clock cycle (19 iteration)th th

[19] .94777974604186786995sL !

[19] .11110111111111110000cL !

In 18 clock cycleth

In 19 clock cycleth 0 e k# ! $

2 3
10 3 10 log (1 10) .04340774793186406689e

$ " # !

$! #4 4e 2 4
10 4 10 log (1 10) .01736830584649188226e

$ " # !

! 0e k

$! 5 4e 2 5
10 5 10 log (1 10) .99826278732790191773e

$ " # !

2 18
18 10 e 10 / ln(10) .00000000000000004342

$ " !$! #18 1e

$! 19 2e
2 19

19 10 e 10 / ln(10) .99999999999999999131
$ " !

r 'd

 5888085715297897significandR !

.947779746041867869sL !

!!"

.111101111111111100cL !

!!"

.5888085715297897L !
!"

inc
5888085715297897fraclog .!0intlog !

%

%

1signR !
exp 19 ("1111101101")R !

1#

0shift _amount ! $

%%
compound
addition

The range scale logic consists of a multiple generation block (generating m, 2m, 4m, 5m

and 10m), a selection control block and a 5-to-1 decimal multiplexer. Both 2m and 5m

can be generated with only a few logic delays, since there is no carry propagation beyond

the next more significant digit. Further, due to the simplicity of generating 2m, 4m can be

generated via connecting two doublers in series. The boolean equations for generating double

and quintuple of the BCD number are presented in [125]. The control signal (sel) of the

98

exponent significand

e k 2w

sel

!

100
!

105
!

200
!

250
Encoder

2" 4" 5"

Mux

2m 4m 5m 1m

Bianry CLA

LZC & Barrel Shifter
4q "

9's

Barrel

Detector

"2

9's 9's

5" 10"

Mux Mux
'm 'm# 2 'm 2 'm# 5 'm 10 'm

'm

1e

1cin

2sel

R
ec

o
d
er

1sel
2sel

1cin

m

(1) 4q "

HA HA HA FA

Table I

Shifter

ssssc

4p"p

"Shifter 10 "Shifter 10

4p"p

10(')
initj se m# 10(')

initj ce m#
initje

Range scale

Counter1 Mult1init
j

k

4p"4p"

2w 4q "

5

M
u
x
1

E
n
co

d
er

Range
Reduction

 2w

Exponent
Adjustment

e

10 []c initW j 10 []s initW j

s c

9's

5 'm#

9's

10 'm#

initj

2cin

ssss cccc

(2) 4q " (2) 4q "

10"

10m

!

500

M
u
x

Sel Gen

one

sel

Mux

00 00 99 00

&&

HAHA

Mux

0 1 6 5

HA
5

fWIW

carry
Sel Generator

Rounding
e
initj

BHA BHA

initje&

To Part 4

initj

To Part 3 & 4

Comp.
Comp.
Comp.

...

Comp.
Comp.
Comp.

'm'fm

Barrel Shifter

'Im

'fm

'Im

'Im

initje

initj
sel

Encoder &

F
ig
u
re

5
.4
:
H
ard

w
are

im
p
lem

en
tation

of
S
tage

1
in

D
F
P
logarith

m
ic

con
verter.

d
ecim

al
5-to-1

m
u
ltip

lex
er

is
gen

erated
b
y
th
e
selection

con
trol

b
lo
ck

w
h
ich

is
im

p
lem

en
ted

b
y
fi
ve

p
arallel

d
ecim

al
com

p
arators

an
d
an

en
co
d
er.

If
m

′
is

in
th
e
ran

ge
of

1≤
m

′<
1.05,

th
e
M
S
D

of
m

′
(m

′I),
is

on
e,

oth
erw

ise,
it

is
zero.

W
h
ile

th
e
sign

al
j
in

it
is

gen
erated

from

th
e
j
in

it
d
etector

th
at

is
m
ain

ly
im

p
lem

en
ted

b
y
a
series

of
p
arallel

d
ecim

al
com

p
arators

an
d

99

an encoder. The control signal (sel) is generated based on the value of e+k in a selection

generator. Thus, if e+k=0 or 1, the signal jinit is obtained from the encoder, otherwise, it

is obtained from a constant of one.

The residual counter (counter1) consists of a 9′s complement converter and a decimal

barrel shifter. Since the value of 1−m′ can be achieved based on:

1−m′ =
∣∣9’s com(m′

f) + 1 LSD
∣∣

where, m′
f represents the q-digit fraction part ofm′. Thus, the signal of (1−m′)s is represented

by the q-digit signal of 9’s complement(m′
f), and the q-bit signal of (1−m′)c is represented by

the constant of “00...01”. If the signal m′
I=1, the q-digit (1−m′)s is extended to the q+g+2-

digit signal ws=99 & (1−m′)s & 00 by concatenating 1-digit sign (’9’), 1-digit integer part

(’9’) and g-digit (“00”) guard digit, otherwise it is extended to ws=00 & (1−m′)s & 00. The

corresponding q-bit signal of (1−m′)c is extended to q+g+2-bit signal wc=00 & (1−m′)c & 00.

Then, the q+g+2-digit (1−m′) is shifted jinit-digit to the left to obtain Ws[jinit] and Wc[jinit]

in the decimal barrel shifter.

The rounding ejinit
logic for selecting digits ejinit

is processed by rounding the residual

Ŵ [jinit]. In order to decrease the delay of the stage 1, the rounding ejinit
logic directly rounds

the residual Ŵ [jinit] instead of (Ws[jinit], Wc[jinit]) obtained from the counter1. The signal

m′
f is shifted jinit-digit (obtained from an encoder instead of from the jinit detector) to the

left to achieve the signal W [jinit] in a barrel shifter, and then the 2-digit MSDs of the signal

W [jinit] (WI , Wf) is used to round the digits ejinit
. The 1-digit fraction Wf and the value of

5 are added together in a 1-digit decimal half adder to generate the signal carry to determine

the rounding operation. The signals carry and m′
I are sent to selection generator to achieve

a control signal sel of a 4-to-1 multiplexer. The value of |ejinit
| is achieved in four parallel

half adders (two 1-digit decimal adders, and two 4-bit binary adders) by adding the value of

0, 1, 6 and 5 with the signals of WI respectively:

|ejinit
|=

WI+0 if m′
I =1 ∧ carry=0

WI+1 if m′
I =1 ∧ carry=1

WI+6 if m′
I =0 ∧ carry=1

WI+5 if m′
I =0 ∧ carry=0

100

Thus, the digit ejinit
is obtained by concatenating 1-bit m′

I with 1-digit |ejinit
|.

The multiply logic (Mult1) is applied to compute the value of −ejinit
m′, where ejinit

is a

value in the range of −9≤ejinit
≤9, so the Mult1 is to obtain the results from −9m′ to 9m′.

The Mult1 is implemented based on the partial product generation logic presented in [23].

The multiples are formed by adding two of a initial multiple set {m′, −m′, 2m′, −2m′,

5m′, −5m′, 10m′, −10m′} (selecting by signals sel1 and sel2 generated by a recorder). To

decrease the delay of the addition, a decimal CSA adder is implemented to develop multiples

−(ejinit
m′)s and −(ejinit

m′)c. The boolean equation for computing 1-digit decimal addition

of the BCD number is presented in [20]. The signals cin1 and cin2 are generated by a

recorder to supplement the LSD due to the 10’s complement conversion. The signal cin1 is

added in the LSD of the CSA adder, while the signal cin2 is set in the LSD of the signal

−(ejinit
m′)c.

Digit Recurrence Stage

Figure 5.5 shows the details of the hardware implementation of the digit recurrence stage

(stage 2).

- In the stage 2: The 4:2 decimal CSA compressor, applied to achieve the residual (Ws[j],

Wc[j]), is implemented by two levels of q+g+2-digit 3:2 CSA counters. Then, 1-digit sign (Ss,

Sc), 1-digit integer part(Is, Ic) and 1-digit fraction part (fsMSD
, fcMSB

) of the residual are

sent to the rounding ej logic for selecting digits ej by rounding the residual (Ŵs[j], Ŵc[j]).

The sign of the digit ej is obtained by the sign detector block which is implemented based

on the equation:

sign=(S0
s⊕Sc)⊕(I3s∧I0s ∧Ic)

The 1-digit fraction (fsMSD
, fcMSB

) and the value of 5 are added together in the 1-digit

decimal full adder to generate the signal carry to determine the rounding operation. The

signals carry and sign are sent to selection generator to achieve a control signal sel of a

4-to-1 multiplexer. The value of |ej| is achieved in four parallel full adders by adding the

101

sS sI _s msdf
sf

cS cI _c msbf cf

2

9's 9's

Mux
'm 'm! 2 'm 2 'm!

5 10

5 'm 10 'm

2sel

Mux
5 'm!

9's9's

10 'm!

1sel

HA HA HA FA

FAFAFAFA

1cin

2cin

sssscsssssssscssss

 4p 4p

9's

Carry Extent

M
u
x

[]cW j[]sW j

BFABFAFAFA

Mux

0 1 6 5

Sign Detector FA

sS cS sI cI 5
MSDcfMSDsf

1sel

2sel

1cin

2cin

sI cI

cccc

R
e
co

d
e
r

je

sign

sign carry

Sel Generator

[]j ceW j[]j seW j

10([]10)jj seW j !

110! "
 Shifter j

je

Mux

cfsf

10([])j sW j e!

Rounding
j
e

Decimal : CSA4 2

Mult2 Counter2Rounding
ej

FA FA FA FA

FAFAFAFA

Mux Mux

10 '
initj
e m!

10 []10 j
jeW j

!

10()j jW e!

 4p p 4p p

ssss
cccc

ssss

c

' 0 '

9 0 0 0 0 0

& &

je

5

sel

je

4

10([]10)jj ceW j ! 10([])j cW j e!

&

&

10 []initW j

F
ig
u
re

5
.5
:
H
ard

w
are

im
p
lem

en
tation

of
S
tage

2
in

D
F
P
logarith

m
ic

con
verter.

valu
e
of

0,
1,

6
an

d
5
w
ith

th
e
sign

als
of

f
s
M

S
D
an

d
f
c
M

S
B
resp

ectively
:

|e
j |=

I
s +

I
c +

0
if
sig

n
=
0
∧

ca
rry

=
0

I
s +

I
c +

1
if
sig

n
=
0
∧

ca
rry

=
1

I
s +

I
c +

6
if
sig

n
=
1
∧

ca
rry

=
0

I
s +

I
c +

5
if
sig

n
=
1
∧

ca
rry

=
1

102

Thus, the digit ej is obtained by concatenating 1-bit sign with 1-digit |ej |.
The multiply logic (Mult2) is applied to compute the value of Ws[j]ej+Wc[j]ej , where ej

is a value in the range of −9≤ ej ≤ 9. The multiple of Ws[j]ej is achieved by applying the

same hardware implementation as the Mult1. Since each bit of Wc[j] is only zero or one, the

signal of Wc[j] |ej | can be achieved in a carry extend block which can be implemented by a

series of logical-AND gates. If the digit ej<0 (sign=1), the signal of Wc[j]ej is obtained by

the 9’s complement conversion of Wc[j] |ej |, and then the signal sign is supplemented in the

LSD of the signal (ejW [j])c, otherwise, the signal of Wc[j]ej is directly obtained from the

signal of Wc[j] |ej |.

(Wc[j]ej)
3:0
i =

Wc[j]i ∧ e3:0j if sign=0

9’s com(Wc[j]i ∧ e3:0j) if sign=1

Thus, the value of W [j]ej (ejW [j]s, ejW [j]c) are achieved by adding the Ws[j]ej and Wc[j]ej

in a decimal CSA adder. Finally, the signals of 10W [j]ej10
−j
s and 10W [j]ej10

−j
c are obtained

in a decimal barrel shifter.

The residual counter (counter2) is applied to compute the value of 10(W [j]−ej). Since

the digit ej is obtained by rounding the residue W [j] to its integer part (Is, Ic), the signal of

10(W [j]−ej)s and 10(W [j]−ej)c can be achieved based on the fraction part (fs, fc) of the

residue:

10(W [j]−ej)s=

0 & fs & 0 if carry=0

9 & fs & 0 if carry=1

10(W [j]−ej)c=0 & fc & 0

Thus, the counter2 is implemented by s set of simple concatenation block instead of a decimal

subtracter.

Logarithm Computation Stage

Figure 5.6 shows the details of the hardware implementation for the logarithm computation

stage (stage 3).

- In the stage 3: The look-up table II stores all the values of the 2q+3-digit− log10(1+ej10
−j)

103

initj
e je

Mux

initjj

Table II
Addr Gen

Table III
Addr Gen

1
TabIII

2 3 4

Mux

 initj -1
Shifter 10 init-j - j-1

Shifter 10

Mux Mux

Mux

Control
Signal Gen

FAFAFA

1con

sel

3con

2con

4con

10log (2, 4, 5, 10)

ssss cssss

[]
s
L j []

c
L j

ssss c

1con

(2 3) 4q ! "

(4) 4q ! " (4) 4q ! "

(4) 4q ! " 4q !

(4) 4q ! "

5

5 5

[]initL j

(2 3) 4q ! "

s
L

c
L

2con 3con 4con

4-digitq !

Shifted Window

1initj

A
 slice of T

a
b
II 2

9initj #
FA

TabIITabII TabII

00432137378264257427518817822293791
00043407747931864066892138777798887

00004342727686266963731352758509827

00000434292310445318685549347163440

00000043429426475615564074394264368

00000004342944601885291801367019736

00000000434294479731779432611352402

00000000043429448168610458684426783

00000000004342944818815371035574140

00000000000434294481901080355241627

00000000000043429448190303468041018

00000000000004342944819032301129270

00000000000000434294481903249656179

00000000000000043429448190325161050

00000000000000004342944819032518059

00000000000000000434294481903251825

F
ig
u
re

5
.6
:
H
ard

w
are

im
p
lem

en
tation

of
S
tage

3
in

D
F
P
logarith

m
ic

con
verter.

for
ach

iev
in
g
at

m
ost

2q-d
igit

accu
racy

d
ecim

al
logarith

m
resu

lts,
w
h
ere

th
e
n
u
m
b
er

of

iteration
j
is

in
th
e
ran

ge
of

1
≤
j≤

q
+
1.

S
in
ce

th
e
d
igit

e
j
is

in
th
e
ran

ge
of−

9≤
e
j ≤

9,

th
ere

are
a
total

of
18

d
iff
eren

t
valu

es
(ex

cep
t
for

th
e
valu

e
w
h
en

e
j =

0)
th
at

n
eed

to
b
e
stored

in
th
e
lo
ok

-u
p
tab

le
for

each
iteration

.
S
in
ce

th
e
ad

d
ress

of
th
e
lo
ok

-u
p
tab

le
in

h
ard

w
are

104

must be restricted to a power of two, the size of the look-up table II can be obtained as:

TabII size=2⌈log2[18×(q+1)]⌉×(2q+3)×4 bit

Thus, the size of the look-up table II is 28×68-bit, 29×140-bit and 210×284-bit for Decimal32,

Decimal64 and Decimal128 respectively. To reduce the size and delay of look-up table II, the

values of 2q+3-digit − log10(1+ej10
−j) can be efficiently reallocated in multiple tables. For

Decimal64 (the example shown in Figure 5.6), the single look-up table II is relocated into

there parts as follows: 1) the first part (TabII 1) stores all the values of − log10(1+ej10
−j),

when j=1 and 0≤e1≤9; 2) the second part (TabII 2) stores the values when 2≤j≤17 and

ej =±1; and 3) the third part (TabII 3) stores the values when 2≤ j ≤ 17, and 2≤ ej ≤ 9

and −9≤ ej ≤−2. The sizes of the TabII 1, TabII 2 and TabII 3 are 24×140, 25×140 and

28×140 respectively. Thus, the optimized size of look-up table II is reduced from 8.75 KByte

(single table) to only 5.20 KByte (multiple tables). The look-up table III stores the number

of 19 values of 2q+3-digit −ej/ ln(10). Thus, the total optimized size of look-up table is

about 5.52 Kbyte for Decimal64. The implementations of address generators to address the

look-up table II and the look-up table III based on the values of j and ej are straightforward.

A slice of TabII 2 is shown in Figure 5.6, in which the corresponding values of 2q+3-digit

− log10(1+ej10
−j) obtained from the look-up table II is shifted jinit − 1-digit to the left,

and then the q+4-digit MSDs of the shifted value is obtained in a shifted window. The

control signals (con1, con2, con3 and con4) of multiplexors are generated by the control

signal generator which is implemented straightforwardly. To decrease the delay of this stage,

the decimal significand (Ls[j], Lc[j]) is obtained in a q+4-digit decimal CSA adder.

Final Processing Stage

Figure 5.7 shows the details of the hardware implementation for the final processing stage

(stage 4).

- In the stage 4: The pre-normalization logic consists of a shift amount detector and a

barrel shifter. The shift amount detector is implemented by a series of comparators and

an encoder to determine the signal of the shift amount for the barrel shifter. The sign and

the digit width of logint (sign(logint), DW(logint)) are also obtained from the shift amount

105

1e k !

Barrel Shifter

s c
L +L
 ! !

+6+6

i iP &G Gen

Prefix Tree

Sel Gen

Rounding
Logic

Mux

Mux

Mux

10's9's Trailing Zero
Detector

Mux

Bin to BCD

Exponent & Sign Generator

" 0...0 "

&

()MSD n

n

signR exponentR

e k []sL j []cL j

(2) 4q "2q

1inc

4q "

()intsign log LD initj

()intsign log

Pre-Normalization

Addition & Rounding

2w 1

Conditional Converter

intlog

fraclog

Comp
Comp

Comp

Comp
"

E
n
co

d
e
r ()intsign log

L L#
LD

Shifter

0 0" ... F...F "

Shifter

()intDW log

&
()LSD q n!4n "

significandR

4q "

Post-Normalization

()intDW log

()intDW log

_shift amount

L
 #

()LSD n ()LSD n

modeR

1iinc iincsel

3 2 1 0 3 2 1 0

()intsign log

iinc

0inc

s cL +L +1
 ! !

sL
 !

cL
 !

sL
 !

cL
 !

iP iG

iPiG 1iP!1iG !

: 1i iP !: 1i iG !

iPiG

iPiG

iPiG

0inc

iinc

i iGenerate P and G
i:0 i:0Generate P and G

i:0 i:0Pass P and G
iGenerate inc

initj

2n 'intlog

sel

F
ig
u
re

5
.7
:
H
ard

w
are

im
p
lem

en
tation

of
S
tage

4
in

D
F
P
logarith

m
ic

con
verter.

d
etector.

T
h
e
d
ecim

al
com

p
ou

n
d
ad

d
er

is
im

p
lem

en
ted

b
ased

on
th
e
con

d
ition

al
sp
ecu

lative
m
eth

o
d
[105].

A
p
refi

x
tree

b
ased

on
th
e
b
in
ary

K
ogge-S

ton
e
n
etw

ork
[126]

is
u
sed

to
gen

erate
carries

in
to

each
d
igit

of
th
e
d
ecim

al
ad

d
ition

.
T
h
e
p
ortion

of
th
e
p
refi

x
tree

for
th
e
D
ecim

al64
for-

106

3 2 1 0

i
con

(:1) & ' 0 '
i i msb

con con# $

L

 !

L

 !

i
TZ

i
TZ

1iTZ !

: 1i i
TZ

!

i
TZ

i
TZ

Figure 5.8: Portion of a trailing zeros detector for Decimal64.

mat, and notes of the tree (Pi and Gi obtained from the Pi&Gi generator) are shown in

Figure 5.7. The carries generated by the prefix tree (inci and inci+1) are used to select the

correct addition result of the each digit under the following conditions:

−→
Li=

−→
Lsi+

−→
Lci if inci=0 ∧ inci+1=0

−→
Lsi+

−→
Lci+1 if inci=1 ∧ inci+1=0

−→
Lsi+

−→
Lci+6 if inci=0 ∧ inci+1=1

−→
Lsi+

−→
Lci+1 +6 if inci=1 ∧ inci+1=1

The additions of
−→
Lsi+
−→
Lci and

−→
Lsi+

−→
Lci+1, can be implemented using three binary half adders

and a binary full adder connected as a ripple carry chain. The logic for adding the value of

6 is used to compensate the
−→
Li to the correct representation of the BCD encoding, which

can be implemented using two binary half adders and two binary full adders.

The conditional converter consists of a 10’s complement converter, a 9’s complement con-

verter, a trailing zeros detector and a 3-to-1 multiplexer. To decrease the carry propagation

in the 10’s complement conversion, the trailing zeros detector is applied to determine the

position of the MSD of the trailing continuous zeros. The trailing zeros detector is imple-

mented based on a prefix tree to generate control signals of coni and con′
i. The portion of a

trailing zeros detector for Decimal64 format is shown in Figure 5.8. Thus, the computation

107

of the each digit of the conditional converter is implemented based on:

logfraci =

9’s com(
−→
Li) if e+k>0 ∧ coni=1 ∧ con′

i=1

10’s com(
−→
Li) if e+k>0 ∧ coni=1 ∧ con′

i=0
−→
Li otherwise

A binary to BCD converter, which is used to convert the binary value of e+k or e+k−1
to the n-digit integral part of the decimal significand (logint), is implemented based on [103].

To concatenate logint with logfrac properly in the post-normalization logic, first, n-digit zeros

is regarded as a suffix to the signal logint to form the signal log′int; second 2n-digit log′int is

shifted to DW (logint)-digit to the right, and a 2n-digit mask (including n-digit MSDs of

0, and n-digit LSDs of F) is shifted DW (logint)-digit to the right at the same time; third,

the n-digit LSDs of the shifted mask is operated (with the logic-AND operation) with the

n-digit MSDs of logfrac, the result then is operated (with the logic-OR operation) with the

n-digit LSDs of the shifted log′int; fourth, the q−n-digit LSDs of the fractional part logfrac is

concatenated with the n-digit result (obtained from the logic-OR operation) to achieve the

q-digit final decimal significand (Rsignificand).

5.5 Implementation and Comparisons

The proposed improved DFP logarithmic converter that can compute operands in Decimal32,

Decimal64 and Decimal128 formats, are modeled with VHDL and then simulated by using

ModelSim respectively. A comprehensive testbench, which includes special test cases (NaN,

Infinite, Subnormal or zero operands), corner test cases (close to one operands), and valid

random DFP operands is performed to verify the correctness of the design. The proposed

architectures are synthesized using Synopsys Design Compiler with the STM 90-nm CMOS

standard cells library [127] under the typical condition (1.2 VDD core voltage and 25 oc

operating temperature). The clock, input signals, and output signals are assumed to be

ideal. Inputs and outputs of the proposed design are registered and the design is optimized

for delay.

The delay model is based on logical effort method [128], which estimates the proposed

architecture delay values in a technology independent parameter, FO4 unit (the delay of an

108

Table 5.5: Delay and area of Decimal64 logarithmic converter.

Stage Worst Delay Areas

(FO4) (NAND2)

Initial processing stage (Figure 5.4) 34.0 13422

Digit recurrence stage (Figure 5.5) 34.4 13454

Log computation stage (Figure 5.6) 29.6 10870

Final processing stage (Figure 5.7) 30.0 5075

Top-level control logic (FSM∗) 3.5 751

Total 34.4∗∗ 43572

∗ FSM: finite-state machine; ∗∗ critical path delay.

Table 5.6: Details of critical path of Decimal64 logarithmic converter.

Blocks in the critical path Total

Reg buffer Mux CSA Round Mult2 Shift setup (ns)

0.08 0.09 0.06 0.29 0.21 0.51 0.23 0.08 1.55

inverter of the minimum drive strength (1x) with a fanout of four 1x inverters). To measure

the total hardware cost in terms of number of gates, the area of the proposed architectures

are estimated as the number of equivalent 1x two input NAND gates (NAND2). Note that 1

FO4≈45ps, and 1 NAND2≈4.4um2 in the STM 90-nm CMOS standard cells library under

the typical condition. Table 5.5 summarizes the delay and the area estimated using the area

and delay evaluation model for the Decimal64 logarithmic converter. The worst path delay

of each stage is highlighted in the corresponding figure by dashed thick line. The evaluation

results show that the critical path of the proposed architecture is located in the stage 2

(highlighted in Figure 5.5), and the details of critical path in the Decimal64 implementation

are reported in Table 5.6.

Since there is no comparable Decimal64 logarithmic converter, we reconstruct a 16-digit

DXP logarithmic converter based on the proposed Decimal64 architecture, and then compare

its results with those of a 53-bit radix-16 binary logarithmic converter [94] in terms of

the critical path delay. We bring the 16-digit DXP logarithmic converter and the 53-bit

109

into comparison due to the following reasons: 1) they have similar dynamic ranges for

the normalized coefficients (252 < 1016 < 253); 2) they are implemented by the same digit-

recurrence algorithms with selection by rounding; and 3) the radix-10 is close to radix-16

(processing 4-bit binary number in each iteration). To conduct a fair comparison, the timing

evaluation unit (1τ=the delay of 1-bit full adder) applied in [94], is transformed to the unit

of FO4 based on [57]. Since 1τ ≈ 0.8ns in the AMS 0.35-um CMOS standard cells library

(used in [57]), we obtain 1τ ≈ 5.3 FO4 so that the delay of the design [94] is evaluated by

FO4 unit. Note that 1 FO4≈150ps in the AMS 0.35-um CMOS standard cells library under

the typical condition. The comparison results in Table 5.7 show that the proposed 16-digit

logarithmic converter has a latency close to that of the 53-bit radix-16 binary logarithmic

converter in [94].

We also compare the results of the proposed design with our previous design [122] im-

plemented based on the non-redundant data-path. The critical path delay of the original

16-digit DXP logarithmic converter is 9.28 ns (synthesized with the TSMC 0.18-um standard

cell library in the typical condition, thus, 1 FO4≈75ps). The comparison results reported

in Table 5.7 show that the improved decimal logarithmic converter is 3.62 times faster than

the original design in terms of the latency.

With respect to the existing works implemented based on the CORDIC algorithm in [49],

it is quite difficult to compare the hardware performance between the two different algo-

rithms. To compute the Decimal128 logarithm operation, the expression given in [49] for

the number of clock cycles for a generic implementation of the fast termination CORDIC

algorithm is no. cycles=2+16×m+D+P , where m=19 (the number of iterations), D=67

(the estimated number of cycles of a 16-digit DXP divider), and P =5 (the estimated number

of cycles specific to the DFP process, such as the exception handling, the packing and the

unpacking from IEEE 754-2008 DFP format). For Decimal64 comparison, we have m= 9,

D=49 (the estimated number of cycles of a 7-digit DXP divider), thus the total estimated

number of clock cycles to compute the Decimal64 logarithm operation is 195 (no. cycles

= 2+16×9+49, without the consideration of the cycles specific to the DFP process). The

critical path delay of the implementation in [49] has the cycle time of 13 FO4 (taking the

Power 6 processor as a reference). The comparison results reported in Table 5.7 show that

110

Table 5.7: Comparison results for the delay of Decimal64 logarithmic converter.

Works Cycle time Cycles Latency Ratio

(FO4) (No.) (FO4)

Proposed 34.4 19 653.6 1.00

Proposed∗ 34.4 18 619.2 0.94

Original [122]∗ 123.7 18 2226.6 3.41

Radix-16 [94] 42.4 14 593.6 0.91

CORDIC [49] 13.0 195 2535.0 3.88

Software [41] ≈ 23.0 1000 23000.0 35.19

Software library Running at Intel Core(TM) 2 Quad @ 2.66 GHz.

∗ 16-digit DXP logarithmic converter.

the digit-recurrence approach proposed in this work is 3.88 times faster than the unit based

on the CORDIC approach in terms of latency.

For further analysis, we compare the performance of the proposed architecture with the

software approach reported in [41]. The software DFP transcendental function computation

library is complied by the Intel C++ Compiler (IA32 version 11.1) [129]. It takes about

1000 clock cycles to compute a Decimal64 logarithm result, running with Intel Core(TM) 2

Quad @ 2.66 GHz microprocessor. The comparison results reported in Table 5.7 show that

the proposed hardware implementation in this work is about 35.19 times faster than the

software implementation.

To analyze various characters of the proposed architecture for three different formats, we

construct the hardware implementations for Decimal32, Decimal64 and Decimal128 formats

respectively. Since the digit-width of the input decimal significand are 7-digit, 16-digit and

34-digit (q-digit) in three DFP formats respectively, there is a need to keep at least 11-digit,

20-digit and 38-digit (q+g+2-digit) precision for the data-path in the stage 1 and stage

2 in order to guarantee the correct selection of digits ej during 10, 19 and 37 number of

clock cycles. To analyze the optimized size of look-up tables in the stage 3 of the proposed

architecture, we efficiently reallocate values stored in the look-up tables using multiple tables

approach. Since 2q+3-digit values of − log10(1+ej10
−j) need to be stored in look-up table

111

II for accumulating the logarithm results during the iterations j ≤ h, where h= 8, 17 and

35 for three DFP formats; also the number of 19 different 2q+3-digit values of −ej/ ln(10)
need to be stored in the look-up table III, the optimized size of look-up tables is about 1.36

KByte, 5.58 KByte and 22.5 KByte for three DFP formats. To achieve the q-digit decimal

significand (Rsignificand) by the decimal compound adder in the stage 4, there is a need to

keep at least 11-digit, 20-digit and 38-digit (q+4-digit) precision for the data-path in the

stage 3 for three DFP formats.

5.6 Summary

Most previous decimal logarithmic converters are constructed by using either a binary log-

arithmic converter or decimal software method. As such, they can only process the binary

operand or compute the decimal logarithm operation in a slow software speed. In this work,

we present a DFP logarithmic converter that is based on the digit-recurrence algorithm with

selection by rounding. We develop the radix-10 algorithm, improve the architecture, and im-

plement it with the STM 90-nm CMOS standard cells library. The implementation results

show that the improved architecture is 3.62 times faster than our previous design [122] in

terms of the latency.

To provide more reference for floating-point-unit designers, we compare the proposed

architecture with a binary radix-16 converter [94] and the results show that the latency of

the proposed radix-10 decimal logarithmic converter is close to that of the binary radix-16

converter. Moreover, we compare the proposed architecture with a recent high performance

implementation based on the decimal CORDIC algorithm [49]. Although a comparison

between two different algorithms may depend on too many parameters, considering the

timing reported in the two implementations, we are quite confident to conclude that the

design presented in this chapter shows a latency 3.88 times shorter than that of the unit based

on the CORDIC algorithm. In addition, compared with the software DFP transcendental

function computation library [41], the proposed hardware implementation in this work is

about 35.19 times faster than the software implementation.

112

Chapter 6

Decimal Floating-Point Antilogarithmic Con-

verter

In this chapter, we present the algorithm and architecture of the decimal floating-point

(DFP) antilogarithmic converter, based on digit-recurrence algorithm with selection by

rounding. The proposed converter can compute faithful DFP antilogarithm results for any

one of the three DFP formats specified in the IEEE 754-2008 standard. The proposed archi-

tecture is synthesized with STM 90-nm standard cell library and synthesis results show that

the critical path delay and latency of the proposed Decimal64 antilogarithmic converter are

1.26 ns (28.0 FO4) and 19 clock cycles respectively; and the total hardware complexity is

30760 NAND2 gates. The delay estimation results of the proposed architecture show that

its latency is 1.44 times faster that of the binary radix-16 exponential converter, and it has a

significant decrease on latency in contrast to a recently published high performance CORDIC

implementation.

6.1 Introduction

In this chapter, a radix-10 digit-recurrence algorithm based on the selection by rounding

approach is presented to implement the DFP antilogarithmic converter in order to achieve

faithful antilogarithm results of DFP operands, specified in IEEE 754-2008 standard. This

work is an improved design of the research presented in [130]. The proposed architecture

presented in this chapter can be easily modified to implement a DFP exponential converter.

This design makes the first attempt to analyze and implement a DFP antilogarithmic con-

verter that can compute the DFP based-10 antilogarithm operation specified in the IEEE

113

754-2008 standard.

This chapter is organized as follows: In Section 6.2, we give an overview of the DFP

antilogarithm operation. Section 6.3 presents the proposed algorithm and error analysis for

a DFP antilogarithm computation. Section 6.4 describes the improved architecture based on

the redundant data-path with details of its hardware implementation. In Section 6.5, first, we

analyze the area-delay evaluation results of the proposed architecture; second, we compare

the performance of the proposed design with the binary radix-16 exponential converter [57],

our original design [130], the recent decimal CORDIC design [49], and the software imple-

mentation [41] in terms of the latency; third, we discuss the various characters of the DFP

antilogarithmic converter for the three different DFP formats. Section 6.6 gives conclusions.

6.2 DFP Antilogarithm Operation

6.2.1 Exception Handling

A valid DFP antilogarithm calculation is defined as:

R = Anti log10(v) = 10v (6.1)

v is a DFP number belongs to any of the three DFP interchange formats. There are some

exceptional cases need to be dealt with during the DFP antilogarithm computation.

• if v is a NaN, the DFP antilogarithm operation returns NaN and signals the invalid

operation exception;

• if v is a positive infinite operand, the antilogarithm result simply returns +∞, and if

v is a negative infinite operand, the antilogarithm result simply returns +0 with no

exception.

• when the input DFP operand is in the range of (log10(|vmax|),+∞], the antilogarithm

result satisfies the condition of overflow and returns the maximum representable DFP

operand or +∞ based on different rounding modes.

• when the input DFP operand is in the range [−∞, log10(|vmin|)), the antilogarithm

result satisfies the condition of underflow that rounds the intermediate result down to

zero or to the minimum representable DFP number based on different rounding modes.

114

• if the DFP antilogarithm result is inexact, the DFP antilogarithm operation signals

the inexact exception;

• Only if the DFP operands are in the range of [log10(|vmin|), log10(|vmax|)], a normal

DFP antilogarithm computation takes place. The rest of this chapter details the com-

putation on this interval in particular.

6.2.2 Range Reduction

Since v is in the range of [log10(|vmin|), log10(|vmax|)], the DFP antilogarithm operation can

be transformed to a DXP antilogarithm computation as:

R=Anti log10(v)=10vint.vfrac=10vint×10vfrac (6.2)

In (6.2), vint is a n-digit decimal integer number in the range of [emin−q+1, emax], where

n equals to 3, 3 and 4 for Decimal32, Decimal64 and Decimal128 formats respectively. The

vint plus the value of k represents the real exponent of the DFP antilogarithm result, where

k is achieved from normalizing the DXP result of 10vfrac to the decimal integer significand

of the DFP antilogarithm result. Since the valid value of v could be very close to zero, the

fraction number vfrac can be represented as several leading zeros plus the q-digit decimal

significand, vfrac =±0.00...00z1z2...zq−1zq. Therefore, vfrac is a decimal fraction number in

the range of (−1, 1), which can be completely represented by at most emin−q+1-digit or at

least q−n-digit. The result of 10vfrac can be normalized to a decimal integer significand of

the DFP antilogarithm result.

Since the target is a DFP computation, the DXP antilogarithm computation, 10vfrac,

should be able to achieve enough accuracy to guarantee a faithful rounding for the DFP

antilogarithm result. First, the results of 10vfrac are in the range of (0.1, 10), so the q-

digit accurate DXP antilogarithm results are enough to represent the exact q-digit decimal

significand of the DFP antilogarithm results. Second, since it is impossible to keep whole

digit-width of vfrac in the hardware implementation when the value of v is very close to zero,

vfrac is rounded to at least q+1-digit v′frac so that we can still guarantee a faithful rounding

for the DFP antilogarithm result. The proof of determining q+1-digit width of v′frac is given

in the Section 6.3.4. In the following, we focus on the algorithm and the architecture of

115

the q+1-digit DXP decimal antilogarithmic converter which can produce the q-digit faithful

decimal significand of the DFP antilogarithm result.

6.3 Digit-Recurrence Algorithm for Antilogarithm

6.3.1 Overview of Algorithm

A digit-recurrence algorithm to calculate 10v
′
frac is summarized as follows:

lim
j→∞
{v′frac −

j∑

j=1

log10(fj)} → 0 (6.3)

If (6.3) is satisfied, then,

lim
j→∞
{

j∑

j=1

log10(fj)} → v′frac (6.4)

Thus,

10v
′
frac =

∞∏

j=1

fj (6.5)

fj is defined as fj =1+ej10
−j by which v′frac is transformed to 0 by successive subtraction

of log10(fj). As such, fj allows the use of a decimal shift-and-add implementation.

According to (6.4) and (6.5), the corresponding recurrences for transforming v′frac and

computing the antilogarithm are presented as follows:

L[j + 1] = L[j]− log10(1 + ej10
−j) (6.6)

E[j + 1] = E[j]× (1 + ej10
−j) (6.7)

In (6.6) and (6.7), j≥1, L[1]=v′frac and E[1]=1. The digits ej are selected so that L(j +1)

converges to 0. After performing the last iteration of recurrence, we obtain:

L[j + 1] ≈ 0 (6.8)

E[j + 1] ≈ 10v
′
frac (6.9)

Although the proposed algorithm is designed for the computation of antilogarithm results

in base 10, the antilogarithm results in any base β can also be achieved by simply changing

116

the base ’10’ to ’β’ as shown in (6.11):

L[j + 1] = L[j]− logβ(1 + ej10
−j) (6.10)

Thus, after performing the last iteration of recurrence, the final results are transformed to:

E[N + 1] ≈ βv′
frac (6.11)

To obtain the selection function for ej , a scaled remainder is defined as:

W [j] = 10j × L[j]× γ (6.12)

Where, γ is defined as a scaled constant. Thus,

L[j] = W [j]× 10−j × γ−1 (6.13)

To substitute (6.13) into (6.6):

W [j + 1] = 10W [j]− 10j+1 × γ × log10(1 + ej10
−j) (6.14)

According to (6.14), the results in numerical analysis show that when the value of γ is equal

to a 2-digit constant 2.3, the digits ej are selected as a function of leading digits of scaled

remainder in a way that the residual W [j] remains bounded.

6.3.2 Selection by Rounding

The selection of the digits ej are achieved through rounding to the integer part of the scaled

residual. To reduce the delay of selection function, the rounding is preformed on an estimate

Ŵ [j], which is obtained by truncating W [j] to t fractional digits. The selection function is

indicated as:

ej = round(Ŵ [j]) (6.15)

To allow for the use of estimates in the selection function, a redundant digit set is used

for the digit ej . In this work, the selection by rounding is performed with the maximum

redundant set ej∈{−9,−8, ..., 0, ...8, 9}.
Since |ej+1| ≤ 9,

− 9.5 < Ŵ [j + 1] < 9.5 (6.16)

117

thus,

− 9.5− 10−t < W [j + 1] < 9.5 + 10−t (6.17)

and,

− 0.5− 10−t < W [j]− ej < 0.5 + 10−t (6.18)

(6.14) can be represented as:

W [j+1]=10(W [j]−ej)−10j+1×2.3×log10(1+ej10
−j)+10ej (6.19)

According to (6.17), (6.18) and (6.19), the numerical analysis is processed as follows:

10j+1 × 2.3×log10(1 + ej10
−j)− 10ej > −4.5 + 9×10−t (6.20)

10j+1 × 2.3×log10(1 + ej10
−j)− 10ej < 4.5− 9×10−t (6.21)

The results in numerical analysis show that if and only if j≥ 3, t≥ 1 the conditions (6.20)

and (6.21) are satisfied. In doing so, the selection by rounding is only valid for iterations

j ≥ 3, and e1 and e2 can be only achieved by look-up tables. However, using two look-up

tables for j=1, 2 will significantly increase the overall hardware implementations. Therefore,

the restriction for e1 is defined so that e2 can be achieved by selection by rounding and one

look-up table will be saved. Because W [1]=10×2.3×v′frac, W [2] can be achieved as:

W [2] = 230× v′frac − 102 × 2.3×log10(1 + e110
−1) (6.22)

When the value of j equates to 2, the value of e2 is in the range of −9<e2<9 so that (6.20)

and (6.21) are satisfied. Substituting −9<e2<9, and t=1 in (6.18) yields:

− 8.6 < W [2] < 8.6 (6.23)

According to (6.22) and (6.23), we obtain:

230× v′frac − 102 × 2.3×log10(1 + e110
−1) < 8.6 (6.24)

230× v′frac − 102 × 2.3×log10(1 + e110
−1) > −8.6 (6.25)

To satisfy the conditions (6.24) and (6.25), we obtain that when e1 is selected from −9 to 9,

the input number v′frac is in the range of [−1.03, 0.31]. Therefore, 1) the look-up table I is

118

Table 6.1: Digit e1 selection of DFP antilogarithm.

The range of v′

farc
e1 (BCD) The range of v′

farc
e1 (BCD)

[−0.02,−0.00] -0.0(00000000) [−0.49,−0.55] -7.0(00110000)

[−0.03,−0.07] -1.0(10010000) [−0.56,−0.61] -7.4(00100110)

[−0.08,−0.12] -2.0(10000000) [−0.62,−0.66] -7.7(00100011)

[−0.13,−0.18] -3.0(01110000) [−0.67,−0.72] -8.0(00100000)

[−0.19,−0.24] -4.0(01100000) [−0.73,−0.77] -8.2(00011000)

[−0.25,−0.28] -4.5(01010101) [−0.78,−0.82] -8.4(00010110)

[−0.29,−0.32] -5.0(01010000) [−0.83,−0.88] -8.6(00010100)

[−0.33,−0.37] -5.5(01000101) [−0.89,−0.94] -8.8(00010010)

[−0.38,−0.42] -6.0(01000000) [−0.95,−0.98] -8.9(00010001)

[−0.43,−0.48] -6.5(00110101) [−0.99,−1.00) -9.0(00010000)

constructed to cover all the negative input numbers v′frac in the range (−1, 0]; 2) in order to

tune the positive input numbers v′frac, (0, 1), to negative, the fraction part of positive DFP

input operand v′frac should be firstly adjusted to negative by v′frac−1 and its corresponding

integer part vint is adjusted by vint+1. The results of the numerical analysis show that 1)

1-digit e1 fails to create a look-up table I for achieving continuous ranges to cover all negative

input numbers m. Therefore, e1 is extended to 2-digit so that all negative input numbers

m can be achieved. 2) 2-digit MSDs of the input operand m are necessary to address the

initial look-up table for selection of the digit e1. The look-up table I is constructed by a size

of 25× 8 in which the values of e1 are stored as shown in Table 6.1.

6.3.3 Approximation of Logarithm

The values of logarithm γ×log10(1+ej10−j) in (6.14) can be achieved by look-up table II, for

decimal antilogarithm operation, γ=2.3. With the increasing number of iteration, however,

the size of the table will become prohibitively larger. Thus, a method for reducing the table

size, to achieve a significant reduction in the overall hardware requirement is necessary. A

119

Taylor series expansion of the logarithm function log10(1+x) is demonstrated in (6.26):

log10(1 + x) = (x− x2

2
+)/ ln(10) (6.26)

After j=h iterations, the values of log10(1+ej10
−j) can be approximated by ej10

−j/ ln(10).

Since we aim to guarantee the correct selection of digits ej, the series approximation can be

used in the iterations when the condition (6.52) is satisfied (refer to Section 6.3.5). There-

fore, after the hth iteration, the values of 2.3×log10(1+ej10
−j) do not need to be stored in

look-up table II. The values of 2.3×ej10−j/ ln(10), instead, will be used for approximation.

Note that the values of h are equal to 4, 9 and 18 for Decimal32, Decimal64 and Decimal128

formats respectively in the proposed antilogarithm digit-recurrence algorithm.

6.3.4 Error Analysis and Evaluation

The errors in the proposed antilogarithm digit-recurrence algorithm can be produced in

three ways. The first type of error is the inherent error of algorithm, εi, resulted from the

difference between the antilogarithm results obtained from finite iterations and the exact

results obtained from infinite iterations. The second one is the inexact input error, εv,

produced by the difference between antilogarithm results of the inexact input v′frac and

the exact input vfrac. The third one is the quantization error, εq, resulted from the finite

precision of the intermediate values in the hardware implementation. In order to obtain a

q-digit accuracy faithful antilogarithm result, the following condition must be satisfied:

εt=εi+εv+εq≤10−q (6.27)

Inherent Error of Algorithm

Since each DXP antilogarithm result is achieved after (q+1)th iterations, εi can be defined

as:

εi =

∞∏

j=1

(1 + ej10
−j)−

q+1∏

j=1

(1 + ej10
−j) (6.28)

Thus, equation (6.28) can be written as:

εi =
∞∏

j=1

(1 + ej10
−j)× (1− 1

∞∏
j=q+2

(1 + ej10−j)
) (6.29)

120

In (6.29), since the proposed DXP antilogarithm algorithm can compute the input values in

the range of (−1, 0], the exact antilogarithm results, obtained from the infinite iterations are

in the range of (0.1, 1]. In order to use the static error analysis method, we substitute the

worst case (ej=9) and the maximum value of the exact antilogarithm results to (6.29), then

the maximum εi is obtained:

εi ≤ 1− 1
∞∏

j=q+2

(1 + 9×10−j)
(6.30)

In (6.30), it is obvious that:

∞∏

j=q+2

(1 + 9× 10−j) = e

∞∑

j=q+2

ln(1+9×10−j)

(6.31)

Since the inequation (6.31) is satisfied:

∞∑

j=q+2

ln(1 + 9× 10−j) < 9× (10−q−2 + 10−q−3 + ...) (6.32)

We obtain:
∞∏

j=q+2

(1 + 9× 10−j) < e9×(10−q−2+10−q−3+...) (6.33)

Thus, the maximum absolute εi is:

|εi| < 1− 1

e9×(10−q−2+10−q−3+...)
≈ 1× 10−q−1 (6.34)

Inexact Input Error

As we described in Section 6.2.2, if a DFP operand, v, is very close to zero, the whole

digit-width of vfrac = ±0.00...00z1z2...zq−1zq could be too long to be kept in the hardware

implementation. vfrac has to be rounded to at least q+1-digit v′frac in the DXP antilogarithm

algorithm. Therefore, the inexact input error can be defined as:

εv = 10vfrac − 10v
′
frac (6.35)

It is evident that the maximum εv is obtained when 1) the vfrac consists of q+1-digit leading

zeros and q-digit decimal significand; 2) each of decimal significand digit, z1, z2, ..., zq−1, zq=9:

εv ≤ 10

±0. 00...00︸︷︷︸
q+1

99...99︸︷︷︸
q −10

±0. 00...00︸︷︷︸
q+1 (6.36)

121

(6.36) can be written as:

εv ≤ (10

±0. 99...99︸︷︷︸
q)10

−q−1−1 (6.37)

Thus,

log10(1+εv) ≤ ±0. 99...99︸ ︷︷ ︸
q

×10−q−1 (6.38)

According to Taylor series expansion of the logarithm function log10(1+x), we obtain:

(εv−
ε2v
2
+ ...)/ ln(10)<εv/ ln(10)≤±0. 99...99︸ ︷︷ ︸

q

×10−q−1 (6.39)

Therefore, the maximum absolute εv is:

|εv| ≤ 2.303× 10−q−1 (6.40)

Quantization Error

The DXP antilogarithm results can be obtained by q+1 times successive multiplication as

shown in (6.41):

10v
′
frac =

q+1∏

j=1

(1 + ej10
−j) (6.41)

Since only the finite precision of intermediate multiplication results are operated in the

hardware implementation, the quantization errors, εq, are produced. In this work, we choose

the q+2-digit as the minimal number of fractional digits (FDs) for each of the intermediate

multiplication result.

In (6.41), ej10
−j are the j-digit decimal fraction numbers, and e110

−1 is 2-digit. There-

fore, the digit-width of the decimal fraction number is accumulated in each iteration, in order

to represent the full precision of the intermediate multiplication result. In the initial j≤w

iterations, there is no truncated errors, τ = 0, produced because the fractional digit-width

of intermediate multiplication results are smaller than the minimal q+2-digit. However,

from the j >w+1 iterations, the truncated error, τ =10−q−2, is produced in each iteration.

The value of w determined by (6.42), are equal to 3, 5 and 7 for Decimal32, Decimal64 and

Decimal128 DFP formats respectively.

2 +

w∑

j=2

j ≤ q + 2 (6.42)

122

After the last q+1 iteration, the total quantization error, εq, can be represented as:

εq=τ×[
q+1∏

j=w+1

(1+ej10
−j)+...+

q+1∏

j=q+1

(1+ej10
−j)+1] (6.43)

According to the same mathematic method as (6.31), (6.32) and (6.33), each successive

multiplication in (6.43) satisfies:

τ ×
q+1∏

j=l

(1 + ej10
−j) < τ × e

q+1∑

j=l

ej10−j

(6.44)

In (6.44), l=w+1, w+2, ..., or q+1 for each successive multiplication respectively. Then, the

total quantization error, εq, satisfies:

εq < τ × (e

q+1∑

j=w+1

ej10
−j

+ ...+ e

q+1∑

j=q+1

ej10
−j

+ 1) (6.45)

Considering the worst case (ej=9) in (6.45), we obtain the maximum absolute εq:

|εq| < (q−w+2)× 10−q−2 (6.46)

If the proposed architecture is created based on the carry-save redundant data-path, there

are truncated errors, τ =10−q−2 from the first j≤ 1 iterations, because the fractional digit-

width of intermediate multiplication results are represented in the carry-save representation

in which the carry may occur in the (q+2)th digit and shifted out of data-path in the first

interaction. Thus, for the carry-save redundant data-path, the value of w in (6.46) is zero

for any one of the DFP formats.

Error Evaluation

Since the final antilogarithm result has q-digit accuracy, the maximum final rounding error is

0.5 ulp, εr=±0.5×10−q. Having εi, εv, εq obtained in (6.34), (6.40) and (6.46) respectively,

we achieve the maximum total error εt as:

|εt|= |εi|+|εv|+|εq|≤0.331×10−q+(q−w+2)× 10−q−2 (6.47)

We substitute the digit-width of the decimal significand for three different DFP interchange

formats, q = 7-digit, 16-digit and 34-digit, into (6.47) respectively. The results indicate

123

Table 6.2: Error analysis of DFP antilogarithm for DFP interchange formats.

Format Names Decimal32 Decimal64 Decimal128

Significand (q-digit) 7 16 34

Num. of Iteration (q+1) 8 17 35

Accuracy (q-digit) 7 16 34

FDs-digit (q+2-digit) 9 18 36

Max. Error (|εt|×10−q) 0.421 0.511 0.691

that the maximum total error, εt, obtained in three different DFP interchange formats are

smaller than the accuracy requirement, 10−q that can satisfies the condition (6.27). Table 6.2

shows the error analysis for three different DFP interchange formats. Since the proposed

architecture is implemented based on the redundant carry-save data-path, the value of w is

zero for three DFP formats to evaluate εq by (6.46). The error analysis in Table 6.2 proves

that the proposed decimal antilogarithm algorithm can guarantee q-digit accuracy for the

DXP antilogarithm operation, therefore, after the faithful rounding, an exact q-digit decimal

significand of DFP antilogarithm results can be achieved.

6.3.5 Guard Digit of Scaled Residual

Since only the finite precision scaled residual W [j] is operated in the hardware implemen-

tation, we need to analyze how many guard digits, g, needed to prevent the rounding error

of W [j], εw, from affecting the correct selection of digits ej . Since W [j] is converged in the

range of (−9.6, 9.6), we define the digit-width of W [j] as q+g+2-digit, consisting of 2-digit

integer part and q+g-digit fraction part.

In iterations (j=1) to (j=q+1), because q+g+2-digit rounded values of −2.3×log10(1+
ej10

−j) and −2.3×ej10
−j/ ln(10) are obtained from look-up table II and look-up table III

respectively, the rounding error, ±0.5×10−q−g, is produced in each iteration. The maximum

quantization error, ε1wq, is:

|εwq| ≤
q+1∑

j=1

0.5×10−q−g (6.48)

The value of −2.3×log10(1+ej10
−j) is approximated by the value of −2.3×ej10−j/ ln(10) in

124

iterations (j=h+1) to (j= q+1). However, according to the series expansion of logarithm

function in (6.26), an approximation error, εwa, is produced in each iteration:

εwa= −2.3×
q+1∑

j=h+1

(−(ej10
−j)2

2
+
(ej10

−j)3

3
−...)/ ln(10) (6.49)

we keep (ej10
−j)2/2 ln(10) to analyze εwa:

εwa ≤ 2.3×
q+1∑

j=h+1

(
(ej10

−j)2

2
)/ ln(10) (6.50)

Considering the worst case (ej=9 or −9), we obtain the maximum εwa:

|εwa| ≤ 4.01× 10−2h−1 (6.51)

Therefore, according to (6.14), after the (q+1)th iteration, the truncation error of W [j], εw,

is obtained as:

|εw|≤10q+1×(|εwq|+|εwa|)=(0.5q+0.5)×101−g+4.01×10q−2h (6.52)

Since, the digit ej is selected by rounding the scaled residual Ŵ [j] to its integer part in each

iteration, εw needs to satisfy the conditions, εw<1 in order to guarantee the correct selection

of digits ej . To satisfy this condition for three different DFP interchange formats in which

q is equal to 7-digit, 16-digit and 34-digit respectively, we obtain that when the values of h

are equal to 4, 9 and 18, the guard digit, g, are equal to 2, 2 and 3 for three different DFP

interchange formats.

6.4 Architecture of DFP Antilogarithmic Converter

Figure 6.1 shows the architecture of the proposed DFP antilogarithmic converter in the

top level. We only detail the architecture for the computation of the sign bit (Rsign), the

real exponent (Rexp) and the decimal significand (Rsignificand) of DFP antilogarithm results,

since other issues of DFP antilogarithmic converter such as the exception handling, the

packing and the unpacking from IEEE 754-2008 DFP format are straightforward. In the

data-path of the proposed architecture, the residual W [j] is represented by the q+g+3-

digit intermediate value (including 1-digit sign, 2-digit integer, q-digit fraction, and g-digit

125

'fracv q !(1) 4

Range ScaleGenerator1e

91e

Table I
e "

"
1

10 1230 log (1 10)

ssss c

q !(2) 4 q 2

Shifter 100
4p! p

sW(10 [1])
4p!

Mux 2Mux 1

Decimal 3:2 CSA Counter

Rounding
ej

 []sW j
 []cW j

12 3

Table III
je"23 / ln(10)

Table II
j j

je "
"

1
102.3 log (1 10)10

Mux 3

Shifter 10

[]sW j []cW j

4p! p

10 []sW j 10 []cW j

4p! p

ssss c

je 55je

4p!

4p!

4p!

Mult2

5

Mux 4

 !(3) 4q

Shifter 10 j"

 !(3) 4q

 !(3) 4q

Mux 5

one

 3q

 3q

Decimal 4:2 CSA Compressor

 !(3) 4q 3q

 !(3) 4q 3q

[]sE j ssss c

 !(3) 4q 3q

[]cE j

Compound

 Adder

Sign & Exp

 Generator

Round

 Logic

inc

E
!"

significandR

4q !

signR
eR

Rmode

1 2w

 !(3) 4q 3q

n ! 4
intv

q 1q !(1) 4

significand
4q !

e
2w

n ! 4

Range Reduction

sign
1

e

Generator

intv

ssss c

je

st1 clock cycle (Stage 1)
p q g# 3

nd th2 to (q+1) clock cycle (Stage 2)

je

5

e1

9

nd th2 to (q+2) clock cycle (Stage 3)

th(q+3) clock cycle (Stage 4)

fracv msd' () 8

intv

sm cm

cW(10 [1])

4q !2w

q ! 441 q
sE
!!"

cE
!!"

sign

19&e &0...0

F
ig
u
re

6
.1
:
Im

p
roved

arch
itectu

re
of

D
F
P
an

tilogarith
m
ic

con
verter.

gu
ard

d
igit);

th
e
d
ecim

al
sign

ifi
can

d
E
[j]

is
rep

resen
ted

b
y
th
e
q+

3-d
igit

in
term

ed
iate

valu
e

(in
clu

d
in
g
1-d

igit
in
teger,

an
d
q
+
2-d

igit
fraction

);
an

d
th
e
d
igit

e
1
is
rep

resen
ted

b
y
a
9-b

it

in
term

ed
iate

valu
e
(in

clu
d
in
g
1-b

it
sign

an
d
2-d

igit
10’s

com
p
lem

en
t
valu

e
of

e
1
in

th
e
B
C
D

en
co
d
in
g),

an
d
th
e
oth

er
d
igits

e
j
are

rep
resen

ted
b
y
a
5-b

it
in
term

ed
iate

valu
e
(in

clu
d
in
g

126

1-bit sign and 1-digit absolute value of ej). To speed-up the execution of recurrences, all

intermediate values in the data-path are represented using the redundant decimal carry-save

representation. For example, the residual W [j] with the decimal carry-save representation

is shown in Figure 5.2, where ssss represents a 1-digit Ws[j], c represents a 1-bit Wc[j], and

Ŵ [j] represents an estimated value of the residual W [j] (including 3-digit most significand

digits (MSDs) of W [j]). As a consequence of this representation, the delay of the addition

and the multiply operation in the recurrence are independent of the computational precision.

6.4.1 Datapath

The data-path of the proposed architecture is pipelined and re-timed into four stages in

order to minimize and balance the critical path delay. The initial processing stage (stage

1) is to obtain the initial digit e1, and then the digit recurrence stage (stage 2) is to obtain

remaining digits ej. The antilogarithm computation stage (stage 3) is to achieve the q+2-

digit intermediate decimal significand of the DFP antilogarithm result. Finally, 1-bit Rsign,

w+2-bit Rexp and q-digit Rsignificand of the DFP antilogarithm result are achieved in the

final processing stage (stage 4). The cycle-based sequence of operations is summarized as

follows:

- Stage 1, In 1st clock cycle (In iteration (j=1)):

• The 1-bit sign, w+2-bit real exponent, and the q-digit non-normalized decimal signif-

icand, as input operands, are obtained from input registers.

• The q-digit decimal significand and w+2-bit real exponent are processed in the range

reduction logic to achieve the q+1-digit DXP operand v′frac. Meanwhile, the value of

vint is obtained in the vint generator and sent to the stage 4 by a register.

• If the DFP operand is positive, the fraction part of the DFP operand, v′frac, should

be firstly adjusted to a negative fraction number by v′frac−1 in a 10’s complement

converter, then the negative fraction number, v′frac−1, is the input of the DXP decimal

antilogarithmic converter. Meanwhile, its corresponding integer part, vint, is adjusted

by vint+1 and sent to the stage 4.

• The digit e1 is obtained from a look-up table I (refer to Table 6.1) based on the value

127

of 2-digit MSDs of v′frac.

• The v′farc is multiplied by a 2-digit constant 2.3 in a multiply logic (Mult1) to achieve

the q+3-digit value of m=2.3×v′frac with the carry-save representation (ms, mc).

• The value of m out from Mult1 is shifted 2-digit to the left to achieve 10W [1] (W [1]=

10×2.3×v′frac); and the value of −230 log10(1+e110
−1)is directly obtained from the

look-up table II. Then, values of 10W [1] and −230 log10(1+e110
−1) are sent to the

stage 2 by registers.

- Stage 2, From 2nd to (q+1)th clock cycle (In iterations j=2 to j=q+1):

• In the 2nd clock cycle, the residual W [j] is obtained by adding 10W [1] (selected from

Mux2) and −230 log10(1+e110
−1) (selected from Mux3) together in a decimal 3:2 CSA

compressor. Then, the digit ej can be obtained by rounding 3-digit Ŵ [j] in a rounding

ej logic.

(Ws[j],Wc[j]) = 10W [1]−230 log10(1+e110
−1)

ej = round(Ŵ [j])

• The value ofW [j] in the carry-save representation is shifted 1-digit to the left to achieve

the value of 10×W [j], which is sent back to Mux2 for the next iteration.

• From the number of j = 2 to j = hth iteration, the value of −2.3×10j+1× log10(1+

ej10
−j)10j+1 is directly obtained from a look-up table III and sent back to Mux1 for

the next iteration.

(Ws[j+1],Wc[j+1])=10W [j]− 2.3×10j+1 log10(1+ej10
−j)

ej = round(Ŵ [j + 1])

• From the number of j=(h+1)th to j= (q+1)th iteration, the value of −2.3×10×ej/ ln(10)
is obtained from a look-up table IV and sent back to Mux1. Thus,

(Ws[j+1],Wc[j+1])=10W [j]− 2.3×10×ej/ ln(10)

ej+1 = round(Ŵ [j + 1])

• After the (q+1)th clock cycle, all the digits ej are achieved with the selection by

rounding.

128

- Stage 3, From 2nd to q+2nd clock cycle (In iterations j=2 to j=q+2):

• In the 2nd clock cycle, 2-digit e1 is chosen by Mux4 and complemented with the value

of 9 (integer part) and zeros (fractional part) and shifted 1-digit to the right to achieve

e110
−1 in a barrel shifter. Meanwhile, the value of E[1] = 1 is chosen by Mux5. The

decimal significand result E[2] of the first iteration is obtained in the q+3-digit decimal

4:2 CSA compressor.

(Es[2], Ec[2])=1+e110
−1

• From the 3rd to (q+2)th clock cycle, the intermediate value of ejE[j] out from a multiply

logic (Mult2) is shifted j-digit to the right to obtain ejE[j]10−j in a barrel shifter. The

value of E[j] is selected by Mux5 for the computation of E[j+1] in the next iteration.

((ejE[j]10−j)s, (ejE[j]10−j)c)=ej×E[j]10−j

(Es[j+1], Ec[j+1]))=ejE[j]10−j+E[j]

After the (q+2)th clock cycle, the q+3-digit decimal significand of DFP antilogarithm

results is obtained.

-Stage 4, In (q+3)th clock cycle:

• In the (q+3)th clock cycle, the sum and carry of q+1-digit MSDs of the fractional part

of E[j]s and E[j]c (
−→
Es and

−→
Ec) are added together to obtain the value of

−→
E in a q-digit

decimal compound adder. At the same time, the L is rounded to the faithful decimal

significand Rsignificand based on the value inc of the rounding position in a rounding

logic. Since we only consider the roundTiesToEven mode in this design, the rounding

logic generates an increment inc based on:

inc=

1 if (rd>5 or (rd=5 and LSB(L)=1))

0 if (rd<5 or (rd=5 and LSB(L)=0))

Where rd represent the LSD of
−−→
E[j]. The other rounding modes can be implemented

in a similar manner.

• The w+2-bit exponent Rexp, and 1-bit sign Rsign are obtained in a sign&exponent

generator.

129

Table 6.3: Example of a Decimal64 antilogarithm operation.

v
! " "

1 16(1) 8576308882936892 10 , fracv v
R
! ! "int. 0 0.857630888293689210 10 10 ,

e# ! 1 8.6,

 []W j

frac s cm v m m h g! " ! !2.3 ' (=7926448956923414740, =0101000000001100100), 9, 2

cW [1]
792.644895692341474000

010.100000000110010000

[]W j E j[]

e
 " $ "

1 2
10 12.3 log (1 10) 10

s
W10 [1]

c
W10 [1]

sW [2]

cW [2]
980
011

 08

196.390551794005254100

898.034346386456638100
101.101101100000100000

In 1 clock cycle (1 iteration)st st

...

In 2 clock cycle (2 iteration)nd nd

W [2]

In 3 clock cycle (3 iteration)rd rd

$

$

In 18 clock cycleth

In 19 clock cycleth

e# ! 2 1

r 'd

significandR ! 1387934949064010

sE ! .13868238489529096
!!"

cE ! .00011111001111001
!!"

E ! .1387934949064010
!"

incint
v ! 0

%

%

sign
R ! 0 R ! exp 16 ("1111110000")

1$

%%
compound
addition

v !int 0,
fracv ! ' 0.85763088829868920

sW [1] 979.264489569234147400
001.010000000011001000

980.343463864566381000

e
 " $ "

2 3
10 22.3 log (1 10) 10

s
W10 [2]

cW10 [2] 011.011011000001000000
010.039052425635195000

001.383426289192476000
000.010101001010100000

013
000

$13 e# ! $3 1

sW [3]

c
W [3]

W [3]

e
 " $ "

3 4
10 32.3 log (1 10) 10

sW10 [3]

cW10 [3]
013.834262891924760000
000.101010010101000000

$ 990.026217975671270000

In 10 clock cycle (10 iteration)th th

002.199071104000000000
001.001011000000000000

021
010

$31 e# ! $10 3

sW [10]

cW [10]

W [10]

e " " 102.3 10 / ln(10)

sW10 [10]

cW10 [10]
021.990711040000000000
010.010110000000000000

$ 970.033680748675623892

...

993.644904860602385560
111.110100110111100000

036
011

$47 e# ! $17 5

sW [17]

cW [17]

W [17] In 17 clock cycle (17 iteration)th th

In 11 clock cycle (11 iteration)th th

001.933401788675623892
000.101100000000000000

019
001

$20 e# ! $11 2

sW [11]

cW [11]

W [11]

sW10 [11]

cW10 [11]
$ 980.022453832450415928

019.334017886756238920
001.011000000000000000

e " " 112.3 10 / ln(10)

0.000000000000000000

9.140000000000000000

0.000000000000000000$

1.000000000000000000

s
E e 1

1([1] 10)

c
E e 1

1([1] 10)

sE ![1]

cE ![1]

0.000000000000000000
0.140000000000000000sE ![2]

cE ![2]

9.887488888888888888

0.111111111111111111$

sE e 2
2([2] 10)

cE e 2
2([2] 10)

1.100000000000000000
9.038599999999999999sE ![3]

cE ![3]

9.999999984725084930

0.000000011111110111$

sE e 9
9([9] 10)

cE e 9
9([9] 10)

0.110011011010010000

0.028782483451741196
sE ![10]

cE ![10]

9.999999999999999906

0.000000000000000100$

sE e 17
17([17] 10)

cE e 17
17([17] 10)

0.000111110011110010
0.138682384895290964sE ![18]

cE ![18]

1.111110000100001100
9.027693494806399868sE ![17]

cE ![17]

R v! ! exp int 16 16

Table 6.3 shows some iterations of a 64-bit DFP antilogarithm operation executed in the

proposed architecture.

6.4.2 Hardware Implementation

The details of the hardware implementation for the each stage of the proposed DFP antilog-

arithmic converter are presented in this section.

130

Initial Processing Stage

Figure 6.2 shows the details of the hardware implementation of stage 1.

-In the stage 1: The range reduction logic consists of a decimal bi-directional barrel

shifter, an encoder, a 10’s complement converter, a 9’s complement converter, a trailing

zeros detector and a 3-to-1 multiplexer. The decimal barrel shifter that can shift a decimal

significand by any amount from 0 to q−1 digits in two directions is implemented by a log2(q)

levels of multiplexors. The shift amount is achieved by the shift amount detector based on

the value of exponent e+16. To decrease the carry propagation in the 10’s complement

conversion, the trailing zeros detector is applied to determine the position of the MSD of the

trailing continuous zeros. The trailing zeros detector is implemented based on a prefix tree

to generate control signals of sel for the 3-to-1 multiplexer. The portion of a trailing zeros

detector for Decimal64 format is shown in Figure 5.8. The computation of the each digit of

v′frac is based on:

v′fraci =

9’s complement(
−−→
v′frac) if sign=0 ∧ coni=1 ∧ con′

i=1

10’s complement(
−−→
v′farc) if sign=0 ∧ coni=1 ∧ con′

i=0
−−→
v′frac otherwise

The vint generator consists of a leading-zero-counter (LZC), a decimal barrel shifter, a

encoder, and decimal +1 logic and 3-to-1 multiplexer. First, the leading zeros of the non-

normalized decimal significand are counted by the LZC; second, the encoder generates the

left shift amount and selection signals for the decimal barrel shifter and the multiplexer

respectively; third, the decimal significand is shifted to e+16−n-digit to the left, and the

n-digit MSD of shifted significand represents the vint. The computation of vint is based on:

vint=

0, if e+ 16−k ≤0

⌊left shift(significand, e+16−n)⌋ if e+16−k>0 and sign=1

⌊left shift(significand, e+16−n)⌋ + 1 if e+16−k>0 and sign=0

Note that the overflow and underflow of the DFP antilogarithm operation can be detected

by the vint generator, and the implementation of the detection of them is straightforward.

The e1 generator is implemented based on a look-up table according to the Table 6.1.

After e1 is obtained, the look-up table I stores the number of 20 values of q+g+3-digit

131

significand
4q

e
2w !

Barrel Shifter
LZC

! 2w

Bi-directional

sign
1

intv

k

51e

2

9's

5

9's

FAFAHAHA

0

&

FAFAFA

2m

fracv '
 !

5m"

2m"

20m" ssss

Shifter 100

Mult1

4p p

sW10 [1]

4p

e "
" !

1
10 1230 log (1 10)

fracv '

Barrel Shifter
+1

Mux

e

0

Mux

10's9's Trailing Zero
Detector

q ! (1) 4

Shift amount
4

fracv '

8

int Generatorv

sign
sel

cin1

FA

cin2

cm"3

cW10 [1]

sm cm

LUT I
e "

" !
1

10 1230 log (1 10)

1Table I e

Range Reduction

Detector
Encoder

sel

Figure 6.2: Hardware implementation of Stage 1 in DFP antilogarithmic converter.

−230×log10(1+e110−1). Since g is equal to 2, 2 and 3 for three different interchange formats,

the size of the look-up table I is 25× 48-bit, 25×84-bit and 25×160-bit for Decimal32,

Decimal64 and Decimal128 respectively.

The multiply logic (Mult1) is applied to compute the value of m = 2.3×v′frac, where

v′frac is a q+1-digit negative value in the range of −1 <m≤ 0. The Mult1 is implemented

based on the partial product generation logic presented in [23]. The multiples are formed

by adding two of a initial multiple set −3m (achieved by adding -5m and 2m in a 3:2 CSA

counter) and −20m (achieved by shifting 1-digit to the right of −2m). Both 2m and 5m can

be generated with only a few logic delays, since there is no carry propagation beyond the

next more significant digit. The boolean equations for generating double and quintuple of

the BCD number are presented in [125]. To decrease the delay of the addition, two levels of

decimal CSA adders are implemented to develop multiples ms andmc. The boolean equation

132

for computing 1-digit decimal addition of the BCD number is presented in [20]. The signals

cin1 and cin2 are generated to supplement the LSD due to the 9’s complement conversion

(−2m and −5m). The signal cin1 and cin2 are added in the LSD and the second LSD of

the first level of CSA adders respectively.

Digit Recurrence Stage

Figure 6.3 shows the details of the hardware implementation of the digit recurrence stage

(stage 2).

- In the stage 2: The 3:2 decimal CSA compressor is implemented by one level of q+g+3-

digit 3:2 CSA counter in order to achieve the residual (Ws[j], Wc[j]). Then, 1-digit sign (Ss,

Sc), 1-digit integer part(Is, Ic) and 1-digit fraction part (fsMSD
, fcMSB

) of the residual are

sent to the rounding ej logic for selecting digits ej by rounding the residual (Ŵs[j], Ŵc[j]).

The sign of the digit ej is obtained by the sign detector block which is implemented based

on the equation:

sign=(S0
s⊕Sc)⊕(I3s∧I0s ∧Ic)

The 1-digit fraction (fsMSD
, fcMSB

) and the value of 5 are added together in the 1-digit

decimal full adder to generate the signal carry to determine the rounding operation. The

signals carry and sign are sent to selection generator to achieve a control signal sel of a

4-to-1 multiplexer. The value of |ej| is achieved in four parallel full adders by adding the

value of 0, 1, 6 and 5 with the signals of fsMSD
and fcMSB

respectively:

|ej |=

Is+Ic+0 if sign=0 ∧ carry=0

Is+Ic+1 if sign=0 ∧ carry=1

Is+Ic+6 if sign=1 ∧ carry=0

Is+Ic+5 if sign=1 ∧ carry=1

Thus, the digit ej is obtained by concatenating 1-bit sign with 1-digit |ej |.
The look-up table II stores all the values of the q+g+3-digit−2.3×10j+1×log10(1+ej10−j),

where the number of iteration j is in the range of 1 ≤ j ≤ h. Since the digit ej is in the

range of −9≤ ej ≤ 9, there are 18 different values (except for the value when ej = 0) that

133

Decimal : CSA3 2

FAFAFAFA

Mux Mux

W10 [1]e
 !

1
10 1230 log (1 10)

10 []W j

ssss
ssss

sS sI _s msdf
sf

cS cI _c msbf cf

FAFA

Mux

0 1 6 5

Sign Detector FA

sS cS sI cI
5

_c msbf_s msdf
sI cI

sign

sign carry

Sel Generator

Rounding

Table II
Address Generator

Table III
Addr Gen

TABII
1

TABIII
1

Mux

p" 4 p" 4

je

je

je

Mux3

"Shifter 10

c

[]sW j []cW j

10 []sW j 10 []cW j

[]sW j []cW j

TabII or TabIII value

Rounding e
j

4p
4p p

sel

BFABFA

je&

je

5 Table II Table III

sel

TABII
2

Tab value

Figure 6.3: Hardware implementation of Stage 2 in DFP antilogarithmic converter.

need to be stored in the look-up table for each iteration. Since the address of the look-up

table in hardware must be restricted to a power of two, the size of the look-up table II can

be obtained as:

TabII size=2⌈log2[18×(h−1)]⌉×(q+g+3)×4 bit

Since the values of h are equal to 4, 9 and 18, the guard digit for three different interchange

formats. Thus, the size of the look-up table II is 26× 48-bit, 28×84-bit and 29×160-bit for
Decimal32, Decimal64 and Decimal128 respectively.

To reduce the size and delay of look-up table II, the values of q+g+3-digit −2.3×10j+1×
log10(1+ej10

−j) can be efficiently reallocated in multiple tables. For Decimal64 (the example

shown in Figure 6.3), the single look-up table II is relocated into the following two parts: 1)

the first part (TabII 1) stores all the values of −2.3×10j+1×log10(1+ej10−j), when 2≤j≤9 and

134

ej =±1; 2) the second part (TabII 2) stores stores the values when 2≤ j≤9, and 2≤ ej≤9

and −9≤ej≤−2. The sizes of the TabII 1 and TabII 2 are 24×84 and 27×84 respectively.

Thus, the optimized size of look-up table II is reduced from 2.64 KByte (single table) to

only 1.48 KByte (multiple tables). The look-up table III stores 19 values of q+g+3-digit

−2.3×ej/ ln(10)×10, and it is implemented by a size of 25×84-bit table. Thus, the total

optimized size of look-up tables (including the look-up table I, II, and III) is about 2.14

KByte for Decimal64. The implementations of address generators to address the look-up

table II and the look-up table III based on the values of j and ej are straightforward.

Antilogarithm Computation Stage

Figure 6.4 shows the details of the hardware implementation of the antilogarithm computa-

tion stage (stage 3).

- In the stage 3: The multiply logic (Mult2) is applied to compute the value of Es[j]ej+

Ec[j]ej , where ej is a value in the range of −9≤ ej ≤ 9. The multiple of Es[j]ej is formed

by adding two of a initial multiple set {m′, −m′, 2m′, −2m′, 5m′, −5m′, 10m′, −10m′}
(selecting by signals sel1 and sel2 generated by a recorder). The implementation of 4m

logic can be generated via connecting two 2m logics in series. The signals cin1 and cin2 are

generated by a recorder to supplement the LSD due to the 9’s complement conversion. The

signal cin1 and cin2 are added in the LSD of the two levels of CSA adders respectively.

Since each bit of Ec[j] is only zero or one, the signal of Ec[j] |ej | can be achieved in a

carry extend block which can be implemented by a series of logical-AND gates. If the digit

ej < 0 (sign(ej)= 1), the signal of Ec[j]ej is obtained by the 9’s complement conversion of

Ec[j] |ej |, and then the signal sign(ej is supplemented in the LSD of the signal (ejE[j])c,

otherwise, the signal of Ec[j]ej is directly obtained from the signal of Ec[j] |ej |.

(Ec[j]ej)
3:0
i =

Ec[j]i ∧ e3:0j if sign(ej)=0

9’s com(Ec[j]i ∧ e3:0j) if sign(ej)=1

Thus, the value of E[j]ej ((ejE[j])s, (ejE[j])c) are achieved by adding the Es[j]ej and Ec[j]ej

in a decimal CSA adder. Finally, the signals of (E[j]ej10
−j)s and (E[j]ej10

−j)c are obtained

in a decimal barrel shifter. The 4:2 decimal CSA compressor, applied to add the values of

135

2

9's 9's

Mux
'm 'm! 2 'm 2 'm!

5 10

5 'm 10 'm

2sel

Mux
5 'm!

9's9's

10 'm!

1sel

HA HA HA FA

FAFAFAFA

1cin

2cin

sssscsssssssscssss

(1) 4q " (1) 4q "

9's

Carry Extent

M
u
x

cccc

j ceW j([])j seW j([])

110! "
 Shifter j

Mult2

ssss

v

c

1sel 2sel 1cin 2cin

Recoder

je

Mux Mux

Decimal

4:2 CSA FA FA FA FA

FAFAFAFA

ssss

' 0 '

je

()jsign e

je

e19 0...0 0 01

c

[]cE j[]sE j

(3) 4q ! 3q

(3) 4q ! 3q

(3) 4q ! 3q

[]cE j[]sE j

Figure 6.4: Hardware implementation of Stage 3 in DFP antilogarithmic converter.

E[j] (Es[j], Ec[j]), and E[j]ej10
−j ((E[j]ej10

−j)s, (E[j]ej10
−j)c) together is implemented by

two levels of q+3-digit 3:2 CSA counters.

Final Processing Stage

Figure 6.5 shows the details of the hardware implementation for the final processing stage

(stage 4).

- In the stage 4: The decimal compound adder is implemented based on the conditional

speculative method[105]. A prefix tree based on the binary Kogge-Stone network [126] is

used to generate carries into each digit of the decimal addition. The portion of the prefix

136

Ls+Lc Ls+Lc+1

+6+6

i iP &G Gen

Prefix Tree

Sel Gen

Rounding
Logic

Mux

BCD to Bin

[]cE j[]sE jintv

inc

4q !

q 4 1

significandRsignR Rexp

'1 ' 4q !
2w "

Sign & Exp

Addition & Rounding Logic

q " !(1) 4 q " 1

1iinc " iincselMux

BHABHA

 16 15

Generator

qinc "1

Figure 6.5: Hardware implementation of Stage 4 in DFP antilogarithmic converter.

tree for the Decimal64 format, and notes of the tree (Pi and Gi obtained from the Pi&Gi

generator) are shown in Figure 5.7. The carries generated by the prefix tree (inci and inci+1)

are used to select the correct addition result of the each digit under the following conditions:

−→
Ei=

−→
Esi+

−→
Eci if inci=0 ∧ inci+1=0

−→
Esi+

−→
Eci+1 if inci=1 ∧ inci+1=0

−→
Esi+

−→
Eci+6 if inci=0 ∧ inci+1=1

−→
Esi+

−→
Eci+1 +6 if inci=1 ∧ inci+1=1

The additions of
−→
Esi+

−→
Eci and

−→
Esi+

−→
Eci+1 can be implemented using three binary half adders

and a binary full adder connected as a ripple carry chain. The logic for adding the value of 6

is used to compensate the
−→
Ej to the correct representation of the BCD encoding, which can

be implemented using two binary half adders and two binary full adders. Since the value of

Rsignificand may be rounded to the value of 1 (incq+1=1), when it happens, the Rsignificand is

directly set as one.

A BCD to binary converter is implemented based on [103] in order to convert the decimal

value of vint to the w+2-bit binary format. The w+2 exponent Rexp is selected based on the

value of incq+1 in a 2-to-1 multiplexer:

Rexp =

vint−16 if incq+1=0

vint−15 if incq+1 6=0

Since the DFP antilogarithm result should be positive, the sign bit (Rsign) is zero.

137

6.5 Implementation and Comparisons

The proposed improved DFP antilogarithmic converter, which can compute operands in

Decimal32, Decimal64 and Decimal128 formats, are modeled with VHDL and then simulated

by using ModelSim respectively. A comprehensive testbench, which includes special test cases

(NaN, Infinite, Subnormal or zero operands), corner test cases (close to one operands), and

valid random DFP operands is used to verify the correctness of the design. The proposed

architectures are synthesized using Synopsys Design Compiler with the STM 90-nm CMOS

standard cells library [127] under the typical condition (1.2 VDD core voltage and 25 oc

operating temperature). The clock, input signals, and output signals are assumed to be

ideal. Inputs and outputs of the proposed design are registered and the design is optimized

for delay.

The delay model is based on logical effort method [128], which estimates the proposed

architecture delay values in a technology independent parameter, FO4 unit (the delay of an

inverter of the minimum drive strength (1x) with a fanout of four 1x inverters). To measure

the total hardware cost in terms of number of gates, the area of the proposed architectures

are estimated as the number of equivalent 1x two input NAND gates (NAND2). Note that 1

FO4≈45ps, and 1 NAND2≈4.4um2 in the STM 90-nm CMOS standard cells library under

the typical condition. Table 6.4 summarizes the delay and the area estimated based on the

area and delay evaluation model for the Decimal64 antilogarithmic converter. The worst

path delay of each stage is highlighted in the corresponding figure by dashed thick line. The

evaluation results show that the critical path of the proposed architecture is located in the

stage 3 (highlighted in Figure 6.4), and that the details of critical path in the Decimal64

implementation are reported in Table 6.5.

Since there is no comparable Decimal64 antilogarithmic converter, we reconstruct a 16-

digit DXP antilogarithmic converter based on the proposed Decimal64 architecture, and then

compare its results with those of a 53-bit radix-16 binary exponential converter [57] in terms

of the critical path delay. To conduct a fair comparison, the timing evaluation unit (1τ =

the delay of 1-bit full adder) applied in [57], is transformed to the unit of FO4 based on [57].

Since 1τ≈0.8ns in the AMS 0.35-um CMOS standard cells library (used in [57]), we obtain

138

Table 6.4: Delay and area of Decimal64 antilogarithmic converter.

Stage Worst Delay Areas

(FO4) (NAND2)

Initial processing stage (Figure 6.2) 25.3 7501

Digit recurrence stage (Figure 6.3) 23.6 6134

Antilog computation stage (Figure 6.4) 28.0 15485

Final processing stage (Figure 6.5) 18.6 1178

Top-level control logic (FSM∗) 3.5 672

Total 28.0∗∗ 30970

∗ FSM: finite-state machine; ∗∗ critical path delay.

Table 6.5: Details of critical path of the Decimal64 antilogarithmic converter.

Blocks in the critical path Total

Reg Mult2 Mux Shift CSA 4:2 setup (ns)

0.07 0.53 0.06 0.23 0.29 0.08 1.26

1τ≈5.3 FO4 so that the delay of the design [57] is evaluated by FO4 unit. Note that 1 FO4

≈150ps in the AMS 0.35-um CMOS standard cells library under the typical condition. The

comparison results in Table 6.6 show that the proposed 16-digit antilogarithmic converter

has a 1.44 times shorter latency than that of the 53-bit radix-16 binary exponential converter

in [57].

The results of the proposed design are also compared with those of our original design

implemented based on the non-redundant data-path reported in [130]. The critical path

delay of the original 16-digit DXP antilogarithmic converter is 8.25 ns (synthesized with

the TSMC 0.18-um standard cell library in the typical condition, thus, 1 FO4 ≈ 75ps).

The comparison results reported in Table 6.6 show that the improved DXP antilogarithmic

converter is about 3.91 times faster than the original design in terms of the latency.

With respect to the existing works implemented based on the CORDIC algorithm in [49],

it is quite difficult to compare the hardware performance between the two different algo-

rithms. To compute the Decimal128 exponential operation, the expression given in [49] for

139

the number of clock cycles for a generic implementation of the fast termination CORDIC

algorithm is no. cycles=2+16×m+M+P , where m=19 (the number of iterations), M=20

(the estimated number of cycles of a 16-digit DXP multiplier), and P = 2 (the estimated

number of cycles specific to the DFP process, such as the exception handling, the packing

and the unpacking from IEEE 754-2008 DFP format). For Decimal64 comparison, we have

m=9, M =11 (the estimated number of cycles of a 7-digit DXP multiplier), thus the total

estimated number of clock cycles to compute the Decimal64 exponential operation is 157 (no.

cycles =2+16×9+11, without the consideration of the cycles specific to the DFP process).

The critical path delay of the implementation in [49] has the cycle time of 13 FO4 (taking

the Power 6 processor as a reference). The comparison results reported in Table 6.6 show

that the digit-recurrence approach proposed in this work is 3.84 times faster than the unit

based on the CORDIC approach in terms of latency.

For further analysis, we compare the performance of the proposed architecture with the

software approach reported in [41]. The software DFP transcendental function computation

library is complied by the Intel C++ Compiler (IA32 version 11.1) [129]. It takes about

1060 clock cycles to compute a Decimal64 exponential result, running with Intel Core(TM)

2 Quad @ 2.66 GHz microprocessor. The comparison results reported in Table 6.6 show

that the proposed hardware implementation in this work is about 45.83 times faster than

the software implementation.

To analyze various characters of the proposed architecture for three different formats, we

construct the hardware implementations for Decimal32, Decimal64 and Decimal128 formats

respectively. Since the digit-width of the input decimal significand are 7-digit, 16-digit and

34-digit (q-digit) in three DFP formats respectively, there is a need to keep at least 12-digit,

21-digit and 39-digit (q+g+3-digit) precision for the data-path in the stage 1 and stage

2 in order to guarantee the correct selection of digits ej during 10, 19 and 37 number of

clock cycles. To analyze the optimized size of look-up tables in the stage 3 of the proposed

architecture, we reallocate values stored in the look-up tables using multiple tables approach.

Since q+g+3-digit values of −2.3×log10(1+ej10
−j)×10j+1 need to be stored in the look-up-

table I and look-up table II for the computation of the residual W [j] during the iterations

j ≤ h (h = 4, 9 and 18 for three DFP formats), and 19 different q+g+3-digit values of

140

Table 6.6: Comparison results for the delay of Decimal64 antilogarithmic converter.

Works Cycle time Cycles Latency Ratio

(FO4) (No.) (FO4)

Proposed 28.0 19 532.0 1.00

Proposed∗ 28.0 18 504.0 0.95

Original [130]∗ 110.0 18 1980.0 3.72

Radix-16 [57] 45.1 17 766.7 1.44

CORDIC [49] 13.0 157 2041.0 3.84

Software [41] ≈ 23.0 1060.0 24380.0 45.83

Software library Running at Intel Core(TM) 2 Quad @ 2.66 GHz.

∗ 16-digit DXP exponential converter.

−2.3×10×ej/ ln(10) need to be stored in the look-up table III, thus, the optimized size of

look-up tables are about 0.69 KByte, 2.14 KByte and 7.23 KByte for three DFP formats. To

achieve the q-digit decimal significand (Rsignificand) by the decimal compound adder in the

stage 4, there is a need to keep at least 10-digit, 19-digit and 37-digit (q+3-digit) precision

for the data-path in the stage 3 for three DFP formats.

6.6 Summary

In this chapter, we present a DFP antilogarithmic converter that is based on the digit-

recurrence algorithm with selection by rounding. We develop the radix-10 algorithm, im-

prove the architecture, and implement it with the STM 90-nm CMOS standard cells library.

The implementation results show that the improved architecture is 3.91 times faster than our

previous design [130] in terms of the latency. To provide more reference for floating-point-

unit designers when they consider a fast implementation for the radix-10 implementation,

we compare the proposed architecture with a binary radix-16 converter [57] and the results

show that the proposed radix-10 decimal antilogarithmic converter has a 1.44 times shorter

latency than that of the binary radix-16 converter. Moreover, we compare the proposed

architecture with a recent high performance implementation based on the decimal CORDIC

141

algorithm [49]. Although a comparison between two different algorithms may depend on too

many parameters, the design presented in this chapter shows a latency 3.84 times faster than

that of the unit based on the CORDIC algorithm. In addition, compared with the software

DFP transcendental function computation library [41], the proposed hardware implementa-

tion is about 45.83 times faster than the software implementation.

142

Part V

Decimal Reciprocal and Radix-100

Division Units

143

Chapter 7

Design and Implementation of Decimal Re-

ciprocal Unit

This chapter presents the efficient design and implementation of a 16-digit DXP decimal

reciprocal unit based on the new IEEE 754-2008 standard for floating-point arithmetic. In

this design, the decimal reciprocal result is obtained through an initial approximation of

the reciprocal that consists of a look-up table, a multiplication, and followed three Newton-

Raphson iterations. We analyze the computation error for the look-up tables with different

sizes, in order to find the smallest size of look-up table for the efficient hardware implemen-

tation. The proposed design can utilize a 210×10 bits look-up table, which is half of the

look-up table as that used in the previous design to compute a faithful reciprocal result.

The proposed architecture takes 119 clock cycles to achieve the faithful 16-digit accuracy

approximation of the reciprocal of a 16-digit DXP number. The proposed implementation

of decimal reciprocal unit is verified with a Xilinx Virtex-II Pro P70 FPGA device and

synthesized by using TSMC 0.18um standard cell library.

7.1 Introduction

In recent years, more and more hardware-oriented works for the decimal division, with either

digit-by-digit recurrence or functional iteration algorithms, have been proposed in [25, 29,

27, 26, 28]. A decimal division arithmetic unit is the most time consuming and the most

complex arithmetic unit among the basic decimal arithmetic operations. Designing a high-

speed reciprocal unit is very useful for division operation because the division can be replaced

by the following method: the reciprocal of divisor is computed at first, and then it is used as

144

the multiplier in a subsequent multiplication with the dividend. If several divisions by the

same divisor need to be performed, this method is especially efficient when several divisions

are produced by one single divisor, because once the reciprocal of the divisor is found in the

first division, each one of the subsequent divisions only contains one additional multiplication.

Creating an efficient look-up table is a key point in designing a decimal reciprocal unit

based on Newton-Raphson algorithm. In today’s world, as the required precision of the

approximation increases, the size of the memory to implement the table lookups becomes

prohibitive. In this work, the look-up table is created by an algorithm based on the first-

order Taylor expansion. Compared with Symmetric Bipartite Tables method [131], the size

of the look-up table is much smaller to achieve the same accuracy. This method requires

first, a value from the table, and second, a multiplication of this value with the modified

operand to obtain the initial approximation [132]. The Newton-Raphson iteration is the

second stage of the implementation, which includes a decimal squarer, a decimal multiplier

and a decimal adder.

This work presents the design and implementation of a decimal reciprocal unit, in which

the initial approximation is achieved using an efficient look-up table and a multiplication.

After the initial approximation, three Newton-Raphson iterations are operated to obtain the

final 16-digit (Decimal64) accuracy approximation of the reciprocal of a DFP operand. This

decimal reciprocal operation takes 119 clock cycles to achieve the 16-digit faithful reciprocal

results. It just requires a subsequent multiplication to realize the division operation. To rep-

resent the signed decimal intermediate value, all variables in the architecture are represented

with 10’s complement number system in the BCD encoding. The remainder of this chapter

is organized as follows: Section 7.2 presents the algorithm that is used to create the look-up

table, and then describes how to determine the minimal size of look-up table; Section 7.3

presents the Newton-Raphson iteration, and how it is applied in our design; Section 7.4

presents an overview of the architecture of the decimal reciprocal units; Section 7.5 shows

the implementation results. Section 7.6 gives the conclusion.

145

7.2 Initial Reciprocal Approximation

To create an efficient look-up table that has a small size while maintaining accuracy is one

of our goals in our design. The algorithm applied to create the look-up-table is shown as

follows:

7.2.1 Algorithm

According to IEEE 754-2008, the normalized decimal significand of Decimal64 operands can

be viewed as the normalized 16-digits DXP number in the range of 0.1 ≤ X < 1.0. An

implicit leading zero and the 16 fractional digits constitute the mantissa. Thus, the 16-digits

mantissa is expressed as:

Xmantissa = [0.x1x2x3..x16] (7.1)

Then, X can be split into two parts: one part from 1st to mth, and the other from (m+1)th

digit to 16th digit, shown as follows:

X1 = [0.x1x2x3...xm] (7.2)

X2 = [0.xm+1xm+2...x16]× 10−m (7.3)

Thus,

Xmantissa = X1 +X2 (7.4)

According to [28], the initial reciprocal approximation is obtained by the first-order Taylor

expansion at the subinterval midpoint:

X−1 ≈ 1
X1+5×10−m−1 − 1

(X1+5×10−m−1)
2 × (X − (X1 + 5× 10−m−1)) ≈ 2×X1−X+10−m

(X1+5×10−m−1)
2 (7.5)

Since (2×X1−X = X1−X2) and (10−m−X2) correspond to the 10’s complement of X2,

equation (7.5) can be rewritten as:

X−1 ≈ X1 + 10−m −X2

(X1 + 5× 10−m−1)
2 (7.6)

Thus, the initial reciprocal approximation R0 can be obtained as:

X−1 ≈ R0 = C ′ ×X ′ (7.7)

146

Where,

C ′ =
1

(X1 + 5× 10−m−1)
2 (7.8)

X ′ = X1 + 10m −X2 (7.9)

In equation (7.7), the first term C ′= 1

(X1+5×10−m−1)
2 is read from the look-uptable addressed

by X1 (without the leading zero) as a constant term. For the remaining term X ′=X1+10m−
X2, it can be achieved from the operand modifier. The operation of the operand modifier is

to keep the digits from 1st to mth unchanged and to modify the digits from (m+1)th digit

to 16th to 10’s complement values.

7.2.2 An Efficient Look-up Table Creation

In [28], a look-up table with size of 2p×2p bits is created, where p=⌈(k ·10)/3⌉ and k indicates

the number of digits used to access the look-up table. The initial approximation is accurate

to (2k−3) fraction digits. The X1 and the output from the look-up table, C ′, is encoded by

using Densely Packed Decimal (DPD) format [54]. It is obvious that initial values read from

the look-up table contain more bits than the theoretical initial approximation. For example,

according to [28], if 3 digits initial approximation needs to be guaranteed, the look-up table

size is 210×20 bits and can be further reduced.

In order to keep the minimal look-up table size, we assume the look-up table size is 23×p
corresponding to the proposed 16-digit DXP reciprocal unit. Different values of p are verified

on a MATLAB simulation model, and the architecture simulated in MATLAB is matched to

the hardware implementation of the proposed reciprocal unit. A group of test vectors that

contain 900 16-digit decimal operand are selected. They are uniformly distributed from 0.1

to 1 and cover all the combination of 3 input digits for generating the values stored in the

look-up table. Firstly the ROM size with 210×20 bits mentioned in [28] is simulated, then

p=18, 14, 10, are selected after our previous simulation. Three look-up tables are created

with the size of 210×18, 210×14 and 210×10 bits respectively. Table 7.1 compares the three

newly created look-up tables with one that provided by a related research [28]. Since the

accuracy of the decimal reciprocal does not decrease because of shrinking the look-up table

147

Table 7.1: Evaluation of different size of look-up table.

Size of Look-up Table 210×20 [28] 210×18 210×14 210×10
Table Size Decrease Ratio 1.00 0.90 0.70 0.50

size from 210×20 to 210×10, 210×10 bits is chosen in our implementation and it is only half

size of the one used in [28]. The simulation results show that the proposed algorithm can

maintain 16-digits accuracy after 3 Newton-Raphson iterations, while shrinking the look-up

table size from 210×20 to 210×10 bits.

According to the modified algorithm (7.6) and our simulation results, the equation (7.3)

is revised to be:

X2 = [0.xm+1]× 10−m (7.10)

Where m=3, so correspondingly, X ′ becomes

X ′ = [0.x1x2...xmx̃m+1] (7.11)

7.3 Newton-Raphson Iteration

Newton-Raphson iteration is a well-known iterative method to approximate the root of a

non-linear function. Let f(x) be a well-behaved function, and let r be a root value of the

equation f(x) = 0. We start with x0 which is a good estimate of r and let r= x0+h. The

number h measures how far the estimated x0 is from the truth. Since h is very ’small’, the

linear approximation can be used to conclude that:

0 = f(r) = f(x0 + h) ≈ f(x0) + hf ′(x0) (7.12)

And therefore, unless f ′(x0) is close to 0,

h ≈ − f(x0)

f ′(x0)
(7.13)

It follows that

r = x0 + h ≈ x0 −
f(x0)

f ′(x0)
(7.14)

148

1 2 3 4 12 160. (16-digit)x x x x x x

!

'
C X

'

0R C X !

1 2 3 16[0.]
mantissa m
X x x x x x

1 1 2 3[0. ...]
m

X x x x x

2 1 2 16[0. ...] 10 m

m m
X x x x

! !
" #

'

1 2

1

1

(5 10)m
C

X

!

" #

'

1 210 m
X X X

! "

#

1 2

0 1 2

1

10

(5 10)

m

m

X X
R

X

!
"

! #

2

1 0 02x R XR !

2

2 1 12x x Xx !

2

3 2 2
2x x Xx !

Look-up table 10's complement
conversion

Newton-Raphson
Iterations

Rounding and
Normalization

Reciprocal Results

Figure 7.1: Data-path of the reciprocal computation.

Our new improved estimated x1 of r is therefore given by:

x1 = x0 −
f(x0)

f ′(x0)
(7.15)

Consequently, if xi is the current estimate, then the next estimate xi+1 is given by:

xi+1 = xi −
f(xi)

f ′(xi)
(7.16)

The obtained equation (7.16) is called the Newton-Raphson formula. In order to compute

the reciprocal, the following function and its derivative are used:

f(x) = 1/x−X (7.17)

Thus,

f ′(x) = −1/x2 (7.18)

Substituting the equations (7.16) and (7.17) for the equation (7.18) yields:

xi+1 = xi(2−Xxi) (7.19)

149

The equation (7.19) is rewritten as:

xi+1 = 2xi −Xxi
2 (7.20)

which can be implemented in hardware in order to double the accuracy in each iteration.

By using the equation (7.20), one decimal square, one decimal multiplication, one double

generator and one decimal subtraction are required for computing xi+1. Let δi+1=1/X−xi

be the error in each iteration, then it can also be expressed as:

δi+1 = 1/X − xi+1 = 1/X − xi(2− xiX) (7.21)

Which can also be expressed as:

δi+1 = X(1/X − xi)
2 = Xδi

2 (7.22)

The equation (7.22) clearly proves that the absolute error degrades quadratically in each

Newton-Raphson iteration because it is proportional to the square of the previous error.

Figure 7.1 summarizes the data-path of the proposed decimal reciprocal unit based on the

proposed approach described above.

7.4 Hardware Implementation

Figure 7.2 shows the sequential architecture of the proposed decimal reciprocal unit. It

takes 119 clock cycles to achieve the 16-digits accuracy approximation of the reciprocal of a

decimal-64 floating-point number. The architecture involves two stages. In the first stage,

the initial reciprocal approximation of R0 is obtained through look-up table and operand

modifier. The size of the look-up table is 210×10 bits, which is a tradeoff of hardware cost

and accuracy. The second stage is the implementation of Newton-Raphson iteration. In

this work, the decimal multiplier and squarer are implemented based on the DXP sequential

multiplier in [125].

At the beginning, the first 3-digits are obtained from the mantissa of X . They are

represented by 12 bits BCD code and converted to 10 bits DPD code as the address of

the look-up table to achieve a 10 bits value. They represent the 3 digits values from the

150

1 2 3 12 16 640. (64-bit BCD)x x x x x x

102 10

!

10's complement block

BCD to DPD

Look-up table

DPD to BCD

Decimal multiplier 1

Mux 1

Decimal square

Decimal multiplier 2

Decimal subtracter

Truncating to 36 bits

Rounding to 64 bits

2R_Generator

C
o
n
ca

ten
a
ted

 b
y
 2

7
 zero

s

Con

 3 4

10

10

 3 4

 4 4

 3 4

 4 4

 4 4

 7 4

 9 4

 9 4

 9 4

 10 4 18 4

 16 4

 16 4

 16 4

 32 4

 16 4

 16 4

 16 4

 9 4

Figure 7.2: Architeture of the proposed reciprocal unit.

look-up table, and then those 10 bits DPD code is converted back to 12 bits BCD code for

subsequent calculation. At the same time, the first 4-digits (16 bits BCD) of X are carried

into the operand modifier. The operand modifier unit is constructed with 10’s complement

151

converter. The most significant 12 bits of X stay the same, and the least significant 4 bits

are converted to its 10’s complement values. So the first 2 clock cycle’s work is to obtain the

values from the look-up table and the operand modifier.

From the 3rd to 11th clock cycle, the output of the look-up table is multiplied by the output

of the operand modifier in the decimal multiplier 1 to achieve the initial approximation for

the reciprocal of X . Then, the output of multiplier 1 is complemented by 8-bit zeros and

selected by Mux1 and sent to the decimal squarer, and the result of the squarer is obtained

at the 25th clock cycle. Because the size of a decimal squarer is smaller than a decimal

multiplier and the decimal square computation is faster than the decimal multiplication,

we choose to use a decimal squarer in our design. The Newton-Raphson iteration result

is achieved just using one decimal square computation, one decimal multiplication and one

decimal subtraction. From the following 26th and 46th clock cycles, the 16-digits mantissa

is multiplied by the result of the squarer in multiplier 2, followed by a rounding operation.

At the 47th clock cycle, the rounding result of multiplier 2 is subtracted from the ×2 value

of the output of the multiplier 1 that is concatenated by 27 zeros. Now the first result

of Newton-Raphson iteration is achieved. Then it is truncated and selected by Mux1 to

be computed in the decimal squarer. From the 48th to 118th clock cycles, the second and

third Newton-Raphson iterations are operated. At the 119th clock cycle, the result of the

third Newton-Raphson iteration is obtained, which is the 16-digits accuracy approximation

of decimal reciprocal. The decimal reciprocal unit takes 11 clock cycles to get the initial

approximation of the reciprocal, and each Newton-Raphson iteration takes 36 clock cycles.

Consequently, it takes 119 clock cycles to obtain the reciprocal approximation of a 16-digit

DXP operand in our decimal reciprocal unit.

7.5 Implementation Results

The proposed architecture for this decimal reciprocal unit is modeled in VHDL and synthe-

sized with TSMC 0.18 um standard cell library using Synopsys. The RTL and gate level

netlists are all verified with the same test vectors generated from the MATLAB fixed-point

model. Table 7.2 gives the proposed implementation results of design in several aspects. The

152

Table 7.2: Hardware implementation results.

16-digit DXP Reciprocal Unit

Look-up table size (bits) 210×10
Cycle time (ns) 2.79

No. of cycles 119

worst case delay path is produced in the decimal subtracter, in which the maximum clock

frequency is 358.4 MHz. The decimal reciprocal unit is also implemented using a Xilinx

Virtex2p XC2VP70 FPGA board with package ff1517 and speed -7. The implementation of

this decimal reciprocal unit is synthesized with Synplify pro 8.5, which occupies 1 BRAM

out of 328, 1 GCLK I/O block out of 16, 132 I/O blocks out of 964, and 2009 slices out of

33088. The maximum clock frequency is 169 MHz.

7.6 Summary

This chapter presents the design of a decimal reciprocal unit for the computation of the

16-digit DXP operand. The unit uses the minimum size of the look-up table (210×10 bits)

for the initial approximation algorithm, and it takes 119 clock cycles to compute the decimal

reciprocal results by using look-up table and three Newton-Raphson iterations. And most

importantly, a 16-digits accuracy can be guaranteed in all the cases. The main contribution of

our work is that the presented design utilizes a 210×10 bits look-up table, which is half size of

the look-up table used in the design [28]. In the future, a combined DFP reciprocal, division

and square root unit can be designed and implemented based on the proposed Newton-

Raphson iteration method in order to achieve exact rounded decimal reciprocal, division

and square root results of the DFP operands in a single unit. Also, more mathematical error

analysis should be investigated to create more efficient look-up table with a smaller size.

153

Chapter 8

Design and Implementation of A Radix-100

Decimal Division

In this chapter, a 16-digit fixed-point (DXP) radix-100 decimal divider is designed and

implemented. A decimal non-restoring algorithm with pre-scaling method is adopted in

the proposed 16-digit radix-100 decimal divider. The quotient digits, qi, in a signed-digit

(SD) format, is determined by the 2-digit integer of the partial remainder and can be pro-

duced in each iteration. The size of the look-up table for pre-scaling is reduced to half by

an additional scaling step. The generation of multiple divisor is accomplished by a decimal

carry-save adder (DCSA) tree and a decimal carry-look-ahead (DCLA) adder. The proposed

16-digit radix-100 decimal divider is implemented in Virtex-II PRO P30 FPGA configuration

and synthesized with TSMC 0.18-um standard cell library respectively. The implementa-

tion result indicates that the maximum frequencies in FPGA and 0.18-um technology are

50.1MHz and 111.1 MHz respectively, and the quotient result with 16-digit accuracy can be

obtained in 3 + (2× 9) cycles.

8.1 Introduction

A decimal division arithmetic is the most time-consuming and complex arithmetic unit

among the fundamental decimal arithmetic operations. In [28], Wang and Schulte present a

decimal floating-point (DFP) divider in which the reciprocal of divisor is obtained by initial

approximation and Newton-Raphson iterations, and then multiplied with dividend to obtain

the quotient. In [27], a radix-10 algorithm, based on the SRT digit-recurrence methods

with a minimally redundant signed-digit set (ρ = 5/9), is proposed to implement a 16-digit

154

DXP divider. In [25, 29], the radix-10 dividers are constructed based on non-restoring digit-

by-digit algorithm and one decimal quotient digit is achieved in each iteration. In [26], a

decimal division unit is designed based on the radix-10 non-restoring algorithm with pre-

scaling method. In this work, we analyze and implement a radix-100 decimal division with

non-restoring algorithm, which is the first attempt in the field of the radix-100 decimal

division (two decimal quotient digits obtained in each iteration). With the increase of radix

from 10 to 100, some problems in radix-100 division occur: 1) the size of the look-up table

which stores pre-scale parameters is significantly increased; 2) since the multiple range has

been increased from [−9, 9] to [−99, 99], the arithmetic of multiple of divisor becomes more

complex. To reduce the size of the look-up table, a new pre-scaling method is proposed in this

radix-100 decimal divider, which can shrink the look-up table to half size. The generation

of multiple divisor is obtained by a carry-save-tree and a decimal carry-look-ahead (DCLA)

adder which can reduce carry delay.

This chapter is organized as follows: Section 8.2 describes the radix-100 non-restoring

decimal division with pre-scaling algorithm and a method for reducing size of the look-up

table. Section 8.3 depicts an overview of the architecture of the radix-100 decimal divider;

Section 8.4 analyzes the implementation results. Section 8.5 gives the conclusions.

8.2 Algorithm

8.2.1 Radix-100 Non-Restoring Decimal Division

In this work, we mainly focus on a 16-digit DXP radix-100 division which can achieve a

16-digit accurate quotient. The overview of this radix-100 non-restoring division algorithm

is represented as follows:

The dividend and divisor are 16-digit DXP numbers that are compliant with significand

region of the 64-bit DFP format in IEEE 754-2008. At the beginning, the dividend and

divisor are normalized to the range of [10, 100). The partial remainder, P, is obtained by

the equation (8.1):

P [i+ 1] = 100× (P [i]− qi ×D) (8.1)

155

In (8.1), P [1] is dividend; D is divisor; and q1 is the 2-digit most significant digit (MSD) of

dividend. The quotient digits qi are produced by a selection function that is determined by

both partial remainder P [i] and divisor D. In this work, the quotient digits qi are achieved

only by truncating the partial remainder, P , to its 2-digit MSD integer as shown in equation

(8.2),

qi = truncated(P [i]) (8.2)

Finally, the final 16-digit accurate quotient result Q is calculated by the accumulation of the

quotient digits as shown in equation (8.3):

Q =

9∑

i=1

q[i]× 10−(i−1) (8.3)

8.2.2 Pre-scaling method

In order to simplify the quotient digits selection function, the divisor is pre-scaled to the value

close to 1, so that in the selection function each 2-digit quotient can only be obtained by trun-

cating partial remainder to its 2-digit integer part. Since less redundancy of the range of 2-

digit quotient requires more selection function table size to distinguish different multiples, we

adopt the maximum 2-digit quotient selection range qi+1∈ {−99,−98,−97, ..., 0, ...97, 98, 99}.
If the pre-scaled divisor, (1 + α) is substituted in (8.1), then,

P [i+ 1] = 100× (P [i]− qi − qi × α) (8.4)

P [i+1] is converged in the range

− 100 < P [i+ 1] < 100 (8.5)

According to (8.4) and (8.5), (8.6) is obtained:

− 1 < P [i]− qi − qi × α < 1 (8.6)

The range of α is analyzed by cases in order to keep the convergence of P [i+1] as follows:

Caes 1: If P [i] equals to zero, qi obtained by truncating P [i] is zero, then (8.6) is always

satisfied. Thus,

α ∈ R (8.7)

156

Table 8.1: Adjustment of divisor.

Divisor Range [10, 20) [20, 30) [30, 50) [50, 100)

Adjustment Divisor 5D 3D 2D D

Case 2: If P [i]>0, the 0≤P [i]−qi≤1 is satisfied, where 1≤qi≤99. Thus,

0 < α < 1/99 (8.8)

Case 3: If P [i]<0, the −1≤P [i]−qi≤0 is satisfied, where −99≤ qi≤−1. Thus,

0 < α < 1/99 (8.9)

It is obvious that only if the divisor is scaled by pre-scaling parameter, sp, to the region

(1, 1 + 1/99), the convergence of P [i+ 1] in the range (−100, 100), the two signed quotient

digits can be, therefore, obtained in each iteration.

8.2.3 Analysis of Look-up Table Size

With the increasing of the radix from 10 to 100, 3-digit MSD of divisor is used to generate the

look-up table address for selecting the pre-scale parameters. Therefore, 900 corresponding

pre-scale parameters need to be stored in the table. The divisor is adjusted to the range of

[50, 100) by multiplying with adjustment parameters 5, 3 and 2 (see Table 8.1), in order to

reduce the number of pre-scale parameters stored in the ROM is reduced from 900 to 500.

Meanwhile, the dividend is adjusted by the same adjustment parameters to guarantee the

correct quotient results.

The less digits the pre-scale parameter sp has, the smaller the size of look-up table will

be. However, if the 16-digit divisor can not be scaled to the range of (1, 1 + 1/99), the

convergence of P [i+1] can not be guaranteed. Therefore, we do an evaluation to determine

the minimum number of digits of sp as shown in (8.10):

1 < d1d2.d3..d16 × sp < 1 + 1/99 (8.10)

The 16-digit DXP divisor is represented as d1d2.d3...d16. To guarantee all of the 16-digit

divisors scaled to the range of (1, 1+1/99), for each 3-digit MSD of divisor, the largest and

157

the smallest 16-digit divisor are d1d2.d30...0 and d1d2.d30...0 + (0.1−10−14) respectively and

they should satisfy (8.10):

1 < (d1d2.d30...0)× sp < 1 + 1/99 (8.11)

1 < (d1d2.d30...0 + 0.1− 10−14)×sp < 1 + 1/99 (8.12)

According to the numerical analysis of (8.11) and (8.12), we obtain:

1

d1d2.d30...0
< sp <

1 + 1/99

d1d2.d30...0 + 0.1− 10−14
(8.13)

The digit number of sp can be determined by the distance between the smallest bound and

the largest bound of condition (8.13). Since the range of adjusted d1d2.d3 is in [50.0, 99.9),

it is obvious that 4-digit of sp is enough to guarantee all 16-digit divisor to be scaled to the

range of (1, 1 + 1/99). As a result, there are at least 500 4-digit scaling parameters needed

to be stored in the look-up table. After the analysis of these scaling parameters, we found

that 1) there are 200 different scaling parameters in these 500 4-digit scaling parameters, 2)

the largest suitable step length is 0.00005 for every two continuous scaling parameters. The

scaling parameters are illustrated in Figure 8.1.

As shown in Figure 8.1, the scaling parameters are in the range of [0.01010, 0.02005]

with step length of 0.00005. In order to shrink the look-up table size, first, all the scaling

parameters are scaled to 5 times to reduce the digit width of sp from 4-digit to 3-digit; second,

all the 3-digit sp are subtracted by the base-value 0.00202 (0.01010/0.00005 = 0.00202) to

achieve step length of every two continuous scaled parameters; and third, the step length is

converted to 8-bit in order to be stored in the look-up table. Therefore, the total size of the

look-up table is shrinked from 210 × 16 to 29 × 8 (0.5 Kbyte).

8.3 Architecture

As shown in Figure 8.2, the decimal radix-100 divider consists of three parts. The first part,

as shown in Figure 8.2 (a), is pipelined into 2 levels. Level 1 mainly consists of a multiple

logic for adjusting the divisor and the dividend. In the 1st clock cycle, 1) the divisor needs

to be adjusted to the range of [50.0, 99.9] based on Table 8.1, and 2) the scaling parameters

158

...
...
0.00005

0.1

...
10.0

0.01010

0.02005

3-digit MSD of Divisor

S
ca

li
n

g
P

a
ra

m
et

e
r

(s
p

)

10.1 99.999.8

Figure 8.1: Scaling parameters in the look-up table.

stored in the look-up table are scaled 5 times, thus divisor is adjusted by multiplying with

5, 10, 15 and 25 in the multiple logic which is extended and implemented from [23]. The

adjusted divisor and its 3-digit MSD are stored in Reg3 and Reg4 respectively. Level 2

mainly consists of an address generator, a 29 × 8 look-up table, a binary-to-BCD converter

and a 3-digit decimal DCLA adder. In the 2nd clock cycle, first, the 9-bit ROM address is

generated by 3-digit MSD of adjusted divisor in the address generator; second, the 8-bit step

length of scaling parameters is obtained from the look-up table and is converted back to 3-

digit decimal value by binary-to-BCD converter; third, the scaling parameter is achieved by

adding 3-digit decimal step length with base-value (202) in a 3-digit DCLA and is stored in

Reg6. When the adjusted divisor is transferred to Reg5, the dividend is adjusted by multiple

logic at the same time and stored in Reg3.

The second part, as shown in Figure 8.2 (b), is pipelined into two levels as well. Level

1 mainly consists of a decimal DCSA tree [23] and a decimal DCLA adder in order to

generate a scaled divisor (sp×D), a scaled dividend (sp×dividend) and a multiple divisor

(qi×sp×D). In the 3rd clock cycle, first, the adjusted divisor (X1) and the scaling parameter

(X2) are selected by Mux4 and Mux5 respectively; second, the scaled divisor is achieved

by multiplying the adjusted divisor with scaling parameter, sp×D, in the DCSA tree and

159

Mux1

Multiple logic

}

 2x4

Mux2
 18×4

16×4

ROM

Addrgen

Bin2bcd Convertor

3-digit DCLA

202

CSA Tree

21-digit DCLA

S C

9' Com 9' Com

21-digit DCLA 21-digit DCLA Cout

 21×4

Cout
X1 X2

X1 X2Dividend Divisor

Address

16×4

5d 10d 15d 25d

 3×4

 3×4

9

 3×4 3×4

 3×4

 18×4

 18×4

 3×4

8

3×4 3×4 18×4

 3×4 20×4

21 21×4

 20×4

 20×4 Reg3 Reg4

 21×4

 21×4

 21×4

Reg2Reg1

Reg5 Reg6

Reg7 Reg8 Reg9

 21×4 21×4 21×4 21×4

 21×4 21×4
1

Mux8

Mux4 Mux5

Mux7

Mux3

(0,P1,P2)

(a) (b)

On-the-fly

Result

0

Cout

P1,P2

Reg10

 21×4

21×4
1

1

11

(c)

Critical Path

Mux6

 20×4

LEVEL 1

LEVEL 2
LEVEL 1

LEVEL 2

Mux10

Shifter ×100

00.xxx...

 21×4

Sign

Mux9

XNOR

29×8

F
ig
u
re

8
.2
:
A
rch

itectu
re

of
d
ecim

al
rad

ix
-100

d
iv
id
er.

21-d
igit

D
C
L
A

ad
d
er;

fi
n
ally,

th
e
scaled

d
iv
isor

is
selected

b
y
M

u
x
6
an

d
stored

in
R
eg7

.

F
rom

th
e
4
th

to
th
e
21

s
t
clo

ck
cy
cles,

9
tim

es
iteration

s
(tw

o
clo

ck
cy
cles

for
each

iteration
)

are
p
ro
cessed

to
ob

tain
all

of
q
u
otien

t
d
igits

so
th
at

th
e
16-d

igit
accu

rate
q
u
otien

t
resu

lts

160

are guaranteed. In the 4th clcok, the dividend is scaled by the same scaling parameter, sp,

to achieve the scaled dividend, sp×Dividend, in the DCSA tree and 21-digit DCLA adder.

In the 5th clock cycle, while the scaled divisor and the first quotient digit (q1=2-digit MSD

of dividend) are selected by Mux4 and Mux5 respectively, the multiple divisor, qi×sp×D,

is thus obtained by the DCSA tree and 21-digit DCLA. In level 2, in order to achieve a

positive magnitude of the partial remainder, P [i + 1], and to avoid the carry delay of 10’s

complement converter, two 9’s complement converters, two 21-digit DCLA adders and one

shifter are implemented to achieve positive and negative partial remainders. In the 6th clock

cycle, first, the positive and negative values of sp×P [i]−sp×D×qi are obtained by subtracting

the scaled dividend and the scaled multiple divisor in two 21-digit DCLA adders respectively.

Then, the positive value is selected in Mux8 which is shifted 2-digit to the left for obtaining

P [i + 1]. The 2-digit quotient qi+1 is obtained by truncating P [i + 1] to its 2-digit integer

part. Therefore, we can get a 2-digit quotient qi+1 with two clock cycles in each iteration.

The third part, as shown in Figure 8.2 (c), calculates the quotient in each iteration by the

On-the-fly algorithm [133]. The magnitude of the 2-digit SD quotient, P1P2 is obtained from

Reg9, and the sign of P1P2 is determined by the XNOR operation between the carry out

and the sign of the previous partial remainder. Two registers are in the On-the-fly unit, and

their values are changed according to the sign and the value of each new signed digit. The

operation of addition in the On-the-fly unit has only two digits delay. Since the radix-100

decimal division needs to guarantee 16-digit accurate quotient results, we need a total of

9 times iterations to achieve this goal. After 9 times iterations, the 18-digit final quotient

result is generated simultaneously. Then, the 18-digit final quotient result is rounded to 16-

digit accurate quotient result. Thus, the total number of clock cycles to achieve a 16-digit

accurate quotient result is 3+(2×9) cycles.

8.4 Analysis of Implementation Results

The proposed 16-digit radix-100 DXP decimal divider is modeled with Verilog and imple-

mented on Virtex-II PRO P30 FPGA configuration. The proposed 16-digit radix-100 DXP

decimal divider is synthesized with XST and placed and routed by Xilinx ISE 9.1. It occupies

161

Table 8.2: Details of critical path on FPGA.

Mux4 CSA tree DCLA Mux6 Reg7 Total (ns)

0.683 11.038 6.998 0.548 0.682 19.949

1 out of 16 GCLK I/O block, 203 out of 556 I/O blocks, and 3,976 out of 13696 slices (29%).

The maximum clock frequency and latency are 50.1 MHz and 21 clock cycles respectively.

The critical path of the proposed architecture is mainly produced in the DCSA tree and the

DCLA adder which is highlighted in Figure 8.2 (b) (dotted line) and its details are available

in Table 8.2.

The implementation results of the proposed 16-digit radix-100 DXP decimal divider are

compared with the results of a 16-digit radix-10 DXP decimal divider [26], because they

both utilize the same decimal non-restoring algorithm with pre-scaling method. To make

their implementations fairly comparable, the proposed 16-digit radix-100 DXP divider is

synthesized with TSMC 0.18-um standard cell library. The synthesis results show that

the worst case delay path is 9.0 ns. Since we use different technologies on timing evaluation

(TSMC 0.18-um) from [26] (IBM 65-nm), in order to make the delays comparable, the delays

is represented in FO4 (inverter delay with a fan out of 4) [128]. For the 0.18-um technology,

1 FO4≈65 ps [25], therefore, the cycle time of the proposed architecture is 138.5 FO4, and

the latency is 2907 FO4. The compared results are shown in Table 8.3 which indicate 1)

the proposed architecture needs 2 times the size of look-up table to store all of the scaling

parameters; 2) the proposed architecture is 2.72 times slower than the 16-digit radix-10

DXP divider [26] because more complex DCSA tree and DCLA adder are implemented in

the proposed 16-digit radix-100 DXP decimal divider.

8.5 Summary

In this work, first, we present a radix-100 non-restoring decimal division algorithm with pre-

scaling method. Second, we analyze the size of the look-up table and create an additional

scaling step to reduce the size of look-up table from 210×16 to 29×8. Third, we describe the

architecture of the proposed 16-digit radix-100 DXP decimal divider. Finally, the proposed

162

Table 8.3: Hardware performance comparison.

Radix-100 Radix-10

16-digit DXP Divider 16-digit DXP Divider [26]

Look-up table size 0.5 KB 0.25 KB

Cycle time 138.5 FO4 13 FO4

No. of cycles 21 82

Latency 2907 FO4 1066 FO4

architecture is implemented on FPGA and is synthesized with TSMC 0.18-um standard cell

library. The worst case delay path is mainly produced in a DCSA tree and a 21-digit DCLA

adder that act as bottleneck to speedup the radix-100 decimal divider. Since the radix-100

needs to use more complex quotient digit selection part and larger size of the look-up table,

the current design is slower and larger than the previous radix-10 design in terms of areas

and latency. However, the radix-100 divider in this work can reduce the clock cycle to 1/4 of

the previous radix-10 design, while maintaining accuracy of the result. That gives us a room

to improve the presented architecture to get shorter latency by using redundant carry-save or

signed-digit data-path and some new technologies well used in the basic decimal arithmetic

with further investigation.

163

Part VI

Conclusion

164

Chapter 9

Summary and Future Research

9.1 Summary

In this dissertation, we have researched and developed several new decimal algorithms and

architectures for the computation of decimal transcendental function. The algorithms pro-

posed in this dissertation are simulated with MATLAB or C language, and the corresponding

hardware implementations are modeled with VHDL or Verilog, and then simulated using

ModelSim. The proposed architectures are verified and synthesized using FPGAs devices or

by Synopsys Design Compiler with the CMOS standard cells library. It is expected that the

algorithms and architectures presented in this dissertation provide a useful starting point for

the future research in the computation of hardware-oriented DFP transcendental function.

This dissertation starts with the works of decimal logarithmic and antilogarithmic con-

verters based on the table-based piecewise linear approximation method in Part III. In

order to determine the fewest segments and coefficients of each segment for the first-order

polynomial transcendental function approximation, we propose a dynamic non-uniform seg-

mentation method in Chapter 3. The proposed method can approximate the transcendental

functions to satisfy accuracy by the linear approximation in which the input, coefficients,

and intermediate values are rounded to least bit-width, and can not be achieved by previ-

ous static non-uniform segmentation methods. In Chapter 4, we present a new approach

(Alg. 2) to compute decimal logarithm and antilogarithm based on the decimal first-order

polynomial approximation algorithm. The proposed architecture of logarithmic converter is

implemented on an FPGA device, and then compared with a binary-based decimal linear

approximation algorithm (Alg. 1). The proposed approach is an attractive method because

165

logarithm and antilogarithm or other transcendental functions can be evaluated by a set of

simple linear approximation which can be implemented by a combinational logic with only

a single clock cycle to achieve decimal results. However, when the aim is to achieve more

accurate precision of results, such as Decimal64 or Decimal128 DFP transcendental func-

tion computations, the proposed architectures become inefficient because the required table

lookup size is too large to be implemented in hardware.

In Part IV, the digit-recurrence algorithms with selection by rounding are studied for the

DFP transcendental function computations. In Chapter 5 and Chapter 6, we present the

algorithm and architecture of the DFP logarithmic and antilogarithmic converters, based on

digit-recurrence algorithm with selection by rounding respectively. The proposed converters

can compute faithful DFP logarithm and antilogarithm results for any one of the three

DFP formats specified in the IEEE 754-2008 standard. These research works start with

the algorithms and architectures based on non-redundant data-path. In order to optimize

the latency for the proposed design, we include novel features shown as follows: 1) using

signed-digit redundant digits, and redundant carry-save representation of the data-path; 2)

reducing the number of iterations by determining the number of initial iteration; and 3) re-

timing and balancing the delay of the proposed architecture. The proposed architectures are

synthesized with STM 90-nm standard cell libraries. To estimate the hardware performance,

the delay model is obtained according to the logical effort method [128], which estimates the

proposed architecture delay values in a technology independent parameter, FO4 unit (the

delay of an inverter of the minimum drive strength (1x) with a fanout of four 1x inverters),

and the total hardware cost of the proposed architectures are estimated as the number of

equivalent 1x two input NAND gate (NAND2). The delay estimation results of the proposed

architectures show that the latency of the proposed DFP logarithmic and antilogarithmic

converters are close to or better than that of the binary radix-16 logarithmic and exponential

converters [94, 57] respectively, and they have a significant decrease in terms of the latency

in contrast with a recently published high performance CORDIC implementation [49]. In

addition, compared with the software DFP transcendental function computation library [41],

the proposed hardware implementation in this work is about thirty to forty times faster than

the software implementation.

166

The Part V is included to present two research works based on the functional iteration

methods. Chapter 7 presents a design and implementation of a 16-digit DXP decimal recip-

rocal unit for the DFP Decimal64 format, in which the decimal reciprocal result is obtained

by the initial approximation of the reciprocal by using a look-up table and a multiplication,

and then followed by three Newton-Raphson iterations. Since a more comprehensive research

based on this approach has been presented in [28], as the main contribution of this work, the

presented design utilizes a 210×10 bits look-up table which is half size of the look-up table

size used in [28]. In Chapter 8, a new 16-digit DXP radix-100 decimal divider is designed and

implemented based on the decimal non-restoring algorithm with pre-scaling method. This

design intends to make the first attempt to analyze and implement a radix-100 iteration

algorithm for the complex decimal arithmetic. The radix-100 architecture created in this

work is based on the non-redundant data-path, which leads to a large computation latency

and is slower than that of radix-10 designs. However, the radix-100 divider can reduce the

clock cycle to 1/4 of the previous radix-10 design, while maintaining accuracy of the result.

That gives us a room to improve the presented architecture to get shorter latency by using

redundant carry-save or signed-digit data-path and some new technologies well used in the

basic decimal arithmetic with further investigation.

9.2 Future Research

This dissertation provides a starting point for researchers to further study DFP transcen-

dental arithmetic. There could be more research topics in this area as follows:

9.2.1 Decimal Logarithmic Arithmetic Unit

The logarithmic number system (LNS) is an alternative to floating-point number system

(FLP). LNS could speed up some complex computation for multiplication, division and

squaring, etc, so the binary LNS is more attractive in applications where a large number

of multiplication and divisions are required, such as some applications of digital signal pro-

cessing and 3-D graphics processing. A future idea is to design and implement a decimal

logarithmic arithmetic unit (DLAU) as shown in Figure 9.1, in which real decimal numbers

167

Conversion from DFP to LNS

z (DFP)

Conversion from LNS to DFP

y (DFP)x (DFP)

LOG10LOG10

Decimal

ADD,SUB 2

Anti-LOG10

Z (LNS)

Y (LNS)X (LNS)

Figure 9.1: Decimal logarithmic arithmetic unit.

and their decimal associated arithmetic are performed well in it. It is assumed that DLAU

can perform decimal complex arithmetic units, (such as a division, a multiplication, a re-

ciprocal and square root etc. as shown in Table 9.1) faster and consume less power and

areas than decimal DXP or DFP normal arithmetic units with an acceptable precision of the

accuracy. In this dissertation, decimal logarithmic and antilogarithmic converters based on

the table-based piecewise linear approximation method have been presented in Chapter 4.

These two units only take a single clock cycle to obtain the results, which gives a good start-

ing point for the research for the design and implementation of DLAU. However, since the

table-based linear approximation approach presented in this dissertation is efficient only for

the lower precision of accuracy, more efficient table-based approaches for higher precision,

such as the higher polynomial order approximation etc., and corresponding more complex

architectures could be the next research step. However, we list three problems for this pro-

posal: 1) What is the motivation of research for DLAU? 2) How to solve the rounding for

the computation of the decimal arithmetic by DLAU? 3) How to convert the DFP operand

to the decimal LNS operand?

168

Table 9.1: Operations by decimal logarithmic arithmetic unit.

Arithmetic Operations Normal Arithmetic Logarithmic Arithmetic

Multiplication MUL z=x×y Z=X+Y

Division DIV z=x÷y Z=X−Y
Reciprocal RCP z=1/x Z=−X
Squared Root SQRT z=

√
x Z=X/2

Reciprocal Squared Root RSQ z=1/
√
x Z=−X/2

Square SQR z=x2 Z=2X

9.2.2 A Combined DFP Division/Square Root Unit

Another interesting future research work is to design and implement a single recurrence unit

that can compute DFP division, square root, and as many transcendental functions as pos-

sible based on a choice of coefficient table and a minimal number of control signals. The

hardware-oriented algorithms based on digit-recurrence with selection by rounding are intro-

duced for high-radix binary division, square-root [89, 90, 91], CORDIC [93], logarithm [94]

and exponential [92] operations respectively. In Part IV, the algorithm and architecture

of DFP logarithmic and antilogarithmic converters based on digit-recurrence with selection

by rounding have been designed and implemented separately. However, it is obvious that

the most subcomponents in the hardware implementation for these two architectures can be

shared in a single recurrence unit. We assume that the proposed decimal digit-recurrence

algorithm with selection by rounding can be applied for many other different functions with

the minimum extra resource and modification. To anticipate developments of this unit, it

might be possible to design the units as loosely-coupled collections of subcomponents (adders,

buffer registers etc.) where the connection pattern, sequence information and table contents

are loaded as firmware. The merits of this idea would be determined by the degree to which

the flexibility would degrade performance on the critical operations, mainly division.

The complication of this work is that the IEEE 754-2008 standard requires the exact

rounding for the transcendental functions, and there may be some significant mathematical

work required to prove rounding correctness over the value range and all rounding modes.

169

However, exact rounding for some arithmetic operations, especially for some transcendental

factions would be a challenging problem - Table Maker’s Dilemma [60]. The exact rounding

may be intractable to be done in a hardware unit, so it would be acceptable for the hardware

unit to produce an faithful results which could then be refined to the correct value in software.

The maximum frequency, number of clock cycles, throughput and latency can be referenced

from the existing DFP arithmetic logic unit, such as DFP unit in IBM POWER6 (13 FO4

per clock cycle).

Single Instruction Multiple Data (SIMD) is a technique employed to achieve data level

parallelism. In the future, we plan to combine this single recurrence unit and SIMD architec-

ture together to achieve the high performance arithmetic to support current microprocessor.

The SIMD supported BFP arithmetic for general-purpose x86-compatible microprocessors

has been described in literatures [134, 135, 136], which are good bases for us to build a

similar mechanism for DFP arithmetic. Since the digit-width of decimal mantissa and bit-

width of exponent in three decimal formats are Decimal32 (6-bit, 7-digit), Decimal64 (8-bit,

16-digit) and Decimal128 (12-bit, 34-digit), a few of the bits of the combined unit would

be wasted. IBM POWER6 [9] supports Decimal64 and Decimal128 basic formats directly

with arithmetic operations and provides support for converting to and from the Decimal32

storage format. The SIMD architecture provided by IBM POWER6 can operate one higher-

precision data path (Decimal128) or two lower-precision data paths (Decimal64) at the same

time.

9.2.3 DFP Transcendentals via BID Encoding

In IEEE 754-2008 standard, both Densely Packed Decimal (DPD) [54] and Binary Integer

Decimal (BID) [55] encodings are included as two representations for DFP formats. The

BID external format should be converted to binary integer, while DPD format to BCD

coding during the internal operations. The research works presented in this dissertation

for DFP transcendental arithmetic are all based on DPD to BCD, and then BCD coding

is operated in DFP arithmetic. The BID format is firstly adopted for Intel’s software DFP

Math library [55]. Recently, some researchers have worked on integrating BID format into

the hardware implementation. In [137], a decimal division based on BID format is presented

170

and compared with previous BCD one using the same algorithm. However, the architecture

based on BID format is not better than previous BCD one, because the binary-based decimal

normalization unit in the architecture can not achieve a high speed. A series of researches

for DFP arithmetic based on BID format are designed and implemented in recent years [138,

139, 140]. The main bottleneck is on the normalization, addition alignment and rounding

units because they are implemented by a binary multiplication and used iteratively in DFP

arithmetic. For example, the date-path of DFP adder includes the alignment, normalization

and rounding step, and all these steps need to use binary multiplications, which is not

efficient for speed. However, we must admit that the advantage of internal binary is that we

can use the binary adder and multiplier from the current integer ALU in the microprocessor.

Recently, we have designed and implemented a binary based normalization unit which can

be modified for rounding or alignment operation for BID format. In the future work, we

will do more performance evaluation for BID transcendental arithmetic. We try to answer a

question: ”which format, BID or BCD, is more efficient for DFP transcendental arithmetic?”

We believe it is an interesting research topic to carry on.

171

References

[1] C. Maxfield, “Binary Coded Decimal (BCD) 101 - Part 1,” Apr. 2007. [Online].
Available: http://www.eetimes.com/design

[2] M. F. Cowlishaw, “Decimal floating-point: algorism for computers,” in 16th IEEE
Symposium on Computer Arithmetic (ARITH’16), June 2003, pp. 104–111.

[3] A. Tsang and M. Olschanowsky, “A study of dataBase 2 customer queries,” IBM Santa
Teresa Laboratory, San Jose, CA, USA, IBM Technical Report TR.03.413, 1991.

[4] M. F. Cowlishaw, “Decimal arithmetic FAQ: Part 1 - general questions,” Apr. 2010.
[Online]. Available: http://speleotrove.com/decimal/decifaq1.html

[5] IBM Coroperation, “The ‘telco’ benchmark,” Mar. 2005. [Online]. Available:
http://speleotrove.com/decimal/telcoSpec.html

[6] SUN Microsystem, “BigDecimal class, API specification for the Java 2 platform,”
2004. [Online]. Available: http://java.sun.com/j2se/1.3/docs/api/

[7] M. F. Cowlishaw, “The decNumber C library, version 3.68,” Jan. 2010. [Online].
Available: http://speleotrove.com/decimal/decnumber.pdf

[8] IEEE, Inc., IEEE 754-2008 standard for floating-point arithmetic, Aug. 2008.

[9] L. Eisen, J. W. W. III, H.-W. Tast, N. Mading, J. Leenstra, S. M. Mueller, C. Jacobi,
J. Preiss, E. M. Schwarz, and S. R. Carlough, “IBM POWER6 accelerators: VMX and
DFU,” IBM Research and Development, vol. 51, no. 6, pp. 663–683, Nov. 2007.

[10] A. Y. Duale, M. H. Decker, H.-G. Zipperer, M. Aharoni, and T. J. Bohizic, “Decimal
floating-point in z9: an implementation and testing perspective,” IBM Research and
Development, vol. 51, no. 1/2, pp. 217–227, Jan./Mar. 2007.

[11] E. M. Schwarz, J. S. Kapernick, and M. F. Cowlishaw, “Decimal floating-point support
on the IBM system z10 processor,” IBM Research and Development, vol. 53, no. 1, pp.
4:1–4:10, Jan. 2009.

[12] R. D. Kenney and M. J. Schulte, “High-speed multioperand decimal adders,” IEEE
Transactions on Computers, vol. 54, no. 8, pp. 953–963, Aug. 2005.

[13] L.-K. Wang and M. J. Schulte, “Decimal floating-point adder and multifunction unit
with injection-based rounding,” in 18th IEEE Symposium on Computer Arithmetic
(ARITH’18), June 2007, pp. 56–68.

172

http://www.eetimes.com/design
http://speleotrove.com/decimal/decifaq1.html
http://speleotrove.com/decimal/telcoSpec.html
http://java.sun.com/j2se/1.3/docs/api/
http://speleotrove.com/decimal/decnumber.pdf

[14] L. Dadda, “Multi operand parallel decimal adder: A mixed binary and BCD approach,”
IEEE Transactions on Computers, vol. 56, no. 10, pp. 1320–1328, Oct. 2007.

[15] L.-K. Wang, M. J. Schulte, J. D. Thompson, and N. Jairam, “Hardware designs for
decimal floating-point addition and related operations,” IEEE Transactions on Com-
puters, vol. 58, no. 3, pp. 322–335, Mar. 2009.

[16] L.-K. Wang and M. J. Schulte, “A decimal floating-point adder with decoded operands
and a decimal leading-zero anticipator,” in 19th IEEE Symposium on Computer Arith-
metic (ARITH’19), June 2009, pp. 125–134.

[17] A. Vázquez and E. Antelo, “A high-performance significand BCD adder with IEEE
754-2008 decimal rounding,” in 19th IEEE Symposium on Computer Arithmetic
(ARITH’19), June 2009, pp. 135–144.

[18] S. Gorgin and G. Jaberipur, “Fully redundant decimal arithmetic,” in 19th IEEE
Symposium on Computer Arithmetic (ARITH’19), June 2009, pp. 145–152.

[19] H. Nikmehr, B. Phillips, and C. C. Lim, “A decimal carry-free adder,” in SPIE Sym-
posium Smart Structures, Devices, and Systems II, Feb. 2005, pp. 786–797.

[20] M. A. Erle, M. J. Schulte, and B. J. Hickmann, “Decimal floating-point multipli-
cation via carry-save addition,” in 18th IEEE Symposium on Computer Arithmetic
(ARITH’18), June 2007, pp. 46–55.

[21] M. A. Erle, B. J. Hickmann, and M. J. Schulte, “Decimal floating-point multiplication,”
IEEE Transactions on Computers, vol. 58, no. 7, pp. 902–916, July 2009.

[22] G. Jaberipur and A. Kaivani, “Improving the speed of parallel decimal multiplication,”
IEEE Transactions on Computers, vol. 58, no. 11, pp. 1539–1552, Nov. 2009.

[23] T. Lang and A. Nannarelli, “A radix-10 combinational multiplier,” in IEEE Asilomar
Conference on Signals, Systems and Computers (ACSSC ’06), Nov. 2006, pp. 313–317.

[24] A. Vázquez, E. Antelo, and P. Montuschi, “Improved design of high-performance paral-
lel decimal multipliers,” IEEE Transactions on Computers, vol. 59, no. 5, pp. 679–693,
Mar. 2010.

[25] H. Nikmehr, B. Phillips, and C. Lim, “Fast decimal floating-point division,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 14, no. 9, pp. 951–
961, Sept. 2006.

[26] E. M. Schwarz and S. R. Carlough, “Power6 decimal divide,” in 18th IEEE Application-
Specific Systems, Architectures, and Processors (ASAP’07), July 2007, pp. 128–133.

[27] A. Vázquez, E. Antelo, and P. Montuschi, “A radix-10 SRT divider based on alternative
BCD codings,” in IEEE International Conference Computer Design (ICCD’07), Oct.
2007, pp. 46–55.

173

[28] L.-K. Wang and M. J. Schulte, “A decimal floating-point divider using Newton-
Raphson iteration,” VLSI Signal Processing Systems, vol. 49, no. 1, pp. 3–18, Oct.
2007.

[29] T. Lang and A. Nannarelli, “A radix-10 digit-recurrence division unit: algorithm and
architecture,” IEEE Transactions on Computers, vol. 56, no. 6, pp. 727–739, June
2007.

[30] L.-K. Wang and M. J. Schulte, “Decimal floating-point square root using Newton-
Raphson iteration,” in 16th IEEE Application-Specific Systems, Architectures, and
Processors (ASAP’05), July 2005, pp. 305–319.

[31] L.-K. Wang, M. A. Erle, C. Tsen, E. M. Schwarz, and M. J. Schulte, “A survey of
hardware designs for decimal arithmetic,” IBM Research and Development, vol. 54,
no. 3, paper 8, Mar./Apr. 2010.

[32] J. M. Muller, Elementary Functions, Algorithms and Implementation, 2nd ed. Boston,
USA: Birkhäuser Verlag, 2005.

[33] H. Kim, B.-G. Nam, J.-H. Sohn, J.-H. woo, and H.-J. Yoo, “A 231-MHz, 2.18-mW 32-
bit logarithmic arithmetic unit for fixed-point 3-D graphics system,” IEEE Solid-State
Circuits, vol. 14, no. 11, pp. 2373–2381, Nov. 2006.

[34] J. N. Coleman, E. I. Chester, C. I. Softley, and J. Kadlec, “Arithmetic on the European
logarithmic microprocessor,” IEEE Transactions on Computers, vol. 49, no. 7, pp. 702–
715, June 2000.

[35] N. Ide, M. Hirano, Y. Endo, S. Yoshioka, H. Murakami, A. Kunimatsu, T. Sato,
T. Kamei, T. Okada, and M. Suzuoki, “2.44-GFLOPS 300-MHz floating-point vector-
processing unit for high-performance 3D graphics computing,” IEEE Solid-State Cir-
cuits, vol. 35, no. 7, pp. 1025–1033, July 2006.

[36] S. Vassiliadis, M. Zhang, and J. G. Delgado-Frias, “Elementary function generators
for neural-network emulators,” IEEE Transactions on Neural Networks, vol. 11, no. 6,
pp. 1438–1449, Nov. 2000.

[37] S.-C. Huang and L.-G. Chen, “A 32-bit logarithmic number system processor,” VLSI
Signal Processing Systems, vol. 14, no. 3, pp. 311–319, Dec. 1996.

[38] J. Harrison, “Presentation: Decimal transcendentals via binary,” June
2009. [Online]. Available: http://www.ac.usc.es/arith19/sites/default/files/S7P2
DecimalTranscendentalsViaBinary.pdf

[39] J. C. Kropa, “Calculator algorithms,” Mathematics Magazine, vol. 51, no. 2, pp. 106–
109, Mar. 1978.

[40] L. Imbert, J. M. Muller, and F. Rico, “A radix-10 BKM algorithm for computing
transcendentals on pocket computers,” VLSI Signal Processing Systems, vol. 25, no. 2,
pp. 179–186, June 2000.

174

http://www.ac.usc.es/arith19/sites/default/files/S7P2_DecimalTranscendentalsViaBinary.pdf

[41] J. Harrison, “Decimal transcendentals via binary,” in 19th IEEE Symposium on Com-
puter Arithmetic (ARITH’19), June 2009, pp. 187–194.

[42] M. Yamazaki, “Digital antilogarithmic converter circuit,” Patent and Trademark Of-
fice, US patent 4,058,807, Nov. 1977.

[43] S. D. Trong, K. Helwig, and M. Loch, “Digital circuit for calculating a logarithm of a
number,” Patent and Trademark Office, US patent 5,363,321, Nov. 1994.

[44] F. Nagao and M. Fuma, “Logarithmic value calculation circuit,” Patent and Trademark
Office, US patent 6,345,285, Feb. 2002.

[45] B. L. Hallse, “Digital base-10 logarithm converter,” Patent and Trademark Office, US
patent 6,587,070, July 2003.

[46] R. W. Allred, “Circuits, systems, and methods implementing approximations for log-
arithm, inverse logarithm, and reciprocal,” Patent and Trademark Office, US patent
7,171,435, Jan. 2007.

[47] A. J. Morenilla, H. M. Mora, J.-L. S. Romero, and F. P. Lopez, “A fast architecture
for radix-10 coordinates rotation,” in 3rd Southern Conference on Programmable Logic,
Feb. 2007, pp. 39–44.

[48] J. L. Sanchez, H. Mora, J. Mora, and A. Jimeno, “Architecture implementation of
an improved decimal CORDIC method,” in IEEE International Conference Computer
Design (ICCD’08), Oct. 2008, pp. 95–100.

[49] A. Vaźquez, J. Villalba, and E. Antelo, “Computation of decimal transcendental func-
tions using the CORDIC algorithm,” in 19th IEEE Symposium on Computer Arith-
metic (ARITH’19), June 2009, pp. 179–186.

[50] J.-L. Sanchez, H. Mora, J. Mora, F. J. Ferrandez, and A. Jimeno, “An iterative method
for improving decimal calculations on computers,” Elsvier Mathematical and Computer
Modelling, vol. 50, pp. 869–878, Dec. 2009.

[51] A. Jimeno, H. Mora, J. L. Sanchez, and F. Pujol, “A BCD-based architecture for fast
coordinate rotation,” Elsevier Systems Architecture, vol. 54, pp. 829–840, Feb. 2008.

[52] IEEE, Inc., IEEE Standard for Binary Floating-Point Arithmetic, Mar. 1985.

[53] ——, IEEE Standard for Radix-Independent Floating-Point Arithmetic, Mar. 1987.

[54] M. F. Cowlishaw, “Densely packed decimal encoding,” IEE Computers and Digital
Techniques, vol. 149, no. 3, p. 102C104, May 2002.

[55] M. Cornea, J. Harrison, C. Anderson, P. T. P. Tang, E. Schneider, and E. Gvozdev,
“A software implementation of the IEEE 754R decimal floating-point arithmetic using
the binary encoding format,” IEEE Transactions on Computers, vol. 58, no. 2, pp.
148–162, Feb. 2009.

175

[56] I. D. Castellanos and J. E. Stine, “A 64-bit decimal floating-point comparator,” in
18th IEEE Application-Specific Systems, Architectures, and Processors (ASAP’06),
June 2003, pp. 138–144.

[57] A. Pińeiro, “Algorithms and architectures for elementary function computation,”
Ph.D. dissertation, University of Santiago de Compostela, Spain, 2003.

[58] B. Parhami, Computer Arithmetic: Algorithms and Hardware Designs, 1st ed. Lon-
don, U.K.: Oxford Univ. Press, 2000.

[59] I. Koren, “Evaluating elementary functions in a numerical coprocessor based on ratio-
nal approximations,” IEEE Transactions on Computers, vol. 39, no. 8, pp. 1030–1037,
Aug. 1990.

[60] V. Lefévre, J. M. Muller, and A. Tisserand, “Toward correctly rounded transcenden-
tals,” IEEE Transactions on Computers, vol. 47, no. 11, pp. 1235–1243, Nov. 1998.

[61] V. Lefévre, D. Stehlé, and P. Zimmermann, “Worst cases for the exponential func-
tion in the IEEE 754r decimal64 format,” in Reliable Implementation of Real Number
Algorithms, Jan. 2008, pp. 114–126.

[62] W. Cody and W. Waite, Software Manual for the Elementary Functions, Prentice-Hall,
1980.

[63] S. Gal and B. Bachelis, “An accurate elementary mathematical library for the IEEE
floating point standard,” ACM Transactions on Mathematical Software, vol. 17, no. 1,
pp. 26–45, Mar. 1991.

[64] P. Markstein, IA-64 and Elementary Functions. Hewlett-Packard Professional Books,
2000.

[65] S. F. Oberman, “Floating-point division and square root algorithms and implementa-
tion in the AMD-K7 microprocessor,” in 14th IEEE Symposium on Computer Arith-
metic (ARITH’14), Apr. 1999, pp. 106–115.

[66] M. J. Schulte and E. E. Swartzlander Jr., “Hardware designs for exactly rounded
elementary functions,” IEEE Transactions on Computers, vol. 43, no. 8, pp. 964–973,
Aug. 1994.

[67] E. W. Cheney, Introduction to Approximation Theory. International Series in Pure
and Applied Mathematics. New York, NY: McGraw Hill, 1966.

[68] T. J. Rivlin, An Introduction to the Approximation of Functions. MA, USA: Repub-
lished by Dover, 1981.

[69] M. D. Ercegovac, “A general method for evaluation of functions and computation
in a digital computer,” Ph.D. dissertation, Dept. of Computer Science, University of
Illinois, Urbana-Champaign, IL, 1975.

176

[70] A. A. Liddicoat, “High-performance arithmetic for division and the elementary func-
tions,” Ph.D. dissertation, Dept. of Electrical Engineering, Stanford University, Palo
Alto, CA, 2002.

[71] M. D. Ercegovac, “A general hardware-oriented method for evaluation of functions and
computations in a digital computer,” IEEE Transactions on Computers, vol. 26, no. 7,
pp. 667–682, July 1977.

[72] P. T. P. Tang, “Table look-up algorithms for elementary functions and their error
analysis,” Argonne National Laboratory, Report, MCS-P194-1190, Jan. 1991.

[73] W. F. Wang and E. Goto, “Fast hardware-based algorithms for elementary func-
tion computations using rectangular multipliers,” IEEE Transactions on Computers,
vol. 43, no. 3, pp. 278–294, Mar. 1994.

[74] M. J. Schulte and J. E. Stine, “Approximating elementary functions with symmetric
bipartite tables,” IEEE Transactions on Computers, vol. 48, no. 8, pp. 842–847, Aug.
1999.

[75] F. D. Dinechin and A. Tisserand, “Multipartite table methods,” IEEE Transactions
on Computers, vol. 54, no. 3, pp. 319–330, Mar. 2005.

[76] W. Gautschi and G. H. Golub, Applications and computation of orthogonal polynomi-
als, International series of numerical mathematics, G. Opfer, Ed. Basel: Birkhäuser,
1999.

[77] D. D. Sarma and D. W. Matula, “Faithful interpolation in reciprocal tables,” in 13th
IEEE Symposium on Computer Arithmetic (ARITH’13), June 1997, pp. 82–91.

[78] D. D. Sarma and D. Matula, “Faithful bipartite ROM reciprocal tables,” IEEE Trans-
actions on Computers, vol. 47, no. 11, pp. 1216–1222, Nov. 1998.

[79] H. Hassler and N. Takagi, “Function evaluation by table look-up and addition,” in
12th IEEE Symposium on Computer Arithmetic (ARITH’12), June 1995, pp. 10–16.

[80] N. Takagi, “Powering by a table lookcup and a multiplication with operand modifica-
tion,” IEEE Transactions on Computers, vol. 47, no. 11, pp. 1216–1222, Nov. 1998.

[81] J. M. Muller, “A few results on table-based methods,” Reliable Computing, vol. 5,
no. 3, pp. 279–288, Oct. 1999.

[82] S. L. SanGregory, R. E. Siferd, C. Brother, and D. Gallagher, “A fast, low-power
logarithm approximation with cmos vlsi implementation,” in IEEE 39th International
Midwest Symposium Circuits and Systems (MWSCAS’99), Aug. 1999, pp. 388–391.

[83] F. D. Dinechin and A. Tisserand, “Some improvements on multipartite table methods,”
in 15th IEEE Symposium on Computer Arithmetic (ARITH’15), June 2001, pp. 128–
135.

177

[84] J. A. Pińeiro, J. D. Bruguera, and J. M. Muller, “Faithful powering computation using
table look-up and a fused accumulation tree,” in 15th IEEE Symposium on Computer
Arithmetic (ARITH’15), June 2001, pp. 40–47.

[85] K. H. Abed and R. E. Siferd, “Cmos vlsi implementation of a low-power logarithmic
converter,” IEEE Transactions on Computers, vol. 52, no. 11, pp. 1421–1433, Nov.
2003.

[86] J. E. Stine and M. J. Schulte, “The symmetric table addition method for accurate
function approximation,” VLSI Signal Processing, vol. 21, no. 2, pp. 167–177, June
1999.

[87] K. H. Abed and R. E. Siferd, “Vlsi implementation of a low-power antilogarithmic
converter,” IEEE Transactions on Computers, vol. 52, no. 9, pp. 1221–1228, Sept.
2003.

[88] M. D. Ercegovac and T. Lang, Division and Square Root: Digit Recurrence Algorithms
and Implementations. Kluwer Academic Publishers, 1994.

[89] M. D. Ercegovac, T. Lang, and P. Montuschi, “Very high-radix division with prescaling
and selection by rounding,” IEEE Transactions on Computers, vol. 43, no. 8, pp. 909–
918, May 1994.

[90] T. Lang and P. Montuschi, “Very-high radix square root with prescaling and rounding
and a combined division/square root unit,” IEEE Transactions on Computers, vol. 48,
no. 8, pp. 827–841, Aug. 1999.

[91] E. Antelo, T. Lang, and J. D. Bruguera, “Computation of
√

x/d in a very-high radix
combined division/square-root unit with scaling and selection by rounding,” IEEE
Transactions on Computers, vol. 47, no. 2, pp. 152–161, Feb. 1998.

[92] A. Pińeiro, M. D. Ercegovac, and J. D. Bruguera, “Algorithm and architecture for log-
arithm, exponential, and powering computation,” IEEE Transactions on Computers,
vol. 53, no. 9, pp. 1085–1096, Sept. 2004.

[93] E. Antelo, T. Lang, and J. Bruguera, “High-radix CORDIC rotation based on selection
by rounding,” VLSI Signal Processing Systems, vol. 25, no. 2, pp. 141–153, June 2000.

[94] A. Pińeiro, M. D. Ercegovac, and J. D. Bruguera, “High-radix logarithm with selection
by rounding: algorithm and implementation,” VLSI Signal Processing Systems, vol. 40,
no. 1, pp. 109–123, Mar. 2005.

[95] J.-C. Bajard, S. Kla, and J.-M. Muller, “Bkm: a new hardware algorithm for complex
elementary functions,” IEEE Transactions on Computers, vol. 43, no. 8, pp. 955–963,
Aug. 1994.

[96] M. J. Flynn, “On division by functional iteration,” IEEE Transactions on Computers,
vol. 19, no. 8, pp. 702–706, Aug. 1970.

178

[97] S. F. Oberman and M. J. Flynn, “Division algorithms and implementations,” IEEE
Transactions on Computers, vol. 48, no. 6, pp. 833–854, Aug. 1997.

[98] U. Kucukkabak and A. Akkas, “Design and implementation of reciprocal unit using
table look-up and Newton-Raphson iteration,” in IEEE EUROMICRO Systems on
Digital System Design (DSD’04), Sept. 2004, pp. 249–253.

[99] K. E. Wires and M. J. Schulte, “Reciprocal and reciprocal square root units with
operand modification and multiplication,” VLSI Signal Processing, vol. 42, no. 3, pp.
257–272, Mar. 2006.

[100] R. E. Goldschmidt, “Applications of Division by Convergence,” Master’s thesis, Elec-
trical Engineering Dept., Massachussets Institute of Technology (MIT), June 1964.

[101] M. D. Ercegovac, L. Imbert, D. W. Matula, J.-M. Muller, and G. Wei, “Improving
Goldschmidt division, square root and square root reciprocal,” IEEE Transactions on
Computers, vol. 49, no. 7, pp. 759–763, July 2000.

[102] I. Koren, Computer Arithmetic Algorithms, 2nd ed. A K Peters, Ltd., 2001.

[103] J.-P. Deschamps, G. J. A. Bioul, and G. D. Sutter, Synthesis of Arithmetic Circuits:
FPGA, ASIC and Embedded Systems, 1st ed. Wiley, 2006.

[104] Y. You, Y. Kim, and J. Choi, “Dynamic decimal adder circuit design by using the
carry lookahead,” in IEEE Design and Diagnostics of Electronic Circuits and systems
(DDECS’06), Apr. 2006, pp. 242–244.

[105] A. Vaźquez and E. Antelo, “Conditional speculative decimal addition,” in 7th Confer-
ence on Real Numbers and Computers (RNC’7), July 2006, pp. 47–57.

[106] D.-U. Lee, A. A. Gaffar, O. Mencer, and W. Luk, “Optimizing hardware function
evaluation multipartite table methods,” IEEE Transactions on Computers, vol. 54,
no. 3, pp. 319–330, Mar. 2005.

[107] J. Cao, B. W. Y. Wei, and J. Cheng, “High-performance architectures for elementary
function generation,” in 15th IEEE Symposium on Computer Arithmetic (ARITH’15),
June 2001, pp. 136–144.

[108] J. Detrey and F. de Dinechin, “Table-based polynomials for fast hardware function
evaluation,” in 16th IEEE Application-Specific Systems, Architectures, and Processors
(ASAP’05), July 2005, pp. 328–333.

[109] J. Pièiro, S. Oberman, J.-M. Muller, and J. Bruguera, “High-speed function approx-
imation using a minimax quadratic interpolator,” IEEE Transactions on Computers,
vol. 54, no. 3, pp. 304–318, Mar. 2005.

[110] T. Sasao, S. Nagayama, and J. Butler, “Numerical function generators using LUT
cascades,” IEEE Transactions on Computers, vol. 56, no. 6, pp. 826–838, June 2007.

179

[111] D.-U. Lee, R. C. C. Cheung, W. Luk, and J. D. Villasenor, “Hierarchical segmentation
for hardware function evaluation,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 17, no. 1, pp. 103–116, Jan. 2009.

[112] B. Lee and N. Burgess, “Some approximations on taylor-series function approximation
on FPGA,” in Asilomar Conference Circuits, Systems, and Computers, Nov. 2003, pp.
2198–2202.

[113] D. M. Lewis, “Interleaved memory function interpolators with application to an ac-
curate LNS arithmetic unit,” IEEE Transactions on Computers, vol. 43, no. 8, pp.
974–982, Aug. 1994.

[114] D.-U. Lee and J. D. Villasenor, “A bit-width optimization methodology for polynomial-
based function evaluation,” IEEE Transactions on Computers, vol. 56, no. 4, pp. 567–
571, Apr. 2007.

[115] F. K. Hanna and A. K. Misra, “Hardware realisation of binary search algorithm,” IET
Computers and Digital Techniques, vol. 127, no. 4, pp. 148–151, July 1980.

[116] D. Chen, Y. Choi, D. Teng, K. Wahid, and S. Ko, “A novel decimal-to-decimal loga-
rithmic converter,” in IEEE Symposium on Circuit and System (ISCAS’08), May 2008,
pp. 688–691.

[117] D. Chen, Y. Zhang, L. Chen, D. Teng, K. Wahid, and S. Ko, “A decimal-to-decimal
antilogarithmic converter,” in IEEE Canidian Electrical and Computer Engineering
(CCECE’08), May 2008, pp. 1223–1226.

[118] J. N. Mitchell Jr., “Computer multiplication and division using binary logarithms,”
IRE Transactions on Electronic Computers, vol. 11, pp. 512–517, Aug. 1962.

[119] M. Combet, H. Zonneveld, and L. Verbeek, “Computation of the base two logarithm of
binary numbers,” IEEE Transactions on Electronic Computers, vol. 14, pp. 863–867,
Dec. 1965.

[120] E. L. Hall, D. D. Lynch, and S. J. Dwyer, “Generation of products and quotients using
approximate binary logarithms for digital filtering applications,” IEEE Transactions
on Computers, vol. 19, pp. 97–105, Feb. 1970.

[121] Xilinx Inc., Xilinx University Program XUPV5-LX110T Development System, Hard-
ware Reference Manual, June 2009.

[122] D. Chen, Y. Zhang, Y. Choi, M. H. Lee, and S. Ko, “A 32-bit decimal floating-point log-
arithmic converter,” in 19th IEEE Symposium on Computer Arithmetic (ARITH’19),
June 2009, pp. 195–203.

[123] J. Detrey and F. de Dinechin, “Parameterized floating-point logarithm and exponential
functions for FPGAs,” Elsevier Microprocessors & Microsystems, vol. 31, no. 8, pp.
537–545, Dec. 2007.

180

[124] V. G. Oklobdzija, “An algorithmic and novel design of a leading zero detector circuit:
comparison with logic synthesis,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 2, no. 1, pp. 124–128, Mar. 1994.

[125] M. A. Erle and M. J. Schulte, “Decimal multiplication via carry-save addition,” in
14th IEEE Application-Specific Systems, Architectures, and Processors (ASAP’03),
June 2003, pp. 348–358.

[126] P. M. Kogge and H. S. Stone, “A parallel algorithm for the efficient solution of a general
class of recurrence equations,” IEEE Transactions on Computers, no. 8, pp. 786–793,
Aug. 1973.

[127] STMicroelectronics, “90nm CMOS090 Design Platform,” 2007. [Online]. Available:
http://www.st.com/stonline/products/technologies/soc/90plat.htm

[128] I. Sutherland, R. Sproull, and D. Harris, Logical Effort: Designing Fast CMOS Circuits,
1st ed. Morgan Kaufmann, 1999.

[129] Intel Corporation, Using Decimal Floating-Point with Intel C++ Compiler.
http://software.intel.com/en-us/articles/using-decimal-floating-point-with-intel-c-
compiler, 2010.

[130] D. Chen, Y. Zhang, D. Teng, K. Wahid, M. H. Lee, and S. Ko, “A new decimal
antilogarithmic converter,” in IEEE Symposium on on Circuit and System (ISCAS’09),
May 2009, pp. 445–448.

[131] M. J. Schulte and J. E. Stine, “Symmetric bipartite tables for accurate function ap-
proximation,” in 13th IEEE Symposium on Computer Arithmetic (ARITH’13), July
1997, pp. 175–183.

[132] N. Takagi, “Generating a power of an operand by a table look-up and a multiplication,”
in 13th IEEE Symposium on Computer Arithmetic (ARITH’13), July 1997, pp. 126–
131.

[133] M. D. Ercegovac and T. Lang, “On-the-fly conversion of redundant into conventional
representations,” IEEE Transactions on Computers, no. 7, pp. 895–897, Aug. 1987.

[134] M. J. Schulte, D. Tan, and C. E. Lemonds, “Floating-point division algorithms for an
x86 microprocessor with a rectangular multiplier,” in IEEE International Conference
Computer Design (ICCD’07), Oct. 2007, pp. 304–310.

[135] A. Danysh and D. Tan, “Architecture and implementation of a vector/simd multiply-
accumulate unit,” IEEE Transactions on Computers, vol. 54, no. 3, pp. 284–293, Mar.
2005.

[136] D. Tan, C. E. Lemonds, and M. J. Schulte, “Low-power multiple-precision itera-
tive floating-point multiplier with SIMD support,” IEEE Transactions on Computers,
vol. 58, no. 2, pp. 284–293, Feb. 2009.

181

http://www.st.com/stonline/products/technologies/soc/90plat.htm

[137] T. Lang and A. Nannarelli, “Division unit for binary integer decimals,” in 20th IEEE
Application-Specific Systems, Architectures, and Processors (ASAP’09), July 2009, pp.
1–7.

[138] C. Tsen, M. J. Schulte, and S. G. Navarro, “Hardware design of a binary integer
decimal-based IEEE P754 rounding unit,” in 18th IEEE Application-Specific Systems,
Architectures, and Processors (ASAP’07), July 2007, pp. 9–11.

[139] C. Tsen, S. G. Navarro, and M. J. Schulte, “Hardware design of a binary integer
decimal-based floating-point adder,” in IEEE International Conference Computer De-
sign (ICCD’07), Oct. 2007, pp. 288–295.

[140] S. G. Navarro, C. Tsen, and M. J. Schulte, “A binary integer decimal-based multi-
plier for decimal floating-point arithmetic,” in IEEE signals, systems and computers
(ACSSC’07), Nov. 2007, pp. 353–357.

182

	Algorithms and Architectures for Decimal Transcendental Function Computation
	Permission to Use
	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	List of Abbreviations
	I Preface
	Introduction
	Why Decimal Arithmetic
	Motivation
	Research Overview
	Research Contributions

	II Research Background
	Decimal Transcendental Arithmetic
	DFP Formats in IEEE 754-2008 Standard
	DFP Formats and Encodings
	DFP Arithmetic Operations
	DFP Rounding Modes
	Exception Handling

	Decimal Transcendental Unit Design
	Some Details of DFP Transcendental Operations
	Classification of Hardware Approaches in BFP
	Considerations of Hardware Implementation
	Related Basic Decimal Arithmetic

	III Table-based First-Order Polynomial Approximation
	A Dynamic Non-Uniform Segmentation Method
	Introduction
	Minimax Polynomial Approximation
	Notations
	Minimax Error Analysis in One Segment

	A Non-Uniform Segmentation Method
	Determination of Initial UFB by MiniBit Approach
	Evaluation of Bit-Width of Segment Boundary
	Partition of Non-Uniform Segments by BSPS

	Hardware Architecture
	Segment Index Encoder
	Estimation of Memory Sizes

	Experimental Results
	Comparison Results
	Evaluation Results for More Functions
	Memory Sizes for Two Methods
	CPU Time Consumed

	Summary

	Decimal Logarithmic and Antilogarithmic Converters
	Introduction
	Decimal Logarithm and Antilogarithm Conversion
	Binary-based Decimal Logarithm Conversion (Alg. 1)
	Decimal Logarithm Conversion (Alg. 2)
	Decimal Antilogarithm Conversion (Alg. 3)

	Piecewise Linear Approximation Method
	Notations
	Decimal Minimax Error Analysis in One Segment
	Decimal Dynamic Non-Uniform Segmentation Method
	Approximation Results for Decimal Logarithm
	Approximation Results for Decimal Antilogarithm

	Error Analysis of Two Algorithms
	Hardware Architecture
	Binary-based Decimal Logarithmic Converter (Alg. 1)
	Decimal Logarithmic Converter (Alg. 2)
	Decimal Antilogarithmic Converter (Alg. 3)
	Decimal Segment Index Encoder
	Coefficients Look-up Table
	Decimal Linear Approximation Unit
	Design Example

	Experimental Results and Analysis
	Implementation Results and Analysis
	Tradeoff Analysis of Hardware Implementation
	Scale up to a Higher Required Accuracy
	Hardware Performance Comparison in Two Algorithms

	Summary

	IV Digit-Recurrence with Selection by Rounding
	Decimal Floating-Point Logarithmic Converter
	Introduction
	DFP Logarithm Operation
	Exception Handling
	Range Reduction

	Digit-Recurrence Algorithm for Logarithm
	Overview
	Selection by Rounding
	Index of Initial Iteration
	Approximation of Logarithm
	Error Analysis and Evaluation
	Guard Digit of Scaled Residual

	Architecture of DFP Logarithmic Converter
	Datapath
	Hardware Implementation

	Implementation and Comparisons
	Summary

	Decimal Floating-Point Antilogarithmic Converter
	Introduction
	DFP Antilogarithm Operation
	Exception Handling
	Range Reduction

	Digit-Recurrence Algorithm for Antilogarithm
	Overview of Algorithm
	Selection by Rounding
	Approximation of Logarithm
	Error Analysis and Evaluation
	Guard Digit of Scaled Residual

	Architecture of DFP Antilogarithmic Converter
	Datapath
	Hardware Implementation

	Implementation and Comparisons
	Summary

	V Decimal Reciprocal and Radix-100 Division Units
	Design and Implementation of Decimal Reciprocal Unit
	Introduction
	Initial Reciprocal Approximation
	Algorithm
	An Efficient Look-up Table Creation

	Newton-Raphson Iteration
	Hardware Implementation
	Implementation Results
	Summary

	Design and Implementation of A Radix-100 Decimal Division
	Introduction
	Algorithm
	Radix-100 Non-Restoring Decimal Division
	Pre-scaling method
	Analysis of Look-up Table Size

	Architecture
	Analysis of Implementation Results
	Summary

	VI Conclusion
	Summary and Future Research
	Summary
	Future Research
	Decimal Logarithmic Arithmetic Unit
	A Combined DFP Division/Square Root Unit
	DFP Transcendentals via BID Encoding

	References

