
Mixed-Fidelity Prototyping

of User Interfaces

A Thesis Submitted to the

College of Graduate Studies and Research

in Partial Fulfillment of the Requirements

for the degree of Master of Science

in the Department of Computer Science

University of Saskatchewan

Saskatoon

By

Jennifer Petrie

c©Jennifer Petrie, February 2006. All rights reserved.

Permission to Use

In presenting this thesis in partial fulfilment of the requirements for a Postgrad-

uate degree from the University of Saskatchewan, I agree that the Libraries of this

University may make it freely available for inspection. I further agree that permission

for copying of this thesis in any manner, in whole or in part, for scholarly purposes

may be granted by the professor or professors who supervised my thesis work or, in

their absence, by the Head of the Department or the Dean of the College in which

my thesis work was done. It is understood that any copying or publication or use of

this thesis or parts thereof for financial gain shall not be allowed without my written

permission. It is also understood that due recognition shall be given to me and to the

University of Saskatchewan in any scholarly use which may be made of any material

in my thesis.

Requests for permission to copy or to make other use of material in this thesis in

whole or part should be addressed to:

Head of the Department of Computer Science

176 Thorvaldson Building

110 Science Place

University of Saskatchewan

Saskatoon, Saskatchewan

Canada

S7N 5C9

i

Abstract

This research presents a new technique for user interface prototyping, called mixed-

fidelity prototyping. Mixed-fidelity prototyping combines low-, medium-, and high-

fidelity interface elements within a single prototype in a lightweight manner, support-

ing independent refinement of individual elements. The approach allows designers to

investigate alternate designs, including more innovative designs, and elicit feedback

from stakeholders without having to commit too early in the process. As well, the

approach encourages collaboration among a diverse group of stakeholders throughout

the design process. For example, individuals who specialize in specific fidelities, such

as high-fidelity components, are able to become involved earlier on in the process.

We developed a conceptual model called the Region Model and implemented

a proof-of-concept system called ProtoMixer. We demonstrated the mixed-fidelity

approach by using ProtoMixer to design an example application.

ProtoMixer has several benefits over other existing prototyping tools. With Pro-

toMixer, prototypes can be composed of multiple fidelities, and elements are easily

refined and transitioned between different fidelities. Individual elements can be tied

into data and functionality, and can be executed inside prototypes. As well, tradi-

tional informal practices such as sketching and storyboarding are supported. Fur-

thermore, ProtoMixer is designed for collaborative use on a high-resolution, large

display workspace.

ii

Acknowledgements

I would like to acknowledge my supervisor, Dr. Kevin Schneider, for all of his

guidance throughout my graduate studies. His suggestions were invaluable to my

thesis work. I would also like to thank the members of the Software Research Lab, in

particular David Paquette, Nicole Stavness, Andrew Sutherland, and Mark Watson,

for their friendship, encouragement, and many interesting discussions. Special thanks

to David Noete for his help with implementing ProtoMixer, saving me from many

frustrations. Finally, I would like to thank my parents for their tremendous support

over the many years of my university studies.

iii

For my best friend and supportive husband, David.

iv

Contents

Permission to Use i

Abstract ii

Acknowledgements iii

Contents v

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 Motivation . 3
1.2 Thesis Statement . 6
1.3 Approach . 7
1.4 Contributions . 8
1.5 Outline . 8

2 Background and Related Work 10
2.1 User Interface Prototyping Process 10

2.1.1 Low-Fidelity Prototypes . 11
2.1.2 Medium-Fidelity Prototypes 14
2.1.3 High-Fidelity Prototypes . 15
2.1.4 Summary . 15

2.2 User Interface Prototyping Tools . 16
2.2.1 Interface Builders . 16
2.2.2 Multimedia Design Tools . 17
2.2.3 SILK . 18
2.2.4 DENIM . 18
2.2.5 Freeform . 19
2.2.6 Summary . 19

2.3 Collaborative Design . 20
2.4 Large Display Workspaces . 21

2.4.1 Tivoli at Xerox PARC . 22
2.4.2 iRoom’s Interactive Mural at Stanford 23
2.4.3 i-LAND’s DynaWall at Darmstadt 23
2.4.4 PortfolioWall at Alias|wavefront 24
2.4.5 Designers’ Outpost at Berkeley 25
2.4.6 LIDS Project at Waikato . 27
2.4.7 Summary . 27

v

2.5 Conclusion . 28

3 Mixed-Fidelity Prototyping 30
3.1 Design Goals . 32

3.1.1 Support traditional informal design activities 32
3.1.2 Aid in transitioning between the different fidelities 33
3.1.3 Enhance the design process by recording history 33
3.1.4 Support collaborative design across diverse stakeholder groups 34
3.1.5 Provide a lightweight environment 35

3.2 An Example Application and Its Domain 35
3.3 Scenarios . 39

3.3.1 Scenario 1: Composing lightweight prototypes by mixing
fidelities . 39

3.3.2 Scenario 2: Transitioning between fidelities as ideas are refined 41
3.3.3 Scenario 3: Integrating domain-specific data and

functionality . 42
3.3.4 Scenario 4: Trying out novel interactive elements 43
3.3.5 Scenario 5: Comparative analysis of alternative designs 46
3.3.6 Scenario 6: Recording collaborative design efforts 47

3.4 Supporting Facilities . 48
3.4.1 Drawing Editor Facilities . 49
3.4.2 Organizational Facilities . 50
3.4.3 Prototyping Domain Facilities 51
3.4.4 Multi-User Support Facilities 52
3.4.5 Large Display-Specific Facilities 53
3.4.6 Process/Productivity Enhancing Facilities 55

3.5 Mapping Facilities to Scenarios . 56
3.6 Conclusion . 56

4 The Region Model
for Mixed-Fidelity Prototyping 59
4.1 Defining the Region Model . 61

4.1.1 Elements of the Region Model 62
4.1.2 Commands for Manipulating Regions 66

4.2 The Region Model Notation . 70
4.2.1 Specifying Regions . 70
4.2.2 Specifying Relationships . 73
4.2.3 Specifying Commands . 74
4.2.4 Specifying Design Space . 75

4.3 Benefits of the Region Model . 75

5 ProtoMixer: Software Support
for Mixed Fidelity Prototyping 77
5.1 Overview of ProtoMixer . 77
5.2 Implementing the Region Model . 79

vi

5.3 Integrating the Different Fidelities . 82
5.3.1 Low-Fidelity . 82
5.3.2 Medium-Fidelity . 84
5.3.3 High-Fidelity . 84

5.4 Using the System . 87
5.4.1 Interacting with the System 87
5.4.2 Composing Prototypes . 89
5.4.3 Adding Behavior to Prototypes 91
5.4.4 Organizing the Design Space 95
5.4.5 Storyboarding . 96
5.4.6 Additional Process-Enhancing Features 97

5.5 Utilizing a Large Display Workspace 98
5.6 Achieving the System Goals . 99
5.7 Future Implementations . 100

6 Mixing Fidelities In Action: An Example 101
6.1 Leading up to the Scenarios . 101
6.2 Achieving the Scenarios . 103

6.2.1 Achieving Scenario 1 . 104
6.2.2 Achieving Scenario 2 . 108
6.2.3 Achieving Scenario 3 . 109
6.2.4 Achieving Scenario 4 . 112
6.2.5 Achieving Scenario 5 . 116
6.2.6 Achieving Scenario 6 . 117

6.3 Discussion . 118

7 Conclusion 120
7.1 Summary . 120

7.1.1 Contributions . 122
7.2 Future Work . 122

7.2.1 Perform a Field Study . 123
7.2.2 Integrate Software Engineering Models 123
7.2.3 Explore Different Styles of User Interfaces 124
7.2.4 Further Investigate Using Large Displays 125
7.2.5 Further Implement Features in ProtoMixer 125

7.3 Conclusion . 126

A Region Model Notation 131
A.1 Complete XML Schema . 131
A.2 Example XML Document . 133

B Commands Implemented in ProtoMixer 135

vii

List of Tables

3.1 Mapping facilities to scenarios . 58

5.1 Mapping facilities to region commands and ProtoMixer features . . . 80

B.1 ProtoMixer Commands . 135

viii

List of Figures

2.1 A snapshot of DENIM [18] . 19
2.2 A snapshot of Freeform [26] . 20
2.3 A scene from DynaWall [30] . 24
2.4 A scene from PortfolioWall r© (Adapted from [5]) 25
2.5 A scene from Designers’ Outpost [15] 26
2.6 Recording design activity in Designers’ Outpost [16] 26

3.1 A sketch of the business forecasting tool 37
3.2 Mixing fidelities through layering of elements 41
3.3 Prototype with built-in domain-specific functionality and real data . . 43
3.4 Prototyping a novel chart element . 45
3.5 Exploring and comparing two alternate designs 46

4.1 Using the concept of regions to compose prototypes 60
4.2 Examples of possible layouts for the Region Model 64
4.3 Every region has a Parent region as well as some number of subregions 65
4.4 Region Model illustrated as a UML Diagram 67
4.5 An example state of the design space 71

5.1 Screenshot of ProtoMixer . 78
5.2 Screenshot of ProtoMixer’s command panel 88

6.1 Initial state of ProtoMixer upon loading assets into the Repository . . 102
6.2 A sketched prototype of the screen 102
6.3 Leading Scenario created in ProtoMixer 103
6.4 ‘Chart View’ after sketching labels and pulldown menus 104
6.5 ‘Chart View’ after adding images of the charts 105
6.6 ‘Chart View’ after adding chart axes labels 105
6.7 ‘Financial Statement View’ after adding sketched data and pulldown

menu . 106
6.8 ‘Financial Statement View’ after adding a high-fidelity table 107
6.9 Scenario 1 completed using ProtoMixer 107
6.10 ‘Chart View’ after sketching vertical guide bar 108
6.11 ‘Chart View’ after adding updated images of charts 109
6.12 Both views after adding period pulldown menu and profit field 110
6.13 ‘Financial Statement View’ after adding the high-fidelity text field

and table with data . 111
6.14 ‘Financial Statement View’ after binding text field’s value to the table

data . 112
6.15 Scenario 3 completed in ProtoMixer 113
6.16 ‘Chart View’ after composing a lightweight novel chart element 115
6.17 Scenario 4 completed using ProtoMixer 115

ix

6.18 Comparing two alternate prototype layouts using ProtoMixer 116
6.19 Annotating the two alternate layouts with pros and cons 117
6.20 Scenario 6 completed using ProtoMixer 118

x

Chapter 1

Introduction

This research focuses on user interface prototyping, an important activity in

software development. Prototyping involves creating mock-ups representing the user

interface of the final software system. Prototypes serve as a common language with

users, software engineers, and other stakeholders, offering a way for designers to

explore design ideas and elicit feedback from stakeholders prior to committing to

designs. Since prototyping helps flesh out requirements, prototypes may be used as

a specification for developers. Prototyping is important in arriving at a well-designed

user interface, and from many users’ perspective the user interface is the software.

Prototypes are categorized according to three types or fidelities: low-, medium-,

and high-fidelity, where fidelity refers to how accurately the prototypes resemble the

final software in terms of visual appearance, interaction style, and level of detail

[34]. Low-fidelity prototypes are paper-based sketches or images and only resemble

the final software in terms of general appearance. High-fidelity prototypes most

closely resemble the final software; they are computer-based designs that represent

exact appearance and interactivity as well as have some functionality implemented.

Medium-fidelity prototypes lie on the continuum between low and high; they are

1

computer-based refined versions of low-fidelity prototypes with additional detail,

interactivity, and/or functionality. Commonly accepted best practice encourages

starting with low-fidelity prototypes then moving to medium- and finally to high-

fidelity, refining prototypes at each fidelity prior to advancing to a higher-fidelity.

Typically, a multidisciplinary team, often including end users, is involved in proto-

typing as well as in the overall software design. Collaboration among the team is im-

portant for brainstorming alternate design ideas and then refining the ideas through

prototyping to arrive at a successful design in a timely manner. Low-fidelity proto-

typing is particularly conducive to collaboration since it involves large workspaces,

such as whiteboards, chalkboards, and large sheets of paper, which are beneficial for

expressing ideas for all team members to see as well as for allowing multiple people

to work on a prototype simultaneously.

This research addresses the prototyping of a specific style of user interface that

will be referred to as a true direct manipulation user interface. As the name suggests,

this style of interface provides the user with visual objects to manipulate on the

screen and these visual objects are usually more than simply form-based widgets.

This style of interface is considered highly graphics-based and may include novel or

non-standard interface elements and interactions. Furthermore, this style of interface

is intended for traditional desktop machines, not embedded or other devices. While

we may find that other styles of user interfaces may also benefit from the practices

and techniques set out by this research, it is not our focus.

2

1.1 Motivation

The current practice for user interface prototyping has several shortcomings:

• it only addresses one fidelity at a time,

• it limits iteration to only occur within the current fidelity,

• it lacks support for collaboration between user interface designers and other

stakeholders, and

• it does not encourage innovative user interfaces.

Under current practice, user interface designers work on one fidelity at a time.

They do not advance to a higher-fidelity until the current fidelity prototypes have

been extensively refined. This forces designers to make decisions on issues earlier

than desired. For example, layout is commonly decided at the low-fidelity stage

because it carries through to higher-fidelities and would be too much work to change

later on, even though layout may not always be a high-priority issue in initial stages.

This also undesirably delays investigating other issues such as complex functionality.

As a result, key or at least more concrete design ideas are unable to be presented to

stakeholders quickly and some design ideas are committed to prematurely.

While prototyping is often termed ‘iterative’ design, designers only iterate within

a specific fidelity at best. Iteration does not occur between the different fidelities.

For example, designers may iterate between different versions of a medium-fidelity

prototype but they rarely iterate back to the low-fidelity version. Under current

3

practice, making a significant change that involves refining an earlier fidelity often

requires starting over from scratch at that lower-fidelity. Because different fideli-

ties are performed on different mediums and tools, there is significant overhead in

transitioning between fidelities.

Current prototyping practice does not encourage collaboration between user inter-

face designers and various stakeholder groups. For example, end users are often only

involved in initial requirements gathering and sometimes in final design decisions.

However, involving end users for regular feedback throughout the design process

may be more effective in achieving the best designs. Another group, the software

engineers, work independently from user interface designers, coming together only

once respective designs have been finalized. There is a clear lack of coordination

and communication while design artifacts are being developed, which may result in

software that is not as attractive, usable, or accurate in meeting requirements. In re-

cent years, researchers have shown considerable interest in attempting to bridge the

gap between interface and software design through a series of workshops [10, 12, 13].

Gurantene et al. [7] argue for using high-fidelity prototypes as a bridging artifact.

Current design practice does not encourage innovative interfaces. Designers use

standard toolkit components, standard layouts, and mouse-based interactions when

developing user interfaces. This approach is reinforced in the tool support that is

available. While standards are important for providing reuse as well as familiarity for

the user, there are cases when new or non-standard designs may be more appropriate.

Unfortunately, current tools make it impossible or at least infeasible to be creative

4

in terms of interaction styles, techniques, and devices. As a result, more creative or

novel interface designs and interactions are rarely explored.

The above issues with current practice are evident in and often are reinforced

by the prototyping tools that exist today. Let us consider interface builders, such

as Visual Basic r©, NetBeansTM, and CodeWarriorTM, as an example since they are

the most widely used prototyping tools. Interface builders are commonly used for

creating high- and sometimes medium-fidelity prototypes. When using an inter-

face builder, designers are limited to exploring one fidelity at a time, are unable to

iterate between fidelities when refinements at a lower-fidelity are needed, and are

largely restricted to design layouts, components, and interactions that are built into

the tool. Furthermore, designers are not able to easily collaborate because inter-

face builders are single-user applications intended for traditional desktop displays.

Interface builders do not allow opportunity for designers to defer decisions; rather

they force designers to make immediate decisions on issues such as layout and types

of components. On top of all these weaknesses, interface builders are fairly time-

consuming to use and learn.

The user interface research community has been investigating a variety of tools

to address some drawbacks of interface builders and other commercial tools. How-

ever, most research-based tools have focused on supporting one specific fidelity, most

notably low-fidelity sketching [17, 18], which has largely been ignored at the com-

mercial level. One of the most promising tools is DENIM [18], which supports low-

and medium-fidelity prototyping of website design. In a limited way, DENIM allows

for more than one fidelity at once; images and basic functionality (hyperlinks) may

5

be combined in a sketched page. DENIM attempts to encourage some innovation by

allowing users to create reusable interface components. DENIM itself is not collab-

orative but has been used collaboratively through integration in Designers’ Outpost

[15], a tangible, large display system for structuring websites. DENIM does not offer

much in terms of iterating between fidelities. Overall, DENIM addresses some of the

issues presented in this section, but differs significantly from this research because

DENIM is intended as a single-user website design tool that aims to support current

practices rather than improving upon practices.

1.2 Thesis Statement

By mixing prototype fidelities in a lightweight manner, user interface designers will

be able to collaboratively explore design issues earlier in the process while defer-

ring design decisions. Composing a single prototype using any combination of low-,

medium-, and high-fidelity elements will allow more flexibility in what design issues

are explored at any given time. Some issues can be explored sooner in the proto-

typing process than possible under current practice. Also, committing to important

design decisions can be deferred to a later point in time, once more urgent issues have

been investigated. This approach will allow the opportunity to investigate alternate

designs, including more innovative designs, as well as to involve various stakeholders

prior to committing to a design.

6

1.3 Approach

This research is investigating a new approach to user interface prototyping that

we refer to as Mixed-Fidelity Prototyping. By mixing fidelities, we mean combin-

ing elements of multiple fidelities into a single prototype in such a way as to allow

independent refinement of individual elements. We aim for these mixed-fidelity pro-

totypes to be composed in a lightweight manner, that is, in a flexible, informal,

and easy to perform manner, requiring little or no complex initialization and coding

steps.

The aim of mixing fidelities is to allow designers the opportunity to focus on

a specific interface issue, refining it and moving it to lower- or higher-fidelities as

needed. At the same time, design decisions on less pressing issues can be deferred.

Also, the issue of interest can still be explored in context of a complete screen design

since sketches and higher-fidelities can be composed together.

Through this research, we also aim to enhance the collaborative nature of pro-

totyping. Mixing of fidelities allows individuals who have specific skills in higher-

fidelities, such as in widget implementation, to get involved earlier in the design

process. Also, users and other stakeholders can be elicited for feedback earlier on

before final decisions must be made.

To enhance collaboration, we take advantage of a large display workspace. Previ-

ous research projects involving large display workspaces indicate benefits may exist

in using large displays to support general collaborative design tasks such as brain-

storming sessions [25, 22, 9, 30]. Two projects in particular, Portfolio Wall [5] and

7

Designers’ Outpost [15], emphasize the potential of large display workspaces in sup-

porting domain-specific design decisions. This research’s large display prototyping

workspace aims to leverage successful ideas from the other design workspaces.

1.4 Contributions

This research provides the following contributions:

• A technique for composing user interface prototypes that involves mixing mul-

tiple fidelities within a single prototype

• A conceptual model that allows for creating user interface prototypes of mul-

tiple fidelities

• A proof-of-concept system for supporting the mixed-fidelity prototyping tech-

nique

1.5 Outline

The remainder of this document is organized as follows. Chapter 2 discusses back-

ground and related work on prototyping techniques and tools, collaborative design,

as well as large display workspace projects. The collaborative mixed-fidelity proto-

typing approach is described in Chapter 3, and includes a discussion of our design

goals, example scenarios of designers using our approach to perform practices that

are not currently possible, and facilities needed in a system to support the approach.

8

Chapter 4 presents a conceptual model as well as supporting notation for specify-

ing mixing of fidelities. Then a proof-of-concept system is discussed in Chapter 5.

An example design session is illustrated in Chapter 6 where the system is used to

accomplish the scenarios. Finally, the document concludes with a summary of this

research and areas for future work.

9

Chapter 2

Background and Related Work

This chapter discusses background and previous work relating to this research.

First, the traditional user interface prototyping process is discussed, including de-

scriptions of the different prototype fidelities. Next, tools for supporting user in-

terface prototyping are presented, with emphasis on the strengths and weaknesses

of each tool. Then, a discussion of collaborative design follows. Finally, research

projects involving large displays are presented to show the benefits of large displays,

particularly in supporting design decisions.

2.1 User Interface Prototyping Process

Under best practice, the user interface prototyping process has many steps. The

first step in prototyping is to come up with a conceptual design or redesign of the

interface. The second step is to develop a prototype of the new design. The third

step is to evaluate the prototype, either formally or informally, depending on the

situation. Based on the evaluation, these three steps should be repeated until a

desirable design is achieved. Rapid prototyping encourages repeating these steps

quickly, performing only small design changes at each iteration. Prototyping is very

10

important for ensuring the most usable, accurate, and attractive design is found for

the final product.

Different fidelities of prototypes can be explored during the prototyping process:

low-, medium-, and high-fidelity prototypes. Fidelity refers to how closely the pro-

totypes resemble the final product in terms of visual appearance, interaction style,

and level of detail [34]; low-fidelity prototypes differ most from the final product

whereas high-fidelity ones most closely resemble the final product. Each fidelity of

prototype uses different techniques and mediums and as such each is important at

specific stages in the design process [29]. Commonly accepted best practice starts

off with low-fidelity prototyping, moves to medium, and then to high, assuming that

time and cost constraints permit.

2.1.1 Low-Fidelity Prototypes

Low-fidelity prototypes depict rough conceptual interface design ideas. They are tra-

ditionally paper-based prototypes, making them quick, easy, and low-cost to create

and modify. Low-fidelity prototypes are sketches of static screens, presented either

separately or in a series to tell a specific story, which is called storyboarding. These

prototypes convey the general look and feel of the user interface as well as basic

functionality. Low-fidelity prototypes are particularly well suited for understanding

screen layout issues but not for navigation and interaction issues. The purpose of

low-fidelity prototypes is to try out alternative design ideas while seeking frequent

feedback from users and other stakeholders. Low-fidelity prototypes are best used

11

early in the design process when trying to understand basic user requirements and

expectations [29].

Sketching

Sketching is one of the most common techniques used in creating low-fidelity pro-

totypes. It is a natural and low effort technique that allows for abstract ideas to

be rapidly translated from a designer’s conception onto a more permanent medium.

Sketching is beneficial to the design process because it encourages thinking [32] and,

ultimately, creativity. Sketches are also important to design because they are inten-

tionally vague and informal, which allows for details to be later worked out without

hindering the creative flow of the moment [19]. This technique also encourages con-

tributions from users and other stakeholders since it is in a visual form that everyone

is familiar with.

PICTIVE

The other commonly used low-fidelity prototyping technique is the PICTIVE tech-

nique [20]. PICTIVE, or Plastic Interface for Collaborative Technology Initiatives

through Video Exploration, is a technique for creating and modifying prototypes in

real-time with users. The PICTIVE technique involves using standard office sup-

plies such as sticky notes, labels, and plastic overlays as well as paper copies of

pre-built interface components such as buttons, icons, and menus [20]. Materials are

transformed through cutting and labeling to represent desired interface elements.

Multiple layers of these elements are attached to the paper prototype, as needed, to

12

demonstrate interaction to the users. PICTIVE is a flexible technique that encour-

ages active user participation. As the name suggests, PICTIVE prototyping sessions

with the users may be videotaped and later analyzed by designers to see how the

prototypes evolved and how users responded to different designs.

Paper Versus Computer

Paper is the most common medium used in low-fidelity prototyping. Paper is an

intuitive and natural medium for sketching on. Paper is cheap, easily accessible,

and does not require special skills to use. Furthermore, because paper is a medium

that everyone is comfortable with, it facilitates participation from users and other

stakeholders. On the other hand, paper-based prototypes are hard to modify as

a design evolves; designers often find themselves starting over from scratch and

frequently having to re-sketch many of the same features [34]. Also, paper-based

prototypes often have many smaller pieces of paper such as sticky notes and labels

for representing interface components or for annotating design ideas; over time the

relationships between the different pieces of paper are difficult to maintain [14].

Furthermore, storage and retrieval of paper-based designs is not very convenient or

feasible. Perhaps one of the biggest drawbacks of paper is the lack of interaction

that can be explored since humans have to mock up the interactivity [17].

Designers also regularly use other non-digital mediums such as whiteboards and

chalkboards. Whiteboards and chalkboards share many of the same advantages and

drawbacks of paper. An additional benefit is that designs on these mediums are

more easily modified and reused than with paper because certain features can easily

13

be erased and extended upon. On the negative side, these mediums result in even

less permanent prototypes because they are frequently erased. Also, whiteboards

and chalkboards are less available than paper.

Using a computer for low-fidelity prototyping alleviates many of the drawbacks of

using paper or other non-digital mediums. Computer-based prototypes may be much

easier to evolve without requiring the designer to start over from scratch. As well,

using a computer may allow for relationships between a prototype, its components,

and annotations to be more easily maintained. Having prototypes on computer pro-

vides for easier storage and retrieval of prototypes, which also helps in documenting

the design process and in electronic distribution to stakeholders in remote locations

[17] [34]. Furthermore, using a computer for prototyping facilitates interactivity,

giving users an experience that feels much closer to that of the final product. Some

potential drawbacks of using a computer for low-fidelity prototyping exist: it may

slow the design process, interrupt creative flow, limit designers to pre-built interface

components and interactions, or force too much detail to be specified [34].

2.1.2 Medium-Fidelity Prototypes

Medium-fidelity prototypes lie on the continuum between low- and high-fidelity pro-

totypes, thus sharing some of the advantages and disadvantages of the other two

fidelities. Medium-fidelity prototypes are refined versions of the low-fidelity proto-

types and are created on computer. They are best used after low-fidelity prototyp-

ing once only a small number of alternative designs remain under consideration and

require further refinement. They resemble the end product more than low-fidelity

14

prototypes and require less effort than high-fidelity prototypes. Medium-fidelity pro-

totypes are commonly created using multimedia design tools, interface builders, or

certain scripting languages.

2.1.3 High-Fidelity Prototypes

High-fidelity prototypes allow users to interact with the prototypes as though they

are the end product. High-fidelity prototypes strongly represent the final product

in terms of visual appearance, interactivity, and navigation. As well, high-fidelity

prototypes usually have some level of functionality implemented and may link to

some sample data. High-fidelity prototypes are computer-based prototypes that are

often developed using interface builders or scripting languages such as tcl/tk [24] to

speed up the process. High-fidelity prototypes are particularly useful for performing

user evaluations as well as for serving as a specification for developers and as a tool

for marketing and stakeholder buy-in [29]. On the negative side, these prototypes

are time-consuming and costly to develop. As such, high-fidelity prototypes are best

used near the end of the design phase once the user interface requirements have been

fully understood and a single design has been agreed upon.

2.1.4 Summary

User interface prototyping is a complex process with multiple fidelities of prototypes

as well as several techniques and mediums for creating prototypes. This section

showed the importance of using all three fidelities in prototyping since each fidelity

15

has its own purpose in the interface design process. Furthermore, this section em-

phasized the importance of maintaining low-fidelity prototyping as an informal and

flexible process.

2.2 User Interface Prototyping Tools

Today the majority of applications are developed using some type of user interface

prototyping tool such as an interface builder or a multimedia design tool. However,

there are several limitations in using these types of tools that hinder the design pro-

cess. In attempts to overcome some of these limitations, researchers in the academic

community have been investigating informal prototyping tools such as SILK [17],

DENIM [18], and Freeform [26]. While useful, these tools are not without draw-

backs. The different types of interface tools will be discussed in this section, with

focus being on the advantages and disadvantages of each type of tool.

2.2.1 Interface Builders

Interface builders are tools for creating and laying out user interfaces by allowing

interface components to be dragged and placed into position on the desired win-

dow or dialog box. Some commercial examples include Microsoft r©Visual Basic r©,

Java’s NetBeansTM, Borland r© DelphiTM, and MetrowerksTM CodeWarriorTM. While

interface builders are primarily intended for final product implementation, they are

useful for medium- and high-fidelity prototyping. Myers [21] states that interface

builders are commonly used for the following reasons: they visually represent visual

16

concepts such as layout, they speed up implementation by auto-generating certain

code, and they are generally easy to use even for non-programmers. On the other

hand, interface builders are restrictive in terms of what designs designers can build

and the order in which designers have to build it. Also, interface builders require

significant time and effort to create a prototype. Thus they are not suitable for early

stages of prototyping when many alternate and ill-defined design concepts need to

be explored.

2.2.2 Multimedia Design Tools

Multimedia design tools are often used in designing user interfaces, not because they

are particularly well suited for software interfaces, but rather because of the lack of

better prototyping-specific tools. Multimedia tools are useful in creating and demon-

strating storyboards in medium-fidelity prototyping. Specifically, multimedia tools

allow for creation of images that can represent user interface screens and components.

They also allow for playing out transitions from one screen to the next that can con-

vey the general picture of a user navigating through the interface screens. On the

negative side, the interactivity supported by multimedia design tools is very limited,

usually to only basic mouse clicks, and so is support for creating functionality and

tying in data. Examples of commonly used commercial multimedia design tools are

Macromedia r© Director r© and Flash r©. Apple r© HyperCard r© is another commercial

tool that has been widely used in the past. There have also been several multimedia

tools to come out of the user interface research community including DEMAIS [1]

and Anecdote [8].

17

2.2.3 SILK

SILK [17] was one of the first tools to support informal sketching of user interfaces.

The purpose of SILK is to preserve the benefits of paper-based sketching while taking

advantage of computerized design tools’ features. The main features of SILK include

support for stylus-based freehand sketching, annotation layers that allow for notes

to be created and associated with specific user interface elements, and a run mode to

show screen transitions. Also, SILK attempts to provide support for transitioning to

higher-fidelity prototyping through automatic interface component recognition and

transformation to real components; however, this feature is not suitable for low-

fidelity prototyping and restricts the designer to existing toolkit components and

interactions.

2.2.4 DENIM

DENIM [18], an extension of SILK, is a tool aimed at supporting the early stages of

web design through informal sketching (see Figure 2.1). While DENIM is intended

for website design, many of the features and concepts are applicable to the design

of most graphical user interfaces. DENIM provides the following design features:

informal pen-based sketching, zooming to different levels of granularity (from sitemap

to storyboards to individual pages), linking of pages to create storyboards, a run

mode to preview and interact with a prototype site, as well as supporting the creation

of reusable components [18] [19]. These features make DENIM appropriate for low-

18

fidelity and medium-fidelity prototyping. On the other hand, DENIM provides little

support for transitioning to high-fidelity prototyping.

Figure 2.1: A snapshot of DENIM [18]

2.2.5 Freeform

Freeform [26] is another tool that supports sketching of user interfaces. Freeform also

aims to support high-fidelity prototyping. Specifically, Freeform is a Visual Basic r©

add-in that translates the recognized sketched interface components and text into

VB code (see Figure 2.2). However, this feature restricts the interface designer to

simple forms-based interfaces that use standard Visual Basic r© components. Also,

the interfaces generated from sketches are not very visually appealing. Freeform is

intended for use on large displays; however, there are no unique features in Freeform

that make it better suited for use on large displays versus traditional desktop displays.

2.2.6 Summary

Each type of user interface prototyping tool discussed in this section offers some

unique features or advantages to designers. However, most tools are designed for very

19

Figure 2.2: A snapshot of Freeform [26]

specific purposes and have very little or no support for transitioning between each of

the different fidelities. None of the tools support mixing of all three fidelities within

a single prototype. Also, none of the tools are specifically designed for collaborative

use on a large display; however, simply using tools such as DENIM on a large display

may offer some benefits over use on a traditional desktop display.

2.3 Collaborative Design

Software development is usually very much a collaborative process. Typically, a mul-

tidisciplinary team is involved throughout the software development process, includ-

ing members such as user interface designers, software engineers, a project manager,

and domain experts, who may be the end users. Core team members spend 70% of

their time working with others and these team-based tasks account for approximately

85% of project costs [33].

Not surprisingly, the user interface prototyping process is also a team-based pro-

cess. User interface designers work together, often with users, to come up with a

desired design [20]. The team works together by brainstorming ideas and by try-

20

ing out the different design ideas through prototyping. The team collaborates by

communicating their ideas verbally as well as through the use of workspaces such

as whiteboards. The team also collaborates by coordinating efforts in building a

prototype. For example, one designer may sketch parts of a prototype and another

designer may expand on it, either jointly or by taking turns depending on the size

of the work surfaces. Collaborative design is important in arriving at a successful

design in a timely manner.

The design workspaces and, more specifically, the work surfaces influence collab-

oration [3] [31]. For instance, work surfaces help focus designers attention and aid

in expressing creativity. Furthermore, workspaces provide a medium for designers

to communicate through with actions such as drawing, writing notes, and gesturing

to emphasize or reference previously made points. For these reasons, design teams

must have suitable workspaces.

2.4 Large Display Workspaces

Large displays have become prevalent in many research projects as they show promise

for supporting traditional whiteboard activities, such as brainstorming and design

sessions, and they are conducive to collaboration. This section surveys some of the

key research projects, with particular attention on the project goals as well as the

applications, input devices, and interaction techniques being investigated.

21

2.4.1 Tivoli at Xerox PARC

The Tivoli [25] project started in the early 90’s at Xerox r© PARC as one of the first

research projects to explore applications of large interactive displays. Tivoli is the

software designed to run on Liveboard, a 46” x 32” electronic whiteboard, which was

one of the first large display systems to consider input devices beyond the typical

keyboard and mouse.

Specifically, Tivoli is software for supporting informal, small group meetings. It is

intended to provide the functionality of traditional whiteboards while using computer

technology to augment meeting practices. The project looked at supporting various

scenarios of different types of meetings, from brainstorming sessions to administrative

meetings.

Aside from implementing functionality to support meetings, the other main goal

of Tivoli is to investigate interaction techniques for large displays. Tivoli uses a pen

on the touch-sensitive surface as the input device and allows for up to three pens at

a time. Tivoli supports free-hand sketching on the display. Originally, Tivoli had on-

screen control panels around the edges of the display but these were later eliminated

because desired buttons were often inconveniently out of the user’s reach, which

disrupted the sketching flow, and they did not easily support multi-user interaction.

As a result, Tivoli was converted to a gesture-based command system.

22

2.4.2 iRoom’s Interactive Mural at Stanford

Interactive Mural [9], a four-projector tiled display, is part of Stanford University’s

iRoom project. The iRoom project [9] is investigating ways of integrating various

hardware including a tabletop display, ceiling-mounted scanners, laptops, and PDAs

with large displays. Aside from Interactive Mural, iRoom is also set up with three 6’

x 3.5’ rear-projected SMART BoardTM displays. The purpose of the iRoom project

is to investigate team-based collaboration in a technology-enhanced environment

and as such Interactive Mural is being used for collaborative applications such as

brainstorming sessions and design reviews. Specifically, Interactive Mural has been

experimented with in the domain of construction project management.

Various interaction techniques are being explored with Interactive Mural, all of

which use a pen device for input. Interactive Mural makes use of freehand sketching

for the majority of user input. It also has a handwriting recognition feature that

is applied to any text-like strokes whenever the user pauses after making a stroke.

Interactive Mural uses a specialized gesture-based menu system called FlowMenu [6]

to allow users to fluidly invoke commands. Beyond pen-based input, these researchers

plan to explore voice and vision as methods of input to Interactive Mural.

2.4.3 i-LAND’s DynaWall at Darmstadt

DynaWall [30] is a 4.5m x 1.1m wall display, which is part of Darmstadt University’s

i-LAND project. i-LAND is exploring the office of the future by augmenting objects

in a room; beyond the augmented wall, i-Land has computer-enhanced chairs called

23

CommChairs r© and a table called InteracTable r©. Similar to Stanford’s iRoom, the

i-LAND project is investigating ways of supporting collaborative meeting scenarios.

i-LAND is also looking at ways of supporting individual and subgroup activities

during a meeting in the same workspace in order to achieve better productivity

results [30]. Overall, the goal of i-LAND is to support creativity in a dynamic and

collaborative setting by taking advantage of physical objects such as chairs and their

placement in a room.

Different novel interaction techniques are explored with DynaWall. Three tech-

niques – shuffle, throw, and take – are designed as means for moving objects around

on the display space. Interaction with DynaWall is mainly done using either a finger

or a pen on the touch-sensitive surface (see Figure 2.3).

Figure 2.3: A scene from DynaWall [30]

2.4.4 PortfolioWall at Alias|wavefront

Alias|wavefrontTM, in partnership with General Motors r©, is investigating the ap-

plication of large displays in automotive design. The automotive design process

is collaborative, creative, and traditionally involves the use of large non-electronic

24

workspaces. The nature of this design process gives opportunity for large interactive

displays to augment the process.

PortfolioWall r© is one of the large display systems Alias|wavefrontTM has devel-

oped [5] (see Figure 2.4). It is designed to replace the traditional wall-mounted

corkboard, where automobile designers post dozens of concept sketches for collab-

orative reviewing and, ultimately, for making design decisions. PortfolioWall r© is

a 50” plasma panel with a touch screen. It is typically interacted with through

finger-based gestures.

Figure 2.4: A scene from PortfolioWall r© (Adapted from [5])

2.4.5 Designers’ Outpost at Berkeley

Designers’ Outpost [15] is a tangible user interface for supporting early stages of

website development in a collaborative setting. The web design technique that De-

signers’ Outpost focuses on is called affinity diagramming, which is collaborative

diagramming done to work out the site structure. Other stages of website design are

also possible because the system is integrated with DENIM, which was discussed in

Section 2.2. Website design is done using sticky notes to represent pages, as com-

25

monly done in practice, and these sticky notes are arranged on the large display

workspace to create a site structure (see Figure 2.5).

Figure 2.5: A scene from Designers’ Outpost [15]

Designers can interact with this system by placing actual sticky notes on the

board to add pages, taking sticky notes off the board to remove pages, moving sticky

notes to move pages, or sketching with a stylus to link pages or make annotations;

hence it is a tangible interface. Furthermore, digital representations of these pages

can be created by selecting an option on the context menu and then the digital

representations may be manipulated by using physical eraser and move tools.

Designers’ Outpost also has a history recording feature that allows designers to

revert back to some earlier design state [16] (see Figure 2.6). It uses a graphical

timeline of thumbnails of the display content at specific points in time. Designers

may bookmark desired states throughout the process and then return to these states

later on.

Figure 2.6: Recording design activity in Designers’ Outpost [16]

26

2.4.6 LIDS Project at Waikato

LIDS [23], which stands for Large Interactive Display Surfaces, is a research project

at University of Waikato. Some of the goals of the LIDS project is to find inexpensive

display technologies and to investigate interaction issues associated with the use of

such display technologies. Another goal of LIDS is to investigate specific uses for

large displays such as in software development as well as in speech recognition and

lecture capturing.

An example application of large displays being explored at Waikato is user inter-

face design, which is relevant to this research. However, the tool they have created,

Freeform (discussed in Section 2.2.5), does not have any design considerations that

make it specialized for use on a large display as opposed to a traditional desktop

display. Specifically, user interface sketching on a large display and automatic trans-

lation into Visual Basic r© is being investigated. Freeform is run on a rear-projected

display system, which is interacted with by sketching and gesturing using an ultra-

sonic pen.

2.4.7 Summary

Most research involving large displays has focused on investigating hardware inte-

gration issues, interaction techniques, or input devices. Little research has actually

looked at practical uses for these large displays. Those that are looking at specific

applications or uses are typically focused on augmenting traditional whiteboard and

meeting tasks, like Tivoli and Interactive Mural. Two projects, PortfolioWall r© and

27

Designers’ Outpost, are investigating supporting domain-specific design tasks and

these projects have motivated some of the ideas in this large display workspace,

including recording history and comparative analysis. Perhaps one of the projects

most closely related to this research is LIDS/Freeform since it is investigating user

interface sketching on a large display; however, Freeform does not have any design

considerations that make it better suited for a large display than a regular-sized

display, it only supports the standard forms-based interface components and inter-

actions, it is not much more collaborative than a desktop application other than

more people can watch the designer work, and it does not allow for mixing fidelities

or iterative refinements.

2.5 Conclusion

All three prototype fidelities have unique benefits and are important to include in

the process. Existing tools inadequately support traditional prototyping practices,

as they only fully support one or two fidelities, do not support refinement back and

forth between fidelities, do not allow for multiple alternative designs to be compared

at once, and most do not support easy tie in to data and functionality. Also, existing

tools lack support for collaboration even though collaboration is important to the

process. One tool, Freeform, claims to be collaborative since it may be run on a

large display, but it offers no collaborative features other than simply enlarging a

design for more people to watch; only one user can use the tool and only one design

can be displayed at once. Also, Freeform makes no attempts to bring together

28

other groups working on the software. Large display research projects show promise

for supporting collaborative activities as well as specific design activities such as

comparing alternatives (PortfolioWall r©) and high-level storyboarding (Designers’

Outpost).

The next chapter describes an approach that addresses integrating multiple fi-

delities in a collaborative setting.

29

Chapter 3

Mixed-Fidelity Prototyping

We developed a new technique for user interface prototyping called mixed-fidelity

prototyping and this technique will be described throughout this chapter. Mixed-

fidelity prototyping involves combining multiple fidelities within a single prototype.

As an example, consider having a sketched screen design that contains various

sketched elements and images of elements. The sketch may also not only contain

images, but could also have one or more interface elements presented as high-fidelity

working components. The sketched elements may also be given some form of behav-

ior similar to what they would possess at traditional higher-fidelities.

The idea of mixed-fidelity prototyping allows the designers opportunity to focus

on a specific interface issue, by exploring it at higher-fidelities and making refine-

ments as needed. In the mean time, other aspects of the prototype may be left

at a lower-fidelity, delaying decisions while allowing designers to redirect their time

and efforts to the more pressing design issue(s). Also, by leaving other elements

at lower-fidelities, designers are able to explore the higher-fidelity elements while

keeping them within the context of more complete screen designs.

30

Prototyping is collaborative by nature, ideally involving individuals from diverse

backgrounds such as user interface designers, graphic artists, software developers, and

end users. Mixing fidelities allows various stakeholder groups to come together earlier

on and allows for their more active participation. For example, an individual with

specialized skills in creating high-fidelity prototypes, such as a software developer,

can begin implementing a high-fidelity component for inclusion in the prototype at

an early stage.

A secondary aspect of this research is to further enhance the collaborative nature

of user interface prototyping by utilizing a large interactive display workspace. Large

display workspaces are conducive to collaboration as the large surface helps focus

designers’ attention, aids in expressing creativity, as well as provides a medium for

designers to communicate through actions such as drawing, annotating, and gestur-

ing [3, 31]. Also, such displays are large enough for multiple people to simultaneously

work directly at the surface while allowing for everyone in the room to be aware of

the workspace content.

Through this research, a conceptual model is developed to specify how prototypes

can be composed of multiple fidelities. This is the topic of Chapter 4. Then a proof-

of-concept system is implemented based on the conceptual model to demonstrate

the idea of mixed-fidelity prototyping. This proof-of-concept system is presented in

Chapter 5. Then in Chapter 6, an example design session is presented where the

proof-of-concept system is used to better illustrate the mixed-fidelity technique.

Throughout this chapter, the novel technique of mixed-fidelity prototyping is

further discussed. Specifically, major design goals for the mixed-fidelity technique

31

are presented. As well, example design scenarios are presented to illustrate what

mixed-fidelity prototyping is and how it can aid designers beyond traditional practice.

Finally, features, or more generally, facilities, that are needed to support mixing of

fidelities are presented.

3.1 Design Goals

Several major design goals for the mixed-fidelity approach are identified. Each design

goal is listed and described in detail in this section. The scenarios and supporting

facilities in the following sections were then developed with these goals in mind.

These are the main design goals:

• Support traditional informal design activities

• Aid in transitioning between the different fidelities

• Enhance the design process by recording history

• Support collaborative design across diverse stakeholder groups

• Provide a lightweight environment

3.1.1 Support traditional informal design activities

Current practice often involves informal whiteboard or paper-based prototyping ac-

tivities in the early stages, such as sketching and PICTIVE [20]. Such informal

design techniques should be encouraged as designers are comfortable using them and

these techniques have been very successful in practice. Also, these techniques are

32

very important for quickly narrowing down alternative designs and gaining a better

understanding of user requirements.

3.1.2 Aid in transitioning between the different fidelities

Each prototype fidelity has its purpose and place in the design process so all of

the fidelities should be encouraged. Current user interface prototyping tools rarely

support transitioning from one fidelity to the next, so much time and effort is lost in

porting each fidelity of prototype to a different medium or tool. This often results

in certain prototyping stages being skipped, which may sacrifice quality of the final

product. Also, current tools fail at supporting backward transitioning from a higher-

fidelity to a lower-fidelity design; when changes are needed, designers are often forced

to start from scratch rather than refining that design. Smooth transitioning between

the fidelities promotes changeability and traceability and ultimately allows designers

to move between fidelities without loss of productivity.

3.1.3 Enhance the design process by recording history

Early prototyping stages are traditionally performed on non-digital media such as

whiteboards and paper while later stages take place on various computers and/or

software tools. Under current practice, there is no way to track the progression of

the design process or to revert back in history to a specific point in time. By using a

large digital display throughout the prototyping process, the history of the process

can easily be recorded. Recording history would allow for easy storage and retrieval

33

of previous prototypes and prototype elements at any point in time as well as for

design rationale and other annotations to be permanently linked to prototypes for

later viewing.

3.1.4 Support collaborative design across diverse stakeholder

groups

The nature of prototyping is very much a collaborative process that should involve

user interface designers as well as other stakeholders, like users and software engi-

neers, working together at various stages throughout the process. However, current

practice has user interface designers working largely independently, with little com-

munication or coordination between stakeholders until the design process is com-

pleted or at least only the final decisions remain. Also, within the groups, people

commonly work in isolation on their individual machines, only coming together for

scheduled project meetings. This lack of collaboration is not in the best interest of

the final product, as collaboration is important to generating more creative designs

as well as designs that are more consistent and accurate in meeting the requirements.

At a very minimum, there needs to be awareness and communication of the major

design concepts across the different groups. Large displays are conducive to collab-

oration and may help augment user interface prototyping by allowing multiple users

to watch or participate in the design process simultaneously.

34

3.1.5 Provide a lightweight environment

For a new workspace or system to be considered useful and eventually be adopted as

part of regular practice in an organization, it needs to be easy to use. This includes

being easy to learn and to get started with each session. Designers need to be able

to walk into the room and quickly start using the workspace, without inconvenient

technical or cognitive challenges. Also, the workspace needs to be able to maintain

the state of recent uses, so that each time designers begin a new session, there is

not significant overhead in continuing to work where they left off. Furthermore,

the workspace needs to offer an easy way to access all available designs and design

elements, including ones from past projects.

3.2 An Example Application and Its Domain

This section introduces a business forecasting tool that will be used as an example

application that designers are working on. Specifically, this is the software that will

be referred to throughout the scenarios in this chapter and will also be used as the

example application in Chapter 6. Businesses have the important task of forecasting

their business, that is, making best estimates of their revenue and expenses and

ultimately profit for some future period. Accurate forecasting is important since key

business decisions are made based on the expected future conditions. Well-managed

businesses perform forecasting at some regular interval, such as annually or quarterly,

35

and whenever a factor affecting the business changes, such as when a major supplier

raises prices.

Forecasting involves estimating a number of factors that affect the business. For

example, factors that affect revenue include selling price and unit sales, which is

affected by many other sub factors like market size and advertising success rates.

Expenses are affected by factors such as advertising costs, payroll, and raw material

costs. One major factor that directly affects profit is tax rates. The exact factors

that affect a business depend on the type of business and the environment that it

operates within.

With so many factors and so many possible values for each factor, business fore-

casting is a complicated task that is infeasible without software support. Many

software packages exist on the market to support forecasting efforts. Better designed

user interfaces for forecasting offer the user a more visual approach; for example,

showing charts is more effective than only showing tables of data. Also, the best de-

signed software will allow for users to experiment with different situations and have

the effects visualized on the fly; that is what this example forecasting tool offers.

Figure 3.1 shows a sketch of a possible interface design for the example business

forecasting tool. Let us walk through how one would use this software. When the

user starts the forecasting tool, the first step would be to select a desired forecasting

period. Then the user would select the desired level of detail from these view options:

high-level ‘Chart View’, medium-level ‘Financial Statement View’, or finer-grained

‘Accounting View’. The interface for both the ‘Chart View’ and ‘Financial Statement

View’ are shown in Figure 3.1. In the ‘Financial Statement View’ screen, the user

36

selects the type of statement to view and the screen simply displays the desired

statement for that period using the factors’ values specified in the ‘Chart View’ or

from the underlying database. Using the ‘Chart View’ is more complicated and

requires a detailed explanation.

Figure 3.1: A sketch of the business forecasting tool

The ‘Chart View’ is where the user can play through different scenarios to see

the effects different factors have on the overall business profitability. This interface

design allows the user to adjust two key factors: selling price per unit, which affects

total revenues, and cost of good sold (COGS) per unit, which affects total expenses.

This design has been simplified for demonstrational purposes so it only allows for two

factors to be considered; however, the design could easily be extended by including

a list of factors to select from for both charts or by having a chart for each possible

factor.

Manipulating one chart affects the visualization of the other chart, as well as the

data contained in each financial statement. For example, assume the user is inter-

37

ested in visualizing how setting different selling prices affect profitability. The user

would move the slider along the x-axis labeled ‘selling price per unit’ to try different

prices. Moving the slider also moves a vertical guide bar left or right accordingly and

highlights the point on the chart that the slider value corresponds to. Furthermore,

this interaction affects the other chart; changing the ‘selling price per unit’ affects

the profit and thus shifts the ‘COGS’ chart’s curve up or down accordingly. Adjust-

ing the slider also affects the underlying financial data in some database; the new

values will be used in calculating information that is then displayed in the ‘Financial

Statement View’ and in the ‘profit’ field in the top right corner of the screen.

This particular user interface for the example business forecasting tool was used

because it encompasses many interesting concepts that are important in the scenar-

ios and ultimately in demonstrating this research. It has novel interactions – the

charts’ axes have sliders to specify values of interest as well as a vertical guide bar

to emphasize the currently selected value. It links to underlying financial data. It

has domain-specific functionality, such as functionality for calculating the business’s

profitability and the demand elasticity function (that is, a function of the number of

unit sales versus selling price). Furthermore, it has visual elements that are linked;

changing one chart affects the other in real-time. The business forecasting applica-

tion was chosen for illustrative purposes only and our technique is not intended to

be specific to this domain.

38

3.3 Scenarios

This section will walk the reader through six collaborative design scenarios that are

envisioned to be possible through this research. Each of the scenarios depicts a novel

or key concept and attention is drawn to the advantages of supporting such a concept.

While some of these scenarios may not be consistent with all current practices,

these scenarios suggest potentially more effective ways of performing collaborative

prototyping.

For all scenarios, assume that a large display workspace is being used. Also,

assume that the design team is working on prototyping the business forecasting

software described in the previous section. Illustrations of key concepts will be

referred to throughout the scenario discussions to clearly demonstrate the new design

practices envisioned with this research.

3.3.1 Scenario 1: Composing lightweight prototypes by

mixing fidelities

Figure 3.2 shows the prototypes that designers are composing by combining medium-

and high-fidelity elements with low-fidelity sketches. As with current best practice,

user interface designers started by sketching low-fidelity designs either on paper that

is then scanned in or by sketching directly on the large display. The designers are

confident that aspects of this design are worth pursuing so they prototype these

aspects at higher-fidelities.

39

They have a software developer implement a high-fidelity table component since

they are confident it will be used in the final user interface. The table component is

then linked to an existing database to display real data; using real or at least realistic

data gives the user a more accurate picture of the final software and ensures that

the software functions as desired by the user.

Also, the designers quickly create images of the two charts; these images give

a more concrete idea of the final design than the sketched charts. The designers

need to refine the design of the interface components, specifically by exploring novel

interactions, before going ahead with high-fidelity implementations. Since these

charts do not exist in standard toolkits there is significant overhead associated with

developing these components.

The elements of different fidelities may then be used to compose a single pro-

totype. The designers do this by placing the medium-fidelity charts on top of the

sketched charts. They also place the high-fidelity table on top of the sketched ver-

sion. Figure 3.2 illustrates the resulting prototype. At this point, they are ready

to show the design concepts to stakeholders and elicit feedback for further design

refinements.

This scenario presents a style of prototyping that is not possible under current

practice with today’s tools. Specifically, this design style supported by our approach

allows for design decisions to be deferred, such as layout, while allowing the designers

to focus on more high-risk issues such as designing new components and interactions

that do not exist in standard toolkits, or to focus on design concepts that are more

pressing from the user’s perspective. Ultimately, by mixing fidelities, complex or

40

urgent design issues may be explored and refined sooner, while leaving other issues

until later.

Figure 3.2: Mixing fidelities through layering of elements

3.3.2 Scenario 2: Transitioning between fidelities as ideas

are refined

Continuing on where Scenario 1 left off, assume that the prototypes composed of

multiple fidelities were presented to users for feedback. The users have made some

valuable suggestions that require modification to the current prototype. One sug-

gestion involves changing the appearance of the charts. Rather than starting from

scratch, the designers can hide or turn off the medium-fidelity images of the charts,

showing only the original sketched charts. The designers now erase parts of the

sketched charts and make revisions to the charts by drawing directly on the display.

They then modify the images to correspond to the new sketch and replace the old

41

images associated with the charts. The designers continue to refine the rest of the

design by placing higher-fidelity elements on top of previous lower-fidelity elements.

Current practice does not allow for easy transitioning between designs. In par-

ticular it is very difficult to move to an earlier fidelity prototype without starting

completely from scratch, since different fidelities are usually created using differ-

ent tools and/or mediums. This scenario shows that by having all designs stored

in a single system, smooth transitioning between fidelities is possible. Ultimately,

prototypes can be refined in a more productive manner.

3.3.3 Scenario 3: Integrating domain-specific data and

functionality

Continuing where the previous scenario left off, the user interface design team has

composed a lightweight prototype consisting of sketches with images of the charts

as well as a high-fidelity table component displaying real data (as shown in Figure

3.2). The designers are now ready to add some functionality to the prototype. They

want to display the calculated profit in the top right text field. Since this design

team specializes in business information systems for the financial and accounting

domains, they already have a function to calculate profitability built-in to their

design environment. They simply open the appropriate function in the ‘Functionality

Window’ and then modify it to link into this application’s data and set the result

to be displayed in the ‘Profit’ text field (see Figure 3.3). They have other built-in

42

domain specific functionality that will come in handy for this project such as the

demand-elasticity function and chart components.

Integrating pre-built domain-specific functionality benefits the prototyping pro-

cess. It helps speed up the process since designers do not having to wait on developers

to implement a piece of functionality; instead designers can add in the functionality

quickly and easily with only minor modifications to code. It also allows stakehold-

ers to get a better appreciation for what the final software will be; rather than

just showing sketched functionality, the prototypes can display accurate, calculated

values based on real data.

Figure 3.3: Prototype with built-in domain-specific functionality and
real data

3.3.4 Scenario 4: Trying out novel interactive elements

After meeting with the users (in Scenario 2), the user interface design team gained a

better understanding for the type of interactivity the users would like to experience

with the charts. The users would like the x-axis of the chart to behave like a slider

bar; the user can then slide through different x-values and have the effects on the

43

other chart visualized immediately by shifting the curve. They also want additional

visual feedback to emphasize the current x-value such as having a vertical bar. Such

a design for charts is unique and is not implemented in any standard component

toolkit.

The designers start out prototyping the chart component by creating images that

properly illustrate a snapshot of each chart at some instance, with selling price at

X1 for example (shown in Figure 3.4). Then the designers create another image for

each chart illustrating the resulting effects of moving a slider to a new value, X2

(shown in Figure 3.4). They also create a few pairs of images of intermediate charts,

that is, what the charts look like as the user adjusts the slider at intermediate points

between X1 and X2. They place all these images in sequential order on top of the

sketched charts. The prototyping system then has a sequencing feature that allows

for these images to be flashed in order over a specified interval of time, emulating

the effects of a user actually moving the slider from X1 to X2.

The designers now want to transition the chart into a higher-fidelity but in a

manner more lightweight than implementing a final product interface component.

The designers mock up the chart by using pre-built standard toolkit line-chart and

slider components. They place the chart in position and then lay the slider on top of

the chart’s x-axis. Then they create a graphical line object to represent the slider’s

vertical guide bar, as depicted in Figure 3.4. The design system allows for behavior

to be added to objects, so the designers specify for the graphical line to redraw itself

at the same x-coordinate as the slider is positioned at. The other chart’s curve is

linked to the slider’s current value so it updates when the slider is adjusted. The

44

combination of these three elements generates a lightweight working version of the

novel chart component.

Figure 3.4: Prototyping a novel chart element

The lightweight high-fidelity approach presented here is not easily possible un-

der current practice with current tools. This scenario presented a unique way for

exploring new interactive elements that is much quicker than implementing a fully

functional interface component and allows for new ideas to be experimented with

and shown to users more quickly without over-committing to the design. Such a

lightweight approach fosters the creative flow and is conducive to exploring new

interactions, unlike current tools that restrict interface designers to using existing

toolkit components in traditional ways.

45

3.3.5 Scenario 5: Comparative analysis of alternative de-

signs

In this scenario, the design team is performing comparative analysis among multiple

design alternatives. The designers have narrowed down alternative design layouts to

the two shown in Figure 3.5. Alternative #1 has the ‘Chart View’ and the ‘Financial

Statement View’ on the same screen, while Alternative #2 has each of the views

separated into their own screens with a narrow vertical navigational bar to switch

between the views. The designers are discussing the advantages and disadvantages

of each design; Alternative #1 has the two views visible at once so navigation is

not required, yet Alternative #2 separates the views which abstracts the financial

statement details away and lets the user work with high-level charts. The designers

make annotations directly on the designs to keep record of the stated advantages

and disadvantages.

Figure 3.5: Exploring and comparing two alternate designs

46

Current practice involves the use of regular-sized displays, where it is very hard

to lay out multiple designs simultaneously. Thus, this scenario cannot be performed

effectively under current practice. Using a large display allows for multiple designs

to be arranged on the display at the same time, which aids in the decision making,

as Buxton [5] found in comparing and selecting among automotive designs. Also,

having a large interactive display allows designers to annotate the designs and store

the annotations with the designs for future reference.

3.3.6 Scenario 6: Recording collaborative design efforts

Later, the project is at the stage of implementing the final version of the user in-

terface. A software developer is working on the full implementation of the chart

components, which have a slider-like feature as well as a vertical guide bar. Again,

no such standard component exists already. In order to get a thorough understand-

ing of what this chart does and how it evolved into the current chosen design, the

developer finds it very useful to look back at all of the versions of the chart. The

developer uses a historical timeline feature to look back at previous versions of the

chart over the projects’ entire history.

Reverting back to previous prototypes is only possible with a mechanism for

recording history of designer activities. Such recording does not exist in current

practice since designers use multiple design tools and mediums throughout the pro-

totyping process. Recording activities is important to save time and effort whenever

a previous design needs to be reverted back to. It is also important when designers

want to look at a previous project for design motivations. Furthermore, recording

47

is important for introducing better traceability into the prototyping and final im-

plementation processes; under current practice there is a lack of traceability among

designs, again because of the various tools and mediums that are used.

3.4 Supporting Facilities

In order to support the design goals and new design styles and practices set out in

the scenarios in the previous sections, software tool support is necessary. The tool

must offer certain built-in facilities to the design team. This section presents such

facilities, with focus placed on the motivation or importance of each facility. Many

of these facilities are implemented into a proof-of-concept system, which is the topic

of Chapter 5.

The supporting facilities have been grouped according to these categories:

• Drawing Editor Facilities

• Organizational Facilities

• Prototyping Domain Facilities

• Multi-User Support Facilities

• Large Display-Specific Facilities

• Process/Productivity Enhancing Facilities

48

3.4.1 Drawing Editor Facilities

Scaling is a basic facility built into all drawing editors. Being able to resize objects

on the display is important for two reasons. In creating prototypes, designers need to

be able to size interface components and regions relative to the rest of the prototype.

Ideally, a smart scaling facility is needed to size interface elements to fit within a

predefined region. Secondly, all objects displayed on the screen need to be able to

be zoomed to different sizes depending on users’ proximity to the display.

Positioning is another facility fundamental to drawing editors. Users of the pro-

totyping workspace need the ability to position objects wherever they desire on the

screen, whether it be positioned some distance away from other objects or overlap-

ping with other objects. Also, a smart positioning facility would be useful to layout

interface elements accurately within a predefined region. X and Y coordinates are

relevant as well as is the concept of a Z coordinate, since layering or overlapping of

objects is possible.

A cloning facility is generally built into drawing editors. A clone is a duplicate

copy of another object. In this large display workspace, modifying the original object

could affect the cloned objects as well. However, deleting the original would not

delete any clones. Cloning is particularly relevant to the domain of prototyping when

several interface screens need to be created that share many of the same elements

and layouts.

Annotating , or freehand sketching of text or markings, is also commonly found

in drawing editors. This research recognizes the importance of traditional informal

49

whiteboard and paper-based activities, with one of the key advantages of these media

being that content can easily be annotated. For example, an initial prototype can be

created and then key elements of it may be easily annotated with textual justification

for why it is a good design and what needs to be improved upon.

3.4.2 Organizational Facilities

Grouping offers an easy way for users to keep related content together on the

display. This facility is the same as the “group” feature built into most Microsoft r©

products such as Microsoft r© PowerPoint r©. Specifically, grouping is important for

composing interface elements to create a prototype; grouping holds the elements

together in the same relative positions and sizes whenever the user repositions or

scales the whole prototype.

Structuring allows for objects to be arranged in a structured or predefined

manner often according to semantics. For example, objects may need to be arranged

in a list, a hierarchy, a chart, or a storyboard sequence. The arrangement of objects

is visual and indicates to the user a certain relationship between the objects.

Relating objects is important for the designers to quickly be able to understand

what objects are related and why. For example, one element on a screen may be

connected to a different element on another screen because interacting with one

element affects the other. By allowing for relationship arrows or some other visual

feedback (such as highlighting) to be created to relate the objects, designers may be

better able to understand the design concepts and improve upon them where needed.

50

Visually depicting relationships is particularly useful when using a large display since

a large number of objects are being viewed at once.

Highlighting and selection is important for designers to be able to quickly

locate all objects of interest on the display. Having highlighting or some other visual

feedback to emphasize specific objects is crucial on a large display since it is possible

for dozens or even hundreds of objects to be displayed at once. Without highlighting,

users may get lost in the space. It is necessary to draw designers’ attention to

particular objects when one designer has selected an object and other designers need

to see what object is being referred to, when a designer is interested in finding all

cloned versions or objects related to a particular object, or when a designer performs

a query and wants the results presented visually through highlighting the relevant

objects on the display.

3.4.3 Prototyping Domain Facilities

Layering and transparency is key to composing interface elements of different

fidelities within a single prototype. Layering allows for elements to be positioned over

top of other objects. Being able to change the order of layers allows for a desired layer

to be made visible. Setting a transparency value for each layer allows the designer

to control what layers are fully or partially visible. For example, a designer may be

interested in seeing the faint low-fidelity sketch under the higher-fidelity component

to ensure no key ideas were omitted in moving to a higher-fidelity.

Running executable components is very relevant to the domain of proto-

typing. When designers are creating prototypes they need to be able to work with

51

high-fidelity components and this includes being able to execute the components.

Ideally, designers should be able to execute components without frames or other

obtrusive borders so that it looks unified within the prototype.

Connecting to real data is also important in the prototyping domain. When

designers are creating higher-fidelity interface elements, it is useful to put data into

the elements. Using existing or at least realistic data gives stakeholders a better idea

of what the final software will look like and be capable of. The data may be in a

database or some other storage such as XML files.

Setting properties and behaviors of objects is very important to the proto-

typing domain. Designers need to be able to create interface elements that are easily

customizable by simply changing properties’ values. Designers also need to be able

to give elements behavior in a lightweight manner. Behavior may be needed in the

form of animation, that is having the object move or change forms at specific time

periods, or performing calculations. Furthermore, properties or behaviors of objects

may need to be able to change in relation to another object’s properties or behaviors

as desired.

3.4.4 Multi-User Support Facilities

Multiple inputs is required in order for more than one user to interact with the

system simultaneously. Multiple inputs means providing a unique pointer for each

user who is currently interacting with the system. This is necessary so that one

user’s pointer does not interfere with another’s.

52

Having a control panel for each user is useful in allowing multiple users

to interact with the system. With separate control panels that appear near each

user’s point of focus, that is in their area of work, each user can work separately

and simultaneously. This is a metaphor for a worker’s toolbox that the worker can

carry around the work site. Having individual control panels adds to the usability of

the system. Also, using control panels at the point of focus rather than a menu bar

at one edge of the screen as in standard desktop applications reduces the reaching

required and allows the users to fluidly select a command from the control panel.

Integration of other computing devices with the large display system al-

lows for multiple users to work on the workspace in a productive manner. Integrating

devices such as laptops, PDAs, and cameras allows for users to work with a variety

of devices at once. For example, a couple of designers can be composing prototypes

standing up at the large display using the touch-sensitive surface, while other design-

ers are working at a table creating interface elements on their laptop or PDAs while

others sketch on paper and take a digital picture of the sketch. The workspace should

offer smooth transitioning of designs between devices, perhaps through overview win-

dows.

3.4.5 Large Display-Specific Facilities

The Pick-and-Drop technique [27] improves interaction with a large display in

terms of moving objects around on the display across large distances. In particular,

Pick-and-Drop is designed to replace traditional drag-and-drop by allowing the user

to simply select an object and walk to the target location without any drag motion,

53

rather than forcing the user to carefully drag the object with a constant pressure

while walking to the other side of the display. Pick-and-Drop also supports the use

of multiple tiled displays whereas traditional drag-and-drop cannot.

Other interaction techniques such as gestures and specialized menus are

needed for issuing commands to the system. These techniques are well suited for a

large display for these primary reasons: they allow for fluid interaction since they

can be interacted with at the user’s point of focus rather than at a hard to reach

location, and there is no wasting of display real estate because they only appear

upon user-specified invocation. The standard desktop way of issuing commands is

by pressing a button on a menu bar or palette; this approach would not be usable

on a large surface.

Flexible space management is necessary to take advantage of the display real-

estate in a productive manner, while realizing the limitations that no display will

ever have enough space. To deal with the limited space, the system could implement

a concept of UNIX’s Virtual Rooms [11] that would allow for multiple workspaces

but only one full-sized at once. Also, a layout algorithm is needed to effectively and

automatically arrange design objects on the display, particularly when a portfolio of

objects is first loaded. Furthermore, to allow users to more easily arrange objects

as they work, grid guidelines may be necessary to improve manual layout efforts,

perhaps with a snap-to-grid feature. Another idea for helping to manage space

is to have regions or containers, much like folders in the desktop metaphor, that

automatically perform different layouts, scalings, or other functions depending on

which region or container the objects were put into.

54

3.4.6 Process/Productivity Enhancing Facilities

Logging design activities provides enhancement over the traditional design prac-

tice, where there is very little traceability between designs and reverting back to

a previous design is a difficult task. By logging all activities on the large display,

designers will then be able to revert back in time to a particular design state. This

allows for designers to review previous designs to inspire new design ideas and more

importantly, allows opportunity to modify previous prototypes without having to

start from scratch. Offering a visual timeline, like in Designers’ Outpost [16], will

improve the design process and ultimately designers’ productivity.

A querying library will improve the process by reducing the time users cur-

rently have to spend looking for existing design artifacts while offering an easy to

use query facility. Currently, previous designs, particularly from previous projects,

are rarely referenced because of poor storage and retrieval practices. Paper-based

designs are difficult to index and so are electronic files that are used across multiple

computers by multiple users. The system can be enhanced by offering an easy way

of indexing design artifacts and by offering an effective querying facility. Since inter-

face design artifacts are visual by nature, it would be interesting to build in a visual

querying facility, to allow searching for all prototypes that have sliders for example.

Importing and exporting resources is a basic facility for the prototyping

system to include. Allowing users to import resources from other projects, from

other computing devices, or from other mediums such as paper is key to enhancing

the process. Requiring all designs to be started from scratch on the large display

55

system is time-consuming and costly, whereas allowing designs to be reused or started

on other devices or mediums is much more productive. Many more designers can

work on a project than are able to fit standing at the large display. Also, with

an easy-to-use import facility, sketching-support is no longer an essential feature of

the prototyping system, allowing users to continue to use the natural feeling paper

medium. Furthermore, the system needs to allow for designs to be exported for

future reference.

3.5 Mapping Facilities to Scenarios

Table 3.1 shows which facilities help support each scenario. The facilities that are

essential to achieving a particular scenario are indicated with a black circle. The

facilities that are helpful in a particular scenario, but are not key to its success,

are indicated with a white circle. Facilities without any circle are not considered

particularly advantageous to that scenario but may be important to improving the

overall usability and usefulness of the system.

3.6 Conclusion

Mixed-fidelity prototyping is a new approach to user interface prototyping. It offers

enhancements over the current process by allowing designers opportunity to explore

and refine certain issues earlier on as well as to involve individuals of different back-

grounds earlier in the process. The five design goals discussed in this chapter are

important aspects of the new approach. The design scenarios presented new styles

56

or practices envisioned as possible with mixed-fidelity prototyping. A software tool

is necessary to support the mixed-fidelity approach and it should implement the fa-

cilities set out in this chapter, as each facility helps to achieve the design goals and

scenarios.

Prior to implementing a software tool, it is necessary to formulate a conceptual

model to specify how fidelities can be mixed. This conceptual model is the topic of

the following chapter.

57

T
a
b
le

3
.1

:
M

ap
p
in

g
fa

ci
li
ti
es

to
sc

en
ar

io
s

1.
C

om
bi

ni
ng

2.
It

er
at

in
g

3.
D

om
ai

n-
4.

E
xp

lo
re

5.
C

om
pa

ra
ti

ve
6.

R
ec

or
di

ng
F
id

el
it

ie
s

B
et

w
ee

n
Sp

ec
ifi

c
N

ov
el

D
es

ig
n

A
na

ly
si

s
H

is
to

ry
F
id

el
it

ie
s

Fu
nc

ti
on

al
it
y

C
on

ce
pt

s
D

ra
w

in
g

E
d
it

or
F
ac

il
it

ie
s

Sc
al

in
g

◦
◦

◦
P
os

it
io

ni
ng

◦
◦

◦
C

lo
ni

ng
◦

A
nn

ot
at

in
g

•
O

rg
an

iz
at

io
n
al

F
ac

il
it
ie

s
G

ro
up

in
g

◦
◦

St
ru

ct
ur

in
g

◦
◦

◦
R

el
at

in
g

ob
je

ct
s

H
ig

hl
ig

ht
in

g
an

d
se

le
ct

io
n

•
•

P
ro

to
ty

p
in

g
D

om
ai

n
F
ac

il
it

ie
s

L
ay

er
in

g
an

d
tr

an
sp

ar
en

cy
•

•
R

un
ni

ng
co

m
po

ne
nt

s
•

•
•

C
on

ne
ct

in
g

to
da

ta
•

•
◦

Se
tt

in
g

pr
op

er
ti

es
an

d
be

ha
vi

or
•

•
•

M
u
lt

i-
U

se
r

S
u
p
p
or

t
F
ac

il
it

ie
s

M
ul

ti
pl

e
in

pu
ts

U
se

r
co

nt
ro

l
pa

ne
ls

In
te

gr
at

io
n

of
de

vi
ce

s
L
ar

ge
D

is
p
la

y
-S

p
ec

ifi
c

F
ac

il
it

ie
s

P
ic

k-
an

d-
dr

op
G

es
tu

re
s

an
d

sp
ec

ia
liz

ed
m

en
us

Sp
ac

e
m

an
ag

em
en

t
◦

P
ro

ce
ss

E
n
h
an

ci
n
g

F
ac

il
it
ie

s
L
og

gi
ng

ac
ti

vi
ti

es
◦

•
Q

ue
ry

in
g

lib
ra

ry
Im

po
rt

an
d

ex
po

rt
in

g
◦

◦
◦

(N
ot

e:
•

=
ke

y
to

ac
hi

ev
in

g
th

e
sc

en
ar

io
,
◦

=
he

lp
fu

l
bu

t
no

t
es

se
nt

ia
l
to

th
e

sc
en

ar
io

)

58

Chapter 4

The Region Model

for Mixed-Fidelity Prototyping

This chapter presents a conceptual model we developed to support mixed-fidelity

prototyping. In creating such a model, it is important to identify the elements that

are necessary for mixed-fidelity prototyping and how these elements are related. De-

signers need to be able to compose elements of different fidelities and these elements

should be interchangeable as designs are refined or revisited. Also, this composition

process needs to be as lightweight as possible in keeping with the traditional informal

sketch-based approach. A model called the Region Model is developed to address

these requirements.

The highest-level concept in the Region Model is design space. The design space

represents the entire workspace that designers have to work with and it is where

prototypes are composed. Prototypes are composed of multiple elements, often be-

ing of multiple fidelities. As these elements need to be interchangeable, all elements

are represented as regions. Furthermore, the prototype screen designs are also rep-

resented as regions. In that way, prototypes can be as high-level as a single sketch

59

or as fine-grained as a prototype composed of several elements, with its elements

also containing sub-elements. Thus, regions are used to represent every object in the

design space.

To further build on the region concept, the overall design space is also represented

as a region, and is referred to as the Root region. All other regions in the design

space are then linked either directly or indirectly to the Root region in a parent-child

relationship.

Prototypes are composed using the region metaphor by overlaying regions on

other regions to arrive at a desired design. For example, the interface screen is a

region and elements laid out within the interface screen such as widgets or images

are also smaller regions overlaid within the screen region. Figure 4.1 illustrates how

regions can be used to compose prototypes.

Figure 4.1: Using the concept of regions to compose prototypes

60

Regions have both visual properties as well as associated behaviors. The visual

presentation of regions is represented as assets, where assets may be sketches, images,

or high-fidelity widgets, for example. Behavior is represented as scripts that are

bound to regions, where the scripts perform manipulations on regions. Scripts are

made up of commands, which are used to perform basic manipulations on regions

such as modifying their size or position. Also, scripts may contain a sequence of

commands to perform more complex behavior, such as repositioning an image and

shrinking its size as it moves into the new position. Finally, regions may be connected

through relationships. Relationships specify that a change in one region’s properties

affect other regions.

The remainder of this chapter further explains the Region Model. First, all

concepts of the Region Model are defined. Second, the commands that are able to

be performed on regions are discussed. Next, an XML-based notation is presented for

specifying the different concepts within the Region Model. This chapter concludes

by discussing the benefits of the model.

4.1 Defining the Region Model

This section defines each of the terms and concepts that the Region Model is com-

posed of: design space, regions, commands, and relationships. All of the properties

and behaviors of regions are also defined. UML diagrams as well as other illustrations

are used as necessary to enhance the written definitions of the Region Model.

61

4.1.1 Elements of the Region Model

Design Space

Design space represents the entire workspace, that is, the overall display real estate

that designers are working with. This parallels the concept of calling a whiteboard

a design space in a traditional workspace. The design space consists of a reference

to the Root region, that is, to the region encompassing the overall workspace. Since

all regions are either directly or indirectly subregions of the Root region, all regions

are located within the design space’s boundaries, which is equivalent to the Root

region’s boundaries.

Region

A region is an area that represents a visual element in the design space. Regions may

represent elements including interface screens of the system being prototyped as well

as components being laid out on the prototype screen designs, such as widgets or

images. As well, regions may represent the overall design space or even elements that

compose the design space’s interface to designers, like pie menus for manipulating

the design space, for example.

A region has the following properties:

• X is a value within the design space’s coordinate system representing the hor-

izontal position of a region in relation to the bottom left corner. X is some

integer bounded by the design space’s width.

• Y is a value within the design space’s coordinate system representing the verti-

62

cal position of a region in relation to the bottom left corner. Y is some integer

bounded by the design space’s height.

• Z is a value within the design space’s coordinate system representing the depth

displacement, that is the layer, of a region. Z is some integer between zero and

infinity, where zero is the deepest layer and infinity is the uppermost layer.

• Width is a value representing the size of a region along the horizontal axis.

Width is some integer between zero and infinity.

• Height is a value representing the size of a region along the vertical axis. Height

is some integer between zero and infinity.

• Color is a set of three values representing some amount of Red, Green, and Blue

from the RGB color model, respectively. Color’s values are integers between

zero and 255.

• Alpha is a value representing the degree of transparency of a region. Alpha

ranges from zero to one, where zero makes the region completely transparent

and one makes the region completely opaque.

• Asset represents the visual or presentation form that the region takes. For

example, an asset may be in the form of a sketch, image, video, widget, or

plain or textured graphical shape. An asset has two properties: the type of

asset and the location of a file. Note that a region may have only one asset

active at a given time, but may have a sequence of assets associated with it to

be displayed at different times.

63

• Script is a sequence of commands associated with a region to give it basic

behaviors. Scripts are used to manipulate one or more properties of a region,

either immediately or upon the occurrence of a specified event.

• Layout is an algorithm associated with a region that is used for automatically

positioning all of its subregions within itself. Examples of potentially useful

layout algorithms include ‘overlay’, which positions regions over top of one

another with a slight offset to allow for all regions to be partially visible, or

‘tile’, which positions regions evenly spaced side by side and row by row. Figure

4.2 illustrates the results these layouts may produce.

Figure 4.2: Examples of possible layouts for the Region Model

• History List is a set that stores clones of the region. Clones may be created and

saved either at regular intervals or when some of a region’s properties change.

In other words, a History List maintains historical versions of the region so

that a version may be referred to or reverted to at a later time.

• Parent Region refers to a region that the current region is positioned within.

All regions, with the exception of the Root region, have one and only one Parent

region with which they are positioned within and their coordinates are specified

64

relative to the Parent region’s position. The parent-subregion relationship is

used to compose interface prototypes of different elements.

• Subregions refers to a set of regions that are positioned within the current

region. Every region is a direct or indirect subregion of the Root region and

every region has zero or more subregions. Figure 4.3 illustrates the relationship

between a Parent region and its subregions using a hierarchical tree structure.

Figure 4.3: Every region has a Parent region as well as some num-
ber of subregions. For example, RegionB is a region with parent =
RootRegion and subregions = {RegionB1, RegionB2}.

Command

A command is used to perform some basic operation on a region. Examples of

commands include repositioning or scaling of regions. A complete list of commands

that are useful within the context of the Region Model are discussed in Section 4.1.2.

Relationship

A relationship is used to represent a connection between a pair of regions. Relation-

ships may exist for two main purposes: to bind behaviors and to indicate navigational

65

flow. Each type of relationship may have different properties, but all relationships

have properties such as the “show” property to indicate that the relationship should

be visually depicted.

The binding relationship may be used to specify the binding of behaviors to mul-

tiple regions, where manipulating one region results in an automatic manipulation of

another region. For example, a relationship may exist between Region A and Region

B where changing Region A’s x value may result in a relative change in Region B’s

width and height properties.

The navigational relationship is used to indicate navigational flow between re-

gions. For example, clicking on Region X may bring up the next screen, represented

by Region Y; thus, a navigational relationship exists between Region X and Region

Y.

Figure 4.4 is a UML Class Diagram illustrating the major concepts in the Region

Model. Notice that region has a recursive definition, where the Parent property is

also a region, and the subregions and History List properties are sets of zero or more

regions.

4.1.2 Commands for Manipulating Regions

Commands are used to manipulate properties of regions. Manipulating properties

is important in constructing prototypes as well as in managing the design space.

This section presents several commands that are seen as fundamental to the Region

Model. This section also provides a general notation for specifying each command,

including required parameters as well as optional parameters (indicated with []).

66

Figure 4.4: Region Model illustrated as a UML Diagram

Note that the bold font words are the command names, whereas the italicized words

are parameters.

• Add Region - creates a new region named regionName in the design space and

positions it at the specified x and y location, or else at 0 and 0 by default.

This command is denoted as: add regionName [x y].

• Delete Region - removes a region named regionName from the design space.

The command is denoted as: delete regionName.

• Move - repositions a region named regionName to a new x and y location

relative to its parent’s origin; moving the current region also causes a relative

move in all of its subregions. It is denoted as: move regionName x y.

• Scale - modifies width and/or height properties of a region named region-

67

Name by some % of its current size; modifying the size of the current region

may also modify the size of all its subregions if the flag applyToSubRe-

gions is specified. This command is denoted in one of two ways: scale re-

gionName % [applyToSubRegions] or scale regionName width% height%

[applyToSubRegions] .

• Change Layer - repositions a region named regionName to a new z value; by

default, a parent region has a lower z value than its subregions and thus appears

below its subregions. It is denoted as: layer regionName z.

• Change Transparency - modifies the alpha value of a region named regionName

to make the region either more transparent or more opaque. This command is

denoted as: transparency regionName alpha.

• Change Color - modifies the color of a region named regionName to have a

new color specified by red, green, blue. The command is denoted as: color

regionName red green blue.

• Select - specifies one or more regions named regionName1 through regionNa-

meN as active to perform an operation on. This command is denoted as:

select regionName1 [regionName2] [...] [regionNameN].

• Clone - creates a copy named newRegionName of the region, regionName, and

either positions it on top of the original region or at the optionally specified x

and y location; may also optionally copy all of the region’s subregions using the

68

applyToSubRegions flag. The command is denoted as: clone regionName

newRegionName [x y] [applyToSubRegions].

• Replace - replaces a region named targetRegionName with the properties of

a specific region named sourceRegionName; may also optionally replace all of

targetRegionName’s clones by specifying applyToClones. This command is de-

noted as: replace sourceRegionName targetRegionName [applyToClones].

• Assign an Asset - associates an asset of type assetType at assetLocation with the

region named regionName; this asset becomes the current presentation element

of the region. This command is denoted as: asset regionName assetType

assetLocation.

• Assign a Script - associates a script at scriptLocation with a region named

regionName in order to give the region specific behaviors. This command is

denoted as: script regionName scriptLocation.

• Record History - indicates that changes to a region’s properties over time should

be recorded so past versions of that region can be reviewed or reverted to. This

command is denoted as: record regionName.

• View History - indicates that historical versions of a region named region-

Name should be shown for reviewing and for allowing the current version to

be replaced with a previous version. This command is denoted as: versions

regionName.

69

4.2 The Region Model Notation

XML syntax is used to describe the Region Model. XML (eXtensible Markup Lan-

guage) is a widely used text markup language developed by W3C [4]. It was originally

designed for organizing web data and has since evolved into a standard for electronic

data exchange. XML language has three key components: a syntax for describing the

structure of the data (Schemas), a syntax for specifying the actual data (XML Doc-

uments), and a syntax for specifying how the data should be displayed (XSL-Style

Sheet Language).

Schemas and XML Document notations are used in specifying the Region Model;

schemas specify how the regions and other elements in the design space are to be

structured while the XML documents demonstrate examples of the design space and

elements that occupy the space. A complete schema is presented in Appendix A.1

and a complete XML document example describing the design space shown in Figure

4.5 is given in Appendix A.2. This section provides parts of the schema as well as

example XML documents for each element within the Region Model.

4.2.1 Specifying Regions

Regions are the fundamental concept in the Region Model. Regions must have the

following properties specified: a name to refer to as well as x, y, width, and height

properties to be able to display it at a certain location and of a certain size in the

design space. Also, z, color, and/or alpha property values may optionally be specified

70

Figure 4.5: An example state of the design space

to further determine how the region is to appear. All regions must have a parent

region specified, where the Root region has a null value for a parent. Subregions and

historical versions in a History List may also be specified if any exist. Furthermore,

assets, scripts, and layout properties may be specified for regions. The following

portion of the schema outlines how a region and its properties are to be specified.

<xs:complexType name="RegionType">
<xs:sequence>

<xs:element name="Asset" type="AssetType" minOccurs="0"/>
<xs:element name="Script" type="ScriptType" minOccurs="0"/>
<xs:element name="Layout" type="LayoutType" minOccurs="0"/>
<xs:element name="Region" type="RegionType" minOccurs="0"
maxOccurs="unbounded"/>

</xs:sequence>
<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="x" type="xs:integer" use="required"/>
<xs:attribute name="y" type="xs:integer" use="required"/>
<xs:attribute name="z" type="xs:integer" use="optional"/>
<xs:attribute name="width" type="xs:integer" use="required"/>
<xs:attribute name="height" type="xs:integer" use="required"/>
<xs:attribute name="color" type="xs:string" use="optional"/>

71

<xs:attribute name="alpha" type="xs:integer" use="optional"/>
<xs:attribute name="historyList" type="xs:string" use="optional"/>
<xs:attribute name="parentRegion" type="xs:string" use="required"/>
<xs:attribute name="subRegions" type="xs:string" use="optional"/>

</xs:complexType>

A region has some complex properties that require further specification beyond

a single simple value. The complex properties of a region include asset, script, and

layout. Notice that in the schema segment above, these three properties are defined

as separate complex elements instead of as attributes like the rest of the properties.

The following piece of the schema defines how to specify an asset. An asset

has type and location properties. The type of an asset is restricted to four values:

Sketch, Image, Widget, and Shape. This restriction is able to be described within

the schema.

<xs:simpleType name="AssetTypeOptions">
<xs:restriction base="xs:string">

<xs:enumeration value="Sketch"/>
<xs:enumeration value="Image"/>
<xs:enumeration value="Widget"/>
<xs:enumeration value="Shape"/>

</xs:restriction>
</xs:simpleType>

<xs:complexType name="AssetType">
<xs:attribute name="type" type="AssetTypeOptions" use="required"/>
<xs:attribute name="location" type="xs:anyURI" use="required"/>

</xs:complexType>

The following portion of the schema shows how to specify a script.

<xs:complexType name="ScriptType">
<xs:attribute name="behavior" type="xs:string" use="required"/>

</xs:complexType>

72

Finally, the Layout element is specified as follows.

<xs:complexType name="LayoutType">
<xs:attribute name="regions" type="xs:string" use="required"/>
<xs:attribute name="algorithm" type="xs:string" use="required"/>

</xs:complexType>

An example XML Document adhering to the region schema is provided below.

This example has a Root region with three immediate subregions: R2, R3, and R4,

all of which are laid out in the design space using the tile algorithm. R2 also has a

subregion named R2b.

<Region name="RootRegion" x="0" y="0" width="400" height="300"
color="255 255 255" parentRegion="null" subRegions="R2 R3">

<Layout algorithm="tile" regions="R2 R3 R4"/>
<Region name="R2" x="25" y="15" width="100" height="100"
parentRegion="RootRegion" subRegions="R2b">

<Asset type="Image" location="./image2.png"/>
<Region name="R2b" x="1" y="1" width="45" height="45"
color="255 0 0" alpha="1" parentRegion="R2"></Region>

</Region>
<Region name="R3" x="150" y="150" width="55" height="55"
color="0 255 0" parentRegion="RootRegion"></Region>
<Region name="R4" x="350" y="250" width="35" height="35"
color="0 255 0" parentRegion="RootRegion"></Region>

</Region>

4.2.2 Specifying Relationships

Relationships exist between two regions. Relationships may exist for different rea-

sons, such as to indicate a navigational relationship or a functional relationship. Not

all relationships, such as navigational relationships, include source or target proper-

ties, and as such these are optional attributes in the XML schema. The following

part of the schema shows how to specify a relationship.

73

<xs:complexType name="RelationshipType">
<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="sourceRegion" type="xs:string" use="required"/>
<xs:attribute name="targetRegion" type="xs:string" use="required"/>
<xs:attribute name="sourceProperty" type="xs:string" use="optional"/>
<xs:attribute name="targetProperty" type="xs:string" use="optional"/>

</xs:complexType>

The following is an example XML document describing a Relationship.

<Relationship name="R2affectsR3" sourceRegion="R2" targetRegion="R3"
sourceProperty="x" targetProperty="width"/>

4.2.3 Specifying Commands

Each command has these properties: the name of the command to be performed,

the name of the region to perform the command on, as well as other parameters

that vary based on the type of command. The following is a piece of the schema

illustrating how generally to specify a command.

<xs:element name="Command">
<xs:complexType>

<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="regionToAffect" type="xs:string" use="optional"/>
<xs:attribute name="parameters" type="xs:string" use="optional"/>

</xs:complexType>
</xs:element>

As mentioned, each type of command has unique parameters. The generic no-

tation for specifying specific commands was provided in Section 4.1.2. Below an

example XML document is given, illustrating how to specify each command and its

respective parameters in XML notation. Note that in this XML notation, all pa-

rameters beyond the name of the region to be manipulated are specified in a comma

separated list.

74

<command name ="add" regionToAffect="R1" parameters="10, 500">
<command name ="remove" regionToAffect="R2">
<command name ="move" regionToAffect="R1" parameters="50, 250">
<command name ="scale" regionToAffect="R1" parameters="2.0, 1.0">
<command name ="layer" regionToAffect="R3" parameters="0">
<command name ="transparency" regionToAffect="R3" parameters="1">
<command name ="color" regionToAffect="R1" parameters="255 0 0">
<command name ="select" regionToAffect="R4">
<command name ="clone" regionToAffect="R1" parameters="R1clone, 15, 15">
<command name ="replace" regionToAffect="R3" parameters=" R1, applyToClones">
<command name ="setAsset" regionToAffect="R1" parameters="./newimage.png">
<command name ="setScript" regionToAffect="R1" parameters="./../script">
<command name ="record" regionToAffect="R3">
<command name ="view" regionToAffect="R3">

4.2.4 Specifying Design Space

The design space consists of a Root region that represents the overall workspace, as

well as some number of direct and indirect subregions. These subregions are used to

compose prototypes. Commands and relationships may also exist within the design

space. The following XML schema shows how to specify the overall design space.

<xs:element name="DesignSpace">
<xs:complexType>

<xs:choice>
<xs:element name="Region" type="RegionType" minOccurs="1"/>
<xs:element name="Relationship" type="RelationshipType"
minOccurs="0"/>
<xs:element name="Command" type="CommandType" minOccurs="0"/>

</xs:choice>
</xs:complexType>

</xs:element>

4.3 Benefits of the Region Model

This research aims to utilize a large display workspace to enhance prototyping. The

Region Model seems particularly well suited for large display workspaces that are

75

constructed of multiple, tiled displays as well as for single display systems. For

multiple display systems, the design space could manage the process of assigning

specific subregions of the Root region to specific displays. Each display would be

responsible for rendering a “Display Root” region and all of its subregions. This

should scale well as more displays need to be added.

The Region Model is effective because of its expressiveness. This model can be

used to describe both the current state of prototypes being designed as well as the

design space itself and how the various prototypes are arranged within the design

space. The range of its expressiveness will be demonstrated in the following two

chapters.

76

Chapter 5

ProtoMixer: Software Support

for Mixed Fidelity Prototyping

This chapter presents a software tool to support the mixed-fidelity approach

to prototyping. The tool, called ProtoMixer, implements the Region Model from

Chapter 4. This chapter describes what features are implemented, how they are to

be used, and how they are implemented if relevant.

The aim of ProtoMixer is to be able to support the scenarios illustrated in Chapter

3. The next chapter shows how ProtoMixer successfully supports the scenarios by

describing an actual design session of an example application Also, illustrations of

ProtoMixer being used are provided in the next chapter.

5.1 Overview of ProtoMixer

ProtoMixer is a proof-of-concept system developed in Java. Refer to Figure 5.1

for a screenshot of the system. ProtoMixer is approximately 5,000 lines of Java

code. There are two different implementations: one in JOGL, which is OpenGL

for Java, and another in Java 2D. JOGL was initially used because it has better

77

graphics rendering performance; however, since Swing components cannot easily be

integrated with JOGL, a second version using Java2D was built to integrate high-

fidelity elements. Aside from incorporating high-fidelity elements, both implementa-

tions largely look and behave the same from the user’s perspective.

Figure 5.1: Screenshot of ProtoMixer

ProtoMixer is intended to be an easy to use, lightweight system, much in the same

manner as a basic drawing editor. All objects may be positioned anywhere on the

workspace, which is the same as the canvas in a drawing editor; placement of objects

is not restricted by frames and borders as with other tools like Interface Builders.

Also, there are no menu bars; all system operations are either performed directly on

the object or through a simple command panel, much like the always visible color

palette and property panels in drawing editors. For system development purposes,

command line interactions are also possible.

78

ProtoMixer implements all of the region commands from Chapter 4. By imple-

menting the commands as well as additional features, ProtoMixer satisfies the most

important and relevant facilities discussed in Chapter 3. Refer to Table 5.1 for a list

of all features ProtoMixer offers as well as how these features map to the facilities

and commands discussed in earlier chapters.

5.2 Implementing the Region Model

ProtoMixer was implemented based on the Region Model presented in Chapter 4.

Regions represent every prototyping element in the system, including the proto-

type’s screen or components within that screen. Regions in ProtoMixer have all of

the same properties discussed in the preceding chapter including the location and

appearance related properties as well as a parent and subregions. The ProtoMixer

system also incorporates all of the commands outlined in Chapter 4 to perform basic

manipulations on regions.

79

Table 5.1: Mapping facilities to region commands and ProtoMixer
features

Facilities Region Model ProtoMixer Features
Commands

Drawing Editor Facilities
Scaling Scale Scale
Positioning Move Move
Cloning Clone Clone
Annotating —– Sketch/Annotate
—– Add, Delete Add, Delete
—– Change color Change color
—– —– Cut out

Organizational Facilities
Grouping —– Overlay (relative positioning

of regions within regions)
Structuring —– Layout
Relating objects —– Relating (visually and by

binding properties)
Highlighting and selection Select Select
—– Replace Replace

Prototyping Domain Facilities
Layering and trans-
parency

Change layer, Change trans-
parency

Change layer, Change trans-
parency

Running components —– Running high-fidelity Java
components

Connecting to data —– In high-fidelity java compo-
nents

Setting properties and be-
havior

Assign asset, Assign script Assign asset, Assign script,
Flashing through assets,
Threaded tasks (for animat-
ing), Constrained movement,
Binding properties

Multi-User Support Facilities
Multiple inputs —– Future work
User control panels —– Future work
Integration of devices —– Future work

Large Display-Specific Facilities
Pick-and-drop —– Future work
Gestures and specialized
menus

—– Future work

Space management —– Layout, Relative positioning
of regions within regions

Process Enhancing Facilities
Logging activities Record history, View history Record history, View history,

Redo/undo
Querying library —– Future work
Import and exporting —– Import and exporting xml

files

80

The Root region represents the entire design space and every other object on the

display is either a direct or indirect subregion of the Root region. This holds true in

our implementation as well. The rendering of the design space happens recursively,

starting with the Root region; each region renders itself and then renders all of its

subregions. This rendering is fairly straightforward and based on the depth first

search algorithm. Pseudo code illustrating the rendering process is shown below:

method main
{

...
renderRegions(rootRegion)
...

}

method renderRegions(currentRegion)
{

renderSelf(currentRegion)

if currentRegion hasSubRegions then
for each subRegion

renderRegions(subRegion)
}

method renderSelf(currentRegion)
{

...
}

The coordinates of each region are specified relative to its parent region’s origin.

Thus, repositioning a parent region also repositions its subregions relative to the

parent’s new position. This relative coordinate system is used to hold together

prototypes and the elements that they are composed of.

The same recursive depth first search algorithm presented above is used whenever

the regions structure needs to be searched. For example, to identify which region a

designer has selected, the regions must be searched to find the uppermost layered

81

region, contained within a specific location. The same algorithm is also used when

the user moves a region off of its current parent to determine which region becomes

its new parent.

The other elements of the Region Model are also incorporated into ProtoMixer.

These elements will be discussed throughout the remainder of this chapter.

5.3 Integrating the Different Fidelities

The main goal of ProtoMixer is to allow users to compose prototypes of multiple

fidelities. ProtoMixer supports the integration of elements of any fidelity through

the use of assets. In the current version of ProtoMixer, assets may be of these

types: sketch, image, and widget, where each of these types clearly corresponds to

a fidelity. (Note that in Chapter 4, assets are discussed as being of other types

like geometric shapes, but currently ProtoMixer only handles rectangular-shaped

regions.) To incorporate a specific element in ProtoMixer, users set a new or existing

region’s asset to point to the location of the asset file as well as specify the type of

the asset so the renderer can respond accordingly. The remainder of this section

discusses how ProtoMixer successfully integrates the three different fidelities: low,

medium, and high.

5.3.1 Low-Fidelity

Low-fidelity elements are typically sketched designs. They may be sketches of any

part of a prototype, from the whole screen to pieces of an interface component.

82

ProtoMixer supports low-fidelity design by allowing for importing of sketches created

externally as well as for sketching directly on the design space.

ProtoMixer is primarily developed to use sketches that are created outside of this

system. For example, sketches may be images imported from scanned in paper-based

sketches, photographed images of sketches done on whiteboards, or images from other

computer-based sketching applications such as Adobe r© Illustrator r©. These images

of sketches are then imported into the system as assets that are associated with

particular regions. Specifically, sketches are imported by providing the system with

a name and location of the image file.

The system also supports basic freehand sketching. When the designer is in the

Sketch mode versus the regular interactive mode, all of the strokes are encapsulated

into a region. The sketch can then be manipulated in the same manner as any

other region. While the sketching capabilities are fairly limited at this point, there

is nothing restricting us from adding further sketching features such as different

stroke styles, widths, and colors, as well as an eraser and grid-based tracing feature.

Sketching is not where our attention has been focused, as several commercial software

packages already exist to do detailed sketching and designers who are accustomed

to a current way of sketching, on paper for example, likely would prefer to continue

with that approach and then import their designs into our system.

ProtoMixer also supports the PICTIVE technique, or specifically the integration

of PICTIVE elements, which are annotated paper cutouts. As PICTIVE designs

are also paper-based, they may be imported into the system in the same manner as

83

non-digital sketches – by scanning them or taking a photograph and then importing

them as images.

5.3.2 Medium-Fidelity

Medium-fidelity elements are non-sketched, more refined images of design concepts.

Again, these may be images of any part of the prototype, from skeleton screens to

components. These images can be created using commercial multimedia tools such

as those discussed in Section 2.2, as is traditionally done. Medium-fidelity elements

may also be screenshot images of existing user interfaces or interface elements. These

images are then able to be imported into ProtoMixer as assets, by providing the

system with the name and location of the image file. Medium-fidelity elements may

also have some limited behavior, as will be discussed in Section 5.4.3.

5.3.3 High-Fidelity

High-fidelity elements are actual programmed user interface components. ProtoMixer

allows for working user interface components to be imported into the system as as-

sets. These components may be standard toolkit components or custom-built com-

ponents. Specifically, designers can import high-fidelity elements into ProtoMixer

by providing the name and location of the component.

The current version of ProtoMixer allows for Java Swing or AWT components

to be imported and used within the system. This is because the system is imple-

mented in Java. It supports any pre-built standard components that inherit from

84

JComponent such as JTables and JTextFields. ProtoMixer also supports customized

components that a software development team may have built specifically for the cur-

rent project or may be reusing from past projects. Customized components must

extend from Java’s JComponent class or one of its children, because the rendering

class needs to know the type of the component in order to be able to instantiate and

render it.

The following block of Java code from ProtoMixer shows how a component is

initialized, regardless of whether it is a standard Java component or some custom

component. Specifically, reflection is used to create an instance of the component

object. (Note that exception handling has been removed for improved readability.)

public JComponent createWidget(String widgetType)
{

JComponent widget = (JComponent) Class.forName(widgetType).newInstance();
return widget;

}

It is interesting to note that by allowing integration of any component that in-

herits from JComponent, ProtoMixer offers a very flexible and powerful feature.

Firstly, ProtoMixer allows for standard or custom components to be imported into

ProtoMixer with pre-loaded data. This is very useful in the domain of prototyping,

where it is often important to convey the impression of a real, working system and

using real data aids in that. Secondly, ProtoMixer not only supports integration

of high-level control components (like JTables and JTextFields), but also supports

lower-level general purpose container objects such as JPanel and JScrollPane. This

allows for more complex, previously composed elements or entire prototypes to be

85

displayed and manipulated as any other region within ProtoMixer. Ultimately, this

allows designers to integrate high-fidelity components from their previous projects

or from existing specialized component libraries.

Alternative Approaches to High-Fidelity

Integrating high-fidelity interface components could be accomplished using approaches

other the one implemented and discussed above. One alternative approach is to im-

plement our own user interface component toolkit in whatever language the system

is implemented in: JOGL or Java2D in our case. This approach was not pursued

because it requires a lot of extra coding and system users would typically not want

to implement every component from scratch. Instead it is important to encourage

reuse of existing components and lightweight development for components that do

not already exist.

A second and rather unique alternative to integrating high-fidelity elements is

to use VNC-based technology [28]. VNC or Virtual Network Computing allows

for a client machine (the one running ProtoMixer) to have access to view and to

interact with the screen display contents of a separate (server) machine. It should

be possible to modify existing VNC applications, such as RealVNC and UltraVNC,

to allow for viewing of only a specific area of the remote screen, that is, the area

which contains the interface component to be integrated into ProtoMixer. This area

containing only the component of interest could then be displayed on the machine

running ProtoMixer. Of course, the area would need to be displayed without a

86

framed window, which is normally used in standard VNC applications, presenting a

new implementation challenge of removing frames from windows.

This VNC approach encourages the use and reuse of existing components, un-

like the first alternative approach that involves implementing our own toolkit. The

VNC approach also allows for integrating any existing components or parts of inter-

faces regardless of whether or not they can run as stand-alone components within

our system, which betters our implemented approach of tying in stand-alone Java

components. The major disadvantage of the VNC approach is that it leaves little

opportunity for tying in a data model and linking data between two or more running

components that are not being run from within the same remote application.

5.4 Using the System

This section discusses how to use ProtoMixer. Specific issues discussed include how

to interact with ProtoMixer, how to compose prototypes and give them behavior,

how to create storyboards, how to organize the design space, as well as how to use

other interesting features to enhance the design process. Implementation details are

provided where appropriate.

5.4.1 Interacting with the System

ProtoMixer allows for designers to interact with the system via direct manipulation,

a user interface form (referred to as the command panel and shown in Figure 5.2),

and command line input. These three approaches of interacting were implemented

87

for different reasons. Direct manipulation combined with the command panel are

likely the preferred interaction methods for designers using ProtoMixer in a real

design session. Direct manipulation allows for designers to manipulate the regions

on the screen, by scaling, moving, and selecting regions for example. These types

of commands are conducive to direct manipulation, whereas other commands like

change color or transparency or record history are not. Instead such commands are

better performed by inputting instructions into a command panel. Finally, the com-

mand line interaction was created primarily for testing purposes at the development

stage, but also may be found useful for designers who wish to extend the system

by adding their own commands. Also, command line interaction is conducive to

putting multiple basic commands together to perform a more complex manipulation

on regions.

Figure 5.2: Screenshot of ProtoMixer’s command panel

The system is designed to provide the user with visual feedback where possible,

particularly for interactions that are specified via direct manipulation. For example,

selecting an element causes that element to be highlighted with a yellow border. And

starting to resize an element by directly manipulating the element’s resize handle

88

causes a red rectangular outline to appear representing the currently specified new

size of the element.

5.4.2 Composing Prototypes

ProtoMixer allows designers to create prototypes by importing previously designed

prototype screens or elements, or by creating new ones within the system. A proto-

type or a prototype element is integrated by first creating a region and then assigning

an asset to it. A region may only have one active asset at a time, but a sequence

of assets may be assigned to be displayed at some instance or upon some event

occurring. Also, a new region may be created by utilizing the built-in sketching

feature.

Prototypes can then be composed in ProtoMixer by layering regions on top of

other regions. By placing a region on top of another region, the parent and its

subregions are effectively grouped together (called the Grouping feature), so moving

the parent region keeps the subregions within it at the same relative positions.

Visual properties of prototypes can be modified and enhanced by taking advan-

tage of other basic built-in features. For example, designers may scale elements or

prototypes, where scale is implemented to allow for either proportionate scaling,

that is, changing the width and height by equal amounts, or disproportionate scal-

ing, where a percentage of change in the width differs from the height. Designers

may also move elements or prototypes, or change their color or transparency. During

runtime, designers may also change which assets are currently displayed.

89

ProtoMixer has features that support reuse. Regions may be cloned and used in

more than one design, which is particularly useful when exploring alternative designs

with some similarities. The Clone feature is implemented as a deep clone, creating a

clone of all associated Java objects, particularly the region’s subregions when speci-

fied. In ProtoMixer, regions keep track of all regions that are clones of themselves,

which supports the Replace feature. The Replace feature allows regions that look

the same to be replaced by either another region or, minimally, another asset. This

is useful when a prototype or a piece of a prototype that appears in multiple places

has been re-designed and needs to be updated to reflect these changes. Furthermore,

through the Cutting feature, pieces of regions may be reused by allowing the design-

ers to cut out an area of a region and encapsulate the specified area as a new region.

This is also useful in creating multiple designs that have some elements in common.

Designers may annotate designs in ProtoMixer by using the Sketch feature. De-

signers may make notes or markings on the designs and once they are done, Pro-

toMixer encapsulates this into a region. The annotation region may then be asso-

ciated with the region it is annotating by creating a relationship between the two

regions. The annotation Region may then be hidden or made visible upon the de-

signers’ request. The annotation could also be shrunk and stored in the corner of the

region it is annotating, and be enlarged when a designer is interested in reviewing

it.

90

5.4.3 Adding Behavior to Prototypes

Aside from taking advantage of the built-in behavior offered by high-fidelity compo-

nents, ProtoMixer also allows for certain behavior to be added to low- and medium-

fidelity elements. Designers are able to add behavior to prototypes and/or their

elements through a few different approaches: constraints, animation, and bindings.

Using these approaches, ProtoMixer currently supports several different examples of

behavior that designers may be interested in incorporating into their prototypes.

Constraints

One example of the type of behavior ProtoMixer is able to support is constrained

movement. In our implementation, constrained movement restricts where a region

can be moved within its parent region; that is, a region’s position may be restricted

to anywhere within its parent or be more heavily restricted to movement along some

specified path. This may be useful in composing prototypes with lower-fidelity slider

components, for example, where the movement of the slider can be restricted to a

horizontal path along the slide bar. ProtoMixer allows for this type of constraint-

based behavior to be extended to place constraints on other element properties than

only position.

Animation

ProtoMixer also provides behavior to prototypes through the use of animation, a

useful feature that allows for a wide range of example behaviors to be demonstrated

91

to stakeholders. Specifically, ProtoMixer allows for a series of tasks or manipula-

tions on prototypes to be specified and then performed over a period of time. The

manipulations on the prototype can be scheduled to start taking place immediately,

at some delayed instance in time, or upon the occurrence of some user interaction.

One example of animation that ProtoMixer supports is flash sequence animation.

Flash sequence animation allows for a series of assets associated with an element to

be displayed one at a time over a specific period of time. Flash sequence animation

could be used to demonstrate the effects of a video playing inside the prototype from

a series of images, for example. As another example, flash sequence animation could

be used to show navigation between screens.

A second example of animation that PrototMixer supports is motion animation.

Designers can use motion animation to demonstrate a prototype element moving

across the screen, like a drag-and-drop interaction for example. Designers can also

specify further animated behavior beyond simple motion. Elements could be resized

as they are dragged, for example, having them expand to a certain size as they reach

a target position.

Binding Behaviors

Often in user interfaces, the behavior or appearance of an interface element may

depend on properties or behaviors of some other element in the interface. ProtoMixer

supports this by allowing for designers to be able to bind one element’s (target

element) behavior or appearance with the properties or actions of another element

92

(source element). Changing the source element causes some behavior to happen in

the target element.

One example of binding behavior is when using a slider’s position to determine

the size of another element in the prototype screen. The designer would specify the

slider’s position as the source property and bind that to the other element’s size (the

target property). As another example, designers could use the slider as a scroll bar

and have the slider’s position update which area of the prototype is displayed by

changing the current asset of a particular region.

Another example is binding the event of selecting one element (the source) with

specifying which asset to be displayed in another region (the target) of the prototype.

More concretely, the designer would want to specify this type of binding when clicking

on a next arrow image to cause the image in an image previewer region to be changed

to the next image in the asset list.

Binding High-Fidelity Elements ProtoMixer supports a more complex bind-

ing involving high-fidelity widgets only, which allows for the value(s) in one high-

fidelity widget to affect some value(s) in another high-fidelity widget. This binding

feature is implemented in a generic manner, using the Publisher-Observer pattern.

The observer widget, who depends on the value(s) from some other widget (the pub-

lisher), subscribes to the publisher to be notified when the specified value(s) have

changed. The publisher widget then notifies all observer widgets upon the occurrence

of the subscribed value(s) changing.

Three different categories of values, or more specifically, three common types

of underlying data structures that contain values the widgets may be interested in

93

binding to are identified. These include: an array, a table (two-dimensional array),

and a single value. A specific Publisher and Observer interface were implemented

for each of these three types of data structures. Below is the code for the Array

publisher and observer interfaces. (Note that the Value and Table publisher and

observer interfaces are very similar to these, with only slight name changes as well

as the obvious return and argument type changes.)

public interface ArrayPublisher extends Publisher {
Object[] getArray();
void setArray(Object[] array);
void subscribeToArray(ArrayObserver aObserver);

}

public interface ArrayObserver {
void arrayChanged(ArrayPublisher aPublisher, Object[] array);

}

Below is the code for the Publisher interface, which all three types of Publishers

must extend. The purpose of this higher-level Publisher is to enforce the publisher

to maintain a list of all subscribing (observer) widgets.

public interface Publisher{
void addSubscriber(Object s);
void removeSubscriber(Object s);
Vector getSubscriberList();

}

In order to bind two high-fidelity widgets together within ProtoMixer, the appro-

priate widgets’ Java classes must implement the Publisher and Observer interfaces.

For example, assume a JTextField widget needs to display the value corresponding

to the JSlider’s current position. A new class would need to be implemented that

extends from JTextField and implements all methods specified in the ValueObserver

94

interface. A new class would also be needed that extends from JSlider and im-

plements all methods from the ValuePublisher (and indirectly, Publisher) interface.

These two new classes could be incorporated into ProtoMixer by creating new re-

gions or setting existing regions’ assets to point to these widget classes. To actually

bind the two widgets, the user would then have to use the Bind command that re-

quires the observer region name, the publisher region name, and the data structure

type to bind to. In this example, our bind command would look like this: “bind

TextFieldRegion SliderRegion value”.

5.4.4 Organizing the Design Space

ProtoMixer’s design space can be organized by taking advantage of built-in layout

algorithms. To organize the entire design space, designers can apply layout algo-

rithms to the Root region. To organize a specific area of the design space, a layout

can be applied to the region that occupies that specific area. ProtoMixer supports

tiled layout which is particularly useful in organizing the overall design space. As

discussed earlier, tiled layout arranges all of the display contents side by side and row

by row. ProtoMixer can be easily extended to support further layout algorithms.

To use the automatic layout feature, designers must associate a particular layout

algorithm with the region of interest. Designers then instruct the system to perform

whichever layout has been associated with the region. This is useful for re-laying

out regions after designers may have moved elements out of or placed new elements

into the region.

95

ProtoMixer also supports further organization of the design space by allowing

designers to create visual relationships between regions. Showing how regions are

related should help create organization in the minds of the designers. These visual

relationship lines may be turned on and off.

5.4.5 Storyboarding

ProtoMixer offers designers a storyboarding feature. First, designers can lay out

the screens as desired either by taking advantage of built in layout algorithms or by

laying out the screens on their own. Designers can then link the screens together to

demonstrate navigational flow. ProtoMixer allows the designers to specify naviga-

tional flow between two prototypes either by drawing a line from one prototype to

another while in the Create Navigation mode or by specifying it in the initial import

file or via command line at run time.

ProtoMixer allows the designers to play through the storyboard they have con-

structed by animating the navigational flow between the prototype screens. Design-

ers may choose to demonstrate the navigation by having the prototypes be high-

lighted one at a time in navigational sequence. Designers may also choose to have

arrows drawn between the prototypes one at a time, again in sequence. Finally, de-

signers may have the prototypes laid out on top of one another and flashed through

in sequence to animate the screen changes.

96

5.4.6 Additional Process-Enhancing Features

Additional features of ProtoMixer contribute to process and productivity enhance-

ments. ProtoMixer offers three features to support the Logging Activities Facility

from Chapter 3: Record History, View History, and Undo/Redo. The Record His-

tory feature in ProtoMixer is implemented by having every region keep track of itself

over time. Designers can then view the history of a region by using the View His-

tory command, where a new region pops up displaying all historical versions of the

region. At this point, ProtoMixer can record a region at regular time intervals or

upon certain changes to that region, such as when its asset changes. ProtoMixer also

records a list of all user interactions with the design space and its contents, offering

designers the ability to undo and redo actions.

ProtoMixer also supports Importing and Exporting of the design space contents.

The files that are imported and exported are XML documents matching the Design

Space Schema presented in Section 4.2. ProtoMixer can also be set up to export the

design space at a regular interval.

Between recording each region’s appearance, the user interactions performed, and

the overall design space contents at regular intervals, ProtoMixer could be extended

to have a fairly complex history recording mechanism. It would be interesting to

provide the user with a visual timeline of how designs have evolved.

97

5.5 Utilizing a Large Display Workspace

The current version of ProtoMixer is set up on an 8 mega-pixel display space. Specif-

ically, this workspace consists of two 30” Apple Cinema Displays r©, both running at

a resolution of 2560x1600 pixels. Having high resolution allows us to display multi-

ple screen prototypes at once. It also allows multiple designers to gather around the

workspace and participate in the design session. Originally our system was run on

a SMART BoardTM display; however, we found that the best resolution supported

(1280x1024) was insufficient for our purposes. With ProtoMixer, it is essential to

explore multiple prototypes or at least multiple prototype elements at once and in a

collaborative setting.

To date, we have primarily used a standard keyboard and mouse to interact with

the system. We also have explored using a sketch tablet for selecting and drawing

objects in the system. The envisioned ideal workspace should consist of a variety

of computing devices aside from the large displays, such as Tablet PCs, laptops, or

PDAs for interacting with the display from anywhere in the room. The currently

envisioned ideal techniques for directly interacting with the large display are pen-

based interactions on a touch-sensitive surface, including sketching and gestures;

however, it may be worthwhile to explore other novel interaction techniques.

98

5.6 Achieving the System Goals

Five system design goals were presented earlier in Chapter 3. We aimed to sat-

isfy these goals in our proof-of-concept implementation. This section describes how

progress was made towards satisfying these goals.

First, ProtoMixer encourages the use of traditional informal design activities by

allowing designers to perform low-fidelity prototyping outside of ProtoMixer. These

externally created designs can then easily be imported into ProtoMixer. Further-

more, ProtoMixer allows for sketching within it so traditional informal activities are

not abandoned in our mixed-fidelity approach.

Second, ProtoMixer supports transitioning between fidelities in a couple of dif-

ferent ways. Assets of a region may be changed to move to a higher-fidelity asset or

revert back to a lower-fidelity asset. Also, regions representing the same prototype

element may be layered on top of one another, and then the layers may be adjusted

to bring a region of a certain fidelity to the top.

Third, ProtoMixer offers history recording to enhance the design process. Specif-

ically, ProtoMixer records copies of each region when it changes as well as records

all user interactions with the system. ProtoMixer also allows previous versions to be

reverted to and previous user interactions to be undone.

Fourth, while ProtoMixer does not yet allow for multiple users to interact with

it, ProtoMixer does support collaboration. Multiple people can view the designs in

ProtoMixer, as ProtoMixer is run on a large display workspace. And more impor-

tantly, different individuals, such as developers who implement components, are now

99

able to become involved early in the design process. Also, in supporting mixing of

fidelities, ProtoMixer allows for rich feedback to be elicited from users and other

stakeholders throughout the process.

Fifth, ProtoMixer provides a lightweight design environment. Specifically, it im-

plements features for importing and exporting the design space so it is easy for de-

signers to start where they left off in a previous session. Also, it is implemented with

no hidden menus and most interactions are based on direct manipulation. Finally,

behavior can be added to elements with little effort.

5.7 Future Implementations

As indicated in Figure 5.1, most of the facilities discussed in Chapter 3 were ac-

complished with this version of ProtoMixer. We envision an ideal system to have

implemented all of the remaining facilities set out in Chapter 3. At this point, Pro-

toMixer does not support any multi-user features such as integration of multiple

devices and multiple inputs. Also, ProtoMixer needs to have features to better facil-

itate the use of large display workspaces such as specialized interaction techniques.

Furthermore, the ideal system should have a more complex versioning system to

provide users with a visual timeline to show how designs have evolved. Finally, it

would be beneficial to include a visual querying facility to allow designers to search

for previous, relevant designs. Even with some limitations in the current implemen-

tation, a range of user interface designs and behaviors are able to be expressed, as

will be shown in the following chapter.

100

Chapter 6

Mixing Fidelities In Action: An Example

In the previous chapter, the proof-of-concept system called ProtoMixer was pre-

sented. This chapter describes an example design session where we, as designers, are

utilizing ProtoMixer to prototype the business forecasting application described in

Chapter 3. The design scenarios from Chapter 3 are revisited, and it is illustrated

how they are successfully accomplished using ProtoMixer. Note that this chapter

offers an illustrative example and our intent is for the mixed-fidelity approach to

be generalized beyond the business forecasting domain as well as these particular

scenarios.

6.1 Leading up to the Scenarios

We start by sketching prototype screens as well as some elements using an external

drawing application. Note that we also could have drawn the designs on paper and

then scanned them in as images. We then import these sketches into ProtoMixer as

images and specify them as regions’ assets (done through an xml input file). All of

the sketches are then displayed in ProtoMixer in the Repository Region. The rest of

101

the design space is empty as we are just beginning a new project. Figure 6.1 shows

the current state of ProtoMixer.

Figure 6.1: Initial state of ProtoMixer upon loading assets into the
Repository

We then proceed with prototyping by laying out the screen designs on the design

space. First we lay out the rough screen sketch that has three different view options:

‘Chart’, ‘Financial Statement’, and ‘Accounting Details’, as shown in Figure 6.2.

Figure 6.2: A sketched prototype of the screen

102

Next we make a clone of this screen sketch, and drag and drop the sketched

elements to create the two different views. Specifically, we create the ‘Chart View’

by dragging on the two chart sketches. We also create the ‘Financial Statement

View’ by dragging on the sketched table. The resulting designs of the two views are

shown in ProtoMixer in Figure 6.3.

Figure 6.3: Leading Scenario created in ProtoMixer

6.2 Achieving the Scenarios

Now we are ready to proceed with the scenarios from Chapter 3, building from where

we left off in the leading Scenario.

103

6.2.1 Achieving Scenario 1: Composing lightweight

prototypes by mixing fidelities

We start off this Scenario by refining the ‘Charts View’ screen. First, we need to add

fields for selecting the types of drivers to chart out as well as add labels categorizing

the revenue versus cost drivers. We do this by sketching (in an external application)

the new details into the current screen skeleton design. We then import this new

sketch into our system and replace the previous skeleton sketch with the new one.

This replacement is done by modifying the region’s asset, or specifically the asset’s

file location, on the graphical command panel. Refer to Figure 6.4 for the resulting

design.

Figure 6.4: ‘Chart View’ after sketching labels and pulldown menus

Next we want to give the sketched charts a more refined look, so we import

medium-fidelity images of the charts. We use the Fill-to-size command to automat-

104

ically place the images on top of the sketched versions and resize them to match the

sketches. The result is shown in Figure 6.5.

Our final modification to the ‘Charts View’ in this scenario is to label the two

charts’ axes, as shown in Figure 6.6. We do this in the same manner as we added

revenue and cost driver details, that is, by replacing the asset of the current sketch

with a new externally modified sketch.

Figure 6.5: ‘Chart View’ after adding images of the charts

Figure 6.6: ‘Chart View’ after adding chart axes labels

105

We now turn to working on refining the table element in the ‘Financial Statement

View’ screen. We sketch out example data to put in the table. We then import this

new table element into the system and use the Fill-to-size command, automatically

positioning and resizing the data-filled table sketch on top of the old sketched table

outline. Next we add a field for the user to select the type of financial statement

to display by importing the sketched pieces and dragging and dropping them into

position on top of the screen’s design. The resulting design is shown in Figure 6.7.

Figure 6.7: ‘Financial Statement View’ after adding sketched data
and pulldown menu

Finally, we need to add a high-fidelity table widget to the design. We do this in

ProtoMixer by creating a new region using the graphical command panel and setting

its asset to be of type “Widget” and the widget object type to be “JTable”. This

high-fidelity table is then positioned and resized on top of the sketched version using

the Fill-to-size command, as shown in Figure 6.8.

The designs resulting from the completion of Scenario 1 using ProtoMixer are

shown in Figure 6.9.

106

Figure 6.8: ‘Financial Statement View’ after adding a high-fidelity
table

Figure 6.9: Scenario 1 completed using ProtoMixer: medium-fidelity
images of charts and a high-fidelity table component have been mixed
into refined sketch designs

107

6.2.2 Achieving Scenario 2: Transitioning between fidelities

as ideas are refined

We continue to refine the design of the charts. First off, we need to try a modification

to the charts at the sketched fidelity first before proceeding with higher fidelities.

We revert back to the sketches using the Change Layer feature of ProtoMixer, which

hides the top layered medium-fidelity images and brings the sketches back into view.

We then are able to sketch the new design idea, a vertical guide bar, onto the charts

by using the built-in Sketching feature. This is shown in Figure 6.10.

Figure 6.10: ‘Chart View’ after sketching vertical guide bar

Next we create medium-fidelity images of these refined charts externally and

import them into ProtoMixer as new regions, with these images as their assets.

These new charts are placed exactly on top of the sketched versions using the Fill-

to-size command, with the results shown in Figure 6.11.

108

Figure 6.11: ‘Chart View’ after adding updated images of charts

We also modify the appearance of the skeleton screen design by adding fields

to select a time period and to display calculated profit. This is done by externally

modifying the sketch. Then we update the skeleton screen in our system by replacing

the image asset of the ‘Chart View’ prototype and update all of its cloned regions

to match the new version – in this case the only clone is ‘Financial Statement View’

prototype. The updated sketches are shown in Figure 6.12.

6.2.3 Achieving Scenario 3: Integrating domain-specific data

and functionality

To accomplish this scenario, we need to put real data into the high-fidelity table as

well as use this data to calculate a value for displaying in the profit field. We start off

with the design where we have an empty high-fidelity table. In order to add data to

the prototype’s table, we implement a table widget that we call “FilledJTable”. In

FilledJTable, we inherit from JTable and initialize the table with arrays filled with

109

Figure 6.12: Both views after adding period pulldown menu and profit
field

example data to match the data from the sketch. On the graphical command panel,

we then change the asset of the region containing the empty high-fidelity table to

instead have FilledJTable as its widget object type (refer to Figure 6.13 for result).

Next we need to display a value in the profit field so we make use one of Java’s

pre-built text components, JTextField, where we can easily set a value. We create a

new region with a JTextField widget as its asset and place it over top of the sketched

profit field (refer to Figure 6.13 for result).

Next we need to connect the high-fidelity table and text field widgets together,

as they share a common data model. We do this using ProtoMixer’s high-fidelity

Binding feature. Specifically, we further extend FilledJTable to implement the

TablePublisher interface, as described in Section 5.4.3, and we call the new class

“LinkedJTable”. We also implement a class called “LinkedJTextField” that extends

110

JTextField and implements the TableObserver interface, again as described in the

previous chapter. Because LinkedJTextField’s profit value is derived from multiple

specific values in the table, we also implement a specialized function for calculating

the profit.

Figure 6.13: ‘Financial Statement View’ after adding the high-fidelity
text field and table with data

We have included our specialized function that calculates after tax-profit based on

this table’s format. This function, called calculateNetProfit, is called by the LinkJ-

TextField’s tableChanged method, after tableChanged is invoked by the Linked-

JTable class upon its data changing (as discussed in Section 5.4.3).

public void calculateNetProfit(Object[][] table)
{

int totalPreTaxProfit = table[10][1] + table[10][2] + table[10][3];
int taxes = totalPreTaxProfit * curTaxRate;
int afterTaxProfit = totalPreTaxProfit - taxes;
this.setText("\$ "+ afterTaxProfit);

}

Once the new widgets are implemented, we compile the new classes and then

update the prototype’s table and text field regions’ assets to map to the new Linked-

111

JTable and LinkedJTextField classes, respectively. We then specify a connection

between these two widgets at run time by using the Bind command, which looks like

this in our case: “bind LinkedJTextField LinkedJTable table”. The widgets are now

connected so whenever the table’s data is modified, the text field is notified of the

change and is passed the updated data. The text field then uses our built-in function

to calculate the profit and displays the resulting value (shown in Figure 6.14).

Figure 6.14: ‘Financial Statement View’ after binding text field’s
value to the table data

The end result of this scenario is shown in Figure 6.15. Note that the text field’s

value of $176,625 is calculated using the above calculateNetProfit function based on

the table’s current example data.

6.2.4 Achieving Scenario 4: Trying out novel interactive

elements

We now work on further refinements to the charts, specifically with regards to the

charts’ behavior and interactivity. We start off by creating a series of medium-fidelity

112

images of the charts that illustrate their appearance at some instance in time (as

illustrated earlier in Figure 3.4). We then load these charts into the Repository

Region of ProtoMixer.

Figure 6.15: Scenario 3 completed in ProtoMixer: the high-fidelity
table now has real data that is bound to the high-fidelity text field’s
value

Next we set these new charts as assets of the most recent charts, by updating

their asset location in the graphical command panel. We are careful to add the

charts in sequential order to allow for animation of the charts’ behavior. We now

animate the charts by using the Flash Animation feature. We can set the charts to

flash through in sequence any number of times.

Now we need to move to a higher-fidelity design with these chart components by

giving them some actual behavior as desired in the final design. Because this com-

ponent is fairly novel and does not exist in the Java toolkit, or any other toolkit for

that matter, we compose a component by utilizing and connecting multiple elements.

First we work on the main chart area. As Java’s standard toolkit does not offer

a chart widget, we implement a simple one on our own and implement it to look like

113

the sketched versions. Also, when implementing the chart component, we keep in

mind that we need to be able to create both line and curve charts as well as need to

be able to shift the line and curve based on an inputted shift value. Then we need

to use a slider widget for specifying an active x-axis value, so we make use of the

JSlider from Java’s standard toolkit.

Now that we have the key elements to create our novel chart component, we

need to connect them together, to create some behavior based on other element’s

properties. Specifically, we need the line chart’s slider to shift the curved chart’s

curve and vice versa. We incorporate this into our prototype by further extending

the chart widgets to implement the Observer interface, and more specifically, the

ValueObserver interface because each chart is interested in receiving a single value

from the slider. Next we implement a slider class that extends JSlider and implements

the ValuePublisher interface.

We are ready to start composing the component. We import these high-fidelity

widgets and lay them out nicely to produce a unified looking novel chart component,

as shown in Figure 6.16. We then bind the widgets together using the Bind feature,

as described in the previous subsection.

Now we can use our newly composed chart element to demonstrate the design

concepts. Dragging the slider below the line chart results the other curve chart

shifting upwards or downwards. Conversely, dragging the slider below the curve

chart results in the line chart shifting upwards or downwards. The final result of this

scenario is shown in Figure 6.17.

114

Figure 6.16: ‘Chart View’ after composing a lightweight novel chart
element

Figure 6.17: Scenario 4 completed using ProtoMixer: a rather novel
chart component has been composed of a chart widget and a slider
widget

115

6.2.5 Achieving Scenario 5: Comparative analysis of

alternative designs

We now explore an alternative layout for the prototype. We sketch out an alternate

layout idea, which tries to incorporate the charts and financial statements in the

same view. We then import the two alternate sketches into ProtoMixer. We use the

automatic layout feature to position the two designs side-by-side, as shown in Figure

6.18.

Figure 6.18: Comparing two alternate prototype layouts using Pro-
toMixer

We then annotate the two alternative sketches with the advantages and disad-

vantages of each. We annotate them by creating two new regions with JTextArea

widgets as their assets. We then type in the annotations we wish to make about each

design in their respective annotation regions, resulting in the state in Figure 6.19.

116

Figure 6.19: Annotating the two alternate layouts with pros and cons

We are then able to hide and unhide our annotations for future reference. Specifi-

cally, we hide them by shrinking the annotation regions and positioning them into the

corner of the sketches they are annotating. We can later unhide them by enlarging

them using Fill-to-size or the basic Scale command.

6.2.6 Achieving Scenario 6: Recording collaborative design

efforts

We now need to look back at how the complex charts have evolved and how the

final versions are to be designed in terms of appearance and functionality. We use

the View Versions feature in ProtoMixer and specify to see versions of the region

representing the revenue driver chart. ProtoMixer then pops up a new region next

117

to the specified chart, and this new region is displaying all of the previous versions

of all fidelities. This state is shown in Figure 6.20.

Figure 6.20: Scenario 6 completed using ProtoMixer: a new region
appears displaying all historical versions of the Revenue Chart

6.3 Discussion

The goal in this chapter was to demonstrate how ProtoMixer supports the completion

of the scenarios from Chapter 3 and, ultimately, supports mixed fidelity prototyping.

Throughout this chapter, it was shown how the scenarios were able to be successfully

completed by using ProtoMixer.

While performing the scenarios, some improvements were identified that could

be made to ProtoMixer in order to enhance the prototyping capabilities. Ideally, it

would be valuable to incorporate the easier tie in of data into ProtoMixer. Currently,

118

ProtoMixer only supports data through the use of high-fidelity components, which

may be pre-loaded with data. It would be beneficial to smoothly integrate interface

elements with existing databases. It also seems useful to allow for data models to be

associated with lower-fidelity elements instead of only high-fidelity components and

ultimately give low-fidelity elements behavior in the same manner as our high-fidelity

publish-subscribe Binding feature. Finally, an ideal system would utilize a custom

scripting language to allow for easier binding of elements with less coding burden

placed on the designers.

Also, in using ProtoMixer to perform the scenarios, it was clear that a better

way of interacting with the system is needed. The current command panel is not

very intuitive and requires the user to memorize command names and parameters.

It would be useful to explore other interfaces to ProtoMixer, such as pie menus or

other graphical menu systems that better lay out the available commands and their

parameters.

119

Chapter 7

Conclusion

In this chapter, the motivation for this research as well as the contributions of the

research are reiterated. Also, areas for possible future extensions and improvements

to this research are discussed.

7.1 Summary

Under current best practice, user interface prototyping involves performing the three

different fidelities of prototyping, but involves refining prototypes at each fidelity

prior to advancing to a higher-fidelity. It also involves using different mediums and

tools for each fidelity, which results in lack of continuity and traceability between

fidelities. Existing tools restrict designers to standard, non-novel design elements

and interactions. Also, current practice does not encourage collaboration between

user interface designers and the various stakeholders throughout the process. The

current approach to prototyping forces designers to prematurely commit to certain

design decisions in some cases and does not allow them to explore other issues soon

enough in other cases.

120

This research presented a new approach to user interface prototyping called

mixed-fidelity prototyping. Mixing fidelities allows designers the flexibility to fo-

cus on one specific aspect of a prototype at a time, by exploring that aspect in

the various fidelities. In turn, our approach allows for designers to defer the explo-

ration of less urgent issues, unlike current techniques and tools that heavily restrict

designers in their workflow. For example, with Interface Builders designers are im-

mediately forced to choose a layout and specific component types when composing a

prototype. Our approach also allows individuals with expertise in a specific fidelity

to be involved in that fidelity earlier on. For example, a software developer can begin

implementing a high-fidelity component for the prototype at an early stage.

Our approach also addresses some of the issues or shortcomings with the current

prototyping practice: multiple fidelities may be explored at any given time, itera-

tion may occur between the different fidelities, user interface designers may better

collaborate with each other and with other stakeholders, and potentially more in-

novative user interface designs may follow. Also, our approach adds continuity and

traceability to the process by offering a single unified tool for prototyping in while

allowing for designers to still take advantage of paper and whiteboard-based designs

that they are familiar with.

A secondary aspect of this research was to enhance the collaborative nature of

prototyping by utilizing a large display workspace. Previous work has shown the

benefits of using large displays in collaborative settings and in design settings in

particular. Large displays seem ideal for this domain of prototyping, a visually

rich, team-based domain. While we did not formally evaluate the benefits of using

121

a large display workspace, it is evident that exploring multiple designs at once,

whether it be exploring alternatives or exploring more than one screen design at

once, requires more resolution than available on traditional-sized displays. Using

tiled high-resolution displays to create a large-display workspace is conducive to our

Region Model and supports our approach well.

7.1.1 Contributions

This research provides the following contributions:

• A technique for composing user interface prototypes that involves mixing mul-

tiple fidelities within a single prototype, which was presented in Chapter 3

• A conceptual model that allows for creating user interface prototypes of mul-

tiple fidelities, as presented in Chapter 4

• A proof-of-concept system for supporting the mixed-fidelity prototyping tech-

nique, as was described in Chapter 5 and then later illustrated being used in

Chapter 6

7.2 Future Work

This research could be further explored and extended in several areas. In this section,

the following areas for possible future work are discussed:

• Perform a detailed field study with expert as well as beginner designers

• Integrate software engineering models with user interface prototypes

122

• Explore the benefits of our prototyping approach for different styles of interfaces

• Investigate the use of large display workspaces, including novel interaction

techniques

• Implement new features and improve existing features in ProtoMixer

7.2.1 Perform a Field Study

It would be useful to perform a field study to further evaluate mixed-fidelity pro-

totyping using ProtoMixer. This field study would be most beneficial if performed

using professional designers as the subjects. It would also be interesting to compare

the results of expert designers to that of more beginner designers who have yet to

become reliant on a particular process or set of tools. As well, it would be interesting

to evaluate the usefulness of ProtoMixer as a single-user versus collaborative tool.

This field study would be primarily qualitative by nature and should be performed by

observing designers at work either in person or through video recordings, conducting

interviews or focus groups, and using questionnaires. Such formal user studies have

not yet been performed as they require significant time and resources and we have

little access to professional designers at this point in time.

7.2.2 Integrate Software Engineering Models

It would be worthwhile to explore the integration of software engineering models with

user interface prototypes. Software engineering models that may be useful to tie in

include but are not limited to domain models, task models, state models, architecture

123

models, and object-oriented models such as class diagrams or Class-Responsibility-

Collaboration(CRC) cards [2]. These software models may share some dependency

with the end user interface so it makes sense to evolve the two types of artifacts in

parallel. Also, to further tie in with our mixed-fidelity approach, it is reasonable

to think of software engineering models also as being different fidelities; for exam-

ple, CRC cards can be considered low-fidelity models whereas concrete architecture

models are higher-fidelity models.

Integrating software engineering and user interface artifacts allows opportunity

for a cross-functional design and development team to work together, helping them

better meet user and project requirements and adding more continuity and traceabil-

ity into the design process. The research community has shown considerable interest

in attempting to bridge the gap between user interface and software design. Guran-

tene et al. [7] argue for using high-fidelity prototypes as a bridging artifact and we

also recognize the potential in using prototypes to bring the two sides together.

7.2.3 Explore Different Styles of User Interfaces

In Chapter 1, we defined a specific style of user interface we aimed to address in

our research: a highly graphics-based, direct manipulation interface for traditional

desktop machines. It would be interesting to explore our mixed-fidelity lightweight

approach for other styles of interfaces. Specifically, it seems worthwhile to explore the

design of graphical user interfaces intended for other devices such as embedded de-

vices or PDAs as well as for various sizes of displays such as large display workspaces.

124

Our approach utilizes a large display workspace and the Region Model, both of which

seem conducive to exploring designs for alternative devices and displays.

7.2.4 Further Investigate Using Large Displays

It would be useful to further investigate the use of large display workspaces in this

domain. Specifically, it would be interesting to explore different existing and novel

interaction techniques and devices. Potentially useful techniques and devices may

already exist to enhance the designers’ experience in using ProtoMixer, but at this

point, we have only interacted with ProtoMixer using a standard keyboard and

mouse, as well as a sketching tablet. Also, we would be interested in exploring

whether the mixed-fidelity prototyping approach would be effective on a traditional

desktop display versus a large display workspace, and which features are only possible

with a large display.

7.2.5 Further Implement Features in ProtoMixer

It would be worthwhile to further extend ProtoMixer. As areas for extensions and

improvements were set out in Sections 5.7 and 6.3, they are only briefly mentioned

here. Multi-user support and a more complex versioning system could be added.

Also, better techniques for interacting with the large display as well as a better

interface for specifying commands could be implemented. Furthermore, extensions

could be made to allow for easier tie in of data and binding of elements, perhaps

125

for elements of all fidelities rather than only high-fidelity. These improved or new

features could help enhance the usability as well as usefulness of ProtoMixer.

7.3 Conclusion

Through this research, we investigated a new approach to prototyping called mixed-

fidelity prototyping. The idea of mixing fidelities allows designers the opportunity

to focus on a specific interface issue, by exploring it at higher-fidelities and making

refinements as needed, while leaving other aspects of the prototype at a lower-fidelity

for the time being. By mixing fidelities, designers are able to defer design decisions,

while exploring pressing issues, including alternative and potentially more innovative

designs. Mixing-fidelities on a large display promotes collaboration, by bringing

together individuals with different skill sets that may otherwise work in isolation

from one another as well as by eliciting stakeholders for rich feedback earlier on.

For these reasons, mixed-fidelity prototyping offers an interesting alternative to the

traditional best practice and we believe it is worthwhile to pursue future work in the

area.

126

Bibliography

[1] Brian P. Bailey, Joseph A. Konstan, and John V. Carlis. Demais: design-
ing multimedia applications with interactive storyboards. In Proceedings of
the Ninth ACM International Conference on Multimedia, pages 241–250. ACM
Press, 2001.

[2] Kent Beck and Ward Cunningham. A laboratory for teaching object oriented
thinking. In Conference Proceedings on Object-oriented Programming Systems,
Languages and Applications, pages 1–6. ACM Press, 1989.

[3] Sara A. Bly. A use of drawing surfaces in different collaborative settings. In
Proceedings of the ACM Conference on Computer-Supported Cooperative Work,
pages 250–256. ACM Press, 1988.

[4] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and Franois
Yergeau. Extensible markup language (XML) 1.0 (third edition). W3 Rec-
ommendation available at: http://www.w3.org/TR/REC-xml - Accessed on
February 6, 2006.

[5] William Buxton, George Fitzmaurice, Ravin Balakrishnan, and Gordon Kurten-
bach. Large displays in automotive design. IEEE Computer Graphics Applica-
tions, 20(4):68–75, 2000.

[6] Francois Guimbretière, Maureen Stone, and Terry Winograd. Fluid interaction
with high-resolution wall-size displays. In Proceedings of the ACM Symposium
on User Interface Software and Technology, pages 21–30. ACM Press, 2001.

[7] Junius Gunaratne, Beatrice Hwong, Christopher Nelson, and Arnold Rudorfer.
Using evolutionary prototypes to formalize product requirements. In Bridging
the Gap II Workshop at ICSE, 2004.

[8] Komei Harada, Eiichiro Tanaka, Ryuichi Ogawa, and Yoshinori Hara. Anec-
dote: a multimedia storyboarding system with seamless authoring support. In
Proceedings of the Fourth ACM International Conference on Multimedia, pages
341–351. ACM Press, 1996.

[9] Brad Johanson, Armando Fox, and Terry Winograd. The interactive workspaces
project: Experiences with ubiquitous computing rooms. IEEE Pervasive Com-
puting Magazine, 1(2):67–74, 2002.

[10] Bonnie E. John, Len Bass, Rick Kazman, and Eugene Chen. Identifying gaps
between hci, software engineering, and design, and boundary objects to bridge

127

them. In CHI ’04 Extended Abstracts on Human Factors in Computing Systems,
pages 1723–1724, New York, NY, USA, 2004. ACM Press.

[11] D. Austin Henderson Jr. and Stuart Card. Rooms: the use of multiple vir-
tual workspaces to reduce space contention in a window-based graphical user
interface. ACM Trans. Graph., 5(3):211–243, 1986.

[12] Rick Kazman, Len Bass, and Jan Bosch. Bridging the gaps between software
engineering and human-computer interaction. In Proceedings of the 25th Inter-
national Conference on Software Engineering, pages 777–778, Washington, DC,
USA, 2003. IEEE Computer Society.

[13] Rick Kazman, Len Bass, and Bonnie John. Bridging the gaps ii: Bridging
the gaps between software engineering and human-computer interaction. In
Proceedings of the 26th International Conference on Software Engineering, pages
773–774, Washington, DC, USA, 2004. IEEE Computer Society.

[14] Scott Klemmer, Mark Newman, Ryan Farrell, Raecine Meza, and James A.
Landay. A tangible difference: Participatory design studies informing a de-
signers outpost. In Workshop on Shared Environments to Support Face-to-Face
Collaboration. ACM Press, 2000.

[15] Scott R. Klemmer, Mark W. Newman, Ryan Farrell, Mark Bilezikjian, and
James A. Landay. The designers’ outpost: a tangible interface for collaborative
web site. In Proceedings of ACM Symposium on User Interface Software and
Technology, pages 1–10. ACM Press, 2001.

[16] Scott R. Klemmer, Michael Thomsen, Ethan Phelps-Goodman, Robert Lee, and
James A. Landay. Where do web sites come from?: capturing and interacting
with design history. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, pages 1–8. ACM Press, 2002.

[17] James A. Landay and Brad A. Myers. Interactive sketching for the early stages
of user interface design. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 43–50. ACM Press/Addison-Wesley Pub-
lishing Co., 1995.

[18] James Lin, Mark W. Newman, Jason I. Hong, and James A. Landay. Denim:
finding a tighter fit between tools and practice for web site design. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, pages
510–517. ACM Press, 2000.

[19] James Lin, Michael Thomsen, and James A. Landay. A visual language for
sketching large and complex interactive designs. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pages 307–314. ACM
Press, 2002.

128

[20] Michael J. Muller. Pictive-an exploration in participatory design. In Proceedings
of the SIGCHI Conference on Human factors in Computing Systems, pages 225–
231. ACM Press, 1991.

[21] Brad Myers, Scott E. Hudson, and Randy Pausch. Past, present, and future of
user interface software tools. ACM Transactions on Computer-Human Interac-
tion, 7(1):3–28, 2000.

[22] Elizabeth D. Mynatt, Takeo Igarashi, W. Keith Edwards, and Anthony
LaMarca. Flatland: new dimensions in office whiteboards. In Proceedings of
the Conference on Human Factors in Computing Systems, pages 346–353. ACM
Press, 1999.

[23] University of Waikato HCI Group. Large interactive display surfaces (lids).
Available at http://www.cs.waikato.ac.nz/hci/lids.html - Accessed on February
6, 2006.

[24] John K. Ousterhout. Tcl and the Tk toolkit. Addison-Wesley Longman Pub-
lishing Co., Inc., 1994.

[25] Elin R. Pedersen, Kim McCall, Thomas P. Moran, and Frank G. Halasz. Tivoli:
an electronic whiteboard for informal workgroup meetings. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, pages 391–398.
ACM Press, 1993.

[26] Beryl Plimmer and Mark Apperley. Freeform: A tool for sketching form de-
signs. In Proceedings of 17th Annual Human-Computer Interaction Conference
(BHCI), pages 183–186, 2003.

[27] Jun Rekimoto. Pick-and-drop: a direct manipulation technique for multiple
computer environments. In Proceedings of the ACM Symposium on User Inter-
face Software and Technology, pages 31–39. ACM Press, 1997.

[28] Tristan Richardson, Quentin Stafford-Fraser, Kenneth R. Wood, and Andy Hop-
per. Virtual network computing. IEEE Internet Computing, 2(1):33–38, 1998.

[29] Jim Rudd, Ken Stern, and Scott Isensee. Low vs. high-fidelity prototyping
debate. Interactions, 3(1):76–85, 1996.

[30] Norbert A. Streitz, Jörg Geißler, Torsten Holmer, Shin’ichi Konomi, Christian
Müller-Tomfelde, Wolfgang Reischl, Petra Rexroth, Peter Seitz, and Ralf Stein-
metz. i-land: an interactive landscape for creativity and innovation. In Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing Systems,
pages 120–127. ACM Press, 1999.

[31] John C. Tang and Larry J. Leifer. A framework for understanding the workspace
activity of design teams. In Proceedings of Conference on Computer-Supported
Cooperative Work, pages 244–249. ACM Press, 1988.

129

[32] Barbara Tversky. What does drawing reveal about thinking? In Proceedings of
Visual and Spatial Reasoning in Design, pages 93–101, 1999.

[33] Iris Vessey and Ajay Paul Sravanapudi. Case tools as collaborative support
technologies. Communications of the ACM, 38(1):83–95, 1995.

[34] Miriam Walker, Leila Takayama, and James A. Landay. High-fidelity or low-
fidelity, paper or computer medium? In Proceedings of the Human Factors and
Ergonomics Society 46th Annual Meeting, pages 661–665, 2002.

130

Appendix A

Region Model Notation

A.1 Complete XML Schema

Below is the complete XML schema for the Region Model, where Design Space is

the root element.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:simpleType name="AssetTypeOptions">
<xs:restriction base="xs:string">

<xs:enumeration value="Sketch"/>
<xs:enumeration value="Image"/>
<xs:enumeration value="Widget"/>
<xs:enumeration value="Shape"/>

</xs:restriction>
</xs:simpleType>

<xs:complexType name="AssetType">
<xs:attribute name="type" type="AssetTypeOptions" use="required"/>
<xs:attribute name="location" type="xs:anyURI" use="required"/>

</xs:complexType>

<xs:complexType name="ScriptType">
<xs:attribute name="behavior" type="xs:string" use="required"/>

</xs:complexType>

<xs:complexType name="LayoutType">
<xs:attribute name="regions" type="xs:string" use="required"/>
<xs:attribute name="algorithm" type="xs:string" use="required"/>

</xs:complexType>

<xs:complexType name="RegionType">
<xs:sequence>

<xs:element name="Asset" type="AssetType" minOccurs="0"/>
<xs:element name="Script" type="ScriptType" minOccurs="0"/>
<xs:element name="Layout" type="LayoutType" minOccurs="0"/>

131

<xs:element name="Region" type="RegionType" minOccurs="0"
maxOccurs="unbounded"/>

</xs:sequence>
<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="x" type="xs:integer" use="required"/>
<xs:attribute name="y" type="xs:integer" use="required"/>
<xs:attribute name="z" type="xs:integer" use="optional"/>
<xs:attribute name="width" type="xs:integer" use="required"/>
<xs:attribute name="height" type="xs:integer" use="required"/>
<xs:attribute name="color" type="xs:string" use="optional"/>
<xs:attribute name="alpha" type="xs:integer" use="optional"/>
<xs:attribute name="historylist" type="xs:string" use="optional"/>
<xs:attribute name="parentRegion" type="xs:string" use="required"/>
<xs:attribute name="subRegions" type="xs:string" use="optional"/>

</xs:complexType>

<xs:complexType name="RelationshipType">
<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="sourceRegion" type="xs:string" use="required"/>
<xs:attribute name="targetRegion" type="xs:string" use="required"/>
<xs:attribute name="sourceProperty" type="xs:string" use="optional"/>
<xs:attribute name="targetProperty" type="xs:string" use="optional"/>

</xs:complexType>

<xs:complexType name="CommandType">
<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="regionToAffect" type="xs:string" use="optional"/>
<xs:attribute name="miscParameters" type="xs:string" use="optional"/>

</xs:complexType>

<xs:element name="DesignSpace">
<xs:complexType>

<xs:choice>
<xs:element name="Region" type="RegionType" minOccurs="1"/>
<xs:element name="Relationship" type="RelationshipType"
minOccurs="0"/>
<xs:element name="Command" type="CommandType" minOccurs="0"/>

</xs:choice>
</xs:complexType>

</xs:element>

</xs:schema>

132

A.2 Example XML Document

Below is the complete XML document describing the Design Space illustrated in

Figure 4.5.

<DesignSpace>
<Region name="Root" x="0" y="0" width="1000" height="800"
color="255, 255, 255" parentRegion="null">

<Region name="Repository" x="36" y="121" width="577" height="1262"
color="128, 128, 128" parentRegion="Root">

<Region name="medgraph_a" x="31" y="956" width="215" height="199"
parentRegion="Repository">

<Asset type="Image" location="./images/medgraph_a.png"/>
</Region>
<Region name="filledtable" x="31" y="376" width="431" height="265"
parentRegion="Repository">

<Asset type="Widget" location="FilledJTable"/>
</Region>
<Region name="medgraph_b" x="290" y="955" width="217" height="196"
parentRegion="Repository">

<Asset type="Image" location="./images/medgraph_b.png"/>
</Region>
<Region name="sketchedtable" x="29" y="668" width="389" height="262"
parentRegion="Repository">

<Asset type="Image" location="./images/chart.png"/>
</Region>
<Region name="mycurvechart" x="31" y="127" width="218" height="211"
parentRegion="Repository">

<Asset type="Widget" location="MyChart"/>
</Region>
<Region name="mylinechart" x="281" y="125" width="218" height="209"
parentRegion="Repository">

<Asset type="Widget" location="MyLineChart"/>
</Region>

</Region>
<Region name="chartview" x="660" y="716" width="695" height="598"
parentRegion="Root">

<Asset type="Image" location="./images/Sketchv1.png"/>
<Region name="medgraphb_nobar" x="424" y="186" width="190" height="209"
parentRegion="chartview">

<Asset type="Image" location="./images/medgraph_b_nobar.png"/>
</Region>
<Region name="medgrapha_nobar" x="137" y="187" width="198" height="208"
parentRegion="chartview">

<Asset type="Image" location="./images/medgraph_a_nobar.png"/>

133

</Region>
</Region>
<Region name="statementview" x="1375" y="718" width="695" height="598"
parentRegion="Root">

<Asset type="Image" location="./images/Sketchv2.png"/>
<Region name="table" x="136" y="124" z="1" width="473" height="288"
color="128, 128, 255" alpha="255" parentRegion="statementview">

<Asset type="Widget" location="FilledJTable"/>
</Region>

</Region>
</Region>
</DesignSpace>

134

Appendix B

Commands Implemented in ProtoMixer

Table B.1: ProtoMixer Commands
Command Description Notation
addRegion create a region and add it to the display

as a child of parent
add regionName x y w h resource
parent

deleteRegion delete a region from the system delete regionName
select indicate selected region with yellow high-

lighting
select regionName

scale resize image (and have it scale slowly for
visual feedback)

scale regionName % or %w %h

move reposition a region from current position
to target position (have the movement
animated slowly for visual feedback)

move regionName targetX tar-
getY

clone create a copy of a region and all its sub-
regions(give clone a new name of origi-
nalNameClone) and optionally reposition
the clone at targetX and targetY

clone regionName [targetX tar-
getY]

changeTransparency change the transparency of the specified
region to be the specified float value

alpha regionName alpha

cutOutPiece encapsulate a specified area of a region(s)
as a new region (user defines area by
drawing a line from one corner to the op-
posite corner of the hotspot rectangle)

ALT Key + draw hotspot bound-
ary with mouse

fillToSize move a region (source) to overlay within
another region (target) and resize it to fit

fill sourceRegionName targetRe-
gionName

performLayout apply the specified layout or default lay-
out to the region

layout groupName [layoutType]
or layout parentName layout-
Type

restrictWithin restrict a region to move within its parent
only

within regionName

alongPath restrict a region to move along the spec-
ified path only

path regionName x1 y1 x2 y2

record record history for a specific region, cre-
ating cloned regions of itself on a regular
interval for some number of cycles

record regionName numberOf-
Cycles

Continued On Next Page ...

135

Command Description Notation
versions show the historical versions recorded for

the specified region (appears in a new re-
gion beside the current region)

versions regionName

import load the specified design space file into
the system

import xmlFile

export export the current design space to ex-
port.xml or another file

export [xmlFile]

storyboard show navigational flow of the storyboard,
using either animated highlighting of re-
gions or animated arrows between regions

storyboard arrows or highlight

showClones show lines illustrating all clones of the
specified original region

showclones regionName

unshowClones hide lines of current clones being illus-
trated

unshowclones

updateClones updates all clones to look like the original
regions asset

updateclones regionName

removeExtras removes region name labels, resize boxes
to clean up presentation

removeextras

flashAnimation flash through a sequence of assets asso-
ciated with regionName, some specified
number of cycles

flash regionName numberOfCy-
cles

snapshot take a snapshot of the specified region
and save it as a png file

snapshot regionName

switch switch the runtime version to either
java2d or jogl

switch

136

