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ABSTRACT 

The use of remote sensing technology has made it possible for the non-contact 

measurement of soil moisture content (SMC). Many remote sensing techniques can 

be used such as microwave sensors, electromagnetic waves sensors, capacitance, and 

thermal infrared sensors. Some of those techniques are constrained by their high 

fabrication cost, operation cost, size, or complexity. In this study, a thermal infrared 

technique was used to predict soil moisture content with the aid of using weather 

meteorological variables.  

 

The measured variables in the experiment were soil moisture content (%SMC), soil 

surface temperature (Ts) measured using thermocouples, air temperature (Ta), relative 

humidity (RH), solar radiation (SR), and wind speed (WS). The experiment was 

carried out for a total of 12 soil samples of two soil types (clay/sand) and two 

compaction levels (compacted/non-compacted). After data analysis, calibration 

models relating soil moisture content (SMC) to differential temperature (Td), relative 

humidity (RH), solar radiation (SR), and wind speed (WS) were generated using 

stepwise multiple linear regression of the calibration data set.  The performance of 

the models was evaluated using validation data. Four mathematical models of 

predicting soil moisture content were generated for each soil type and configuration 

using the calibration data set.  Among the four models, the best model for each soil 

type and configuration was determined by comparing root mean of squared errors of 

calibration (RMSEC) and root mean of squared errors of validation (RMSEV) 

values. Furthermore, a calibration model for the thermal infrared sensor was 

developed to determine the corrected soil surface temperature as measured by the 
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sensor (Tir) instead of using the thermocouples. The performance of the thermal 

infrared sensor to predict soil moisture content was then tested for sand compacted 

and sand non-compacted soils and compared to the predictive performance of the 

thermocouples. This was achieved by using the measured soil surface temperature by 

the sensor (Tir), instead of the measured soil surface temperature using the 

thermocouples to determine the soil-minus-air temperature (Td). The sensor showed 

comparable prediction performance, relative to thermocouples. 

 

Overall, the models developed in this study showed high prediction performance 

when tested with the validation data set. The best models to predict SMC for 

compacted clay soil, non-compacted clay soil, and compacted sandy soil were three-

variable models containing three predictive variables; Td, RH, and SR. On the other 

hand, the best model to predict SMC for compacted sandy soil was a two-variable 

model containing Td, and RH. The results showed that the prediction performance of 

models for predicting SMC for the sandy soils was superior to those of clay soils.
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1. INTRODUCTION 

Water is an integral part of all living tissue and is an essential component of fertile 

soils. Soil moisture is of vital importance for plant growth and also affects the 

success of seeding, cultivation and harvesting operations (de Jong, 1976). Soil 

moisture information can be used for reservoir management, early warning of 

droughts, irrigation scheduling, and forecasting of crop yield. Current contact soil 

moisture measuring techniques are based on field and point measurements. The 

extrapolation, transfer, and recording of soil moisture point measurements are 

inadequate and slow in large fields because soil properties and moisture content vary 

spatially (Collet, 1976).  

 

The standard method of determining soil moisture is by oven drying the soil at 

105oC.  This method is laborious and destructive. De Jong (1976) mentioned four 

other methods that can be used to measure soil moisture content. The first method is 

neutron probes, in which high energy (fast) neutrons are emitted into the soil, slowed 

down, and then the slow neutrons are detected. As hydrogen (H) is a very efficient 

thermalizer, the slow neutron count provides a measure of the H content, and thus, of 

the moisture content in the soil. The second method is using porous blocks that are 

buried in the soil and often used to estimate soil water content or tension. The water 

in the blocks reaches the same tension as the soil water. This tension can be 

estimated from properties of the blocks that are related to their moisture content 

(electrical resistance, weight, permeability to air, etc.). The third method is 

thermocouple psychrometers (miniature wet-dry bulb thermometers) which can be 

used to measure the relative humidity of the soil air and from this the 
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total soil moisture tension can be calculated. The last method is electrical resistance, 

in which the soil moisture content can be inferred from electrical resistance of the 

soil measured in situ: this approach is not very accurate due to changes in salt content 

of the soil water. Unfortunately, all previously mentioned methods are destructive, 

laborious, and time consuming. Furthermore, the use of previously mentioned 

methods requires contact with the soil surface whose moisture content is to be 

measured, and those methods are incapable of making large area measurements.  

 

Luney and Dill, (1970) reported that remote sensing is the logical non-contact 

technique for sensing and covering larger areas within a short time period. It has the 

potential to improve the detection and characterization of many agricultural and 

forestry phenomena. Recent studies indicate that remote-sensing techniques can be 

used in many electromagnetic spectrum regions: ultraviolet; visible; infrared; and 

microwave to collect data that provide a measure of the reflectance, emittance, 

dielectric constant, surface geometry, and equivalent black-body temperature of 

plants, soils and water. 

 

According to Holter et al., (1970), remote sensing can be carried out using 

photographic or non-photographic sensors. Photographic sensors are those sensors 

that utilize sensitive photographic films (panachromic film, infrared film, false-color 

film, and color-negative film) to capture various land phenomena. Photographic 

sensors can be used on the ground, from aircraft, or from orbital satellites. 

Photographic film is limited in spectral response to the region from the near 

ultraviolet to the near infrared. On the other hand, non-photographic sensors collect 

the data in an electrical form and operate in the spectrum region that lies between the 
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microwave and the ultraviolet spectrum regions. Examples of non-photographic 

sensors are: passive microwave sensors, active microwave sensors (radars), and 

infrared sensors. Remote sensing has been used for the measurement of soil moisture 

content (Davis et al., 1976; Whiting, 1976; Ulaby, 1976; J. Chilar, 1976; Shmugge et 

al., 1974; Scherer, 1986; Levitt, 1989; Myhre and Shih, 1990).  

 

This research investigated the potential of using a non-photographic thermal infrared 

sensor to estimate soil moisture content for two types of soils (sand/clay) and two 

compaction levels (compacted/non-compacted). 
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2. OBJECTIVES 

The goal of this project was to investigate the correlations between the soil moisture 

content and environmental variables. These environmental variables were soil 

surface-minus-air temperature (Td), relative humidity (RH), solar radiation (SR), and 

wind speed (WS) using two types of soil (clay and sand) with two different 

compaction levels (compacted and non-compacted). Those correlations were then 

used to develop and test predictive models suitable for implementation with a non-

contact infrared temperature sensor in order to predict soil moisture content. The 

specific objectives of this study were to: 

1. develop empirical models to predict soil moisture content of two soil types 

(sand/clay) and two compaction levels using measurements of environmental 

variables and 

2. investigate the suitability of a non-contact thermal infrared temperature 

sensor for the purpose of measuring soil temperature and inclusion of these 

data in an empirical model developed in objective 1, mentioned above. 
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3. BACKGROUND 

3.1 Soil Moisture 

Knowledge of the soil water parameters is important for the proper selection of a 

sensor. Soil moisture content is the amount of water that is held by a soil. The 

amount of water in the soil determines many of the soil properties. De Jong (1976) 

reported that the amount of soil moisture � which is utilized by living organisms in 

the soil - is estimated as only a small fraction of the earth�s hydrosphere (table3.1). 

The moisture in the soil may be present in three phases: liquid, ice, or vapor. 

However, the most common form of the moisture in soil is liquid. 

Table  3.1 Estimated and relative quantities of water in the earth�s hydrosphere 
(Russell and Hurlbert, 1959) 

 
Hectare-meters 

Ratio to 

annual precipitation 

Total water 20500 x 109 1850 

Total fresh water 1400 x 109 125 

Groundwater to 3800 m 1000x 109 90 

Lakes and streams 15 x 109 1.4 

Atmosphere 1.5 x 109 0.14 

Soil moisture 0.8 x 109 0.07 

Plants and animals 0.1 x 109 0.01 

Annual precipitation 11 x 109 1.0 

Annual runoff 2.1 x 109 0.2 
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As the water content of a soil changes, many of the soil properties change 

accordingly, such as energy level of the soil, and the permeability of the soil. Soil 

permeability is a measure of the ability of air and water to move through the soil. The 

soil permeability decreases rapidly with decreasing moisture content since the flow 

of water is restricted to smaller pores and thinner films (De Jong, 1976). The 

temperature of the soil moisture also has an effect on some of the soil�s properties. 

At a given soil moisture, a decrease in soil temperature causes an increase in soil 

water tension. Data by Taylor (1966) and Taylor et al., (1961) indicated that at 20oC, 

soil water tension increases 1 to 5 % with every 1oC decrease in temperature, and the 

effect increases with decreasing moisture content. The permeability of soil to water 

decreases with decreasing temperature as is to be expected from the effect of 

temperature on viscosity. Carry and Taylor (1967) reported that the viscosity of soil 

water is more temperature dependent than free water viscosity and this dependence 

increases at low soil moisture contents. Soil moisture is expressed on a weight basis 

(g/100g oven dry soil) or on a volume basis (cm3/100cm3 bulk soil). 

 

3.1.1 Typical soil moisture measuring techniques 
 
A variety of methods and techniques is available for measuring soil moisture content. 

The selection of the method and equipment will depend on ease of use, cost of 

equipment, and a desire to monitor continuous changes in soil moisture. Examples of 

typical soil moisture content measuring techniques are: 

1. Gravimetric method: The gravimetric method is a direct technique for 

estimating the total moisture content of soils. This method involves drying a 

soil sample in an oven (105°C for 24 hours) to determine the soil moisture 

content. Water content (grams of water in the sample) equals the initial field 
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soil weight minus the oven-dry weight. Water content (%) can then be 

calculated by dividing the sample water content (grams) by the initial field 

soil weight (grams) and multiplying by 100. 

Advantages: This technique is relatively inexpensive, simple, and highly 

accurate. 

Disadvantages: This technique is time-consuming, destructive to the soil, 

labor-intensive, and difficult in rocky soils. A lab oven or microwave oven, 

soil sampling equipment, and lab scale are required. 

2. Neutron Probe:  A radioactive source (Americium 241) is inserted into the 

soil, from which fast neutrons are emitted towards the soil. When those fast 

neutrons collide with the hydrogen atoms present in the water molecules, fast 

neutrons lose their energy and become slow. Those neutrons have no charge 

and cannot directly be detected. Therefore, a gas (boron tri-fluoride) is used 

to absorb those slow neutrons which make the gas nucleus emit photons that 

are proportional to the number of absorbed neutrons. The resulting photons 

are detected using an electronic device. The electronic counting device is 

used to measure the number of photons, which is proportional to the number 

of slow neutrons, which is proportional to the amount of moisture present in 

the soil.  

Advantages: The neutron probe allows a rapid, accurate, repeatable 

measurement of soil moisture content to be made at several depths and 

locations. 

Disadvantages: The major disadvantages are the use of radioactive material 

requires a licensed and extensively trained operator, the contact with the soil 
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surface, the very high equipment cost and the extensive calibration required 

for each site. 

3. Gypsum-porous blocks: Soil moisture blocks operate on the principle that the 

electrical resistance of a porous block is proportional to its water content. 

Ceramic thermal dissipation measures the rate of heat dissipation in the soil, 

which correlates to soil moisture content. 

Advantages: The method is quick, repeatable, and relatively inexpensive. 

Disadvantages: The blocks do not work well in coarse-textured, high shrink-

swell or saline soils and are destructive to the soil. Accuracy of gypsum-

porous blocks is poor. The blocks should be replaced every 1 to 3 years. The 

sensitivity of the blocks is poor in dry soil conditions. The blocks need to be 

soaked in water for several hours before installing them in the field. 

4. Tensiometers: A tensiometer is an airtight hollow tube filled with water. A 

porous ceramic cup is attached to the end of the tube which is then inserted 

into the soil, and then a vacuum gauge is attached to the upper end. The 

tensiometer measures soil moisture tension, and provides an index of how 

tightly water is held in the soil. A soil moisture retension curve is developed 

for each horizon of the soil to determine soil water content. 

Advantages: Tensiometers are not affected by the amount of salts dissolved in 

the soil water. Tensiometers measure soil moisture tension with reasonable 

accuracy in the wet range. 

Disadvantages: Tensiometers only operate between saturation and about -

70kPa level of soil moisture content which makes them not suitable for 

measurements in dry soils. In addition, tensiometers are destructive to the soil 

surface. 
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5. Time-Domain Reflectometry (TDR): The TDR is a portable device which can 

be used to make point soil moisture measurements or can be linked to a 

multiplexer to measure the soil moisture content of an array of buried 

waveguides (Heimovaara and Bouten., 1990). TDR probes (waveguides) are 

used as sensors that are buried into the soil whose moisture content is to be 

measured. An electromagnetic wave is sent through these probes. Reflection 

of the applied signal will occur where there are impedance changes. The 

impedance value is related to the geometrical configuration of the probe and 

inversely related to the dielectric constant of the soil. A change in volumetric 

water content of soil surrounding the probe causes a change in the dielectric 

constant. The change of the dielectric constant of the soil, changes the probe 

impedance which affects the shape of the reflected signal. The shape of the 

reflected signal contains information that is used to determine soil moisture 

content. 

Advantages: TDR is accurate, provided continuous measurements, no 

calibration is needed, and is unaffected by salts.  

Disadvantages: TDR is destructive to the soil being tested, contains complex 

electronics, and expensive equipment is required for good measurements. 

 

3.2 Remote sensing 

Remote sensing is a term that is used for the study of remote objects from a distance. 

It denotes the employment of modern sensors and data processing. The use of remote 

sensing has replaced some contact and destructive methods in sensing environmental 

and agricultural phenomena. There are many remote sensing techniques that can be 

used in the infrared and microwave spectral regions in order to collect data from 
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targeted locations. Luney and Dill (1970) reported that remote sensing can be used 

for the detection and characterization of agricultural and land phenomena. Remote 

sensing of surface soil moisture still is not widely used, although the theory and 

techniques to develop this important remote sensing resource are well established in 

soil and water sciences literature (Ulaby et al., 1982; deGriend and Owe, 1994).  

 
3.2.1 General applications of remote sensing 

Luney and Dill, (1970) discussed the main uses of remote sensing in agricultural and 

water management sectors as follows:  

 Land-Use Inventories: In many countries, air photos are used to make maps 

that show the distribution of plants, specific crops, and land use. 

 Soil Surveys: Before 1930, soil surveys in the United States took a long time 

due to the use of traditional field-methods for soil classification and land 

mapping. With the use of air photos, soil information could be acquired more 

quickly and efficiently (U.S Soil Conservation Service, 1966). 

 Crop Condition Estimates and Yield Forecasting: Remote sensing facilitates 

the process of obtaining data on crop yields as well as forecasts during the 

growing season. These data are very important to agriculture because they 

affect all phases of agricultural production, processing, and storage. 

 Water-Supply Information and Management: Remote sensing is used for the 

management of water resources. It is used to find fresh water at low sensing 

cost, to forecast the future supply, and to control the location, quantity, 

quality, and timing of that supply. 

 Irrigation Management: Remote sensing techniques can be used to monitor 

the changes of moisture levels in the soil and to detect the water-table depths 

with enough confidence (Myers, 1967). This information is then used to 
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advise the farmers on irrigation timing and the amount of moisture present in 

the soil, so that they can avoid over-application or under-application of 

irrigation water.  

 

3.2.2 Remote sensing of soil moisture 

Gates (1970) reported that there are two properties of a soil surface which are of 

general interest in remote sensing. The first property is the soil reflectance of 

incident radiation and the second property is concerned with its long-wave emittance 

and surface temperature. According to Gates (1970), �the reflectance of a soil 

depends upon its coloration, texture, roughness, moisture content, mineral and 

chemical composition, angle of illumination, and degree of shadowing by plants or 

buildings�(Gates 225-252). 

 

Because soil moisture is one parameter that affects the reflectance and emittance of 

soil, then this effect implies that a change of water content in a soil causes a change 

in its reflectance and/or emittance. An appropriate remote sensing technique can be 

used to detect and measure the change in reflectance and/or emittance of the soil and 

relate it to the amount of moisture present in the soil. A calibration model can be 

developed to predict soil moisture content which relates soil moisture content to soil 

reflectance (Ulaby, 1975; Schmugge et al., 1974) or to differential temperature (Td) 

and weather meteorological variables (Shih et al., 1986; Myhre and Shih, 1990). 
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3.2.3 Types of remote sensing 

Remote sensing can be carried out using sensors that are categorized into two main 

categories: photographic and non-photographic sensors (Holter et al., 1970).  

 

3.2.3.1 Photographic sensors 

Photographic sensors are those sensors that utilize sensitive photographic films such 

as panachromic film, infrared film, false-color film, and color-negative film to detect 

various land phenomena, whether it is used on the ground, from aircraft, or from 

satellites. According to Holter et al., (1970), photographic sensors have two serious 

limitations in remote sensing applications. First, the output is a photograph, which 

makes the process of interpretation and discrimination analysis difficult. Second, 

photographic film is limited in spectral response to the region from the near 

ultraviolet to the near infrared. Therefore, photographic sensors are not suitable for 

night-time operation unless artificial light sources are used for illumination. 

Moreover, clouds, fog, and smoke are obstacles in this spectral region, so sensing the 

ground from a very high altitude is sometimes difficult and often impossible.  

 

3.2.3.2 Non-photographic sensors 

Non-photographic sensors are those sensors that operate in portions of the 

electromagnetic spectrum from the microwave to the ultraviolet region. Infrared, 

passive-microwave, and radar sensors operate under both day and night conditions, 

and their sensing ability is not seriously affected by clouds and bad weather. Because 

the data are collected in electrical form, they are easily transmitted to a remote 

location. In addition, signals for discrimination analysis can be processed easily with 

electronic circuits. 
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3.3 Microwave sensors 

Microwave sensors are based on the interaction of the electromagnetic fields with the 

dielectric and power dissipative properties of a matter, particularly of water. The 

intensity of the emitted radiation is proportional to the product of the multiplication 

of temperature and the emissivity of the surface. There are two types of microwave 

sensors: passive microwave sensors and active microwave sensors (Radars). Passive 

microwave sensors utilize the natural radiation from the targeted objects or locations 

and operate in the spectral region between 0.1mm�3cm. On the other hand, active 

microwave sensors (Radars) provide their own source of radiation by sending an 

electromagnetic wave to the target and measure the reflected radiation. Holter et al., 

(1970) reported that radars have the greatest advantage because they can be used to 

conduct remote sensing of soil surface in bad weather, anytime in the day, and 

without concern for problems of interpretation associated with differences between 

day and night thermal patterns of the soil surface. The electromagnetic waves of 

microwave sensors can penetrate clouds, smoke, fog, and precipitation because they 

have long wavelength (higher than 0.5 cm). 

 

3.3.1 Use of microwave sensors for soil moisture content measurement 

There were many research studies carried out to evaluate the possibility of using 

passive and active microwave sensors for the detection of soil moisture content in 

soils such as ground-based (Jackson and O�Neill., 1990; Wigneron et al., 1995), 

aircraft-based (Jackson et al., 1999; ONeill et al., 1996) and space-based sensors 

(deGriend and Owe, 1994; Njoku et al., 2000). Those experiments were carried out 

with microwave sensors operating at low frequencies (<6 GHZ).  Furthermore, many 

efforts have been made to correlate soil moisture with several parameters that can be 
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remotely sensed by microwave sensors, such as surface albedo (Idso et al., 1975), the 

diurnal range of surface temperature (Idso et al., 1975), microwave backscatter 

coefficient (Ulaby et al., 1974), and microwave emissivity (Schmugge et al., 1974). 

 

3.3.2 Microwave backscatter coefficient as an indicator of soil moisture 

content 

An experiment was done using a 4-8 GHZ truck-mounted active microwave 

spectrometer to estimate soil moisture content. Preliminary measurements were 

conducted in 1972 to evaluate the radar response to soil moisture content. Data were 

acquired over the 0° (nadir) to 70° angular range for both bare fields (Ulaby et al., 

1974) and vegetated fields (Ulaby, 1975) as a function of time. The results of the 

experiment indicated good correlation with moisture content, particularly at small 

angles of incidence, and the covering band 2.5-8 GHZ was used to acquire detailed 

data over the 0° - 40° angular range from each of three fields with distinctively 

different surface roughness. A total of about 40 data sets were acquired, covering a 

wide range of moisture contents (Ulaby and Batlivala, 1976). To further verify the 

validity of these results, the system frequency was expanded to cover approximately 

3 octaves, 1 GHZ to 8 GHz. Five different surface roughness levels were used 

instead of three, and a total of 85 data sets were acquired from vegetation crops 

(wheat, milo, corn and soybeans) over their growing cycle.   

 

For bare soil, the results showed that the scattering coefficient increased with the soil 

moisture content at all angles, frequencies, and polarizations if the soil surface 

roughness remained unchanged (Ulaby, 1975; Ulaby and Batlivala, 1976). On the 

other hand, variations in scattering coefficient due to the change in surface roughness 
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were considerable, when using five different roughness levels of soil surface having 

the same level of moisture content (Batlivala and Ulaby, 1976). Ulaby (1976) 

concluded that the optimum sensor parameters for mapping soil moisture for bare 

soils were: frequency range of 3.5-4.5 GHZ , angle of incidence range of  7°- 17° , 

and polarization = HH). 

 

Ulaby (1976) described the backscattered power received by radar viewing a bare 

soil surface of an area A in the direction è (relative to nadir) by the following 

equation: 
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where: 

rP = transmitted power in watt [W], 

tP  = transmitted power in watt [W], 

            tG and rG  = transmit and receive antenna gain, respectively, 

            = signal wavelength in meter [m],  

            R = range to the cell A in meter [m], and 

              = scattering coefficient in decibel [dB]. 

 

The scattering coefficient is the only parameter which relates the terrain back scatter 

to the received power by a microwave sensor. The scattering coefficient is 

determined by soil surface characteristics such as the roughness of the soil and the 

soil power reflection coefficient. However, the soil power reflection coefficient is a 

function of the dielectric constant of soil, and the dielectric constant of the soil is 

dependent on the soil moisture content.  



 

 29 

For vegetation-covered soil, Ulaby (1976) mentioned a model (equation 3.2) that can 

be used to evaluate the requirements for mapping the moisture content of the soil 

underlying a vegetation cover. The total scattering coefficient for a soil with a 

vegetation cover, as measured by radar, is assumed to consist of two components as 

follows: 

 sec4)()()( h
sv e
                                                                             (3.2) 

where: 

)( v = vegetation scattering coefficient at angle , 

)( s  = soil scattering coefficient at angle   in the absence of vegetation cover, 

  = field attenuation coefficient of the vegetation, and  

h  = canopy height. 

 

Ulaby (1976) found that the penetration of the microwave sensor signal through a 

vegetation canopy decreased with frequency and angle of incidence. He indicated 

that to minimize field attenuation ( ), lowest frequencies and angles of incidence 

should be used. 

 

3.3.2.1 Factors affecting Microwave sensors backscatter 

The main factor which affects backscatter to a microwave sensor is soil moisture 

content. Ulaby (1975) and Ulaby and Batlivala (1976) reported that if the soil surface 

roughness remains unchanged, the scattering coefficient  generally increases with 

moisture content at all incidence angles. There are other two factors that can affect 

the radar backscatter from a terrain surface: terrain geometry and electrical 

(dielectric) properties. However, for a vegetative covered surface, the backscatter is 

also affected by vegetation and the underlying soil.  
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3.4 Thermal Infrared sensors 

Infrared radiation is an electromagnetic radiation of a wavelength longer than that of 

visible light and shorter than that of radio waves. Infrared radiation has wavelengths 

between approximately 750 nm and 1 mm (Liew, 2006). The infrared portion of the 

spectrum has a number of technological uses, including target acquisition and 

tracking by the military, remote temperature sensing, wireless communication, 

spectroscopy, and weather forecasting. Thermal infrared sensors measure the infrared 

radiation emitted by the object and the energy is directly related to the object�s 

temperature.  

 

3.4.1 Use of Infrared thermometry to estimate soil moisture content 

The use of thermal infrared sensors to estimate soil moisture content has only 

recently been studied. Soil moisture content and soil surface-minus-air temperatures 

can be correlated together through thermal properties of the soil (Myhre and Shih, 

1990). 

 

The infrared thermometry technique involves the measurement of soil surface 

temperature and air temperature using a thermal infrared sensor. Then, the soil 

surface-minus-air temperature (Td) is calculated. The calculated soil surface-minus-

air temperature is related to the amount of soil water present where soil surface and 

air temperatures are taken. Other meteorological variables like solar radiation, 

relative humidity, and wind speed, are also measured simultaneously. Measurements 

of those variables are taken at different levels of moisture content, soil surface and 

air temperatures, and other weather related meteorological variables. A calibration 

model is then developed which relates soil moisture content as the dependent 

http://en.wikipedia.org/wiki/Millimetre
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variable to Td, and the rest of weather variables can be incorporated into the 

calibration model to enhance prediction performance.  

 

Shih et al. (1986) used multiple linear regression to evaluate the importance of using 

air and grass/soil temperature, solar radiation, wind speed, and relative humidity in 

estimating soil water content. Shih et al. (1986) concluded that temperature and solar 

radiation were important parameters needed to estimate soil water content, while 

wind speed and relative humidity were not important in Florida, where the 

experiments were performed. They also reported that using a plant surface-minus-air 

temperature would be more accurate than using either the plant surface temperature 

or air temperature alone. 

 

3.4.2 Surface�minus-air temperature as an indicator of water content 

The relation between the differential temperature (surface-minus-air) and soil/plant 

parameters was first closely studied in the mid-1970s. Idso and Ehler (1976) 

concluded that soil moisture content could be predicted for sorghum during the soil 

drying cycle using plant surface�minus-air temperature measurements.  

 

Soil water content and surface-minus-air temperatures can be related through the 

thermal properties of the soil and water. Gillespie and Kahhle (1977) indicated that 

because water has a higher specific heat and resulting in a higher thermal capacity 

than soil, a wetter soil will have higher thermal capacity and conductivity. Thermal 

inertia, which is a function of heat capacity and thermal conductivity, is a measure of 

the ability of a substance to absorb and transfer heat energy. Therefore, as soil water 

content increases, the thermal inertia also increases. A soil with a high thermal inertia 
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(due to a higher soil water content) will be able to transfer a greater radiant heat load 

from the soil surface to the soil subsurface than a soil with a low thermal inertia. As 

the heat energy is transferred away from the soil surface, the surface temperature will 

decrease. Thus, soil water content is correlated to air and daytime surface 

temperature (Shih et al., 1986). Also, as wind speed increases, the ability of the soil 

surface to dissipate heat energy increases. 

 

The best time to make measurements of Td is when the difference between soil 

surface temperature (Ts) and air temperature (Ta) is the greatest. Many studies have 

been done to monitor the temperature fluctuations during the day. Temperature 

graphs show that soil/plant surface temperatures are greater during the middle of the 

day. On the other hand, air temperature is generally greater than soil/plant surface 

temperature in the morning and afternoon. Myhre (1988) found that the optimal time 

to measure surface-minus-air temperature in Florida was between 11:00 A.M and 

2:00 P.M. Other studies recommended that the optimal times for measurement of 

plant surface-minus-air temperatures were at 2:00 P.M (Ehrler et al., 1978) and 

between 1:00-3:00 P.M. (Blad et al., 1978). 

 
 
Myhre and Shih (1990) used multiple regression analysis to develop a calibration 

model that related soil moisture content to the independent variables: differential 

temperature (Td); solar radiation (SR); relative humidity (RH); and wind speed 

(WS). They discussed and analytically explained the energy balance equations that 

were developed by Mahrer and Pielke (1977) and McCumber and Pielke (1981). 

Those equations provided the basis for the calibration models developed by Mahrer 

and Pielke (1977) and McCumber and Pielke (1981) to estimate soil moisture 
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content. The energy balance at the soil surface as developed by McCumber and 

Pielke (1981) is given as follows: 

0)/()( ****
4

1  Gsssps ZTKCTHUCQLUTgRR                     (3.3) 

where: 

sR                        = incoming solar radiation [W.m-2], 

1R                        = incoming longwave radiation [W.m-2], 

                         = Stefan-Boltzman constant = 5.670 ×10
−8 [W.m-2 .K-4],   

4Tg                      = soil surface temperature [K°], 

**QLU                = turbulent latent heat flux [W.m-2], 

**THUCp           = sensible heat flux [W.m-2], and 

Gsss ZTKC )/(  = soil heat flux [W.m-2]. 

 

Myhre and Shih (1990) reported that equation (3.3) represents the terms used in the 

soil water content estimation models. The first two terms ( sR  and 1R ) involve solar 

radiation as a variable. The third term is the emitted long-wave radiation ( )( 4Tg ), 

which is a function of the ground surface temperature. The turbulent latent heat flux 

term ( **QLU ) is dependent upon wind speed and relative humidity of the air above 

the surface, while the sensible heat flux ( **THUCp ) is dependent upon air 

temperature and relative humidity. The soil heat flux ( Gsss ZTKC )/(  ) is 

dependent upon the physical soil properties and water content. The flow of heat 

through the soil is dependent upon the thermal inertia of the soil which is a function 

of the thermal conductivity and the volumetric heat capacity (Vleck and King, 1983). 

The effect of soil moisture content on thermal conductivity and thermal inertia are 
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related as follows: as soil moisture content increases, thermal conductivity and 

thermal inertia also increases.  

 

Based on the previous discussion, Myhre and Shih (1990) reported that equation 3.3 

can be written as: 

),,,( RHWSSRTDfWSWC    .                                                                               (3.4) 

Equation 3.4 relates the weighted soil water contents (WSWC), as a function of 

depth, to temperature difference (Td), solar radiation (SR), wind speed (WS), and 

relative humidity (RH).  

 

Myhre and Shih (1990) indicated that if experimental data of temperature difference 

(Td), solar radiation (SR), wind speed (WS), and relative humidity (RH) are 

available, the coefficients of each variable in the equation can be estimated using 

multiple linear regression analysis. The multiple linear regression model is used 

because it is simple compared to other models like the polynomial and non-linear 

regression models. Moreover, linear models calculate the unknown parameter 

(dependent variable) faster when it is incorporated into the sensor system, which is 

an important factor for fast remote sensing of soil moisture content during operation 

in the field. The developed and used models by Myhre and Shih (1990) to estimate 

soil moisture content took the following form: 

RHaWSaSRaTDaaWSWC 43210                      .                                    (3.5) 
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3.4.3 Use of thermal infrared sensor and weather meteorological variables to 

estimate soil moisture content  

For their experiment, Myhre and Shih (1990) used 24 lysimeters (non-weighed) 

located at the University of Florida irrigation park. Those lysimeters contained 

Arredondo fine sand (loamy, siliceous, hyperhermic, Grossarenic paleudults). The 

lysimeters were 1.80m deep and 1.63 m in diameter. Furthermore, aluminum access 

tubes were inserted in each lysimeter. These access tubes were used for neutron 

probe measurements. The treatments of the experiment were irrigation amount, 

presence or absence of clipped Pensacola Bahiagrass (Paspalum notalum) and/or a 2 

year-old Valencia orange tree (Sinensis osbeck). The orange tree shaded only 5% of 

the lysimeter surface area. 

 

For soil surface temperature measurements (Ts), the soil/plant surface measurements 

were taken at a height of 1.5 m and at an angle of 45 degrees above the surface of the 

lysimeter using a hand-held infrared sensor. The temperatures were measured 

between 11:00 am and 2:00 pm when the sky was clear (no clouds). Measurements 

were done at temperature ranges of 29oC-33oC, solar radiation ranges of 525-

930w/m2, and relative humidity of 40-80%. Measurements were carried out for 20 

days from June to September, with a total of 20 observations per site. Multiple 

regression analysis was used for data analysis. Finally, an empirical model was 

generated for each site that correlated moisture content with the weather 

meteorological variables.  

 

The results showed average determination coefficients (R2) of 0.62, 0.61, 0.63 and 

0.60 for moisture measurement depths of 0.15, 0.30, 0.60, and 0.90 m, respectively. 
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Myhre and Shih (1990) concluded that the use of solar radiation, wind speed, and 

relative humidity in addition to soil/plant surface-minus-air temperature difference 

did not significantly increase the accuracy of the soil water content estimation. Also, 

Myhre and Shih (1990) concluded that for moisture measurement depths of 0.60 m, 

and 0.90 m, the use of ratio of plant/soil surface-minus-air temperature 

measurements divided by solar radiation improved the soil moisture content estimate. 

 

3.5 Summary 

From the above study, it appears that thermometry is a useful non-contact tool for 

remote sensing of soil moisture content. Thermal infrared sensors used for infrared 

thermometry are more advantageous than microwave sensors in that they are smaller, 

less complex in terms of electronics and lower in cost. This technique, when used for 

estimating soil moisture content, has not been widely accepted, although previous 

work done by Shih et al. (1986), Scherer (1986), and Myhre and Shih (1990) showed 

positive and promising results. 

 

3.6 Quantitative analysis of data  

Because of the large amount of available data from the measured variables in this 

project, there is a need for quantitative data analysis to develop calibration models 

that reflect the correlation between the dependent variable and the independent 

variables and also to predict the value of the dependent variable for given values of 

the independent variables. The goal behind the data analysis in this project is to 

create and test calibration equations of the measured data using a thermal infrared 

technique for the given samples of soils of different types (clay and sand) and 

different compaction levels (compacted and non-compacted). The challenge is then 
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to identify the calibration model that most accurately reflects the relationship 

between soil moisture content and the measured variables. These equations can be 

used later to accurately predict the soil moisture content of a given soil surface 

measured in the same manner (technique). 

There are many effective calibration models including linear, polynomial, and non-

linear models. Among the possible models, linear ones are the most familiar and 

simplest to employ, while providing comparable predictive performance.  

 

3.6.1 Calibration and validation  

Calibration is the process of generating a model that best relates the measured 

dependent variable (soil moisture content) to the measured independent variables 

(differential temperature (Td); relative humidity (RH); solar radiation (SR); and wind 

speed (WS). On the other hand, validation is the process of testing the performance 

of the generated model to predict soil moisture content using a new set of data called 

the validation data set.  

 

The process of generating a predictive model involves the partition of the data into 

two portions. The first part is the calibration set. The calibration set is used as a 

training set from which to generate the calibration models. The remaining portion is 

the validation set, which is used for testing the performance of the developed model. 

Duckworth (1998) reported that using a validation set that is not used in the 

calibration process for testing the generated models gave the best estimate of the 

model�s performance. This is because none of the samples in the validation set were 

used to develop the model. 
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Ingleby (1999) reported that when dividing the available data into the calibration and 

validation sets, it is important to ensure that they both represent the full range of 

possible values of the dependent variable so that the validation testing will be valid 

for the whole range of data predictions. This can be achieved by randomizing the raw 

data prior to dividing them into the calibration and validation sets. 

 

3.6.2 Multiple linear regression analysis 

Multiple linear regression (MLR) is a modeling method that relates the variation in 

each response (the dependent variable, Y) to the variation of one or several variables 

(the independent variables, X) (Dagnew, 2002). MLR analysis is used to produce a 

linear calibration model by fitting a linear equation to the calibration data set such 

that it minimizes the root mean of sum squared errors between the predicted and the 

actual values of the dependent variable.  

 

The generated models after the linear regression process (calibration process) take 

the following form: 

...,22110 xaxaay                                                                                           (3.6) 

where: 

y = the dependent variable, 

a0, a1, a2 = regression coefficients, and 

1x , x2 = the independent variables. 
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3.6.3 Evaluating the model performance 

There are many quantitative factors that can be used to evaluate the model�s 

performance: coefficient of determination (R2) of the model, root mean of squared 

errors of calibration (RMSEC), and root mean of squared errors of validation 

(RMSEV). R2 represents the degree of fitness of the measured data to the regression 

line. It explains how much of the variability in the dependent variable can be 

explained when related to the independent variables using that regression line (linear 

equation). RMSEC and RMSEV are the root mean of squared errors of the 

differences between the predicted values and the measured ones in the calibration 

and validation sets, respectively. 

 

The evaluation of a model performance requires comparing the calibration (R2, 

RMSE) values and the validation (RMSEV) value. A minimum difference between 

the two values is indicative of high predictive performance and vice versa. 

. 

3.6.4 Regression (REG) procedure using SAS® 

The SAS® software is a standard statistical program that may be used to analyze data. 

The multiple linear regression process in this program is used for data analysis 

(calibration) and to select the appropriate number of variables that gives the best 

predictive model. It selects the model with the largest R2 for each number and 

combination of variables considered (SAS, 1999). 
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4. MATERIALS AND METHODS 

4.1 Experiment field location 

The experiment was carried out at the University of Saskatchewan in the parking lot 

near the Department of Agricultural and Bioresource Engineering. A small outdoor 

area was reserved to install the experimental setup. This area has a geographical 

location of 520 07' 58.22" N 1060 37' 38.96" W. The experimental setup included the 

weather station for the measurement of weather variables, soil carrying and weighing 

instruments, non-contact thermal infrared sensor, and the data logger. Many 

considerations have been set to select the experimental location. It was important to 

choose a location near the University so as to be close to the necessary facilities like 

power, water, and laboratories. The experiment location was far enough away to 

ensure that the buildings would not be an obstacle against wind and solar radiation 

during the day. 

  

4.2 Weather monitoring station 

The weather monitoring system (ZENO®-3200) was used to measure and record 

environmental variables which were, air temperature (Ta), relative humidity (RH), 

wind speed (WS), and solar radiation (SR). This weather station is small, rugged, 

practical, and easy to move from one place to another. It consists of sensors, a built-

in data logger, battery, and a solar cell for charging the battery. The laptop and the 

weather station�s data logger were connected together using a serial communication 

protocol and an Rs-232 cable. 
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The process of programming and the transfer of data to and from the weather station 

were acquired by using communication software called Hyper Terminal which is 

provided with Windows operating system (Microsoft Corporation, 2002). The 

weather station's data logger was programmed to read and measure the 

environmental variables at a rate of 1 sample/10 seconds. The weather station and all 

of its accessories are shown in figure 4.1. 

 

 

Figure  4.1 ZENO®-3200 agricultural weather monitoring system 
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4.3 Load cell 

A load cell is a sensor which uses strain gauges that are mounted in a specific pattern 

to provide a meaningful value of the change in pressure or weight. A bending beam 

load cell (Interface�, Model MB-50), as shown in figure 4.2, was used to measure 

the change of soil weight during the experiment. The load cell was bolted to a 

support through two mounting holes at one end. The load (soil container) was 

applied to the opposite end from the mounting holes. A loading button was inserted 

in the loading hole by which the load was carried. 

 

 

 

Figure  4.2 The (Interface�, MB-50) mini-beam bending load cell 
 

4.3.1 Calibration of the load cell 

The load cell was calibrated using known weights of 2406 g and 455 g. For the 

calibration, the load cell was connected to the data logger through a differential input 

channel and was supplied with 5 volts of excitation voltage. The known weights 

were then hung on the loading button of the load cell, one after the other, and the 

output voltage was then recorded. Using Microsoft® Excel 2003 spread sheet, linear 

regression analysis was then used to develop a calibration model that correlated the 

weight and the output voltage. Equation 4.1 is the generated calibration equation. It 
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was installed in the data logger software and was used for accurately monitoring and 

measuring the weight change of soil during the experiment. 

163740  ot VW                                                                                                              (4.1) 

where: 

tW  = weight [g], and 

oV = load cell output voltage [mV]. 

 

4.4 Support and carrying plate 

A 4-link support was fabricated to provide a means of support for the carrying plate. 

The load cell was attached to the support as shown in figure 4.3 through its mounting 

holes. A carrying plate fabricated from metal had a rectangular shape and carried the 

soil container during the experiment. It was hung on the load cell using plastic ropes 

that were attached to its four corners. A complete schematic diagram showing this 

setup is given in figure 4.4. For the purpose of fixing and holding the infrared sensor 

during the experiment, a holder was fabricated with the ability of modifying its 

height as required. 
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Figure  4.3 Load cell installed on the support 

 
 
Figure  4.4  Schematic diagram shows the dimensions of the support and the carrying 
plate 
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4.5 Soil preparation 

The two soil types that were used were: clay and sand, with two different compaction 

levels: compacted and non-compacted. Before the experiment, the soil was dried at 

105oC for 24 hours using an oven. After drying, the dry weight was determined and 

then it was left to cool. This step ensured that there is no stored heat from the oven 

which might affect surface temperature, and also to create an equilibrium situation 

with the surrounding environment. At early morning, the soil was weighed to 

measure the amount of water condensed from the surrounding atmosphere that could 

increase the soil moisture content after being dried.  

 

4.6 Soil compaction 

Two soil configurations were used for each soil type: compacted and non-compacted. 

The compaction was applied before the application of water and the soil was 

compacted while it was in the container. A square metallic plate, having the same 

surface area (1033 cm2) and shape of the container, was put on top of soil surface and 

pressure was applied on the soil using a load of 44.8 kg, giving a pressure of 4.34 

kPa. 

 

4.7 Moisture application and adjustment 

For the experiment, the required initial soil moisture content (SMC) was 20% (wet 

basis). Water was added to the soil by pouring it evenly on its surface and this 

process guarantees that water is evenly spread on the surface. The mass of water 

( wM ) that should be added to make 20% soil moisture content can be calculated 

from deriving the following equation: 
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100



t

dt
c M

MM
M                                                                                              (4.3) 

 

Because the initial moisture content required was 20%, then 

t

dt

M

MM 
2.0                                                                                                        (4.4) 

dtt MMM  2.0                                                                                                   (4.5) 

8.0
d

t

M
M                                                                                                                  (4.6) 

Then the amount of water to be added can be calculated as follows 

dtw MMM                                                                                                         (4.7) 

where:   

Mt = Total mass of the soil (soil dry mass + water mass) [g],  

Md = Dry mass of the soil [g],  

cM  = moisture content [%], and 

wM  = amount of water [g]. 

The condensed water present during the cooling process was subtracted from the 

calculated water amount. 

 

4.8 Non-contact thermal Infrared sensor for the remote sensing of 

soil surface temperature 

For a remote soil surface temperature measurement, a thermal infrared sensor 

(Omega, Model OS43, Saskatoon, Saskatchewan) was used. This device is designed 

for applications where contact measurements are not feasible or non-contact 

measurement of surface temperature is required. Many considerations had been taken 
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for the selection of the thermal infrared sensor. Since this sensor was to be used in 

outdoor conditions, the main consideration was the immunity of the sensor against 

harsh environmental variables such as temperature, humidity, rain, and solar 

radiation. Other considerations were accuracy, repeatability, spectral response, 

response time, and temperature range that can be measured by the sensor. The 

selected sensor is capable of measuring temperature with an accuracy of ±0.5°C and 

has a repeatability of ±1°C. Further details about the sensor specifications from the 

manufacturer are given in table A.1 of Appendix A. 

 

The infrared sensor produced a circular beam that had an approximate radius of 1 cm 

for each 10 cm distance away from the sensor. The distance between the sensor and 

the targeted surface determines the size of beam on the target. The size of the beam 

produced increases with increased distance between the sensor and the target. Figure 

4.5 shows the target beam size of the infrared sensor as it changes with the 

measuring distance between the sensor and the targeted surface. During the 

experiment, the sensor beam was concentrated on the center of the soil surface whose 

temperature was to be measured. A laser pen was attached to the sensor which 

accurately targeted the center of the soil surface. 
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Figure  4.5 Target beam size change with distance  
 

The sensor output was connected to the data logger through a differential input 

channel. The sensor input was connected to the power supply provided from the data 

logger which supplied 5 Volts. Figure 4.6 shows the schematic wiring diagram of the 

sensor.  
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Figure  4.6 Wiring schematic of the OS43 infrared transducer 
 

4.8.1 Indoor testing and calibration of the infrared sensor 

For the purpose of calibration, the sensor was clamped above a water bath and 

targeted toward the center of the water surface. Two thermocouples were located on 

the water surface. Each thermocouple was connected to a single-ended channel of the 

data logger. The average value of thermocouples was calculated by summing the 

three voltage outputs and dividing by their number. Cold water was poured in a 

beaker and then the heating process was initialized. As the water temperature 

increased with time, the data logger kept reading measurements of the average 

temperature of the water surface ( awT ) and sensor�s output in mV (Vo ). A calibration 

equation was generated using linear regression analysis using a spread sheet program 

(Excel, Microsoft, 2003). 

BLK - 

BLU +  

RED+ 

WHT 

Data logger 
differential 

channel input + 

- 

Power Supply 
5V 

+ 

- 

Grounding 

Sensor Body Wiring Cable 



 

 50 

 

Figure  4.7 Indoor calibration of the thermal infrared sensor 

 
The generated calibration model for the sensor was  

22.1484.1  awTVo                                            ,                                                   (4.8) 

where: 

awT  : water bath surface temperature [oC], and 

Vo  : output voltage of the thermal infrared sensor  [mV]. 

 

4.8.2 Outdoor testing and calibration of the infrared sensor 

Preliminary outdoor tests of the sensor showed that the sensor measurements of soil 

surface temperature were affected by the sensor�s body temperature (Tsens), which in 

turn was affected by ambient air temperature. For illustration, for the same soil 

surface temperature, the sensor temperature measurements varied at different 

ambient temperatures. The effect appears significant at high ambient temperatures or 

very low ambient temperatures. Therefore, the generated calibration equation from 
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indoor testing would not provide accurate soil surface temperature measurements due 

to the effect of the sensor body temperature (Tsens) on measurements of the sensor 

when used at outdoor conditions. To overcome this problem, a thermocouple was 

attached to the sensor body (figure 4.8) to measure its body temperature variation 

(Tsens) during the experiment. The effect of the sensor body temperature (Tsens) is 

considered to be an error, which affects the sensor accuracy. Using linear regression 

analysis allows calculation of the size of error exposed from the change of sensor 

temperature. This will enable the researcher to reduce error and to indicate the 

correct surface temperature measured by the infrared sensor. 

 

 

 

 

 

 

 

 



 

 52 

 

Figure  4.8 Thermocouple attached to sensor body 

 

Three replications were used for the purpose of sensor calibration. In each replication 

soil surface temperature (Ts) measured by thermocouples, sensor body temperature 

(Tsens) measured by a thermocouple, soil surface temperature (Tir) measured with the 

thermal infrared sensor, Td, RH, SR,WS, and soil moisture content (from the change 

of soil weight as soil dries) were recorded as the soil dried naturally during the day. 

These replications were taken for compacted clay soil, compacted and non-

compacted sandy soil.  Shortly after initiation, the infrared sensor was damaged due 

to the high ambient temperature changes and rain. Figure 5.10 shows the error as a 

function of the sensor temperature. Linear regression analysis using a spreadsheet 

program (Excel, Microsoft, 2003) was used for data analysis and to develop a model 

of the corrected soil surface temperature as measured by the infrared sensor. 

 

Thermocouple 
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4.9 Data collection 

All experimental instruments were installed on the location previously mentioned. 

The instruments used in the experiment were infrared sensor, weather station, sensor 

holder, support and carrying plate and other measurement sensors. On every 

experiment day, the weight of dry soil was measured and the water added to create 

20% soil moisture content was calculated using methods mentioned in sections 4.5 

and 4.7. Prior to starting the experiment, the soil sample container was put on the 

carrying plate. Two thermocouples were installed in the center of the soil surface for 

measuring soil surface temperature (Ts) as shown in figure 4.9. The infrared sensor 

and the thermocouples were connected to the data logger. With the aid of a laser pen, 

the sensor was fixed on the holder and targeted towards the center of the soil surface. 

Furthermore, the weather station data logger was initialised by deleting all previous 

data from its memory to ensure that there was enough memory space for the new 

collected data. It was important to synchronize both data loggers by setting the 

internal clock so that both data loggers had the same time to a precision of few 

seconds.  Then, the measurement and data collection processes were initiated and left 

working from nearly 10:00 A.M till after 8:00 P.M. Once the experiment was 

stopped, the collected data were downloaded from each data logger and saved in one 

file. Recorded data included soil surface temperature (Ts) measured using 

thermocouples inserted in the soil surface; air temperature (Ta), relative humidity 

(RH), solar radiation (SR), wind speed (WS) measured using the weather station; 

infrared sensor output voltage (Vo) (only for three replications); sensor's body 

temperature (Tsens) (only for three replications); and soil weight ( mw ) as it changed. 

The soil moisture content (SMC) was then calculated using equation (4.9). The 

complete experiment setup is shown in figure 4.10. 
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%100x
w

ww
SMC

t

dm                                                                                           (4.9) 

where: 

SMC = soil moisture content [%], 

mw = measured weight of soil during the experiment [kg], 

dw = dry weight of soil [kg], and 

tw = initial total weight of wet soil [kg]. 

 

 

Figure  4.9 Thermocouples installed in the soil 
 
 

Two 
thermocouples 
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Figure  4.10 The complete experimental setup 
 

4.10 Data analysis 

The collected data (measurements) for each soil type and configuration were saved in 

a spreadsheet file preparing them for analysis. The measured variables were recorded 

at a sampling rate of 1 sample per 10 seconds. Unwanted noise occurred within the 

measurements due to the high sampling rate of measured variables. To solve this 

problem, measurements were averaged to every minute. This procedure reduced the 

noise to an acceptable level and the effect of noise was eliminated. 

 

For each soil type (sand/clay), and configuration (compacted/non-compacted), three 

replications were used. Replications for the same soil type and configuration were 

then grouped together. After that, the data were randomized prior to dividing them 
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into the calibration and validation sets to ensure that each set was representative of 

the entire range of the measurements. Each replication represented the data that were 

collected in a day from 10:00 A.M until 8:00 P.M. Measurements were averaged to 

reduce noise.  Data are provided in Appendix F.  

  

4.11 Generation of multiple linear model  

For the generation of the calibration models for predicting soil moisture content, 

SAS® (SAS Version 8, SAS Institute Inc., Cary, NC) software was used. The 

software is capable of performing multiple linear regression analysis using a stepwise 

method. Using this method, the regression equation was built of a series of multiple 

linear regression equations. A variable is added to the regression equation when it 

makes the greatest reduction in the root mean of squared errors value of the sample 

data. When a variable does not have a significant correlation with the dependent 

variable it is excluded from the regression model. 

 

In this study, the dependent variable was soil moisture content (SMC), and the 

independent variables were differential temperature (Td), solar radiation (SR), 

relative humidity (RH), and wind speed (WS). Because there were four independent 

variables used, the maximum number of independent variables (predictors) in a 

model is four variables while the minimum is one.  

 

The output from SAS program showed the best four calibration models to predict the 

soil moisture content (SMC) for each soil type and compaction level (table5.2). It 

also showed the excluded models because of their low ability of prediction. The 

number of predictors (variables) in those four models varied from a minimum of one 
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to a maximum of four plus the intercept. At the end of data analysis using stepwise 

multiple linear regression, a summary of the output shows the regression coefficients, 

intercept, and R2 values for each model that was generated. To provide a criterion for 

comparison between models in order to select the best one, the root mean of squared 

errors between the predicted and the actual values of soil moisture content were 

calculated for each model for both the calibration and validation data sets for each 

soil type and configuration. The root mean of squared errors value provides a 

measure of how well the predicted values fit the measured ones. The smaller value of 

the root mean of squared errors notes smaller differences between the actual and 

predicted values, and thus a higher model performance. The root mean of squared 

errors was calculated using the following equation: 

 

 

1

2







n

xy
RMSE                                                                                           (4.10)  

 

In equation 4.10, x  is the actual measured soil moisture content (SMC) and y  is the 

predicted one from the developed models. The variable n  indicates the number of 

measurements (samples). The RMSE value for the calibration data was calculated 

and was named as RMSEC. Similarly, the RMSE value for the validation data set 

was also calculated and named as RMSEV.  

 

Because the sizes of the calibration and the validation data sets were different 

because only 1/3 of the data was used for validation while 2/3 was used for 

calibration, the use of RMSE was suitable. This is because it calculates the root mean 
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of the sum of squared differences, which eliminates the effect of the unequal sample 

sizes and makes the comparison between RMSEC and RMSEV valid. 

Another important value to be determined was the sample coefficient of 

determination (R2). This value provides a measure of the degree of linearity between 

two variables or the degree of covariance between them. It is known that the addition 

of more variables into the regression model increases its R2 value. The coefficient of 

determination (R2) was calculated using spreadsheet software (MS-EXCEL, 

Microsoft Corp, 2003). 

 

4.12 Discussion of model performance 

All calibration models that were generated should be evaluated using some metrics to 

choose the best model. This can be done by comparing calibration (RMSE and R2) 

and validation RMSE. High R2 value is not enough of a measurement level to judge 

on a model performance because its value increases with the number of variables 

entered in the regression model. Also needed is the root mean of squared errors 

(RMSE) to be another criterion because it has the ability to explain the difference 

between the actual and predicted values of soil moisture content. The difference 

between RMSEC and RMSEV values for the same model should not be large. For 

example, if the value of RMSEC is much lower than the RMSEV, this shows that 

there is an over-fitting towards the calibration data set and an unacceptable fitting 

towards the remainder of the data (the validation data set). Therefore, this model 

performs well for only part of the data (the calibration data set) and performs with 

lower performance for the remainder of the data (the validation data set).  
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Furthermore, the number of variables in a model is another criterion which is used in 

the selection of the best model. It is advisable to select a model with a lower number 

of variables, to reduce cost and complexity. Some smaller models still provide 

comparable predictive performance similar to the large size models. This does not 

necessarily mean that a model with a smaller size will be selected in favor of its 

performance.  But if there is a difference in performance between two models, small 

or insignificant, then it is advisable to select the smaller size model. 
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5. RESULTS AND DISCUSSION 

5.1 Collected measurements 

The graphs in Figure 5.1 through 5.4 show the change in the level of soil moisture 

content, air temperature, and soil surface temperature with time for replications 

number 2 of each soil type and configuration used in this study. Other experiment 

data: relative humidity, solar radiation, and wind speed are given in the tables in 

Appendix F where those graphs were derived. The remainder of the replications are 

given in Appendix B. In some replications missing data were due to problems 

associated with data retrieving from the data logger. There were sufficient 

measurements because the number of data in each replication was enough to provide 

a reliable description about the relation between the dependent variable, SMC, and 

the independent variables Td, RH, SR, and WS. There is acceptable confidence about 

the number of data available to produce a calibration model that can accurately 

predict the soil moisture content for all soil types and configurations. 

 

In general, the graphs from Figure 5.1 to 5.4 showed that the soil moisture content is 

decreased with time starting from nearly 20% soil moisture content until it reached a 

soil moisture content that ranged between 8-16%. All soil types and configurations 

showed a relatively high evaporation rate. This outcome was expected, because there 

was high initial moisture content (≈20%) and relatively thin soil sample depth of 

about 6 cm. 
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Figure  5.1 Air temperature (Ta), soil surface temperature (Ts) measured using 
thermocouples, and soil moisture content (SMC) versus time for replication 2 of clay 
compacted soil. 
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Figure  5.2 Air temperature (Ta), soil surface temperature (Ts) measured using 
thermocouples, and soil moisture   content (SMC) versus time for replication 2 of 
clay non-compacted soil 
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Figure  5.3 Air temperature (Ta), soil surface temperature (Ts) measured using 
thermocouples, and soil moisture content (SMC) versus time for replication 2 of sand 
compacted soil. 
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Figure  5.4 Air temperature (Ta), soil surface temperature (Ts) measured using 
thermocouples, and soil moisture content (SMC) versus time for replication 2 of sand 
non-compacted soil. 
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For all soil types and configurations (compacted/not compacted), the soil surface 

temperature was higher than the air temperature at the beginning of the experiment, 

and eventually both became equal at a certain time of the day, and finally the air 

temperature became higher at night. This was the case for all soil types and 

configurations except for replication 1 of compacted sandy soil, where the air 

temperature was always higher than the soil surface temperature during the 

experiment. This is believed to be due to the high air temperature for that day 

(replicate) compared to other days (replicates). 

 

Figures 5.1 through 5.4 show that the rate of soil moisture loss was highest between 

10:00 a.m. and 4:00 p.m. and then became low at the end. This is due the presence of 

high amounts of water, high solar radiation, and relatively high air temperature in the 

daytime compared to the evening and after most of the water had evaporated. The 

clay soils (compacted and non-compacted) (Figures 5.1 and 5.2) show that, the soil 

surface temperature (Ts) and air temperature (Ta) became equal during earlier 

periods of the day compared to the other soil (sand). In general, all graphs of the 

different soil types and configurations show a similar trend and shape. The difference 

between them is mainly due to the nature of the surrounding environment at the 

experimenting time and, secondly, due to soil type and compaction level. 
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5.2 Consolidated results of the collected measurements 

To make a comparison between the different soil types and configurations easier, the 

average values of the measured variables of the three replications for each soil type 

and configuration were calculated and are given in table 5.1. Further clarification 

about the method used to produce this table is given in Appendix F. Table 5.1 shows 

that compacted clay soil has the highest loss of moisture content from about a 

maximum of 19% to 9.3 %. This is considered to be a 51% change in the level of 

moisture content. This outcome was expected, because the average values of air 

temperature (Ta), wind speed (WS), and solar radiation were the highest for 

compacted clay soil among other soil types and configurations (table 5.1). 

Furthermore, compacted clay soil had the lowest relative humidity of 36.5%. The 

total loss of soil moisture content of the remainder of the soil types and 

configurations were lower than that of the compacted clay soil; 30% for clay non-

compacted soil; 33% for compacted sand soil; and 36.5% for sand non-compacted 

soil. Both the compacted and the non-compacted clay soils had negative average 

values of differential temperature (Td); -0.1°C for compacted clay soil and -1.2°C for 

clay non-compacted soil. On the other hand, both the compacted and the non-

compacted sandy soils had positive average values of differential temperature (Td); 

1.6°C for compacted sandy soil and 0.3°C for non-compacted sandy soil.  
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Table  5.1  Average values of measured variables of three replicates for each soil type 
and configuration 

�Soil moisture content (SMC) values are in percentage 
�Differential temperature (Td), soil surface temperature (Ts), and air temperature 
(Ta) are in °C 
�Relative humidity (RH) values are in percentage 
øWind speed (WS) values are in m/s 
ҰSolar radiation (SR) values are in w.m-2 
 
 
5.3 Development of regression models 

Using stepwise linear multiple regression analysis, a total of 16 regression models 

were generated for all soil types and configurations (table 5.2). Calibration data sets 

were used in the analysis process. For each soil type and configuration, four models 

were generated and ranked by the coefficient of determination value R2 (table 5.2).  

All models of the same size of all soil types and configurations showed great 

consistency. The variables for those models were Td for model 1; Td and RH for 

model 2; Td, RH, and SR for model 3; and Td, RH, SR, and WS for Model 4. Those 

Variable Statistic 
Clay 

compacted  

Clay 

non- 

compacted   

Sand 

compacted 

Sand  

non-

compacted  

Averaged 

 maximums 
19.0 19.6 19.0 20.0 

SMC� 
Averaged  

minimums 
9.3 13.9 12.7 12.7 

Td 
� Average -0.1 -1.2 1.6 0.3 

Ts� Average 26.0 22.4 25.2 21.1 

Ta� Average 26.0 23.6 23.6 20.8 

RH� Average 36.5 46.2 39.7 38.9 

WSø Average 2.7 1.9 1.5 1.9 

SRҰ Average 957.7 739.6 898.9 921.5 
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variables were ranked within each model based on the level of effect each variable 

had on the dependent variable (soil moisture content). 

Table  5.2 Multiple linear regression parameters  

MLR1 denotes multiple linear regression model number 1 
MLR2 denotes multiple linear regression model number 2 
MLR3 denotes multiple linear regression model number 3 
MLR4 denotes multiple linear regression model number 4 

 
Table 5.2 shows the regression coefficients of each variable in the developed models 

for each soil type and configuration. Differential temperature (Td) had the greatest 

effect on the prediction of soil moisture content (SMC). Relative humidity (RH) 

Regression coefficients 
R2 

WS SR RH Td constant 
Model 

Soil type & 

configuration 

0.68 - - - 0.99 13.064 MLR1 

0.71 - - 0.07 0.88 10.499 MLR2 

0.72 - 0.001 0.091 0.707 8.795 MLR3 

0.73 -0.335 0.001 0.078 0.704 10.074 MLR4 

CLAY� 

COMPACTED   

0.68 - - - 0.605 16.875 MLR1 

0.70 - - 0.035 0.579 15.226 MLR2 

0.72 - 0.001 0.067 0.446 12.836 MLR3 

0.72 -0.219 0.001 0.066 0.451 13.281 MLR4 

CLAY  

NON- 

COMPACTED  

0.62 - - - 0.432 14.525 MLR1 

0.86 - - 0.125 0.361 9.680 MLR2 

0.86 - -0.001 0.114 0.418 10.503 MLR3 

0.86 -0.413 -0.001 0.114 0.416 11.102 MLR4 

SAND 

COMPACTED  

0.59 - - - 0.515 15.210 MLR1 

0.80 - - 0.128 0.397 10.283 MLR2 

0.82 - 0.001 0.147 0.249 8.591 MLR3 

0.83 0.349 0.001 0.146 0.252 8.023 MLR4 

SAND  

NON-

COMPACTED 
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came second, solar radiation (SR) third, and finally wind speed (WS). Td values for 

all models of the same size (same number of variables) of different soil type and 

compaction level were consistent. The value of Td coefficient was positive for all 

models and ranged from a minimum of 0.249 for Model 4 of sand non-compacted 

soil to a maximum of 0.990 for Model 1 of compacted clay soil. For the same soil 

type and configuration, the value of Td coefficient was the highest for models MLR1 

having only one variable, Td, and this value decreased in the larger models. This 

decrease was due to the addition of more variables to the regression model. Those 

new added variables shared the effect with Td. The Td coefficient values are higher in 

clay soils than in sandy soils, which means that Td has a greater effect in clay soils 

than in sandy soils. This can be seen from the values of R2 for MLR1 between clay 

soils and sandy soils; the values are higher for clay soils. On the other hand, the 

relative humidity (RH) variable has more of an effect in sandy soils. This effect can 

be seen in the increase in the value of R2 for MLR2 compared to the slight increase 

in this value in MLR2 of clay soils. Regarding the effect of solar radiation (SR), it 

was observed that the value of SR coefficient was small and posed relatively lower 

effect than those of relative humidity (RH) and temperature difference (Td) but 

higher than the wind speed (WS) variable. A phenomenon, which deserves to be 

considered, is the values of SR coefficients in MLR3 and MLR4 for compacted 

sandy soil. These values were negative, whereas they were positive in all other 

models of other soil types and configurations.   

 

The values of R2 of all soil types and configurations and all models ranged from a 

minimum of 0.59 in MLR1 of non-compacted sandy soil to a maximum of 0.86 in 

MLR2, MLR3 and MLR4 of compacted sandy soil. In general, the values of R2 in 
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the calibration models of sandy soil were higher than those of clay soils. While the 

value of R2 does not exceed 0.73 in the largest size model (MLR4) for compacted 

clay soil and 0.72, for non-compacted clay soil, it reaches 0.86,for compacted sandy 

soil, and 0.83 for non-compacted sandy soil for the same model size. It should also 

be noted that all wind speed (WS) coefficients of Model 4 for all soil types and 

configurations were negative, except one which was positive in non compacted 

sandy soil (table5.2). The negative sign of the wind speed coefficient indicates that, 

as wind speed goes higher, the moisture content present in the soil goes lower.  This 

was expected since high wind speed increases the rate of loss of moisture from the 

soil surface and consequently reduces the amount of moisture present in the soil. 

 

5.3.1 Compacted clay soil regression model 

Variables and regression coefficients used to predict soil moisture content (SMC) of 

compacted clay soil are given in table 5.2. The statistical parameters, RMSEC and 

the R2 of the calibration data set are given in table 5.3. The compacted clay soil 

models generated using the calibration data set showed relatively good R2 values 

ranging from minimum of 0.68 to a maximum of 0.73. The increase of the value of 

R2 with the number of variables added to the regression models was minimal from 

Model 1 to Model 2, but gradual from Model 2 to Model 4. The larger regression 

model sizes were associated with higher R2 values. The RMSEC values varied from 

1.61 for the four-variable model to 1.77 with the single-variable model as shown in 

table 5.3. In general, the developed models explained approximately 68% to 73 % of 

the calibration data set.  
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The R2 and RMSEV values for the validation data set were also calculated and 

shown in table 5.3. The comparison between the statistical parameters of the 

calibration data set and the validation set shows that the R2 value of the latter was 

higher and with lower RMSEV values. Again, there was a minimal increase in the R2 

value from the single-variable model to the two-variable model, and a gradual 

increase from Model 2 to the four-variable model. The R2 values ranged from a 

minimum of 0.69 to a maximum of 0.74, with RMSEV values ranging from 1.55 to 

1.72. Table 5.3 shows that the RMSEV values decreased with the increase of R2 

values. The lowest validation RMSE value occurred for the highest coefficient of 

determination. This was the expected outcome, because a larger model with more 

variables has a higher capability of detecting the variation and minimizing it. 

 

Results showed that the RMSEC and RMSEV values for all the models were close. 

This indicates that both the calibration and validation data sets were well 

representative of the entire range of the data and that there was no significant over-

fitting during the training process.  Model 3 (MLR3) was selected as the appropriate 

model for prediction. It has relatively good R2, as well as low calibration and 

validation RMSE values. It is the best predictive model, favoring reduction in size of 

the model to the smaller contribution of larger models in minimizing the RMSE 

value. In addition, there was no significant difference between the calibration 

RMSEC and validation RMSEV. 
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Table  5.3 Calibration and validation results of compacted clay soil models 

 

A plot of the predicted versus actual SMC values of the selected model showed a 

good fit over the whole range of validation data as shown in figure 5.5 below. For the 

same model, the R2 and RMSE values were higher and lower respectively for the 

validation data sets than those of the calibration data sets. The figure shows that there 

is a partial over-estimating in predicted soil moisture content values below 10%. The 

predicted SMC values were slightly higher than the actual ones. Model 3 contains 

three variables: differential temperature (Ts), relative humidity (RH), and solar 

radiation (SR).  

Statistic                                                       Regression models 

Calibration MLR1 MLR2 MLR3 MLR4 

R2 0.68 0.71 0.72 0.73 

RMSEC 1.77 1.68 1.64 1.61 

Validation     

R2 0.69 0.72 0.73 0.74 

RMSEV 1.72 1.62 1.59 1.55 
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Figure  5.5 Predicted versus actual soil moisture (SMC) for the three-variable model 
(MLR3) 
 

5.3.2 Non-compacted clay soil regression model 

Variables and regression coefficients used to predict soil moisture content (SMC) of 

non compacted clay soil are given in table 5.2. The RMSEC and R2 values that will 

be used to evaluate the performance of the models are given in table 5.4. Stepwise 

multiple linear regression analysis of the calibration data set of this soil showed 

relatively similar R2 values similar to those of compacted clay soil. The coefficient of 

determination R2 values ranged from a minimum of 0.68 to a maximum of 0.72. 

RMSEC values of this soil were lower than those of compacted clay soil.  Model 3 

and model 4 had equal R2, and RMSEC values of 0.72 and 1.14 respectively. This 

indicates that the addition of more variables did not significantly improve the 

prediction ability of Model 4. This could be due the minimal contribution of the 

added variable on the effect on the soil moisture content in this soil type and 
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configuration. RMSEC values ranged from a maximum of 1.22 for a single-variable 

model to a minimum of 1.14 for three- and four-variable models. As expected, the 

coefficient of determination (R2) value increased with the addition of more variables 

into the regression model. Thus, MLR4 has the highest coefficient of determination 

value while MLR1 has the lowest. 

 

The performance of the generated models was tested using the validation data set. R2 

and RMSEV values of the validation data set are given in table 5.6. When tested with 

the validation data set, models produced higher R2 values than those of the 

calibration data set but had lower RMSEV values. This indicates that the models had 

performed slightly better with the validation data set. R2 values increased from 0.72 

for a single-variable model to 0.78 for a four-variable model. Conversely, the 

RMSEV value decreased from 1.15 to 1.03.  

The best non-compacted clay soil model was the three-variable model with a 

calibration R2 value of 0.72, validation R2 value of 0.77, RMSEC of 1.14 and 

RMSEV of 1.04.  

Table  5.4 Calibration and validation results of non-compacted clay soil models 

 

Statistic                                            Regression models 

Calibration MLR1 MLR2 MLR3 MLR4 

R2 0.68 0.70 0.72 0.72 

RMSEC 1.22 1.18 1.14 1.14 

Validation     

R2 0.72 0.75 0.77 0.78 

RMSEV 1.15 1.10 1.04 1.03 
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A plot of the measured versus predicted soil moisture content using the selected 

model MLR3 is given in figure 5.6. The graph shows acceptable prediction ability of 

this model. However, the selected model (Model 3) tends to overestimate the soil 

moisture content in the ranges between 10% and 15%. Model 3 contains three 

prediction variables-differential temperature (Td), relative humidity (RH), and solar 

radiation (SR). 
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Figure  5.6 Predicted versus actual soil moisture (SMC) for the three-variable model 
(MLR3) 
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5.3.3 Compacted sandy soil regression model 

Variables and regression coefficients used to predict soil moisture content (SMC) of 

compacted sandy soil are given in table 5.2. The results of the calibration data and 

performance analysis showed high R2 values and low RMSEC values. The lowest R2 

value was 0.62 which occurred for the single-variable model (MLR1). It is important 

to mention that the R2 value was kept equal to about 0.86 for Models 2, 3, and 4 and 

was not affected by the addition of more variables to the regression models. This 

result was not expected, because the addition of more variables should increase the 

R2 value. Model 2 had the lowest RMSEC value of 0.99 while Model 1 (MLR1) had 

the highest of 1.63. There is no doubt that the best model is Model 2 because it had a 

high R2 value of 0.86 and at the same time very low RMSEC and RMSEV values. 

 

The R2 and RMSEV values of the validation data set are given in table 5.5. In 

general, the validation data set had slightly lower R2 values than those of the 

calibration data set and higher RMSEV values. The highest R2 value was 0.86 which 

occurred for Model 2 (MLR2) and the lowest was 0.64 for Model 1 (MLR1). 

Calculation of RMSEV for all models using the validation data set showed the lowest 

RMSEV value of 1.00 when using Model 2 for prediction, and the highest of 1.63 

when MLR1 was used.  

 

MLR2 had the highest calibration R2 value, equal to those of MLR3 and MLR4 and 

the highest validation R2. It also had the lowest calibration and validation RMSE 

values. This model combined two advantages: the small size (few numbers of 

variables) and high prediction performance.  
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Table  5.5 Calibration and validation results of compacted sandy soil models 

Statistic                                                          Regression models 

Calibration MLR1 MLR2 MLR3 MLR4 

R2 0.62 0.86 0.86 0.86 

RMSEC 1.63 0.99 1.01 1.01 

Validation     

R2 0.64 0.86 0.85 0.85 

RMSEV 1.63 1.00 1.03 1.04 

 

A plot of the predicted versus measured SMC values of the selected model showed a 

good fit at some moisture content ranges and overestimated at others over the whole 

range of validation data as shown in figure 5.7. The figure shows that there is a 

partial over-estimating in predicted soil moisture content values below 13% and 

above 19 %. The predicted SMC values were slightly higher than the actual ones.  
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Figure  5.7 Predicted versus actual soil moisture (SMC) for the two-variable model 
(MLR2) 
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5.3.4 Non -compacted sandy soil regression model 

Some models and the corresponding regression coefficients used to predict soil 

moisture content (SMC) of non-compacted sandy soil are given in table 5.2. In 

general, the results of calibration data and performance analysis showed good R2 

values and low RMSEC values. This performance was comparable to models 

developed for clay soils, but was not as high as for compacted sandy soil. The 

highest R2 value was 0.83 which occurred for the four-variable model (MLR4), and 

the lowest was 0.59 which occurred for the single-variable model (MLR1). There 

was a significant increase of R2 value from Model 1 to Model 2, but then the increase 

was minimal. As was expected, the addition of more variables to the regression 

model caused an increased R2 value. Conversely, the RMSEC value decreased with 

the addition of more variables to the regression model. The lowest RMSEC value 

was 1.04 which occurred for the four-variable model, and the highest was 1.59 which 

occurred for the single-variable model. 

 

The generated models, using the calibration data set, were tested using the validation 

data set. This procedure provides a tool to test the generated model for prediction 

performance and generality. R2 and RMSEV values of the validation data set are 

given in table 5.6. In general, the validation data set had slightly lower R2 values than 

those of the calibration data set and higher RMSEV values. The highest R2 value was 

0.81 which occurred for Model 3 (MLR3) and model 4 (MLR4), and the lowest was 

0.59 which occurred for Model 1 (MLR1). The increase of R2 with the addition of 

more variables to the regression models was drastic from Model 1 to Model 2. R2 

value increased approximately by 26 %. R2 value increased slightly from Model 2 to 
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Model 3 and stayed the same for Model 4. The lowest RMSEV value was 1.07 which 

occurred for Models 3 and 4, and the highest was 1.59 which occurred for Model 1. 

 

The selection of the best model depends on the performance of the model and the 

number of variables it contains. A high R2 value and low RMSEC and RMSEV 

values indicate higher model performance. Another criterion is the size of the model. 

Smaller models, having fewer variables, is favored over a large model size with 

slightly better performance. Having that in mind and from the results, Model 4 

cannot be the best model because Model 3, with fewer variables, performed similarly 

to Model 4. Therefore, Model 3 (MLR3) was selected as the best model for 

prediction. It has relatively good R2 as well as low calibration and validation RMSE 

values. It is the best predictive model favoring reduction in size of the model 

compared to the smaller contribution of larger models in minimizing the RMSE 

value as in Model 4 mentioned earlier.  

Table 5.6 Calibration and validation results of non-compacted sandy soil models 

 

A plot of the predicted versus actual SMC values of the selected model showed a 

relatively high prediction performance for moisture content from 13 % to 20 %. On 

the other hand, the model tended to overestimate the soil moisture content below 13 

Statistic                                                      Regression models 

Calibration MLR1 MLR2 MLR3 MLR4 

R2 0.59 0.80 0.82 0.83 

RMSEC 1.59 1.11 1.05 1.04 

Validation     

R2 0.59 0.79 0.81 0.81 

RMSEV 1.58 1.12 1.07 1.07 
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%. The plot is shown in figure 5.8. Model 3 contained three variables: differential 

temperature (Td), relative humidity (RH), and solar radiation (SR). 
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Figure  5.8 Predicted versus actual soil moisture (SMC) for the three-variable model 
(MLR3) 
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5.4 Sensor calibration and testing  

Figure 5.9 shows one replication of the measurements of soil surface temperature 

(Ts), sensor body temperature (Tsens), and soil surface temperature as measured by the 

thermal infrared sensor (Tir) as a function of time. The other two replications are 

shown in Appendix B. From the figure it can be seen that the sensor body 

temperature (Tsens) changed with the same pattern as the change in soil surface 

temperature measured by the thermocouple (Ts), and the soil surface temperature 

measured by the sensor (Tir). This result was expected since the sensor was exposed 

to the same ambient temperature and environment.  
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Figure  5.9 Soil surface temperature measured by thermocouple (Ts), soil surface 
temperature measured by the sensor (Tir), sensor body temperature (Tsens) for first 
replication. 
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5.4.1 Effect of the change of sensor body temperature on the sensor accuracy 

Figure 5.10 shows the effect of sensor body temperature on the accuracy of the 

measured soil surface temperature by the sensor (Tir). When the sensor body 

temperature increases above or decreases below a certain temperature range 

(approximately between 21°C and 22°C), the difference between Ts and Tir also 

increases. The difference reached the maximum value of 25.7°C when the sensor 

body temperature reached (35.4°C). This is considered to be a large difference which 

negatively affects the accuracy of the soil surface temperature measurements taken 

by the thermal infrared sensor. 

 
5.4.2 The corrected Tir value 

Figure 5.10 shows the temperature difference as a function of the sensor body 

temperature. The temperature difference equals the soil surface temperature 

measured by thermocouples (Ts) minus the soil surface temperature measured by the 

sensor (Tir) for the three replications used (see equation 5.2). Linear regression 

analysis using a spreadsheet program (Excel, Microsoft, 2003) was used for data 

analysis and to develop a model which correlated the temperature difference to the 

sensor body temperature. 
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Figure  5.10 Temperature difference between soil temperature measured with 
thermocouples, Ts, and the infrared sensor, Tir, as a function of the sensor body 
temperature. 
 

Applying linear regression analysis using a spreadsheet program (Excel, Microsoft, 

2003) to the data resulted in a linear equation which correlates the measurement error 

to the sensor body temperature .The developed equation is as follows: 

 
5.377.1  sensTE ,                                                                                               (5.1) 

 
 

where 

irs TTE              ,                                                                                                (5.2) 

E  = temperature difference [°C], 

sT  = soil surface temperature measured using thermocouples [°C] and 

irT = soil surface temperature measured using the thermal infrared sensor [°C]. 

 
 

B 
irs TT   

A 
irs TT   
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The minimum level of error occurs when E  is equal to zero as shown in figure 5.10. 

The temperature of the sensor body (Tsens) at which the error is zero can be 

determined by solving equation 5.1 for sensT  when E =0.  

 

 CTsens 1.22
7.1

5.37
                                                                                              (5.3) 

                                                 
 
In figure 5.10, a vertical line is drawn perpendicular to the x-axis and crosses it at the 

sensor body temperature ( sensT =22.1C°) where E  is zero. The line separates the chart 

area into two regions namely region A and region B. In region A, irs TT   and in 

region B, irs TT  . This indicates that the measured soil surface temperature using 

the thermal infrared sensor (Tir) increases with the increase of the sensor body 

temperature and vice versa. 

 

The corrected soil surface temperature measured by the sensor can be calculated by 

rearranging equation 5.1 to be: 

5.377.1)(  TsensTcorrectedT irir      .                                                               (5.4) 

 

 

5.4.3 Estimating the soil moisture content using thermal infrared sensor 

The corrected value of Tir can be calculated using equation 5.4 and is used to 

calculate the soil-minus-air temperature (Td) value which was used as a variable in 

the developed models for each soil type and configuration. The previous generated 

calibration models were developed using the soil surface temperature (Ts) measured 

by the thermocouples.  
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Figures 5.11 and 5.12 show the  actual soil moisture content measurements versus 

the predicted SMC measurements using thermocouples and the predicted SMC 

measurements using the infrared sensor for MLR2 of sand compacted soil and MLR3 

of sand non-compacted soil, respectively. No measurements were collected for clay 

soils with the infrared sensor because the infrared sensor got damaged before more 

measurements could be done on clay soils. The figures show good compatibility 

between the soil moisture measurements taken by thermocouples and the infrared 

sensor. 
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Figure  5.11 Actual versus predicted SMC using thermocouple and the infrared sensor 
for MLR2 of sand compacted soil. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure  5.12  Actual versus predicted SMC measurements using thermocouple and the 
infrared sensor for MLR3 of sand non-compacted soil. 
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6. SUMMARY AND CONCLUSIONS 

Measurements of soil moisture content (SMC), soil surface temperature (Ts), and 

metrological weather variables Ta, RH, SR, and WS were collected for a period of a 

day for 12 samples of two types of soils (clay/sand), and with two compaction levels 

(compacted/non-compacted). The soil moisture content ranged from a maximum of 

20% at the beginning of the experiment to a minimum of 9.3% at the end. 

Furthermore, models to predict the SMC for each soil type and configuration were 

generated using stepwise multiple linear regression data analysis. In data analysis, 

the dependent variable was SMC and the independent variables were soil surface 

temperature-minus-ambient air temperature (Td), relative humidity (RH), solar 

radiation (SR), and wind speed (WS). In general, the models showed good prediction 

performance. Models of larger size for all soil types and configuration showed better 

prediction performance than smaller models. 

 

Models of different sizes for the same soil type and configuration were similar and 

had consistent coefficients. Models of clay soils with different configuration had 

higher Td coefficients than those of sandy soil. Conversely, models of sandy soils had 

higher coefficients of RH than of clay soils. This indicates that differential 

temperature (Td) had higher effect on clay soils than in sandy soils while relative 

humidity (RH) posed higher effect on sandy soils than in clay soils. 
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The best model for each soil type and configuration was determined by comparing 

the calibration R2 and RMSE values along with validation RMSE values for models 

of different size. The best model for compacted clay soil was the three-variable 

model containing Td, RH, and SR with a calibration R2 of 0.72, a calibration RMSE 

of 1.64, and a validation RMSE of 1.59. Model 3 is the best predictive model, 

favoring a reduction in size of the model to the smaller contribution of larger model 

(MLR4) in minimizing the RMSE value. Furthermore, the difference between 

RMSEC and the RMSEV values is only 0.05, which indicates that there is no 

significant over fitting toward the calibration data and that the model performs well 

for the entire range of the data. The best model for non-compacted clay soil was the 

three-variable model containing Td, RH, and SR, with a calibration R2 of 0.72, a 

calibration RMSE of 1.14, and validation RMSE of 1.04. Similarly, this model was 

selected because it provided higher predictive performance than the smaller size 

models (MLR1 and MLR2) and comparable predictive performance like MLR4, 

while having fewer variables. The best model for compacted sandy soil was the two-

variable model containing Td and RH with a calibration R2 of 0.86, a calibration 

RMSE of 0.99, and a validation RMSE of 1.00. This model had the highest 

calibration R2 value (0.86) equal to those of MLR3 and MLR4 and the highest 

validation R2 (0.86). It also had the lowest RMSEC value of (0.99) and validation 

RMSEV value of (1.00). This model combined two advantages: the small size (few 

variables) and higher prediction performance than the other models. The best model 

for non-compacted sandy soil was the three-variable model because with its fewer 

variables, it  performed better than the larger model (MLR4) and also better than the 

smaller models (MLR1 and MLR2). This model contained Td, RH and SR with a 

calibration R2 of 0.82, a calibration RMSE of 1.05, and a validation RMSE of 1.07.  
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To be able to remotely measure the soil moisture content, a thermal infrared sensor 

was calibrated against the thermocouples that were used to measure soil surface 

temperature during the experiment. The collected measurements in this study were: 

the soil surface temperature measured by the thermal infrared sensor (Tir), soil 

surface temperature as measured by the thermocouples (Ts), and sensor body 

temperature (Tsens) for three replications of soil samples: clay compacted soil, sand 

compacted soil, and sand non-compacted soil. A calibration model was generated to 

determine the corrected value of (Tir), which was then used to calculate the soil 

surface-minus-air temperature (Td) value. The calculated soil surface-minus-air 

temperature (Td) value, using (Tir), was used along with the measured meteorological 

variables (RH, SR, and WS) to estimate soil moisture content for the best selected 

models of sand compacted soil and sand non-compacted soil. Graphs were developed 

to compare between the predicted soil moisture content values using thermocouples 

and the predicted soil moisture content values using the thermal infrared sensor 

versus the actual soil moisture content values using the best selected models for 

compacted and non-compacted sandy soils. The thermal infrared sensor provided 

comparable predictive performance, relative to thermocouples. 
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7. RECOMMENDATIONS 

The measurement of soil moisture content (SMC) using a non-contact method with a 

thermal infrared sensor and weather meteorological variables is very promising. This 

technique provides non-destructive, low-cost, and fast SMC measurement. In this 

study, the experiment was carried out on soil samples in containers. However, it is 

recommended to run the experiment in a field to ensure that the generated models 

will be more realistic and naturally representative of the correlation between SMC 

and the measured variables. In this study, linear regression models were generated in 

order to predict SMC from two soil types and two compaction levels. In future, the 

use of non-linear regression models for the prediction of SMC and for practical 

sensor development should be considered, which might improve the prediction 

performance. For the application of this technique for a specific field with known 

boundaries, it is recommended that the generated calibration models incorporate all 

the variations in the field regarding soil types, ranges of moisture content, and 

weather conditions. This will ensure that the produced models are more 

representative of the site whose SMC is to be remotely measured. Also, it is 

advisable to investigate the effect of vegetation cover on the sensor measurements 

and the generated predictive calibration models. The sensor used in this study was 

significantly affected by ambient temperature, which led to improper functioning of 

the sensor, which could lead to permanent failure of the sensor in the long term. 

Thus, it is advisable to use a sensor that is more resistive to ambient temperature and 

humidity. 
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APPENDIX A: TABLES 

Table A.1 OS 34 L infrared sensor specifications 

 
 
 
 
 
 
 
 
 
 
 
 

Resolution 0.1°C or 0.1°F 

Accuracy : ±0.5°C or ±1.0°F 

Repeatability ±1.0°C or ±1.0°F 

Temperature Range -40 to 100°C 

Spectral response 8 to 14 microns 

Output 
�mV standard; 

optional 4 to 20 mA, 0 to 5V 

Input Power 
External 5 to 26 Vdc 

@ 10 mA; 15 to 26 Vdc for 

Emmisivity Preset at 0.98 

Response Time 0.25 sec 

Dimensions 51 dia x 78.5 mm L 

Weight 0.45 Kg 
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APPENDIX B: FIGURES 

1. Figures B1 � B2: Measurements of replications 1 and 3 of compacted clay soil 

2. Figures B3 � B4: Measurements of replications 1 and 3 of not-compacted clay soil 

3. Figures B5 � B6: Measurements of replications 1 and 3 of compacted sandy soil 

4. Figures B7� B8: Measurements of replications 1 and 3 of not-compacted sandy soil 

5. Figures B9� B10: Measurements of replications 1 and 3 for sensor calibration 
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Figure B.1 Air temperature (Ta), soil surface temperature (Ts), and soil moisture content 
(SMC) versus time for replication 1 of compacted clay soil. 
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Figure B.2 Air temperature (Ta), soil surface temperature (Ts), and soil moisture content 
SMC versus time for replication 3 of compacted clay soil. 
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Figure B.3 Air temperature (Ta), soil surface temperature (Ts), and soil moisture  

 content (SMC) versus time for replication 1 of non-compacted clay soil 
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Figure B.4 Air temperature (Ta), soil surface temperature (Ts), and soil moisture  content 
(SMC) versus time for replication 3 of non-compacted clay soil. 
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Figure B.5 Air temperature (Ta), soil surface temperature (Ts), and soil moisture  

 content (SMC) versus time for replication 1 of compacted sandy soil. 
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Figure B.6 Air temperature (Ta), soil surface temperature (Ts), and soil moisture  

 content (SMC) versus time for replication 3 of compacted sandy soil. 
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Figure B.7 Air temperature (Ta), soil surface temperature (Ts), and soil moisture content 
(SMC) versus time for replication 1 of non-compacted sandy soil. 
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Figure B.8 Air temperature (Ta), soil surface temperature (Ts), and soil moisture content 
(SMC) versus time for replication 3 of non-compacted sandy soil 
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Figure B.9 Soil surface temperature measured by thermocouple (Ts), Soil surface 
temperature measured by the sensor (Tir), sensor body temperature (Tsens) for second 
replication 
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Figure  0.10 Soil surface temperature measured by thermocouple (Ts), Soil surface 
temperature measured by the sensor (Tir), sensor body temperature (Tsens) for third 
replication 
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APPENDIX C: PREDICTED VERSUS ACTUAL SMC PLOTS 

 

1. Figures C1 � C4: Compacted clay soil MLR models 

2. Figures C5 � C8: Not- compacted clay soil MLR models 

3. Figures C9 � C12: Compacted sandy soil MLR models 

4. Figures C13� C16: Not- compacted sandy soil MLR models 
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Figure C.1 Predicted versus actual soil moisture content (SMC) of compacted clay soil 
for the one-variable model (MLR1)  
                      The 1:1 line is Y = 1 * X, not the regression line 
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Figure C.2 Predicted versus actual soil moisture content (SMC) of compacted clay soil 
for the two-variable model (MLR2)  
                      The 1:1 line is Y = 1 * X, not the regression line 
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Figure C.3 Predicted versus actual soil moisture content (SMC) of compacted clay soil 
for the three-variable model (MLR3)  
                      The 1:1 line is Y = 1 * X, not the regression line 

6

8

10

12

14

16

18

20

22

24

6 8 10 12 14 16 18 20 22 24

Actual SMC (%)

P
re

d
ic

te
d
 S

M
C

 (
%

)

 
Figure C.4 Predicted versus actual soil moisture content (SMC) of compacted clay soil 
for the four-variable model (MLR4)  
                      The 1:1 line is Y = 1 * X, not the regression line 
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Figure C.5 Predicted versus actual soil moisture content (SMC) of non compacted clay 
soil  for the one-variable model (MLR1)  
                      The 1:1 line is Y = 1 * X, not the regression line 
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Figure C.6 Predicted versus actual soil moisture content (SMC) of non compacted clay 
soil for the two-variable model (MLR2)  
                      The 1:1 line is Y = 1 * X, not the regression line 
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Figure C.7 Predicted versus actual soil moisture content (SMC) of non compacted clay 
soil  for the three-variable model (MLR3)  
                      The 1:1 line is Y = 1 * X, not the regression line 
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Figure C.8 Predicted versus actual soil moisture content (SMC) of non compacted clay 
soil for the four-variable model (MLR4)  
                      The 1:1 line is Y = 1 * X, not the regression line 
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Figure C.9 Predicted versus actual soil moisture content (SMC) of compacted sandy soil 
for the one-variable model (MLR1)  
                      The 1:1 line is Y = 1 * X, not the regression line 
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Figure C.10 Predicted versus actual soil moisture content (SMC) of compacted sandy 
soil for the two-variable model (MLR2)  
                      The 1:1 line is Y = 1 * X, not the regression line 



 

 106 

6

8

10

12

14

16

18

20

22

24

6 8 10 12 14 16 18 20 22 24

Actual SMC (%)

P
re

d
ic

te
d

 S
M

C
 (

%
)

 
Figure C.11 Predicted versus actual soil moisture content (SMC) of compacted sandy 
soil for the three-variable model (MLR3)  
                      The 1:1 line is Y = 1 * X, not the regression line 

6

8

10

12

14

16

18

20

22

24

6 8 10 12 14 16 18 20 22 24

Actual SMC (%)

P
re

d
ic

te
d

 S
M

C
 (

%
)

 
Figure C.12 Predicted versus actual soil moisture content (SMC) of compacted sandy 
soil for the four-variable model (MLR4)  
                      The 1:1 line is Y = 1 * X, not the regression line 
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Figure C.13 Predicted versus actual soil moisture content (SMC) of non compacted 
sandy soil  for the one-variable model (MLR1)  
                      The 1:1 line is Y = 1 * X, not the regression line 
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Figure C.14 Predicted versus actual soil moisture content (SMC) of non compacted 
sandy soil for the two-variable model (MLR2)  
                      The 1:1 line is Y = 1 * X, not the regression line 



 

 108 

6

8

10

12

14

16

18

20

22

24

6 8 10 12 14 16 18 20 22 24

Actual SMC (%)

P
re

d
ic

te
d

 S
M

C
 (

%
)

 
Figure C.15 Predicted versus actual soil moisture content (SMC) of non compacted 
sandy soil for the three-variable model (MLR3)  
                      The 1:1 line is Y = 1 * X, not the regression line 
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Figure C.16 Predicted versus actual soil moisture content (SMC) of non compacted 
sandy soil for the four-variable model (MLR4)  
                      The 1:1 line is Y = 1 * X, not the regression line 
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APPENDIX D: SAS OUPUT (REGRESSION ANALYSIS) 

1. Compacted clay soil  
 
                                             
 
                                        The REG Procedure 
                                          Model: MODEL1 
                                  Dependent Variable: __mc mc 
 
                                   Stepwise Selection: Step 1 
 
                   Variable Td Entered: R-Square = 0.6783 and C(p) = 234.6425 
 
 
                                      Analysis of Variance 
 
                                             Sum of           Mean 
         Source                   DF        Squares         Square    F Value    Pr > F 
 
         Model                     1     7853.65870     7853.65870    2515.84    <.0001 
         Error                  1193     3724.17437        3.12169 
         Corrected Total        1194          11578 
 
 
                             Parameter     Standard 
                Variable      Estimate        Error   Type II SS  F Value  Pr > F 
 
                Intercept     13.06405      0.05117       203466  65178.1  <.0001 
                Td             0.98993      0.01974   7853.65870  2515.84  <.0001 
 
                                Bounds on condition number: 1, 1 
---------------------------------------------------------------------------------------- 
                                   Stepwise Selection: Step 2 
 
 
                   Variable _RH Entered: R-Square = 0.7099 and C(p) = 96.9405 
 
 
                                      Analysis of Variance 
 
                                             Sum of           Mean 
         Source                   DF        Squares         Square    F Value    Pr > F 
 
         Model                     2     8218.59914     4109.29957    1458.16    <.0001 
         Error                  1192     3359.23394        2.81815 
         Corrected Total        1194          11578 
 
 
                             Parameter     Standard 
                Variable      Estimate        Error   Type II SS  F Value  Pr > F 
 
                Intercept     10.49897      0.23059   5842.02005  2073.00  <.0001 
                Td             0.88010      0.02109   4907.73666  1741.48  <.0001 
                _RH            0.06996      0.00615    364.94044   129.50  <.0001 
 
                           Bounds on condition number: 1.2649, 5.0595 
---------------------------------------------------------------------------------------- 
 
                                   Stepwise Selection: Step 3 
                                                               
 
                                        The REG Procedure 
                                          Model: MODEL1 
                                  Dependent Variable: __mc  mc 
 
                                   Stepwise Selection: Step 3 
 
                    Variable SR Entered: R-Square = 0.7212 and C(p) = 48.6994 
 
 
                                      Analysis of Variance 
 
                                             Sum of           Mean 
         Source                   DF        Squares         Square    F Value    Pr > F 
 
         Model                     3     8349.84279     2783.28093    1026.92    <.0001 
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         Error                  1191     3227.99029        2.71032 
         Corrected Total        1194          11578 
 
 
                             Parameter     Standard 
                Variable      Estimate        Error   Type II SS  F Value  Pr > F 
 
                Intercept      8.79521      0.33329   1887.37776   696.37  <.0001 
                Td             0.70750      0.03230   1300.72897   479.92  <.0001 
                SR          0.00095926   0.00013785    131.24365    48.42  <.0001 
                _RH            0.09071      0.00673    492.95024   181.88  <.0001 
 
                           Bounds on condition number: 3.0841, 21.301 
---------------------------------------------------------------------------------------- 
                                   Stepwise Selection: Step 4 
 
 
                    Variable WS Entered: R-Square = 0.7315 and C(p) = 5.0000 
 
 
                                      Analysis of Variance 
 
                                             Sum of           Mean 
         Source                   DF        Squares         Square    F Value    Pr > F 
 
         Model                     4     8469.22239     2117.30560     810.52    <.0001 
         Error                  1190     3108.61068        2.61228 
         Corrected Total        1194          11578 
 
 
                             Parameter     Standard 
                Variable      Estimate        Error   Type II SS  F Value  Pr > F 
 
                Intercept     10.07388      0.37795   1855.89088   710.45  <.0001 
                Td             0.70362      0.03171   1286.09989   492.33  <.0001 
                SR             0.00107   0.00013628    160.37593    61.39  <.0001 
                _RH            0.07790      0.00687    335.91089   128.59  <.0001 
                WS            -0.33540      0.04961    119.37961    45.70  <.0001 
 
---------------------------------------------------------------------------------------- 
 

 
2. Not-compacted clay soil 
 
 
                                        The REG Procedure 
                                          Model: MODEL1 
                                  Dependent Variable: __mc  mc 
 
                                   Stepwise Selection: Step 1 
 
                   Variable Td Entered: R-Square = 0.6815 and C(p) = 150.7469 
 
 
                                      Analysis of Variance 
 
                                             Sum of           Mean 
         Source                   DF        Squares         Square    F Value    Pr > F 
 
         Model                     1     3202.26575     3202.26575    2139.50    <.0001 
         Error                  1000     1496.73231        1.49673 
         Corrected Total        1001     4698.99806 
 
 
                             Parameter     Standard 
                Variable      Estimate        Error   Type II SS  F Value  Pr > F 
 
                Intercept     16.87467      0.04094       254240   169863  <.0001 
                Td             0.60483      0.01308   3202.26575  2139.50  <.0001 
 
                                Bounds on condition number: 1, 1 
---------------------------------------------------------------------------------------- 
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Stepwise Selection: Step 2 
 
 
                   Variable _RH Entered: R-Square = 0.7026 and C(p) = 76.4229 
 
 
                                      Analysis of Variance 
 
                                             Sum of           Mean 
         Source                   DF        Squares         Square    F Value    Pr > F 
 
         Model                     2     3301.71026     1650.85513    1180.29    <.0001 
         Error                   999     1397.28781        1.39869 
         Corrected Total        1001     4698.99806 
 
 
                             Parameter     Standard 
                Variable      Estimate        Error   Type II SS  F Value  Pr > F 
 
                Intercept     15.22591      0.19950   8146.95007  5824.71  <.0001 
                _RH            0.03473      0.00412     99.44451    71.10  <.0001 
                Td             0.57884      0.01301   2768.34988  1979.25  <.0001 
 
                           Bounds on condition number: 1.0595, 4.2379 
---------------------------------------------------------------------------------------- 
 
                                   Stepwise Selection: Step 3 
 
                                        The REG Procedure 
                                          Model: MODEL1 
                                  Dependent Variable: __mc  mc 
 
                                   Stepwise Selection: Step 3 
 
                   Variable SR_ Entered: R-Square = 0.7215 and C(p) = 10.3743 
 
 
                                      Analysis of Variance 
 
                                             Sum of           Mean 
         Source                   DF        Squares         Square    F Value    Pr > F 
 
         Model                     3     3390.37258     1130.12419     861.87    <.0001 
         Error                   998     1308.62548        1.31125 
         Corrected Total        1001     4698.99806 
 
 
                             Parameter     Standard 
                Variable      Estimate        Error   Type II SS  F Value  Pr > F 
 
                Intercept     12.83586      0.34899   1773.82463  1352.78  <.0001 
                SR_         0.00099491   0.00012099     88.66232    67.62  <.0001 
                _RH            0.06706      0.00560    188.01907   143.39  <.0001 
                Td             0.44601      0.02049    621.58990   474.04  <.0001 
 
                           Bounds on condition number: 3.1372, 24.084 
---------------------------------------------------------------------------------------- 
 
                                   Stepwise Selection: Step 4 
 
 
                    Variable Ws Entered: R-Square = 0.7236 and C(p) = 5.0000 
 
 
                                      Analysis of Variance 
 
                                             Sum of           Mean 
         Source                   DF        Squares         Square    F Value    Pr > F 
 
         Model                     4     3399.98077      849.99519     652.37    <.0001 
         Error                   997     1299.01729        1.30293 
         Corrected Total        1001     4698.99806 
 
 
                             Parameter     Standard 
                Variable      Estimate        Error   Type II SS  F Value  Pr > F 
 
                Intercept     13.28099      0.38456   1553.97961  1192.68  <.0001 
                Ws            -0.21855      0.08048      9.60819     7.37  0.0067 
                SR_            0.00101   0.00012069     90.71443    69.62  <.0001 
                _RH            0.06625      0.00559    182.98835   140.44  <.0001 
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                Td             0.45090      0.02050    630.39528   483.83  <.0001 
 
                                        The REG Procedure 
                                          Model: MODEL1 
                                  Dependent Variable: __mc  mc 
 
                                   Stepwise Selection: Step 4 
 
                            Bounds on condition number: 3.1415, 36.41 
---------------------------------------------------------------------------------------- 

 
 
 
3. Compacted sandy soil 
 
 
                                        The REG Procedure 
                                          Model: MODEL1 
                                  Dependent Variable: __mc  mc 
 
                                   Stepwise Selection: Step 1 
 
                   Variable Td Entered: R-Square = 0.6237 and C(p) = 2025.324 
 
 
                                      Analysis of Variance 
 
                                             Sum of           Mean 
         Source                   DF        Squares         Square    F Value    Pr > F 
 
         Model                     1     5031.99342     5031.99342    1897.61    <.0001 
         Error                  1145     3036.24987        2.65175 
         Corrected Total        1146     8068.24329 
 
 
                             Parameter     Standard 
                Variable      Estimate        Error   Type II SS  F Value  Pr > F 
 
                Intercept     14.52494      0.05081       216663  81705.8  <.0001 
                Td             0.43181      0.00991   5031.99342  1897.61  <.0001 
 
                                Bounds on condition number: 1, 1 
---------------------------------------------------------------------------------------- 
                                   Stepwise Selection: Step 2 
 
 
                   Variable _RH Entered: R-Square = 0.8611 and C(p) = 28.4747 
 
 
                                      Analysis of Variance 
 
                                             Sum of           Mean 
         Source                   DF        Squares         Square    F Value    Pr > F 
 
         Model                     2     6947.51916     3473.75958    3545.90    <.0001 
         Error                  1144     1120.72412        0.97965 
         Corrected Total        1146     8068.24329 
 
 
                             Parameter     Standard 
                Variable      Estimate        Error   Type II SS  F Value  Pr > F 
 
                Intercept      9.67961      0.11385   7081.96389  7229.05  <.0001 
                Td             0.36081      0.00624   3280.16943  3348.29  <.0001 
                _RH            0.12489      0.00282   1915.52574  1955.31  <.0001 
 
                            Bounds on condition number: 1.071, 4.2841 
---------------------------------------------------------------------------------------- 
                                   Stepwise Selection: Step 3 
                                        The REG Procedure 
                                          Model: MODEL1 
                                  Dependent Variable: __mc  mc 
 
                                   Stepwise Selection: Step 3 
 
                    Variable SR Entered: R-Square = 0.8632 and C(p) = 12.5548 
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                                      Analysis of Variance 
 
                                             Sum of           Mean 
         Source                   DF        Squares         Square    F Value    Pr > F 
 
         Model                     3     6964.69207     2321.56402    2404.55    <.0001 
         Error                  1143     1103.55122        0.96549 
         Corrected Total        1146     8068.24329 
 
 
                             Parameter     Standard 
                Variable      Estimate        Error   Type II SS  F Value  Pr > F 
 
                Intercept     10.50324      0.22564   2092.01540  2166.80  <.0001 
                Td             0.41835      0.01498    752.67833   779.58  <.0001 
                SR         -0.00054727   0.00012976     17.17290    17.79  <.0001 
                _RH            0.11410      0.00380    872.53237   903.72  <.0001 
 
                           Bounds on condition number: 6.2752, 42.672 
---------------------------------------------------------------------------------------- 
 
                                   Stepwise Selection: Step 4 
 
 
                    Variable WS Entered: R-Square = 0.8644 and C(p) = 5.0000 
 
 
                                      Analysis of Variance 
 
                                             Sum of           Mean 
         Source                   DF        Squares         Square    F Value    Pr > F 
 
         Model                     4     6973.84859     1743.46215    1819.30    <.0001 
         Error                  1142     1094.39469        0.95831 
         Corrected Total        1146     8068.24329 
 
 
                             Parameter     Standard 
                Variable      Estimate        Error   Type II SS  F Value  Pr > F 
 
                Intercept     11.10232      0.29681   1340.84158  1399.17  <.0001 
                Td             0.41560      0.01495    740.17717   772.37  <.0001 
                SR         -0.00050470   0.00013001     14.44129    15.07  0.0001 
                _RH            0.11386      0.00378    868.56855   906.35  <.0001 
                WS            -0.41280      0.13354      9.15652     9.55  0.0020 
 
                                        The REG Procedure 
                                          Model: MODEL1 
                                  Dependent Variable: __mc  mc 
 
                                   Stepwise Selection: Step 4 
 
                           Bounds on condition number: 6.2975, 61.383 
---------------------------------------------------------------------------------------- 

 
 
 
4. Not-compacted sandy soil 
 
 
                                        The REG Procedure 
                                          Model: MODEL1 
                                  Dependent Variable: __mc  mc 
 
                                   Stepwise Selection: Step 1 
 
                   Variable Td Entered: R-Square = 0.5941 and C(p) = 1551.683 
 
 
                                      Analysis of Variance 
 
                                             Sum of           Mean 
         Source                   DF        Squares         Square    F Value    Pr > F 
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         Model                     1     4253.06988     4253.06988    1680.17    <.0001 
         Error                  1148     2905.96726        2.53133 
         Corrected Total        1149     7159.03714 
 
 
                             Parameter     Standard 
                Variable      Estimate        Error   Type II SS  F Value  Pr > F 
 
                Intercept     15.21030      0.04728       261938   103479  <.0001 
                Td             0.51486      0.01256   4253.06988  1680.17  <.0001 
 
                                Bounds on condition number: 1, 1 
---------------------------------------------------------------------------------------- 
 
                                   Stepwise Selection: Step 2 
 
 
                   Variable _RH Entered: R-Square = 0.8013 and C(p) = 176.7889 
 
 
                                      Analysis of Variance 
 
                                             Sum of           Mean 
         Source                   DF        Squares         Square    F Value    Pr > F 
 
         Model                     2     5736.27186     2868.13593    2312.22    <.0001 
         Error                  1147     1422.76528        1.24042 
         Corrected Total        1149     7159.03714 
 
 
                             Parameter     Standard 
                Variable      Estimate        Error   Type II SS  F Value  Pr > F 
 
                Intercept     10.28277      0.14629   6128.31399  4940.50  <.0001 
                Td             0.39693      0.00943   2197.35821  1771.46  <.0001 
                _RH            0.12784      0.00370   1483.20197  1195.72  <.0001 
 
                           Bounds on condition number: 1.1504, 4.6017 
---------------------------------------------------------------------------------------- 
 
                                   Stepwise Selection: Step 3 
 
                                        The REG Procedure 
                                          Model: MODEL1 
                                  Dependent Variable: __mc  mc 
 
                                   Stepwise Selection: Step 3 
 
                    Variable SR Entered: R-Square = 0.8242 and C(p) = 26.1335 
 
 
                                      Analysis of Variance 
 
                                             Sum of           Mean 
         Source                   DF        Squares         Square    F Value    Pr > F 
 
         Model                     3     5900.71353     1966.90451    1791.33    <.0001 
         Error                  1146     1258.32361        1.09801 
         Corrected Total        1149     7159.03714 
 
 
                             Parameter     Standard 
                Variable      Estimate        Error   Type II SS  F Value  Pr > F 
 
                Intercept      8.59085      0.19509   2129.23512  1939.17  <.0001 
                Td             0.24866      0.01502    301.03524   274.16  <.0001 
                SR             0.00108   0.00008841    164.44167   149.76  <.0001 
                _RH            0.14698      0.00381   1630.81895  1485.24  <.0001 
 
                           Bounds on condition number: 3.2955, 22.636 
---------------------------------------------------------------------------------------- 
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                                   Stepwise Selection: Step 4 
 
 
                    Variable Ws Entered: R-Square = 0.8277 and C(p) = 5.0000 
 
 
                                      Analysis of Variance 
 
                                             Sum of           Mean 
         Source                   DF        Squares         Square    F Value    Pr > F 
 
         Model                     4     5925.63318     1481.40829    1375.23    <.0001 
         Error                  1145     1233.40396        1.07721 
         Corrected Total        1149     7159.03714 
 
 
                             Parameter     Standard 
                Variable      Estimate        Error   Type II SS  F Value  Pr > F 
 
                Intercept      8.02325      0.22642   1352.65433  1255.70  <.0001 
                Td             0.25204      0.01489    308.58136   286.46  <.0001 
                SR          0.00099033   0.00008961    131.55591   122.13  <.0001 
                _RH            0.14632      0.00378   1614.15549  1498.46  <.0001 
                Ws             0.34865      0.07249     24.91965    23.13  <.0001 
                                        The REG Procedure 
                                          Model: MODEL1 
                                  Dependent Variable: __mc  mc 
 
                                   Stepwise Selection: Step 4 
 
                            Bounds on condition number: 3.3028, 35.14 
---------------------------------------------------------------------------------------- 
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APPENDIX E: DATA LABELLING SYSTEM 

Data label format: Raw Collected Data 

Example file name format: Sask-i-c-t.txt 
 
First word:   Site name 
 
Second character:  Replicate number (i �iii) 
 
Third character  Compaction level (c - n) 
 
Fourth character  Soil type (c � s) 
 
 

 
For example a file name Sask-2-c-s contains: collected measured data in site Sask, 
replicate number two, compacted, sandy soil. 
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APPENDIX F: SOIL AND WEATHER VARIABLES DATA: CD 
ROM 

 
CD ROM contains the collected raw & averaged data (replications) for all soil types and 

configurations. 

 

APPENDIX G: SENSOR CALIBRATION DATA: CD ROM 

CD ROM contains the data used for thermal infrared sensor calibration. 
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APPENDIX H: INTERFACE� MB-50 SPECIFICATIONS SHEET 

Specifications sheet of the interface� MB-50 mini-beam bending load cell 
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