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Abstract

Computational gene regulation models provide a means for scientists to draw biological inferences

from large-scale gene expression data. The expression data used in the models usually are obtained

in a time series in response to an initial perturbation. The common objective is to reverse engineer

the internal structure and function of the genetic network from observing and analyzing its output in

a time-based fashion. In many studies (Wang [39], Resendis-Antonio [31]), each gene is considered to

have a regulatory effect on another gene. A network association is created based on the correlation

of expression data. Highly correlated genes are thought to be co-regulated by similar (if not the

same) mechanism. Gene co-regulation network models disregard the cascading effects of regulatory

genes such as transcription factors, which could be missing in the expression data or are expressed

at very low concentrations and thus undetectable by the instrument. As an alternative to the former

methods, some authors (Wu et al. [40], Rangel et al. [28], Li et al. [20]) have proposed treating

expression data solely as observation values of a state-space system and derive conceptual internal

regulatory elements, i.e. the state-variables, from these measurements. This approach allows one

to model unknown biological factors as hidden variables and therefore can potentially reveal more

complex regulatory relations.

In a preliminary portion of this work, two state-space models developed by Rangel et al. and

Wu et al. respectively were compared. The Rangel model provides a means for constructing

a statistically reliable regulatory network. The model is demonstrated on highly replicated T-

cell activation data [28]. On the other hand, Wu et al. develop a time-delay module that takes

transcriptional delay dynamics into consideration. The model is demonstrated on non-replicated

yeast cell-cycle data [40]. Both models presume time-invariant expression data. Our attempt to use

the Wu model to infer small gene regulatory network in yeast was not successful. Thus we develop a

new modeling tool incorporating a time-lag module and a novel method for constructing regulatory

networks from non-replicated data. The latter involves an alternative scheme for determining

network connectivity. Finally, we evaluate the networks generated from the original and extended

models based on a priori biological knowledge.
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Chapter 1

Introduction

Microarray technology allows researchers to study expression profiles of thousands of genes

simultaneously. One of the ultimate goals for measuring expression data is to reverse engineer the

internal structure and function of a transcriptional regulation network. This is usually achieved by

measuring changes in gene expression levels through time in response to an initial stimulation such

as environmental pressure or drug addition.

The data collected from time-course experiments are subject to cluster analysis to identify

patterns of expression triggered by the perturbation [13, 27]. A fundamental assumption is that

genes sharing similar expression patterns are commonly regulated, and that the genes are involved in

related biological functions. Biologists refer to this as “guilty by association”. Some frequently used

clustering methods for finding co-regulated genes are hierarchical clustering, trajectory clustering, k-

means clustering, principal component analysis (PCA), and self-organizing maps (SOM). A general

review of these clustering techniques is described by Belacel et al. [3]. A gene network derived from

the above clustering methods is often represented as a wiring diagram. Figure 1.1 is an example

of a discretized trajectory clustering result. Trajectory cluster analysis groups genes with similar

time-based expression patterns (i.e. trajectories) and infers shared regulatory control of the genes.

The clustering result is represented as trajectories in multidimensional space (Figure 1.1 (top)),

which allows one to find the part-to-part correspondences between two trajectories. The extent

of gene-gene interactions are captured by heuristic distances generated from the cluster analysis.

The output networked diagram from the analysis (Figure 1.1 (top)) provides insights toward the

underlying molecular interaction network structure (Figure 1.1 (bottom)).

Two major limitations of the conventional clustering methods are that: (1) they cannot capture

the effects of regulatory genes that are not included in the microarray; (2) they do not account for

transcriptional time delay which occurs in cells. For example, the rate at which a gene is transcribed

is a function of the abundance of its transcribing complex, and that complex typically contains

several proteins. Some of these are core proteins that catalyze mRNA synthesis and others are

factors that modulate mRNA synthesis according to the genetic and environmental specifications

for a given gene. Consequently, transcription of such genes is delayed due to the time needed for

the production of the corresponding transcription factors.
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Figure 1.1: Inference of shared control through cluster analysis of the time-course
gene expression data (top); an example of molecular interaction network represented
by a wiring diagram (bottom) (diagram modified from Somogyi [35]).
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Figure 1.2: A simplified example of p53-mdm2 transcriptional delay feedback loop
(diagram modified from Bar-Or [2]).

Figure 1.2 illustrates a simplified example of transcriptional delay in human cells. The transcrip-

tional delay relation of p53 and mdm2 has been demonstrated by Bar-Or et al. [2]. Over-expression

of p53 triggers a negative feed-back mechanism. First, p53 stimulates expression of mdm2 gene.

The production of mdm2 protein in turn represses the transcriptional functions of p53 and pro-

motes p53 proteolytic degradation. Under the stress conditions, p53 and mdm2 proteins undergo

damped oscillations where the mdm2 peaks with a delay of τ ≈ 60min relative to p53. Ota et al.

[24] have conducted a comprehensive analysis of delay in transcriptional regulation by using gene

expression profiles in yeast.

As an alternative to the previous models, some authors (Wu et al. [40], Rangel et al. [28],

and Li et al. [20]) have proposed state-space models in an attempt to account for the effects of

missing data and complex time-delayed relationships. These methods will be described in Section

3.2. Our study reveals limitations of the Wu and the Rangel models. The results are described in

Section 3.3 and 3.4. To complement the existing methods, we have developed a new modeling tool

called GNWD. This program allows one to model gene regulatory network with time delays and

provides cross-validation to the ChIP-on-chip data. The results are described in Chapters 4 and 5,

respectively.
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Chapter 2

Background

2.1 Microarrays

2.1.1 What is a DNA microarray?

A DNA microarray or chip is a collection of synthetic oligonucleotides or polymerase-amplified

DNA (amplicons) immobilized onto a solid surface such as a glass or silicon slide. These DNA

segments are called probes. The sequence identity for each probe is known. The circular surface

occupied by a unique probe in high concentration is called a spot. The complementary strand

of DNAs, which the probes hybridize with, are called targets. In a gene expression experiment,

targets are complementary DNA (cDNA) pools that are reverse transcribed from total or messenger

RNA (mRNA) or synthetic oligonucleotides. The targets are labelled by a fluorescent dye such as

Cyanine (Cy3 or Cy5) for signal detection. Ideally, the signal intensity of a spot reflects the

amount of labelled target bound to the probe and therefore the level of RNA expression in the

original biological sample. DNA microarray technology provides a platform for researchers to

study expression profiles of thousands of genes simultaneously because of miniaturization.

2.1.2 Types of DNA microarrays

There are two types of DNA microarrays: spotted and in situ synthesis arrays. The two are differ-

entiated by how DNA probes are immobilized on the chip. For spotted arrays, the amplified DNA

samples are transferred from micro-well plates and immobilized onto a chip using programmable

micro-pipettes or pins that deliver a set volume. For in situ synthesis arrays such as Affymetrix

arrays, the oligonucleotides are synthesized directly on the chip using a photolitographic method.

Depending on the type of probes printed, spotted arrays can be further broken down into cDNA

and oligonucleotide arrays. The probes on a cDNA array are products of polymerase chain reaction

(PCR) amplification. They are double stranded DNA and are greater than 150 bases long. These

probes are PCR amplified based on collected expressed sequence tags (ESTs) or full-length cDNA

clones. Therefore, each probe represents one gene. On the other hand, the probes on oligonucleotide

arrays are products of chemical synthesis. They are single stranded DNA and less than 100 bases
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long. These shorter probes are computationally designed using whole genome information. Multiple

probes can be designed for each gene in order to increase the extent of gene coverage and therefore

attribution of hybridization to a given gene sequence.

A whole-genome promoter array is an example of a spotted oligonucleotide microarray. The main

application of this special chip is to help researchers gain an understanding of the orchestration

of patterns of expression. Unlike the others, the probes on these arrays are based on the gene

promoter regions. Hence, the targets (complementary to probes) are not directly expressed in the

living cells. These special arrays are developed for ChIP-on-chip experiments (see Section 2.2). For

probe design and array production protocols, refer to Young (Saccharomyces cerevisiae array [23])

and Thibaud-Nissen (Arabidopsis thaliana array [38]).

2.2 ChIP-on-Chip

ChIP-on-Chip is an acronym for “Chromatin Immunoprecipitation on a glass slide microarray

(chip)”. The technology is also known as genome-wide location analysis. Chromatin Immunopre-

cipitation, or ChIP, refers to a laboratory technique used to determine whether a protein binds to

a specific DNA sequence in vivo. This technique has been combined with whole-genome promoter

microarrays to determine the genomic locations (DNA fragments) where a transcription factor (TF,

a class of regulatory protein) would bind.

Figure 2.1 illustrates a simplified ChIP-on-Chip procedure. A protein binds to various promoter

regions (the blue solid rectangle in Figure 2.1) in vivo in order to promote or inhibit gene transcrip-

tions. The TF-DNA complex is cross-linked by formaldehyde and the chromosome is fragmented

by sonication. A TF-specific antibody is used to isolate the TF-DNA complex from the vast pose of

DNA fragments. Once the isolation is complete, a reverse cross-linking is performed to release the

DNA fragments. Finally, the DNA are amplified, labeled (by fluorescing cyanine), and hybridized

to a genomic array. Further details on the experiment procedure and protocols are available at

Young’s website [23].

The genomic array data is collected and analyzed. Since the experimental procedure pre-selects

for the binding DNAs, the signal intensities of the corresponding spots are enhanced. The stronger

the signal intensity of a spot, the greater the significance of the binding. Consequently, a rank-

statistics based analysis can be applied to determine the binding sites. These binding sites are

potential cis-elements that are directly responsible for the transcription regulation of the target

gene.

An important application of the location analysis is to help scientists understand the regulatory

circuitry in the biological systems. In yeast, Lee et al. [19], Iyer et al. [16], and Ren et al. [30]

have used ChIP microarrays to connect most transcription factors listed in the Yeast Proteome
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Figure 2.1: ChIP-on-chip procedure. Figure is taken from
http://www.chiponchip.org/

Database (YPD) [8] to a large number of target genes.

2.3 Yeast Cell Cycle

A cell cycle consists of two main activities: DNA duplication and cell division. The two activities

are separated by cell growth and preparation for mitosis. Thus the yeast cell cycle can be broken

down into four phases:

G1 : Cell growth and preparation for DNA replication

S : DNA synthesis/duplication

G2 : Preparation for mitosis

M : Mitosis

A group of proteins in the cytoplasm control the cell cycle process. In budding yeast, the main

regulators are cyclins (CLN1-3, CLB1-6) and a cyclin dependent kinase (CDC28). The cyclins

are regulated, at the transcription level, by a set of transcription factors. The expression of these

transcription factors and cyclins are thought to be phase specific. In Figure 2.2, the stages of the

cell cycle are depicted together with yeast cell morphology (yellow), transcription factors (blue),

and the cyclins that regulate Cdc28 activity (green). The transcription factors and cyclins are

positioned to represent the stage during which they are thought to function [5, 22].

Figure 2.3 is a heatmap representation of the cyclin gene expressions obtained from time-course

microarray experiments. The color-coded rectangles capture the extent of up- (red) or down-
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Figure 2.2: Yeast cell cycle showing morphology (yellow), the phase specific tran-
scription factors (blue), and cyclins (green). The transcription factors and cyclins
are positioned to represent the stage during which they are thought to function.
Figure is taken from http://web.wi.mit.edu/young/cellcycle.
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Figure 2.3: Heatmap for cyclin gene expression levels relative to a common ref-
erence at t = 0. The gradient represents the extent of up- (red) or down- (green)
regulation of the cyclins relative to the reference. A grey rectangle represents a
flagged/filtered observation. Figure modified from SGD [10].
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(green) regulation of the cyclins relative to a common reference (refer to Spellman’s experiment

protocol [36] for details). The expression levels of these cyclins are used as landmarks for specific

phases of the yeast cell cycle. For example, CLN1 cyclin is known to participate in the regulation

of transition of G1 phase to S phase [5]. The expression of CLN1 is expected to peak at the G1 →

S transition point. Using this information, the period of t = 0 to t = 25 is considered as the G1

phase. Based on these landmarks, one could roughly partition the expression data shown in Figure

2.3 into two cell cycles of approximately 60 minutes each.

Pramila et al. [26] applied a permutation based statistical method (PBM5 [12]) to rank the

significance of the cell cycle regulated genes based on their periodicity and magnitude of oscillation

among five cell-cycle data sets. Using the boundary information defined by the landmarks men-

tioned above, the duration each of the periodically expressed gene takes to reach its peak expression

is estimated. Peak time is represented in percentage, where the M/G1 boundary is taken as 0%.

While a ChIP-on-chip experiment helps answer the question: “What genes does the transcrip-

tion factor regulate?”, peak-time analysis provides insights as to when these genes are maximally

expressed. State-space modeling provides a means to investigate how the genes might be regulated.

In this study, we focus on state-space modeling approaches for determining such a gene regulatory

network. Existing techniques will be described in Chapter 3.
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Chapter 3

Related Research

3.1 Overview

State-space representation is often used in control engineering to model the states of a complex

physical system. The internal state variables represent the smallest subset of system variables that

can characterize the entire state of the system at any given time. The state of a system is defined

by the internal state variables, which together with the initial states (t = t0) and inputs u1, ..., un,

determine the state at any future time t ≥ t0.

There are three major advantages of using a state-space method for modeling a complex system

such as a gene regulatory network. First, the system analysis is accomplished by solving a set

of first-order equations rather than an equivalent, higher-order equation. This greatly simplifies

the mathematical notations and the process of solving the equations. Secondly, the approach uses

latent variables (i.e. hidden variables) to relate explicitly the timing of the stimulus inputs and the

past system behavior to the observed expression activity. This means that at any point in time, the

model can predict how the system responds to the input stimulation. Finally, the goodness-of-fit

can be assessed by a well-established method such as the Kolmogorov-Smirnov (K-S) test [6]. This

allows researchers to assess the degree of agreement between the model and the experimental data,

or between the model derived from one biological system and another. For example, a question of

interest may be: do all E. coli strains utilize the same regulatory mechanism for glucose metabolism?

The question may be answered by comparing the gene regulation models generated for different E.

coli strains.

3.2 Modeling Gene Network Using a State-Space Approach

Wu et al. [40] develop a state-space model with time-delay to model yeast cell-cycle data. The model

is demonstrated on non-replicated data. In the same vein, Sung et al. [37] develop a discretized

Bayesian network model to contruct a multiple time-delay gene network using the same dataset.

Both methods attempt to capture the effects of transcriptional delays in the yeast cell-cycle. The

former method emphasizes identification of a set of internal state variables that govern the cell-
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cycle process. The later approach focuses on finding regulatory relationships and associating the

regulatory time delay with every “parent-child” (i.e. regulator-target) pair. The Wu model assumes

that one gene does not directly regulate another. Therefore, the method does not partition the

dataset. The drawbacks of this model are that it is not clear how a network can be derived from the

modeling tool, and there is no validation against biological knowledge of the effects of time-delay

modeling. The Sung model suggests a new network structure learning algorithm, “Learning By

Modification” (LBM), to identify potential regulators and then associates them with target genes.

The dataset is partitioned into parent set (the regulators) and child set (the targets).

Rangel et al. [28, 29] present another state-space model, applied to T-cell activation data.

The model provides a means for constructing reliable gene regulatory networks based on bootstrap

statistical analysis. The method is applied to highly replicated data. The confidence intervals of

gene-gene interaction matrix elements are estimated by resampling with replacement the replicates

X times, where X is a large number (e.g. 200). This approach however has a severe limitation for

application in microarray data analysis because most currently available time course microarray

data are either replicated over few time points (< 5) or not replicated at all.

Recently, Li et al. [20] publish their work on infering transcription factor activies using a

discretized state-space modeling technique. The Li model incorporates the results of ChIP-on-chip

experiments into the model building. The network structure is pre-determined by the genome-

wide binding assay data. The transcription factor activities are then inferred with mathematical

modeling using time-course experiments.

A preliminary portion of this work studied the state-space models developed by Rangel et al.

[28] and Wu et al. [40] respectively. The results will be presented in the following section. A

difference in data requirements and the lack of publicly available datasets make a detailed, result-

based comparison of the two state-space models almost impossible. Table 3.1 provides a feature

comparison of the above four models with our own model, GNWD. The details of GNWD will be

described in Chapter 4.

In Table 3.1, five state-space models (Wu et al. [40], Rangel et al. [28], Li et al. [20], Sung et al.

[37], and GNWD) are examined for: (1) the method used for the network structure determination;

(2) the type (continuous or discrete) of the modeling; (3) the method used for the model realization;

(4) whether they handle multiple time-delays (i.e. for τ > 1) in the biological system; and (5)

whether the model works with non-replicated data. Among the five models, those of Li and Sung

are discrete models. Gene expression data are converted into a series of “on” and “off” states over

time. It is however, a non-trivial task to determine the presence or absence of TF activity based on

a spectrum of continuous expression data. Similar to the Li model, GNWD utilizes ChIP-on-chip

data to assist network structure determination. Unlike the Li model, GNWD is a continous model

that is designed to capture complex time-delay relationships. The Wu, Sung, and GNWD models
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Model Network Structure Type System Identification Multiple

Time-delays

Non-replicated

Data

Wu N/A Continuous Maximum Likelihood

Factor Analysis

Yes Yes

Rangel BootStrap Continuous Expectation Maxi-

mization

No No

Li ChIP Discrete Expectation Maxi-

mization

No Yes

Sung Learning by Modifi-

cation

Discrete Expectation Maxi-

mization

Yes Yes

GNWD ChIP Continuous Subspace Identification Yes Yes

Table 3.1: Overview of state-space methods for modeling gene networks.

handle multiple time-delays in the biological system and can work with non-replicated data. With

the Sung being a discrete model, and it not being clear how the network structure can be derived

from the Wu model, the GNWD model provides a solution that complements these existing models.

3.3 Study of the Wu and the Rangel State-Space Models

In Wu’s model, gene expression of n genes at any time t, x1..xn, are view as the output of a

regulatory network system. The gene expression dynamics are governed by the linear combinations

of a set of internal state variables, z1..zm, as illustrated in Figure 3.1.

The model can be described mathematically by the following equations:

zt+1 =
τmax∑
τ=0

Yτ ◦Aτzt−τ + wt (3.1)

xt = Czt + vt (3.2)

where Aτ is the state transition matrix for τ time-delays, and Yτ (t) = [yijτ ]p×p (τ = [0, τmax])

are boolean matrices which capture the time-delayed regulatory relationships. The value in each

element of the boolean matrix Yτ can be either “1” or “0”, which corresponds to the presence or

absence of a time-delay between internal variables i and j with τ number of time-delays. The symbol

“◦” denotes the Hadamard (element-wise) multiplication of Y τ and A. C captures the influence of

internal state variables on gene expression level at each time point and wt and vt are uncorrelated

white noise sequences. The identification of the number of internal state variables is estimated

either by using the Bayesian Information Criterion (BIC) (Schwarz [32]) or Akaike’s Information

Criterion (AIC). For further details, refer to Wu et al. [40]. A Bayesian network representation of

Wu’s model is shown in Figure 3.2.
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Figure 3.1: A state-space model for a gene regulatory network (from Wu et al.
[40]).

Using the similar notation, Rangel’s method can be described by the following equations:

zt+1 = Azt + Bxt + wt (3.3)

xt = Czt + Dxt−1 + vt (3.4)

Two additional input matrices B (input to state matrix) and D (input to observation matrix) are

added in Rangel’s model. Input to the state matrix describes the influence of gene expression values

from previous time points on the hidden states. This models the biological phenomenon of feedback

regulation of gene expression to the regulatory elements, i.e. internal state variables. Input to the

observation matrix captures the influences of gene-gene expression levels at consecutive time points.

A Bayesian network representation of this model is shown in Figure 3.3.

The abstraction of regulatory elements allows one to make predictions of how the system will

respond to an input stimulation. This leads to a testable mechanism for gene regulation. The caveat

is that it makes associating biological meanings and functions to these conceptual regulatory ele-

ments difficult. Each internal variable could represent one regulatory element, or a cascading effect

of multiple regulatory elements in the network. It should be noted that the internal variables are

not necessarily system outputs. Therefore, they may not always be directly accessible, measurable

or controllable. Without biological knowledge of what the regulators are and how they work to-

gether in the system, the model creates a black box effect (the boxed area in Figure 3.2 and 3.3)

for understanding the full structure of the regulatory network.

13



Figure 3.2: Bayesian network representation of the Wu model for gene expression.
At time t + 1, the hidden state Z is determined by the sum of element-wise matrix
multiplication between Y and A over τ time-delays.

Figure 3.3: Bayesian network representation of the Rangel model for gene expres-
sion. At time t + 1, the hidden state Z is determined by the state matrix A and
the input matrix B.

3.3.1 Internal Variables

In Wu’s state-space model, the gene expression levels (observation values) are governed by the

linear combination of the internal state variables. It has been shown using the Spellman data

[36] that there are 6 and 4 internal variables for the 701 alpha factor-synchronized (ALP) and

elutriation-synchronized (ELU) cell-cycle regulated genes, respectively [40]. It is not clear however,

what biological meanings these internal variables have. Each variable could correspond to one

key regulatory enzyme in a pathway, one key process in a cellular activity, or even one dominant

pathway in cells. As suggested by Spellman [36], many of the cell-cycle regulated genes do not play

any role in cell-cycle regulation but participate in other known biochemical activities. Therefore,

it is possible that some of the state variables correspond to those genes among the 701 which are
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Pathway Code Number of input cell-

cycle regulated genes

(pn)

Number of internal

variables (k)

Glycolysis / Gluconeogenesis sce00010 5 4

Fructose and mannose metabolism sce00051 5 4

Galactose metabolism sce00052 6 5

Oxidative phosphorylation sce00190 6 5

Purine metabolism sce00230 14 13

Pyrimidine metabolism sce00240 12 11

Selenoamino acid metabolism sce00450 5 4

Starch and sucrose metabolism sce00500 9 8

Aminosugars metabolism sce00530 6 5

Nicotinate and nicotinamide

metabolism

sce00760 5 4

DNA polymerase sce03030 8 7

MAPK signaling pathway sce04010 14 13

Table 3.2: The number cell-cycle regulated genes and the number of internal
variables identified by the Wu model for the selected biochemical pathways.

involved in other cellular activities.

In this section, we examine the possibility of breaking down the number of genes (i.e. the 701

cell-cycle regulated genes) into smaller, biologically meaningful groups in an attempt to unveil the

correlation between the number of internal variables identified by the Wu model and the grouping

of the genes. Ideally, by providing the model a smaller subset of genes which function in a single

biological process or pathway, one could expect the number of internal variables to reflect the

regulation complexity of that particular process or pathway. Superimposing the information with

the knowledge of the process or pathway such as the number of rate-determining steps, kinetic

models or regulation mechanism of the constituent enzymes found in the literature, this could

provide leads to deciphering the biological meanings (if there are any) of the internal variables.

With the above mentioned objective in mind, we searched the Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway database [9] for the biochemical pathways associatied with the 701

cell-cycle regulated genes. 156 of these genes are assigned to at least one biochemical pathway in

the database. In order for the pathway information to be useful, the number of genes mapped to

each pathway (pn) must at least be greater than or equal to 2 (i.e. A regulates B or vice versa). An

arbitrary cutoff of pn >= 5 is applied. Using these criteria, we selected 13 biochemical pathways,

apart from the cell-cycle biochemical pathway itself. The gene expression data for each pathway
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sce00010 sce00051 sce00052

sce00190 sce00230 sce00240

sce00450 sce00500 sce00530

sce00760 sce03030 sce04010

Table 3.3: BIC for each pathway (y-axis) against the number of internal variables,
k (x-axis).
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are queried from the Spellman dataset. For each pathway, we run the Wu state-space model on the

associated gene expression data. Table 3.2 outlines the pathways used in this study, the number of

input cell-cycle regulated genes and the number of internal variables identified by Wu’s model. It

appears that when the number of genes (n) is less than the number of time points (m, m = 18 in

this case), the number of internal variables (k) is always one less than the number of input genes for

the pathways. Figure 3.3 illustrates the corresponding BIC values for each pathway under study.

Note that the model consistently reaches a peak at k = n− 1 for all pathways.

One could hypothesize that the expression of any gene in a pathway can be expressed as a

function of the rest of genes in the pathway. Therefore, the number of internal regulatory elements

for a pathway involving a small number of genes is always one less than the total number. This

information, however, is not at all useful in finding the biological meaning of the internal variables.

The negative results suggest that the model does not support small gene networks. Therefore, our

attempt to decipher the internal variables using biochemical pathway data was unsuccessful.

3.3.2 Time-Delay and Noise

Rangel’s model expects highly replicated data, which has a large number of timepoints for control

analysis and is sufficiently replicated for the bootstrap analysis. To the best of our knowledge,

currently there is a very limited amount of microarray data that fit the requirements. Due to this

lack of actual experimental data, we have generated a set of artificial data as described in Table 3.4

in order to evaluate Rangel’s model. The data consists of one regulator U and 5 genes (G1 - G5).

It is assumed that the expression of the regulatory is periodic, described by a sine function. G1,

G2, and G3 are expressed according to sine functions with time-delay of τ = 0, 1, 2 respectively.

G4 and G5 are random, uniformly distributed data with the range of -0.1 to 0.1 (i.e. one tenth

of the range of a sine function, -1 to 1). G4 and G5 provide noise to test how the model handles

uncorrelated data. The artificial data consists of 18 timepoints and 16 replicates. Each replicate

has uniformly distributed noise in the range of -0.05 to 0.05 (i.e. one twentieth of the range of a

sine function) assigned to each timepoint. Figure 3.4 is a graphical representation of the artificial

data. The model is tested in two aspects: the ability to analyse time-delay data and the ability to

handle noise.

Default parameters for the number of cycles, number of bootstrap samples, tolerence, etc. are

used for the test. Figure 3.5 illustrates the log likelihood scores of the training and validation sets.

Based on the likelihood scores, the number of internal variables is set to 3. Figure 3.6 is the network

output of Rangel’s model generated from the artificial data. It seems that the model can correctly

identify network connection when the input delay equals to 1 (τ = 1). These relations are the U

→ G2, G1 → G2, and G2 → G3 in this test. The model also detects connectivities between U

to G1 and U to G3. However it did not predict the correct regulatory relationships. The model
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Names Function Delay (τ) Regulated by

Regulator U 2× sin(x) N/A N/A

Gene G1 sin(x) + v 0 U

Gene G2 sin(x + τ) + v 1 R1

Gene G3 sin(x + 2τ) + v 2 R1

Gene G4 random() N/A N/A

Gene G5 random() N/A N/A

Table 3.4: Artificial data for evaluating the Rangel model.

Figure 3.4: Inputs to Rangel’s Model.
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Figure 3.5: Number of internal variables determination.

miss-characterized random data G5 as a regulator for G2 and G3. It should be noted that since

G4 and G5 are random data, the connections between G5 → G2 and G5 → G3 are erroneous. The

results suggest that one should apply filtering steps to remove noisy data (in this case G4 and G5)

prior to the data analysis.
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Figure 3.6: Output network from Rangel’s model for the artificlal data. Each
node represents a gene, each directed edge represents the direction of regulation,
each undirected edge indicates connectivity in both directions, and finally, each
vertical line that partition a node represents self-regulation.
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Chapter 4

Data and Methodology

This thesis proposes a new technique for determining prospective gene regulation models from

time-series gene-expression data. The presentation of that technique consists of three parts. First,

we implement a state-space model that incorporates multiple time delays. The model is described

in Section 4.3. Secondly, we develop an alternative means for determining network connectivity for

both non-replicated and replicated data (Section 4.4). This involves replacing Rangel’s bootstrap

confidence intervals (derived from highly replicated data) for identifying gene-gene interaction with

a substitute. Finally, the networks generated from the new model are visualized using techniques

from the literature. The results of the modeling are presented in Chapter 5.

4.1 Data

Two datasets are used in this study. First, an artificial dataset is created to validate the model. The

artificial data is created in such way that it: (1) mimics the periodic property of cell-cycle microarray

data; (2) simulates the systematic errors in microarray experiments; (3) contains multiple time delay

relations between regulators and targets. Secondly, we applied our model to analyze the yeast cell-

cycle microarray data published by Spellman et al. [36]. Details of both datasets are described in

the following subsections.

4.1.1 Artificial data

Yeast cell-cycle regulated genes demonstrate a periodic pattern [36]. Gene expression data are

reported as log2( sample expression
reference expression ). That is, one measures the changes in expression with respect

to a common reference instead of an absolute expression. A 2-fold change, i.e. log2(ratio) = ±1, is

generally considered significant. To simulate the periodicity and to mimic the oscillation magnitude,

we have create a set of artifical data using sine() and cosine() functions. Refer to Table 4.1 for

details.

The artificial data consists of data streams of 2 regulators, R1 and R2, and 9 target genes, G1,

G2, ..., G9. G1 to G3 are associated with R1 with delays τ = 0, 1, 2, respectively. G4 to G6 are

associated with R2 with delays τ = 0, 1, 2, respectively. These relatively simple cases will test the
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Names Function Delay (τ) Regulated by

Regulator R1 sin(x) N/A N/A

Regulator R2 cos(x) N/A N/A

Gene G1 sin(x) + v 0 R1

Gene G2 sin(x + τ) + v 1 R1

Gene G3 sin(x + 2τ) + v 2 R1

Gene G4 cos(x) + v 0 R2

Gene G5 cos(x + τ) + v 1 R2

Gene G6 cos(x + 2τ) + v 2 R2

Gene G7 sin(x) + cos(x) + v 0 R1+R2

Gene G8 sin(x + τ) + cos(x + τ) + v 1 R1+R2

Gene G9 sin(x + 2τ) + cos(x + 2τ) + v 2 R1+R2

Table 4.1: Artificial data consists of 2 regulators (R1,R2) and 9 genes (G1-G9).

ability of the model to associate the target genes to their regulators, and to predict the number

of the delays. G7 to G9 are associated with both R1 and R2 with delays τ = 0, 1, 2, respectively.

In these more complex cases, we test the ability of the model to connect the target genes to the

multiple regulators, and to predict the number of the delays. Each data stream has a uniformly

distributed noise, v, in the range of -0.05 to 0.05 (i.e. one twentieth of the range of sine and cosine

functions), assigned to each timepoint.

4.1.2 Saccharomyces cerevisiae cell-cycle data

The second dataset used in this project consists of 800 alpha factor-based yeast cell-cycle regulated

genes identified by Spellman et al. [36]. The microarray hybridizations were done on asynchronous

yeast cell samples at every 7 min for 18 time points. Normalized expression data were downloaded

from the Stanford Microarray Database (SMD [11]). No further pre-processing was done. The

knninpute() function from MatLab’s Bioinformatics toolbox was used to impute the missing data

using a nearest-neighbor method.

4.2 Assumption

We assume that (1) there exist effects of hidden variables in the biological system that cannot

be measured in a gene expression profiling experiment, e.g. missing data or mRNA degradation,

and (2) the experiment time points capture the significant physiological changes of the biological

system.
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4.3 Time Delay Model

We consider the expression vector of a regulator (e.g. a transcription factor) as an input function

to the system. Therefore, the time period, τ , from the over-expression of the regulator to the over

or suppressed expression of the targeted gene is represented as an input-delay function. Assuming

a state-space system with p regulators, q target genes and n state variables, the model can be

described using the following equations:

zt+1 = Azt + But−τ + wt (4.1)

xt = Czt + vt (4.2)

where A is the n×n state transition matrix. B is the n×p input matrix. It captures the impacts of

the expression of p regulators on the system. u(t− τ) is a p× 1 input vector. C is the q×n output

matrix that represents the influence of internal state variables on the output gene expression level

at each time point. wt and vt are uncorrelated white noise sequences. We adopt Wu’s model (see

Section 3.3) which removes the feed-through matrix, D, assuming that gene-gene regulation can be

captured by indirect regulation through internal variables instead of direct gene regulation from

one time point to the next. As described by Rangel et al. [28], the product of C × B produces a

q×p matrix that depicts the regulatory relationships between p regulators and q target genes. The

possible values for the time delay for each of the p regulators, τi, where i = 1, ..., p, is estimated

by scanning a range of positive integers, with the minimum time delay of zero. The best fit is

determined by minimizing the Akaike’s AIC criterion score for the residual variance (in %). A

Bayesian network representation of the model is shown in Figure 4.1.

Figure 4.1: Bayesian network representation of the new model for gene expression.

The model was implemented as a MatLab program, Gene Network with Delay (GNWD). GNWD

uses various functions from MatLab’s Control System and System Identification toolboxes. The
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n4sid() and aic() functions are used for system identification, system stability, and delay analysis.

The n4sid() function implements a variant of state-space modeling using the sub-space method

(N4SID). The N4SID algorithm was developed by De Moor et al. [25], and it computes the param-

eterization of the model (i.e. solving the matrices A, B, and C). The aic() function returns the

Akaike’s Information Criterion (AIC) score [1] of the model. The AIC score is used to determine the

order of the system and best-fitted number of input time delays as described by Wu et al. [40]. AIC

was developed by Akaike and Hirotugu [1]. The method penalizes the complexity of an estimated

model in order to avoid overfitting the data. In our case, the best-fitted model is determined by

one that has the lowest AIC score. Finally, the compare() function is used to determine the overall

model fitness to the data. The model fitness is represented as a percentage, estimated as follows:

Fitness = (1− norm(Y h− Y )
norm(Y − Y )

)× 100% (4.3)

where Y (t) = (y0, y1, ..., yn) is the actual gene expression vector, Y is the mean of Y , and Y h(t) =

(yh0, yh1, ..., yhn) is the predicted expression vector from the model. n is the total number of

time points. norm(Y h − Y ) and norm(Y − Y ) are the Euclidean distances between predicted

and the actual expression vectors, and between the actual expression vector and mean expression,

respectively. Ideally, if the distance between the predicted and the actual expression vectors is zero,

the function returns a 100% fitness.

GNWD supports two modeling tools: single input and multiple input delay models. The single

input delay model captures the simple one-to-one regulatory relations. The multiple input delay

model works for complex many-to-one regulatory relations.

4.3.1 Single Input Delay Model

In a simple one-to-one regulatory relation, the regulation of a gene is highly related to its tran-

scription factor (TF). In other words, residual regulation by other factors is relatively insignificant

and can be treated as hidden variables, i.e. the missing data. Therefore, a single-input and single-

output (SISO) model (TF vs. gene or TF vs. TF) can be used to describe the input and output

signals. The SISO modeling can be applied to identify network motifs such as feed-forward loops,

multi-component loops, and single input motifs as described by Lee et al. [19]. Figure 4.2 illustrates

how GNWD is used to model two such network motifs. The network motifs are shown on the left

and the corresponding state-space models on the right. According to Lee et al. [19], two anaerobic

condition related transcription factors in yeast, Rox1 and Yap6, form a regulatory circuit in which

they regulate each other. The regulation circuit is represented as a multi-component loop motif as

shown in Figure 4.2 A), where the over- or under- expression of one TF regulates the gene expression

of another (i.e. p = q = 2). In the GNWD state-space representation, the mRNA expression levels

of ROX1 and YAP6 (orange boxes) over time are the observed values. The TF protein expression

24



levels, Rox1 and Yap6 (purple ellipses), and possibly other hidden factors (purple ellipse labeled

with a “?” mark) are the hidden variables. At time t, the protein expression levels are affected by

gene expression of ROX1 and YAP6 with τ1 and τ2 input time delays, respectively. The hidden

variables in turn dictate the output gene expressions of ROX1 and YAP6 genes at time t+1. The

multiple time-delay relationships can be expressed as a 2× 2 matrix as follows: 0 τ1

τ2 0


Another example of a network motif is the regulation of CLB2, a G2/M-cyclin, and SWI4

transcription factor by MCM1. It is illustrated by Lee et al. [19] as an example of a feed-forward

motif. The MCM1 gene regulates CLB2 as well as the SWI4 transcription factor, which also

regulates CLB2 cyclin. In this network motif, there are two regulators, two target genes (i.e.

p = q = 2), and three possible input time delays and each corresponds to a regulatory relation

(refer to Figure 4.2 B). The multiple time-delay relationships is expressed as a 2 × 2 matrix as

follows:  τ2 τ3

0 τ1


The time delay, τ , is estimated by scanning a range of possible integers, with the minimum time

delay of zero. In case of yeast cell cycle data, the maximum number of delay should not exceed the

time for a complete cell cycle (G1→ S→ G2→M), which is estimated to be ≈60 minutes [37]. For

Spellman’s time-course microarray data, since each sampling interval is 7 minutes, the maximum

delay should never exceed 8 sampling intervals (i.e. 60min × 1sample/7min). Similar to Li et al.

[20] but unlike Ota and Sung [24, 37], we believe that the actual time delay between binding and

transcription is on the order of minutes. This is based on an assumption that gene transcriptional

regulations are most likely to occur within the same phase or at the transition point from one phase

to another. Since the longest cell-cycle phase, G1, takes ≈25 minutes (refer to Chapter 2), which

means the maximal reasonable delays is less than 3 sampling intervals (i.e. 25min×1sample/7min).

Hence, the default maximal delay for yeast cell cycle is set at 2 sampling intervals, i.e. 14 minutes,

for Spellman’s data [36]. Note that the default value may not be applicable to other biological

systems.

4.3.2 Multiple Input Delay Model

SISO may not work well when multiple regulators show significant regulation of a target gene.

The presence of a second regulator increases the model complexity. In addition, some studies have

shown that different gene pairs have different time delays for gene regulation [7, 37]. Therefore, the

multiple time-delay issue should also be addressed. As a result, we present a multiple input delay
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Figure 4.2: An example of SISO state-space representation of the gene regulatory
network motifs described by Lee et al. [19]: A) Multi-component loop, and B)
Feed-forward loop. The network motifs are shown on the left and the corresponding
state-space models on the right.

model. In it, the transcription profiles of all known regulators, if available, are provided as inputs

to the system. The input delays are estimated individually for each regulator. The MISO model

can be used to determine multi-input and regulator cascade network motifs, as described by Lee et

al. [19].

Figure 4.3 illustrates how GNWD is used to model a multi-input network motif. In this example,

the protein component of yeast large (60S) ribosomal subunit, RPL16, is transcriptionally regulated

by three transcription factors: FHL1, RAP1, and YAP5 (i.e. p = 3, q = 1). Assuming that each

TF has zero or some input delay to the regulation of RPL16, the multiple time-delay relationship

can be described as follows: [
τ1 τ2 τ3

]
The maximum number of input channels allowed in the model depends on the complexity of

the motif structure and the time delay of each input channel. A higher number of available time

points is required to model a more complicated network structure. In the case of Spellman’s yeast
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Figure 4.3: An example of MISO state-space representation of a multi-input gene
regulatory network motif described by Lee et al. [19]. The network motif are shown
on the left and the corresponding state-space model on the right.

microarray data (18 time points), GNWD can compute a stable system for a maximum of four

input and input delays. This number is determined by trial and error. It may vary depending on

the complexity of the network.

4.4 Network Connectivity

Rangel et al. [28] construct reliable gene regulatory networks based on bootstrap statistical analysis.

The method is applied to highly replicated data. This approach has a severe limitation, however,

because most currently available time course microarray data are either replicated few times (e.g.

less than 5) or not replicated at all. Li et al. [20] use genome-wide location analysis results to

construct a network structure and then infer the transcription factor activities with mathematical

modeling. The latter approach significantly reduces the false positive node connections since the

network connectivity is pre-determined. In addition, the method can be used to model gene reg-

ulatory networks from non-replicated data. The limitation of Li’s approach is that it removes the

power to uncover new connections that are not identified by ChIP-on-chip data.

To complement the existing approaches, we present a three-step solution incorporating GNWD

such that network connectivity is based on, but not limited by, genome-wide location analysis

results. First, the data is partitioned into two groups: transcription factors (TFs) and target

genes (TGs). Each TF is a possible regulator of another TF and/or TG. Secondly, GNWD creates

an initial set of network connections based on the location analysis results. At this stage, all

location-analysis-derived TF versus TF and TF versus TG regulatory relations are screened for

corresponding state-space models. Only the confirmed regulatory relations are recorded and subject
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to the next round of analysis. For each TF, GNWD records the optimized parameters (initial state,

number of time-delays, number of state variables) that reflect the complexity of the regulations.

Finally, GNWD performs the second round of network connection screening based on the regulation

parameters generated in the second step. For example, if a transcription factor A regulates n TGs

with time delay τ1, k state variables, and initial state z(0) = 0, the GNWD program will attempt

to recruit other genes that have not been identified as targets of A but possess regulatory relations

with A that resemble the existing ones. This is based on a common assumption that genes with

high correlation in expression profiles are likely to be co-regulated. The approach is implemented

by MatLab’s pem() functions which is an alternative to the N4SID algorithm that uses prediction

error model (PEM) for parameterization. According to Favoreel et al. [14], the latter algorithm is

relatively more sensitive compared to N4SID once the intial parameters are determined.

4.5 Network Visualization

GNWD generates a network output file format that can be directly imported into Cytoscape [33]

for network visualization, integration, and analysis.
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Chapter 5

Results

This chapter presents the results of modeling using GNWD. First, we describe the output of

modeling the artificial data (as described in Chapter 4) and the lessons learned in the modeling

process. In Section 5.2, we show the results of modeling yeast cell-cycle expression data. The

global regulatory network diagram is presented as well as detailed analysis of G1- and B-type

cyclins. Finally, we illustrate the capability of GNWD in selecting the most feasible regulatory

mechanism from multiple models.

5.1 Modeling a Gene Network using Artificial Data

To demonstrate the difference between the SISO and MISO models, we first apply only the SISO

one to network prediction of the artificial data. The two regulators, R1 and R2, are expected

to connect to the target genes, G1 to G9, as described in the data section (see Table 4.1) of the

previous chapter. Figure 5.1 is a graphical representation of the SISO network. The network

visualization is generated using Cytoscape where each node represents a gene and each directed

edge represents a predicted regulatory relationship between a regulator and the target gene. Each

edge is labelled with the predicted number of input time delays. Eleven out of twelve edges are

identified by GNWD-SISO. Among the eleven, 9 edges are annotated with the correct time-delays.

The text output is tabulated in Table 5.1. The “Order” column gives the order of the system that

reflects the model complexity. “Fitness (%)” (percent of fitness) reflects the goodness-of-fit of the

state-space model to the data. The “AIC” column contains the Akaike’s Information Criterion

score. The best-fitted model is selected by minimizing the AIC score. Refer to Section 4.3 for more

information regarding the columns.

The results show that the SISO model can predict 100% correctly the one-to-one regulations

but not the many-to-one regulations. For many-to-one regulations, the SISO model detects 5 out

of 6 ( ≈83%) of them, but only 3 out of 6 are predicted with correct delays. As expected, almost all

predicted connections (4 out of 5) from the many-to-one regulation are in higher order state-space

systems (i.e. second order state-space systems) compared to the rest. GNWD-SISO predicts a more

complex regulation mechanism in these systems and produces poorer scores for the percent of fitness
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Figure 5.1: SISO output for artificial data. All edges are labeled with the predicted
time delays. A blue edge represents a correct interaction; a red edge represents an
incorrect one. relationship.

and AIC (see Table 5.1). The fact that the SISO model can identify most of the regulatory relations

in our simulation suggests that in the absence of a priori knowledge of the network structure, the

single-input and single-output model may be used to detect more complex network connections but

the number of time-delays and the order of the system may need to be re-assessed by the MISO

model.

Regulator Target Order Delay (τ) Fitness(%) AIC

R1 G1 1 0 98.76 -9.0735

R1 G2 1 1 98.76 -9.1076

R1 G3 1 2 98.68 -8.9094

R1 G8 2 0 82.40 -3.9379

R1 G9 1 0 81.44 -3.2183

R2 G4 1 0 98.70 -8.8321

R2 G5 1 1 98.66 -8.9243

R2 G6 1 2 98.82 -9.1675

R2 G7 2 0 85.69 -5.0339

R2 G8 2 1 82.82 -4.3840

R2 G9 2 2 83.31 -4.2520

Table 5.1: SISO output for the artificial data.

We then applied the GNWD-MISO model for network prediction of the G7 to G9 genes. Given

the knowledge of R1 and R2 co-regulates G7, G8, and G9, GNWD-MISO can correctly predict 6 out

of 6 edges and the corresponding number of time-delays. Figure 5.2 is a graphical representation of

the results. The text output is shown in Table 5.2. Note that the GNWD can produce much better

models (better than 99% fitness, and much lower AIC scores) in latter case. The results illustrate

the advantage of incorporating a priori network structure knowledge in the modeling process.
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Regulator Target Order Delay (t1,t2) Fitness(%) AIC

R1,R2 G7 1 0,0 99.27 -8.0843

R1,R2 G8 1 1,1 99.18 -8.6052

R1,R2 G9 1 2,2 99.15 -8.4814

Table 5.2: MISO output for artificial data.

Figure 5.2: MISO output for artificial data.

5.2 Modeling the Gene Network in Saccharomyces cere-

visiae

5.2.1 Learning the Network Structure

The genome-wide location analysis results of nine known cell-cycle related transcription factors

(SWI4, SWI6, MBP1, MCM1, ACE2, SWI5, FKH1, FKH2, and NDD1) were downloaded from

Young’s website [23]. The results are reported as p-values that reflect the significance of the

binding between TFs and the corresponding promoter regions. We considered a p-value less than

or equal to 0.01 as being significant. This cut-off is less stringent than the 0.001 cut-off proposed by

Lee et al. [19]. A relaxed threshold was selected to reduce the number of false negatives in location

analysis. Complementarily, the number of false positives is controlled by providing cross-validation

evidence from the modeling of time-series gene expression data. Based on the location analysis

results and the selected cut-off, we identified 301 out of 800 cell-cycle regulated genes reported by

Spellman et al. [36] which bound to least one of the nine TFs. Refer to Appendix A for the list of

the 301 genes and the binding map to the nine TFs. In that table, a “+” sign in a cell represents

a significant binding (p ≤ 0.01).

5.2.2 Modeling Gene Network

We applied our modeling tool to the 301 cell-cycle regulated genes identified above. GNWD pre-

dicted the regulation models of 93 genes or approximately 31% of the total input genes. The results
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Figure 5.3: Gene regulatory network of 93 cell-cycle regulated genes. Each node
represents a gene and a yellow node represents a transcription factors.
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are tabulated and shown in Appendix B. On a Pentium III 800MHz computer, the total run time

for GNWD to analyze the 301 genes is approximately 90 minutes.

Almost half of the 93 genes are regulated in the G1 phase and about 25% are regulated in the

G2/M phase. Compared to the 301 input genes, this represents a minor increase in percentage of

genes regulated in G1 phase (36% to 44%), and a slight decrease for M/G1 phase (17% to 12%).

Refer to Figure 5.4 for the percentages of the 93 correctly-modelled genes (in dark red) and the 301

input genes (in dark blue) in different phases of cell-cycle. The differential success rates in modeling

G1- and M/G1-regulated genes may due to the differences in the number of the TFs from each

phase. There was no M/G1 specific transcription factor used in this study. On the other hand,

there were three (SWI4, SWI6, MBP1) G1-activated TFs.

Figure 5.4: Distributions of total input genes and GNWD modelled genes to
different cell-cycle phases.

Among the nine transcription factors, SWI4, SWI6, and MBP1 are known for their important

roles in G1 and late G1 phase gene regulation [16, 34]. The three TFs encode for two transcription

factor complexes: SBF (SWI4 and SWI6), and MBF (SWI6 and MBP1). SBF and MBF control

over 50% of the total detected regulatory relations in our model. Refer to Figure 5.3 for the graphical

representation of the modelled network. In this network diagram, each yellow node represents a TF

and each white node represents a target gene. A directed arrow between a TF and a target gene

node represents a detected regulatory relation. Figure 5.3 reveals a large cluster of target genes

regulated by combinations of SBF and MBF (left side of Figure 5.3). The forkhead transcription

factors FKH1 and FKH2, and NDD1 regulate a smaller cluster of G2/M-phase expressed genes on

the right of the network diagram. Among the modelled genes in the two most abundant phases, the

regulation of G1 phase’s G1-cyclins (CLN1, CLN2, and CLN3) and G2/M phase’s B-type cyclins

(CLB2, CLB5, and CLB6) are identified. The modelled regulatory mechanisms of the cyclins were
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further investigated. The results are discussed in the following subsection.

5.2.3 Regulations of G1- and B-type cyclins

We examined more closely the regulation models of 3 G1-cyclins (CLN1, CLN2, and CLN3) and

5 B-type G2/M-cyclins (CLB1, CLB2, CLB4, CLB5, and CLB6). These two sets comprise all the

CLN and CLB cyclins in the dataset (CLB3 was not present). The CLN and CLB cyclins were

selected due to their important roles in cell-cycle regulation and relatively well-studied regulatory

mechanisms. Figure 5.5 is a diagram produced by GNWD which features the selected genes. Each

node represents a gene or a transcription factor, each directed edge represents a regulatory relation,

and each edge label denotes the regulatory delay between two nodes. For example, SWI6 → CLN2

has a delay of 2 samples (i.e. 2 × 7 min/sample = 14 min). The network edges are color-coded such

that a red edge represents known interaction based on location analysis and a blue edge represents

an unknown relationship.

GNWD uncovers a network of 15 nodes with 30 edges. 21 out of the 30 edges (i.e 70%) have

known regulatory relationships. The average model fitness is 67%. A tabulated output is provided

in Table 5.3. In that table, the column “Order” means the order of the system which reflects the

model complexity. The percent of fitness reflects the goodness-of-fit of the state-space model to

the data. AIC is the Akaike’s Information Criterion score. Among the novel regulatory relations

determined, there is evidence to support SWI6→ CLN2 [16], FKH2→ CLB1 [17], NDD1→ FKH2

[18] regulation in the literature.

Regulation of CLN2

The modeling tool uncovered the regulatory relationship between SWI6 and CLN2 (with order=2

and delay=2) that is not reported in the location analysis results (see Appendix A). As mentioned

in the previous section, SWI4 and SWI6 encode a heterodimer complex, SBF. It has been shown

that SBF induces CLN2 transcription in the late G1 phase [16]. In our modeling, we detected the

regulatory relations of SWI4 → CLN2 with a first order system (AIC score=-1.36), and SWI6 →

CLN2 with a second order system (AIC score=-0.47) (see Table 5.3). The difference in the AIC

score indicates that although both TFs contribute to the regulation of CLN2, SWI4 represents a

better model to control CLN2 regulation than SWI6. One may postulate that SWI4 is the DNA

binding component of the SBF complex and therefore it is the rate determining factor for the

transcription of CLN2.

Using the SISO modeling, we demonstrated that SWI4 and SWI6 regulate CLN2 with input

delays of 0 and 2, respectively. The corresponding model fitnesses are 65% and 61%. The log2

predicted and measured CLN2 expression over 18 time-points is shown in Figure 5.6 a). We applied

the MISO modeling tool in GNWD to this data in an attempt to improve the modeling of the CLN2
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Regulator Target Order Delay (τ) Fitness(%) AIC Binding Evidence

FKH1 CLB2 2 0 73.465076 -2.510095 Y

FKH1 SWI4 2 0 71.941152 -3.016292 N

FKH2 CLB2 2 0 69.618154 -2.677518 Y

FKH2 SWI4 2 0 71.553277 -2.617587 N

FKH2 CLB1 2 0 71.09556 -2.485664 N

MBP1 SWI4 2 2 62.060827 -1.539307 Y

MBP1 CLB2 2 2 64.177229 -2.604613 Y

MBP1 CLN2 2 1 61.249674 -0.918211 Y

MBP1 CLB1 2 2 60.996793 -2.303097 N

MCM1 SWI4 2 1 67.744846 -2.430281 Y

MCM1 CLB2 2 2 64.483538 -2.042422 Y

NDD1 CLB2 2 2 73.178501 -1.628935 Y

NDD1 CLN1 2 2 60.400341 -1.758735 Y

NDD1 CLB6 2 0 71.960519 -1.687905 Y

NDD1 CLB5 2 0 65.499866 -2.475658 Y

NDD1 FKH2 2 2 72.445931 -3.800203 N

NDD1 CLN3 2 2 65.957132 -2.655417 N

SWI4 CLB2 2 2 68.538231 -1.872905 Y

SWI4 CLN3 2 1 60.289651 -3.029056 Y

SWI4 CLN2 1 0 64.906209 -1.360941 Y

SWI4 CLN1 1 0 65.22902 -2.237727 Y

SWI4 CLB6 2 0 73.243562 -2.039319 Y

SWI4 CLB5 2 0 75.557682 -2.937196 Y

SWI4 FKH2 2 1 68.484476 -3.41278 N

SWI4 CLB1 2 2 77.002957 -2.119164 N

SWI6 SWI4 2 0 70.893228 -1.993188 Y

SWI6 CLB2 2 2 63.223062 -1.786548 Y

SWI6 CLN2 2 2 61.366645 -0.473000 Y

SWI6 CLN1 2 2 61.383819 -1.329583 Y

SWI6 ACE2 2 0 62.457434 -1.956277 N

Table 5.3: GNWD output for yeast cyclins regulatory network
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Figure 5.5: Gene regulatory network for the G1- and G2/M-cyclins. A red edge
represents a known interaction based on location analysis and literature search; a
blue edge represents an unknown relationship.

gene expression. Figure 5.6 b) illustrates a MISO model for SWI4+SWI6 → CLN2. The MISO

modeling produces 3 possible models (see Table 5.4). The best-fitted model based on AIC score

(noted with an asterisk) is a first-order system with fitness equal to 67%, delays [τswi4, τswi6] = [0, 2].

Compared to the previously mentioned 2 SISO models, the MISO model is relatively more stable

(i.e. lower AIC score). However, the overall percent fitness did not increase as much as one would

expected. These results suggest that the SWI4 and SWI6 do not regulate CLN2 transcription in

a combined manner. In other words, the unexplained output variation of one regulator cannot be

attributed to the other regulator.
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Regulators (R1,R2) → Target Order R1 Delay R2 Delay Fitness(%) AIC Best Fit

(SWI4, SWI6) → CLN2 1 0 1 64.798724 -2.566028

1 0 2 66.922105 -2.889358 *

2 0 0 67.240317 -0.892564

2 0 1 65.115198 -0.894492

Table 5.4: MISO output for the CLN2 regulation.

Regulation of CLB2

CLB2 encodes a B-type cyclin that activates the cyclin-dependent kinase, CDC28, to promote the

transition from G2 to M phase of the cell cycle. The promoter region of CLB2 gene contains cis-

element binding sites to 10 different transcription factors (refer to Figure 5.7) according to Harbison

et al. [15]. The binding motifs are also confirmed by the ChIP-on-chip results (see Appendix A).

Using the p ≤ 0.01 cutoff, seven out of nine TFs (i.e. FKH1, FKH2, NDD1, MCM1, MBP1, SWI4,

SWI6) show significant in vivo binding to CLB2.

The transcription factors that are found at the CLB2 promoter regions are known to regulate

genes at different cell-cycle phases. For example, the SBF (SWI4,SWI6) and MBF (SWI6,MBP1)

complexes promote G1 to S phase transition, MCM1 regulates late G2 and some M/G1 genes, and

NDD1 functions at the G2/M phase [34]. Hence, it is unlikely that all binding factors are functional

and are active at the same time. In our modeling (see Table 5.3), we detected regulatory relation-

ships of the seven TFs to CLB2. Furthermore, a closer look at the regulation of CLB2 reveals four

feed-forward-loop (FFL) network motifs (see Figure 5.5). A network motif is a biochemical wiring

pattern that recurs throughout the transcriptional network. The feed-forward-loop is one of the

most common network motifs found in the bacterium Escherichia coli and the yeast Saccharomyces

cerevisiae [21]. A feed-forward-loop is a three-gene motif composed of two input transcription fac-

tors: a master and a secondary regulator. The master regulator regulates the secondary regulator

and they both jointly regulate a target gene. We present the four FFLs found by the SISO modeling

in Figure 5.5. The top-left node is the master node of the FFLs. They are FKH1, NDD1, MBP1

and MCM1. The top-right node is the secondary regulator and this is SWI4 except when the master

node is NDD1 in which case the secondary regulator is FKH2. The average SISO model fitness for

each TF → CLB2 regulation is 68%. All TFs except the forkhead TFs, FKH1 and FKH2, have

delay of 2 sampling intervals. Among the four FFLs, MCM1+SWI4→CLB2 is also reported by

Young et al. [23] as a feed-forward-loop using only the location analysis data with p ≤ 0.001.

Mangan et al. [21] suggest that one important function of FFLs is to speed up the response

time of the transcription networks. That is, although positive gene regulation can be efficiently

achieved by increasing the concentration of the TF’s protein product, the response time is governed
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a)

b)

Figure 5.6: a) Two SISO models for SWI4 → CLN2 (fitness=65%) and SWI6 →
CLN2 (fitness=61%); b) MISO model SWI4+SWI6 → CLN2 (fitness=67%).

by the lifetime of the protein product, which is often much longer. Therefore, one way to speed up

the response is to increase the degradation rate of the protein product through a second regulator

and perhaps to block access to the target gene’s binding site by the first TF’s protein product.

Since the later regulator controls the expression of the former TF (the secondary regulator) and

the target gene, it is called the master regulator. At the transcript level, one would expect the

target gene expression level to be a function of the expression of both regulators should the FFL

mechanism be functional.

We applied MISO modeling to the four FFL motifs identified by the SISO model for CLB2

regulation. We hypothesize that if a FFL is present, one would expect the master and secondary

regulators to work in a collaborative manner. That is, the unexplained variation seen in the principal

TF’s regulation can be elucidated by the feed-forward regulation of the secondary TF, and vice

versa. On the other hand, if the FFL is inactive or if only one of the two regulators works, then the

modeling will not be improved by MISO modeling and the percent fitness of the model will remain

roughly the same or be worse.

The output of the MISO modeling is tabulated in Table 5.6. The best-fitting model is marked
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Figure 5.7: Promoter regions for CLB2 gene with CLB5 in close proximity. The
cis-element binding sites are identified by Harbison et al. The figure is the results
of a query given at the YeastGenome website [10].

with an asterisk in the rightmost column. The best model for FKH1+SWI4→CLB2 at ≈80%

fitness is a first order system with zero time-delay for FKH1 and 2 time-delays for SWI4. The best

model for MBP1+SWI4→CLB2 is a second order system with zero time-delay for MBP1 and 2

time-delays for SWI4. The fitness is ≈82%. We did not observe significant improvements in terms

of percent fitness for the NDD1+FKH2 and MCM1+SWI4 models. This suggests that only the

former two out of the four possible FFLs are likely to control CLB2 regulation. The log2 of the

predicted and measured CLB2 expression over 18 time-points by the four best-fitting FFL models

are shown in Figure 5.8. There are obvious improvements in model fitness for the MBP1+SWI4

and FKH1+SWI4 models over the NDD1+FKH2 and MCM1+SWI4 models, which supports our

hypothesis.
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a) b)

c) d)

Table 5.5: Feed-forward-loop network motifs in the regulation of CLB2 found by
GNWD. Each edge is labeled with the value of time delay. A red edge represents
a known interaction based on location analysis and literature search; a blue edge
represents an unknown relationship.
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Figure 5.8: Comparisons of the predicted CLB2 expression over 18 time-points by
the four best-fitting FFL models to the measured log2 values.
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Regulators (R1,R2) → Target Order R1 Delay R2 Delay Fitness(%) AIC Best Fit

FKH1,SWI4→CLB2 1 0 1 63.644575 -1.537761

1 0 2 79.773793 -3.229595 *

1 1 0 61.814689 -1.510308

1 1 2 70.844626 -1.853543

2 0 0 71.974595 -1.759781

2 0 1 76.75773 -2.140303

2 0 2 75.445502 -2.533515

2 1 0 74.935231 -3.046253

2 1 1 74.816372 -1.912746

NDD1,FKH2→CLB2 1 0 1 61.692141 -0.711095

1 0 2 69.823501 -2.268478 *

1 1 0 60.652689 -0.637223

1 1 2 74.517609 -1.745955

1 2 0 72.64509 -1.793645

1 2 1 69.148994 -1.644347

2 0 0 74.392399 -0.98651

2 0 1 75.908715 -1.714605

2 0 2 78.764701 -1.941071

2 1 0 71.297965 -0.877083

2 1 1 74.106334 -1.081118

2 1 2 69.865951 -2.514543

2 2 0 70.654615 -1.453532

2 2 1 70.375696 -2.480809

MBP1,SWI4→CLB2 1 1 0 65.281567 -1.531062

2 0 2 82.284591 -2.228897 *

MCM1,SWI4→CLB2 2 0 0 76.835382 -1.5779

2 0 1 78.146638 -1.707728

2 1 1 76.606035 -1.755346

2 1 2 60.319422 -1.722575

2 2 0 63.90925 -1.804213

2 2 1 65.281011 -1.704606

2 2 2 60.778085 -2.139843 *

Table 5.6: Multiple inputs, single output regulatory relations for CLB2.
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Chapter 6

Discussion

6.1 Discrete versus Continuous Models

Yeast cell-cycle regulated genes demonstrate a periodic pattern [36]. The gene expressions are

known to be phase specific. The expression data are reported as log2( sample expression
reference expression ). That

is, one measures the changes in expression with respect to a common reference instead of absolute

expression. A 2-fold change in expression, i.e. log2(ratio) = ±1, is generally considered significant.

It is important to note that a negative log2(ratio) does not imply inactivity of a regulator. Instead,

it means that the gene expression level is relatively lower (by the fold change) compared to the

control sample, e.g. the time zero sample.

Among the five state-space or Bayesian network solutions described in this work, the models

published by Li et al. [20] and Sung et al. [37] are discrete. The challenge in discretization

is to find a reasonable threshold to define the active and inactive states of gene expression. As

described above, a negative measurement does not necessarily imply inactivity of a gene. Consider

the following scenario: at time t = 0, gene A is expressed at 40% capacity, gene B is expressed

at 10% capacity. At time t = 1, both genes A and B are expressed at 20% capacity. In this

case, the time t = 1 measurements for gene A are log2(20%/40%) equals -1, and for gene B are

log2(20%/10%) equals +1, whereas the actual levels of expression for both genes are the same at

time t = 1. Therefore, it is a non-trivial task to define the “on” and “off” status of a gene based

on gene expression fold-change alone. Soinov et al. [4] have proposed an alternative method (see

Section 2.2) to bypass the assumption of arbitrary discretization thresholds for the regulators. The

states of a “predicted gene” (i.e. a target gene) are determined by the quantitative expression

levels (or changes in the expression with respect to a control sample) of the “explaining genes”

(i.e. the regulators). The results are presented in the form of a rooted decision tree such that the

states (up-/down- regulated, or expressed/not expressed) of a target gene (leaf node) is determined

by the combinatorial decision rules of the regulators (non-leaf nodes). The Soinov approach can

potentially improve the performance of discrete network modeling.

On the other hand, the biggest challenge in quantitative modeling is the inherent noise in the

expression data. Especially when a gene is expressed at a low level, a low signal-to-noise ratio causes
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an inaccurate measurement of fold-change. This will in turn affect the ability of quantitative models

in learning the network structure and in getting good model fitness. In this study, the average model

fitness for yeast expression data is 67%.

6.2 Gene Regulatory Network: what, when and how

A ChIP-on-chip experiment helps answer the question: what genes does a transcription factor

regulate. The evidence of in vivo protein-DNA interactions can help biologists to uncover regulatory

network structure [34, 19, 20]. However, the existence of a binding site does not mean that the

regulation mechanism is triggered under a certain experiment condition. The location analysis

results do not provide insights into which transcription factor(s) regulates a gene transcription

under a perturbation or treatment when multiple cis-element binding sites are available at the

promoter region. In yeast, a B-type cyclin, CLB2, is known to have cis-element binding sites for

10 different transcription factors (see Figure 5.7) according to Harbison et al. [15]. Many of these

transcription factors are known to regulate genes at different cell-cycle phases. It is unlikely that

all binding factors are functional at the same time. Our modeling tool provides a way to model

the gene regulation based on time-course expression data. In this document, we analyzed 301

cell-cycle regulated genes with possible regulatory relationships to at least one of the nine known

transcription factors. Among these, we are able to identify and model the regulation mechanisms

of 93 (≈ 31%) genes.

Peak time analysis provides insights into when a gene is maximally expressed during the cell-

cycle. An understanding of the gene expression timelines is useful for associating a time factor to

the physiological changes in cells. However, the duration for a gene to reach its peak expression

(peak time) in a cell-cycle alone is not enough to constitute the full picture for gene regulation.

For example, the transcription factor complex, SBF (SWI4 + SWI6), regulates CLN1 and CLN2

transcription in the late G1 phase and drives the transition into S phase. The peak times for

the heterodimer SWI4 and SWI6 are 13% and 37%, respectively. The peak times for the SBF

regulated genes CLN1 and CLN2 are 25% and 23%, respectively. One component of the SBF

regulator, SWI6 reaches the peak time later than both CLN1 and CLN2. This shows that the peak

time analysis does not convey information on how genes are regulated. One may hypothesize that

SWI4 is the rate determining factor in the regulation of the cyclins and that the G1 cyclins will

quickly reach their peak expressions at 25% after SWI4 reaches its peak at 13%. Our modeling

results support the above mentioned assumption (refer to Section 5.2.3). The SWI4 and SWI6

transcription factors seem to regulate CLN2 transcription in a combinatorial manner. The percent

fitness of the SWI4+SWI6→CLN2 model is no better than two separated single-input and single-

output models. Interestingly, our modeling results also suggest that CLN2 is regulated by both
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SWI4 and SWI6, and CLN1 is regulated only by SWI4. This could be the result of relatively weaker

role of SWI6 in cyclin regulation.

6.3 Model Overfitting

GNWD uses location analysis results to help identify the TF and target gene pairs. This significantly

reduces the risk of overfitting by filtering out the unrelated inputs (i.e. unwanted noise). In addition,

Akaikes information criterion [1] scoring system is applied to the model selection process. The AIC

method discourages the selection of a higher order system by imposing a penalty for the complexity

of the estimated model. It attempts to find the best goodness-of-fit with a minimum system

complexity. Therefore, this provides another guard against overfitting the data.
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Chapter 7

Conclusions and Future Work

We have developed a new technique, GNWD, for determining prospective gene regulation models

from time-series gene-expression data. The modeling tool is demonstrated on an artifical data and

yeast cell-cycle gene-expression data. Using the yeast microarray data, we illustrated that our model

can help identifying regulatory relations with multiple time delays. The model complements ChIP-

on-chip results by predicting the most probable gene regulatory mechanisms between transcription

factors and their target genes.

GNWD uses genome-wide location analysis data to reveal the primary network structure. Addi-

tional regulatory relationships can be determined by goodness-of-fit of the model based on alternate

models. It will be interesting to compare this method to the learning-by-modification method devel-

oped by Sung et al. [37] where the network structure is based on a backward elimination mechanism.

The current version of GNWD supports a command line console with no graphical user interface.

Some features can be implemented to increase user friendliness. An example includes an interface

to load multiple experiments. This involves implementing application logic for checking consistency

of all input files. Another important facet of future work would be a systematic study of the effect

of noise on state-space modeling.
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Appendix A

ChIP-on-chip binding map for cell-cycle genes (p-value cut-off=0.01). “+” represents
a significant binding of p ≤ 0.01.

ORF Symbol Fkh1 Fkh2 Ndd1 Mcm1 Ace2 Swi5 Mbp1 Swi4 Swi6
YLR131C ACE2 + + + +
YNR044W AGA1 + + + +
YGL032C AGA2 +
YCL025C AGP1 + +
YGL021W ALK1 + +
YNL172W APC1 +
YPR034W ARP7 +
YJL115W ASF1 + +
YKL185W ASH1 +
YML116W ATR1 + +
YJR148W BAT2 + + + + + +
YPL255W BBP1 + +
YJR092W BUD4 + + + +
YLR353W BUD8 +
YGR041W BUD9 + + + + + + + +
YML102W CAC2 + +
YPL111W CAR1 +
YLR438W CAR2 + + + + + +
YGR140W CBF2 + +
YGL116W CDC20 + + + +
YOR074C CDC21 + +
YLR103C CDC45 + + +
YLR274W CDC46 +
YMR001C CDC5 +
YJL194W CDC6 + + + + + +
YNL192W CHS1 +
YBR038W CHS2 +
YMR198W CIK1 + +
YJL158C CIS3 + + + + + + +
YPR119W CLB2 + + + + + + +
YLR210W CLB4 +
YPR120C CLB5 + + +
YGR109C CLB6 + + + + + +
YMR199W CLN1 + + + + + + +
YPL256C CLN2 + +
YAL040C CLN3 + + + + +
YMR078C CTF18 +
YLR286C CTS1 + + + + + +
YKL096W CWP1 + + + +
YJR048W CYC1 +
YGR092W DBF2 + + +
YML110C DBI56 +
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ORF Symbol Fkh1 Fkh2 Ndd1 Mcm1 Ace2 Swi5 Mbp1 Swi4 Swi6
YDL101C DUN1 + +
YNL327W EGT2 + +
YJL196C ELO1 + + + + + +
YLR056W ERG3 + + +
YMR015C ERG5 + + + +
YDL018C ERP3 + + + +
YLR300W EXG1 + + + + + + + +
YDR261C EXG2 +
YOR317W FAA1 + +
YIL009W FAA3 +
YJL157C FAR1 +
YKL182W FAS1 + +
YER032W FIR1 + +
YER145C FTR1 + + +
YEL042W GDA1 +
YHR061C GIC1 + + + + +
YDR309C GIC2 + + + + +
YDR507C GIN4 + + + +
YLR342W GLS1 + +
YHR005C GPA1 +
YCR065W HCM1 + + + + +
YBR138C HDR1 + + +
YBR009C HHF1 + +
YPL127C HHO1 + + +
YBR010W HHT1 + +
YDL227C HO + +
YMR032W HOF1 +
YPL116W HOS3 +
YJL092W HPR5 +
YBR133C HSL7 +
YJL159W HSP150 + + +
YOR025W HST3 +
YDR191W HST4 +
YDR225W HTA1 + +
YBL003C HTA2 + +
YOL012C HTA3 + + +
YDR224C HTB1 + +
YBL002W HTB2 + +
YHR094C HXT1 +
YDR342C HXT7 +
YPL242C IQG1 +
YIL026C IRR1 + +
YJL073W JEM1 +
YAR018C KIN3 + + +
YBL063W KIP1 +
YPL155C KIP2 +
YGL216W KIP3 +
YPR159W KRE6 + + +
YKL103C LAP4 +
YJL134W LCB3 +
YDL003W MCD1 + +
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ORF Symbol Fkh1 Fkh2 Ndd1 Mcm1 Ace2 Swi5 Mbp1 Swi4 Swi6
YKL165C MCD4 +
YBL023C MCM2 +
YEL032W MCM3 + +
YGL201C MCM6 +
YNL173C MDG1 +
YNL328C MDJ2 + +
YDR461W MFA1 +
YNL145W MFA2 + + + + +
YER001W MNN1 + + +
YGR014W MSB2 + +
YDR097C MSH6 +
YPR149W NCE102 + + + +
YPL124W NIP29 +
YDR150W NUM1 + +
YGL038C OCH1 + + +
YGL055W OLE1 +
YPR075C OPY2 + + +
YNL289W PCL1 + + + + + + +
YDL127W PCL2 + + + +
IL050W PCL7 +
YDL179W PCL9 +
YNL231C PDR16 + + + +
YDR113C PDS1 + + + +
YMR076C PDS5 + + + + +
YAR071W PHO11 +
YBR092C PHO3 + +
YLR273C PIG1 +
YKL164C PIR1 + +
YKL163W PIR3 + +
YGL008C PMA1 + + + + +
YCR024C-A PMP1 + + +
YEL060C PRB1 +
YJL079C PRY1 + + + + + +
YKR013W PRY2 + + +
YJL078C PRY3 + + + + + +
YDL055C PSA1 + + + +
YLR142W PUT1 +
YKL113C RAD27 + +
YER095W RAD51 + + + +
YNL312W RFA2 +
YER070W RNR1 + + + + +
YGR152C RSR1 +
YBR070C SAT2 + + + +
YHR205W SCH9 +
YMR305C SCW10 + + + + +
YGL028C SCW11 + + + +
YGR279C SCW4 + + + +
YIL076W SEC28 + +
YHR098C SFB3 +
YLR079W SIC1 +
YIL123W SIM1 + + + + + +
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ORF Symbol Fkh1 Fkh2 Ndd1 Mcm1 Ace2 Swi5 Mbp1 Swi4 Swi6
YGR143W SKN1 + + + + + + +
YJL074C SMC3 +
YML058W SML1 +
YDR011W SNQ2 + + + + + +
YHR152W SPO12 + + + + + +
YMR179W SPT21 + + +
YOR247W SRL1 + + + + + + + +
YIL140W SRO4 +
YMR183C SSO2 + +
YFL026W STE2 +
YKL209C STE6 +
YDR297W SUR2 +
YML052W SUR7 + + + + +
YGL162W SUT1 +
YPL032C SVL3 +
YPL163C SVS1 + + + +
YJL187C SWE1 + + + + +
YER111C SWI4 + + + +
YDR146C SWI5 + + +
YBR083W TEC1 + + +
YGR099W TEL2 +
YML064C TEM1 + + +
YBR067C TIP1 +
YNL273W TOF1 + +
YML100W TSL1 + + + + + + + +
YOR075W UFE1 + +
YKR042W UTH1 + + + + + + + +
YEL040W UTR2 + + + + +
YPL253C VIK1 + + + + + + +
YHL028W WSC4 + + + + +
YAL022C YAL022C + + + + +
YBL064C YBL064C +
YBL111C YBL111C + +
YBL112C YBL112C + +
YBL113C YBL113C + +
YBR071W YBR071W + + + +
YBR139W YBR139W + + +
YBR157C YBR157C + +
YBR158W YBR158W + + + + + +
YBR161W YBR161W +
YCL024W YCL024W + +
YCL063W YCL063W + + +
YDR033W YDR033W + +
YDR055W YDR055W +
YDR157W YDR157W + + +
YDR190C YDR190C +
YDR247W YDR247W +
YDR307W YDR307W + + + +
YDR451C YDR451C + + + + + + +
YDR501W YDR501W + + + + +
YDR528W YDR528W +
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ORF Symbol Fkh1 Fkh2 Ndd1 Mcm1 Ace2 Swi5 Mbp1 Swi4 Swi6
YDR545W YDR545W + + + + +
YEL017W YEL017W + + +
YEL047C YEL047C +
YEL077C YEL077C + +
YER124C YER124C + + +
YER152C YER152C +
YER189W YER189W + + + + + + + +
YER190W YER190W + + + + + + + +
YFL064C YFL064C + + + + +
YFL065C YFL065C + + + + +
YNL160W YGP1 +
YGR086C YGR086C + +
YGR151C YGR151C +
YGR153W YGR153W +
YGR189C YGR189C + + + + + +
YGR221C YGR221C + +
YGR230W YGR230W +
YGR296W YGR296W + + + + + +
YGR234W YHB1 + + +
YHR143W YHR143W + + + +
YHR149C YHR149C + + + +
YHR151C YHR151C + + + + + +
YIL056W YIL056W + + + + + +
YIL121W YIL121W + +
YIL122W YIL122W + +
YIL129C YIL129C + +
YIL141W YIL141W +
YIL158W YIL158W + + + +
YIL177C YIL177C +
YJL051W YJL051W + + +
YJL225C YJL225C + + + + +
YJR030C YJR030C +
YJR054W YJR054W + +
YJR110W YJR110W +
YKL008C YKL008C + + +
YKL044W YKL044W + + + +
YKL052C YKL052C + +
YKL069W YKL069W +
YKL151C YKL151C + +
YKR041W YKR041W + +
YLL012W YLL012W +
YLR013W YLR013W +
YLR034C YLR034C +
YLR049C YLR049C + +
YLR057W YLR057W +
YLR084C YLR084C + + + + +
YLR154C YLR154C +
YLR190W YLR190W + + +
YLR194C YLR194C +
YLR209C YLR209C +
YLR302C YLR302C +
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ORF Symbol Fkh1 Fkh2 Ndd1 Mcm1 Ace2 Swi5 Mbp1 Swi4 Swi6
YLR380W YLR380W + +
YLR437C YLR437C + + + + + +
YLR462W YLR462W + + + + +
YLR463C YLR463C + + + + +
YLR464W YLR464W + + + + +
YLR465C YLR465C + + + + +
YLR466W YLR466W + + + + +
YLR467W YLR467W + + + + +
YML050W YML050W + + +
YML125C YML125C + + + + +
YML133C YML133C +
YMR002W YMR002W +
YMR031C YMR031C +
YMR144W YMR144W + + + + + + + +
YMR145C YMR145C + + +
YMR163C YMR163C +
YMR215W YMR215W + + + +
YMR253C YMR253C +
YNL056W YNL056W + +
YNL058C YNL058C + +
YNL078W YNL078W + + +
YNL134C YNL134C +
YNL176C YNL176C + +
YNL300W YNL300W + +
YNL339C YNL339C + + + + + + +
YNR009W YNR009W + + + +
YOL011W YOL011W + + +
YOL019W YOL019W +
YOL030W YOL030W +
YOL114C YOL114C + + +
YOR023C YOR023C +
YOR066W YOR066W + +
YOR073W YOR073W +
YOR114W YOR114W +
YOR248W YOR248W + + + + + + + +
YOR264W YOR264W +
YOR273C YOR273C + + + + +
YOR283W YOR283W +
YOR315W YOR315W + + + + + + +
YOR372C YOR372C + + + +
YML027W YOX1 + + + +
YPL025C YPL025C + + + + +
YPL141C YPL141C + + +
YPL158C YPL158C +
YPL250C YPL250C +
YPL267W YPL267W +
YPL283C YPL283C + + + + + + + +
YPR013C YPR013C + +
YPR202W YPR202W +
YPR203W YPR203W +
YLR121C YPS4 +
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ORF Symbol Fkh1 Fkh2 Ndd1 Mcm1 Ace2 Swi5 Mbp1 Swi4 Swi6
YML109W ZDS2 +

Table A.1: ChIP-on-chip binding map for cell-cycle genes (p-value cut-off=0.01).
“+” represents a significant binding of p ≤ 0.01.
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Appendix B

GNWD output for the 301 yeast cell-cycle regulated genes.

Regulator Target Order Delay (τ) Fitness(%) AIC Target Gene Annotation
ACE2 EGT2 2 0 60.048369 -0.222038 cell-cycle regulation protein
ACE2 CTS1 2 1 74.057228 -1.51966 endochitinase
ACE2 SCW11 2 2 77.470499 -1.543409 similarity to glucanase
ACE2 SIC1 2 0 60.496078 -1.796579 p40 inhibitor of CDC28P-Clb

protein kinase complex
ACE2 BUD9 2 0 62.995657 -2.164896 budding protein
ACE2 TSL1 2 0 74.038731 -2.612199 alpha,alpha-trehalose-phosphate

synthase, 123 KD subunit
ACE2 HSP150 2 0 82.06412 -2.98018 member of the

PIR1P/HSP150P/PIR3P family
FKH1 CLB2 2 0 72.39239 -2.204547 cyclin, G2/M-specific
FKH1 CLB2 2 0 72.39239 -2.204547 cyclin, G2/M-specific
FKH1 YDR451C 2 0 60.357144 -2.205495 strong similarity to YOX1P
FKH1 PHO11 2 2 71.621892 -2.324851 secreted acid phosphatase
FKH1 TSL1 2 2 73.857862 -2.711535 alpha,alpha-trehalose-phosphate

synthase, 123 KD subunit
FKH1 CDC46 2 2 73.977152 -2.889637 cell division control protein
FKH1 BUD4 1 0 69.379495 -2.895427 budding protein
FKH1 PDS1 2 2 62.352019 -3.04957 cell cycle regulator
FKH1 YPL141C 2 2 65.449936 -3.133143 strong similarity to protein kinase

KIN4P
FKH1 YIL158W 2 0 75.123807 -3.288392 similarity to hypothetical protein

YKR100c
FKH1 YOL030W 2 0 69.174669 -3.40947 strong similarity to glycoprotein

GAS1P
FKH1 SVL3 2 0 75.388873 -3.916309 strong similarity to PAM1P
FKH1 YCL063W 2 0 80.547973 -5.480048 weak similarity to yeast transla-

tion regulator GCD6P
FKH2 RNR1 2 0 65.5414 -1.784932 ribonucleoside-diphosphate

reductase, large subunit
FKH2 YMR215W 1 0 64.573384 -1.810287 similarity to GAS1 protein
FKH2 HHF1 2 0 69.398648 -1.877042 histone H4
FKH2 YNL058C 2 0 71.347029 -2.07159 similarity to YIL117c
FKH2 YJL051W 2 0 60.72833 -2.142167 hypothetical protein
FKH2 YPL141C 1 0 61.797678 -2.309275 strong similarity to protein kinase

KIN4P
FKH2 BUD4 1 0 63.867755 -2.763157 budding protein
FKH2 CIK1 1 0 65.480881 -2.793112 spindle pole body associated pro-

tein
FKH2 CDC20 2 0 63.715931 -3.07063 cell division control protein
FKH2 ALK1 2 0 76.58263 -3.407463 DNA damage-responsive protein
FKH2 KIP2 1 0 70.840209 -3.616939 kinesin-related protein
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Regulator Target Order Delay (τ) Fitness(%) AIC Target Gene Annotation
FKH2 YIL158W 2 0 66.465175 -4.027983 similarity to hypothetical protein

YKR100c
FKH2 YMR144W 2 2 64.549466 -4.156344 weak similarity to MLP1P
FKH2 YCL063W 2 0 69.377645 -4.412188 weak similarity to yeast transla-

tion regulator GCD6P
FKH2 ATR1 2 0 71.899359 -4.63104 aminotriazole and 4-

nitroquinoline resistance protein
MBP1 CLN1 2 0 62.303104 -1.216541 cyclin, G1/S-specific
MBP1 CLN1 2 0 62.303104 -1.216541 cyclin, G1/S-specific
MBP1 AGA1 2 0 71.835769 -1.318709 a-agglutinin anchor subunit
MBP1 YOR248W 2 0 60.578606 -1.510189 hypothetical protein
MBP1 HTB2 2 2 76.535451 -1.635653 histone H2B.2
MBP1 HTA2 2 2 74.292535 -1.734255 histone H2A.2
MBP1 SPT21 2 0 60.781543 -1.776206 required for normal transcription

at a number of loci
MBP1 CDC21 2 0 61.171301 -1.973526 thymidylate synthase
MBP1 YMR215W 2 1 73.521772 -2.12566 similarity to GAS1 protein
MBP1 SWI4 2 1 61.982663 -2.203049 transcription factor
MBP1 HHO1 2 0 79.438238 -2.284701 histone H1 protein
MBP1 RNR1 2 0 64.277429 -2.399333 ribonucleoside-diphosphate

reductase, large subunit
MBP1 SPK1 2 0 68.07085 -2.439243 ser/thr/tyr protein kinase
MBP1 RFA2 2 0 66.838408 -2.499096 DNA replication factor A, 36 kDa

subunit
MBP1 YDR528W 2 2 64.196024 -2.685099 similarity to LRE1P
MBP1 RFA1 2 2 66.192852 -2.76145 DNA replication factor A, 69 KD

subunit
MBP1 SMC3 2 2 73.012981 -2.821601 required for structural mainte-

nance of chromosomes
MBP1 ERP3 2 0 70.477764 -3.042157 weak similarity to DEP1P
MBP1 TSL1 2 2 75.47332 -3.365967 alpha,alpha-trehalose-phosphate

synthase, 123 KD subunit
MBP1 PDS1 2 0 71.810516 -3.499292 cell cycle regulator
MBP1 YMR144W 2 0 65.516481 -3.702367 weak similarity to MLP1P
MCM1 MFA2 2 0 62.25064 -1.016734 mating pheromone a-factor 2
MCM1 AGA1 2 0 82.52144 -2.040395 a-agglutinin anchor subunit
MCM1 YLR190W 2 2 65.741133 -2.076357 hypothetical protein
MCM1 UTR2 2 2 62.777288 -2.307552 cell wall protein
MCM1 ALK1 2 2 69.804709 -2.527855 DNA damage-responsive protein
MCM1 SWI5 2 2 70.769996 -2.54073 transcription factor
MCM1 SWI5 2 2 70.769996 -2.54073 transcription factor
MCM1 HSP150 2 2 64.039383 -2.559155 member of the

PIR1P/HSP150P/PIR3P family
MCM1 AGA2 2 1 71.048026 -2.665176 a-agglutinin binding subunit
MCM1 GPA1 2 0 68.608262 -2.76755 GTP-binding protein alpha sub-

unit of the pheromone pathway
MCM1 SWI4 2 0 70.097117 -2.844173 transcription factor
MCM1 YIL158W 2 0 65.630147 -2.874086 similarity to hypothetical protein

YKR100c
MCM1 CLN3 2 0 61.53676 -2.910408 cyclin, G1/S-specific
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Regulator Target Order Delay (τ) Fitness(%) AIC Target Gene Annotation
MCM1 PIG1 2 1 65.193977 -2.985317 putative type 1 phosphatase reg-

ulatory subunit
MCM1 BUD4 2 2 66.609154 -3.047091 budding protein
MCM1 YMR031C 2 2 63.178041 -3.592597 similarity to YKL050c and hu-

man restin
NDD1 YDR033W 2 1 70.387661 -1.786533 membrane protein related to

HSP30P
NDD1 CIS3 2 1 60.729477 -1.845925 strong similarity to

PIR1P/HSP150P/PIR3P family
NDD1 YNL058C 2 2 70.272817 -2.07121 similarity to YIL117c
NDD1 MFA2 2 2 67.18557 -2.219689 mating pheromone a-factor 2
NDD1 SML1 2 2 64.75619 -2.313915 protein inhibitor of ribonu-

cleotide reductase
NDD1 CDC5 2 0 74.117685 -2.39871 involved in regulation of DNA

replication
NDD1 HST3 2 2 66.239645 -2.429964 silencing protein
NDD1 YIL158W 2 2 66.569236 -2.510331 similarity to hypothetical protein

YKR100c
NDD1 KIN3 2 0 62.392821 -2.543515 ser/thr protein kinase
NDD1 CLB2 2 0 75.143033 -2.689671 cyclin, G2/M-specific
NDD1 CLB2 2 0 75.143033 -2.689671 cyclin, G2/M-specific
NDD1 YLR190W 2 0 71.227838 -2.784225 hypothetical protein
NDD1 YMR144W 2 2 60.885597 -2.849805 weak similarity to MLP1P
NDD1 ALK1 2 0 78.889112 -2.91632 DNA damage-responsive protein
NDD1 PRY1 2 0 81.049047 -2.988546 strong similarity to the plant PR-

1 class of pathogen related pro-
teins

NDD1 SPO12 2 2 62.737082 -3.051609 sporulation protein
NDD1 IQG1 2 0 76.440366 -3.219517 involved in cytokinesis, has simi-

larity to mammalian IQGAP pro-
teins

NDD1 BUD4 2 0 78.065775 -3.647724 budding protein
NDD1 YPL141C 2 0 78.498739 -3.723794 strong similarity to protein kinase

KIN4P
NDD1 FIR1 2 1 77.823827 -3.805727 interacts with the poly(A) poly-

merase in the two hybrid system
SWI4 SVS1 1 0 70.537326 -1.451141 vanadate sensitive suppressor
SWI4 MNN1 1 0 62.313402 -1.47927 alpha-1,3-mannosyltransferase
SWI4 CLB2 2 2 62.034039 -1.705976 cyclin, G2/M-specific
SWI4 CLB2 2 2 62.034039 -1.705976 cyclin, G2/M-specific
SWI4 HTB2 1 0 60.978756 -1.767544 histone H2B.2
SWI4 HTA1 1 0 71.809078 -1.845717 histone H2A
SWI4 YNL300W 1 0 60.412651 -1.978269 similarity to MID2P
SWI4 YOX1 2 0 70.553591 -2.048365 homoeodomain protein
SWI4 CLN1 1 0 69.937617 -2.048885 cyclin, G1/S-specific
SWI4 CLN1 1 0 69.937617 -2.048885 cyclin, G1/S-specific
SWI4 YGR189C 1 0 64.685005 -2.06787 family of putative glycosidases

might exert a common role in cell
wall organization

SWI4 YNR009W 2 2 61.806464 -2.108983 hypothetical protein
SWI4 CLB6 2 0 74.38724 -2.122882 cyclin, B-type
SWI4 CLB6 2 0 74.38724 -2.122882 cyclin, B-type
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SWI4 HTB1 1 1 69.795229 -2.14667 histone H2B
SWI4 PRY2 2 0 74.653417 -2.171415 similarity to the plant PR-1 class

of pathogen related proteins
SWI4 SRO4 1 0 61.569785 -2.297586 required for axial pattern of bud-

ding
SWI4 GIN4 1 0 64.394668 -2.387945 ser/thr protein kinase
SWI4 YPL267W 2 0 64.490964 -2.436754 weak similarity to C.elegans tran-

scription factor unc-86
SWI4 YGR086C 2 2 69.700726 -2.450202 strong similarity to hypothetical

protein YPL004c
SWI4 CLN2 1 0 64.809099 -2.451147 cyclin, G1/S-specific
SWI4 CLN2 1 0 64.809099 -2.451147 cyclin, G1/S-specific
SWI4 SPT21 1 0 68.100673 -2.588911 required for normal transcription

at a number of loci
SWI4 YIL141W 2 1 66.841842 -2.6399 questionable ORF
SWI4 RNR1 1 0 73.66253 -2.6472 ribonucleoside-diphosphate

reductase, large subunit
SWI4 SIM1 2 0 61.646892 -3.004911 involved in cell cycle regulation

and aging
SWI4 YHR149C 1 0 65.645714 -3.156839 similarity to hypothetical protein

YGR221c
SWI4 CLB5 1 0 67.09113 -3.160326 cyclin, B-type
SWI4 CLB5 1 0 67.09113 -3.160326 cyclin, B-type
SWI4 BBP1 2 2 70.427343 -3.219215 cell division control protein
SWI4 YGR151C 1 0 67.022668 -3.284654 questionable ORF
SWI4 RSR1 1 0 68.464644 -3.67413 GTP-binding protein
SWI4 FTR1 2 2 78.334865 -4.277765 iron permease that mediates

high-affinity iron uptake
SWI5 CTS1 2 0 76.022162 -1.394755 endochitinase
SWI5 YGR086C 2 1 60.292148 -2.182385 strong similarity to hypothetical

protein YPL004c
SWI5 YGR189C 2 1 63.120445 -2.193886 family of putative glycosidases

might exert a common role in cell
wall organization

SWI5 HSP150 2 2 72.965477 -2.245656 member of the
PIR1P/HSP150P/PIR3P family

SWI5 YIL177C 2 2 62.49735 -2.872546 strong similarity to subtelomeric
encoded proteins

SWI5 YGR296W 2 1 66.368044 -2.917391 strong similarity to YPL283c;
YNL339c and other Y’ encoded
proteins

SWI5 YHB1 2 1 68.790802 -3.062183 flavohemoglobin
SWI6 MNN1 2 2 67.001767 -1.269696 alpha-1,3-mannosyltransferase
SWI6 YNL300W 2 1 66.307379 -1.507283 similarity to MID2P
SWI6 CLN1 2 2 62.272008 -1.548075 cyclin, G1/S-specific
SWI6 CLN1 2 2 62.272008 -1.548075 cyclin, G1/S-specific
SWI6 YMR215W 2 2 67.580958 -1.913423 similarity to GAS1 protein
SWI6 MCD1 2 2 63.575917 -1.939164 Mitotic Chromosome Determi-

nant
SWI6 GIN4 2 0 61.960682 -1.960046 ser/thr protein kinase
SWI6 SWI4 2 0 70.893228 -1.993188 transcription factor

60



Regulator Target Order Delay (τ) Fitness(%) AIC Target Gene Annotation
SWI6 PRY2 2 2 69.158446 -2.001919 similarity to the plant PR-1 class

of pathogen related proteins
SWI6 RNR1 2 0 68.161451 -2.009178 ribonucleoside-diphosphate

reductase, large subunit
SWI6 MSH6 2 0 60.965749 -2.022091 DNA mismatch repair protein
SWI6 SVS1 2 2 71.71493 -2.060424 vanadate sensitive suppressor
SWI6 RAD27 2 0 61.087315 -2.342807 ssDNA endonuclease and 5’-

3’exonuclease
SWI6 ASF1 2 2 64.062118 -2.493437 anti-silencing protein
SWI6 CLB2 2 2 62.297831 -2.496261 cyclin, G2/M-specific
SWI6 CLB2 2 2 62.297831 -2.496261 cyclin, G2/M-specific
SWI6 SPK1 2 0 71.56099 -2.579225 ser/thr/tyr protein kinase
SWI6 SMC3 2 2 70.020246 -2.742052 required for structural mainte-

nance of chromosomes
SWI6 YPL267W 2 2 61.365374 -2.781722 weak similarity to C.elegans tran-

scription factor unc-86
SWI6 HHO1 2 2 78.707774 -2.933763 histone H1 protein
SWI6 PDS1 2 0 70.702625 -3.974437 cell cycle regulator

Table B.1: GNWD output for the 301 yeast cell-cycle regulated genes.
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