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ABSTRACT 

Mixed grasslands in south Canada serve a variety of economic, environmental and ecological 

purposes. Numerical modeling has become a major method used to identify potential grassland 

ecosystem responses to environment changes and human activities. In recent years, the focus has 

been on process models because of their high accuracy and ability to describe the interactions 

among different environmental components and the ecological processes. At present, two 

commonly-used process models (CENTURY and BIOME-BGC) have significantly improved 

our understanding of the possible consequences and responses of terrestrial ecosystems under 

different environmental conditions. However, problems with these models include only using 

site-based parameters and adopting different assumptions on interactions between plant, 

environmental conditions and human activities in simulating such complex phenomenon. In light 

of this shortfall, the overall objective of this research is to integrate remote sensing products into 

ecosystem process model in order to simulate productivity for the mixed grassland ecosystem in 

the landscape level. Data used includes 4-years of field measurements and diverse satellite data 

(System Pour l’Observation de la Terre (SPOT) 4 and 5, Landsat TM and ETM, Advanced Very 

High Resolution Radiometer (AVHRR) imagery).  

Using wavelet analyses, the study first detects that the dominant spatial scale is controlled by 

topography and thus determines that 20-30 m is the optimum resolution to capture the vegetation 

spatial variation for the study area. Second, the performance of the RDVI (Renormalized 

Difference Vegetation Index), ATSAVI (Adjusted Transformed Soil-Adjusted Vegetation Index), 

and MCARI2 (Modified Chlorophyll Absorption Ratio Index 2) are slightly better than the other 

VIs in the groups of ratio-based, soil-line-related, and chlorophyll-corrected VIs, respectively. 

By incorporating CAI (Cellulose Absorption Index) as a litter factor in ATSAVI, a new VI is 
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developed (L-ATSAVI) and it improves LAI estimation capability by about 10%. Third, 

vegetation maps are derived from a SPOT 4 image based on the significant relationship between 

LAI and ATSAVI to aid spatial modeling. Fourth, object-oriented classifier is determined as the 

best approach, providing ecosystem models with an accurate land cover map. Fifth, the 

phenology parameters are identified for the study area using 22-year AVHRR data, providing the 

input variables for spatial modeling. Finally, the performance of popular ecosystem models in 

simulating grassland vegetation productivity is evaluated using site-based field data, AVHRR 

NDVI data, and climate data. A new model frame, which integrates remote sensing data with 

site-based BIOME-BGC model, is developed for the mixed grassland prairie. The developed 

remote sensing-based process model is able to simulate ecosystem processes at the landscape 

level and can simulate productivity distribution with 71% accuracy for 2005.
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CHAPTER 1 – INTRODUCTION 

1.1 Research Background 

One fifth of the Earth's land surface is grassland (Ojima et al., 1996; Parton et al., 1996). 

There are approximately 24 M ha of mixed grassland in south Canada serving a variety of 

economic, environmental and ecological purposes. In recent years, however, grassland 

degradation has become a worldwide problem due to intense human activities and climate 

change (Li and Ji, 2002) and the mixed grassland in south Canada is no exception (Mitchell and 

Csillag, 2001). Pressures from human impact and resource use, including soil erosion, fire 

management, as well as species extinction and invasion, emphasize the need to understand 

grassland ecology and ecosystem processes (Mitchell, 2003). This research concentrates on 

developing methods to assess and monitor spatial grassland productivity, in order to interpret 

how weather, land management (i.e. grazing), and landscape features influence grassland 

vegetation. 

Due to the expense and the time-consuming nature of conventional ground-based 

monitoring, the model approach has become a major method in identifying potential ecosystem 

responses to environmental change and human activities. This is because models are able to 

synthesize information in a quantitative fashion (Rastetter, 1996) and can serve as an efficient 

and cost effective alternative to field experimentation. Further, models can provide a sound 

framework for planning changes in land use and management thereby anticipating and better 
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managing potentially adverse environmental impacts in the future. During the past 30 years 

several models have been developed to assess the impacts of climate change and human 

activities on grasslands (Campbell, et al., 1999; Huntchings and Gardon, 2001; Nouvellon et al., 

2000). However, the choice of an appropriate model for the particular grassland system is not 

always obvious. Different input parameters of space and time can alter or mask processes of 

interest, and the assumptions used in the model development may not be applicable in all 

potential application areas of study (Mitchell and Csillag, 2001). Therefore the main purpose of 

this research is to develop a remote sensing data-based model frame, which will more effectively 

utilize physical and biological layers to simulate grassland ecosystem dynamics in south Canada. 

This raises a number of important questions concerning the current state in modeling grassland 

productivity, notably:  

 What are the uncertainties of model processes and how do these uncertainties relate to model 

predictions? 

 Which class of model developed in mixed grassland will improve predictive accuracy? 

 What kinds of input parameters, which are required by current models, are more persuasive 

and more feasible for the mixed grassland? 

 What lessons can be learned from current models to improve further model design? 

The following review will survey current productivity models to further explore the 

above-mentioned questions. The purpose of the review is threefold: 1) identify the importance of 

grassland productivity, 2) briefly describe ecosystem process models and review their strengths 

and weaknesses; and 3) discuss the feasibility of remote sensing data-based process models. 

1.1.1 Grassland Productivity 
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Globally, grasslands are important in the study of terrestrial ecosystems as they cover 

nearly 20% of the Earth's surface (Lieth, 1978), contain about 30% of global carbon stocks 

(Ojima et al., 1996; Parton et al., 1996), and store at least 10% of the global soil organic matter 

(SOM, Eswaran et al., 1993). Grasslands are also economically important, containing much of 

the worlds grazing capacity (Burke et al., 1989). The mixed grasslands of south Canada are a 

critical component of the global ecosystem as a pool of carbon dioxide and also a gene pool for 

wildlife and vegetation (Hall et al., 2000). In recent years, a number of researchers (e.g. Mitchell 

and Csillag, 2001; Peat, 1997) have focused their attention on Grassland National Park (GNP), 

located in the northern portion of the mixed prairie. This region represents the northern edge of 

the continental distribution of vegetation that uses the C4 photosynthetic pathway. It is important 

to determine relative affinities of C3 and C4 plants to expected climate and atmospheric changes 

in order to evaluate potential impacts on species distributions, and global carbon and nitrogen 

budgets (Peat, 1997). Such work helps answer questions about functional group dynamics in 

landscape level such as the North American Great Plains as a whole, as well as addressing 

important issues specific to regions experiencing changes in vegetation communities, such as 

GNP. 

Human activities and climate variability influence the physical processes of the 

grassland ecosystem. Therefore the budget of energy, water, and carbon in grasslands is altered 

(Li and Ji, 2002). As a result, degradation and desertification of the grassland are very common 

phenomena, and mixed grasslands have frequently been associated with fluctuating, and 

unreliable productivity (Curll et al., 1985a, b; Evans et al., 1990; Orr et al., 1990; Fothergill et al., 

2000; Laws and Newton, 1992; Schwinning and Parsons, 1996a, b). Therefore, it is pressing to 

study the processes of plant eco-physiology, land surface physics, and human disturbance by 

estimating grassland productivity.  
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Grassland productivity can be studied either through experiments, or by using 

ecological models. To date most experimental studies have mainly focused on the level of 

production. The effects of single management factors on short-term grassland performance have 

been well studied (e.g. Barthram et al., 1992; Curll et al., 1985a,b; Evans et al., 1990; Evans et 

al., 1992; Frame, 1990; Grant et al., 1985; Gilliland, 1996; Nassiri, 1998; Orr et al., 1990; 

Parsons et al., 1991a). Unfortunately, due to the expense and the time-consuming nature of 

conventional ground-based monitoring, both the duration and scale of these experiments are 

commonly limited to a maximum of 4 or 5 years and to community level, which results in 

difficulty in analyzing the stability of productivity (Mitchell and Csillag, 2001). Therefore, in 

field experiments the identification of the processes and interactions has been complicated by 

environmental variables (Schulte, 2003).  

Grassland productivity has received considerable attention in theoretical ecological 

studies, in which the behavior of ecosystems is analyzed using mechanistic models. Recently, 

increasing computer capability has enabled the development of increasingly complex dynamic 

simulation models, in which pasture processes are simulated over time (e.g. Brereton and 

McGilloway, 1999; Grenfell, 1988; Parsons et al., 1991b; Schwinning and Parsons, 1996a,b; 

Thornley and Verberne, 1989; Thornley et al., 1995). These models can simulate numerous 

possible ecosystems in various hypothetical environments, thus allowing a mechanistic analysis 

of the processes regulating ecosystem stability. 

1.1.2 Ecosystem Models 

Ecosystem models offer a feasible approach to estimating grassland net primary 

productivity (NPP). Over the past 30 years, with the development of computational capacity, 

models proposed to calculate vegetation productivity are quite diverse. At one end of the 
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spectrum is the simple, remote sensing data-based model, which empirically derives the 

correlation of productivity with remote sensing products, such as light use efficiency (LUE) 

model (Montieth, 1972). At the other end of the spectrum is the process model, which simulates 

biochemistry property of ecosystem in detail, such as BIOME-BGC (Running and Hunt, 1993), 

CENTURY4.0 (Parton et al., 1993), and TEM4.0 (McGuire et al., 1995). 

Each model approach is based on simplifying assumptions about the structure of an 

ecosystem, and how vegetation may respond to changes in the environment. Different models 

use different simplifying assumptions and different environmental variables, leading to different 

estimates of productivity (Cramer et al., 1999). Remote sensing data-based models have 

limitations in ecological processing and are hard to transfer from one ecosystem to another with 

different sets of climate conditions. Process models, the focus of this study, also referred to as 

physically based models, can describe a process based on well-understood and established 

concepts.  

The utility of process ecosystem models for research has been recognized in the last 

decade, with BIOME-BGC and CENTURY being used for forest and grassland ecosystems, 

respectively. In this section, the commonly-used process models (CENTURY and BIOME-BGC), 

which have significantly improved our understanding of the possible consequences and 

responses of terrestrial ecosystems under different environmental conditions (Christopher et al., 

1995; Cramer et al., 1999; Song and Woodcock, 2003), are briefly introduced and their 

development status and existing problems are analyzed.  

1.1.2.1 Brief Introduction of Process Models 

The sources, features and main inputs and outputs of both process models are presented 

in Table 1.1. The models have the ability to simulate seasonal biogeochemical fluxes using 
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climate and soil information as driving input variables. Mechanistic relationships of these models 

are used to describe the fluxes of CO2, water, and nutrients between the different compartments 

of vegetation, soil, and atmosphere.  

Table 1.1 The characteristics of the process models (Cramer, 1999) 

Item Biome-BGC4.0 CENTURY 
Full name Biome BioGeochemical Cycles model   

Host Institution School of Forestry, University of Montana, 
Missoula, MT, USA 

University of Colorado, Fort 
Collins, Colorado, USA So

ur
ce

 

Key reference Running & Hunt 1993 Parton et al. 1993 

Spatial resolution of 
NPP 

0.5° x 0.5° 0.5° x 0.5° 

Temporal resolution of 
NPP 

1 day 1 month 

NPP calculated as: GPP-RA NPP 

GPP = f(SRad, LAI, Temp, SW, VPD, CO 
2, LeafN) 

Influenced by 

RA = f(VegC, Temp) 

NPP = f(VegC, Dead, N, 
P,SW,Temp, Prec, PET, S) Fe

at
ur

es
 

No. of VEGC pools 4 8 

Map P(me) P(me) 
Veg.Type 

Climate    

Type/texture %text[FAO] %text[FAO] 

r.depth F(veg)   Soil 
WHC F(text) F(text,veg) 

Elev.     X 

Atm. CO2 340 340 

Mean T   M[CL] 

∆T M[CL]   

Precipitation M[CL] M[CL] 

Humidity     

In
pu

t V
ar

ia
bl

es
 

Climate 
  

Radiation   M(λ,c(CL) 

Selected 
Outputs 

 Biogeochemical fluxes 
(LAI) 

Distribution 
Biogeochemical fluxes 

 

CENTURY is the pioneer mechanistic ecosystem model and arose from a background 

that explicitly considered soil carbon and nitrogen pool turnover rates over widely differing 

time-scales. CENTURY used a vegetation map (see Melillo et al., 1993) which was derived from 
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a number of sources (e.g. Matthews, 1983), to initialize structural and functional model 

parameters. BIOME-BGC derives several output variables by flux integration over the canopy. 

This model is fundamentally different from other models in three ways (Churkina, et al., 1995). 

First, the hydrological cycle is considered a key process and the BIOME-BGC model estimates 

the maximum sustainable LAI from water balance model-fluxes of water and CO2 and is 

mechanistically coupled through canopy conductance using the Penman-Monteith equation. 

Daily feedbacks between the water and carbon cycle drive estimated gross primary productivity 

(GPP), therefore canopy conductance (and hence, assimilation of photosynthates) could be 

controlled by changes in evapotranspiration. Second, the seasonality of canopy phenology is not 

climatically driven. Third, no production data are used to calibrate these models. The 

parameterization of processes is dependent on vegetation classes which distinguish plant 

functional types (e.g., evergreen vs. deciduous, broad-leaved vs. needle-leaved, C3 vs. C4) rather 

than the biome classes considered in other biogeochemical models.  

1.1.2.2 Model Application and Limitations 

It has been claimed that both models can be used to examine the influence of climate 

change and/or doubled CO2 on NPP (Melillo et al., 1993). However, recent research depicts 

somewhat dissatisfying results. The grassland version of CENTURY was tested using observed 

data from 11 temperate and tropical grasslands around the world by Breymeyer (1996). It was 

found that 40% of aboveground plant productivity values which are simulated had errors of more 

than ±25% of the observed plant production (Parton, et al., 1996). The Vegetation-Ecosystem 

Modeling Analysis Project (VEMAP) compared the NPP estimates of the conterminous United 

States for contemporary climate and three climate change scenarios between CENTURY and 

Biome-BGC. Although both models estimated similar NPP for the conterminous United States 
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under contemporary conditions, the response of NPP to climate change varied between the 

models. Both models estimated increases in NPP with climate change and showed correlations 

among water use, nitrogen availability, and primary production, but the models simulated spatial 

variability in ecosystem processes in substantially different ways (VEMAP Members, 1995).  

Considering the unsatisfactory modeling results, several gaps in these models are 

identified. First, though process models are based on current knowledge of major 

ecological/biophysical processes, they suffer from detailed parameters which are frequently not 

available, making the task of operating and validating process-models difficult. Second, these 

models have assumed homogeneity within the ecosystem, using lumped (averaged) parameters 

(Fitz, et al., 1996). Due to the inherent heterogeneity in natural systems, more recent research has 

emphasized the need for general ecological models that can be re-parameterized and applied to 

different ecosystems for distributed simulation (Band et al., 1991; Costanza et al., 1990; 

Costanza and Maxwell, 1991). Third, these models simply describe functional changes within 

particular vegetation types. They can not estimate changes in vegetation distribution as a result 

of climate change (Chutkins, 1995).  

1.1.3 Feasibility of Using Remote Sensing Data in the Process Models 

The above analysis of the limitations in process models demonstrates the importance of 

the quality and availability of input parameters (detail parameters, average parameters and 

vegetation distribution parameters). These parameters are crucial to the accuracy of the final 

productivity estimation. However, it is often very difficult to obtain such high-quality input 

parameters at the landscape level, due to the lack of fine-resolution observation data in space and 

time. With the development of remote sensing techniques, much information (e.g. LAI and land 

cover type) has been estimated with satellite data at various spatial and temporal resolutions 
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(Hansen et al., 2000; Loveland et al.,2000; Myneni et al., 1997b; Olson, 1994). It is also 

generally accepted that monitoring vegetation activity in the landscape level should be 

necessarily carried out with remote sensing techniques, as direct measurements are difficult in 

the mixed grassland due to its nature of high diversity and heterogeneity. 

Originally, remote sensing data are mainly used in a LUE model to model productivity 

by determining the temporal behavior of the photosynthetically active tissue. Further, 

considering the gaps of the LUE model in ecological processing, some process models (e.g. 

BIOME-BGC) now use satellite data as well, but only for calibration or prescription of certain 

limited processes (Churkina et al., 1995). In recent years, an alternative approach (Mougin, 1995) 

has been taken into account. In this approach, the ecosystem process models not only use 

satellite data as input variables like LUE model, but integrate satellite data in an explicit 

formulation of the main processes. In this way, a close analysis of the relationships between 

different processes (photosynthesis, C transpiration, etc.) described by the process models and 

satellite data can be carried out. However, very few studies have used this alternative approach to 

simulate vegetation productivity for the mixed grassland. 

1.1.4 Summary of Research Gaps 

As a result (Figure 1.1), it is necessary to study grassland productivity. There are two 

types of models in the study of grassland ecosystem. The first is based on experimental research. 

Unfortunately, experimental models are limited because they are dependent on both internal 

system properties and environmental factors. The second type of model is based on theoretical 

ecological studies. They can analyze the underlying processes of grassland ecosystems in 

isolation of their environment. Nevertheless, their output must still be treated cautiously unless 

their complex input values can be obtained for the heterogeneous ecosystems. Some research has 
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used remote sensing products as input variables of ecosystem models. However, very few studies 

have determined the appropriate inputs and parameters for modeling vegetation productivity in 

the landscape level. 

 

Figure 1.1  The diagram of the research gap 

1.2 Research Objectives 

1.2.1 Research Goals 

In order to address these research gaps, the aims of this study are to: 

 Examine how environmental factors affect spatial variation of biophysical properties 

in the mixed grassland ecosystem and determine the optimum pixel size for studying 

northern mixed grasslands in order to aid in the selection of satellite images, 

 Determine the best indicators (remote sensing indicator and phenological indicator) 

which are highly related to mixed grassland development and could be used to 

derive vegetation biophysical maps to aid spatial modeling,  

 Investigate the appropriate classification approach for the mixed grassland and 

  

  Grassland 
  Productivity 

  

Remote 
Sensing 
Products

  
  

Process 
Models   

Research Gap: Process models 
are normally site-based and difficult 
to be scaled up to multi spatial 
levels without using remote sensing data 
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develop land cover map for the study area as model’s input, and 

 Evaluate the output (productivity) of the popular ecosystem process models 

(CENTURY and BIOME-BGC) and develop an ecosystem process model 

framework for the mixed grassland ecosystem that will make up the shortcoming in 

the popular process models and integrate satellite data into the model in order to 

simulate vegetation productivity for the mixed grassland functioning at the 

landscape scale. 

1.2.2 Research Hypothesis 

The overall hypothesis of this research is that remote sensing data can provide 

ecosystem processing models with spatially distributed inputs and parameters (Figure 1.2). 

More specifically, 

 Remote sensing data, with different resolutions, can increase grassland productivity 

prediction accuracy at different levels. 

 Remote sensing data, with mixed information in each pixel, can provide ecosystem 

processing models with input parameters. 

 Remote sensing data can be more effective in heterogeneous landscapes because of 

continuous data acquisition in the coverage. 

 Remote sensing data can be used to monitor ecosystem dynamics through process 

models because of the high temporal resolution.  
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Figure 1.2 The flowchart of the research hypothesis 

1.3. Study Area 

The field study was conducted at Grasslands National Park (GNP, Figure 1.3), in 

southwest Saskatchewan, Canada (N 49º12’, W 107º24’). This area falls within the 

mixed-grass prairie biome of the northern Great Plains, and is characterized by semi-arid climate, 

open landscape, and large areas dominated by herbaceous plant communities (Coupland, 1993). 

The park is approximately 906.5 km2 in area located in two discontinuous blocks, west and east. 

The first land was acquired for the park in 1984 and the legal agreement signed by Canada and 

Saskatchewan in 1988 marked the formation of the park. Most areas of the park have been under 

protection from livestock grazing for over 20 years.  

  Hier archical spatial 
resolution   

High temporal resolution

Continuous data

Mixed information

R
em

ot
e 

se
ns

in
g 

da
ta

 

 

  

Pr
oc

es
s m

od
el

 

 

Predictive accuracy 
validation   

Input parameters   

Heterogeneous landscapes  

Ecosystem dynamics   



 

 13

 

Figure 1.3 The location map of Grassland National Park 

The dominant native grass species found in the study area are needle-and-thread grass 

(Hesperostipa comata (Trin. & Rupr.) Barkworth), blue grama (Bouteloua gracilis (Willd. ex 

Kunth) Lag. ex Griffiths), and western wheat grass (Pascopyrum smithii (Rydb.) A. Löve). Other 

prominent invasive or introduced species includes smooth brome (Bromus inermis Leyss) and 

crested wheat grass (Agropyron cristatum(L.) Gaertn) (Figure 1.4). The forbs and shrubs are 

only 5.2 to 15.5 percent of the mean basal cover in the mixed grassland (Coupland, 1950), 

mainly found along the Frenchman River. The GNP area has average temperatures ranging from 

-12.4 ºC in January to 18.3 ºC in July, and a total precipitation of 350 mm per year 

(Environment Canada, 2000). The soils in the study area are brown Chernozemic clay loam soils 

(Saskatchewan Soil Survey, 1992). 
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Valley Grasslands Sloped and Upland Grasslands 

Eroded Communities Shrub Communities 
 

Figure 1. 4 Stratification of the landscape in the GNP area 

1.4 Thesis Structure 

There are seven chapters in this thesis (Figure 1.5). Chapter 1 is the introduction where 

a general review of pertinent literature is presented, as well as the research objectives, study area, 

and the thesis structure. The literature review gives an overview of why and how study grassland 

productivity, and emphasizes that the models, integrating remote sensing data, offer a feasible 

approach to estimating grassland productivity in the landscape level.  
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Chapter 2 addresses the first research objective, that is, examines the environmental 

factors that affect spatial variation of biophysical properties and determines the optimum pixel 

size for studying the mixed grassland ecosystem. This manuscript provides a more detailed 

review of the literature regarding why it is important to investigate the spatial variation of 

grassland biophysical properties and why it is critical to select the optimal pixel size of remotely 

sensed data for the landscape level study. Using a wavelet technique, the chapter estimates the 

dominant scale of spatial variation in both field data and remote sensing data (ground 

hyperspectral data and satellite data) for the mixed grass ecosystem. Therefore, the most optimal 

pixel size for studying the mixed grass ecosystem is identified and evaluated. 

Chapters 3, 4, and 5 examine suitable vegetation indeces, develop vegetation 

biophysical maps, detect phenology variables, and derive land cover maps for modeling the 

mixed grassland ecosystem. These chapters address the second research objective: to explore 

remote sensing tools and their ability to estimate grassland biophysical properties.  

Chapter 6 uses 5-year field data, 20-year AVHRR NDVI data, and climate data to 

evaluate outputs (vegetation productivity) of the popular process models (CENTURY and 

BIOME-BGC) and introduces an ecosystem process model framework for mixed grassland 

ecosystem that integrates satellite products (developed from chapter 2 & 3) into the process 

model in order to simulate vegetation productivity for the mixed grassland at the landscape scale. 

In chapter 7, the results and conclusions of each manuscript are summarized. As well, 

the limitations of the present research are discussed, and a recommendation for future work 

relating to this thesis is given.  
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Figure  1.5  Methodology framework of the thesis
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CHAPTER 2 – DETECTING GRASSLAND SPATIAL VARIATION AND DETERMINING 
OPTIMUM PIXEL SIZE FOR STUDYING THE MIXED GRASSLAND ECOSYSTEM 

2.1 Abstract 

Insight into the spatial variation of an ecosystem can provide better understanding of 

ecological processes and patterns in different scales. Detecting these multiple scales of spatial 

variation in grassland landscapes is valuable for selecting suitable resolutions of remote sensing 

products, determining management options, and designing proper sampling regimes. The 

objective of this study is to examine how environmental factors affect spatial variation of mixed 

grassland biophysical properties and what is the suitable spatial resolution for studying the mixed 

grassland ecosystem. Field leaf area index (LAI), soil moisture, and topographical parameters 

(relative elevation, upslope length, and a wetness index) were obtained in three parallel transects 

of a grassland ecosystem in Saskatchewan, Canada in 2004. One 20 m resolution SPOT 4 

(HRVIR) image was acquired at the same period of the growing season but in the following year. 

Normalized Difference Vegetation Index (NDVI) was calculated from the satellite image of the 

center 381 m transect and two extensive 2560 m perpendicular transects. A wavelet approach 

was used to identify the scales of variations. Statistical results showed that LAI is significantly 

correlated to the wetness index (r2 = 0.37) and soil moisture (r2 = 0.43). The wetness index is 

better than relative elevation and upslope length in demonstrating the effect of topography on 

grassland vegetation. The variation of soil moisture is significant at two small scales of about 20 

m and 40 m, and that of the wetness index is at the large scale of 120 m. The variation of 
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grassland LAI is significant at three scales (20 m, 40 m and 120 m), which indicates that the 

spatial variation of LAI might be controlled by both topography and soil moisture, though the 

120 m is the dominant scale of variation in LAI. NDVI significantly correlated with grassland 

LAI along the centre transect. The effect of topography on grassland LAI is also proven by the 

significant relationships between NDVI and the wetness index. The wavelet analysis identified 

the variation of two extensive transects at the scale of about 120 m, which is similar to the 

dominant variation scale of grassland LAI. These results confirmed that the effect of topography 

on spatial variation can be identified from the appropriate satellite image. The results 

demonstrated that the 20 to 30 m (one fourth of a period, 120 m) would be an optimum pixel size 

to detect potentially important patterns associated with topography in our study area. This study 

suggested that the spatial scales of soil and topographic data aid in the selection of appropriate 

satellite image resolution for monitoring and managing ecosystem.  

2.2 Introduction 

Spatial variation is one of the most important and widely applicable concepts in 

grassland ecology (Armesto et al., 1991). The mixed grassland of North America has been 

described as inherently heterogeneous due to its composition, productivity, and diversity varying 

across multiple scales (Ludwig and Tongway, 1995). Insight into the spatial variation of 

grassland can provide better understanding of ecological processes and patterns in different 

scales. Detecting these multiple-scales of spatial variation in grassland landscapes is valuable for 

selecting suitable resolutions when remote sensing products are applied to ecosystem models, 

determining management options, and designing proper sampling regimes for monitoring 

ecosystem heterogeneity and biodiversity.  
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A number of recent studies have effectively demonstrated that the spatial pattern of 

grasslands ecosystem is apparently scale dependent (Nellis and Briggs, 1989). Large-scale 

patterns can be determined by variation in topography or climate condition. Lobo et al. (1998) 

and Sebastian (2004) determined spatial structure of grassland by topography; Dennis et al. 

(2002) identified the spatial distribution of upland beetles in relation to landform; and Reed et al. 

(1993) found that the state of an environmental variable (e.g. soil nutrient elements) affected 

plant community composition. Small-scale heterogeneity may result from a combination of 

biotic and abiotic factors. The variation of vegetation at small scales is affected by soil 

heterogeneity (Reynolds et al., 1997), but it is also influenced by biotic factors such as grazing 

animals (Mitchley, 1994), unpalatable and spiny plants (Callaway et al., 2000), shrubs and trees 

(Söderström et al., 2001), ant mounds (Blomqvist et al., 2000), and dung and urine patches 

(Shiyomi et al., 1998).  

Researchers have currently adopted different data collection methods to determine 

either large- or small-scale spatial variations of grasslands. Fine resolution data that can be 

obtained from field measurements are commonly used for small-scale spatial pattern analysis. 

Considering that field measurements are rarely obtained to a broad extent, related variables 

derived from satellite imagery covering a broad extent become a valuable source of data in 

characterizing spatial dependence in ecological systems (Lobo et al., 1998). Recently, numerous 

studies have used remote sensing imagery for estimating vegetation variability across space 

(Marceau and Hay, 1999). In grassland ecosystems, Griffiths et al. (2000) measured grassland 

species diversity based on 30 m Landsat Thematic Mapper (TM) imagery; Lobo et al. (1998) 

analyzed the spatial pattern of grassland landscape variables using fine resolution maps; 

Schmidtlein and Sassin (2004) modeled floristic gradients of meadows based on 2 m resolution 

hyperspectral airborne imagery; and Ji and Peters (2003) determined the response of grassland 
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vegetation to moisture availability through 1 km resolution Advanced Very High Resolution 

Radiometer (AVHRR) data. All these studies demonstrated that remote sensing data with diverse 

resolutions are efficient in detecting the spatial variation of grassland ecosystems.  

However, what has been largely missing is a general comparison between spatial 

patterns obtained from field measurements and those gained via remote sensing data. Few 

studies have examined both large- and small-scale spatial variation within mixed grassland 

ecosystems in North America. This shortfall in previous studies may be a result of a lack of 

appropriate data with fine resolution across a broad area (Brosofske et al., 1999). Without 

investigating the spatial scales of research objects based on field measurements, scientists may 

be constrained by the predetermined spatial resolution (i.e. the pixel size) when using 

satellite-based remotely sensed data (Rahman et al. 2003). To choose satellite imagery with an 

appropriate resolution, studies have suggested that different pixel sizes should be adopted for 

different grassland ecosystems (Rahman et al., 2003; Gamon et al. 1993, Davidson and Csillag, 

2001). Therefore, this study will combine the fine resolution ground measurements with a 

wide-extent satellite image to determine the spatial pattern and appropriate resolution for a 

mixed grassland ecosystem.  

Approaches that quantify the spatial characteristics of biotic or abiotic variables have 

recently been developed. These methods include geostatisics (Miller et al., 1988), lacunarity 

(Plotnick et al., 1993), spectral analysis (Turner et al., 1991), state-space methods (Wendroth et 

al., 1992), and G statistic (Dennis et al., 2002). These methods, however, could not evaluate 

features that existed over a series of multiple scales (Si and Farrell, 2004). Because grassland 

ecosystems generally have trends in spatial domain (i.e. non-stationary spatial series), and these 

trends may indicate important soil, topographic, and ecological processes that affect grassland 

production, a different method has to be adopted to analyze the data from grassland ecosystems. 
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The wavelet approach has been proposed to detect various features of non-stationary data due to 

its three abilities which may be overlooked by other methods: .1) aggregating patterns along 

transects at different scales (Mehlum et al., 1999); 2) analyzing non-stationary or non-sinusoidal 

multi-frequency data (Bradshaw and Spies, 1992; Bradshaw and McIntosh, 1994; Saunders et al., 

2005); and 3) providing diverse wavelet functions to examine the different types of data and 

hypothesized patterns. 

The applications of wavelet analysis on vegetation ecology have grown considerably 

over the past two decades. For example, this technique has been used to explore multi-scale 

patterns in ecological data (Saunders et al., 2002), microclimate along transects (Redding et al., 

2003), soil variability (Lark and Webster, 1999), plant productivity (Csillag and Kabos, 2002), 

crop biomass production and topographical parameters (Si and Farrell, 2004), and ground cover 

(Dale and Mah, 1998). However, few studies have applied the wavelet approach in the analysis 

of mixed grassland biophysical data and environmental information (Mi et al., 2005).  

Therefore, the overall objectives of this manuscript are to 1) examine how much of the 

variation in vegetation biophysical property is accounted for by soil moisture and topographic 

parameters (relative elevation, upslope length, and wetness index), 2) examine if the significant 

scale of variations in vegetation biophysical properties can be identified from topographic 

indices and soil moisture, 3) examine the relationship between satellite-derived data and 

topographical indices and test the spatial variation of two extensive transects, and 4) identify and 

evaluate the most optimal pixel size for studying the mixed grass ecosystem. Since geographic 

data generally exhibit certain non-stationary features (large scale trend and localized features), 

we chose wavelet analysis as a tool for identifying the dominant scales of variations. We used 

leaf area index (LAI) as the grassland biophysical parameter to study vegetation variation of the 

mixed grassland ecosystem, for the reason that LAI is the best parameter to represent the 
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biophysical properties in the mixed grassland (Zhang, 2006) and LAI is an important parameter 

in the ecosystem models (Liu et al., 1997). 

2.3 Materials and Methods   

2.3.1 Field Study Sites  

The study was conducted in Grasslands National Park (GNP), Saskatchewan, Canada 

(49°15’ N, 107°09’ W). GNP was established in 1984 to preserve a representative portion 

of the Canadian mixed grass prairie ecosystem. This area is characterized as having a semi-arid 

climate, with an annual precipitation of approximately 340 mm, mainly accumulating as rainfall 

in the growing season (May - September). The mean annual temperature in this region is 3.4°C. 

The growing season is relatively short (170 days on average) and is often further shortened by 

the lack of moisture (Csillag et al., 2001). 

GNP consists of upland, slopeland, and valley grasslands. Considering that upland 

grasslands dominate the mixed grassland ecosystem in North America, we located our sampling 

site in upland native grassland (Figure 2.1). We chose this site because it was situated along a 

typical rolling terrain with a soil moisture gradient. The dominant soil type is a nutrient poor, 

shallow, clay-loam brown soil, but a wide variety of soil types (chernozems, solonetzes, regosols 

and gleysols) are present (Csillag et al., 2001). The dominant grass species included 

needle-and-thread grass (Stipa comata Trin. & Rupr.), blue grama grass (Bouteloua gracilis 

(HBK) Lang. ex Steud.), June grass (Koeleria macrantha (Ledeb) J.A. Schultes f.) and western 

wheatgrass (Agropyron smithii Rydb.). 
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Figure 2.1 The field sites at Grassland National Park. The top image is a SPOT4 scene (20-m 

resolution) in a false color composite (RGB: NIR, Red, and Green bands). Therefore, the red color 

in this image indicates high vegetation cover. The yellow box within the image is the park holding 

boundary. The yellow cross sign in the image is the centre of the study location, which located at 

typical upland grassland with the representative rolling terrain and moisture gradient. The graph in 

the middle illustrates all transects used in our study. Topographical parameters were collected 
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from the three parallel transects (north, centre, and south), and the LAI measurements from the 

centre transect. The broadband NDVI values were derived from the SPOT satellite image of 

transect 1 and transect 2. The bottom photo was taken from the study area. 

 

2.3.2 Field Data 

Field data collection was performed in the summer of 2004 along three 381-m parallel 

transects (South, Centre, and North), separated by a lateral distance of 20 m between transects. 

The LAI, soil and topographic samples were taken from quadrats located at 3 m intervals along 

the centre transect (128 locations), and from quadrats located at 6 m intervals along the other two 

transects (64 locations per transect). The size of the quadrat is 50×50 cm2. In all, a total of 256 

points were measured within an area of 1.905 ha (i.e. 381 by 50 m).  

LAI, soil moisture, relative elevation, slope, and distance were recorded at each quadrat. 

LAI (the projected area of all vegetation parts normalized by the subtending ground area) was 

measured using a LiCOR LAI-2000 Plant Canopy Analyzer (LI-COR Inc., Lincoln, Nebraska, 

USA). The LAI-2000 was shaded when measurements were being taken to reduce the effect of 

glazing from direct sunshine. At each plot, LAI is the average of four automatically calculated 

LAI values; each was the comparison result of one above canopy reading followed by 10 below 

canopy readings all completed within two minutes to avoid atmospheric variation. Soil moisture 

was measured using an Aquaterr Soil Moisture and Temperature Probe (Forestry Suppliers, Inc., 

Jackson, USA). A laser theodolite (ATT Metrology Services, Inc., California, USA) was used to 

measure relative elevation, angle and distance. These topographic measurements allow for 

precise calculation of slope percentage and upslope length at any point along transects.  
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Three topographical parameters, relative elevation, upslope length, and wetness index 

(WI), were calculated and used in this paper. Relative elevation was defined as the distance a 

point sits above or below the average elevation of the study area. Upslope length was calculated 

as the distance from the measurement point in the landscape to the highest relative elevation 

point along the local slope (Si and Farrell, 2004). The wetness index developed by Beven and 

Kirkby (1979) was calculated using the following equation. 

)
tan

ln(
β

γ
=WI         (1) 

Where γ is the upslope length and tan β is the local terrain slope of the landscape elements. We 

choose upslope length as a topographic index because upslope length is conceptually appealing 

for semi-arid zone where snowmelt runoff and snow redistribution are the water redistribution 

processes (Si and Farrell, 2004). We selected the wetness index because it is physically based 

and widely accepted.  

2.3.3 Satellite Multispectral Imagery Acquisition 

This study used a SPOT 4 HRVIR image with 20 m resolution, including four bands of 

green, red, near infrared (NIR), and short wave infrared (SWIR) (broadband data). This image 

covers the study area (Scene Centre Location: N049° 08' 51", W107° 29' 31") and was 

acquired on June 22, 2005, the same growth period in which ground data was collected in 2004 

(Figure 2.1). Considering topography is relatively time-invariant, the dominant spatial variation 

of grassland associated with topography should be similar for both 2004 and 2005.  

The SPOT image was processed for geometric and radiometric corrections in PCI 

Geomatica V.9.1 software. First, the geometric correction was done with 34 GCP’s (Ground 
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Control Points) and resulted in an accuracy of better than 0.3 pixel root mean square error 

(RMSE), representing approximately 6 meters or less error on the earth’s surface. The road 

shape file provided from the GNP’s GIS database further confirmed the geometric correction 

accuracy because easily identifiable objects, such as road intersections from the shape file 

corresponded well with those in the image. Distortions caused by variations in topography were 

corrected using a Digital Elevation Model (DEM), which was also obtained from the GNP’s GIS 

database. Because this study involved analysis of biophysical parameters derived from the image, 

it was necessary to perform atmospheric and radiometric correction to convert digital numbers to 

radiance and, in turn, radiance to reflectance values. This atmospheric correction was done using 

the ATCOR 2 module within PCI Geomatica V.9.1 software. The algorithms used in this module 

were developed by DLR, German Aerospace Research Establishment based on information from 

the references (Ahern et al., 1977; Lanzl and Richter, 1991; Richter, 1990). The ATCOR 2 was 

run on parameters found within the image’s metadata. 

After preprocessing the image, the broadband NDVI (Rouse et al., 1974) was derived 

from the NIR and Red bands for estimating grassland biophysical properties in this study, as 

below: 

dNIR

dNIRNDVI
Re

Re

ρρ
ρρ

+
−

=        (2) 

NDVI was selected because it is known to highlight biophysical factors such as chlorophyll 

content and LAI (Deering et al., 1975; Huete et al., 2002). The NDVI values were extracted 

along the centre transects, which were geo-referenced in the field by taking GPS readings. 

Because the resolution of the image is 20 m, we can only extract data from 20 pixels for the 
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centre 381 m transect. In order to match the ground sampling with the resolution of remote 

sensing data, LAI and ground topographic data were smoothed with a 20 m moving window. 

Furthermore, in the interest of examining whether or not image data capture the same scale 

information as ground truth data, we also extracted the NDVI from two extensive 2560 m 

perpendicular transects (transect 1 and transect 2), which were located near the three 

afore-mentioned transects (Figure 2.1). 

2.3.4 Statistical Analysis 

A widely used empirical approach for modeling the relationship between two variables 

is regression analysis (Cohen et al., 2003). We applied regression models to evaluate the linear 

relationships among LAI, environmental factors (relative elevation, upslope length, wetness 

index, soil moisture), and NDVI from the centre transect at the 95% significance level. Although 

LAI and NDVI were from different years, the NDVI should be correlated with LAI because LAI 

variation depends, to a large extent, on the relatively time-invariant topography. RMSE, equation 

(3), has been calculated to evaluate the regression model’s accuracy.  

∑
=

∧

−=
n

i
ii xx

n
RMSE

1

2)(1        (3) 

2.3.5 Wavelet Approach 

Since choice of wavelet function is crucial for spatial analysis, four commonly-used 

types of wavelet families (Haar, Daubechies Least Asymmetric, Mexican Hat, and Morlet) were 

tested to determine the best spatial analyzer for this study. The Morlet wavelet mother function 

(Equation (3): with dimensionless frequency, W0=6) were finally chosen, since it gives more 
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satisfying results for the scale analysis and provides a balance between time and frequency 

localization (Grinsted et al., 2004). The continuous wavelet transformation (Bradshaw and Spies 

1992) was used to examine the spatial variability of the ground measurements (wetness index, 

soil moisture, and LAI) along the center transect and of satellite data (NDVI) along two 

extensive transects. As suggested by Si (2003), we first utilized exploratory analysis of the local 

wavelet spectrum to identify whether any patterns exist in the data. The local wavelet spectrum 

was also used to determine whether these patterns are repeated across the transect (a global event) 

or are restricted to only one, or few, localized regions across the transect (localized events). The 

periodicity of the repeated pattern is referred to as the ‘scale of variation’. If the pattern is 

global in scale, the wavelet variance is then analyzed to determine its statistical significance.  

The Morlet wavelet mother function is scaled by a parameter of a and translated by a 

parameter of b to give: 

)(1)(, a
bt

a
tba

−
= ψψ          (4) 

The a parameter can be interpreted as a dilation (a>1) or contraction (a<1) factor of the 

wavelet function, corresponding to different scales of observation. The parameter, b, can be 

interpreted as a temporal or spatial translation or shift of the wavelet function (Si and Farrell, 

2004). The continuous Morlet wavelet transform of a real signal f(x) where x is a real variable 

(Brunsell and Gillies, 2003) is defined as:  

dx
a
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ψ         (5) 

where W is the wavelet coefficients (i.e. local wavelet spectrum) and the overbar designates the 
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complex conjugate. The coefficient a/1  is included to normalize the energy of the wavelets 

(Bruce et al., 2001). We used the Wavelet Toolbox in MATLAB (MathWorks, Inc) for 

calculating the wavelet transform over a continuous range of dilation scales of both field 

measurements and NDVI. Prior to the wavelet transform calculation, LAI, soil, topography, and 

NDVI variables were standardized by subtracting their mean from the measurements and 

dividing the difference by their standard deviation to facilitate comparison between local wavelet 

spectra.  

In order to interpret the local wavelet spectrum, the wavelet (scale) variance (Dale and 

Mah, 1998, Saunder et al., 2005): 

n
baW

V
n

i i
a

∑== 1
2

)(

),(
        (6) 

is calculated as an average of the wavelet energy to examine overall, ‘global’ structure (i.e. 

scales of pattern) within the data (Bradshaw and Spies, 1992). In equation (6), n is the number of 

data points in the spatial series. Large wavelet variance at a scale indicates that the variation at 

this scale is important for describing the spatial pattern along the transect. The significance test 

for the wavelet (scale) variance was performed against a red noise data series. A simple model 

for the red noise is the univariate lag-1 autoregressive progress (Torrence and Compo, 1998): 

nnn Zxx += −1α ,          (7) 

where α is the assumed lag-1 autocorrelation. The discrete Fourier power spectrum of a red 

noise with unit variance is (Torrence and Compo, 1998): 
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where N is the number of locations, K=0,1,…,N/2 is the frequency index, and r is the first order 

autocorrelation coefficient (Shumway and Stoffer, 2000). Thus, by choosing an appropriate lag-1 

autocorrelation, one can use (8) to model a red-noise spectrum. In this paper, if the actual global 

wavelet spectrum is significantly greater than the red noise spectrum at a confidence level of 

95%, then it can be assumed to be a true feature or significant different from that of red noise 

with this confidence.  

2.4 Results 

2.4.1 Statistical Analyses of the Correlations of LAI, Soil Moisture, Topographic Parameter, 

and NDVI  

Figure 2.2 illustrated the measured relative elevation, soil moisture, and LAI, as well as 

the calculated upslope length and wetness index along the centre transect. There are three main 

depressions (centred at 87, 210, and 360 m) and a small depression centred at 270 m along the 

transect. The upslope length and wetness index showed a similar trend: large values in the 

depressions and small values on the knolls. The LAI curve along the transect showed a coarse 

trend which is similar to that of the topographical indices, as well as finer fluctuations that 

resemble the variations seen in soil moisture. In addition, LAI, upslope length, and wetness 

index increased sharply near the three large depressions. Clearly, spatial variations in LAI, soil 

moisture, and topography indices are non-stationary, exhibiting localized features and trends 

along the transect (Figure 2.2). 
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Figure 2. 2 Measured grassland relative elevation, soil moisture, LAI, upslope length, and wetness 

index in 128 plots as a function of distance along the centre transect 

Statistical analysis indicated that LAI is significantly correlated with both soil moisture 

and topographic parameters (i.e. relative elevation, upslope length, wetness index) (Table 2.1). 

The strongest correlation is found between LAI and soil moisture (r2= 0.43, p<0.001). Among 

the three topographic indices, the wetness index has the strongest correlation with LAI (r2= 0.37, 

p<0.001). The values of RMSE show the similar results as r2 (Table 2.1). 

120m
240m

120m
240m
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Table 2.2 Statistics of LAI, soil moisture, and topography parameters obtained at 128 locations 
along the central sampling transect. 

Variable Mean SD＃ Minimum Maximum RMSE r2＃＃ 

LAI 1.09 0.47 0.20 2.42    

Soil moisture (%) 76 5.59 61 90 0.32 0.43＊＊＊ 

Wetness index 4.48 1.84 0.83 10.27 0.37 0.37＊＊＊ 
Relative elevation (m) 1.12 0.95 0.00 3.93 0.41 0.22＊＊＊ 
Upslope length (m) 28.43 18.97 0.00 75 0.38 0.33＊＊＊ 

＃ Standard Deviation 
＃＃ Coefficient of determination between LAI and the corresponding variable in the first column. 
＊＊＊ Significant at P < 0.001 

NDVI is significantly correlated with LAI (r2 = 0.52, Figure 2.3 A), and topographic 

parameters (i.e. relative elevation, upslope length, and wetness index, Figure 2.3 B) along the 

centre transect. When compared with upslope length and relative elevation, the wetness index 

showed the strongest correlation with the NDVI (r2 = 0.44, Figure 2.3 B). 
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Figure 2.3  The results of regression analyses between NDVI and LAI (A), and between NDVI 

and topographical parameters (B) along the centre transect. The r2 is the coefficient of 

determination 
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2.4.2 Wavelet Analyses of Ground Measurements (LAI, Soil Moisture, and Topography)  

Visual inspection of the local wavelet spectrum for LAI (Figure 2.4 A1) revealed three 

scales of variation across the transect (0 to 20 m, 40 to 60 m, and 100 to 140 m). For the 0 to 20 

m scale, the intensity of local wavelet spectra along the transect is relatively weak, indicating 

small-scale variance in the LAI is weak. For the 40 to 60 m scale, there are large variances 

compared to the 0 to 20 m scale. For the 100 to 140 m scale, regions are centred at 15, 80, 140, 

210, 280, and 360m that are interlaced with the lowest and highest variances along the transect. 

These regions correspond to the locations of peaks (knolls) and troughs (depressions) across the 

transect, suggesting the effect of terrain on LAI. The statistical testing of the ‘global’ features 

indicated that the wavelet variances around 20 m, 40 m, and 120 m are significantly different 

from (or greater than) that of the red noise spectrum. Contribution of the wavelet variance at 120 

m scale to the total variance is much more than that at the other two scales (Figure 2.4 A2). This 

indicated that LAI shows distinct spatial patterns at different scales, especially at 120 m, which 

corresponded well to the typical observed sizes of the topographic features. 

Similar to those observed in LAI, the local wavelet spectrum of soil moisture (Figure 

2.4 B1) exhibited three scales of variations at 0 to 20 m, 40 to 60 m, and 100 to 140 m. For the 

40 to 60 m scale, regions of high variables also corresponded to the knolls and depressions 

occurring along the transect. The spatial variability of soil moisture is significantly different 

from that of red noises at 20 and 40 m scales, but not at 120 m (Figure 2.4 B2).  
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Figure 2. 4 The local wavelet spectrum of LAI (A1), soil moisture (B1), and wetness index (C1). 

The wavelet variance of LAI (A2), soil moisture (B2), and wetness index (C2). The solid line in 

A2, B2, and C2 figures is wavelet variance. The dashed line is the power spectrum of a red noise at 

a confidence level of 95%. 
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The local wavelet spectrum of the wetness index (Figure 2.4 C1) exhibited three scales 

of variations at 0 to 80 m, 80 to 140 m, and greater than 140 m. For the 0 to 80 m scale, the local 

spectra are relatively uniform. The 80 to 140 scales are the regions showing the lowest and 

highest variances. Strong variances are centred at 15, 80, 140, 210, 280, and 360 m across the 

centre transect. Over 140 m, the local spectra are relatively weak again. ‘Global’ feature 

analysis (Figure 2.4 C2) revealed that the spatial variability of the wetness index is significantly 

different from that of the red noise spectrum at the 120 m scale which is similar to the dominant 

spatial pattern found in the LAI analysis.  

2.4.3 Wavelet Analyses of Satellite Data (NDVI) For the Two Extensive Transects 

The local spectrum of the NDVI in transect 1 (Figure 2.5 A1) exhibited two scales at 0 

to 120 m, and over 120 m. For the 0 to 120 m scale, regions of high local spectra are mainly 

shown at the middle of the transect, which may correspond to the knolls and depressions 

occurring along the transect. At scales greater than 120 m, the local wavelet power spectrum 

increases. The ‘global’ feature analysis show the spatial variability associated with the 

broadband NDVI along transect 1 is significantly different at the scales of about 50 m and 120 m 

from that of the red-noise spectrum (Figure 2.4 A2).  

The local spectrum of the NDVI in transect 2 (Figure 2.5 A2) exhibited different local 

patterns from that observed in transect 1(Figure 2.5 A1). The major difference is that the local 

spectrum of the NDVI along transect 2 is much stronger than that along transect 1, especially at 

scales larger than 120 m. The ‘global’ feature analysis (Figure 2.5 B2) revealed that spatial 

variability of the NDVI in transect 2 is significantly different from that of the red noise spectrum 

around the scales of 40 m, 120 m and 180 m. The 40 m and 120 m scales coincide with the 
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spatial variability of the NDVI in transect 1. However, both ‘global’ features along the two 

transects did not show spatial variation at the 20 m scale, which was identified by the ground 

measurements. 
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Figure 2.5 The local wavelet spectrum of the broadband NDVI in transect 1(A1) and transect 2 

(B1). The wavelet variance of the broadband NDVI in transect 1 (A2) and transect 2 (B2). The 

solid line in A2 and B2 figures is wavelet variance. The dashed line is the power spectrum of red 

noise at a confidence level of 95% 
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2.5 Conclusions and Discussion 

This study revealed the correlation between LAI and soil moisture, also LAI and 

topographic parameters (relative elevation, upslope length, and wetness index). The strongest 

correlation was found between LAI and soil moisture. This is expected because soil water affects 

the rates of evapotranspiration, photosynthesis, and net carbon assimilation. When water is a 

limiting factor in semiarid grasslands, the soil moisture is the most important variable controlling 

vegetation patterns (Flanagan and Johnson, 2005). Soil moisture also affects decomposition and 

mineralization rates (Rodriguez-Iturbe et al., 1999) and the uptake rate of nitrogen and 

phosphorus in semiarid environments, which in turn determine the heterogeneity and diversity of 

grassland vegetation (Loiseau et al. 2005). 

LAI is strongly correlates to topographic parameters, which indicates that grassland 

production depends, to a large extent, on topography. This is also consistent the conclusion by 

Green and Erskine (2004) that topography explained 38 to 48% of the spatial variance in crop 

yield. As we know, the growth of vegetation is usually influenced by three key factors: soil water 

content (Rodiyati et al., 2005), solar radiation (Sellers et al., 1997), and soil organic community 

(Sebastian, 2004). Soil water content, which is sensitive to soil type and topography, depends 

largely on the amount of precipitation accumulation, redistribution and runoff (Sellers et al., 

1997). Topographic variation has also an effect on the absorption and reflectance or emission of 

radiation by the surface, which directly affects photosynthesis of plants. Topography affects soil 

organic content distribution as well, which is the main environmental gradient affecting 

grasslands vegetation at the landscape scale (Swanson et al., 1988). In conclusion, topography 

affects soil water content, solar radiation and soil organic content in the mixed grassland, and 

contributes to the variation of LAI.  
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The wetness index explained more of the total variation in LAI than both relative 

elevation and upslope length. This reflects the fact that the wetness index is equal to the ratio of 

the upslope length to the local slope at a given point in the landscape (Eq. (1)) and, as such, 

reflects the steepness of the slope at that point. The longer the upslope length is above a point on 

a hillslope, the more the area contributes snow and snowmelt water to the point. Water is less 

likely to accumulate at these steeper slopes. Therefore, the wetness index reflects more strongly 

the water storage in a location than other indicators, thus resulting in higher correlation to the 

LAI. This result differs from that of Si and Farrell (2004), which showed a stronger correlation 

between grain yield and upslope length than that between grain yield and wetness index. The 

different results might result from the difference between natural and cultivated landscapes. In 

natural grassland landscape, water and organic community accumulation is affected only by 

topography, whereas in cultivated land, this accumulation is affected by cultivation as well as 

topography. Cultivation changes water flow pathway and also results in tillage translocation of 

soil. Permanent vegetation cover traps more snow and reduces snowmelt water runoff; therefore, 

water accumulation is lower in cultivated area. In addition, grasslands have more well-developed 

macropore networks than cultivated lands (Bodhinayake and Si, 2004). As a result, grasslands 

have enhanced water infiltration and reduced runoff. Therefore, water storage in natural 

grassland is not only dependent upon slope length, but also slope steepness. Consequently, in 

semi-arid regions, natural vegetation production at a point is sensitive to both the steepness of 

the slope and the upslope length. It indicates the importance of applying the appropriate 

topographical parameter to investigate grassland productivity. 

NDVI is significantly correlated with LAI and topography parameters, demonstrating 

that the variation of LAI can be detected by remote sensing data and that the 20 m resolution 

imagery can reveal, to some extent, the effect of topography on grassland vegetation. The 
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wetness index explains more of the total variation in the NDVI than relative elevation and 

upslope length along the three transects. This result matches well with the conclusion from 

ground biophysical data analysis.  

Wavelet analysis showed the spatial variation of soil moisture at scales of 20 m and 40 

m, closely associated with the spatial scales of LAI (20 m and 40 m). The effect of soil moisture 

on the spatial scales of vegetation has also been demonstrated by many other studies (Lange et 

al., 1982; Vinnikov et al., 1996; Hu and Islam, 1997; Reynolds et al., 1997; Seghieri et al., 1997). 

Since there is a wide variety of soil types in GNP (Csillag et al., 2001), the two small scales of 

LAI may result from an integrated effect of other environment factors (soil texture, depth, and 

chemical and physical properties) on soil moisture. However, soil moisture may vary with time 

(Green and Erskine, 2004) and the effect of the dynamic nature of soil moisture on LAI is 

unknown, which is beyond the scope of this study. The small scales also suggest that the imagery 

resolutions larger than 20 m might not be able to identify all spatial variability resulting from soil 

moisture in our study area. 

Wavelet analysis also showed that topographic factors are responsible for the majority 

of the spatial variation of LAI at a large scale of about 120 m. These results clearly indicated the 

effect of topography on vegetation variation in the mixed grassland ecosystem, and provide a 

guideline for future researchers to select optimum remote sensing imagery for this region. The 

advantage of topographical data is that they are easy to obtain and relatively time-invariant 

compared to the measurements of more dynamic soil properties. Therefore, following the 

sampling theorem (McGrew and Monroe 2000), 30 m (one fourth of a period, 120 m) would be 

an optimum pixel size to detect potentially important patterns associated with topography in our 

study area. For example, landscape patterns of LAI, biomass, photosynthetic flux and 

evapotranspiration of vegetation in the study region can probably be well described using this 
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fundamental pixel size. Even though 30 m resolution (Landsat imagery) would be an optimum 

pixel size to detect potentially important patterns, we chose SPOT imagery to perfom analysis in 

this and following study. The reason that we used SPOT imagery with 20 m resolution but not 

Landsat imagery with 30 m resolution is that we taking image’s quality and availability into 

account. 

Heterogeneity of the broadband NDVI along two 2560 m transects demonstrated that 

vegetation variation at the large scale 120 m can be detected by SPOT imagery with a 20 m 

resolution. This result largely confirmed the conclusion that the NDVI variation is also related to 

topography at landscape scale (Brosofske et al., 1999) and that the appropriate resolution 

imagery can examine the spatial characteristics associated with topography for landscape level 

ecosystem studies (Gamon et al., 1993). In addition, the NDVI in transect 1 has a significant 

spatial scale of 50 m and in transect 2 has a significant spatial scale of 40 m, which must be a 

result of spatial variation from soil moisture, because ground measurement analysis showed that 

soil moisture affects grassland variation at relatively small scales (20 m and 40 m). The 

difference between the 50 m scale and the 20 or 40 m scale may be caused by the change in soil 

moisture over the years.  

Both ‘global’ features of the NDVI along the two extensive transects did not show 

spatial variation at the 20 m scale (associated with soil moisture), which is identified by the 

ground biophysical data. The result is predictable. According to sampling theorems (McGrew 

and Monroe, 2000), imagery with a 4 m resolution (one fourth of 20 m) would retain most 

distinct functional properties for grassland variation at the 20 m scale. The resolution of the 

SPOT image (20 m) used in this study is much coarser than the optimum. This result also 

indicates that some small features that create heterogeneity (such as soil moisture) might not be 
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identified at broader scales. In addition, considering soil moisture varies by year, and NDVI may 

not identify minor spatial variation, a 4 m pixel size may still miss some finer spatial variability 

at the scale <20m. 

The 20-30 m resolution determined from both ground measurement and satellite data is 

similar to an 18 to 20 m pixel size for Northern California grassland (Gamon et al. 1993). In that 

study, the 18 to 20 m scale is supposed to capture grassland variation associated with larger 

patterns of slope, aspect and soil type. The 4 m resolution from this study is comparable to a 6 m 

pixel size for Southern California grassland (Rahman et al., 2003), which can retain most of the 

characteristic spatial variation of grassland ecosystem functions. In addition, in the same study 

area, Davidson and Csillag (2001) also determined that commercially available satellite data at 

resolutions of 10 to 50 m may offer the potential for estimating coverage of C4 species. Though 

the first two studies conducted in different grassland ecosystems, and the last study only 

determined the optimum scale for C4 species coverage, those matches provide confidence in our 

study’s results. Therefore, we can conclude that, in our study area, a 20-30 m coarse resolution 

can be used to analyze grassland biophysical spatial variation associated with topography, and a 

fine resolution (4 m) may capture spatial variation resulting from soil moisture. 

In conclusion, the implications of this study are that: (1) in investigating grassland 

variation, one should consider the effect of both soil moisture and topography, not only at the 

fine scale but also at the coarse scale; (2) to estimate grassland productivity, applying the 

appropriate topographical parameter is important; (3) the wavelet approach is useful for 

revealing both localized and global features of soil moisture and topography that exert significant 

effects on grassland vegetation; (4) remote sensing data can reveal the variation of grassland 

biophysical properties and monitor the effect of topography on grassland vegetation by 
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performing wavelet approach, and (5) 20 to 30 m (one fourth of a period, 120 m) would be an 

optimum pixel size to detect potentially important patterns associated with topography in our 

study area.  
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CHAPTER 3 –SUITABLE VEGETATION INDICES FOR STUDYING THE MIXED 
GRASSLAND ECOSYSTEM 

3.1 Abstract 

Remote sensing data can be effectively exploited for the study of ecosystem patterns 

and processes. However, remote sensing of semi-arid mixed grassland faces a challenge: to well 

understand the performance of different vegetation indices (VIs) in estimating biophysical 

properties of grassland with low amount of green vegetation, high amount of dead material on 

the ground and variable soil/ground conditions. Using ground-based hyperspectral, and 

biophysical data, this study has compared the predictive capability of VIs for estimation of 

grassland leaf area index (LAI). Results indicated that the relationships between grassland LAI 

and VIs are significant. The performance of the RDVI (Renormalized Difference Vegetation 

Index), ATSAVI (Adjusted Transformed Soil-Adjusted Vegetation Index), and MCARI2 

(Modified Chlorophyll Absorption Ratio Index 2) were slightly better than the other VIs in the 

groups of ratio-based, soil-line-related, and chlorophyll-corrected VIs, respectively. By 

incorporating CAI (Cellulose Absorption Index) as a litter factor in ATSAVI, a new VI was 

computed (L-ATSAVI) and it improved LAI estimation capability in our study area by about 

10%. In order to further confirm if the 20-30 m pixel size discovered in Chapter 2 is optimum to 

study the mixed grassland ecosystem, the scale of ground-based hyperspectral data and LAI 

along the transect has been simulated using low-pass filtering procedure with a 30 m moving 

window. Statistical analysis indicated that scale-simulated L-ATSAVI can explain much more 
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grassland LAI (r2 up to 89%) than original finer resolution. This conclusion can be further 

applied to select optimal pixel size of remote sensing image and to detect hierarchical 

characteristics in grassland landscape. 

3.2 Introduction 

Leaf area index (LAI) is an important parameter in the ecosystem models and LAI can 

be used to estimate biophysical processes (e.g. spatial structure, heterogeneity, net primary 

production) and to infer to biochemical processes (e.g., photosynthesis and transpiration) of 

terrestrial ecosystems (Bonan, 1993; Pierce & Running, 1988). Therefore, LAI is chosen as a 

grassland biophysical parameter to study the mixed grassland ecosystem in this study.  

Over the years, the quantification and variability of plant biophysical properties (such as 

LAI) have been estimated indirectly by use of VI from remotely sensed data (Badhwar et al., 

1986; Peterson et al., 1987; Turner et al., 1999). These indices can roughly be grouped into two 

classes: biophysical indices and biochemical indices. Biophysical indices are those traditional or 

improved traditional indices, designed to correlate to vegetation structure and condition, such as 

simple ratio-based indices (Rouse et al., 1974; Pearson and Miller, 1972), soil-line-related 

indices (Qi, et al., 1994), and chlorophyll-corrected indices (Haboudane et al., 2004). These 

indices normally show strong relationships with vegetation biophysical properties (e.g. LAI and 

biomass) and weak relationships with leaf biochemical constituents (e.g. cellulose, chlorophyll, 

nitrogen, pigment, and water) (Zarco-Tejada, 2000). Biochemical indices are mainly used to 

estimate vegetation biochemical properties such as cellulose content (Daughtry et al., 1996). 

Example of such an index is CAI (Cellulose Absorption Index). 



 

 62

Based on the designed purpose, the biophysical vegetation indices have the theoretical 

advantage over biochemical indices in quantifying vegetation LAI. This theoretical advantage 

has been demonstrated by Broge and Lablance (2001), which compared the predictive power and 

stability of all VIs in estimating LAI, and found that SAVI2 (Second Soil-Adjusted VI, the 

biophysical index) is the best predictor of LAI, while that the biochemical indices poorly 

estimate LAI. Therefore, the emphasis in this study is to choose or develop VIs which have 

biophysical and biochemical basis for estimating LAI. 

Even though some VIs have shown a satisfactory correlation with LAI, researchers 

generally face a challenge in using VIs because of the large non-vegetation component found 

(Guo, 2002; Tucker, 1979). This challenge was specifically true in our study area, the semi-arid 

mixed grassland ecosystem. The challenge with using VIs in the semi-arid environment is to 

remove the contribution of litter, soil, and other canopy characteristics (e.g. chlorophyll content) 

from plant spectral response (Rundquist, 2002). Specifically, the effects of dead litter, which 

often dominates the total fraction of aboveground biomass (Asner et al., 1998; Guo, 2002) and 

varies with different microclimatic conditions (Van Leeuwen and Huete, 1996), presents a 

serious problem to the interpretation of vegetation indices (Duncan et al., 1993). The 

contribution of bare soil extent and soil brightness is a significant barrier to the determination of 

LAI, energy absorption, and net primary productivity (NPP), and has also been widely 

recognized (Graetz and Gentle, 1982; Huete, 1988; Asrar et al., 1992). The chlorophyll content, 

which affects canopy reflectance in a spectral region similar to that of LAI (i.e., from the green 

(550 nm) to the red edge (750 nm)), thus affects the accuracy of LAI estimation and is hard to 

uncouple (Haboudane et al, 2004). In our study area, standing dead, moss, lichen, litter, rock, and 

bare soil constituted 47.2% of the ground cover (Zhang et al., 2005), and dead material 

composed of 47.0% of the total biomass (Guo et al., 2005).  
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In view of the challenge, substantial efforts were made in improving the current indices 

and in developing new indices aimed to compensate for the soil background influences (Bannari 

et al., 1996; Baret et al., 1989; Huete, 1988; Qi et al., 1994; Rondeaux et al., 1996), for 

atmospheric effects (Karnieli et al., 2001), for other canopy components such as litter (Nagler et 

al., 2003) and chlorophyll (Haboudane, et al., 2002). However, the effect of both bare soil and 

litter on the LAI-vegetation index relationship remains an unsolved problem. Furthermore, it is 

difficult to infer from existing studies which VI has the advantages in estimating LAI over other 

indices for our study area, in which litter is a dominant constituent of the canopy components.  

Based on the preceding background, the goal of this research is to evaluate the 

performance of various hyperspectral vegetation indices in characterizing grassland biophysical 

variables in the mixed grassland ecosystem. Specifically, the goal of this paper is to: 1) examine 

the sensitivity of commonly-used hyperspectral VIs to LAI; 2) investigate the performance of a 

new hyperspectral vegetation index that aims to reduce the effects of litter and bare soil 

simultaneously on canopy reflectance in our study area; 3) further demonstrate if the determined 

20-30 m resolution is suitable for studying the mixed grassland ecosystem.  

3.3. Study Area and Data Collection 

The study was conducted in Grasslands National Park, Saskatchewan, Canada (GNP). 

The area is characterized as a semi-arid mixed grass prairie ecosystem. The study site is located 

in the West Block of Grasslands National Park which consisted of an upland grass ecosystem. 

Field data collection was performed in the summer of 2004 along five parallel transects (381 m 

in length) across the landscape separated by a lateral distance of 10 m between transects. LAI, 

relative elevation, and reflectance measurements were taken at quadrats with 3 m intervals along 
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the center transect (128 locations) and at quadrats with 6 m intervals along other four transects 

(64 locations per transect). LAI was measured using a LiCOR LAI-2000 Plant Canopy Analyzer 

(LiCor Inc., Lincoln Nebraska) and a laser theodolite (ATT Metrology Services, Inc., Redmond, 

Wash.) was used to measure relative elevation, which is the vertical distance from the surface to 

a reference point. All following analysis used data from the center transect since measurements 

between 5 transects are not significantly different from each other.  

Canopy reflectance was measured using an Analysis Spectral Devices, Inc. (Boulder, 

Colo.) FR Pro Spectroradiometer. The measurement wavelength range was 350-2500 nm, and 

the spectral resolution was 3 nm at 700 nm and 10 nm at 1400 nm and 2100 nm. The 25° field 

of view probe was used pointing down at the canopy at approximately 1 meter above ground. 

Measurements were taken within two hours of solar noon on sunny days. Calibration was made 

using a white spectralon reflectance panel (Labsphere, Inc., North Sutton, N.H.) at 

approximately 10 minute intervals to minimize the atmospheric condition changes.  

3.4. Methodology 

During the past decade the wavelengths applied in vegetation studies have been 

concentrated to VIS and NIR spectral regions because of i) the relatively high radiation 

absorption of red light (comparing with less radiation absorption of green and blue light) by 

leaves due to the presence of chlorophyll, and ii) the high reflectance of NIR light due to 

scattering in the leaf internal structure (Curran, 1980). However, studies have shown these 

wavelength regions to be unreliable measures of green vegetation, because of other factors 

(atmospheric composition, irradiance conditions, sun angle, soil color, and amount of litter) also 

contributing to the spectral reflectance. To reduce these effects, some factors (atmospheric 
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composition, irradiance conditions, and sun angle) have been studied and correctly modeled in 

physical models; other factors (soil color and amount of litter) have been redressed by translating 

reflectance data into a VI (Moulin & Guérif, 1999), usually calculated from the red and NIR 

bands. Numerous VIs have been developed, and they generally attempt to enhance the spectral 

reflectance of green plant fractions while minimizing the spectral effects caused by other 

variations in other factors. A detailed discussion on VI theory can be found in Huete (1989).  

Exhaustive comparative studies have been already carried out to assess the predictive 

power of the different optical indices and their sensitivity to various canopy parameters and 

external factors (e.g., Broge and Leblanc, 2001; Chen, 1996; Haboudane et al., 2004). 

Nevertheless, few studies have evaluated the sensitivity of different VIs to biophysical properties 

of the mixed grassland. In this section, we adopted several commonly-used hyperspectral 

vegetation indices that are developed for vegetation biophysical properties, to compare their 

sensitivity to grassland LAI. Our list of indices was not exhaustive, but covered the major 

formulations and presents some of the latest indices as well.  

3.4.1 Biophysical VIs Selected for This Research 

The selected biophysical VIs (Table 3.1 with explanations) can be grouped into three 

categories: ratio-based VIs (NDVI, RDVI, and MSR), soil-line-related VIs (PVI, SAVI, MSAVI, 

TSAVI, ATSAVI and SARVI), and chlorophyll-corrected VIs (TVI, MCARI, MCARI1, MTVI1, 

MCARI2, and MTVI2). Basically, ratio-based VIs have been developed, based on the ratio of 

reflectance in the red-NIR regions of the electromagnetic spectrum to increase contrast and 

remove effects from the soil background (Elvidge and Lyon 1985, and Huete et al. 1985). 

Soil-line-related VIs have been developed to minimize the soil background influence by 



 

 66

establishing a soil line to characterize the soil spectra (Baret et al., 1989; Baret et al., 

1992; Huete, 1988; Qi, et al., 1994). The soil line defined by the coefficients a and b gives the 

slope and intercept as determined by the linear regression of the soil reflectance in the red-NIR 

spectral regions (Richardson and Wiegand, 1977). Chlorophyll-corrected VIs were proposed to 

be more responsive to green LAI variations by suppressing the ratio of NIR to Red to lower the 

sensitivity to chlorophyll effects (Haboudane et al., 2004).  

Table 3.3 Biophysical VIs investigated in this study 

VI Name Equation Advantages Reference 
NDVI Normalized 

Difference 
Vegetation Index 670800

670800

ρρ
ρρ

+
−

 

Responds to changes 
in the amount of 
green biomass 

Rouse et al., 
1974; 
Haboudane 
et al., 2004 

RDVI Renormalized 
Difference 
Vegetation Index 670800

670800

ρρ
ρρ
+
−

 

Suitable for low and 
high LAI values 

Reujean and 
Breon, 1995; 
Haboudane et 
al., 2004 

MSR Modified Simple 
Ratio 1)1(

670

800

670

800 +− ρ
ρ

ρ
ρ

 

More linearly related 
to vegetation 
parameters than 
RDVI. 

Chen, 1996; 
Haboudane 
et al., 2004 

PVI Perpendicular 
Vegetation Index 

2

670800

1 a

b

+

−− ρρ
 

Minimizes the soil 
background 
influence based on 
the Euclidean 
distance to the soil 
line. 

Richardson 
and 
Wiegand, 
1977 

SAVI Soil Adjusted 
Vegetation Index 5.0,

)(
)1(

670800

670800 =
++

−
+ L

L
L

ρρ
ρρ

 

Minimizes the soil 
background 
influence by 
combining a canopy 
background 
adjustment factor, L. 

Huete, 1988; 
Haboudane 
et al., 2004 

MSAVI Modified Soil 
Adjusted 

Vegetation Index  

[ ])(8)12()1(2
2
1

670800
2

800800 ρρρρ −−+−+
 

Less affected by 
canopy variations as 
well as soil spectra 
properties. 

Qi, et al., 
1994 ; 
Haboudane 
et al., 2004 

TSAVI Transformed 
Soil-Adjusted 
Vegetation Index aba

baa
−+
−−

670800

670800 )(
ρρ
ρρ

 
Baret et al., 
1989 

ATSAVI Adjusted 
Transformed 
Soil-Adjusted 
Vegetation Index 

)1(
)(

2
670800

670800

aXaba
baa
++−+

−−
ρρ

ρρ
 

, 
X=0.08 

Less affected by soil 
background and 
better for estimating 
homogeneous 
canopy. 

Baret and 
Guyot, 1991 
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SARVI Soil and 
Atmospheric 
Resistant 

Vegetation Index  

5.0,2
)/())(1( 800800

=−=
++−+

LWhere
LL

blueredrb

rbrb

ρρρ
ρρρρ Minimizes both 

canopy background 
and atmospheric 
effects. 

Kaufman and 
Tanre, 1992; 
Haboudane 
et al., 2004 

TVI Triangular 
Vegetation Index 

( ) ( )[ ]550670550750 2001205.0 ρρρρ −−−  Characterizes the 
radiant energy 
absorbed by leaf 
pigments. 

Broge and 
Leblanc, 
2001 
 

MCARI Modified 
Chlorophyll 
Absorption Ratio 
Index 

( ) ( )[ ] )/(2.0 670700550700670700 ρρρρρρ −−−  Responsive to 
chlorophyll 
variation. 

Daughtry et 
al., 2000 

MCARI
1 

Modified 
Chlorophyll 
Absorption Ratio 
Index 1 

[ ])(3.1)(5.22.1 550800670800 ρρρρ −−−  
Less sensitive to 
chlorophyll effects, 
more responsive to 
green LAI 
variations. 

Haboudane 
et al., 2004 

MTVI1 Modified 
Triangular 
Vegetation Index 1 

[ ])(5.2)(2.12.1 550670550800 ρρρρ −−−  
More suitable for 
LAI estimations than 
TVI. 

Haboudane 
et al., 2004 

MCARI
2 

Modified 
Chlorophyll 
Absorption Ratio 
Index 2 

[ ]
5.0)56()12(

)(3.1)(5.25.1

670800
2

800

550800670800

−−−+

−−−

ρρρ

ρρρρ

 

Haboudane 
et al., 2004 

MTVI2 Modified 
Triangular 
Vegetation Index 2 

[ ]
5.0)56()12(

)(5.2)(2.15.1

670800
2

800

550670550800

−−−+

−−−

ρρρ

ρρρρ

 

Preserves sensitivity 
to LAI as well as 
resistance to 
chlorophyll 
influence. Haboudane 

et al., 2004 

Note: The coefficients a (gain) and b (offset) in the equations for PVI, TSAVI, and ATSAVI are 

derived from the NIR vs. Red rock-soil baseline. In our study area, a is 1.22 and b is 0.03 (X. 

Guo, unpublished data). ρ, reflectance. 

The detailed formulation and proposed advantages can be found from Table 3.1. When 

reflectance measured in bands is used in the formulation of a VI, the band centre wavelength is 

provided as a subscript (in nanometers). Many of the VIs’ formulations encompass the red band 

(670 nm) and/or the NIR band (800 nm), but some also include the green band (550 nm). These 

spectral regions are used because they relate to abundance and activity of green vegetation, 

including LAI, percentage green cover, chlorophyll content, green biomass, and absorbed 

photosynthetically active radiation (Jensen, 2000).  
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3.4.2 New Vegetation Index for LAI Prediction 

Among the vegetation indices mentioned above, ATSAVI index was developed to 

consider the actual gain (a) and intercept (b) values of the soil line and an adjustment factor X, 

which is set to minimize background effects (X = 0.08 in the original paper by Baret and Guyot, 

1991). Therefore, this index has strong theoretical basis to be a good LAI indicator in certain 

areas with soil background variations. However, this index has limitations in removing the effect 

of litter; this has been demonstrated by Van Leeuwen and Huete (1996) who found that 

soil-line-related VIs are difficult to estimate LAI with increasing litter amount mixed with green 

vegetation. For this reason, we developed modified versions of ATSAVI that are suitable in LAI 

estimation in our study area. The central idea behind this modification was to render the index 

(ATSAVI) less sensitive to both soil background and litter effects and to be more responsive to 

green LAI variations. 

We incorporated a litter adjustment factor to ATSAVI to minimize litter effects. The 

CAI was adopted as the litter adjustment factor because of its usefulness in discriminating plant 

litter from soil and green vegetation (Nagler et al., 2003). It has been demonstrated that the 

vegetation CAI will change depending on the proportion of litter when litter is a fraction of 

aboveground biomass. The litter-corrected ATSAVI (L-ATSAVI) is formulated as:  

L-ATSAVI = CAILaXaba
baa

×+++−+
−−

)1(
)(

2
670800

670800

ρρ
ρρ

      (1) 

Where, ρ is the reflectance (with the subscript indicating the wavelength) and CAI= 

210022002000 )(5.0 ρρρ −+× ; therefore,  
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L-ATSAVI = ))(5.0()1(
)(

210022002000
2

670800

670800

ρρρρρ
ρρ

−+××+++−+
−−

LaXaba
baa

   (2) 

In L-ATSAVI formulation (1) and (2), we multiplied CAI L times to enlarge the litter 

effects while considering that the negative correlation of both soil and green leaves to litter could 

counteract the positive relationship between CAI and litter (Nagler et al., 2003). L is a litter 

adjusting factor and depends on the proportion of litter, soil, and green aboveground biomass. 

We changed L value from 0 to 100 with 0.5 interval to examine the relationship between 

L-ATSAVI and LAI, and found L = 10 to be the optimal adjustment factor in reducing litter 

noise in this study. Further research is needed to explore the adjustment of the L factor in order 

to optimize the normalization of litter influence over a wide range of cover situations.  

3.4.3 Statistical Analysis 

VIs are often related to LAI through a linear or exponential regression model, 

depending on the presence of saturation effects. Wang et al. (2005) found that strong linear 

relationships are obtained between VIs and LAI when LAI is low, but the relationship is poor 

during periods of maximum LAI. Linear regression models were appropriate for our study area 

as it is a semi-arid grassland with sparse vegetation, thus no saturation occurs. The performances 

of VIs in LAI estimation were evaluated by comparing r2, which is the proportion of variation in 

the dependent variable explained by the regression model based upon a significance level (99%). 

A t-test and a one-way analysis of variation (ANOVA) were applied to the means of r2 values 

among different classes of vegetation indices in order to detect significant differences. In this 

paper, regression models were validated using the Jack-Knife cross-validation method. This 

approach is implemented by withholding one sample and building the regression model using the 
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data from the remaining samples. The process of removing one sample from the dataset was 

repeated until all samples had been withheld. 

3.4.4 Scale-simulated Method 

With the discovery of the dominant spatial variation of grassland LAI through the 

wavelet approaches, we determined that the optimal pixel size of remotely sensed data is 20-30 

m for studying the mixed grassland ecosystem. In order to confirm whether the discovered 20-30 

m resolution is appropriate, we simulated hyperspectral and LAI data along the transect at this 

scale with a moving window using “low-pass filtering procedure”. This filtering procedure 

involves moving a 'window' of certain measurements (new scale /3 m interval) along the transect, 

and replacing the central measurement with the new value averaged from these measurements 

within each window. The calculation is repeated until the entire transect has been filtered and a 

"new" transect with “new scale” interval has been generated. The result is expected to reduce 

the high frequency noise of data and be more representative of grassland at the landscape level. 

Using simulated hyperspectral and LAI data, again we calculate L-ATSAVI. By comparing r2 of 

scale-simulated L-ATSAVI and LAI with original r2, we can demonstrate whether or not the 

proposed spatial scale is appropriate for grassland LAI at the landscape level. 

3.5 Results and Discussion 

3.5.1 Grassland LAI Characteristics 

Figure 3.1 illustrates the characteristics and distribution of LAI in a grassland 

environment. The measured LAI ranged from 0 to 2.5 and averaged 1.09 (Figure 3.1). The 

Kolmogorov-Smirnov Test indicated that the measured LAI distribution corresponds to the 
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normal distribution (p>0.05). Comparing the LAI with relative elevation (Figure 3.1), a similar 

trend can be observed: large LAI values in the depressions and small LAI values on the knoll. 

The Paired Samples Test showed that there is no significant difference between the means for 

LAI and relative elevation (Green and Salkind, 2003). This result indicates that spatial variation 

of grassland LAI within our study area exhibits localized features, which may be related to 

spatial variation of relative elevation. Considering the relationship between LAI and relative 

elevation is only from the limited dataset used in this study, the relationship between LAI and 

topography should be investigated further in future research. 

 

Figure 3.1 Grassland LAI and the measured relative elevation (the vertical distance from surface to 

a reference point) 

3.5.2 Spectral Reflectance Characteristics 

Different biophysical and biochemical properties of vegetation contribute to the spectra 

of vegetation (Gates et al., 1965; Knipling, 1970). Figure 3.2 shows the reflectance spectra of 
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mixed grassland for our study site. Spectral reflectance of the mixed grassland has general 

features similar to that of typical vegetation - red absorption region, near-infrared (NIR) 

reflectance region and water absorption regions. The absorption and reflectance regions, 

however, are not as strong as those of typical vegetation. For example, in the mixed grassland, 

the reflectance is much higher in the green reflection region and weaker in the NIR region, 

compared to the spectral curve of typical vegetation.  
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Figure 3.2 Hyperspectral response curve of mixed grassland within our study site with 95% upper 

and lower confident limits (UCL & LCL). Three primary water absorption (noise) regions 

(1361-1395 nm, 1811-1925 nm, 2475-2500 nm) for the field measurements were deleted 

3.5.3 Relationships Between LAI and Biophysical VIs  
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To determine the optimal VIs in estimating grassland LAI, the r2 values between VIs 

and LAI were computed and are shown in Figure 3.3. All of the r2 values are significant (P<0.01), 

which indicates a high correlation between grassland LAI and the selected VIs. Among the three 

groups of biophysical VIs, the range of r2 found with ratio-based VIs (0.42-0.44), and in 

soil-line-related VIs (0.40-0.44) were better than the r2 range found with chlorophyll-corrected 

VIs (0.37-0.40). ANOVA results also confirmed that r2 values of chlorophyll-corrected VIs were 

significantly different from that of ratio-based and soil-line-related VIs, which may be explained 

by the emphasis of these three groups and vegetation condition of our study area. Both 

ratio-based VIs and soil-line-related VIs were developed to reduce either soil brightness or 

background effects, which are major limiting factors in the semi-arid mixed grassland. 

Chlorophyll-corrected VIs focus on decreasing the chlorophyll effect. However, the effect from 

chlorophyll may not be as strong as the effect from soil and litter in grass spectra since the 

average LAI was found to be very low in the study area. It has been demonstrated that 

chlorophyll-corrected indices are the best green LAI indicators in agriculture area (Haboudane et 

al., 2004). However, the results from this paper were derived from a limited dataset, and the 

performance of chlorophyll-corrected VIs has to be further investigated in semi-arid regions.  
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Figure 3. 3 The r2 values with error bar between LAI and VIs in the three groups. All evaluated VIs 

show a significant relationship with LAI at a 0.01 significance level (128 samples) 

Within each group, r2 values of RDVI (0.44), ATSAVI (0.44), and MCRAI2 (0.40) are 

slightly higher than for other VIs in their groups. The performance of RDVI, ATSAVI, and 

MCRAI2 over other VIs can be explained from their abilities in softening background effects. 

RDVI is a hybrid index between DVI and NDVI, and combines the advantages of DVI and 

NDVI for low and high vegetation coverage, respectively. ATSAVI incorporates the actual gain 

(a) and intercept (b) values of the soil line rather than assuming them to be 1 and 0 respectively; 

furthermore, it involves adjustment factor X, which is set to further minimize background effects. 

MCRAI2 is optimized with the constraint of preserving the sensitivity to LAI as well as the 

resistance to chlorophyll influence. Therefore, these indices have more robust theoretical basis 

over other VIs in their groups, to deal with low average LAI with high variation of vegetation 

coverage in the mixed grassland.  

3.5.4 Relationship Between LAI and L-ATSAVI 
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The r2 value of LAI and L-ATSAVI is 0.55 which is higher than that of LAI and other 

VIs (Figure 3.4). This result indicates that incorporating CAI into ATSAVI can improve the 

ability of LAI estimations in our study area at about 10%. This is expected because there is large 

amount of litter material in our study area, and CAI increases linearly as the amount of plant 

litter increased from 0% (bare soil) to 100% cover (Nagler et al., 2003). However, the efficiency 

of this index has to be further tested based on more data from different sites. Further comparison 

found that r2 values between LAI and VIs in our study area are much lower than that from other 

study areas, such as agriculture field (r2 ranging from 0.7-0.9) (Haboudane et al., 2004) and 

forest area (r2 is approximatly 0.7) (Kovacs et al, 2004). This result suggests further research to 

develop more robust vegetation indices for semi-arid mixed grassland ecosystems. 
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Figure 3.4 Regression equation and r2 between ATSAVI1 and LAI 

3.5.5 The Scale-simulated Results 
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With a moving window of 30 m, the scale of hyperspectral VI and LAI was simulated at 

the landscape level. All proposed indices were calculated again. The r2 values between 

scale-simulated VIs and LAI were presented in Figure 3.5. The results indicated that 

scale-simulated VIs can explain much more grassland LAI. The Paired-Samples T Test also 

showed that there is a significant difference between scale-simulated r2 and original r2. The 

maximum r2 was still found with the relationship between grassland LAI and L-ATSAVI, 

explaining 89% of grassland LAI and making a great improvement over the original L-ATSAVI, 

(which explains only 55% of grassland LAI). The scale-simulated results indicate that grassland 

LAI can be better explained by upscaling the resolution of remote sensing data to 30 m rather 

than utilizing a finer resolution of 3 m. This further confirms that the spatial scale of about 30 m 

can be used to analyze the grassland biophysical properties at the landscape level in our study 

area.  
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Figure 3.5 Comparison of scale-simulated r2 with original r2 between LAI and VIs 

Ratio-based VIs Soil-line-related VIs Chlorophyll-corrected VIs 

Original r2 Scale-simulated r2 

L-ATSAVI
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3.6 Conclusions 

The relationships between grassland LAI and selected VIs were found to be significant. 

Among the biophysical indices, ratio-based VIs and soil-line-related VIs were better than 

chlorophyll-corrected VIs in LAI estimation. Of the three groups of VIs investigated in this study: 

ratio-based, soil-line-related, and chlorophyll-corrected, RDVI, ATSAVI, and MCRAI2  where 

the best of each category (respectively) for estimation of grassland LAI.  

The litter-corrected ATSAVI (L-ATSAVI) appeared to be the best indicator in 

estimating LAI. L-ATSAVI could explain 55% of grassland LAI and improved LAI estimation 

capability in our study area by about 10% compared with other selected VIs. This result indicates 

that previous vegetation indices have limitations in removing the effect of litter and that 

incorporating CAI into ATSAVI can improve the ability of LAI estimations in the study area. 

The scale-simulated results indicated that grassland LAI can be better explained by 

upscaling the resolution of remote sensing data to 30 m rather than using 3 m resolution. This 

further confirmed that a spatial scale of approximately 30 m can be used to analyze grassland 

biophysical properties at the landscape level. 

Although the current study used a dataset collected along a transect with a large 

vegetation variability, the results of this study are confined to our study site, one mixed grassland 

ecosystem. Future research should test the feasibility of these vegetation indices through 

radiative transfer models or ground truth data from other vegetation types and different study 

sites, and also apply the improved vegetation index, L-ATSAVI, to remotely sensed imagery. 
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CHAPTER 4 – REMOTE SENSING MAPS OF GRASSLAND BIOPHYSICAL 
PARAMETERS 

4.1 Abstract 

Leaf area index (LAI), as an easily obtained variable, has been demonstrated to be a 

good indicator for estimating vegetation biophysical properties, and is simultaneously well 

correlated with remote sensing vegetation indices. The goal of the study is to develop an efficient 

method to retrieve spatially distributed vegetation biophysical properties based on ground LAI 

measurements and satellite data to aid ecosystem models. The field data (i.e. green biomass, dead 

biomass, and canopy height) were collected in Grassland National Park (GNP), Saskatchewan, 

Canada. Two vegetation indices, ATSAVI and RDVI, were derived from a SPOT 4 HRV image 

to estimate LAI and to prepare LAI and biophysical maps for modeling within GNP. The results 

of the linear regressions demonstrated strong relationships between LAI and both selected 

vegetation indices. However, a detailed assessment of the accuracy of the regression models 

indicated that ATSAVI was better for estimating and mapping LAI than the RDVI for the mixed 

grassland ecosystem. The accuracy of the LAI map, derived from ATSAVI was calculated to be 

66.7% and this map represented the spatial distribution of the vegetation acceptably. The 

significant relationships between measured LAI and the biophisical data solved the difficulty for 

mapping biophysical information due to insufficient sampling coverage for GNP. Our results 

demonstrated that in native prairie ecosystems, reflectance can be used to measure spatially 

distributed vegetation biophysical properties and thus to aid ecosystem models.  
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4.2 Introduction 

Effectively managing grassland ecosystems for economic and ecological returns requires 

that land managers have a good understanding of management effects at large spatial scales. This 

has always been a challenge, owing to the inordinate effort required to measure biological 

community responses in a very dynamic and heterogeneous ecosystem that covers vast areas. In 

response to this challenge, ecosystem models have been developed that provide consistent 

outputs of the condition of grasslands that can be completed rapidly.  

The need for information on the biophysical conditions (i.e. biomass of green and 

senescent vegetation, canopy height, shrub stem densities, and frequency of bare soil) of 

grasslands at the landscape scale is great when modeling grassland productivity. Remote sensing 

has long been touted as the answer to the question of how to provide efficient, quantitative 

assessments of the biophysical characteristics in grassland ecosystems (Cihlar et al., 1991; Clarke, 

2003; Gamon et al., 1993; Todd et al., 1998; Tueller, 1991). While remote sensing tools have 

been successful at measuring vegetation characteristics in crops, where structure and composition 

are by and large uniform, there has been less success in native rangeland where heterogeneity is 

the rule (Asrar et al., 1986). However, advances in the resolution of reflectance imagery, a 

growing body of research to support ground applications of remotely sensed data and the 

increasing affordability of satellite imagery has improved the utility of reflectance based data in 

recent years (Asner et al., 1998; Rahman et al., 2003; Tanser and Palmer, 1999). 

In theory, reflectance technology should provide suitable measures for grassland 

ecosystems. Reflectance images either integrate light wavelengths into a limited number of broad 

“bands” that correspond to colors or regions of non-visible light or, in the case of hyperspectral 

imagery, sense and record the reflected wavelengths individually resulting in hundreds of 
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readings per pixel in every image. There is a well established literature on how then to combine 

bands or wavelengths into “vegetation indices” that, based on the physical properties of the 

vegetation being measured and the landscape in which they are being measured, reveal the 

abundance of green tissue in the image (Baret et al., 1989; Broge & Leblanc, 2000; Haboudane et 

al., 2004; Huete, 1988; Qi et al., 1994; Richardson & Wiegand, 1977; Rouse et al., 1974). The 

best known of these is the Normalized Difference Vegetation Index (NDVI) that combines the 

red and near infrared bands, and integrated over time, to measure vegetation productivity (Rouse 

et al., 1974). Many more vegetation indices have been developed that are modifications of NDVI 

or work on a similar principle. However, the heterogeneous, three-dimensional structure of 

vegetation, the variable accumulation of litter correlated with landform and community type, 

seasonal variation in canopy moisture as well as the presence or absence of bare ground in 

grassland ecosystems, have proven to be insurmountable challenges to most vegetation indices 

making them ineffective in native prairie (Asner et al., 2000).  

As part of a program to manage a prairie ecosystem for ecological integrity at 

Grasslands National Park of Canada (GNP), located in southeastern Saskatchewan, Canada we 

have been measuring the biophysical structure and composition of the grassland community in 

relation to reflectance measures both collected on the ground using a hand-held unit as well as 

from satellite images. The objective of this study is to demonstrate that in native prairie 

ecosystems, reflectance can be used to measure the structure and the composition of grasslands, 

and to further indicate that the utility of the imagery can be extended to ecosystem modeling and 

other management activities such as fire management, species-at-risk and grazing utilization 

measures. Specifically, this study sought to use leaf area index (LAI) as an intermedial variable to 

indirectly establish the relationships between remote sensing vegetation indices and vegetation 
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biophysical properties (e.g. biomass and canopy height). The theoretic background of this study 

is that LAI, as an easily obtained variable, has been demonstrated to be a good indicator for 

estimating vegetation biophysical properties (Zhang, 2006), and simultaneously well correlated 

with remote sensing vegetation indices. The goal of the study is to develop an efficient method to 

retrieve vegetation biophysical properties to aid ecosystem modeling.  

4.3 Materials and Methods  

4.3.1 Study Area Description and Site Distribution 

Grasslands National Park (Figure 4.1, GNP, N 49º12’, W 107º24’) lies within the 

mixed-grass prairie of the Northern Great Plains. The climate in the study area is semi-arid; 

average temperatures range from -12.4ºC in January to 18.3ºC in July, and average precipitation 

is approximately 350 mm per year (Environment Canada, 2000). All study sites were located in 

the West block of GNP, which was historically used for grazing with some limited cultivation for 

crops and hay. The soils in this area are brown Chernozemic clay loam soils (Saskatchewan Soil 

Survey, 1992). GNP consists of upland, sloped land, and valley grasslands, and the dominant 

native grasses are June grass (Koeleria macrantha), needle-and-thread grass (Hesperostipa 

comata), blue grama (Bouteloua gracilis), and western wheat grass (Pascopyrum smithii). In 

addition, exotic grasses, forbs, and shrubs are widely distributed throughout the study area. This 

park and surrounding pasture areas are ideal for biophysical assessment studies of vegetation 

communities because of the variety in management practices in the area. 

During June of 2005, the 60 randomly selected sampling sites were visited for leaf area 

index (LAI), biomass, and canopy height data. These sites included rangelands, conserved native 

prairie, and invaded grasslands, distributed over the upland, sloped, and valley area (Figure 4.1). 
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At each of these sites, field sampling was conducted along two 100 m transects that ran 

perpendicular in the north-south and west-east directions, intersecting in the centre to form a 

cross. The georeferenced coordinates for each of the cross center were determined, within a 6 m 

accuracy using a handheld Geographic Positioning System (GPS). The transect locations were 

permanently marked on the ground and these coordinates were later digitized into the Park’s GIS 

data layers.  

4.3.2 Field Measures and Sample Processing 

 

Figure 4.1 Map of the study area: Grassland National Park, Southern Saskatchewan, Canada, 

located at the international boundary of Canada and the United States. The star marks in the map 

indicate the study sites for model simulation, and the question marks indicate the study sites for 

model evaluation 

Along each of the 100 m transects, canopy height was collected at 10 m intervals, and 

biomass was collected at 20 m intervals using a 20 cm x 50 cm daubenmire frame. Clipped fresh 

biomass was sorted into four groups: grass, forb, shrub, and dead materials. The four groups of 
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biomass samples were then dried in an oven for 48 hours at 60oC separately in order to compare 

the map product of green biomass with that of dead biomass.  

LAI (the projected area of all vegetation parts normalized by the subtending ground area) 

was measured using a LiCor LAI-2000 Plant Canopy Analyzer (LI-COR Inc., Lincoln, Nebraska, 

USA) at 10 m interval along each transect. The LAI-2000 was shaded when measurements were 

being taken to reduce the effect of glare from direct sunshine. At each site, LAI is the average of 

20 automatically calculated LAI values; each was the comparison result of one above canopy 

reading followed by 9 below canopy readings completed within two minutes to avoid 

atmospheric variation. The LAI discussed in this paper indicates canopy area index or plant area 

index. The measured data were then amalgamated into mean values for each site. This was 

completed in order to reduce variance, to obtain a measurement for each site that represents the 

average conditions.  

4.3.3 SPOT Image Acquisition and Processing 

A single SPOT 4 HRV image (Path 37, Row 26) for the study area was acquired on June 

22, 2005 (approximately mid-point during the ground truth data collection). The satellite image 

was geometrically and radiometrically correctioned using PCI Geomatica 9.1. An accuracy of 0.3 

RMS or better (representing approximately 6 meters or less error on the earth’s surface) was 

ensured in the geometric correction process. Topography distortions were corrected using a 

Digital Elevation Model (DEM), obtained from the GNP’s GIS database. Atmospheric and 

radiometric corrections were conducted using the ATCOR 2 module within PCI Geomatica V.9.1 

software. After the corrections were completed, the digital number (DN) values were converted 

to reflectance values.  
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To better detect vegetation signals, RDVI (Renormalized Difference Vegetation Index, 

Reujean and Breon, 1995) and ATSAVI (Adjusted Transformed Soil-Adjusted Vegetation Index, 

Baret et al., 1992) were derived from the NIR and Red bands to estimate LAI: 

dNIR

dNIRRDVI
Re

Re

ρρ
ρρ
+
−

=           (1) 

)1(
)(

2
Re

Re

aXaba
baaATSAVI

dNIR

dNIR

++−+
−−

=
ρρ

ρρ  , X=0.08     (2) 

RDVI index is a hybrid index between DVI (Difference Vegetation Index) and NDVI, 

and is understood to combine the advantages of DVI for low vegetation coverage and NDVI for 

high vegetation coverage (Haboudane et al., 2004). ATSAVI index was developed to consider the 

actual gain (a) and intercept (b) values of the soil line and an adjustment factor X, which is set to 

minimize background effects (X = 0.08 in the original paper by Baret & Guyot, 1991). Therefore, 

these two indices have strong theoretical basis to estimate LAI in locations with soil background 

variations. In addition, these two indices have been demonstrated to be good LAI indicators when 

using ground hyperspectral data in the same study region (He et al., 2006). This study has 

incorporated both RDVI and ATSAVI to estimate grassland biophysical parameters. In order for 

the remote sensing data to better correspond with the LAI values obtained for each site, we 

extracted and averaged the pixel data within the sites.  

4.3.4 Analyses Linking VI to LAI 

From the 60 sites sampled, 36 were used to build the linear regression models between 

VI and LAI, and 24 sites were used to evaluate the models (Figure 4.1). The models were 
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validated using the Jack-knife Cross validation procedure. This approach is implemented by 

withholding one sample and building the regression model using the data from the remaining 

samples. The process of removing one sample from the dataset was repeated until all samples had 

been withheld. The relative error (RE), root mean squared error (RMSE) and map accuracy (MA) 

have been calculated to evaluate the models accuracy for mapping LAI and biophysical data (Pu 

& Gong, 2004). The relative error, RMSE and MA can be computed as:  
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Where n is the site number, i is each site sequence, ix  is measured values and ix
∧

is simulated 

values calculated from the regression model. After the accuracy assessment, the LAI map was 

developed based on the more accurate regression model. 

4.3.5 Analyses Linking LAI to Biophysical Data 

In order to model biophysical (biomass and canopy height) values, the predicted LAI 

was chosen as the intermediary parameter to estimate the biomass and canopy height for whole 

park area according to the regression equations between biophysical data (biomass and canopy 

height) and LAI from the 36 sites. We did not estimate biophysical data for the study area 

directly based on the regression models between biophysical and remote sensing data, in order to 

develop an efficient method to estimate biophysical data from an easily-obtained variable (LAI). 



 

 94

The biophysical data from the remaining 24 sites were used to evaluate the estimates of 

the biomass and canopy height derived from the LAI map. The RMSE, RE, and MA have also 

been calculated to evaluate the map accuracy. 

4.4 Results  

4.4.1 Statistics of LAI Data 

Leaf area index varied considerably across our study area (C.V. = 0.47) and had a large 

range (0.44-3.85) demonstrating that the spatial variation of the grassland vegetation cover was 

sufficient among study sites to allow us to track changes with biophysical landscape features 

(Table 4.1). Within GNP, high LAI values (3.85) are generally found in areas with invading 

grasses, forbs and shrubs and, lower LAI values (0.44) occur in the badlands or lowland areas of 

high salinity. The mean LAI value of 1.25 indicates that the northern mixed grass prairie has 

relatively low vegetation cover, only marginally greater than 1 m2 of leaf area per m2 of land 

area. 

Table 4.4 LAI descriptive statistics 

Sites Category Number 
of Sites  Mean LAI Range LAI Max. LAI Min. LAI Std. 

Deviation
Upland 13  1.34  1.25  1.98  0.73  0.40  
Sloped land 24  1.10  1.58  2.06  0.48  0.51  
Valley 22  1.38  3.41  3.85  0.44  0.74  
Total 60 1.25 3.41 3.85 0.44 0.59 

 

4.4.2 Regression Models Between VI and LAI 
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36 sites were chosen for creating the regression models in this analysis (Figure 4.2). 

Two points with very high RDVI values (Figure 4.2) are not outliers, but rather represent sites 

with very dense vegetation including invasive grasses and shrubs. Regression results 

demonstrated that strong relationships exist between LAI and the selected vegetation indices, 

with ATSAVI having only a marginally higher r2 (0.64) than RDVI (0.63) in estimating LAI.  
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Figure 4.2 Regressions of LAI and selected vegetation indices (RDVI and ATSAVI). N is the 

number of observations 

4.4.3 Model Accuracy Assessment and LAI Map 

Based on the linear regression models performed between the selected VI and LAI, we 

used the remaining 24 remotely sensed measurements to estimate LAI. Figure 4.3 shows the 

significant relationship (P<0.01) identified between measured LAI and estimated LAI (using both 

VIs). For both VIs, the coefficient of X (0.997 for RDVI, 0.908 for ATSAVI) indicates that both 

regression models give satisfactory estimates of LAI, although LAI was slightly underestimated. 

The r2 values indicate that ATSAVI (0.489) was only marginally better than RDVI (0.486) in 

estimating LAI. ATSAVI also had lower average RE, RMSE, and higher map accuracy than 
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RDVI in estimating LAI for the 20 sites (Table 4.2). This result further indicates that ATSAVI 

has a slight advantage in estimating LAI over the RDVI.  
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Figure 4. 3 The relationships between measured LAI and estimated LAI 

Table 4.5  Accuracy assessment of the regression models in LAI estimation 

 Average error RMSE Map accuracy 
RDVI 0.858 0.411 53.9% 

ATSAVI 0.771 0.297 66.7% 
Based on the accuracy assessment results, we produced an LAI map for the West Block 

of GNP using the ATSAVI map. In the final map product (Figure 4.4), white color within park 

holdings represents low LAI values or decreased vegetation cover. Light grey color represents 

LAI values ranging from 1 to 2, which account for the majority of the park area. The dark grey 

represents higher LAI values (2.0-3.5) or increased vegetation cover. In general, areas with the 

highest LAI values are located along the riparian zone of the Frenchman River, and the lowest 

LAI values are located towards the north-west portion of GNP. The results are reasonable, as the 

darker areas on the map are associated with areas of higher available moisture for vegetation 
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growth along the river. The lighter areas on the map are associated with badland topography 

located towards the upper left area. 

 

Figure 4.4 LAI map derived from a SPOT image using the regression model between ATSAVI and 

LAI 

4.4.4 Relationships Between Measured LAI and Biophysical Data 

The linear relationship between measured LAI and biophysical data (i.e. green biomass, 

dead biomass, and canopy height) were significant (P<0.01, Figure 4.5). The 36 sites used to 

develop the relationships included information from a variety of grass communities. The r2 value 

for the relationship between the green biomass and measured LAI was 0.38, much lower than 

those for dead biomass and measure LAI (0.68). Canopy height strongly correlated to the 

measured LAI (r2=0.58, P<0.01). These significant relationships indicate that it is possible to 

estimate biophysical information using LAI data. 
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Figure 4.5 Regressions between measured various biophysical data and LAI, N is number of 

observations 

4.4.5 Biophysical Maps and Validation 

Biophysical maps were developed from the LAI map using the regression models 

between biophysical data and measured LAI (Figure 4.6). Figure 4.6 A-C demonstrate the green 

biomass map, dead biomass map, and canopy height map, respectively. A careful examination of 

these maps showed that, in general, the three maps accurately represent the biophysical 

information as explained for the LAI map. The white area representing low biophysical quantities 

is typically found in badland areas, while the darker color representing higher biophysical 

information appears along the river or in cropland. Table 4.3 presents some simple statistics to 

interpret the mapped biophysical information against measured data from the remaining 24 sites. 

Comparing statistical results in the table, it is apparent that the canopy height map results in the 

highest map accuracy, followed by green biomass, while the least accurate is dead biomass. The 

map accuracy for green and dead biomass maps does not seem logical when considering their 

correlations with LAI. In Figure 4.5, we found the weakest relationship is between LAI and green 
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biomass, therefore we might infer that the lowest accuracy should be observed in green biomass 

map.  

Table 4.6 Accuracy assessment of the biophysical maps 

 Green biomass map Dead biomass map Canopy height map 
Average error -0.03 -0.32 -1.57 

RMSE 0.20 0.54 3.17 
Map accuracy 55.7% 51.2% 83.1% 

 

A 

B

C
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Figure 4. 6 Green biomass map (A), dead biomass map (B), and canopy height map (C) obtained 

from LAI map using the regression models between biophysical data and LAI 

To explore this unexpected result, the absolute values of relative error for green biomass 

and dead biomass were further calculated to interpret the error variation. From Figure 4.7 A, we 

can see that the error of green biomass shows a conic trend, which indicates that the estimated 

green biomass values greater than 1.0 ton/ha or less than 0.28 ton/ha will introduce more error. 

This result demonstrates that the proposed method for estimating green biomass would be more 

appropriate to estimate medium density grassland than to estimate either sparse vegetation or 

dense vegetation cover. Figure 4.7 B shows an exponential trend: the estimating error of dead 

biomass is lower in areas with small amounts of litter, and increases with denser litter. In GNP, 

medium density grassland occupies the majority of area with a large amount of dead materials. 

This might explain why, when creating the green biomass map, less map error was produced. 

Conversely, the large amount of dead material in the study area resulted in the least accuracy for 

the dead biomass map.  
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Figure 4.7 The absolute values of relative error for green biomass and dead biomass 
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4.5 Discussion 

We tested two indices, ATSAVI and RDVI, to estimate LAI and to prepare LAI and 

biophysical maps for the GNP. The results of the linear regressions demonstrated strong 

relationships between LAI and both selected vegetation indices. However, a detailed assessment 

of the accuracy of the regression models indicated that ATSAVI was better for estimating and 

mapping LAI than the RDVI for a northern mixed grassland ecosystem. The accuracy of the LAI 

map, derived from ATSAVI was calculated to be 66.7% and this map represented the spatial 

distribution of the vegetation for the study area.  

The significant relationship between ATSAVI and LAI found in this study we attribute 

to the intrinsic properties of ATSAVI; predominantly its explicit consideration of exposed soil 

(Baret 1992). In most grassland ecosystems the cover of a live canopy will be discontinuous, 

either interupted by exposed soil in heavily exploited or dry grasslands or by dead vegetation 

litter in conservation grasslands. Hence, converting reflectance to any characteristic of the 

biophysical environment in grasslands will profit from explicit consideration of the unvegetated 

cover. This result also adds support to previous studies conducted in the same area in which LAI 

variation at very small spatial scales was also found to be dependent upon the frequency of bare 

ground and microtopography (He et al., 2006).  

While others have found as strong or stronger relationships between reflectance 

vegetation incides (NDVI) and biophysical characteristics of grasslands as the current study 

( Kawamura et al., 2005; Paruelo et al., 1997; Wylie et al., 2002), generally these studies have 

been conducted at the larger, regional spatial scale. Studies at finer scales (those within grassland 

communities) have resulted in less consistent success (e.g. Beck et al., 1990; Cihlar et al., 1991; 

Davidson & Csillag, 2003; Goodin & Henebry, 1998; Posse & Cingolani, 2004) particularly 
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within the semi-arid climatic zone (see Frank & Karn, 2003). The use of soil adjusted vegetation 

indices, such as ATSAVI in relatively sparse, native grasslands has been successful in other 

studies (Lawrence & Ripple, 1998; Muldavin et al., 2001). 

The irony of improving the resolution of remotely sensed images is that this tends to 

erode the strength of the relationship between reflectance and biophysical features. At very large 

spatial scales, subtle variation within ecosystems is masked by well-described landscape patterns 

that correlate well with even general reflectance measures such as the NDVI. However, as we 

zoom in, variation within ecosystems and communities becomes more important, and thus, data 

collected at fine scales against which to correlate reflectance values also becomes more important. 

Hence, as practitioners work towards incorporating fine scale remote imagery into their 

management practices, we are faced with either collecting more and finer scale training site data 

or, alternatively accepting poorer correlations with biophysical parameters. Indeed, despite the 

advantage of ATSAVI, the use of spectral vegetation indices such as ATSAVI as a surrogate for 

vegetation biophysical properties is still limited by scene specific characteristics. Perhaps the 

largest sources of error in the ATSAVI-based estimates were related to problems associated with 

assigning point-based ground data to area-integrated measurements from satellites (Fridel et al., 

1994). Furthermore, uncertainty may be present in both the coordinates of the ground stations, 

and also in the geometric rectification of the image.  

Unmanaged, conservation and native grasslands will always pose a challenge for remote 

sensing. The observed between the vegetation indices we used and LAI were considerably 

weaker than that observed in previous studies. For example, Haboudane et al. (2004), working on 

crops observed r2 values ranging from 0.7 to 0.9 for linear models of LAI versus a variety of 

spectral vegetation indices. Map accuracy at 66.7% in this study is acceptable, but still low when 

compared to results from a similar study by Pu and Gong (2004) where forest LAI was mapped 
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with as accuracy of 74.2% when using the best method to extract features. The relatively low r2 

values and map accuracy observed in the current are likely due to effects such as the registration 

and scale problems identified above. Validation of our estimates of green and dead biomass from 

the GNP vegetation maps indicated that in both cases our estimates are subject to heterogeneity 

of variance in which, as the mean biomass increases, so does the variation in that biomass. This is 

to be expected in a heterogeneous vegetation community such as ours (Ehleringer & Field, 1993; 

Tian et al., 2003). This can be resolved by transforming our biophysical parameters prior to 

statistical analysis. Additionally, with live biomass, our estimates increased as biomass decreased. 

This could be due to increasing bare soil coverage in low green biomass sites that, despite the 

ATSAVI’s explicit treatment, still introduces error into the reflectance values (Baret & Guyot, 

1991). Given that we have used a “book” value for the soil line in our study, we could reduce or 

eliminate this error by deriving a site specific soil line for GNP (Broge & Leblanc, 2000 ). 

Nevertheless, because we can expect the variance in biophysical parameters, such as biomass and 

productivity, to increase as the mean of these variables increases in natural systems, correlations 

with reflectance will weaken in more heterogeneous vegetation communities. As we have 

previoiusly discussed, improvements in reflectance models in grassland ecossytems will come 

with improving our measures of ground based biophysical features.  

The significant relationships between measured LAI and the biophisical data (i.e. green 

biomass, dead biomass, and canopy height) solves the difficulty for mapping biophysical 

information due to insufficient sampling coverage for GNP. Many of the biophysical 

measurements made in GNP are taken not only to monitor changes in the vegetation community 

itself, but also to understand the dependencies of the associated faunal community on the 

vegetation and physical landscape. Research has shown that many fauna are selective for 

vegetation structure as opposed to composition within ecosystems. LAI is an effective indicator 



 

 104

of grassland structure, incorporating elements of height and density but is more readily measured 

than either of these two parameters in a complex sward. Therefor grassland LAI should be a 

useful tool for spatial modeling including as a currency for measuring gradients for analysis of 

community structure (McGill et al., 2006). Indeed, GNP is moving forward to incorporate these 

maps in aid of productivity modeling, spatial fire fuels modeling, habitat modeling for species at 

risk and biomass monitoring after reintroducing a herd of plains bison. However, the analysis for 

the relative error demonstrated that the proposed maps should be treated carefully in areas of 

higher or lower vegetation cover. To avoid this type of problem in future experiments, more 

samples from areas with higher or lower vegetation cover should be measured to ensure that 

observations are representative of the study area. Furthermore, some error propagation might 

exist when using additional univariate steps for predicting biophysical parameters, even if LAI 

measure represents a powerful intermediate variable between satellite data and field biophysical 

data. In this study, we did not consider the residual by further regressing estimated LAI vs. 

biophysical parameters, but unfortunately it exists. Studies in the future should take the issue into 

account. 
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CHAPTER 5 – LAND COVER MAP AND VEGETATION PHENOLOGY PARAMETERS OF 
THE MIXED GRASSLAND ECOSYSTEM 

5.1 Abstract 

Ecosystem models require diverse parameters and inputs. When simulating vegetation 

productivity at the landscape level, two major inputs have to be considered: vegetation 

classification maps and vegetation phenology parameters. By deriving the two major inputs, this 

study investigates how remote sensing techniques can be applied to ecosystem models. Data 

collected for this study were from both field and satellite level. Field data measurements include 

biophysical parameters (leaf area index (LAI), cover, and biomass) and remote sensing data 

(ground hyperspectral reflectance), collected in the summer of 2005. At the satellite level, two 

SPOT 4 and one SPOT 5, one Landsat 5, and 22-year 10-day AVHRR NDVI images were 

aquired for the study area. Methods for this study were based on the three objectives, extracting 

different spectral signatures of different land cover types and grassland communities, comparing 

different classification algorithms, and determining vegetation phenology using 22-year AVHRR 

NDVI images. Through extracting spectral signals from different land cover types, we found that 

it is easier to differentiate land cover types, such as vegetation covered area and non-vegetation 

covered area, however, the accuracy is lower when distinguishing different grassland 

communities. The SPOT 4 20 m data sets have high enough spectral, spatial, and temporal 

resolution to be able to classify 7 major land cover types with an overall accuracy of 89%, and to 

classify 8 finer classes with an overall accuracy of 85%. Among classification algorithms, the 
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object oriented method showed better results. The temporal characteristics of the mixed grassland 

were identified by 10-day AVHRR NDVI data and vegetation phenology parameters were 

obtained for the study area.  

5.2 Introduction 

The mixed grassland ecosystem is an appropriate location to investigate the ability of 

satellite data for modeling productivity in the landscape level because this area is among the most 

biologically diverse grasslands in the world with different utilization practices, diverse 

topographic pattern, and complex vegetation types over large geographic areas. Two major inputs 

are critical when modeling grassland productivity spatially: 1) an accurate classification map, 

which is the foundation for modeling heterogeneous grassland in the landscape level; and 2) ideal 

vegetation phenology parameters to start or end ecosystem models simulating for each year. 

These two inputs require either high spatial or temporal resolution satellite imagery. High spatial 

resolution images (e.g. Landsat and SPOT) with low temporal resolution cost high, but are 

possible to provide models with the first input. High temporal resolution images (e.g., AVHRR, 

VEGETATION, and MODIS) with low spatial resolution cost less, but can be used to calculate 

the vegetation phenology.  

Extracting spectral properties of different land cover types and different grassland 

communities is the basis for classifying the mixed grassland ecosystem. In recent years, 

discriminant analysis, a multivariate approach to pattern recognition and interpretation, has been 

used extensively in land cover investigations. One objective of the discriminant analysis is to 

predict the group to which an observation belongs, based on its measurement values. 

Alternatively, the objective may be to exhibit optimal ‘separation’ of groups, based on certain 
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linear transformations of the measurement variables. This latter approach is called descriptive 

discriminant analysis, and the associated linear functions are known as canonical variates 

(Williams, 1983). For the purpose of extracting spectral properties, the second objective of 

discriminant analysis is to maximize the ratio of between-class variance to the within-class 

variance in any particular data set, thereby guaranteeing maximal separability. Extensive 

discussions of discriminant analysis may be found in Huberty (1994), Johnson and Wichern 

(1992), and Mclachlan (1992).  

Classification is the main pursuit in remote sensing research and application. A lot of 

studies on grassland landcover classification using remotely sensed data have been conducted in 

the past years. The traditional classification methods, such as K-means Classifier, Maximum 

Likelihood Classifier (MLC), Minimum distance, and Clustering, are still applied in different 

studies and can get a certain accuracy, especially the conventional MLC approach (Franklin et al., 

2000; Qiu et al., 2004). In practice, however, these traditional classification methods are all 

pixel-based. Typically, the pixel-based classifiers have considerable difficulties dealing with the 

rich information content of Very High Resolution (VHR) or moderate resolution imagery such as 

Landsat TM or SPOT 4 & 5; they produce a characteristic, inconsistent salt-and-pepper 

classification, and they are far from being capable of extracting objects of interest. 

Due to the nature of classical classification methods mentioned above, the application of 

new type supervised classifier has recently been introduced to classification studies. This new 

classifier employs an object oriented method, which uses the ‘image object’ or ‘local pixel 

group’ as a basis (deKok, et al., 2000). Thus, the image object can take the spatial context of the 

pixel population into account. The image object can be considered as the 4th attribute of a pixel, 

answering the question of ‘to which (spatial) pixel population does this pixel belong’ (deKok et 
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al., 2000). Consequently, the registration of the neighborhood results in a construction of a 

database. This database registration is advanced and therefore should be able to efficiently 

classify the mixed grassland ecosystem with heterogeneous landscape in this study.  

However, to the best of our knowledge, no studies have been conducted to compare the 

difference between traditional pixel-based classification methods and the object oriented analysis 

for classifying the mixed grassland ecosystem. Besides a lack of investigating the classification 

methods for grassland communities mapping, examining vegetation phenology over large area 

extension is another challenge. There has been a long history of applying satellite remote sensing 

in studying vegetation phenology parameters (Weiss et al., 2004). Among all the applications, 

AVHRR NDVI Maximum Value Composite (MVC) with certain composite periods (e.g., 7, 10, 

14, or 16 days), has been commonly applied in monitoring temporal changes (e.g. onset and end 

of growing season in the year) for its high temporal resolution and long history of records. 

Various methods have been developed to measure the start date of spring green-up and the end 

date of vegetation growth. Specifically, reported methods include NDVI thresholds (Lloyd, 1990), 

backward and forward moving windows from the annual cycle (Reed et al., 1994), and fitting 

linear segments to NDVI time series. More recently, Zhang et al. (2003) developed a method to 

estimate phenological events based on the curvature-change rate. To date, few studies have been 

conducted to detect annual change of vegetation in the mixed grassland ecosystem (Zhang, 2006).  

Regarding the above mentioned background, the main objective of this study is to 

investigate how remote sensing techniques can be applied to ecosystem modeling efficiently. 

More specifically, three objectives of this study are to: 1) evaluate spectral differentiations of 

land cover types and grassland communities, 2) compare different classification methods on 

grassland classification, and 3) determine the phenology parameters for the mixed grassland 

ecosystem. 
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5.3 Study Area 

The study area is located in the West Block of Grasslands National Park (GNP) and 

surrounding lands, in southwest Saskatchewan, Canada (N 49º12’, W 107º24’). This area falls 

within the Great Plains, which are characterized by semiarid climate, flat landscape and large 

areas dominated by grass species (Coupland, 1993). Grasslands National Park is located within 

the mixed grass prairie, one type of biome found within the Great Plains. This biome is a 

transitional zone between tall grass and short grass prairie (Bragg, 1995). The climate in the study 

area is semi-arid; winters are long, cold and dry while the summers are short, hot and 

comparatively wet. Average temperatures range from -12.4ºC in January to 18.3ºC in July, and 

average precipitation is approximately 350 mm per year. The soil in the study area is brown 

Chernozemic clay loam soil (Saskatchewan Soil Survey, 1992).  

Vegetation production in GNP is typically restricted by moisture. The moisture levels in 

GNP's valley grasslands are highest, making it easier for shrubs and trees to get started and grow. 

In contrast, most of the upland areas of the park are simply too dry for woody species to ever 

dominate. The dominant native grass species found in the GNP’s upland are June grass (Koeleria 

gracilis), needle-and-thread grass (Stipa comata), blue grama (Bouteloua gracilis), and western 

wheat grass (Agropyron smithii). There also have been some invasive or introduced grasses, such 

as smooth brome, crested wheat grass, and Russian wild rye. They are of concern because they 

were used as hay/pasture species and continue to dominate the areas where they were seeded. 

Although the dominant type of land cover in the park is grassland, there are still large 

areas of ploughed soil. Of the park land acquired to date, 1.2% (522.2 ha) continues to be 

cultivated for the production of cereal crops. Agriculture is one of the most important economic 
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activities in this area as well as the main stressor for the conservation of this ecological region. In 

an area of approximately 16,800 sq. km around the park, approximately 63% of the land is 

uncultivated. Much of the uncultivated land is clustered around the proposed park boundaries. 

Large areas around the park have been plowed in the past years. The conversion of prairie to 

cropland reduces the amount of habitat, and may fragment what is left, for many prairie species. 

5.4 Methods 

5.4.1 Field Data Collection 

Field data collection was conducted in the summer of 2005 on native prairies (upland, 

sloped land, and valley grassland) for both grazed and ungrazed management regimes. Field data 

were collected in two categories, biophysical parameters and spectral measurements. Two 100 

meter transects were set in each plot perpendicularly at north-south and west-east directions. A 20 

x 50 cm quadrat was placed at each 10 meter interval along each transect. Percent cover of grass, 

forbs, shrub, standing dead, litter, moss, lichen, and bare ground was collected at each quadrat. 

LAI was measured using a LiCor LAI-2000 Plant Canopy Analyzer at each quadrat. Biomass 

was clipped in each quadrat at 20 m interval along each transect. Biomass samples were weighted 

immediately after clipping as wet biomass and sorted based on categories of green grass, forbs, 

shrub and dead later on, and then they were left in an oven for over 48 hours at 60°C. The 

difference between wet biomass and the dry biomass was the plant moisture content. Canopy 

reflectance was measured using an ASD FR Pro Spectroradiometer (Analytical Spectral Devices, 

Inc., USA). The measurement wavelength range was 350-2500 nm, and the spectral resolution 

was 3 nm at 700 nm and 10 nm at 1400 nm and 2100 nm. The 25° field of view probe was used 

pointing down at the canopy at approximately 1 meter above ground. Measurements were taken 
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within two hours of solar noon on sunny days. Calibration was made using a white spectralon 

reflectance panel (Labsphere, USA) at approximately 10 minute intervals to minimize the 

atmospheric condition changes. 

5.4.2 Satellite Imagery Acquisition and Preprocessing 

To achieve objective 1 and objective 2, two SPOT 4 HRVIR images (one in June and 

one in July) with 20 m resolution and one Landsat TM image (July) with 30 m resolution were 

purchased for the study area. The SPOT 4 image includes four bands of green, red, near infrared 

(NIR), and short wave infrared (SWIR). The Landsat image includes seven bands of blue, green, 

red, NIR, Middle infrared 1 (MIR1), Thermal, and MIR2. Both the SPOT and Landsat TM 

images were geometrically and radiometrically corrected using  PCI Geomatica V. 9.1 software. 

First, the geometric correction was done with an accuracy of better than 0.3 RMS, representing 

approximately 6 m for SPOT (9 m for Landsat) or less error on the earth’s surface. Distortions 

caused by variations in topography were further corrected using a Digital Elevation Model 

(DEM), which was obtained from GNP’s GIS database. Atmospheric and radiometric corrections 

were conducted, based on Chavez’s improved dark object image subtraction (1988). After 

correction, the digital number (DN) values were converted to reflectance values.  

The NDVI and the adjusted transformed soil-adjusted vegetation index (ATSAVI, Baret 

et al., 1992) were calculated for three images and the data range was stretched. The formulas are 

as follows:  
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To achieve objective 3, AVHRR NDVI 10-day composites from 1985 to 2004 were 

obtained for the GNP area, as a subset of the Canada-wide 1 km AVHRR 10-day composite. The 

NDVI layers were computed from the bidirectional reflectance distribution function 

(BRDF)-corrected surface reflectance for channels 1 and 2. After contaminated pixels were 

replaced by temporal interpolation of seasonal data, a 5-point smoothing filter was applied to the 

seasonal NDVI curve. Only images related to growing season, from April to October, were 

utilized in this study because NDVI time series of the non-growing season are not helpful for 

phenological separation (Ramsey et al., 1995; Senay and Elliott, 2000; Weiss et al., 2004). The 

NDVI image subset was reprojected to a UTM projection to overlay with the geographical layers, 

e.g., the river and roads. After inspecting the position of the Frenchman river and the neighboring 

cropland, we decided that the geographical layer of the GNP has a shift less than 1 pixel (<1000 

m), therefore, the park boundary is directly used to clip the NDVI images.   

5.4.3 Objective 1: Extracting Spectral Properties of Different Land Cover Types and 

Different Grassland Communities 

Mixed grassland classification systems have, for the most part, been oriented towards 

management goals, and the information used to assign management priorities. It is recognized by 

most of the research community that there is a great need to develop a standardized international 

mixed grassland classification scheme that would allow researchers to communicate and 

exchange data more readily. However due to the richness and diversity of terms used to describe, 
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and environmental condition in which they are situated, agreement and consistency can be a 

difficult task. One reason for the inconsistencies between mixed grassland classifications is that 

mixed grassland, can be grouped differently, depending on the needs of the user. For example, 

the perceptions of a wildlife or biologist, an agronomist, a hydrologist can be vastly different 

when considering the same mixed grassland.  

In this study, classification scheme was decided simply based on the knowledge of the 

ecology and characteristics of the study area which would be useful for managers looking at plant 

productivity distribution within mixed grassland. The two levels of classes (seven major land 

cover types and eight sub-land cover types) were adopted in this research. The seven classes, 

including grassland, crop, fallow, shrub, forbs and dense grass, badland, and water, represent the 

dominate types of land cover in GNP and surroundings (Figure 5.1). The eight finer classes 

considered to separate two dominant grass types (native grass-sparse and invade grass-dense, 

Figure 5.1). 
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Figure 5.1 Pictures of eight classes in GNP and surrounding area (A: Native grass, B: Invasive 

grass, C: Crop, D: Fallow, E: Shrub, F: Forbs and dense grass, G: Badland, H: Water).  
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In order to analyze the separability of seven major classes, discriminant analysis (SPSS 

12.0 software) was used to classify the typical spectra extracted from the training sites in June 

and July SPOT 4 images. The spectral data were extracted from the images for different land 

cover types based on GPS readings. In our study area, vegetation is seasonally spectrally distinct 

and can therefore be discriminated by data from both June and July imagery. According to 

Congalton and Green (1998), at least 50 samples for each class should be used to evaluate 

classification accuracy. The accuracy of our discriminant function classification was tested using 

in-sample accuracy assessment and a Jack-Knife cross validation approach. The Jack-knife Cross 

Validation approach was implemented by withholding a spectral value and building the 

discriminant functions using the remaining data. The process of removing one value from the 

dataset was repeated until all data points had been withheld.  

5.4.4 Objective 2: Comparing Different Imagery Acquisition Dates, Different Band 

Combinations and Vegetation Indices, Different Classification Algorithms, and Different 

Resolution Imagery 

For this objective, we classified the image to the seven major classes and eight 

sub-classes as mentioned in 4.4.3. To take maximum advantage of the spectral information of 

pixels in each of the spectral bands used, field samples were used to create spectral signatures 

defining a single class and for statistical analyses and land cover mapping.  

To investigate the classification methods, two traditional methods (K-means 

unsupervised classification, maximum likelihood (MLC) supervised classification) and the object 

oriented supervised classification were adopted in this study. The two traditional classifications 

were performed for the SPOT image with PCI 9.1 software. The object oriented classification 

was conducted with eCognition 4.0 software for both SPOT images and the Landsat image. Many 
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different input combinations, including the combinations of SPOT bands and vegetation index 

(NDVI and ATSAVI), were tested on each single image and compared for both classification and 

post-classification accuracy. The difference between SPOT and Landsat imagery was also 

compared based on the classification results. The 70% of samples (437 samples for image of June, 

330 for image of July, respectively) were randomly selected as training sites for classification and 

the training data for all classifications were consistent.  

In order to determine the accuracy of all classifications, remaining 30% of random 

samples were used in post-classification analysis. This was completed by comparing classified 

pixels with actual reference classes via computation of the Kappa coefficient of agreement from a 

classification error matrix. Three types of accuracies are stated for remote sensing classification 

maps: overall accuracy, producer’s accuracy, and user’s accuracy. The overall accuracy of a 

classification can be found by dividing the total correct pixels by the total number of pixels in the 

error matrix. Producer’s accuracy is the number of correctly classified pixels divided by the total 

number of reference pixels (column total); this shows the probability of a reference pixel being 

classified correctly. User’s accuracy is the total number of correctly classified pixels divided by 

the total number of pixels classified as that class (row total); this defines the probability that a 

pixel classified represents that on the ground.   

5.4.5 Objective 3: Examining Vegetation Phenology Parameters 

To examine the time-series of NDVI and find the onset and end of the growing season, 

we combined temperature, NDVI values, and the change in slopes of the NDVI curve, as 

described in Zhang’s study (2006). Using 22 year 10-day composite NDVI imagery, the NDVI 

values were averaged for each 10 days from April through to October and therefore the annual 
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NDVI curve will represent a general vegetation growing cycle in the mixed grassland ecosystem. 

The onset date of green-up was decided by the first largest NDVI increase when air temperature 

is above 5 ºC (Frank and Hofmann, 1989). The largest NDVI drop from above 0.14 to below 

0.14 is selected as the end of the growing season. This value was selected by considering 

phenological characteristics of the mixed grassland ecosystem and corresponding changes of the 

dataset.  

5.5 Results and Discussion 

5.5.1 Discriminating Land Cover Types and Grassland Communities Using SPOT Imagery 

The performance of June and July SPOT 4 images for separating seven major classes is 

shown on scatter plots (Figure 5.2) and also an accuracy assessment (Figure 5.3). It is clear that 

both images could discriminate the seven classes with high accuracy, and the July image is 

slightly better for discriminating than the June image. A multi-temporal classification approach 

(combining the June and July imagery) slightly improved spectral discrimination among the 

seven major classes. 

However, different images have different advantages for separating classes. The 

function 1(X-axis) from the June image (Figure 5.2 A) can be used to separate the classes into 

two groups: vegetation and non-vegetation. The function 2 (Y-axis) can be used to classify the 

vegetation density, which varied from low density to high density (grass, shrubs, and crops) 

along the Y-axis with some overlapping between classes. The overlapping is due to similar 

reflectance features in the two images, especially in the near infrared channel. From the July 

image (Figure 5.2 B), function 1 (also X axis) is less advantageous for separating the classes to 

two groups, but there is less between class overlapping in the July image compared to that found 
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in the June image. In summary, the June image showed more differences between vegetation and 

non-vegetation groups, while the July image showed more difference within three pairs of classes 

(grass, shrub, and crop). The results indicated that the June image could be used to separate 

vegetation communities, while the July image could be used to separate major land cover types. 

The overlapping shown in Figure 5.2 indicates that it may be difficult to classify the 

overlapped land cover types, as expected by traditional classifiers when using reflectance 

information only. Considering their different texture, shape and slope, such as crops and fallow 

usually have well-organized pattern, regular shape, and located at the flat terrain, while shrubs 

and badlands are natural pattern with irregular shape, we might be able to use these 

characteristics to separate them.  
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Figure 5.2 Discriminant functions of seven major land cover types in the mixed grassland prairie 

by using June (A) and July (B) SPOT 4 imagery 
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Figure 5.3 Discriminant classification accuracy for seven major land cover types 

5.5.2 Optimizing Grassland Classification Approach in a Mixed Grass Prairie 

5.5.2.1 Comparing Different SPOT Band Combinations, Imagery Acquisition Dates and 

Vegetation Indices from MLC Supervised Classification 

We used MLC supervised classifier to classify the six land cover types and did not 

include the forbs and dense grass class. This is because 1) MLC has been demonstrated to be an 

efficient classifier as mentioned in the introduction section; and 2) we just wanted to focus on the 

comparison of band combinations, imagery acquisition dates, and vegetation indices, but not the 

comparison of different classifiers. Forbs and dense grass class was excluded in this section 

because the classification accuracy was very low when it was included (it was classified as either 

grass or shrub when using MLC method). Considering the similar spectra between shrubs and 

crops, and badlands and fallow, we first masked the cropland (crops and fallow) and classified 

the rest of classes, and then masked other classes in order to separate crops and fallow. 

Based on the post-classification analysis (Table 5.1), most band combinations can obtain 

good classification results using MLC based on the two images. The best one is the combination 
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of all bands (Green, Red, NIR, and MIR) where the overall accuracy was 87.2% for the June 

image and 88.5% for the July image). The fact that the July image achieved slightly higher 

accuracy than the June image is consistent with the results from the discriminant analysis.  

Comparing the accuracy for individual classes, we found that different band 

combinations have their own advantages for classifying different classes. For example, bands 1, 3, 

and 4 are better for classifying grassland and badlands; bands 1, 2, 3, and 4, along with ATSAVI 

are better to classify crops; bands 1, 2, 3, and 4, along with NDVI is better to classify fallow; 

bands 2, 3, and 4 are better to classify shrub; bands 1, 2, 3, and 4, with slope data is better to 

classify water. These results indicate that different combinations have the potential to better 

classify different land cover types. 

Table 5.7 Classification accuracy from SPOT June image with classifiers of MLC (accuracy 
assessment was based on 437 samples) 

Grass Crop Fallow Shrub Badland Water Overall 
Accuracy
/kappa 

Band 
Combination 

P U K P U K P U K P U K P U K P U K  
1234 90.0 96.3 0.91 78.4 89.2 0.87 87.1 84.4 0.83 89.5 36.2 0.33 83.9 83.9 0.83 87.0 100.0 1.0 87.2/0.80 
123 90.3 95.1 0.88 77.0 87.7 0.85 87.1 87.1 0.86 84.2 32.7 0.30 74.2 88.5 0.88 87.0 100.0 1.0 86.3/0.78 
124 89.6 96.3 0.91 77.0 87.7 0.85 80.6 86.2 0.85 89.4 34.7 0.32 77.4 77.4 0.76 95.7 100.0 1.0 86.3/0.78 
134 89.2 96.7 0.92 70.3 89.7 0.88 90.3 80.0 0.78 89.5 31.5 0.28 83.9 92.9 0.92 100.0 100.0 1.0 86.3/0.78 
234 89.6 90.3 0.76 45.9 70.8 0.65 90.3 82.4 0.81 89.5 39.5 0.37 90.3 80.0 0.78 87.0 100.0 1.0 82.2/0.71 
1234-NDVI 88.4 94.2 0.86 66.2 89.1 0.87 87.1 87.1 0.86 94.7 30.5 0.27 80.6 83.3 0.82 82.6 100.0 1.0 84.0/0.75 
1234-ATSAVI 89.9 96.3 0.91 71.6 92.9 0.92 87.1 81.8 0.80 94.7 33.9 0.31 87.1 87.1 0.86 91.3 100 1.0 86.7/0.79 
1234-Slope 86.5 94.9 0.88 77.0 86.4 0.84 87.1 81.8 0.80 84.2 32.7 0.30 83.9 86.7 0.86 100.0 100.0 1.0 83.4/0.77 
NDVI 87.3 82.2 0.56 13.5 32.3 0.18 90.9 81.5 0.80 31.6 16.7 0.13 64.5 42.6 0.38 30.4 33.3 0.3 66.6/0.44 
ATSAVI 77.6 82.0 0.56 1.4 100 1.0 80.6 83.3 0.82 68.4 25.5 0.22 77.4 33.3 0.28 13.0 7.9 0.0 61.1/0.39 
MD-1234 91.5 87.1 0.68 39.2 90.6 0.89 77.4 66.7 0.64 89.5 33.3 0.30 38.7 52.2 0.49 100 100 1.0 78.3/0.64 
1234+DT 93.4 92.1 0.80 78.4 87.9 0.85 87.1 84.4 0.83 78.9 56.0 0.54 83.9 83.9 0.83 87.0 100 1.0 88.6/0.81 

Note: 1-NIR, 2-Red, 3- Green, 4- MIR; P-producer’s accuracy; U-user’s accuracy; K-kappa 

The MLC classification map from the combination of all bands resulted in the highest 

overall classification accuracy, shown in Figure 5.3 A. For grasslands, most combinations can 

achieve a higher accuracy (approximately 90%) using MLC supervised classifier. However, some 
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pixels are misclassified. The classes with similar spectral data such as low biomass cropland and 

grasslands are confused with one another. Shrubs are over classified due to their spectral 

similarity to crops and some types of grasslands. Since shrubs are generally distributed along 

rivers or streams because of the higher available moisture, a modification was done to classify 

shrubs by incorporating a DEM GIS dataset and some “decision rules”. The decision rules are: 1) 

within 500 m from the river, and 2) elevation is lower than average. Significant improvement was 

found after this modification (Figure 5.3): some pixels originally classified as shrubs have been 

correctly identified as cropland or grassland. The overall classification accuracy/Kappa is 

increased from 88.6% to 91%. However, comparing the mapped shrubs in Figure 5.3 with our 

field observations, the impression is that shrubby groundcover is over classified. Some 

of mapped shrubs should be either forbs or dense grass. 

 

  
Crop Fallow        Grassland (upland, slopeland, crested wheat grass)  Badland 

Shrub Water body 
 

A B

 

Figure 5.4 Classification maps using MLC (Green, Red, NIR, and SWIR bands combination, June 

SPOT image) (A) and after modification (B) 
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5.5.2.2 Comparing Different Classification Algorithms 

We also compared traditional classification methods and the object oriented 

classification. We selected the June image for this purpose as the June image showed possibility 

for separating land cover types into two major groups. As well, the discriminant analysis did not 

show a significant difference in using different imagery (Figure 5.2) in section 5.5.1.1. The 

traditional classification results (Figure 5.4) showed that grass, shrubs, forbs and grass, badlands, 

and cropland can be well separated. However, when we performed the traditional classification 

algorithms, we masked cropland together since it was difficult to separate fallow from badlands 

and crops from shrubs, due to their similar spectral characteristics. Table 5.2 is the result of the 

accuracy assessment from post-classification analysis. Based on the overall accuracy, the 

unsupervised and supervised traditional classifications did not differ considerably. This could be 

due to the similarity of the classifiers used: basing on pixel spectral information only. The 

traditional MLC supervised classification (69.8%) is slightly better than traditional K-Means 

unsupervised classification (66.7%). Furthermore, the different accuracy of MLC methods shown 

in the Table 5.2 (69.8%) and Table 5.1 (88.6%) indicate that the forbs and grass class 

significantly decreased the classification accuracy. The decreased accuracy informed us that forbs 

and dense grass is the most challenging to be classified by traditional classifiers. 
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Figure 5.5  Results of traditional classification: A is from K-Means unsupervised classification 

(Based on green, red, NIR, and SWIR bands in June 22 SPOT image) and B is from MLC 

supervised classification (Based on green, red, NIR, and SWIR bands in June 22 SPOT image 

For the object oriented classification, the classification can be divided into two steps. In 

the first step, a separation of four classes (water, grasslands, shrubs and crops, badlands and 

fallow) was achieved. In this step, a segmentation of four spectral channels (Green, Red, NIR and 

MIR bands) with a relatively high scale parameter of 20, and form and compactness parameter of 

0.2 was made, so that the large objects were classified using the spectral values of the four bands 

and area parameters. The classified objects of each class were fused with a knowledge-based 

classification and the resulting objects were used as the highest object level. In the next step, a 

second segmentation was based the elevation channel (which was clipped and resampled from 

DEM map from the GIS database) with a scale parameter of 20 and form and compactness 

parameter of 0.8, producing objects suitable for the separation of shrubs and crops, badlands and 
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fallow. All objects within the primary polygons identified were classified into individual classes, 

using the nearest neighbor classifier in combination with training areas. Within the nearest 

neighbor classifier, we chose several features to separate crops from shrubs, and fallow from 

badlands. These features are 1) the mean value of the elevation channel, 2) the shapes of objects, 

and 3) the distance of objects from one another (e.g. crop is near fallow, while badlands are near 

shrubs). The classified objects of each class were also fused to establish the second level of the 

class hierarchy. The third step was to separate grasslands, which is introduced in the next section.  
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Figure 5.6 Results of object oriented supervised classification (Based on June 22 SPOT image 

bands green, red, NIR, and SWIR; eCognition software) 

The result of the object oriented classification (Figure 5.5) was preferred in this study 

because it clearly separated the classes of shrubs and crops, and badlands and crops, whereas the 

traditional maps (Figure 5.4 & Figure 5.5) showed confusing results between these classes. The 

accuracy assessment also demonstrated that the object oriented classification resulted in a much 
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higher overall accuracy (89.1%), an increase of almost 20% in comparison with traditional 

supervised classifications, and an increase of 25% in comparison with traditional unsupervised 

classification (Table 5.2). However, the accuracy of individual classes from the object-oriented 

classifier indicated that it is difficult to separate forbs and dense grass class using this classifier. 

The area of each land use type was calculated from the results of object oriented classification 

(Figure 5.6).  

Table 5.8 The results of classification accuracy assessment from different classifiers 

 K-Mean Unsupervised 
Classifier 

Maximum Likelihood 
Supervised Classifier 

Object Oriented 
Supervised Classifier 

Accuracy Producer’s User’s Kappa Producer’s User’s Kappa Producer’s User’s Kappa 
Croplands 92.6％ 91.9% 91.3%

Fallow 92% 65.7% 63.7% 92% 65.7% 63.7%
100％ 92.5% 100%

Water 43.8% 100% 100% 40.8% 100 % 100% 100％ 100% 100%
Forbs & dense 

grass 19.3% 30.2% 14.4% 40% 63% 60.9% 14.9％ 100% 13.6%

Shrubs 81.3% 68.4% 67.3% 81.3% 75% 74.1% 100％ 71.7% 100%
Grassland 84.3% 70.5% 39.8% 84.3% 70.5% 39.8% 97.2％ 90.0% 96.1%
Badlands 

(Salina valley) 45.0% 59.0% 50.2% 50.9% 59.0% 50.2% 100％ 94.4% 100%

Overall 
accuracy 64.66% 43.7% 69.8% 55.6% 89.1% 86.1%

 

In conclusion, the object oriented classifier, although resulted in lower accuracy with 

forbs and dense grass type, showed much higher overall accuracy than that of the traditional 

classifiers. The higher accuracy might result from the object oriented classifier itself because it 

takes the spatial context of the pixel population into account. A            

lternatively, the higher accuracy might result from the additional inputs that object-oriented 

classification allowed. The object-oriented classification enables the export of raster GIS layers 

established with attribute tables that can be filled with any kind of object information like 

elevation, area or texture.  
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5.5.2.3 Finer Classification for Grasslands Based on Best Algorithm and Band Combinations 

 

Figure 5.7 The map of object oriented supervised classification for finer Classes (Based on June 22 

SPOT image bands green, red, NIR, and MIR; eCognition software) 

This section used the object oriented classifier to classify four finer vegetation 

communities. The satellite data we used is the June SPOT image in order to obtain the 

comparable results to the previous section. This classification followed the two steps of the 

object-oriented classification to get the hierarchal classes. Then the third segmentation was made, 

using all four SPOT channels and one elevation channel in combination with a low scale 

parameter of 5. The form criteria and the compactness were set to 0.8. This time four classes 

were separated as the following: shrubs, shrubs-grass mixed, dense grass, and sparse grass. The 
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final classification map with sub-classes is shown in Figure 5.6. Using ground truth data, the 

overall accuracy of the map was found to be 87.5%.  

5.2.5 Comparing the Ability of SPOT 4 and Landsat TM for Classifying the Mixed Grass 

Prairie Land Cover and Land Use Types 

In order to compare the ability of SPOT 4 and Landsat TM for classifying grasslands, 

we also used the object oriented approach to classify the Landsat image, acquired on July 14, 

2005 (dated between the two SPOT image acquisitions). First, we clipped the Landsat TM image 

using the boundary of the SPOT images in order to obtain consistent results. The same DEM data 

was resampled to 30 m and added as a new channel for the clipped Landsat image. The three 

classification steps mentioned for SPOT image were also applied to the Landsat image. The 

accuracy assessment showed that Landsat image yielded a lower overall Kappa accuracy (69%) 

in comparison to the SPOT (85%) (Figure 5.7). Similarly, most of the individual classes had 

lower accuracy when derived from the Landsat image than those from SPOT image, with the 

exception of forbs and dense grass. The Kappa accuracy for forbs and dense grass is 38% from 

Landsat TM, while it is only 14% from SPOT image. This may be because the training sites for 

forbs in this analysis are mostly the sweet clover. June and July of 2005 is flowering season of 

the sweet clover, which could be more easily identified by Landsat image with more MIR bands 

than the SPOT image. More training sites for forbs and dense grass may contribute to the higher 

accuracy.  

The higher classification accuracy yielded from SPOT indicates that higher spatial 

resolution would be preferred for grasslands classification in our study area. Although Landsat 

TM imagery has more bands available, and therefore has the potential to detect more spectral 
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information of ground objects, the mixed grassland is comprised of diverse species and requires 

imagery with higher spatial resolution to identify the vegetation heterogeneity. 
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Figure 5.8 Results from the classification assessment for 11 Classes from both SPOT and Landsat 

images 

Comprehensive comparison has perfomed in order to obtain best classification map. The 

results indicated that using object-oriented method to classify SPOT image, will provide the best 

classification map for the study region. However, people should aware that although the 

object-oreinted method, combined with additional data and rules, will provide more accurate 

maps, the limitations of this classification method is much more time consuming.  

5.5.3 Seasonal NDVI Variation  

Change in NDVI throughout the growing season (Figure 5.8) corresponded well with 

our field observations. NDVI started to increase in early May when NDVI was approximately 

0.15, and over the next month and a half rapidly increased to 0.29. This corresponds with the 



 

 134

rapid green up period after precipitation occurs early growing season. The first high slope from 

May 1st to May 11th is corresponding to the green up of forb and shrub species and some grass 

species like crested wheatgrass. The second steep slope from June 11th to June 21st indicated the 

green-up of native grass species (e.g., needle and thread, western wheatgrass, and June grass). 

The peak NDVI value during the growing season was in early July, corresponding with the full 

growing season in the northern mixed grasslands. The process of senescence can be seen clearly 

from the decreasing NDVI values from mid-July through late September. Then NDVI stablizes 

around 0.14 for approximately 20 days and then drops again, indicating the end of the growing 

season. Similarly, the NDVI values are approximately 0.14 in late April when there are only dead 

materials, and bare soil. Therefore, it is reasonable to select 0.14 as the threshold value for the 

growing season. This threshold is different from the result in Zhang (2006)’s study for the same 

study area, in which he concluded that 0.25 is the threshold value for the growing season. The 

inconsistent results may result from different imagery and time span used in the two studies. 
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Figure 5.9 Seasonal variation of average NDVI (A) and the rate of NDVI change (Slope) (B) over 

the growing season from 1985 to 2006. Values in x axis represent the time of year 

5.6 Conclusions 

Through extracting spectral signals from different land cover types, we concluded that a 

hierarchical classification method is necessary as different level of classification use different 

spectral properties. It was easier to differentiate major land cover types, such as crop land, shrub 

land, and grassland. However, it was more difficult to distinguish different grassland 
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communities, such as native prairie and crested wheat grassland. The forbs are the most difficult 

ground cover classify.  

This research indicated that SPOT 4 20 m data sets have a high enough spectral, spatial, 

and temporal resolution to be able to classify seven major land cover areas with an overall 

accuracy of 87%, and to classify eight finer classes with an overall accuracy of 85%. This study 

also showed that multi-temporal remotely sensed data are critical in grassland classification. 

However, a successful classification is not only based on a better classification algorithm, but 

also depends on the careful selection of training sites and the image acquisition date. Among 

classification algorithms, the object-oriented classification showed the best results. Vegetation 

indices did not improve the classification results. It is clear that the higher spatial resolution 

images (SPOT4) offers an advantage over Landsat TM in classifying finer classes.  

In the mixed grass prairie, early May is the green up of forb and shrub species and some 

grass species like crested wheatgrass. The second green up period from June 11st to June 21th 

indicates the green-up of native grass species. The peak growing season appears in late June, and 

the end of growth season is in early October.
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CHAPTER 6 – COMPARISON OF ECOSYSTEM MODELS AND DEVELOPMENT OF A 
NEW MODEL FRAME FOR THE MIXED GRASSLAND ECOSYSTEM 

6.1 Abstract 

Modeling vegetation productivity at the landscape scale requires understanding how 

ecosystem processes are governed at this scale. Current popular ecosystem models are mostly 

site-specific due to the shortage of spatially distributed parameters and inputs. Using ground 

measurements and climate data (site-specific data) from a mixed grassland ecosystem, this study 

evaluated the performance of two commonly used ecosystem process models (CENTURY and 

Biome-BGC) and examined the models’ response to environmental change. The models had 

substantially higher correlations with ground truth measurements and climate data. However, 

both models also generated productivity values in some years which are significantly different 

from the observations, indicating a limitation of the models. Integrating remote sensing products 

(spatially-distributed data developed from the previous chapters) into the site-based 

BIOME-BGC model, the remote sensing-based ecosystem model frame was proposed. As well, 

the model-generated spatial patterns of above-ground productivity for the mixed grassland 

ecosystem were evaluated using ground truth data measured in 2005. The map accuracy of 71% 

indicated that the spatially-distributed ecosystem process model holds the potential to simulate 

and predict vegetation productivity in the landscape scale. However, knowledge of the effects of 

disturbance (human and natural) and spatial data describing disturbance regimes are needed for 

spatial modeling. Improved consideration of disturbance is a critical step for spatial ecosystem 

models.  
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6.2 Introduction 

Over the past 30 years a considerable number of ecosystem process models have been 

developed to investigate many different aspects of ecosystems, including changing vegetation 

distributions and the land carbon sink (Adams et al., 2004). At the core of most of these models is 

a net primary productivity (NPP) sub-model but most NPP sub-models are site-specific. The 

site-specific NPP model can be used to simulate or predict global vegetation productivity among 

ecosystems. However, model applications have been hampered due to the shortage of a 

spatially-distributed set of required model parameters and initial conditions (e.g., Boote et al., 

1996; Franks and Beven, 1999). 

Early efforts to link ecosystem spatial responses to environmental gradients included 

only variables related to temperature and precipitation (e.g., Holdridge, 1967; Lieth, 1972). 

Current ecosystem process models use additional information on climate (radiation, humidity, 

and other sources) and soil properties, and include vegetation type-specific parameters (Burke et 

al., 1991; Burke and Lauenroth, 1993; McGuire et al., 1993; Running and Hunt, 1993; Schimel et 

al., 1994; VEMAP, 1995). These models simulate the components of spatial variability in 

ecosystem processes governed by climate, soil, and vegetation type. As a result, they require 

maps of these variables as input (Kittel et al., 1995). 

Because of the difficulties in obtaining spatially distributed parameters required by the 

ecosystem models, the integration of remote sensing data and models has been a topic throughout 

the last couple of decades (Allen, 1990; Genovese, 1997; Meyer-Roux and King, 1992). Remote 

sensing offers the best opportunity to minimize the problems of site-specific models for several 

reasons. First, remote sensing offers the potential to derive key characteristics of the biospheres 

spatially, thus provides the probability to extend models beyond sites and certain ecosystems to 
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regional scales. Second, remote sensing data permits, in theory, the entire ecosystem to be 

classified at once. Finally, models incorporating remote sensing data are updatable. Like the 

vegetation communities themselves, the model is simulating change with time under the 

influence of disturbances. Ground surveys to measure this change are impossible given limited 

resources. However, assuming that measures developed from satellite images are sufficiently 

sensitive to detect change, monitoring change in vegetation cover and structure repeatedly within 

a decade should be possible from both a labor and cost perspective. This is is extremely 

important to aid in spatial modeling, as it will provide reliable predictive power in management 

decision making.  

There has been a long and successful record remote sensing data use in ecosystem 

modeling (Moulin et al., 1998), and in recent years studies have been focused on the assimilation 

of remote sensing data in those models (White et al., 1998; Nouvellon et al., 2001). While the 

first applications of satellite data in spatially distributed models were restricted to a descriptive 

analysis of land use, more complex methodologies are now available which develop algorithms 

or models to correlate ecological quantities with remote sensing signals at local, regional, and 

global scales (Asrar et al., 1984; Fung et al., 1987) based on good empirical correlations and 

strong theoretical basis (Goward et al., 1985; Sellers, 1985; Fung et al., 1987; Schimel et al., 

1991; Potter et al., 1993). Over time, the distributed models have benefited from remote sensing 

data either through the periodic update of the model state variables, or through re-initialization of 

the model, or by calibrating some of the model parameters. Examples of ecological variables that 

can be obtained from remote sensing data are: 1) biophysical parameters (the leaf area index and 

the minimum canopy resistance to evaporation), which can be assessed by vegetation indices 

(Sellers et al., 1992) to aid biological processes that control fluxes of mass; 2) surface 

temperature, which can be achieved from various satellite sensors to improve simulation of 
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energy balance components (Gillies et al., 1997), and 3) surface soil moisture content, which can 

be derived from microwave data (Schmugge, 1998) to improve the process modeling of bare soil 

(Bruckler and Witono, 1989) and sparsely vegetated surfaces (Houser et al., 1998) when 

assimilated in ecosystem models.  

The feasibility of using remote sensing data in ecosystem models has been demonstrated 

in several land cover types, such as bare soil (Bruckler and Witono, 1989), grasslands (Cayrol et 

al., 2000; Nouvellon et al., 2001), forests (Liu et al., 1997; White et al., 1998; Ranson et al., 

2001), and croplands (Bouman, 1992; Clevers and van Leeuwen, 1996; Guerif and Duke, 2000; 

Maas, 1988; Weiss et al., 2001). However, few studies have applied similar research in the mixed 

grassland prairie, and the spatial variation of distributed model outputs is rarely validated. 

Furthermore, in most satellite based studies, low resolution (1 km) remote sensing data were 

applied because of their high temporal availability (daily). For the application of such data in 

heterogeneous terrain such as mixed grasslands, the scaling characteristics of the remote sensing 

data (Moran et al., 1997) and the effect of sub-grid variations on the modeling of land surface 

processes (Sellers et al., 1997; Hasager and Jensen, 1999) needs to be considered.  

Therefore, the objectives of this paper are twofold: 1) to compare the current popular 

ecosystem models (CENTURY and BIOME-BGC) in simulating productivity for the mixed grass 

ecosystem, and 2) to develop a new model frame (remote sensing-based spatial model) for 

studying the mixed grass prairie. A variety of remote sensing products are available for analysis. 

Coarse resolution images at 1km spatial scales (AVHRR) are available from archived databases 

held by Parks Canada. While the resolution may be too coarse to effectively match some of the 

smallest polygons mapped in our landscape, the rapid acquisition rate of this imagery (daily, 

composited at 10 day intervals) offers the ability to measure vegetation change within and among 

seasons. Other imagery (Landsat and SPOT 4&5) is of finer spatial resolution, but is not 
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necessarily available at short temporal scales. However it would be useful to determine whether 

the spatial mosaic depicted in the model reflects reality. In addition, soils maps (at moderate 

resolution) and a digital elevation model (DEM) are available to assist in classification.  

6.3 Data and Methods 

6.3.1 Study Area 

The study was conducted in Grassland National Park (GNP), located in southern 

Saskatchewan (N 49º12’, W 107º24’) (Figure 6.1). Grasslands National Park is further located 

within the mixed grass prairie, one type of biome found within the Great Plains. This biome is a 

transitional zone between tall grass and short grass prairie (Bragg, 1995). The dominant native 

grass species found in the study site are needle-and-thread grass (Hesperostipa comata (Trin. & 

Rupr.) Barkworth), blue grama (Bouteloua gracilis (Willd. ex Kunth) Lag. ex Griffiths), and 

western wheat grass (Pascopyrum smithii (Rydb.) A. Löve). Other prominent invasive or 

introduced species at the study site includes smooth brome (Bromus inermis Leyss) and crested 

wheat grass (Agropyron cristatum(L.) Gaertn). There is also 5.2 to 15.5% of forbs and shrubs 

over the mean basal covered in the mixed grassland (Coupland, 1950).  

Grasslands National Park has an area of 906 km2, and the topography is typified as 

gently rolling terrain with elevation ranging from 710 to 1042 m above sea level. The annual 

precipitation is 325 mm with approximately half accumulated during the growing season. The 

mean monthly temperature ranges from -12.4ºC in January to 18.3ºC in July. 
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Figure 6.1 The study area: Grasslands National Park and surrounding pastures, southern 

Saskatchewan, Canada, located at the international boundary of Canada and the United States. The 

Park is composed of two blocks: East and West 

6.3.2 Data 

Measurements of productivity were made in GNP in 2003, 2004, and 2005. These 

results provided detailed information for this ecosystem and assisted in model parameterization 

and validation. A climate station (Val Marie weather station, 49° 22' N, 107° 51' W) 

immediately adjacent to the park provided meteorological data, including precipitation and 

temperature.  

AVHRR NDVI 10-day MVC from 1985 to 2006 were obtained for the Park area, which 

has a spatial resolution of 1 km. The MVC is necessary, especially for the northern mixed prairie, 

because of the low availability of optical remote sensing imagery due to cloud cover during 
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growing seasons. Only images related to the growing season from April to October were utilized 

in this study because NDVI time series for the non-growing season are not helpful for 

phenological separation. The NDVI images were reprojected to a UTM projection to overlay with 

geographical layers, e.g. the Park boundary, the river, and roads for the park area.  

6.3.3 Models Description 

The two biogeochemistry models considered in this chapter (Biome-BGC and 

CENTURY) simulate the cycles of carbon, nitrogen, and water in terrestrial ecosystems 

(McGuire et al., 1993; Running and Hunt, 1993). An overview of model characteristics is shown 

in Table 1.1, and more detailed information is available in VEMAP (1995). The models employ 

general framework for all vegetation types, but have some parameters or functions that vary by 

vegetation type. Examples of such vegetation type-specific relationships include the fractional 

allocation to type of plant tissue (e.g., no wood specified in grasslands) and carbon-to-nitrogen 

ratios. The models simulate evapotranspiration (ET), photosynthesis and/or net primary 

production, decomposition, and soil nitrogen turnover as influenced by climate variables and soil 

properties. The models represent the structure of ecosystems with different degrees of 

aggregation, but both can produce estimates of net primary productivity (NPP), net nitrogen 

mineralization, evapotranspiration, and carbon storage for living (vegetation carbon), nonliving 

(soil carbon including carbon in detritus), and total ecosystem (living plus nonliving) 

compartments. The detailed description for each model follows. 

CENTURY is a lumped-parameter ecosystem model with a monthly time step and 

aggregated plant and soil organic dynamics, simulating carbon and nitrogen cycling aboveground 

and within the top 20 cm of the soil. It concentrates on the biogeochemistry of carbon, nitrogen, 

phosphorus, and sulphur. It has been used successfully to simulate carbon dynamics, especially in 
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soil organic matter (SOM), across a variety of land use and climate types, and is particularly good 

in grass and crop ecosystems. 

The main driving data for the model are:  

• monthly average maximum and minimum air temperature, 
• monthly precipitation, 
• lignin content of plant material, 
• plant N, S, and P content, 
• soil texture, 
• atmospheric and soil N inputs, and 
• initial soil N, S, and P levels. 
For the purposes of this study, the main CENTURY submodel is plant production. Plant 

production is modeled assuming that monthly maximum productivity is controlled by moisture 

and temperature, with reductions if insufficient nutrients are available. The pools and flows of the 

grass/crop model are presented in Figure 6.2.  

 

Figure 6. 2 Grass submodel in CENTURY (Metherell et al., 1993) 
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BIOME–BGC simulates daily fluxes and states of carbon, water, and nitrogen for 

coarsely defined biomes at areas ranging from 1 m2 to the entire globe (Figure 6.3). Plant 

physiological processes respond to diurnal environmental variation (Geiger and Servaites, 1994). 

BIOME–BGC uses a daily time step in order to take advantage of widely available daily 

temperature and precipitation data from which daylight averages of short wave radiation, vapor 

pressure deficits, and temperatures are estimated (Thornton et al., 1997; Thornton and Running, 

1999). Nonlinear diurnal photosynthetic responses to radiation levels will not be captured by the 

use of daylight average radiation, but models initially designed to operate at daily timescales may 

still be used to accurately represent short-term variation in carbon fluxes (Kimball et al., 1997b). 

In BIOME–BGC, 34 parameters within several main categories are used to distinguish 

separate biomes: 1) turnover and mortality parameters are used to describe the portion of the 

plant pools that are either replaced each year or removed through fire or plant death; 2) the 

allocation of photosynthetically accumulated carbon to leaf, stem, and root pools is controlled by 

a series of allometric parameters; 3) carbon to nitrogen ratios define nutrient requirements for 

new growth, plant respiration rates, photosynthetic capacity, and litter quality; 4) the percentage 

of lignin, cellulose, and labile material in fine roots, leaves, and dead wood control litter 

recalcitrance and influences decomposition rates; 5) three morphological parameters control the 

distribution of LAI at the leaf and canopy level; 6) several ecophysiological parameters are used 

to control rates of and limitations to leaf conductance; 7) single parameters are used to control 

water interception, canopy radiation absorption, and the rate of carbon assimilation. Conceptually, 

the parameter groups describe biomes by rejecting excessive detail and unobtainable parameters 

while maintaining broadly significant vegetation descriptions. 
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Figure 6.3 Biome-BGC: C and N dynamics with disturbance components (cited from: 

http://www.ntsg.umt.edu/models/bgc/index.php?option=com_content&task=view&id=16&Itemi

d=27, accessed on 11/20/2007) 

6.3.4 Methods 

Our study approach for model comparison consists of three major steps: (1) generate a 

common data set of meteorological variables; (2) define a common set of site input parameters 

values; (3) compare model results with the data from the field sites, against temperature and 

precipitation values to account for climate discrepancies, and with spatially remote sensing data 

sets (the AVHRR NDVI data).  

After comparison, we will choose one site-specific process model to integrate it with 

remote sensing products. One of the important remote sensing products was leaf area index (LAI) 
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map since LAI is recognized as a critical vegetation parameter regulating the exchange of trace 

gases and energy between land surface and the atmosphere. Reliable remote sensing LAI data are 

a prerequisite for regional application of a process model (Liu et al., 1997). We developed a LAI 

map from a 20 m resolution SPOT 4 image over the entire study area to aid spatial modeling. 

Based on the LAI map, the other biophysical maps (green biomass, dead material, and canopy 

height) were also developed as model inputs. The model setting for onset and end of greenness is 

another key parameter controlling the length of growing season and determining the potential 

productivity. This parameter was derived from high temporal resolution imagery (AVHRR NDVI) 

in Chapter 5. A land cover map (20 m resolution) is also important because the functionalities of 

various vegetation communities are very different and changes in cover type affect productivity 

statistics for a region (Liu et al., 1997). The land cover map was also developed for the selected 

area in Chapter 5. A soil map was used as well, which describes soil classes with percent sand, 

clay and loam given at different layers (Saskatchewan Soil Survey, 1992). All these maps make it 

possible to extend site based model results to landscape scales 

6.4 Results and Discussion 

6.4.1 Model Comparison 

Using climate records and parameters derived for a specific site in GNP, the CENTURY 

and BIOME-BGC models predicted annual NPP which compared well with field observations 

(Table 6.1). However, CENTURY and BIOME-BGC showed a large deviation in 1995 and 2003, 

respectively. This was considered an acceptable deviation since the other annual productivity 

values compared well, and there was high uncertainty in the measured biomass and the aggregate 

parameterization used for the model prediction. Inter-comparison showed that two models 
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predicted NPP consistently along the year, when CENTURY predicted high NPP in 1986, 1991, 

and 1999, BIOME-BGC resulted in high NPP in these years accordingly. However, we can also 

observe the differences between predictions. 

Table 6.9 Predicted and measured biomass 

Years Biome-BGC 
(products/RE) 

Century 
(products/RE) 

Measured biomass 
(g/m2) 

1995 55.9 / 17% 82.8 / 74% 47.6 

2003 73.9 / 74% 50.4 / 19% 42.5 

2004 65.4 / -8% 62.2 / -13% 71.4 

2005 55.2 / 23% 38.4 / -14% 44.7 

Note: 1995 data Source (Mitchell and Csillag, 2001) 
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Figure 6.4 Simulated productivity from 1985-2006(g/m2/yr) 

When NPP is plotted against precipitation and temperature, strong nonlinear 

relationships are evident in both models, but with intriguing differences (Figure 6.5). 
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BIOME-BGC has a weaker relationship with precipitation in comparison with 

CENTURY-precipitation relationship. The higher relationship between CENTURY and 

precipitation is reasonable since CENTURY was designed to relate NPP directly to 

environmental variables or indicators such as temperature, precipitation, available soil nitrogen, 

or other fertility factors, while the environmental variables influenced GPP and RA instead of 

NPP in the BIOME-BGC model. However, CENTURY temperature’s relationship is weaker in 

comparison with BIOME-BGC temperature’s relationship. This result may demonstrate that 

BIOME-BGC model is more sensitive to temperature than CENTURY. 
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Figure 6.5 The relationships between climate data and simulated productivity (1985-2006) 

We examined the NDVI-NPP relationship for the last 22 years (1985-2006) (Figure 6.6). 

The comparison of NPP vs. NDVI showed that the two parameters are correlated, and NDVI had 
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a greater correlation with BIOME-BGC over the years (R2 is 0.5 with BIOME-BGC and 0.4 with 

CENTURY). The relationship between NDVI and NPP is not linear, and is steeper at low and 

high rates of NPP.  
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Figure 6.6 NDVI and simulated productivity (1985-2006) 

Although the comparison shows that models can simulate productivity over years 

successfully, successful validation at specific sites does not guarantee successful simulation of 

spatial variability (Schimel et al., 1997). Both models (Century and BGC) have been extensively 

validated at specific sites (e.g., McGuire et al., 1993; Running, 1994); yet differ substantially in 

their simulation of spatial variability within vegetation types. Researchers (Schimel et al. 1985, 

1991) presented a comparison of modeled and observed NPP along environmental gradients 

within the maritime coniferous vegetation type and the grasslands, and the results indicated the 

problems of using traditional site-specific data for spatial modeling. Few field studies have 

addressed variation of processes or state variables within vegetation types; this type of 

information is crucial for initiating and testing spatial ecosystem models. Therefore, we will 

introduce a remote sensing-based spatial model frame to minimize the above problems. 

6.4.2 Remote Sensing-based Model Frame 
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Since the BIOME-BGC model needs less parameters and model outputs greatly correlate 

with NDVI data for the mixed grassland, we decided to develop a remote sensing-based process 

model frame by integrating remote sensing data with the site-specific BIOME-BGC model. As 

shown in Figure 6.7, the new model frame is not significantly different from other process 

models as it employs weather data, GIS data, and field data to initiate and drive the model as well. 

However, the difference is that the new model will also use remote sensing products, and 

therefore be able to scale up the model results to different spatial scales. 
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Figure 6.7 Proposed remote sensing data-based model frame 

Figure 6.8 indicates that the new model frame can model productivity using different 

remote sensing products; this model structure is similar to the study conducted by Liu et al. (1997) 
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for the forest area. The remote sensing products used in this study are a 20 m land cover map, 

LAI map, dead material map, canopy height map, phenology map, and an elevation map, which 

were developed from previous chapters.  

 

Figure 6.8 Detailed framework of remote sensing-based BIOME-BGC model, showing the major 

modeling steps, and input requirements, and the data spatial resolutions 

To validate the new model, a case study was conducted for 2005 year in GNP. Using the 

developed maps as inputs, the above ground productivity (ANPP) was simulated with 20-m 

resolution for 2005 (Figure 6.9). The ANPP map was validated by the ground measurements, 

which was taken from the 30 sites, representing various grassland conditions in the west block of 

Grassland National Park. The corresponding pixels including the individual sites in the developed 

ANPP map were found. In order to ensure the sites are in the right locations, we selected a 5×5 

pixel window to minimize the error from geometrical correction. The results showed that the 
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ANPP simulations and measurements at the locations compare well (average error = 9, and 

RMSE = 43). The map accuracy of 71% provides a critical validation to the model. The reason 

for the error between model results and observation might be from three sources: 1) inaccurate 

assignment of the other biological parameters in the model, as we used default parameters if they 

could not be obtained from remote sensing data; 2) error in remote sensing products. For example, 

the phenology map used in the model was downscaled from 1 km AVHRR product and is much 

larger than the resolution of LAI map and study sites. Further work is required to study this 

scaling effect, using high-resolution remote-sensing phenology map; 3) bias in the ground 

measurements. The ground measurements of productivity were calculated from the biomass 

collected from peak growing season based on the vegetation growth curve, whereas model ANPP 

represents the whole year. The annual ANPP values for various types in GNP with the remote 

sensing-based BIOME-BGC model are within the ranges of other results for the same area 

(Mitchell and Csillag, 2001). However, the proposed model provides much more detailed 

information with spatial resolution at 20 meters, which enables researchers to study grassland 

spatial heterogeneity and provides managers a better overview for each cover type.  
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Figure 6.9 2005 Grassland ANPP Map (g/m2/Yr) 

6.5 Conclusions 

The two site-specific ecosystem process models (BIOME-BGC and CENTURY) were 

compared for simulating productivity of the mixed grassland ecosystem. The results indicated 

that both models can simulate grassland productivity with an acceptable error. However, the 

models could not offer spatially distributed productivity for the study area, even though the study 

area is heterogeneous. To address this issue, a remote sensing-based model frame was proposed 

by integrating remote sensing products into site-specific BIOME-BGC model in order to simulate 

vegetation productivity in the landscape level. Using the developed model frame, we simulated a 

productivity map for GNP with 20 m resolution for 2005 based on remote sensing products 

proposed in previous chapters. The accuracy of simulated ANPP map is approximately 71%. 

Therefore, this modeling framework is a good tool to identify and quantify grassland productivity 

with spatial details.
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CHAPTER 7 - SUMMARY 

As highly synthesized quantitative parameters, vegetation productivity is the most 

important for characterizing the performance of an ecosystem (Liu et al., 1997). Vegetation 

productivity can be simulated by process models reliably because the foundation of the models is 

on the understanding of ecosystems. However, these models require many inputs and the 

application of such models to larger areas often depends on the availability of spatially 

distributed data. Many process models at the global scale are based on ecosystem-specific inputs, 

which assume that the vegetation is homogenous within the ecosystem at hand. In light of this 

shortfall, the overall objective of this research is to integrate remote sensing products to 

ecosystem process models. The hypotheses of this study are that: 1) remote sensing data, with 

different resolutions, can increase grassland productivity prediction accuracy at different levels; 2) 

remote sensing data, with mixed information in each individual pixel, can provide ecosystem 

process models with input parameters; 3) remote sensing data can be more effective in 

heterogeneous landscapes because of continues data acquisition in the coverage; and 4) remote 

sensing data can be used to monitor the ecosystem dynamics through process models because of 

the availability of high temporal resolution. Using ground hyperspectral data, medium resolution 

multiple-spectral satellite imagery (Landsat, and SPOT 4 &5), low spatial but high temporal 

resolution AVHRR imagery, and field biophysical data, this research validates all hypotheses by 

determining the optimum remote sensing resolution and classifiers. It also develops spatially 

distributed model parameters (including an LAI map, phenology map,  and land cover map) 

from remote sensing data; compares commonly-used site-specific ecosystem models, and 

proposes a new remote sensing-based spatial ecosystem model for studying mixed grassland 
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prairie. The results show that it is feasible to integrate remote sensing products with a 

site-specific ecosystem model to represent spatially-distributed grassland productivity. 

7.1 Conclusion 

7.1.1 Scale of Vegetation Variation and Controlling Factors in the Mixed Grassland 

This study revealed that variation in vegetation within the study area is controlled by soil 

moisture and topography. A strong correlation was found between LAI and soil moisture, and 

stronger correlations were found between LAI and topographic parameters. Among topographic 

parameters, the wetness index explained more of the total variation in LAI than both relative 

elevation and upslope length because the wetness index reflects the water storage in a location 

more strongly than other indicators. NDVI was significantly correlated with LAI and topography 

parameters, demonstrating that variation in LAI can be detected by remote sensing data and that 

imagery with 20 m resolution can reveal, to some extent, the effect of topography on grassland 

vegetation. The wetness index explained more of the total variation in NDVI than relative 

elevation and upslope length along the three transects. 

Wavelet analysis showed that topographic factors are responsible for the majority of 

spatial variation of LAI at a large scale of approximatly 120 m. Therefore, following the 

sampling theorem (McGrew and Monroe, 2000), 20 to 30 m (one fourth of a period, 120 m) 

would be an optimum pixel size to detect potentially important patterns associated with 

topography in our study area. For example, landscape patterns of LAI, biomass, photosynthetic 

flux and evapotraspiration of vegetation within the study region can likely be described 

effectively using this fundamental pixel size.  
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Wavelet analysis also showed spatial variation of soil moisture at scales of 20 m and 40 

m, closely associated with the spatial scales of LAI (20 m and 40 m). Since there is a wide variety 

of soil types in GNP (Csillag et al., 2001), the two small scales of LAI may result from an 

integrated effect of other environment factors (soil texture, depth, and chemical and physical 

properties) on soil moisture. The smaller scales also suggest that imagery resolutions larger than 

20 m may not be able to identify all spatial variability resulting from soil moisture in our study 

area. 

Heterogeneity of the broadband NDVI along two 2560 m transects demonstrated that 

vegetation variation at the large scale 120 m can be detected by satellite imagery with a 20 m 

resolution. This result largely confirmed the conclusion that the NDVI variation is also related to 

topography at the landscape scale (Brosofske et al., 1999) and that the appropriate resolution 

imagery can examine the spatial characteristics associated with topography for landscape level 

ecosystem studies (Gamon et al., 1993). In addition, the NDVI has a significant spatial scale of 

50 m and 40 m in two transects, which must be a result of spatial variation from soil moisture. 

Both global features of the NDVI along the two extensive transects did not show spatial variation 

at the 20 m scale (associated with soil moisture), which was identified by the ground biophysical 

data. This result indicates that some small features that create heterogeneity (such as soil moisture) 

may not be identified at broader scales. 

In conclusion, the implications of this study are that: (1) in investigating grassland 

variation, one should consider the effect of both soil moisture and topography, not only at a fine 

scale but also at a coarse scale; (2) to estimate grassland productivity, applying the appropriate 

topographical parameters is important; (3) the wavelet approach is useful for revealing both 

localized and global features of soil moisture and topography that exert significant effects on 

grassland vegetation; (4) remote sensing data can reveal the variation of grassland biophysical 
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properties and monitor the effect of topography on grassland vegetation by performing wavelet 

approach, and (5) 20 to 30 m (one fourth of a period, 120 m) would be an optimum pixel size to 

detect potentially important patterns associated with topography in our study area.  

7.1.2 The Performance of Remote Sensing VI for Modeling Vegetation Properties in the 

Mixed Grassland 

Using ground-based hyperspectral, biophysical, and satellite data, this study compared 

the predictive capabilities of VIs for estimation of grassland LAI. The relationships between 

grassland LAI and selected VIs are significant. Among the biophysical indices, ratio-based VIs 

and soil-line-related VIs are better than chlorophyll-corrected VIs in LAI estimation. The 

performance of RDVI, ATSAVI, and MCRAI2 at estimating LAI are slightly better than that of 

other VIs within the groups of ratio-based, soil-line-related, and chlorophyll-corrected VIs, 

respectively.  

The litter-corrected ATSAVI (L-ATSAVI) appeared to be the best indicator in 

estimating LAI. L-ATSAVI could explain 55% of grassland LAI and improved LAI estimation 

capability in our study area by about 10% compared with other selected VIs. Our results 

indicated that previous vegetation indices have limitations in removing the effect of litter and that 

incorporating CAI into ATSAVI can improve the ability of LAI estimations in the study area. 

Although the current study utilizes a dataset collected along a transect with high 

vegetation variability, the results of this study are confined to our study site, one mixed grassland 

ecosystem. Future research should test the feasibility of these vegetation indices through radiative 

transfer models or ground truth data from different study sites with different vegetation types, 

and also apply the improved vegetation index, L-ATSAVI, to remotely sensed imagery. 
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7.1.3 Remote Sensing Vegetation Biophysical Properties Developed for Modeling Grassland 

Productivity 

We developed the LAI map based on the relationship between LAI and two indices, 

ATSAVI and RDVI. A detailed assessment of the accuracy of the regression models indicated 

that ATSAVI was likely better in estimating and mapping LAI than the RDVI for the mixed 

grassland ecosystem. The accuracy of the LAI map, derived from ATSAVI, was calculated to be 

66.7% and this map represents the spatial distribution of vegetation for the study area.  

The significant relationships found between measured LAI and the biophisical data (i.e. 

green biomass, dead biomass, and canopy height) solves the difficulty for mapping biophysical 

information due to insufficient sampling coverage for GNP. Biophysical maps (green biomass 

map, dead biomass map, and canopy height map) were developed from the LAI map using the 

regression models between biophysical data and measured LAI. A careful examination of these 

maps showed that, in general, the three maps accurately represent the biophysical information as 

explained for the LAI map. Statistical results indicated that the canopy height map resulted in the 

highest map accuracy, followed by green biomass, while the least accurate is dead biomass.  

7.1.4 Remote Sensing Land Cover Map and Vegetation Phonology Developed for Modeling 

the Mixed Grassland Productivity 

Through extracting spectral signals from different land cover types, we concluded that 

SPOT 4 20 m data sets have a high enough spectral, spatial, and temporal resolution to be able to 

classify 7 major land cover areas with an overall accuracy of 87%, and to classify eight finer 

classes with an overall accuracy of 85%. This study also showed that multi-temporal remotely 

sensed data are critical in grassland classification. However, a successful classification map is not 
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only based on a better classification algorithm, but is also dependent on the careful selection of 

training sites and the image acquisition date. Among classification algorithms, the object-oriented 

classification showed the best results. It is clear that the higher resolution images (SPOT4) offer 

an advantage over Landsat TM in classifying finer classes.  

Using high temporal resolution imagery (AVHRR NDVI), we found it is possible to 

identify vegetation phenology. Generally, in mixed grass prairie, early May is the green up of 

forb and shrub species, and some grass species such as crested wheatgrass. The second green up 

period extends from June 11st until June 21th, indicating the green-up of native grass species. 

The peak growing season appeared in late June and the end of growth season occurred in early 

October. 

7.1.5 Model Comparison and the Development of Spatial Ecosystem Process Model Frame 

The two site-specific ecosystem process models (BIOME-BGC and CENTURY) were 

compared for simulating productivity for the mixed grassland. The results indicated that both 

models can simulate grassland productivity with an acceptable error. However, the models could 

not offer spatially distributed productivity for the study area. To address this issue, a remote 

sensing-based model frame was proposed by integrating remote sensing products into 

site-specific BIOME-BGC model, in order to estimate productivity in the landscape level. Using 

the developed model frame, we simulated the productivity map for GNP at 20 m resolution for 

the year 2005, based on remote sensing products developed in previous chapters. The simulated 

ANPP map accuracy is about 71%. Therefore, this modeling framework is a good tool to identify 

and quantify grassland net primary production with spatial details. 
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7.2 Potential Applications 

There are three potential application of this research; that are of scientific, ecological, 

and economic applications. Scientifically, the research addressed a critical gap in modeling 

spatially-distributed productivity for the mixed grassland ecosystem. The results from this 

research identified the most optimum spatial resolution, most suitable spectral vegetation indices, 

and an efficient model frame in measuring distribution of grassland productivity. Considering the 

large number of mixed grassland ecosystems in North America, which are not analyzed in this 

study, and taking into account the existence of other grasslands across Europe and Asia, many 

more ecosystem properties and processes could be readily identified by using the methodology 

employed in this study. 

As for ecological applications, many of the biophysical measures developed for GNP 

can be taken not only to monitor changes in the vegetation community itself, but also to 

understand the influence of vegetation changes on the associated faunal community. The new 

model framework can be applied to grassland management by providing high spatial resolution 

productivity, and thus assure sustainable development of northern mixed grasslands. Furthermore, 

output of this study will contribute to other studies such as climate change, carbon sequestration, 

sustainable ecosystem development, and grassland ecology. 

The economic application of this study is that it will generate in a cost-effective and 

efficient way to accurately measure grassland productivity at a range of spatial scales; it will 

provide a tool for stakeholders, park managers, and ranchers to make better decisions regarding 

conservation planning, grassland management, and sustainable grazing intensity. Indeed, GNP is 

moving forward to incorporate the developed maps and modelframe in aid of spatial fire fuels 
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modeling, and habitat modeling for species at risk and biomass monitoring for a reintroduced 

herd of plains bison. 

7.3 Limitations  

This research addressed the gap in the current site-specific process models by using 

remote sensing products. However, there are still some limitations that need to be addressed in 

future studies.  

(1) Accuracy of Remote Sensing Products 

The accuracy in remote sensing products (e.g. LAI) strongly affects most components of 

the models, including radiation absorption, transpiration, photosynthesis, respiration, and soil 

water balance. Therefore, reliable remote sensing products are a prerequisite for regional 

application of a process model. However, the remote sensing products, especially those derived 

from vegetation indices, offer only reasonable first-order estimates of biophysical variables based 

on an empirical relationship. Consequently, the analysis for the RE demonstrated that the 

proposed maps derived from empirical relationships should be treated carefully in areas of higher 

or lower vegetation cover. To avoid this type of problem in future experiments, more samples 

from areas with higher or lower vegetation cover should be measured to ensure that observations 

are representative. Furthermore, some error propagation may exist when using derived maps as 

input for modeling grassland productivity, even if there is a significant relationship between 

satellite data and field biophysical data.  

(2) Availability of Remote Sensing Products 
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Even though remote sensing data can be used to estimate vegetation properties in diverse 

temporal and spatial scales, optical sensors that provide a spatially comprehensive overview at a 

finer spatial resolution (for example, 20-30 m) for heterogeneous grasslands can not provide an 

adequate update for daily or monthly time-step models. Conversely, high-temporal resolution 

imagery (such as AVHRR) can be used to offer daily inputs for models or used to identify 

vegetation phenology. However, the coarse spatial resolution (AVHRR is 1.1 km) might not be 

able to capture spatial details for the mixed grassland, and thus increases model uncertainty. For 

ecosystem models, it could be argued that an ideal system would utilize data to estimate variables 

that have spatial and temporal scales comparable to those required by the ecosystem model. 

Unfortunately, with current technology, the design of a sensing system requires a balance 

between the spatial and the temporal.  

In addition, the developed hyperspectral vegetation index (L-ATSAVI) was found to be 

the best remote sensing index in estimating vegetation biophysical properties while minimizing 

the effects of litter and soil background. However, a lack of hyperspectral imagey for the study 

area made this index incapable of functioning.  

(3) Study the Responses of Models on Disturbance 

All of the ecosystem models are sensitive, implicitly or explicitly, to disturbance in their 

productivity simulation. Both the effects of disturbance (human and natural) and spatial data 

describing disturbance regimes are critical aspects of spatially-distributed ecosystem models. 

This study did not test the response of models to disturbance because the study area (GNP) has 

been protected from grazing and large human activities over years and there is no significant 
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disturbance in the GNP. Considering disturbance responses is a key ‘‘next step’’ for the 

proposed spatial ecosystem models by using the data from outside of GNP. 
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APPENDIX A –FIELD DATA COLLECTION FORM 

Date:       Time:     Recorder: 
Plot Series: Rel. elev.: Lat.:           Long.: Soil core： 

Series      
Aspect  

Q
ua

d
ra

t 

Slope      
Grass      
Forb      
Shrub      

C
ov

er
-t

op
 

la
ye

r 

Standing dead      
Litter      
Moss      
Lichen      
Rock      

C
ov

er
-L

ow
 

la
ye

r 

Bare ground      
Litter depth      
Average height      
No. of hits:    0-10      

10-20      
20-30      
30-40      

H
ei

gh
t 

40-50      
Needle & thread      
Blue gramma      
June grass      
Western wheatgrass      
Northern 
wheatgrass       
Awned wheatgrass      
S lender wheatgrass      
Green needle grass      
Sedge      
Salt grass      
Prairie sage      
Pasture sage      
Sage brush      
Cactus      
Unidentified grasses      
Unidentified forb      

C
ov

er
 o

f g
ra

ss
 \f

or
b\

sh
ru

b 
sp

ec
ie

s 

Unidentified shrub      
Soil moisture      
Soil temperature      
Biomass      
Note (location description, community, etc.): 
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APPENDIX B – INSTRUMENTS GUIDES DEVELOPED FOR FIELDWORK 

1. ASD Spectroradiometer  

What you should know: 
1. Hardware: instrument body (power button, battery status indicator, parallel port, power 

supply jack, battery check, fiber optic cable, pistol grip), laptop, cables, white reference, 
power chargers. 

2. Fiber optic cable: coiled loosely 
3. Power sequence:    

Turn on —first instrument, then laptop. Warm up 15 minutes later before measurement. 
Turn off ---first laptop, then instrument. 

4. Battery status indicator light:  
Off :   No battery connected or running on battery power. 
Solid yellow: Charging 
Green:  Fully charged 
Yellow flash: Standby or battery out of temperature range. 
Red:  Error 

 
Operation procedures: 
Preparing: 

 CHARGE both instrument and laptop indoor every night. 
 Remember to wear black clothes, especially when measuring shrub spectra. 
 Set up the field quadrads. 
 Watch the sky. If it is clear day and time is between 10:00am-2:00pm, then ready for 

following steps: 
 
1. Take out the laptop and connect with instrument. 
2. Turn on the instruments and warm up 15 minutes. 
3. Install the fiber carefully, do not stretch the fiber or pull it. 
4. Turn on the laptop and carry everything with you (reference and fiber optic cable in hands). 
5. Click SW in the screen. 
6. Select the menu at the top of screen called Spectrum Save （Alt+c）. 

 Path name: D:\2006fielddata\date 
 Base name: sitename 
 Starting Spectrum #: 000 
 Number of files to save: 999 

7. Point the pistol to the white reference. 
8. Ctrl+o  ----- optimization (look at right corner in the panel till ‘optimization 

completed’) 
9. F4   ----- Collect a white reference  
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 If a straight line spectrum appears on the screen, hold it there for 3 - 5 seconds to make 
sure the atmospheric conditions are stable. 

 If not a straight line, go back to step 7.  
 Redo step 7-10 at least every 10 - 15 minutes if atmospheric conditions change. 

10. Point the pistol to the sample surface, remember to keep the pistol completely vertical (using 
leveling bubble on top) 

11. Space bar  ----- Save spectra data. 
 
2. LAI 2000 Plant Canopy Analyzer 
What you should know: 
1. Use your shadow to avoid direct sun when measuring both above and below reading. 
2. Make sure the fish eye points to open area when you take above readings. 
3. Use leveling bubble when taking measure on flat area. 
4. Make your sensor parallels to the slope when measuring sloped area. 
Operation procedures: 
1. Connect the sensor (connector is n your left as you view the front panel keypad). 
2. Pow on (on) 
3. Oper ---Set Op Mode: MODE = 1 sensor x---Seq=1 above and several below readings, 

Reps=1 
4. Set Promps (FCT 1 2): Prompt 1=Site, Prompt 2=Quad 
5. Log: Promt 1=Site name, Prompt 2=Quad name, then take the readings. 
6. Power off (FCT 0 9) 
7. Download data ---Two formats: save as, and export 
 
3. HH2 Moisture Meter and ThetaProbe 
What you should know: 
1. Hardware: Meter, Probe, connectors, robs, ML-INK1 insertion kit, battery 

 Do not remove the cross-head sealing screws. 
 Do not remove the ThetaProbe from soil by pulling on the cable. 
 Do not attempt to straighten the measurement rods while they are still attached to the 

probe body. 
 Clean the guide block with fresh water and mild detergent. 
 Clean rods with a fine oil based lubricant.  
 Disconnect the sensor immediately on receiving the low battery warning, or you will 

lose data. 
 Ensure the HH2 is sleeping before changing the battery (Do we have enough battery?). 
 You have 30 seconds to replace the battery before all stored readings are lost. If possible, 

download data first.  
 1 battery can take approximately 2000 readings. 
 Memory: 227-2186 readings 
 Erase: yes only when you want to erase stored data. 

2. Measurements: 
 Be very careful when removing and re-inserting the probe into a previous location, 

because the presence of air pockets around the rods will reduce the value of soil moisture 
content measured. 

 If soil is heterogeneous, it will be necessary to take measurements from at least three 
closely-spaced locations. 
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APPENDIX C – FIELD PLAN FOR LAND COVER CLASSIFICATION IN GNP 

1. Objective: 

The objectives are to: 1) investigate the biophysical and spectral characteristics of 18 land cover 
communities; and 2) provide a map of current land cover communities within Grasslands 
National Park to aid in creating an effective management plan for the park. 
 
2 Data Collection  
2.1 Sampling sites selection 
Supervised and object-oriented classifications require field work prior to image classification, in 
order to identify field sites for training data. Sample sites were chosen based on the current 
database for GNP (GEMS Project Report #3, John Wilmshurst).  The 20 land cover 
communities are showed in Table 1. Since we can identify road, track and river clearly from the 
satellite imagery, and we had enough sites for the Crested Wheat grass based on Tara’s field work 
and enough thorny buffalo berry sites from last year’s field work, we do not need to visit the sites 
for these five land cover types. The land cover communities that we should visit are reduced to be 
15 now. 
 
Ideally, we would like to choose 30 sites for each land cover community, in which 15 sites will be 
training data and the rest 10 sites will be used for post classification accuracy assessment. Study 
sites are selected which are within park boundaries, mostly in the west block, as the focus was to 
map species invasion within the park area. To determine 30 sites for visiting, we first extract all 
the points for each type of communities based on the state classes map (GEMS Project Report #3, 
John Wilmshurst). Then the purpose based sampling method will be used to choose 30 sites for 
each community. If some communities do not have enough points, such as Prairie Dog 
community, we will visit all the points we extract from the map. 

 
The purpose based sampling is drawn solely on the operator’s judgment and is deliberate in 
selecting representative sites (McCoy, 19, 2005). This method of sampling is defensible in areas 
with limited accessibility or where the operator is working with a phenomenon which they are 
familiar with. Although, there is always operator bias which renders accuracy and level of 
confidence statements in the final map statistically invalid because random sampling was not 
used (McCoy, 19, 2005). 
 
Table 1: List of state classes in the GNP. (GEMS Project Report #3, John Wilmshurst). We can 
identify road, track and river clearly from the satellite imagery, and we had enough sites for 
Crested Wheatgrass based on Tara’s field work and enough thorny buffalo berry sites from last 
year’s field work. Therefore, we do not need to visit the sites for these five land cover types. 

Land Cover Land Cover Code 
Speargrass-BlueGrama 6001 
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Creeping Juniper-Speargrass 6004 
Pasture Sage-Speargrass-BlueGramaGrass 6005 
Alkali Grass-Nuttail's Salt Meadow Grass 6006 
SageBrush-W Wheatgrass-Opuntia 6007 
Disturbed-Smooth Brome 6008 
Rose-Winter Fat 6009 
Willow-BuckBrush 6010 
Rose-BuckBrush 6011 
Saskatoon-ChokeCherry-Canada GooseBerry 6012 
Disturbed: Russian wild Rye 6013 
Shrubby Cinquefoil - Rose 6014 
Thorny Buffaloberry 6015 
Speargrass-Western Wheatgrass 6020 
Crested Wheatgrass 6023 
Prairie Dog 6024 
Exotic 6027 
River 6099 
Road 8000 
Track 8001 

 
2.2 Sampling Design 
A sampling scheme was produced to collect biophysical data within the sites.  Five 0.5 m2 
quadrats were positioned within 60 x 60 meter study sites to collect data for each study site. The 
first quadrat was randomly placed at one corner of the plot, the second quadrat was placed 60 
meters north of the first quadrat, the third quadrat was placed 60 meters west of the second 
quadrat, the fourth quadrat was located 60 meters south of the third quadrat, and the final quadrat 
was placed in the centre of the site. This sampling scheme is designed to represent a sample from 
four different pixels from Landsat imagery and 9 different pixels from SPOT 4 imagery. McCoy 
suggests an equation for determining the area of a sample site as: 

(1 2 )A P L= × +  
Where A is minimum site dimension, P is image pixel dimension, and L is vocational accuracy. 
So with Landsat ETM+ data of pixel dimension 30 meters and locational accuracy of at least 0.5 
pixels the minimum sample site size should be 60 x 60 meters.  

 

Quadrat 

60m 

60m 
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Figure The sampling scheme for the data collection 
 

2.3 Instruments and collected variables 
For each site, we are going to collect: 

 Locational information 
 A picture of the site 
 LAI 
 Dominant Species 
 Green Cover 
 Dead Cover 

Instruments used for data collection include the following: a Garmin GPSMap 76S Global 
Positioning System (GPS), Li-Cor LAI-2000 Plant Canopy Analyzer, a digital camera, and a 
50*50cm quadrat. GPS readings were taken for locational positioning. The LAI-2000 was used to 
collect Leaf Area Index (LAI) for quadrat level. The digital camera will take a picture for the site. 
The quadrat will be used to measure green and litter cover. Cover was estimated to the nearest 
5% for cover values ranging from 10% to 90% and to the nearest 1% for cover values less than 
10% and greater than 90% in green cover and litter (bare ground if it dominates the quadrat). 
Main species were identified for each site.  
 
3. Work load estimation 
Expected sites are as followed: 

Land Cover Land Cover Code Expected sites 
Speargrass-BlueGrama 6001 30 
Creeping Juniper-Speargrass 6004 30 
Pasture Sage-Speargrass-BlueGramaGrass 6005 30 
Alkali Grass-Nuttail's Salt Meadow Grass 6006 7 
SageBrush-W Wheatgrass-Opuntia 6007 30 
Disturbed-Smooth Brome 6008 28 
Rose-Winter Fat 6009 23 
Willow-BuckBrush 6010 30 
Rose-BuckBrush 6011 30 
Saskatoon-ChokeCherry-Canada GooseBerry 6012 13 
Disturbed: Russian wild Rye 6013 5 
Shrubby Cinquefoil - Rose 6014 0 
Speargrass-Western Wheatgrass 6020 30 
Prairie Dog 6024 13 
Exotic 6027 10 
Total  309 

 GPS readings and Pictures: 309 
 LAI measurements: 309*5 
 Dominant Species: 309 
 Green and litter cover measurement: 309*5 

 
4. Reference: 
McCoy, R. M. (2005) Field Methods in Remote Sensing. New York: The Guildford Press. 
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APPENDIX D –FIELD PLAN FOR LAI INSTRUMENTS COMPARISON 

1. Objectives:  

 Comparing indirect measurement of leaf area by two commercially available instruments, 
AccuPAR and the LAI-2000, with direct destructive measurements of leaf area.  

 
2. Data collection:  
2.1 Instruments and other stuff 

 ASD Spectroradiometer /Soil moisture meter /LAI 2000 /AccuPAR /GPS 
 High accurate scale (error +-0.0001)            
 Four tent pegs and string to make 120*120cm2 for measurement  
 5*5&10*10cm2 Bristol boards with scale on to measure direct leaf area 
 0.1m2 hoop and 0.1m2 square frame 
 Hand shear, plastic bag and flag 

 
2.2 Sites location 
LAI measurement will be measured within about 20 sites, which will encompass the range of 
grass density: 

[
[

[[

[

[

[

[

Legend

[ Upland crestedwheat
Valley western wheat
Upland stipa bouteloua
River
Bound

 
 5 valley brome sites (high density) 
 5 valley sagebrush / western wheatgrass sites (not including the shrubs though for ease of 

interpretation)(medium to high density) 
 5 upland crested wheatgrass (medium to high density) 
 5 upland stipa / bouteloua sites (typically low density) 

 
2.3 Samples and measurements within a site： 
For our study area, we use the leaf removing method for comparison (e.g. Wihelm, 2000). After 
obtaining removed leaf sample per site, Leaf area is measured on a sub-sample of leaves and 
related to green mass (e.g. via specific leaf area, SLA, m2 g–1). Finally, the total mass of leaves 
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collected within a known ground-surface area is converted into LAI by multiplying by the SLA. 
 

 remove the non-grass species in the sites before any measurements 
 take spectral measurements (4 for each site )  
 take soil moisture measurements (4 for each site) 
 LAI measurements: 

 Use two LAI meters to measure LAI (named as LAI 1) for a site.  
 Clip grass (by hand shear) in four green circles within the site. 
 Remove grass from the site and put into plastic bag. 
 Weigh the clipped grass 
 Use two LAI meters to measure LAI (named as LAI 2).  

Direct LAI = sum (4 clipping area) 
Indirect LAI = LAI 1- LAI 2 

 
Figure. The positioning of the hoop (0.1 cm2, hollow circles) where the grass is cut in each site, 
and the positioning of the sensors where under-canopy LAI readings were taken with the LAI 
2000 (small grey circles) and AccuPAR (the bold line). The positioning of the sensors was shown 
for only one side of a site. In the field, we measured optically estimate LAI for four sides of each 
site with the instruments and average all the measurements to represent LAI for this site. 
 
3. Work load estimation  
Field work: 20 sites, so we have---- 

 80 samples to clip, weigh, sort  
 20 Accupar readings and 40 LAI-2000 readings (1 above and 8 below, two 

measurements for each site) 
Home work: 20 sites, for each site---- 

 Measure 10cm*10cm leaf area for each site and weigh them (G1 g) ---stored in a 
refrigerator at 30C and measuring has been done within 24h (Johnson and Pierce, 2004). 

 Calculate total true leaf area index for the site: 
Specific leaf area: SLA= 100 (cm2) / G1 (g) = 0.01 /G1 (m2/ g) 
Weight per 4 circles in a site = G0 (g) 
Leaf area per site = G0* SLA = 0.01G0/ G1 (m2) 
LAI per site= [0.01G0/ G1 (m2)]/0.4(m2)=0.025 G0/ G1 

 Download 20 Accupar readings and 40 LAI-2000 readings and transfer  
 Dry subsample and total sample biomass 

 
4. Reference: 

120 cm  
AccuPAR 
measurements

LAI 2000 
measurements 

120 

Destructive 
measurements 
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Wilhelm, W. W., Ruwe, K. and Schlemmer, M. R. 2000. Comparison of three leaf area index 
meters in a corn canopy. Crop Sci. 40: 1179-1183. 



 

 185

 

APPENDIX E –SPOT IMAGE ORTHORECTIFICATION PROCEDURES 

Orthorectification is the process of using a rigorous math model and a digital elevation model 
(DEM) to correct distortions in raw images. SPOT scene products derived from SPOT 1, 2, 3, and 
4 satellites are provided in the CAP format. Alternatively, SPOT 5 images are provided using the 
newly developed DIMAP format. The DIMAP format was introduced in mid-2002 with the 
launch of the SPOT 5 satellite and since its release the new data format has also been available 
with SPOT 4 images. The orthroctification method for CAP and DIMAP is different. Following 
we introduced the methods about how to orthorectify two formats of SPOT image individually. 

 
1. Orthorectification SPOT (CAP format) 

(1) Pre_Orthorectification: Add orbit information to raw image 
 Go to the EASI command prompt and run “s CDSPOT” from there  
 To read in the RAW data using CDSPOT, place RAW files in a directory called 
SCENE01 and use this directory as the CDDIR directory.  Be sure all RAW files reside 
within this directory and CDSPOT will automatically read the files it needs to create the 
output FILE. The output file cannot be written to the same path as your SCENE01 
directory.   
 In CDSPOT command prompt typing:  
CDDIR = “D:\SCENE01\ 
FILE = “D:\Spot_Out.pix” 
CDIC = 1,2,3,4 
TEX1 =  
SPFILE = 
REPORT = 
 
Typing ' s CDSPOT ' to view the parameters. I have included my EASI parameters that I was able to 
the data in with here:  
CDSPOT CD SPOTIMAGE SPOT Format             
 CDDIR   - CD Directory                    :D:\SCENE01\ 
FILE    - Database File Name              : D:\Spot_Out.pix 
CDIC    - CD Input Channel List           }        1        2        3        4 
TEX1    - Database Descriptive Text 1     : 
SPFILE  - Scene Parameter File            : 
REPORT  - Report Mode: TERM/OFF/filename  :TERM 
 
Notice: Some things to check when assigning your parameters: 
 1.) That your 'FILE' parameter is a different directory than your 'CDDIR' directory 
2.) There should be no spaces in any of the directory paths 
3.) CDDIR must end in with the '\' character.  So c\SCENE01 will not work but c:\SCENE01\ will 
4.) All RAW files you sent me must reside in the SCENE01 folder 
5.) The directory that your output file must already exist. 
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6.) Prior to running CDSPOT the output file cannot already exist, CDSPOT will create the output file 
 Run CDSPOT to add orbit information: 

EASI>r cdspot 
Type <CR> for Scene information > CR 
Type <CR> for Imagery File Descriptor > CR 

(2) Orthorectification 
 Project Setup  
 Data input -----“read PCIDSK file” : the image has been added the orbit information  
 Generate DEM map 
OrthoEngine panel----Import&Built DEM (Under Processing Step) ----DEM from TIN 
 Collect GCPs for Orthorectification based on Geometric corrected image 
 Orthorectified correction 
OrthoEngine panel----Ortho Generation (Under Processing Step) ----Schedule ortho 
generation (Note: Browse DEM image) 

 
2. Orthorectification SPOT (DIMAP format) 

(1) Start a project: 
 Start OrthoEngine, and start a new project. Give your project a file name. 
 Select Satellite Orbital Modeling as the math modeling method. Under Options, choose 
Toutin's Model, and click Accept.. 
 Enter the appropriate projection information for your project. 

(2) Data Input 
For rigorous modeling with Geomatica OrthoEngine, you will need to order Spot 5 Level 
1A data. Products higher then level 1A already have some level of correction applied, and 
therefore are not suitable for orthorectification. DIMAP (tiff) format is supported for Spot 
5 orthorectification. DIMAP is a metadata format developed by SPOT Image, which uses 
GeoTIFF as the primary interchange layer. The data will come in a directory with an .XSL 
file, a metadata file (METADATA.DIM), a tiff imagery file IMAGERY.TIF), and some 
preview JPEG files. Note: OrthoEngine requires the imagery file and the metadata file to 
be located in the same directory. 

 To import Spot 5 data for orthorectification, select Data Input under Processing Steps, 
and select Read Data From CD-ROM.  
 Set CD Format: to SPOT 1-5(DIMAP) 
 Set Requested channels 1 for panchromatic data, and Requested channels 1-4 for 
multispectral data. Supply an output file, a scene description, and a report file name. 

(3) Collect GCPs and Tie Points 
 Select the GCP/TP Collection processing step. 
 GCPs can be collected using many methods. Select Geocoded Image if a previously 
corrected image is available. 
 Select DEM. Identify the location of the related DEM 
 Once you have collected your GCPs, run the model calculation and proceed to the 
residual report panel (under the Reports processing step) to review the initial results.  

(4)Generating Ortho Images 
 The final step is to set up your Ortho Image Production. Proceed to the Ortho Generation 
processing step.  
 Select the files to be processed, select the DEM file to be used, and set your processing 
options. Click Generate Orthos. 
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APPENDIX F–SPOT AND LANDSAT IMAGERY ATMOSPHERIC CORRECTION 
PROCEDURES 

ATCOR2 is atmospheric correction and haze removal software used to correct changes in the 
spectral reflectance of materials on the earth's surface. ATCOR2, is used for atmospheric 
correction in images of relatively flat terrain, and can be applied to data from a number of sensors. 
The input for ATCOR2 is a geometrically corrected image contained in a single PCIDSK (.pix) 
file. ATCOR2 output is a scaled reflectance image. 

 
SPOT and Landsat are generally the same with a few exceptions: Tilt, Calibration file (ie gain 
and bias) 
 
IMAGE PROCESSING STEPS 
The first step in performing the atmospheric correction is to create a single file of the Landsat or 
SPOT bands for input to ATCOR2. Sensor input information required by ATCOR2 are image 
acquisition date, layer band assignment, scale factors, sensor type, pixel size, and calibration file. 
Atmospheric input includes solar zenith angle, model for solar and thermal region, visibility, and 
ground elevation. The majority of the parameters are straightforward and require basic 
information about the image origin, acquisition details and sensor information. Other parameters 
require a more detailed discussion.  
 
Calibration Files 
The unit of electromagnetic radiation is [mW cm-2 sr-1 μm-1]. That is, the rate of transfer of 
energy (MicroWatt, mW) recorded at a sensor, per square centimeter on the ground, for one 
steradian (sr) (three dimensional angle from a point on Earth’s surface to the sensor), per unit 
wavelength being measured. This measure is referred to as the spectral radiance. Prior to the 
launch of a sensor, the relationship between measured spectral radiance and DN is determined. 
This is known as the sensor calibration. Satellite data usually do not come in this (comparable 
and defined) unit. The reason is that the measured signal depends on the sensitivity and storage 
capacity of the detector (i.e. 8-bit, 16-bit etc.). Therefore the data is re-scaled so that the signal 
received by the sensor fits into a defined range using a function which is described by an Offset 
(also called Bias) and a Gain. In most remotely sensed images a linear model relates the digital 
value (DN) of an image pixel to the intensity of reflected radiant energy (Wm-2 sr-1mm-1). 
These scaled values are then stored as integers (for example 8-bit  or 0 to 255 for Landsat 
ETM+).  
 
ATCOR re-scales the DNs of the image into the true “radiance at sensor” employing a reverse 
operation. In order to calculate the radiance for a given pixel in a spectral band the calibration 
gain and offset must be known. The scaling and therefore the offset and gain are different for 
each sensor and are often adjusted over time as the sensor begins to deteriorate.  The gain and 
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offset used in each image is recorded in the image metadata and is used by ATCOR in the form of 
a calibration file. Calibration files differ between sensors and images. 
 
The standard calibration files are in the cal folder under the ATCOR folder where Geomatica is 
installed (for example, C:\Program Files\Geomatica_V100\atcor\cal).  
 
Gain and Bias (Landsat) 
The calibration file contains a table of the bands, the gain value for each band, and the bias for 
each band. ATCOR uses mW/cm-2 sr-1 micron-1 as the radiance unit for each band, except the 
thermal band which uses mW m-2 sr-1 micron-1. Since the sensors may use a different radiance 
unit, you may need to convert the values.  
 
To create your own file, enter the values found in the metadata into a new file: The Bias or Offset 
as c0 and the Gain as c1. Make sure to use the correct units [mW cm-2 sr-1 
μm-1] or [W m-2 sr-1 μm-1]. 
 
Example of an ATCOR *.cal file (etm_new.cal), values are from the example above: 

 
 
ATCOR employs the unit [mW cm-2 sr-1 micron-1]. For each channel the at-sensor radiance L(i) 
and digital number DN(i) are related by  
L(i) = c0(i) + c1(i)*DN(i)  
where c0(i) and c1(i) are the offset (bias) and slope (gain) of the linear calibration equation. The 
metadata files of different sensors use different units, so care has to be taken to convert these 
numbers into the ATCOR radiance unit. The c0, c1 coefficients (with unit mW cm-2 sr-1 
micron-1) are specified in a "sensor.cal" file. 
 
Gain and Bias (SPOT) 
The SPOT calibration coefficient (Absolute Calibration Gain) A(i) is specified in the metadata 
file as: DN(i) = A(i) * L(i)  
The conversion of the Spot count values to irradiances is performed as follows: 

L(i)  = DN(i) / A(i) 
The A(i) coefficients (with unit [m2 sr micron W-1]) enter the ATCOR calibration file and 
c0(i)=0. ATCOR converts the A(i) internally as c1(i) = 0.1 / A(i) to obtain the required unit [mW 
cm-2 sr-1 micron-1].  
 
Band Setup 
If you did not use a CD read algorithm to import your images, you may need to match the sensor 
band numbers to the correct image channel numbers. To set up the channels, click Band Setup. 
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When you prepared the PCIDSK (.pix) file for atmospheric correction, the band numbers may not 
match the channel numbers. For example, band 1 from the sensor may not necessarily be in 
channel 1 in your file. You need to match the sensor band numbers to the correct image channel 
numbers.  
 
Tilt 
The calculations for atmospheric correction will depend on the sensor view angle. For sensors 
without tilt capability this parameter will not appear. There are two categories for sensors that do 
have tilt capability: 1) sensors with East/West tilt capability and 2) sensors with East/West and 
North/South tilt capabilities (also known as omni tilt sensors). The satellite elevation, or the 
elevation above the horizon, is used to determine the magnitude of the tilt. The tilt magnitude will 
either be Nadir (no tilt), 10, 20 or 30 degrees. The sun azimuth and satellite azimuth are used to 
determine the tilt direction. The tilt direction is defined by ATCOR’s discrete azimuth grid. Tilt 
angles are specified in the metadata and may be prefixed with (L)eft or (R)ight. Left indicates an 
East angle while Right represents West angle. 
 
East/West Tilting Sensors: Cartosat PAN, IRS-1C/D PAN, MSU-E, SPOT 
Omni Tilt Sensors: Ikonos, OrbView, QuickBird 
 
Running Atmospheric Correction 
When you perform the atmospheric correction, Focus adds a thematic raster metalayer to the 
Maps tree. The metalayer contains the image being corrected, the Haze bitmap mask layer, the 
Cloud bitmap mask layer, the visibility layer, and a layer with the Value-Added Data. To execute 
the Atmospheric Correction the metalayer must be accessed and Run Atmospheric Correction 
must be selected. 
 
Scaled Surface Reflectance 
The result of the atmospheric correction is a scaled surface reflectance image with a range of 0 to 
255 for 8-bit data and 0 to 65535 for 16-bit data. If you want unscaled values or percent 
reflectance values, divide the scaled values by 4 for 8-bit data and by 10 for 16-bit data. For 
example, 150 divided by 10 equals 15% reflectance for a 16-bit image. 
 
The accuracy of the method depends on several factors:  

• radiometric calibration accuracy of the sensor (typically 3-10%)  
• radiative transfer code : accuracy of MODTRAN 4 better than 5 % in the atmospheric 

window regions  
• correct choice of atmospheric input parameters : up to user  
• For near nadir view angles (off-nadir angle < 10 degree), a flat terrain, and avoiding the 

specular and backscattering regions, an accuracy of the retrieval of surface reflectance of 
+/-0.02 (reflectance < 0.10) and +/-0.04 (reflectance > 0.40) is possible. For larger 
off-nadir view angles bidirectional effects can play a strong role. 


	1.1 Research Background
	1.1.2 Ecosystem Models
	1.1.2.1 Brief Introduction of Process Models
	1.1.2.2 Model Application and Limitations

	1.1.3 Feasibility of Using Remote Sensing Data in the Process Models
	1.1.4 Summary of Research Gaps

	1.2 Research Objectives
	1.2.1 Research Goals
	1.2.2 Research Hypothesis

	1.3. Study Area
	1.4 Thesis Structure
	1.5 References
	2.1 Abstract
	2.2 Introduction
	2.3 Materials and Methods  
	2.3.1 Field Study Sites 
	2.3.2 Field Data
	2.3.3 Satellite Multispectral Imagery Acquisition
	2.3.4 Statistical Analysis
	2.3.5 Wavelet Approach

	2.4 Results
	2.4.1 Statistical Analyses of the Correlations of LAI, Soil Moisture, Topographic Parameter, and NDVI 
	2.4.2 Wavelet Analyses of Ground Measurements (LAI, Soil Moisture, and Topography) 
	2.4.3 Wavelet Analyses of Satellite Data (NDVI) For the Two Extensive Transects

	2.5 Conclusions and Discussion
	 2.6 References
	3.1 Abstract
	3.2 Introduction
	3.3. Study Area and Data Collection
	3.4. Methodology
	3.4.1 Biophysical VIs Selected for This Research
	3.4.2 New Vegetation Index for LAI Prediction
	3.4.3 Statistical Analysis
	3.4.4 Scale-simulated Method

	3.5 Results and Discussion
	3.5.1 Grassland LAI Characteristics
	3.5.2 Spectral Reflectance Characteristics
	3.5.3 Relationships Between LAI and Biophysical VIs 
	3.5.4 Relationship Between LAI and L-ATSAVI
	3.5.5 The Scale-simulated Results

	3.6 Conclusions
	3.7 References
	4.1 Abstract
	4.2 Introduction
	4.3 Materials and Methods 
	4.3.1 Study Area Description and Site Distribution
	4.3.2 Field Measures and Sample Processing
	4.3.3 SPOT Image Acquisition and Processing
	4.3.4 Analyses Linking VI to LAI
	4.3.5 Analyses Linking LAI to Biophysical Data

	4.4 Results 
	4.4.1 Statistics of LAI Data
	4.4.2 Regression Models Between VI and LAI
	4.4.3 Model Accuracy Assessment and LAI Map
	4.4.4 Relationships Between Measured LAI and Biophysical Data
	4.4.5 Biophysical Maps and Validation

	4.5 Discussion
	4.6 References
	5.1 Abstract
	5.2 Introduction
	5.3 Study Area
	5.4 Methods
	5.4.1 Field Data Collection
	5.4.2 Satellite Imagery Acquisition and Preprocessing
	5.4.3 Objective 1: Extracting Spectral Properties of Different Land Cover Types and Different Grassland Communities
	5.4.4 Objective 2: Comparing Different Imagery Acquisition Dates, Different Band Combinations and Vegetation Indices, Different Classification Algorithms, and Different Resolution Imagery
	5.4.5 Objective 3: Examining Vegetation Phenology Parameters

	5.5 Results and Discussion
	5.5.1 Discriminating Land Cover Types and Grassland Communities Using SPOT Imagery
	5.5.2 Optimizing Grassland Classification Approach in a Mixed Grass Prairie
	5.5.2.1 Comparing Different SPOT Band Combinations, Imagery Acquisition Dates and Vegetation Indices from MLC Supervised Classification
	5.5.2.2 Comparing Different Classification Algorithms
	5.5.2.3 Finer Classification for Grasslands Based on Best Algorithm and Band Combinations

	5.2.5 Comparing the Ability of SPOT 4 and Landsat TM for Classifying the Mixed Grass Prairie Land Cover and Land Use Types
	5.5.3 Seasonal NDVI Variation 

	5.6 Conclusions
	5.7 References
	6.1 Abstract
	6.2 Introduction
	6.3 Data and Methods
	6.3.1 Study Area
	6.3.2 Data
	6.3.3 Models Description
	6.3.4 Methods

	6.4 Results and Discussion
	6.4.1 Model Comparison
	6.4.2 Remote Sensing-based Model Frame

	6.5 Conclusions
	6.6 Reference
	7.1 Conclusion
	7.1.1 Scale of Vegetation Variation and Controlling Factors in the Mixed Grassland
	7.1.2 The Performance of Remote Sensing VI for Modeling Vegetation Properties in the Mixed Grassland
	7.1.3 Remote Sensing Vegetation Biophysical Properties Developed for Modeling Grassland Productivity
	7.1.4 Remote Sensing Land Cover Map and Vegetation Phonology Developed for Modeling the Mixed Grassland Productivity
	7.1.5 Model Comparison and the Development of Spatial Ecosystem Process Model Frame

	7.2 Potential Applications
	7.3 Limitations 
	7.4 References

