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ABSTRACT 

African trypanosomes are protozoan blood parasites that infect both humans and 

livestock. BALB/c mice are highly susceptible to experimental infections by Trypanosoma 

congolense while C57BL/6 mice are relatively resistant, as measured by degree and pattern of 

parasitemia and survival time. Rapid death observed in highly susceptible BALB/c mice is due 

to a systemic inflammatory response syndrome (SIRS). A small subset of pathogenic, MHC 

class II-restricted CD4+ T cells, activated during the course of T. congolense infections, 

mediates early mortality in infected highly susceptible BALB/c mice via excessive synthesis 

of the cytokine IFN-γ. Since these pathogenic T cells are matrix–adherent, they could be 

distinguished from conventional Th1 cells.  There is a possibility that this subpopulation of T 

cells has unique surface markers.  

The complement system is highly activated in African trypanosomiasis, leading to 

persistent hypocomplementemia. Amplification of the alternative pathway of complement is 

faster in BALB/c mice than in C57BL/6 mice and the degradation of complement component 

C3b to complement component C3d, during the amplification of the alternative pathway of 

complement, proceeds faster in BALB/c than in C57BL/6 mice (Ogunremi et al., 1993). T. 

congolense-infected BALB/c mice have more immune complexes containing trypanosomal 

variant surface glycoprotein (VSG) than C57BL/6 mice in their plasma (Pan & Tabel, 

unpublished).  T. congolense-infected BALB/c mice might have more VSG-C3d immune 

complexes than infected C57BL/6 mice. The receptor for complement component C3d is the 

cell surface molecule CR2, also referred to as CD21. It is known that CR2 is widely expressed 

on B lymphocytes and follicular dendritic cells. There is also some evidence that CR2 is 

expressed on a subpopulation of activated T cells. Binding of VSG-C3d immune complexes to 
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the complement receptor CR2 might costimulate the CR2+ T cells to produce IFN-γ.  I 

hypothesize that IFN-γ-producing T cells in T. congolense-infected BALB/c mice are CR2+ 

and that the CR2+ T cells increase in numbers in experimental murine T. congolense 

infections. 

Kinetic studies were carried out by staining spleen cells of  T. congolense-infected 

BALB/c mice for the presence of CR2 on T cells (CD3+ cells). Total numbers of spleen cells 

showed a 5-fold increase with progressive T. congolense infections. The total numbers of T 

cells in the spleen showed a 7-fold increase at day 8 post infection. The total numbers of CR2+ 

T cells in the spleen showed a 3 to 7-fold increase with progressive infection. Parallel studies 

on B lymphocytes (CD19+ cells) showed that absolute numbers of B cells in the spleen had a 5 

to 6-fold increase with progressive infection.  Absolute numbers of CR2+ B cells in the spleen 

showed a 4-fold increase at day 7 post infection. The total numbers of CR2+ cells in the spleen 

showed an increase while the mean numbers of CR2 molecules per cell showed a reduction 

with progressive infection. 

These results show that CR2+ T cells in the spleen increase in numbers with 

progressive T. congolense infections in BALB/c mice. I suggest that CD4+CR2+ T cells might 

play a role in the pathogenesis of T. congolense infections.  
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1.0 LITERATURE REVIEW 

1.1. African Trypanosomes 

1.1.1. Introduction 

African trypanosomes are single-cell, extracellular blood parasites that cause disease 

and death in humans and livestock. Trypanosoma brucei gambiense and Trypanosoma brucei 

rhodesiense cause sleeping sickness in humans. Trypanosoma congolense, Trypanosoma 

brucei brucei and Trypanosoma vivax are pathogens for livestock. Of  these species T. 

congolense is the most virulent pathogen in livestock,  causing the greatest losses in livestock 

(Mulligan, 1970a; Mulligan, 1970b).  

 African trypanosomes are mainly transmitted to mammalian hosts by tsetse flies. The 

occurrence of animal trypanosomiasis coincides with the distribution of tsetse fly vectors 

which includes the regions between latitudes 14°N and 29°S. About 10 million square 

kilometers and 37 countries are covered in this tsetse fly “belt”, a geographical area equivalent 

to the combined size of the United States, India and Western Europe (Hursey, 1995). 

 African trypanosomiasis causes a great economic loss in the livestock industry with an 

estimated three million cattle death annually. Estimated direct production losses in cattle are 

between US$ 6,000 million and US$ 12,000 million per year (Hursey, 1995). It is estimated 

that if the disease is controlled, the region could support a further 120 million cattle resulting 

in an increase in annual meat production by 1.5 million tons (Nantulya, 1986).  

 Currently employed control methods of trypanosomiasis are chemotherapy, breeding 

resistant breeds of cattle and control of tsetse fly vectors. Other control methods include bush 

clearing to destroy the tsetse fly habitats, spraying insecticides and trapping of tsetse flies 

(Taylor, 1998). But the control measures like bush clearing and the use of insecticides are no 

longer desirable due to their deleterious effects on the environment. Even though the first 
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trypanocidal drug was developed in 1905, the number of drugs available for the treatment of 

African trypanosomiasis is very limited (Seed, 2001).  Rapid evolution of drug-resistant 

trypanosomes reduces the efficacy of chemotherapy and chemoprophylaxis causing 

widespread outbreaks in cattle (Leach and Roberts, 1981; Holmes, 1982).  

 Vaccination is considered to be one of the best methods of controlling infections. 

Presently, it is widely believed that the ability of African trypanosomes to continually express 

antigenically distinct VSG genes (Borst et al., 1997) reduces the likelihood of the development 

of an effective VSG-based vaccine. Therefore, invariant parasite antigens are being considered 

as vaccine candidates but only partial and minimal cross-protection has been reported so far 

(Mkunza et al., 1995). Mice immunized with the recombinant beta-tubulin from T. evansi, 

were protected from lethal challenge with T. evansi STIB 806, T. equiperdum STIB 818 and T. 

brucei brucei STIB 940, showing 83.3%, 70% and 76.7% protection, respectively (Li et al., 

2007). A better understanding of the parasite and host factors involved in pathogenesis of the 

disease might be helpful in the design of more effective vaccines against trypanosomiasis. 

Therefore, most research is focused on understanding the pathogenesis of the disease, 

especially the induction of immunosuppression by the infection.  

1.1.2 Classification 

 African trypanosomes are flagellated protozoal parasites belong to the class 

Zoomastigophores, order Kinetoplastida and family Trypanosomatidae. Members of the order 

Kinetoplastida are elongated, slender and possess a single nucleus and a kinetoplast situated 

near the origin of the single flagellum. The pathogenic trypanosomes belong to the genus 

Trypanosoma. The subgenus Trypanosoma is divided into two sections on the basis of their 

life cycle in the insect vector and the mode of transmission (Hoarse, 1972). 
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 The section salivaria consists of the trypanosomes that complete their developmental 

cycle in the salivary glands of their insect vector. Transmission of the parasite to the 

mammalian host occurs by bite of the insect vector during a blood meal. The section salivaria 

consists of four subgroups; Duttonella (T. vivax), Nannomonas (T. congolense), Trypanozoon 

(T. brucei brucei) and Pycnomonas (T. suis). Most members of the group salivaria are 

transmitted by tsetse flies and they are important pathogens either to man or to domestic 

animals.  

  The section stercoraria consists of groups that complete their developmental cycle in 

the hindgut of the insect vector. Transmission of these species occurs when the feces 

containing the infectious metacyclic form of the parasite is rubbed into the lesions produced at 

the site of the insect bite. Also, they may actively penetrate punctures made by the proboscis 

of the insect or the mucous membrane of the mouth if the animal licks the feces of the vector. 

There are three sub groups in the section stercoraria namely, Megatrypanum (T. theileri), 

Herpestoma (T. lewisi and T. musculi) and Schizotrypanum (T. cruzi) (Hoarse, 1972).  T. cruzi 

causes Chagas disease in man in South and Central America while most of the other members 

of section stercoraria are considered relatively non-pathogenic.  

1.1.3 Morphology and characterization 

 African trypanosomes are characterized on the basis of their size, shape, position of the 

nucleus, size and location of the kinetoplast, host range and geographical distribution. 

Generally they are elongated, spindle-shape organisms with a single flagellum. The flagellum 

originates from the basal body near the kinetoplast and runs the length of the trypanosome. 

The pellicle, the layer bordering the cytoplasm, while maintaining a definite shape, is flexible 

enough to permit a certain degree of body movement. The pellicle and the cytoplasm are 
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pinched up into a thin sheet of tissue along the length of the body forming the undulating 

Membrane (Hoarse, 1972). 

 African trypanosomes are 8-30 μm in length. T. congolense is a small monomorphic 

organism with variable length of 8-24 μm (Soltys, 1987). It has a central nucleus and a 

medium sized marginal kinetoplast. The kinetoplast has important functions in reproduction 

and metabolism (Hoarse, 1964). The trypanosome has sluggish movements and has an 

undulating membrane (Hoarse, 1972; Soltys, 1987).  

1.1.4 Life cycle 

 The life cycle of African trypanosomes consists of two phases. One is the development 

in their insect vectors and the other phase is the development in mammalian hosts.  

1.1.4.1. Development in insect vectors 

Transmission of African trypanosomes is mediated by tsetse flies (Glossina species). 

The genus Glossina consists of three groups called fusca group (forest group), palpalis group 

(riverine group), and morsitans group (savannah group). These three groups have more than 

34 species and subspecies and T. congolense is capable of developing in all of these species 

and subspecies (Hoarse, 1972). The female tsetse fly acquires a trypanosomal infection during 

a regular blood meal from an infected mammalian host. The ingested parasites lose their VSG 

and undergo a series of developmental and morphological changes resulting in multiplication 

in the hindgut of the fly (Stephen, 1986). They migrate interiorly through the cell linings of the 

gut wall and to the esophagus of the insect (Newton et al., 1973). Then they migrate to the 

hypopharynx and transform into the epimastigote form (Newton et al., 1973). The 

epimastigotes migrate into the mouth pads of the proboscis and transform into metacyclic 

trypanosomes. This transformation is associated with the regaining of the VSG which the 

trypanosomes lost in the midgut (Vickerman, 1974). The entire developmental cycle in the 
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insect vector may take from 7 (Nantulya et al., 1978) to 53 (Hoarse, 1972) days depending on 

the species of the  insect vector and the ambient temperature. The infected tsetse fly harbors 

the parasite and is able to transmit the parasite for a considerable length of time and 

sometimes, for life (Molyneux, 1983).   

1.1.4.2. Development in mammalian hosts 

 Infection of the mammalian host occurs when the insect vector deposits metacyclic 

trypanosomes within the dermal connective tissue of the animal during a blood meal. At the 

site of infection the trypanosomes multiply extensively as typical blood forms within a few 

days, resulting in a raised cutaneous swelling called a chancre (Akol and Murray, 1982). 

These trypanomastigotes spread from the chancre via the blood and local lymph vessels and 

enter to the blood stream. Blood stream forms of many T. brucei invade the connective tissues 

of the mammals, but this is not usually observed with T. congolense (Losos and Ikede, 1970).  

 Certain changes in the metabolism during the period of growth in the blood stream 

results in morphological pleomorphism among various subspecies of T. brucei (Opperdoes, 

1987).  Morphological variants ranging from long slender forms to short, stumpy, usually non-

dividing forms could be found during the process of active cell division. Frequently observed 

intermediate forms may represent a transition stage from long slender form to stumpy form 

(Opperdoes, 1987). Predominate slender forms could be seen during the early logarithmic 

phase of infection (Lumsden, 1972) while the stumpy forms predominate during the phase of 

parasite remission (McLintock et al., 1990). It has been suggested that the transformation of 

slender forms to the stumpy forms is necessary for the cyclical development in the insect 

vector (Seed and Sechelski, 1989). Even though there are reports on morphological variants of 

T. congolense (Stephen, 1986), the general agreement among researchers is that T. congolense 

does not undergo physical transformation.  
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1.1.5. Course of the infection 

 Clinical signs and the severity of the disease following infection vary depending on the 

virulence of the trypanosome and susceptibility of the host. The length of the prepatent period 

depends on many factors such as the number of infecting parasites, the route of inoculation 

and the genetic makeup of the host. Parasitemia becomes apparent within 1-2 weeks following 

natural infections and may persist for months, occurring in waves, until the host dies (Gray, 

1976).  Various strains of trypanosomes can cause a wide range of clinical responses ranging 

from acute, chronic to asymptomatic carrier syndromes (Stephen, 1970; Maxie et al., 1979). 

Even under similar environmental conditions, marked differences in susceptibility of 

individual animals within a homogenous population could be observed (Ikede and Losos, 

1972).  

 Acute infection of T. congolense in ruminants is associated with intermittent fever, 

depression, anemia, subcutaneous edema of the mandible and prominent jugular pulse 

(Stephen, 1970; Losos, 1986). The appetite is decreased and there is a rapid weight loss. 

Often, death is related to severe anemia and circulatory collapse. Chronic syndromes often 

results in extreme emaciation and anemia. Lymphadenopathy is commonly seen in infections 

with other species of trypanosomes but not common in T. congolense infections in cattle 

(Maxie et al., 1979). The more rapid fall in myeloid:erythroid ratio in T. congolense-infected 

goats reflects the fact that T. congolense causes more severe pathological effects in goats than 

T. brucei (Biryomumaisho and Katunguka-Rwakishaya, 2007).  
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1.1.6. Pathology 

 There are no pathognomonic gross or histopathological lesions found in the animals 

that die of trypanosomiasis. Most of the observed lesions are due to the circulatory 

disturbances caused by anemia. Mice infected with T. congolense developed a severe anemia 

one week after infection which was accompanied by a marked increase in the plasma levels of 

acute phase proteins such as serum amyloid P component and haptoglobin (Ngure et al., 

2008).  Animals that die of acute infections have variable atrophy of muscle and adipose 

tissues and pale carcasses. Often the lymph nodes, spleen and the liver are enlarged.  Also, 

there may be edema of the lungs, ascitis, hydrothorax and hydropericardium (Stephen, 1970; 

Molyneux, 1983; Losos, 1986).   The skeletal muscles of the carcass may be wasted and pale 

in chronic cases. Marked splenomegaly with foci of necrosis and prominent white pulp is also 

observed in chronic cases (Morrison and Murray, 1979; Valli et al., 1979). Inflammatory foci 

are found in spleen, liver, lung, heart, skeletal muscles, brain, skin and kidney.  

 Even though the mechanisms of pathogenesis of trypanosomiasis is not clearly 

understood, trypanosome-derived substances and immune complexes comprising trypanosome 

antigens and parasite-specific IgM and/or IgG antibodies plus complement were shown to be 

involved in the pathogenesis (Mansfield, 1990).  Immune complexes have been detected in 

several tissues of infected animals and humans including heart, brain, kidney and skeletal 

muscles (Lambert, 1974; Nagle et al., 1974). It has been suggested that trypanosomes generate 

toxic catabolites and biologically active metabolites with complement activating and 

inflammatory properties, such as cytokines, vascular amines and plasma proteases which can 

contribute to the pathogenesis of the disease (Tizard and Holmes, 1976; Tizard et al., 1978; 

Tabel, 1982; Liu et al., 1993). Highly susceptible BALB/c mice infected with T. congolense 

die of a systemic inflammatory response syndrome (SIRS) that is mediated by IFN-γ (Shi et 
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al., 2003; Shi et al., 2005). This SIRS was associated with elevated plasma levels of IL-6, IL-

12p40, IL-10, and IFN-γ. Focal liver lesions of apoptotic parenchymal cells, 5-fold 

enlargement of Kupffer cells, apoptosis of 10% of Kupffer cells, enlarged capillary bed, 

hypotension, decreased body temperature, piloerection, hypomotility and death were also 

associated with SIRS (Shi et al., 2006a). 

1.1.7. Trypanosomal common antigens  

 The trypanosomal antigens can be divided into two groups namely invariant or 

common antigens and variant antigens, based on their immunological specificity.  Invariant 

antigens of trypanosomes do not change from one variant type to another type during the 

course of infection. These include enzymes, trypanosomal membranes, structural and  nuclear 

proteins and some receptors such as those for transferrin and low density lipoproteins (Pays et 

al., 1994), high density lipoproteins, receptor for TNF-α (Lucas et al., 1994) and receptor for 

IFN-γ (Olsson et al., 1993). Some enzymes such as  phospholipase C (Fox et al., 1986) and 

peptidases (Knowles et al., 1989) are common to all species of trypanosomes. The 

conservation of these enzymes suggests that they may be important for the survival of 

parasites and also they might play a role in pathogenesis and/or evasion of host defense 

mechanisms. The carbohydrate determinants in  the C-terminal portion amino acid sequence 

of the variant surface antigen (VSG) is also considered as a common antigen  and show a high 

degree of homology among the members of a species (Rice-Ficht, 1981; Rice-Ficht et al., 

1982). Flagellar pockets of African trypanosomes are not covered by the VSG and are 

invariant among the members of a species. In cattle, immunization with antigens derived from 

flagellar pockets of T. brucei rhodesiense resulted in significant protection against challenges 

with T. congolense and T. vivax (Mkunza et al., 1995). Since the flagellar pockets are not 
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covered by VSG, it is clear that the immune response to VSG is not included in this 

protection.  

 

It has been suggested that the invariant antigens released by destruction of the parasite 

by anti-VSG antibodies and other immune factors, may be involved in inducing pathology by 

forming immune complexes (Mansfield, 1990). However, in T. congolense-infected cattle high 

serum antibody levels to 33kd (Authie et al., 1993) and 69kd (Boulange and Authie, 1994) 

invariant cystein proteases have been associated with trypanotolerance.  T. congolense-

infected trypanosusceptible Boran cattle mounted predominant IgM response to invariant 

proteins while similarly infected trypanotolerent N’dama cattle made a superior IgG and low 

IgM response (Authie et al., 1993). Crosses between Boran and N’ dama cattle which are of 

intermediate susceptibility had intermediate levels of these antibodies (Mkunza et al., 1995).  

1.1.8. Variant surface glycoprotein (VSG) 

 The plasma membrane of trypanosomes is covered by a homogenous dense coat called 

variant surface glycoprotein, consists of millions of glycoprotein molecules of a single 

molecular species.  

1.1.8.1. Organization of the VSG gene 

 The genome of African trypanosomes contains about 1000 different VSG genes (Van 

der Ploeg et al., 1982). Only one VSG gene is expressed at a time in a given bloodstream 

parasite under normal conditions (Munoz-Jordan et al., 1996). The unexpressed VSG genes 

are scattered among the different chromosomes (Cross et al., 1998). VSG genes need to be 

located in a specialized telomeric environment, which is known as a bloodstream telomere-

linked VSG gene expression site (BES) in order to be transcribed. Bloodstream VSG genes 

have been found to be transcribed from telomere-linked expression sites and contain a VSG 
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promoter, a variable number of 70-76 bp repeats, and the VSG gene is followed by 

subtelomeric and telomeric DNA repeats (Kang et al., 2002). At any time, only one BES is 

active and only one VSG gene is transcribed. The molecular events in a given trypanosome 

that induce transcription at one BES and silence expression at the other BESs are not 

understood (El-Sayed et al., 2000).  

1.1.8.2 Structure of VSG 

 The molecular weight of VSG varies between 53-65 KD and VSGs of different variant 

antigen types of the same serodeme may differ in their amino acid composition, isoelectric 

points and carbohydrate percentage (Cross, 1978; Cross, 1990). Tryptic digestion of the C 

terminal portion of the VSG molecule can reduce the MW from 53 to 48 kDa. In the insect, 

VSG is only expressed in infective metacyclic form (Vickerman, 1974) and it has been 

proposed that the VSG prevents the lysis of metacyclic forms by the host’s serum factors 

(Ghiotto et al., 1979). VSGs, cover the entire parasite surface, and are arranged in a tightly 

packed monolayer of homodimers. They form a 12-15 nm thick coat which functions as a 

barrier to lytic serum components but allows nutrients such as glucose to reach transporters in 

the membrane of the flagellar pocket (Borst and Fairlamb, 1998). Each parasite has107
 densely 

packed identical VSG molecules on their surface (Cross, 1990; Gerold et al., 1996). VSG 

constitute about 10% of the total protein of trypanosomes and is synthesized at a high rate 

(Kang et al., 2002). VSG is very immunogenic and therefore the target of the very potent 

immune response (Vanhamme et al., 2001).  

 Each VSG monomer contains an N-terminal signal sequence and a hydrophobic C- 

terminal domain and is covalently attached to a glycosylphosphatidylinositol (GPI) membrane 

anchor (Kang et al., 2002). Many proteins of eukaryotes are anchored to the plasma membrane 

by the GPI, including Thy 1 antigen and decay-accelerating factor (McConville and Ferguson, 
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1993). N-terminal sequence of VSG is highly variable. The three-dimensional structures of the 

N-terminal two-thirds of two VSGs have been determined by  X-ray crystallography and 

found to be very similar rod-like shapes despite having quite different amino acid sequences 

(Blum, 1993). The VSG molecules can be cleaved by trypanosomal GPI-specific 

phospholipase C. This GPI-PLC cleaves the GPI anchor, leaving the dimyristoylglycerol 

compound of the GPI anchored in the membrane, and releases the glycosyl-inositol-phosphate 

(GIP)-VSG part which is also called soluble VSG (Magez et al., 1998). 

1.1.8.3. Release of soluble VSG 

 VSG could be detected in the plasma of mice and rats infected with T. brucei brucei 

(Diffley et al., 1980) indicating that trypanosomes release their VSG during the course of 

infection. Even though the VSG coats are stably associated with the plasma membrane of the 

trypanosomes, it can be isolated as membrane form of VSG (mVSG) (Bulow and Overath, 

1986) or as the water soluble form (sVSG) after lysis of the cells. mVSG is converted into 

sVSG during the lysis of cells by the action of an endogenous enzyme, GPI-specific 

phospholipase C (GPI-PLC) (Ferguson, 1999). GPI-PLC is involved in degradation, shedding 

and recycling of VSG (Carrington et al., 1991; Rolin et al., 1996).  

 Trypanosomal lysates contain vast amounts of sVSG produced from mVSG by the 

action of GPI-PLC, which gains access to mVSG by hypotonic lysis of the cells (Fox et al., 

1986). However, the role of GPI-PLC in hydrolysis of GPI is still not clear because cytosolic 

GPI-PLC is localized away from cell surface VSG. GPI-PLC null mutants are fully viable, and 

GPI-PLC null mutants undergo antigenic variation (Cardoso De Almeida et al., 1999). It was 

shown that shedding of VSG is mediated by hydrolysis of GPI. Surface biotinylation assays 

suggest that GPI-PLC does gain access to extracellular VSG. The above results indicate the 

importance of GPI-PLC in release of VSG (Gruszynski et al., 2003).  
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 The cell surface VSG pool is turned over within 12 minutes. Recycling of VSG 

happens through endocytosis in large clathrin-coated vesicles that bud from the flagellar 

pocket membrane, and then are delivered to endosomes or lysosomes. The VSG returns to the 

cell surface at the flagellar pocket by exocytosis (Engstler et al., 2004).  

 Antibodies against T. congolense can induce shedding of soluble VSG and the 

formation of a soluble covalent complex of VSG and bovine complement component C3b, in 

the presence of fresh bovine serum (Liu et al., 1993).  

1.1.8.4 Effect of VSG on the immune system of the host 

 10% of the total protein content of trypanosomes consists of GPI-linked VSG. Since 

the trypanosomes are extra cellular parasites and they release vast amounts of sVSG into the 

circulation, the immune system of the infected mammalian host is continuously exposed to the 

sVSG (Magez et al., 2002).  There is evidence that blood stream forms of T. congolense evade 

complement lysis by shedding their immune complexes (Frevert and Reinwald, 1990) and 

endocytosis of immune complexes (Engstler et al., 2007). VSG of T. brucei cause 

consumption of complement proteins, which may occur via the massive amounts of immune 

complexes generated during antibody-mediated clearance of each wave of parasitaemia 

(Musoke and Barbet, 1977). Immunostimulatory and regulatory activity of protozoan derived 

GPI anchors has been documented (Ropert and Gazzinelli, 2000). It has been suggested that 

soluble VSG which carries the carbohydrate core (GIP-VSG), once released from the parasite 

surface, is affecting the functions of macrophages, including induction of cytokine synthesis 

(Magez et al., 2002). It has been shown that NO is trypanostatic for T. congolense, T. musculi, 

T. gambiense and T. brucei in vitro (Vincendeau et al., 1992; Kaushik et al., 1999a). Soluble 

VSG could inhibit IFN-γ induced nitric oxide production by macrophages (Coller et al., 2003).  
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All the above findings suggest that sVSG released from the parasites has negative effects on 

control of the infection.   

1.1.9. Antigenic variation 

 Highly immunogenic nature of VSG leads to a strong humoral immune response 

resulting in rapid elimination of all but a very small proportion of trypanosomes. These 

remaining individuals form a new population expressing a new variant of VSG. When the new 

population of parasites multiplies, the immune system raises another set of antibodies to 

eliminate these parasites and eventually eliminates the majority of these parasites. This 

process results in successive waves of parasitemia (Donelson and Turner, 1985). The 

undulating wave of parasitemia in infected animals is a result of interactions between the 

parasite and the host’s immune factors. It has been shown that antibodies are not necessary to 

induce antigenic variation because antigenic variation has been observed in vitro (Doyle et al., 

1980). In established rodent strains, it is estimated that coat switching occurs at a frequency of 

10-6-10-7 per cell division and this rate is much higher immediately after passage through 

insect vectors (Barry and Turner, 1991).   

 Even though the precise molecular events lead to the antigenic variation are still not 

understood, it is clear that antigenic variation is advantageous to the parasite in its evasion of 

the host immune defenses because the host is always a step behind the switching 

trypanosomes.  

1.2. Immune responses of hosts against African trypanosomes 

 African trypanosomes are exposed to the host immune system from the time of 

infection. Since a single trypanosome is a package of about 10 million copies of a single VSG 

and thousands of invariant antigens (Vickerman, 1985), the immune system of the host is 

continuously assaulted by excessive amounts of invariant and variant antigens.  
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1.2.1. Innate resistance 

 Antigen-nonspecific defense mechanisms that are designed to recognize highly 

conserved structures present in many different microorganisms and called pathogen-associated 

molecular patterns, are considered to be a form of  innate immunity (Aderem and Ulevitch, 

2000). Trypanotolerance or the resistance to African tryapanosomiasis is characterized by 

lowered parasitemia and less marked anemia (Dargie et al., 1979). A/J and BALB/c mouse 

strains are susceptible for T. congolense infections while C57BL/6 mouse strain is relatively 

resistant. The speed of control of the first wave of parasitemia positively correlates with the 

survival period of infected mice (Ogunremi and Tabel, 1995). In response to T.congolense 

infections, macrophages of susceptible BALB/c mice produce less amounts of nitric oxide 

than the macrophages of relatively resistant C57BL/6 mice (Kaushik et al., 1999a). The 

differences in susceptibility and resistance in BALB/c and C57BL/6 mice is controlled by five 

quantitative trait loci namely Tir1, Tir2, Tir3a, Tir3b and Tir3c, located on mouse 

chromosomes 17, 5 and 1 (Iraqi et al., 2000).  

1.2.1.1. Role of complement system 

1.2.1.1.1. Complement system  

Complement is a major clearance and defense system in the blood which can be 

activated via immunoglobulins once a foreign particle or an organism has been recognized by 

the antibody (Law, 1988). The alternative complement pathway can be amplified directly via a 

foreign particle or an organism while the classical complement pathway gets activated via 

antigen-antibody complex as summarized in Figure 1.1. Complement is an important 

component in host immune system which functions together with the adaptive immune 

responses to provide effective defense mechanisms such as killing microorganisms by lysis, 
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initiating inflammation and facilitating the clearance of microorganisms and immune 

complexes by facilitating phagocytosis (Law, 1988) .  

The complement system is composed of more than 30 plasma and membrane-

associated proteins as well as receptors for complement components (Table 1.1). Complement 

component C3 (M.W. = 185kD) is the central component of complement system and it is the 

most prevalent complement component in the serum being  present at a concentration about 

1.3 mg/ml. C3 plays a central role in the complement system by merging the classical and 

alternative pathways at the C3 activation step (Law, 1988). Both classical and alternative 

pathways can activate the same terminal complement pathway (C5-C9) which leads to the 

formation of the membrane attack complex and cause cytolysis (Rother, 1988).  

The crucial intermediate step of the complement activation is the formation of C3/C5 

convertase. Activated C3, referred as C3b opsonizes the target by covalently binding to it and 

facilitates the phagocytosis of the target. When C5b is generated, it induces the assembly of 

C5b-C9 membrane attack complex. Biologically active cleavage products such as C3a, C4a 

and C5a cause inflammation and anaphylactic activities.   
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Figure 1.1. The activation steps of the classical pathway (left) are triggered by immune 

complexes, while the alternative pathway (right) is amplified by a wide variety of cell surfaces 

and compounds. Adapted from (Law, 1988).  
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Table 1.1 Proteins of the human complement system  

 

Prevalent 

Functional group 

 

Participate in Receptors 

activation 

Regulatory 

form 

Seru ble C1q, C1r, C1s, C4, C1 INH, C4bp, H, I,  m/solu

C2, C3, B, D, C5, C6, 

C7, C8, C9 

P, C3a/C5a INA, S 

protein 

Membrane- CP, DAF, C1qR, CR1, CR2, 

associated 

 CR1, M

HRF CR3, CR4, CR5, 

C3a/C4aR, C5aR 

 

bbreviations: INH, Inhibitor; C4bp, C4b-binding protein; INA, inactivator; R, receptor, e.g. A

CR2 complement receptor 2; DAF, decay-accelerating factor; MCP, membrane cofactor 

protein; HRF, homologous restriction factor. Adapted from (Volanakis, 1990).  
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1.2.1.1.2. The classical complement pathway 

way needs antigen-antibody complexes. These 

m from 

 Activation of classical complement path

antibodies in human could be from IgM class, IgG1, IgG2 and IgG3 subclasses. Complement 

components C1, C4 and C2 are responsible for the assembly of C3 convertase. C1 is a 

calcium-dependent macro-molecular complex of three distinct sub components: Clq, Clr and 

Cls (Lepow et al., 1963). Clq is a glycoprotein and consists of 18 polypeptide chains linked 

together by disulphide bonds. Clr and Cls are single chain serine proteinases, connected 

together with Clq via calcium (Cole, 1988). Interaction of the Cl complex with antigen-

antibody complex via C1q activates C1r and C1s proenzymes. C4 binds C2 in a magnesium-

dependent manner after releasing fragment C4a with the influence of activated C1. The bound 

C2 is also cleaved by the C1, resulting in formation of active C3 convertase, C4b2a. This 

C4b2a cleaves C3 by releasing a small peptide C3a. The large remaining fragment C3b 

contains a labile binding site through which C3b binds covalently with a nearby target surface. 

Then, C5 combines with the attached C3b and as a result, modifications take place in C5 to 

make it susceptible to get cleaved by the neighboring C4b2a enzyme. Activation of C5 is 

followed by the formation of C5b-9 cytolytic complex (Vogt et al., 1978; N.C., 1986). 

 C1 inhibitor is a control protein that can bind with C1r and C1s to remove the

the C1-antibody-antigen complex and inactivate the C1 enzymatic activity. C4b binding 

protein is another control protein which regulates the classical pathway C3 convertase as well 

as fluid-phase and cell bound C4b by binding to C4b and making it prone to get cleaved by 

factor I (Hourcade et al., 1989). EDTA can inhibit the activation of classical complement 

pathway by chelating Ca2+ and Mg2+ to prevent the assembly of C4b2a.  
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1. 2.1.1.3. The alternative complement pathway 

cal and alternative pathways is that the 

nitiation of alternative pathway occurs by 

y depends on 

 The major difference between the classi

alternative pathway can be activated in the absence of antibodies and can neutralize a wide 

variety of microorganisms in the absence of specific antibodies. The process of activation of 

the alternative pathway can be divided into four phases: initiation, deposition of C3b, 

recognition and amplification (Pangburn, 1986). 

 Under the normal circumstances, the i

hydrolysis of the intra-molecular thiolester bond of C3. This leads to the formation of C3 

(H2O). C3 with a hydrolyzed thiolester, without the loss of its C3a fragment, is called C3i or 

C3 (H2O). This is continuously produced under normal conditions at a very low rate in 

aqueous phase. C3 (H2O) has the same functional properties of C3b and it forms a complex 

with factor B in an Mg2+-dependent manner. The cleavage of B into Bb by factor D is 

followed by the formation of C3 convertase with the composition C3 (H2O) Bb (Pangburn and 

Muller-Eberhard, 1980). This convertase enzyme is capable of forming a small number of 

metastable C3b molecules in the fluid phase but most of these metastable C3b molecules 

rapidly get inactivated by factor H and I. Some of the C3b molecules non-specifically bind 

with any particles including host cells. The C3b bound to the host cells are eliminated and 

inactivated by factor I and membrane associated regulators. C3b bound to foreign particles are 

recognized as the proper sites of activation and serve as anchors for the assembly of the 

surface-associated convertase enzymes of the alternative complement pathway.  

 Recognition of activator or non-activator surfaces of alternative pathwa

the nature of the surface to which C3b is bound (Pangburn et al., 1980; Meri and Pangburn, 

1990). The alternative pathway amplification loop is restricted to certain surfaces as a result of 

the balance of interactions between complement proteins. Non-activating surfaces permit the 
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control proteins to prevent the formation of C3bBb complex either by displacement of Bb 

from C3b or by cleavage of C3b into iC3b (figure 1.3). Activation surfaces have the common 

but unidentified property of providing the action of control proteins on C3bBb, allowing the 

positive feedback C3 activation loop to operate on the surface as shown in figure 1.3 (Law, 

1988).     

1.2.1.1.4. Central role of C3 

in in the complement system since the classical and alternative 

) release C3f (3kd) once acted on by factor I and 

 C3 is the central prote

pathways merge at the C3 activation step. C3 is a β-globulin composed of an α chain and a β 

chain. The molecular weight of C3 is 185 kD. In the classical pathway, C3 is activated by the 

proteolytic cleavage of C3 into C3a and C3b. The removal of C3a induces conformational 

changes in C3b which leads to the exposure of internal thiolester which is quite inaccessible in 

native C3. The exposed thiolester is very reactive and subjected to nucleophilic attack by 

water or the amino or hydroxyl groups of other molecules. If these hydroxyl or amino groups 

belong to the cell surface molecules, C3b become covalently bound to the cell by an amide or 

an ester bond (Law, 1988). Surface-bound C3b, generated by the classical pathway has the 

same convertase activity as C3b generated by the alternative pathway and both pathways share 

the effector mechanisms such as the generation of anaphylotoxin C5a, engulfment of C3b-

coated particles by phagocytotic cells having C3b receptors and the generation of C5b which 

mobilizes C6, C7, C8 and C9 to form the membrane attack complex.  

1.2.1.1.5. Breakdown products of C3 

 Membrane bound C3b (185 kd

cofactors leaving iC3b attached to the membrane. Serum proteases or factor I in association 

with CR1 react with iC3b to release C3c and leave C3dg (40kd) attached to the membrane. 

Exogenous proteases release C3g (5kd) to leave C3d (35 kd) attached to the membrane as 
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shown in Figure 1.3. Complement’s physiological effects, except the lytic event mediated by 

membrane attack complex, are generated by the interaction of the complement fragments with 

their specific receptors present on specialized cells. The major outcomes of the complement 

fragment-receptor interaction are the uptake and phagocytosis of opsonised particles and the 

activation of the cell type bearing the specific receptor for each complement fragment.   
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Figure 1.2. Amplification loop is restricted to certain surfaces by a balance of 
interactions between complement proteins. (a) In the fluid phase activation is curtailed by 
efficient cleavage of C3b by factor I and cofactors. (b) Surface bound C3b on non-activators is 
regulated similarly and in addition C3bBb is actively dissociated by factor H, CR1 and DAF. 
(c) On activator surfaces these two regulatory pathways are inhibited and rapid deposition of 
C3b on the surface ensues. Adapted from Law and Reid, 1988).  
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Figure 1.3. Breakdown of C3b. Adapted from Law and Reid, 1988)     

 

1.2.1.1.6. Receptors for breakdown products of C3 

1.2.1.1.6.1. CR1 

 CR 1 (CD35) is a single chain transmembrane protein that binds C3b. CR1 is highly 

expressed on monocytes, B cells and eosinophils while it is expressed in low amounts on 

erythrocytes and T cells. Human CR1 is genetically polymorphic and occurs in four different 

molecular weights ranging from 190-280 kD (Wong et al., 1983; Ross and Medof, 1985; Ross, 

1989). Binding of immune complexes to phagocytes via CR1 mediates phagocytosis as well as 

cell activation. CR1 on human erythrocytes allows immune complexes in the circulation to 

attach to erythrocytes for transport to phagocytes in the spleen and liver, leading to their 

clearance. Rodent platelets express CR1, which performs a similar transport function (Roitt, 

23 
 



2001). CR1 promote dissociation of C3bBb and also act as a cofactor for factor I which 

cleaves C3b into small fragments thereby act as a complement regulatory protein (Roitt, 

2001). Soluble form of CR1 has been used in human clinical trials in acute respiratory distress 

syndrome, and to reduce tissue damage in lung transplantation and myocardial infarction 

(Zamora et al., 1999; Zimmerman et al., 2000).  

1.2.1.1.6.2. CR2 

 CR2 (CD21) is a 145 kD transmembrane protein which acts as the receptor for C3d, 

the final degraded product of C3. CR2 primarily acts as a B cell co-receptor for antigen 

receptor-mediated signal transduction (Holers, 2005). CR2 is composed of 15 or 16 short 

consensus repeats  followed by a 28 amino acid transmembrane domain and a relatively short 

intra cytoplasmic tail (Holers, 2005). In mice, CR1 and CR2 are transcribed from the 

alternative splicing of a single gene located on chromosome 1 while in humans they are 

derived from closely linked two distinct genes located on chromosome 1(Boackle, 2005). No 

activation signal has been discovered that induces the alternative splicing of one form over the 

other (Zabel and Weis, 2001).  

In mice, CR2 is predominantly expressed on B cells, follicular dendritic cells and 

activated granulocytes (Kinoshita et al., 1988; Carroll, 1998). Mouse CR2 is also expressed on 

peritoneal and splenic B-1 cells. Human CR2-expressing cells include mature B cells, double-

negative thymocytes, a subset of CD4 and CD8 thymic and peripheral T cells, follicular 

dendritic cells, basophils, mast cells, keratinocytes and epithelial cells (Holers and Boackle, 

2004). In human and mice, expression of CR2 first appears during IgMhighIgDlow immature B 

cells. This stage specific expression of CR2 is controlled by an intronic silencer in both human 

and mice (Holers, 2005). The expression of this receptor on mouse T cells has been less well 

documented (Qian et al., 2005). CR2 was expressed on activated T cells in A/J mice (Chen et 
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al., 2005). A subset of CD44hiCD62Llo T cells, but not naïve CD44loCD62Lhi T cells, 

expressed CR2 suggesting that these receptors were directly or indirectly involved in the 

expression of activation markers on B and T cells and T cell proliferation (Kaya et al., 2001). 

CR2 was detectable on both CD4+ and CD8+ subsets of T cells (Kaya et al., 2005). In T cells, 

CR2 may act either as an activating receptor or, more likely, as an adhesion molecule to 

promote the recruitment or retention of tissue-infiltrating cells (Holers, 2005).  

Human CR2 has at least four unique classes of ligands including, cleaved C3 activation 

fragments (Iida et al., 1983; Weis et al., 1984), Epstein-Barr virus via the surface protein 

gp350, 220 (Fingeroth et al., 1984; Nemerow et al., 1989), the immunomodulatory protein 

CD23 (Aubry et al., 1992) and interferon-α (Delcayre et al., 1991). Mouse CR2 demonstrates 

an altered ligand repertoire because, while it binds C3 activation fragments identically to the 

human receptor, it does not bind gp350/220 of Epstein Barr Virus or mouse CD23. It is not yet 

known whether mouse CR2 binds IFN-α (Holers, 2005). Ziya Kaya et al (2001) suggested that 

CR2 is necessary for optimal activation of B and T cells because CR-/- mice showed lower 

expression of activation markers on both B and T cells and decreased amounts of T cell 

cytokines, such as IL-2, IL-4 and IFN- γ, after antigen stimulation.  

CR2 has been shown to have multiple effects on B and T cell responses, including the 

amplification of antigen-induced B cell activation through surface IgM, the rescue of 

peripheral B cells from IgM-mediated apoptosis (Kozono et al., 1995), the promotion of 

antigen processing and presentation of C3d-bound targets, modulation of the expression of 

costimulatory molecules and targeting of immune complexes to germinal centers in secondary 

lymphoid organs. It is likely that many of these functions occur through interactions of CR2 

with CD19 and CD81 on B cell surface, where these receptors form a multimolecular signal 

transduction complex. CR2 on both B cells and follicular dendritic cells are required for the 
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generation of normal T-dependent antibody responses (Boackle, 2005). B cell lines expressing 

higher levels of CR2 were more efficient in processing antigen than those with lower levels. 

These findings suggest that presentation of antigen by B cells in immune individuals is 

dependent on the binding of complement-antigen immune complexes to CR2 (Boackle et al., 

1997). Although not investigated, the complexes of cleavage products of complement 

component C3 (C3b, iC3b and C3d) and soluble or particulate trypanosomal antigens might 

have a profound effect upon binding to cells bearing receptors for C3b, iC3b and/or C3d 

(Tabel et al., 2000).  

Mesenteric lymph nodes of wild type C57BL/6 mice contain about 4-5% of CR2+ 

CD4+ T cells while this population is not detected in CR2 deficient mice (Molnar et al., 2008). 

Elevated expression of CR2 is found on apoptotic T cells. Binding of 7G6 monoclonal anti-

CR2 antibody to T cells induced NF-κB translocation to the nucleus (Molnar et al., 2008).  

1.2.1.1.6.3. CR3 

 CR3 is the receptor for C3bi and this receptor is located on phagocytic cells and 

natural killer cells. CR3 is composed of two non-covalently linked glycoprotein chains of an α 

subunit named CD11b and a β subunit named CD18 (Sanchez-Madrid et al., 1983). CR3 

expresses two binding sites, one for Arg-Gly-Asp-containing peptides and the other one is for 

bacterial LPS (Wright et al., 1989).  

 CR3 is the major, but not the only, receptor involved in IgM anti-VSG-mediated 

phagocytosis of T. congolense by macrophages and IgM anti-VSG-mediated phagocytosis of 

T. congolense enhances the synthesis of TNF-α  but inhibits the synthesis of trypanocidal NO. 

It has been suggested that signaling of inhibition of NO synthesis might be mediated via CR3 

(Pan et al., 2006).  
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1.2.1.1.6.4. CR4 

 CR4 is the predominant type of C3 receptor expressed on tissue macrophages that 

frequently lack detectable levels of CR1 and CR3, and plays the same role as CR3.  CR4 is 

composed of two subunits named as CD11c and CD18 (Taborda and Casadevall, 2002). CR4 

can act as another C3bi and C3d receptor of phagocytic cells and it is functionally distinct 

from CR2 but similar to CR3 (Myones et al., 1988).  The binding site on CR4 is calcium 

dependent (Corbi et al., 1988).  

1.2.1.1.7. Complement interaction with parasites 

 It is difficult to form a general overview on the possible role of complement system 

against the numerous different types of parasite infections. Many parasites appear to activate 

the alternative complement pathway, and this would be amplified by the presence of specific 

antibodies against the parasites. In some cases, complement may provide beneficial effects to 

the parasites. One such example is by allowing entry into host cells of C3b-and/or iC3b-coated 

parasites (Leishmania) via CR1 and/or CR3 on host cells. Side effects due to activation of 

complement by immune complexes can lead to nephritis in malaria (Law, 1988).   

1.2.1.1.8. Complement interaction with trypanosomes 

 Complement mediated lysis of trypanosomes was observed in vivo and in vitro 

(Vickerman, 1982). In cattle, trypanosomal infections are accompanied with severe depression 

of hemolytic complement activity (Tabel et al., 1980). Depression of hemolytic complement 

activity is more prominent in susceptible cattle than in trypanotolerant cattle (Authie and 

Pobel, 1990). Complement depletion in the serum probably contributes to increased 

susceptibility of secondary infections in trypanosome-infected animals (Maxie et al., 1979). 
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Homogenates of T. congolense or trypanosomes lacking their glycoprotein coat could activate 

alternative pathway of complement (Tabel, 1982; Ferrante and Allison, 1983).  

 Both the classical pathway and alternative pathways of complement are activated 

during African trypanosomiasis (Greenwood and Whittle, 1980). Even though the clearance of 

trypanosomes by phagocytic cells occur in the absence of complement (Ngaira et al., 1983), 

the efficiency of immune complex removal and parasite clearance is enhanced by complement 

(Stevens and Moulton, 1978). Severe impairment of hepatic uptake of opsonized T. brucei 

brucei has been observed in mice depleted of C3 by treatment with cobra venom factor 

(Macaskill et al., 1980). But, partial depletion of C3 in T. brucei brucei -infected mice 

(Shirazi, 1980) or T. brucei rhodesiense (Dempsey and Mansfield, 1983) had no effect on 

controlling parasitemia or phagocytosis.  

 Hypocomplementemia is a marked feature of African trypanosomiasis in cattle (Tabel, 

1982), sheep (Malu and Tabel, 1986) and mice (Otesile et al., 1991). Total hemolytic 

complement activity and C3 are more reduced in trypanosusceptible Zebu than in 

trypanotolerant Baoule cattle (Authie and Pobel, 1990). Preinfection levels of factor H was 

significantly higher in resistant C57BL/6 mice than in susceptible BALB/c mice and the 

amount of factor B in plasma of infected mice during the later stages of infection showed a 

positive correlation with survival time and was higher in trypanotolerant C57BL/6 mice 

(Otesile et al., 1991). The activity of alternative pathway of complement amplification 

measured by deposition of complement protein C3b demonstrated that deposition of C3b was 

significantly higher in the plasma of resistant C57BL/6 mice than in BALB/c mice infected 

with T. congolense and the degradation of C3b to C3d during the amplification of the 

alternative pathway of complement proceeds faster in BALB/c than in C57BL/6 (Ogunremi et 

al., 1993). C5-sufficient and C5-deficient mice did not show significant differences in either 
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hepatic uptake of parasites (Macaskill et al., 1980) or in their survival periods (Jones and 

Hancock, 1983), indicating that complement mediated lysis does not play a major role in 

resistant to trypanosomiasis.  

  1.2.1.2. Role of nitric oxide (NO) 

 NO is a free radical gas which acts as a nonspecific cytotoxin in the host immune 

system (Moilanen and Vapaatalo, 1995).The small and lipophilic  nature of NO facilitates its 

entrance into microbes. The primary targets of NO are sulfhydryls and iron which is central to 

the biochemistry of microbes (MacMicking et al., 1997). NO produced by activated 

macrophages is considered to be an important arm of non-specific immunity (May and 

Machesky, 2001).  

 Different pathogens or stimuli use different signaling pathways for NO production. It 

has been shown that Fc receptors (Bayon et al., 1997), mannose receptors (Karaca et al., 1995) 

and Toll-like receptors (Mizel et al., 2003) can all affect NO synthesis. It has been shown that 

NO is trypanostatic for T. congolense, T. musculi, T. gambiense and T. brucei in vitro 

(Vincendeau et al., 1992; Kaushik et al., 1999a). Bone marrow derived macrophages and 

peritoneal macrophages of resistant C57BL/6 mice produce more NO than the macrophages of 

susceptible BALB/c mice in T. congolense infections (Kaushik et al., 1999a). In T. brucei- 

infected highly susceptible mice, NO has been reported to be partially responsible for 

macrophage-mediated splenic immunosuppression (Mabbott et al., 1995) but this is not true 

for T. congolense-infected mice (Uzonna et al., 1998b). The upregulation of NO is not found 

in cattle during T. congolense infection and was not responsible for the reduction of T cell 

proliferation (Taylor et al., 1998).  T. congolense–infected iNOS-/- C57BL/6 mice were 

considerably more susceptible than wild-type C57BL/6 mice, suggesting a role for NO in 

parasitemia control in vivo. Interestingly, the iNOS-/- mice were not as susceptible to T. 
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congolense infections as IFN-γ-R-/- mice were, suggesting that the protective role of IFN-γ 

signaling would extend beyond its function in iNOS activation (Magez et al., 2006). IgM anti-

VSG-mediated phagocytosis of T. congolense enhances the synthesis of TNF-α but inhibits 

synthesis of parasite-controlling NO (Pan et al., 2006).  

  1.2.1.3. Role of macrophages 

 Clearance of the trypanosomes from the circulation is predominantly achieved by 

phagocytosis of the opsonized parasites by macrophages in the liver (Kupffer cells) and to 

some extent by macrophages of the spleen (Holmes et al., 1979; Macaskill et al., 1980; 

Macaskill et al., 1981; Dempsey and Mansfield, 1983). After phagocytosis, trypanosomes are 

rapidly digested in the phagolysosomes of the Kupffer cells (Mansfield, 1990). In 

trypanosome infections, the numbers of macrophages are increased in liver, spleen and lymph 

nodes (Clayton et al., 1980; Murray and Dexter, 1988).  

It has been suggested that macrophage membrane Fc receptors for IgG and 

complement receptors play a role in mediating phagocytosis of trypanosomes. In in vitro 

studies, procyclic forms of T. brucei adhered readily to mouse peritoneal macrophages in the 

absence of antibodies and this attachment was mediated by a non-Fc, non-C3 receptor on the 

plasma membrane of macrophages suggesting that ligands for macrophage receptors may be 

present on trypanosomal plasma membranes (Mosser and Roberts, 1982). T. brucei is taken up 

by monocytes in vitro, in the presence of IgM or IgG anti-VSG antibodies in the absence of 

complement (Ngaira et al., 1983; Rurangirwa et al., 1986). This indicates that both Fc 

receptor-dependent and independent mechanisms might play a role in phagocytosis. It has 

been suggested that binding of IgM antibodies to the trypanosome surface causes activation of 

complement and due to the deposition of C3 cleavage products on trypanosomes results in 

phagocytosis of trypanosomes via the macrophage receptors for C3 cleavage products (Devine 
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et al., 1986; Mansfield, 1990). This has been shown to occur when IgM antibodies bind to 

VSG of T. congolense (Pan et al., 2006).  It has been shown that CR3 (CD11b/CD18) is the 

major receptor for IgM antibody-mediated phagocytosis of African trypanosomes and this 

phagocytosis is complement dependent (Pan et al., 2006). IgM anti-VSG-mediated 

phagocytosis of T. congolense enhances synthesis of disease-producing TNF-α but inhibits 

synthesis of parasite-controlling NO. This inhibition of synthesis of NO is dependent on CR3 

but is independent of complement (Pan et al., 2006).  

There were no significant differences observed in phagocytosis of trypanosomes by 

macrophages and monocytes of T. congolense-infected N’Dama and Boran cattle suggesting 

that even though phagocytosis is the primary mechanism involved in the control of parasites, 

factors other than phagocytosis dictate or contribute to the differences between resistant and 

susceptible animals (Sileghem, 1991). During experimental murine trypanosomiasis, the 

induction of costimulatory cytokines such as IL-1 and IL-2 were found to be depressed in both 

susceptible and resistant mouse strains (Mitchell et al., 1986). In another study, the induction 

of costimulatory cytokines was increased from monocytes and macrophages of T. congolense-

infected cattle (Sileghem et al., 1993). Trypanosome-mediated early activation of 

macrophages may lead to stimulate trypanosome-specific helper T cells and non-specific 

stimulation of T cells as a result of elevated costimulatory cytokines (Mansfield, 1990). 

Continued stimulation of macrophages by T cell-derived cytokines (IFN-γ) or autoregulatory 

factors like TNF-α, IL-10 and prostaglandins could interfere with further stimulation of T cells 

(Mansfield, 1990; Sileghem et al., 1994a; Uzonna et al., 1998b). Activation of macrophages 

and down regulation of macrophages in trypanosomiasis may occur in a T cell-independent 

manner since these are observed in infected congenitally T cell deficient athymic mice 

(Mansfield, 1990).   
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Susceptibility of mice to T. congolense and T. brucei infections can be suppressed by 

treatment with macrophage stimulants such as LPS, BCG, Bordetella pertussis and 

Corynebacterium parvum before the infection suggesting that the trypanosomes may be 

controlled by non-specific mechanisms of activated macrophages (Singer et al., 1964; Murray 

and Morrison, 1979). Upon activation, macrophages produce certain molecules which have 

microbicidal properties such as reactive oxygen intermediates (ROIs), reactive nitrogen 

intermediates (RNIs) and TNF-α (Adams and Hamilton, 1984; Auger, 1992). In C57BL/6 

mice, IL-10 produced by FoxP3+ Tregs regulate classical activation of the macrophages 

resulting in reduced TNF-α production and this was beneficial for the host survival by limiting 

the tissue damage (Guilliams et al., 2007).   

Phagocytosis of T. congolense by Kupffer cells of the liver leads to rapid activation of 

the Kupffer cells with release of monokines and enlargement of Kupffer cells (Shi et al., 

2004). There is very little trypanosomal antigen detectable in the liver and the Kupffer cells 

are not visibly enlarged up to day 5 post-infection. However, at day 6, there is a prominent 

accumulation of parasite antigen in Kupffer cells and the Kupffer cells are enlarged (Fig 1.4). 

There was a 5-fold increase in size of the Kupffer cells towards the terminal stage of infection 

and about 10% of the Kupffer cells undergo apoptosis (Shi et al., 2005).  
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1.2.2. Adaptive immune responses 

 Adaptive immunity or acquired immunity is an antigen-specific defense mechanism 

consists of two major categories; humoral immunity and cell mediated immunity.  

1.2.2.1 Humoral immune responses 

 Humoral immunity is mediated by antibody molecules produced by B lymphocytes in 

response to antigens. Specific B cell responses against VSG surface epitopes represent 

composite T cell-dependent and T cell-independent processes (Reinitz and Mansfield, 1990). 

The T cell-independent B cell responses are associated with temporary immunity to the variant 

antigenic types of trypanosomes arising during acute and chronic infections (Campbell and 

Phillips, 1976; Pinder et al., 1986; Reinitz and Mansfield, 1990).  The contribution of T cell-

independent and T cell-dependent processes to the total antibody production during infections 

is variable (Reinitz and Mansfield, 1990). Nude BALB/c and C57BL/6 mice, which lack T 

cells, are able to control the first wave of parasitemia (Campbell and Phillips, 1976; Pinder et 

al., 1986).  
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Fig. 1.4. Accumulation of trypanosomal antigens in Kupffer cells of the liver. BALB/c mice 

were infected with 103 T. congolense VAT TC13 i.p. Mice were killed on days 0–7 post-

infection. Peroxidase stain for trypanosomes (A–C): No trypanosomal antigen was detected on 

day 0 post-infection (A). The earliest time of detection of trypanosomal antigens was on day 5 

(B). Accumulations of parasite antigens significantly increased on day 6 (C). Peroxidase stain 

(anti-F4/80) for Kupffer cells (D–F): Kupffer cells appeared not visibly enlarged up to day 5 

(D, E). In contrast, Kupffer cells were markedly enlarged on day 6 (F). Original magnification, 

X 400 (Shi et al., 2004). 
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 The B cell specific responses to VSG result in elimination of trypanosomes expressing 

the target surface antigen and control parasitemia. In the presence of specific antibody, 

trypanosomes are rapidly eliminated from the circulation (Mansfield, 1990; Shi et al., 2004). 

The resistant mice exhibit marked production of VSG-specific antibodies during an infection 

(Levine and Mansfield, 1984; Newson et al., 1990), while mice highly susceptible for 

trypanosomiasis were found to have little or no detectable antibodies against VSG (Black et 

al., 1983; Morrison and Murray, 1985) even though their B lymphocytes are extensively 

activated.  The primary immune responses to VSG consists of both IgG and IgM classes of 

antibodies and reaches the maximum in 7-14 days following challenge (Roelants and Pinder, 

1984).  During the initial parasitemic wave, IgM was the only detectable class of antibody 

(Dempsey and Mansfield, 1983). Highly immunogenic VSG can induce high amounts of IgM 

in infected mice and cattle (Radwanska et al., 2000). The massive IgM production is not 

accompanied by a concomitant increase in production of IgG antibody in susceptible BALB/c 

mice (Uzonna et al., 1999).  

 During early onset  of T. brucei infection in mice, spleen remodeling results in a rapid 

loss of IgM+ marginal zone B cell population characterized as 

B220+IgMhighIgDintCD21highCD23lowCD1d+CD138- (Radwanska et al., 2008). When these 

cells were isolated during the first peak of infection, they were stained positive for Annexin V 

and had increased caspase-3 enzyme activity. Increased caspase-3 mRNA levels coincided 

with decreased levels of anti-apoptotic Bcl-2 mRNA and BAFF receptor, indicating the onset 

of apoptosis. Also, affected B cells become unresponsive to stimulation by B cell receptor 

cross-linking with anti-IgM Fab fragments and infection-induced loss of IgM+ B cells 

coincided with the absence of protective variant-specific T-independent IgM responses, 
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rendering the host susceptible to re-challenge with previously encountered parasites 

(Radwanska et al., 2008).  

1.2.2.1.1. Role of antibodies  

 The production of antibodies against various predominant VSGs provides protective 

immunity in infected animals (Naessens, 2000). VSG-specific antibodies mediate 

complement-mediated lysis (Flemmings and Diggs, 1978; Crowe et al., 1984) and increase the 

uptake of trypanosomes by macrophages (Ngaira et al., 1983; Shi et al., 2004). The clearance 

of the parasites is an immune-mediated mechanism and needs VSG-specific antibodies (Pinder 

et al., 1986). Blood stream trypanosomes are protected against phagocytosis in the absence of 

antibodies (Mosser and Roberts, 1982). Antibodies against non-variant antigens may 

neutralize toxic or pathogenic effects of certain trypanosomal molecules and may prevent 

anemia after repeated infections (Paling et al., 1991). In a study of T. congolense infections in 

BALB/c mice, Otesile and Tabel (1987) concluded that variant-specific antibody is necessary 

but not enough to control the infection.  

 Highly susceptible BALB/c mice produced IgM antibodies to common trypanosomal 

epitopes earlier than the resistant C57BL/6 mice. But BALB/c mice failed to switch to 

produce IgG2a and IgG3 antibodies (Uzonna et al., 1999). When infected mice were treated 

with Berenil, they produced IgG3 and IgG2a antibodies against trypanosomal common 

epitopes. Mice that underwent self cure had the highest levels of IgG3 and IgG2a antibodies 

against common trypanosomal epitopes (Uzonna et al, unpublished). When T. congolense and 

IgG2a anti-VSG were added to macrophage cultures, the induction of NO production by the 

macrophages was 2 to 9 fold higher than the production of NO by the macrophages added with 

T. congolense and IgM anti-VSG antibodies (Kaushik et al., 1999a). IgM is more efficient 

than IgG in complement-mediated lysis of T. brucei (Seed, 1977). In in vitro studies, IgG and 
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IgM  had equivalent effects on phagocytosis but had different effects on macrophage 

activation (Kaushik et al., 1999b). 

 When mice were infected with purified VSG or non-multiplying trypanosomes, 

resistant and susceptible mice produced almost similar amounts of anti-VSG antibodies with 

identical kinetics (Morrison and Murray, 1985; Pinder et al., 1986). Resistant cattle produce 

more IgG antibodies against VSG and invariant antigens than susceptible cattle (Authie et al., 

1993; Taylor et al., 1996) while susceptible mice made higher IgM antibody responses (Taylor 

et al., 1996; Williams et al., 1996). Superior IgG responses to invariant antigens are associated 

with enhanced resistance in trypanotolerant cattle breeds (Authie et al., 1993; Agur and Mehr, 

1997). 

1.2.2.2 Cellular immune responses 

1.2.2.2.1. T cells  

 T cells are central to the regulation and activation of immune responses. Mature T cells 

show heterogeneity functionally as well as by the expression of CD4 and CD8 molecules 

(Reeves G., 1996). The T cells which cooperate with B cells, helping them to respond to the 

antigens, resulting in differentiation of B cells into antibody-secreting plasma cells are termed 

helper T cells. Distinct sub populations of T helper cells preferentially promote T cell 

immunity (TH1) or stimulate antibody production (TH2) based on the cytokines they produce 

(Reeves G., 1996).  

 Some T cells are able to suppress immune responses and therefore are designated 

suppressor T cells. Some other T cells are able to kill the cells expressing foreign determinants 

on their surfaces and to kill virus-infected cells, and are named cytotoxic T cells (Reeves G., 

1996).  
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1.2.2.2.2. Role of T cells in protection against African trypanosomiasis 

 The role of T cells in protection against African trypanosomiasis is poorly investigated. 

The VSG surface epitope-specific B-cell responses in mice infected with trypanosomes 

represent composite T-cell-dependent and T-cell-independent processes, and a significantly 

stronger response is made in the presence of T cells (Reinitz and Mansfield, 1990). The 

synthesis of IgG2a but not IgM anti-parasitic antibodies were reduced in CD4-/- BALB/c mice 

infected with T. congolense (Shi et al., 2006a) supporting the idea that IgM production is 

predominantly CD4+ T cell independent and the switch from IgM to IgG2a requires help from 

CD4+ T cells.  

IFN-γ in T. congolense infections of mice is mainly produced by matrix-adherent 

splenic CD4+ T cells (Uzonna et al., 1998c). Experiments carried out using IFN-γ knock-out 

mice showed that IFN-γ is required for the survival of relatively resistant C57Bl/6 mice 

infected with T. brucei (Hertz et al., 1998) or T. congolense (Magez et al., 2006). Wei and 

Tabel (2008) reported that CD8+ NKT cells have a potential for protection against T. 

congolense infection induced by sub cutaneous injection of trypanosomes, presumably by 

inducing NO, but under normal conditions of infections, the CD8+ NKT cells appear to be 

suppressed by CD4+FoxP3+ Tregs.  

1.2.2.2.3. Role of T cells in the inflammatory response in T. congolense infections 

 The cytokine pattern observed in T. congolense infections does not fit the TH1/TH2 

paradigm since T. congolense-infected BALB/c mice have high serum levels of IFN-γ and IL-

10 (Mosmann and Coffman, 1989).  IFN-γ and IL-10 were produced by matrix-adherent 

spleen cells (Uzonna et al., 1998c). The production of IFN-γ and IL-10 required the absolute 

synergy of the Thy 1.2+ and Thy1.2- cell populations, since neither the Thy 1.2+ cells nor the 

Thy1.2- cells alone produced significant amounts of these cytokines (Uzonna et al., 1998c).  
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The early mortality in infected BALB/c mice occurs due to systemic inflammatory response 

syndrome mediated by IFN-γ produced by MHC class II-restricted CD4+ T cells (Shi et al., 

2003).  Studies with monoclonal antibodies which block IL-10 receptor showed that the 

excessive action of these pathogenic T cells and excessive activation of the macrophages are 

down-regulated in infected C57BL/6 mice via the action of IL-10 (Shi et al., 2003; Shi et al., 

2007). In T. congolense-infected C57BL/6 mice, CD4+CD25+FoxP3+ Tregs producing IL-10 

are required for controlling the excessive activation of macrophages (Guilliams et al., 2007).  

Tabel et al., (2008) discussed the T. congolense infection of mice in relation to dysregulation 

of macrophages and their interaction with T cells with the use of a simplistic diagram (Fig. 

1.5).  

 

 

Fig.1.5. (A). Model for relatively resistant C57BL/6 mouse infected with T. congolense. 

 (Tabel et al., 2008). 
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 T cell-independently produced (Campbell et al., 1978; Pinder et al., 1986) IgM anti-

VSG will bind to the circulating trypanosomes (step 1), activate complement and mediate 

deposition of iC3b (Pan et al., 2006). Macrophages phagocytose the opsonized parasites 

predominantly via macrophage receptor CR3 (step 2) (Pan et al., 2006). Pulsed macrophages 

produce moderate amounts of monokines (step 3) (Kaushik et al., 1999b; Kaushik et al., 

2000). The macrophage will process the engulfed trypanosomes and present trypanosomal 

antigens via MHC class II to the CD4+ T cell (step 4). Activated CD4+ pathogenic T cell will 

produce IFN-γ (step 5), which will induce the macrophage to produce enhanced amounts of 

monokines and NO (step 3) (Kaushik et al., 1999a; Kaushik et al., 2000). The macrophages 

also produce IL-10, which down-regulates the activation produced by IFN-γ in a negative feed 

back loop via an autocrine pathway (step 6). IL-10 has an effect on maturation of 

CD4+CD25+FoxP3+ Tregs (Papiernik, 2001). Tregs will produce IL-10 which down-regulate 

the effects of pathogenic T cells and macrophages (step 7) (Shi et al., 2006a; Guilliams et al., 

2007). Steps 1, 2, 3 and 5 have been well documented. Whether the pathogenic/suppressor T 

cells are specific for one or several different trypanosomal antigens remains to be determined.    

 In trypanosome infections, T lymphocyte proliferation occurs but is decreased with the 

progress of infection (Mayor-Withey et al., 1978). Analysis of VSG-specific antibodies in 

trypanosome infected BALB/c nude (nu/nu) and Thymus intact (nu/+) mice demonstrated that 

in the absence of T cells there is a significant B cell response to the exposed VSG epitopes. 

However, these responses are greatly enhanced in the presence of T cells. Immunization with 

soluble VSG in the absence of infection produced only T cell-dependent responses (Reinitz 

and Mansfield, 1990). VSG-specific CD4+ T helper cells were predominantly found in the 

peritoneal cavities of relatively resistant mice (Schleifer and Mansfield, 1993).   Mice which 

lack B cells, but not T cells, were unable to mount an effective response (Campbell et al., 
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1977). Reduced T and B cell responsiveness has been credited to T cell mediated 

immmunosuppression (Eardley and Jayawardena, 1977; Jayawardena et al., 1978; Pearson et 

al., 1978; Pearson et al., 1979). It has been shown that there are suppressor (Uzonna et al., 

1998c) and pathogenic T cell populations (Shi et al., 2003) in T. congolense-infected BALB/c 

mice. They are the main producers of IFN-γ, which influences the suppression of splenocyte 

proliferation responses to Con A in mice (Uzonna et al., 1998a; Uzonna et al., 1998c). These 

cells are also involved in the suppression of T cell proliferative responses to Con A as well as 

suppression of B cell responses to T cell-dependent antigens in vitro. It seems that these IFN-

γ-producing T cells, that show disease enhancing effects and show suppressor activities, are 

predominantly CD4+  (Uzonna et al., 1998c; Shi et al., 2003) and MHC-II restricted (Shi et al., 

2006a). Although Schofield et al (1999) have shown that immunization with purified 

membrane VSG induces CD1d-restricted NKT cells that facilitate IgG antibody responses, 

CD1d-restricted immune responses do not play an important role in susceptibility and 

resistance of mice infected with T. congolense intraperitoneally (Shi et al., 2006b). In contrast, 

Wei and Tabel (2008) reported that there is an early protective response mediated by CD8+ 

NKT cell dependent activation of macrophages to kill parasites by production of NO in 

susceptible BALB/c mice treated with anti-CD25 antibody prior to subcutaneous infections.    

 1.2.2.3 Cytokines in African trypanosomiasis 

 In murine T. brucei infections, suppression of lymph node T cells results from 

suppression of IL-2 secretion and IL-2 receptor expression (Sileghem et al., 1987; Sileghem et 

al., 1989b; Sileghem and Flynn, 1992). Suppression of IL-2 secretion has been shown to be 

due to production of prostaglandins by suppressor macrophages (Sileghem et al., 1989a) and 

IFN-γ might be actively involved in the inhibition of IL-2 receptor expression (Darji et al., 

1993; Darji et al., 1996). 
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 IFN-γ can play a beneficial or detrimental role in animal trypanosomiasis. The role of 

IFN-γ may depend on certain factors such as virulence of infecting strain, trypanosome species 

and genetic make up of the host. IFN-γ has been claimed to act as a growth factor for T. brucei 

(Olsson et al., 1991). But it has not been possible to demonstrate growth stimulatory effects of 

IFN-γ on T. congolense (Kaushik et al., 1997). T. brucei-infected mice which have disrupted 

IFN-γ genes showed reduced parasitemia and increased survival time (Bakhiet et al., 1996). 

Opposite outcomes were observed in another study (Namangala et al., 2001). However, it has 

also been convincingly shown, using IFN-γ knock-out mice, that IFN-γ is required for the 

survival of relatively resistant C57BL/6 mice infected with T. brucei (Hertz et al., 1998) or T. 

congolense (Magez et al., 2006). IFN-γ-receptor deficient mice were used to show that IFN-γ-

mediated immune activation is crucial for parasitemia control (Magez et al., 2006). In contrast, 

excessive secretion of IFN-γ during T. congolense infections in highly susceptible BALB/c 

mice leads to early mortality (Uzonna et al., 1998c; Shi et al., 2003). Anti-IFN-γ treatment of 

T. congolense-infected susceptible BALB/c mice prevents the early death of the infected mice 

(Uzonna et al., 1998a). IFN-γ plays a dual role in African trypanosomiasis (Tabel et al., 2008) 

by being a requirement for the survival of relatively resistant C57Bl/6 mice infected with T. 

brucei (Hertz et al., 1998) or T. congolense (Magez et al., 2006) and being detrimental by 

mediating the early death of susceptible BALB/c mice infected with T. congolense (Shi et al., 

2003).  

IFN-γ and IL-10 were produced by matrix-adherent spleen cells (Uzonna et al., 1998c). 

The production of IFN-γ as well as IL-10 required the absolute synergy of the Thy 1.2+ and 

Thy 1.2- cell populations, since neither the Thy 1.2+ nor the Thy 1.2- population alone 

produced significant amounts of above cytokines (Uzonna et al., 1998c). Most of the adherent 

spleen cells were mφs which were Thy 1.2-. Deletion experiments and immunocytochemistry 
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showed that a small proportion of the adherent cell population was T cells: Thy 1.2+ CD3+ 

TCRβ+/γδ- and predominantly CD4+ (Uzonna et al., 1998c; Shi et al., 2006a).  

   IL-10 is a known suppressor of the production of other cytokines as well as certain 

regulatory molecules such as NO (Taylor et al., 1998). Cattle infected with T. congolense had 

elevated IL-10 mRNA in their spleen, blood and lymph nodes suggesting that IL-10 might 

have an effect on the apparent failure of bovine monocytes to produce inflammatory 

molecules (Taylor et al., 1998). IL-10 level is found to be increased in both infected tolerant 

N’Dama cattle and susceptible Boran cattle (Naessens, 2000). Higher levels of IL-10 mRNA 

transcripts were detected in the spleens, peripheral blood mononuclear cells and lymph nodes 

of susceptible than in the resistant breeds of cattle infected with T. congolense (Taylor et al., 

1996). It has been suggested that higher levels of IL-10 might be associated with the observed 

higher levels of immunosuppression in susceptible breeds (Taylor, 1998). Plasma of highly 

susceptible BALB/c mice contains significantly higher levels of IL-10 than relatively resistant 

C57BL/6 mice following infection. Highly susceptible BALB/c mice, when treated with anti-

IL-10 antibody during the infection showed a reduction of parasitemia and a moderate 

increase in survival (Uzonna et al., 1998b). Infected resistant C57BL/6 mice, when treated 

with antibodies to the IL-10 receptor (IL-10R) die early suggesting that IL-10 is crucial in 

controlling the detrimental effects mediated by IFN-γ (Shi et al., 2003). When IL-10 function 

is impaired, MHC class II-restricted immune responses mediate early mortality in resistant 

C57BL/6 mice. Therefore, in T. congolense infections, MHC class II-restricted immune 

responses mediated either disease or protection, depending on IL-10 function (Shi et al., 

2007). IL-10 plays a dual role in African trypanosomiasis by exerting a detrimental role in 

mediating immunosuppression (Uzonna et al., 1998b) but being beneficial by controlling 
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excessive production of lethal cytokines by macrophages (Shi et al., 2003; Shi et al., 2006a; 

Guilliams et al., 2007).   

 Tumour necrosis factor (TNF-α) is an inflammatory cytokine which has a wide range 

of biological activities including apoptosis, cytotoxicity, immunomodulation, inflammation 

and cellular proliferation (Aggarwal and Natarajan, 1996). Induction of TNF-α, and the role of 

TNF-α in immunopathology is well documented in African trypanosomiasis (Sileghem et al., 

1994a; Sileghem et al., 1994b). Increased expression of TNF-α in the brains of T. brucei-

infected mice has been documented (Hunter et al., 1991). Continuous release of TNF-α from 

the activated macrophages of infected animals is a characteristic feature in chronic wasting 

disease associated with trypanosomiasis (Beutler and Cerami, 1988). It has been found that 

there is an association between TNF-α production by monocytes and the severity of anemia in 

infected cattle (Sileghem et al., 1994a), trypanosome-elicited immunsuppression and 

morbidity (Magez et al., 1999) and neuropathological symptoms in human sleeping sickness 

(Okomo-Assoumou et al., 1995). Treatment of T. brucei-infected mice with anti-TNF-α 

antibodies showed a significant increase in parasitemia suggesting that TNF-α also is 

important in the control of trypanosomal growth (Magez et al., 1993; Magez et al., 1997).  It 

has been claimed that TNF-α is both trypanolytic and trypanostatic for T. brucei brucei and T. 

brucei rhodesiense in vitro (Lucas et al., 1994). It has been found that the control of T. 

congolense infection depends on macrophage/neutrophil derived soluble TNF and intact TNF 

receptor 1 (TNFp55) signaling, which induces trypanolytic NO (Magez et al., 2007). TNF-α 

plays a dual role in African trypanosomiasis by exerting a detrimental role in 

immunopathology and being beneficial by acting as a regulator of trypanosomal growth 

(Magez et al., 1993; Magez et al., 1997). 

44 
 



 Knowledge of the roles of other cytokines in trypanosomiasis is limited. Following 

infections with T. brucei, higher levels of TGF-β and lower levels of TNF-β mRNA was 

detected in spleens of resistant and susceptible mice respectively (Bakhiet et al., 1996). 

During, experimental infection with T. congolense, the induction of costimulatory cytokines 

such as IL-1 and IL-2 were depressed in both susceptible AJ and resistant C57BL/6 mouse 

strains at the early infection (Mitchell et al., 1986).  

1.2.3. Immunomodulation 

1.2.3.1. Polyclonal B cell activation 

 Hypergammaglobulinemia with mainly IgM antibody and marked B cell expansion is 

consistently found in the spleen and lymph nodes in trypanosome infections (Murray et al., 

1974). This elevated serum IgM level is used as a screening test in diagnosing  sleeping 

sickness of humans in endemic areas of sub-Saharan Africa (Cunningham et al., 1967).  

 The increased levels of immunoglobulins consists of antibodies against both 

trypanosome-related and unrelated antigens, including autoantibodies (Hudson et al., 1976). 

Trypanosome-unrelated antibodies produced in T. brucei-infected mice are antibodies to sheep 

red blood cells, pneumococcal polysaccharides and haptens (Hudson et al., 1976; Kobayakawa 

et al., 1979). The above observations led to the suggestion that African trypanosomes possess 

B cell mitogens which cause non-specific activation of B cells (polyclonal activation).  

 It has been demonstrated that the trypanosomal membranes were mitogenic for spleen 

cells of normal athymic and cyclophosphamide-treated mice in vitro (Esuruoso, 1976). Also, 

whole or fractionated homogenates of trypanosomes have been reported to induce polyclonal 

activation of lymphocytes (Mansfield, Craig et al. 1976; Greenwood and Oduloju 1978). It has 

been reported that the purified soluble VSG molecules are mitogenic for B cells (Diffley, 

1983). Mice immunized with purified VSG showed marked enlargement of B cell 
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compartments in the spleen and an increase in serum IgG levels mostly due to the production 

of polyclonal antibodies (Diffley, 1983). The mechanism of the polyclonal B cell activation is, 

however, unknown.  

 It is known that binding of an antigen by the B cell receptor and cross-linking of the 

complement receptor 2 (CR2) simultaneously has a synergistic effect on B cell activation 

(Klaus, 1986; Tedder et al., 1997). A soluble fragment of the VSG of T. congolense forms a 

covalent product with a breakdown component of C3 (VSG-C3b) in the presence of variant 

specific antisera (Liu, 1991; Liu et al., 1993). 

 The membranes of insect stages of trypanosomes which do not possess VSG, do not 

cause polyclonal activation suggesting that bloodstream forms of trypanosomes may induce 

polyclonal B cell activation as an evasion mechanism (Oka et al., 1988). Because the affinity 

maturation does not occur during polyclonal B cell activation, selective proliferation and the 

production of high affinity antibodies against the trypanosomes might be prevented (Roitt, 

1997).  

1.2.3.2. Immune suppression 

 Immunosuppression is a remarkable feature of trypanosomiasis in cattle, mice and 

humans (Roelants and Pinder, 1984; Askonas, 1985; Sileghem et al., 1994b; Taylor, 1998). B 

and T cell responses to trypanosome and non-trypanosome antigens have been suppressed in 

most hosts, with the exception of trypanoresistant wildlife (Mulla and Rickman, 1988). It was 

proposed that the major cause of increased susceptibility of trypanosome-bearing individuals 

to opportunistic infections is generalized immunosuppression observed in patients 

(Greenwood et al., 1973). Infections of cattle with T. congolense and T. vivax cause 

suppression of antibody responses to some vaccines (Rurangirwa et al., 1978; Ilemobade et al., 

1982). Suppressed antibody response to Brucella abortus was observed in sheep infected with 
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T. congolense (Malu and Tabel, 1986). In dogs, infections with T. congolense have been 

shown to suppress antibody response to Brucella abortus vaccine (Anene, 1989). Water 

buffaloes infected with T. evansi had an increased prevalence of brucellosis (Bajyana Songa et 

al., 1987).  

 Suppression of T cell and B cell responses has been studied in laboratory rodent 

models. Various T cell responses are severely affected including allogeneic graft rejection 

(Pearson et al., 1978), mixed lymphocyte reaction (Pearson et al., 1978; Roelants et al., 1979), 

mitogen-induced proliferation (Jayawardena and Waksman, 1977; Morrison et al., 1978; 

Sileghem et al., 1989b) and delayed type hypersensitivity (Mansfield and Wallace, 1974).  

 A progressive depletion or exhaustion of antigen-reactive B cells due to polyclonal 

activation could later result in immunosuppression. Polyclonal activation and 

immunosuppression were induced in vivo by the administration of trypanosome membrane 

fragments (Clayton et al., 1979b; Sacks et al., 1982). It has been suggested that parasite-

unrelated immune responses are depressed in trypanosomiasis while the variant-specific 

immune responses are not affected (Mansfield, 1981) and the recovery of B cell function is 

very rapid after chemotherapy (Clayton et al., 1980). There is evidence that antigen 

nonspecific suppressor cells present in the lymphoid compartments of trypanosome-infected 

animals are involved in immunosuppression  (Corsini et al., 1977; Jayawardena and 

Waksman, 1977; Pearson et al., 1978; Pearson et al., 1979; Roelants et al., 1979; Wellhausen 

and Mansfield, 1979; Pearson et al., 1979a; Roelants et al., 1979b; Askonas, 1985; Schleifer 

and Mansfield, 1993; Sileghem, 1994; Sileghem et al., 1994b). Peritoneal macrophages of  

T. brucei-infected mice were also capable of passively transferring suppression to normal 

spleen cells (Corsini et al., 1977; Clayton et al., 1979a).  
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 Suppression of T cells in lymph nodes in T. brucei-infected mice results from 

suppression of IL-2 secretion and IL-2 receptor expression (Sileghem et al., 1987; Sileghem et 

al., 1989b; Sileghem and Flynn, 1992). Suppression of IL-2 receptor expression was 

associated with endogenously produced IFN-γ (Darji et al., 1993; Darji et al., 1996). It has 

been suggested that IFN-γ acts on macrophages, leading to the release of a soluble factor 

associated with the suppression of lymph node proliferative responses (Darji et al., 1996). 

TNF-α has also been implicated in suppression of lymph node cells in mice infected with T. 

brucei (Lucas et al., 1993; Darji et al., 1996). IL-10 and IFN-γ contributed to the suppression 

of splenocyte proliferative responses to ConA in infected BALB/c mice (Uzonna et al., 1998b; 

Uzonna et al., 1998c), identifying IL-10 and IFN-γ as mediators of immunosuppression. The 

induction of IL-10 and IFN-γ synthesis was trypanosome-specific and required antigen-

presenting cells (Uzonna et al., 1998c).  

 It has been shown that NO mediates suppression of splenic T cell responses in T. 

brucei (Sternberg and McGuigan, 1992; Sternberg and McGuigan, 1994; Mabbott et al., 1995) 

and T. rhodesiense-infected mice (Schleifer and Mansfield, 1993). It has been shown that IL-

10 and IFN-γ but not NO are responsible for the observed immunosuppression in T. 

congolense-infected mice (Uzonna et al., 1998b). Therefore, the role of NO in mediating 

immunosuppression in trypanosomiasis depends upon various factors such as the strain of 

mice and the strain of the parasite as well as the host.  

1.2.3.3. Role of T cells in immunosuppression in African trypanosomiasis 

 General immunosuppression has been known in T. brucei- and T. congolense- infected 

cattle and mice (Hudson et al., 1976; Roelants et al., 1979; Rurangirwa et al., 1979; Askonas, 

1985).  Roelants and Pinder (1984) concluded that immunosuppression might be mediated by 

both the suppressor macrophages and suppressor T cells. IL-10 as well as IFN-γ contributes to 

48 
 



the suppression of proliferative responses of the splenocytes to ConA in infected BALB/c 

mice (Uzonna et al., 1998b; Uzonna et al., 1998c). Thy 1.2- adherent spleen cells from 

uninfected mice could provide the suppressive effects only when pulsed with T. congolense 

and coculture with Thy 1.2+ cells obtained from infected mice but not with Thy 1.2+ cells from 

normal mice (Uzonna et al., 1998c).  

1.2.3.4. Regulatory T cells (Tregs) 

 Tregs are a specialized subpopulation of T cells which act to control activation of other 

immune cells and thereby maintain the homeostasis of the immune system, self-tolerance and 

control excessive immune responses to foreign antigens (Le and Chao, 2007).  Regulatory T 

cells first described in 1995, are known to suppress autoimmunity (Fehervari and Sakaguchi, 

2004). They can suppress immune responses to infectious agents and control 

immunopathology (Mills, 2004; Belkaid and Rouse, 2005).  The best described Treg 

population is the natural Tregs which arise during T cell development in the thymus and 

highly express the α chain of the IL-2 receptor (CD25). The other types of Tregs can be 

induced (inducible Tregs) from naïve T cells in the periphery during normal immune 

responses.  

1.2.3.5. Natural T regs 

 Naturally occurring CD4+CD25+ T cells in mice have regulatory functions and 

constitute about 5-10 % of all T helper cells were first described in 1995 (Sakaguchi et al., 

1995). Naturally occurring Tregs are thymus-derived (Sakaguchi et al., 1995). Natural 

CD4+CD25+ Tregs were found to express high levels of transcription factor FoxP3 (Hori et al., 

2003). Natural CD4+CD25+ T cells could not be detected in FoxP3-/- mice (Fontenot et al., 

2003). It is assumed that only a part of CD4+CD25+ T cell population exerts regulatory 
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activity, such as CD4+CD25high cells. Also it is clear that not all T cells that exert suppressive 

activity express CD25 (Beissert et al., 2006).  

 An increased pool of CD4+CD25+ regulatory T cells was found in the peripheral blood 

of cancer patients with potent immunosuppressive features (Wolf et al., 2003). Tregs in the 

tumor sites prevent the development of CD4 helper cells and subsequent development of 

efficient CD8 T cell activity required for the control of tumor growth (Chaput et al., 2007). 

Although natural Tregs require activation with specific antigen to attain their suppressive 

phenotype, once activated they execute inhibition in an antigen specific as well as non-specific 

fashion.  

 Although most studies have investigated the regulatory properties of Tregs and natural 

killer T cells independently of each other, recent reports have provided evidence for cross-talk 

between Tregs and NKT cells. Activated NKT cells seem to modulate Treg function through 

IL-2-dependent mechanisms, whereas Tregs can suppress the proliferation, cytokine release 

and cytotoxic activity of NKT cells by cell-contact-dependent mechanisms (La Cava et al., 

2006). 

 Natural Tregs could control allergic airway inflammation in an IL-10 independent 

manner in a murine model (Leech et al., 2007). Tregs facilitate early protective responses to 

local viral infection by allowing a timely entry of immune cells into infected tissue during 

mucosal herpes simplex virus infection in mice (Lund et al., 2008). In murine models of 

Leishmania infection, following resolution of infection in healed mice, CD25+Foxp3+ Tregs 

function in an IL-10-dependent manner to prevent sterile cure and to establish a long-term 

state of functional immune privilege in the skin (Peters and Sacks, 2006). Further, the majority 

of natural Treg cells at the infected site are Leishmania-specific and parasite-specific natural 
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Treg cells are restricted to sites of infection and that their survival is strictly dependent on 

parasite persistence (Suffia et al., 2006).   

1.2.3.6. Inducible T regs 

 The inducible Tregs are induced from the naïve T cells of the periphery by the 

immunosuppressive cytokine TGF-β (Chen et al., 2003) or by low dose antigenic stimulation 

by peptides (Apostolou and von Boehmer, 2004). Inducible Tregs do not have unique surface 

markers to distinguish them from other T cell subsets (Table 1.2). Also, it is not clear whether 

FoxP3 regulate the development of Th3 or Tr1 cells. However, TGF-β has been shown to 

convert peripheral CD4+CD25- naïve T cells into CD4+CD25+ Tregs, probably through the 

induction of FoxP3 expression (Chen et al., 2003). Unlike natural Tregs, both Th3 or Tr1 are 

inducible Tregs and appear to function independently of cell-cell contact and suppress immune 

responses through the secretion of cytokines such as TGF-β (Josien et al., 1998) and IL-10 

(Groux et al., 1997). 

 It has been shown that activation of human CD4+ T cells with anti-CD3 and anti-CD46 

induced a T-regulatory cell 1 phenotype which produced enhanced amounts of IL-10 (Kemper 

et al., 2003). Thus, cross-linking of Crry or CD46 by antigens coated with complement 

fragments during antigen presentation can modulate the T reg cell response (Kemper et al., 

2005). 

1.2.3.7. Roles of regulatory T cells during infections 

 In Tuberculosis, higher levels of FoxP3 mRNA and slightly lowered expression of IL-

10 was observed in blood of TB patients while a significantly lower FoxP3 mRNA expression 

with no difference in IL-10 expression was observed in recently infected contacts. It is not 

clear whether the Tregs play a beneficial or a harmful effect in tuberculosis (Burl et al., 2007).  
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Table 1.2. Subsets of natural and induced regulatory T cells 

Treg subset  Regulatory 
mechanisms  

Transcription 
factor 
expressed  

Target cells Function  

CD4+CD25+ 
Tregs  

Cell contact-
dependent,  
Cytokines  
(IL-10) ?  

FoxP3  T cells, 
APCs  

Suppression of 
autoimmunity, 
inhibition of allograft 
rejection and of immune 
responses induced by 
microbial infection  

CD4+CD25- 
Tregs  

Mostly by 
cytokines  

FoxP3?  T/B cells, 
APCs  

Suppression of 
autoimmunity  

Tr1 cells  Mediated by 
 IL-10  

FoxP3?  T cells  Suppression of 
autoimmunity  

Th3 cells  Mediated by 
TGF-β  

?  T cells  Suppression of 
autoimmunity  

NK Tregs  IL-4, IL-10, 
TGF-β, 
cytotoxicity  

?  T cells, 
APCs, 
tumor cells  

Elimination of tumors 
and pathogens, 
Suppression of 
autoimmunity  

CD8+ Tregs  Cell contact-
dependent  

FoxP3?  T cells  Suppression of 
autoimmunity, 
regulation of peripheral 
TCR repertoire  

CD8+CD28- 
Tregs  

Induction of 
ILT3/ILT4 in 
dendritic cells  

FoxP3?  Dendritic 
cells/APCs  

Regulation of 
autoimmunity  

 

?Issue uncertain, not yet clear or not yet investigated. Abbreviations: APC, antigen-presenting 

cell; ILT, immunoglobulin transcript; NK Treg, regulatory cells of natural killer T cell 

phenotype; Th3, T helper type 3; Tr1 cell, type 1 regulatory T cell; Treg, regulatory T cell. 

(Adapted from Beissert et al., 2006)  
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The frequency and the absolute count of duodenal mucosal Tregs were highly 

increased in untreated HIV patients but were normal in treated HIV patients. However, in 

peripheral blood of HIV patients, the absolute number of Tregs was not increased, and their 

frequency was only slightly elevated. The high increase in count and frequency of mucosal 

Tregs observed in untreated HIV infection, suggest a significant contribution of Tregs to the 

pathogenesis of HIV disease (Epple et al., 2006).  

The increased proportion of Tregs in aged mice was associated with the spontaneous 

reactivation of chronic Leishmania major infection, likely because Tregs efficiently 

suppressed the production of IFN-γ by effector T cells. In vivo depletion of Tregs in old mice 

attenuated the severity of the disease. Accumulation of functional Tregs in aged hosts could 

therefore play an important role in the frequent reactivation of chronic infections that occurs in 

the elderly (Lages et al., 2008).  

It has been demonstrated in Hepatitis C virus (HCV) infection in chimpanzees that the 

frequency of Foxp3+CD4+CD25+ Tregs and the extent of suppression was as high in 

spontaneously recovered chimpanzees as in persistently infected chimpanzees. Thus, Tregs 

control HCV-specific T cells not only in persistent infection but also after recovery, where 

they may regulate memory T-cell responses by controlling their activation and preventing 

apoptosis (Manigold et al., 2006). In human T-lymphotropic virus type 1 infection, there was a 

strong negative corelation between the frequency of CD4+FoxP3+ Tregs in the circulation and 

the rate of cytotoxic T lymphocyte-mediated lysis of autologous HTLV-1-infected cells ex 

vivo (Toulza et al., 2008). 

1.2.3.8. Impact of pathogens on regulatory T cells 

 Epstein-Barr virus can recruit Tregs to the microenvironment of Hodgkin's lymphoma 

by inducing the expression of chemokine ligand 20 (CCL20) in the tumor cells and, by doing 
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so, prevent immune responses against the virus-infected tumor population (Baumforth et al., 

2008). Functionally active and virus-specific FoxP3+ Tregs are induced in hepatitis C virus 

infection, thereby providing targeted immune regulation in vivo (Ebinuma et al., 2008). 

Suppression assays carried out using Tregs purified from WT and IL-6−/− C57BL/6 mice 

infected with influenza virus (H17) showed that IL-6 induced by influenza virus (H17) limits 

the activity of virus-specific Tregs, thereby facilitating the activity of virus-specific memory 

CD4+ T cells (Longhi et al., 2008). Intrathymic injection of the lentiviral vector resulted in an 

enrichment of hemagglutinin antigen-specific Tregs in peripheral lymphoid organs in mice 

(Marodon et al., 2006). In humans, M. tuberculosis mannose-capped lipoarabinomannan 

(ManLAM) resulted in regulatory T cell expansion, whereas the M. tuberculosis 19-kDa 

protein and heat shock protein 65 had no effect (Garg et al., 2008).  

1.2.3.9. Tregs in trypanosomal infections 

 In relatively resistant C57BL/6 mice infected with T. congolense, Foxp3+ Tregs 

originating from the naturally occurring Treg pool expanded in the spleen and the liver. These 

Tregs produced IL-10 and limited the production of IFN-γ by CD4+ and CD8+ effector T cells 

(Guilliams et al., 2007). Also, Tregs down-regulated classical activation of macrophages 

resulting in reduced TNF-α production. These observations suggest a cardinal role for 

naturally occurring Tregs in the development of a trypanotolerant phenotype during African 

trypanosomiasis (Guilliams et al., 2007).  

 When susceptible BALB/c mice were injected with optimal amounts of a depleting 

mAb specific for CD25 two days prior to the infection, the infected mice did not develop 

parasitemia and eliminated all parasites and showed no signs of disease. There was a 100% 

reduction of CD4+CD25high T cells and a 70% reduction of CD4+CD25+Foxp3+ T cells in the 

spleen 7 days post infection. Administration of L-N6-(1-imminoethyl) lysine, a specific 
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inhibitor of inducible NO synthase or administration of anti-CD8 Ab could reverse the 

protective effect caused by treatment of anti-CD25. Most of the anti-CD25 antibody treated 

CD1d-/- mice developed parasitemia but could control subsequent waves of parasitemia (Wei 

and Tabel, 2008). Further, when treated BALB/c mice with anti-CD25 mAb, there was an 

increase of early cytokine release (at day 5 post infection) and an early elevation (at day 3 post 

infection) of CD8+CD122+ cells in the spleen was detected. Collectively these results suggest 

that in normal trypanosomal infections of BALB/c mice, Tregs prevent the activation of CD8+ 

NKT cells which could activate macrophages to produce trypanocidal NO (Wei and Tabel, 

2008). It has been proposed that there is a cross regulation of NKT cells and 

CD4+CD25highFoxP3+ Tregs in experimental T. congolense infections (Tabel et al., 2008).  
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2.0 HYPOTHESIS AND OBJECTIVES 

2.1 Introduction 

Rapid death observed in highly susceptible BALB/c mice infected with virulent strains 

of Trypanosoma congolense or Trypanosoma brucei is due to a systemic inflammatory 

response syndrome (SIRS) (Shi et al. 2003). A small subset of pathogenic, MHC class II-

restricted CD4+ T cells, activated during the course of T. congolense infection, mediates early 

mortality in susceptible BALB/c mice via excessive synthesis of IFN-γ (Shi et al. 2006; 

Uzonna et al. 1998a & c). Since these pathogenic T cells are matrix-adherent (Shi et al. 2006; 

Uzonna et al. 1998c), they can be distinguished from the conventional Th1 cells. There is a 

possibility for this subset of pathogenic CD4+ T cells to be a population of T cells with unique 

surface markers.  

 Both the classical pathway and alternative pathways of complement are activated 

during African trypanosomiasis (Greenwood and Whittle, 1980). Hypocomplementemia is a 

prominent feature of experimental African trypanosomiasis in cattle (Tabel et al., 1980), sheep 

(Malu and Tabel, 1986) and mice (Otesile et al., 1991). During the activation of the 

complement system, the final degradation product of complement protein C3 is complement 

component C3d. The amplification of the alternative pathway of complement and the 

degradation of complement C3b to C3d proceeds faster in BALB/c mice than in C57BL/6 

(Ogunremi et al., 1993).  Complement receptor CR2 is a 145 kD transmembrane protein which 

acts as the receptor for C3d. The expression of CR2 on the cell surface of a subpopulation of 

mouse T cells has been documented (Qian et al., 2005). CR2 is expressed on activated T cells 

in AJ mice (Chen et al., 2005).  
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 T. congolense-infected BALB/c mice have more VSG-containing immune complexes 

in their plasma than infected C57BL/6 mice (Pan & Tabel, unpublished). Most of the immune 

complexes might contain VSG-C3d complexes in T. congolense-infected BALB/c mice. The 

presence of VSG-C3d immune complexes in T. congolense-infected BALB/c mice might play 

an important role in the pathogenesis of the infection: costimulation of CR2+ T cells by VSG-

C3d immune complexes might induce a subpopulation of T cells that express CR2 to produce 

excessive amounts of IFN-γ.  

 

2.2 Hypothesis 

In T. congolense-infected BALB/c mice, most of the IFN-γ-producing CD4+ T cells are 

CR2+ and the numbers of CR2+ T cells increase with progression of infection. 

 

2.3 Objectives 

1. Study the kinetics of CR2+ T cells in T. congolense infections in BALB/c mice 

2.     Test the subpopulations of T cells that produce IFN-γ in experimental  

T. congolense infections in BALB/c mice 
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3.0 KINETICS OF CR2+ T CELLS IN EXPERIMENTAL MURINE T. CONGOLENSE 

INFECTIONS 

3.1. Abstract 

In African trypanosomiasis, the complement system is highly activated, leading to 

covalent complexes of variant surface glycoprotein (VSG) and degradation products of 

complement component C3. The final degradation product of C3 is C3d. Complement receptor 

CR2 is the cell surface receptor for C3d. 

 I investigated the kinetic pattern of T cells (CD3+) expressing CR2 in BALB/c mice 

infected with T. congolense. In the first set of experiments, spleen cells of normal and infected 

BALB/c mice were stained with PE-Cy5anti-CD3, PEanti-CR2 and FITCanti-CD25 at days 3, 4, 5, 

6 and 7 post infection and were analyzed by FACS. Total numbers of spleen cells were 

increased 5-fold with progressive infection. Total numbers of CD3+ cells, CR2+ cells and 

CD25+ cells were increased 4 to 5-fold, 3-fold and 6-fold, respectively, with progressive 

infection. The numbers of CD3+CR2+ cells, CD3+CD25+ cells and CD25+CR2+ cells were 

increased 3-fold, 2 to 3-fold and 3 to 3.5-fold, respectively, with the progression of infection.  

Absolute numbers of B cells (CD19+) showed a 5 to 6 fold increase and the numbers of CR2+ 

B cells showed a 4-fold increase at day 7 post infection. In a second set of experiments spleen 

cells of normal and infected BALB/c mice were stained with FITCanti-CD3 and PEanti-CR2 

antibodies. The pattern of CR2+ cells was similar to the one of the previous study. However, 

the total numbers of CR2+ T cells in the spleen of normal mice was found to be considerably 

less, about 1.5 x 106 (instead of 3 x 106) per spleen. The numbers of CD3+ cells and 

CD3+CR2+ cells showed 5-fold and 7-fold increases, respectively. While the total numbers of 

CR2+ cells (including B cells) showed a 4-fold increase, the mean numbers of CR2 per cell 

showed a 50% reduction with progressive infection.  
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 In summary, the study shows that a small subpopulation of CR2+ T cells progressively 

increases 3 to 7-fold in BALB/c mice infected with T. congolense. 

 

3.2. Introduction  

 In experimental infections with African trypanosomes, T lymphocyte proliferation 

occurs but is decreased with the progress of infection (Mayor-Withey et al., 1978). Analysis of 

VSG-specific antibodies in trypanosome-infected nude (nu/nu) BALB/c and thymus intact 

(nu/+) mice showed that in nude mice there is a significant B cell response to the exposed 

VSG epitopes, indicating that most of the early antibody response to VSG is T cell- 

independent (Campbell et al., 1978). In T. congolense-infected BALB/c mice, there is a 

relatively small subpopulation of T cells that have an immunosuppressive (Uzonna et al., 

1998c) and a general pathogenic (Shi et al., 2003; Shi et al., 2006a) function. They are the 

main producers of IFN-γ (Uzonna et al., 1998a; Uzonna et al., 1998c). It seems that these IFN-

γ-producing T cells, that show disease enhancing effects and suppressor activities, are 

predominantly CD4+ (Uzonna et al., 1998c; Shi et al., 2003) and MHC-II-restricted (Shi et al., 

2006a). This subpopulation of T cells differs from the majority of Th1 cells in that they are 

matrix-adherent (Uzonna et al. 1998c; Shi et al. 2006). 

 In mice, CR2 is predominantly expressed on B cells, follicular dendritic cells and 

activated granulocytes. Mouse CR2 is highly expressed on peritoneal and splenic B-1 B 

lymphocytes (Kinoshita et al., 1988; Carroll, 1998). It is known that binding of an antigen by 

the B cell receptor and cross-linking of the complement receptor 2 (CR2) simultaneously has a 

synergistic effect on B cell activation (Klaus, 1986; Tedder et al., 1997). In T cells, CR2 may 

act either as an activating receptor or as an adhesion molecule to promote the recruitment or 

retention of tissue-infiltrating cells (Holers, 2005). Kaya et al. (2001) have provided evidence 
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that CR2+ T cells participate in the development of experimental autoimmune myocarditis. 

CR2 has been found to be expressed on activated T cells in A/J mice (Chen et al., 2005). CR2 

was detectable on both CD4+ and CD8+ subsets of T cells (Kaya et al., 2005). 

Although not investigated, the complexes of cleavage products of complement 

component C3 (C3b, iC3b and C3d) and soluble or particulate trypanosomal antigens might 

have a profound effect upon binding to cells bearing receptors for C3b, iC3b and/or C3d 

(Tabel et al., 2000). T. congolense-infected BALB/c mice have more immune complexes 

containing trypanosomal variant surface glycoprotein than infected C57BL/6 mice (Pan  & 

Tabel, unpublished data).  The degradation of C3b to C3d is very fast in BALB/c mice 

(Ogunremi et al. 1993). We speculate that the majority of the immune complexes in T. 

congolense-infected BALB/c mice might be VSG-C3d immune complexes and that binding of 

these complexes to CR2+ T cells might costimulate these T cells to produce IFN-γ.  

Experiments discussed in this chapter describe the kinetics of CR2+ T cells and B cells 

in the spleen of T. congolense-infected BALB/c mice.  

3.3. Materials and Methods 

3.3.1. Mice 

Female BALB/c mice and CD1 mice were obtained from the Animal Resource Center of the 

University of Saskatchewan. BALB/c mice were 8 to 10 weeks old and CD1 mice were 6 

weeks old. All mice were maintained according to the recommendations of the Canadian 

Council of Animal Care.  

3.3.2. Parasites 

T. congolense, variant antigenic type (VAT) TC13 (Tabel, 1982) was used in this experiment. 

TC13 was passaged in immunosuppressed CD1 mice as described (Tabel, 1982). The parasites 

for the infection of BALB/c mice were obtained by isolating the parasites from the blood of 
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infected CD1 mice using DEAE-cellulose chromatography columns as described (Lanham and 

Godfrey, 1970).  

3.3.3. Antibodies 

The following principle antibodies were used to stain the spleen cells for FACS analysis: PE-Cy5 

Armenian hamster anti-mouse CD3 (BD Pharmingen), PE rat anti-mouse CR2 (eBioscience),  

FITC Rat anti-mouse CD25 (eBioscience), FITC rat anti-mouse CD19 (eBioscience), and FITC 

hamster anti-mouse CD3 (Cedarlane Laboratories). The following antibodies were used as 

isotype control antibodies: PECy5 Armenian hamster IgG (eBioscience), PErat IgG2a 

(eBioscience), FITC rat IgG1 (eBioscience), , FITCmouse IgA (eBioscience) and FITC hamster 

IgG (eBioscience).  

3.3.4. Experimental design 

BALB/c mice were infected intraperitoneally with 103 organisms of trypanosomes. Four 

normal BALB/c mice and four infected BALB/c mice were euthanized each day using CO2 

and single cell suspensions were prepared from the collected spleens at days 3, 4, 5, 6, 7 and 8 

post infection. Red blood cells were lysed using ACK lysing buffer as described (Coico, 

2005). Spleen cells were resuspended at 107 cells/ml in FACS buffer to use these cells for 

staining and FACS analysis.   

3.3.5. Estimation of parasitemia 

To estimate the circulating parasite numbers, a drop of blood from the tail vein of each mouse 

was examined at 400x magnification by phase contrast microscopy. Parasitemia was estimated 

by counting the number of parasites present in 20 fields at the early infection. Heavy parasite 

loads were quantified according to Herbert and Lumsden (Herbert and Lumsden, 1976).   
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3.3.6. FACS analysis 

One hundred micro liter aliquots of 107 cells/ml in FACS buffer were incubated for 10 

minutes on ice with 4 μl of rat anti-mouse CD16/32 (Fcγ II/III receptor, Fc Block, 

eBioscience) monoclonal antibody. Appropriate volumes of each antibody specific for a 

particular cell surface marker were added and incubated on ice in the dark for 30 minutes. The 

cells were washed 2 times with FACS buffer and resuspended in FACS buffer containing 1% 

formalin. Fixed cells were analyzed using a FACScan flow cytometer using Flowjo software 

(Tree Star Inc.).   

3.3.7. Statistical analysis 

 Multiple comparisons were performed by one way analysis of variance (ANOVA) 

using SPSS software. Differences between infected groups and respective normal groups were 

tested by paired T test. A statistical probability of P < 0.05 was considered statistically 

significant. 

 

3.4. Results 

3.4.1. Kinetics of T and B cells in the spleen of infected BALB/c mice 

3.4.1.1. Parasitemia and total numbers of spleen cells 

 Infected mice did not have any visible parasites up to day 4 following infection. 

Parasites started to appear in blood at day 5 post infection and this was followed by an 

increase of parasitemia up to day 7 until the experiment was terminated (Fig.3.1.A). The 

parasitemia pattern was similar in all kinetic studies performed.  

 Total number of spleen cells in normal mice was about 108 in all cases. This number 

showed a 3-fold increase at day 5 post infection and up to 5-fold increases were observed at 

day 7 post infection (Fig.3.1.B).  
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Fig. 3.1. Parasitemia (A) and total number of spleen cells (B) of BALB/c mice infected 

intraperitoneally with 103 T. congolense. (The data shown are representative of mean±SE of 

four similar experiments, n= 4). * P < 0.05 between infected group and respective control 

group. 
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3.4.1.2. Kinetics of CD3+ cells, CR2+ cells, and CD25+ cells in the spleen  

In the results of these experiments, absolute and relative numbers of each cell 

population are presented. The relative number of a particular cell population is presented as 

the percentage of the total spleen cell population. The total numbers of spleen cells increase 

with progress of the infection. Since the dynamics of a subpopulation may change at a 

different rate than that of the total spleen cell numbers, the profile of relative numbers from 

day 0 to day 8 might be quite different from the profile of the absolute numbers.  

Absolute numbers of T cells showed a 4 to 5-fold increase with progressive infection 

(Fig.3.2.A) while the relative numbers of T cells were lower than in normal mice at early 

infection, but increased up to day 7 post infection (Fig.3.2.B).  

There was a 2 to 3-fold increase in absolute numbers of CR2+ cells in the spleen of 

BALB/c mice during the infection (Fig.3.3.A) while the relative numbers showed a decline at 

days 5, 6 and 7 post infection (Fig.3.3.B). It is known that the majority of CR2+ cells in the 

spleen are B cells and follicular dendritic cells (Carroll, 1998). 

 There was a progressive increase in the absolute numbers of CD25+ cells in the spleen 

of infected BALB/c mice which reached a 6-fold increase at day 7 post infection compared to 

those of normal mice (Fig.3.4.A) while the relative numbers showed a 2-fold increase at day 7 

post infection (Fig.3.4.B).  This population of cells would include activated T cells and Tregs. 
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Fig.3.2. Absolute numbers of CD3+ cells (A) and the relative numbers of CD3+ cells (B) in the 

spleen of BALB/c mice infected with 103 organisms of T. congolense TC13 compared to those 

of normal BALB/c mice. PECy5anti-CD3 antibody was used to stain the spleen cells. Values 

represent mean±SE, n= 4. (The data shown are representative of four similar experiments). * P 

< 0.05 between infected group and respective control group. 
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Fig.3.3. Absolute numbers of CR2+ cells (A) and the relative numbers of CR2+ cells (B), in 

the spleen of BALB/c mice infected with 103 organisms of T. congolense TC13 compared to 

those of normal BALB/c mice. PEanti-CR2 antibody was used to stain the spleen cells. Values 

represent mean±SE, n= 4. (The data shown are representative of four similar experiments). * P 

< 0.05 between infected group and respective control group. 
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Fig.3.4. Absolute numbers of CD25+ cells (A) and the relative numbers of CD25+ cells (B), in 

the spleen of BALB/c mice infected with 103 organisms of T. congolense TC13 compared to 

those of normal BALB/c mice. FITCanti-CD25 antibody was used to stain the spleen cells. 

Values represent mean±SE, n= 4. (The data shown are representative of four similar 

experiments). * P < 0.05 between infected group and respective control group. 
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3.4.1.3. CD3+CR2+ cells in the spleen of normal BALB/c and C57BL/6 mice 

 The kinetics of complement activation in highly susceptible BALB/c mice is different 

from that of relatively resistant C57BL/6 mice. The degradation of C3b to C3d during the 

amplification of the alternative pathway of complement proceeds faster in BALB/c than in 

C57BL/6 (Ogunremi et al., 1993). Therefore we speculated that the expression of CR2, the 

receptor for C3d, in T cells might be different between the susceptible and resistant mice. 

Spleen cells of normal BALB/c and C57BL/6 mice were stained for CD3 and CR2 to find out 

whether the numbers of CR2+ T cells show a difference between the two strains of mice. There 

was no significant difference between the numbers of CR2+ T cells in normal BALB/c and 

C57BL/6 mice according to the results (Fig.3.5) obtained by FACS analysis.  
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Fig.3.5. Absolute numbers of CD3+CR2+ cells in the spleen of susceptible BALB/c mice and 

relatively resistant C57BL/6 mice. The cells were stained with PECy5 Armenian hamster anti-

mouse CD3 and PE rat anti-mouse CR2 and analyzed by FACS. (Values represent mean±SE, 

n= 8).  
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3.4.1.4. Kinetics of CD3+CR2+ cells in the spleen 

 The absolute numbers of CD3+CR2+ cells (CR2+ T cells) in the spleen of a normal 

BALB/c mouse was around 3 x 106, when the cells were stained with PECy5 Armenian hamster 

anti-mouse CD3 and PE rat anti-mouse CR2 and analyzed by FACS.  There was no increase in 

the number of CD3+CR2+ cells up to day 3 post infection, but there was a 3-fold increase 

achieved at day 5 and remained at that level until the experiment was terminated at day 7 post 

infection (Fig.3.6.A).  The relative numbers of CD3+CR2+ cells did not show much difference 

at early infection but showed a slight decrease at day 6 and 7 post infection (Fig.3.6.B). The 

original FACS pictures of representative normal and infected spleen cells of BALB/c mice, 

collected at day 6 post infection, are shown in Fig. 3.7. 

3.4.1.5. Kinetics of CD3+CD25+ cells and CD25+CR2+ cells in the spleen 

 Absolute numbers of CD3+CD25+ T cells showed a 2 to 3-fold increase at day 5, 

followed by a 10-fold increase at day 7 post infection (Fig.3.8.A), indicating a progressive 

proliferation of CD25+ T cells during the infection. Relative numbers of CD3+CD25+ T cells 

also increased with progressive infection (Fig.3.8.B). The original FACS pictures of 

representative normal and infected spleen cells of BALB/c mice, collected at day 7 post 

infection, are shown in Fig. 3.9. 

 Absolute numbers of CD25+CR2+ cells showed a 3 to 3.5-fold increase at day 7 post 

infection compared to the normal mice (Fig.3.10.A) but the relative numbers of CD25+CR2+ 

cells remained fairly constant at about 1% during the infection (Fig.3.10.B). The original 

FACS pictures of representative normal and infected spleen cells of BALB/c mice, collected at 

day 7 post infection, are shown in Fig. 3.11. 

 

 

69 
 



A               Total # CD3+CR2+ cells in the spleen of 
BALB/c mice infected with T. congolense

0.00E+00

2.00E+06

4.00E+06

6.00E+06

8.00E+06

1.00E+07

1.20E+07

Day 0 Day 3 Day 4 Day 5 Day 6 Day 7

Days p.i. 

# 
CD

3+
C

R2
+ 

ce
lls

 ***

 

B      % CD3+CR2+ cells in the spleen of BALB/c 
mice infected with T. congolense  

0

1

2

3

4

5

Day 0 Day 3 Day 4 Day 5 Day 6 Day 7

Days p.i. 

%
 C

D3
+C

R2
+ 

ce
lls

 
Fig.3.6. Absolute numbers of CD3+CR2+ cells in the spleen (A) and relative numbers of 

CD3+CR2+ cells (B) in the spleen of BALB /c mice infected with 103 organisms of T. 

congolense TC13. The spleen cells were stained with PECy5 Armenian hamster anti-mouse CD3 

and PE rat anti-mouse CR2 and analyzed by FACS.  (Mean±SE values of four experiments.)  

*P < 0.05 between control group and infected groups. 
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Fig.3.7. FACS analysis to detect CD3+CR2+ cells in the spleen. Spleen cells collected from 

normal BALB/c mice and T. congolense-infected BALB/c mice at day 6 post infection were 

stained with PECy5anti-CD3, PEanti-CR2 and isotype control antibodies and analyzed by FACS.  

A: isotype control of normal BALB/c spleen cells, B: normal BALB/c spleen cells stained 

with PECy5anti-CD3 and PEanti-CR2, C: isotype control of infected BALB/c spleen cells 

collected at day 6 post infection, D: spleen cells collected at day 6 post infection stained with 

PECy5anti-CD3 and PEanti-CR2.  
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Fig. 3.8. Absolute numbers of CD3+CD25+ cells (A) and  relative numbers of CD3+CD25+ 

cells (B) in the spleens of BALB/c mice infected intraperitoneally with 103 organisms of T. 

congolense TC13 compared to those of normal BALB/c mice. The spleen cells were stained 

with FITCanti-CD25 and PECy5anti-CD3 antibodies and analyzed by FACS. Values represent 

mean±SE, n= 4. (The data shown are representative of four similar experiments). * P < 0.05 

between infected group and respective control group. 
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Fig.3.9. FACS analysis to detect CD3+CD25+ cells in the spleen. Spleen cells collected from 

normal BALB/c mice and T. congolense-infected BALB/c mice at day 7 post infection were 

stained with PECy5anti-CD3, FITCanti-CD25 and isotype control antibodies and analyzed by 

FACS. A: isotype control of normal BALB/c spleen cells, B: normal BALB/c spleen cells 

stained with PECy5anti-CD3 and FITCanti-CD25, C: isotype control of infected BALB/c spleen 

cells collected at day 7 post infection, D: spleen cells collected at day 7 post infection stained 

with PECy5anti-CD3 and FITCanti-CD25.  
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Fig. 3.10. Absolute numbers of CD25+CR2+ cells (A) and  relative numbers of CD25+CR2+ 

cells (B) in the spleens of BALB/c mice infected intraperitoneally with 103 organisms of T. 

congolense TC13 compared to those of normal BALB/c mice. The spleen cells were stained 

with FITCanti-CD25 and PEanti-CR2 antibodies and analyzed by FACS. Values represent 

mean±SE, n= 4. (The data shown are representative of four similar experiments). * P < 0.05 

between infected group and respective control group. 
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Fig.3.11. FACS analysis to detect CD25+ CR2+cells in the spleen. Spleen cells collected 

from normal BALB/c mice and T. congolense-infected BALB/c mice at day 7 post infection 

were stained with PEanti-CR2, FITCanti-CD25 and isotype control antibodies and analyzed by 

FACS. A: isotype control of normal BALB/c spleen cells, B: normal BALB/c spleen cells 

stained with PEanti-CR2 and FITCanti-CD25, C: isotype control of infected BALB/c spleen cells 

collected at day 7 post infection, D: spleen cells collected at day 7 post infection stained with 

PEanti-CR2 and FITCanti-CD25.  
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3.4.1.6. Mean intensity of CR2 in the spleen cells during T. congolense infections 

 In these kinetic studies, the mean expression of numbers of CR2 per cell decreased 

with the progressive T. congolense infection in BALB/c mice (Fig. 3.12). It is conceivable that 

continued binding and endocytosis of VSG-C3d complexes might lead to a decrease of CR2+ 

intensity in B cells with the progressive infection.  
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Fig.3.12. Mean intensity ± SE of CR2 on all CR2+ cells in the spleen cells of normal and T. 

congolense-infected BALB/c mice.  PEanti-CR2 antibody was used to stain the spleen cells. 

The fluorescent intensity of the spleen cells were measured by FACS. Values represent 

mean±SE, n= 4. (The data shown are representative of three similar experiments). * P < 0.05 

between infected group and respective control group. 
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3.4.1.7. Kinetics of CD19+ cells and CD19+CR2+ cells in the spleen 

 B cells express CD19 and most of the B cells express CR2 while the expression of 

CR2 in T cells is limited to a small subpopulation of T cells. Therefore it is worthwhile to find 

out the kinetics of CR2+ B cells in T. congolense-infected BALB/c mice in parallel to the 

kinetics of CR2+ T cells. In order to find out the kinetics of B cells and CR2-expressing B 

cells, spleen cells of normal and infected mice were stained for CD19 and CR2.  

 Absolute numbers of B cells showed a 5 to 6-fold increase by day 7 post infection 

(Fig.3.13.A) indicating enhanced B cell proliferation or decreased apoptosis. The relative 

numbers of B cells remained similar to that of normal BALB/c mice throughout the 

experimental period (Fig.3.13.B), There was a 4-fold increase in the absolute numbers of 

CR2+ B cells at day 7 post infection compared to the numbers in normal spleen (Fig.3.14.A). 

Relative numbers of CR2+ B cells did not change significantly throughout the experimental 

period (Fig.3.14.B). 
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Fig. 3.13. Absolute numbers of CD19+ cells (A) and relative numbers of CD19+ cells (B), in 

the spleen of BALB/c mice infected with 103 organisms of T. congolense TC13 compared to 

those of  normal BALB/c mice. The spleen cells stained with FITCanti-CD19 were analyzed by 

FACS. Values represent mean±SE, n= 4. (The data shown are representative of two similar 

experiments). * P < 0.05 between infected group and respective control group. 
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Fig. 3.14. Absolute numbers of CD19+CR2+ cells (A) and relative numbers of CD19+CR2+ 

cells (B) in the spleen of BALB/c mice infected with 103 organisms of T. congolense TC13 

compared to those of  normal BALB/c mice. The spleen cells were stained with  FITCanti-CD19 

and PEanti-CR2 antibodies and analyzed by FACS. Values represent mean±SE, n= 4. (The data 

shown are representative of two similar experiments). * P < 0.05 between infected group and 

respective control group. 
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3.4.1.8. Preliminary discussion of the first set of experiments: technical problems 

In the first set of kinetic studies FITCanti-CD25, PEanti-CR2 and PECy5anti-CD3 were 

used to stain spleen cells for FACS analysis. FACS analysis of the spleen cells stained with 

PECy5 anti-CD3 antibody indicated a right shift of the negative cell population stained with a 

PE antibody specific for an unrelated antigen.  The use of PEanti-CR2 and PECy5anti-CD3 in the 

(triple stain) kinetic study was unsatisfactory, because there is a problem with an overlap of 

PE and PECy5 stains in analysis of FACS (Fig.3.20). These technical problems might affect 

the results especially when working with very low numbers of cells, i.e. less than 2% of total 

cells. Thus, spleen cells stained with PECy5anti-CD3 and PEanti-CR2 yield higher numbers of 

CD3+CR2+ cells, as detected by FACS analysis, than spleen cells stained with FITCanti-CD3 

and PEanti-CR2. We had not been aware of this problem before. This was the reason for 

carrying out the second set of kinetic study in normal and infected BALB/c mice using 

FITCanti-CD3 and PEanti-CR2 antibodies and suitable isotype control antibodies.   

 

 
 A                               B                           C                             D                             E

 

Fig.3.15. Histograms showing PECy5 intensity of unstained spleen cells (A) and the spleen 

cells stained with PE anti-CR2 (B), isotype control antibodies for PECy5 and PE (C),  PECy5anti-

CD3 (D), and spleen cells stained with PEanti-CR2 and PECy5anti-CD3 (E) as detected by FACS 

analysis. Spleen cells were obtained from normal BALB/c mice. 
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3.4.2. Kinetics of CD3+CR2+ cells in the spleen using a different set of antibodies 

 In a second set of experiments spleen cells of normal and infected BALB/c mice at 

days 3, 5, 6, 7 and 8 post infection were stained with FITCanti-CD3 and PEanti-CR2 antibodies.  

 

3.4.2.1. Parasitemia and total numbers of spleen cells 

 Parasitemia and the total numbers of spleen cells showed a similar pattern as observed 

in previous kinetics experiments described in Fig.3.1. Infected mice did not have any visible 

parasites up to day 4 following infection. Parasites started to appear in blood at day 5 post 

infection and this was followed by an increase of parasitemia up to day 8 when the experiment 

was terminated (Fig.3.16).  

 Total number of spleen cells in normal mice was about 108 in all cases. The number of 

spleen cells showed a 3-fold increase at day 5 post infection and an up to 5-fold increase has 

been observed at day 7 and 8 post infection (Fig.3.16). This increase might be due to the 

proliferation of different cell types of the spleen as a response to the ongoing infection.  
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Fig. 3.16. Parasitemia (A) and total number of spleen cells (B) of BALB/c mice infected 

intraperitoneally with 103 T. congolense organisms. Values represent mean±SE, n= 4. (The 

data shown are from a single experiment). * P < 0.05 between infected group and respective 

control group. 
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3.4.2.2. Kinetics of CD3+ cells and CD3+CR2+ cells in the spleen 

The absolute numbers of CD3+ cells showed a 5-fold increase with progressive infection (Fig. 

3.17.A). Relative numbers of CD3+ cells decreased at day 3 and 5 and then came back to 

normal at day 6, 7 and 8 post infection (Fig.3.17.B). The absolute numbers of CD3+CR2+ cells 

increased with the infection up to 7-fold (Fig.3.18.A). There was an increase of relative 

numbers of CD3+CR2+ cells at day 7 and 8 post infection, resulting in a 2-fold increase at day 

8 (Fig. 3.18.B). The original FACS pictures of representative normal and infected spleen cells 

of BALB/c mice, collected at day 8 post infection, are shown in Fig. 3.19. 

 

3.4.2.3. Kinetics of CR2+ cells in the spleen 

The numbers of all CR2+ cells showed an increase up to day 6 and then showed a 

slight decrease at day 7 and 8 (Fig.3.20.A) while the relative numbers of CR2+ cells decreased 

with the progression of infection (Fig.3.20.B).  There was a significantly reduced mean 

expression of numbers of CR2 per cell in all CR2+ cell population with progression of the 

infection (Fig.3.20. C, D & E).  
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Fig. 3.17. Absolute numbers of CD3+ cells (A) and relative numbers of CD3+ cells (B) in the 

spleen of BALB/c mice infected with 103 organisms of T. congolense TC13 compared to those 

of normal BALB/c mice. The spleen cells were stained with FITCanti-CD3 and analyzed by 

FACS. Values represent mean±SE, n= 4. (The data shown are from a single experiment). * P < 

0.05 between infected group and respective control group. 
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Fig. 3.18. Absolute numbers of CD3+CR2+ cells (A) and relative numbers of CD3+CR2+ cells 

(B) in the spleen of BALB/c mice infected with 103 organisms of T. congolense TC13 

compared to those of normal BALB/c mice. The spleen cells were stained with  FITCanti-CD3 

and PEanti-CR2 antibodies and analyzed by FACS. Values represent mean±SE, n= 4. (The data 

shown are from a single experiment). * P < 0.05 between infected group and respective 

control group. 

 
 
 

85 
 



 
 

 
 
 
Fig.3.19. FACS analysis to detect CD3+CR2+ cells in the spleen. Spleen cells collected from 

normal BALB/c mice and T. congolense-infected BALB/c mice at day 8 post infection were 

stained with PEanti-CR2, FITCanti-CD3 and isotype control antibodies and analyzed by FACS. 

A: isotype control of normal BALB/c spleen cells, B: normal BALB/c spleen cells stained 

with PEanti-CR2 and FITCanti-CD3, C: isotype control of infected BALB/c spleen cells 

collected at day 8 post infection, D: spleen cells collected at day 8 post infection stained with 

PEanti-CR2 and FITCanti-CD3.  

 

86 
 



D

E

 A             Total numbers of CR2+ cells in the spleen of 
BALB/c mice infected with T. congolense

0.00E+00

5.00E+07

1.00E+08

1.50E+08

2.00E+08

Day 3 Day 5 Day 6 Day 7 Day 8

Days p.i. 

# 
C

R
2+

 c
el

ls

Normal  

infected 

***
*

*

 B         % CR2+ cells in the spleen of BALB/c mice 
infected with T. congolense

0

10

20

30

40

50

Day 3 Day 5 Day 6 Day 7 Day 8

Days p.i. 

%
 C

R
2+

 c
el

ls

*****

1

10

Day 3 Day 5 Day 6 Day 7 Day 8

m
e
a
n

 i
n

te
n

s
it

y
 o

f 
C

R
2
 (
lo

g
 1

0
)

Days p.i. 

C Mean intensity of CR2 decreases towards the 
terminal stage of infection

normal

infected

****

 
Fig.3.20. Absolute numbers of CR2+ cells (A) and relative numbers of total CR2+ cells (B).  

Mean intensity ± SE of CR2 in the splenic CR2+ cell population of normal and T. congolense-

infected BALB/c mice (C) and histograms of PE intensity of CR2+ cell population of normal 

(D) and T. congolense-infected BALB/c mice at day 8 post infection (E). Values represent 

mean±SE, n= 4. (The data shown are from a single experiment). * P < 0.05 between infected 

group and respective control group. 
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3.5. Discussion 

 The patterns of parasitemia were similar in both kinetic studies, whether triple staining 

or double staining were used (Fig.3.1 & 3.16), indicating that the levels of infections were 

similar throughout the experiments. Similar increases in numbers of total spleen cells (Fig.3.1 

& 3.16) further suggest that the status of infections was fairly consistent throughout these 

kinetic studies. The observed increase in total numbers of spleen cells could mean increased 

proliferation and/or decreased apoptosis and/or increased influx but decreased outflow of the 

cells.  

 Even though CR2 is predominantly expressed on B cells, follicular dendritic cells and 

activated granulocytes (Carrol, 1998), there are only few reports about the presence of CR2 on 

murine T cells. The results of these experiments showed that there are CR2+ T cells present in 

normal BALB/c and C57BL/6 mice (Fig.3.5) and the numbers of these cells increased in T. 

congolense infections (Fig.3.6 & 3.18). But the available data are insufficient to make 

comments on the possible role of CR2 in T cells in T. congolense infections of mice.  

 Absolute numbers of CD25+ T cells showed a 2 to 3-fold increase at day 5, followed 

by a 10-fold increase at day 7 post infection (Fig.3.8). These CD25+ T cells may contain 

activated T cells and/or T regulatory cells. To confirm this it would be necessary to include an 

additional stain to detect FoxP3, a marker of Tregs which is not expressed on activated T 

helper cells.  

The majority of CR2+ cells would be B cells while only a few of them are T cells 

(Kaya et al., 2005). CD25+ CR2+ cells could be either CD25+ CR2+ T cells or CD25+ CR2+ B 

cells and these two cell types cannot be distinguished without additional markers. Therefore it 

is not possible to come to any conclusions about these CD25+ CR2+ cells except that they 

increase in numbers in T. congolense infections of mice.  
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There was an increase in absolute numbers of CR2+ cells up to day 5 followed by a 

slight decrease as observed in these kinetic studies (Fig.3.3 & 3.20). According to the results 

of these experiments, the numbers of both CR2+ T cells and B cells increased with the 

progression of infection. Spleen remodeling during T. brucei- infection in mice, results in the 

rapid loss of IgM+ marginal zone B cell population characterized as B220+IgMhighIgDint 

CR2highCD23lowCD1d+CD138- (Radwanska et al., 2008). This trypanosomiasis-induced B cell 

apoptosis could be common to T. congolense-infections. Continued binding and endocytosis 

of VSG-C3d complexes might lead to a decrease of CR2+ intensity in B cells with progressive 

infection (Fig. 3.12 & 3.20).  

 IFN-γ producing T cells play an important role in enhancing the immunopathology in 

African trypanosomiasis. Whereas IL-10-producing T cells dampen the excessive activation of 

macrophages (Tabel et al., 2008).  

 There is now good evidence that the numbers of CR2+ T cells significantly increase 

with progression of infection by T. congolense. Whether the presence of CR2+ T cells can be 

causatively linked to the capacity to produce IFN-γ remains to be established.  
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4.0. GENERAL DISCUSSION 

 The primary goals of the present thesis work were to find out the kinetics of CR2 

expressing T cells and the role of these CR2+ T cells in experimental murine T. congolense 

infections. This study has shown that total numbers of CR2+ T cells increase in the spleen of 

T. congolense-infected BALB/c mice with progressive infection (Fig.3.6 & 3.14). 

 Splenomegaly observed in murine trypanosomiasis is a result of proliferation of 

T and/or B cells and also could be due to reduced apoptosis. Proliferation of “null cells” in the 

spleen could also contribute to the observed splenomegaly (Roelants, 1982). Lymphocytic 

hyperplasia in T. musculi infections was observed only in immunologically intact mice but not 

in nude mice indicating that splenomegaly in murine trypanosomiasis is T cell dependent 

(Robinett and Rank, 1979). The present study showed that there is an increase of the total 

number of spleen cells with progressive T. congolense infections in BALB/c mice (Fig. 3.1 

and Fig. 3.12). This observed increase of spleen cell number might be due to the proliferation 

of lymphocytes or due to the reduction of apoptosis of cells. It might also be due to increased 

cell influx to the spleen or reduced outflow from the spleen.  

 CR2 in mice is predominantly expressed on B cells, follicular dendritic cells and 

activated granulocytes(Carrol, 1998). Expression of CR2 on mouse T cells has also been 

documented. CR2 has been detected on subsets of activated T cells (Kaya et al., 2001; Chen et 

al., 2005). The presence of CR2 in CD25+ cells and the increase of CD25+CR2+ cells with the 

progressive infection (Fig.3.8) suggest that there is an increased expression of CR2 in 

activated lymphocytes in the spleen of T. congolense-infected BALB/c mice. CR2 was also 

detectable on both CD4+ and CD8+ subsets of T cells (Kaya et al., 2005). Mesenteric lymph 

nodes of wildtype C57BL/6 mice contain about 4.5% CD4+CR2+ cells (Molnar et al., 2008). 
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Expression of CR2 on splenic T cells of normal or T. congolense-infected BALB/c mice has 

been unknown.  

 The present study showed that uninfected susceptible BALB/c mice and relatively 

resistant C57BL/6 mice express CR2 on subsets of T cells in the spleen (Fig.3.5). The kinetics 

of complement activation is different in highly susceptible BALB/c and relatively resistant 

C57BL/6 mice. The degradation of C3b to C3d during the amplification of the alternative 

pathway of complement proceeds faster in BALB/c than in C57BL/6 mice (Ogunremi et al., 

1993). This would result in more VSG-C3d immune complexes to be present in BALB/c mice 

than in C57BL/6 mice. The present study showed that there is no difference in the numbers of 

CR2+ T cells between normal BALB/c and normal C57BL/6 mice (Fig.3.5). Whether the 

numbers of CR2+ T cells differ in T. congolense-infected BALB/c and C57BL/6 mice has not 

been tested in the present study.  

 An increase in the numbers of CR2+ T cells in the spleen of T. congolense-infected 

BALB/c mice has been observed in the present kinetic studies. The total numbers of CR2+ 

cells increase up to day 6 post infection followed by a decline at day 7 and 8 post infection 

(Fig.3.3 and Fig.3.20). Most of these CR2+ cells might be B cells. The numbers of both CD19+ 

B cells and CR2+ B cells increase with the progressive infection indicating proliferation of B 

cells.  

 Interestingly, the expression of CR2 molecules per cell showed a reduction with 

progressive T. congolense infection in BALB/c mice (Fig. 3.9 and Fig.3.20). There is evidence 

that spleen remodeling during T. brucei-infections in mice results in the rapid loss of IgM+ 

marginal zone B cell population characterized as B220+IgMhighIgDint 

CR2highCD23lowCD1d+CD138- (Radwanska et al., 2008). We suggest that enhanced B cell 

apoptosis, observed in T. brucei infections, might also occur in T. congolense infections. 
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Continued binding and endocytosis of VSG-C3d complexes might lead to a decrease of CR2 

intensity in B cells with progressive infection.  

 In conclusion, the results of the present study showed that the total numbers of CR2+ T 

cells in the spleen increase with progressive T. congolense infections in susceptible BALB/c 

mice. Analysis of spleen cells from T. congolense-infected BALB/c mice for CR2 and intra 

cellular IFN-γ would indicate whether the IFN-γ producing cells express CR2. CR2 in T cells 

might play a role in the pathogenesis of T. congolense infections. Further studies are necessary 

to find out the potential role of CR2+ T cells in T. congolense infections in susceptible 

BALB/c mice.  
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5.0. CONCLUSION  

The major objectives of the present work were to find out the kinetics of CR2 

expressing T cells and the role of these CR2+ T cells in experimental murine T. congolense 

infections.  

The present study showed that both uninfected BALB/c mice and uninfected C57BL/6 

mice express CR2 on subsets of the splenic T cells. The total numbers of CR2+ T cells in the 

spleen of T. congolense-infected BALB/c mice increased with progressive infection. Total 

numbers CR2+ B cells also increased in the spleen of T. congolense-infected BALB/c mice 

with progressive infection.   

 The mean numbers of CR2 molecules per cell in CR2+ cell population of the spleen 

significantly declined with progressive T. congolense infection in BALB/c mice. 

Overall, the results of the present study showed that total numbers of CR2+ T cells in 

the spleen increase with progressive T. congolense infections in susceptible BALB/c mice. But 

whether they require cross-linking of CR2 by complement C3d as a costimulation for the 

production of maximal amounts of IFN-γ is not addressed in the present study. Further studies 

are necessary to find out the potential role of CR2+ T cells in T. congolense infections in 

susceptible BALB/c mice.  
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7.0. APPENDIX: SUBPOPULATIONS OF T CELLS PRODUCING IFN-γ AND/OR  

IL-10 IN EXPERIMENTAL TRYPANOSOMA CONGOLENSE INFECTIONS  

7.1.  Abstract 

 The experiments described in this chapter were carried out to find out the 

subpopulations of T cells producing IFN-γ and/or IL-10 in T. congolense-infected BALB/c 

mice. CD4+CD25-, CD4+CD25low and CD4+CD25high cells were sorted by FACS from the 

spleen cells collected from normal and T. congolense-infected BALB/c mice at day 6 post 

infection. These sorted cells were cocultured with trypanosome-loaded peritoneal 

macrophages obtained from normal syngeneic BALB/c mice to find out the production levels 

of IFN-γ in these cocultures. The majority of IFN-γ was produced by CD4+CD25high cells 

cocultured with trypanosome-loaded peritoneal macrophages. In titration studies, detectable 

levels of IFN-γ and IL-10 were produced by adding 5x103 to 5x104 sorted T cells to the 

peritoneal macrophage cultures. The maximal production was observed with 5x104 sorted T 

cells when cocultured with macrophages. Equal levels of IFN-γ were observed when 5x104 

CD4+CD25low or 5x104 CD4+CD25high T cells cocultured with macrophages. Trypanosome-

loaded macrophages when cultured without sorted T cells did not show IL-10 production. 

There were no detectable amounts of IL-6 production when the macrophages were cultured 

alone. IL-6 production did not show much difference between the different cocultures but 

showed a slight dose-dependent increase with the increased numbers of T cells. 

105 APC when cocultured with 5x104 CD4+CD25+ cells produced the highest amount 

of IFN-γ and IL-10.  The production of IFN-γ and IL-10 was also well within the measurable 

range when 105 APC were cocultured with 1.7x104 CD4+CD25+ cells in 96-well flat bottom 

tissue culture plates. None of the measured cytokines were produced in detectable levels when 
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the MACS-sorted CD4+CD25+ cells were cultured alone. The coculture experiments indicated 

that the majority of IL-6 was produced by APC. IL-6 production did not show a strong 

correlation with the numbers of T cells in the cocultures suggesting that IL-6 production is 

only weakly T cell-dependent. The amounts of IFN-γ produced in the cocultures of 105 APC 

with either 5x104 CD4+CD25+ cells or 5x104 whole spleen cells were similar. This suggests 

that there might be cofactors present in the whole spleen cell population which might not be 

present or present only at lower levels in T cell enriched populations. We speculate these 

cofactors might influence the production of IFN-γ.   

7.2. Introduction 

 I tried to further characterize the small T cell population that is involved in the 

production of IFN-γ and IL-10. CD4+CD25-, CD4+CD25low and CD4+CD25high T cells isolated 

by FACS from the spleen cells of normal and T. congolense-infected BALB/c mice were co-

cultured with trypanosome-loaded peritoneal macrophages. In preliminary experiments, the 

majority of IFN-γ was shown to be produced by CD4+CD25high T cells. But I was unable to 

establish an optimal T cell number to be added onto the cocultures due to practical difficulties 

encountered during FACS sorting. We speculate CD4+CD25+ T cells to be the major IFN-γ 

producers.  Attempts to sort the CD4+CD25+ T cells, using mouse Treg isolation kits (Milteny 

Biotec), were not successful since this protocol failed to enrich the major IFN-γ producing 

cells.  
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7.3. Materials and Methods 

7.3.1. Mice 

Female BALB/c mice and CD1 mice were obtained from the Animal Resource Center of the 

University of Saskatchewan. BALB/c mice were 8 to 10 weeks old and CD1 mice were 6 

weeks old. All mice were maintained according to the recommendations of the Canadian 

Council of Animal Care.  

7.3.2. Parasites 

T. congolense, variant antigenic type (VAT) TC13 (Tabel, 1982) was used in this experiment. 

TC13 was passaged in immunosuppressed CD1 mice as described (Tabel, 1982). The parasites 

for the infection of BALB/c mice were obtained by isolating the parasites from the blood of 

infected CD1 mice using DEAE-cellulose chromatography column (Lanham and Godfrey, 

1970).  

7.3.3. Trypanosome homogenate 

Trypanosomes isolated from the blood of infected CD1 mice using DEAE-cellulose 

chromatography column were washed and resuspended in RPMI-1640 complete medium 

supplemented with 10% FBS at 107 trypanosomes/ 100 μl. The trypanosome suspension was 

sonicated 10 times at 5 seconds each time with 10 seconds intervals while keeping the 

suspension on ice. The homogenate was divided into aliquots of 100 μl portions and stored at -

800C until use.  

7.3.4. Antibodies  

The following principle antibodies were used for FACS analysis: FITC rat anti-mouse CD4 

(Cedarlane Laboratories), PE rat anti-mouse CD25 (eBioscience), PECy5 rat anti-mouse CD25 

(eBioscience) and PECy5 Armenian hamster anti-mouse CD3 (BD Pharmingen). The following 
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antibodies were used as isotype control antibodies:  FITC rat IgG2a (eBioscience), PErat IgG2a 

(eBioscience), PECy5rat IgG1 (eBioscience) and PECy5 Armenian hamster IgG (eBioscience).  

7.3.5. Preparation of Antigen Presenting Cells (APC) 

Peritoneal cells were collected from 8-10 weeks old normal female BALB/c mice, using filter-

sterilized 0.34 M sucrose solution. The cells spun at 1000 rpm for 10 minutes were 

resuspended in FACS staining buffer (PBS pH 7.2, 0.5% BSA and 2 mM EDTA) and stained 

with MACS anti-Thy 1.2 micro beads. Thy1.2 negative cells were purified by MACS 

separation using a MS column according to the manufacturer’s protocol. Cells in the negative 

fraction were counted and resuspended in RPMI-1640 complete medium supplemented with 

10% FBS.  

7.3.6. Sorting of CD4+CD25-, CD4+CD25low and CD4+CD25high cells from the spleen cells 

by FACS 

First, CD4+ cells were isolated by positive selection from spleen cells collected from normal 

and T. congolense-infected BALB/c mice at day 6 post infection, using MACS anti-CD4 

microbeads (Miltenyi Biotec) according to the manufacturer’s protocol. The purity of the 

enriched CD4+ cell population was 87% as detected by FACS. The enriched CD4+ cells were 

then stained with FITCanti-CD4 and PECy5anti-CD25. The stained cells were sorted into 

CD4+CD25-, CD4+CD25low and CD4+CD25high cells by FACS. Sorted cells were counted, 

resuspended in appropriate volumes of RPMI-1640 complete medium supplemented with 10% 

FBS cocultured with 5x105 APC per well in the presence of a trypanosome homogenate 

(equivalent to 106 organisms) in 96 well flat bottom tissue culture plates.  

7.3.7. Isolation of CD4+CD25+ Tregs from the spleen cells by MACS 

Spleen cells collected from four T. congolense-infected BALB/c mice at day 7 post infection 

were subjected to lysis of red blood cells and trypanosomes by mixing the cell suspension in   
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sterile distilled water for 20 seconds followed by addition of 10X PBS. These cells were used 

for the isolation of CD4+CD25+ Tregs using a Mouse Treg Isolation Kit (Miltenyi Biotec) 

according the manufacturer’s protocol. The cells were resuspended in RPMI-1640 complete 

medium supplemented with 10% FBS and seeded in 96 well flat bottom tissue culture plates at 

either 5 X 104 cells/well, 1.7 X 104 cells/well, 5 X 103 cells/well or 1.7 X 103 cells/well. 

Aliquots of cells from spleen cells, enriched for CD4+ cells or CD4+CD25+ cells were stained 

with FITCanti-CD4 and PEanti-CD25 to analyze by FACS. The enriched CD4+CD25+ group had 

70% purity as detected by FACS (Fig.7.7).   

7.3.8. Block titration of APC and CD4+CD25+ T cells 

APC and CD4+CD25+ T cells were cocultured in order to do a block titration to find out the 

optimal numbers of each cell type to be used in future coculture studies. The APC were seeded 

in 96 well flat bottom tissue culture plates at either 104 cells/well, 3.3 X 104 cells/well or 105 

cells/well. Aliquots of cells before and after MACS separation were stained with PECy5anti-

CD3 for FACS analysis. A homogenate equivalent to 106 trypanosomes was added to each 

well and the cells were incubated for 48 hours at 370C and 5%CO2. APC alone, CD4+CD25+ T 

cells alone and 105 APC with 5 X 104 whole spleen cells were included as control groups. The 

culture supernatants collected after 48 hours were used to measure the production of IFN-γ, 

IL-10 and IL-6 by routine sandwich ELISA according to the manufacturer’s protocols. 

7.3.9. Cytokine assays 

The levels of IL-6, IL-10 and IFN-γ in the culture supernatants were determined by routine 

sandwich ELISA, according to the manufacturer’s protocols. The ELISA kits were purchased 

from BD Pharmingen. The limits of detection of the ELISA assays were 62 pg/ml for IFN-γ 

and 15 pg/ml for IL-6 and IL-10.  
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7.3.10. FACS analysis 

One hundred microliter aliquots of 107 cells/ml in FACS buffer were incubated for 20 minutes 

on ice with 4 μl of rat anti-mouse CD16/32 (Fcγ II/III receptor, Fc Block, eBioscience) 

monoclonal antibody. Appropriate volumes of each antibody were added and incubated on ice 

in the dark for 30 minutes. The cells were washed 2 times with FACS buffer, and then 

resuspended in FACS buffer containing 1% formalin. Fixed cells were analyzed by a 

FACScan flow cytometer using Flowjo software (Tree Star Inc.).   

 

7.4. Results 

7.4.1. CD4+CD25high T cells cocultivated with T. congolense-loaded macrophages    

produce IFN-γ 

In preliminary experiments, CD4+CD25-, CD4+CD25low and CD4+CD25high T cells 

were sorted by a combination of MACS and FACS from the spleen cells of normal and T. 

congolense-infected BALB/c mice and were co-cultured with trypanosome-loaded peritoneal 

macrophages obtained from normal syngeneic BALB/c mice. The majority of IFN-γ was 

shown to be produced by CD4+CD25high T cells (Fig.7.1). None of the other cocultures 

produced high amounts of IFN-γ. There were no distinguishable CD25low and CD25high cell 

populations in normal mouse spleen cells when analyzed by FACS. Therefore, from normal 

mouse spleen cells, CD4+CD25- and CD4+CD25+ cells were sorted and cocultured with 

trypanosome-loaded syngeneic peritoneal macrophages. Culture supernatants were used in 2-

fold dilutions in ELISA in order to make sure that the cytokine levels to fit within a 

measurable range. Gates used for FACS cell sorting is shown in Fig. 7.2.     
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CD4+CD25high T cells cocultivated with T.congolense- loaded 
macrophages produce IFN-γ  
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Fig 7.1. Peritoneal macrophages (5x105/well) loaded with T. congolense were cocultured 

with 2x104 CD4+CD25-, CD4+CD25low or CD4+CD25high T cells. The cells were isolated 

from spleen cells of normal BALB/ mice and from infected BALB/C mice 6 days post 

infection. The T cells were sorted by a combination of MACS and FACS from the spleen 

cells. Culture supernatants collected after 48 hrs were used in undiluted form (neat) and in 

3 different dilutions (1:2, 1:4, and 1:8) in ELISA to measure the production of IFN-γ.  
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Fig.7.2. FACS sorting of CD25-, CD25low and CD25high cells. CD4+ cells were positively 

selected from the spleen cells of normal (A) and T. congolense-infected BALB/c mice (B), by 

MACS. CD4+ cells were stained with PECy5 rat anti-mouse CD25 to sort by FACS. The purity 

of the enriched CD4+ cell population was 87% as detected by FACS.  

 

7.4.2. What are the optimal numbers of T cells to be used in cocultures? 

 The next aim was to find out the optimal number of sorted cells to be cocultured with 

5x105 peritoneal macrophages in order to obtain detectable levels of the cytokine production. 

Therefore 5x104, 1.7x104, 5x103 and 1.7x103 of FACS-sorted CD4+CD25-, CD4+CD25low and 

CD4+CD25high T cells were co-cultured with 5x105 trypanosome-loaded, peritoneal 

macrophages. The culture supernatant fluids were tested for IL-6, IL-10 and IFN-γ by ELISA. 

Only the CD4+CD25-, CD4+CD25low and CD4+CD25high T cells sorted from the spleen cells of 

T. congolense-infected BALB/c mice were co-cultured with trypanosome-loaded peritoneal 

macrophages obtained from normal syngeneic BALB/c mice in this experiment. Since the 

CD4+CD25- and CD4+CD25+ T cells sorted from normal BALB/c mice had previously shown 

negligible amounts of IFN-γ  production in the cocultures, I did not include these cells in this 

experiment.  
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 Detectable levels of IFN-γ and IL-10 were produced by adding 5x103 to 5x104 sorted T 

cells to the macrophage cultures. The maximal production was observed with 5x104 sorted T 

cells when cocultured with macrophages (Fig. 7.3.A and B). It seemed that the production of 

almost equal levels of IFN-γ was observed when 5x104 CD4+CD25low and 5x104 

CD4+CD25high T cells were cocultured with macrophages (Fig.7.3.B). I speculate that the 

measurement of equal levels of IFN-γ  in these cases were not quite accurate due to a technical 

problem of the ELISA assays, since the IFN-γ values were higher than the highest IFN-γ value 

(2000 pg/ml) of the standard curve. 1.7x104 or lower numbers of CD4+CD25high T cells 

produced higher amounts of IFN-γ than equivalent numbers of CD4+CD25low cells (Fig. 7.3. 

B).  

Macrophages alone did not produce detectable levels of any of the cytokines measured. 

Trypanosome-loaded macrophages when cultured without T cells did not produce detectable 

amounts of IFN-γ. This is not surprising, since T cells are known to be the major producers of 

IFN-γ (Uzonna et al., 1998c). Trypanosome-loaded macrophages when cultured without T 

cells did not show IL-10 production, suggesting that T cell interaction with macrophages 

might be necessary for the production of IL-10 by macrophages and/or T cells.  There were 

no detectable amounts of IL-6 production when the macrophages were cultured alone. IL-6 

production did not show much difference between the different cocultures. The production of 

IL-6 was less in trypanosome-loaded macrophages when cultured without adding sorted T 

cells (Fig. 7.3.C). IL-6 can be secreted by T cells as well as macrophages. The observed 

pattern of IL-6 levels in these cocultures would indicate that most of the IL-6 was produced by 

macrophages. 
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Fig. 7.3. Peritoneal macrophages (5x105/well) loaded with  T. congolense were cocultured 

with 5x104 ,1.7x104 , 5x103 and 1.7x103 CD4+CD25-,CD4+CD25low and CD4+CD25high T cells 

sorted from spleen cells of infected BALB/C mice 6 days post infection. Supernatants 

collected after 48 hrs of culture were used in undiluted form to measure the production of IL-

10 (A) and 1:2 dilutions to measure IFN-γ (B) and IL-6 (C) in ELISA. 
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7.4.3. Block titration of APC and CD4+CD25+ T cells 

 There were difficulties in sorting sufficient numbers of cells from a group of mice to 

have enough replicates to continue the above experiment (Fig.7.3). The cell sorting produced 

variable results. It is a time consuming and expensive procedure. Therefore, a block titration 

was done using CD4+CD25+ cells enriched from spleen cells of T. congolense-infected 

BALB/c mice at day 6 post infection by MACS using a mouse Treg isolation kit. CD4+CD25- 

cells were not included for this block titration since none of the previous preliminary 

experiments showed a clear production of IFN-γ or IL-10 in the cocultures of CD4+CD25- 

cells and peritoneal macrophages. The enriched CD4+CD25+ cell population was 70% pure as 

detected by FACS (Fig.7.7).   

According to the results of this experiment, 105 APC when cocultured with 5x104 

CD4+CD25+ cells produced the highest amount of IFN-γ and IL-10.  The production of IFN-γ 

and IL-10 was also well within the measurable range when 105 APC were cocultured with 

1.7x104 CD4+CD25+ cells (Fig.7.4 and Fig.7.5 ). None of the measured cytokines were 

produced in detectable levels when the MACS-sorted CD4+CD25+ cells were cultured alone 

suggesting that the synergy of both T cells and macrophages are required for the production of 

these cytokines. It has been known that IFN-γ is mainly produced by T cells while both 

macrophages and T cells produce IL-6 and IL-10. IL-6 production increased more with the 

increase of APC numbers than with the increase of T cell numbers in the cocultures (Fig.7.6). 

This would indicate that the majority of IL-6 in these cocultures was produced by APC.  

The number of CD4+CD25+ cells in 5x104 cells of the enriched cell group should be 

higher than the number of CD4+CD25+ cells in 5x104 whole spleen cells. Therefore, IFN-γ 

production would be expected to be higher in cocultures of APC with enriched 

CD4+CD25+cells. But the productions of IFN-γ were almost similar in cultures of 105 APC 
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when cocultured with 5x104 CD4+CD25+ cells as when cocultured with 5x104 whole spleen 

cells. Thus, there might be cofactors in the whole spleen cell population that enhance the 

production of IFN-γ. The enriched cells might contain less cofactors compared to those of 

whole spleen cells.  
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Fig.7.4. Block titration to determine cell concentrations and ratios for optimal synthesis 

of IFN-γ in vitro. Antigen presenting cells (APC), obtained from the peritoneal cells (depleted 

of Thy1.2+ cells), were loaded with 106 equivalents of trypanosome homogenate per well and 

cocultured with different numbers of CD4+CD25+ cells from BALB/c mice infected with T. 

congolense for 6 days, enriched by using Mouse Treg Isolation Kit (Miltenyi Biotec).The 

culture supernatants (1:2 dilution) collected after 48 hours were used to measure the 

production of IFN-γ by routine sandwich ELISA. Values represent mean ± standard error of 

the samples obtained from 4 mice. (Representative results of two experiments). 
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Fig. 7.5. Block titration to determine cell concentrations and ratios for optimal synthesis 

of IL-10 in vitro. Antigen presenting cells (APC), obtained from the peritoneal cells (depleted 

of Thy1.2+ cells), were loaded with 106 equivalents of trypanosome homogenate per well and 

cocultured with different numbers of CD4+CD25+ cells from BALB/c mice infected with T. 

congolense for 6 days, enriched by using Mouse Treg Isolation Kit (Miltenyi Biotec).The 

culture supernatants collected after 48 hours were used to measure the production of IL-10 by 

routine sandwich ELISA. Values represent mean ± standard error of the samples obtained 

from 4 mice. (Representative results of two experiments).  
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Fig.7.6. Block titration to determine cell concentrations and ratios for optimal synthesis 

of IL-6 in vitro. Antigen presenting cells (APC), obtained from the peritoneal cells (depleted 

of Thy1.2+ cells), were loaded with 106 equivalents of trypanosome homogenate per well and 

cocultured with different numbers of CD4+CD25+ cells from BALB/c mice infected with T. 

congolense for 6 days, enriched by using Mouse Treg Isolation Kit (Miltenyi Biotec).The 

culture supernatants (1:2 dilution) collected after 48 hours were used to measure the 

production of IL-6 by routine sandwich ELISA. Values represent mean ± standard error of the 

samples obtained from 4 mice. (Representative results of two experiments).  
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Fig. 7.7. FACS analysis of the enriched CD4+ and CD4+CD25+ cell populations of the 

spleen of BALB/c mice 6 days after T. congolense infection.  Whole spleen cells stained 

with FITC rat anti-CD4 and PE rat anti-CD25 (A),  Enriched CD4+ cell fraction stained with FITC 

rat anti-CD4 and PE rat anti-CD25 (B)  and the enriched CD4+CD25+ cell population stained 

with FITC rat anti-CD4 and PE rat anti-CD25 (C) as detected by FACS analysis.   

 

7.5. Discussion 

In preliminary experiments, the CD4+CD25-, CD4+CD25low and CD4+CD25high T cells, 

sorted by FACS from the spleen cells of normal and T. congolense-infected BALB/c mice, 

were co-cultured with trypanosome-loaded peritoneal macrophages. The majority of IFN-γ 

was shown to be produced by CD4+CD25high T cells co-cultured with trypanosome-loaded 

peritoneal macrophages (Fig. 7.1). Although presently there is no direct experimental 

evidence, I speculate that these CD4+CD25high cells might be a small subpopulation of highly 

activated CD4+CR2+ T cells. Whether the IFN- γ and IL-10 was produced by different cell 

populations or the same T cells is unknown. There is a body of evidence that T cells with 

regulatory functions can be double producers, i.e., produce both IL-10 and IFN-γ (Trinchieri, 
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2001). Such T cells have been found in humans (Pohl-Koppe et al., 1998; Winkler et al., 1998; 

Gerosa et al., 1999; Cella et al., 2000; Kadowaki et al., 2000; Levings et al., 2001) and mice 

(Ganapamo et al., 2000; Belkaid et al., 2001) infected with viruses, bacteria or protozoa. 

CD4+CD25- and CD4+CD25+ T cells sorted from normal BALB/c mice showed 

negligible amounts of IFN-γ  production in the cocultures suggesting that IFN-γ  production is 

trypanosome-specific (Fig.7.1).  Detectable levels of IFN-γ and IL-10 were produced by 

adding 5x103 to 5x104 sorted T cells to the macrophage cultures while the maximal production 

was observed with 5x104 sorted T cells when cocultured with macrophages (Fig.7.2). In 

subsequent experiments, production of almost equal levels of IFN-γ was observed in titration 

studies when 5x104 CD4+CD25low and CD4+CD25high T cells were cocultured with 

macrophages (Fig.7.3). Trypanosome-loaded macrophages, when cultured without sorted T 

cells, did not produce detectable amounts of IFN-γ. This would confirm that the T cells are the 

major producers of IFN-γ. Macrophages alone or trypanosome-loaded macrophages when 

cultured without sorted T cells did not show IL-10 production (Fig.7.3), suggesting that T cell 

interaction might be necessary for the production of IL-10 by the macrophages and/or T cells.  

IL-6 is secreted by T cells and macrophages. BMDM from BALB/c mice produced 

significantly more IL-6 and IL-10 than those from C57BL/6 mice indicating that cytokine 

genes are differentially regulated in macrophages from trypanosome-susceptible and -resistant 

mice (Kaushik et al., 2000).The observed increase of IL-6 levels in trypanosome-loaded 

macrophages and sorted T cells cocultures (Fig.7.6) could be due to either the production of 

IL-6 by the added T cells and/or by macrophages when they get T cell stimulation. The 

production of IL-6 did not show a strong correlation with the numbers of added T cells. This 
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suggests that IL-6 production is somewhat T cell interaction-dependent but IL-6 is mostly 

synthesized by the macrophages. 

According to the results of block titration experiment, cocultures of 105 APC and 

5x104 CD4+CD25+ cells produced the highest amount of IFN-γ and IL-10 (Fig.7.4 and 7.5.).  

The production of IFN-γ and IL-10 was also well within the measurable range when 105 APC 

were cocultured with 1.7x104 CD4+CD25+ cells. None of the measured cytokines were 

produced in detectable levels when the MACS-sorted CD4+CD25+ cells were cultured alone, 

suggesting that the synergy of both T cells and macrophages are required for the production of 

these cytokines. IFN-γ is mainly produced by T cells while both macrophages and T cells 

produce IL-6 and IL-10. Increase of IL-6 production with the increase of APC number 

(Fig.7.6) indicates that the majority of IL-6 in these cocultures was produced by APC. The 

production of IFN-γ was similar in 105 APC when cocultured with 5x104 CD4+CD25+ cells 

and 105 APC when cocultured with 5x104 whole spleen cells (Fig.7.4). This result suggests 

that there might be certain cofactors present in the whole spleen cells which can enhance 

production of IFN-γ, but there might have been less cofactors in the enriched cell populations.  

 

 

 

 

 

 

 


