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ABSTRACT 

 

Functional genomic analyses provide information that allows hypotheses to be 

formulated on protein function.  These hypotheses, however, need to be validated using 

reverse genetic approaches, which are difficult to perform on a large scale and in diploid 

organisms.  To address this problem, we developed a genetic screen to rapidly isolate 

“lariat” peptides that function as trans dominant inhibitors of protein function.  

We engineered intein proteins to genetically produce lariats.  A lariat consists of a 

lactone peptide covalently attached to a linear peptide.  Cyclizing peptides with a lactone 

bond imposes a constraint even within the reducing environment found inside of cells.  

The covalently attached linear peptide provides a site for fusing protein moieties. We 

fused a transcriptional activation domain to a combinatorial lactone peptide, which 

allowed combinatorial lariat libraries to be screened for protein interactions using the 

yeast two-hybrid assay. 

We confirmed that the intein processed in yeast using Western blot analysis.  A 

chemoselective ring opening of the lactone bond with heavy water, followed by mass 

spectrometry analysis showed that ~ 44% of purified lariat contained an intact lactone 

bond.  To improve the stability of the lactone bond, we introduced mutations into the 

engineered intein and analyzed their processing and stability by mass spectrometery.  

Several mutations were identified that increased the amount of intact lariat.  

Combinatorial libraries of lactone peptides were generated and screened using the 

yeast-two-hybrid interaction trap.  Lactone cyclic peptides that bound to a number of 

different targets including LexA, Jak2, and Riz1 were isolated.  A lactone cyclic peptide 

isolated against the bacterial repressor protein LexA was characterized.  LexA regulates 

bacterial SOS response and LexA mutants that cannot undergo autoproteolyis make 

bacteria more sensitive to, and inhibit resistance against cytotoxic reagents.  The anti-

LexA lariat interacted with LexA with a dissociation constant of 37 µM by surface 

plasmon resonance.  The lactone constraint was determined to be required for the 

interaction of the anti-LexA L2 lariat with LexA in the yeast-two-hybrid assay.  Alanine 

scanning showed that only two amino acids (G8 and E9) in the anti-LexA L2 sequence 

(1-SRSWDLPGEY-10) were not required for the interaction with LexA.  The interaction 
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of the anti-LexA lariat with LexA in vivo was confirmed by chromatin precipitation of 

the lactone peptide-LexA-DNA complex.  The anti-microbial properties of the anti-LexA 

lariat were also characterized.  The anti-LexA lariat potentiated the activity of a DNA 

damaging agent mitomycin C and inhibited the cleavage of LexA, preventing the SOS 

response pathway from being activated. 

In summary, lariats possess desired traits for characterizing the function and 

therapeutic potential of proteins.  The ability to genetically and chemically synthesize 

lariats allows the lariat transcription activation domain to be replaced by other peptide 

and chemical moieties such as affinity tags, fluorescent molecules, localization 

sequences, et cetera, which give them advantages over “head to tail” cyclized peptides, 

which have no free end to attach moieties. 
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1 Literature review 

1.1 Introduction 
Many research and diagnostic applications exploit the ability of antibodies to bind their 

target antigen with high affinity and specificity.  Antibodies have become standard laboratory 

reagents for a variety of applications including: (i) Western blot analysis, which is used to study 

protein expression, stability, and modifications; (ii) immunoprecipitation (IP), which is used to 

characterize protein complexes and protein activities; (iii) chromatin immunoprecipitation 

(ChIP) and electrophoretic mobility shift assays (EMSA), which are used to analyze protein-

nucleic acid interactions; (iv) fluorescent-activated cell sorting (FACS), which is used to 

analyze, study, and sort cell populations; (v) immunohistochemistry (IHC), which is used to 

visualize antigen localization and distribution within cells and tissues; and (vi) enzyme-linked 

immunosorbent assay (ELISA), which is used to detect antigen in a sample.  All of these 

technologies have been successfully used in basic research and diagnostic applications. 

The success of antibodies in research and diagnostics has led to the development of 

antibody-based drugs.  The U.S.  Food and Drug Administration (FDA) has approved twenty-

two monoclonal antibodies for therapy  (Reichert, 2008; Aires da Silva et al., 2008), including 

Bevacizumab (Avastin®, Genetech), Rituximab (Rituxan®, Genetech), and Trastuzumab 

(Herceptin®, Genentech).  These drugs have reached ‘blockbuster’ status with sales of 

approximately $2.7, $2.6, and $1.4 billion, respectively in the U.S.A in 2008 

(http://www.gene.com/gene/ir/financials/historical). 

Despite their success, antibodies have a number of significant drawbacks.  In general 

antibodies are difficult to isolate and synthesize.  Antibodies are large (150 kDa) proteins that 

undergo post-translational modifications, specifically glycosylation.  Therefore, antibodies 

cannot be chemically synthesized and must be produced using biological systems, which 

increases their cost.  In addition, antibodies evolved to function outside of cells and are 

stabilized by disulfide bonds that do not form correctly in the reducing environment within cells  

(Wörn and Plückthun, 2001).  Further, their large size limits oral availability and reduces tissue 

and cell penetration, which reduces efficacy  (Jain, 1990; Yokota et al., 1992).  Finally, 
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antibody-based drugs are immunogenic and have short half-lives  (Khazaeli et al., 1994).  As a 

result of these limitations, antibody-based drugs have only been used to inhibit extracellular 

targets and are generally delivered intravenously.  This currently limits their usage to severe 

diseases where frequent hospital visits are acceptable. 

The proven success of antibody-based therapeutics in the clinic and in basic research is 

driving research to develop methods to overcome these limitations.  For example, strategies 

have been developed to reduce immunogenicity and increase half-lives of antibodies 

(Boulianne et al., 1984; Morrison et al., 1984; Jones et al., 1986; Presta, 2006).  Strategies have 

also been developed to lower the cost of production and to improve the stability of antibodies 

by engineering antibody fragments that contain only the antigen-binding fragment (Fv) (Bird et 

al., 1988; Huston et al., 1988; Visintin et al., 1999; Visintin et al., 2002).  Relative to 

antibodies, Fvs have several advantages.  First, some Fvs have the potential to be used as 

intracellular therapeutics, since many antibody fragments have been engineered to fold in the 

absence of disulfide bonds  (Wörn and Plückthun, 1998; Tanaka and Rabbitts, 2008).  Second, 

their small size increases their bioavailability, making them easier to produce and more likely to 

penetrate tissues.  However, the majority of Fvs are not stable and a universal solution to 

stabilize all Fvs has still not been discovered.  Substantial hurdles need to be overcome before 

Fvs will be readily available for a variety of intracellular and extracellular applications.  The 

proven success of full-length antibodies in extracellular applications and the unrealized 

potential of Fvs in intracellular applications has generated considerable interest in alternative 

peptide affinity reagents that function like antibodies but do not share their limitations. 

Currently, the majority of drugs are small molecules.  This is in part because decades of 

research have created standard procedures to optimize small molecules for bioavailability and 

efficacy.  The difficulties associated with oral delivery of peptide-based therapeutics have made 

them unpopular.  However, antibodies have several significant advantages over small molecules 

that make them desirable for therapeutic applications.  First, antibodies have the ability to bind 

a wide variety of targets.  Second, current antibody isolation technologies make it relatively 

easy to generate antibodies against many targets.  These properties combined with the fact that 

diseases are now being characterized at the molecular level and specific drug targets are 

identified makes antibodies extremely desirable therapeutic reagents.  
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Cyclic peptides are a class of peptide affinity reagents that are of particular interest as 

therapeutics.  Cyclic peptides are small, stable, and can be synthesized using solid-phase 

peptide chemistry, which reduces their cost.  Unlike antibodies, cyclic peptides can function 

inside of cells and some are capable of translocating across cell membranes  (Fletcher and 

Hughes, 2009; D'Ursi et al., 2006).  Cyclic peptides can also be imported into cells using 

permeation tags (Heitz et al., 2009; Derossi et al., 1996) and liposomes to increase their 

bioavailability.  In addition, even if a cyclic peptide cannot be directly used as a therapeutic 

reagent, it can be used as a small molecule lead.  The small size of cyclic peptides allows their 

structures to be easily solved using nuclear magnetic resonance (NMR), X-ray crystallography, 

and in silico modeling techniques  (Yongye et al., 2009; Maupetit et al., 2009).  Crystal or 

NMR structures of peptide-protein complexes or in silico predicted complexes can be used to 

identify parts of the cyclic peptide that interact with the target.  Sites on the cyclic peptide 

required for the interaction with its target are called “pharmacores”.  Pharmacores from a cyclic 

peptide can be grafted onto a small molecule using peptidomimetics (Vagner et al., 2008), 

creating a small molecule with the same pharmaceutical activity as the cyclic peptide.  The 

resulting small molecules can then be optimized for bioavailability using existing strategies 

available for small molecules. 

Like antibodies, cyclic peptides are natural cell products.  Cyclic peptides are produced 

by plants  (Saether et al., 1995), bacteria  (Trabi and Craik, 2002), and fungi  (Cheng and 

Walton, 2000) where they function as antimicrobials, toxins, and insecticides  (Jennings et al., 

2001).  Cyclic peptides are also produced in mammals.  The cyclic peptide theta-defensin, 

which is present in the rhesus monkey, defends against HIV  (Tang et al., 1999).  In humans, 

the theta-defensin cyclic peptide gene is inactivated by a point mutation, which introduces a 

premature stop codon and prevents translation  (Venkataraman et al., 2009).  Repairing this 

stop codon results in the production of the cyclic peptide, indicating that a general mechanism 

to produce cyclic peptides in humans is still active  (Venkataraman et al., 2009).  Since cyclic 

peptides are ubiquitous, natural defense agents they are good candidates for therapeutic 

reagents. 

One advantage that antibodies have that cyclic peptides lack is the ability to easily select 

antibodies against a given target using reverse genetic screens.  Many cyclic peptides are non-

ribosomally produced and generally contain non-standard amino acids.  Mechanisms used to 
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synthesize non-ribosomally produced cyclic peptides are gradually being deciphered, however 

methods to genetically encode libraries of non-ribosomally produced cyclic peptides have still 

not been reported.  Without a genetically tractable way to make libraries of cyclic peptides, it is 

difficult to use genetic screens to isolate cyclic peptides that interact with a specific target.  This 

is the major bottleneck in isolating cyclic peptides that inhibit a specific process or target.  

Libraries of biologically derived or chemically synthesized cyclic peptides have been 

screened for a given phenotype using activity-based assays (reviewed by Baldwin, 1996; 

Edwards and Morrell, 2002; Huwe, 2006).  The number of cyclic peptides that can be screened 

using these types of screens is limited by the number of assays that can be performed, which is 

typically around 103 to 105  (Tan, 2005; Webb, 2005).  Furthermore, the target or mode of 

action of a cyclic peptide isolated from a phenotype-based screen cannot be directly 

determined.  Biologically derived extracts containing cyclic peptides pose an additional 

problem since they are composed of complicated mixtures of peptides, proteins, and other 

molecules.  Identifying the bioactive compound in the mixture can be a time consuming and 

difficult process (Escoubas et al., 2008).  As a result, there is a need for technologies that allow 

the selection of cyclic peptides using reverse genetic selection techniques.  

1.2 Deciphering molecular interaction/functional networks 
Peptide affinity reagents were originally designed as dominant agents to decipher 

molecular interaction and functional networks.  The molecular interactions and functional 

modifications between biomolecules form complex networks that allow cells to respond 

appropriately to their environment, which is required for proper cell function  (Pawson and 

Nash, 2000).  Elucidating these interaction/functional networks is fundamental in understanding 

cellular processes and the biological basis of diseases.  

Technological advances in DNA sequencing, protein and RNA expression profiling, and 

molecular interaction detection have generated large data sets that enable putative networks to 

be constructed.  New DNA sequencing technologies have provided whole genome sequences 

for numerous organisms.  Unknown gene sequences can be compared to known genes and 

functional assignments can be made based on sequence homology.  Gene interactions can also 

be determined when genomic sequence data is combined with expression profiling (Pellegrini 

et al., 1999).  Expression profiling using microarrays that detect mRNA, proteins, or small 

molecules allows interactions to be predicted.  Molecules whose expression profiles change in 
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response to the same stimuli allows one to infer using “guilt by association” logic that these 

molecules are involved in the same pathway and are connected (Pellegrini et al., 1999).  Large-

scale protein interaction studies using technologies such as the yeast-two-hybrid (Y2H) assay 

have been used to elucidate whole organism protein-protein interaction networks  (Li et al., 

2004; Rual et al., 2005; Yu et al., 2008; Makhnevych et al., 2009; Schwartz et al., 2009; 

Venkatesan et al., 2009).  Together, the information generated with these technologies can be 

used to construct interaction/functional networks.  To verify these interaction/functional 

networks they need to be validated using directed experimentation.  

Traditionally, strategies to validate protein function relied on reverse genetic approaches 

that delete the gene of interest at the DNA level, referred to as gene “knock-outs”.  These 

approaches are time consuming and difficult to perform in polyploid organisms, especially in a 

high-throughput manner.  Alternatively, protein expression can be blocked by siRNA, which 

degrades RNA or by miRNA, which inhibits protein translation (reviewed in Carthew and 

Sontheimer, 2009).  Methods that block protein expression at the mRNA level function in trans, 

making it easier to block protein expression in polyploid organisms where there are multiple 

gene targets.  Thus, siRNA/miRNA are extremely powerful techniques for the reverse analysis 

of protein function in polyploid organisms.  

However, there are limitations to blocking protein expression at the mRNA level.  First, 

it is difficult to deliver siRNA or miRNA into cells.  Second, these technologies rarely remove 

the target protein completely.  Third, proteins with long half-lives are not good targets for 

siRNA or miRNA since even if the mRNA is degraded or protein translation is stalled, there is 

little or no turn-over of the protein that is already present.  Finally, siRNA and miRNA off-

target effects must be considered.  Double stranded siRNA or miRNA designed to target the 

sense stand of a gene of interest may mis-target a natural anti-sense transcript (Rinn et al., 

2007; Faghihi and Wahlestedt, 2009).  Partial matches between siRNA and 3`-untranslated 

regions of mRNA can lead to miRNA-mediated repression of nontargeted proteins, or can lead 

to the down regulation of alternatively spliced protein products generated from the same 

transcript that share much of the same sequence  (Scacheri et al., 2004; Jackson et al., 2003; 

Birmingham et al., 2006).  Expression of siRNA or miRNA to target a gene of interest can also 

result in artifacts due to the overloading of the siRNA or miRNA machinery.  Exogenous 

siRNA and miRNA compete with natural endogenous siRNAs and miRNAs for binding siRNA 
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and miRNA machinery, resulting in off-target effects (Baek et al., 2008; Selbach et al., 2008; 

Castanotto et al., 2007).  siRNA and miRNA can also produce misleading results since they can 

activate pathways in innate immune responses  (Agrawal and Kandimalla, 2004; Hornung et 

al., 2005; Judge et al., 2005; Heinicke et al., 2009).  

In summary, traditional reverse approaches that block gene function at the DNA level 

are difficult to perform and the limits of these technologies that either degrade mRNA (siRNA) 

or prevent protein translation (miRNA) are not well defined.  In either case, these methods 

block the expression of the target protein and thus they may not always correlate with the 

ability of the target to be inhibited by small molecules.  

The difference between small molecule inhibitors and inhibition strategies that block 

protein expression can be illustrated using a hypothetical interaction network (Figure 1.1).  In 

this network, nodes, represent biochemical molecules such as proteins.  Vertices, represent 

actions such as modifications, enzymatic activities, or physical interactions.  Reverse genetic 

strategies that block protein expression result in the removal of a node from an interaction 

network (Figure 1.1b).  If a node has more than one vertex, then multiple pathways are affected 

(Figure 1.1b). 

Vertices can be disrupted by inhibiting protein activities or interactions (Figure 1.1c).  

Point mutations are particularly useful for validating the therapeutic potential of a target protein 

since they have the ability to mimic the effect of a small molecule by knocking out a single 

function rather than removing the whole protein.  In this way, point mutations often disrupt 

only a single vertex in an interaction network (Figure 1.1c).  Homozygous point mutations 

however are difficult to generate in polyploidy organisms and usually arise as a result of natural 

disease states (Suzuki et al., 1971).  Furthermore, point mutations can result in the misfolding 

or degradation of proteins. 

Peptide inhibitors can be used to block a single vertex in an interaction/functional 

network in a manner similar to a small molecule inhibitor or point mutation (Figure 1.1c).  

Peptide inhibitors function in trans with a dominant mode of action and are capable of 

interacting with a defined surface of the target.  Peptide affinity reagents have the following 

advantages over miRNA/siRNA technologies and gene deletions.  First, dosage effects of 

peptide inhibitors can be easily tested.  Second, peptide affinity reagents can modify target  
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Figure 1.1 | Molecular interaction/functional networks  
(a) Hypothetical interaction/functional network.  Nodes (circles), represent biological 
molecules such as protein, RNA, DNA, etc.  Vertices (lines), represent actions such as a 
physical interaction, modification, etc.  Grey nodes represent unactivated biomolecules.  (b) 
Effect of protein deletion on network output.  A protein deletion (red node) either by gene 
‘knock-out’ techniques or by a siRNA or miRNA prevents translation of the protein and 
eliminates a node and thus all protein functions (vertices), which prevents downstream nodes 
from being activated (grey nodes).  Green nodes represent activated proteins.  (c) Effect of a 
peptide, small molecule, or point mutation on network output.  A peptide affinity reagent, small 
molecule or point mutations is used to block a specific function or interaction of a protein (red 
vertex), resulting in only one output being affected.  

 

localization  (Geda et al., 2008) and stability  (McLean et al., 2009).  Third, peptide inhibitors 

have the potential to target only a specific conformation, allele, or modified state of a protein  

(Kurtz et al., 2003; Colas et al., 1996).  Fourth, peptide inhibitors can be designed against 

metabolites and other non-protein targets of interest, which are often considered “undruggable” 

by small molecules  (Skerra, 2008). 

The difference between removing a protein from a system and hence all its 

corresponding interactions/functions can be very different from blocking a single specific 

interaction/function.  Abed et al. demonstrated this principle by showing that removing a 

protein using gene knock-out techniques has a greater impact on mRNA expression profiles 

than a dominant-negative mutation or a peptide affinity reagent  (Abed et al., 2007).  

Microarray studies comparing the effects of siRNA and small molecule inhibitors of BCR-ABL 
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showed that mRNA profiles between the siRNA and small molecule are substantially different  

(Zhelev et al., 2004).  

1.3 Design of peptide affinity reagent libraries 
Peptide affinity reagents can either be rationally designed or selected from 

combinatorial pools of peptides.  The majority of peptide affinity reagents have been generated 

against protein targets.  This thesis focuses on protein targets but the concepts can be applied to 

other molecular targets.  Rationally designed peptide affinity reagents are designed using 

structural information of known protein-protein interactions as a guide to design peptide 

affinity reagents.  This information is used to design a peptide that mimics the interaction or 

alternatively that will bind to the target based on the structural information.  Peptide affinity 

reagents can also be selected from large combinatorial pools called “libraries”.  Libraries 

contain many different peptides, where each peptide has specific positions in the peptide where 

random amino acids are substituted.  In theory, if a random pool of peptides is complex enough, 

there should be one member that interacts with any given target. 

Proteins contain many different surfaces and each surface can have a different function.  

For example, a protein surface can have enzymatic activity, or it can be involved in a protein-

protein interaction, in a protein-molecule interaction, or in maintaining the protein’s structure.  

Many of these surfaces are dynamic and change in response to modifications or interactions 

with other molecules.  Combinatorial peptide libraries have been used to isolate peptides that 

bind to specific states of a protein  (Pamonsinlapatham et al., 2008; Davis et al., 2009).  This is 

an extremely powerful property of peptides and in theory an optimal combinatorial peptide 

library will contain members that bind to each surface and state of a protein.  In this way, 

specific protein functions or conformations can be blocked while leaving all other functions 

unaffected.  

To facilitate the isolation of peptides against a specific protein domain or surface, 

proteins can be split up and expressed as individual domains.  This ensures a peptide will be 

generated against a specific domain and not another region of the protein.  In some cases this is 

necessary since the domain of interest is inaccessible in the full-length protein due to the 

conformation of the protein.  Domain specific peptides can be used to study the 

function/interaction of a specific domain while leaving other protein functions unaffected or to 

design specific inhibitors. 
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In practice a single type of peptide library is not likely to be capable of specifically 

disrupting every possible protein interaction, since protein-protein interaction surfaces vary 

from a few strong interactions in a small highly specific binding pocket to many weak 

interactions spread over a large surface areas.  Multiple different peptide libraries may be 

required to develop inhibitors against a wide range of protein surfaces. 

Antibodies are an example of a naturally occurring, genetically encoded peptide affinity 

reagent library.  Lymphocytes in the human immune system have evolved a sophisticated 

method for generating molecular diversity in antibodies using recombination processes and 

somatic mutation.  Multiple genes are used to encode different antibody variable and constant 

regions for both heavy and light chains.  Each cell undergoes somatic recombination to produce 

a functional heavy and light chain.  Somatic recombination is a process of imprecise joining of 

genes, which produces antibodies in naïve B-cells.  Antibodies are then tested for their 

interaction with the target antigen inside of the human body.  Those cells that express an 

antibody capable of binding the target antigen weakly have their affinity enhanced by somatic 

hypermutation, which involves the introduction of point mutations preferentially into the 

complementarity determining regions (CDRs).  This strategy allows the human immune system 

to generate over 1011 different antibody combinations using relatively little DNA. 

Synthetically designed genetically encoded peptide libraries typically have a 1:1 

relationship of DNA to library members, where each DNA sequence encodes a single library 

member.  There are four DNA nucleotides [A, C, T, G] and each amino acid is specified by a 

three-nucleotide codon, resulting in a total of 64 (43) possible codons.  These codons represent 

three stop codons and 20 amino acids.  Random peptide libraries are made by synthesizing 

oligonucleotides that contain random combinations of nucleotides at given positions.  Random 

coupling of degenerate nucleotides can be used to make randomized codons that express 

combinatorial libraries of peptides.  A completely random oligonucleotide synthesized with 

single nucleotides uses NNN at each codon position, where N = A, G, C, or T.  A peptide 

library, which is ten amino acids long and constructed using NNN codons, will have a nucleic 

acid diversity of over 1 x 1018 and a peptide diversity of 1 x 1013.  These libraries are larger than 

the maximum screening size of most cell-based systems (~ 109).  Therefore, it is not feasible to 

generate and screen libraries containing all possible amino acids with lengths greater than seven 

or eight amino acids.  Reducing the number of amino acids can drastically increase the 
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coverage of a library.  Decreasing the amino acid diversity at each position in the peptide can 

also increase library coverage.  This strategy has been used to generate and screen antibody 

fragment libraries with only two amino acids (tyrosine and serine) in the CDRs  (Koide and 

Sidhu, 2009).  Alternatively, libraries can be constructed by joining trinucleotide 

phosphoramidite repeats together during automated oligonucleotide synthesis  (Sondek and 

Shortle, 1992; Kayushin et al., 1996; Gaytán et al., 1998; Yagodkin et al., 2007; Mauriala et 

al., 2004).  Each trinucleotide phosphoramidite represents a single codon.  By mixing 

trinucleotide phosphoramidites, the frequency of each codon and thus amino acid in the library 

can be directly controlled.  Furthermore, stop codons can be eliminated from oligonucleotide 

libraries constructed with trinucleotide phosphoramidites.  The main disadvantage is that these 

libraries are expensive to synthesize. 

1.4 Selection of peptide affinity reagents 
Peptide affinity reagents can be selected in both intra- and extra-cellular environments 

from combinatorial libraries.  Assays that detect protein-protein, protein-RNA, and protein-

DNA interactions within cells include: the split-ubiquitin system  (Stagljar et al., 1998), the 

protein-fragment complementation assay  (Remy and Michnick, 1999), the repressor 

reconstitution assay  (Hirst et al., 2001), the SOS recruitment system  (Broder et al., 1998), and 

two-hybrid systems (reviewed in Vidal and Legrain, 1999).  These assays occur inside the cell 

and detect protein-protein or protein-DNA interactions using reporter genes/proteins.  In these 

assays, each cell acts as a test-tube to detect the interaction of one member of a library with a 

target.  This type of assay is useful since there is no competition between peptide affinity 

reagents, resulting in the isolation of peptide affinity reagents that target many different 

surfaces in a single screen.  

Assays that isolate peptide affinity reagents against a target outside of the cell couple 

DNA to the peptide affinity reagent directly or indirectly.  Examples of this type of assay 

include: phage display (Smith, 1985), bacterial display (Francisco et al., 1993), yeast display  

(Boder and Wittrup, 1997), ribosome display  (Jermutus et al., 1998), and mRNA display  

(Jermutus et al., 1998).  These assays typically include an amplification step, which enriches 

peptide affinity reagents with the highest binding affinity.  The advantages of these systems are 

that high affinity binders are isolated and rounds of negative selection can be included.  This 

allows the selection of peptide affinity reagents capable of discriminating between two 
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molecules.  These selections, unlike intracellular screens, are not limited to biomolecules.  

Furthermore, peptide affinity reagents can be isolated that discriminate between complex 

mixtures such as two different cell types, without prior knowledge of what makes the two cell 

types different.  Any of these assays or similar assays that couple DNA or RNA to its expressed 

protein can be used to isolate peptide affinity reagents.  

1.4.1 Forward screens 
In the context of this thesis, a forward screen will be used to describe peptide affinity 

reagents that are isolated based on their ability to confer the phenotype under investigation.  

The main advantage of a forward screen is that a variety of molecules can be used including 

small molecules, peptides, and nucleic acids.  There is no requirement for the molecule used in 

a forward screen to be genetically encoded.  For example, chemically synthesized cyclic 

peptides have been previously used in forward screens  (Baldwin, 1996; Edwards and Morrell, 

2002; Huwe, 2006; Tan, 2005; Webb, 2005).  

Forward screens have several drawbacks.  First, there is minimal target specificity; any 

disruption in the pathway, which gives the desired phenotype, is selected.  This lack of target 

specificity can be an advantage when working with an unknown pathway or when trying to 

identify new molecules in a pathway.  However, the lack of specificity is generally a 

disadvantage since therapeutic targets are usually identified by studying the disease and then 

molecules that inhibit these specific targets are sought out.  Second, it is difficult to identify the 

target that is inhibited to cause the desired phenotype.  Third, forward screens may result in 

inhibitors against primarily one target due to its role or accessibility in the pathway.  Fourth, 

targets that do not have an easily observed phenotype are not likely to be identified.  Fifth, 

forward screens are more prone to false positives since pre-existing and spontaneous mutations 

that overcome the phenotype can also be selected.  To overcome these disadvantages and to 

isolate inhibitors against a protein of interest, reverse screens are often used first followed by a 

forward screen to select for molecules with desired activity. 

1.4.2 Reverse screens 
In this thesis, reverse screens are defined as assays that use the physical interaction of a 

peptide affinity reagent with its target as the basis for their selection.  Reverse screens have 

several advantages over forward screens.  Reverse screens do not need to be modified to isolate 
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peptide affinity reagents against most protein targets.  In contrast, forward screens target a 

process or pathway that produces a phenotype, and thus a different screen must be designed to 

isolate peptide affinity reagents for targets in different pathways.  Reverse screens also allow 

protein domains, modifications, alleles, or states to be specifically targeted.  

Disadvantages of reverse screens are that the target must be known, expressed, and fold 

properly in the system used for screening.  For in vivo systems, the target must also be 

genetically encoded.  Screens that are based on the physical interaction of the peptide affinity 

reagent with the target rather than a phenotype-based screen may not isolate peptide affinity 

reagents that have an inhibitory function.  However, peptide affinity reagents selected based 

soley on a physical interaction with the target can subsequently be tested for the desired 

activity.  Compared to a forward screen this strategy reduces the number of peptides that need 

to be tested for activity and ensures the activity will be through the target of interest.  Ideally, 

reverse screens are used to isolate potentially therapeutic molecules against a target of interest 

or as general affinity reagents for basic research. 

1.4.2.1 Two-hybrid assays 
Two-hybrid assays are based on the principle of splitting a functional protein into two 

separate or hybrid proteins.  Association of the two fusion proteins results in reconstitution of a 

functional protein and a phenotypic output.  Typically, cell growth, cell death, and colorimetric 

or fluorescence assays are linked to the association of the hybrid proteins.  There are many 

alternative two-hybrid systems that take place inside mammalian cells  (Ozawa et al., 2000), 

bacterial cells  (Joung et al., 2000) and yeast cells  (Fields and Song, 1989; Gyuris et al., 1993).  

The Y2H system is the most commonly used two-hybrid reverse screening assay.  In this assay, 

a DNA binding domain is fused to a target protein called the ‘bait’ and a transcriptional 

activation domain is fused to a second protein called the ‘prey’.  When the bait and prey 

interact, they reconstitute a functional transcription factor and induce expression of reporter 

genes (Figure 1.2). 

The Y2H assay developed by Fields splits the GAL4 transcription factor into a DNA 

binding domain (bait) and transcription activation domain (prey) (Fields and Song, 1989).  The 

Y2H assay developed by Brent constructs an artificial transcription factor using the E. coli 

LexA protein as the DNA binding domain (bait) and a bacterial protein, referred to as the B42 

acid ‘blob’, as the transcription activation domain (prey) (Gyuris et al., 1993).  A variation of  
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Figure 1.2 | Principle of the Y2H assay 
(a) The LexA/target protein fusion (bait) binds to the LexA binding site, which is located at the 
5`-end of the reporter gene.  The reporter gene is not activated since the peptide affinity reagent 
(star) fused to the activation domain (AD) (prey) does not interact with the bait.  (b) Interaction 
between the bait and prey results in reporter gene activation. 

 

the LexA-based Y2H assay, referred to as the interaction mating assay, has been developed to 

facilitate the analysis of pairwise interactions and to screen protein/peptide libraries  (Finley 

and Brent, 1994; Golemis et al., 2009).  In the mating interaction assay, libraries of yeast cells 

containing different preys are mated to yeast cells containing the target bait, which results in 

diploid cells that contains bait, prey, and reporter genes.  Using yeast mating to combine the 
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bait and prey plasmids into the same yeast cell eliminates laborious co-transformation steps.  

An additional advantage of the interaction mating assay is that a single library of preys can be 

constructed and then mated to multiple different baits, which eliminates the need to transform 

the prey library into each different bait strain. 

In this thesis, a variation of the LexA-based Y2H assay was used.  In the modified Y2H 

assay the bait plasmid is maintained in one strain containing the Y2H reporters and the prey 

plasmid library is maintained in another strain under the control of an inducible promoter.  The 

bait and prey strains are mated together on non-selective media to form diploid yeast cells 

containing reporter genes and bait and prey plasmids (Figure 1.3).  Diploid yeast cells 

containing bait and prey proteins that interact induce expression of reporter genes, which allow 

the interaction to be visualized by growth and color on selection medium.  Three different 

reporter genes are used in our system: LEU2, ADE2, and LACZ.  LEU2 reporter gene activation 

is detected by growth on medium lacking leucine.  ADE2 reporter gene activation can be 

detected by growth and color on medium lacking adenine.  The ADE2 gene encodes a protein 

responsible for the conversion of 5'-phosphoribosyl-5-aminoimidazole (AIR) to 5'-

phosphoribosyl-5-aminoimidazole-4-carboxylateadenine (CAIR) in the adenine biosynthesis 

pathway.  Without the ADE2 gene, yeast buildup AIR, causing them to turn red.  When the 

ADE2 reporter gene is activated, yeast cells grow on medium lacking adenine and do not 

accumulate AIR.  The LACZ gene, which encodes the enzyme beta-galactosidase, is used as an 

additional colorimetric reporter.  LACZ cleaves 5-bromo-4-chloro-3-indolyl-b-D-

galactopyranoside (X-gal) into galactose and 5-bromo-4-chloro-3-hydroxyindole.  The 5-

bromo-4-chloro-3-hydroxyindole is oxidized into 4,4’-dibromo-4,4’-dichloro-indigo, which is 

insoluble and forms a blue precipitate that is observable in the yeast agar medium. 

The Y2H has several advantages and disadvantages for selecting peptide affinity agents 

from genetically encoded combinatorial peptide libraries.  The main advantages of the Y2H 

system are: (i) there is no competition between peptide affinity reagents in a library since each 

interaction is tested separately inside a yeast cell; (ii) target proteins are expressed in an 

intracellular eukaryotic environment; (iii) the bait protein does not need to be purified.  The 

main disadvantages of the Y2H assay are: (i) a smaller number of peptides are screened relative 

to in vitro selection strategies such as phage or mRNA display;  (ii) significant false positive 

and false negative signals are observed in the Y2H assay. 
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Figure 1.3 | Y2H interaction mating assay 
The bait strain (EY111) containing the bait plasmid (pEG202, His+ marker) expresses the bait 
protein fused to a DNA binding domain (DBD).  The prey strain (EY93) containing the prey 
plasmid (pJG4-5, Trp+ marker) expresses the prey protein fused to an activation domain.  On 
glucose medium (SD), the prey strain does not express the prey protein.  Mating the bait and 
prey strains results in a diploid yeast cell that expresses the bait and prey proteins when 
cultured on medium containing galactose  (SGR).  Prey plasmids encoding a protein that 
interacts with the bait protein are selected by their ability to induce expression of reporter 
genes, which allow the yeast cell to grow on media lacking leucine, adenine and induce a blue 
color in the presence of X-gal (SGR H-W-L-A- X-gal). 
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The antibiotic resistance reporter gene Aureobasidin A (Takesako et al., 1993; Cerantola et al., 

2009) and pooling strategies  (Bruno et al., 1995; Jin et al., 2006; Du et al., 2006) have been 

used to reduce false positives and negatives in Y2H screens.  The major limitation that has not 

been overcome in using the Y2H assay for screening combinatorial peptide libraries is the 

relative low affinity of the peptides that are isolated.  This is most likely due to the relatively 

low number of peptides that can be screened. 

1.4.2.2 Three-hybrid assays 
Three-hybrid systems use a third molecule to facilitate or disrupt interactions between 

the two hybrid proteins (Figure 1.4).  A variety of molecules can be screened in this assay 

including RNA  (SenGupta et al., 1996; Bernstein et al., 2002), enzymatic substrates  (Baker et 

al., 2002), small molecules  (Kley, 2004; Licitra and Liu, 1996; Becker et al., 2004), and 

protein molecules (Vidal et al., 1996; Huang and Schreiber, 1997; Kato-Stankiewicz et al., 

2002; Yin et al., 2003).  Advantages of three-hybrid systems are that non-protein molecules or 

protein molecules that are not compatible with two-hybrid systems can be used.  For example, 

cyclic peptides are not compatible with two-hybrid systems, since there is no free terminus to 

attach a transcription activation domain.  Three-hybrid systems have been used to isolate cyclic 

peptides that disrupt a given protein-protein interaction (Horswill and Benkovic, 2005).  The 

disadvantage of three-hybrid systems is that only molecules that allow two-hybrid proteins to 

interact or that disrupt a known protein-protein interaction can be isolated. 
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Figure 1.4 | Yeast three-hybrid assay 
(a) In the Y2H system the bait and prey proteins interact, which allows the reporter gene to be 
expressed by localizing the activation domain to the promoter of the reporter gene.  (b) The 
yeast three-hybrid disruption assay is used to detect molecules that prevent a protein-protein 
interaction using a toxic reporter gene.  Disruption of the target interaction blocks gene 
expression by preventing the expression of a toxic reporter gene, which allows the cell to grow.  
(c) The yeast three-hybrid association assay is used to detect a molecule that bridges the 
interaction between two proteins that do not interact.  One protein is fused to a DNA binding 
domain and the other protein is fused to a transcriptional activation domain.  A third molecule 
is required to bridge the gap between the proteins and localize the transcriptional activation 
domain fusion protein to the reporter gene. 
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Toxic gene

LexADBD

Target

AD

Binding Site

Reporter gene

LexADBD

Target

AD

Binding Site
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1.4.2.3 Surface display methods for screening combinatorial libraries 
Combinatorial peptide libraries can be displayed on the surface of phage, yeast, and 

bacteria.  In phage display, surface proteins orientate and present the peptide library on the 

outside of the phage (reviewed in Sidhu and Koide, 2007).  The target is immobilized on a 

column and combinatorial libraries of peptides are passed over the column.  Phage displaying 

peptides that interact with the immobilized target remain attached to the column, while phage 

that display proteins that do not bind the target are eluted in subsequent wash steps (Figure 1.5).  

After several rounds of selection, the phage that bound to the column are collected and the 

DNA is sequenced to determine the sequence of the peptide(s) that interact with the target.  

Yeast display systems exploit the Aga2 surface protein to display peptide libraries  (Boder and 

Wittrup, 1997).  Bacterial display systems fuse combinatorial peptide libraries to the first nine 

amino acids of the major outer membrane lipoprotein (Lpp) or the outer membrane protein 

(OmpA, amino acids 66 – 159)  (Francisco et al., 1993).  Alternatively, peptide libraries have 

been displayed from a loop in TrxA fused to the bacterial flagellin gene (fliC) (Lu et al., 1995). 

The advantages of surface display systems are two-fold.  First, the genetic material, 

which encodes the protein of interest, is contained within the organism.  This facilitates the 

sequence identification of peptides that interact with the target of interest.  Second, the 

organism itself offers a mechanism to amplify the protein of interest.  By combining multiple 

rounds of amplification and selection, the tightest binders from a library are isolated.  The 

ability to include rounds of negative selection, where peptides that bind a similar target are 

removed, makes this an extremely powerful technique for isolating peptides that can 

discriminate between similar targets.  For example, phage that recognize a protein with a single 

amino acid mutation can be isolated by performing rounds of negative selection where the wild-

type protein is used to remove peptides that bind the wild-type protein, leaving only the 

peptides that bind the mutant protein  (Gao et al., 2009; Chang et al., 2006).  In the negative 

selection step, phage that interact with wild-type protein remain bound to the column and phage 

that do not interact with the wild-type protein are found in the elutant, which is then used in the 

positive selection round to isolate phage that bind the mutant protein.  Multiple rounds of 

selection performed in this manner result in the isolation of phage that only interact with the 

mutant protein.  The biggest advantage of display systems is that the highest affinity peptide 

can be isolated from potentially billions of different peptides using multiple rounds of selection 
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Figure 1.5 | Phage display 
A library of peptides (Grey Circles/Stars) is displayed from the surface of a phage.  The library 
is passed over the target (Black Stars) and only phage displaying peptides that bind to the target 
are retained in subsequent wash steps.  Phage that display peptides, which bind the target are 
eluted and amplified.  Subsequent rounds of selection are performed to isolate the strongest 
binding peptides.  
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and amplification.  Negative selection rounds with the appropriate controls virtually eliminate 

the false positives associated with other screening technologies.  The disadvantage of using 

multiple rounds of selection is that peptides that bind to low affinity sites may be missed.  High 

affinity peptide reagents that bind to a non-therapeutic site are less valuable in drug design than 

a peptide affinity reagent that binds weakly to a therapeutic site.  Other disadvantages are that 

the target protein must be purified or displayed on the surface of a cell and that the selection 

takes place in the extracellular environment.  This is a concern since peptides selected in 

extracellular environments may not function within cells. 

1.4.2.4 Ribosome and mRNA display 
Ribosome and mRNA display are similar to the other display systems such as phage 

display with the main difference being that ribosome and mRNA display are performed in a 

cell-free system.  Ribosome display links the mRNA encoding the protein directly to the protein  

(Hanes and Plückthun, 1997).  In ribosome display, the ribosome is stalled, which causes the 

newly synthesized protein to remain non-covalently linked to the ribosome and mRNA.  In 

mRNA display the protein is covalently cross-linked to the mRNA after protein synthesis  

(Roberts and Szostak, 1997).  This covalent linkage allows the large ribosome to be removed 

from the mRNA:protein complex, simplifying subsequent interaction selections.  

mRNA/ribosome display share the advantages of other display systems by linking the protein to 

the mRNA that encodes them.  Multiple rounds of selection and amplification are used to 

isolate high affinity interactions.  Amplification is performed using PCR to enrich mRNA 

sequences that encode proteins that interact with the target after wash steps are performed. 

Ribosome and mRNA display have additional advantages over the other cell-based 

display systems since they are performed in vitro, which allows non-natural amino acids to be 

incorporated using engineered tRNAs  (Noren et al., 1989; Forster et al., 2003; Frankel et al., 

2003; Kawakami et al., 2008).  Since they are cell-free systems they have the largest library 

sizes, which can approach 1015 members.  However, they share the same disadvantages as other 

display systems in that they typically isolate the affinity reagent with the strongest interactions 

and not necessarily ones that bind to the most important biological or therapeutic sites.  Since 

the assay is performed in vitro, the target must be synthesized and fold correctly in the 
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extracellular environment while attached to a solid support, which can affect binding and 

stability. 

1.4.2.5 Screening summary 
The major obstacle in screening peptide libraries is correlating the phenotype/interaction 

with the active sequence.  Genetically encoded libraries are typically used to address this issue, 

since large numbers of sequences can be screened and the sequence of the peptide that has 

activity is easily determined from the DNA encoding it.  New technologies such as micro-

fluidics combined with mass-spectrometry have the potential to replace genetically encoded 

peptide libraries  (Shiau et al., 2008).  The combination of these technologies allows the direct 

identification of compounds that interact with the target using mass-spectrometry, 

circumventing the need to link the DNA encoding the peptide of interest to the 

interaction/phenotype.  However, these techniques require expensive equipment and are still in 

their infancy. 

Advantages of intracellular assays performed in yeast and mammalian cells are that no 

protein needs to be purified since the assay takes place in an intracellular environment.  Also 

each cell acts as a test tube allowing individual interactions to be tested without competition.  

This allows peptides that interact with all binding sites, even weaker but potentially more 

therapeutically valuable ones, to be isolated.  Intracellular assays also allow phenotypes to be 

assayed.  For example, in yeast the kinase activity of human tyrosine kinases results in a growth 

suppression phenotype  (Trible et al., 2006), which can be assayed directly after initial reverse 

screens have been performed.  

The advantages of extracellular assays are that they allow successive rounds of positive 

and negative selection, resulting in the selection of specific, high affinity interactions.  In vitro 

systems share the advantages of the extracellular selections with the additional advantages that 

larger libraries can be screened and non-natural amino acids can be used. 

Ideally, the optimal solution would be to first use a display system to screen large 

numbers of peptides and to isolate peptides that have high affinity for their target.  This step 

would be followed by an intracellular screening assay to isolate peptides that function inside the 

cell. 
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1.5 Peptide affinity reagents and peptide scaffold proteins 
Peptide affinity agents can be generated by screening linear peptides, cyclic peptides, or 

peptides constrained on the surface loop of a scaffold protein.  Linear peptide affinity reagents 

are generally not preferred since they are readily degraded by proteases and are often not stable.  

Linear peptides are thought to be less structured and undergo a conformational change upon 

binding their target, which can reduce their binding affinities  (Ladner, 1995).  Peptides can be 

constrained by cyclizing them or displaying them in a surface loop of a protein.  Proteins used 

to constrain peptides are referred to as scaffold proteins  (Hosse et al., 2006).  The interaction 

of peptides constrained by a scaffold protein with their target has been shown to be ~ 1000-fold 

stronger than their linear counterparts  (Cohen et al., 1998).  Many different proteins have been 

used to scaffold peptide affinity reagents including antibodies, peptide aptamers  (Colas et al., 

1996), peptamers  (Norman et al., 1999), affibodies  (Nord et al., 1997), thioredoxin insert 

proteins (TIPS)  (Böttger et al., 1997), and perturbagens (Kamb and Teng, 2000).  Skerra 

estimated that approximately 50 different scaffolds have been used to date  (Skerra, 2007).  

Many of these scaffolds are used in academic settings, however several scaffolds have been 

commercialized and some are in clinical trials (Table 1.1). 

1.5.1 Antibodies 

Antibodies are naturally occurring affinity reagents produced by the immune system.  

Antibodies are made up of two heavy and two light chains (Figure 1.6).  Each IgG heavy chain 

has four domains; three constant domains (CH1, CH2, CH3) and one variable domain (VH).  IgG 

light chains have two domains; one constant domain (CL) and one variable domain (VL).  

Antibody molecule domains have a characteristic immunoglobulin fold, which consists of two 

beta-sheets that are packed tightly against each other and joined by a disulfide bond.  

Immunoglobulin folds are stabilized by hydrogen bonds between the beta strands of each sheet, 

by hydrophobic interactions between residues of opposite sheets, and by disulfide bonds 

between the sheets.  The constant domains contain seven beta-strands arranged into two sheets 

of three and four strands.  The variable domains are slightly larger and have nine beta-strands 

arranged in two sheets of four and five strands.  The variable domains contain three CDRs that  
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Table 1.1 | Commercialized peptide affinity reagents 
Molecule: the commercial or common name given to a peptide affinity reagent.  Scaffold: the 
protein used to constrain and display the peptide.  Formally: the company previously owning 
the patents to a given molecule. 
Company Molecule Scaffold Formally 

Ablynx Nanobodies Llama antibody  

Adnexus Adnectins Fibronectin  

Affibody Affibodies Protein A (Z-domain)  

Amgen Peptibodies Antibodies Avidia 

Arana Evibodies Antibodies Evogenix 

Borean Unnamed Trimerized tetranectin  

Bristol-Myers-Squibb  Antibody  

ESBATech scFV Fragment Antibody  

Genmab Unibodies Antibody  

GlaxoSmithKline 
Domain 
Antibodies Antibody Domantis 

Imaxio Peptide Aptamer TrxA Aptanomics 

Immunocore  T-Cell Receptor Avidex 

Isogenica  CIS display  

Kalthera pty ltd Cyclotide Cyclotide  

Micromet BiTEs scFvs  

Molecular Partners DARPins Ankyrin   

NascaCell Microbodies Knottins Selecore 

Pfizer Transbodies Transferrin Biorexis 

Pieris Proteolab Anticalins Lipocalins  

Scil Proteins Affilins lens protein  

Trubion Pharmaceuticals  SMIPs Antibody  
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are separated by four framework regions.  CDRs are responsible for the interaction of 

antibodies with their target antigen. 

The vertebrate immune system is very effective at generating high affinity antibodies 

against a diverse range of epitopes.  However, some epitopes cannot be targeted by antibodies 

raised in animals since they are recognized as self-antigens, are too small or do not elicit an 

immune response.  These limitations can be overcome by using in vitro selection strategies 

(Section 1.4.2.3).  In either case, antibodies isolated by these methods do not always bind their 

target in vivo.  Since antibodies are selected outside of cells in both phage display and in the 

immune system, they may not fold correctly in an intracellular environment or may be prone to 

aggregation.  Antigens may also fold differently than the native protein outside of cells, either 

due to accessory folding proteins or post-translation modifications depending on the expression 

system used to produce them.  Unfortunately, antibodies cannot be selected within cells since 

they are not stable in the reducing intracellular environment.  To address this problem, many 

groups have engineered antibody fragments to be more amendable to intracellular conditions, 

allowing technologies like the Y2H assay to be used for screening antibody-fragment libraries 

(Lobato and Rabbitts, 2004; Tanaka and Rabbitts, 2008) (Figure 1.6).  

1.5.2 Fibronectin (Adnectin) 
Fibronectin is a large extracellular protein involved in matrix and cell-cell interactions.  

Fibronectin does not contain disulfide bonds and thus it can be expressed within cells. NMR  

(Main et al., 1992) and X-ray crystallography structures are available for fibronectin (Leahy et 

al., 1992; Dickinson et al., 1994), which facilitates scaffold design.  The human tenth 

fibronectin type III domain is 94 amino acids long and forms an immunoglobulin fold 

consisting of seven beta-strands.  This scaffold is referred to as either a monobody or an 

adnectin and has been commercialized by Adnexus (Table 1.1).  Fibronectin interacts with 

other proteins via its two surface loops  (Koide et al., 1998). To create adnectin libraries, five 

amino acids in each of the two surface loops of fibronectin have been randomized.  Adnectins 

have been isolated using phage display against ubiquitin (Koide et al., 1998) and the Src SH3 

(Src homology three) domain  (Karatan et al., 2004).  mRNA display has been used to isolate 

Adnectins against tumor necrosis factor alpha (TNF-alpha)  (Xu et al., 2002), vascular 

endothelial growth factor receptor–2 (VEGFR-2) (CT-322, Adnexus), the nucleocapsid protein 

from the severe acute respiratory syndrome coronavirus (SARS-CoV) (Liao et al., 2009), and 
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the phosphorylated I-kappa-B-alpha peptide  (Olson et al., 2008).  Yeast surface display has 

been used to isolate adnectins against lysozyme  (Hackel et al., 2008) and the Y2H assay has 

been used to isolate adnectins against the active form of the estrogen receptor  (Koide et al., 

2002; Huang et al., 2006). 

 

 

 

 

 

 

Figure 1.6 | Antibodies and antibody fragments 
(a) Schematic of a full-length antibody consisting of two light chains and two heavy chains.  
The heavy chains are made up of three constant regions (CH1-3) and one variable region (VH).  
The light chains are made up of one constant region (CL) and one variable region (VL).  The 
antigen-binding site is made up of variable regions from light and heavy chains.  Variable 
regions are further subdivided into framework regions (FR), which function as scaffolds for 
displaying hypervariable regions (H1-3 or L1-3) called complementarity determining regions 
(CDRs).  (b) Antigen binding fragment (Fab) is a truncated antibody comprised of the variable 
region and one constant region from each of the heavy and light chains.  (c) Single chain 
variable fragment (scFv) contains variable regions from the heavy and light chains joined by a 
linker peptide.   



 - 26 - 

1.5.3 Lipocalins (Anticalin) 
Lipocalins are naturally occurring carrier proteins for a wide variety of different 

molecules including vitamins, lipids, and steroids  (Grzyb et al., 2006).  Lipocalins form six or 

eight stranded beta-barrel structures and are approximately 20 kDa in size  (Grzyb et al., 2006).  

Lipocalins are excreted proteins and like antibodies they function outside of cells.  Engineered 

lipocalins with modified or randomized binding sites are called “anticalins”.  Anticalins have 

many benefits over antibodies such as, their reduced size and superior expression in E. coli  

(Skerra, 2008).  Anticalins have been commercialized by Pieris Proteolab (Table 1.1).  

Anticalins have been selected against small molecules  (Skerra, 2008), Cytotoxic T-

Lymphocyte Antigen 4 (CTLA-4)(PRS-010, http://www.pieris-ag.com)  (Schlehuber and 

Skerra, 2005), Vascular endothelial growth factor (VEGF) (PRS-050, http://www.pieris-

ag.com), and several undisclosed targets. 

1.5.4 Ankyrin repeats (DARpins) 
Ankyrins are a subset of a class of proteins called domain repeat proteins (DRPs)  

(Andrade et al., 2001; Bork, 1993) and have been commercialized by Molecular Partners 

(Table 1.1).  Ankyrins are naturally occurring proteins involved solely in protein-protein 

interactions.  Ankyrin proteins consist of repeated domains, which are responsible for their 

binding activity.  Each domain is made up of thirty-three amino acids, which form a beta-turn 

and two alpha-helices  (Sedgwick and Smerdon, 1999).  Repeating ankyrin domains called 

DARPs have been modified to isolate artificial ankyrin proteins that bind novel targets.  These 

modified ankyrin proteins consist of a fixed N- and C-terminal capping module and two or 

three repeat domains.  Residues in the repeat domain element have been randomized to create 

combinatorial libraries of ankyrin proteins that bind novel targets  (Forrer et al., 2003).  

Typically, six amino acids in each repeated domain are completely randomized  (Binz et al., 

2004).  Since ankyrins naturally exist inside of cells they have the potential to target 

intracellular targets.  Ankyrin repeat proteins that bind to maltose binding protein (MBP)  (Binz 

et al., 2004), Jun N-terminal Kinase (JNK2), p38 kinase, the CC2-LZ domain of NF-Kappa-B 

Essential Modulator (NEMO)  (Wyler et al., 2007), and human Cluster of Differentiation 4 

(CD4) (Schweizer et al., 2008) have been selected using ribosome-display  (Amstutz et al., 

2006).  Ankyrin repeat proteins have also been isolated that bind proteinase inhibitors in E. coli 

using a two-step selection procedure.  In this selction, combinatorial libraries of ankyrin repeat 
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proteins were first screened in an in vitro assay.  Those that interacted with their target were 

then tested in a modified two-hybrid intracellular assay  (Kawe et al., 2006). 

1.5.5 Thioredoxin 
Thioredoxin (TrxA) is a small globular protein involved in intracellular redox reactions.  

TrxA has been engineered to display a constrained peptide loop from its surface that mimics a 

single CDR displayed from the framework of an antibody  (Colas et al., 1996).  In contrast to 

antibodies (Figure 1.6), which have six binding loops, TxA peptide affinity reagents have only 

a single loop.  The TrxA active site loop is tolerant to peptide insertions  (LaVallie et al., 1993).  

Crystal structures of TrxA show that the active site loop is part of an extended alpha helix and 

mutations at the active site loop have been shown to disrupt the helix and create a solvent 

exposed loop (Collet et al., 2005).  The active site loop of TrxA is used to display 

combinatorial libraries of peptides that are typically between five and thirty amino acids in 

length.  The TrxA scaffold has been commercialized for intracellular applications by 

Aptanomics (Table 1.1) 

Initially, the TrxA scaffold was used to display combinatorial libraries of peptides on 

the flagellum of E. coli (FLITRX)  (Lu et al., 1995).  TrxA peptide aptamers were first used in 

intracellular screens using the Y2H assay to isolate peptide aptamers that interacted with cyclin-

dependent kinase 2 (CDK2)  (Colas et al., 1996).  Since then, TrxA peptide aptamers have been 

isolated against at least 30 targets intracellularily (see Table 1.2).  Due to the success in 

isolating TrxA peptide aptamers against a variety of targets subsequent studies have examined 

its binding and clinical properties.  In some cases, TrxA peptides could not be moved from the 

TrxA scaffold to another scaffold protein  (Klevenz et al., 2002), which indicates that the TrxA 

protein is involved in the interactions with at least some of its targets  (Woodman et al., 2005).  

This poses a problem since TrxA was not designed to be a therapeutic drug, but rather to 

function as a scaffold to stabilize and constrain random peptide loops.  The ends of the peptide 

loop in TrxA contain cysteine at both ends, which can potentially be used to constrain the 

peptides via the formation of a disulfide bond.  The bacterial TrxA scaffold is also 

immunogenic.  Borghouts et al. developed a modified human TrxA to reduce immunogenicity, 

increase expression, and reduce non-specific interactions (Borghouts et al., 2008).  TrxA 

represents an important scaffold, which demonstrates that synthetic binding scaffold proteins 

are viable for peptide affinity reagents  (Colas et al., 1996). 
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Table 1.2 | Screens using the TrxA scaffold 
Target Class Reference 

hsCDK2 Kinase  (Colas et al., 1996) 
dmCDK2 Kinase  (Kolonin and Finley, 1998) 

Phenotype   (Geyer et al., 1999) 

E2F Transcription factor  (Fabbrizio et al., 1999) 
ThyA Thymidylate synthetase  (Blum et al., 2000) 

HPV16 E6 Viral protein  (Butz et al., 2000) 

HBV core protein Viral protein  (Butz et al., 2001) 

HPV16 E7 Viral protein  (Nauenburg et al., 2001) 
Rho-GEF GEF  (Schmidt et al., 2002) 

EGFR Receptor  (Buerger et al., 2003) 

Ras GTPase  (Kurtz et al., 2003) 
HPV16 E6 Viral protein  (Butz et al., 2000) 

STAT3 Transcription factor  (Nagel-Wolfrum et al., 2004) 

BCL-6 Transcription factor  (Chattopadhyay et al., 2006) 

ErbB2 Receptor  (Kunz et al., 2006) 
TGMV AL1 Viral protein  (Lopez-Ochoa et al., 2006) 

CK2 Kinase  (Martel et al., 2006) 

DHBV core Viral protein  (Tomai et al., 2006) 
Phenotype Antiproliferation  (de Chassey et al., 2007) 

PrP sc Prion  (Gilch et al., 2007) 

Nr-13 Anti-apoptosis  (Nouvion et al., 2007) 

Fur Transcription regulator  (Abed et al., 2007) 
HIV-1 Integrase Viral protein  (Armon-Omer et al., 2008) 

Ras-GAP GTPase  (Pamonsinlapatham et al., 2008) 

HPV E6 Viral protein  (Dymalla et al., 2009) 

A20 Viral protein  (Saccucci et al., 2009) 

LMO2 Transcription regulator  (Appert et al., 2009) 
pUL84 Viral protein  (Kaiser et al., 2009) 

LIVIN Inhibitor of Apoptosis  (Crnković-Mertens et al., 2010) 

ID1/3 Inhibitor differentiation  (Mern et al., 2010) 
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1.5.6 Stefin A (STM)  
Considering the problems identified with the TrxA scaffold protein, Woodman et al. set 

out to find a new scaffold protein with the following properties: (i) a crystal structure to guide 

placement of randomized loop; (ii) high stability to allow a variety of peptides to be displayed; 

(iii) folds correctly regardless of the inserted random peptide; (iv) a biologically neutral 

structure that does not interact or have activity that would complicate the selection or function 

assignment of peptide affinity reagents; and (v) fold the same in eukaryotic as well as 

prokaryotic cells  (Woodman et al., 2005).  Eight different scaffolds were tested and human 

stefin A (SteA), a small (90 a.a.), lysosomal peptidase from the cystatin family, was ultimately 

selected.  SteA is not post-translationally modified, does not contain disulfide bonds, and folds 

correctly in a variety of different organisms  (Woodman et al., 2005).  The peptidase activity of 

SteA was blocked by introducing mutations G4W and V48D and inserting an RsrII restriction 

site between amino acids 72-74 site to allow the insertion of random peptide libraries 

(Woodman et al., 2005).  The mutant steA scaffold is referred to as STM.  The STM scaffold 

has been used to select peptide affinity agents against the yeast Sho1p SH3 domain  (Woodman 

et al., 2005).  Although there are few reported selections using this scaffold, it has been used in 

a number of novel applications.  The STM scaffold has been used in surface plasmon resonance 

assays to detect protein-protein interactions  (Johnson et al., 2008; Davis et al., 2007) and in a 

protein microarray format that generates an electric signal when STM binds to its target protein  

(Evans et al., 2008). 

1.5.7 Green fluorescent protein 
Green fluorescent protein (GFP) is an interesting scaffold since the expression level and 

the effect of peptide insertion on the scaffold can be monitored directly using the fluorescent 

properties of GFP.  Abedi et al. identified Gln157-Lys158 as the ideal insertion site to display a 

peptide loop from GFP  (Abedi et al., 1998).  A random fifteen amino acid library was 

constructed and used to select peptides capable of transcriptional transactivation  (Abedi et al., 

2001).  GFP has also been optimized as a scaffold in mammalian screens to isolate peptide 

affinity reagents using retroviral expression vectors   (Peelle et al., 2001b; Peelle et al., 2001a).  

GFP peptide affinity reagents have been isolated based on their ability to block cell 

proliferation  (Hitoshi et al., 2003) and disrupt the pheromone-response pathway in S. 

cerevisiae  (Caponigro et al., 1998). 
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1.5.8 Staphylococcal nuclease (Peptamer) 
Staphylococcal nuclease is a Ca2+-dependent, extracellular enzyme that catalyzes the 

hydrolysis of RNA and DNA (Cotton et al., 1979).  Staphylococcal nuclease is 16.8 kDa and 

consists of three beta-sheets that fold to form a beta-barrel  (Jacobs and Fox, 1994).  

Staphylococcal nuclease has been used as a scaffold to display random peptide libraries from an 

exposed surface loop of inactivated staphylococcal nuclease  (Norman et al., 1999).  This 

engineered scaffold is called a Peptamer.  Peptamer libraries containing 16 random amino acids 

have been used in forward screens to isolate peptamers that inhibit the spindle checkpoint and 

pheromone-response pathway in S. cerevisiae  (Norman et al., 1999). 

1.5.9  Staphylococcal protein A (Affibody) 
The alpha-helical receptor domain Z from bacterial Staphylococcal protein A was used 

to construct Affibodies (Nord et al., 1997).  Random libraries of Affibodies have been 

constructed by displaying combinatorial peptide libraries from a solvent exposed loop on the 

surface of the Z-domain  (Nord et al., 1997).  Affibodies have been isolated against Taq DNA 

polymerase, human insulin, apolipoprotein A-1  (Nord et al., 1997), epidermal growth factor 

receptor (EGFR) (Friedman et al., 2008), interleukin-2 (IL-2)  (Grönwall et al., 2008), 

Alzheimer amyloid beta peptides  (Grönwall et al., 2007), HIV-1 gp120 (Wikman et al., 2006), 

and human epidermal growth factor receptor 2 (HER2) (Wikman et al., 2004) using phage 

display.  Affibodies have been commercialized by Affibody (Table 1.1). 

1.5.10  Cyclic peptide affinity reagents 
Cyclic peptides are self-constrained peptides and thus do not require a scaffold to be 

constrained.  Cyclic peptides have diminished proteolytic susceptibility relative to linear 

peptides.  They also display enhanced binding to their target due to their restricted 

conformational space  (Hortin and Murthy, 2002; Li and Roller, 2002), which decreases 

entropy loss upon binding  (Williams et al., 2002).  Both naturally occurring and synthetically 

designed cyclic peptides have been successfully employed as drugs to treat human diseases  

(Horswill and Benkovic, 2005). 
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1.5.10.1  Disulfide bond constrained cyclic peptides 
Linear peptides containing two cysteines can be constrained by forming a disulfide bond 

and thus producing a side-chain to side-chain ‘cyclic’ peptide (Giebel et al., 1995; Meyer et al., 

2006).  Disulfide bond constraints are reversible and depending on their environment they form 

either linear or cyclic peptides.  Disulfide constrained peptides are limited since the sequence 

between the cysteines has to allow the two cysteines to get within disulfide bonding distance (~ 

2.0 Å).  Disulfide bonds also form predominantly in extracellular environments and thus are not 

amenable to intracellular applications.  Disulfide bond constrained peptides have been exploited 

extensively by nature to produce venoms (Escoubas et al., 2008).  

Defensins are naturally occurring disulfide bond constrained peptides found in 

mammals.  There are three main classes of defensins: alpha, beta, and theta.  Knottins and 

Cyclotides are naturally occurring peptides found in plants that contain up to three disulfide 

bonds.  Knottins are linear peptides that are constrained by up to six cysteines, which form a 

knot of three disulfide bonds, giving them increased stability and a fixed rigid structure.  

Selecore has commercialized Knottins (Table 1.1).  Cyclotides, like knottins, have six 

cysteines, but they are cyclized through the formation of amide bond between their N- and C-

termini   (Craik et al., 1999), which folds them into a highly structured protein  (Craik et al., 

1999).  Cyclotides have six loops and each loop can be modified independently of the other 

loops, making them interesting affinity agents as they can have multiple different binding 

motifs on the same molecule (Craik et al., 1999).  Kalthera Pty.  Ltd. has commercialized 

cyclotides (Table 1.1).  Naturally occurring cyclotides have many activities including potent 

insecticides  (Jennings et al., 2001).  

1.5.10.2  N- to C-terminus and side-chain cyclized peptides 
Many naturally occurring cyclic peptides are non-ribosomally synthesized.  Non-

ribosomally synthesized cyclic peptides are constructed by specialized proteins, where each 

protein performs a step in the synthesis of the peptide (Kleinkauf and Von Döhren, 1996).  

Many naturally occurring non-ribosomally synthesized cyclic peptides are lactones  (Watanabe 

and Oikawa, 2007) (Figure 1.7).  Although non-ribosomally synthesized peptides are extremely  
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Figure 1.7 | Linear, lactam and lariat peptides. 
Linear, lactam, and lactone peptides.  R1 represents the first amino acid side-chain and Rn+1 
represents the last amino acid side-chain in the peptide.  In the lariat (lactone peptide) R1 is 
serine. 
 

interesting, it is difficult to genetically encode random libraries of non-ribosomally produced 

cyclic peptides due to their complex synthesis mechanisms.  A better understanding of how 

these peptides are synthesized may allow genetically encoded libraries of non-ribosomally 

synthesized cyclic peptides to be produced. 

A variety of methods have been used to mimic the constraints observed in non-

ribosomally synthesized peptides.  Chemical cross-linkers can be used to cyclize ribosomally 

produced proteins.  For example, chemically cross-linking the N-terminus of a protein to a 

fixed lysine side chain using disuccinimidyl glutaratecyclization has been used to cyclize, and 

subsequently screen, peptide libraries using mRNA display (Millward et al., 2005; Millward et 

al., 2007).  Other ways to generate cross-linked cyclic peptides include using non-naturally 

charged tRNA   (Nakajima et al., 2009), sugar molecules  (Altamura et al., 2009), or light 

cleavable cross-linkers. 

Naturally occurring proteins that modify amino acid side chains or peptide bonds can be 

exploited to cyclize peptides inside cells.  In theory, any protein modifying enzyme that 

introduces a side-chain:side-chain, a side-chain:N-terminus, a side-chain to C-terminus, or an 

N-terminus:C-terminus bond can be engineered to create cyclic peptides.  For example, the 

mechanism for cyclotide cyclization is not known, but asparaginyl endopeptidase is linked to 

both the cleavage of the linear precursor and the ligation of the cyclic peptide  (Saska et al., 

2007).  Recently, the sortase protein has been used to cyclize proteins through an 
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intramolecular transpeptidation with the N-terminal glycine  (Antos et al., 2009).  There are 

likely many other enzymes that have not been identified yet that can also be engineered to 

cyclize proteins.  For example, a cyclic peptide with a glutamic acid to N-terminus linkage has 

been isolated, but the enzyme responsible has not been identified (Rosengren et al., 2003).  

These enzymes will likely be exploited to produce cyclic peptides as the demand for genetically 

encoded libraries of cyclic peptides increases.    

Naturally occurring split inteins have been permutated to express genetically encoded 

cyclic peptides  (Scott et al., 1999; Tavassoli and Benkovic, 2007; Scott et al., 2001; Abel-

Santos et al., 2003; Horswill et al., 2004; Naumann et al., 2005; Horswill and Benkovic, 2005; 

Horswill and Benkovic, 2006).  Combinatorial libraries of cyclic peptides have been created 

and genetically screened in forward and reverse assays to isolate inhibitors of biological 

processes  (Kinsella et al., 2002), enzyme activities  (Kritzer et al., 2009; Cheng et al., 2007; 

Naumann et al., 2008) and protein interactions  (Tavassoli and Benkovic, 2005; Tavassoli et al., 

2008). 

1.5.11  Scaffold summary 
Antibodies are the most sophisticated scaffolds but they are expensive to produce, 

difficult to deliver, and are optimized for extracellular expression.  Until the hurdles of using 

antibodies in intracellular environments are overcome, there will be motivation to develop 

alternate affinity reagents.  Further, antibodies interact with antigen primarily through tyrosine  

(Koide and Sidhu, 2009).  This could be a result of their finger like structure, which may 

sterically limit the type of surfaces an antibody can bind and prevent them from binding small 

clefts and protein active sites  (Stijlemans et al., 2004; De Genst et al., 2006; Lauwereys et al., 

1998).  Therefore, a mixture of different scaffolds or proteins may be required to obtain affinity 

agents against the entire spectrum of protein surfaces.  

Many scaffolds have been commercialized and are being tested in clinical trials (Table 

1.1).  Most scaffolds are based on proteins whose natural function is to bind a variety of 

different molecules and are composed of a structured region and a variable region.  Evolution 

has had years to optimize these scaffolds to bind their selected targets.  Using these proteins 

capitalizes on the years of natural selection and modifying these proteins for new applications is 

often a very successful strategy.  
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Engineered monoclonal antibodies have been around for over thirty years and have only 

recently been used successfully as drugs  (Laffly and Sodoyer, 2005).  Engineered peptide 

aptamers based on the TrxA scaffold were initially developed fourteen years ago  (Lu et al., 

1995; Colas et al., 1996).  Although few if any of these scaffolds are FDA approved drugs, 

many of them are now in clinical trials.  Antibodies and antibody fragments have many 

significant drawbacks for use in therapeutic applications.  These include overcoming their 

immunogenicity, poor cell and tissue penetrance, and difficulties in isolating them for 

therapeutic purposes.  However, due to the huge potential of these molecules as therapeutics, 

many of these hurdles have been overcome and they are now successfully used to treat a variety 

of disease.  As FDA approval of antibody-based drugs continues the number of antibody 

fragments and other peptide reagents in clinical trials should continue to increase (Aires da 

Silva et al., 2008). 

Cyclic peptides are desired therapeutic reagents since they are small, stable, and have 

high affinity for their targets  (Finking and Marahiel, 2004; Craik, 2006).  Cyclic peptides are 

typically isolated from natural sources or from chemically synthesized libraries.  Natural 

sources of cyclic peptides include microorganisms, plants, and marine organisms  (Craik et al., 

2002; Berer et al., 2004).  Cyclosporine is an example of a successful therapeutic cyclic peptide 

derived from a natural source  (Borel, 2002).  Cyclosporine is a potent, orally bioavailable 

cyclic peptide that suppresses the immune system.  Although cyclic peptides have already been 

shown to be useful drugs, identifying therapeutic cyclic peptides is a difficult process, creating 

a bottleneck in their discovery and subsequent use.  

Natural sources of cyclic peptides are composed of complex mixtures of peptides and 

small molecules.  Identifying the active cyclic peptide from these complex mixtures is a 

difficult process (Escoubas et al., 2008), which impedes the discovery of therapeutic cyclic 

peptides.  To avoid this problem, chemically synthesized libraries of cyclic peptides are used 

(Baldwin, 1996; Edwards and Morrell, 2002; Huwe, 2006).  Chemically synthesized libraries of 

cyclic peptides can be assayed individually or in small pools to facilitate the identification of 

active cyclic peptides.  However, these screens are limited by the number of assays that can be 

performed  (Tan, 2005; Webb, 2005). 

A reverse genetic selection method to isolate cyclic peptides that interact with any given 

target in vivo would allow the rapid identification of potentially therapeutic cyclic peptides, 
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alleviating this bottleneck.  Reverse genetic selection methods unlike conventional screening of 

biological derived or chemically synthesized cyclic peptides can be performed in a high-

throughput manner and are amenable to a wide variety of targets.  Reverse genetic screens offer 

four main advantages for isolating cyclic peptides against a given target.  First, a reverse 

genetic screen unlike a forward screen selects directly for the ability of a cyclic peptide to bind 

the target of interest allowing specific proteins rather than phenotypes to be targeted.  Second, 

the amino acid sequence of the active cyclic peptide is directly determined from the DNA 

encoding it simplifying the identification of the cyclic peptide with the desired activity.  Third, 

synthetic oligonucleotides and current cloning techniques make it easy to produce large 

combinatorial peptide libraries allowing large numbers of cyclic peptides to be screened.  

Finally, in vivo selections allow peptides to be selected in an intracellular environment, which is 

useful for peptides that target intracellular proteins. 

1.6 Intein-based synthesis of cyclic peptides 

1.6.1 Intein background 

Inteins are naturally occurring self-splicing proteins  (Gogarten et al., 2002).  Inteins are 

thought to be parasitic genetic elements, which exist solely to propagate themselves  (Gogarten 

and Hilario, 2006).  Many inteins contain a homing endonuclease domain, which functions to 

propagate inteins by cleaving target genes lacking the intein and allowing the intein to be 

recombined into this site (Gogarten and Hilario, 2006).  Inteins are the protein analogue of self-

splicing introns, whereby introns interrupt mature mRNA and remove themselves post-

transcriptionally, inteins interrupt mature proteins and remove themselves post-translationally.  

Exteins are the mature protein equivalent of an exon  (Gogarten et al., 2002).  Inteins remove 

themselves from the precursor protein, which results in joining of exteins and production of the 

mature protein (Figure 1.8a).  Naturally occurring inteins have also been found that act in trans.  

These inteins are referred to as split-inteins and they express the N-Extein:N-Intein as a 

separate protein from the C-Intein:C-Extein.  The N-Intein (IN) and the C-Intein (IC) associate 

and ligate exteins together (Figure 1.8b).  Trans-splicing inteins have been permutated to 

produce amide-cyclized (lactam) proteins and peptides (Scott et al., 1999) (Figure 1.8c). 
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Figure 1.8 | Overview of intein-mediated protein splicing 
(a) Self-splicing intein reaction.  Intein domains (black) catalyze a self-splicing reaction that 
results in the extein domain fusion (white).  (b) Split-intein reaction.  Intein and extein domains 
are expressed separately.  Interaction of the intein domains results in the ligation of exteins.  (c) 
Intein-cyclization reaction.  The orders of the intein domains relative to the extein domains are 
permutated.  Intein domains fold together and catalyze cyclization of the extein domain. 
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1.6.2  Intein Nomenclature 

1.6.2.1 Intein genes 
Inteins are named by the organism the intein is found in, followed by the gene the intein 

disrupts.  The organism’s name is generally italicized and given a three-letter abbreviation.  The 

first letter in the abbreviation comes from the first letter of the genus and the second and third 

letters are the first two letters of the species.  For example, an intein found in Synechocystis 

species is abbreviated Ssp (letters used to form the abbreviation are underlined).  The second 

part of the intein gene name is the abbreviation of the gene that is interrupted by the intein.  For 

example, if in Ssp the DNA polymerase III alpha subunit (DnaE) gene is interrupted, then the 

full intein name is Ssp DnaE.  If there is more than one intein found in the same gene, a suffix 

after the gene name is added to denote the order in the DNA sequence (5` – 3`) in which the 

intein occurs.  For example, if two inteins disrupt the DnaE gene in Synechocystis species they 

would be named Ssp DnaE1-1 and Ssp DnaE1-2.  For inteins that contain an endonuclease 

domain, where the endonuclease activity is confirmed, the convention is to add the prefix ‘PI’.  

An additional suffix ‘-n’ or ‘-c’ is included for split inteins, ‘-n’ refers to the N-terminal domain 

of the intein, and ‘-c’ refers to the C-terminal domain of the intein.  The Ssp DnaE intein is a 

split intein and thus the separate domains are referred to as Ssp DnaE-n and Ssp DnaE-c, which 

are abbreviated IN and IC, respectively. 

1.6.2.2 Intein amino acid numbering 
A numbering scheme has been developed to assist in comparing heterologous or foreign 

inteins to each other.  This convention numbers amino acids in inteins sequentially from the N-

terminus to the C-terminus beginning with the first residue of the intein and ending with the last 

residue of the intein.  This becomes confusing when comparing amino acids far from splice 

sites or when comparing natural inteins to split-inteins and permutated inteins that are used to 

cyclize proteins.  Therefore, the following numbering schemes will be used: The IN intein 

domain will be numbered [IN+1, IN+2, IN+3, …] from N-terminus to C-terminus.  The extein will 

be numbered from the C-terminus to the N-terminus [IN-1, IN-2, IN-3, …] or from the N-terminus 

to the C-terminus [IC+1, IC+2, IC+3, …].  The IC intein domain is thus numbered [IC-1, IC-2, IC-3, …] 

going from the C-terminus to the N-terminus of the intein  (Perler, 2002) (Figure 1.9).  We 

developed an additional numbering system to compare conserved amino acids sites that are not  
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Figure 1.9 | Intein amino acid numbering scheme 
The IC domain contains conserved blocks F and G.  The IN domain contains conserved blocks A 
and B.  Conserved amino acids are numbered according to their block number and position.  An 
enlargement of the splice site at the IC-Extein-IN boundaries is shown.  The IC intein is 
numbered from C-terminus to N-terminus [IC-1, IC-2, IC-3 …] or according to block and position 
G1-8 and F1-16.  The IN intein is numbered from the N-terminus to the C-terminus [IN+1, IN+2, 
IN+3 … ] or according to block and position A1-13 and B1-14.  The extein is numbered from N-
terminus to C-terminus [IC+1, IC+2, IC+3, … , IN-3, IN-2, IN-1].  The consensus sequence is derived 
from the analysis of more than 300 known inteins  (Perler, 2002).  Abbreviations are as follows: 
Uppercase: conserved amino acid from single letter amino acid code.  Lowercase: r = Aromatic 
(F,Y,W); a = Acidic (D,E); h = Hydrophobic (G,V,I,L,A,M); p = Polar (S,T,C); . = Non-
conserved; * = Gap used to align sequences. 

 

close to the splice site between different inteins.  To facilitate referring to these conserved 

amino acids, we used a numbering scheme based on conserved intein motifs.  Several 

conserved motifs have been identified by comparing intein amino acid sequences.  There are 

two nomenclatures for these motifs: (i) Blocks A, B, C, D, E, H, F, G (Pietrokovski, 1994; 

Telenti et al., 1997) and (ii) Blocks N1, N3, EN1, EN2, EN3, EN4, C2 and C1  (Pietrokovski, 

1998).  We used the A, B, C, D, E, H, F, G nomenclature and each amino acid was assigned to 

a conserved block with a number from N-terminus to C-terminus.  For example, IC+1 is the 

eighth amino acid from the N-terminus in block G and can also be labeled G8.  Similarly, IN+1, 
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which is the first amino acid from the N-terminus of block A, can also be labeled A1.  The IN 

intein domain contains blocks A and B and the IC intein domain contains blocks F and G.  The 

region to be cyclized or the extein is numbered from N-terminus to C-terminus [IC+1, IC+2, 

IC+3,…, IN-3, IN-2, IN-1] (See Figure 1.9 for overview of numbering scheme).  For amino acids 

within five amino acids of the splice junctions, we named them using both conventions.  Amino 

acids further than five amino acids from the splice site were referred to only using their 

conserved block letter and amino acid number.  Although the IN and IC nomenclature is 

somewhat confusing when discussing permutated inteins where the IC domain is found at the N-

terminus and the IN domain is found at the C-terminus, this nomenclature is preserved so amino 

acids within the permutated inteins can still be directly compared with their nonpermutated 

counterparts. 

1.6.3 Intein-mediated protein splicing 
There are two known mechanisms for intein-mediated protein splicing.  The first 

mechanism is the most common and is referred to as the “standard” mechanism.  The second 

less common mechanism is referred to as the “alternative” mechanism.  These mechanisms are 

based on three amino acids that have been identified as crucial to intein splicing (IC+1 (G8), IC-1 

(G7), and IN+1 (A1)). 

1.6.3.1 Standard mechanism of intein-mediated protein splicing 

In the standard intein mechanism for protein splicing there are four steps (Figure 1.10).  

Step 1 involves an N-X acyl shift where X is sulfur or oxygen, depending on whether cysteine 

or serine occurs at position IN+1 (A1).  The acyl shift introduces a (thio)-ester into the amide 

backbone of the protein between IN+1 (A1) and IN-1.  Ester and thio-ester bonds are more labile 

than amide bonds and thus provide good leaving groups for the transesterification reaction in 

Step 2.  Formation of the ester bond also positions the (thio)-ester bond for attack by the IC+1 

(G8) cysteine, serine, or threonine nucleophile in Step 2  (Southworth et al., 2000; Poland et al., 

2000).  Step 2 involves a transesterification reaction with cysteine, serine, or threonine at 

position IC+1 (G8), acting as a nucleophile that reacts with the thioester or ester bond formed in 

the Step 1.  This results in the cleavage of the IN domain from the intein between amino acids at 

positions IN+1(A1) and IN-1 and the formation of a branched intermediate via a thioester or ester 

bond between IC+1  (G8) and IN-1.  Step 3 involves an asparagine cyclization reaction that  
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Figure 1.10 | Standard mechanism of intein-mediated protein splicing 
(i) Cysteine or serine at the IN+1 (A1) position undergoes an N-X acyl shift.  (ii) Serine, 
threonine, or cysteine at the IC+1 (G8) position undergoes a nucleophilic attack on the ester or 
thioester formed in step 1, which released the IN domain is then released.  (iii) Asparagine at the 
IC-1 (G7) position undergoes a cyclization reaction to release the IC domain and produce the 
linear extein joined by an (thio)ester bond.  (iv) The (thio)ester bond spontaneously rearranges 
to form a stable amide bond and the mature extein.  “X” represents either sulfur or oxygen 
depending if side chain is cysteine, serine, or threonine. 



 - 41 - 

cleaves the amide bond, connecting amino acids at positions IC+1 (G8) and IC-1 (G7), and 

releases the extein, which contains a thioester or ester bond between IC+1 (G8) and IN-1.  In Step 

4, the ester bond is converted to an amide bond between IC+1 (G8) and IN-1 in the extein. 

1.6.3.2  Alternative mechanism of intein-mediated protein splicing 
In addition to the standard mechanism of intein splicing, there is at least one alternative 

mechanism that has been described  (Southworth et al., 2000).  The alternative mechanism of 

intein-mediated protein splicing consists of only three steps.  In the alternative mechanism there 

is no N-X acyl shift (Step 1 in standard mechanism).  Inteins that use the alternative mechanism 

generally have serine or cysteine at position IN+1 (A1) replaced by alanine.  Alanine occurs at 

IN+1 (A1) in 25/344 inteins in InBase  (Perler, 2002) and these inteins likely undergo this 

alternative splicing mechanism.  Inteins that have alanine at position IN+1 (A1) undergo a direct 

nucleophilic attack on the peptide backbone between IN-1 and IN+1 (A1) using the amino acid at 

position IC+1 (G8) (Figure 1.11) (Southworth et al., 2000), which introduces an ester or thioester 

bond between the IC+1 amino acid and the IN-1 amino acid.  The N-X acyl shift that occurs in 

Step 1 of the standard mechanism is not needed in inteins that use this alternative mechanism.  

The amide bond in these inteins is already aligned for direct attack by the nucleophile at IC+1 

(G8) and therefore they do not need the extension in the backbone caused by the N-X acyl shift  

(Southworth et al., 2000; Poland et al., 2000).  The remaining steps are the same as described 

for the standard mechanism. 

1.6.4 Conserved amino acids in intein-mediated splicing  
Based on 344 intein sequences in the InBase database (Perler, 2002), the majority 

(315/344) of sequences contain either cysteine (281 inteins) or serine (34 inteins) at position 

IN+1 (A1), which is involved in Step 1 of intein processing.  These inteins most likely undergo 

the standard splicing mechanism.  Twenty-five inteins (25/344) contain alanine at position IN+1 

(A1) and therefore they most likely undergo the alternative mechanism of splicing.  Two other 

amino acids that are highly conserved and are thought to be essential for proper intein splicing 

are located at positions IC+1 (G8) and IC-1 (G7), which are involved in Steps 2 and 3, 

respectively.  The IC+1 (G8) amino acid is most frequently cysteine (139 inteins), serine (120 

inteins), or threonine (81 inteins).  The IC-1 (G7) amino acid is almost exclusively asparagine  
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Figure 1.11 | Alternative mechanism of intein-mediated protein splicing  
(i) In the alternative mechanism cysteine or serine at the IC+1 (G8) position directly attacks the 
carbonyl group of the IN+2 (A2) amino acid.  The IN domain is released and an (thio)ester bond 
is introduced between the extein domains.  (ii) Asparagine at the IC-1 (G7) position undergoes a 
cyclization reaction to release the IC domain and produce the linear extein joined by an 
(thio)ester bond.  (iii) The (thio)ester bond spontaneously rearranges to form a stable amide 
bond and the mature extein.  “X” represents either sulfur or oxygen depending if side chain is 
cysteine, serine, or threonine. 
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(327 inteins) although sometimes glutamine (15 inteins), which may also undergo cyclization  

(Pietrokovski, 1998) is present. 

Other amino acids have also been observed at the three positions (IC+1 (G8), IC-1 (G7), 

and IN+1 (A1)) that are directly involved in splicing.  These inteins may use a mechanism for 

intein splicing that is different from the standard or alternative mechanisms.  For example, 

glutamine occurs at position IC-1 (G7) in place of asparagine and undergoes a similar cyclization 

reaction  (Pietrokovski, 1998).  Aspartic acid also occurs at IC-1 (G7) in place of asparagine in 

one intein but the intein still undergoes splicing  (Amitai et al., 2004).  It was originally thought 

that aspartic acid like asparagine would undergo cyclization.  However, this intein is capable of 

splicing even if aspartic acid IC-1 (G7) is mutated to alanine, which cannot undergo cyclization, 

indicating that there are still undetermined non-standard mechanisms for intein splicing (Amitai 

et al., 2004). 

1.6.5  Intein-mediated protein ligation 
Inteins have been used to ligate peptides to other proteins (Xia et al., 2008; Wood et al., 

2004; Evans et al., 1999; Ludwig et al., 2009).  Protein ligation can be performed between two 

peptides; one containing a reactive cysteine at the N-terminus and one containing a thioester at 

the C-terminus.  Proteins used in ligation reactions can be either synthesized or expressed and 

purified from cells.  Cellular expression is typically cheaper and allows larger proteins to be 

used.  The main problem with using proteins produced in cells is introducing the reactive 

groups.  Proteases have been successfully used to introduce cysteines at the N-terminus of 

proteins  (Erlanson et al., 1996).  Alternatively, inteins have been engineered to produce tagless 

peptides/proteins that have either a cysteine at their N-terminus or a reactive thioester at their 

C-terminus (Figure 1.12).  Extracellular protein ligation using inteins has also been exploited 

for segmental isotopic labeling (Züger and Iwai, 2005; Muona et al., 2008; Busche et al., 2009; 

Aranko et al., 2009).  Segmental isotopic labeling is used to study large proteins and domains 

with NMR.  The technique uses partially labeled proteins and NMR to visualize small, labeled 

segments present in the context of a large unlabeled protein. 
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Figure 1.12 | In vitro intein-mediated protein ligation  
(a) N-terminal fusion generating a peptide with a reactive C-terminal thioester.  The protein 
target is fused to the N-terminus of an intein that cannot undergo asparagine cyclization since it 
is blocked by mutating asparagine (IC-1

 (G7)) to alanine.  (i) N-S acyl shift.  Step 1 in intein 
processing introduces a thioester between the extein and the intein.  (ii) MENSA-induced 
cleavage.  The thioester formed in Step (i) is attacked by MENSA, which introduces a C-
terminal thioester on the protein of interest.  (iii) Elution from column.  The intein remains 
attached to the column through an affinity tag.  The modified extein is released from the 
column.  (iv) Protein ligation.  The extein containing the C-terminal thioester interacts with a 
N-terminal cysteine to produce a ligated protein.  (v) S-N acyl shift.  The final step is an S-N 
acyl shift resulting in the two proteins being joined by an amide bond.  (b) C-terminal fusion, 
generating a peptide with a N-terminal cysteine.  The protein target is fused to the C-terminus 
of an intein that cannot undergo an N-S acyl shift since it is blocked by mutating cysteine 
(IN+1(A1)) to alanine.  (i) Asparagine cyclization is induced by a shift in pH or temperature, 
resulting in the release of the extein with a N-terminal cysteine.  The remaining steps are as 
described above. (a) or (b) can be used in conjunction with a synthetic peptide or both products 
can be generated via an intein reaction. 
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1.6.5.1 Extracellular intein-mediated protein ligation 
Inteins can be used to ligate proteins outside of cells.  Full-length inteins are mutated to 

allow either N-terminal or C-terminal cleavage (Figure 1.12).  Engineered inteins that do not 

undergo N-terminal cleavage but allow C-terminal cleavage can be used to incorporate a 

reactive cysteine at the N-terminus of a protein.  The cysteine at the N-terminus can be used for 

intein-mediated protein ligation (IPL) (Figure 1.12)  (Wu et al., 1998; Chong et al., 1998; 

Chong et al., 1998).  The N to S acyl shift reaction in the intein is blocked by mutating the 

cysteine at IN+1 to alanine.  The intein still undergoes inducible C-terminal cleavage through 

asparagine cyclization  (Mathys et al., 1999), which results in the release of the target protein 

with a cysteine at the N-terminus.  

Alternatively, a reactive thioester at the C-terminus of the target protein can be 

generated by creating an N-terminal fusion to modified inteins (Telenti et al., 1997).  Modified 

inteins are fused to the C-terminus of the target protein.  These inteins have their C-terminus 

asparagine (IC+1) mutated to alanine, which blocks asparagine cyclization.  The thioester linkage 

at the extein-IN junction forms, but the intein does not process further.  The thioester is cleaved 

using 1,4-dithiothreitol (DTT), beta-mercaptoethanol, cysteine, or 2-mercaptoethanesulfonic 

acid.  Using 2-mercaptoethanesulfonic acid (MENSA) results in a reactive thioester at the C-

terminus of the protein  (Chong et al., 1997; Chong et al., 1998; Evans et al., 1998; Southworth 

et al., 1999).  

1.6.5.2 Intracellular intein-mediated protein ligation 
Inteins can be used for intracellular protein ligation (Giriat and Muir, 2003).  

Engineered split inteins, where the exteins are replaced with foreign genes, allow expression of 

two separate proteins under the control of different promoters.  Each protein is fused to one half 

of the split intein.  Co-expression of the two proteins results in ligation of the two target 

proteins in vivo using natural intein processing (Figure 1.8).  Alternatively, a synthetic peptide 

can be created as a fusion with one split intein in vitro, which can then be delivered into the cell 

where protein ligation occurs in vivo  (Giriat and Muir, 2003).  
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1.6.6 Intein-mediated protein cyclization 

1.6.6.1 In vitro protein cyclization 
Cyclic peptides or proteins can be generated in vitro using the methods described for in 

vitro protein ligation (Section 1.6.5.1) (Figure 1.13).  In this system the target gene is flanked at 

the N-terminus by the full length Ssp DnaB intein, which has been modified so that the N-S 

acyl shift does not occur  (Step 1 in Figure 1.13).  The target gene is flanked at the C-terminus 

by a second intein (Mxe or Mth) that is modified to prevent asparagine cyclization (Step 3 in 

Figure 1.13).  The C-terminal intein also has an affinity tag that allows it to be immobilized on 

a column.  The protein is purified using an affinity column and then the Ssp DnaB intein is 

activated to undergo C-terminal cleavage, either through a change in pH or temperature, which 

exposes a cysteine at the N-terminus of the protein.  The protein is still attached to the column 

through the C-terminal fusion with the Mxe or Mth intein affinity tag.  The second intein 

undergoes the N-S acyl shift to produce the thioester between the extein-IN junction, which is 

then cleaved by MENSA and releases the target protein with a C-terminal reactive thioester.  

An intramolecular reaction between the N-terminal reactive cysteine and the C-terminal 

reactive thioester results in the cyclization of the target protein (Figure 1.13). 

1.6.6.2 Intracellular protein cyclization 

Methods have been developed that use engineered inteins to produce lactam peptides in 

vivo (Horswill et al., 2004; Tavassoli and Benkovic, 2005).  Intracellular protein cyclization 

uses naturally occurring split inteins.  The IN and IC domains are permutated to flank the peptide 

region to be cyclized.  The affinity of these two domains brings the splice regions close 

together, facilitating and improving the efficiency of protein splicing and allowing it to occur in 

vivo.  The final gene construct consists of an IC domain:target-protein:IN domain fusion.  The 

intein undergoes the standard splicing mechanism (Figure 1.14).  In Step 1, the side chain 

cysteine at IN+1 (A1) attacks the IN-1 carbonyl group, which results in a thioester bond at the 

extein-intein junction.  In Step 2, the serine at IC+1 attacks the thioester bond, resulting in a 

lactone containing intermediate or “lariat”, which is analogous to the branched intermediate in 

the standard mechanism (Figure 1.10).  In Step 3, the asparagine side chain at position IC-1/G7) 

cyclizes, producing a succinimide and releasing the extein from the intein.  The extein is now 

cyclized by a lactone bond, which is resolved into the thermodynamically favored lactam bond  
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Figure 1.13 | In vitro intein-mediated protein cyclization 
Two modified full-length inteins are used to cyclize exteins.  Intein 1 has its N-terminal 
splicing reaction blocked.  Intein 2 has its C-terminal splicing reaction blocked.  (i) Intein 1 
undergoes C-terminal cleavage through asparagine cyclization.  (ii) Intein 2 undergoes N-S acyl 
shift.  (iii) 2-mercaptoethanesulfonic acid (MENSA) is added to produce the thioester at the C-
terminus of the extein.  (iv) An intramolecular reaction between N-terminal cysteine and the 
reactive C-terminal thioester results in extein cyclization.  (v) The mature amide cyclic peptide 
is produced by an S-N acyl shift,  
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Figure 1.14 | In vivo intein-mediated protein cyclization 
(i) Cysteine at position IN+1 undergoes an N-X acyl shift.  (ii) Serine at the IC+1 positions 
undergoes a nucleophilic attack on the thioester formed in Step 1.  The IN domain is displaced, 
resulting in the formation of the lactone product.  (iii) Asparagine at IC+2 position undergoes a 
cyclization reaction to release the IC domain and produce the lactone-cyclized peptide.  (iv) The 
lactone or thioester bond spontaneously isomerizes to a lactam.  Where “X” represents either 
sulfur or oxygen depending if side chain is cysteine, serine, or threonine. 
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by a final X-N acyl shift.  The result is an amide or lactam cyclized peptide with no free N or C 

–terminus (Figure 1.14). 

1.7 Applications of peptide affinity reagents 

1.7.1 Therapeutic target discovery and validation 
Peptide affinity reagents can be used to validate the therapeutic potential of protein 

targets.  Initially, siRNA/miRNA can be used to identify proteins that are candidate drug 

targets.  Peptide affinity reagents can then be used to validate these as small molecule drug 

targets since siRNA/miRNA removes the target protein while peptide affinity reagents do not.  

Peptide affinity reagents can be co-expressed inside of cells and the effect on the pathways of 

interest and therapeutic potential of the target can be determined.  In addition, peptide affinity 

reagents can be used to identify protein surface(s) to design small molecule inhibitors against  

(Bardou et al., 2009).  Small molecules that mimic the peptide interaction can be selected using 

three hybrid assays that displace the peptide affinity reagent.  Alternatively, if a peptide/target 

structure is available, then this information can be used to design small molecule inhibitors.  

Peptide affinity reagents can be used to target different protein conformations 

(Pamonsinlapatham et al., 2008; Davis et al., 2009), which allows specific alleles or post-

translationally modified proteins to be inhibited.  For example, point mutations that make a 

protein constitutively active can be specifically targeted either for selective inhibition or 

targeted destruction  (McLean et al., 2009; Colas et al., 2000). 

Peptide affinity agents can be used to target protein-protein interactions.  Protein 

interaction surfaces represent a major source of drug targets, which have proven to be difficult 

to target using conventional small molecule approaches (Cochran, 2000; Toogood, 2002; Berg, 

2003).  Peptide based therapeutics share the same functional groups as the interactions they are 

disrupting and therefore should be able to mimic and block any protein-protein interaction.  

1.7.2 Therapeutics 
Peptides, like antibodies, have the potential to be used as drugs against extracellular 

targets.  Peptides can be injected intravenously to target extracellular targets.  Cell specific, 

tissue specific, or organ specific peptides can be coupled to toxic chemicals, allowing cytotoxic 

drugs to be delivered in high concentrations to a targeted cell population.  This allows lower 

doses of drugs to be used since they are concentrated by localizing the drug to the target  
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(Ruoslahti, 2000).  As methods for intracellular delivery of peptides progresses peptide affinity 

reagents will begin to be used as intracellular drugs.  A variety of strategies have been 

developed to deliver peptides and proteins into cells.  One strategy is to attach a protein tag that 

can deliver the peptide to the inside of the cell, also known as cell penetrating peptides (CPP) or 

protein transduction domains (PTD).  The TAT-tag is from the HIV-1-derived Tat-peptide 

sequence and is used for intracellular peptide delivery (Wadia and Dowdy, 2003).  Penetratin, 

transportan, and MAP (KLAL) peptides have also been used for intracellular delivery 

(Hällbrink et al., 2001; Thorén et al., 2005).  Oligofusion proteins contain basic amino acid 

repeats are also delivered into cells  (Han et al., 2001; Futaki et al., 2007).  The intracellular 

uptake of peptides can also be improved by modifying amino acids.  For example, peptide 

myristoylation has been shown to deliver peptides and proteins into cells  (Nelson et al., 2007; 

Dalton et al., 2005; Ioannides et al., 1990).  Peptides localization sequences can also be fused to 

peptide affinity reagents to localize them to specific tissues or organs within the human body.  

This offers increased control of peptide delivery.  Peptides have been isolated that cross the 

gastrointestinal mucosal barrier  (Duerr et al., 2004), which is crucial for oral delivery of 

peptides.  Peptides have also been isolated that can cross the blood-brain barrier  (Pasqualini 

and Ruoslahti, 1996), offering a unique opportunity to target peptides specifically to the brain.  

1.7.3 Disease diagnostics and prognosis 
Peptide affinity reagents can be used to visualize cell populations in a living organism 

using covalently attached fluorescent molecules or radiolabelled dyes (Zehnder-Fjällman et al., 

2007; Tolmachev et al., 2006; Schaedel and Reiter, 2006).  Tumors can be visualized, allowing 

for surgical removal or the diagnosis of metastasis  (Schaedel and Reiter, 2006).  Another 

potential diagnostic application of peptide affinity reagents is to make peptide microarrays, 

which through biomarker analysis improves diagnostics and can be used to guide treatment, 

forming the basis of personalized medicine (Ghadimi and Grade, 2010; Zhang et al., 2009).  

1.7.4 Basic research 

Peptide affinity reagents can also be used for basic research.  Antibodies typically used 

in Western blot analysis to determine protein abundance, modifications, and isoforms can be 

replaced with peptide affinity reagents.  Western blot analysis is considered semi-quantitative 

since it involves numerous processing steps and the efficiency of protein transfer to 
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nitrocellulose varies between different proteins.  Ideally, protein quantification inside of cells 

would be performed since it would skip these processing steps.  Peptide affinity reagents unable 

to cross membranes could be used with standard fixation and permeabilization methods to gain 

access inside the cells.  Peptide affinity reagents able to cross cell membranes would allow in-

cell Western blot analysis on living cells.  Furthermore, peptide affinity reagents are cheaper to 

synthesize and are more stable than antibodies, and can be used to replace antibodies in assays 

including immunoprecipitations, chromatin immunoprecipitations, fluorescent activated cell 

sorting, and immunohistochemistry. 
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2 Hypothesis and specific aims 
The ease of generating genetically encoded combinatorial peptide libraries provides a 

readily available source of peptides that can be used to isolate inhibitors against a target of 

interest.  Previously, this approach has been limited to linear peptides or peptides displayed and 

constrained on the surface of scaffold proteins.  These approaches, however, suffer from a 

variety of limitations including poor stability, non-specific scaffold interactions and large size.   

To target intracellular proteins, cyclic peptides must be able to retain their structure 

inside of cells, which excludes the use of peptides that are cyclized via disulfide bonds.  Two 

methods to screen combinatorial libraries of cyclic peptides not constrained by a disulfide bond, 

but using genetic techniques have been published  (Scott et al., 1999; Millward et al., 2007).  In 

one method, genetically encoded libraries of peptides are chemically crosslinked to produce 

side-chain to N-terminus cyclized peptides  (Millward et al., 2007).  In the other method, 

inteins are used to produce lactam-cyclized “head-to-tail” peptides, which are covalently 

cyclized through an amide bond  (Scott et al., 1999). 

Millward et al., have developed a strategy to cyclize peptides via chemical crosslinkers, 

which form a bond between the N-terminus and an internal lysine side chain forming cyclic 

peptides that have a free C-terminus  (Millward et al., 2007).  These peptides are crosslinked at 

the C-terminus to the mRNA encoding them and selected using mRNA display  (Millward et 

al., 2007).  Due to the way the peptides are crosslinked to form cyclic peptides the selection 

cannot be performed in vivo.  Therefore this method is limited to in vitro selection systems, 

which require the target protein to be purified and may not be optimized to interact with their 

target intracellularily. 

Lactam peptide cyclization produces peptides with no free N- or C- terminus.  This 

strategy has been used to produce and screen genetically encoded libraries of lactam peptides in 

vivo  (Tavassoli and Benkovic, 2007; Scott et al., 1999; Scott et al., 2001; Abel-Santos et al., 

2003; Horswill et al., 2004; Naumann et al., 2005; Horswill and Benkovic, 2005; Horswill and 

Benkovic, 2006).  Lactam peptides have been isolated that reduce the toxicity of alpha-

synuclein, a major factor in Parkinson’s disease  (Kritzer et al., 2009), block IL-4 mediated IgE 

class switching  (Kinsella et al., 2002), block AICAR transformylase homodimerization 
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Figure 2.1 | Creating a lactone peptide or lariat 
 (a) Naturally occurring inteins contain an intein domain flanked on both sides by N- and C-
terminal exteins.  Intein processing results in the excision of the intein and a joining of the 
exteins.  (b) Lactam peptide producing inteins are generated by permutating the order of the 
inteins and exteins.  Intein processing results in the cyclization of the extein and cleavage of the 
C-and N-intein domains (c) Lariat producing inteins are generated by mutating the cyclic 
peptide intein so that the reaction is blocked at an intermediate step where only the N-intein is 
cleaved.  The lariat intein produces a lactone peptide, which retains the C-intein domain. 
 

 

(Tavassoli and Benkovic, 2005), inhibit ClpXP protease  (Cheng et al., 2007), block HIV 

budding via the Gag-TSG101 interaction  (Tavassoli et al., 2008), and inhibit DAM 

methyltransferase activity  (Naumann et al., 2008).  Strategies used to isolate the above lactam 

peptides are based on one of three screening methodologies: (i) forward screens, which isolate 

cyclic peptides that inhibit a phenotype, (ii) reverse screens that are only applicable to specific 

target, or (iii) three-hybrid system where a known protein-protein interaction is disrupted.  The 

first two strategies share the common problem of requiring specialized screens for each target 
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and are therefore not generally applicable.  The third strategy limits the activity of the selected 

cyclic peptide to disrupting a protein-protein interaction.  Even with the limited screening 

methodologies that can be used to isolate lactam-cyclized peptides, the number of cyclic 

peptides that have been isolated demonstrates the power of reverse genetic screens that can be 

performed in vivo.  Reverse genetic screening strategies that can be used with lactam peptides 

are limited since protein fusion domains cannot be attached to them.  The ability to genetically 

encode cyclic peptides that are fused to various protein domains would allow a wider variety of 

reverse genetic selection methods to be used to isolate cyclic peptides.  For example, 

attachment of transcription activation domains and phage coat proteins would allow phage 

display and Y2H assays to be used to isolate cyclic peptides. 

Although libraries of genetically-encoded lactam or cross-linked peptides can be 

screened they cannot be used in an in vivo reverse screen.  Lactam peptides have no free N- or 

C-terminus (Figure 2.1) and thus cannot be used in the Y2H assay.  A peptide cyclized through 

its side-chain to either the N- or C-terminus results in lariat structure with a free end terminus 

that can be fused to protein domains (Figure 2.1).  By permutating the IN and IC domains of an 

intein to flank a continuous extein a lactam peptide can be produced  (Scott et al., 1999) (Figure 

2.1).  We hypothesized that the intein could be engineered to produce a lactone peptide; we 

refer to this specialized lactone as a lariat.  We proposed that lariat structures could be produced 

by blocking the lactam peptide reaction at an intermediate step where the lariat is formed 

(Figure 2.1).  Lariats have a free N-terminus that can be used for multiple fusion domains, 

including a transcriptional activation domain, which is required for the Y2H assay.  To date, no 

methods have been developed to screen cyclic peptides against a specific target using a genetic 

assay such as the Y2H assay.  The objective of this thesis was to develop new technology to 

isolate cyclic peptide inhibitors against proteins targets using the Y2H assay.  To achieve this 

objective, the following aims were pursued. 

2.1 Specific Aim 1: Construct lariat peptides 
In Aim 1, methods were developed to construct a mutant intein that produced a lactone-

cyclized peptide with a covalently attached N-terminus linear peptide “tail”, referred to as a 

“lariat”.  Combinatorial libraries of lariat peptides were constructed and methods to screen the 

lariat libraries using the Y2H assay were developed. 
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2.2 Specific Aim 2: Optimization of lariat technology 
In Aim 2, an alternative intein that was more permissive to amino acids at the splice 

junction was constructed and mutations were introduced to stabilize the lariat. 

2.3 Specific Aim 3: Selection and characterization of lariat inhibitors of 
LexA 

In Aim 3, the feasibility of the lariat screening assay was tested by isolating lariat 

inhibitors of the bacterial repressor protein LexA. 
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3 Materials and Methods 

3.1 General information and protocols 

3.1.1 Reagents and suppliers 
General lab reagents and supplies were obtained from VWR.  The suppliers and their 

addresses are shown in Table 3.1.  Other non-standard reagents used in this study are shown in 

Table 3.2.  Enzymes are listed in Table 3.3 and antibodies are listed in Table 3.4.  Specialized 

lab equipment is listed in Table 3.5.  Reagents to make media are listed in Table 3.6.  

Oligonucleotides are listed in Table 3.7. 

 

Table 3.1 | List of suppliers’ addresses 
Supplier Address 

Alfa Aesar Ward Hill, Massachusetts, USA 
Amersham (GE) Baie d'Urfe, Quebec, Canada 
BD Biosciences Mississauga, Ontario, Canada 
BiaCore Life Sciences (GE) Baie d'Urfe, Quebec, Canada 
Bio 101 Inc. Vista, California, USA 
Bio-Rad Hercules, California, USA 
EMD Gibbstown, New Jersey, USA 
Fermentas Burlington, Ontario, Canada 
Integrated DNA Technologies (IDT) Coralville, Iowa, USA 
Invitrogen Carlsbad, California, USA 
LI-COR Biosciences Lincoln, Nebraska, USA 
New England Biolabs (NEB) Ipswich, MA, USA 
Q-BIOgene (MP Biomedicals) Solon, Ohio, USA 
Qiagen Mississauga, Ontario, Canada 
Roche Mississauga, Ontario, Canada 
Santa Cruz Biotechnology Inc. Santa Cruz, California, USA 
Sigma-Aldrich Oakville, Ontario, Canada 
Stable Isotopes Summit,New Jersey, USA  
Upstate (Millipore) Billerica, Massachusetts, USA 
V&P Scientific San Diego, California, USA 
VWR Mississauga, Ontario, Canada 
Waters Milford, Massachusetts, USA 
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Table 3.2 | Reagents 

Reagent Supplier 

Gel Purification Kit Qiagen 
Glass beads (450-600 µm in diameter) Sigma-Aldrich 
H2

18O (98%) Stable Isotopes 
HIS-Select® HF Nickel affinity gel (Ni2+-
NTA) 

Sigma-Aldrich 

Mitomycin C Sigma-Aldrich 
Ni2+-NTA Spin column kit 
 

Qiagen 

Nitrocellulose Bio-Rad 
Odyssey blocking buffer LI-COR Biosciences 
Oligonucleotides Integrated DNA 

Technologies (IDT) 
PCR Clean-up Kit Qiagen 
Salmon sperm DNA Sigma-Aldrich 
Sodium (lump in kerosene) Sigma-Aldrich 

 

Table 3.3 | Enzymes 
Enzyme Supplier 

iQ™ SYBR® Green supermix NEB 
Phusion™ Site-Directed Mutagenesis Kit NEB 
Platinum® Taq DNA Polymerase High 
Fidelity 

Invitrogen 

Shrimp Alkaline Phosphatase Fermentas 
T4 DNA ligase NEB 
Trypsin (Sequencing grade) Roche 

 

 
Table 3.4 | Antibodies 

Antibody Supplier 

Goat Anti-Mouse LI-COR IRDye® 680 
(680 nm) 

LI-COR Biosciences 

Goat Anti-Rabbit LI-COR IRDye® 800CW 
(780 nm) 

LI-COR Biosciences 

Mouse Anti-HA antibody Santa Cruz 
Biotechnology Inc. 

Rabbit Anti-LexA antibody Invitrogen/Sigma-
Aldrich 

Rabbit Anti-LexA antibody (For ChIP 
experiments) 

Upstate 
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Table 3.5 | Lab equipment 
Equipment Supplier 

Micro-pulser Electroporator Bio-Rad 
VP 384F Replicator V&P Scientific 
VP 408FH Replicator V&P Scientific 
MicroMass LCT (ESI-TOF-LC/MS) Waters 
Fastprep120 Q-BIOgene 
Trans-Blot® SD Semi-Dry Electrophoretic 
transfer cell 

Bio-Rad 

Mini-PROTEAN® 3 Cell Bio-Rad 
BiaCore3000 BiaCore Life Sciences 
NTA Sensor Chip BiaCore Life Sciences 
Miniopticon Bio-Rad 
Symmetry300™ C4 column 
(3.5 µm x 2.1 µm x 50 mm) 

Waters 

BioSuite™ C18 PA-A column 
(3 µm x 2.1 µm x 250 mm) 

Waters 

 

Table 3.6 | Suppliers of reagents for media 
Reagent Supplier 

Adenine Alfa Aesar 
Agar BD Biosciences 
Ampicillin, sodium salt EMD 
Chloramphenicol Sigma-Aldrich 
CSM, drop out supplements Biol 101 Inc. 
Dextrose/Glucose BD Biosciences 
Galactose BD Biosciences 
Kanamycin sulphate Sigma-Aldrich 
Peptone BD Biosciences 
Sucrose EMD 
Tryptone BD Biosciences 
X-Gal (5-bromo-4chloro-indoyl-£)-D-
galactopyranoside) 

Invitrogen 

Yeast Extract BD Biosciences 
Yeast Nitrogen without Amino Acids BD Biosciences 
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Table 3.7 | Oligonucleotides 
Oligonucleotides were synthesized by Integrated DNA Technologies.  (a) Reference number is 
a unique identifier from IDT and is used to reference the oligonucleotide in the text.  (b) 
Oligonucleotide name.  P1 and F represent forward primers and P2 and R represent reverse 
primers.  (c) Oligonucleotide sequence in 5` to 3` orientation.  Oligonucleotides are represented 
by one letter nucleotide codes, where N = (A, C, T, G) and  K = (G, T). /5Phos/ indicates the 
primer is phosphorylated at the 5`-end.  

Referencea Nameb Sequence (5` – 3`)c 

1 Intein Recomb P1 TAC CCT TAT GAT GTG CCA GAT 
TAT GCC TCT CCC GAA TTC ATG 
GTT AAG GTT ATT GGT AG 

2 N AAT TTC AGT ACC GAA AGA CAA 
AGC GTA TTC 

3 O GAA TAC GCT TTG TCT TCG GTA 
CTG AAA TT 

4 J TGA CCA AAC CTC TGG CGA AGA 
AGT CCA AAG CTT CTC GAG TTA 
CTT AAT AGT ACC AGC ATC CA 

5 V CCA ACT CCT AGA ATT GTG AGC 
AAT 

6 P CCG GAA TTC GGT TAA GGT TAT 
TGG TAG AA 

7 Q TTA TCT CGA GTT ACT TAA TAG 
TAC CAG CAT 

8 U ATT GCT CAC AAT TCT AGG AGT 
TGG 

4342615 Intein Oligo 1 ATG GTT AAG GTT ATT GGT AGA 
AGA TCT TTG GGT GTT CAA AGA 
ATT TTC GAT ATT GGT TTG CCA 
CAA GAT CAC AAC TTC TT 

4342617 Intein Oligo 3 TGT GAA TAC GCT TTG TCT TTC 
GGT ACT GAA ATT TTG ACT GTT 
GAA TAC GGT CCA TTG CCA ATT 
GGT AAG ATT GTT TCT GA 

4342618 Intein Oligo 4 ATA GCT TGA GTG TAA ACT CTA 
CCT TCT GGA TCA ACA GAG TAA 
ACA GAA CAG TTA ATT TCT TCA 
GAA ACA ATC TTA CCA AT 

4342619 Intein Oligo 5 AGA GTT TAC ACT CAA GCT ATT 
GCT CAA TGG CAC GAT AGA GGT 
GAA CAA GAA GTT TTG GAA TAC 
GAA TTG GAA GAT GGT TC 
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Referencea Nameb Sequence (5` – 3`)c 

4342620 Intein Oligo 6 ATA GCC AAC AAT TGG TAA TCA 
GTA GTC AAG AAT CTG TGA TCA 
GAA GTA GCT CTA ATA ACA GAA 
CCA TCT TCC AAT TCG TA 

4342621 Intein Oligo 7 GAT TAC CAA TTG TTG GCT ATT 
GAA GAA ATT TTC GCT AGA CAA 
TTG GAT TTG TTG ACT TTG GAA 
AAC ATT AAG CAA ACT GA 

4342622 Intein Oligo 8 CTT AAT AGT ACC AGC ATC CAA 
CAA TGG GAA TGG CAA TCT GTG 
GTT ATC CAA AGC TTC TTC AGT 
TTG CTT AAT GTT TTC 

6446987 P1 Intein Library Primer ATA TTG GTT TGC CAC AAG ATC 
ACA ACT TCT TGT TGG CTA ACG 
GTG CTA TTG CTC ACG CT 

6446988 P2 Intein Library Primer ATC TTA CCA ATT GGC AAT GGA 
CCG TAT TCA ACA GTC AAA ATT 
TCA GTA CCG AAA GAC AA 

6446990 Lariat intein Library GTG CTA TTG CTC ACG CTT CTN 
NKN NKN NKN NKN NKN NKN NKG 
AAT ACT GTT TGT CTT TCG GTA 
CTG AAA T 

6513182 pEG202 Chk P1 GGG CTG GCG GTT GGG GTT ATT C 
6513183 pEG202 Chk P2 CAT GCC GGT AGA GGT GTG GTC 

AA 
6615380 Intein Recomb P2 (w/ter) TGA CCA AAC CTC TGG CGA AGA 

AGT CCA AAG CTT CTC GAG TTA 
CTT AAT AGT ACC AGC ATC CA 

6641791 Oligo 2 Intein Fix AAA GAC AAA GCG TAT TCA CAC 
GGA CCG CAC GAC GAG TGA GCA 
ATA GCA CCG TTA GCC AAC AAG 
AAG TTG TGA TCT TGT GG 

7917928 P2 Intein/XhoI TTA TCT CGA GTT ACT TAA TAG 
TAC CAG CAT 

8340694 P1 Intein/EcoRI+1 CCG GAA TTC GGT TAA GGT TAT 
TGG TAG AA 

15951127 P2 Npu-DnaE-N/pIL CCA AAC CTC TGG CGA AGA  AGT 
CCA AAG CTT CTC GAG TTA GTT 
TGG CAA GTT ATC AAC TC 

15951128 Npu-DnaE-N Yeast#1 TGT TTG TCT TAC GAA ACT GAA 
ATT TTG ACT GTT GAA TAC GGT 
TTG TTG CCA ATT GGT AAG ATT 
GTT GAA AAG AGA ATT GA 
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Referencea Nameb Sequence (5` – 3`)c 

15951129 Npu-DnaE-N Yeast#2 CAT TGA GCA ACT GGT TGA GTG 
TAA ATG TTA CCG TTG TTA TCA 
ACA GAG TAA ACA GTA CAT TCA 
ATT CTC TTT TCA ACA AT 

15951130 Npu-DnaE-N Yeast#3 ACT CAA CCA GTT GCT CAA TGG 
CAC GAT AGA GGT GAA CAA GAAA 
GTT TTTC GAA TAC TGT TTG GAA 
GAT GGT TCT TTG ATT AG 

15951131 Npu-DnaE-N Yeast#4 ATT TCA TCA ATT GGC AAC ATT 
TGA CCA TCA ACA GTC ATG AAC 
TTG TGA TCC TTA GTA GCT CTA 
ATC AAA GAAA CCA TCT TC 

15951132 Npu-DnaE-N Yeast#5 ATG TTG CCA ATT GAT GAA ATT 
TTC GAA AGA GAA TTG GAT TTG 
ATG AGA GTT GAT AAC TTG CCA 
AAC 

16415915 Random 10mer (InteinII) GTG CTA TTG CTC ACG CTT CTN 
NKN NKN NKN NKN NKN NKN NKN 
NKN NKN NKT GTT TGT CTT ACG 
AAA CTG A 

16415916 Random 5mer (InteinII) GTG CTA TTG CTC ACG CTT CTN 
NKN NKN NKN NKN NKT GTT TGT 
CTT ACG AAA CTG A 

16415917 Random 5mer(12aa) 
(InteinII) 

GTG CTA TTG CTC ACG CTT CTB 
NTB NTB NTB NTB NTT GTT TGT 
CTT ACG AAA CTG A 

16415918 P2 Library Amp/Npu ATC TTA CCA ATT GGC AAC AAA 
CCG TAT TCA ACA GTC AAA ATT 
TCA GTT TCG TAA GAC AA 

16646144 P1 Npu-DnaE-
N/NruI/pIL 

TTC TTG TTG GCT AAC GGT GCT 
ATT GCT CAC GCT TCG CGA TGT 
TTG TCT TAC GAA ACT GA 

26911159 L2-Stop-Ssp-Ssp ATT GCT CAC GCT TCT AGG AGT 
TGG GAT CTT CCT GGG GAA TAC 
TAA TAG TTG TCT TTC GGT 

27171877 ScrambledL2-Ssp ATT GCT CAC GCT TCT GAT CCT 
GGG CTT AGG AGT TGG GAA TAC 
TGT TTG TCT TTC GGT 

27171878 InvertedL2-Ssp ATT GCT CAC GCT TCT GGG CCT 
CTT GAT TGG AGT AGG GAA TAC 
TGT TTG TCT TTC GGT 

27431776 L2-R2A ATT GCT CAC GCT TCT GCT AGT 
TGG GAT CTT CCT GGG GAA TAC 
TGT TTG TCT TTC GGT 
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Referencea Nameb Sequence (5` – 3`)c 

27431777 L2-S3A ATT GCT CAC GCT TCT AGG GCT 
TGG GAT CTT CCT GGG GAA TAC 
TGT TTG TCT TTC GGT 

27431778 L2-W4A ATT GCT CAC GCT TCT AGG AGT 
GCT GAT CTT CCT GGG GAA TAC 
TGT TTG TCT TTC GGT 

27431779 L2-D5A ATT GCT CAC GCT TCT AGG AGT 
TGG GCT CTT CCT GGG GAA TAC 
TGT TTG TCT TTC GGT 

27431780 L2-L6A ATT GCT CAC GCT TCT AGG AGT 
TGG GAT GCT CCT GGG GAA TAC 
TGT TTG TCT TTC GGT 

27431781 L2-P7A ATT GCT CAC GCT TCT AGG AGT 
TGG GAT CTT GCT GGG GAA TAC 
TGT TTG TCT TTC GGT 

27431782 L2-G8A ATT GCT CAC GCT TCT AGG AGT 
TGG GAT CTT CCT GCT GAA TAC 
TGT TTG TCT TTC GGT 

27431783 L2-E9A ATT GCT CAC GCT TCT AGG AGT 
TGG GAT CTT CCT GGG GCT TAC 
TGT TTG TCT TTC GGT 

27431784 L2-Y10A ATT GCT CAC GCT TCT AGG AGT 
TGG GAT CTT CCT GGG GAA GCT 
TGT TTG TCT TTC GGT 

30088469 pJG4-5 Chk P1 GGA CAG GAG ATG CCG ATG GA 
30088470 pJG4-5 Chk P2 GCA AGG TAG ACA AGC CGA CAA C 
33903878 L2 HG6A NG7D For /5Phos/GGT GCT ATT GCT GCT GAT 

TCT AGG AGT TGG 
33903879 L2 HG6A NG7Y For /5Phos/GGT GCT ATT GCT GCT TAT 

TCT AGG AGT TGG 
33903880 L2 HG6A NG7K For /5Phos/GGT GCT ATT GCT GCT AAA 

TCT AGG AGT TGG 
33903881 L2 HG6H NG7Q For /5Phos/GGT GCT ATT GCT CAC CAA 

TCT AGG AGT TGG 
33903882 L2 HG6L NG7N For /5Phos/GGT GCT ATT GCT TTG AAT 

TCT AGG AGT TGG 
33903883 L2 HG6N NG7N For /5Phos/GGT GCT ATT GCT AAT AAT 

TCT AGG AGT TGG 
33903884 L2 HG6D NG7N For /5Phos/GGT GCT ATT GCT GAT AAT 

TCT AGG AGT TGG 
33903885 Intein G2 Rev /5Phos/GTT AGC CAA CAA GAA GTT 

GTG ATC TTG 
33903886 Ssp-RB11L For /5Phos/GCT ACT TCT GAT CAC TTG 

TTC TTG ACT ACT GAT 
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Referencea Nameb Sequence (5` – 3`)c 

33903887 Ssp-RB11Y For /5Phos/GCT ACT TCT GAT CAC TAT 
TTC TTG ACT ACT GAT 

33903888 Ssp-RB11E For /5Phos/GCT ACT TCT GAT CAC GAA 
TTC TTG ACT ACT GAT 

33903889 Ssp-RB11X For /5Phos/GCT ACT TCT GAT CAC NNK 
TTC TTG ACT ACT GAT 

33903890 Ssp-B11 Rev /5Phos/TCT AAT AAC AGA ACC ATC 
TTC CAA TTC 

33903891 L2 HG6X NG7X Lib TTG GCT AAC GGT GCT ATT GCT 
NNK NNK TCT AGG AGT TGG GAT 
CTT CCT GGG GAA TAC TGT TTG 
TCT TTC GGT ACT GAA 

33903892 P1 Ssp Intein Lib 
Amp/G6 

ATT TTC GAT ATT GGT TTG CCA 
CAA GAT CAC AAC TTC TTG TTG 
GCT AAC GGT GCT ATT GCT 

38891611 P1 lexA LexA-Chip TAT GGT CGC ATT TTG GAT AAC 
38891612 P2 lexA LexA-Chip ATA CCT GTC TGG CTG ATG TG 
38891615 P1 yabN (sgrR) LexA-

Chip 
CTA ATC TGG TCT ATT TCG CTG 

38891616 P2 yabN (sgrR) LexA-
Chip 

TCT CTC CTG TAT GCC ACT G 

 

3.1.2 Synthetic peptides 
The biotin-labeled linear L2 peptide was synthesized by GenScript.  The biotin-labeled 

L2 lactone peptide was synthesized by Protein Peptide Research.  The lactone peptide was 

synthesized on 2-chlorotrityl resin using serine(trityl) as a protecting group for the serine 

involved in the side chain cyclization.  The side chain and N-terminal protected peptide was 

cleaved from the chlorotrityl resin using 20% trifluorethanol/dichloromethane. The trityl group 

was then removed from the side chain of serine using 1% trifluoroacetic acid/dichloromethane.  

The peptide was solubilized in a small quantity of dimethylformamide and cyclized using 

benzotriazol-1-yloxy Tris(dimethylamino)phosphonium hexafluorophosphate/diisopropylethyl- 

amine in dichloromethane.  Once cyclized, the remaining protecting groups were removed 

using 95% trifluoroacetic acid scavengers. 
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3.1.3 Strains 
 

Table 3.8 | S. cerevisiae strains and genotypes 
Strain Genotype Reference: 

EGY2 MATa, ura3, his3, trp1, leu2  (Cohen et al., 
1998)  

EGY48 MATα, 6LexA-LEU2, ura3-52, leu2, 
his3,trp1, GAL+ 

 (Cohen et al., 
1998) 

EY93 MATa, ura2, his3, trp1, leu2, 
ade2::URA3 

This work 

EY111 MATα, his3, trp1, ura3::LexA8op-
LacZ, ade2::URA3-LexA8op-ADE2, 
leu2::LexA6op-LEU2 

This work 

 

 
Table 3.9 | E. coli strains and genotypes 
Strain Marker Genotype Source 

BL21-
CodonPlus®(DE3)-
RIL 

Chloramphenicol F- ompT gal dcm Ion 
hsdB(rB

- mB
-) 

lambda(DE3(lacI lacUV5-
T7 gene 1 ind1 sam7 nin5) 

Stratagene 

BL21(DE3)  F- ompT gal dcm Ion 
hsdB(rB

- mB
-) 

lambda(DE3(lacI lacUV5-
T7 gene 1 ind1 sam7 nin5) 

Novagen 

MC1061 Streptomycin F– araD139  Δ(araA-
leu)7697 galE15 galK16 
Δ(lac)X74  rpsL (Strr) 
hsdR2 (rK

-mK
+) mcrA 

mcrB1 

 (Wertman et al., 
1986) 

XL1-Blue Tetr (Tetracyclin) recA1 endA1 gyrA96 thi-
1 hsdR17 supE44 relA1 
lac (F ́ proAB 
lacIqZ∆M15 Tn10 (Tetr)) 

Stratagene 

ER2925 camr 
(Chloramphenicol) 

E. coli K12: ara-14 leuB6 
fhuA31 lacY1 tsx78 
glnV44 galK2 galT22 
mcrA dcm-6 hisG4 rfbD1 
R(zgb210::Tn10)TetS 
endA1 rpsL136 
dam13::Tn9 xylA-5 mtl-1 
thi-1 mcrB1 hsdR2 

New England 
Biolabs  
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3.1.4 Plasmids 

3.1.4.1 Yeast plasmids 
pEG202 (Figure 3.1) and pJG4-5 (Figure 3.2) were used a bait and prey expression 

plasmids, respectively, in the Y2H assay. 

 

Figure 3.1 | pEG202 
pEG202 (GenBank accession U89960) is the bait plasmid for the Y2H assay.  Bait protein 
expression is controlled by the alcohol dehydrogenase promoter (yADH1 Prom).  The multiple 
cloning site contains five unique restriction enzyme sites that allow genes to be cloned as C-
terminus fusions to the DNA binding domain LexA.  The yeast alcohol dehydrogenase 
terminator (yADH1 term) is used to terminate transcription.  A HIS3 gene is used to maintain 
the plasmid in yeast.  The 2 µm origin of replication is used to maintain the plasmid in a high 
copy number in yeast.  The ampicillin marker (amp marker) is used for selection and the 
pBR322 origin is used to maintain the plasmid in a high copy number in E. coli.  
 

pEG202
(10166 bp)

LexA

Origin of replication

Promoter

Selectable marker

Terminator

Unique restriction site

Modi!ed from map generated by PlasMapper

2 m origin
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Figure 3.2 | pJG4-5 
pJG4-5 (GenBank accession U89961) is the prey plasmid for the Y2H assay.  Prey protein 
expression is controlled by a galactose promoter (GAL1 Prom).  EcoRI and XhoI restriction 
sites are used to clone genes that are C-terminal fusions to the fusion tag consisting of the 
haemagglutinin tag (HA), nuclear localization sequence (NLS), and B42 activation domain 
(B42_AD).  The yeast alcohol dehydrogenase terminator (yADH1 term) is used to terminate 
transcription.  A TRP1 gene is used to maintain the plasmid in yeast.  The 2 µm origin of 
replication is used to maintain the plasmid in a high copy number in yeast.  The ampicillin 
marker (amp marker) is used to select and the pBR322 origin is used to maintain the plasmid in 
a high copy number in E. coli. 

 

 
 
 
 

Modi!ed from map generated by PlasMapper

Origin of replication

Promoter

Activation domain

Selectable marker

Terminator

Unique restriction site

pJG4-5
(6449 bp)

2 m origin
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3.1.4.2 E. coli plasmid  
pET28b was used to express proteins in E. coli (Figure 3.3). 

 

Figure 3.3 | pET28b 
pET28b was used to express proteins in E. coli.  The T7 promoter (T7 pro) is an IPTG 
inducible promoter.  Proteins can be expressed with a C-terminal six-histidine sequence tag 
(6xHis), an N-terminal 6xHis tag or both.  A T7 terminator sequence is used terminate 
transcription.  A kanamycin resistance gene (kan2 marker) is used for plasmid selection in E. 
coli.  The pBR322 origin of replication allows for high copy plasmid replication in E. coli.  The 
F1 origin of replication (F1 ori) allows single-stranded DNA (ssDNA) production. 
 
 

3.1.5 Sodium dodecyl sulfate polyacrylamide gel electrophoresis 
Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) using the 

Laemmli buffer system (Laemmli, 1970) was used to separate proteins based on their apparent 

molecular weight.  A 4% stacking gel (0.125 M Tris-Cl pH 8.8, 0.1% SDS, 4% degassed 

acrylamide/bis-acrylamide (37.5:1 ratio), 0.1% TEMED (v/v), and 0.05% (w/v) ammonium 
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persulphate) was used for all gels.  A resolving gel of appropriate concentration (0.375 M Tris-

Cl pH 8.8, 0.1% SDS, 8 – 20% degassed acrylamide/bis-acrylamide 37.5:1 ratio, 0.05% 

TEMED (v/v) and 0.05% (w/v) ammonium persulphate) was used to separate proteins.  

Proteins were suspended in 2xSDS loading dye (62.5 mM Tris-HCl pH 6.8, 25% (v/v) glycerol, 

2% (w/v) SDS, 0.01% (w/v) bromophenol blue, 5% (v/v)).  Beta-mercaptoethanol was added to 

the loading buffer when proteins were separated under reducing conditions.  Samples were 

heated at 95 °C for five minutes and then cooled on ice prior to loading.  Either 1.5 mm (W) or 

0.75 mm (W) x 8 cm (L) x 7.3 cm (H) gels were used.  Gels were run for fifteen minutes at a 

constant voltage of 100 V followed by an additional 35 – 45 minutes at 200 V.  The running 

buffer consisted of  (25 mM Tris-HCl pH 8.3, 190 mM glycine, and 0.1% (w/v) SDS) 

approximately 500 mL was used per gel apparatus. 

3.1.6  Coomassie-staining 
Coomassie-staining was used to visualize proteins after SDS-PAGE.  Fixing solution  

(25% (v/v) isopropanol, 10% (v/v) acetic acid) was applied to SDS-PAGE gels for 15 minutes 

to immobilize proteins.  Gels were then incubated in coomassie blue staining solution 

consisting of 10% (v/v) acetic acid, and 0.012% (w/v) bromophenol blue for a minimum of four 

hours.  Gels were then destained in 10% (v/v) acetic acid until bands were clearly visible.  Gels 

were stored in water until photographed using a GelDoc imager or using the 680 nm channel on 

the Licor Odyssey infrared imaging system. 

3.1.7  Western blot analysis 
Western blot analysis was used to visualize specific proteins after SDS-PAGE.  

Nitrocellulose (0.45 µm) and blotting paper were incubated in transblot buffer (48 mM Tris-

HCl pH 8.3, 39 mM glycine, 20% (v/v) methanol, 0.04% (w/v) SDS) for 10 minutes.  A piece 

of pre-soaked blotting paper was placed on the Trans-Blot® SD Semi-dry electrophoretic 

transfer cell followed by the nitrocellulose membrane, the gel, and a second piece of pre-soaked 

blotting paper.  Transblotting was performed at 15 V for 45 minutes.  The nitrocellulose 

membrane was blocked for one hour at room temperature with 10 mL Odyssey blocking buffer.  

Primary antibody was added at the appropriate dilution in 10 mL Odyssey blocking buffer + 

0.1% Tween-20, and incubated for one hour at room temperature or overnight at 4 °C.  

Membranes were washed three times with approximately 20 mL PBS-T (Phosphate buffered 

saline supplemented with Tween-20) (10 mM Na2HPO4·7H2O, 17.6 mM KH2PO4, pH 7.4, 137 
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mM NaCl, 26.8 mM KCl, 0.1% (v/v) Tween 20)) and then incubated with secondary antibody.  

Goat-anti-mouse or goat-anti-rabbit (1:15,000 dilution) secondary antibodies conjugated to 

near-infrared dyes IRDye 680 nm or IRdye 800CW were incubate with the membrane for one 

hour at room temperature.  Membranes were washed three times with 20 mL PBS-T, then once 

in PBS without Tween 20.  Membranes were stored in PBS without Tween 20 or dried and 

visualized using the Licor Odyssey infrared imaging system. 

3.1.8  Agarose gel electrophoresis 
To determine the size or concentration of DNA, samples were mixed with 6x loading 

buffer (50% glycerol, 0.2 M EDTA pH 8.3, 0.05% bromophenol blue) to a final concentration 

of 1x.  Samples were resolved in an agarose gel consisting of 0.5 to 1.5% (w/v) ultrapure 

agarose in 1X SB Buffer (10 mM sodium pH 8.5 with boric acid)  (Brody et al., 2004) and 0.5 

µg/mL ethidium bromide.  Gels were run at a constant voltage between 200 - 500 V for seven 

to thirty minutes depending on the separation required.  For rapid analysis of PCR products, the 

agarose gels were run at 500 V for seven minutes.  Plasmids requiring more separation were run 

at 200 V for thirty minutes.  Standard conditions were typically 300 V for ten minutes.  Gels 

were visualized and photographed using a UV light transilluminator.  

3.1.9 DNA gel purification and extraction 
Gel purification was used to clean-up PCR products and restriction enzyme digested 

plasmids.  Gel purification was performed using a Gel Purification kit as per manufacture’s 

instructions.  PCR products were purified using a PCR Clean-up kit as per the manufacture’s 

instructions. DNA was concentrated by alcohol precipitation if necessary (Moore and Dowhan, 

2002). 

3.1.10  DNA sequencing 
Sequencing was either performed using an ABI Prism 310 or sent to the Plant 

Biotechnology Institute (PBI), National Research Council of Canada (NRC).  For sequencing 

using the ABI Prism 310 Genetic analyzer, the ABI prism big-dye terminator cycle sequencing 

ready reaction kit v1.1 was used according to manufacture’s directions.  Unextended primers 

and the unincorporated dye were removed using a DyeEx 2.0 spin kit (Qiagen).  Samples were 

injected at 4 V for 15 – 30 seconds onto a GA310 capillary column (47 cm length, with internal 

diameter 50 µm, ABI) the column was filled with POP6 polymer (Performance Optimized 

Polymer 6, ABI) and heated to 50 °C.  Samples were run at 15 V for 36 – 60 minutes depending 
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on the length of sequence data required.  For sequencing outsourced to the Plant Biotechnology 

Institute (PBI), National Research Council of Canada plasmids were diluted to 0.05 µg/µL and 

primers were diluted to a concentration of 3.2 pmol/µL.  For direct sequencing from E. coli, 

single colonies were grown overnight in a 96-well u-bottom plate at 37 °C in 200 µL of LB 

supplemented with the appropriate antibiotic and 10% glycerol.  The plate was sealed and 

frozen at – 80 °C.  Primers (30088469) and (30088470) were used to sequence inserts in pJG4-

5 and lariat plasmids (Section 3.3.8).  Primers (6513182) and (6513183) were used to sequence 

inserts in pEG202. 

3.1.11  Statistical analysis 
Unless otherwise noted, data was reported as the mean ± standard deviation.  P-values 

were calculated using a two-tailed t-test with Prism 4.0c for Macintosh (Graphpad). 

3.2 Polymerase chain reactions (PCR) 

3.2.1 High-fidelity PCR cloning reaction 
PCR reactions were performed in 50 µL reaction containing 60 mM Tris-SO4 (pH 8.9), 

180 mM (NH4)2SO4, 1.5 mM MgSO4, 200 µM dNTPs, 1 µM of forward and reverse primers, 

100 ng template DNA, and 1 Unit/50 µL of Platinum® Taq DNA Polymerase High Fidelity.  

PCR products were amplified with a two minute initial denaturation step at 95 °C followed by 

20 cycles of 95 °C for thirty seconds, 50 °C for thirty seconds, 68 °C for one minute per 

kilobasepair.  A final extension step of seven minutes at 68 °C was included for products over 

one kilobasepair in length. 

3.2.2 Low-fidelity PCR 
Low-fidelity PCR was used to check plasmids for the correct insert, cloning of small 

DNA fragments, and for generating libraries.  A standard PCR reaction was performed in 50 µL 

reaction containing 1x Taq Buffer (10 mM Tris-HCl pH 8.3, 50 mM KCl, 1.5 mM MgCl2), 200 

µM dNTP, 1 µM Primers, 10 - 300 ng template, and 1 µL of Taq.  DNA template was 

denatured with a five minute denaturation step at 95 °C, followed by 20 – 30 cycles of 

amplification.  Each cycle contained a denaturation step at 95 °C for thirty seconds, an 

annealing step at 50 °C for thirty seconds, and an extension step at 72 °C for one minute per 

kilobasepair of DNA.  
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3.2.3 E. coli colony PCR reaction 
Colony PCR from E. coli was performed to verify the construction of a clone or insert 

before subsequent plasmid purification.  A single colony was picked from an LB plate 

containing the appropriate antibiotic with a pipette tip.  The colony was first dipped into a 50 

µL PCR reaction mix containing 1X PCR buffer (10 mM Tris-HCl pH 8.3, 50 mM KCl, 1.5 

mM MgCl2), 200 µM dNTPs, and 1 µM of each primer.  An initial denaturation step of ten 

minutes at 95 °C was used to lyse the cells, followed by 30 cycles.  Each cycle consisted of a 

denaturation step at 95 °C for thirty seconds, an annealing step at 52 °C for thirty seconds, and 

an extension step at 72 °C for one minute per kilobasepair.  The pipette tip, after being dipped 

in the PCR reaction mix, was placed in 5 mL of media containing the appropriate antibiotic 

selection for subsequent plasmid purification.  Alternatively, 1 – 5 µL of an overnight culture 

was used as template instead of a colony in the PCR reaction mix. 

3.2.4 Yeast colony PCR reaction 
A fresh yeast colony was picked from a plate, resuspended in 20 µL of 0.02 N NaOH, 

heated at 95 °C for five minutes, and centrifuged at 13,000 x g.  Alternatively, 1.1 x 107 cfu of 

yeast cells were resuspended in 50 µL of 0.02 N NaOH and heated at 95 °C for five minutes 

and centrifuged.  One-tenth of the PCR reaction volume was used as a template for the PCR 

reaction. 

3.3 General yeast protocols 

3.3.1 Yeast media 
Media was prepared as described by Geyer and Brent (Geyer and Brent, 2000).  Media 

containing dextrose/glucose was diluted from an autoclaved stock solution of 40% (w/v) 

dextrose.  Synthetic media was defined by an S, followed by the type of sugar, which was 

followed by any modifications to the media.  A negative sign indicates a dropout or removal of 

an amino acid or nucleotide.  A plus sign indicates a media supplement.  For example, a typical 

prey selection plate was SD W-, meaning the synthetic media was supplemented with dextrose 

(D) and lacked tryptophan (W-).  A typical Y2H full selection plate was SGR H-W-L-A- X-

gal+, indicating that the synthetic medium contained galactose/raffinose, the chromagenic 

substrate x-gal and lacked the amino acids histidine, tryptophan, and leucine, and the nucleotide 

adenine. 
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YPDA medium was prepared with 1% (w/v) yeast extract, 2% (w/v) peptone, 80 mg/L 

adenine, and 2% (w/v) dextrose in ddH2O (Filtered and sterilized water).  For solid media, 2% 

(w/v) agar was added.  

Synthetic medium was prepared with 0.67% (w/v) yeast nitrogen base without amino 

acids and was supplemented with complete supplemental medium (CSM) lacking the 

appropriate amino acid(s) (Bio 101). 2% (w/v) dextrose or 2% (w/v) galactose was 

supplemented with 1% (w/v) raffinose or sucrose in ddH2O was used as the carbon source.  For 

solid medium, 2% (w/v) agar was added. 

X-Gal plates were prepared like the synthetic plates except they were supplemented 

with BU salts and 80 µg/L of 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-gal).  X-

gal solution was prepared by dissolving 20 mg/mL of X-gal in dimethyl formamide to a final 

concentration of 80 µg/mL.  10xBU salts were prepared by dissolving 70 g of Na2HPO4 · 7H2O, 

30 g of NaH2PO4 in 900 mL of ddH2O and the pH of the 10xBU salts was adjusted to 7.0. 

3.3.2 Propagation and manipulation of yeast 
Standard techniques were used to culture and propagate yeast  (Geyer and Brent, 2000).  

Liquid cultures were grown at 30 °C with shaking at 250 rpm.  Cultures on solid medium were 

inverted and grown at 30 °C. 

3.3.3 Lithium acetate transformation 
Transformation procedures were used to transfer plasmids into yeast or to clone DNA 

fragments into plasmids by in vivo homologous recombination  (Hua et al., 1997).  Yeast frozen 

competent cells were prepared according to the procedure reported by Gietz and Schiestl,  

(Gietz and Schiestl, 2007).  Transformation of yeast cells in 96-well format was performed 

according to Gietz and Schiestl  (Gietz and Schiestl, 2007).  The high efficiency low throughput 

method (Gietz et al., 1995; Geyer and Brent, 2000) was used for library generation since it gave 

the highest number of transformants.  It was also used for routine cloning, if competent frozen 

cells were not available.  Lithium acetate competent yeast cells were prepared from a 10 mL 

overnight culture in the appropriate media and grown at 30 °C with shaking.  Using the 

conversion factor of 1.1 x 107 CFU/mLxOD600, the culture was diluted to 5 x 106 CFU/mL in 50 

mL of appropriate media, which provided enough cells for ten 50 µL transformations.  The 

cells were grown to an OD600 of 0.6 – 0.8.  Cells were collected by centrifuging at 4,000 x g at 

room temperature and washed once in 25 mL ddH2O.  The supernatant was removed from the 
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yeast pellet and the pellet was resuspended in 1 mL of 100 mM LiOAc.  The sample was 

centrifuged for one minute at 4,000 x g and resuspended in 500 µL of 100 mM LiOAc and 

aliquoted into ten 50 µL aliquots.  The aliquots were centrifuged again and the supernatant was 

removed.  The pellet was overlaid with 240 µL polyethylene glycol (50% (w/v) PEG-3500), 36 

µL of 1 M LiOAc, 25 µL of 2 mg/mL single-stranded DNA, plasmid DNA, and PCR insert 

(optional).  The mixture was vortexed rapidly to resuspend the pellet and then incubated for 

thirty minutes at 30 °C and then heat shocked at 42 °C for fifteen minutes.  The sample was 

centrifuged at 4,000 x g and the supernatant was removed, the pellet was resuspended in ddH2O 

and plated on the appropriate media. 

3.3.4 Preparation of plasmid DNA from yeast 

3.3.4.1 Yeast mini-preparation 
Plasmids were isolated according to protocols described previously (Hoffman and 

Winston, 1987; Geyer and Brent, 2000).  Briefly, a single yeast colony was grown overnight in 

2 mL of appropriate synthetic amino acid dropout media in a shaking incubator at 30 °C.  Cells 

were harvested by centrifugation at 18,000 x g for thirty seconds.  The cell pellet was 

resuspended in 200 µL of breaking buffer (2% (v/v) Triton X-100, 1% (v/v) SDS, 100 mM 

NaCl, 10 mM Tris-HCl pH 8.0, 1 mM EDTA) followed by the addition of 300 µg of glass 

beads and 200 µL of phenol-chloroform-isoamyl alcohol (25:24:1, v/v/v).  Yeast cell walls 

were disrupted by vortexing the mixture for two minutes.  The mixture was centrifuged for ten 

minutes at 18,000 x g and 50 µL of the aqueous layer was stored at – 20 °C.  Typically 3 - 5 µL 

of the aqueous solution was used for transforming E. coli cells by electroporation.  

3.3.5 Preparation of proteins from yeast 

3.3.5.1 Standard protein isolation method 
A single yeast colony was grown to saturation overnight in liquid media at 30 °C with 

shaking.  The cells were centrifuged at 3,220 x g for five minutes at room temperature and 

washed in ddH2O.  The cells were induced in 10 mL of appropriate media- at 30 °C for eight 

hours and collected by centrifugation at 3,220 x g for five minutes.  Cells were washed in 

ddH2O and resuspended in 300 µL of disruption buffer (20 mM Tris-HCl pH 7.0, 300 mM 

(NH4)2SO4, 10 mM MgCl2, 1 mM EDTA, 5% glycerol), supplemented with 1 mM PMSF 

(phenylmethylsulphonyl fluoride), 1 mM DTT, and 0.3 g acid-washed glass beads (425-600 µm 

diameter).  Cells were ruptured using a Fastprep120 at setting 6.0 for twenty seconds at 4 °C.  
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The disruption was repeated three times.  The cell lysate was centrifuged twice at 4 °C at 

18,000 x g for fifteen minutes and the clarified supernatant was used for subsequent analyses  

(Dunn and Wobbe, 2001).  Twenty microliters was typically used for Western blot analysis. 

3.3.5.2 NaOH protein isolation method 
Cell lysates were prepared using NaOH  (Kushnirov, 2000).  A single yeast colony was 

incubated overnight in 2 mL of the appropriate media in a shaking incubator at 30 °C.  The 

following day, 1 mL of the culture was centrifuged for one minute at 13,000 x g.  The pellet 

was resuspended in 100 µL of ddH2O followed by the addition of 100 µL of 0.2 M NaOH.  The 

mixture was incubated for five minutes and then centrifuged for one minute at 13,000 x g.  The 

pellet was resuspended in 50 µL of 1xSDS sample buffer (0.06 M Tris-Cl pH 6.8, 5% glycerol, 

2% SDS, 4% beta-mercaptoethanol, 0.0025% bromophenol blue) and boiled for three minutes.  

Ten microliters of cell lysate was used for SDS-PAGE or Western blot analysis.  

3.3.6 Library mating 
Target proteins were cloned into the pEG202 bait plasmid, which has the auxotrophic 

selection marker histidine.  The bait plasmid was transformed into EY111 and grown in 1 L of 

SD H-A+ to an OD600 of 0.6 – 1.0.  The number of bait cells was calculated by the optical 

density (OD) using the conversion factor of one OD600 equal to 1.1 x 107 cfu/mL. 

Lariats were cloned into the pIN01 or pIL500 prey plasmids.  Prey plasmids had the 

tryptophan auxotrophic selection marker.  Prior to mating, the titer of the lariat library was 

predetermined by plating serial dilutions of the library onto SD W- plates.  Sufficient library 

cells were diluted in 50 mL of SD W- media to obtain approximately 20 library copies.  The 

library was grown for 2 – 4 hrs at 30 °C and the OD600 was determined. 

The bait and prey cells were mixed at a bait to prey ratio of 20:1 and spread on 

100 x 15 mm YPDA plates using glass beads.  Plates were incubated at 30 °C for 24 – 48 hours.  

The mated cells were scraped off plates using a sterile glass microscope slide into a 50 mL 

Falcon tube.  The cells were washed three times by resuspending them in 50 mL of PBS and 

then pelleting the cells by centrifugation at 1,000 x g.  After washing, the pellet was 

resuspended in glycerol freeze down solution  (25 mM Tris-HCl pH 8.0, 65% glycerol, 0.1 M 

MgSO4) and stored at – 80 °C.  A sample of the library was thawed and serial dilutions were 

plated onto SD W-, SD H-, and SD H-W-.  These plates were used to determine the diploids per 

microliter and mating efficiency.  The diploids per microliter were calculated directly by 
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measuring the CFU/µL on the SD H-W- plates.  The mating efficiency was calculated by 

dividing the number of CFU/µL on the SD W- plates by the number of diploids or CFU/µL on 

the SD H-W-.  In addition, a trial screen using 1 µL, 10 µL, and 100 µL of library was 

performed on SGR H-W-L-A- X-gal plates to estimate the number of interactions/µL and to 

determine the optimal cell density to perform the Y2H screens. 

3.3.7 Y2H screening 
An aliquot of the mated library cells was thawed and incubated at 30 °C in 50 mL of 

SGR H-W- to allow the cells to recover and start expressing the bait and prey.  Cells were then 

concentrated to the appropriate dilution and plated using glass beads onto SGR H-W-L- plates 

and incubated at 30 °C for five days.  Typically, cells were plated at a density of 100,000 to 

1,000,000 diploids/plate.  Five replicates of a serial dilution of the library were also plated onto 

SD H-W- to determine the number of diploids/µL, which was used to determine the total 

number of diploids screened. 

Colonies that formed on the SGR H-W-L- were replica plated onto SGR H-W-A- X-gal 

after five days using velvet and a replicator block.  Plates were then incubated at 30 °C for an 

additional five days.  During this time, colonies that grew and turned blue, were circled on the 

plate and numbered according to which day they were visible on the plate.  Colonies that had 

appeared earliest and had the best selection characteristics, were picked off the selection plates 

and incubated overnight in SGR H-W-L-A- liquid selection medium.  These initial positive 

Y2H assay colonies were mixed 50:50 with glycerol freeze down solution (25 mM Tris-HCl pH 

8.0, 65% glycerol, 0.1 M MgSO4) and stored at –80 °C for further analysis. 

3.3.8 Rechecking Y2H interactions 
Plasmids were isolated from yeast cells showing a positive Y2H interaction using the 

yeast mini-prep protocol and were transformed into E. coli by electroporation.  Three to five 

individual colonies from each E. coli transformation were selected and plasmids were extracted 

using the E. coli mini-prep protocol and transformed into EY93 using the lithium acetate 

transformation protocol.  One yeast colony from each transformation was mated to the 

appropriate target as well as a negative control plasmid containing the empty bait plasmid 

(pEG202).  Yeast were mated on YPDA for 24 hours.  Diploids were selected on SD H-W- 

media and plated on SGR H-W-L-, SGR H-W-L-A-, SGR H-W-L-X-gal, and SGR H-W-L-A-

X-gal to estimate and rank the strength of the interactions.  Diploids were also plated on SD H-
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W-L-X-gal plates to confirm that the Y2H interaction was dependent on prey expression.  

Plasmids encoding lariats that showed an interaction that was dependent on prey expression 

were isolated using yeast mini-prep protocol and transformed into E. coli by electroporation, 

amplified, and purified.  Plasmids were sequenced to determine the sequence of the interacting 

lariat. 

3.4 General E. coli protocols 

3.4.1 E. coli media 
Lysogeny broth (LB) also commonly mistakenly referred to as Luria broth in the 

literature (Bertani, 2004), was prepared with 1% tryptone, 0.5% yeast extract, 85.6 mM NaCl, 

and 1 mM NaOH in ddH2O.  The appropriate antibiotic was added after the media cooled to 55 

°C.  Solid media contained 2% agar  (Bertani, 2004; Bertani, 1951). 

Ampicillin was used at a final concentration of 100 µg/mL.  Kanamycin was used at a 

final concentration of 50 µg/mL. Chloramphenicol was used for plasmid selection at a final 

concentration of 25 µg/mL. 

3.4.2  Propagation and manipulation of E. coli 
Standard techniques were used to culture and propagate E. coli  (Elbing and Brent, 

2002).  Liquid cultures were grown at 37 °C with shaking at 250 rpm.  Cultures on solid 

medium were inverted and grown overnight at 37 °C. 

3.4.3 Preparation of plasmid DNA from E. coli 
Standard techniques were used to isolate small quantities of plasmid in single or 96-well 

format from E. coli using the alkaline lysis procedure (Engebrecht et al., 2001).  Large scale 

preparations of plasmids were performed using alkaline lysis and PEG precipitation  (Heilig et 

al., 2001).  Plasmids were stored in the TE (10 mM Tris-HCl pH 7.5, 1 mM EDTA).  Plasmid 

DNA was also purified using a modified alkaline lysis protocol as described by Qiagen for use 

of their plasmid mini-preparation kits.  

3.4.4 Transformation of plasmids into E. coli 

3.4.4.1 Preparation of electrocompetent E. coli 
E. coli cells were prepared for electroporation using standard protocols  (Seidman et al., 

2001). Briefly, the E. coli strain was struck out on the appropriate media to obtain single 

colonies.  A single colony was transferred to 5 mL of LB and grown overnight at 37 °C in a 
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shaking incubator.  The overnight culture was diluted in 500 mL of LB to an OD600nm of 0.6.  

All subsequent steps were performed at 4 °C on ice using pre-chilled tubes.  The cells were 

centrifuged at 4,000 x g for twenty minutes at 4 °C and washed twice in 250 mL of ddH2O.  

The cells were resuspended in 20 mL of ice cold sterile water, transferred to a 50 mL Falcon 

tube, and centrifuged for ten minutes at 4200 x g at 4 °C.  The pellet was resuspended in 50 mL 

of 10% glycerol and centrifuged at 4,200 x g at 4 °C.  The pellet was resuspend in one pellet 

volume of ice-cold 10% (v/v) glycerol.  Fifty-microliter aliquots were stored at −80°C.  

3.4.4.2 Electroporation 
E. coli cells were transformed using electroporation (Seidman et al., 2001).  Briefly, 1 

µL of plasmid at a concentration of 50-150 ng/µL was mixed with 50 µL of competent cells.  

The mixture was transferred to an ice-cold electroporation cuvette.  Cells were then 

electroporated with a field strength of ~ 12.5 kV/cm (Ec2 BioRad).  Electroporated cells were 

mixed with 500 µL of LB and incubated at 37 °C for thirty minutes in a shaking incubator.  

Cells were then plated onto LB agar plates containing the appropriate antibiotic. 

3.5 Lariat construction and characterization 

3.5.1 Ssp-Ssp intein gene construction 
The lariat gene was synthetically constructed and inserted into pJG4-5 resulting in the 

plasmid pIN01, which expresses an inactive Synechocystis spp. strain PCC6803 (Ssp) DnaE 

intein with a CPGC peptide between the IC and IN domains.  The inactive intein gene was 

assembled by mixing 0.1 µg of each oligonucleotide (4342615; 6641791; 4342617; 4342618; 

4342619; 4342620; 4342621; 4342622) with 2.5 units of pfu polymerase, 200 µM dNTPs, 20 

mM Tris-Cl pH 8.8, 10 mM (NH4)2SO4, 10 mM KCl, 0.1% (v/v) Triton X-100, 0.1 mg/mL 

bovine serum albumin (BSA), and 2 mM MgSO4.  The assembly reaction was incubated for 

five minutes at 95 °C, followed by 25 cycles of thirty seconds at 95 °C, thirty seconds at 50 °C 

and ninety seconds at 72 °C, and a final incubation for ten minutes at 72 °C.  The inactive intein 

gene was amplified using 1/5th (10 µl) of the assembly reaction and 1 µM of PCR primers (1 

and 6615380) in a 50 µl PCR reaction with the reaction conditions and amplification cycles 

described above.  We used lithium acetate transformation (Schiestl and Gietz, 1989) with 500 

ng of EcoRI/XhoI 
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 digested pJG4-5 (GenBank accession U89961)  (Gyuris et al., 1993) and 400 ng of PCR 

amplified inactive intein to clone the inactive intein into pJG4-5 by in vivo homologous 

recombination in EY93  (Ma et al., 1987).  

3.5.2  Ssp-Ssp R7 intein library construction 
The lariat library (pIL-R7) was constructed by replacing the CPGC linker peptide in 

pIN01 with a combinatorial seven amino acid peptide using oligonucleotide (6446990).  

Oligonucleotide (6446990) changed the amino acid at position IN+1 from an alanine to cysteine.  

Oligonucleotide (6446990) was amplified by PCR using primers (6446987 and 6446988).  The 

reaction conditions described above in section 3.5.1 were used with seven amplification cycles 

consisting of a denaturing step at 95 °C for thirty seconds, an annealing step at 55 °C for thirty 

seconds, and an extension step at 72 °C for fifteen seconds.  Fifty micrograms of pIN01 was 

digested with RsrII overnight at 37 °C according to manufacturer’s directions and the digested 

plasmid was dephosphorylated with 10 units of shrimp alkaline phosphatase for three hours at 

37 °C.  The peptide library was cloned into RsrII-digested pIN01 using in vivo homologous 

recombination  (Ma et al., 1987) in EY93.  One-hundred lithium acetate transformations were 

performed  (Schiestl and Gietz, 1989) with each transformation containing 400 ng of amplified 

oligonucleotide (6446990) and 1 µg of RsrII-digested pIN01. 

3.5.3  Western blot analysis of Ssp-Ssp R7 intein library 
Expression of L2 lariat and intein constructs in EY93 was monitored using Western blot 

analysis with an anti-HA antibody.  Samples were normalized using their OD600 and 20 µL of 

supernatant was analyzed by Western blot analysis with an anti-HA tag antibody (1:200 

dilution).  The Licor Odyssey infrared imaging system was used to visualize and quantify blots. 

3.5.4 Construction of E. coli L2 lariat expression plasmid 
pETIL-L2, which expresses L2 lariat, was constructed by PCR amplifying the entire L2 

lariat intein gene from pIL-L2 (described in section 3.9) gene including the stop codon using 

primers (8340694 and 7917928).  The PCR product was digested with EcoRI and XhoI and 

cloned into pET28b using standard restriction enzyme based cloning procedures. 

3.5.5 Expression and purification of L2 lariat for LC/MS analysis 
The His-tag L2 lariat construct was purified using a Ni2+-NTA Spin column kit.  

Briefly, BL21-CP E. coli were transformed with the L2 lariat expression plasmid.  The L2 lariat 

was expressed by inducing a 0.4 OD600 culture of BL21-CP with 1 mM IPTG (Isopropyl β-D-1-
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thiogalactopyranoside) for three hours.  The cells were washed, suspended in PBS, 0.05% 

Triton X-100, 1 mg/mL lysozyme, and lysed using sonication or the Fastprep120 (20 seconds, 

setting 6.0).  The lysate was centrifuged at 10,000 x g for twenty minutes at 4 oC and the 

clarified supernatant was passed through a Ni2+-NTA Spin column kit.  The column was 

washed three times with 50 mM NaH2PO4 pH 7.0 and 300 mM NaCl.  The L2 lariat was eluted 

using 50 mM NaH2PO4 pH 7.0, 250 mM NaCl, and 100 mM EDTA.  

The lariat was separated from the IN and unprocessed inteins and desalted using a C4 

reverse phase column (Symmetry300TM C4 3.5 µm 2.1 x 50 mm Column) with a gradient of 5% 

Buffer A / 95% Buffer B to 25% Buffer A / 75% Buffer B over 20 minutes (Buffer A: H2O and 

0.1% formic acid (v/v), Buffer B: acetonitrile and 0.08% formic acid (v/v)).  The fraction 

containing the lariat peptide was collected, lyophilized, and stored at – 80 °C. 

3.5.6  Chemoselective lactone cleavage 
To determine the amount of lactone-cyclized lariat in the sample prior to MS analysis, 

we forced the cleavage of the lactone bound using Na18OH.  This procedure results in a 

chemoselective ring opening, where the lactone bond was selectively cleaved by the basic 

conditions, leaving the amide bonds intact  (Hagelin, 2005). 0.5 M Na18OH was prepared by 

dissolving sodium in 98% H2
18O.  Five-hundred micrograms of lyophilized Ni2+-NTA/reverse 

phase HPLC purified His-tagged L2 lariat was treated with either 0.5 M Na16OH or 0.5 M 

Na18OH for 16 hours at room temperature.  The reaction was acidified with 0.5 N HCl to give a 

final pH between 2.0 and 7.0.  

3.5.7  Trypsin digestion of hydrolyzed lariat 
The NaOH hydrolyzed L2 lariat was purified by HPLC under the same conditions 

described previously using a C4 reverse phase column (Symmetry300TM C4 3.5 µm 2.1 x 50 

mm Column) to remove any residual 18O and salts from previous steps.  The purified L2 lariat 

was lyophilized, hydrolyzed, and resuspended in 6 M urea and 100 mM Tris-HCl pH 8.0.  The 

sample was heated at 80 °C for ten minutes, and then cooled to room temperature and diluted 

10-fold in 100 mM Tris-HCl pH 8.0.  The sample was treated with 0.68 µg of modified 

sequencing grade trypsin and incubated overnight (18 hours) at 37 oC.  The tryptic digests were 

separated from the Na16OH or the Na18OH treated samples with a BioSuiteTM C18 PA-A 3 µm 

2.1 x 250 mm column using a gradient of 5% Buffer A / 95% Buffer B to 50% Buffer A / 50% 

Buffer B over twenty minutes (Buffer A: H2O and 0.1% formic acid (v/v), Buffer B: 
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acetonitrile and 0.08% formic acid (v/v)).  Eluted peptides were analyzed using ESI-TOF(+) 

MS.  

3.5.8  LC/MS analysis of trypsin fragments 
The molecular weights of the eluted peptides were determined using ESI(+)-TOF MS.  

The multi-charged lariat spectrums were resolved using maximum entropy software (MaxEnt) 

to determine the ratio of hydrolyzed to unhydrolyzed lariat after HPLC/Mass spectrometry 

analysis.  The raw spectra were processed using MATCHING software  (Fernández-de-Cossio 

et al., 2004). 

3.6 Lariat stabilization and optimization 

3.6.1 Ssp-Npu intein gene construction 
pIL500 (Figure 3.4) was constructed using pIN01, which was similar to pJG4-5 with the 

following modifications. pIL500 retained the Ssp DnaE IC domain and had the Ssp DnaE IN 

domain replaced with the Npu DnaE IN domain.  The Ssp DnaE IC domain and the Npu DnaE IN 

domains were separated by an NruI restriction site.  In addition, the E. coli ampicillin resistance 

marker was replaced by a kanamycin resistance marker. pIN01 was digested with RsrII and 

XhoI in NEBuffer 4 (50 mM Tris-Acetate pH 7.9, 50 mM potassium acetate, 10 mM 

magnesium acetate, 1 mM dithiothreitol) for three hours at 37 °C.  A synthetic Npu DnaE gene 

was constructed from five oligonucleotides that contained codons optimized for expression in S. 

cerivisiae.  The Npu DnaE gene was constructed in three steps: (i) Dimer extension, (ii) Full 

length construction, and  (iii) Full length amplification.  In dimer extension step, approximately 

1 µg (20 µM) of oligonucleotides (15951128; 15951129; 15951130; 15951131; 15951132; 

15951127), were mixed together in pairs in separate PCR tubes with 60 mM Tris-SO4 (pH 8.9), 

18 mM NH4SO4, 2 mM MgSO4, 10 mM dNTPs, and 1.0 unit of Platinum® Taq DNA 

Polymerase High Fidelity.  These dimers were extended by an initial five minute denaturation 

step, followed by 5 rounds of 95 °C for thirty seconds, 55 °C for thirty seconds, and 68 °C for 

fifteen seconds.  In the full length construction step, the full length Npu DnaE gene was 

constructed by mixing the dimers formed in dimer extension step in a single reaction with 60 

mM Tris-SO4 (pH 8.9), 18 mM NH4SO4, 2 mM MgSO4, 10 mM dNTPs, and 1.0 Unit of 

Platinum® Taq DNA Polymerase High Fidelity under the exact same conditions as in the dimer 

extension.  Finally, in the full length amplification step, the gene was selectively amplified from 

the pool of incomplete dimer extensions, resulting in the full length gene.  One-tenth of product 



 - 81 - 

from the full length construction step was mixed with 20 µM (16646144), 20 µM (15951127), 

60 mM Tris-SO4 (pH 8.9), 18 mM NH4SO4, 2 mM MgSO4, 200 µM dNTPs, and 1.0 unit of 

Platinum® Taq DNA Polymerase High Fidelity.  The PCR reaction was initially denatured for 

five minutes at 95 °C, followed by 25 cycles of 95 °C for thirty seconds, 55 °C for thirty 

seconds, and 68 °C for thirty seconds.  The synthetic Npu DnaE gene was cloned into pIN01 

digested with RsrII and XhoI in the yeast strain EY93 using lithium acetate transformation and 

homologous in vivo recombination.  The plasmid produced by this transformation was referred 

to as pIL100. 

The kanamycin resistance gene was cloned into pIL100 at the ampicillin resistance gene 

site.  pIL100 was digested with ScaI overnight at 37 °C.  The kanamycin resistance gene was 

prepared by PCR amplification using P1 20 µM P1 Kan-switch Primer (#19), 20 µM Kan-

switch Primer (#20), 60 mM Tris-SO4 (pH 8.9), 18 mM NH4SO4, 2 mM MgSO4, 10 mM 

dNTPs, and 1.0 unit of Platinum® Taq DNA Polymerase High Fidelity.  An initial denaturation 

of five minutes at 95 °C was used, followed by 25 cycles of 95 °C for thirty seconds, 55 °C for 

thirty seconds, 68 °C for one minute.  The kanamycin resistance gene was cloned into pIL100 

using lithium acetate transformation and in vivo homologous recombination.  The resulting 

positive clone referred to as pIL500 was confirmed by sequencing.  pIL500 expresses the Ssp 

DnaE IC domain and the Npu DnaE IN domain with an arginine amino acid between the two 

domains. 
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Figure 3.4 | pIL500 
The library plasmid pIL500 was used to create lariat libraries and is based on the pIN01/pJG4-5 
backbone.  pIL500 contains a galactose promoter (GAL1 Prom), which drives expression of the 
Ssp-Npu lariat intein fused to an activation domain (B42_AD), a nuclear localization sequence 
(NLS), and a haemagglutinin tag (HA).  The Ssp IC domain and Npu IN domain are separated by 
the NruI restriction site.  The yeast alcohol dehydrogenase terminator sequence (yADH1/2 ter) 
is used to terminate transcription.  pIL500 contains a TRP1 gene involved in the biosynthesis of 
tryptophan for auxotrophic selection in yeast and the 2 µm high copy origin of replication for 
plasmid replication in yeast. pIL500 contains the kanamycin/neomycin resistance marker gene 
for selection in E. coli.  The pBR322 origin allows replication in E. coli.  
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3.6.2  Ssp-Npu library construction 
Three additional pIL500 lariat libraries were constructed: a random five-mer library 

(pIL-R5), a random 10-mer library (pIL-R10), and a focused five-mer library (pIL-F5).  The SR 

linker peptide in pIL500 was replaced with a combinatorial five or ten amino acid peptide using 

the library oligonucleotides (16415915; 16415916; 16415917).  The library oligonucleotides 

were amplified using PCR with primers (16646144 and 16415918).  We used the reaction 

conditions described above with seven amplification cycles consisting of a denaturing step at 95 

°C for thirty seconds, an annealing step at 55 °C for thirty seconds, and an extension step at 72 

°C for fifteen seconds. pIL500 was digested with NruI overnight at 37 °C.  NruI-digested 

pIL500 was dephosphorylated with 10 units of shrimp alkaline phosphatase for three hours at 

37 °C.  We cloned the library into pIL500 using lithium acetate transformation in EY93  (Ma et 

al., 1987).  Reactions were performed in 100 µL aliquots.  For the focused five-mer library 

(pIL-F5), five reactions were performed.  For the random ten-mer library (pIL-R10) fifty 

reactions were performed.  For the random five-mer library (pIL-R5), twenty-five reactions 

were performed.  Homologous in vivo recombination was used to create the library.  The 

pIL500 digested plasmid was co-transformed with the PCR reaction product into EY93 using 

the lithium acetate high efficiency protocol  (Schiestl and Gietz, 1989). 

3.6.3  Construction of G6/G7/B11 mutants 
Twenty-nine mutations were constructed in pET28b using the Phusion™ Site-Directed 

Mutagenesis Kit.  Mutations were introduced at the G6, G7, and B11 positions by following the 

manufacture’s instructions.  Mutations were introduced at the G6/G7 positions by using primers 

(33903878; 33903879; 33903880; 33903881; 33903882; 33903384) with the primer 

(33903885).  Each primer combination resulted in a different mutation at the G6/G7 position.  

These plasmids were used as templates to introduce the mutations at the B11 position, which 

was performed using primers (33903886; 33903887; 33903888) with the primer (33903890). 

3.6.4  Expression and purification of mutant lariats for LC/MS analysis 
The His-tag L2 lariats were purified using a Ni2+-NTA Spin column kit.  Briefly, BL21-

CP E. coli were transformed with L2 lariat mutant expression plasmids by electroporation.  The 

L2 lariat constructs were expressed by inducing a 0.4 OD600 culture of BL21-CP with 1 mM 
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IPTG for three hours.  The cells were washed in ddH2O and resuspended in PBS with 0.05% 

Triton X-100 and 1 mg/mL lysozyme.  Cells were lysed using a Fastprep120 (20 seconds, 

setting 6.0).  The lysate was centrifuged at 10,000 x g for twenty minutes at 4 oC and passed the 

clarified supernatant through a Ni2+-NTA column.  The column was washed three times with 50 

mM NaH2PO4 pH 7.0 and 300 mM NaCl.  The lariats were eluted using 50 mM NaH2PO4 pH 

7.0, 250 mM NaCl, and 100 mM EDTA.  

3.6.5  LC/MS analysis of G6/G7/B11 mutants 
We analyzed the lariat by LC/MS using a C4 reverse phase column (Symmetry300TM 

C4 3.5 µm 2.1 x 50 mm Column).  A 1/10th dilution of the purified protein was diluted in water 

and injected onto the C4 reverse phase column with a gradient of 5% Buffer A / 95% Buffer to 

25% Buffer A / 75% Buffer B over twenty minutes (Buffer A: H2O and 0.1% formic acid (v/v), 

Buffer B: acetonitrile and 0.08% formic acid (v/v)) with a five minute salt divert to remove any 

salts prior to MS analysis.  The spectra were collected and analyzed using MaxEnt software to 

obtain the molecular weights of the proteins in the samples. 

3.7 Ssp-Ssp G6/G7/B11 library 
A library of mutants at the G6/G7/B11 positions was constructed using a modified 

Phusion™ Site-Directed Mutagenesis Kit protocol (Figure 3.5).  The pIL-L2 plasmid was 

amplified using four primers.  The B11 amino acid in the Ssp-IN domain was randomized with 

the NNK codon using primers (33903885 and 33903889).  The G6/G7 amino acids were 

randomized using the primers (33903891 and 33903890) (Figure 3.5).  The resulting PCR 

product had 20 bp preceding the B11 position that matched the IN domain, followed by the 

randomized B11 position, followed by the rest of the Ssp-IN domain and the pIL-L2 backbone 

sequence including the Ssp-IC domain up to the G5 position.  The second PCR product had 20 

bp before the G6/G7 position that matched amino acids in the IC domain, followed by the 

randomized G6/G7 positions, followed by the anti-LexA L2 sequence through to the B10 

amino acid.  The two PCR products were co-transformed using the lithium acetate protocol in 

1:3 ratio of mutated sequence to L2 sequence (Figure 3.5).  

 

 

 

 



 - 85 - 

 
Figure 3.5 | G6/G7/B11 library  
The G6/G7/B11 library was constructed in two steps. (a) Step 1: PCR reaction with primer (ii) 
introduces mutations at the B11 position.  Primers (i) and (ii) results in a linear dsDNA product 
from the B5 amino acid, including the randomized B11 position, to the IC-5 amino acid.  Primers 
(iii) and (iv) results in a linear dsDNA product that contains G6/G7 positions and ends at the 
B10 position. (b) Step 2: In vivo homologous recombination.  The two PCR products have ends 
20 bp in length that are identical.  In vivo homologous recombination of the two PCR products 
results in the formation of the original plasmid with mutations at the G6/G7/B11 amino acid 
positions. (c) G6/G7/B11 library.  Mutations introduced at the G6/G7 and B11 positions 
represented by “X”.  
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3.8 Y2H screening of the Ssp-Ssp G6/G7/B11 library 
Yeast interaction mating  (Kolonin et al., 2000) was used to test interactions between 

the Ssp-Ssp anti-LexA L2 G6/G7/B11 library and the LexA bait.  The transformation frequency 

of the library creation step was low, yielding approximately 100 cfu/transformation with 

approximately 10% background (The yield could be improved by extending the region of 

overlap beyond 20 bp).  Since the efficiency was low, only 400 colonies were directly picked 

and grown for 48 hours at 30 °C in 96-well format in 600 µL of SD W- using 96-well tube 

blocks.  The cells were centrifuged at 4,000 x g and resuspended in 50 µL of ddH2O in 96-well 

u-bottom plates.  A 96-pin replicator was dipped into the 96-well round-bottom plates 

containing 50 µL of library yeast cells and used to create four replicates on YPD agar plates, 

which had already been pinned with cells containing EY111::pEG202, to generate a 384-spot 

array.  The 96-pin replicator was washed between pinnings in 10% bleach for 1 minute, rinsed 

with water by raising and lowering the replicator 5 – 10 times, sterilized in 95% ethanol, and 

dried either by flame or by hot air (blow-dryer).  Cells were allowed to mate for 48 hours and 

the resulting colonies were transferred using the 384-pin replicator to SD H-W- and SGR H-W-

L-, and SGR H-W-A- X-gal plates.  

3.9 Anti-LexA L2 lariat 

3.9.1 Isolation of lariats against LexA 
The lariat library was screened for interactions with LexA using Y2H interaction 

mating, which has been described in section 3.3.6  (Kolonin et al., 2000).  Briefly, the LexA 

bait plasmid (pEG202) (Gyuris et al., 1993) was transformed into EY111.  EY111::pEG202 

was mated to EY93::pIL-R7.  EY111::pEG202 was cultured in 500 mL of SD His- media to an 

OD600 of 0.6 – 0.9.  EY111::pEG202 cells were pelleted by centrifugation and resuspended in 

an equal volume of yeast peptone dextrose (YPD) media.  EY93::pIL-R7 cells were mixed with 

EY111::pEG202 cells at a ratio of 1:20.  Yeast cells were  mated on YPD plates at 30 °C for 24 

hours.  Mated yeast cells were pooled and 20 million diploid yeast cells were screened using the 

Y2H assay to detect lariats that interacted with LexA using the LEU2, ADE2, and LacZ 

reporter genes.  Diploid yeast cells were cultured on SGR H-W-L-Ade- plates containing X-Gal 

for approximately seven days.  Positive colonies were selected and positive interactions were 

reconfirmed by isolating pIL-R7 from the positive colonies and repeating the Y2H assay as 

described above. 
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3.9.2 Construction of Y2H L2 lariat control plasmids 
pIL-L2, which expresses the L2 lariat, was isolated from the pIL-R7 library screen 

against LexA.  The noose amino acid sequence of pIL-L2 was RSWDLPGEY.  

pIL-L2-scrambled expresses the L2-scrambled lariat where the noose amino acid 

sequence is SDPGLRSWEY.  pIL-L2-scrambled was constructed using the same strategy as the 

pIL-R7 library except oligonucleotide (27171877) was used in place of oligonucleotide 

(6446990) and only a single transformation was performed. 

pIL-L2-inverted expresses the L2-inverted lariat where the noose amino acid sequence 

is SGPLDWSREY.  pIL-L2-inverted was constructed using the same strategy as pIL-R7, 

except oligonucleotide (27171878) was used in place of oligonucleotide (6446990) and only a 

single transformation was performed. 

pIN-L2 expresses the L2 inactive intein. pIN-L2 was constructed by mutating cysteine 

at IN+1 to alanine.  Two overlapping PCR fragments were used to introduce the point mutation.  

Primers (1 and 2) were used to amplify the N-terminus region and primers (3 and 4) were used 

to amplify the C-terminus region of the L2 lariat.  The two PCR products were mixed together 

and the full-length inactive intein was amplified with primers (1 and 4).  The PCR product was 

cloned into EcoRI/XhoI-digested pIN01 using in vivo homologous recombination in EY93  (Ma 

et al., 1987). 

pLIN-L2 expresses the L2 linear peptide. pLIN-L2 was constructed by introducing two 

stop codons after the L2 sequence RSWDLPGEY.  Oligonucleotide (26911159) was used in 

place of oligonucleotide (6446990) and only a single transformation was performed. 

pACT-L2 expresses the L2 active intein. pACT-L2 was constructed by mutating 

alanine at IC+1 in pIL-L2 to asparagine.  Two overlapping PCR fragments were used to 

introduce the point mutation.  Primers (1 and 5) were used to amplify the N-terminus region 

and primers (8 and 4) were used to amplify the C-terminus region of the L2 lariat. The two PCR 

products were mixed together and the full-length active intein was amplified with primers (1 

and 4).  The PCR product was cloned into EcoRI/XhoI-digested pIN01 using in vivo 

homologous recombination in EY93  (Ma et al., 1987). 

Alanine mutant plasmids were constructed using homologous recombination.  The 

lariat sequence SRSWDLPGEY was sequentially mutated to alanine from the second position 

arginine to the tenth position tyrosine.  Oligonucleotides with the appropriate alanine 

substitution were PCR amplified as above and cloned into pIN01 digested with RsrII. 
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pALA-R2A expresses the L2 lariat intein with position 2 mutated to alanine 

(SASWDLPGEY) .  The mutation was constructed using the primer (27431776). 

pALA-S3A expresses the L2 lariat intein with position 3 mutated to alanine 

(SRAWDLPGEY).  The mutation was constructed using the primer (27431777). 

pALA-W4A expresses the L2 lariat intein with position 4 mutated to alanine 

(SRSADLPGEY).  The mutation was constructed using the primer (27431778). 

pALA-D5A expresses the L2 lariat intein with position 5 mutated to alanine 

(SRSWALPGEY).  The mutation was constructed using the primer (27431779). 

pALA-L6A expresses the L2 lariat intein with position 6 mutated to alanine 

(SRSWDAPGEY).  The mutation was constructed using the primer (27431780). 

pALA-P7A expresses the L2 lariat intein with position 7 mutated to alanine 

(SRSWDLAGEY).  The mutation was constructed using the primer (27431781). 

pALA-G8A expresses the L2 lariat intein with position 8 mutated to alanine 

(SRSWDLPAEY).  The mutation was constructed using the primer (27431782). 

pALA-E9A expresses the L2 lariat intein with position 9 mutated to alanine 

(SRSWDLPGAY).  The mutation was constructed using the primer (27431783). 

pALA-Y10A expresses the L2 lariat intein with position 10 mutated to alanine 

(SRSWDLPGEA).  The mutation was constructed using the primer (27431784). 

3.9.3 Construction of E. coli L2 lariat control plasmids 
pETIL-L2 expresses the L2 lariat and was constructed by PCR amplifying the entire L2 

lariat gene from  pIL-L2, including the stop codon, using primers (6 and 7).  The PCR product 

was digested with EcoRI and XhoI and cloned into pET28b using standard restriction enzyme 

based cloning procedures.  

pETIL-L2-scrambled expresses the L2-scrambled lariat and was constructed by PCR 

amplifying the entire scrambled L2 gene including the stop codon, from pIL-L2-scrambled with 

primers (6 and 7).  The PCR product was cloned into pET28b as described above.  

pETIN-L2 expresses the L2 inactive intein and was constructed by PCR amplifying the 

entire inactive L2 gene from  pIN-L2 intein gene including the stop codon with primers (6 and 

7).  The PCR product was cloned into pET28b as described above.  
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pETLIN-L2 expresses the L2 linear peptide and was constructed by PCR amplifying 

the entire linear L2 gene from  pLIN-L2, including the stop codon, using primers (6 and 7).  

The PCR product was cloned into pET28b as described above.  

pETACT-L2 expresses the L2 active intein and was constructed by PCR amplifying the 

entire active L2 intein gene from  pACT-L2, using primers (6 and 7).  The PCR product was 

cloned into pET28b as described above. 

3.9.4  Qualitative Y2H assay  
The interaction strength of different constructs was determined by growth and color.  

The number of diploids cells plated on the selection media was normalized and plated in serial 

dilutions.  Diploid cells were grown overnight in SD H-W-.  The cells were normalized to 0.5 x 

106 CFU/µL and serial dilutions starting at one million (2 µL) cells were plated onto SG/R H-

W-L-A-X-gal+ and grown for 5 days at 30 °C.  

3.9.5  Surface plasmon resonance assay 
Surface plasmon resonance (SPR) was performed using a BiaCore3000 instrument.  

LexA was purified using HIS-Select® HF Nickel affinity gel (Ni2+-NTA) and diluted in 50 mM 

Tris-HCl and 150 mM NaCl prior to SPR analysis.  Purified His-tagged LexA was immobilized 

on a NTA Sensor Chip.  L2 lariat or L2 linear peptides were dissolved in 50 mM Tris-HCl and 

150 mM NaCl.  Sequential 2-fold serial dilutions of either synthetic L2 lariat or L2 linear 

peptides ranging from 125 µM to 7.8 µM were injected over the surface at a flow rate of 10 

µL/min.  The KD for the L2 lariat-LexA interaction was calculated by plotting maximum 

response units versus peptide concentration and fitting the data to a one site binding model 

using Prism4.0 (GraphPad) statistical software. 

3.9.6 Ni2+-NTA chromatin precipitation assay 
Ni2+-NTA chromatin precipitation assay was based on previously described procedures 

(Tamimi et al., 2004).  Briefly, BL21-CP cells transformed with lariat expression plasmids and 

cultured to an OD600 of ~ 0.6 in LB with 50 µg/mL of kanamycin.  Cultures were either induced 

for two hours with 0.2 mM IPTG at 30 °C or left un-induced.  Forty milliliters of cells were 

treated with formaldehyde to a final concentration of 1% and incubated for twenty minutes at 

25 °C.  Glycine was added to a final concentration of 0.5 M and cells were harvested by 

centrifugation and washed twice with Tris-buffered saline (pH 7.5).  Cells were resuspended in 

500 µL lysis buffer (10 mM Tris-HCl pH 8.0, 20% sucrose, 500 mM NaCl, 1 mM EDTA, 10 
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mM imidazole, 4 mg/mL lysozyme) and incubated at 37 °C for thirty minutes.  Five-hundred 

microliters of precipitation buffer (50 mM HEPES-KOH pH 7.5, 500 mM NaCl, 1 mM EDTA, 

10 mM imidazole, 1% triton X-100, 0.1% sodium deoxycholate, 0.1% SDS) and PMSF (final 

concentration 1 mM) were added to the cell extract and the DNA was sheared by sonication to 

an average size of ~ 500 bp.  Insoluble cellular material was removed by centrifugation and 20 

µL of the supernatant was kept for use as an “input” sample. 

Proteins were precipitated by diluting 250 µL of cross-linked extract to a final volume 

of 800 µL in precipitation buffer.  Fifty microliters of HIS-Select® HF Nickel affinity gel 

(Ni2+-NTA) were added and the extracts were incubated for ninety minutes at 25 °C with 

gentle shaking.  Extracts were precipitated by centrifugation and the supernatant was removed.  

Precipitated complexes were resuspended in 750 µL of precipitation buffer, transferred to 0.45 

µm membrane microcentrifuge columns, washed once with precipitation buffer, once with 

precipitation buffer with 500 mM NaCl, once with wash buffer (10 mM Tris-HCl pH 8.0, 250 

mM LiCl, 1 mM EDTA, 0.5% Nonidet-P40, 0.5% sodium deoxycholate) and once with Tris-

HCl (pH 7.5).  Precipitated complexes were eluted by incubation in 100 µL of elution buffer 

(50 mM Tris-HCl pH 7.5, 500 mM NaCl, 250 mM imidazole, 1% SDS) at 65 °C for ten 

minutes. 

Precipitated complexes and corresponding “input” samples were decross-linked by 

incubating them at 42 °C for two hours and 65 °C overnight in 0.5X elution buffer with 0.8 

mg/mL Proteinase K.  Eluted LexA promoter DNA was quantified by real time PCR and 

normalized to the corresponding input DNA. 

3.9.7  LexA chromatin immunoprecipitation assay 
The LexA ChIP assay was based on a previously described procedure  (Wade and 

Struhl, 2004).  Briefly, BL21-CP cells transformed with E. coli lariat expression plasmids were 

grown to an OD600 of ~ 0.6 in LB with 50 µg/mL of kanamycin and then induced for two hours 

with 0.2 mM IPTG at 30 °C.  The culture was split into two samples; one sample was treated 

with mitomycin C (0.25 µg/mL) and the other left untreated.  Both samples were incubated for 

one hour at 30 °C.  Forty milliliters of cells from each sample were treated with formaldehyde 

to a final concentration of 1% and incubated for 20 minutes at 25 °C.  Glycine was added to a 

final concentration of 0.5 M and cells were harvested by centrifugation and washed twice with 

Tris-buffered saline (pH 7.5).  Cells were resuspended in 500 µL lysis buffer (10 mM Tris-HCl 
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pH 8.0, 20% sucrose, 50 mM NaCl, 10 mM EDTA, 4 mg/mL lysozyme) and incubated at 37 °C 

for thirty minutes.  Five-hundred microliters of immunoprecipitation (IP) buffer (50 mM 

HEPES-KOH pH 7.5, 150 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% sodium 

deoxycholate, 0.1% SDS) and PMSF (final concentration 1 mM) were added to the cell extract 

and the DNA was sheared by sonication to an average size of ~ 500 bp.  Insoluble cellular 

material was removed by centrifugation and 20 µL of the supernatant was kept for use as an 

“input” sample.  

Proteins were immunoprecipitated by diluting 250 µL of cross-linked extract to a final 

volume of 800 µL in IP buffer.  Twenty-microliters of protein A Fastflow Sepharose beads with 

5 µg of anti-LexA rabbit polyclonal antibody (Upstate) or a no antibody control to test for non-

specific protein A bead binding, were added to the extracts and the mixture was incubated for 

ninety minutes at 25 °C with gentle shaking.  Extracts were immunoprecipitated by 

centrifugation and the supernatant was removed.  Immunoprecipitated complexes were 

resuspended in 750 µL of IP buffer, transferred to 0.45 µm membrane microcentrifuge 

columns, washed once with IP Buffer, once with IP buffer + 500 mM NaCl, once with wash 

buffer (10 mM Tris-HCl pH 8.0, 250 mM LiCl, 1 mM EDTA, 0.5% Nonidet-P40, 0.5% sodium 

deoxycholate), and once with TE (10 mM Tris and 1 mM EDTA (pH 7.5)).  

Immunoprecipitated complexes were eluted by incubation in 100 µL of elution buffer (50 mM 

Tris-HCl at pH 7.5, 10 mM EDTA, 1% SDS) at 65 °C for ten minutes. 

Immunoprecipitated complexes and corresponding “input” samples were decross-linked 

by incubating them at 42 °C for two hours and then at 65 °C overnight in 0.5X elution buffer 

with 0.8 mg/mL Proteinase K.  Eluted DNA was further purified using a PCR clean-up kit and 

eluted in 200 µL. 

The percentage of LexA at the operator was calculated by first calculating the 

occupancy units, which is the ratio of LexA bound to the lexa promoter compared to a non-

specific control region in the sgrR (yabN) gene  (Wade and Struhl, 2004).  The percent LexA 

remaining bound to the operator after treatment was calculated by taking the ratio of the 

occupancy units of the mitomycin C treated sample to the untreated sample and multiplied by 

100. 
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3.9.8  Quantitative real-time PCR 
Quantitative real time PCR data was collected with a Miniopticon thermocycler using 

iQ™ SYBR® Green supermix.  Primers (38891611 and 38891612) were used to amplify a 

region of the lexa gene.  Primers (38891615 and 38891616) were used to amplify a region in 

the sgrR (yabN) gene.  A two-step PCR cycle was used with an initial denaturation of 95 °C for 

five minutes followed by 95 °C for thirty seconds, and 61 oC (lexa) or 59 °C (sgrR) for one 

minute.  The product was amplified for 40 cycles. 

3.9.9  Analysis of LexA autoproteolysis 
We monitored the effect of the L2 lariat constructs on mitomycin C-induced LexA 

autoproteolysis using an anti-LexA antibody.  Cultures of BL21-CP cells transformed with E. 

coli lariat expression plasmids were grown overnight in 10 mL of LB with 50 µg/mL of 

kanamycin.  Cultures were diluted to an OD600 of 0.1 in LB with 50 µg/mL of kanamycin with 

1 mM IPTG and cultured at 30 °C to an OD600 ~ 0.4 – 0.6.  Cells were treated with 100 µg/mL 

chloramphenicol, incubated for 10 minutes, and split in two.  One culture was treated with 0.1 

µg/mL of mitomycin C and the second culture was left untreated.  Four-milliliters were 

removed for analysis at the indicated time points.  The cells were washed with ddH2O, and 

stored at – 80 °C until all samples were collected.  Cells were resuspended in 250 µL of PBS 

with 0.05% Triton X-100 and 0.3 g of acid-washed glass beads, then homogenized using a 

Fastprep120.  Cell lysates were centrifuged at 13,000 x g at 4 oC, and the cleared supernatants 

were characterized by Western blot analysis with an anti-LexA antibody (Invitrogen) (1:5000 

dilution). 

3.9.10  E. coli viability assay 
Cell viability assays were performed as described by Lin and Little  (Lin and Little, 

1988).  Briefly, BL21-CP cells transformed with E. coli lariat expression plasmids were 

cultured in LB-KAN at 37 °C to an OD600 of 0.4.  Protein expression was induced with 1 mM 

IPTG for one hour.  The samples were then diluted 100-fold in 5 mL 0.85% NaCl with or 

without 0.1 µg/mL of mitomycin C.  For a zero time point control, we removed 10 µL and 

diluted it 1000-fold in ice cold LB (1 mL).  The remaining sample was incubated at 37 °C for 

thirty minutes.  We then removed 10 µL and diluted it 1000-fold into 1 mL ice-cold LB.  We 

plated 60 µL aliquots from the zero and thirty minute samples on LB plates and incubated the 

plates inverted at 37 °C overnight.  Normalized percent cell survival was calculated by dividing 
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the number of colony forming units (cfu) after thirty minutes by the number of cfu at the zero 

time point. 
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4 Results and Discussion 

4.1 Aim 1: Construction of lariat peptides 
Reverse genetic screening strategies usually require a specialized fusion protein.  For 

example, phage display and Y2H assays require the peptide library to be fused to a coat protein 

or transcription activation domain respectively.  These protein domains link peptides that 

interact with the target of interest indirectly to the genes that encode them.  To generate a cyclic 

peptide library that can be screened within a cell using the Y2H assay, a method was needed to 

genetically encode cyclic peptides that were fused to a transcriptional activation domain.  This 

posed a problem for cyclic peptides, as they do not have a free N- or C- terminus to fuse protein 

domains.  To solve this problem, the intein-mediated cyclic peptide reaction was modified to 

generate a lactone-cyclized peptide that contained a covalently attached linear peptide, referred 

to as a lariat.  The term lariat was particularly suited to our application since the combinatorial 

peptide region functioned as a “noose” to capture protein targets.  The lactone bond functioned 

as the “honda” of a lariat, constraining the peptide to form the noose.  The linear peptide 

functioned like the “spoke” or rope that passes through the honda and attaches the target/noose 

complex to the Y2H transcription machinery, allowing us to select combinatorial peptides that 

interact with a given target (Figure 4.1).  

Inteins have previously been modified to produce lactam peptides that have no free N- 

or C-termini  (Scott et al., 1999).  The lactam peptide producing intein reaction has four 

catalytic steps (Figure 4.2b).  In the first step, the intein undergoes an N-S acyl shift.  The thiol 

group on the cysteine side chain of the IN+1 amino acid replaces the amide bond with a thioester 

linkage between the region to be cyclized and the IN domain.  This thioester bond is more 

susceptible to nucleophilic attack and makes the IN domain a better leaving group.  In the 

second step, a transesterification reaction occurs where the thioester bond generated in the first 

step is attacked by the hydroxyl group of the serine side chain at position IC+1.  This results in 

the release of the IN domain and the formation of the lariat.  In the third step, the asparagine at 

position IC-1 undergoes cyclization, which releases the IC domain from the lariat.  In the fourth 

step, the lactone peptide undergoes an O-N acyl shift, converting the lactone to the more 

energetically favorable lactam.  
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Figure 4.1 | Production and isolation of lariats using the Y2H assay 
(a) Intein-mediated lactam peptide production. (i) Intein undergoes an N-S acyl shift using the 
IN+1 cysteine at the peptide-IN junction. (ii) Transesterification reaction involving IC+1 serine at 
the IC-peptide junction and the thioester formed in step (i), which releases the IN domain and 
produces the lariat intermediate. (iii) IC-1 asparagine undergoes a side chain cyclization, which 
releases the IC domain and generates a lactone peptide. (iv) Lactone peptide undergoes a 
thermodynamically favored O-N acyl shift to produce a lactam peptide. (b) Intein-mediated 
production of lariat peptides.  The lariat is produced by mutating the asparagine at position IC-1 
to alanine (*), which inhibits asparagine cyclization and stops the reaction at the lariat 
intermediate. (c) Lariat Y2H assay.  Illustration of the lariat peptide used in the Y2H assay.  In 
this example, lariats that interact with the target protein LexA activate transcription of reporter 
genes Ade, Leu2, and ß-galactosidase.  LexAop = LexA operon, IC = Intein C-terminal domain, 
IN = Intein N-terminal domain, HA = haemagglutinin tag, ACT = activation domain, NLS = 
nuclear localization signal, Xn = peptide noose. 
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Figure 4.2 | Intein mutations used to generate lariats and inactive inteins  
(a) Mutations used to generate the lariat, and inactive inteins. * Indicates the asparagine to 
alanine mutation at position IC-1/G8 used to generate the lariat intein. ** indicates the cysteine 
to alanine mutation at position IN+1/A1 used to generate the unprocessed intein. (b) The 
mechanism used by the active intein to generate lactam peptides. (i) The unprocessed intein 
undergoes an N-S acyl shift using the IN+1 cysteine at the peptide-IN junction. (ii) The 
transesterification reaction, which involves the IC+1 serine at the IC-peptide junction and the 
thioester formed in step (i), releases the IN domain and produces the lariat intermediate. (iii) 
The IC-1 asparagine undergoes a side chain cyclization, which releases the IC domain and 
generates a lactone peptide. (iv) The lactone peptide undergoes a thermodynamically favored 
O-N acyl shift to produce a lactam peptide. (c) The mechanism used by the lariat intein to 
produce the lariat.  The lariat is produced by mutating the asparagine at position IC-1 to alanine 
(*), which inhibits step (iii), asparagine cyclization, and stops the reaction at the lariat 
intermediate. (d) The inactive intein is produced by a cysteine to alanine mutation (**), which 
blocks step (i) transesterification. 
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Three distinct intein structures have been highlighted in this pathway: (i) the 

unprocessed intein, which has not undergone any steps in the intein reaction, (ii) the lariat, 

which is produced by the first two steps in the intein reaction, and (iii) the lactam peptide, 

which is produced when all four steps in the intein reaction occur.  Mutations can be introduced 

into the intein to block processing and produce lariat or unprocessed products (Figure 4.2). 

An inactive intein that cannot undergo any processing steps can be generated by 

blocking Step 1 (N-S Acyl shift).  Step 1 can be blocked by mutating cysteine to alanine at 

position IN+1/A1.  The inactive intein can be used to constrain peptides through the interaction 

between the IC and IN domains (Figure 4.2). 

 We proposed the lariat could be produced by blocking Step 3 (Asparagine cyclization).  

Step 3 can be blocked by mutating asparagine to alanine at position IC-1/G7.  The lariat structure 

constrains peptides through the lactone bond (Figure 4.2). 

4.1.1 Ssp-Ssp intein gene construction 
Inteins do not naturally occur in an orientation that allows protein cyclization (Figure 

2.1).  To cyclize peptides (exteins), intein domains must be permutated so that they flank a 

continuous extein (Figure 2.1).  The first step in generating a lariat producing intein was to 

construct a synthetic intein gene with permutated IN and IC domains.  The second step was to 

mutate asparagine at position IC-1/G7 to alanine, which blocks the cyclic peptide producing 

intein reaction at the lariat intermediate.  The third step was to insert an RsrII restriction site 

between the intein domains, which would allow DNA encoding combinatorial peptides to be 

cloned in between the intein domains  (Figure 2.1). 

The Synechocystis sp.  PCC6803 (Ssp) DnaE gene was used as a template to construct 

the lariat intein since a permutated version of this intein has previously been used to cyclize 

proteins in vivo  (Scott et al., 1999).  The Ssp DnaE gene is a naturally occurring split intein, 

which is transcribed and translated as two separate proteins.  The entire 3,573,421 bp genome 

of Ssp is available from GenBank (BA000022) (Benson et al., 2009).  The two Ssp DnaE intein 

proteins are located on different coding strands separated by 750,000 bp in the genome.  The N-

terminus of the DnaE gene fused to the Ssp IN domain is located at position 3,561,946 – 

3,564,639 (BAA18870.1) in the genome and is expressed as one protein.  The Ssp IC domain of 

the intein fused to the C-terminus of the DnaE gene is expressed as a second protein, which is 

located on the complementary strand approximately 750,000 bp away at position 736,435 – 
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737,811 (BAA17242.1).  The split intein fragments then associate with each other inside the 

cell via the interaction between the IC and IN domains.  The Ssp DnaE intein was selected since 

it was the most well characterized cyclic protein producing intein at the time that this study was 

initiated  (Iwai and Plückthun, 1999; Evans et al., 1999; Scott et al., 1999; Scott et al., 2001; 

Iwai et al., 2001; Xu and Evans, 2001; Williams et al., 2002; Kinsella et al., 2002). 

Codons in the synthetic lariat producing intein were optimized to facilitate expression in 

the Y2H assay.  Codons were changed to represent the most frequently used yeast codons 

determined from two different sources: (i) The codon usage table from the Saccharomyces 

genome databank (SGD) (ftp://genome-ftp.stanford.edu/pub/codon/ysc.orf.cod), which was 

produced by J.  Michael Cherry using the GCG program CodonFrequency in 1999, from 6,216 

open reading frames in yeast; or (ii) from 14,411 complete protein coding genes curated from 

the NCBI-GenBank Flat file release 160.0 [June 15th 2007] (Benson et al., 2004; Nakamura et 

al., 2000).  Optimizing codon usage of foreign genes for the host organism has previously been 

shown to increase protein expression  (Bennetzen and Hall, 1982; Ikemura, 1985; Mechold et 

al., 2005; Barrett et al., 2006; Brat et al., 2009; Sastalla et al., 2009).  The wildtype Ssp DnaE 

intein sequence and the yeast-optimized sequence are shown in Figure 4.3.  Codons that are 

underlined in Figure 4.3 were changed from the wildtype codon in the Ssp DnaE intein to a 

yeast-optimized codon.  The majority of codons 56% (89/159) were changed to optimize the 

intein for expression in yeast (Figure 4.3). 

Mutations, represented by stars (*) (Figure 4.3) in the amino acid sequence at the IC/IN 

junction (IC-2/G6)-HSSCGPCEYA-(IN+1/A1) were introduced to create a generic intein gene 

that could be used to construct different intein constructs.  Histidine (H) at position  (IC-2/G6) 

was included in the lariat intein design since it was shown to facilitate intein processing in the 

lactam peptide producing intein (Scott et al., 2001).  Mutation of the IC-1/G7 amino acid from 

asparagine to alanine was required to block intein processing and produce the lariat.  Our initial 

lariat intein was designed to have an alanine (A) mutation at position IC-1/G7, however, an error 

in the construction of the gene resulted in serine (S) at position (IC-1/G7).  This error was 

corrected when the combinatorial oligonucleotide library was cloned into the lariat intein 

expression plasmid.  The peptide noose was formed by the amino acids between the IC+1/G8 

and IN-1 amino acids (IC+1/G8)-SCGPCEY-(IN-1).  The IC+1/G8 amino acid was changed from 

cysteine (C) to serine (S) to produce the less labile ester bond instead of a thioester bond.   
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Figure 4.3 | Modified Ssp-Ssp DnaE intein gene sequence 
(a) Ssp-IC domain.  Sequences of the wildtype (wt) and yeast codon optimized Ssp-IC intein 
genes are shown.  (b) Ssp-IN domain.  Sequences of the wt and yeast codon optimized Ssp-IN 
intein genes are shown.  Codons are highlighted as alternating grey/white boxes to assist in 
visualizing codons.  Below the nucleotide sequences is the amino acid sequence of the yeast-
optimized intein.  Underlined codons represent silent mutations that were used to convert the wt 
codon to a yeast-optimized codon.  * Indicates non-silent mutations that were introduced.  
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The IC+2-CGPC-IN-3 motif was included since it encoded an RsrII restriction site, which 

allowed combinatorial peptide libraries or specific peptide sequences to be cloned between the 

IC and IN domains.  Glutamate (E) at position (IN-2) and tyrosine (Y) at position (IN-1) were 

included since they were previously shown to be important for lactam peptide cyclization  

(Scott et al., 2001).  Finally, alanine (A) at position (IN+1/A1) was included to block intein 

processing at Step 1 (N-X acyl shift).  This mutation was necessary to create inactive inteins.  

The alanine (IN+1/A1) was mutated to cysteine during construction of lariat libraries, which 

allowed the N-X acyl shift to proceed. 

The modified lariat intein gene was synthetically constructed using overlapping 

oligonucleotides (Figure 4.4)  (Stemmer et al., 1995).  The lariat gene was amplified using 

primers that contained 39-nucleotides complementary to a region in the pJG4-5 plasmid where 

the lariat intein was to be inserted (Figure 4.5).  The PCR amplified lariat gene was cloned into 

pJG4-5 by homologous recombination to generate the pIN01 plasmid (Figure 4.6). 

The pIN01 plasmid was used to clone oligonucleotides encoding a combinatorial 

peptide library between the permutated Ssp intein domains.  Homologous recombination 

allowed us to use the pIN01 plasmid to construct the inactive intein, the lariat, and the active 

intein (Figure 4.2).  pIN01 was based on pJG4-5 and has a tryptophan marker for selection in 

yeast and an ampicillin marker for selection in E. coli (Figure 4.6).  Protein expression was 

controlled by the inducible yeast GAL1 promoter.  The intein was expressed as a C-terminal 

fusion protein to the following three domains: (i) Nuclear localization signal (NLS), which 

imports proteins into the nucleus where the Y2H assay reporters were located.  (ii) B42 

activation domain, which is a general transcription factor and activates transcription when 

localized to a promoter.  (iii) Influenza haemagglutinin tag (HA-tag) [YPYDVPDYA], which 

allowed detection of the prey using anti-HA antibodies. 

Lariat libraries displaying seven random amino acids from their “noose” region were 

constructed using a degenerate oligonucleotide (Figure 4.7).  The random peptide library 

consisted of the peptide sequence IC+1/G8-[SXXXXXXXEY]-IN-1, where X represents any 

amino acid encoded by the degenerate NNK codon (N = A, C, G, or T: K = G, or T).  The 

degenerate NNK codon was chosen to maximize amino acid diversity and minimize stop 

codons (Table 4.1).  The degenerate NNK codon encodes 32 different codons (Table 4.1), 

which code for all twenty amino acids and one stop codon (TAG).  At each NNK codon
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Figure 4.4 | Intein gene construction 
The synthetic intein gene was constructed from eight overlapping oligonucleotides encoding the 
modified lariat intein gene.  (a) Gene assembly.  PCR was used to create the full-length 
synthetic intein gene from overlapping synthetic oligonucleotides.  (b) Gene amplification.  A 
second round of PCR with oligonucleotides containing 5`-ends complementary to the pJG4-5 
vector (shown in light and dark blue) were used to amplify the full-length intein gene.  (c) 
Recombination.  The pJG4-5 vector was digested with EcoRI and XhoI and co-transformed 
with the amplified intein gene into yeast, which produced the pIN01 plasmid. nt represents 
nucleotide(s) 
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Figure 4.5 | pJG4-5 fusion cassette region 
(a) pJG4-5 fusion protein sequence.  A 432 nucleotide segment of pJG4-5 (GenBank accession 
U89961) (Gyuris et al., 1993) containing the entire fusion cassette including: the SV40 T-
antigen nuclear localization signal (NLS) (green) [PKKKRKV] (Kalderon et al., 1984), the 
bacterial B42 activation domain, the Haemagglutinin epitope tag (blue)  (HA-tag) 
[YPYDVPDYA], and restriction sites (EcoRI and XhoI) (underlined).  Alternating codons are 
highlighted in light grey to assist in visualization.  Nucleotide numbering is shown above the 
sequence.  The first ATG represents the start of the open reading frame for the fusion proteins.  
(b) Primers used to amplify the lariat gene.  The underlined 39-nucleotide region is 
complementary to pJG4-5 plasmid at the region where the lariat intein was inserted.  P1 is the 
forward primer and matches the pJG4-5 plasmid at position 283 – 321.  P2 is the reverse primer 
and matches the pJG4-5 plasmid at position 328 – 366.  The P2 primer also contains the TAA 
stop codon.  The nucleotide segments that are not underlined are complementary to the lariat 
intein gene. 
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Figure 4.6 | pIN01 plasmid 
Map of pIN01.  pIN01 is based on the pJG4-5 backbone with the [Ssp DnaE IC - RsrII – Ssp 
DnaE IN] gene construct inserted between EcoRI/XhoI restriction sites. pIN01 is a high copy 
yeast plasmid (2µ origin). pIN01 contains the TRP1 gene that maintains the plasmid in yeast 
auxotrophic for tryptophan biosynthesis and  the ampicillin resistance gene β-lactamase (amp 
marker), which allows the plasmid to be amplified in E. coli.  Expression of the intein construct 
in yeast is controlled by the galactose inducible promoter (GAL1 prom), and is terminated by 
the yeast alcohol dehydrogenase terminator sequences (yADH1, yADH2 ter).  The IC domain is 
preceded by the NLS-B42 activation domain-HA tag fusion tag.  The IC domain is flanked by 
unique EcoRI and RsrII sites and the IN domain was flanked by unique RsrII and XhoI 
restriction sites. 

Activation Domain

Unique restriction site
Terminator
Tag

Selectable marker

Promoter
Intein gene
Origin of replication

pIN01
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 Figure 4.7 | Ssp-Ssp R7 lariat library 
(a) The lariat intein gene with IC and IN domains in pink and the RsrII restriction site 
highlighted in blue.  (b) The oligonucleotides encoding the combinatorial peptide library 
(Library oligonucleotide) were amplified by PCR using amplification primers.  The library 
oligonucleotide dictates the nucleophile at the IN+1 position as well as the length of the random 
region and any fixed amino acids.  Stars (*) denote amino acids codons, which are different 
between pIN01 and the resulting library.  (c) Combinatorial peptide lariat library with the 
combinatorial peptide location shown in green and the IC and IN domains in pink.  K = {G,T}, 
N = {A, C, G, T}. 
 

position there is a 1/32 or 3.1% chance that the codon would be a stop codon.  In comparison, 

the NNN codon encodes 64 different codons, three of which are stop codons (TAA, TAG, 

TGA).  At each NNN codon there is a 3/64 or 4.7% chance the codon will be a stop codon.  

Using the NNK codon reduces the frequency of a stop codon occurring at each position by 

1.6%.  This translates to a reduction in stop codon frequency of 8.5% for a peptide seven amino 

acids long.  In a peptide with seven random amino acids, approximately 20% of sequences (1 – 

         1         2         3         4         5         6         7
1234567890123456789012345678901234567890123456789012345678901234567890
TGGTTTGCCACAAGATCACAACTTCTTGTTGGCTAACGGTGCTATTGCTCACTCGTCGTGCGGTCCGTGT
  G  L  P  Q  D  H  N  F  L  L  A  N  G  A  I  A  H  S  S  C  G  P  C

 
         8         9        10        11         12
123456789012345678901234567890123456789012345678901234567
GAATACGCTTTGTCTTTCGGTACTGAAATTTTGACTGTTGAATACGGTCCATTGCCA
 E  Y  A  L  S  F  G  T  E  I  L  T  V  E  Y  G  P  L  P

RsrIISsp-IC Domain

Ssp-IN Domain

5’-GTGCTATTGCTCACGCTTCTNNKNNKNNKNNKNNKNNKNNKGAATACTGTTTGTCTTTCGGTACTGAAT-3’
      A  I  A  H  A  S  X  X  X  X  X  X  X  E  Y  C  L  S  F  G  T  E

Library Oligonucleotide

5’-ATATTGGTTTGCCACAAGATCACAACTTCTTGTTGGCTAACGGTGCTATTGCTCACGCT-3’

Ampli!cation primer
3’-AACAGAAAGCCATGACTTAAAACTGACAACTTATGCCAGGTAACGGTTAACCATTCTA-5’

Ampli!cation primer

IC+1IC-1IC-2

IN-2 IN-1 IN+1

IC+1IC-1IC-2 IN-2 IN-1 IN+1

         1         2         3         4         5         6         7
1234567890123456789012345678901234567890123456789012345678901234567890
TGGTTTGCCACAAGATCACAACTTCTTGTTGGCTAACGGTGCTATTGCTCACGCTTCTNNKNNKNNKNNKNNKNNKNNK
  G  L  P  Q  D  H  N  F  L  L  A  N  G  A  I  A  H  A  S  X  X  X  X  X  X  X

 
         8         9        10        11         12
123456789012345678901234567890123456789012345678901234567
GAATACTGTTTGTCTTTCGGTACTGAAATTTTGACTGTTGAATACGGTCCATTGCCA
 E  Y  C  L  S  F  G  T  E  I  L  T  V  E  Y  G  P  L  P

LibrarySsp-IC Domain

Ssp-IN Domain

IC+1IC-1IC-2

IN-2 IN-1 IN+1

* *

*

* * * *

** *

a.

b.

c.
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317/327) will have a stop codon when the NNK codon is used versus 28.5% of sequences (1 – 

617/647) when the NNN codon is used.  The difference in the percentage of sequences 

containing stop codons increases as the peptide length increases to a maximum difference of 

15%, which occurs when the peptide is 25 amino acids long (Figure 4.8). 

Another problem with using degenerate codons to create combinatorial peptide libraries 

is that they generally introduce amino acid biases.  Amino acids are overdefined, meaning that a 

single amino acid is encoded by multiple codons.  Depending on the degenerate codon, certain 

amino acids will be over represented and others under represented.  Peptide libraries encoded 

by the NNK codon have a bias towards the amino acids leucine (12.5%), serine/arginine 

(9.4%), and alanine, glycine, proline, threonine, and valine (6.3%).  The remaining amino acids 

cysteine, aspartate, glutamate, phenylalanine, histidine, isoleucine, lysine, methionine, 

asparagine, glutamine, tryptophan, tyrosine, and the stop codon occur at a frequency of 3.1% 

(Table 4.1). 

The combinatorial oligonucleotide library was cloned into the RsrII restriction site of 

pIN01 using the following strategy.  First, the oligonucleotide library was amplified using 

primers that hybridized to either side of the random region (Figure 4.7).  The amplification 

primers extended the length of the oligonucleotide library by increasing the region that was 

complementary to the ends of the RsrII-digested pIN01 plasmid from 39-nucleotides to 59- 

nucleotides.  Hua et al. showed previously that a 20-nucleotide overlap results in recombination 

efficiencies of 3.4 ± 0.4%  (Hua et al., 1997) and increasing the overlap length to 40-

nucleotides gave recombination efficiencies of 93.3 ± 1.9%  (Hua et al., 1997).  The 59-

nucleotide overlap between the combinatorial oligonucleotide and pIN01 was chosen to 

maximize recombination frequency (> 90%)  (Ma et al., 1987) and minimize primer length.  A 

longer primer could have been used to increase efficiency modestly, however longer synthetic 

DNA oligonucleotides contain more errors and are more expensive.  The PCR amplified 

combinatorial oligonucleotide was cloned into RsrII–digested pIN01 using homologous 

recombination, which produced a library of lariat intein expression plasmids, referred to as pIL-

R7.  The homologous recombination cloning strategy also removed the RsrII insertion site in 

pIL-R7 (Figure 4.7).  A library of approximately 20 x 106 members was created by performing 

100 yeast transformations.  Optimization of this procedure resulted in efficiencies up to 5 x 105 

members per transformation. 
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Table 4.1 | Amino acids encoded by the NNK degenerate codon 
The NNK codon codes for 32 codons.  The codon along with the single amino acid code and 
the amino acid it codes for are included.  The 21 different amino acids encoded by the NNK 
codon are shown along with the number of codons for each amino acid or stop codon (#) and 
their frequency (%) in the library. 
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Figure 4.8 | Stop codon frequency in NNK versus NNN codons 
(a) The probability of a random sequence containing at least one stop codon versus its peptide 
length for the NNN (solid line) or NNK (dashed line) codons.  (b) Differences in the probability 
of a stop codon occurring between the NNK and NNN codons versus the peptide length.  The 
difference in probability of a stop codon occurring for a peptide of given length between the 
NNN and NNK codons is calculated by subtracting the NNK curve from the NNN curve in (a). 
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4.1.2 Characterization of Ssp-Ssp R7 intein library 

4.1.2.1 Ssp-Ssp R7 intein library sequencing 
Eighty-four randomly chosen plasmids from the naïve Ssp-Ssp R7 library were 

sequenced to determine the diversity and quality of the library (Figure 4.9).  Approximately 

32% of the sequences did not contain an insert either due to self-ligation or due to incomplete 

digestion and purification of the pIN01 plasmid.  The no-insert plasmid background did not 

cause a significant problem when screening the library and was used as a control to detect non-

specific interactions between the lariat and target protein or to identify self-activating baits.  

Even though 32% of the lariat library did not contain a combinatorial peptide insert, empty 

plasmid sequences were never isolated in screens using this library, indicating that the intein 

scaffold was inert and did not interact with protein targets. 

The remaining 68% of sequences underwent homologous recombination, which resulted 

in either in-frame or out-of-frame sequences.  Out-of-frame sequences made up approximately 

18% of the total library.  Out-of-frame sequences displayed linear peptides consisting of the IC 

domain and a random peptide sequence that varied in length depending on the frame-shift 

location.  Out-of-frame sequences arise when the combinatorial oligonucleotide insert is longer 

or shorter than expected.  This can be due to errors during oligonucleotide synthesis or errors 

occurring during PCR amplification of the oligonucleotide.  Alternatively, an error during 

recombination can also introduce a frameshift.  Out-of-frame sequences can be minimized by 

gel purifying the degenerate oligonucleotide or by purifying the resulting library PCR product 

to ensure only products of the correct length are used to construct the lariat libraries.  

Approximately 50% of the total library underwent in-frame homologous recombination.  

In-frame sequences consisted of: lariat inteins, with sequences expected to form lariats; inactive 

inteins that contained alanine at the IN+1 (A1) position, or linear peptide sequences that 

contained stop codons.  Sequences that encoded lariats represented 31% of the total library.  

Inactive inteins containing an alanine at position (IN+1/A1) represented 6% of the total library.  

The presence of alanine at (IN+1/A1) was most likely due to a recombination artifact.  pIN01 has 

alanine at this position and the library insert has cysteine (Figure 4.7).  If recombination occurs 

after the IN+1/A1 position then alanine from the pIN01 plasmid is retained.  This problem can be 

addressed by modifying pIN01 to contain cysteine at position IN+1/A1. 
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Figure 4.9 | Sequences of naïve Ssp-Ssp R7 library members 
(a) Venn diagram showing the different classes of sequences present in the lariat library.  OOF: 
represents out-of-frame sequences.  Vector: represents no-insert sequences.  Lariats: represent 
sequences capable of forming lariats.  Ala: represents sequences containing alanine at IN+1/A1.  
Stop: represents sequences containing a stop codon.  In-frame: represents sequences that are in 
frame.  (b) Sequences of naïve library members.  The combinatorial noose regions were sorted 
into lariats, peptides that contained stop codons (Stop), or peptides that contained alanine at the 
IN+1 (A1) position resulting in an unprocessed intein (Alanine).  Single letter amino acid codes 
are used to represent amino acids.  * indicates a stop codon. “1234567” represents the positions 
of the seven amino acids in the randomized region. 
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Linear peptides containing stop codons represented 21% of the library.  This was very 

close to the theoretical predicted value of 20% for the NNK codon.  Stop codons and codon 

biases can be eliminated by using trinucleotide phosphoramidites instead of degenerate 

nucleotides (Sondek and Shortle, 1992; Gaytán et al., 1998; Kayushin et al., 2000; Mauriala et 

al., 2004).  

In summary, we constructed a lariat peptide expression plasmid library (pIL-R7) in the 

MATa yeast strain EY93 using homologous recombination.  A total of 20 million library 

members were constructed.  To estimate the number of library members that correctly produced 

the lariat in yeast, we sequenced eighty-four randomly chosen library members and showed that 

~ 31% had the correct sequence with no stop codons and the proper nucleophile at the IN+1 (A1) 

position.  Therefore, the final library contained approximately six million different lariats (20 x 

106  x 0.31 = 6.2 x 106). 

4.1.2.2 Characterization of lariat formation in the Ssp-Ssp R7 intein library  
The lariat library contained an N-terminal HA-tag, which allowed lariat processing to be 

monitored using Western blot analysis with an anti-HA antibody.  Expression of lariats in yeast 

cells (EY93) resulted in the production of the unprocessed lariat intein (~32 kDa) and the lariat 

(~18 kDa) (Figure 4.10).  If processing did not occur then only the unprocessed lariat intein was 

observed (Figure 4.10).  Twenty library members that were predicted to produce a lariat based 

on their sequences were characterized by Western blot analysis.  Approximately 70% of these 

constructs actually produced the lariat (Figure 4.10).  Based on this analysis, it was estimated 

that approximately 4.4 million (6.2 x 106 x 0.71 = 4.4 x 106) library members were capable of 

producing lariats. 

Several groups reported that amino acids at positions, IC+2, IC+3, IN-1, and IN-2 in the 

extein affect splicing  (Scott et al., 2001; Naumann et al., 2005; Iwai et al., 2006; Amitai et al., 

2009), which in our case is in the noose or combinatorial region of the lariat.  Since we only 

analyzed twenty library members for the ability to process we were not able to determine if 

there was a preference for specific amino acids at these positions.  Interestingly, the presence of 

tryptophan at position IC+2 in two sequences blocked processing, suggesting that tryptophan 

may not be tolerated at this position.   

An analysis of more library members would provide further insight into which amino 

acids or combinations of amino acids block lariat formation.  This information would be useful 
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for future library design strategies as libraries could be designed that exclude amino acids that 

block splicing at the IC+2, IC+3, IN-1, and IN-2 positions.  Alternatively, this sequence information 

could be used to directly identify library members isolated in screens that are capable of 

forming lariats allowing us to focus our analysis on these members.  

 

 

Figure 4.10 | Analysis of Ssp-Ssp R7 library processing by Western blot analysis 
Naïve library members (1-20) expressed in yeast from the Ssp-Ssp R7 library were sequenced 
and analyzed by Western blot analysis using the anti-HA antibody.  L = Ladder.  Stop and 
inactive represent two control sequences containing a stop codon or a cysteine to alanine 
mutation at position (IN+1/A1), respectively.  The sequences from positions (IC+1/G8) to 
(IN+1/A1) for each member are shown below the Western blot.  The unprocessed product runs at 
~ 32 kDa and the lariat runs at ~ 18 kDa. 
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4.1.2.3 Characterization of Ssp-Ssp R7 intein library member “L2” by LC/MS 
The presence and importance of the lariat lactone bond was analyzed using an anti-

LexA lariat, referred to as L2.  The anti-LexA L2 lariat was isolated using the Y2H assay and is 

described in detail in section 4.3.  Western blot analysis showed that the anti-LexA L2 lariat of 

the correct size was produced, however it did not confirm if the lariat lactone bond was intact 

within the cell.  Two experiments were performed to confirm the existence of the lariat lactone 

bond.  One experiment directly analyzed whether the lactone bond was formed using liquid 

chromatography followed by electrospray ionization mass spectrometry (LC/ESI-MS).  The 

other experiment evaluated whether the lactone bond was required for the lariat to bind its 

target in the Y2H assay. 

4.1.2.3.1 Direct LC/MS analysis 
To verify whether the L2-lariat was produced in E. coli, we used (LC/ESI-MS).  The 

lariat was analyzed in E. coli since the lariat could be expressed at higher levels relative to yeast 

cells.  The L2 lariat was subcloned from the plasmid pIN01 to the E. coli expression plasmid 

(pETIL-L2).  The pETIL-L2 expression plasmid produced the L2 lariat with an N-terminal 

histidine tag followed by the IC domain, the L2 peptide, and the IN domain (Figure 4.11).  The 

His-tag L2 lariat was purified using Ni2+-NTA affinity chromatography.  The His-tag purified 

lariat products were further purified and desalted using reverse phase LC.  Optimal protein 

expression conditions were determined and the protein was purified, lyophilized, and stored at –

80 °C.  Lyophilization did not affect the stability of the lariat.  MS analysis of the purified L2 

lariat showed two products near the calculated molecular weight of the L2 lariat.  The smaller 

product (8651 Da) corresponded to the L2 lariat, which represented 26% of the total product.  

The larger product (8669 Da) corresponded to a hydrolyzed lariat product, which represented 

74% of the total product (Figure 4.11).  Previous MS analysis on the cyclic peptide producing 

intein reaction reported the lariat intermediate as being present mainly in the hydrolyzed form  

(Scott et al., 1999; Scott et al., 2001).  Potentially, hydrolysis of the lactone bond may have 

been caused by the high temperatures and acidic conditions used in the MS analysis. 
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Figure 4.11 | Direct LC/MS analysis of the L2 lariat 
(a) Schematic of the L2 lariat construct used for LC/MS analysis.  6xHis represents a six-
histidine tag.  IN and IC are the N-terminal and C-terminal intein domains, respectively.  The 
anti-LexA L2 peptide sequence is shown in the noose region.  (b) Unprocessed intein 
represented by IC-L2-IN.  The IC domain was covalently attached to the L2 peptide sequence 
and the IN domain.  (c) The unprocessed intein processes into the IC-L2:IN where the colon 
indicates that the IN domain is not covalently attached.  (d) The IN domain is released, which 
results in the lariat product (IC-L2).  (e) Hydrolysis of the intein results in cleavage of the 
lactone bond.  (f) LC/MS analysis of the IC-L2 construct showing hydrolyzed and non-
hydrolyzed lariat. 
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Figure 4.12 | Isotopic analysis used to quantitate the lactone bond 
(a) Overview of lariat hydrolysis experiment.  (i) Purified lariat before forced hydrolysis.  (ii) 
Lariat hydrolysis occurring inside of the cell results in the incorporation of 16O into the 
linearized lariat.  (ii) Forced lariat hydrolysis using Na18OH, results in the incorporation of 18O 
into the linearized lariat.  (iv) Trypsin cleavage results in the two potential 18O incorporation 
sites being separated onto two different peptides. (b) Na18OH induced ester hydrolysis results in 
the 18O incorporation at the carboxyl terminus of the hydrolyzed lariat.  (c) Na18OH induced α-
H elimination followed by Michael addition results in the 18O incorporation on the serine side 
chain. 
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4.1.2.3.2 Indirect LC/MS analysis of the lariat 
To determine the amount of lariat present prior to MS analysis, we forced the hydrolysis 

of the lariat with Na18OH.  The intact lariat was hydrolyzed by Na18OH, which results in the 

incorporation of 18O.  The 18O labeled hydrolyzed lariat can be distinguished from the lariat 

hydrolyzed by H2
16O prior to Na18OH treatment by MS analysis.  The L2 lariat was expressed 

in E. coli and purified with a nickel affinity column followed by HPLC and then lyophilized.  

The purified lariat (IC-L2) was treated with Na18OH, neutralized, desalted by HPLC, 

lyophilized, and digested with trypsin.  The resulting peptide fragments were characterized by 

LC/MS (Hagelin, 2005).  Treatment with NaOH results in a chemoselective lactone ring 

opening, which leaves amide bonds intact.  Heavy oxygen (18O) was incorporated into peptides 

that contained the lactone bond, but not lariats that had been hydrolyzed prior to the treatment.  

The lactone bond was selectively cleaved by either base-catalyzed hydrolysis or by α-H 

elimination generating dehydroalanine, which was then modified by a Michael addition (Figure 

4.12).  Base-catalyzed hydrolysis resulted in an incorporation of 18O into the carboxyl group at 

the C-terminus of the lariat. α-H elimination, followed by Michael addition resulted in an 

incorporation of 18O into the hydroxyl group of the serine side chain.  Trypsin digestion was 

necessary to simplify the analysis and separate these two modifications, allowing the two amino 

acids involved in the lactone bond to be analyzed separately.  Lariats that were hydrolyzed prior 

to Na18OH treatment had the natural isotopic distribution of oxygen (primarily 16O) 

incorporated.  Lariats that were hydrolyzed by the Na18OH treatment would be selectively 

labeled with 18O and have a pronounced change from the natural isotopic profile.  The ratio of 
16O:18O in the Na18OH treated peptides was used to determine the amount of L2 lariat with a 

lactone bond prior to MS analysis (Figure 4.12). 

Trypsin digestion resulted in the peptide SWDLPGEY (966.42 m/z), which contained 

the amino acids 73-80 from the intein construct and IFDIGLPQDHNFLLANGAIAHASR 

(2590.352 m/z), which contained amino acids 49-72 of the intein construct (Figure 4.13).  The 

SWDLPGEY (73-80) peptide fragment contained the tyrosine carboxyl group involved in the 

lactone bond on the last tyrosine residue.  The IFDIGLPQDHNFLLANGAIAHASR (49-72) 

peptide fragment contained the serine hydroxyl involved in the lactone bond.  
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As a control, the peptides were treated with Na16OH and analyzed by MS.  Their 

spectrums were compared to the theoretical isotopic distribution patterns calculated with MS-

ISOTOPE software  (Clauser et al., 1999).  Peptides treated with Na18OH contained a mixture 

of 18O and 16O labeled peptides, were deconvoluted to determine the ratio of 18O:16O peptides 

using MATCHING software  (Fernández-de-Cossio et al., 2004).  Matching software 

deconvolutes mixtures of peptides that have been isotopically labeled, resulting in small 

differences in molecular weight by comparing their observed isotopic patterns to their predicted 

isotopic patterns.  We next fitted the observed isotopic distribution of the Na18OH treated 

peptides to the theoretical distribution based peptides containing a mixture of 16O and 18O. 

For the 73-80 amino acid fragment (966 m/z, which corresponds to the singly charged 

peptide), the Na16OH treated profile closely matched the theoretical isotopic distribution as 

expected (Figure 4.14).  In the Na18OH treated sample there was a large deviation from the 

theoretical isotopic distribution at 968 m/z (Figure 4.14).  This deviation, which was two 

daltons heavier than the 966 m/z product, indicating that an 18O was incorporated and showed 

there was a mixture of two different peptides with different isotopic profiles.  One peptide 

contained the natural isotopic distribution of oxygen (with 16O being the most abundant) and 

one peptide was specifically labeled with 18O.  The percentage of peptides that had either O16 or 

O18 incorporated assuming only a single oxygen substitution due to hydrolysis of the lactone 

bond was determined.  MATCHING software calculated the percentage of 16O and 18O 

containing peptides to be 86% and 14%, respectively (Figure 4.14).  When the calculated values 

were summed together they closely matched the observed spectra (Figure 4.14).  

For the 49-72 amino acid fragment, we expected the singly charged peptide to occur at 

2590 m/z (Figure 4.13).  However, the 2590 m/z fragment was not observed in the Na16OH 

treated sample.  The Na16OH treated 49-72 amino acid fragment had an observed mass of 

2591.352 m/z, which corresponded to a product one dalton heavier than that predicted mass for 

the 49-72 amino acid fragment treated with Na16O (2590.35 m/z).  A one dalton shift caused by 

Na16OH was attributed to deamidation of asparagine.  The asparagine at position (IC-7) was 

susceptible to base-catalyzed deamidation as it was N-terminal to a glycine, which has 

previously been shown to promote deamidation (Aswad et al., 2000; Takehara and Takahashi, 

2003).  Deamidation results in the exchange of the amide group on asparagine (NH2, MW=16) 

with a hydroxyl group (OH, MW=17), resulting in aspartic acid or isoaspartic acid.  We 
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predicted that treatment of the 49-72 amino acid fragment with Na18OH would result in the 

incorporation of two 18O molecules; one from the ester hydrolysis and the second one from 

deamidation.  Analysis of the multiply charged (4+) spectrum for the Na16OH treated peptide 

assuming deamidation closely matched the theoretical spectrum (Figure 4.15).  Analysis of the 

49-72 amino acid peptide fragment from the lariat treated with Na18OH showed two interesting 

features.  First, there was a shift in the spectra to the left, causing the two first peaks to almost 

completely disappear compared to the Na16OH treated sample (Figure 4.15).  Since treatment 

with Na16OH also resulted in significant deamidation, this shift was attributed to deamidation, 

which resulted in the incorporation of one 18O.  Second, there was a deviation at the third major 

peak that corresponded to a two dalton shift, which was due to a second 18O incorporation 

(Figure 4.15).  MATCHING software was used to determine the percentage of O16 and O18 

incorporation assuming two oxygen incorporations.  MATCHING software calculated that 

8.8% of the [49-72] peptide fragment had two 16O incorporations (2591.35 m/z), 59.0% had one 
16O incorporation and one 18O incorporation (2593.35 m/z), and 32.2% had two 18O 

incorporations (2595.35 m/z) (Figure 4.15).  When the calculated values were summed 

together, they closely matched the observed spectra (Figure 4.15).  

The fraction of 18O incorporated into 73-80 and 49-72 peptide fragments indicated that 

46% (14% + 32%) of the lariat contained an intact lactone bond prior to MS analysis.  This 

value represented a low estimate of the amount of L2 lariat present in E. coli as some of the 

lariat may have been hydrolyzed during Ni2+-NTA affinity chromatography, and reverse-phase 

HPLC purification prior to Na18OH hydrolysis.  During purification, lariat hydrolysis was 

expected to occur due to esterases and other contaminating enzymes present with the purified 

lariat.  This data, combined with the fact that many lactone-cyclized peptides exist in nature  

(Grünewald and Marahiel, 2006), supported the existence of the lariat structure in vivo.  Most 

importantly, these results demonstrated that the lariat formed correctly inside of cells. 
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Figure 4.13 | Initial analysis of 18O incorporation by LC/MS 
(a) Analysis of 18O incorporation at the tyrosine carboxylic acid at position (IN-1).  Trypsin 
digestion of the Na18OH treated lariat produced a peptide fragment containing tyrosine at 
position (IN-1) (SWDLPGEY).  The 16O product has a calculated mass of 966.420 m/z and the 
18O product has a calculated mass of 968.420 m/z. The major peak observed (obs) in both 
samples was 966 m/z  (b) Analysis of 18O incorporation at the serine side chain at position 
(IC+1).  Trypsin digestion of the Na18OH treated lariat produced a peptide fragment containing 
serine at position (IC+1) (IFDIGLPQDHNFLLANGAIAHASR).  The mass of this fragment is 
2590.352 m/z corresponding to a product 1 Da heavier than the predicted 16O incorporated 
product.  A 1 Da shift was attributed to deamidation of asparagine.  The 2+, 3+ 4+ and 5+ 
charged fragments were analyzed and similar results were obtained.  Only the 4+ charged 
fragment is shown. 
 
 
 
 

 

 

b. Analysis of 18O incorporation at the serine side chain at position (IC+1)

Treatment m/z (obs.)   m/z (calc.) delta    m/z (calc.) delta
None 2590.376 2590.352 0.024 NA NA

Na16OH 2591.348 2590.352 0.996 2591.360 -0.012
Na18OH 2593.338 2592.352 0.986 2595.360 -2.022

No Deamidation Deamidation

a. Analysis of 18O incorporation at the tyrosine carboxylic acid at position (IN-1)

Treatment m/z (calc.) delta
Na16OH 966.4203 966.22 ± 0.06 0.20
Na18OH 968.4203 966.38 ± 0.04 2.04

m/z (obs.)
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Figure 4.14 | Analysis of incorporation of 18O at the [73-80] peptide fragment 
(a) Mass spectrometry analysis of [73-80: SWDLPGEY] peptide fragment from the Na16OH or 
Na18OH treated samples overlayed with the theoretical isotope distribution calculated using 
MS-ISOTOPE software.  In the Na18OH treated sample there is a large deviation from the 
theoretical distribution indicating the presence of more than one peptide.  (b) MATCHING 
software analysis of the percentages of 16O labeled peptide (966.3 m/z, 86%, squares) and 18O 
labeled peptide (968.3 m/z, 14%, triangles) in the observed spectrum.  The 1+ and 2+ charged 
fragments were analyzed and similar results were observed.  Only the 1+ charge is shown.  (c) 
Overlay of the sum of the calculated contributions of the 18O and 16O peptides on the observed 
SWDLPGEY peptide fragment spectrum.  
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Figure 4.15 | Analysis of the incorporation of 18O at the [49-72] peptide fragment 
(a) Mass spectrometry analysis of [49-72: IFDIGLPQDHNFLLANGAIAHASR] peptide 
fragment from the Na16OH or Na18OH treated samples overlayed with the theoretical isotope 
distribution (MS-ISOTOPE software).  The Na18OH treated sample incorporated two 18O, one 
from the hydrolysis and the second from deamidation, resulting in a M+H of 2595.36 Da.  (b) 
MATCHING software analysis of the percentages of 16O and 18O labeled peptides: (■) a 
peptide with two 16O substitutions corresponding to deamidation and hydrolysis by 16O 
(2591.35 m/z, 8.8 %, squares), (▲) a peptide with one 16O and one 18O substitution 
corresponding to deamidation by 18O and hydrolysis by 16O (2593.35 m/z, 59.0 %, triangles), 
and (●) a peptide with two 18O substitutions (2595.35 m/z, 32.2%, circles) corresponding to 
deamidation and hydrolysis by 18O.  D = deamidation and H = hydrolysis.  (c) Overlay of the 
sum of the calculated contributions of the 18O and 16O peptides on the observed 
IFDIGLPQDHNFLLANGAIAHASR peptide fragment spectrum. 
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4.1.3 Ssp-Ssp intein processing in the Y2H assay 

We demonstrated that the lariat lactone bond was formed within cells using Western 

blot analysis and LC/MS.  We next addressed whether the lactone bond was important for the 

lariat-target interaction in the Y2H assay.  In the Y2H assay, expression of the lariat resulted in 

a mixture of the unprocessed lariat intein, the lariat, and the hydrolyzed lariat (Figure 4.16).  

Since expression of the lariat resulted in a mixture of products, we could not determine which 

species interacted with the target.  To address this, we constructed mutant L2 inteins that 

expressed solely the L2 inactive intein or the L2 linear peptide.  The L2 inactive intein 

produced only unprocessed intein and the L2 linear peptide produced only the hydrolyzed lariat 

(Figure 4.17).  These mutant L2 inteins were tested for their interaction with LexA using the 

Y2H assay (Figure 4.17).  No interaction between the L2 inactive intein and the L2 linear 

peptide with LexA would indicate that the lariat was the only construct capable of interacting 

with LexA.  This experiment was crucial to determine if the imposed lariat 

 
 

 

Figure 4.16 | Anti-LexA L2 processing 
(a) Western blot analysis of L2 lariat processing in yeast using an anti-HA antibody confirmed 
the presence of an HA-tagged protein corresponding to the molecular weight of an unprocessed 
intein ~ 32 kDa and an HA-tagged protein corresponding to the lariat ~ 18 kDa.  (b) LC/MS 
analysis of lariat processing in E. coli shows two products corresponding to the molecular 
weight of the lariat and hydrolyzed lariat. 
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constraint was required for the interaction with its target and if screening cyclized peptides had 

benefits over linear peptides.  

The following inteins were constructed and their expression levels were verified by 

Western blot analysis: (i) L2 lariat, (ii) L2 inactive intein, and (iii) L2 linear peptide (Figure 

4.17).  The L2 lariat expression plasmid produced a mixture of products including the 

unprocessed lariat, the lariat, and the hydrolyzed lariat.  The L2 lariat had the noose sequence 

(IC+1/G8)-SRSWDLPGEY-(IN-1), which was constrained by a lactone bond between serine 

(IC+1/G8) and the carboxyl group of the tyrosine (IN-1).  The L2 inactive intein had the sequence 

(IC-2/G6)-HASRSWDLPGEYA-(IN+1/A1).  The cysteine at position IN+1 (A1) was mutated to 

alanine, which prevented the L2 inactive intein from undergoing the first step in intein 

processing and thus it could not produce the lariat.  The L2 linear peptide had the sequence (IC-

2/G6)-HASRSWDLPGEY**-(IN+2/A2), where * represents a stop codon.  The L2 linear peptide 

was identical to the hydrolyzed lariat.  The pIN01 plasmid described previously (Figure 4.6) 

was included as a negative control.  pIN01 produced an inactive intein with the sequence (IC-

2/G6)-HSSCGPCEYA-(IN+1/A1).  

In the Y2H assay, we did not detect any interactions between LexA and L2 inactive or 

L2 linear peptides (Figure 4.17).  Only the L2 lariat interacted with LexA in the Y2H assay, 

which highlighted the importance of the lariat conformation in this interaction. 

It was also important to show that the requirement for a lactone constraint was a general 

feature for lariat interactions with other target proteins and that it was not unique to the anti-

LexA L2 lariat/LexA interaction.  To show this, we randomly tested one lariat isolated against 

the PR domain of Riz1 and one lariat isolated against the JH1 domain of Jak2.  Neither of these 

lariats interacted with the target when expressed as a linear peptide (Figure 4.18).  This result 

demonstrated that the lariat constraint was required for the interaction of more than one type of 

lariat.  We expect that some lariats will not require the lariat constraint.  Kinsella et al. have 

previously shown that cyclization is important for the function of many lactam selected 

peptides, but some of the cyclic peptides isolated in their screen were still capable of interacting 

when expressed in an inactive intein construct  (Kinsella et al., 2002).  Further analysis will be 

required to determine the percentage of lariats isolated that can also interact in the inactive or 

linear conformations. 
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Figure 4.17 | Linear and lariat analysis 
(a) Constructs used in the Y2H.  Four different constructs were analyzed: (i) Lariat, (ii) 
Inactive, (iii) Linear, and (iv) vector.  The mutations required to generate these constructs are 
shown.  (b) Western blot analysis of the L2 lariat inteins.  HA-tagged L2 lariat, L2 inactive, and 
L2 linear expression were constructed and analyzed by Western blot blots using and anti-HA 
antibody.  (c) Y2H assay.  Y2H analysis of the interaction of LexA with L2 lariat and intein 
constructs. pIN01 is an inactive lariat expression plasmid that expresses an inactive intein with 
a CGPC peptide noose. (i) Yeast growth on non-selective synthetic dextrose (SD) His-, Trp- 

media. (ii) Yeast growth on SGR His-, Trp-, Leu-, Ade-, X-Gal media, which selects for the 
activation of LEU2, ADE2, and LacZ Y2H reporter genes.  Neg: prey was mated to His+ 
plasmid with no bait.  LexA: prey was mated to pEG202 containing LexA bait.  Pos: prey was 
mated to pEG202::B42AD self-activating bait. 
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Figure 4.18 | Y2H assay of lariat and linear constructs 
Lariats that interact with LexA, Jak2-JH1 domain, and Riz1-PR domain were isolated using the 
Y2H assay.  The anti (α)-LexA, α-Jak2-JH1, and α-Riz1-PR interacting lariats were expressed 
as lariats or linear peptides and assayed for interactions against LexA, Jak2-JH1, and Riz1-PR.  
(a) Lariat and linear constructs used in the Y2H assay.  The species the IC domain and the IN 
domain are from is shown as well as the amino acids at the IC-1/G7, IC+1/G8 and IN+1/A1 
positions and the amino acids in the noose region.  (b) Y2H assay of the lariat and linear 
peptides.  Yeast were grown on SGR His-, Trp-, Leu-, Ade-, X-Gal media that selects for the 
activation of LEU2, ADE2, and LacZ Y2H reporter genes.  pIN01 was an inactive intein 
expression plasmid that produced an inactive intein with a CPGC noose region. 
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4.1.4 Conclusions 
We constructed a modified Ssp DnaE intein that was capable of producing lariat 

peptides.  Production of the lariat was verified by Western blot analysis and LC/MS.  We 

determined that the lariat was stable inside of cells in significant quantities (46%) by MS.  We 

demonstrated the lariat bond was essential for the interaction of three different lariats with their 

targets in the Y2H assay. 

 

4.2 Aim 2: Optimization of the lariat technology 
To improve the lariat technology developed in Section 4.1, we developed strategies to 

enhance the stability of the lariat and to increase the percentage of the lariat library that 

correctly processed.  Previously, the Npu DnaE intein was shown to be more tolerant of amino 

acid substitutions at the IC+2 position in the extein  (Iwai et al., 2006).  To improve the 

percentage of combinatorial peptides that correctly processed, a hybrid intein containing the IC 

domain from Ssp DnaE intein and the IN domain from Npu DnaE intein was constructed.  To 

improve the stability of the lariat, mutations were introduced at the G6/G7/B11 positions in the 

Ssp-Ssp DnaE intein.  

4.2.1 Ssp-Npu hybrid intein  
A second-generation lariat library was created using the Npu DnaE IN domain instead of 

the Ssp DnaE IN domain.  The ability of the Ssp DnaE to process is dependent on amino acids 

that flank the cleavage site (Evans et al., 2000; Iwai et al., 2006; Scott et al., 2001; Amitai et 

al., 2009; Hiraga et al., 2009).  Amino acids at both the IC – N-extein junction and the C-extein 

– IN junction influence processivity.  This was the rational for fixing the last two residues at the 

C-extein – IN junction as glutamic acid and tyrosine in the Ssp DnaE intein lariat 

library (pIL-R7).  Iwai et al. found that amino acids at the IC – N-extein junction were 

important for the Ssp DnaE intein processing.  When the IN domain from the Npu DnaE intein 

was combined with the IC domain of the Ssp DnaE intein, the hybrid intein was tolerant to 

substitution of a greater variety of amino acids at the IC+2 position  (Iwai et al., 2006).  To 

exploit the promiscuity of the Npu DnaE IN domain for improving lariat peptide libraries, we 

constructed an Ssp-Npu intein gene with the IC domain from Ssp DnaE  (Scott et al., 1999) and 

the IN domain from Npu DnaE  (Iwai et al., 2006).  The IN domain of the Npu DnaE gene was 

constructed using the same strategy used previously to construct the Ssp-Ssp intein gene 
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(Section 4.1.1).  Several modifications were made in the construction of the Ssp-Npu libraries.  

First, in our Ssp-Ssp R7 library, 9% of the library contained non-functional lariats because the 

plasmid (pIN01) contained alanine at position IN+1/A1.  In the Ssp-Npu lariat plasmid the 

IN+1/A1 amino acid was cysteine, which is required at IN+1/A1 to allow the intein to undergo an 

N-S acyl shift and form the lariat.  Second, a kanamycin marker was added to the lariat library 

plasmid.  Both the bait and prey plasmids contained the ampicillin marker and switching the 

library plasmid to a kanamycin marker facilitated separating the target bait and library plasmids 

in E. coli.  Third, we changed the RsrII restriction site between the IC and IN domains to NruI.  

The change was required since the kanamycin gene contains an RsrII restriction site.  Cleavage 

of the NruI restriction site resulted in a blunt end product, which we predicted would reduce the 

percentage of self-ligating plasmids in the library and decrease the no-insert products.  The 

resulting plasmid expressing the Ssp IC and Npu IN domains separated by an NruI restriction site 

was referred to as pIL500. 

Using the Ssp-Npu lariat intein, we explored the effect of peptide size and amino acid 

diversity on isolating lariats.  To test these variables, we created three additional lariat libraries 

(Figure 4.19).  Two of the lariat libraries varied in their peptide size.  These libraries were 

encoded by NNK nucleotide repeats with either five or ten amino acids in the noose region.  

The third library contained five amino acids encoded by BNT codons in the noose region. 
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Figure 4.19 | Summary of lariat libraries constructed 
Four different libraries were constructed in this work with the IC or IN domain from either the 
Ssp DnaE or the Npu DnaE intein.  The Ssp-Ssp R7 library contains a fixed EY at the Extein-IN 
junction and a combinatorial noose encoding all twenty amino acids (NNK codon) seven amino 
acids in length.  The Ssp-Npu R5 library contains no fixed amino acids and encodes all twenty 
amino acids (NNK codon) in a combinatorial noose five amino acids long.  The Ssp-Npu F5 
library contains no fixed amino acids and encodes the amino acids [ACDFGHLPRSVY] (BNT 
codon) in a combinatorial noose five amino acids in length.  The Ssp-Npu R10 library, which 
has a combinatorial, noose ten amino acids long with all twenty amino acids represented (NNK 
codon). 

 

4.2.1.1 Ssp-Npu R10 intein library 
The Ssp-Npu R10 library contained ten random amino acids inserted between the Ssp 

DnaE IC domain and the Npu DnaE IN domain at the NruI restriction site.  The NruI restriction 

endonuclease recognizes the sequence TCG^CGA and produces blunt end DNA products after 

cleavage.  The oligonucleotides encoding the combinatorial peptide library were cloned into 

pIL500.  The theoretical complexity of the library was 2 x 1013 (2110).  We obtained a library 

diversity of 6.5 ± 0.6 x 106, which represents a very small fraction (3.9 x 10-5 %) of the 

theoretical amino acid sequence space. 

We sequenced ninety-one naïve library members to characterize the Ssp-Npu R10 

library (Figure 4.20).  Four types of sequences were identified: no-insert plasmids, plasmids 

with out-of-frame sequences, plasmids with sequences containing stop codons, and plasmids 
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containing sequences in the correct reading frame.  Only 1% of the lariat library contained 

plasmids with a no-insert sequence.  This was a significant decrease from the 32% no-insert 

plasmids observed previously in the Ssp-Ssp R7 library.  This improvement was most likely a 

result of gel purifying the R10 vector after NruI digestion combined with the blunt ends 

produced by the NruI restriction enzyme.  Only 5% of the lariat library contained plasmids with 

out-of-frame peptides.  Eighty-five sequences underwent in-frame homologous recombination.  

Twenty-seven percent (23/85) of these sequences contained at least one stop codon.  This 

correlates with the number of sequences theoretically predicted to contain stop codons (27% = 

(1 – 3110/3210)).  The remaining 68% (62/91) of the library contained sequences expected to 

form lariats out of a possible 73% (100% - 27% of sequences with stop codons).  This was an 

improvement over the Ssp-Ssp R7 library where 31% of sequences were expected to form 

lariats out of a potential 80%.  In addition, by modifying the Ssp-Npu plasmid to contain 

IC+1/G8-[SRC]-IN+1/A1 at the insertion site instead of the Ssp-Ssp R7 insert IC+1/G8-

[SCGPCEYA]-IN+1/A1, we eliminated the erroneous alanine substitution at position IN+1/A1 

found in the Ssp-Ssp R7 library.  

After cleavage of pIL500 by NruI, three nucleotides from the NruI recognition site 

remain at both ends of the cleaved plasmid.  Therefore, these nucleotides could have affected 

homologous recombination and favored recombination of library sequences that had sequences 

that matched the restriction site.  This would bias the amino acids present in the library, 

especially at the IN-1 position.  At the 5`-end of the recombination site (IC+1)-SR-(IN-1), pIL500  
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Figure 4.20 | Ssp-Npu R10 naïve library sequence analysis 
Venn diagrams showing naïve lariat library sequence information.  (a) The Ssp-Npu R10 
library.  (b) The Ssp-Ssp R7 library.  Vector indicates no-insert plasmids.  OOF represents out-
of-frame sequences.  Ala represents sequences containing an alanine at IN+1 (A1).  Stop 
indicates sequences with a stop codon.  In-frame represents sequences that are in frame.  Lariats 
represent sequences predicted to form lariats. 
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had the nucleotide sequence [CAC GCT TCG], which corresponded to the amino acid sequence 

(IC-2/G6)-HAS-(IC+1/G8).  The oligonucleotide encoding the peptide library used the serine 

TGT codon instead of the serine TCG codon, which was used in pIL500.  Only one of eighty-

six sequences analyzed contained the serine TCG codon.  The low frequency of the TCG codon 

in the library indicated that homologous recombination favored the nucleotides present in the 

oligonucleotide encoding the random peptide rather than the nucleotides from the NruI 

restriction site present in pIL500.  At the 3`-end of the recombination site, pIL500 had the 

nucleotide sequence [CGA TGT], which corresponded to the amino acids (IN-1)-RC-(IN+1/A1).  

At the 3`-end of the combinatorial peptide, we did not observe a significant bias for the amino 

acid arginine (IN-1).  We may have expected arginine (IN-1) to appear more frequently since the 

3`-end of pIL500 after digestion with NruI contains an arginine codon.  We analyzed the 

sequences of randomly chosen library members to determine whether the CGA arginine codon 

at the 3`-end of pIL500 significantly affected peptide library diversity.  The library 

oligonucleotide was designed to replace the CGA codon with the NNG/T degenerate codon.  

Only 1/86 sequences contained an A at the third position of the codon instead of G/T.  At the 

second position of the codon, G was observed in 30% of the sequences, which is within the 

tolerance of the expected value of 23 ± 7%.  At the first position of the codon, C was present in 

19% of the sequences, which is close to the predicted value of 20 ± 7%.  Together, these results 

indicate that using the NruI restriction enzyme did not substantially bias the sequence diversity 

of the peptide library. 

4.2.1.2 Ssp-Npu R5 intein library 
The Ssp-Npu R5 library contained five random amino acids and was constructed using 

the NNK codon.  The Ssp-Npu R5 library has a theoretical diversity of 215 (4 x 106) peptides.  

A library with 8 ± 2 x 107 members was created.  Eight randomly chosen members of the R5 

library were sequenced as a preliminary characterization of the R5 library.  The library 

contained approximately 13% (1/8) members with stop codons.  The predicted number of 

sequences containing one stop codon was 15% = (1 – 315/325).  The remaining 87% (7/8) were 

expected to form lariats. 

To compare the frequency that we obtained positive Y2H interactions between the R5 

and R10 libraries we screened these libraries against Jak2.  We found the R5 library typically 
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had fewer interactions per diploid screened compared to the R10 library.  In screens against 

Jak2 domains, the R5 library had approximately one interaction for every million diploids 

screened whereas the R10 library had approximately one interaction for every 200,000 diploids 

screened.  Therefore the R10 library was favored in subsequent screens. 

4.2.1.3 Ssp-Npu F5 intein library 

Genetic screens are limited to libraries containing around 109 members.  A library 

expressing all 20 amino acids at each position that is seven amino acids long contains ~ 109 

(207) library members, which is the upper limit of a genetic screen.  Typically, genetic screens 

will only sample a small fraction of all the possible sequences.  This random sampling can 

result in certain functional groups or amino acids never being tested and others being tested 

multiple times.  One solution to improve the ability of a genetic screen to more 

comprehensively cover a library is to reduce the length of the peptides screened.  Decreasing 

peptide length reduces the diversity of a library, however, shorter peptide libraries may not bind 

the target optimally. 

A second solution is to reduce the number of amino acids substituted at each position.  

Some amino acids are more frequently involved in forming peptide-protein interactions than 

others.  Tyrosine, for example, dominates antibody:antigen interactions  (Koide and Sidhu, 

2009).  Fab libraries consisting of only two amino acids (tyrosine and serine) have been 

screened, resulting in high affinity and specific Fabs  (Fellouse et al., 2004).  Many amino acids 

share similar functionalities and can be grouped by their chemical properties, such as polar, 

non-polar, charged, and hydrophobic.  For example, aspartate or glutamate are both negatively 

charged amino acids that differ only by a methylene.  We hypothesized a library containing 

only a single amino acid from each group would allow all the functional possibilities to be 

screened with a limited set of amino acids.  Reducing the number of amino acids allows longer 

peptide libraries to be screened with greater library coverage.  Since the optimal solution may 

not be presented in a minimal library, subsequent rounds of mutation can be used to improve 

binding.  

The number of different sequences of a five-mer peptide containing all twenty amino 

acids is around four million.  To reduce the diversity of the library, we used the degenerate 

BNT codon, which codes for 12 (3x4x1) different amino acids.  The BNT codon encodes the 

amino acids: histidine, proline, arginine, leucine, aspartic acid, alanine, glycine, valine, 
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tyrosine, serine, cysteine, and phenylalanine, which represents hydrophobic, polar, charged, and 

aromatic amino acids.  The library diversity of a five-mer peptide using the BNT codon is 

reduced substantially from four million to two-hundred and fifty thousand. 

The F5 library was constructed using the same protocol as the other lariat libraries 

described previously.  The theoretical diversity of the F5 lariat library was 2 x 105 peptides.  

The F5 library was constructed with a diversity of 3.6 ± 0.5 x 105.  

We screened the F5 library against several Jak2 domains and the PR domain of Riz1 

using the Y2H assay to compare the ability of the F5 and R5 libraries to interact with protein 

targets.  No positive Y2H interactions were isolated from the F5 library screens against Jak2 

domains or the Riz1 PR domain.  This preliminary evidence suggests that reducing amino acid 

diversity may not be an applicable strategy for the selection of cyclic peptides using the Y2H 

assay. 

4.2.2 Lariat lactone bond stabilization 
The lactone bond in the lariat was susceptible to hydrolysis, which produced a linear 

unconstrained peptide.  The fraction of L2 lariat that contained an intact lactone bond following 

purification from E. coli was calculated to be 46%.  Lariat formation was sufficient for the Y2H 

assay but improving lariat stability would increase the concentration of lariat within cells and 

allow the detection of weaker lariat interactions.  It would also increase the probability that 

peptides isolated with the Y2H assay depend on the lariat for their interaction.  Stabilization of 

the lactone-cyclized lariat is important primarily in downstream applications where it would 

make it easier to purify and store lariats.  Enhanced lariat stability would also facilitate lariat 

purification and storage. 

4.2.2.1 Rationale for constructing mutations 
Rational and combinatorial approaches were used to generate mutant lariats with 

enhanced lactone bond stability.  For both approaches, we chose the amino acid positions to 

mutate based on previous studies, which identified amino acids that stabilized the branched 

intermediate or on structural studies that revealed amino acid positions that are close to the 

catalytic site.  Both structural and mechanistic studies on intein-mediated protein splicing have 

identified a variety of mutations that result in the accumulation of a branched intermediate, 

which is analogous to the lariat intermediate in cyclic peptide intein processing (Figure 4.21). 
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Figure 4.21 | Intein-mediated peptide splicing 
(a) Intein-mediated cyclic peptide production.  (b) Intein-mediated ligation.  Note the lariat and 
branched intermediate structures are analogous structures for the two splicing mechanisms. 
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Mutational studies have been performed on the following three amino acids identified to 

be essential for intein processing: cysteine at position IN+1/A1, which is essential for the N-S 

acyl shift; serine at position IC+1/G8, which is essential for tranesterification; and asparagine at 

position IC-1/G7, which is essential for asparagine cyclization.  Mutational studies have also 

been performed on many amino acids within the conserved blocks (A, B, F, and G) along with 

several amino acids outside of these conserved blocks (Kawasaki et al., 1997; Chen et al., 

2002; Ding et al., 2003; Sun et al., 2005).  All possible mutations within the intein would result 

in millions of different combinations, which represent a sequence space larger than we were 

able to study.  Thus, we focused our study on amino acids at positions IC-2/G6, IC-1/G7, and 

B11. 

An accumulation of branched intermediate is observed when asparagine at position IC-

1/G7 amino acid is not mutated.  This is surprising since asparagine is the key residue for the 

third step in intein processing: asparagine cyclization.  If branched intermediate is accumulating 

then asparagine cyclization must be being blocked by mutations at an alternative site.  IC-2/G6 

was selected as an alternative site to mutate since histidine at this position has previously been 

shown to be important for lactam peptide cyclization  (Scott et al., 1999; Scott et al., 2001), 

suggesting IC-2/G6 has a role in allowing the intein to process completely.  Since the IC-2/G6 is 

important for cyclization, mutating this amino acid could block asparagine cyclization.  So 

histidine at position IC-2/G6 was mutated to aspartic acid, asparagine, and leucine while 

maintaining asparagine at IC-1/G7 to determine if the lariat could be stabilized by IC-2/G6 

mutations. 

The IC-1/G7 position was selected since it has been shown previously to contribute to the 

stability of the branched intermediate (Kawasaki et al., 1997).  Lysine was selected since 

previous studies had identified that lysine mutations at IC-1/G7 resulted in the accumulation of a 

branched intermediate  (Kawasaki et al., 1997).  Tyrosine was substituted at position IC-1/G7 

since it is large and aromatic and we predicted it would have some effect on splicing.  Aspartic 

acid and glutamine are found at IC-1/G7 in a very small percentage of naturally occurring inteins 

(Perler, 2002) and were also substituted at position IC-1/G7 in place of asparagine.  Aspartic acid 

and glutamine are potentially capable of undergoing cyclization just like asparagine but are 

likely to undergo cyclization at a slower rate, thus they are interesting substitutions since they 

will mimic asparagine but potentially halt the intein at the lariat. 
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Crystal structures of several inteins including the Ssp DnaE intein have been solved  

(Chen et al., 2002; Ding et al., 2003; Sun et al., 2005).  Using these structures, we identified an 

uncharacterized amino acid at position B11 whose role in intein processing has not been 

examined.  B11 is located in the IN domain and is normally arginine.  The B11 amino acid was 

selected based on the proposed role in asparagine cyclization (Sun et al., 2005) (Figure 4.22).  

By disrupting this charge relay system we can potentially block asparagine cyclization without 

mutating the asparagine at (IC-1/G7), which has previously been shown to stabilize the branched 

intermediate (Kawasaki et al., 1997).  We mutated arginine at position B11 to glutamic acid, 

tyrosine, and leucine, which represent a range of chemical functionality.  Table 4.2 lists the 

complete set of mutations analyzed. 

 

 

Figure 4.22 | Role of the B11 position in asparagine cyclization 
The proposed role of the B11 arginine in the charge relay system of asparagine cyclization, 
which is resolved by a tetrahedral intermediate and oxyanion binding site, based on the crystal 
structure of the Ssp DnaE intein (Sun et al., 2005).  IC represents the C-terminal domain of the 
intein.  Arrows represent the proposed nucleophilic attacks. 
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Table 4.2 | Rational mutations tested to stabilize the lariat 
The original mutation used to create the lariat in this thesis is represented by Mutant ‘0’. An 
additional 29 mutations were constructed to analyze their effect on lariat processing and 
stability.  Amino acids are represented by the single letter amino acid code. 
 

Mutant G6 G7 B11 Mutant G6 G7 B11 Mutant G6 G7 B11 

0 H A R 10 H Q L 20 A Y L 

1 N N Y 11 H Q E 21 A Y E 

2 N N R 12 H A Y 22 A K Y 

3 N N L 13 H A L 23 A K R 

4 N N F 14 H A E 24 A K L 

5 L N Y 15 D N Y 25 A K E 

6 L N R 16 D N R 26 A D Y 

7 L N L 17 D N L 27 A D R 

8 L N E 18 D N E 28 A D L 

9 H Q R 19 A Y R 29 A D E 

 

4.2.2.2 Analysis of lariat stability 
Initially, we optimized lariat expression and examined the effects of induction time and 

the time between collection and analysis on lariat stability.  Lariat stability was analyzed using 

liquid chromatography directly coupled to electrospray ionization time-of-flight mass 

spectrometry (LC/MS).  The LC step was used to desalt and separate the intein products based 

on hydrophobicity.  The lariats were quantified using total ion count (TIC).  The peaks eluted 

from the LC represented different intein fragments and were first integrated to generate a 

mass/charge (m/z) versus peak intensity spectrum.  The charged spectrum was processed using 

maximum entropy calculations (MaxEnt) to deconvolute the spectrum into its component 

molecular weight proteins and their abundance.  The MaxEnt data was used to calculate ‘% 

lariat’, ‘% processed’, and ‘% total lariat’.  
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% lariat 

The “% lariat” represents hydrolysis or the stability of the lactone bond and was the 

percentage of intact lariat in the sample compared to the hydrolyzed product.  The % lariat was 

calculated by dividing the area under the lariat peak by the sum of the areas under the lariat and 

hydrolyzed lariat peaks.  The hydrolyzed lariat differs from the lariat by the addition of H2O, 

which increased its mass by 18 Da. 

 
 

% processed 

“% processed” represents intein processing and was the percentage of lariat that was 

produced in the sample.  It does not differentiate between lariat and hydrolyzed lariat.  Percent 

processed is defined as the ratio of the area under the peak representing the IN domain to the 

total amount of intein represented by the sum of the area under the peak representing the full 

length unprocessed protein and the IN domain. 

 

 

 

 

% total lariat 

The “% total lariat” represents the total amount of lariat produced in a cell and is a 

function of % lariat and % processed.  It is defined by the % processed multiplied by the % 

lariat that is not hydrolyzed. 

 

 

 

We first established the optimal conditions for expression and the effect of lariat storage 

on stability on the L2 lariat.  We induced cultures expressing the lariat for 2, 4, 7, or 18 hours. 

The samples were stored at 4 °C and then analyzed again 20 hours later.  The induction time 

! 

%Lariat =
Lariat

Lariat +Hydrolyzed
x100%

! 

%Processed =
INDomain

INDomain +Unprocessed
x100%
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effected the lariat stability with ~ 10% loss of lariat between the samples induced for 2 hours 

and the samples induced for 18 hours (Figure 4.23).  However, the amount of time a sample 

spent at 4 oC before processing had little effect.  After 20 hours, ~ 1 - 3% of the lariat was 

hydrolyzed (Figure 4.24).  Together, these results suggest that the lariat was being hydrolyzed 

within the cell and that the lariat was relatively stable after purification.  

Once we established the optimal conditions for expression and storage, the other 

mutants were expressed and analyzed under the same conditions.  The mutants were sorted by 

% lariat, % processed, or % total lariat (Figure 4.25- Figure 4.27). 

 

 

 

Figure 4.23 | Effect of induction time on lariat hydrolysis 
Lariat expression was induced with IPTG for the time indicated and then purified using Ni2+-
NTA beads and analyzed immediately after purification by LC/MS.  The % lariat was 
calculated by dividing the area under the lariat peak by the sum of the areas under the lariat and 
hydrolyzed lariat peaks and plotted versus induction time.  Error bars represent the standard 
deviation of three independent experiments.  
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Figure 4.24 | Effect of storage time on lariat hydrolysis 
Lariat expression was induced for 2, 4, 7, or 18 hours and purified using Ni2+-NTA beads and 
analyzed immediately after purification by LC/MS (Black bars) and again after sitting for 20 
hours at 4 °C (Grey bars).  The % lariat was calculated by dividing the area under the lariat 
peak by the sum of the areas under the lariat and hydrolyzed lariat peaks.  Error bars represent 
the standard deviation of three independent experiments.  
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Figure 4.25 | Lariat mutations sorted by % lariat 
Lariat expression was induced with IPTG for 2 hours and then purified using Ni2+-NTA beads 
and analyzed by LC/MS.  Mutant lariats are defined by the three amino acid mutations at 
positions (G6/G7/B11).  The mutations are compared to the HAR lariat, which is shown twice; 
one point representing a 2 hr induction and a second point representing an 18 hr induction. The 
% lariat (White bars) was calculated by dividing the area under the lariat peak by the sum of the 
areas under the lariat and hydrolyzed lariat peaks.  The % processed (Grey bars) was calculated 
by dividing the area under the peak representing the IN domain by the sum of the area under the 
peak representing the full length unprocessed protein and the IN domain.  The % total lariat 
(Black bars) was calculated by multiplying the % processed by the % lariat.  Mutations are 
sorted in order of highest % lariat to lowest % lariat. 
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Figure 4.26 | Lariat mutations sorted by % processing 
Lariat expression was induced with IPTG for 2 hours and then purified using Ni2+-NTA beads 
and analyzed by LC/MS.  Mutant lariats are defined by the three amino acid mutations at 
positions (G6/G7/B11).  The mutant lariats are compared to the HAR lariat, which is shown 
twice; one point representing a 2 hr induction and a second point representing an 18 hr 
induction. The % lariat (White bars) was calculated by dividing the area under the lariat peak 
by the sum of the areas under the lariat and hydrolyzed lariat peaks.  The % processed (Grey 
bars) was calculated by dividing the area under the peak representing the IN domain by the sum 
of the area under the peak representing the full length unprocessed protein and the IN domain.  
The % total lariat (Black bars) was calculated by multiplying the % processed by the % lariat.  
Mutations are sorted in order of highest % processing to lowest % processing. 
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Figure 4.27 | Lariat mutations sorted by % total lariat 
Lariat expression was induced with IPTG for 2 hours and then purified using Ni2+-NTA beads 
and analyzed by LC/MS.  Mutant lariats are defined by the three amino acid mutations at 
positions (G6/G7/B11).  The mutant lariats are compared to the HAR lariat, which is shown 
twice; one point representing a 2 hr induction and a second point representing an 18 hr 
induction. The % lariat (White bars) was calculated by dividing the area under the lariat peak 
by the sum of the areas under the lariat and hydrolyzed lariat peaks.  The % processed (Grey 
bars) was calculated by dividing the area under the peak representing the IN domain by the sum 
of the area under the peak representing the full length unprocessed protein and the IN domain.  
The % total lariat (Black bars) was calculated by multiplying the % processed by the % lariat.  
Mutations are sorted in order of highest % total lariat to lowest % total lariat. 

 

Highly stable mutants were isolated that showed > 60% lariat by direct MS analysis.  

The actual amount of lariat in vivo was likely higher, since MS processing has been shown to 

convert lariat into hydrolyzed lariat.  Previously, we found the wild-type lariat was present at  ~ 

25% of the total lariat by direct MS analysis whereas the amount of lariat present prior to MS 

analysis was 46%. 

The data was analyzed by plotting the % processing against the % lariat on a double log 
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a function of both % lariat and % processing, diagonal lines on this plot indicate the threshold 

for 20, 30, 40, and 50% total lariat.  Thus, mutants sharing a diagonal line will have the same 

percentage of total lariat.  Mutants that have better stability and higher processing were found 

in the upper right of the plot and those with poor processing and stability were found in the 

lower left of the plot.  This plot was used to create vector maps, where mutants were connected 

by lines from the lowest stability (% lariat) to highest stability (% lariat).  These vector maps 

can be compared directly with other mutations to identify maps where mutations result in 

similar patterns.  The direction of the vector, not the magnitude of change, is important in these 

maps since they were plotted on a double log scale.  For example, in Figure 4.29, the mutant 

series (DNX) where the B11 position is varied (X) and the IC-2/G6 (D) and IC-1/G7 (N) positions 

are fixed was plotted.  The resulting vector map can be visually compared to other vector maps 

to identify mutants that behave similarly. 

 

 

Figure 4.28 | Mutants summary map 
Comparison of the percent processing versus percent lariat for mutants, plotted on log scales.  
The total lariat for 20%, 30%, 40% and 50%, which is calculated by multiplying the percent 
lariat by the percent processing is shown to assist in comparing mutants.  Mutations are named 
by their position (G6/G7/B11). 
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Figure 4.29 | Vector maps showing the G7-B11 interaction 
(a) Vector map showing % lariat versus % processing for the G6/G7/B11 mutants, where G6 is 
aspartic acid (D), G7 is asparagine (N), and B11 is arginine (R), leucine (L), tyrosine (Y), or 
glutamic acid (D).  Mutants are connected with lines from the lowest to the highest percent 
lariat to produce a vector map.  Each mutant is abbreviated as three letters according to its 
G6/G7/B11 position.  “X” represents the amino acid that is varied and is described by the letter 
next to the dot in the map.  (b) Vector maps of XNX and XQX mutants.  (c) The conserved 
pattern of the vector maps shown in (b).  (d) Vector maps of HAX, AKX, and ADX mutants.  
(e) Vector map of the AYX mutant.  
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4.2.2.3 Mutation of the IC-2/G6 amino acid 
XNR, XNL, XNY, and XNE mutations were used to determine the effect of mutations 

at position IC-2/G6 on lariat stability and processing, where X is leucine, asparagine, or aspartic 

acid (Figure 4.26).  In these mutants, the IC-2/G6 amino acid had a drastic effect on processing.  

Leucine had the best processing, followed by asparagine.  Aspartic acid almost completely 

blocked processing in all cases.  As suggested by previous studies, the IC-2/G6 amino acid had 

the greatest effect on processing rather than on stability, as noted by the grouping of the IC-2/G6 

amino acids when sorted by % processing (Figure 4.26).  Construction of more mutants where 

the IC-2/G6 amino acid is paired with alternative IC-1/G7 amino acids and B11 amino acids will 

be required to determine how the IC-1/G6 amino acid influences processing and stability when 

amino acids other than asparagine are substituted at the IC-1/G7 position.  

4.2.2.4 Effect of asparagine to lysine mutation at position IC-1/G7 on lariat processing 
Asparagine at position IC-1/G7 is essential for asparagine cyclization in the intein-

mediated cyclization reaction.  The asparagine side chain undergoes cyclization to cleave the IC 

domain from the lariat and produce a lactone peptide.  It is essential to block asparagine 

cyclization either by directly mutating the IC-1/G7 amino acid or indirectly by mutating another 

amino acid to produce the lariat.  In the initial lariat library (pIL-R7), we mutated the IC-1/G7 

asparagine to alanine to block asparagine cyclization.  In the standard intein reaction, the 

branched intermediate accumulates when asparagine at position IC-1/G7 is mutated to lysine  

(Kawasaki et al., 1997).  Not all mutations at position IC-1/G7 result in an accumulation of 

branched intermediates, for example serine or alanine do not (Chong et al., 1996).  

Interestingly, mutation of asparagine at position IC-1/G7 to alanine leads to the accumulation of 

branched intermediate if cysteine at position IC+1/G8 is also mutated to serine  (Chong et al., 

1996), which is the case for the pIL-R7 lariat intein library.  Based on these results, we tested 

the effect of mutating asparagine to lysine at position IC-1/G7.  Lysine was tested in 

combination with tyrosine, arginine, leucine, and aspartic acid at the B11 position, but only 

with alanine at the IC-2/G6 position.  Surprisingly, the lysine mutation at position IC-1/G7 in all 

mutation combinations tested was similar to our initial construct and did not result in a 

significant improvement in stability or processing.  This suggested that mutations that stabilized 

the branched intermediate may not apply to the lariat intermediate or that the lysine mutation at 

IC-1/G7 had no effect when IC-2/G6 was alanine.  
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4.2.2.5 The G7 position interacts with the B11 position 
In the absence of histidine at IC-2/G6, it has been suggested that arginine at position B11 

can assist in asparagine cyclization by hydrogen bonding to the asparagine carbonyl oxygen at 

position IC-1/G7  (Ding et al., 2003).  B11 is predominately lysine or arginine when IC-2 (G6) is 

not histidine  (Perler, 2002).  Currently, there are no mutagenic studies on the role of arginine at 

position B11.  

When the vector maps of mutations with IC-1/G7 as either asparagine or glutamine were 

compared, they showed a similar trend in how they responded to B11 mutations (glutamic acid, 

tyrosine, leucine, and arginine) (Figure 4.29) (note the HQY and AYY mutations are absent 

since they were not successfully cloned).  Regardless of the IC-2/G6 amino acid (histidine, 

asparagine, leucine, or aspartic acid), when B11 was glutamic acid or tyrosine, the lariat 

showed the lowest stability.  When B11 was mutated to leucine, the lariat stability increased but 

the lariat processing decreased compared to when B11 was glutamic acid or tyrosine (L is 

always to the left and up of Y or E on the vector maps in Figure 4.29).  When B11 was arginine 

lariat stability was increased compared to when B11 was leucine (R is always up and to the 

right of L on the vector maps in Figure 4.29).  This data indicates that there was an interaction 

between the IC-1/G7 and B11 amino acid, but less of an interaction between the IC-2/G6 and B11 

amino acids since the general shape of the vector maps did not change despite radical changes 

in the IC-2/G6 amino acid.  

The vector maps also indicate that the IC-1/G7-B11 interaction could be further 

optimized by mutating the B11 amino acid from arginine to another positively charged amino 

acid such as lysine or histidine.  Hydrophobic amino acids (leucine) reduced processing, and 

negatively charged (glutamic acid) and bulky (tyrosine) amino acids generally had good 

processing but poor stability.  Mutating the arginine to another positively charged amino acid 

may improve both processing and stability since there was only a decrease in processing when 

B11 was mutated to leucine, suggesting that hydrophobic residues at the B11 position have a 

negative effect on processing when IC-1/G7 was asparagine or glutamine. 

This trend was not observed when IC-1/G7 was alanine, lysine, or aspartic acid.  When 

the IC-1/G7 amino acid was alanine (HAX), lysine (AKX) or aspartic acid (ADX) the vector 

maps had a similar pattern (Figure 4.29d).  In these cases, leucine or tyrosine at B11 had higher 

stability compared to arginine or glutamic acid.  This pattern was opposite of the pattern 
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observed for the IC-1/G6 (HQX, NNX, LNX, DNX) mutations.  In the HAX, AKX, and ADX 

vector maps, glutamic acid had the lowest lariat stability and was found at the bottom of the 

vector map.  Arginine (HAR, AKR, ADR) was always located above the glutamic acid 

mutation, indicating that arginine improved the lariat stability.  In the cases when IC-1/G7 was 

alanine (HAX) or lysine (AKX) processing was improved.  Leucine (L) and tyrosine (Y) were 

found together on the vector map and generally resulted in a further improvement in lariat 

stability.  The exception was for the (ADX) series, where stability was improved at the expense 

of processing (Figure 4.29).  The ADY mutation had particularly good processing and stability, 

and further mutations to improve this construct should be explored.  If the amino acids tested 

were representative of other amino acids in their class, then these mutations demonstrated that 

in general a negative charge (aspartic acid) resulted in good processing but reduced stability, a 

hydrophobic amino acid (leucine) improved lariat stability at the cost of processing, and an 

aromatic (tyrosine) amino acid improved stability and effected processing the least, 

representing the best improvement.  Based on this analysis, other aromatic and hydrophobic 

amino acids should be substituted for the B11 amino acid (X) in the ADX construct.  

When the IC-1/G7 amino acid was tyrosine, a third distinct pattern was observed (Figure 

4.29e).  Again, highlighting the sensitivity of the IC-1/G7 amino acid to changes in the B11 

mutation and emphasizing that the optimal amino acids at the IC-1/G7 and B11 positions depend 

on the amino acids at other positions.  

4.2.2.6 Mutation of asparagine to a similar amino acid at position IC-1/G7, 
Asparagine, glutamine, and aspartic acid have all been shown to allow processing when  

at the IC-1/G7 position.  Asparagine at this position has been associated with a build up of the 

branched intermediate, but mutations that block asparagine cyclization must be introduced at 

other positions to create the lariat.  Histidine at position IC-2/G6 assists in asparagine cyclization 

by hydrogen bonding to the asparagine carbonyl oxygen at position IC-1/G7.  Branched 

intermediate accumulates when histidine at position IC-2/G6 is mutated to leucine, asparagine, 

or glutamine.  This also depends on the amino acid at position IC-1/G7 since when asparagine at 

this position is mutated to alanine no branched intermediate is observed  (Xu and Perler, 1996).  

This observation suggests that asparagine at position IC-1/G7 is important for branched 

intermediate accumulation caused by IC-2/G6 mutations.  
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To demonstrate that mutations at position IC-1/G7, besides the previously tested 

asparagine to alanine mutation, can enhance the stability of the lactone bond, we mutated 

asparagine to glutamine at position IC-1/G7.  Mutation of the IC-1/G7 amino acid to glutamine 

resulted in the stabilization of the lactone bond from the 29% lactone observed with alanine at 

IC-1/G7 to 47% lactone observed with glutamine at IC-1/G7.  Glutamine at position IC-1/G7 still 

maintained good lariat processing (67%).  This result was interesting since it was theoretically 

possible that this mutation would still undergo processing to the lactam peptide based on the 

results with other inteins, where substitution of asparagine at IC-1/G7 with glutamine still 

allowed processing. 

4.2.2.7 Combinations of G6/G7/B11 mutations 
By looking at the vector maps, where the IC-1/G7 position was varied, we can make the 

following observations (Figure 4.30).  The best processing (ADL, ADY) and most stable 

mutants (AYR, AYE) all have IC-2/G6 as alanine.  If B11 was charged (arginine, glutamic acid), 

then the optimal IC-1/G7 amino acid for lariat stability was tyrosine followed by lysine followed 

by aspartic acid (Figure 4.30).  Under the opposite conditions, when B11 was 

polar/hydrophobic (tyrosine, leucine), the optimal IC-1/G7 amino acid was charged aspartic acid 

followed by lysine followed by tyrosine (Figure 4.30).  The charged IC-1/G7 and hydrophobic 

B11 combination (ADL or ADY) was better at processing than the hydrophobic IC-1/G7 and 

charged B11 combination (AYR, AYE), which was better at processing.  Interesting mutations 

to try based on this observation would be to fix IC-2/G6 as alanine, mutate IC-1/G7 to glutamic 

acid, and mutate B11 to tyrosine, phenylalanine, or tryptophan.  In the alternative case, where 

IC-1/G7 was tyrosine mutation to tryptophan, phenylalanine, serine, or leucine in combination 

with mutation of B11 to arginine, lysine, glutamic acid, or aspartic acid, may result in lariats 

with increased processing and stability. 
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Figure 4.30 | Vector maps for the G7 amino acid 
(a) Vector maps are created from Figure 4.28 by connecting mutants with lines from lowest to 
highest percent lariat, vector maps with similar patterns are shown together.  (b) Vector maps of 
AXR and AXE mutants.  Each mutant is abbreviated as three letters according to its 
G6/G7/B11 position.  (c) Vector maps of AXY and AXY mutants.  “X” represents variable 
amino acids shown in the panel. 
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4.2.2.8 Conclusions 
From this short list of 29 mutations, we identified a number of mutants that were 

substantially more stable than then our initial lariat construct (HAR).  In addition, this study 

identified a number of potential mutations to optimize lariat stability and processing.  

The mutant with the highest processing and stability had alanine at IC-2/G6,  aspartic 

acid at IC-1/G7 and tyrosine at position B11 amino acid was tyrosine.  We found negatively 

charged amino acids at the B11 position had poor stability, but hydrophobic and aromatic 

amino acids at B11 increased stability.  Other aromatic amino acids should be tried at the B11 

position including tryptophan and phenylalanine.  Since hydrophobic amino acids were also 

found to increase stability, other hydrophobic amino acids such as isoleucine should also be 

tried to find the optimal amino acid.  In addition, a more positively charged amino acid such as 

lysine or histidine should be tested to fully determine the effect of a positively charged amino 

acid on stability and processing. 

When the IC-2/G6 amino acid was alanine and the B11 amino acid was charged 

(arginine, glutamic acid), the optimal amino acids at the IC-1/G7 position were tyrosine followed 

by lysine.  Other aromatic amino acids at the IC-1/G7 position should be tried in this 

combination. 

The IC-2/G6 position was not optimized and amino acids having hydrophobic side chains 

may also be used to stabilize the lactone bond.  The following amino acids may also be 

substituted at position IC-2/G6: tryptophan, phenylalanine, leucine, isoleucine, methionine, and 

tyrosine.  These amino acids have hydrophobic side chains, which could exclude water from the 

reactive site and reduce hydrolysis while still permitting processing. 

4.2.3 Combinatorial mutagenesis of the G6/G7/B11 positions in the anti-LexA lariat 
The anti-LexA L2 lariat (described in Section 4.3) was found to interact with LexA only 

when the lactone bond was present.  This specificity was exploited to develop a combinatorial 

Y2H screen to select lariat mutants that retained the lariat conformation, since a loss of the 

lariat formation would result in no interaction in the Y2H assay.  A combinatorial library was 

designed, where all 20 amino acids were potentially substituted at the G6/G7/B11 positions.  A 

library of approximately 400 different constructs was created with mutations at the G6/G7/B11 

positions.  A library with all the combinations of twenty amino acids at all three positions 

would contain 8000 (203) different proteins.  We only sampled 5% (400/8000) of this protein 
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sequence space.  This library of 400 members was tested for mutants that could interact with 

LexA using the Y2H assay, where the 400 library members were arrayed in triplicate.  Eleven 

unique colonies were selected after two days of growth on full selective media.  Three colonies 

were detected in all three replicates, five colonies were detected on two of the replicates, and 

three colonies were detected in only one replicate.  Six of the eleven mutant lariats were 

successfully sequenced (Figure 4.31).  The rational screen demonstrated that the optimal amino 

acids for stability could not be determined independently and were highly dependent on the 

identity of the other amino acids at positions (G6/G7/B11).  This combinatorial screen was 

important since it can sample all of the possible combinations of the G6/G7/B11 amino acids.  

Mutations were found at all three positions (G6/G7/B11), indicating that the L2 lariat was 

tolerant to mutations at these positions and that they were likely not involved in the interaction 

with the target.  The processing of these mutants has not yet been characterized.  

Lariats with alanine, asparagine, serine, and glycine at the IC-2/G6 position were 

isolated.  Asparagine and glycine at position IC-2/G6 occurred in combination with serine at 

position IC-1/G7.  Our rational mutagenesis analysis indicated the IC-2/G6 amino acid primarily 

played a role in processing and negatively charged amino acids (aspartic acid) were associated 

with poor processing.  This was supported by the lack of negatively charged amino acids 

selected at this position in the random screen. 

Mutations at the IC-1/G7 position are essential for blocking the intein processing to 

create the lariat.  Asparagine at the IC-1/G7 position allows processing to the lactam peptide in 

the absence of other mutations.  We found serine, alanine, and phenylalanine at the IC-1/G7 

position.  We did not isolate asparagine at this position, even though in the rational screen we 

demonstrated that lariat formation was possible with the IC-1/G7 as the wildtype asparagine as 

long as the IC-2/G6 amino acid was also mutated.  Alanine was isolated at IC-2/G6, which was 

the original mutation that we used to block intein processing.  Serine and phenylalanine were 

also isolated at the IC-1/G7 position.  The rational screen did not use serine at the IC-1/G7 

position, so it is not possible to compare the two experiments.  However, phenylalanine was 

interesting since in the rational mutagenesis, we found that tyrosine at the IC-1/G7 position was 

associated with higher stability when B11 was a charged amino acid (arginine, glutamic acid) 

and hypothesized that phenylalanine at position IC-1/G7 would improve lariat stability and 
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processing.  The random screen isolated this proposed mutation; phenylalanine at the IC-1/G7 

position and arginine at the B11 position, supporting this hypothesis. 

  

 

 

 

 

Figure 4.31 | Random mutagenesis Y2H screen 
Mutant anti-LexA L2 lariats isolated in the random mutagenesis screen. 
 

4.2.3.1 Conclusions 
 Sequencing of the naïve library should be performed to ensure that B11 and the other 

positions were mutagenized and had the proper theoretical distribution of amino acids at each 

position.  Processing of these mutants in yeast and E. coli should be tested along with their 

interaction strength with LexA.  Based on these limited results, a large scale screen of all 8000 

mutants of the anti-LexA L2 lariat and one or more other lariats isolated against different 

targets that also depend on lariat formation should be performed.  Each screen would isolate a 

number of viable mutations at these sites.  By overlaying these datasets, the optimal G6/G7/B11 

amino acids could be chosen.  Mutations that occur in all constructs are unlikely to be involved 

in the lariat-target interaction and would be ideal candidates to be used in the design of neutral 

scaffold. 
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4.2.4 Mutations in the extein 
Mutations in the extein were also found to affect the lariats stability (Figure 4.32).  The 

anti-LexA L2 lariat had the extein sequence (SRSWDLPGEY).  When glutamic acid in the 

extein region was mutated to alanine it resulted in ~ 61% lariat as analyzed by direct LC/MS 

(Figure 4.32).  This was significant improvement over the original anti-LexA L2 lariat, which 

had only ~ 26% lariat (Figure 4.32).  These values represent a low estimate of the amount of 

lariat present since we did not correct them for the lariat that was hydrolyzed during MS 

analysis.  This mutant demonstrated that the extein region was involved in stability.  Mutations 

that stabilize the lariat in the extein are less useful for short peptides displayed from the lariat 

since they interfere with the random region and restrict the amino acid space.  However, 

mutations to the extein region that stabilize the lariat are still of interest for stabilizing proteins 

where the amino acids at the intein-extein junction can be fixed. 

 

 

 

Figure 4.32 | LC/MS analysis of the L2 E9A lariat 
ESI-TOF MS analysis of His-tag purified L2 and L2 E9A lariats produced in BL21-CP were 
purified by reverse phase HPLC and the combined m/z spectra were deconvoluted using 
MaxEnt (Waters) software to give a chromatogram of mass versus percent abundance.  The L2 
lariat (8651.7 calc; 8652 obs) and hydrolyzed L2 lariat (8669.7 calc; 8670 obs) His-tagged 
products and the L2 E9A lariat (8593.7 calc 8593; obs) and hydrolyzed L2 lariat 8611.7 calc; 
8611 obs) His-tagged products are shown. 
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4.2.5 Conclusions 
In summary, we have shown that specific mutations at sites G6/G7/B11 can stabilize the 

lariat.  We have used this information to developed hypotheses for possible optimal mutations 

combinations. 

We have recently demonstrated that lariats can be synthetically produced, which 

eliminates the need to develop extremely stable lariats for applications that are compatible with 

synthetically produced lariats.  After a lariat is isolated from the Y2H assay (or alternative 

assay), the corresponding synthetic lariat peptide can be chemically synthesized for in vitro 

studies.  However, a lariat with enhanced stability would still be beneficial for in vivo assays, 

where lariats are expressed within a cell. 

 

4.3 Aim 3: Screening lariat peptide libraries using the Y2H assay 

4.3.1 LexA as a therapeutic target 

Discovery of novel antibiotics are of general concern as ‘superbugs’ or bacteria that are 

resistant to antibiotics pose significant health risks and have associated costs  (Woodford et al., 

2009).  However, antibiotic resistance is an inevitable result of the use of antibiotics and 

bacterial evolution.  Interestingly, antibiotics may even contribute to their own resistance by 

activating the SOS response pathway and inducing a hypermutagenic state  (Miller et al., 2004; 

Cirz et al., 2005).  Several SOS response genes have now been linked to bacterial resistance 

through a variety of mechanisms including inhibiting cell division, inducing recombination 

processes resulting in increased horizontal transfer of antibiotic resistance, and induction of 

error prone polymerases  (Miller et al., 2004; Cirz et al., 2005; Guerin et al., 2009).  Antibiotics 

typically target a limited number of proteins and pathways  (Miesel et al., 2003; Brown and 

Nathwani, 2005).  The average antibiotic is in its third or fourth generation of modification and 

use; it is unclear how much longer they will be effective  (Miesel et al., 2003).  It is generally 

accepted that novel strategies to isolate antibiotics targeting new proteins and pathways are 

required  (Davies, 1994; Barrett and Barrett, 2003).  

We proposed to isolate lariats that potentiated the activity of existing cytotoxic reagents 

by blocking the SOS response pathway and inhibiting LexA.  LexA is involved in the SOS 

response pathway of bacteria (Figure 4.33a).  LexA is a repressor protein that regulates the 

expression of between twenty to forty genes, depending on the bacteria studied  (Lin and Little,  
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Figure 4.33 | LexA and anti-LexA lariats 
(a) LexA induction of SOS response.  LexA binds as a dimer to DNA and blocks transcription 
of genes controlled by the LexA regulon.  RecA is activated by forming filaments on ssDNA, 
which is created by DNA damage.  Activated RecA binds to LexA and induces autoproteolysis, 
releasing LexA from the DNA and allowing transcription of the genes repressed by LexA.  (b) 
LexA as an antimicrobial target.  Synthetic cyclic peptides or lariat peptides, which bind to 
LexA, can prevent cleavage by RecA preventing induction of SOS response genes.  (c) 
Isolation of lariats using Y2H assay.  Lariats are selected that interact with LexA dimers using 
the Y2H assay.  (d) Anti-LexA lariat sequences.  Two unique sequences were isolated from the 
Ssp-Ssp R7 library (L1 and L2).  “X” represents the combinatorial region of the peptide. 
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1988; Courcelle et al., 2001; Au et al., 2005; Jin et al., 2007; Cirz et al., 2007).  LexA 

represses the translation of these genes by blocking transcription.  LexA binds to DNA 

operators in the SOS regulon with the consensus sequence (TACTG(TA)5CAGTA)  (Walker, 

1984).  When LexA is cleaved, it no longer binds to DNA, alleviating transcriptional 

repression.  LexA undergoes autoproteolytic cleavage at a very slow rate, allowing some turn 

over at LexA operators, but the primary mechanism of LexA degradation and thus activation of 

genes regulated by LexA is through RecA mediated co-proteolysis  (Lin and Little, 1988).  

RecA is activated by the presence of single stranded DNA (ssDNA) that is generated when 

DNA is damaged.  RecA forms filaments on ssDNA, converting RecA into a conformation that 

catalyzes the proteolysis of LexA.  It has not been determined whether LexA cleavage occurs in 

solution or while bound to the operator.  However evidence suggests LexA undergoes a 

conformational change when bound to DNA  (Roland et al., 1992).  RecA has also been 

proposed to produce a change in LexA structure between a cleavable form and a non-cleavable 

form  (Luo et al., 2001).  The cleavable and noncleavable conformation depends on whether the 

active site lysine is buried or exposed to the solvent.  

We hypothesized that cyclic peptides that block the cleavage of LexA will affect the 

ability of the bacteria to respond to an antibiotic (Walker, 1984; Lin and Little, 1988) and 

increase the antibiotics potency.  Inhibitors of LexA will also prevent bacteria from entering a 

hypermutagenic state  (Cirz et al., 2005; Miller et al., 2004) and reduce antibiotic resistance.  

Since LexA is not present in humans, it would have no effect on host DNA damage repair 

systems.  

4.3.2 Calculating the number of lariat library copies to screen 
Using statistical analysis described by Patrick et al., the optimal number of library 

copies to screen was determined by the size of the library (Figure 4.34) (Patrick et al., 2003).  

The probability that a library is complete (PC) and contains every distinct member (V) is a 

function of the number of distinct members (V) and the total number of clones (L). 

 

     (eq: 1) 

 

The number of library copies is given by the total number of clones (L) divided by the 

number of distinct members (V). Figure 4.34 shows the graph of the probability of 
! 

Pc = (1" e"L /V )V
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completeness (Pc) values versus number of library copies (L/V) for several different library 

sizes (V).  Equation 1 can also be rearranged to solve directly for the total number of clones 

required (L) (eq: 2) and the simplified equation (eq: 3) if V >> -lnPc, which is generally true for 

PC > 90%  (Patrick et al., 2003). 

    (eq: 2)    

   

  (eq: 3)   

This equation is useful to determine the exact number of clones required to reach the 

desired probability of completeness (PC) given a known library size (V).  Generally, we screen 

libraries containing 20 – 100 million members.  Figure 4.34 shows us that 20 library copies is 

sufficient to ensure a 95% probability of screening a library with even 100 million different 

members.  Therefore we screened 20 library copies in subsequent screens. 

 

 

 

Figure 4.34 | Determining the number of library copies to screen 
Graph of number of library copies (L/V) versus probability of the library being complete (PC) 
for the following library sizes: 100,000 (squares), 1,000,000 (diamonds), 10,000,000 
(triangles), and 100,000,000 (circles). 
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4.3.3 Screening the Ssp-Ssp R7 lariat library against LexA 

We mated the Ssp-Ssp R7 library of approximately four million lariats in the MATa 

strain EY93 to the MATα strain EY111 containing the LexA target plasmid and Y2H reporter 

genes.  Using the Y2H interaction trap in (Figure 4.33c), we isolated fourteen colonies 

encoding two unique lariats that interacted with LexA (Figure 4.33d): L1: (SSWDLPQGEY) 

and L2: (SRSWDLPGEY).  The region in bold was fixed and the underlined region was the 

randomized region in the lariat library.  Within the randomized region, both sequences 

contained the identical (SWDLP) motif.  Both L1 and L2 randomized regions end in glycine.  

The difference between the two sequences was that the L1 sequence contained a glutamine after 

the SWDLP motif, whereas the L2 sequence had an arginine before the SWDLP motif.  

Interestingly, both sequences contained glycine and proline that are required to make 

sharp bends in amino acid structure.  These amino acids might allow the cyclic peptide to adopt 

a tightly folded structure by folding back on itself.  We chose the L2 lariat for further analysis 

as it contained more charged amino acids.  The grand average of hydropathicity calculated by 

EXPASY for the L2 peptide was -1.350 compared to -1.250 for the L1 peptide (Kyte and 

Doolittle, 1982), which we predicted would enhance its solubility. 

4.3.4 Binding to LexA 

4.3.4.1 Y2H mutants 
To confirm the importance of the lariat structure for the L2 lariat-LexA interaction, we 

cloned the noose region of the L2 lariat into four modified intein expression plasmids along 

with three controls (Figure 4.37): (i) L2 lariat, (ii) L2 inactive, (iii) L2 linear, (iv) L2 active, (v) 

L2 scrambled, (vi) L2 inverted, and (vii) vector control (pIN01).  The expression of these 

constructs was confirmed by Western blot analysis with an antibody against the N-terminal 

haemagglutinin (HA) tag and LC/MS analysis in E. coli. 

The L2 lariat plasmid (Figure 4.37) produced two HA-tagged products, the unprocessed 

intein (~ 32 kDa) and the lariat (~ 18 kDa) (Figure 4.16).  Processing of the L2 lariat was also 

confirmed and quantitated by LC/MS (Figure 4.35). 

The L2 inactive intein plasmid (pIN-L2) (Figure 4.37) expressed a lariat precursor that 

did not undergo any steps in the intein-mediated cyclization reaction.  The inactive intein 

contains the insert sequence (IC-2/G6)-HASRSWDLPGEYA-(IN+1/A1).  In the inactive intein, 

the cysteine at position IN+1 was mutated to an alanine.  This mutation blocked the first step in 
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the lariat producing intein reaction.  The noose sequence remains identical to the L2 lariat and 

was constrained by the affinity of the IC and IN domains.  The L2 inactive intein produced only 

unprocessed intein (~ 32 kDa).  

The L2 linear intein plasmid (pLIN-L2) (Figure 4.37) expressed a linear version of the 

L2 peptide that was not cyclized by a lactone bond.  The L2 linear intein had the noose 

sequence (IC-2/G6)-HASRSWDLPGEY**-(IN+2/A2) where (*) indicates a stop codon.  

Otherwise the sequence was identical to the L2 lariat.  This plasmid produced a single (~ 18 

kDa) HA-tagged product analogous to the hydrolyzed lariat.  

The L2 active intein plasmid (pACT-L2) (Figure 4.37) expressed the lactam L2 peptide.  

It may also contain the unprocessed, the lariat, the linear, and the lactam L2.  The L2 active has 

the noose sequence (IC-2/G6)-HNSRSWDLPGEYC-(IN+1/A1).  The asparagine at position IC+2 

replaces the alanine present in the L2 lariat.  The asparagine allows the third step in intein 

processing to occur.  The L2 active intein plasmid produced unprocessed and IC domain (~ 17 

kDa) HA-tagged products.  In yeast, the L2 active intein processed poorly relative to the L2 

lariat and the unprocessed product migrated slightly slower in a SDS-PAGE gel.  Similar 

differences in active L2 intein and L2 lariat processing were also observed in E. coli, where 

after IPTG induction ~ 65% of the L2 lariat was correctly processed, whereas only ~ 19% of the 

active L2 intein underwent processing to the lariat intermediate (Figure 4.35-4.37). 

The L2 scrambled (pIL-L2-scrambled) expressed a lariat with the same amino acids as 

the L2 lariat but in a random order.  The L2 scrambled construct had the insert (IC-2/G6)-

HASDPGLRSWEYC-(IN+1/A1).  The L2 inverted plasmid (pIL-L2-inverted) expressed a lariat 

with the same amino acids as the L2 lariat in an inverted order.  The L2 inverted construct had 

the insert (IC-2/G6)-HASGPLDWSREYC-(IN+1/A1).  The control vector plasmid (pIN01) 

expresses an inactive intein with a CGPC noose.  The control vector had the insert sequence (IC-

2/G6)-HSSCGPCEYA-(IN+1/A1) and was the template that the other vectors were cloned into. 

In the Y2H assay, we did not detect any interactions between LexA and the L2 inactive 

intein, the L2 active intein, the L2 linear peptide, or between L2 scrambled and L2 inverted 

controls (Figure 4.37).  Under less stringent conditions where only the LEU2  reporter gene was 

used, a weak interaction with the L2 inactive and active constructs was observed (Figure 4.38).  

These results demonstrate that the lactone bond was important for the interaction in the Y2H 

assay and that the interaction was dependent on the peptide sequence in the noose. 
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Figure 4.35 | HPLC analysis of L2 lariat and active L2 intein processing 
Absorbance at 280 nm versus elution time of Histidine-tag purified L2 lariat and L2 active 
intein produced in BL21-CP.  Peaks containing Lariat, Lariat + IC, and IN + unprocessed intein 
are shown.  
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Figure 4.36 | ESI-TOF MS analysis of L2 lariat and active intein processing  
His-tag purified L2 lariat and L2 active intein produced in BL21-CP.  The m/z spectra of the 
lariat products eluted from reverse phase HPLC column between 10 and 18 minutes were 
combined and deconvoluted using MaxEnt (Waters) software to give a chromatogram showing 
mass versus total ion count (TIC).  For active L2, the IC (7555.17 calc; 7554 obs) hydrolyzed 
lariat (8694.7 calc; 8694 obs), IN (13966.7 calc; 13966 obs) and unprocessed (22661.4 calc; 
22662 obs) His-tagged products were observed.  For the L2 lariat, the lariat (8651.7 calc; 8652 
obs), hydrolyzed lariat (8669.7 calc; 8670 obs), IN fragment (13966.7 calc: 13966 obs), and 
unprocessed (22618.4 calc; 22618 obs) His-tagged products were observed.  TIC for the area 
under each peak is shown below the mass.  The percent processing to the lariat or lariat 
intermediate for the L2 lariat and L2 active intein are shown below each chromatogram, 
respectively. 
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Figure 4.37 | Y2H LexA constructs 
(a) Experimental overview of the Y2H assay used to determine which constructs interacted 
with LexA and LexA mutants.  (b) Description of constructs, the constructs and their sequences 
are shown.  IC = Intein C-terminal domain, IN = Intein N-terminal domain, amino acids are 
designated by single letter amino acid code, or three letter amino acid code.  (c) Y2H analysis 
of the interaction of LexA with L2 lariat and intein constructs.  Yeast growth on non-selective 
synthetic dextrose (SD) His-, Trp- media.  Yeast growth on SGR His-, Trp-, Leu-, Ade-, X-Gal 
media, which selects for the activation of LEU2, ADE2, and LacZ Y2H reporter genes.  Neg: 
prey was mated to His+ plasmid with no bait.  LexA: prey was mated to pEG202 containing 
LexA bait.  Pos: prey was mated to pEG202::B42AD self-activating bait. 
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4.3.4.2 Y2H alanine scan 
To further explore how the L2 lariat interacted with LexA, we performed a series of 

alanine mutations in the noose region of the L2 lariat.  An alanine scan involved sequentially 

mutating each amino acid to alanine (Figure 4.38).  In this way, each amino acid side chain can 

be tested independently for its contribution to the interaction (Gregoret and Sauer, 1993; 

Morrison and Weiss, 2001).  The L2 lariat sequence was tested against nine different alanine 

mutants.  These alanine mutations were tested along with the anti-LexA L2 lariat for their 

ability to interact with LexA and two mutant forms of LexA, S119A and K156A (Figure 4.38).  

LexA exists in either a noncleavable (NC) or cleavable (C) conformation, where the C 

conformation accounts for < 0.1% of the LexA population at pH 7 (Roland et al., 1992).  Luo et 

al. proposed that RecA promotes LexA autoproteolysis by shifting the equilibrium towards the 

C conformation (Luo et al., 2001).  LexA S119A mutant has a change in the active site serine 

nucleophile that prevents cleavage (Slilaty and Little, 1987), but does not alter the NC 

conformation  (Luo et al., 2001).  LexA K156A mutant has a change in the active site lysine 

general base that prevents cleavage and shifts the equilibrium towards the C conformation (Luo 

et al., 2001).  Previously, it has been shown using Aptaprint® technology  (Baines and Colas, 

2006) that the location of an interaction between a peptide affinity reagent and its target can be 

identified by making mutations in the target protein.  If the mutation results in a loss of 

interaction with the peptide affinity reagent, then that site can be presumed to be either directly 

or indirectly involved in the interaction.  

By analyzing the interactions between the L2 alanine mutants and the LexA mutants we 

could infer information on how the L2 lariat interacted with LexA.  In the alanine scan with 

LexA, all of the amino acids were involved in the peptide LexA interaction with the exception 

of the E9A mutant, which interacted with similar strength to the L2 lariat sequence (Figure 

4.38).  When the less stringent Leu2 reporter gene was used, the G8 amino acid could be 

replaced with alanine without completely abolishing the LexA interaction (Figure 4.38).  The 

G8 amino acid was likely not directly involved in the interaction and contributed to proper 

folding of the cyclic peptide since it is a highly flexible amino acid with no side chain.  

The similarities and differences between the L1 and L2 sequences provide some insight 

into the interaction of the L2 lariat with LexA.  The difference between the L1 and L2 
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sequences were that the L1 had a glutamine after the SWDLP motif and the L2 sequence had an 

arginine before the SWDLP motif.  The arginine was found to be required for the interaction of 

the L2 lariat with LexA, which could indicate one of several things.  Either the arginine was 

required for proper folding or the arginine was involved in the interaction.  There may be a 

weak interaction between the R2A mutant and LexA as there seems to be some growth at the 

maximum density plated on the leucine minus selection media.  Plating cells at a higher density 

or by using less stringent reporters like the 8-LexAop-Leu plasmid could be employed to 

examine this further.  

We also used the L2 lariat alanine scan to determine which amino acids were important 

for the interaction of the L2 lariat and two LexA mutants.  The L2 lariat interacted with LexA 

and to a lesser extent LexA K156A but not with LexA S119A (Figure 4.38).  This result 

suggested that the L2 lariat interacted near the LexA autoproteolysis active site possibly by 

forming a direct interaction with the S119 amino acid.  In addition, the weaker interaction with 

the K156A mutant, which is proposed to shift the equilibrium to the C form of LexA, indicated 

the L2 lariat may interact with the NC form of LexA since the interaction with the K156A 

mutant was reduced.  Further evidence for the interaction of the L2 lariat directly with LexA 

S119 was shown by the ability of the L2 E9A lariat mutant to interact with LexA.  This result 

suggested that the E9 amino acid of the L2 lariat may interact with LexA S119.  
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Figure 4.38 | Anti-LexA-L2 alanine scanning mutagenesis 
(a) Experimental overview of the Y2H assay used to determine which constructs interacted 
with LexA and LexA mutants.  (b) Description of constructs, the constructs and their sequences 
are shown.  IC = Intein C-terminal domain, IN = Intein N-terminal domain, amino acids are 
designated by single letter amino acid code, or three letter amino acid code.  Alanine mutants 
are described by the noose position that has been changed to alanine.  The IC+1 (G8) position is 
considered the first amino acid of the loop; it was not mutated since this would prevent the 
lariat forming and is not expected to interact.  (c) Y2H alanine scan, showing the interaction of 
the alanine mutants with LexA on different selective media.  Generally SD H-W-L- is 
considered less stringent than SGR H-W-L-A- X-gal media.  (d) Y2H analysis with LexA 
mutants.  Analysis of the interaction of LexA and LexA mutants, K156A, S119A, with L2 lariat 
and L2 lariat alanine mutants.  Yeast were grown on SGR H- W- L- A- X-gal media that selects 
for the activation of LEU2, ADE2, and LacZ Y2H reporter genes. 
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4.3.4.3 Surface plasmon resonance analysis of binding 
We used surface plasmon resonance (SPR) to determine the dissociation constant (Kd) 

between LexA and a synthetic L2 lariat peptide (Figure 4.39).  We constructed a 6xHis-LexA 

fusion protein and bound it to a Biacore Ni2+-NTA sensor chip  (Nieba et al., 1997).  The 

synthetic L2 lariat peptide was synthesized with an alanine and biotin moiety at the N-terminus, 

replacing the IC domain in the L2 lariat.  The synthetic L2 lariat peptide interacted with LexA 

with a Kd of 37 µM.  In contrast, we were unable to detect an interaction between LexA and the 

synthetic biotinylated linear L2 peptide at concentrations up to 125 µM (Figure 4.39). 

Since SPR is not a label free system, the orientation and native conformation of LexA 

might be affected, which may alter its affinity with the L2 lariat peptide.  When LexA was first 

bound to the Ni2+-NTA chip, and then a synthetic LexA DNA operator was passed over the 

immobilized LexA there was a large decrease in signal.  This decrease in signal could be a 

result of LexA dimerizing on the DNA and dissociating from the Ni2+-NTA chip or possibly 

undergoing a conformational change when bound to DNA that prevented it from binding the 

sensor chip.  The in vitro binding constant between L2 lariat peptide and LexA may differ from 

the in vivo binding constant since the L2 lariat may interact with a specific chromosome 

associated conformation of LexA.  In E. coli, ~ 20% of LexA is free in solution, with the 

majority of LexA associated with DNA (Sassanfar and Roberts, 1990).  This hypothesis is 

further supported by structural modeling and biochemical studies suggesting that LexA 

undergoes a conformational change when it binds its operator  (Butala et al., 2007; 

Chattopadhyaya and Pal, 2004; Groban et al., 2005).  
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Figure 4.39 | Surface plasmon resonance (SPR) analysis L2 peptides with LexA 
(a) SPR sensograms of L2 Lariat-LexA interaction.  Overlay plot of the association and 
dissociation of synthetic L2 lariat peptide ranging in concentration from 7.8 µM to 125 µM 
with LexA immobilized on a Ni2+-NTA SPR Chip.  (b) Determination of dissociation constant.  
Maximum SPR response units were calculated for L2 lariat concentrations ranging from 7.8 
µM to 125 µM.  The binding isotherm was fit to a one-site binding model to calculate the Kd 
+/- standard error using Prism4.0 (GraphPad) statistical software.  Error bars represent standard 
deviation for two experiments. (c) Linear versus lariat.  Overlay plot comparing the association 
and dissociation of L2 lariat peptide and L2 linear peptide at 125 µM. 
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4.3.4.4 Intracellular interaction of LexA with L2 lariat 
The weak binding of the LexA proteins with the anti-LexA L2 lariat might suggest that 

the anti-LexA L2 lariat interacted with the native LexA bound to DNA complex.  We reasoned 

instead that the L2 lariat may interact preferentially with a specific chromosome associated 

conformation of LexA. 

To investigate whether the L2 lariat was associated with the LexA promoter inside the 

cell, we used Ni2+-nitrilotriacetic acid (Ni2+-NTA) chromatin precipitation and quantitative 

PCR assay with His-tagged L2 lariat and Ni2+-NTA affinity chromatography (Figure 4.40)  

(Tamimi et al., 2004).  We expressed the lariat in E. coli cells and then crosslinked protein-

DNA and protein-protein-DNA complexes using formaldehyde.  The DNA was sheared into 

small fragments using sonication and the DNA associated with the lariat was purified on a Ni2+-

NTA column.  The crosslinks between the DNA associated with the His-tagged lariat were 

removed and the DNA was analyzed to see if there was an enrichment of the LexA specific 

genes with the L2 lariat compared to the non-specific control expressing the L2 scrambled 

lariat.  Expression of the L2 lariat resulted in a fifty-fold enhancement in the amount of LexA 

promoter DNA precipitated in the induced versus uninduced samples compared to a ten-fold 

enhancement for the L2 scrambled control lariat (Figure 4.40).  This indicated that in E. coli, 

there is an increased association of the L2 lariat with LexA than of the scrambled control lariat 

with LexA.  Combined with the Y2H data, this supported the conclusion that there was a 

specific in vivo anti-LexA L2 lariat interaction with LexA.  
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Figure 4.40 | Association of L2 lariat with LexA at lexA promoters 
(a) Analysis of the association of the L2 and L2 scrambled lariats with the lexA promoter using 
Ni2+-NTA chromatin precipitation assay.  Precipitated lexA promoter DNA was quantified by 
real time PCR and normalized to the corresponding input DNA. (b) Histograms show the ratio 
of Ni2+-NTA precipitated lexA promoter DNA (lariat-lexA complex) between IPTG-induced 
and un-induced His-tagged L2 and L2 scrambled lariats.  Error bars represent the standard 
deviation from three independent experiments. (**) represents p-value < 0.01 between L2 lariat 
and L2 scrambled lariat. 
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4.3.5 L2 lariat potentiation of mitomycin C activity 
We hypothesized that if LexA cleavage was inhibited that it would result in the 

potentiation of the action of cytotoxic drugs such as mitomycin C (MMC).  Protecting LexA 

from cleavage prevents the SOS response genes from being activated, which would kill bacteria 

at a lower concentration of MMC than would be required if the SOS pathway was activated.  

We tested the ability of L2 lariat to inhibit E. coli growth in the presence of MMC using 

the survival assay described by Lin and Little (Lin and Little, 1988).  We expressed L2 

scrambled lariat, L2 lariat, L2 linear peptide, L2 inactive intein, and L2 active intein in E. coli, 

exposed the bacteria to MMC in 0.85% NaCl for one hour, and assayed their survival (Figure 

4.41).  Expression of the L2 lariat enhanced the activity of MMC and reduced cell viability to ~ 

30% relative to the L2 scrambled lariat.  Expression of L2 linear peptide, L2 active intein, and 

L2 inactive intein enhanced the activity of MMC relative to the L2 scrambled control by ~ 

68%, 65%, and 53%, respectively.  Interestingly, this differed from the results observed in the 

Y2H assay where the L2 linear and L2 inactive had no effect.  The effect in bacteria might be 

attributed to the high concentration of intein present in the cell.  

 

Figure 4.41 | Anti-LexA L2 potentiation of mitomycin C 
Normalized relative cell survival was calculated by dividing the number of colony forming 
units (cfu) after 30 minutes MMC treatment by the number of cfu at the zero hour time point.  
Error bars represent the standard deviation of five independent experiments. (**) represents p-
value < 0.01 and (*) represents p-value < 0.05  between L2 lariat and intein constructs and the 
L2 scrambled lariat. 
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4.3.6 LexA protection and stability 
Since the L2 lariat potentiated the activity of MMC, we tested if the toxicity was 

mediated through LexA.  We monitored the ability of the L2 lariat to inhibit MMC induced 

depletion of LexA at the lexA promoter using chromatin immunoprecipitation (ChIP) and 

quantitative PCR (Figure 4.42)  (Wade et al., 2005).  MMC is a potent inducer of the bacterial 

SOS response that causes the release of LexA from its promoter  (Lin and Little, 1988).  We 

observed that MMC treatment depleted 94% of LexA from the lexA promoter in cells 

expressing the L2 scrambled lariat control, whereas only 14% of LexA was depleted in cells 

expressing the L2 lariat.  Expression of L2 active intein, L2 inactive intein, and L2 linear 

peptide resulted in 73%, 86%, and 88% of LexA being depleted from lexA promoter after MMC 

treatment, respectively. 

We monitored the ability of the L2 lariat to block MMC induced LexA autoproteolysis 

using Western blot analysis with an anti-LexA antibody.  MMC activates RecA co-protease 

activity and induces cleavage of LexA (Lin and Little, 1988).  We monitored degradation of 

LexA after exposure to MMC  (Yasuda et al., 1998) in the presence and absence of L2 lariat, 

L2 scrambled lariat, L2 linear peptide, L2 inactive intein, and L2 active intein (Figure 4.42).  

We observed that LexA was significantly degraded (98%) after 1 hr treatment with MMC in 

cells expressing L2 scrambled control.  In contrast, the L2 lariat completely blocked MMC-

induced LexA degradation.  L2 linear peptide, L2 active intein, and L2 inactive intein partially 

blocked MMC-induced LexA proteolysis with 87%, 65%, and 67% of LexA remaining, 

respectively.  A possible reason for the low activity of the L2 active intein in the activity assays 

was the low processing of L2 active intein in E. coli relative to the L2 lariat (Figure 4.35 - 

4.37).  The L2 lariat was identical to the L2 active intein except for an asparagine to alanine 

mutation at position IC-1.  
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Figure 4.42 | anti-LexA L2 effect on LexA stability 
L2 lariat inhibition of LexA autoproteolysis. (a) ChIP analysis of the influence of L2 lariat and 
intein constructs on MMC-induced depletion of LexA at the lexA promoter.  The percentage of 
LexA remaining bound to the lexA promoter after MMC treatment was measured as a ratio of 
the occupancy units of MMC treated to untreated samples multiplied by 100.  Error bars 
represent the standard deviation from three independent experiments. (**) represents p-value < 
0.01 and (*) represents p-value < 0.05 between L2 lariat and intein constructs and the L2 
scrambled lariat. (b) Western blot analysis of LexA cleavage induced by MMC treatment.  
BL21-CP cells expressing L2 lariat and intein constructs were treated with MMC and 
chloramphenicol.  Cell extracts were analyzed by Western blot analysis using Anti-LexA 
antibody at 0 and 1 hour after MMC addition.  The percent LexA that does not undergo 
proteolysis after 1 hour treatment with MMC is reported.  Error bars represent the standard 
deviation from three independent experiments. (**) represents a p-value < 0.01 and (*) 
represents a p-value < 0.05 between L2 lariat and intein constructs and the L2 scrambled lariat. 
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4.3.7 Conclusions 
We developed a new strategy to display lactone peptides with a covalently attached 

linear peptide.  The N-terminus of the lariat was fused to a transcription activation domain, 

allowing lariats to be genetically screened using the Y2H assay.  Alternative protein moieties 

such as localization sequences, fluorescent proteins, and membrane permeable peptides, etc 

could also be attached via the N-terminus.  Lariats can be produced in prokaryotic and 

eukaryotic environments and the noose region can be used to display combinatorial peptide 

libraries.  Lariats are constrained by a lactone bond, allowing a variety of peptide sequences to 

be displayed.  Lactone bonds are stable under reducing conditions, which allows lariat libraries 

to be screened using intracellular assays such as the Y2H assay.  This is in contrast to disulfide-

bond constrained peptide libraries, which are not stable under reducing conditions and must be 

screened using in vitro selection strategies such as phage display  (McLafferty et al., 1993). 

Lariats have advantages over intein-produced lactam-cyclized peptides for analyzing 

intracellular protein function.  First, for Ssp DnaE intein-based constructs, the lariat is produced 

at higher levels than its corresponding L2 cyclic peptide.  Second, lariat libraries can be 

screened using the Y2H assay to isolate lariats against a target protein.  Combinatorial libraries 

of cyclic peptides generated by intein-mediated cyclization have been successfully screened to 

isolate cyclic peptides that inhibit protein interactions and activities  (Naumann et al., 2008; 

Horswill et al., 2004; Tavassoli and Benkovic, 2005; Tavassoli et al., 2008) and cell 

phenotypes  (Kinsella et al., 2002; Nilsson et al., 2005).  These selection strategies are more 

difficult to use than a Y2H assay to target a specific protein.  In principle, it should be possible 

to generate cyclic peptides based on the noose sequence of the lariat that still retains the same 

activity as the lariat.  Kinsella et al. showed that cyclic peptides that inhibit IL-4 signaling in B-

cells still retain their activity when they were expressed in a mutated intein construct that did 

not produce cyclic peptides (Kinsella et al., 2002). 

Therefore, it is conceivable that in cases where the lariat cyclic peptide structure is not 

dependent on the geometry of the lactone bond, that it should be possible to generate peptides 

that are cyclized through an amide backbone bond, which retain the activity of the lariat 

peptide.  Alternatively, cyclic peptides can also be synthesized that are cyclized through the 

side chain serine and C-terminal carboxylic acid (Sewald and Jakubke, 2002), which are 

identical to the noose region of the lariat. 
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In summary, we have presented a new method to isolate lariat peptides against a given 

target protein using the Y2H system.  We used lariat peptide Y2H assay to generate lariat 

inhibitors of LexA and validate LexA as a therapeutic target for potentiating the antimicrobial 

effects of reagents that activate the SOS response pathway.  The lariat technology provides a 

rapid high throughput assay for isolating peptide inhibitors that can be used for the reverse 

analysis of protein function, as drugs or pseudo-drugs for validating therapeutic targets. 

4.4 Thesis summary  
We demonstrated that inteins can be engineered to stably produce lariat peptides.  

Combinatorial libraries of lariat peptides can be constructed and screened, resulting in lariats 

that have biologically relevant activity against their intended targets.  In addition, we have 

shown that the stability of the lariat can be improved and we have outlined several strategies to 

further improve lariat stability.  We developed a genetic screen for isolating “lariat” peptides 

that function as trans dominant inhibitors of protein function.  Lariats consist of a lactone 

peptide with a covalently attached transcription activation domain, which allows combinatorial 

lariat libraries to be screened for protein interactions using the yeast two-hybrid assay. 

Lariat peptides possess desired traits for characterizing the function and therapeutic 

potential of proteins.  Lariat peptides are constrained by a lactone bond, which allows them to 

be used in reducing intracellular environments.  Lariats function as trans dominant inhibitors, 

which unlike genetic approaches that inactivate genes by deletion or creation of loss of function 

mutations, can be easily used to inhibit protein function in diploid organisms.  Lariats inhibit 

their protein target directly and have the potential to block specific interactions with a protein 

while leaving other interactions unperturbed.  This is in contrast to trans dominant agents like 

anti-sense RNA/DNA, ribozymes, and RNAi that block transcription and translation of their 

target.  Thus, results obtained using lariat inhibitors can be used directly to evaluate the 

therapeutic potential of inhibiting targets with small molecule drugs.  Together, these properties 

make lariats an ideal reagent for assessing whether small molecules inhibitors can be generated 

against a protein target.  Further, the small size of lariats makes them amenable to chemical 

synthesis and allows their structure to be easily solved, which makes them useful as potential 

drugs or drug leads. 
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4.5 Future directions 

4.5.1 Aim 1: Future directions 
Additional studies are needed to determine the amino acids or amino acid combinations 

that block and allow lariat processing at the IC+1, IC+2 positions. This information could be used 

to design new libraries, where a higher percentage of lariats undergo processing.  Additionally, 

a new library should be constructed with variable IN-1 and IN-2 amino acids to determine their 

effect on processing and to compare the efficiency of processing of the Ssp-Ssp and Ssp-Npu 

libraries. 

Lariats produced using inteins are not limited to displaying short peptide libraries in the 

Y2H assay.  Inteins have previously been used to cyclize the full-length proteins beta-

lactamase, and GFP (Iwai and Plückthun, 1999; Iwai et al., 2001), indicating that lactone 

cyclization of proteins and not just peptides should also be possible. 

Finally, the lariat technology should be applied to other selection strategies.  This is 

necessary since to generate highly specific and functional antibodies or peptides, multiple 

rounds of selection in different organisms is often required.  For example, phage display, Y2H 

assays, and mammalian two-hybrid assays have all been combined to isolate functional 

intracellular scFvs  (Nam et al., 2008).  Some selection strategies, which could be performed 

with lariats are: (i) mRNA display, which would allow the incorporation of non-natural amino 

acids, which may be required to increase bioavailability; (ii) phage display, which would allow 

more library members to be screened; (iii) mammalian two-hybrid assay, which would allow 

the isolation of lariats that function directly in mammalian cells where ultimately therapeutic 

lariats must function.  However, mammalian screens are limited to even smaller libraries than 

yeast screens.  Ideally, retroviral vectors would be constructed that allow subcloning of lariats 

isolated in the Y2H assay.  These lariats could then be tested for their appropriate phenotype in 

the relevant cellular background. 

4.5.2 Aim 2: Future directions 
Lariat production has been enhanced by mutagenesis of amino acids in the vicinity of 

the lactone bond.  To further optimize the lariat’s stability, mutations isolated from our rational 

and random mutagenic screens should be characterized in greater detail.  Characterization of 

these mutants would allow us to better understand the mechanism of stabilization.  Specifically 

determining the rate of cleavage for various mutants at different pH’s could be used to 
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determine if cleavage of the lactone bond is through acid or base catalyzed reactions, which 

would allow us to better understand the mechanism of lactone bond cleavage and how these 

amino acids stabilize the lactone bond.   

In addition to the G6/G7/B11 positions, the following positions were also identified and 

would be of potential interest.  First, aspartic acid at position F4 coordinates water near the 

lactone bond and participates in N-S acyl transfer and transesterification by polarizing the 

carbonyl to assist in nucleophilic attack by cysteine or serine at positions IN+1/A1 and IC+1/G8.  

Mutation of F4 from aspartic acid to glutamic acid or glutamine may allow N-S acyl transfer 

and transesterification to occur, while stabilizing the lactone bond.   

Second, mutation of histidine at position F13 to alanine does not block asparagine 

cyclization, but substitution of a bulky hydrophobic amino acid at F13 may be used to stabilize 

the lactone bond.  Therefore, substitution with bulky hydrophobic amino acids like 

phenylalanine, leucine, or isoleucine could be tried at the F13 position.  

Third, bulky or charged amino acids such as: tryptophan, phenylalanine, tyrosine, 

leucine, lysine, or arginine, substituted at the F14 position may be used to disrupt the correct 

positioning of histidine at position F13 and thus block asparagine cyclization and stabilize the 

lactone bond.  

Fourth, mutation of phenylalanine at position F15 to alanine blocks asparagine 

cyclization, while mutation to tyrosine slightly inhibits asparagine cyclization.  Accordingly, 

mutation of F15 to a bulky hydrophobic amino acid may be used to block asparagine 

cyclization and stabilize the lactone bond by excluding water.  Tryptophan and leucine are good 

candidates for mutations at F13 to stabilize the lactone bond. 

Alternatively, disrupting the charged surface responsible for interaction of the IN and IC 

domains (Dassa et al., 2007) would optimizing this interface for a single turnover reaction that 

still allows the IC and IN domains to interact for a high processing rate, but is not sufficiently 

strong to remain attached after IC domain release and would prevent the reverse 

transesterification reaction, thus stabilizing the lariat. 

4.5.3 Aim 3: Future directions 
Future advances in the lariat technology will require the development of strategies to 

transition lariats into valuable biological molecules.  One general technique to isolate 

therapeutic peptide inhibitors is to first screen a combinatorial pool of peptides to isolate 
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peptide affinity reagents that interact with the target of interest.  Then, the peptide affinity 

reagents isolated in the screen are tested for the desired inhibitory activity.  Finally, the selected 

peptide inhibitor is optimized for cellular uptake and other pharmaceutical properties, or used 

as a lead molecule in small molecule design (Hruby et al., 2002).  

Since lariats are a new class of peptide affinity reagent, this three-step process must be 

optimized.  In the immediate future, rigorous selection techniques that result in high affinity 

binding lariats must be developed.  The low dissociation constant for the anti-LexA L2 lariat 

isolated using this technology, and studies on antibody fragments isolated in yeast  (Tanaka and 

Rabbitts, 2009), suggest that isolation of therapeutic lariats or any peptide affinity reagent using 

only the Y2H assay will not be sufficient for most therapeutic targets.  Therefore, combinations 

of different screening/selection strategies can be employed to isolate high affinity binders, 

including phage display, mRNA display, Y2H assays, and mammalian two-hybrid assays.  

These high affinity lariats can initially be used to replace antibodies and can be used directly in 

diagnostic and research applications that simply require the lariat to bind the target of interest.  

The advantage of these peptides over antibodies is their small size, which allows them to be 

synthesized, reducing their cost.  

Rigorous selections, followed by secondary selection techniques that identify lariats 

with inhibitory activity, must also be performed.  One strategy to isolate inhibitors for human 

tyrosine kinases would be to select peptides that could overcome the growth suppression 

phenotype in yeast (Takashima et al., 2003; Trible et al., 2006).  Another strategy to isolate 

inhibitors that block protein-protein interactions would be to use a Y3H assay such as the 

reverse transactivator assay (RTA)  (Hirst et al., 2001; Joshi et al., 2007) to select peptides that 

disrupt a known interaction.  Alternatively, lariat peptides selected in the Y2H assay could be 

optimized for inhibitory activity using chemically synthesized lariats. 

Lariats with inhibitory activity can then be transitioned into small molecules using 

yeast-based assays, which screen libraries of small molecules for ones that are able to disrupt a 

lariat-protein interaction  (Joshi et al., 2007).  Alternatively, lariats can be modeled in silico  

(Yongye et al., 2009; Maupetit et al., 2009).  Structures generated in in silico can then be used 

in docking programs to predict where and how the peptide interacts with its target  (Maupetit et 

al., 2009).  This information can then used to generate small molecule drugs (Rubinstein and 

Niv, 2009).  Since protein:protein interactions are becoming interesting drug targets, some 
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companies are pursuing small molecules with peptide-like motifs called peptidic modulators  

(Rubinstein and Niv, 2009).  The fusion of the lariat peptide technology with this type of small 

molecule could potentially allow the creation of a small molecule with the same specificity as 

the peptide with improved drug qualities. 

Even if lariats do not have an inhibitory effect, and only bind their target, their free N-

terminus makes them well-suited to attach toxic chemicals, drugs and peptides, allowing them 

to target specific proteins or cell types  (Ruoslahti, 2000).  
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