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ABSTRACT 
 
The L1 region of the porcine adenovirus (PAdV)-3 genome encodes a protein of 622 

amino acids named IIIa.  Although it binds a neighboring group of nine (GON) hexons at 

the capsid level and cement the icosahedral shell that contains the viral DNA, little is 

known regarding its function with respect to viral life cycle. Moreover, the known 

location of IIIa protein in the capsid may help to express targeting ligands for altering the 

tropism of PAdV-3.  The objective of this study was to characterize the IIIa protein of 

porcine adenovirus Type 3 (PAdV-3).    

 In order to characterize the IIIa protein, polyclonal antisera were raised in rabbits 

against different regions of IIIa.  Anti-IIIa sera detected a specific protein of 70 kDa in  

PAdV-3 infected cells using Western blot assay. Immunofluorescence studies indicated 

that IIIa is predominantly localized in the nucleus of PAdV-3 infected cells. Analysis of 

PAdV-3  IIIa using antibodies specific for N- and C- terminal domains of the protein 

suggested that although the  N-terminus and C-terminal domains of IIIa are immunogenic, 

they are not exposed on the surface of PAdV-3 virions. These results were further 

confirmed by our inability to isolate a chimeric PAdV-3 virion containing a heterologous 

protein fused to the N-terminus or C-terminus of IIIa.  

Functional analysis suggested that IIIa may transactivate the major late promoter and 

down regulate the early region (E) 1A promoter. In order to locate the domains of IIIa 

responsible for different functions, in-frame deleted/truncated forms of IIIa were 

constructed.  Analysis of the deleted/truncated forms of IIIa suggested that a) the 

sequences located between amino acids 273-410 and between amino acids 410-622b) 

affect the nuclear localization  and transactivation function respectively. 

Since protein- protein interactions are important for the biological functions of the 

protein, we determined the interaction of PAdV-3 IIIa with other viral proteins. IIIa was 

found to interact with DNA binding protein (DBP), E3 13.7 kDa protein, hexon, fiber, 

and pIX.  These results suggest that PAdV3 IIIa may do more in the viral life cycle than 

merely act as cement between the hexons to maintain capsid stability and may actually be 

involved in regulating early to late gene transcription at appropriate stages during viral 

infection. 
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1.0  REVIEW OF LITERATURE   
  

 1.1 Adenoviruses 

  Adenoviruses, named after the original source of the tissue, adenoid, in which the 

prototype virus strain was discovered (Benko and Harrach, 2003; Davison et al., 2003),   

are non enveloped virus particles containing a linear double stranded DNA genome. 

Adenoviruses are icosahedral in shape, having a diameter of 70-90 nm, with 252 

capsomers of which 240 are hexons and 12 are pentons. Adenoviruses infect a wide range 

of mammals, avian, fish and amphibian hosts, causing a variety of clinical syndromes. 

 

1.1.1  Adenovirus taxonomy and classification 

To date, more than 150 adenoviruses isolated from different mammals, birds, fish  

and amphibians have been grouped together in a single family named Adenoviridae. 

Initially, based on cross-reacting hexon antigens and host range, members of the family 

Adenoviridae were divided into two genera Mastadenoviridae (infecting mammals) and  

Aviadenoviridae (infecting birds).  With the availability of DNA sequence data, two new 

genera have been proposed: Atadenovirus and Siadenovirus (Benko and Harrach, 2003; 

Davison et al, 2003; Kovacs et al, 2005; Schrenzel et al, 2005).  Atadenoviruses were 

named as a consequence of the high A+T content of their respective genomes.  They 

infect various ruminant, avian, marsupial, and reptilian hosts.  Siadenoviruses were 

named as they encode a protein similar to bacterial sialidases.  They have the lowest G+C  

(39%) content of all the adenoviruses.  The only known fish adenovirus falls into a fifth 

clade that as yet has no other members (Davison et al, 2003).  Table 1 gives an overview 

of adenovirus taxonomy and groupings.    

 

1.2 Human adenovirus 

Human adenovirus (HAdV), a member of Mastadenovirus, was first isolated in 1950’s. 

Currently 51 serotypes of HAdVs are known which are classified into 6 subgenera A to F 

(Crawford-Miksza et al. 1996).  Depending on serotype, replication occurs in the upper 

respiratory tract, the gut epithelium and the ocular membranes.   Although most 

infections are subclinical, young children or those who are  
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Table 1.  Taxonomy of Adenovirus. 
Mastadenovirus Atadenovirus Siadenovirus Aviadenovirus

Subgroups PAdV1-5 Egg Drop Syndrome Frog AdV Fowl AdV-1(CELO)
Shrew AdV Bovine AdV-1 HEV Fowl AdV-10
Human AdV-2 Caprine AdV Falcon AdV
Human AdV-3 Ovine AdV-287
Human AdV-4 Possum AdV
Human AdV-5 Corn Snake AdV
Equine AdV-1
Equine AdV-2
Canine AdV-1
Canine AdV-2
Bovine AdV-3
Murine AdV-1
Simian AdV's
Caprine AdV1,2  

(Adapted from Schrenzel et al, 2005).  The table groups the subspecies of adenoviruses 
identified to date.  Those adenoviruses that are as yet termed unclassified as well as the 
numerous subspecies within the subgroups are not shown. 
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immunocompromised may exhibit symptomatic infections such as a mild cold or 

conjunctivitis. 

As HAdV-2 and -5 are the most widely studied, the majority of the background 

information pertaining to adenoviruses will address the characterization carried out on 

these two serotypes.    

 

1.2.1 Structure and Organization of the  Human Adenovirus Genome 

HAdV- 2 and -5 fall into species C (Wadell, 1984: Mei et al., 2003). The HAdV-5 

genome has a G+C content of 55.2% and nucleotide composition of 27.7% G, 28% C, 

23.3% A, and 21.5% T (Mei et al.  2003). The genome of HAdV-5 is organized into 

complex transcriptional units, which can be divided into early (E) and late (L) regions based 

on the onset of viral DNA replication.  Moreover, both DNA strands are involved in the 

transcription of different mRNAs. The four early regions (E1-E4) produce multiple 

differentially spliced mRNAs, which encode a variety of distinct regulatory proteins 

required to establish an optimal environment for efficient viral DNA replication and 

subsequent late gene expression. This is followed by DNA replication, which begins at each 

of two identical replication origins on each end of the viral genome termed the right and left 

inverted terminal repeats (ITR).  Replication is carried out via strand displacement from 

both the right and left hand strands of DNA. The intermediate regions are transcribed both 

early and late in infection, from both the right and left strands of viral DNA.   The five late 

regions, L1-L5, are transcribed after the onset of DNA replication, and encode mainly 

structural proteins.  In addition, there are cis-acting packaging motifs that are present on one 

end of the genome to direct the encapsidation of the viral DNA into the newly formed 

capsids.  Figure 1 shows the general organization of the transcriptional map of HAdV-5.   

1.2.1.1 Early Regions 

The E1 region encodes E1A, E1Bsmall (E1B19K) and E1Blarge (E1B55K) 

proteins, which are responsible for transactivation of viral and cellular genes, 

transformation of cells in culture, induction of cellular DNA synthesis, and inhibition of 

apoptosis and mitotic cell division (Hoffmann et al., 2005).  E1A facilitates viral 

propagation by sequestering tumor suppressor proteins which in turn results in induction 

of cells into S-phase of mitosis (Madison et al, 2002).  E1B19K is a functional 
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homologue of the anti-apoptotic cellular protein Bcl-2 which is antagonistic for pro-

apoptotic proteins Bax and Bak (Madison et al, 2002).  The E1B55K protein binds and 

inactivates p53 and together with the E1Bsmall protein, maximizes viral replication by 

preventing premature cell death (Rao et al. 2004).   

The E2 region is made up of E2A and E2B, which are required for viral DNA replication.  

E2A encodes the DNA binding protein (DBP) whose carboxy terminal domain is 

involved in DNA binding, initiation and elongation phases of DNA replication as well as 

transcriptional control of the major late promoter (MLP).  It is also thought to  function in 

conjunction with viral proteins IVa2, 52K and others to package newly sythesized viral 

DNA into capsids (Russel, 2000; Casper et al, 2005).   E2B encodes a DNA polymerase 

as well as the pre-terminal protein (pTP).   pTP is thought to be involved in protein 

primed initiation of DNA replication as well as a primary player in  liver toxicity of first 

generation adenovirus vectors (Everett et al. 2003; Mysiak et al, 2004a). 

The E3 region encodes proteins, often termed “stealth” proteins, that are 

important in escape from host immune responses, allowing the virus to persist longer in 

the cells.  They are involved in downregulation of MHC I, prevention of apoptosis by 

down-regulation of apoptotic proteins like FAS and TRAIL, inhibition of arachidonic 

acid secretion and inhibition of TNF-induced apoptosis (Horwitz 2004).  The E3 region 

also encodes the adenovirus death protein (ADP) in HAdV-5, which assists in host cell 

death and efficient release of progeny virus.  The ADP is not present in all human 

adenovirus serotypes (Russel 2000).  

The E4 region encodes proteins that have been shown to affect transgene 

persistence, vector toxicity and immunogenicity (Weitzman et al, 2005).  Proteins from 

the E4 genes can modulate transcription, the cell-cycle, cell signaling and DNA repair. In 

addition, some of these proteins also cause oncogenic transformation (Weitzman et al, 

2005).  
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Figure 1.  Transcriptional Map of HAdV-5.  (Adapted from Russel, 2000). 
Arrows indicate the direction of transcription and the gene locations within the genome.   
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1.2.1.2 Late Regions 

 In HAd- 2 and 5 there are five late regions, L1 to L5, which encode the 

majority of the structural proteins.  All late gene transcripts contain the tripartite leader 

(TPL) and are transcribed from a common major late promoter (MLP) (Russel,  2000). 

In the L1 region, two mRNA’s have been identified which correspond to 

52K and IIIa.  52K is a nuclear protein, important for assembly of new virions via 

interactions with DBP and IVa2 to package viral DNA in the capsid. (Russel , 2000; 

Ostapchuk et al, 2005).  IIIa is a minor cementing protein that interacts with hexon 

molecules joining one group of nine (GON) hexons with the neighboring GON in the 

icosahedral capsid.  It is a phosphoprotein, phosphorylated by endogenous protein kinases 

and may play other roles during viral infection.  Its transcription  is tightly regulated and  

early expression results in down-regulation of its co-transcript 52K as well as other late 

viral genes (Molin et al., 2002) 

The L2 region encodes pIII or penton base, pV, pVII and mu (pX).  The 

penton base protein has been extensively studied as it is integral to early binding and 

virus entry into the cell and is also thought to play a role in cementing the hexon and fiber 

proteins together at the 12 vertices of the capsid (Bai et al, 1993; Russel 2000).  Next to 

hexon, it shows the highest homology to penton base proteins of other adenoviruses.  

Human adenoviruses have a conserved RGD (Arg-Gly-Asp) motif at the apex of two 

alpha helices contained within the penton base proteins.  This sequence promotes 

efficient uptake of virus into the cellular endosomes by interacting with α5β3 integrins 

(Bai et al, 1993).  The pV protein links the viral DNA protein complex to the inside of the 

capsid (Matthews et al.  2001) as well as interacts with core protein mu to organize the 

viral DNA into nucleosome-like structures in the mature virion (Zhang et al, 2005).  The 

core protein mu or pX has been studied with respect to disruption of the nucleolar regions 

of cells due to its arginine-rich amino acid composition and the presence of nucleolar 

targeting signals similar to those found in pV (Matthews, 2001; Lee et al, 2004).   pVII is 

a core protein that accounts for 10% of the protein mass of the virion. pVII is very rich in 

basic amino acids, which facilitates the condensation of viral DNA as it is packaged in a 

manner similar to cellular histones (Lee et al., 2003).   The mechanism for packaging 

such chromatin-like DNA into the virus is unclear as it does not agree with the phage 



 7

models for packaging DNA.  It is unclear if pVII is packaged along with viral DNA or 

separately.  

The L3 region codes for pVI, hexon and the 23 kDa protease.  pVI is a 

minor capsid protein that has an important function in disruption of endosomal 

membranes to release virus to the cytosol (Wiethoff et al., 2005).  The 23kDa protease 

functions in the proteolytic cleavage of viral proteins during capsid maturation.  The 

protease deleted HAdV-5 can only undergo one round of replication in permissive cells.  

As the protease appears to be conserved throughout most serotypes, its function of 

processing of viral proteins during disassembly and assembly of infectious virions also 

appears to be conserved (Nakano et al, 2000; Russel, 2000; Weithoff et al, 2005). Hexon 

is the most abundant protein in the mature virus capsid (240 copies per virion).  It is the 

major antigenic protein and thus is the major inducer of neutralizing antibodies (Wohlfart 

et al, 1988).   Each hexon capsomer is trimeric and has a pseudo-hexagonal base and a 

triangular top (Athappilly et al, 1994).  Hexon has recently been shown to be important in 

viral attachment by binding to cellular phospholipids permitting viral entry independent 

of primary and secondary cellular receptors (Hong et al, 2005).  It is also the only major 

structural protein of the incoming adenovirus that docks at the nuclear pore complex and 

can be partially imported into the nucleus to facilitate viral DNA delivery (Greber et al, 

1993; Saphire et al, 2000).  In gene therapy applications involving HAdVs, it is desirable 

to circumvent neutralization, thus much research has been done attempting to modify the 

hexon protein prolonging viral persistence in the body.  This “immune escape” 

mechanism is advantageous for transgene expression by adenoviral vectors (Roy et al., 

2005) 

The L4 region codes for the 100K, 33K, and pVIII proteins.  The 100K protein 

plays an essential role in the trimerization of hexons and acts as a scaffolding protein 

(Cepko and Sharp, 1983; Morin and Boulanger, 1986; Hong et al, 2005). Moreover, the 

100K protein is associated with ribosomes or polyribosomal viral RNA, can bind RNA in 

vivo and is not found in mature virions (Riley and Flint, 1993).  Its proposed function as a 

chaperone protein and has been found to be essential for efficient translation of late but 

not early viral mRNAs (Hayes et al, 1990).  The direct selection of late mRNAs for 

translation by 100K is suggested to be the result of export of newly synthesized viral 
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mRNA’s from the nucleus to the cytoplasm rather than sequence specific recognition of 

viral mRNA’s (Riley and Flint, 1993).   The 33K protein is thought to function as a 

scaffolding protein and is essential for virion assembly.   Carboxy-terminal truncations of 

the 33K protein aborted assembly of mature virions (Finnen et al, 2001).   More recently 

this protein has been implicated in the transcriptional switch from early to late genes by 

activating transcription from the major late transcription unit (MLTU) (Fessler and 

Young, 1999; Farley et al,  2004).  pVIII is a hexon associated structural protein that 

connects the core with the inner surface of the adenovirus capsid. It was previously 

thought to be present only in empty capsids (Vellekamp et al, 2001).  Recently, however, 

it has been suggested that pVIII is positioned underneath IIIa, connecting the inside of the 

capsid to hexons between the GON (Fabry et al, 2005), a function previously attributed 

solely to IIIa.   

The L5 region encodes the fiber gene, which is integral for binding of the 

adenovirus to permissive cells.  Fiber is a structural protein that projects from the 12 

vertices of the icosahedral capsid.   Its structure is comprised of a  variable number of 

species-specific shaft repeats and is bound to the penton base at the amino terminus.  The 

carboxy terminus, important for attachment, is made up of a trimerized knob domain with 

a three-bladed propeller structure surrounding a central surface depression (Henry et al, 

1994).   The knob region has been exploited as a potential site for insertion of ligands for 

use in adenovirus targeting (Dmitriev et al., 1998; Belousova  et al., 2002).  The fiber 

knob monomer is composed of 2 β-sheets sandwiched together with loops and turns 

connecting them.  The sheets seem to be functionally separate with the “R” sheet 

important for receptor recognition and the “V” sheet involved in trimerization. (Henry et 

al., 1994; Xia et al., 1994). 

 

1.2.1.3  Intermediate regions  

The intermediate genes are transcribed both before and after onset of viral 

replication.  The intermediate regions of HAdV code for two structural proteins IVa2 and 

pIX. The IVa2 protein is known to activate the  major late promoter (MLP) by binding 

downstream elements (DE) as either a functional homodimer of IVa2 called Def B or as a 

heterodimer (one copy of IVa2) called Def A (Zhang et al, 2000).  It has been suggested 
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to also interact with adenovirus packaging domains, in a serotype specific manner (Zhang 

et al, 2000).  Because IVa2 binds homologous sequences shared by both the A repeats 

found in the adenovirus packaging domains, and the DE of the MLP, it is supposed that 

IVa2 has direct involvement in the packaging of viral DNA (Zhang et al, 2001;  Zhang 

and Imperiale, 2003; Ostapchuk et al, 2005; Perez-Romero et al., 2005).    

Polypeptide IX, thought to function as a trimer, is present on the viral capsid and 

is used as cement to hold the hexons together within the GON.  It has been reported to be 

a transactivator as well as as playing a role in the reorganization of host cell nuclear 

domains (Lutz et. al. 1997; Rosa-Calatrava et al., 2001; Parks, 2004; Sargeant et al., 

2004).  More recently, it has been used as a putative site for insertion of targeting ligands 

or therapeutic genes due to its position on the adenovirus capsid (Dmitriev et al., 2002;  

Zakhartchouk et al, 2004). 

 

1.2.2 Infectious Life Cycle 

The adenovirus infectious cycle can be divided into two phases.  The first or 

“early” phase includes the virus entry into the cell followed by the passage of the viral 

genome to the nucleus.  Selective transcription and translation of early genes modulates 

the cellular machinery to facilitate the replication of the viral DNA and the transcription 

and translation of late genes in the second or “late” phase.  This leads to assembly of 

structural proteins in the nucleus and the maturation of infectious virus. 

 

1.2.2.1 Viral attachment 

Attachment of virus to cellular receptors involves high affinity binding of 

the fiber knob domain to cell surface molecules, which differ depending on adenovirus 

serotype.  Human subgroup C adenoviruses (HAdV-2 / -5) bind preferentially to the 

Coxsackie Adenovirus receptor (CAR) present on many cell types (Dmitriev et al, 1998) 

Interestingly, HAdV-2 and 5 can also manifest CAR-independent attachment through 

heparin sulfate glycosaminoglycans (Dechecci et al., 2001; Zhang et al., 2005).  In 

contrast, HAdV-3, a member of group B  utilizes CD46 (a membrane cofactor protein) as 

well as CD80 and CD86 (known for T-cell activation) as receptors (Zhang et al., 2005; 

Martilla et al., 2005).  Several group D viruses attach via sialic acid residues, a 
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carbohydrate commonly found on glycoproteins and glycolipids (Arnberg et al, 2000, 

2002).  Although integrins are known to play a role in internalization of the adenovirus,  

fiber deleted adenovirus has been shown to mediate attachment through αMβ2 and αLβ2 

integrins (Huang et al. 1996).  In addition, it has been reported that HAdV-5 also binds 

MHC class I molecules (Hong et al, 1997). 

 

  1.2.2.2. Entry and Uncoating 

Following attachment of the adenovirus fiber to its receptor, the penton 

base of HAdV-5 interacts with αvβ3 and αvβ5 integrins present on many cell surfaces,  

facilitating virus penetration into the host cell (Nakano et al, 2000).  The integrins 

contribute to the permeabilization of the plasma membrane most probably due to 

clarithrin coated pits (Wang et al., 1998).  The integrins also play a role in activating the 

ERK 1 and 2 protein kinase pathways via various signaling molecules affecting the  virus 

uptake and intracellular transport (Nakano et al, 2000; Russel 2000).   Also essential for 

fiber release is the underlying cellular actin cytoskeleton as cells treated with actin-

destabilizing agents show strong inhibition of fiber release. (Nakano et al, 2000) The 

primary receptor, as determined by the fiber, is the key factor in virus tropism and 

targeting studies (Leopold et al, 1998), but the secondary receptor plays a more subtle 

and less understood role in the infectious life cycle of the virus. Following the uptake of 

an adenovirus particle and formation of the primary endosome, there is reported loss of 

capsid proteins, most notably hexon, penton base, IIIa and pVI (Weithoff et al, 2005).  

The change in pH inside the endosome causes some conformational changes in the minor 

cementing capsid proteins, which may expose hydrophobic residues on the proteins.  

These residues are then thought to interact with and reorganize the membrane bilayer to 

allow the escape of the viral DNA and partially uncoated virus.  The pVI protein appears 

to play a significant role in membrane disruption of the endosome due primarily to the 

presence of an amphipathic α-helix (Weithoff et al, 2005).  
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1.2.2.3 Nuclear Translocation 

Following endosomal escape, the uncoated viral proteins and DNA are  

translocated to the nucleus for replication of the viral genome.  This is thought to be due 

in part to the αVβV integrins which, after binding the penton base early in infection 

activate small intracellular signaling molecules such as Rho, Rac and Cdc42 GTPases.  

As well, integrins can act via actin fibers to facilitate endocytic pathways and motility 

(Sanlioglu et al, 2000).  It has been shown that a key factor in nuclear targeting of HAdV-

2 is the minus end-directed motor complex, dynein/dynactin. The viral DNA facilitates its 

translocation to the nucleus by remaining wrapped in the viral capsid, moving along 

microtubules, until arrival at the nuclear pore complex (Suomalainen et al, 1999).  

Interestingly, if viral DNA core structures, lacking the remainder capsid components, are 

microinjected into cells, the DNA remains aggregated in the cytoplasm (Suomalainen et 

al, 1999).  It is not clear if microtubules are directly involved with nuclear translocation 

by interacting directly with structural components of the virus (Suomalainen et al, 1999) 

or the virus is transported along microtubules with other cellular proteins (Leopold et al., 

1998) as destabilization of microtubules slows but does not completely eliminate 

adenovirus nuclear translocation (Suomalainen et al, 1999).  It has been shown that intact 

naked capsids of adenovirus accumulate around the periphery of the nuclear membrane 

near the nuclear pores (Suomalainenen et al, 1999) but intact capsids cannot enter the 

nucleus thus suggesting that dismantling of the capsid is required for viral nuclear entry. 

(Leopold et al, 1998; Greber and Fassati, 2003; Wodrich et al., 2003; Meier and Greber, 

2004; Wiethoff et al., 2005). The viral particle undergoes further disassembly at the 

nuclear pore complex  followed by translocation of the DNA into the nucleoplasm where 

viral transcription takes place.  Although most of the adenovirus proteins move to the 

nucleus, very few actually contain nuclear localization signals (Kasamatsu, 1998).  It is 

hypothesized that they may move along with other viral or cellular proteins in a 

“piggyback” fashion.  This has been demonstrated by Wodrich et al., 2003, where they 

show nuclear import of hexon in cultured cells is facilitated by protein VI.  In that study, 

it is suggested that pVI provides an adaptor for hexon import by forming a complex with 

import receptors importin α/β and directing nuclear import via the importin α/β pathway. 
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1.2.2.4 Transcription, Replication and Viral Egress 

   Once in the nucleus, transcription of selected regions of viral DNA termed 

the “early regions” starts.  The E1 genes are transcribed first, producing E1A and E1B 

proteins.  E1A proteins interfere with the processes of cell division as well as the 

regulation of NF-kB and p53 in promoting oncogenesis and transformation. E1B proteins 

include an analogue to the cellular Bcl-2 gene, which interacts with the BAX family of 

proteins to interfere with apoptosis and necrosis of cells (Madison et al, 2002).  Next, E2 

genes are transcribed producing E2 proteins. E2 proteins provide the machinery for the 

replication of viral DNA and subsequent transcription of the late genes.  This is followed 

by the  transcription  of E3 genes. The E3 proteins are responsible for diverting the host 

immune defense mechanisms. Gp19K protein binds to MHC class I to prevent cell 

surface antigen expression as well as delaying MHC class I expression (Bennet et al., 

1999; Horwitz 2004). E3 proteins prevent apoptosis by down-regulation of apoptotic 

proteins like FAS and TRAIL, inhibition of arachidonic acid secretion and inhibition of 

TNF-induced apoptosis (Horwitz 2004).   In addition, E3 genes encode the adenovirus 

death protein (ADP) which promotes virus release, RID α and β as well as 14.7K which 

work to block proapoptotic pathways (Russel, 2000).  Finally, E4 genes encode E4 

proteins that interact with p53,  block apoptosis and are involved in processing of viral 

mRNA to promote virus DNA replication and inhibit host protein synthesis (Russel, 

2000; Weitzman et al., 2005).  

   Replication of the HAdV-5 viral genome involves a unique protein priming 

mechanism. Initially, three viral proteins, the precursor terminal protein (pTP) that serves 

as a primer, the adenovirus DNA polymerase (pol) and DNA binding protein (DBP) as 

well as two cellular proteins, nuclear factor I (NFI) and octamer-binding protein (Oct-1) 

form a pre-initiation complex that binds to the origin of replication (Mysiak et al, 2004a). 

The origins of DNA replication are located at each end of the DNA within 103 bp long 

inverted terminal repeats (ITR) (Mysiak et al, 2004a).  pTP and pol form a stable 

heterodimer in solution and bind as a complex in the conserved core origin.  pTP is 

covalently bound to the 5’ ends of the double stranded linear genome.  Following the 

complex binding and initial addition of nucleotides, pTP dissociates and pol elongates the 

newly synthesized DNA strand.  Later in viral infection, pTP is cleaved by a viral 
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protease at three specific cleavage sites resulting in the formation of a smaller terminal 

protein that stays attached to each DNA end for the remainder of the viral life cycle 

(Mysiak et al, 2004b). 

The intermediate regions, encoding structural proteins IVa2 and pIX, are 

transcribed both early and late in infection. These proteins are important for 

transcriptional activation of early genes as well as activation of the major late promoter 

which is critical for transcription of late genes (Russel, 2000; Parks, 2004; Vellinga et al., 

2005; Zhang et al., 2005).    

Finally, transcription of HAdV-5 late genes starts with regions L1 to L5.  

Following a series of complex splicing events, late viral transcripts are generated which 

are translated into the structural and non-structural components facilitating formation of 

progeny viral capsids in the nucleus.  The virus capsid contains at least nine proteins of 

which hexon, penton base and fiber are termed major capsid proteins and IIIa, pVI, pVIII 

and pIX are termed minor capsid proteins.  The other four viral proteins, pV, pVII, pX 

and pTP are packaged with the new viral DNA in the viral core (Vellinga et al, 2005).  

The precursor capsid undergoes a maturation process as the DNA is packaged to become 

a mature virion (Teschke et al, 2003). 

The encapsidation of the newly synthesized viral DNA is driven via the cis acting 

packaging domain present on the left end of the genome (Benson et al, 2004).  The 

packaging region contains 7 functionally redundant repeats called “A” repeats that 

contain a consensus motif (Zhang and Imperiale, 2003).  It is hypothesized that the 

packaging process for adenoviruses harkens back to a common pathway shared with its 

distant relative the bacteriophage (Benson et al, 2004).  There are compelling structural 

similarities between the Ad capsid (hexon) proteins and the PRD1 bacterial phage protein 

(P3 coat protein) (Benson et al, 2004).  The packaging process for HAdV-5 involves 

formation of a procapsid which is sufficient for packaging of the viral DNA (Teschke et 

al., 2003). The assembly of procapsids is thought to proceed through direct protein: 

protein interactions, hydrophobic or ionic protein interactions, or with additional energy 

input from ATP (Teschke et al., 2003).  Double stranded DNA viruses seem to have 

morphogenesis in common as adenoviruses, herpesviruses and dsDNA bacteriophages  

undergo maturation from a precursor capsid to a mature capsid structure (Teschke et al., 
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2003). Composed primarily of structural and non-structural (scaffolding) proteins, the 

procapsid is recognized by viral DNA likely via proteins bound to the packaging domain.  

Models for packaging involve the DNA entering the procapsid using a portal located at a 

vertex of the icosahedron.  Analogous to the bacteriophage packaging, it is thought that 

the viral DNA is moved into the procapsid using an ATP-driven motor (Benson et al, 

2004).  The core proteins V, VII and mu are associated with the packaged DNA in a 

mature virus particle.  It appears that neither the ITR’s nor the terminal protein are 

essential for packaging of viral DNA as deletion mutants for one or both ITRs and 

terminal proteins were found to be packaged with nearly the efficiency of wild type virus 

(Ostapchuk  et al., 2003). What is essential for packaging are the number of A-T rich “A” 

repeats, situated in close proximity to the end of the viral DNA (within ~600 bases from 

the terminus) (Russell, 2000). These events are followed by nuclear infrastructure 

changes to permeabilize the nuclear membrane and facilitate egress of the virus into the 

cytoplasm.  Subsequent movement to the cell periphery is thought to be accomplished in 

a plus-ended microtubule motor-dependent fashion as shown by Suolomalainen et al, 

1999.    Finally, the daughter viruses are released by lysis of infected cells.   

  

1.2.3  Adenovirus as a Vector 

Many biological properties of adenoviruses make them a logical choice as a 

vehicle for transgene delivery (Curiel, 1999) for vaccination or transgene therapy for 

neurological illness, autoimmune disorders, allergies and regeneration of tissues. They 

include a) transduction of a wide variety of cells both actively dividing and quiescent, b) 

large capacity for incorporation of heterologous DNA, (Romano et al, 1999), c) virion 

stability in vivo and d) non-oncogenicity in humans (Belousova et al, 2002).  Although 

adenoviruses are attractive due to their “needle free” delivery and antigen presentation 

design which mimics a natural infection, there remains many obstacles to overcome.  

 First generation adenovirus vectors usually involve deletion or inactivation of the 

genes in the E1 region, which are responsible for early DNA replication events and have 

been shown to transform cells in culture (Graham, 1977; Russel, 2000).  Removal of E1  

results in transcriptional inactivation of the E2 genes which causes impairment of the 

replication of viral DNA and viral capsid proteins. Although E1 deleted vectors can be 
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propagated to high titers in vitro by growth on E1 complementing cell lines (Graham et al. 

1977), they can not replicate in vivo. Unfortunately, use of these vectors resulted in strong 

immune responses to the vector backbone as well as toxicity caused by the virus itself 

(Everett et al. 2003; Schaack, 2005).   Because wild-type virus exists ubiquitously in the 

population, there is also a chance of spontaneous recombination events between wild-

type and recombinant virus. Moreover, most individuals have pre-existing immunity to 

HAdV-2 and HAdV-5 based vectors, thus neutralizing the virus before any therapeutic 

gene delivery (Amalfitano et al., 1998; Amalfitano and Parks, 2002).   

Second generation adenovirus vectors are additionally deleted for some or all of 

the E2 genes resulting in replication-deficient adenovirus.   Moreover, multiple deletions 

decrease the chances of spontaneous recombination events capable of generating 

replication competent adenovirus (Gorziglia et al, 1999).  An additional advantage over 

E1 deleted vectors is the decreased production of late proteins which reduces epitope 

expression and recognition by the immune system of second generation vectors (Lusky et 

al, 1998).   

Third generation adenovirus vectors involve deletion of E1/E3 and some E4 genes 

that are non-essential for replication in vitro.  Foreign genes can be expressed in the place 

of the deleted viral genome sequences (Lusky et al., 1999; Gorziglia et al., 1999).  

Recently, it has been shown that while E3 is non-essential for replication, its re-

introduction can enhance transgene expression in oncolytic viruses as compared to the E3 

deleted counterparts (Zhu et al., 2005). 

More recently, adenovirus vector improvement has seen the development of 

“gutless” adenovirus vectors deleted of all genes except those required for replication and 

packaging.   Gutless vectors are to date, the safest and most efficient gene transfer vectors 

based on adenoviruses (Catalucci et al., 2005). The current system for propagation of 

gutless or “helper-dependent” (HD) virus requires an E1 complementing cell line, the 

helper dependent viral backbone and a helper virus that provides all of the viral proteins 

in trans necessary for viral replication and assembly of HD progeny (Barjot et al., 2002; 

Fleury et al., 2004).   The only problem with propagation of HD virus vectors is a 

residual contamination of helper virus in the gutless vector population.   To overcome this, 

the cre-lox P recombinase system was developed.  Briefly, in this system, the helper virus 
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packaging domain is flanked by loxP sites and is efficiently excised by cre recombinase 

(expressed in E1 complementing cell line) in vitro to yield an “unpackageable” helper 

virus that still produces the necessary proteins for HD virus growth.  Although the helper 

virus contamination is greatly reduced using the cre-loxP system, the gutless virus 

preparations are never helper virus free, which undermines their therapeutic use. Another 

method used to generate gutless vectors involves episomal replication of vector genomes.  

Such systems require a) correct full length replication of both DNA strands and b) 

circular episomes must replicate in a cell-cycle controlled manner with proper 

segregation of replicated genomes (Kreppel and Kochanek, 2004).  To achieve this, a 

binary system is used involving two vectors, one containing a site-specific recombinase 

and the other containing recognition sites for the recombinase in a direct orientation.   

Following cotransduction of cells with both vectors in vitro, the recombinase is excised 

and circularizes the DNA located in between the recognition sites.  This generates 

circular episomes containing origins of replication and encoding proteins directing 

segregation to allow cell-cycle controlled expression of inserted transgene (Ehrhardt et al., 

2003; Kreppel and Kochanek, 2004). 

 

1.3  Targeting of Adenovirus 

1.3.1 Need for targeting 

As HAdV-5 transduces a wide variety of cell types, this makes it an attractive choice 

if there is need for transgene expression in many different tissues.  However, in the case 

of cancer gene therapy or delivery to antigen presenting cells, there is a requirement for 

narrow tropism so only affected cells are transduced by a recombinant vector.  The lack 

of target specificity of adenovirus vectors is a direct consequence of the molecular 

recognition events that go on early in the infection.  Moreover, some cells do not express 

receptor(s) required for efficient transduction by HAdV-5 such as bronchial epithelium, 

smooth muscle, endothelium, macrophages and T-cells (Wickham et al, 1999).  It has 

been shown that adenovirus binding to CAR has a threshold effect where expression of 

the receptor below a certain level renders the cells refractory to infection. (Freimuth P, 

1996)  Many cell types including cancer cells express CAR at suboptimum levels making 

transduction by CAR-dependent vectors inadequate (Hemmi et al, 1998; Li et al., 1999; 
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Miller et al., 1998). Thus,  by altering the tropism of adenovirus, it should be possible to 

develop a  vector which can specifically transduce cells of interest.  Introducing novel 

tropism is based on engineering adenovirus vectors that bind to alternate cellular 

receptors expressed on the desired cellular targets.  Incorporation of cell-specific ligands 

into the viral coat proteins could allow specific delivery of transgenes to tissues while 

those normally susceptible to infection would not be affected. 

 

1.3.2  Capsid protein modifications 

To date, modifying the native adenovirus tropism to specifically target the cells or 

tissue of interest has involved the genetic modification of the major capsid proteins, 

namely hexon, penton and fiber, by incorporating targeting ligands (Fig. 2).  The main 

sites for insertion of ligands have been the HI loop of fiber knob (Einfeld et al,1999; 

Belousova et al, 2002), the hypervariable region of hexon loop L1(Wu et al., 2005) and 

the RGD–motif loop of penton base (Einfeld et al., 1999; Mizuguchi et al. 2001).  

Limitations to this approach stem from the insertional size constraints and improper 

folding of proteins. As well, aberrant cell signaling may occur if the RGD motif is 

mutated on pentons resulting in improper interactions with integrins and subsequent 

reduced viral replication (Bai et al, 1993).   

Another strategy for altering viral tropism has been fiber replacement or “fiber 

swapping” where the native fiber gene is replaced with the sequence encoding the fiber 

gene from another adenovirus serotype that displays a different tropism (Krasnykh et al., 

1996; Wu and Tikoo, 2004).  Several groups have reported successful production of 

HAdV-5 virions containing the native fiber shaft domain coupled to the knob region of 

HAdV-3 for tumor cell transduction (Krasnykh et al., 1996; Stevenson et al., 1997; 

Kawakami et al., 2003)  In a similar vein, vectors containing chimeric HAdV-5 and 

HAdV-35 fiber proteins were shown to greatly enhance the transduction of human 

placental cell lines in vitro and thus may prove a useful tool for delivery of transgenes to 

trophoblast cells (Koizume et al, 2004).  It is known that species B serotypes use the 

lysosomal pathway, which is thought to be advantageous as delayed escape from this 

compartment may help the virus to be transported within these structures through the 

cytoplasm to the nucleus.  Using a chimeric HAdV-5 vector that carries the fiber protein  
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of HAdV-7, which is targeted to the lysosomal pathway, the transgene delivery efficiency 

of this pathway was enhanced (Miyazawa et al.  1999; Miyazawa et al. ,2001).    

Another approach has involved binding of protein bridges to the viral capsid to 

direct viral attachment such as the Fc binding domain of Staphylococcus aureus protein A  

to form a vector-ligand targeting complex when coupled with a specific antibody for the 

desired target (Kouokhov et al, 2003).  

A current strategy to target diseased tissues and tumor cells directly has been to 

incorporate a tumor-specific ligand, such as human CD40 ligand (CD154), directly into 

the adenovirus fiber knob molecule (Belousova et al., 2003).  The gene encoding the 

protein of interest is inserted into the ORF of fiber/knob such that it would be expressed 

on the surface of the virus (Dmitriev et al., 1999).  Several groups have reported 

recombinant virus containing chimeric fiber proteins for specific targeting of cell 

populations (Wickham et al., 1997; Dmitriev et al., 1999; Douglas et al., 1999; Einfeld et 

al, 1999; Wu and Tikoo, 2004; Joung et al., 2005).   

More recently, the minor capsid protein pIX (Fig.1)  has also been used for 

insertion of ligands for specific cell targeting due to its position on the viral capsid 

(Curiel et al, 2002; Glasgow et al, 2005; Zakhartchouk et al, 2004).  

 

1.4  Porcine Adenovirus  

Porcine adenoviruses (PAdV), members of Mastadenovirus genus were first 

isolated from a rectal swab of a piglet with diarrhea (Haig et al. 1964).  PAdV’s have 

since been isolated from several sources including encephalitic piglet brains, healthy pig 

feces, and piglet kidney cell cultures (Kadoi et al., 1995; Kadoi et al., 1997; Maluquer de 

Motes et al., 2004).  In addition, PAdV’s have been found in tonsil, lymph nodes, spleen 

and lungs of pigs with toxoplasmosis as well as nasal secretions of piglets with 

respiratory illness (Derbyshire et al, 1966; Hirahara et al.,1990).  
 

1.4.1  Classification  

So far, five serotypes of PAdVs have been identified in pigs, which are divided 

into three groups: group A (PAdV-1 to 3) group B (PAdV-4) and group C (PAdV-5) (van 

der Avoort, 1989) based primarily on hexon antigenic determinants as well as fiber  
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similarities or differences.  Determination of serotypes is evident from cross 

neutralization, physicochemical properties such as susceptibility of nucleic acid to 

chloroform or ether, sensitivity to sodium deoxycholate, trypsin, acid stability and heat 

stability, morphology under the scanning electron microscope and most notable 

restriction enzyme digest patterns (Clarke et al, 1967; Hirahara et al, 1990; Nagy and 

Tuboly, 2000; Nagy et al., 2001; Nagy et al., 2002). 

 

1.4.2  Porcine Adenovirus serotype 3 

Of the five known serotypes, PAdV-3 is the best characterized.  PAdV-3 

(prototype strain 6618) replicates to the highest titers in cell culture and causes 

subclinical infections and transient diarrhea in young pigs (Hirahara et al, 1990).  Our 

laboratory has determined the DNA sequence and transcriptional map of the entire 

genome of PAdV-3 (Reddy et al, 1998).  The overall organization of the PAdV-3 genome 

is similar to HAdV’s with minor differences (Fig. 3) including the presence of a single 

small virion associated RNA gene, the absence of additional leader sequences (x,y,and z) 

in the fiber, six late region genes (L1 to L6), a relatively high G + C content (63.7%), 

smaller and more simple E3 region,  no RGD motif in the penton base and the lack of a 

consensus protease cleavage site in both pVII and IIIa  (Reddy et al, 1998).  The PAdV-3 

fiber is  shorter (448 residues with 15 shaft repeats) compared to the HAdV-2 or -5 

counterparts (Reddy et al, 1995,1998).  

The early (E1) region of PAdV-3, located between map units 1.5 to 9.9, codes for E1A 

and E1B (E1Bsmall and E1B large) proteins (Reddy et al., 1998). The E1A region is located 

between map units 1.5 to 3.8 and produces four types of transcripts from a primary E1A 

transcript. The E1B region is located between map units 4.0 to 9.9 and produces two 

transcripts from a primary transcript. Sera against E1A, E1Bsmall and E1B large detected 

proteins of 35 kDa, 23 kDa and 53 kDa in PAdV-3 infected cells (Zhou and Tikoo, 2001).  

Analysis of mutant viruses suggested that while E1A and E1Blarge are essential for virus 

application, E1Bsmall is not essential for replication of PAdV-3 (Reddy et al., 1999; 

Zakhartchouk et al, 2003; Zhou and Tikoo, 2001). Moreover, E1A is required for 

transactivation of PAdV-3 viral genes (Zhou and Tikoo, 2001). In addition, the E1 

transcriptional control region of PAdV-3 overlaps with the cis-acting packaging domain 
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Figure 3. Transcription map and genome organization of PAdV-3 (adapted from 
Reddy et al. 1998).  Central solid lines delineate double stranded 34 Kb DNA showing 
the top line as the right strand and the bottom line as the left strand.   Solid lines indicate 
sequences present in mature MRNA, broken lines delineate introns and arrowheads 
indicate poly(A)+ sites and show the directionality of transcription.  
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of PAdV-3 (Xing and Tikoo, 2003,  2004)  and contains a bifunctional regulatory element 

upstream of the E1A TATA box (Xing and Tikoo, 2004) which enhances E1A 

transcription and represses E1B transcription.   

The E2 region of PAdV-3, located from map unit 79.4 to 13, codes for E2A 

(DBP), E2B (terminal protein [pTP], and  polymerase [pol] ) proteins (Reddy et al, 1998). 

The PAdV-3 DBP is 457 amino acids long and contains a highly conserved C-terminal 

domain and poorly conserved N-terminal domain.   

The C-terminal domain is involved in DNA binding, the initiation and elongation 

phases of DNA replication as well as transcriptional control of the major late promoter 

(Reddy et al, 1998). PAdV-3 DBP has been subsequently characterized (Zhou et al, 2001) 

and found to be expressed in both early and late infection stages. The constitutive 

expression of DBP has helped in developing a method for titration of virus (Zhou et al. 

2001) that is comparable to the plaque assays previously used.  The pTP of PAdV-3 is 

631 amino acids in length and shows 25.7% to 62.9% homology with pTPs of other 

adenoviruses (Reddy et al., 1998).  The sequence motif YSRLRYT, believed to play a 

role in protein primed initiation of adenovirus DNA replication, is conserved in pTP of 

PAdV-3. The pol of PAdV-3 is 1177 amino acids in length and shows homology of 

31.2% to 47.9% with its counterparts from other adenoviruses. The pol of adenoviruses 

including PAdV-3 shares five of the six conserved regions with the other members of the 

alpha family of pols (Reddy et al., 1998).  

The E3 region of PAdV-3 located between pVIII and fiber genes is 1179 bp long  

(Reddy et al., 1998) and shares a poly A signal with the L5 region genes.  One of the 

ORF’s encodes a protein that shows homology with a 13.3 KDa E3 protein of canine 

adenovirus type 2.  It also contains a tripartite leader sequence (TPL) at its 5’ end.  

Overall, PAdV-3 E3 has been found to have fewer ORF’s and a much simpler 

organization as compared to HAdV E3 (Reddy  et al., 1995; 1998).     

The E4 region is located between 92 to 99 map units, which is transcribed from 

the “l” strand (Reddy et al., 1997). The E4 region of PAdV-3  has the potential to encode 

seven ORF’s (Reddy et al., 1997).  Of the seven ORFs, four ORF’s show no homology 

with E4 proteins of other adenoviruses.   Deletion mutants for each ORF in E4 revealed 

that only ORF 3 is essential for viral replication (Li and Tikoo, 2004).  As a result, 
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deletion of 1.975 kb of E4 increases the insertion capacity of replication-competent 

PAdV-3 (E3+E4 deleted) to 4.3 kb (Li and Tikoo, 2004) and that of replication-defective 

PAdV-3 (E1+E3+E4 deleted) to 7 kb, which will be  helpful for constructing PAdV-3 

vectors expressing multiple genes.   

Based on the kinetics of expression, two genes coding for pIX and IVa2 proteins 

are classified as intermediate region genes. The pIX gene is located between 9.9 and 12  

map units and produces one transcript, which shares its polyadenylation signal with genes 

coding for E1B (Reddy et al., 1998). The PAdV-3 pIX is a protein of 199 amino acids in 

length, the longest pIX of any adenovirus characterized to date.  Interestingly, only the 

amino-terminal portion of the protein showed homology with pIX of other adenoviruses.  

Moreover, the pIX of the PAdV-3 is unusual in that the central portion of the protein has 

stretches of glutamine, alanine, glutamate, and proline although the significance of these 

amino acid stretches is not known (Reddy et al, 1998).   The gene encoding IVa2  is 

expressed as a spliced mRNA species containing two exons and lacking an intron of 257 

nucleotides.  It shows homologies of 25.1% to 65.3% with the IVa2 genes of other 

adenoviruses (Reddy et al. 1998).  A recent study suggests that IVa2 interacts with pVIII 

during PAdV-3 infection (Singh et al., 2005). 

The late region genes of PAdV-3 are transcribed from the MLP and are organized 

into six families L1 to L6 (Reddy et al., 1998).  The L1 region encodes both 52kDa and  

IIIa proteins via alternate RNA splicing.  The 52K protein of PAdV-3 is 335 amino acids 

in length and is 80 amino acids shorter than the corresponding protein in HAdV-2. The 

central portion of PAdV-3 52K protein shows significant homology with the 52K 

proteins from other adenoviruses.  The 52/55K protein is found both early and late in 

infection while the IIIa protein is only found late in infection  (Molin et al., 2002).   The 

IIIa protein of PAdV-3 is 622 amino acids long, the longest thus far reported for any 

known adenoviruses and shows low homology to IIIa proteins of other adenoviruses 

(Cuillel et al., 1990; Reddy et al., 1998).  The IIIa of PAdV-3 is unusual in that it lacks 

consensus protease cleavage sequence found in HAdV-5 (Cuillel et al., 1990; Molin et al., 

2002; Reddy et al. 1998).   

The L2 region of PAdV-3 encodes pIII (penton base) and pVII proteins (Reddy et 

al., 1998).  The penton base protein sequences are highly conserved among different 
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adenoviruses. The penton base protein of PAdV-3 is much shorter due to deletions near 

the N- terminus and central portions of the protein as compared to HAdV-2 (Reddy et al. 

1998).  The HAdV-2 and 5 penton base proteins contain an Asp-Gly- Asp (RGD) motif, 

which interacts with integrins and facilitates virus penetration.  The penton base of 

PAdV-3 lacks such RGD motifs and likely mediates cell entry via other sequences.  The 

PAdV-3 pVII  is 171 amino acids long and shows a high degree of sequence conservation 

in the amino terminal domain, including the protease cleavage site but is poorly 

conserved for the remainder of the protein (Reddy et al., 1998).  PAdV-3 pVII is also 

very rich in basic amino acids, which is consistent with the putative function to condense 

viral DNA (Lee et al., 2003).    

The L3 region of PAdV-3 encodes, pV, pVI and pX.  The pV protein of PAdV-3  

is 629 amino acids in length, the longest pV reported so far with extra amino acids in the 

central portion of the protein relative to other adenovirus pV proteins (Reddy et al., 1998).   

In addition, pV contains two bipartite NLS; one at the N-terminus and one at the C-

terminus.  The pX of PAdV-3 is 72 amino acids in length and shows significant 

homology with the C-terminus of the pX protein of HAdV-2 (Reddy et al., 1998).  The 

pVI protein of PAdV-3 is 292 amino acids in length with the central portion the least 

conserved between species (Reddy et al., 1998).   

The L4 region of PAdV-3 encodes hexon and endoprotease proteins (Reddy et al., 

1998).  The hexon of PAdV-3 is 939 amino acids in length and is a highly conserved 

protein among different adenoviruses.  The hexon protein of PAdV-3 shows differences 

in the regions making up the antigenic loops of hexon but is highly conserved in the 

regions responsible for stabilizing the hexon structure.  The proteinase of PAdV-3 is 204 

amino acids in length, which is similar to other adenoviruses, which range from 201 to 

214 amino acids. 

The L5 region of PAdV-3 encodes two non structural proteins (100K, 33K) and a 

structural protein (pVIII) (Reddy et al., 1998).  The 100K protein of PAdV-3  is 838 

amino acids long and shows 28%-52.5% homology to 100K proteins of other adenovirus.  

The PAdV-3 33K protein is 225 amino acids and shows no homology with the 

corresponding proteins from other adenoviruses (Kulthrestha and Tikoo, 2004).  The 

pVIII protein of PAdV-3 is 223 amino acids long. The N- and C-terminal regions of 
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pVIII of PAdV-3 shows significant homology to corresponding regions of pVIII of other 

adenoviruses.  Recently, pVIII has been shown to interact with IVa2 during PAdV-3 

infection (Singh et al., 2005). 

The L6 region of PAdV-3 encodes the fiber protein. The fiber protein of PAdV-3  

is 447 amino acids long and is involved in the initial attachment of virus to the receptors 

on the cells. The N-terminus of PAdV-3 fiber shows significant homology with N-

terminal domains of other adenovirus fiber proteins. The fiber protein of PAdV-3 can be 

divided into the tail, shaft and knob regions (Reddy  et al, 1998).  However, PAdV-3 fiber 

appears to  mediate virus attachment to the cells by recognizing receptors different than 

CAR recognized by HAdV-2 fiber (Bangari and Mittal, 2005).  

 Interestingly, a recent report suggests that the viral RNAs are directly packaged 

into the PAdV-3 virions (Xing and Tikoo, 2004).  These “ready to go” RNAs are 

delivered quickly to host cells and may facilitate in the initiation of virus infection.  

These RNA molecules appear to have a different function than the VA RNA encoded by 

most adenoviruses including PAdV-3 (Reddy et al., 1998) which wreak havoc with the 

antiviral actions of interferon and are essential for controlling protein synthesis 

(Kitajewski et al, 1986). More recently, the packaging domain of PAdV-3 has been 

characterized and found to be located at the left end of the genome.  The consensus 

motifs identified for PAdV-3 packaging do not coincide with those found for HAdV-5 

(Xing and Tikoo, 2003).  The cis-acting packaging motifs appear to be functionally 

redundant but not equivalent and contain AT/GC rich sequences.  Interestingly, when the 

sequences responsible for PAdV-3 packaging were moved from the left side of the 

genome to the right side, viable mutant virus was packaged albeit less efficiently than 

wild type PAdV-3.  This suggests that the packaging domain position and orientation for 

PAdV-3 is flexible (Xing and Tikoo, 2004).  

 

1.4.3  Porcine Adenovirus  as a vector 

Human adenovirus vectors have demonstrated great potential as a gene delivery 

system for applications such as recombinant vaccines and cancer therapy.  However, use 

of human adenoviruses as a vaccine delivery system in domestic animals is limited. Since 

non-human adenoviruses are species specific, attempts are being made to  develop  animal 
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specific adenoviruses as a vaccine delivery vehicle. As such, PAdV-3 has been the logical 

choice for developing a vaccine delivery vehicle for pigs. Moreover, therapeutic use of 

HAdV-5 vectors in humans is limited by pre-existing immunity to human adenoviruses 

(HAdVs), resulting in low transduction efficiency of the virus in therapy (Hemmi et al, 

1998; Russel, 2000; Amalfitano and Parks, 2002).  Also, vector specific immune 

responses occur upon administration of all adenoviral vector types (Romano et al., 2000; 

Rots et al., 2003; Roy et al., 2005).  This may affect the efficiency of vector transduction 

during readministration of the adenovirus, which is often required to maintain therapeutic 

levels of transgene expression. Some of these problems may be overcome by use of non-

human adenoviruses including PAdV. 

 

1.4.3.1 Porcine adenovirus-3 as a vector 

Availability of the complete DNA sequence and transcriptional map of the 

PAdV-3 genome has helped to develop a rational and efficient method of constructing 

recombinant PAdV-3 (Reddy et al., 1998) using homologous recombination machinery of 

E. coli (Chartier et al., 1996). Earlier, the construction and use of partially deleted E3 or 

E1A for insertion of foreign genes has been reported (Reddy et al., 1999a,b). Recently, 

characterization of E1 and E4 has led to the construction of mutant PAdV-3s containing 

deletions in E1 (Zakhartchouk et al., 2003), E3 (Reddy et al., 1999b) and/or E4 (Li and 

Tikoo, 2004) regions, which has increased the insertion capacity of PAdV-3 vector to 4.3 

kb (replication competent) and 7.3 kb (replication defective). Moreover, construction of 

recombinant PAdV-3 containing foreign genes inserted between the E4 region and the 

right ITR  has also been reported (Reddy et al., 1999; Hammond and Johnson, 2005). The 

construction of recombinant PAdV-3 expressing vaccine antigens (Reddy et al., 1999b), 

cytokines (Hammond and Johnson, 2005) and reporter genes (Reddy et al., 1999a,b; 

Zhou and Tikoo, 2001; Zakhartchouk et al., 2003) have been reported. Thus, the 

feasibility of engineering PAdV-3 for the purpose of using it as a vaccine delivery vehicle 

has been demonstrated.   

So far replication-competent PAdV-3 expressing vaccine antigens have been 

evaluated in  protection/challenge experiments in pigs. Vaccination of outbred swine 

populations with a single dose of recombinant rPAV-gp55 (containing gp55 of classical 
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swine fever virus [CSFV] inserted in the region between E4 and right ITR) 

subcutaneously resulted in complete protection from subcutaneous lethal challenge with 

CSFV (Hammond et al., 2001). However, pigs immunized with a single dose of rPAV-

gp55, either subcutaneously or orally were only partially protected to oral challenge with 

CSFV (Hammond et al., 2001). A subsequent study suggested that pigs immunized 

subcutaneously with a single dose of recombinant rPAV-gp55 and challenged by 

exposure to other infected animals were protected from disease whereas pigs immunized 

orally with one dose of rPAV-gp55 did not survive the challenge by “in contact” 

exposure (Hammond et al., 2003).  Vaccination of pigs with two doses of recombinant 

rPAdV-gD (containing gD gene of pseudorabies virus inserted in E3 region) 

subcutaneously  provided partial protection from intranasal challenge with pseudorabies 

virus (Hammond et al., 2001). Moreover, vaccination of pigs with a single dose of 

recombinant rPAdV-G-CSF (expressing porcine granulocyte colony stimulating factor) 

or rPAdV-IFN-γ (expressing porcine interferon gamma) resulted in significant weight 

gains  and inhibition of Actinobacillus pleuroneumoniae  infection ,respectively,  in pigs 

(Hammond and Johnson, 2005).  

PAdV-3 has also been recently shown to efficiently infect both human and 

murine cells in culture (Bangari and Mittal, 2004).  This facilitates the use of a mouse 

model to test new recombinant PAdV-3 as compared to HAdV-5 as well as suggest the 

utility of using PAdV-3 vectors for human gene therapy and vaccination.  It has been 

observed that human 293 and SAOS-2 osteosarcoma cells were efficiently transduced by a 

recombinant PAdV-3 carrying a green fluorescent protein (GFP) cassette in place of E1 

(Zakhartchouk et al., 2003).  In addition, PAdV-3 was found to transduce MCF 10A 

(mammary epithelium), MCA-MB-231 (malignant breast cancer cell), PC-3 (prostate 

cancer), and Jurkat (T-cell leukemia) cells (Bangari et al, 2005).  This suggests that 

PAdV-3 is less promiscuous than HAdV-2 or 5 and may be useful in specific targeting of 

some human cancers (Zakhartchouk et al., 2003; Bangari et al., 2005). 

 

1.4.3.2 Porcine adenovirus-5 as a vector 

PAdV-5 was isolated in Japan (Hirahara et al., 1990) and is non-

pathogenic.  The determination of the complete nucleotide sequence (Nagy et al., 2001) 
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has helped to create replication-competent PAdV-5 containing a partial deletion of E3 

region deemed non essential for virus replication (Tuboly and Nagy, 2000).  Recombinant 

PAdV-5 vector containing different forms of S gene of transmissible gastroenteritis virus 

(TGEV) inserted in the E3 region have been constructed (Tuboly and Nagy, 2001).   Oral 

immunization of pigs with recombinant PAdV-5 expressing TGEV S glycoprotein  

induced TGEV specific systemic and mucosal immune responses (Tuboly and Nagy, 

2001).   

 

2.0  INTRODUCTION    

Human Adenoviral (HAdV) vectors have been studied for their potential use in 

vaccine delivery and gene therapies.  However, the use of HAdV as a gene therapy and 

vaccine vector has a number of limitations.  Firstly, humans contain pre-existing 

antibodies against HAdVs due to prior exposure  to HAdV.  Secondly, reversion of 

mutant viruses to wild-type is a possibility as ubiquitous HAdV existence in nature can 

result in spontaneous recombinations and recovery of lost functions.  Thirdly, the wide 

range of cells transduced by HAdV-5 based vectors makes it difficult to target the vector 

to a particular organ or population of cells within the body. 

The use of species-specific animal adenoviruses like PAdV-3 may be a promising 

alternative to HAdV-based regimes.  PAdV-3 does not replicate in humans cells (Reddy 

et al., 1999) and there is no pre-existing immunity to overcome (Bangari and Mittal, 

2004).  However, PAdV-3 only transduces a narrow range of human cells in vitro 

(Zakhartchouk et al, 2004; Bangari et al, 2005). Apart from eluding pre-existing immune 

responses, PAdV-3 vectors should be able to transduce specific cells efficiently. One way 

to achieve this is by genetic modification of capsid proteins (Wu and Tikoo, 2004; 

Zakhartchouk et al., 2004) including IIIa. 

However, in order to use PAdV-3 IIIa for expressing specific targeting ligands, it 

is important to know the structure and function of PAdV-3 IIIa in virus replication and 

capsid assembly.  
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3.0  RESEARCH OBJECTIVES AND HYPOTHESIS 

Our working hypothesis states that the molecular characterization of the IIIa 

protein of PAdV-3 will:  

A) lead to better understanding of capsid formation during virus maturation,  

B) determine the role of  protein IIIa  during PAdV-3 viral infection  

C) identify a putative location for foreign ligand insertion capable of altering 

native  PAdV-3 tropism. 

 

4.0  MATERIALS AND METHODS 

 4.1 Cell lines and Viruses  

 Swine Testicle (ST) cells were cultured in Eagle’s minimum essential medium 

(MEM) supplemented with 10% fetal bovine serum (FBS).  COS-7 cells were cultured in 

Dulbecco’s modified Eagle’s minimum essential medium (DMEM) supplemented with 

10% FBS.  All cell lines were grown at 370C , 5%CO2 atmosphere. 

 Wild-type PAdV-3 (strain 6618) was grown in ST cells supplemented with 5% FBS 

and purified using discontinuous cesium chloride density gradient centrifugation.  Briefly, 

20 x T150 cm2 flasks of ST cells were infected at an MOI of 0.1.  After 48 h post 

infection (p.i.), the cells were harvested and subjected to 6 rounds of freeze-thaw.  The 

cellular debris was removed by centrifugation and the supernatant was loaded onto CsCl 

gradients (1.3 to 1.2 g/cm3final gradient).  The gradients were centrifuged at 35,000 rpm  

(SW40Ti Beckman rotor) for 24 h and viral bands harvested.  Purified virus was dialyzed 

against 10mM Tris buffer and stored in 10% glycerol, 10mM Tris buffer at -80oC until 

use. 

 

 4.2 Antibody production 

 Specific antisera were generated to hydrophilic regions of PAdV-3 proteins by either 

a GST-fusion/expression system or by synthesis of unique peptides.  Table 4 gives an 

overview of PAdV-3 antiserum used and methods of production.   

Two approaches were used to produce IIIa specific antibodies; a) GST-fusion  

protein, and b) IIIa-specific peptides.  
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  4.2.1  GST-Protein fusion 

  Based on the antigenic index of  PAdV-3 IIIa, a 408 bp fragment containing  N-

terminal amino acids 22 to 158 of IIIa was amplified by PCR using primers (5’): CGG 

GAT CCG GGC GAC GCG GAT G  and (3’): GGA ATT CAC GAG GCG ATG AAG 

GCA T and pFPAV200 (containing the full length PAdV-3 viral DNA genome) plasmid 

DNA(Reddy et al, 1998) as a template.  The 408 bp DNA fragment was digested with 

BamHI - EcoRI, and ligated to BamHI - EcoRI digested plasmid pGEX-5X-1 (Pharmacia) 

creating plasmid IIIa1. Similarly, a 390 bp DNA fragment (containing amino acid 480-

610 of IIIa) amplified by PCR [using primers (5’- CGG GAT CCT GGC CTC TCT GGG 

AAA GC and 3’-GGA ATT CAC TCG GGC GCT TCG AAG CG and plasmid 

pPAV200 DNA as a template] was digested with BamHI - EcoRI and ligated to BamHI - 

EcoRI digested plasmid pGEX-5X-1 creating plasmid IIIa2. The identity of recombinant 

plasmids was confirmed by restriction enzyme analysis and DNA sequencing.  The 

plasmid DNA was individually transformed into the BL21 strain of Escherichia coli and 

GST-fusion proteins were induced using isopropyl-β-thiogalactoside (IPTG) at a final 

concentration of 0.1 mM.  Cultures were concentrated and sonicated in 0.1M phosphate 

buffered saline (PBS) on ice to release the fusion protein from the bacteria.  The sonicate 

was exposed to a GST resin on Glutathione Sepharose 4B column (Pharmacia) and the 

fusion proteins were bound, washed and  finally eluted in the presence of reduced 

glutathione (Sigma).   The eluted proteins were separated on 10% sodium dodecyl-sulfate 

(SDS) polyacrylamide gel electrophoresis (PAGE) and stained with Coomassie blue G-

250 stain to visualize fusion protein solubility and stability.   

   

  4.2.2   IIIa peptides 

  Two peptides of 14 amino acids (amino acid 541-554) and  23 amino acids (592 

to 614) were synthesized on the Pioneer Peptide Synthesis system (Perkin Elmer) and 

conjugated to keyhole limpet hemocyanin (KLH) as a carrier molecule (with kind thanks 

to Dr. Samuel Attah-Poku at VIDO).   
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  4.2.3   Immunizations 

  Before immunization, serum was collected from sixteen week old naive rabbits 

for use as a control. Following prebleeds, the rabbits were immunized each time, at four 

sites intra-dermally, with the GST-fusion protein (500 µg/rabbit) or conjugated peptide 

(500µg/rabbit) emulsified with Freunds Complete Adjuvant (FCA) followed by two 

injections (GST-fusion protein, 250 µg/rabbit or conjugated peptide, 250 µg/rabbit), as 

above, except in Freund’s incomplete adjuvant (FIA), four weeks apart for a total of three 

injections per rabbit.  Serum was collected twelve days after the third injection to test for 

IIIa specific antibodies. 

 

 4.3 Radio- immunoprecipitation 

 Monolayers of ST cells (1X105 per well) in 6 well tissue culture dishes were infected 

with wild type PAdV-3 at an MOI of 1. After 24 h of initial incubation, the cells were 

starved for 4 h in MEM without methionine/cysteine (JRH Biosciences), before addition 

of 100 µCi per well of [35S]-labeled methionine/cysteine translabel (Perkin Elmer). After 

24 h of labeling, the cells were harvested, lysed in RIPA buffer (0.15M NaCl, 50mM 

Tris-HCl pH8.0, 1% NP-40, 1% deoxycholate, containing 1mM PMSF and 0.1% SDS) 

and mildly sonicated.  The cell debris was removed by centrifugation.  The supernatant 

was collected, mixed with rabbit anti-IIIa serum at 1:100 dilution (500 µl volume) and 

incubated for 4 h at room temperature.  Finally, protein A sepharose beads (Pharmacia) 

were added to the antibody plus [35S]-labeled infected cell lysate mixture, and the 

complexes were further incubated for 24 h at 40C.  The bound complexes were washed 3 

times with RIPA buffer, diluted in SDS-sample loading buffer ( 100mM Tris/HCl  pH 6.8,  

2% β mercaptoethanol [β-ME], 4%SDS, 0.2% bromophenol blue, 10% glycerol). The 

samples were boiled for 5 min and the proteins were separated on a 10% SDS-PAGE 

under reducing conditions.  The gel was fixed, dried and then exposed to X-ray film for 3 

days at -70 0C and subsequently developed. 

 

 

 

  



 32

 4.4 Western blot analysis 

 Monolayers of ST cells (1X105 per well) in 6 well tissue culture dishes were infected 

with wild type PAdV-3 at an MOI of 1.  PAdV-3 infected ST cells were scraped and 

washed with 0.1M PBS pH 7.5.  Cells were lysed with RIPA buffer and  sonicated.   

Proteins from lysates of cesium chloride (CsCl) gradient purified wild-type PAdV-3 or 

infected ST cells were separated on 10% SDS-PAGE under reducing conditions,  

transferred to 0.45 µm nitrocellulose membrane and blocked in 0.1M tris-buffered saline 

pH 8.0 (TBS) containing  3% skim milk.  Membranes were cut into strips and incubated 

separately with different anti-IIIa sera, negative control sera  (pre-bleed, anti -BAdV-3) 

or positive control sera (anti PAdV-3)  diluted in 0.1M TBS pH 8.0 with 0.1% tween 20 

(TBST) containing  0.1% BSA, 2 h at room temperature.  After washing three times, the 

membranes were incubated with alkaline phosphatase conjugated goat anti-rabbit IgG 

(H+L) (Jackson ImmnoResearch labs) secondary antibody diluted 1:105 in TBST 

containing 0.1% BSA for 2 h at room temperature.  The membrane strips were washed 

three times with TBST containing 0.1% BSA and once with TBS without Tween 20 

before developing using BCIP/NBT chromagenic substrate (Sigma) according to 

manufacturer’s directions.   

  

 4.5 Immunostaining 

 Monolayers of ST cells grown in 4-well permanox-coated chamber slides (Lab Tek) 

in MEM, supplemented with 10% FBS were infected with wild-type PAdV-3 at an MOI 

of 10.  Following a 2 h incubation, the medium was replaced with MEM containing 5% 

FBS. At 24 h post infection, the cells were fixed and permeabilized in methanol/acetone 

1:1 at -200C for 20 min. The cells were washed with 0.1M PBS pH 7.5 and incubated 

with normal goat serum for 1 h at room temperature. Subsequently, the cells were 

incubated with  anti-IIIa serum diluted in 0.1M PBS pH 7.5, 1% goat serum for 2 h at 

room temperature followed by an additional 2 h incubation with the secondary Cy2® 

conjugated goat anti rabbit IgG (H+L) (Jackson Immunoresearch) in 0.1M PBS pH 7.5,  

with 1% goat serum.  The monolayers were washed, dried in the dark and mounted with 

Citifluor anti-quench glycerol-based medium (Citifluor).  Finally, the cells were viewed 

under UV microscope using the Zeiss Axiovision viewer software.   
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 4.6 Immunogold Staining  

 Coated nickel grids were floated on the surface of 20 µl of CsCl purified wild-type 

PAdV-3 for 2 min with no stirring followed by then brief washing with water.  The grids 

were dried following initial adsorption of virus and subsequently blocked with a 20 µl of 

blocking buffer (0.1M PBS pH 7.5, 1%BSA and 0.1% Tween20) for 15 min.  The grids 

were incubated with a 20 µl drop of  anti-IIIa serum diluted in blocking buffer for 1 h at 

room temperature .  The  grids were washed through a series of drops of PBS and excess 

buffer was blotted off.  The grids were then incubated with 20 µl of gold conjugated 

secondary anti-rabbit antibody (British Biocell EM GAR 10 nm) in blocking buffer for 1 

h at room temperature.  After washing the grids  with PBS and water, excess water was 

blotted off and grids were negatively stained with 0.5% phosphotungstic acid (PTA) pH 

6.0 for 2 min and finally washed with water.  The dried grids were visualized under a 

PHilys 410LS electron microscope (EM). 

 

 4.7 Construction of IIIa deletion plasmids  

 The plasmid vectors were constructed using restriction enzymes and DNA modifying 

enzymes as per manufacturer’s instructions.  PCR template DNA in all reactions was 

pPAV200 (Reddy, et al., 1998) 

 

  4.7.1 Construction of plasmid IIIa  

  A 1.86 kb DNA fragment (encoding IIIa protein) was amplified by PCR using 

primers A1 and B4 (Table 2) and plasmid pPAV200 DNA as a template. The amplicon 

containing the full length IIIa ORF was digested with BamHI - EcoRI and ligated to 

BamHI - EcoRI digested pCDNA3 (Invitrogen) creating plasmid IIIa.  Positive clones 

were confirmed with restriction digest analysis. 

 

 4.7.2 Construction of plasmid IIIaD1 

  A 1.4 kb DNA fragment, amplified by PCR using  primers A2 and B4 (table 2) 

and pPAV200 as DNA template, was digested with BamHI - EcoRI and ligated to BamHI 
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- EcoRI digested pCDNA3 (Invitrogen) creating plasmid IIIaD1.  Positive clones were 

confirmed with restriction digest analysis. 

 

  4.7.3 Construction of plasmid IIIaD2 

  A 415 bp DNA fragment was amplified by PCR using  primers A1 and B1 (Table 

2) and pPAV200 as template.  A 1.0Kb DNA fragment was amplified by PCR using 

primers A3 and B4 (Table 2) and pPAV200 as a DNA template.  In a third PCR reaction, 

both amplified fragments were annealed and external primers A1 and B4 (Table 2) were 

used to PCR across the fragments to give a final 1.4 kb amplicon deleted for bases 475-

816 (Fig. 4).  This PCR product was digested with BamHI and EcoRI and ligated to 

BamHI and EcoRI digested pCDNA3 (Invitrogen) (Lee et al., 2004).  Positive clones 

were confirmed with restriction digest analysis. 

 

  4.7.4 Construction of plasmid IIIaD3 

  A 816 bp DNA fragment was amplified by PCR using  primers A1 and B2 (table 

2) and pPAV200 (Reddy et al, 1998) as template.  A 647 bp DNA fragment was 

amplified by PCR using primers A4 and B4 (Table 2) and pPAV200 (Reddy et al, 1998) 

as DNA template.  In a third PCR reaction, the fragments that had 18 bp of internal 

overlap, were annealed and external primers A1 and B4 (table 2) were used to PCR 

across to give a final 1.4 kb amplicon deleted for bases 817-1231 (Fig. 4).  This PCR 

product was digested with BamHI and EcoRI and ligated to BamHI and EcoRI digested 

pCDNA3 (Invitrogen) (Lee et al., 2004).  Positive clones were confirmed with restriction 

digest analysis.  

 

  4.7.5 Construction of plasmid IIIaD4 

  Primers A1 and B3 (Table 2) were used to amplify 1.4 Kb of IIIa deleted for bases 

1231 to 1869 using pPAV200 (Reddy et al, 1998) as a DNA template.  The 1.4 kb 

amplicon was digested with BamHI and EcoRI and ligated to BamHI and EcoRI digested 

pCDNA3.  Positive clones were confirmed with restriction digest analysis. 
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Table 2: List of PAdV-3 deletion primers 

A1    5’-CGGATCCCATGGCGGCGAGCTCTGAA-3’ 

 

B1 (del2) 3’-TTGGACCCGTCGGACCGGCCTGCGACCG -5’ 

A3 (del2)                            5’-GCCTGGCCGGACGCTGGCCAACTTGCATGT-3’ 

 

A4 (del3) 3’-CCCTTCAGTATGTGCGGCCAAGAGCGCCA-5’ 

B2 (del3)                               5’-CACGCCGGTTCTCGCGGT AGAGTGTCAGC-3’ 

 

B4    5’-CCGGAATTCCTTACAGCCCCTTGGGGGCGATG-3’ 

 

Overlapping regions to create deletions are shown in bold 

A

C

B

D

Step 1: primary pcr

A

D

Step 2: ligation pcr

AA

B

DB

Step 1: primary pcr

AA

DD

Step 2: ligation pcr

AA

C

B

DD

Step 1: primary pcr

AA

DD

Step 2: ligation pcr

AA

B

DB

Step 1: primary pcr

AA

DD

Step 2: ligation pcr

 
Fig. 4.  Overlap extension pcr for deletion mutagenesis.  Two pcr products 
representing the flanking regions of the sequence to be deleted are prepared by using one 
nonchimeric and one chimeric primer.  In the second step, two pcr products are used as 
the template for a ligation pcr using the outermost primer pair.  (Adapted from Lee et al, 
2004) 
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  4.7.6  Construction of plasmid IIIa NLS 

  Primers A3 and B3 (Table 2) were used to amplify the region containing the 

putative IIIa NLS using pPAV200 as a DNA template.  The 415 bp amplicon was 

digested with BamHI and EcoRI and ligated to BamHI and EcoRI digested plasmid 

pEYFP-N1(Clontech, BD Biosciences).  Positive clones were confirmed with restriction 

digest analysis.  

 

 4.8 Transfection of plasmids encoding IIIa deletions and nuclear localization 

analysis  

 COS-7 cells were grown, in Dulbecco’s modified Eagle’s essential medium (DMEM) 

supplemented with 10% FBS, to 80% confluency in one well of two well permanox-

coated tissue culture chamber slides (Lab Tek). The individual plasmid  DNAs (3µg  per 

well) were transfected into COS-7 cells (growing in Opti-MEM serum free medium; 

Invitrogen/GIBCO) using Lipofectin (Invitrogen) transfection reagent according 

to manufacturer’s instructions.  After incubating for 6 h at 370C, the medium was 

replaced with DMEM containing 10% FBS. After 48 h of incubation at 37oC in 5% CO2,   

the cells were stained as described in section 4.5 using anti-IIIa serum. 

 

 4.9 Yeast 2 Hybrid screening for viral protein:  protein interactions 

 To examine the role of IIIa interactions with other structural/regulatory viral proteins 

during infection, the Matchmaker GAL4 two-hybrid system 3 (BD Biosciences, 

Clontech) was used to determine protein: protein interactions.  

 

   4.9.1 Construction of  IIIa-BD 

  IIIa was amplified as described in section 4.7, and ligated to BamHI – EcoRI 

digested  plasmid pGBK-T7 (BD Biosciences)  creating plasmid IIIa-BD. This creates a 

fusion of IIIa to the GAL4 DNA binding domain in the GAL4-BD vector  (Fig.  5). 

 

  4.9.2. Construction of pGAD-AD vectors 

  Using pPAV200 (Reddy et al, 1998) as  a DNA template, PAdV-3 genes IVa2, 

protease, 33K, 100K, IIIa, pVI, pVII, pVIII, pIX, pX, and 52K were amplified as  
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Figure 5.  Construction of yeast two hybrid vectors.  The sequence encoding IIIa with 
flanking  BamHI and EcoRI restriction sites was amplified by PCR and cloned 3’ to the 
GAL4 BD in pGBK-T7 plasmid MCS.  Likewise, PAdV-3 fiber gene was amplified by 
PCR with flanking BamHI and EcoRI restriction sites and cloned 3’ to the GAL4 AD in 
pGAD-T7 plasmid MCS. 
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described previously (Singh et al, 2004).  In addition, the fiber, penton base, and hexon 

genes were amplified using primers (Table 3) and pPAV200 (Reddy et al, 1998) as a 

DNA template  (Fig.  5). 

  

 Using primers DMS-Fiber-F and DMS-Fiber-R (Table 3), and plasmid pPAV200 

(Reddy et al, 1998) as a template DNA, the 1.4 kb DNA fragment encoding the fiber gene 

was amplified by PCR and digested with BamHI – EcoRI.  The fragment was ligated to 

BamHI -EcoRI digested pGAD-T7 (BD Biosciences) creating plasmid pFiber-AD. The 

1.4 kb DNA fragment (encoding penton base) was amplified by PCR ,using primers 

DMS-pIII-F and DMS-pIII-R (Table 3) and plasmid pPAV200 (Reddy et al, 1998) as a 

template.  The fragment was then digested with BamHI-EcoRI and ligated to BamHI - 

EcoRI  digested plasmid pGAD-T7 (BD Biosciences) creating plasmid pPENT-AD.  

Finally, the 2.8 kb DNA fragment encoding hexon was amplified by PCR using primers 

DMS-Hex-F and DMS-Hex-R (Table 3) and plasmid pPAV200 DNA as template.  The 

resulting fragment  was digested with XhoI - BamHI and ligated to XhoI - BamHI 

digested pGAD-T7 (BD Biosciences)  creating plasmid pHEX-AD. The identity of the 

recombinant plasmids was confirmed by restriction enzyme analysis of plasmid DNA.  

 

 4.9.3 Yeast two hybrid assay 

 Saccharomyces cervisiae yeast strain Y187 containing a lacZ reporter gene was 

transformed with pGBKIIIa-BD DNA using lithium acetate as described in the 

manufacturer’s protocol.  Saccharomyces cervisiae yeast strain AH109 containing HIS3, 

ADE2 and lacZ reporter genes was then individually transformed with the pGAD-AD 

PAdV-3 vectors using lithium acetate as described in the manufacturer’s protocol 

(Matchmaker GAL4 two-hybrid system 3; BD Biosciences, Clontech, Palo Alto, CA).  

Y187 transformants were selected on medium lacking tryptophan and AH109 

transformants were selected on medium lacking leucine.  Yeast mating was performed to 

introduce both plasmids into one yeast cell as per manufacturer’s protocol.  Briefly, one 

colony from pGBKIIIa (Y187) plate was added to 1ml YPD broth and vortexed.  An 

additional colony from each of the pGAD-AD PAdV-3 library plates was added to the 

YPD broth and vortexed to mix the yeast cells together.  The mixture was grown 
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 Table 3.  List of yeast two hybrid primers 

Gene    Primer sequence 

Fiber  DMS-Fib-F:CCGGAATTCATGGGACCGAAGAAGCAGAAG 

  DMS-Fib-R:CGCGGATCCTCATTGCTGGAGTAGTTG 

Penton  DMS-pIII-F:CCGGAATTCATGAGGAGGATGATGCCAGCA 

  DMS-pIII-R:CGCGGATCCTTAGAAGGTTCGGCTGCTGAG 

Hexon   DMS-Hex-F:CGCGGATCCATATGGCGACGCCGTCGATGATG 

  DMS-Hex-R:CCGCTCGAGTTAGGTGGTGGCGTTCCCGGC 

Restriction enzyme sites BamHI, EcoRI and XhoI are shown in bold.   
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overnight at 300C. A 100µl of the mixture was plated onto the medium lacking both 

tryptophan and leucine to select for diploid yeast cells.  Diploids were then replica-plated 

to medium stringency medium lacking tryptophan, leucine and histidine to allow 

selection of positive interactors.  Positive interactors were then further tested on the 

highest stringency X-α-gal medium lacking tryptophan, leucine, histidine and adenine.  

Positive interactions exhibit blue color as well as visible yeast colony growth (Geitz, et al 

1992). 

 

 4.10 Co-Immunoprecipitation  

In order to examine the IIIa interactions with other viral proteins, a co-

immunoprecipitation was performed as described previously in section 4.3 with the 

exception of radioisotope labeling of proteins.  The complexes were then Western blotted 

as described in section 4.4.  Table 4 gives an overview of antibodies used in interaction 

studies. 

4.11 Transactivation Assays 

4.11.1 Construction of pGL-MLP and pGL-E1A 

PAdV-3 IIIa protein was tested for potential activation of the PAdV-3 

major late promoter and E1A promoter using the pGL3 luciferase reporter system 

(Promega).   The 3Kb MLP and tripartite leader (TPL) cassette was digested from pMLP 

P3 (data not published) with EcoRI, blunted, and then digested with BamHI and ligated 

with the pGL3 Basic Vector (Promega) digested with BglII and SmaI to create pGL-MLP 

as shown in Fig. 6. A 390 bp DNA fragment (containing E1A promoter) amplified by 

PCR using plasmid pPAV200XhoIRL DNA as a template was digested with BglII - KpnI 

and ligated to BglII and KpnI digested pGL3-Basic Vector creating plasmid pGL-E1A.  

(Fig.  6) Construction of plasmids containing full length and deleted forms of IIIa is 

described in section 4.7.     
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Table 4.  List of PAdV-3 antiserum tested in co-immunoprecipitation assay.   

Name of proteins 

method of 

synthesis 

Western blot and 

Co-IP dilutions 

used  

fiber GST fusion 1:100 

fiber peptide 1:100 

hexon GST fusion 1:100 

hexon GST fusion 1:100 

pIX peptide 1:100 

pIX peptide 1:100 

52K GST fusion 1:100 

IIIa GST fusion 1:100 

E3 13.7kDa GST fusion 1:100 

E1A GST fusion 1:100 

E1Bsmall GST fusion 1:100 

E1Blarge GST fusion 1:100 

DBP GST fusion 1:100 

E4 orf 2 GST fusion 1:100 

E4 orf 3 GST fusion 1:100 

E4 orf 4 GST fusion 1:100 

E4 orf 7 GST fusion 1:100 

IVa2  GST fusion 1:100 
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Figure 6.  Transactivational plasmid construction.  The  3.0 Kb fragment comprised 

of the MLP and TPL were digested out of pMLP P3 and ligated 5’ to the luciferase 
cassette creating pGL-MLP.  Likewise, E1A was amplified by PCR, digested and ligated 
5’ to the luciferase cassette creating pGL-E1A. 
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 4.12 Construction of recombinant PAdV-3 containing chimeric IIIa 

4.12.1. Construction of plasmids 

4.12.1.1 Construction of pPC2BsiWI. 

   A 9.6 Kb FseI fragment was digested out of pFPAV200 (Reddy et al. 

1999), blunted with large fragment DNA polymerase (Klenow) and  ligated into 

pCDNA3 (Invitrogen) EcoRV site to generate pPAVPC2 (late region transfer vector  of 

15 Kb).  A unique BsiWI site was inserted upstream of the ATG for IIIa by subcloning a 

3.5Kb AgeI fragment of pFPAV200 into Litmus 28i vector (New England Biolabs) 

digested with AgeI to create pLit28IIIa plasmid. Using pPAVPC2 DNA as template,  

PCR primers (forward): (GGGACCGCGGCGCTGGAGGTGGCAGTCCCCGCTGA 

CTGCGAGC GATGAGGGTGATGCGTACGGATGGCAACCAT) 

  and (reverse): (GGAAGTCA TA CAC GCCGGTGAAGAAG) were designed 

corresponding to internal SacII sites.   Mutation of base 4670 (t-c) and base 4675 (t-g) 

shown in bold, of pPC2 transfer vector created a unique BsiWI site site 42 bp bases 

upstream from the starting methionine for the IIIa open reading frame (ORF).  The 1.2 

Kb PCR product containing the unique BsiWI site was digested with SacII and ligated 

into shuttle vector, pLit28IIIa correspondingly digested with SacII.  Positives clones were 

identified via restriction digest for the presence of the unique BsiWI site.  The shuttle 

vector pLit28IIIa-BsiWI was then digested with AgeI and the 3.5 kb fragment was ligated 

back into pPAVPC2 digested with AgeI to create pPAVPC2-BsiWI containing a unique 

BsiWI site in the late region transfer vector. (Fig.  7) 

 

4.12.1.2. Construction of pPC2EYFP 

  To generate a EYFP (Enhanced yellow fluorescent protein) IIIa fusion 

protein, the EYFP gene was amplified by PCR from the plasmid pEYFP-C1 (BD 

Biosciences) using primers fwd: CGTACGGGTCGCCACCATGGTGAGCAAG and rev: 

CGTACGACTTGTACAGCTCGTCCATGCCGAGAGTG removing the stop codon and 

adding BsiWI restriction sites on the 5’ and 3’ ends of the gene.  The amplified EYFP 

PCR product was digested with BsiWI and cloned in frame into pPAVPC2 digested with 

BsiWI.  Positive IIIa fusion constructs were screened with restriction enzymes and finally  



 44

pPAV200

pIIIaFseI FseI

pCDNA3
MCS amp

pPAVPC2 late 
region transfer 
vector (15 Kb)

9 Kb

amppIIIaAgeI AgeI lacZ
Litmus 28i 
(2.8 Kb)

AgeI

Lit28ipIIIa 
(6.3 Kb)

3.5 Kb

PCR product 
+(BsiWI site)

SacII sites
SacII sites

Lit28ipIIIa-BsiWI (6.3 Kb)

AgeIAgeI amppIIIaAgeI AgeI

pPAVPC2-BsiWI late region transfer 
vector (15 Kb) with unique BsiWI site

Lit28ipIIIa-BsiWI (6.3 Kb)

amp

pIIIa

BsiWI

pPAV200

pIIIaFseI FseI

pCDNA3
MCS amp

pPAVPC2 late 
region transfer 
vector (15 Kb)

9 Kb

amppIIIaAgeI AgeI lacZ
Litmus 28i 
(2.8 Kb)

AgeI

Lit28ipIIIa 
(6.3 Kb)

3.5 Kb

PCR product 
+(BsiWI site)

SacII sites
SacII sites

Lit28ipIIIa-BsiWI (6.3 Kb)

AgeIAgeI amppIIIaAgeI AgeI

pPAVPC2-BsiWI late region transfer 
vector (15 Kb) with unique BsiWI site

Lit28ipIIIa-BsiWI (6.3 Kb)

amp

pIIIa

BsiWI

 
 

 

 

 

Fig. 7.  Construction of PAdV-3 late region transfer vector.  Schematic illustrating the 
stepwise construction of the plasmid pPAVPC2-BsiWI containing a unique BsiWI site 5’ 
to IIIa. 
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sequenced. (Fig.  8). 

 

  4.12.1.3  Construction of pPC2RGD.  

  A 105 bp oligo pair comprising a RGD motif (box) coupled to a GS linker 

(5 glycine-serine repeats(in italics)) described previously, (Zakhartchouk et al, 2004) with 

an additional FLAG epitope (underlined in bold), GTA CGG ATG GCC TGC GAC TGT 

CGC GGC GAT TGT TTT TGC GGT GGA GTT GGA TCA GGA TCA GGT TCA GGG 

AGT GGC TCT GAT TAT AAG GAC GAT GAT GAC AAG GGC was synthesized 

by Invitrogen.  The oligos, when annealed, had the unique BsiWI overhangs and were 

ligated directly into pPAVPC2 digested with BsiWI as shown in Fig. 8.  Positive clones 

were again screened by restriction enzyme digest and sequenced. 

 

4.12.1.4  Construction  of plasmids pFPAV750 and pFPAV751  

   To generate full length recombinant plasmid DNA via homologous 

recombination, pPAV200 was linearized with  BstBI restriction enzyme and incubated 

with either pEYFPIIIa or pRGDIIIa digested with EcoRI and BstZ17I in  Escherichia coli 

BJ5183 (Chartier et al, 1996) as shown in Fig. 9.  Recombinant viral DNA was 

characterized with restriction enzyme analysis, scaled up and purified for transfection.   

 

   4.12.1.5  Rescue of recombinant PAdV-3 

  Monolayers (80% confluent) of ST cells grown in one well of 6 well tissue 

culture plates were transfected with either 5 µg or 7 µg of PacI digested  pPAV750 

(EYFP) , pPAV751 (RGD), or pFPAV701 (positive control) plasmid DNA using 

Lipofectin (Invitrogen) as per manufacturer’s directions.  Six hous post transfection, the 

cells were incubated in MEM containing 5%FBS. The monolayers were observed for 

development of cytopathic effects and expression of EYFP using the Zeiss Axiovision 

software.   
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Fig.  8.  Construction of recombinant transfer vectors.  EYFP was PCR amplified and 
ligated 5’ to IIIa via the unique BsiWI site in pPAVPC2-BsiWI to create plasmid 
pEYFPIIIa.  Likewise, the synthetic RGD-GS-FLAG oligo was ligated 5’ to IIIa in the 
same late region transfer vector using the unique BsiWI site to create plasmid pRGDIIIa. 
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Figure 9.  Homologous Recombination Schematic.  Full length pPAV200 encoding 
WT PAdV-3 was linearized with BstBI and incubated together with either pEYFPIIIa or 
pRGDIIIa digested with EcoRI and BstZ17I in BJ5183 E.coli cells.  Full length plasmids 
pfPAV750 (containing EYFP) and pfPAV751 (containing RGD) were created. 
 

or  pRGDIIIa 
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5.0   RESULTS 

5.1 Analysis of PAdV-3 IIIa 

 5.1.1  Production of Antibodies 

 To identify and characterize the IIIa protein in detail, we produced antisera using 

GST-IIIa fusion proteins and IIIa specific peptides. Initially, the  antigenic regions from 

both the amino (22-158 AA) and carboxyl (480-610 AA)  termini were amplified by PCR 

and separately fused in frame to a gene encoding GST in pGEX-5X-1(Pharmacia) vector. 

The nucleotide sequence at the junctions between GST and IIIa was confirmed by DNA 

sequence analysis. The BL21 strain of Eschericia coli was transformed with individual 

plasmid DNA. GST-IIIa fusion protein production was induced by IPTG and the cell 

lysates were analysed by 10% SDS-PAGE and visualized by staining the gel with 

Coomassie blue (Fig.  10).  

 Despite optimization of BL21 growth conditions and addition of protease inhibitors, 

the carboxy terminal fusion protein (expected size of 66kDa) proved unstable as 

compared to the amino terminal fusion protein  (Figure 10, lanes 6 and 8).  To produce 

antisera against the C-terminus  of IIIa, two antigenic peptides of l4 (541-554 AA) and 23 

(592-614 AA) amino acids were synthesized and individually coupled to a carrier 

molecule KLH.  The purified proteins or KLH-peptides were used to immunize rabbits. 

Sera collected after the third boost were then analyzed in detail. The sera were designated 

as IIIaP1 (541-554 AA) and IIIaP2 (592-614 AA) 

 

  5.1.2  In vivo expression of IIIa  

  In order to confirm the specificity of the antisera and to determine the size of IIIa 

expressed in PAdV-3 infected cells, immunoprecipitation experiments were carried out. 
35S-met/cys labelled proteins from mock or PAdV-3 infected cell lysates were 

immunoprecipitated with antisera to both the amino and carboxy terminal regions of IIIa 

and analysed by SDS-PAGE.  As seen  in figure 11, anti-serum to IIIaP2 gave a specific 

70kDa band at 48 h p.i. (lane 1) that was not present in the prebleed control (lane 2) or 

the mock infected cells (lane 3).  Anti-serum to IIIaP1 did not show this 70kDa band at 

48 h p.i, (lane 4) as well as prebleed (lane 5) or mock infected (lane 6).  Anti-serum to 

IIIaGST gave a very strong band running at 70kDa in both 48 h p.i, (lane 7) and 30 h p.i.  
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Fig. 10.  PAdV-3 IIIa amino and carboxy terminal GST fusion protein expression.  
A 136 amino acid hydrophilic region representing the amino terminus of IIIa was cloned 
into pGEX-5-1 GST expression vector (Pharmacia) and propagated in BL21 strain of 
E.coli.  Similarly a 130 amino acid hydrophilic region representing the carboxy terminus 
of IIIa was cloned into pGEX-5-1 GST expression vector and propagated in BL21 strain 
of E.coli.  Cultures were induced with IPTG and grown at 300C.  Extracted proteins were 
separated on 10% SDS-PAGE, stained with Coomassie brilliant blue. Lanes 1 through 5 
illustrate the IIIa amino-terminal GST-fusion and lanes 6 through 9 illustrate the IIIa 
carboxy-terminal GST-fusion following sonication alone (crude) or sonication 
/centrifugation to generate soluble (supernatant) and insoluble (pellet) protein fractions  
were checked for purity and specific sizes by SDS-PAGE and Western blotting (not 
shown) using anti-GST serum.   The arrow indicates the expected size of the IIIaGST 
amino-terminal fusion protein (68 kDa). 
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Figure 11.  Immunoprecipitation using antiserum to PAdV-3 IIIa.  ST cells were 
infected with PAdV-3 and labeled with 35S 24 h p.i.  Cells were harvested at 30 h (lane 8) 
and 48 h (lane 7) p.i., sonicated and incubated with anti-IIIa serum. Immunoprecipitated 
complexes were separated on 12.5% SDS-PAGE  and exposed to autoradiograph.  Anti-
IIIaP2 (lane 1 ) and anti-IIIaGST (lanes 7 and 8) bound to proteins running at the 
expected 70kDa size for PAdV-3 IIIa.  No such band was visible in prebleed sera (lanes 3, 
6 and 9) or in mock infected cells (lanes 2 and 5).  Amounts of IIIa 70 kDa protein were 
greater at 48 hours p.i. (lane 7) than 30 hours p.i. (lane 8).   Additional specific bands 
(black arrows) running at approximately 62kDa, 46kDa, 36kDa were present in lanes 7 
and 8 and are not present in mock infected or pre-bleed samples.  Positions of molecular 
weight markers in kilodaltons (lane 10) are shown to the right of the panel.   
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(lane 8) which is not present in the prebleed control (lane 9)  In addition, there are 

specific bands present in lanes 7 and 8  running at approximately  62kDa, 46kDa and 

36kDa (Fig. 11) that may represent post- translational modification of PAdV-3 IIIa or 

alternate proteins binding to IIIa during the course of infection.  Alternatively, the 

presence of extra bands may be the result of proteolytic cleavage of the IIIa proteins 

during overnight incubation at 4 0C to give various truncated forms of the intact protein. 

  

 5.1.3 Western Blot analysis 

To further characterize the IIIa protein and confirm whether different bands 

observed in the immunoprecipitation studies represent post translationally modified forms 

of IIIa or cellular/viral proteins that coimmunoprecipitate with the 70kDa protein, we 

carried out a Western blot analysis. As seen in Fig. 12, anti-IIIaGST (against amino 

terminus, lane 2) or anti-IIIaP2 (against 23 a.a peptide of carboxy terminus, lane 4) 

detected only a 70 kDa protein  in PAdV-3 infected cells.  No such protein could be 

detected using anti-IIIaP1 sera (against 14 a.a peptide of carboxy terminus, lane 9) or 

prebleed sera ( lanes 1,3, and 8 ).                                                                                             

 

 5.1.4 Immunostaining  

     To determine the intracellular distribution of IIIa in PAdV-3 infected cells, ST 

cells were infected with wild-type PAdV-3 at an MOI of 1. After 48 h post-infection, 

infected cells were fixed and stained with anti-IIIa  sera.  As seen in fig. 13, panel B, IIIa 

was detected predominantly in the nucleus of  infected cells.  

 

 5.1.5   Detection of IIIa in mature capsids 

 In order to determine if the IIIa protein is part of the mature virion capsids, 

Western blot analysis was performed using CsCl gradient purified wild-type PAdV-3 

virions. As seen in Fig. 14, anti-IIIaGST serum detected a protein of 70 kDa (lane 3). 

Similarly, anti-IIIaP2 (lane7) and anti-PAdV-3 sera (lane 8) detected a protein of 70 kDa. 

No such protein could be detected using anti-IIIaP1 serum (lane 5) or prebleed sera (lanes 

2,4,and 6). 
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Fig.  12.  Western Blot Analysis of PAdV-3 Infected Cells.  ST cells were infected with 
PAdV-3 and harvested 48 h p.i.  Proteins were separated by 10% SDS-PAGE. Following 
transfer of proteins to nitrocellulose, the blot was cut into strips and incubated with with 
prebleed serum control (lane 1), anti-IIIaGST serum (lane 2),  prebleed serum control 
(lane 3), anti-IIIaP2 serum (lane 4), anti-PAdV-3 (whole virus) serum positive control 
(lane 5), anti-BAdV-3 (whole virus) serum negative control (lane 6), prebleed serum 
control (lane 8) and anti-IIIaP1 serum (lane 9).  Lane 7 is a negative control lacking 
primary antibody.  PAdV-3 anti-IIIaGST and anti-IIIaP2 serum bind to a protein of  
expected 70kDa size in infected ST cells but anti-IIIaP1 serum does not.  No bands are 
present in the prebleed serum (lanes 1,3, and 8).  Molecular weight in kilodaltons is 
shown to the right of the panel. 
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Fig.  13.   Analysis of cellular distribution of IIIa.   PAdV-3 infected ST cells were 
fixed with methanol-acetone at 24 hours p.i. and subcellular location of IIIa was 
determined by indirect immunofluorescence using anti-IIIaGST serum at 1:100 dilution 
(panel B) and transmitted light (panel A) using Zeiss AxioVision viewer software.  
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Fig.  14.  Western Blot analysis of PAdV-3 virions.  Cesium chloride purified PAdV-3 
virus was boiled in Laemmli loading sample buffer with βME, and viral proteins were 
separated on a 10% SDS-PAGE gel.   Following transfer of proteins to nitrocellulose, the 
blot was cut into strips and incubated with prebleed serum control (lane 2), anti-IIIaGST 
serum (lane 3), prebleed serum control (lane 4), IIIaP1 antiserum (lane 5), prebleed serum 
control (lane 6) and anti-IIIaP2 serum (lane 7), PAdV-3 (whole virus) antiserum positive 
control (lane 8) and anti-BAdV-3 (whole virus) serum negative control (lane 9).  Anti-
IIIa serum detected only the specific 70kDa band corresponding to PAdV-3 IIIa in 
purified virions.  Molecular weight in kilodaltons is shown to the right of the panel. 
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 5.2  Immunogold staining of PAdV-3 virions 

 To determine the antigenic regions of IIIa exposed on the viral capsid, immune 

electron microscopy was performed using CsCl gradient purified virions and IIIa specific 

antisera. Briefly, purified PAdV-3 was adsorbed onto paraffin coated nickel grids, dried 

and incubated with anti-IIIa sera.  Bound antibodies were then detected with gold 

conjugated goat anti-rabbit IgG.  Although partially disrupted capsids of virions (by 

visual analysis) were labeled with anti-IIIaGST serum, no intact PAdV-3 virion appeared 

to be clearly positive for labeling with anti-IIIaGST serum (Fig. 15, panel A and B).  As 

seen in Fig. 14, panel C, intact PAdV-3 virions could be labeled with anti-pIX serum as 

pIX is accessible on the virus capsid. Moreover, no labeling of PAdV-3 virions 

(disrupted/complete) was detected using anti-IIIaP2 sera (Fig. 15, panel D).  

 

 5.3  Determination of the IIIa nuclear localization signal (NLS) 

  Earlier, IIIa was detected predominantly in the nucleus of the PAdV-3 infected 

cells (Section 5.1.4). To determine if any other viral protein is required for the transport 

of IIIa to the nucleus, we determined the location of IIIa alone in transfected cells. The 

IIIa ORF was cloned into the mammalian expression vector pCDNA3 (Invitrogen) under 

the control of the HCMV promoter and BGH polyA signal. In addition, a series of in-

frame deletions (Fig.  16) comprising 400-450 bps were introduced individually into the 

IIIa ORF by PCR mutation procedures.   Mutant IIIa genes were then cloned individually 

into the mammalian expression vector pCDNA3 (Invitrogen) under the control of HCMV 

promoter and BGH polyA signal.  COS-7 cells transfected with individual plasmid were 

analyzed by immunoflurorescence using anti-IIIaGST. As seen in Fig. 17, (panels A,B,C) 

similar to PAdV-3 infected cells (Fig. 13), wild-type IIIa (IIIaWT) could be detected 

predominantly in the nucleus of the transfected cells suggesting that IIIa contains the 

necessary signals for its nuclear localization. However,   analysis of the IIIa amino acid 

sequence could not identify any putative nuclear localization signal(s) when the sequence 

was examined using databases ExPASY and PSORTII.  As nuclear localization of IIIa in 

transfected cells is indistinguishable from wild-type IIIa expressed in PAdV-3 infected 

cells, we used the approach of expressing IIIa deletions in transfected cells to determine 

the region of IIIa required for its localization to the nucleus. The deleted forms of IIIa   
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Fig.  15.  Immunogold staining of PAdV-3 virions.   Samples of  CsCl purified wild-
type PAdV-3  were adsorbed onto metal EM grids and incubated with anti-IIIaGST sera 
(panels A and B).  Following incubation with gold bead conjugated goat anti-rabbit 
secondary antibody, the virions were negatively stained with 5% PTA.  Panel A and B 
illustrate some visibly ruptured virus particles (circled) with beads bound to the cellular 
debris (black arrows) but no binding to intact virions.  In contrast, incubation with anti-
pIX serum results in clearly positive capsid staining of intact virions (panel C).  
Incubation with anti-IIIaP2  serum resulted in  no binding of gold beads to the PAdV-3 
capsid (panel D). 
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Fig.  16.   Schematic representation of IIIa deletion constructs.   Deleted regions are 
indicated by inverted lines and coding regions by filled black boxes. The numbers above 
the filled boxes indicate the nucleotide numbers of IIIa ORF. The name given to each 
mutant protein is shown on the left of the panel.  
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Fig.  17.   Subcellular localization of mutant IIIa proteins.  COS-7 (2 x 105) cells  
were transfected with 2 µg of individual plasmid encoding Wild-type  or mutant IIIa 
proteins.  After 48 h of transfection, the cells were fixed  with methanol-acetone, and 
stained with anti-IIIa antibodies.  Following incubation with Cy2™ goat anti-rabbit 
IgG(H+L),  nuclei were stained with DAPI and viewed under fluorescent microscope.   
Immunofluorescence (panel A); DAPI staining (panel B); Merge of imunofluorescence 
and DAPI (panel C). IIIaWT (Wild–type IIIa); IIIaD1 (IIIa containing deletion of    150 
AA); IIIaD2 (IIIa containing deletion of 113 AA); IIIaD3 (IIIa containing deletion of 138 
AA ); IIIaD4 (IIIa containing deletion of 215 AA ). 
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expressed by IIIaD1, pIIID2 and IIIaD4  localized predominantly  in the nucleus of the 

transfected cells (Fig. 17) . In contrast, the deleted form of IIIa expressed by IIIaD3 

localized predominantly in the cytoplasm of the transfected cells (Fig. 17).  

Next, we evaluated whether the 415 bp (deleted in IIIaD3) could direct the import of 

EYFP into the nucleus. This 138 amino acid region of IIIa (amino acids 272-410) was 

fused 5’ to EYFP creating plasmid pNLS EYFP. The junction of the sequences encoding 

IIIa - EYFP was sequenced to ensure that the coding domains are in frame.   As seen in 

Fig. 18, chimeric IIIa-EYFP protein was detected in both nucleus and cytoplasm of the 

transfected cells.  Plasmid control (pEYFP-N1 backbone vector) showed EYFP localized 

to the cytoplasm of transfected cells (data not shown). 

 

5.4    IIIa – protein (viral)  interactions 

 As protein–protein interactions are involved in the multi-step assembly process of 

adenovirus virions, it was speculated that IIIa may interact with other proteins to perform 

different functions. 

 

  5.4.1  Yeast 2 hybrid analysis of IIIa 

To characterize the interactions of IIIa with other structural and or regulatory proteins 

during infections, the Matchmaker GAL4 two-hybrid  system 3 (BD Biosciences, Palo 

Alto, Ca) was used.  In this system, two plasmid borne gene fusions are cotransformed 

into yeast cells, and the interaction between these two fusion proteins is measured by the 

reconstitution of a functional transcriptional activator that triggers the expression of 

reporter genes lacZ, HIS3 and ADE2 contained within the yeast. The gene encoding IIIa 

was cloned into the pGBK-T7 BD vector and used as bait while ORFs representing 

different viral proteins of PAdV-3 cloned into pGAD-T7 AD vector (Singh  et al,  2005, 

Table 2) were used as prey.  Plasmid pGAD-T7 AD backbone and plasmid pGAD–

T(containing non specific SV40 large T antigen) were used as negative controls. As seen 

in Fig. 19, IIIa appears to interact with all PAdV-3 viral proteins (panels A,B,C)  and 

negative controls (panel D), as intense blue yeast colonies could be detected within 3-4 

days of incubation at 30oC on the highest stringency medium (lacking leucine, tryptophan,  
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Fig. 18.  IIIa NLS analysis.  pNLS EYFP was transfected into COS-7 cells and  
subcellular localization of the putative NLS for IIIa fused to EYFP was viewed directly 
using the Axiovision viewer software.  EYFP expression was seen localized to both the 
cytoplasm (panel A) and the nucleus (panel B) of transfected cells. 
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Fig.  19.  Yeast Two Hybrid assay.  pGBKIIIa BD plasmid was transformed into yeast 
strain Y187 and mated to yeast strain AH109 transformed with the individual plasmid 
pGAD-AD containing PAdV-3 genes. Yeast positive for diploids were streaked onto 
medium stringency plates lacking leucine, tryptophan and histidine containing X-α-gal.   
Panels A and B show colony growth and blue color indicating putative positive 
interactions between PAdV-3 IIIa and other PAdV-3 viral proteins.  Panel C illustrates 
these same “positive” interactions when re-streaked from medium to highest stringency 
medium lacking tryptophan, histidine, adenine and containing X-α-gal.  Colony growth 
and blue color were observed within 3 days post-plating.  Panel D shows interaction of 
IIIa and empty pGAD-AD vector  [negative control] (top of plate) as well as interaction 
between IIIa and pGAD-T, containing SV40 large T antigen, [negative control] (bottom 
of plate).  Colony growth and blue color were apparent on negative controls within 3 days 
post-plating. 
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histidine and adenine).  In addition, when yeast containing plasmid pGBK-IIIa BD alone 

was plated on medium stringency medium, there was production of blue colour.  This 

suggests that PAdV-3 IIIa may be a transactivating protein capable of transcriptional 

activation  of the yeast lac Z gene without interacting with other viral proteins.  

 

5.4.2  Co-immunoprecipitation of viral proteins with PAdV-3 IIIa 

To examine whether PAdV-3 IIIa interacts with other viral proteins during 

infection, antiserum to a panel of PAdV-3 viral proteins was used to co-

immunoprecipitate other interacting viral proteins from  lysates of PAdV-3 infected ST 

cells.  Monolayers of ST cells  (1X105 per well) in one well of 6 well tissue culture 

dishes were infected with wild-type PAdV-3 at an MOI of 10. At 48 h post infection, 

proteins from lysates of PAdV-3 infected cells were immunoprecipitated (as described 

in section 4.10) using protein specific antibodies (section 4.10, Table 4) and analyzed 

on 12.5% SDS-PAGE . The separated proteins were transferred to nitrocellulose and 

analyzed by Western blotting (described in section 4.4) using anti-IIIaGST serum.  As 

seen in Fig. 20, anti-IIIa detects a protein of 70 kDa in infected cell lysates 

immunoprecipitated with anti-fiber serum (panel A, lane 2), anti-hexon serum (panel A, 

lane 5) , anti-pIX serum (panel A, lanes 6 and 7 ), anti-IIIa serum positive control 

(panel A, lane 9), anti-13.7K serum (panel A, lane 10) and anti-DBP serum (panel B, 

lane 5).  In contrast, only IIIaGST positive control serum (panel C, lane 6) detected a 

protein of 70 kDa and anti-pIX serum (panel C, lane 5) detected a protein of 23 kDa in 

infected cell lysates immunoprecipitated with anti-IIIaGST serum. Anti-fiber sera 

(panel C, lane 1), anti-hexon sera (panel C, lane  2), anti-13.7K sera (panel C, lane 3 ) 

and anti-DBP sera (panel C, lane  4 ) did not detect any protein in infected cell lysates 

immunoprecipitated with anti-IIIaGST serum. However, antiserum to PAdV-3 whole 

virus used as a positive control (panel C, lane 6) detected multiple proteins migrating at 

70 kDa, 62 kDa, and 36 kDa respectively.  Appearance of other fainter bands in lanes 1 

and 4 represent cross-reactive proteins that are bound non-specifically by antiserum to 

IIIa protein. 
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Fig. 20.  Co-immunoprecipitation of PAdV-3 viral proteins.   
(A)  Proteins from lysates of PAdV-3 infected ST cells were immunoprecipitated with 
anti-fiber serum (lane 2), anti-hexon serum (lane 5) anti-pIX serum (lane 6,7), anti-52K 
serum (lane 8) anti-IIIa serum (lane 9) and anti-E3 13.7 serum (lane 10), separated by 
10% SDS-PAGE and transferred to nitrocellulose membrane.  The separated proteins 
were probed in Western blot by anti-IIIaGST serum.  
(B)  Proteins from lysates of PAdV-3 infected ST cells were immunoprecipitated with 
anti-E1A serum (lane 2), anti-E1Bs serum (lane 3),  anti-E1BL serum (lane 4), anti-DBP 
serum (lane 5), anti-E4 orf 2 serum (lane 6), anti-E4 orf 3 serum (lane 7), anti-E4 orf 4 
serum (lane 8), anti-E4 orf 7 serum (lane 9) and anti-IVa2 serum (lane 10), separated by 
10% SDS-PAGE and transferred to nitrocellulose.  The separated proteins were probed in 
Western blot by anti-IIIaGST serum 
 (C)  Proteins from lysates of PAdV-3 infected ST cells were immunoprecipitated with 
anti-IIIaGST antiserum, separated by 10% SDS-PAGE and transferred to nitrocellulose.  
The separated proteins were probed in Western blot by normal prebleed serum (lane 1), 
anti-fiber serum (lane 2), anti-hexon serum (lane3), anti-E3 13.7 serum (lane 4), anti-
DBP serum (lane 5), anti-pIX serum (lane 6), anti-IIIaGST serum (lane 7), and anti-
PAdV-3 (whole virus) serum (lane 8).  
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5.5  Transcriptional Activation Assay 

To determine if  IIIa can act as  a transactivator, plasmid IIIaWT containing full 

length IIIa was co-transfected into COS-7 cells, together with plasmid pGL-MLP (Fig. 6), 

containing a luciferase reporter gene under the control of PAdV-3 major late promoter 

(MLP), or with plasmid pGL-E1A (Fig. 6), containing a luciferase reporter gene under 

the control of the PAdV-3 E1A promoter.  As seen in Fig. 21, the luciferase expression 

increased 3-fold when pCDNAIIIa was co-transfected with the pGL-MLP. However, 

there was no increase in luciferase expression  when  pCDNAIIIa was co-transfected with 

the pGL-E1A.  

To delineate the transactivating domain of IIIa, the effect of a set of IIIa deletions 

(described in section 4.7) on transactivation of MLP was  examined. The IIIa-induced 

stimulation of PAdV-3 MLP was moderately affected by deletion of amino acids 138-272 

(MLP del2 ). However, deletion of amino acids 272-410 (MLP del3) or amino acids 410-

622 (MLP del4) of IIIa completely eliminated the transactivation of MLP. Interestingly, 

there was no significant effect of IIIa deletions on the transactivation of the E1A 

promoter.  (Fig.  22) 

 

5.6  Construction of IIIa chimeric viruses 

In order to reconfirm the immunogold staining observations, attempts were made 

to construct recombinant PAdV-3 expressing chimeric IIIa (the amino-terminus of IIIa 

fused to Enhanced Yellow Fluorescent Protein (EYFP) or “RGD” motif).  The genes 

coding for pEYFP-IIIa and pRGD-IIIa were inserted individually into the PAdV-3 

genome using homologous recombination machinery of Escherichia coli (strain BJ5183) 

creating plasmids pFPAV750 (chimeric EYFP-IIIa)  and pFPAV751 (chimeric RGD- 

IIIa), respectively (Fig.  23). The identities of the plasmids were confirmed by restriction 

enzyme analysis of plasmid DNA. The PacI digested pFPAV750, pFPAV751 or 

pFPAV701 (E3-E4 deleted pFPAV200 expressing EYFP inserted in the E4 region; (Li, 

and Tikoo, unpublished)) plasmid DNAs were transfected into ST cells or VIDO R1 cells 

and monitored for the development of cytopathic effects. Repeated transfections of 

porcine cells with plasmid pFPAV750 or pFPAV751 DNA did not produce any 

cytopathic effect even after four weeks of transfection. However, transfection of porcine  
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Fig.  21.  Transactivation assay.   Plasmids containing either the PAdV-3 MLP or 
PAdV-3 E1A promoters 5’ of the luciferase reporter gene in pGL-Basic Vector 
(Promega) were constructed.  COS-7 cells were transfected with 0.5 µg pGL-MLP or 
pGL-E1A plasmid alone or together with plasmid IIIaWT containing wild-type PAdV-3 
IIIa. The cells were collected 48 h post transfection and analysed for luciferase activity.  
Values are expressed as relative light units (RLU).  Relative luciferase units (means from 
triplicate wells) are represented with corresponding standard deviations.   Presence of IIIa 
activated the MLP resulting in luciferase expression that was significantly higher than 
pGL-MLP alone.  The statistical differences are indicated by asterisks at the top of the 
bar.  Within promoter type, bars with asterisks are different (P < 0.05) 

*
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Fig.  22.  Transactivation assay with IIIa mutants.  
 (A) COS-7 cells were transfected with pGL-MLP plasmid alone or together with plasmid  
IIIaWT, IIIa D1, IIIa D2, IIIa D3 and IIIa D4. The cells were collected 48 h post 
transfection and analysed for the luciferase activity.  Values are expressed as relative 
light units (RLU).  Relative luciferase units (means from triplicate wells) are represented 
with corresponding standard deviations.   The statistical differences are indicated by 
asterisks at the top of each bar.  Within promoter type, bars with asterisks are different (P 
< 0.05). 
 (B) COS-7 cells were transfected with pGL-MLP plasmid alone or together with plasmid  
IIIaWT, IIIa D1, IIIa D2, IIIa D3 and IIIa D4. The cells were collected 48 h post 
transfection and analysed for the luciferase activity.  Values are expressed as relative 
light units (RLU).  Relative luciferase units (means from triplicate wells) are represented 
with corresponding standard deviations.   The statistical differences are indicated by 
asterisks at the top of each bar.  Within promoter type, bars with asterisks are different (P 
< 0.05). 
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pFPAV750pFPAV750 pFBAV751pFBAV751

 
Fig.  23.  Schematic diagram of recombinant plasmids.  Map of the plasmids depicting 
the location of different genes and restriction enzyme sites is shown. Plasmid pFPAV750 
(full length PAdV-3 containing chimeric IIIa-EYFP), plasmid pFPAV751 (full length 
PAdV-3 DNA containing chimeric IIIa-RGD) .   
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cells with pFPAV701 (transfection control) DNA always produced  EYFP expression in 

48 h and cytopathic effects in 7-10 days (Fig.  24). 

 

6.0  DISCUSSION  

 The adenovirus capsid is composed of three major structural proteins (fiber, 

penton, hexon) and five minor structural proteins (IVa2, VI, VIII, IX and IIIa) (Parks, 

2004).  While major capsid proteins are involved in initial virus cell interactions and 

induction of neutralizing antibodies (Gall et al, 1996; Dmitriev et al, 1998; Rots et al, 

2003; Vellinga et al, 2005; Sumida et al, 2005; Wu et al, 2005 ), minor structural proteins 

are thought to act as capsid cement to manage the accurate virus assembly. Although all 

major capsid proteins have been studied in detail (Amalfitano and Parks, 2002; Vellinga 

 et al, 2005), only two minor capsid proteins (pIX and IVa2) have been the focus of other 

reports (Lutz and Kedinger, 1996; Lutz et al, 1997; Dmitriev et al, 2002; Parks, 2004).  

Moreover, recent reports of tolerating significant genetic modification including the 

addition of large polypeptides as targeting ligands by minor capsid protein pIX (Rosa-

Calatrava et al, 2001; Parks, 2004; Sargeant et al, 2004; Zakhartchouk et al, 2004) have 

generated interest in determining the structure and function of other minor capsid proteins.  

This thesis reports the structure and possible functions of PAdV-3 IIIa protein. 

 The IIIa protein of PAdV-3 is 622 amino acids long and shows low overall 

homology to the IIIa proteins of other adenoviruses (Cuillel et al, 1990; Reddy et al, 

1998). Unlike HAdV-5, the PAdV-3 IIIa lacks a consensus protease cleavage sequence 

(Reddy et al, 1998). Analysis of PAdV-3 IIIa using antibodies against different regions 

suggested that the  N-terminus (amino acid  2-158)  and C-terminus (amino acid 592-614) 

of IIIa were immunogenic.  However, it is possible that C-terminus amino acids 541-554 

may not contain immunogenic sites  (Scheres et al, 2005) (Fig. 11,12 and 14).  

 Antisera directed against the IIIa protein immunoprecipitated four bands of 70kDa, 

62kDa, 46kDa, and 23kDa  from PAdV-3 infected cells but not from mock infected cells 

(Fig.11). However, anti-IIIaGST detected only a 70kDa band in Western blot (Fig.12,14) 

suggesting that 62kDa, 46kDa, and 36kDa bands represent the cellular or viral proteins 

coimmunoprecipitated with IIIa.  Aternatively, it is also possible that these bands 

represent proteolytic cleavage products resulting from the overnight incubation with PAS  
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pFPAV701(CPE) pFPAV751(no CPE)

 
 

Fig. 24.  Rescue of recombinant PAdV-3 IIIa virus.  Full-length recombinant plasmids, 
pFPAV750 (EYFP) and pFPAV751 (RGD) were digested with PacI to release the viral 
coding sequence from the plasmid backbone.  The recombinant DNA was transfected into 
ST cells as well as VIDO RI cells (not shown).  pFPAV701 (E3,E4 deleted pFPAV200 
expressing EYFP inserted in the E4 region) was also transfected into ST cells as well as 
VIDO RI cells (not shown) as a positive control.  48 hours post-transfection, cells were 
viewed under UV microscope to visualize EYFP fluorescence as a measure of 
transfection efficiency.  pFPAV701 positive control shows high transfection efficiency 
and visible EYFP expression.  pFPAV750 shows no EYFP expression.   Cytopathic 
effect (CPE) was observed in pFPAV701 7 days post transfection and was never 
observed in either pFPAV750 or pFPAV751 transfections up to 4 weeks post transfection.  
Neither recombinant virus was rescued. 
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beads.  The IIIa protein is localized predominantly in the nucleus of PAdV-3 infected 

cells (Fig.13) and is incorporated in the capsid of mature PAdV-3 (Fig. 14). 

 Earlier, studies related to adenovirus structure suggested that HAdV-5 IIIa 

traversed the capsid width with a rod-like density having one domain near the top of the 

hexon and another near the bottom of the hexon (Stewart et al, 1993).  However, 

immunogold labeling using anti-IIIa serum (whole protein) only produced label in 

ruptured HAdV-5 viral particles (Scheres et al., 2005) suggesting that polypeptide IIIa is 

not accessible to the antibodies from outside the capsid. Interestingly, immunogold 

labeling using anti-IIIa sera also produced label in partially disrupted PAdV-3 virions but 

not in intact PAdV-3 virions. This suggested that similar to HAdV-5, neither the N- 

terminus nor C-terminus of PAdV-3 IIIa is exposed on the surface of PAdV-3 capsid (Fig. 

15)  

  Proteins less than 40 kDa in size can diffuse passively into the nucleus through 

nuclear pore complexes (Pante and Aebi, 1996). Due to the large size of IIIa, it is unlikely 

that the IIIa protein enters the nucleus by a simple diffusion. Although numerous studies 

have demonstrated that active import of large proteins to the nucleus requires distinct 

amino acid sequences known as nuclear localization signals (NLS) (Dingwall and Laskey, 

1991), the presence of a non-conventional motif can also lead to nuclear import of a 

protein (Pillet et al., 2003). Analysis of mutant PAdV-3 IIIa proteins demonstrated that  

sequences affecting nuclear localization are located between amino acid 272 and 410 (Fig. 

17).  Surprisingly, the putative 138 amino acid NLS  (amino acid 273-410) was not able 

to direct predominantly cytoplasmic EYFP efficiently to the nucleus (Fig. 18).  This 

failure to localize to the nucleus may be due to misfolding of the truncated IIIa protein.  It 

is  also possible that the sequences identified in PAdV-3 IIIa of PAdV-3 for nuclear 

transport may depend on the protein to which it is linked or the context of the NLS within 

the fusion protein. For example, the NLS of GAL4, a yeast DNA-binding protein, 

functions efficiently when fused to normally cytoplasmic invertase, but not when fused to 

E. coli β- galactosidase (Nelson and Silver, 1989). Moreover, an NLS inserted into 

several sites within the polypeptide chain of pyruvate kinase could not function in the 

same locations, as its activity was masked (Roberts et al., 1987). Alternatively, it is 

possible that NLS-EYFP protein may diffuse between the cytoplasm and nucleus due to 
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the expected size of the fusion protein (40 kDa) thus perhaps another protein such as β-

galactosidase should be used to evaluate IIIa nuclear localization. 

 Earlier, adenovirus intermediate proteins (pIX and IVa2) have been shown to act 

as transcriptional activators for MLP, E1A and E4 promoters (Lutz and Kedinger, 1996; 

Lutz et al, 1997; Rosa-Calatrava et al, 2001; Parks, 2004).  Similarly, PAdV-3 IIIa 

appears to act as a transcriptional activator for MLP (Fig.  19) as it shows significant 

increase in the expression of luciferase protein when expressed in uninfected cells with 

pGL-MLP.  In contrast, there was no increase in the expression of luciferase protein 

when PAdV-3 IIIa was expressed in uninfected cells with pGL-E1A (Fig. 21).  It is 

possible that IIIa transactivates MLP by recognizing sequences unique to MLP. 

Alternatively, it is possible that IIIa provides transactivation function by binding to other 

cellular proteins (provides specific DNA binding function) with a specific DNA binding 

activity. Viral transcription regulators can act a) by recognizing specific DNA sequences 

(Lutz et al., 1997), by interacting with cellular DNA binding proteins, and\or   c) by 

acting as cellular co-factors (Lutz and Kedinger, 1996; Perez-Romero et al, 2005).   

Further experiments are needed to prove these speculations.  

 Analysis of the mutant IIIa proteins demonstrated that amino acids 410-622 are 

involved in the transactivation of  MLP.  Deletion of  amino acids 272-410 also impaired 

the transcriptional activity of IIIa (Fig. 22).   However, this domain is predicted to contain 

sequences affecting the NLS of IIIa either because of a direct NLS sequence or protein 

folding. It is possible that the deletion of this domain (amino acid 272-410) would affect 

the transport of IIIa to the nucleus thereby affecting IIIa’s transcriptional activity.  

 Protein-protein interactions are important for the assembly of adenoviruses and 

are critical for the function of the multitask proteins.  The IIIa of HAdV-5 is known to  

interact with hexon and is coimmunoprecipitated with fiber (Horwitz, 2004). As expected, 

PAdV-3 IIIa appears to interact with fiber and hexon, which may help in maintaining the 

structure of the capsid. However, PAdV-3 IIIa also appears to interact with DBP, E3 

13.7K, and pIX (Fig. 20).  The exact purpose of these interactions during viral infection 

of ST cells is not clear. It is possible that interaction of IIIa with DBP or 13.7K is 

important for molecular recognition of viral DNA thus enabling transcription of other late 

viral proteins. The binding of IIIa to pIX is intriguing. Based on the current capsid 
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models, IIIa and pIX appear to be located physically apart and thus can not exist as a 

complex in the PAdV-3 capsids. It is possible that interaction of IIIa-pIX is important for 

an unknown step in the capsid formation.  Failure of anti-IIIa sera to precipitate the same 

viral proteins in the reverse coimmunoprecipitation may be in part due to epitope 

masking (Fig. 20).  The IIIa domain bound by the interacting viral proteins may be the 

same or in close proximity to the epitope recognized by the anti-IIIa antibody, thus when 

the IIIa protein is bound by said viral proteins, the epitope is not available to the anti-IIIa 

antibody. 

 Recombinant HAdV-5 containing chimeric IIIa  (IIIa fused to a 6-HIS tag or 

FLAG epitope) have been isolated.  Both of these insertions are extremely small and not 

likely to interfere with protein folding or functions (Glasgow et al, 2005).    Our results 

suggest that larger insertions are likely not possible and if rescued, the virus may not 

uncoat or assemble properly and result in abortive infections.  Micro-imaging of HAdV- 

2 capsid suggests that the IIIa protein is present at a 45o angle from the surface (Fabry et 

al., 2005). As such, large insertions may not be possible simply due to steric hindrance 

resulting in sub-optimal capsid assembly and this may account for the inability to rescue 

viable virus from permissive cells (Fig. 24) 

.    
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