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ABSTRACT 

 I studied nest characteristics, breeding dispersal, and nest defence behaviour of 

Northern Flickers (Colaptes auratus, hereafter flickers) in central interior British 

Columbia with respect to nest predation.  My research focused on three questions: (1) 

Are there nest characteristics associated with the risk of nest predation and nest loss to 

European Starlings (Sturnus vulgaris)? (2) Does nest predation influence breeding 

dispersal? (3) Do parental attributes influence nest defence behaviour?  

An examination of flicker nest-site characteristics at five spatial scales revealed 

that nests were safer from mammalian predators (N=81) when they were higher, 

concealed by vegetation, farther from continuous coniferous forest blocks, and 

contained fewer conifers within the nesting clump.  Proximity to conifers increased 

predation risk, but nests safe from competitors (N=18) were closer to coniferous forest 

blocks and contained a higher percentage of conifers in the nesting clump.  Flickers face 

a trade-off between being safe from predators and safe from competitors. 

 Nesting success did not influence between-year breeding dispersal by 159 male 

or 76 female flickers.  Because nests and forest clumps were not predictably safe from 

predators, benefits of dispersing likely outweigh costs.  Other factors such as mate-

switching, nest ectoparasites, and a fluctuating food source may play larger roles in 

dispersal than nest predation.  Within years, 73% of pairs switched nest sites after their 

first attempt failed due to predation (N=37); however, there was no reproductive 

advantage for these pairs compared to pairs that remained at their original nest.  

Stressful encounters with predators involving nest defence may trigger dispersal, 

although it seems to offer no greater nest success.  Of 24 flicker pairs presented with a 
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control model before egg-laying, 3 pairs abandoned their nest, whereas 4 out of 24 pairs 

presented with a squirrel model abandoned their nest.  This suggests that a one-time 

encounter with a nest predator is not a sufficient deterrent against continued nesting.  

Rather, costs of finding and excavating or renovating a new cavity may cause 

individuals to tolerate some risk in nesting at a location with an active predator. 

 In experimental trials (N=94), intensity of nest defence behaviour against a 

model predator was not related to the sex, age, body size, and body condition of the 

defending adult(s).  The sexes may have behaved similarly because they are similar in 

size and have similar survival patterns.  Costs and benefits of nest defence for flickers of 

different ages may also be equal because flickers are relatively short-lived and their 

survival rate is not linked with age.  Brood size of the defending adult was also 

unrelated to the intensity of nest defence.  If flickers have adjusted their clutch size in 

relation to the number of young for which they can optimally provide care, then no 

effects of brood size on nest defence behaviour should be recorded, as was the case here.     
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CHAPTER 1 
GENERAL INTRODUCTION 

 

1.1 Introduction 
 

Nest predation is a major cause of nest failure for birds, and occurs across a wide 

range of taxa, habitats, and geographic locations (Martin 1993).  Nest predation 

typically results in complete clutch loss, thereby lowering parental fitness (Li and 

Martin 1991).  Natural selection should favour birds that choose safe nest sites (passive 

nest defence), employ nest defence behaviours (active nest defence) or use a 

combination thereof (Filliater et al. 1994; Cresswell 1997; Larivière and Messier 1998).  

In the short term, nest predation may vary spatially or temporally; however, choice of 

nest sites and behavioural decisions influenced by natural selection should reflect long-

term optima (Martin 1995; Badyaev and Faust 1996; Clark and Shutler 1999). 

Many avian species are distributed non-randomly throughout a habitat as a result 

of nest-selection strategies, and predation is frequently cited as one of the main factors 

that influences nest placement (Chase 2002).  A comparison of successful versus 

depredated nest sites allows one to determine whether predation could be the process 

behind a non-random pattern of nest selection (Clark and Shutler 1999).  If 

characteristics of successful and depredated nests differ in one direction from mean 

values, then directional selection can occur.  Stabilizing selection occurs when nest sites 

with characteristics farther from mean values have relatively high predation rates or can 

result through oscillating selection, favouring sites with intermediate characteristics.  
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Disruptive selection favours those nests with characteristics that are at extreme ends of 

the habitat gradient.  When the type of selection is known, a prediction can be made 

regarding how nest characteristics should change over generations in response to nest 

predation. 

Predation can also affect nest selection on a temporal scale either within or 

between years (Greenwood and Harvey 1982).  Predators may remember nest locations 

and depredate nests consistently, selecting for new nests to be built and old ones 

abandoned (Sonerud 1985a; Korpimäki 1987).  Experience with a predator in past or 

current breeding attempts may lead to abandonment of nest sites with a history of 

predation (Dow and Fredga 1985).  Conversely, fidelity to nest sites that are predator 

free either in the short or long term should be a reasonable strategy for nesting birds 

trying to maximize fitness (Greenwood and Harvey 1982).  

If nest placement to avoid predation is unsuccessful, then birds must actively 

defend their nest against a predator.  Active defence probably places the parent at 

significant risk, but it can effectively deter nest predators (Greig-Smith 1982).  

Economic models are used to describe individual variation in nest defence, where 

benefits of defensive actions must outweigh costs (Montgomerie and Weatherhead 

1988).   

Cavity-nesting species such as woodpeckers have evolved one of the most 

effective nesting strategies to reduce predation.  Compared to open-cup nesting species, 

cavity nesters experience significantly lower rates of nest predation (Martin and Li 

1992, but see Sonerud 1985b).  Primary cavity excavators may also have lower nest 

predation rates than secondary cavity nesters (Martin and Li 1992).  Although cavities 
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are relatively safe compared to other types of nests, predation is usually the greatest 

source of clutch or brood loss and therefore should influence nest selection and breeding 

dispersal.  Nest defence should also be employed by cavity nesters even though they 

may rely upon the cryptic or inaccessible nature of their nests to avoid predators 

(Nilsson 1984).   

My objectives were to examine the association between nest predation risk and 

attributes of cavity nests within and between years (passive defence), and to examine 

individual variation in active defence behaviour of the Northern Flicker (Colaptes 

auratus).  In Chapter 2, I identify attributes of flicker nest sites associated with the 

probability of nest predation by small mammals and attributes associated with nest loss 

caused by an avian competitor.  I also examine temporal patterns of these two sources of 

nest loss, as well as nest loss in general.  In Chapter 3, I examine the effect of nest 

predation on between- and within-year breeding dispersal.  Finally, Chapter 4 details the 

influences of age, sex, brood size, body size, and body condition on nest defence 

behaviour of flickers presented with a model predator. 

1.2 Study Species 
 

The Northern Flicker is a common woodpecker found in most forested areas of 

North America (Moore 1995).  Two of the five North American subspecies, Yellow-

shafted (C. a. auratus) and Red-shafted flickers (C. a. cafer) occur in Western Canada, 

and form a hybrid zone parallel to the Rocky Mountains (Moore 1995).  Males and 

females are sexually dimorphic with respect to plumage coloration, and males are 

approximately 2-3% larger than females (Wiebe 2000).  Excavation of a suitable nest 

cavity (it is not known which sex chooses the nest location) occurs in early May, and 
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clutches are laid shortly after excavation or renovation of the cavity is complete (Moore 

1995).  Clutch sizes range from 4-13, with a mean clutch size of 6.5 (Wiebe 2001).  

Both parents care for the altricial young until they fledge approximately 27 days after 

hatching (Short 1982). 

1.3 Study Site 
 

The study site near Riske Creek, British Columbia (51°52’N, 122°21’W) 

encompasses approximately 100 km² with 90-120 pairs of flickers nesting there each 

year.  Habitats on the site are patchy and variable: grasslands are preferred for foraging, 

patches of trembling aspen (Populus tremuloides) and lodgepole pine (Pinus contorta) 

are used for nesting, and continuous forests of Douglas-fir (Pseudotsuga menziesii) and 

hybrid spruce (Picea engelmannii x glauca) also occur. 

Major predators of cavity nests in the area include red squirrel (Tamiasciurus 

hudsonicus), northern flying squirrel (Glaucomys sabrinus), deer mice (Peromyscus 

maniculatus), and long-tailed weasel (Mustela frenata), with predation by black bear 

(Ursus americanus) and pine marten (Martes americana) occurring less frequently 

(Walters and Miller 2001).  Nest evictions by European Starlings (Sturnus vulgaris) and 

occasionally Tree Swallows (Tachycineta bicolor) also occur. 

1.4 Locating and Measuring Nest Sites 
 

Each year since 1998, the area has been surveyed in spring to check old cavities 

for breeding pairs and to search for newly excavated cavities.  Data on flicker nesting 

was collected by K.L. Wiebe before 2003, and collaboratively with me in 2003 and 

2004.  Tape-recorded territorial playback calls were also used to localize flicker 
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territories and subsequently nest sites.  When clutches were complete, a small door was 

cut into the side of the nest tree for access to adults, eggs, and nestlings (Wiebe 2001).  

At the end of each field season, to avoid excessive disturbance to the nesting pair, 

characteristics of the nest site and surrounding habitat were measured (see Chapter 2).    

Each nest was checked on average every 4.2 days with a ladder, flashlight, and mirror to 

monitor nest contents.  Nest fate was determined following the criteria in Wiebe (2003). 

1.5 Trapping and Banding Adults 
 

After adults were captured by flushing them from the cavity into a net placed 

over the cavity entrance, each was fitted with a combination of four leg-bands (two per 

leg) for individual identification.  I also sexed and measured lengths of the wing, bill, 

tail, tarsus, 9th primary, and weighed each captured flicker.  For a multivariate index of 

body size (Rising and Somers 1989), I used the score on the first axis of a Principal 

Component Analysis (PCA1) based on measures of: lengths of the wing, bill, tail, tarsus, 

9th primary, and bill depth.  Separate PCA analyses were done for each sex because of 

sexual size dimorphism (Wiebe 2000).  For an index of nutrient reserves, “body 

condition”, I used the residuals of a Reduced Major Axis (RMA) regression of PCA1 

and body mass (Green 2001).  Age was assessed using either plumage characteristics 

(Moore 1995) or from banding records of recaptured birds.   
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CHAPTER 2 
NEST SITE ATTRIBUTES AND TEMPORAL PATTERNS OF NEST LOSS OF 

NORTHERN FLICKERS: EFFECTS OF NEST PREDATION AND COMPETITION 

 

2.1 Introduction 
 

Nest predation accounts for an average of 80% of nest failures across a wide 

range of species, habitats, and geographic locations (Martin 1993).  Nest predation 

typically results in the loss of the entire clutch, reducing parental fitness (Li and Martin 

1991).  Predation risk has both a spatial and temporal component leading to observable 

patterns throughout the landscape and over time (Willson et al. 2003).  Many studies 

have examined predation on bird nests, but most have examined only nest site selection 

in response to one nest predator or have not considered responses to different predators.  

Birds contend with a rich guild of nest predators, each with differing search strategies 

and differing affinities for prey types that potentially lead to trade-offs in nest selection 

to avoid different predators (Sih et al. 1998).  Furthermore, competition for nest sites, 

where offspring are killed, result in reproductive loss similar to predation, but this has 

rarely been examined in conjunction with loss to predators.  Here I document nest 

selection and temporal aspects of Northern Flicker nesting in relation to nest loss to 

mammals and an avian competitor, the European Starling.   

Cavity nesters may experience relatively low nest predation rates compared to 

open-cup nesters (Martin and Li 1992), but nest predation still remains the largest source 

of nest loss for cavity nesters and therefore has the potential to influence nest selection 
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(Nilsson 1986).  However, one must interpret these generalizations with caution, as most 

studies of predation rates on cavity nesters have used nest boxes which may bias results 

by enhancing nest survival (Møller 1989).  I overcame this potential pitfall by evaluating 

nest predation and nest competition in a population of Northern Flickers nesting in 

natural cavities.   

Most studies to date have focused on the spatial aspect of selecting a safe nest 

site and have documented a hierarchy of selection from broad landscape-level traits to 

narrow microhabitat traits.  Several hypotheses have been developed concerning how 

nest placement evolved as a result of predators developing search images for nests 

(Filliater et al. 1994).  Nests that are easy to find and access should be depredated more 

frequently, resulting in selection for more concealed nests (concealment hypothesis: 

Cresswell 1997).  To avoid ground-foraging predators, selection should favour higher 

nests (nest height hypothesis: Li and Martin 1991).  For cavity-nesting species, the 

diameter of the nest entrance can limit the size of predator that is capable of entering the 

cavity; however, the diameter must be large enough for the resident to enter 

(Wesolowski 2002).  High rates of nest predation along edges is common in forest 

landscapes, and so nests placed further from edges should experience reduced predation; 

however, evidence for this remains equivocal (Paton 1994; Lahti 2001; Bayne and 

Hobson 2002).  If predators remember previous nest locations and consequently 

depredate them from year to year, those specific areas or nest sites should be avoided 

(Sonerud 1985a; Pelech 1999).  If predators encounter a high density of nests it may 

lead to either development of a search image or increased search effort, and result in 

higher predation risk for nests in high density clusters compared to nests in low density 
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clusters (Niemuth and Boyce 1995).  In general, the risk of nest predation will depend 

on (1) variation in predator abundance or behaviour and (2) predator species richness 

(Filliater et al. 1994). 

To determine whether competitors exert pressures on nest site selection we must 

determine those nest characteristics that are preferred by the nest competitor.  European 

Starlings are an introduced cavity nest competitor in British Columbia (first reports of 

breeding starlings occurred in 1951; Peterson and Gauthier 1985), and it has been 

suggested that recent declines of cavity nester populations (e.g., Northern Flicker) are 

due to intense competition with starlings (Moore 1995).  However, the role of starlings 

in the declines of native cavity nesters may be overrated (Koenig 2003).  

Temporal patterns of nest predation have not been examined as widely as spatial 

patterns because analytical techniques were lacking.  The recent introduction of the nest 

survival analysis component of program MARK has made temporal analysis of nest 

survival easier (Dinsmore et al. 2002) and has removed the problem of assuming 

constant daily nest survival throughout the breeding season (Mayfield 1961).  Such 

analyses suggest that temporal peaks of predation during the breeding season do occur 

in such species as plovers (Charadrius montanus; Dinsmore et al. 2002) and ptarmigan 

(Lagopus lagopus; K. Martin unpubl. data).  Peak periods of predation may occur 

because predators develop a search image for prey items after a certain lag time (Nams 

1997) or else switch food items throughout the season depending upon energetic 

requirements or food availability.  I am unaware of any study to date that has examined 

temporal patterns of nest predation in a cavity-nesting species.  Examining temporal 
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patterns of nest loss could help identify factors that select for the different timing of 

reproductive activities during the breeding season.    

Plasticity of clutch initiation date may allow nesting birds to avoid temporal 

peaks of nest predation during the breeding season and nest when it should be safer 

(Wiebe 2003).  Although changing clutch initiation date may be a way to temporally 

avoid one predator, if the new date corresponds with the peak activity of another 

predator, then nest loss may remain the same or even increase.  In the case of flickers, 

delaying clutch initiation could outweigh any benefits (Wiebe 2003). 

Observed predators in my study area include: red squirrels (12 predation 

attempts videotaped, two successful), long-tailed weasel (observed once), pine marten 

(observed once), and black bears (occurring 10 times in the past seven years; K.L. 

Wiebe unpubl. data).  Other possible predators in the area include northern flying 

squirrel and deer mice (Walters and Miller 2001), but neither have been observed 

directly preying on eggs (K.L. Wiebe pers. comm.).  Because red squirrels are a main 

nest predator on my study site, I predicted that predation risk would be highest at nests: 

(1) closer to the ground, (2) less concealed, (3) in suitable squirrel foraging habitat, such 

as areas with substantial coniferous forest (i.e., an increased probability of squirrels 

encountering a cavity nest), (4) with large clutches (i.e., increased olfactory cues, Petit et 

al. 1989), and (5) with a high density of active cavities surrounding them.  In years with 

large squirrel populations, encounters by squirrels with flicker nests may also increase 

and therefore I predicted that as squirrel abundance increased so would predation on 

flicker nests.  Furthermore, I predicted that flickers may experience within-year peaks in 

nest predation by squirrels as a result of changes in squirrel foraging tactics during 
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summer (i.e., a shift from arboreal to more ground-based foraging) and changes in 

squirrel food requirements (Pelech 1999).  Changes in tactics of foraging squirrels could 

increase the number of encounters with flicker nests and thus increase predation risk on 

nests at certain times during the breeding season.   

If starlings prefer certain nest sites, they may compete more intensely for flicker 

nests with those attributes (see Mazgajski 2003).  Lastly, I also expected peaks of flicker 

evictions by starlings at the beginning of the flicker breeding season when starlings are 

prospecting for suitable nests and most takeovers usually occur (Wiebe 2003).     

I examined whether a suite of flicker nest-site characteristics measured at five 

spatial scales were associated with one of three nest fates: successful, depredated by 

mammals, or evicted by starlings.  I also used program MARK to model temporal trends 

of flicker nest loss spanning my seven-year dataset, considering predation and 

competition separately.           

2.2 Materials and Methods 
 

Nests were found following the procedure stated in Chapter 1 (see section 1.4, 

Locating and Measuring Nest Sites).  I analyzed characteristics of nests with three 

possible fates.  Successful nests fledged at least one young.  I assumed a nest to be 

depredated when eggshell fragments were left inside the nest cavity and assumed, based 

on videotape evidence, that squirrels were the main nest predator.  Whereas mammals 

tend to leave eggshell fragments in the cavity, starlings remove flicker eggs and deposit 

them outside the nest (Wiebe 2003).  A nest was considered lost to starlings when the 

following sequence of events occurred: (1) flickers began laying and were observed in 

the nest cavity, and (2) I found a breeding starling in the nest cavity on a subsequent 
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visit and starling nesting material (green vegetation, which is a unique nesting 

characteristic of this cavity nester) was inside the cavity.       

2.2.1 Nest and Site Characteristics 
 

Pribil and Picman (1997) suggested that using only one spatial scale of habitat 

measurements was unreliable because it may omit habitat scales that are important for 

birds selecting nest sites.  I measured nest characteristics, that were important predictors 

of nest predation on cavity nests in other studies (Nilsson 1984; Rendell and Robertson 

1989; Christman and Dhondt 1997; Hooge et al. 1999) and were reflective of habitat 

preferences of squirrels (Bayne et al. 1997) and starlings (Mazgajski 2003), at five 

spatial scales: (1) cavity - cavity dimensions, (2) nest tree - measurements associated 

with the tree itself, (3) small nest tree plot - a 2-m radius surrounding the nest tree, (4) 

large nest tree plot - an 11.2-m radius (0.04 ha) surrounding the nest tree, and (5) 

landscape level - beyond 11.2 m up to several kilometers (Table 2.1).  Data on number 

of squirrel detections per hectare per year on the Riske Creek study area using point 

counts following protocol presented in Martin and Eadie (1999) were obtained from K. 

Martin (unpubl. data).  Four lines 500 m long each (20 ha) were placed on 11 plots, 

representing a range of forest types and fragmentation, on the Riske Creek study area 

(Martin and Eadie 1999).  Point count stations were established 100 m apart and fixed 

radius (50 m) points counts were conducted for 6 min to detect, both visually and 

acoustically, bird species and cavity nesting mammals (Martin and Eadie 1999).  The 

number of red squirrels detected was then standardized every year according to the total 

area covered by the point count lines (K. Martin unpubl. data).   
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Table 2.1 Characteristics of nest tree and surrounding habitat measured for all flicker 
nests between 1998 and 2004 at Riske Creek, British Columbia.  

 
Scale Characteristics Measured 

Cavity Cavity entrance width (cm) 

Vertical depth (cm)b

% vegetation concealment within 1-m radius     

surrounding and perpendicular to the cavity entrancec

Tree Cavity height from ground (m) 

Number of cavities, excluding the active flicker cavity 

2-m radius surrounding 

nest tree 

% vegetation ground coverd

11.2-m radius 

surrounding nest treea

Number of aspene  

Number of coniferse  

Number of cavities 

Number of used cavities (only in 2003 and 2004)f

Landscape  

 

 

 

 

Distance to dry grassland edge (m)g

Distance to wet edge (m)h

Distance to continuous coniferous edge (m)i

Clump area (ha)j

% conifer content of the clumpk
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Table 2.1 (Continued) 

 
a I used the British Columbia Ministry of Forests Inventory Standard of 11.2-m radius 
plots surrounding each nest tree (Aitken et al. 2002) as an index of tree species 
composition and habitat complexity of the area in which the nest was placed. 
b Cavity depth was measured from the bottom of the entrance to the cavity bottom. 
c Determined by dividing the 1-m radius plot into eight equal sections and visually 
estimating vegetation concealment within each area to produce an estimate of 
concealment for the complete circle.  I assumed that concealment within a 1-m radius 
affected visibility of the cavity entrance from both above and below the cavity.   
d At the 2-m radius plot, only vegetation >30 cm tall (above maximum shoulder height 
of the majority of small mammalian predators when in a foraging position) was included 
in the estimates of concealment.  I followed the same protocol for determining 
concealment within this 2-m radius as I did within the 1-m radius of the cavity.   
e Trees were counted only if their diameter at breast height was > 12.5 cm (British 
Columbia Ministry of Forests Inventory Standard). 
f 12-min observations (double the time used in other point-count protocol for cavity 
nesters; Martin and Eadie 1999) were made at each nest during peak cavity nester 
breeding times (May to July; Martin et al. 2004) in order to determine the number of 
cavity-nesting species nesting within an 11.2-m radius of flicker nests.  A cavity nester 
was included only if it was observed entering a cavity; however, I did not check cavities 
for eggs.  Observations were done on a subset of nest sites that were not covered by 
point count and nest searching areas in the nest web project by K. Martin (Martin and 
Eadie 1999).  I assumed that data on detection of cavity nest sites by the nest web 
personnel were as reliable as my observations. 
g I measured the distance to dry grassland or road edge using a measuring tape. 
h I measured the distance to a stream or lake using a Global Positioning System (GPS). 
i I measured the distance to a continuous coniferous forest edge using a GPS. 
j Estimated by pacing two distances covering the length and width of the clump and then 
assuming an ovoid area.  For nests within large or continuous forest tracts where it was 
not feasible to pace distances, I used digital air photos of the study area taken in 2000 
and rendered in ArcView (v. 3.2, 1999) with nest points overlaid to calculate an exact 
estimate of clump area. 
k A visual survey of relative tree species abundance was done to estimate percentage 
conifer content within a forest clump.   
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2.2.2 Nest Comparison Analysis 
 

I first determined whether my index of squirrel abundance (detections of 

squirrels per hectare per year) on the Riske Creek study area was correlated with the 

percentage of flicker nest sites that were depredated.  Secondly, I determined whether 

squirrel abundance was correlated with yearly estimates of daily nest survival calculated 

from the program MARK analysis below.    

Two separate analyses of successful versus depredated (hereafter predation 

analysis) and evicted nest sites (hereafter eviction analysis) were completed.  The data 

set from 1998 to 2004 was used with totals of 497 successful nests, 128 depredated 

nests, and 37 failures due to eviction by starlings (Fig. 2.1).  If a cavity was used more 

than once in the seven-year period, one nest attempt was selected at random to be 

included in the analysis in order to avoid pseudoreplication.  Where possible, nests that 

were lost to starlings were left in the analysis to maximize the sample size available for 

comparison with successful nests.  However, when starlings usurped the same cavity 

multiple times I only included one observation in the analysis to avoid 

pseudoreplication.  I considered each new nest chosen by the same individual over 

consecutive years as an independent unit of measurement as well as new cavities 

excavated in previously used trees.  After removal of duplicated nests, the predation 

analysis included 227 successful and 81 depredated nests, and the eviction analysis 

included 213 successful and 18 nests lost to starlings. 

Stepwise logistic regression was used in both analyses and included the 

following explanatory variables: cavity height, cavity entrance width, vertical depth of 

the cavity, number of cavities in the nest tree, percentage vegetation cover within a 1-m  
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Figure 2.1  Total percentage of nests that were depredated (solid bars) or lost to 
starlings (open bars) at Riske Creek, British Columbia.  Sample size of nests monitored 
each year is above the bars. 
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radius of the cavity entrance and 2-m radius of the nest tree, number of aspen, conifers 

and cavities within an 11.2-m radius of the nest tree, distances to dry, coniferous forest, 

and wet edges, the percentage conifer content of the active nest clump, and the size of 

the forest clump containing the nest.  I used a correlation analysis to reduce problems of 

multicollinearity between explanatory variables.  No pairs of variables exceeded the 

usual multicollinearity standard of r ≥ 0.70 (Compton et al. 2002) and the variables 

included in the final model did not have inflated slope coefficients and standard errors 

that would suggest multicollinearity (Hosmer and Lemeshow 2000).  No variable met 

the assumptions of a normal distribution (with the exception of cavity height) even after 

transformations.  The ratio of the number of cases to variables for the predation analysis 

is approximately 19 to 1 and 18 to 1 for the eviction analysis, with a ratio of 20 to 1 

being preferred for logistic regression analysis (minimum 10 to 1; Hosmer and 

Lemeshow 2000).  Five cavities had extremely large vertical depths (>90 cm) because 

the whole core of the tree was decayed and hollow so these were removed as outliers 

(standardized residuals > 3.0).  I tested the classification performance and goodness of 

fit (GOF) of each of the models using the area under the Receiver Operating 

Characteristic (ROC) curve and Hosmer and Lemeshow GOF tests (Hosmer and 

Lemeshow 2000).  I only conducted surveys for other active cavity nesters within 11.2 

m of flicker nests in 2003 and 2004; therefore, I analyzed this variable separately using a 

non-parametric test. 

2.2.3 Program MARK Nest Survival Analysis 
 

I analyzed daily probability of nest survival using two separate program MARK 

analyses to evaluate temporal variation in nest loss, as well as effects of clutch initiation 
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date and clutch size (Dinsmore et al. 2002).  Only 19 nests were lost in the nestling stage 

and therefore this analysis was confined only to the period between clutch initiation and 

hatching.  The first analysis was set up so that each year was represented as a group in 

the encounter histories (i.e., seven groups representing nests from 1998-2004).  In this 

case, nests that were defined as “lost” in the encounter histories included every type of 

nest loss (i.e., depredated, lost to starlings, lost to other species, nesting trees being 

blown over) except nests abandoned due to human disturbance (<2% of all nests lost).  I 

also included three covariates in the models: clutch initiation date, clutch initiation date 

squared, and clutch size.  I modeled linear and quadratic time trends of nest loss over the 

breeding season, as well as basic models of year differences and constant nest survival. 

I conducted a second nest survival analysis to examine the temporal effects of 

two types of nest loss (predation and eviction).  In this case, two groups were entered in 

the encounter history, such that one group was composed of all successful and all 

depredated nests, whereas the second was composed of all successful nests and nests 

lost to starlings.  Inclusion of all successful nests in each group allowed for a controlled 

background of nests that survived to examine time trends of nest predation and nest 

eviction.  I ran general models of group differences, linear and quadratic time trends, 

and basic models of constant nest survival. 

Initially, quadratic time trend models would not reach numerical convergence.  I 

corrected for this by specifying initial parameter estimates from the linear time trend 

models and then specifying varying initial values for the quadratic term until numerical 

convergence was reached (S. Wilson pers. comm.).  I used AICc (AIC corrected for 
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small sample sizes) to select the most parsimonious model in each analysis (Burnham 

and Anderson 1998). 

2.3 Results 

2.3.1 Nest and Site Characteristics 
 

Squirrel detections per hectare varied annually from 0.23 - 0.32.  There was no 

significant correlation between my index of yearly squirrel abundance and both the 

percentage of nests depredated per year (r = -0.13, N = 7, P = 0.78) and year-specific 

daily nest survival rates (r = -0.04, N = 7, P = 0.93).   

A general description of flicker nest characteristics is presented in Table 2.2.  

The predation analysis suggested that cavity height, vegetation within a 1-m radius of 

the cavity and 2-m radius of the tree base, distance to coniferous edge, and the 

percentage conifer content of the clump influenced the probability of a nest being 

depredated (Table 2.3; Figs. 2.2 and 2.3).  This model provided acceptable 

discrimination between successful and depredated nest sites and fit the data (Area under 

ROC = 0.739, P < 0.001; Hosmer and Lemeshow GOF test X2 = 4.27, P = 0.83).  

Conversely, the eviction analysis revealed that nests placed further away from 

coniferous edges and in clumps with a lower percentage conifer content had an 

increased probability of eviction by starlings (Table 2.3; Fig. 2.3).  This model also 

provided acceptable discrimination between successful and evicted nest sites and fit the 

data (Area under ROC = 0.759, P < 0.001; Hosmer and Lemeshow GOF test X2 = 8.45, 

P = 0.39).  For each significant nest feature (Table 2.2), I tested directly whether there 

were differences in these nest characteristics between depredated and evicted nests using 

non-parametric Mann-Whitney U tests.  Similar to my logistic regression analysis, there  
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Table 2.2  Characteristics of 483 Northern Flicker nest sites at Riske Creek, British 
Columbia at five spatial scales.  Each nest is included only once. 

 
Scale Variable Mean SD 

Cavity Height (m) 3.13 2.12 

 Entrance width (cm) 6.4 0.9 

 Vertical depth (cm) 39.6 12.5 

    

Nest tree Number of cavities 1 1 

 % vegetation cover 1 m 4 10 

    

Small plot % vegetation cover 2 m 22 23 

    

Large plot Number of aspen 7 6 

 Number of conifers 3 5 

 Number cavities 1 2 

    

Landscape Distance to dry grassland edge (m) 11.2 13.9 

 Distance to wet edge (m) 180 276 

 Distance to continuous coniferous forest 

edge (m) 

253 202 

 Clump size (ha) 13.8 103.4 

 % conifer content of forest clump 31 33 
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Table 2.3  Significant predictors of nest failure in separate logistic regression analyses 
on depredated nests and nests lost to eviction by starlings. 

 

Analysis Variable B SE Wald P 

Predation   

 Height (m) -0.406 0.130 9.78 0.002 

 % vegetation cover 1 m radius -0.098 0.034 8.22 0.004 

 % vegetation cover 2 m radius -0.021 0.009 6.05 0.014 

 Distance to coniferous edge (m) -0.003 0.001 8.12 0.004 

 % conifer content of forest clump 0.009 0.004 4.01 0.045 

      

Eviction      

 Distance to coniferous edge (m) 0.002 0.001 3.47 0.063 

 % Conifer content in forest clump -0.044 0.016 7.46 0.006 
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conifer content of the nesting clump that significantly predicted both predation and 
eviction.  Note that there are two means and error bars for successful nest sites 
corresponding to the random subsample of nests used in each separate comparison.  
Sample sizes in each category are the same as in Figure 2.2. 
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were no significant differences between depredated and evicted nest sites in nest height 

(U = 816.5, P = 0.55), percentage vegetation concealment within a 1-m radius of the 

nest cavity (U = 892.0, P = 0.99) and within a 2-m radius of the tree base (U = 669, P = 

0.07).  However, there were significant differences between depredated and evicted 

nests in distance to coniferous edge (U = 416.5, P < 0.001) and percentage conifer 

content of the forest clump (U = 378.5,  P < 0.001).  Nests that were usurped by 

starlings had approximately one more used cavity surrounding them than did either 

depredated or successful nests (Kruskal Wallis X2 = 13.87, df = 2, P = 0.001), but this 

was based on a sample of only eight evicted nest sites. 

2.3.2 Program MARK Nest Survival Analysis 
 

The constant model (i.e., Mayfield daily nest survival) estimated daily nest 

survival probability during the egg stage (laying and incubation combined) at 0.985 

(95% CI: 0.981 – 0.987).  The model with the highest AICc weight and lowest AICc 

value included a quadratic time trend (T+TT) plus effects of clutch size (CS) and clutch 

initiation date (CID) as covariates (Table 2.4, Fig. 2.4).  Daily nest survival rates 

increased with increasing clutch size ( = 0.351, 95% CI: 0.169, 0.532), but decreased 

with later clutch initiation dates ( = -0.268, 95% CI: -0.509, -0.028).  The best overall 

model was ( ± SE): Logit (daily nest survival estimate) = (4.96 ± 3.79) – (0.07 ± 0.26 

T) + (0.002 ± 0.004 TT) + (0.35 ± 0.09 CS) – (0.27 ± 0.12 CID).  There was little 

support for annual differences in daily nest survival (Table 2.4).  

β
^

β
^

β
^

The second MARK analysis suggested that rates of predation and eviction on 

flicker clutches followed a quadratic time trend throughout the breeding season (Table  
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Table 2.4  All models analyzed using program MARK nest survival analysis with 
associated AICc values, ∆AICc, AIC weights (wi), and the number of estimable 
parameters in each model (K).  Models within 2 AIC units of the top model (∆AICc =0) 
indicate some support of the observed data.  Models with weights < 0.01 are not 
presented; however, the model of constant daily nest survival, S (.), is presented for 
comparison.  

 
Modela AICcb ∆AICcc wi

d K 

S (T+TT+CS-CID) 1018.95 0.00 0.67 5 

S (T+TT+CS) 1021.01 2.07 0.24 3 

S (T+CS-CID) 1024.24 5.29 0.05 4 

S (CS) 1025.90 6.96 0.02 2 

S (CS-CID) 1026.91 7.97 0.01 3 

S (T+CS) 1026.98 8.03 0.01 3 

S (.) 1042.47 23.52 0.00 1 

 
a S indicates daily nest survival rate. Model factors include: year (year), constant daily 
survival (.), linear time trend (T), quadratic time trend (T+TT), clutch size (CS), clutch 
initiation date (CID). 
 
b Akaike’s Information Criterion with small sample size correction. 
 
c Difference between individual models and the top model. Top model has ∆AICc=0. 
 
d Estimates of the likelihood of the model given the observed data; all models sum to 
1.00. 
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igure 2.4  Timing of mammalian nest predation (····) and nest loss through evictions by 
uropean Starlings (---).  The better model suggested that peaks of predation and 
viction occur at the same time (A), however, the second more parsimonious model 
Table 2.5) suggested that nest loss to eviction peaks five days earlier than nest loss to 
redation (B).  The temporal pattern of all sources of nest loss (—) (Table 2.4) is 
ncluded for comparison. 
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2.5; Fig. 2.4a); however, the second most parsimonious model suggested that peak 

eviction occurred five days earlier than peak predation (Table 2.5; Fig. 2.4b). 

 

2.4 Discussion 

2.4.1 Nest and Site Characteristics 
 

Squirrel abundance was not correlated with flicker nest predation.  My estimates 

of squirrels detected per hectare per year at Riske Creek were lower than other studies 

using constant effort squirrel trapping where squirrel numbers ranged from 1.5 - 2.8 per 

hectare per year (Krebs et al. 2001).  As the range of squirrel detections per hectare per 

year on my study area was only approximately 0.1 compared with those other studies, it 

is possible that the magnitude of changes in squirrel abundance were not large enough to 

significantly affect nest predation rates.  Because of a low sample size and only seven 

years of data it is also possible that I could not detect a correlation between squirrel 

abundance and nest predation. 

Several cavity and tree characteristics were significant predictors of whether a 

nest would be depredated (Table 2.3).  Despite a mean difference of only 0.5 m between 

successful and depredated nests, higher nests were more successful (Fig. 2.2).  My 

estimate of the height of successful nests may be biased low if extremely high nests that 

I could not monitor (>8 m) were successful.  However, I monitored more than 98% of 

nests.  This is consistent with other studies that have found a height advantage in nest 

survival, particularly for open-cup nesters (Martin 1992), but higher cavities are not 

always safer (no effect of cavity height: Melanerpes formicivorus (Hooge et al. 1999), 

Parus carolinensis (Christman and Dhondt 1997), Parus palustris (Wesolowski 2002),  
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Table 2.5  Models comparing timing of mammalian nest predation and nest eviction due 
to European Starlings.  Table headings are the same as Table 2.4.  Four models with 
weights <0.01 are not presented. 

 
Modela AICc ∆AICc wi K 

S (g+T+TT) 983.47 0.00 0.54 4 

S (g+T+TT+g*TT) 983.77 0.30 0.46 6 

 
a Model factors included group differences between mammalian predation and nest loss 
to starlings (g) and a quadratic time trend (T+TT).   
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artificial nests (Purcell and Verner 1999), Sialia currucoides and Tachycineta bicolor 

(Holt and Martin 1997); positive effect of cavity height: Troglodytes troglodytes (De 

Santo et al. 2003), Tachycineta bicolor (Rendell and Robertson 1989), Sturnus vulgaris, 

Parus caeruleus, and Parus palustris (Nilsson 1984), Bucephala islandica (in nest 

boxes and natural cavities; Evans et al. 2002).  Over the summer, squirrels may switch 

from arboreal feeding strategies to foraging on the ground (Pelech 1999) and therefore a 

small height advantage may deter a small arboreal predator climbing from the ground.  

A high nest cavity may also allow parents more time to dislodge a potential predator 

(Gutzwiller and Anderson 1987).  Although high cavities may be safer, cavity height 

may be constrained because flickers require cavities with an adequate volume (Wiebe 

and Swift 2001), which is limited by the diameter of the tree trunk in higher cavities.  

My finding that increased concealment of the nest by vegetation can reduce nest 

predation either through camouflage of the nest itself or by increasing or encumbering 

predator search effort is also consistent with other studies (Martin 1992; Cresswell 

1997).   

At the mid-sized plot, nests that were lost to starlings had significantly more 

active nests surrounding them than either successful or depredated nests.  Similar to 

brood parasitic Brown-headed Cowbirds (Molothrus ater) that apparently use host 

activity to find nests (Banks and Martin 2001), starlings may concentrate their search for 

nests in areas of high activity.  However, these particular aspen groves may simply have 

common characteristics attractive to all cavity nesters in the nest web and be “hotspots” 

on the landscape (Aitken et al. 2002). 
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I suggest that the landscape-level variables (distance to coniferous edge and 

percentage conifer content of the clump) are associated with habitats where squirrels are 

most active.  Squirrels on my study site forage preferentially and maintain middens in 

forest stands dominated by coniferous trees, followed by mixed stands, and lastly by 

deciduous-dominated tree clumps (K.E.H. Aitken unpubl. data), similar to other 

published studies outside my study area (e.g., Bayne et al. 1997).  However, I could not 

ascertain whether my estimates of coniferous tree content in clumps were correlated 

with squirrel presence or absence.  Squirrel activity should be higher in coniferous 

stands compared to deciduous stands so that nests in the former should be exposed to 

increased predation risk (Bayne et al. 1997).  Conversely, starlings appeared to avoid 

stands dominated by conifers, which corresponds well with other studies that have found 

starlings nesting within 500 m of suitable foraging areas that are typically open 

grasslands (Feare 1984) and nesting in stands with high edge-to-interior ratios (Dobkin 

et al. 1995).  At another study site near Riske Creek, Peterson and Gauthier (1985) 

found that starlings nested on the edge of forest patches, whereas flickers nested in 

sparsely treed groves.  On my study area, Aitken and Martin (2004) found that starling 

nests were closer to grassland edges than random points.  Starlings may also be avoiding 

predator habitat by nesting far from coniferous edges, but there is no evidence from 

other studies to support or refute this hypothesis.    

 Opposing pressures by multiple predators on prey behaviour have been well 

documented in aquatic systems, but less so in terrestrial systems (Templeton and Shriner 

2004; see Sih et al. 1998 for a review).  Crowder et al. (1997) suggested that interactions 

between predator types may complicate interpretations of observational data.  For 
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example, survival of spots (Leiostomus xanthurus) was reduced in the presence of 

predatory flounders (Paralichthys lethostigma), but not in the presence of birds, nor in 

the presence of both predator types (Crowder et al. 1997).  Controlled experiments set 

up in a factorial design (no predators, one predator alone, the other predator alone, and 

both predators present) are needed to determine the effect of multiple predators on prey 

survival.  The large scales at which opposing pressures on flicker nest choice are 

occurring (compared to other studies, e.g., Sih et al. 1998) may make such experiments 

logistically difficult.  It may be possible to conduct this type of experiment using 

predator-specific exclusion devices on natural or artificial nests in order to examine 

relative effects on flicker nest survival of both predators and competitors. 

2.4.2 Temporal Patterns of Nest Loss 
 

Daily nest survival was characteristically high as is typical for a cavity-nesting 

species (i.e., > 0.95, see Willson and Gende (2000) for a list of daily Mayfield nest 

survival rates for some cavity nesters), and never dropped below 0.98 in any of the 

models I tested.  The rate of nest loss peaked in mid May and there was some support 

(i.e., ∆AICc < 2) for the model where starling evictions peaked about five days earlier 

than predation (Fig. 2.4b).  The peak date of starling loss calculated by program MARK 

(24 May – day 144) was similar to peak dates of evictions found by Wiebe (2003).  

However, I may have underestimated the risk of eviction early in spring because I could 

not detect all early evictions when flickers were defending a cavity, but had not yet laid 

eggs.  It is also possible that I underestimated predation losses at the beginning of the 

season before all active nests were found.  This could lead to the pattern of high initial 

nest survival followed by the peaks of eviction or predation in the time period when I 
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found most evicted and depredated nests.  By the time of peak nest loss to predators on 

day 149, 79% of nests had been initiated, with a mean clutch initiation date of 138 (±12 

SD), consistent with the hypothesis that predators do not begin to actively search for 

nests until most of the population has laid eggs (Niemuth and Boyce 1995).  

Furthermore, squirrels may actively switch food sources throughout the flicker breeding 

season, feeding primarily on vegetative and reproductive buds in spring, switching to 

other food sources such as eggs and fungi in mid summer and then harvesting and 

caching cones in late summer (Pelech 1999), potentially creating the period of peak nest 

predation that I observed.  

Delaying nesting to avoid competition by starlings may not increase reproductive 

success if delayed nests have a higher risk of being depredated.  Given that predation 

currently causes more nest loss than eviction (Fig. 2.1), it may not be advantageous for 

flickers in my population to alter clutch initiation dates in response to this nest 

competitor.  The overall decline in clutch size with laying date also favours early nesting 

(Wiebe 2003).   

         

2.4.3 Effects of Clutch Size and Clutch Initiation Date 
 
  Because larger clutches are exposed to predation for longer periods of time and 

may attract attention from predators through olfactory, visual or acoustic cues, it is 

generally believed that nests with more eggs should experience higher nest predation 

than those with fewer (Julliard et al. 1997).  Contrary to this idea, smaller flicker 

clutches were depredated more often.  Because eggs are hidden in the cavity, larger 

clutches should not be more conspicuous to predators (at least during incubation) and 
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therefore clutch size may not influence predation risk directly.  As clutch size is 

positively associated with female age (K.L. Wiebe unpubl. data) higher investment in 

nest defence by more experienced birds may increase nest security.     

Nests initiated later in the breeding season were more likely to fail (Table 2.3).  

In this population there is a strong negative correlation between clutch size and clutch 

initiation date (Wiebe 2003), and fledglings that hatched later may have lower 

reproductive value similar to other woodpeckers (Witkander et al. 2001).  Perhaps nest 

abandonment or decreased parental care reduces nest survival late in the season 

regardless of nest predation or competition. 

2.4.4 General Conclusions 
 

To date, most studies of the success of bird nests have combined all sources of 

loss, although Rauter et al. (2002) is an exception.  Similar to other nest predation 

studies, I documented some nest features that apparently decrease risk of predation by 

mammals with no trade-off with respect to security from starlings.  However, I also 

documented opposing pressures on nest-site characteristics as a result of predation and 

competition, and found that these opposing pressures operate on a landscape, rather than 

microhabitat scale.  There seems to be an abundance of cavities and snags on my study 

area (Aitken and Martin 2004), but in more managed landscapes, nest characteristics 

may be constrained by the location and types of suitable nest trees and the number of 

competitors.  If nest sites for cavity nesters are limiting, then constraints on nest choice 

at the landscape scale may have greater consequences for reproductive success than 

constraints of cavity or snag type at the four smaller scales I described.  
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 Clark and Shutler (1999) suggested that nest loss is unpredictable, so differences 

between successful and unsuccessful nests may be small and difficult to detect with 

short-term studies.  Starlings are a relatively novel nest competitor for flickers on my 

study area compared to sciurid nest predators and destroy fewer nests, so patterns of nest 

selection in response to eviction may not be as strong as for predation.  As starlings 

become more abundant in western North America, selection on the timing and 

placement of nests to avoid nest competition may increase.  Whether or not long-term 

shifts in nest characteristics of flickers and other cavity nesters are observed may depend 

on the relative strength of opposing selection pressures. 
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CHAPTER 3 
EFFECTS OF NEST PREDATION ON BREEDING DISPERSAL OF NORTHERN 

FLICKERS 

 

3.1 Introduction  

Breeding dispersal is the movement by adult birds from one breeding site to 

another.  If dispersers have greater reproductive success than non-dispersers, then 

dispersal should increase parental fitness (Greenwood and Harvey 1982).  Proximate 

causes of breeding dispersal have been classified into two categories: site quality (site 

choice hypothesis of Greenwood and Harvey 1982) and mate quality (mate choice 

hypothesis of Greenwood and Harvey 1982).  If a change in nesting location is 

accompanied by a change in mate, it is often difficult to separate the causal effects of 

each (Harvey et al. 1979a).  In this paper, I concentrate on breeding dispersal in the 

context of past reproductive success.   

After nest predation, within- and between-year breeding dispersal should be 

advantageous if predation is spatially and temporally predictable (Greenwood and 

Harvey 1982; Sonerud 1985a; Powell and Frasch 2000).  Dispersal distance often 

increases following poor reproductive success (Haas 1998; Hoover 2003; Shutler and 

Clark 2003), but this is not always the case (Lindberg and Sedinger 1997; Blums et al. 

2003).  By moving to a new area, birds may forego local knowledge of food sources and 

refuges from predators, but may gain safer nest sites and higher quality territories or 
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mates (Forero et al. 1999).  At any spatial or temporal scale, dispersing should only be 

adaptive when fitness benefits outweigh costs; however, the costs and benefits of 

dispersing may be sex-specific.  In monogamous species, the sex that invests relatively 

more into nest construction and territory defence may be less likely to disperse due to 

costs of finding, constructing, and defending a new nest site (Greenwood and Harvey 

1982).     

Within-year dispersal (i.e., renesting) may involve many of the same costs and 

benefits associated with between-year dispersal.  In addition, factors such as increased 

probability of predation during a long-distance move (Forero et al. 1999), time and 

energy invested in constructing a new nest cavity (Barclay 1988), increased competition 

for nest sites (Aitken and Martin 2004), and finding a suitable nest site late in the season 

(Pinkowski 1977; Greenwood and Harvey 1982), could add to the cost of renesting.  The 

timing of predation within a short breeding season may also influence the likelihood of 

dispersing, so that adults whose nests were depredated relatively late in the season may 

not have enough time to disperse (Jackson et al. 1989).  As well, late-hatched fledglings 

may have lower recruitment than early-hatched individuals (Witkander et al. 2001).     

Few studies have examined whether direct encounters with predators before eggs 

are laid influence the decision of whether to disperse to a new nest site (Sieving and 

Willson 1998).  Direct cues of predation risk (visual, olfactory, acoustic) should provide 

precise information on future predation risk (Thorson et al. 1998; Orrock et al. 2004).  

Detecting a predator near the nest early in the breeding cycle may be sufficient 

motivation to move because little investment has been made in nest construction or 

reproduction and there is still adequate time to nest.  In such cases, costs of moving may 
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be small, compared to the possibility of complete reproductive loss later in the season.  

Møller (1988) hypothesized that Blackbirds (Turdus merula) could use the presence of 

Black-billed Magpies (Pica pica; a blackbird nest predator) as a cue of a high 

probability of future nest predation risk and predicted that blackbirds would 

consequently choose nest sites far from magpies, but this was not the case.     

 Northern Flickers are primary excavators, experience variability in nest loss due 

to predation (about 18 % at Riske Creek; Chapter 2), and reuse cavities more than most 

woodpecker species.  Studies on dispersal of cavity nesters usually rely upon nest boxes 

to facilitate recapture (e.g., Shutler and Clark 2003); however, several biases may be 

inherent in these studies, such as unnatural predation rates, dispersal to natural nest sites 

is often not monitored, and the distances between nests are human determined (Møller 

1989).  I tested whether male and female flickers breeding in natural cavities were more 

likely to disperse between and within years after their nest had been depredated, relative 

to successful individuals, and whether reproductive success was higher among 

individuals that had dispersed.  I predicted that female flickers would disperse more 

frequently because they invest relatively little, compared to males, in nest construction 

and parental care (Wiebe 2004a).  Female flickers take on average 13 days to renest 

(Wiebe 2005), suggesting that time constraints and potential fitness consequences (e.g., 

recruitment of late- versus early-hatched young) of nesting late are possible in this 

system.  For renesting flicker pairs, I predicted that pairs losing their clutch late in the 

season would be less likely to disperse compared to pairs that lost a nest early in the 

season.  I tested this prediction by comparing clutch initiation dates of the first nest of 

pairs that had moved from or remained at their original nest that was depredated.  One 
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of the assumptions of the site quality hypothesis is that nest predation is spatially and 

temporally predictable.  Because cavity nests are generally permanent, I could test this 

assumption by examining whether flicker nest sites were consistently depredated or 

successful from year to year, regardless of the pair nesting there.  Lastly, I tested 

whether a direct encounter with a model predator before clutch initiation elicited nest 

abandonment. 

3.2 Materials and Methods 

3.2.1 Predictability of Nest Site and Forest Clump Safety 
 
 Regardless of the pair nesting at a given nest site or within an aspen grove 

(hereafter clump), these locations may be inherently safe or unsafe from nest predators 

(i.e., predictable).  I used a chi-square analysis to compare whether nest fate in year t 

was associated with nest fate in year t+1 (α(2)=0.05).  In Chapter 2, I found several 

landscape-level characteristics associated with higher risk of nest predation and 

therefore I examined whether clumps were predictably safe or unsafe between years.  

Although multiple snags may be available for renesting within a clump, landscape-level 

characteristics are likely similar for all such trees, compared to trees in different clumps.  

These forest clumps may contain predator territories and also constrain the movements 

of predators; for example, squirrels probably would not move between clumps because 

of the risk in crossing large distances in grassland habitat with little overhead cover 

(Pelech 1999).  I randomly selected consecutive between-year nesting attempts within a 

clump (but at different nests within that clump) and tested, using a chi-square analysis, 

whether nest success within a clump in year t influenced nest success within the same 
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clump in year t+1.  If there were multiple consecutive nesting attempts within a clump, 

one was randomly selected to be used in the analysis.  

3.2.2 Influence of Male and Female Attributes on Nest Success 
 
 Because reproductive success may vary with age and familiarity with an area 

(Harvey et al. 1979b; Greenwood and Harvey 1982), I tested whether nest success was 

associated with flicker age or familiarity with the Riske Creek area before pooling age 

classes for the analyses involving between-year dispersal (section 3.2.3, Between-year 

Dispersal).  I used one chi-square test to compare nest success among three age classes 

(1, 2, 3+) and another to compare nest success among birds in three categories that 

reflected familiarity with the study site: (1) 1-year-old recruits that had been banded as 

nestlings on the Riske Creek study site the year before (moderate familiarity), (2) newly 

banded individuals of any age (assumed low familiarity), and (3) individuals that had 

been captured and bred at least once before on the study site (high familiarity).  I 

assumed newly banded individuals were the least familiar with the area; however, it is 

possible that these individuals were present on the site and were not banded in previous 

years.  Every nesting attempt by each individual was included in this analysis.   

3.2.3 Between-year Dispersal 
 
  Forty percent of banded flickers return annually to Riske Creek (Fisher and 

Wiebe in review) and therefore I monitored nest selection of these returning individuals.  

Dispersal of each sex was analyzed separately, as well as a subgroup of females whose 

males were not included in the male-only analysis.  Females generally remained with the 

same male from year to year (Wiebe 2005), potentially duplicating results from the male 

38 



 

analysis if all females were pooled.  The subgroup of returning "single" females 

provided an independent measure of female dispersal in the absence of their previous 

mates.   

Separate chi-square analyses of males and females were used to assess whether a 

successful or depredated nesting attempt in year t was associated with the frequency of 

moving nests in year t+1.  I also examined whether males and females switched or 

stayed within the same nesting clump in year t+1, based on their nesting success in year 

t.   Furthermore, I used a test of two proportions to assess whether nest success differed 

between birds that remained at their original nest or clump versus those that dispersed.  I 

assumed that each bird and each site change was independent (Wiklund 1996; Forero et 

al. 1999).  All statistical tests were two-tailed with α=0.05. 

Finite or small study areas may bias dispersal estimates, because birds may 

disperse farther than the limits of the study area (Clark et al. 2004).  Within my study 

area I am likely able to detect most dispersal events, because: (1) recapture efficiency of 

flickers at the Riske Creek study area ranges between 0.80 and 0.90 (Fisher and Wiebe 

in review), (2) average between-year dispersal distance of recaptured males is 

approximately 63 m, which suggests that only birds at the periphery of my study area 

disperse outside, and (3) there have been no band recoveries of individuals during the 

breeding season outside of my study area.  As stated earlier, only 40% of banded birds 

are recaptured annually suggesting that dispersal outside of the study area is common 

and goes undetected.  Therefore I caution that my estimates of dispersal may be low.  

3.2.4 Within-year Dispersal 
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I monitored 37 renesting attempts during the summers of 1998 through 2004 by 

different colour-banded flicker pairs after depredation of their first nest.  This was based 

on observations of individuals at the site of their second nesting attempt after their first 

attempt had been depredated.  Only three females switched mates after nest loss to 

predation and therefore males and females were not analyzed separately, but rather as 

pairs.  I also tested for differences in subsequent nest success among pairs that (1) stayed 

at the original cavity, (2) switched nest trees, (3) remained in the original clump or 4) 

switched clumps, using a Fisher’s Exact test.  Lastly, I tested whether there were 

differences in mean first clutch initiation date between pairs that changed nest sites after 

nest predation or remained at the original depredated nest.   

3.2.5 Experimental Model Presentations 
 

  To test the hypothesis that birds use encounters with predators as cues of local 

nest predation risk when choosing a nest, I placed either a model predator (red squirrel; 

N=24) or control (Yellow-headed Blackbird, Xanthocephalus xanthocephalus; N=24) at 

potential flicker nest sites.  The blackbird model was chosen as a control because it is 

not a nest predator, yet it is common on the study area.  When a flicker was observed 

excavating a new cavity or flushed repeatedly from a previously used cavity before a 

clutch was initiated, I randomly chose one of the models and fastened it 1 m from the 

cavity entrance with a bungee cord tied to the tree trunk.  I then monitored parental 

behaviour for 5 min starting from when the bird was judged to be within the line of sight 

of the model.  Because the perceived threat of the predator could vary with distance to 

the nest, I kept the model to cavity distance constant across trials.  Flickers respond to 

models with slow, deliberate movements, unlike many other bird species (Wiebe 2004) 
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and therefore the 5-min time period should have been adequate to gain a representative 

sample of flicker behaviour.  Territorial “chatter” calls of the squirrel or songs of the 

Yellow-headed Blackbird were played from the base of the nest tree during the trial to 

increase detectability of the model (Ghalambor and Martin 2002).  I then checked nests 

three to five days after the trial to ascertain nest retention between the treatment groups; 

this delay avoided excessive disturbance by humans to the nesting pair.  I used a 

Fisher’s Exact test to determine whether control or predator groups had different 

frequencies of nest abandonment. 

3.3 Results 

3.3.1 Predictability of Nest Site and Forest Clump Safety 
 
 Regardless of the pair nesting at a particular site, nest success was not 

predictable from year to year (Χ2 = 1.929, df = 1, N = 144, P = 0.17; Fig 3.1).  Only 87 

of 527 trees had consecutive successful nesting attempts, whereas only 11 trees had 

consecutive predation events.  Furthermore, approximately 74% of depredated nests and 

72% of successful nests in year t were not used the following year.  

 Similar to the results for nest sites, nest success within individual clumps was 

not predictable between years (Χ2 = 1.88, df = 1, N = 91, P = 0.17; Fig 3.1); 80% of 

clumps that contained a successful nest in year t, had a successful nest in year t+1.  

However, clumps containing nest sites that were depredated in year t had a greater 

probability of being successful in year t+1 than being depredated (Fig 3.1). 

3.3.2 Influence of Male and Female Attributes on Nest Success 
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Figure 3.1  Percentage of successful nests (solid bars) or successful nests within 
individual clumps (open bars) in year t+1 based on fate in year t.  Sample sizes in each 
category are presented above the bars.  Percentages are presented for comparison 
between reproductive outcomes, but numbers of nests or clumps that were successful or 
depredated were used in the analysis. 
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Neither male (Χ2 = 4.265, df = 2, N = 568, P = 0.12) nor female (Χ2 = 4.385, df = 

2, N = 564, P = 0.11) age class influenced nest success (Fig 3.2a), nor did male (Χ2 = 

1.961, df = 2, N = 569, P = 0.38) or female (Χ2 = 4.302, df = 2, N = 563, P = 0.12) 

familiarity with the study area (Fig 3.2b).  Therefore, I was justified to pool all 

individuals of any age class or familiarity with the area for the following analyses. 

3.3.3 Between-year Dispersal 
 

The nesting outcome (successful or depredated) in year t did not have an effect 

on male or female dispersal frequency from nests in year t+1 (males: Fisher Exact Test 

N = 159, P = 0.35, Fig. 3.3a; females: Fisher Exact test, N = 76, P = 0.99, Fig 3.3b).  

Approximately 73% of males and 96% of females switched nests after nesting 

successfully (Fig. 3.3).  Sample sizes were small, but after predation there was no 

significant difference in the proportion of successful nests between male dispersers (six 

of eight attempts were successful) and non-dispersers (two out of five attempts were 

successful; test of two proportions, z = 1.26, P = 0.21, Fig 3.4a).  I could not test 

whether female dispersers had greater reproductive success than non-dispersers because 

none stayed at their previously depredated nest (Fig 3.4a).  Breeding success in year t 

did not have an effect on male or female dispersal frequency from clumps in year t+1 

(males: Fisher’s Exact test, N = 159, P = 0.99, Fig. 3.3a; females: Fisher’s Exact test, N 

= 76, P = 0.57, Fig. 3.3b).  Individuals changing clumps after losing their clutch the 

previous year had the same proportion of successful nests as did individuals remaining 

within the original clump (Males: test of two proportions, z = 1.08, P = 0.28; untestable 

for females because none remained in the same clump after predation, Fig. 3.4b).  All  
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Figure 3.2  Influence of age class (A) and immigrant status (B; see text for description 
of each category) on the percentage of nests depredated for male (solid bars) and female 
(open bars) Northern Flickers at Riske Creek.  Total number of nesting attempts by each 
age or immigration category is above each bar.  Percentages are again presented for 
comparison purposes. 

 
 
 

44 



 

7

0

10

20

30

40

50

60

%
 o

f M
al

es

0
10
20
30
40
50
60
70
80
90

100

%
 o

f F
em

al
es

 

Figure 3.3  Bet
respect to their 
original nest, op
same forest clum
clumps.  Sampl
comparison bet

 
 
 

A 
3
38

3

53 55

0 0
3

18

51

4

Successful Depredated

 

B 

Nest Fate 

ween-year movement patterns of male (A) and female (B) flickers with 
nest fate the previous year.  Black bars indicate the bird remained at the 
en bars indicate that the bird changed nests, but remained within the 
p, and grey bars indicate the bird changed nests and also changed 

e sizes are presented above the bars and percentages presented for 
ween groups. 

45 



 

0

5

8

39107

4

3

69

0

10

20

30

40

50

60

70

%
 o

f s
ec

on
d 

ne
st

in
g 

at
te

m
pt

s
de

pr
ed

at
ed

0

8

5

9056

4

20
52

0

10

20

30

40

50

60

Moved Stayed Moved Stayed

Successful Depredated

%
 o

f s
ec

on
d 

ne
st

in
g 

at
te

m
pt

s
de

pr
ed

at
ed

 

A 

B 

Figure 3.4  Percentage of individual males (solid bars) and females (open bars) that lost 
nests to predators after dispersing from (moved) or staying (stayed) at their original nest 
(A) or clump (B) in relation to past breeding success (successful, depredated).  Total 
sample size of individuals is presented above each bar.  Percentages are again presented 
for purposes of comparing between groups. 
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results for females using the full dataset (N=148) were consistent with results using the 

reduced female dataset and therefore I only present results using the reduced dataset. 

3.3.4 Within-year Dispersal 
 

After nest failure, 27% of 37 renesting pairs used their original cavity, 32% 

switched nests but stayed within the same clump, and 41% switched nests and clumps.  

Of pairs that changed nest sites, an equal proportion stayed within the same clump 

(N=12) as those that changed clumps (N=15; test of two proportions, z = 0.82, P = 

0.41).  There was an equal number of pairs that had successful nests after dispersing (21 

out of 27 attempts were successful) compared with pairs that remained at the same nest 

(8 out of 10 attempts were successful; Fisher’s Exact test, P = 0.99).  Dispersal beyond 

the initial nesting clump had no effect on success of the subsequent nesting attempt 

(Fisher’s Exact test, P = 0.69).   

3.3.5 Experimental Model Presentations 
 

There was no significant difference in the frequency of abandonment between 

pairs presented with either a control or predator model (3 out of 24 and 4 out of 24 

abandoned nests respectively; Fisher’s Exact Test, P = 0.99).  Two of the three flickers 

responding to the control model that abandoned their nests struck the model, whereas 

such aggression to the control model was not observed in the other trials.  I was unable 

to examine whether or not energy investment into new cavity excavation played a role in 

abandonment because sample sizes were low for pairs that abandoned a newly 

excavated cavity (only two pairs abandoned nest sites that were newly excavated versus 

five pairs that abandoned reused nest sites). 
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3.4 Discussion 
 

3.4.1 Predictability of Nest and Clump Safety 
 

In Chapter 2, I identified several nest-site characteristics that were associated 

with the probability of nest predation at both micro and macrohabitat scales.  Predation 

risk at a nest site or within clumps was not predictable from one year to the next (Fig. 

3.1).  Although predation risk may be spatially predictable it may not be temporally 

predictable for several reasons (Carignan and Villard 2002).  In particular, numbers of 

red squirrels are known to cycle and peak in mast years of cone crops (Krebs et al. 

2001).  Changes in predator density (increasing or decreasing encounters with prey 

items) or predator food preferences (i.e., squirrels focusing on cones in mast years and 

other food sources in years with less abundant cone crops) could influence the 

likelihood that squirrels encounter or attack nests, thereby influencing temporal patterns 

of predation.  Models of nest survival incorporating yearly variation received more 

support than models with constant survival, which also points to temporally 

unpredictable nest predation (Chapter 2).  K.L. Wiebe (unpubl. data) found that newly 

excavated cavities were no safer than reused cavities, suggesting that the lifespan or 

memory of predators is short and they do not consistently depredate known nests.  Over 

many years, certain nests could show greater than average success compared to others if 

predation has a spatial component.  By using only two consecutive years of nesting 

attempts, I was likely unable to detect “average nest success” for specific trees or within 

clumps even if temporal variation in nest predation was high.  Another possibility is that 

individual (or pair) variation in vigilance or nest defence behaviour plays a larger role in 

the ultimate success of a nest than do nest characteristics (see Chapter 4).      
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3.4.2 Influence of Male and Female Attributes on Nest Success 
 

Older birds generally fledge more offspring than younger birds because they 

acquire and retain safer nest sites or better territories (Payne and Payne 1993) and can 

effectively defend them against predators (see Chapter 4).  Older pairs may also have 

higher nest success because they are more synchronized in sharing incubation and nest 

defence duties leaving the nest unattended less often than inexperienced pairs (K.L 

Wiebe pers. comm.).  However, I found that neither male nor female age class affected 

nest success. 

One of the costs of long-distance dispersal may be loss of familiarity with local 

resources and protective cover, such that immigrants may have lower reproductive 

success than individuals familiar with an area (Payne and Payne 1993).  I found no 

evidence, however, to suggest that reproductive success differed between individuals 

with different levels of familiarity with the study area.  Instead, first-time breeders in an 

area may use other cues to select optimal nest sites, such as the local reproductive 

success of conspecifics or interspecifics in a breeding patch (Doligez et al. 2002; Parejo 

et al. 2004).  Using public information to select quality habitats, or relying on direct 

(visual, olfactory, acoustic) cues of predation, probably play a larger role than individual 

age or experience of flickers when selecting nest sites, perhaps because flickers are 

relatively short lived (K.L. Wiebe unpubl. data). 

3.4.3 Between-year Dispersal 

 Reproductive success in year t did not influence whether males or females 

changed nest sites or clumps in year t+1 and those individuals that dispersed from both 

nests and clumps did not produce more young.  Predation is one of the most cited 
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proximate causes of breeding dispersal, but several studies have found no relationship 

between nest predation and breeding dispersal (Dow and Fredga 1985; Korpimäki 1987; 

Lindberg and Sedinger 1997; Shutler and Clark 2003; Blums et al. 2003).  Other factors 

such as mate switching or local food abundance may play a larger role in the decision to 

disperse than does predation (Korpimäki 1987; Payne and Payne 1993).  Increased 

parasite loads in reused nests may be another motivation to disperse (Barclay 1988), but 

I did not quantify nest parasite loads in this study.  

If birds move to switch mates, dispersing birds should have new mates, whereas 

non-dispersers should retain mates (Payne and Payne 1993).  Wiebe (2003) found that if 

both members of a pair returned, they stayed together about 75% of the time.  As the 

sample size of divorced parents is small, it is difficult to analyze whether mate switching 

is related to dispersal.  A fluctuating food supply may cause between-year dispersal, 

such that dispersal distance should be negatively correlated with food supply 

(Korpimäki 1987).  Ants, which are the main food supply of flickers, are ephemeral and 

fluctuate with temperature and rainfall (Elchuk and Wiebe 2003); therefore, it is 

possible that the food supply of flickers may also fluctuate between years.  Fluctuation 

of the main food source of flickers may cause them to disperse in search of adequate 

food resources regardless of predation risk and could also account for the tendency of 

nests to be used intermittently, thereby allowing the local food supply to recover.     

My estimates of between-year dispersal may have been low because dispersal of 

flickers outside of my study area went undetected.  Several studies have suggested that 

small study sites may fail to detect dispersing individuals (Clark et al. 2004; Winkler et 

al. 2004) and have found long-distance dispersal upwards of 25 km in small passerines 
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such as the Tree Swallow (Winkler et al. 2004).  Clark et al. (2004) suggested that any 

hypotheses concerning avian dispersal must be addressed at larger spatial scales to 

overcome the problem of undetected dispersal. 

3.4.4 Within-year Dispersal 
 
 Dispersal between nest trees or between clumps did not result in increased 

reproductive success as I had predicted if dispersal was an adaptive strategy to avoid 

local predators.  Within-year dispersal has been less well-studied than between-year 

dispersal; however, within-year dispersal distance often increases after nest predation as 

was found in species such as Eastern Bluebirds, Sialia sialis, (Gowaty and Plissner 

1997), Barn Swallows, Hirundo rustica (Shields 1984), Mallard, Anas platyrhynchos, 

and Gadwall, A. strepera (Ackerman et al. 2003), and Yellow-faced Honeyeaters, 

Lichenostomus chrysops (Boulton et al. 2003), but sometimes there is no significant 

relationship (Red-winged Blackbirds, Agelaius phoeniceus, Beletsky and Orians 1991). 

Significant decreases in dispersal distance after nest predation have even been observed  

in Hooded Warblers, Wilsonia citrine (Howlett and Stutchbury 1997).  Perhaps 

immediate consequences of nest defence (i.e., unsuccessful nest defence action or 

injuries being sustained by the defending parents) have the potential to trigger dispersal 

even if it may not be a beneficial strategy (Powell and Frasch 2000).  Although 

switching nests after predation was common, flickers did not move farther from their 

original nesting clump than movements within clumps, as I had predicted.  As nest 

success was not different between individuals that moved or remained within the same 

clump, it is reasonable to assume that long-distance movements are not a particularly 

beneficial strategy to avoid predators.   
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I likely underestimated dispersal distances within the breeding season as some 

individuals disappeared after having their nest depredated.  Techniques such as radio-

tagging and tracking birds may have offered a definite location of where individuals had 

moved after nest predation (Powell and Frasch 2000).  For example, of 128 nest 

predation events I was only able to track the renesting location of 37 pairs.  It is possible 

that dispersing longer distances than within or between clumps (typically 50-300 m) 

may still be beneficial; however, I could not address this possibility.   

Although it is common in many species that individuals disperse after having 

their nest depredated, less often have studies documented the reproductive consequences 

of dispersing.  Surprisingly, dispersers did not produce more successful nests than non-

dispersers, but this has been observed elsewhere (Clark and Shutler 1999).  Finding a 

new cavity of high quality in a short time may be a challenge for cavity-nesting birds 

and other constraints such as competition and avoidance of nest parasites may be 

involved in the selection of renesting sites (Stanback and Dervan 2001).  Eastern 

Bluebirds preferred to renest in successful nests only if those nests were parasite free 

(Stanback and Dervan 2001).  For flickers, nest parasite loads may constrain the choice 

of locations for a renesting attempt, but thus far only qualitative data on parasite loads in 

flicker nests at Riske Creek have been collected.  There was no difference in mean nest 

initiation dates between pairs that subsequently stayed or moved after nest predation, 

suggesting that seasonal time constraints on searching for a new nest were not a factor in 

short-distance movements within or between clumps.  Peak times of nest predation 

occurred relatively early in the nesting period (29 May; Chapter 2) leaving 

approximately 30 days from that date until the latest nest initiation that has been 
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observed on the study area (K.L. Wiebe unpubl. data).  Because the number of local 

recruits returning to the study area is less than 3% per year (Fisher and Wiebe in review) 

I was unable to test whether there are direct fitness costs of late-nesting, as is the case 

for other woodpeckers (Witkander et al. 2001).  Whether or not longer distance 

movements are constrained by available time to renest and whether fledglings from later 

nests have lower recruitment than fledglings from earlier nests needs further 

investigation.  

3.4.5 Experimental Model Presentations 
 

Many studies have shown that birds may change foraging behaviour in response 

to olfactory, acoustic, and visual cues of predation (Kieffer 1991; Thorson et al. 1998; 

Orrock et al. 2004).  I am unaware of any study to date that has experimentally tested 

whether encounters with predators may be incorporated into nest selection decisions by 

birds.  Flicker pairs presented with a model predator did not abandon their nests more 

frequently than those presented with the control model.  Some pairs may have perceived 

the Yellow-headed Blackbird model as a threat, because it may have resembled (at least 

to me) a European Starling; two of three pairs that abandoned their nest after 

encountering the control model attacked it.  There are two possible interpretations that 

could account for the pair’s unwillingness to abandon their nest when confronted with 

the model predator.  Either birds did not perceive the predator model as a cue of future 

predation risk, or else did not perceive the model as dangerous, but in either case the 

benefits of moving did not outweigh any costs of remaining at the site where a predator 

was encountered.  Flickers reacted in a similar way (diving, hitting, blocking the cavity) 

when responding to both real squirrels (R.J. Fisher pers. obs.) and to the model predator 
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(in this experiment and the following experiment examining nest defence, see Chapter 

4) which suggests that the encounter was not a sufficient cue of future predation risk.  

For males especially,  the costs of finding and excavating or renovating a cavity may 

outweigh the benefits of moving unless certainty of nest predation at the current site is 

high (Wiebe 2003).  Competition for cavity nests is intense, frequently resulting in nest 

usurpation and loss of nest sites early in the breeding season (Aitken and Martin 2004), 

therefore, the cost of competing for a new nest may outweigh any benefit accrued from 

moving out of an area with an potential predator.  As pairs that dispersed within the 

study site after natural nest predation did not have greater nest success, any benefits of 

moving locally after one encounter with a predator remain unclear.   

Perhaps a single encounter with a predator is not sufficient to cause nest 

abandonment in cases where significant investment of time and energy has already been 

made into the current nest (Frid and Dill 2002).  Continuous harassment by a predator 

may eventually cause nest abandonment and future studies could examine the effect of 

repeated model presentations to identify if there is a threshold of encounters that must be 

reached before nest abandonment takes place (Frid and Dill 2002). 
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CHAPTER 4 
INVESTMENT IN NEST DEFENCE BY NORTHERN FLICKERS IN RELATION 

TO AGE, SEX, BROOD SIZE, BODY SIZE, AND BODY CONDITION  

 

4.1 Introduction 

Parent birds may defend their clutch by selecting safe nest sites or by attacking 

predators.  Active nest defence may deter predators, but at the same time it may place 

the parent bird at considerable risk and requires significant energy expenditure 

(Blancher and Robertson 1982; Nealen and Breitwisch 1997; Olendorf and Robinson 

2000).  For example, defence elevates routine metabolic rates as much as 28% to 400% 

in cichlids, Neolamprologus pulcher (Grantner and Taborsky 1998) and smallmouth 

bass, Micropterus dolomieu (Hinch and Collins 1991; Steinhart et al. 2004).  For many 

bird species, the intensity of nest defence increases (1) over the breeding season with 

increasing reproductive value of the brood (see Montgomerie and Weatherhead 1988 for 

a review),  (2) as the potential for renesting declines (Andersson et al. 1980), (3) with 

clutch size or brood size (Olendorf and Robinson 2000), and (4) the intensity may 

depend on the sex of the parent defending the nest (Breitwisch 1988; Sproat and 

Ritchison 1993; Nealen and Breitwisch 1997).     

Age may be correlated with the level of nest defence for several reasons, but this 

has rarely been tested (Veen et al. 2000).  It is likely that older birds have a reduced 

probability of future reproduction and so they should place more value on the current 

brood and invest relatively more compared to younger individuals (Hatch 1997).  
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However, age is often directly correlated with experience with predators and it is often 

difficult to separate the two because experienced and skilled individuals may also be 

willing to defend more strongly (Veen et al. 2000).   

Costs and benefits dictate investment in nest defence by parent birds.  

Differences in levels of defence between the sexes have been the subject of many 

studies (e.g., Breitwisch 1988; Sproat and Ritchison 1993; Tryjanowski and Golawski 

2004) perhaps because the comparison often is easy to test.  Two of several important 

factors that may influence the level at which a given sex defends its nest are longevity 

and size dimorphism (Montgomerie and Weatherhead 1988).  The sex with a lower 

survival rate and consequently a lower probability of breeding again should invest 

relatively more in their current brood compared to their partner (Montgomerie and 

Weatherhead 1988) and for many bird species the heavier investor is the female 

(Promislow et al. 1992).   Sexual size dimorphism may also have an impact on levels of 

nest defence.  Generally, the larger sex defends the nest more aggressively perhaps 

because the risk of injury is lower or it more effectively mounts a strong attack 

(Tryjanowski and Golawski 2004).  Because healthy birds may have relatively lower 

energetic costs, they may take more risks when defending their nest than birds in poorer 

condition (Martin and Horn 1993).  This may apply to sex-biased defence levels if, for 

example, females are in poorer condition after incubation and subsequently defend the 

nest less aggressively (Sproat and Ritchison 1993).   

Cavity nesters may rely extensively on the inaccessible or cryptic nature of their 

nest (see Chapters 2 and 3) rather than nest defence (Weidinger 2002).  Few studies 

have been conducted on defence responses of members of the family Picidae to nest 

56 



 

predators, but one has examined responses to the European Starling (Wiebe 2005).  

Anecdotally, De Kiriline Lawrence (1967) described woodpeckers “… taking up 

strategic positions inside the nest…” and employing “…vehement aggressive displays, 

vocalizations, and diving attacks”.  As well, De Kiriline Lawrence (1967) described a 

male Northern Flicker delivering a blow from its beak to a squirrel entering the nest 

hole, thus deterring the squirrel from entering the nest cavity.   

 In this study, I presented a model predator at nest sites of Northern Flickers to 

examine nest defence behaviour in relation to age class, sex, brood size, body size, and 

body condition of the defending adult.  Because flickers are short-lived and apparently 

there are not age differences in survival (Fisher and Wiebe in review), I predicted that 

older birds would invest equally in nest defence compared with younger birds.  Mark-

recapture models suggested that male flickers have a 1-2 % lower apparent annual 

survival rate than females (Fisher and Wiebe in review).  Therefore, differences in the 

probability of future reproduction between the sexes are likely small and thus I predicted 

that the sexes would not differ in their nest defence behaviour.  Furthermore, male and 

female flickers invest relatively equal amounts of time into brooding and provisioning 

young (Wiebe and Elchuk 2003), which should also lead to equal investment in nest 

defence.  If a large body size reduces the risk of any defence action then larger parents 

should defend more aggressively (Montgomerie and Weatherhead 1988).  Conversely, if 

smaller parents are more maneuverable, then costs of defence may be low and smaller 

birds would be expected to defend more aggressively (Montgomerie and Weatherhead 

1988).  I also predicted that, within sexes, individuals in better condition would defend 

their nest with the highest intensity.  Lastly, I predicted that individuals with large 
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broods (high reproductive value) should defend their nest more aggressively than 

individuals with small broods (low reproductive value).   

4.2 Materials and Methods 

4.2.1 Model Presentations 
 

The highest levels of nest defence generally occur during the nestling stage for 

species with altricial young (Montgomerie and Weatherhead 1988).  I measured nest 

defence of flickers when nestlings were between 10 and 15 days old to control for 

effects of nest stage on defence behaviour.  Each nest was tested once with a predator 

model (red squirrel) and once with a control model (Yellow-headed Blackbird or Cedar 

Waxwing, Bombycilla cedrorum) to avoid potential habituation of parents to the models 

(Knight and Temple 1986a; Knight and Temple 1986c).  Furthermore, individuals were 

not repeatedly tested between years. 

The protocol for model presentations was the same as in Chapter 3.  In 2004, 27 

control trials were conducted with a mounted Cedar Waxwing and its associated song, 

because the blackbird model suffered irreparable damage.  Similar to the blackbird, 

waxwings are not a threat to flicker nests.  Both predator and control models were 

placed at the nest site in random order with one to five days between presentations 

provided that nestlings were 10-15 days old.  After models were placed at the nest, I 

retreated at least 15 m away to record responses of the returning parents. 

Sex of the defending parent was determined by presence/absence of the 

moustache (present only in males) or identification of coloured leg bands.  Ages of 

parents (up to four years old) were determined using molt criteria at the time of banding 

(Test 1945).  Individuals were categorized as either one year old or adults (greater than 
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or equal to two years old) to increase sample sizes in each age category.  An index of 

body size (PCA1) and condition (RMA) was calculated separately for males and females 

at the time of banding (see section 1.5, Trapping and Banding Adults).  Brood size was 

measured at each nest after the second trial to avoid excessive disturbance to the nesting 

pair. 

Behaviours of the adult(s) were monitored for 5 min after I had judged that 

the parent was within approximately 10 m and in line of sight of the model (see section 

3.2.5, Experimental Model Presentations).  I quantified flicker nest defence responses 

based on five behaviours recorded during this 5-min period: (1) response time of the 

adult (i.e., the time between when I had set the model up and was hidden, to when the 

parent returned and I judged it was within line of sight of the model), (2) number of 

alarm calls (“peah” and “wicka” calls; Moore 1995), (3) a visual estimate of the 

minimum distance approached to the model (m), (4) the number of dives and hits were 

condensed into one dichotomous variable (i.e., no dives or dives on the model) because 

there were only four cases where a bird dived at the model but did not hit it, and (5) 

number of seconds an individual spent inside the cavity during each trial (Cordero and 

Senar 1990).  The time spent in the cavity should reflect investment in nest defence 

because being in the cavity prevents predation of the nest (Cordero and Senar 1990).  

Assessing the risk posed to the parent by blocking the cavity entrance is difficult.  This 

defensive strategy may be safer than others because most of the parent’s body is inside 

the cavity (Cordero and Senar 1990), but there are no avenues of escape for the parent.  

Lastly, parents sometimes returned together to defend the nest (23 out of 185 trials); 

therefore, I conducted two separate analyses on nest defence behaviours, one using only 
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individuals that returned alone and another using individuals that returned alone and as a 

pair. 

4.2.2 Statistical Analyses 
 

 Response time was square-root transformed to meet assumptions of normality.  I 

used non-parametric tests to analyze the number of alarm calls, the minimum approach 

distance, and time spent in the cavity because data transformations did not result in 

normality.     

First, I analyzed each defence variable singly to determine which behaviours 

differed significantly between control and squirrel models, without any other effects.  

This avoided having to enter another variable (model type) in subsequent analyses 

involving age class, sex, brood size, body size, and body condition.  I used appropriate 

paired tests for these analyses to account for both predator and control trials being at the 

same nest.  This may have been more stringent than necessary because it was not 

necessarily the same individual that responded to each trial; however, independent tests 

produced consistent results with non-independent tests.   

For those behaviours that differed significantly between model types, I 

subsequently analyzed effects of age class, sex, brood size, body size, and body 

condition on nest defence.  As body size and condition are calculated according to sex 

these had to be analyzed separately for males and females.  Some birds were not 

recaptured during the same year as the trial and thus an index of year-specific body 

condition was not available (I assumed body size remained unchanged from previous 

years), reducing sample sizes for analyses involving body condition.  I used appropriate 

parametric or non-parametric tests to determine whether brood size was correlated with 
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defence behaviour of males and females, in case costs and benefits of defending broods 

differed between the sexes (Dawson and Bortolotti 2003).  A logistic regression was 

used to analyze the probability of diving at the predator including effects of age class, 

sex, and brood size.  I also analyzed response time of adults to the predator model 

because it may provide an index of parental vigilance.  Because I predicted that birds in 

poor condition may be less vigilant at the nest, I only tested whether body condition 

(and not body size) was correlated with response time to the predator.  All tests were at 

α(2)=0.05.    

4.3 Results  

4.3.1 Model Differences 
 

Ninety-one control trials and 94 predator trials were conducted in 2003 and 

2004.  Sample sizes of responding parents of both age classes and sex varied according 

to model type (Table 4.1).  Analyses using only individuals returning alone and the full 

data set produced consistent results and therefore results using the full dataset are 

presented.  There were no significant differences in the five defence variables between 

years or control model types (blackbird versus waxwing), so data from both years and 

both control types were pooled.  Flickers dived significantly more at the predator model 

compared to the control model (28 predator trials versus 2 control trials; Fisher’s Exact 

Test, P < 0.001).  Flickers approached the predator model more closely than the control 

model (mean minimum distance to predator model = 3 ± 4(SD) m; mean minimum 

distance to control model = 5 ± 4(SD) m; Wilcoxon signed ranks test Z = -4.98, P < 

0.001).   Mean response time to each of the models was not significantly different 

(control response time = 880 ± 134(SD) seconds, predator response time = 852 ±  
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Table 4.1  Sample sizes for nest defence trials.  Totals presented include instances 
where both parents responded, plus instances where only one parent responded.  Thus, 
sample sizes are larger than the total number of trials conducted for each model.  
 

Model Type Sex Age N 

Control Male 1 Year 11 

  2+ Years 42 

 Female 1 Year 19 

  2+ Years 30 

Predator Male 1 Year 17 

  2+ Years 43 

 Female 1 Year 19 

  2+ Years 25 
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188(SD) seconds; paired t-test, t = 0.40, P = 0.69).  There was also no effect of model 

type on the number of alarms calls (Wilcoxon signed ranks test, Z = -1.41, P = 0.16).  

Parents spent more time in the cavity in response to the predator model compared to the 

control model (Wilcoxon Signed Ranks Test, Z = -2.35, P < 0.001).  Because of 

significant differences between model types, whether the responding parent dived at the 

model, the minimum distance approached, time spent in the cavity, and response time, 

were included in the following analyses. 

4.3.2 Effects of Parental Attributes and Brood Size on Nest Defence 
 

There was no significant influence of an adult's sex, age class or their brood size 

on the probability of diving at the predator model (Table 4.2).  There was no significant 

difference in mean body size or condition between males that dived at the predator 

model or did not (body size: t-test, t = 0.13, N = 60, P = 0.90; body condition: t-test, t =  

-0.80, N = 48, P = 0.43) and similar results were observed for females (body size: t-test, 

t = 0.12, N = 44, P = 0.91; body condition: t-test, t = 0.14, N = 37, P = 0.89).   

There were no differences between four sex and age classes (one year old males, 

males at least two years old, one year old females, and females at least two years old) in 

minimum distance approached to the predator model (Kruskal Wallis test, Χ2 = 4.50, df 

= 3, P = 0.21).  Body condition, body size, and brood size were also not correlated with 

minimum approach distances to the predator model by males (body size: Spearman rank 

correlation, rs = -0.18, N = 60, P = 0.18; body condition: Spearman rank correlation, rs = 

0.10, N = 48, P = 0.49; brood size: Spearman rank correlation, rs = 0.14, N = 60, P = 

0.27) or females (body size: Spearman rank correlation, rs = -0.09, N = 44, P = 0.57; 

body condition: Spearman rank correlation, rs = -0.23, N = 37, P = 0.17; brood size:  
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Table 4.2  Results of a logistic regression on the probability of diving at the predator 
model including effects of sex, age class, and brood size. No variables significantly 
predicted the probability of diving at the predator model (N=104 flicker individuals).  

 
Variable B SE Wald P 

  Sex -0.14 2.67 0.01 0.96 

  Age Class -0.50 0.83 0.36 0.55 

  Brood Size 0.02 0.31 0.01 0.95 

  Sex x Age Class 0.62 1.05 0.34 0.56 

  Sex x Brood Size 0.08 0.36 0.32 0.57 
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Spearman rank correlation, rs = -0.22, N = 44, P = 0.15).  Sex and age class were not 

associated with response times (Table 4.3) and body condition was not correlated with 

response time for males (Pearson r = -0.22, N = 48, P = 0.13) or females (Pearson r =  

-0.24, N = 37, P = 0.15).  Brood size was also not correlated with response time for 

males (Pearson r = -0.13, N = 60, P = 0.32) or females (Pearson r = -0.18, N = 44, P = 

0.25).  Older males spent significantly more time in the cavity than one year old males, 

one year old females, and females at least two years old (Kruskal Wallis test, Χ2 = 9.93, 

df = 3, P = 0.02; Fig. 4.1), but there were no significant correlations with body size, 

body condition or brood size (male body size: Spearman rank correlation, rs = -0.04, N = 

48, P = 0.79; body condition: Spearman rank correlation rs = -0.02, N = 60, P = 0.92; 

brood size: Spearman rank correlation rs = -0.09, N = 60, P = 0.51; female body size: 

Spearman rank correlation, rs = 0.03, P = 0.87, N = 44; body condition: Spearman rank 

correlation, rs = 0.07, N = 37, P = 0.68; brood size: Spearman rank correlation, rs = -

0.06, N = 44, P = 0.69). 

4.4 Discussion 

4.4.1 Sex Effects on Nest Defence 
  
 My results revealed no statistical differences between nest defence of males and 

females, confirming my initial predictions.  Although many studies have found sex 

differences in nest defence by birds (Gill and Sealy 1996; Cawthorn et al. 1998; Pavel 

and Bureš 2001; Griggio et al. 2003) some have not, including studies on species such 

as the American Goldfinch, Carduelis tristis (Knight and Temple 1986b), and Red-

backed Shrike, Lanius collurio (Tryjanowski and Golawski 2004).  American Goldfinch  
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Table 4.3  Effects of sex and age class of flicker parents on their response time to a 
model nest predator.  Results are from a 2-factor ANOVA (N=104 individuals).  

 
Factor Sum of Squares df F P 

    Sex 39.91 1 5.54 0.26 

    Age Class 2.73 1 0.38 0.65 

    Sex x Age Class 7.20 1 0.03 0.86 
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Figure 4.1  Time spent in the cavity by defending male and female flicker parents of 
different ages in response to a model predator.  Horizontal lines indicate median values, 
boxes represent 75th percentiles and error bars are 90th percentiles.  Sample sizes for 
each category are presented in Table 4.1. 
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are a monogamous species, with equal investment by the sexes into reproduction and 

therefore were expected to show equal levels of defence.  Tryjanowski and Golawski   

(2004) suggested that because male Red-backed Shrikes were larger than females, but 

females had greater confidence of parenthood, differences in costs and benefits of nest 

defence between the sexes were nullified.  For flickers, the sex differences in survival 

(males 1% lower than females; Fisher and Wiebe in review), body size (Wiebe 2000), 

and investment in the current brood (Wiebe and Elchuk 2003) are likely too small to 

alter the costs and benefits of defence between the sexes.  Nest defence may be 

reinforced by interactions with nestlings, such that the sex with more contact with 

nestlings should defend the nest more intensely (Pavel and Bureš 2001).  Flicker parents 

provision equally and although males spend 5% more time than females brooding and 

dividing food for nestlings (Wiebe and Elchuk 2003), this magnitude of difference does 

not appear to alter costs and benefits of nest defence between the sexes.   

Males that were at least two years old spent significantly more time blocking the 

cavity entrance compared to younger males and females of any age.  This particular 

behaviour can be used by cavity nesters to successfully prevent usurpation of cavities by 

more aggressive and dominant competitors (Cordero and Senar 1990).  Cavity blocking 

was used by Tree Sparrows (Passer montanus) to prevent cavity usurpation by House 

Sparrows (P. domesticus) but not other competitors, suggesting that learning may be 

needed to develop this defence behaviour (Cordero and Senar 1990).  My finding that 

older males blocked cavities more than younger parents may suggest a learned 

component of nest defence, but it is unclear why older females did not block cavities 

also.  Blocking the cavity entrance with the head and beak in striking position may be an 
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effective strategy to minimize risk to the parent while still fending off an attack.  It is 

difficult to directly quantify the “risk” of this defence behaviour and rank it with respect 

to the other behaviours I measured, but I assumed that diving at the model was probably 

riskiest.  Perhaps birds perceive the risk of the various behaviours differently than I did.  

Nevertheless, there were few differences among the sexes for any behaviour, confirming 

the general conclusion that the sexes perceive overall costs and benefits of nest defence 

in a similar way. 

4.4.2 Age Class Effects on Nest Defence 
 

According to economic models of nest defence, older birds should defend their 

current brood more strongly than younger birds because they have lower future 

reproductive potential; however, there was no evidence for this in flickers.  These results 

confirmed my original predictions and my previous finding that nest success of flickers 

was unrelated to age of the parents (Chapter 3).  Winkler (1992) explained a lack of age 

effects in defence by Tree Swallows by the fact that these birds had age-independent 

survival.  Annual apparent survival rates for flickers do not vary with age and they are a 

short-lived species (Fisher and Wiebe in review), so it was not surprising that age did 

not influence nest defence.     

Although future survival is one component that could lead to age-dependent nest 

defence, experience may also play a key role (Montgomerie and Weatherhead 1988).  

Costs of nest defence are predicted to decrease with experience of the defending adult 

because strategies lessening the risk of defence may be learned over time (Montgomerie 

and Weatherhead 1988).  It is difficult to control or test for effects of prior experience 

unless parents are experimentally exposed to predators multiple times.  For this study, I 
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attempted to control for habituation to the models by only doing one model presentation 

per pair per year.  This study design did not allow me to separate effects of parental age 

and experience.   

4.4.3 Effects of Body Size and Condition on Nest Defence 
 

It was surprising that neither body size nor condition influenced the five flicker 

nest defence behaviours that I measured.  Because costs of defence should be lower for 

relatively larger birds (and birds in better condition), such individuals are expected to 

defend the nest more aggressively (Montgomerie and Weatherhead 1988).  Although 

sexual size dimorphism is usually cited as important in creating differences in male and 

female nest defence (Tryjanowski and Golawski 2004), effects of body size within the 

sexes has rarely been tested (Hamer and Furness 1993; Radford and Blakey 2000).  If 

there is an advantage to being smaller and more maneuverable when defending the nest, 

then costs and benefits for small birds may be comparable with larger birds 

(Montgomerie and Weatherhead 1988).  Similarly, studies on effects of body condition 

within the sexes have been rare and produced results that are equivocal at best, ranging 

from no effect (Radford and Blakey 2000) to a sex specific effect (Winkler 1992; Hamer 

and Furness 1993).  Evidence that body condition affects the intensity of active defence 

may be lacking, but good nutrient reserves may allow a parent to reduce foraging time 

away from the nest and be more attentive to the nest site during incubation and brooding 

(Slagsvold and Lifjeld 1989; Wiebe and Martin 1997) resulting in greater nesting 

success (Chastel et al. 1995).  Flicker condition was measured in the late stages of 

incubation or early stages of brooding when parents could be captured and so may not 

be exactly representative of condition at the time of the defence trial.  It is known that 
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average body mass of adult flickers drops after nestlings hatch (K.L. Wiebe unpubl. 

data), suggesting that my estimates of body condition may have been high.  If relative 

rankings of body condition among individuals remain similar until the mid-nestling 

period, differences in nest defence still should have been apparent. 

4.4.4 Effects of Brood Size on Nest Defence 
  
 I predicted that male and females flickers with larger broods should defend them 

more aggressively, but brood size was not correlated with any of the defence behaviours 

that I measured.  It has been suggested that only brood size manipulation experiments 

have the potential to adequately test for effects of brood size variation on nest defence 

(Tryjanowski and Golawski 2004); however, experimental studies have also failed to 

detect any differences in nest defence as a result of brood size (Tolonen and Korpimäki 

1995).  If parents have optimally adjusted their clutch size according to their ability to 

raise all their young, then large and small broods may represent equal value to the 

defending adults and therefore brood size may not influence nest defence (Tolonen and 

Korpimäki 1995; Dawson and Bortolotti 2003).   

4.4.5 General Conclusions 
 
 In conclusion, there were no strong relationships between level of nest defence 

and age class, sex, brood size, body size, and body condition of flickers. This may be 

explained by the relatively small differences in annual survival and size between the 

sexes and by age-independent survival in this population.  Older males spent more time 

blocking the cavity entrance than any other sex or age class, but the costs and benefits to 

the defending adult of this particular behaviour are unknown.  I suggest that future 
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studies should examine other potential sources of variation in nest defence, such as nest 

characteristics (e.g., nest height; Kleindorfer et al. 2005) and confidence of parenthood 

(Montgomerie and Weatherhead 1988).         
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CHAPTER 5 
SYNTHESIS AND RECOMMENDATIONS 

 

5.1 Nest Sites, Breeding Dispersal, and Nest Defence  
 

Mammalian predators more frequently depredated flicker nests that were closer 

to the ground, less concealed by vegetation around the entrance and at the base of the 

nest tree, closer to coniferous forest edges, and in forest clumps with a high percentage 

of conifer content.  Proximity to coniferous edges or coniferous trees increased the 

probability of nest predation, but nests near conifers were less likely to be lost to 

starlings.  Because red squirrels are the main predators of flicker nests and they inhabit 

conifer dominated forests, nest encounters by squirrels in these areas are likely higher.  

Flickers apparently face a trade-off in nest selection with respect to safety from 

predators or competitors.  Peaks of nest predation and nest loss to eviction occurred at 

the same time (29 May), although a competing model suggested that the peak of nest 

loss due to eviction occurred five days earlier than the peak of mammalian nest 

predation.  

 Nest predation alone did not account for between-year dispersal (both from nests 

and clumps) of male and female flickers, perhaps because the risk of nest predation at 

specific nest sites and within clumps was not predictable from year to year.  Within 

years, 73% of pairs switched nests, but dispersers did not have increased reproductive 

success compared to non-dispersers.  A stressful immediate encounter with a predator 
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may trigger dispersal, despite this behaviour apparently not being beneficial.  Pairs that 

encountered a model predator prior to egg-laying were no more likely to abandon their 

nest than pairs encountering a control model.  Constraints or costs of finding and 

excavating a new cavity may discourage flickers from changing nest sites once a 

suitable location has been found. 

 Neither sex, age class, brood size, body size, nor body condition of the defending 

parent influenced nest defence behaviours, perhaps because the sexes are similar in size 

and have age-independent survival.  It is possible that brood size is adjusted optimally 

by parents with respect to the number of young they can raise; if so, brood size may not 

influence parental investment into nest defence.  When confronted with a model 

predator, older males blocked the cavity entrance more often than did younger males or 

females of any age.  Blocking the entrance may be a learned behaviour; however, it is 

unclear why older females did not use this behaviour when defending their nest.  

5.2 Conservation Implications  
 
 Flickers provide a "keystone structure" in this ecosystem (Tews et al. 2004) by 

excavating over 45% of the cavities that are subsequently used for nests and roost sites 

by over 15 species (Martin and Eadie 1999).  Because of the dependence of secondary 

cavity nesters on flicker cavities it is likely that nest selection decisions by flickers 

could, similar to a top-down trophic cascade, filter down the nest web and influence nest 

predation or competition rates for generations of secondary cavity nesters. 

In the last 40 years, the Northern Flicker population has been declining at a rate 

of 1.1% per year in Canada and 2.3% in North America (Moore 1995) and starlings 

have been considered to be a main cause (but see Koenig 2003).  Starlings may have 
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indirect as well as direct impacts on the fitness of flickers, if flickers avoid competition 

with starlings by nesting in areas of higher predation risk (Chapter 2).  Furthermore, the 

increasing forest harvest in central British Columbia and the recent infestation by the 

mountain pine beetle (Dendroctonus ponderosae) may reduce the coniferous forests 

important to nest predators, but at the same time may attract starlings into preferred 

open-ground habitat (Purcell et al. 2002). 

Although my research was confined to the interior of British Columbia, squirrels 

and starlings are ubiquitous nest predators and competitors across North America 

(Ingold 1994; Bayne and Hobson 2002); therefore, my results are broadly applicable 

when trying to understand spatial and temporal patterns of predation.  Sciurid predators 

in boreal and temperate forests are also common across much of Europe (Soderstrom et 

al. 1998), so my results may also apply in those areas.  Current strategies of snag 

conservation for woodpeckers have focused simply on use, but have not examined 

reproductive success in relation to characteristics of snags (McClelland and McClelland 

1999).  My study identified several features of safe nest sites that could be incorporated 

into modern forestry practices (e.g., snag retention; Petit et al. 1985).  For example, 

snags could be left approximately 250-300 m away from coniferous forest edges 

(Chapter 2) and small forest stands that are left on the landscape could contain 

approximately 30-35% conifers, which seemed the optimal balance between predation 

and competition (Chapter 2).  The nest step would be to examine effects of these 

management strategies on nest survival of flickers and secondary cavity nesters using 

control areas for comparison.  These guidelines could provide safe nesting locations for 

flickers and the secondary cavity nesters that use their cavities. 
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5.3 Future Directions 
 
 Determining whether flickers choose nest sites to mediate predation and/or 

competition is a logical extension of my study, as I have identified two processes that 

may influence nest selection in this population (Clark and Shutler 1999).  To investigate 

nest selection, one should compare nest characteristics between random unused snags 

versus used snags and assess the availability of different snag types on the landscape.  If 

flickers respond adaptively to predators or competitors they should prefer characteristics 

that reduce the risk of predation or competition.  As starlings become increasingly 

common in western North America, the effects of nest competition could become more 

prevalent, so long-term data are required to test whether natural selection favours a shift 

in nest preferences of flickers.  As suggested earlier, the effects of flicker nest choice on 

nest success of secondary cavity nesters should be investigated to determine whether 

similar patterns of predation and competition apply to the entire cavity-nesting 

community (Martin and Eadie 1999).  

 Studying the foraging behaviour (time budgets, habitat use) of common cavity 

nest predators would allow one to address the question of whether predators use search 

images to identify cavity nests and whether individual predators depredate cavity nests 

consistently (see for example, Pelech 1999).  Examining the success of individual 

predators at finding and depredating nests within artificial snags (Petit et al. 1985) where 

characteristics such as nest height, concealment, and distance to conifers can be 

manipulated, would provide the most concrete evidence for the influence of nest 

characteristics on predation risk. 
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Other proximate mechanisms that could promote dispersal in this population 

need to be addressed, such as mate switching or ectoparasite densities in nests (Payne 

and Payne 1993).  Experiments examining breeding dispersal after mate removal 

(forcing a mate switch) and after alteration of densities of nest parasites (e.g., fumigating 

nest sites) would test some of these hypotheses.  Constraints in prospecting for new nest 

sites are still unknown, and we need a way to quantify costs of dispersal (e.g., survival 

and territory quality of dispersers versus non-dispersers) to solve the apparent paradox 

of dispersers having no greater nest success than non-dispersers.  Expanding my study 

area or conducting similar population studies in multiple areas near Riske Creek (e.g., 

Winkler et al. 2004) to detect long-distance dispersers, would allow for a more accurate 

representation of the potential reproductive advantages or disadvantages of dispersing 

(Clark et al. 2004). 

Finally, individual variation in nest defence needs to be explained.  There may 

be a link between defence levels and nest characteristics themselves (e.g., nest height) 

such that nesting in a high-risk area may not be so costly if nest characteristics reduce 

costs of nest defence (Kleindorfer et al. 2005).  These ideas may be tested more 

efficiently by varying heights of nest boxes and recording the subsequent responses of 

defending adults.  To better interpret the relevance of particular defence behaviours, it 

would also be helpful to quantify costs and benefits to defending adults of particular 

defence behaviours such as cavity-blocking, perhaps by observing or videotaping 

encounters with natural predators.   
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