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Abstract

In recent years, with the fast development of resource capability of both the Inter-
net and personal computers, multimedia applications like video-on-demand (VOD)
streaming have gained dramatic growth and been shown to be potential killer appli-
cations in the current and next-generation Internet. Scalable deployment of these
applications has become a hot problem area due to the potentially high server and
network bandwidth required in these systems.

The conventional approach in a VOD streaming system dedicates a media stream
for each client request, which is not scalable in a wide-area delivery system serving
potentially very large numbers of clients. Recently, various efficient delivery tech-
niques have been proposed to improve the scalability of VOD delivery systems. One
approach is to use a scalable delivery protocol based on multicast, such as periodic
broadcast or stream merging. These protocols have been mostly developed for single-
server based systems and attempt to have each media stream serve as many clients
as possible, so as to minimize the required server and network bandwidth. However,
the performance improvements possible with techniques that deliver all streams from
a single server are limited, especially regarding the required network bandwidth. An-
other approach is based on proxy caching and content replication, such as in content
delivery networks (CDN). Although this approach is able to effectively distribute load
across multiple CDN servers, the cost of this approach may be high.

With the focus on further improving the system efficiency regarding the server
and network bandwidth requirement, a new scalable streaming protocol is developed
in this work. It adapts a previously proposed technique called hierarchical multicast
stream merging (HMSM) to use a peer-to-peer delivery approach. To be more effi-
cient in media delivery, the conventional early merging policy associated with HMSM
is extended to be compatible with the peer-to-peer environment, and various peer se-
lection policies are designed for initiation of media streams. The impact of limited
peer resource capability is also studied in this work. In the performance study, a
number of simulation experiments are conducted to evaluate the performance of the
new protocol and various design policies, and promising results are reported.
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Chapter 1

Introduction

With the development of high speed Internet, multimedia applications are experienc-

ing dramatic growth in recent years. To achieve wide deployment, the technology

of media streaming is crucial for many multimedia applications, such as distance

learning, news-on-demand and movie-on-demand. A media streaming system pro-

vides streaming service to remote users at the times of those user’s requests. Due

to the high bandwidth requirement of media contents, how to provide a large-scale

service in a media streaming system is a challenging problem that has motivated

much research in recent years.

Various multimedia streaming applications are available on the Internet. The

two most popular ones are video-on-demand (VOD) streaming and live streaming

(e.g., live sports broadcast). This thesis studies the problems in the design of VOD

streaming systems. The key challenge is to achieve a scalable design that can serve

a large number of concurrent clients. Efficiently distributing the media contents so

as to reduce the delivery cost is also a concern. This thesis proposes a protocol that

addresses these problems, and evaluates the performance. The remainder of this

chapter reviews the previously proposed techniques on VOD streaming in Section

1.1, followed by the thesis contributions in Section 1.2 and the organization of this

thesis in Section 1.3.
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1.1 VOD Streaming Overview

VOD streaming is the on-demand distribution of stored multimedia files on the local-

area or wide-area networks. Instead of downloading the entire media file before

the media playback, a client in a VOD streaming system can immediately begin

media playback after the client-side buffer is filled with a small portion of the media

file. Typically, the VOD streaming server is the key component which controls the

delivery of media files. When the streaming server delivers a media file, the delivery

costs are required on both the server end (i.e., the server bandwidth cost) and the

network channel that is utilized for the delivery (i.e., the network bandwidth cost).

Conventionally, unicast is used to deliver media files, i.e., there is a distinct con-

nection between the streaming server and each client. However, with the widespread

deployment of broadband access, VOD streaming on the Internet has received more

and more attention recently. Conventionally, the media streaming is based on the

unicast delivery from a single server, which is obviously not practical for wide de-

ployment of VOD streaming service. Thus, for wide-area delivery to a large number

of users, many of the recently proposed scalable solutions have employed the tech-

nique of multicast [4, 39]. By using multicast, a sender can efficiently deliver media

files to multiple receivers, resulting in great savings on delivery costs (i.e., both the

server and network bandwidth cost).

Currently, the multicast service can be provided in two ways, either as a network

primitive or as an application layer service. Although the network primitive (IP

multicast) can achieve the best efficiency in terms of the transfer delay and the net-

work bandwidth usage, there are still many unsolved problems, such as router-state

scalability, deployment complexity, and group management. Thus, many researchers

have turned to the solutions in the application layer.

Scalable streaming protocols use multicast to serve a large number of client re-

quests for stored video content with a single multicast stream, resulting in great

reduction of the required server bandwidth. Two main categories of such protocols

can be identified: periodic broadcast [1, 23, 26, 30, 36, 37, 44] and stream merging
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[18, 16, 17]. Periodic broadcast is most appropriate for delivering hot media objects

with high request rates. It can scale very well to a large number of clients. However,

all clients have to wait a start-up delay before media playback. Stream merging

protocols provide immediate VOD service by initiating a new stream in response

to each client request. Protocols in this category such as patching [25], hierarchical

multicast stream merging [18], and bandwidth skimming [17], apply various tech-

niques to “merge” streams delivering data from the same media file, resulting in

reasonably good efficiency regarding the required server bandwidth.

Another approach to address the scalability issue in VOD streaming systems is

the use of content distribution networks (CDNs). In this approach, the video files

are stored in CDN servers which are strategically placed across the Internet, and

clients can retrieve the desired content from a close location. This approach can

substantially reduce the network bandwidth usage. However, there are still some

issues that need to be addressed, such as content placement and load balancing.

In addition, since many CDN servers are used, scattered across the Internet, the

deployment cost also needs to be considered.

In recent years, with the increasing power of home machines, the peer-to-peer

(P2P) paradigm has gained tremendous attention. P2P based approaches have been

extensively applied in various research areas. Several previously proposed techniques

on VOD streaming have been adapted for use with the peer-to-peer paradigm. One

example is P2Cast [21] which incorporates the patching technique into a peer-to-

peer system to achieve scalable VOD service. However, the patching technique is

not considered to be the most efficient technique for scalable VOD.

1.2 Contributions

This thesis studies the problem of scalable VOD media delivery on large network

systems, addressing several performance issues regarding the efficient delivery in

terms of the resource usage in media delivery. The main contributions of the thesis

are:
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• A new scalable protocol for VOD streaming is proposed. It adapts a stream

merging technique (HMSM [18]), considered to be one of the most efficient

in terms of the required server and network bandwidth, to use a peer-to-peer

delivery approach. Given that more and more network users are equipped with

broadband network access (e.g., cable and DSL) in recent years, this protocol

assumes users that are active in the system (i.e., peers) have certain resource

capabilities such as outbound bandwidth and buffer space, that allows them to

participate in media delivery. This approach undoubtedly reduces the burden

at the server side which is entirely responsible for delivering media streams

in conventional server-based approaches, so that the server bandwidth cost

can be greatly reduced. Meanwhile, the network bandwidth cost can also be

substantially saved if some efficient policies are used in media delivery.

• Several protocol policies are proposed that aim to achieve more efficient me-

dia delivery in terms of the network resource usage. These include a number

of peer selection policies and an extended stream merging policy. The peer

selection policies proposed in this thesis mostly concern the saving on net-

work bandwidth cost compared to conventional server-based approaches (e.g.,

HMSM). In particular, the location-first policy chooses the closest peer to de-

liver streams for new arrivals, while the location-bandwidth ratio policy consid-

ers both the network bandwidth cost and the workload balance on delivering

streams. The stream merging policy proposed in this thesis is extended from

the conventional early merging policies [16]. It attempts to achieve greater

network bandwidth efficiency by choosing a merge target that is delivered by

a close peer, or even not choosing any merge target if no close merge target

exists.

• The impact of peer resource limitations and peer heterogeneity is studied in

this thesis. A typical peer in a real system is expected to have less outbound

bandwidth capacity and less available buffer space compared with a dedicated

server in a server-based system. Such limitation could result in significant
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performance degradation if the protocol is not carefully designed. With the

investigation on this impact, this thesis attempts to find the basic requirement

of these peer resource capabilities that enables the new protocol to achieve

reasonably good performance.

• A scheme of stream failure recovery is proposed. An important peer character-

istic in many peer-to-peer systems is that peers frequently join and leave the

system, which may make the system unstable and lead to resource wastage.

The thesis studies how this peer characteristic will affect the performance of

the new protocol. The proposed failure recovery scheme is designed to cope

with stream failures caused by any type of peer departure, and attempts to

reduce the delivery cost waste to an acceptable level.

1.3 Thesis Organization

The remainder of the thesis is organized as follows. Chapter 2 reviews previous

research related to scalable media streaming. The detailed design of the new protocol

is presented in Chapter 3. Chapter 4 describes the methodology for evaluating the

performance of the new protocol and presents the simulation results. A summary

of the thesis and a discussion of possible future work are presented in Chapter 5.
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Chapter 2

Background

With the dramatic growth of resource capability of both the Internet and per-

sonal computers, media streaming applications such as video-on-demand (VOD) are

emerging as potential killer applications in the current and next-generation Internet.

However, the problem of providing streaming service in a scalable way is not trivial

to solve as videos in such applications are typically bandwidth-intensive. Two types

of techniques that have been previously applied to address this problem are:

• Multicast: The technique of multicast can greatly reduce the cost of delivering

a video to multiple clients, compared to with conventional unicast delivery.

• Scalable streaming technique: Scalable streaming techniques use multicast

together with client grouping and scheduling techniques that allow a group of

clients that request the same video to be served by a single multicast stream,

and/or content replication at multiple servers or peers, so as to ensure that

large numbers of clients can be served without any one system component

becoming overloaded.

The remainder of this chapter discusses previous research on the above two tech-

niques. Section 2.1 presents an overview of multicast and its network and application

layer implementation. Section 2.2 briefly discusses some previously proposed proto-

cols for scalable media streaming.
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2.1 Multicast Service

Traditionally, content delivery applications use the technique of unicast that involves

a single source and a single receiver. With the fast development of the Internet, more

and more applications such as bulk data transfer and streaming media delivery re-

quire the delivery of data from one or more senders to a group of receivers (i.e.,

one-to-many or many-to-many data delivery). When using unicast delivery, these

applications need to create a point-to-point connection from a sender to each re-

ceiver, resulting in low efficiency as the same data must be sent multiple times. To

overcome this inefficiency, the multicast service model enables a single transmission

to have many receivers.

To support the multicast service model, data with multiple intended receivers

must be duplicated somewhere in the delivery path at either network routers or

other end hosts. Data delivery tree or mesh structure(s) are constructed, such that

only one copy of each data item is sent on each link in the structure, in general

serving multiple receivers.

Currently, there are two ways to implement the multicast service: network layer

multicast and application layer multicast. The following two sections give a brief

introduction to these two approaches.

2.1.1 Network Layer Multicast

When multicast was first proposed, the functionalities of multicast service were

intended to be implemented in the network layer. This is so-called IP multicast. In

IP multicast, data is replicated at the network routers. All receivers join a multicast

group which is identified by a class-D IP address. One property of the model is that

any node can act as a sender, even a node that has not joined the multicast group.

Note that routers and the members of a multicast group must be multicast-capable

(i.e., have implementations of the appropriate protocols), although “tunneling” [32]

may be used to route across networks that are not multicast-capable.

Currently, IP multicast routing protocols (i.e., protocols for establishing the
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router state that enables multicast data to be correctly forwarded to all receivers)

can be classified as intra-domain or inter-domain. An Internet Autonomous Sys-

tem (AS), or domain, is a collection of IP networks that are under the same ad-

ministrative control and run the same routing protocols (unicast and multicast).

Intra-domain protocols operate within a single AS. There are several intra-domain

multicast protocols that have been proposed. DVMRP [45] is the first multicast

routing protocol that was proposed and uses reverse path forwarding and pruning.

The basic idea behind reverse path forwarding is that a router forwards a received

multicast packet on all of its outgoing links (except the one on which it was re-

ceived), only if the packet was received on the link on the shortest path back to the

sender. If a router has no attached hosts that have joined the multicast group, prun-

ing is applied to inform its upstream router to stop forwarding multicast packets.

Currently, the most widely used intra-domain multicast routing protocol is PIM-SM

[13] which uses rendezvous point(s) to establish either group-shared trees or source-

specific trees. A group-shared tree is a routing tree that is used by all senders in

a multicast group to forward their packets to the receivers. With source-specific

trees, a distinct tree is constructed for each sender. Depending on the source traffic

concentration, PIM is able to switch from a group-shared tree to a source-specific

tree.

To support multicast across different domains, two inter-domain multicast pro-

tocols have been deployed, namely MSDP and MBGP. MSDP is used by a domain

to announce the existence of active sources to other domains, while MBGP enables

exchange of multicast route information between different domains. These two inter-

domain protocols together with PIM-SM provide an Internet-wide multicast capa-

bility, although they are recognized as not providing a truly scalable solution [4].

The reader is referred to previous reviews on Internet multicast evolution [4] and

multicast routing protocols [31, 39] for more details.

Although many years of research have been invested on IP multicast, there are

still a number of problems with the deployed protocols, in such areas as multicast

group management and multicast address allocation, as well as unresolved issues in
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areas such as multicast traffic pricing, which have seriously affected the extent of

deployment and use of IP multicast.

2.1.2 Application Layer Multicast

Recently, as motivated by the problems with IP multicast, a number of application

layer multicast protocols have been proposed [6, 7, 9, 10, 28]. In contrast to IP

multicast, the task of replicating and forwarding packets so as to achieve delivery to

multiple receivers is performed at the application layer. The nodes at which appli-

cation layer multicast support is implemented form an overlay network, in which the

links connecting nodes may span multiple links in the underlying physical network.

A node can be an end host which is a consumer and/or producer of the multicast

data, or a server within an application layer multicast support infrastructure which

acts as an application layer router.

Compared with IP multicast, application layer multicast may be easier to imple-

ment and manage, at the cost of poorer delivery efficiency including higher latency

and greater bandwidth usage. How to minimize these inefficiencies is a key issue

in designing a scalable application layer multicast protocol. To some extent, mini-

mizing delivery latency and minimizing bandwidth usage may be conflicting goals,

with the appropriate balance between them being application-specific. For example,

for live media delivery, delivery latency may be very important, while bandwidth

efficiency is the most important issue when on-demand streaming of stored content

is considered.

Unlike IP multicast in which the network routers are typically stable and robust,

end-host routers involved in application layer multicast may dynamically join and

leave the overlay, requiring corresponding changes to the multicast routing. How

to handle changes to the overlay network, both changes to the participating nodes

and to the delay and available bandwidth properties of the overlay links, is another

important and non-trivial issue in application layer multicast.

Several application layer multicast systems have been proposed in prior work.
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Owing to their chosen tradeoffs between the goals of minimizing delivery latency

and minimizing bandwidth usage, these systems are somewhat application-specific.

Also, note that some of these systems are implemented only at the end hosts while

others make use of an application layer multicast support infrastructure. Three

systems are briefly reviewed here: Overcast [28], SplitStream [7], and NICE [6].

Overcast [28] is a single-source application layer multicast system designed for

delivery of bandwidth-intensive content. Basically, a set of application layer mul-

ticast servers are organized into a distribution tree rooted at the source. There

are two techniques that are applied to support the high bandwidth requirement.

First, the construction of the distribution tree is based on the goal of maximizing

each Overcast node’s available bandwidth from the source. Second, all Overcast

nodes have permanent storage so that the server content can be replicated within

the network when the media content is multicast over the distribution tree.

SplitStream [7] is another system based on application layer multicast that seeks

to support high bandwidth content distribution. It is built on Scribe [8] to construct

and maintain distribution trees. Scribe is an application layer multicast system

which is built on top of a structured P2P overlay network called Pastry [38]. The key

principle used in SplitStream is cooperative distribution which addresses the problem

in traditional tree-based multicast that a small number of interior nodes carry the

burden of forwarding the multicast content. Specifically, instead of using a single

multicast tree, SplitStream distributes content through a forest of multicast trees.

The media content is split into multiple stripes, each distributed in a multicast tree.

SplitStream ensures that each node serves as an interior node in only one multicast

tree, so that the task of forwarding content is balanced across all participants. In

applications where clients need not receive all of the data, such as streaming of

layered video, clients participate in only as many multicast trees as their achievable

reception bandwidth allows.

NICE [6] arranges the end hosts into a hierarchy of bounded-size clusters and

builds a data distribution tree based on this hierarchy. The use of a hierarchy is for

the purpose of achieving scalability to large numbers of participants. Most hosts are
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at the bottom of the hierarchy and maintain state about a number of other hosts,

and incur associated control overhead, that is independent of the total number of

hosts. However, NICE uses the head of each cluster to send content to its cluster

members, so the links close to the head of each cluster may become bottlenecks.

2.2 Scalable Streaming Media Delivery

How to make streaming media delivery more scalable is a hot and challenging issue

in recent years’ research. A number of scalable streaming techniques have been

proposed. They can be classified into three categories: single-server based, multi-

server based and peer-to-peer based approaches. As suggested by their names, the

difference between the first two approaches lies in the number of servers in the

media delivery system. In the first approach, it is assumed that there is only one

server that delivers all media streams, using multicast. The clients receive streams

only from the source server. In the second approach, multiple servers are used

to deliver the media content, possibly using adaptations of the scalable delivery

techniques originally developed for the single-server context. In the peer-to-peer

based approach, media streams are initiated by either the source server or other

peers. Peers not only receive streams, but also cache portions of streams and forward

cached streams to other peers. This section briefly introduces the techniques applied

in these approaches and reviews previous work.

2.2.1 Single-Server Based Approaches

As the name suggests, the server plays an important role in this approach. Typically,

the media server has the responsibility of: (1) initiating media streams, and (2)

processing media requests. How to efficiently use the server bandwidth is the key

issue in making this approach scalable to large numbers of clients. As mentioned

above, the technique of multicast is an efficient way to achieve one-to-many delivery

service. Thus, protocols in this approach typically deliver each media file using

a number of multicast “channels”, each corresponding to the server and network
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resources required to deliver a media stream, using multicast, and, in the case of

IP multicast, an IP multicast group. When a client requests a media file, it needs

to listen on one or more multicast channels in order to receive that media. Two

main classes of protocols that follow this approach are periodic broadcast and stream

merging. Differing techniques are used in each class of protocols to achieve efficiency

in terms of the server bandwidth requirement.

One important issue is the heterogeneity of the client resource capability such

as the client receive bandwidth. One effective scheme to address this issue is layer-

encoded streaming [34, 43]. In this scheme, the media server transmits each media

file in a small number of layers, each associated with a multicast channel. Among

these layers, there is a base layer in which a minimal quality encoding of the the

media file is transmitted. For successful media playback, a client must at least have

receive bandwidth equal to the transmission rate of the base layer, and if there

is more bandwidth available, the client can listen to one or more other layers for

quality improvement of the media playback.

The following two sub-sections give a brief introduction to some basic techniques

using the single-server based approach. Specifically, Section 2.2.1.1 introduces peri-

odic broadcast and Section 2.2.1.2 describes the technique of stream merging. Gener-

ally, these techniques can be applied with the incorporation of the layered-encoded

streaming scheme mentioned above to accommodate client heterogeneity.

2.2.1.1 Periodic Broadcast

In recent years, various periodic broadcast protocols have been proposed [1, 23, 26,

30, 36, 37, 44], such as the Pyramid Broadcasting protocol, Harmonic Broadcasting,

and their variants. For details, the reader is referred to a survey of periodic broadcast

protocols by A. Hu [23].

Commonly, periodic broadcast protocols have a fixed schedule for transmitting

media data and are most useful for distributing highly popular media files. In these

protocols, the server allocates a fixed number of multicast channels for each media

file. Each media file is divided into a number of segments, each of which is period-
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ically broadcast on an associated multicast channel according to the schedule. The

clients receive media data from one or more channels, but need to wait for a period

of time termed the start-up delay before beginning playback of the media file. The

key advantage of periodic broadcast protocols is that they can scale very well to

a large number of clients, since the media files are broadcast on a fixed schedule

regardless of the number of client requests received. However, two major drawbacks

are suffered in these protocols. One is the unavoidable access latency encountered

by all clients due to the fixed schedule, which might be undesirable in some circum-

stances. The other is the difficulty of providing interactive functions such as fast

forward and other VCR type functions.

2.2.1.2 Stream Merging

The protocols in this family try to overcome the problems existing in periodic broad-

cast protocols by providing immediate service to all requesting clients. Once a client

sends a request, that client can immediately receive and playback the media. There

are various stream merging techniques that have been proposed. Three of them are

briefly reviewed in this section, including patching [25], hierarchical multicast stream

merging [18] and bandwidth skimming [17].

Commonly in these techniques, the media server initiates multicast streams, each

associated with a group of clients. However, they all define their own requirement of

the formation of groups. Patching initiates a new media multicast stream delivering

the full media file, whenever a client makes a request for the file sufficiently long

after the previous request, and the clients arriving close in time will become part of

the same group. The other two techniques repeatedly merge all clients that request

the same file into larger and larger groups so that the formation of a group follows

a hierarchical merging structure. The key difference between hierarchical stream

merging and bandwidth skimming concerns their requirement for the client receive

bandwidth.

There are various patching schemes that differ in the policy they define to group

clients and to initiate a new full-file multicast stream. The most efficient scheme
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initiates a new full-file multicast stream in response to a client request whenever the

time since the previous request for the same file exceeds a threshold T. Otherwise, the

client listens to the previous full-file multicast stream, and buffers the data received

for later playback. Meanwhile, to achieve immediate service, the server initiates a

unicast patch stream to that client for the portion missed in the multicast stream.

Both the multicast stream and the patch stream are received at the file playback

bit rate, so the client receive bandwidth is required to be twice the file playback

bit rate. As shown by Eager et al. [18], if the threshold T is chosen optimally, the

required server bandwidth increases with the square root of the client request rate.

Hierarchical multicast stream merging (HMSM) [18] is another scalable stream

merging technique that greatly reduces the required server and network bandwidth.

It requires server bandwidth that increases logarithmically with the client request

rate. Similar to patching, the most basic form of HMSM requires the client receive

bandwidth to be two times the file playback bit rate. Upon the receipt of a file

request, the server initiates a new primary multicast stream from the beginning of

the file, at the file playback bit rate. Each client listens to its primary stream as well

as a secondary stream (merge target) which is a recently initiated ongoing stream,

attempting to “catch up” to the clients receiving the earlier stream. When all of the

data missed from the secondary stream has been received from the primary stream,

the streams (and clients) are said to be “merged”, the client continues listening to its

secondary stream, and the primary stream terminates. Based on this policy, clients

requesting the same file eventually merge into larger and larger groups.

There are various stream merging policies for HMSM that differ in how the

secondary stream is chosen [16]. The simplest of them, termed Closest Target (CT),

simply chooses the closest earlier stream as the merge target. It is not necessarily

possible to merge with a merge target computed by CT, since the target stream itself

may merge with its own target before it can be merged with by the later stream.

Another variant of early merging policy, Earliest Reachable Merge Target (ERMT),

chooses the closest stream that a client (group of clients) can merge with if no later

client(s) merge with the client(s) first.
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Figure 2.1: Hierarchical Multicast Stream Merging

Figure 2.1 illustrates an example of HMSM using CT. In the figure, four clients

A, B, C, and D arrive at times T0, T1, T3, and T4, respectively. Each client is

provided with a separate primary stream for immediate playback, as represented by

solid lines. Simultaneously, client B, C, and D also listen to the closest previous

stream (the merge target secondary stream) until they are merged. The dashed

lines show the amount of data that a client (or group of clients) accumulates for an

attempted merge. Clients A and B merge at time T2, client C and D merge at time

T5, and merged group A and B will merge with group C and D at time T6. As

shown for client C, an attempted merge may not occur, i.e., client C merged with

client D before it could merge with its initial target which is the group of clients A

and B.

The bandwidth skimming [17] technique can be considered as a variant of HMSM

with a focus on relaying the client receive bandwidth requirement, while still ensuring

the bandwidth efficiency achieved in HMSM. It considers the scenario of when a

client doesn’t have the receive bandwidth of twice the file playback bit rate to

perform the hierarchical merging policies described above. The key idea is to hold

a portion of the client receive bandwidth that is sufficiently small, to make stream
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merging workable when the receive bandwidth is only slightly greater than the file

playback bit rate.

There are several bandwidth skimming policies defined to perform stream merg-

ing with a small “skim” (i.e., difference between the maximum sustainable client

receive bandwidth and the file playback bit rate), including partition, latest patch,

shared latest patch and discontinuous patch. In partition, a media file is delivered

using K multicast channels, each at a rate of 1/K times the media playback bit rate.

Assuming that a client has receive bandwidth equal to (1+1/K) times the media

playback bit rate, i.e., it can listen to (K+1) channels, a merge requires K periods,

each of the same duration that depends on the time separation between the merger

and mergee streams. In first period, the client listens to (K+1) channels includ-

ing one channel of its merge target stream and K channels of its own stream. In

each subsequent period, the client listens to one less channel of its own stream and

one more channel of its target stream, until the merge is accomplished and its own

stream can be terminated. In latest patch, each client listens to a multicast stream

delivered at a rate equals to the client receive bandwidth which is greater than the

media playback bit rate. When the stream of a client catches up to the playback

point of an earlier client, the two clients merge. Latest patch has the advantage of

low complexity, while partition achieves the best efficiency but requires clients to

listen to more multicast channels.

2.2.2 Multi-Server Based Approaches

Although the single-server based approaches use various techniques to reduce the

required server and network bandwidth, it may not be an optimal solution in terms of

the total delivery cost, especially when there are large numbers of clients and a high

total client request rate. Previous research on multi-server solutions for scalable

streaming media delivery has developed techniques using content replication and

proxy caching. Typically, in these multi-server systems, there is a set of replicas

or proxy servers storing partial or full media content. Clients communicate with
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and retrieve the media content from the servers closer to them, so as to reduce the

network bandwidth cost.

The conventional multi-server solutions apply the simple unicast streaming for

media delivery. This can be further improved if the scalable streaming techniques

developed with the single-server based approach are adapted for use with this ap-

proach. Several such media distribution systems have been proposed and analyzed

[2, 3, 46]. Since it is more complex to design a multi-server media delivery system

combined with those scalable streaming techniques, various problems have been

studied in terms of how to minimize the total delivery cost, such as replica place-

ment, optimal stream routing and proxy cache allocation. In this section, two of

these studies are briefly reviewed.

Almeida et al. study the problem of designing a scalable streaming content

delivery system that consists of a number of replicas of popular media content

[3]. With some system assumptions (e.g., Poisson client request arrivals), they

developed both optimal solution methods and near-optimal heuristics for minimum

replica placement and routing. The optimal solution method is applicable with

most delivery protocols including stream merging, periodic broadcast, and unicast

streaming. Based on the results of experiments with the optimal solution method,

they observed that the optimal solution for conventional unicast delivery might be

significantly sub-optimal for a system using a scalable delivery technique. The near-

optimal heuristics can greatly reduce the execution time so as to support the design

of a large and heterogeneous scalable system. These efficient heuristics are based on

some good insights of optimal placement and routing: 1) a good placement solution

must consider both the network locations and the request rates of the client sites;

and 2) the optimal routing involves a tradeoff between minimizing the distance from

a replica to each of the clients that it serves, and maximizing path sharing among

the clients.

Wang et al. focus on maximizing the delivery cost savings using proxy prefix

caching instead of full file replicas [46]. With the system assumption of a source

server and a single proxy, the main contributions are the optimal cost model they
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develop for proxy cache allocation, and various delivery techniques that combine

prefix caching with a scalable delivery protocol. The optimal proxy cache allo-

cation scheme is generalized so that it can be applied with any scalable delivery

protocol. The delivery techniques that are developed include unicast suffix batching

(SBatch), unicast patching with prefix caching (UPatch), multicast patching with

prefix caching (MPatch), and multicast merging with prefix caching (MMerge).

2.2.3 Peer-to-Peer Based Approaches

In a peer-to-peer (P2P) system, peers can directly share resources such as files,

storage, and CPU capacity with each other. The motivations for use of a P2P-based

approach for scalable streaming media delivery include: (1) IP multicast still has

unsolved problems related to scalability and deployment; and (2) the multi-server

based approaches use a number of dedicated machines, resulting in a relatively large

deployment cost.

Various approaches for P2P media streaming have been proposed [5, 11, 14,

15, 21, 22, 29, 42, 49]. Of interest here are those solutions related to on-demand

streaming of stored media files. Due to the asynchronous nature of client requests

in on-demand streaming systems, how to provide scalable delivery service for all

requests with synchronous multicast sessions is the key issue in these approaches. A

typical technique they apply is called cache-and-relay. Specifically, a peer not only

receives multicast streams, but also is responsible for caching the received stream

and forwarding it to other peers at later time(s). This results in reduction of both

the required server bandwidth and the system deployment cost. However, there are

several issues that need to be addressed in a peer-to-peer based approach. First,

peers normally do not have as much outgoing bandwidth as media servers, so how

to select the best forwarding peer must be carefully considered. Second, unlike

the multi-server based approaches in which the servers are typically dedicated and

robust, peers in peer-to-peer based approaches may join and leave the P2P system

frequently. How to handle this dynamic nature is also an important issue. Besides
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that, the issue of heterogeneity is always important when a widely scalable solution

is considered. In this section, three of these approaches, P2Cast [21], the layered

peer-to-peer streaming scheme [11], and an approach that provides near-VOD service

[5], are briefly reviewed.

P2Cast [21] incorporates the patching technique into peer-to-peer media stream-

ing to provide scalable VOD service. As mentioned before, the optimal patching

scheme aggregates clients that arrive within a threshold period into a multicast ses-

sion. Each client except the first such client receives two streams initiated by the

media server, a full-file (“base”) multicast stream, and a unicast patch stream for

the missed portion. P2Cast applies the same idea, except that the patch stream

can be obtained from a peer rather than the server, while the base stream is still

delivered from the server using application-layer multicast. Each peer requesting a

particular media file joins the multicast tree for that file to obtain the base stream.

Each peer in the tree is responsible for: (1) forwarding the base stream to other

peers; and (2) caching its patch stream and relaying to other peers as requested.

P2Cast proposed several policies based on the available bandwidth at each peer to

define how to select a parent in the multicast tree and a forwarding peer for the

patch stream.

The layered peer-to-peer streaming scheme [11] also focuses on the problem of

large-scale on-demand media distribution. Besides the issue of asynchrony men-

tioned above, this scheme also considers the issue of heterogeneity in terms of client

resource capabilities. Two techniques are incorporated to address these two issues:

cache-and-relay and layered multicast [34, 43]. In this approach, like previous layer-

encoded streaming approaches, a media stream is encoded into multiple layers based

on the layer-encoding policy. The server transmits each layer on a separate multicast

channel. Each peer receives a number of layers as limited by its inbound bandwidth,

and caches a number of layers that may be fewer than it received due to limited

buffer space. The outbound bandwidth limits the number of layers that one peer

can forward to other peers. Each peer can retrieve layers from more than one peer

depending on their request time. The basic algorithm applied in this scheme follows

19



the goal of maximizing the net benefit (i.e., difference between the system benefit

and the system cost). The overall streaming quality of all peers is regarded as the

system benefit which is defined as the total number of layers received by all peers.

The system cost is defined as the server bandwidth consumption.

Annapureddy et al. propose an approach that provides high-quality near-VOD

service more practically with P2P technology [5]. Particularly, they investigate

the scheduling problem of efficiently disseminating the blocks of a video file in an

unstructured P2P mesh-based system. The main contribution of this approach is the

various policies proposed for scheduling the propagation of file blocks among peers

or from server, with the purpose of ensuring a small start-up delay and maximizing

the system resource utilization. Specifically, both the server and client policies have

been studied with respect to different scenarios of during or after the initial flash-

crowd period. Also, the techniques of pre-fetching and network coding are applied

to further improve the system throughput, making efficient near-VOD possible with

small start-up delay.
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Chapter 3

Peer-to-peer Stream Merging

The key contribution of this thesis is the development and evaluation of a scalable on-

demand streaming protocol that delivers media files in a peer-to-peer fashion. This

protocol employs the previously developed hierarchical stream merging technique

to deliver media files on-demand. It can be applied in any large-scale network

infrastructure that involves heterogeneous clients with various resource capabilities.

The main goal of this protocol is to enrich the technique of stream merging by

adapting it for the peer-to-peer context, and to thus further improve the efficiency

of previously proposed stream merging protocols in terms of the server and network

bandwidth requirement.

This chapter presents the method used to implement the stream merging tech-

nique in the peer-to-peer environment, and the protocol details. Specifically, Section

3.1 discusses the motivation and outlines the key requirements for developing the

new protocol. Section 3.2 presents a detailed protocol overview including the sys-

tem architecture and some important server and client characteristics. Some design

issues such as peer selection policies, impact of limited peer storage capacity, and

stream failure recovery are discussed in Sections 3.3, 3.4, and 3.5.

3.1 Motivation

As classified in Chapter 2, previously proposed techniques for scalable streaming me-

dia delivery include single-server based, multi-server based, and peer-to-peer based
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approaches. This section discusses the weakness of these approaches.

Single-server based approaches apply multicast to achieve efficiency in terms of

the server and network bandwidth requirement. As there is only one server pro-

viding service to all clients, the key focus of these approaches is how to minimize

the server bandwidth requirement. In one class of techniques, periodic broadcast,

a fixed number of media streams are multicast by the server independently of the

client request arrivals. In another class of techniques, stream merging, the server

bandwidth requirement is minimized by aggregating clients into larger and larger

groups. In terms of the server bandwidth requirement, these delivery techniques can

achieve reasonably good scalability. For example, one of stream merging techniques,

HMSM [18], can achieve close to the lower bound of the required server bandwidth.

However, the performance improvements possible with techniques that deliver all

streams from a single server are limited. In addition, another important scalability

metric, the network bandwidth requirement [50], is not the main concern in these

approaches. In many circumstances, how to minimize the required network band-

width in an on-demand streaming system is another key issue in terms of the system

scalability.

Multi-server based approaches include those techniques that apply either proxy

caches or content replicas to achieve scalable media delivery. Assuming that clients

always send their requests to close servers, and that with high probability these

servers store the requested file or a portion thereof, substantial savings in delivery

cost can be achieved. These approaches consider both the server and network band-

width requirement, so they may be more efficient solutions than single-server based

approaches when the network bandwidth cost dominates the system cost. Conven-

tionally, the multi-server based approaches use unicast for media delivery. To op-

timize the performance, some recently proposed solutions adapt single-server based

scalable delivery techniques for use in multi-server systems. For example, Jussara et

al. studied multi-server systems using the stream merging technique [3]. This can

further improve the delivery efficiency, but such systems are more complicated than

conventional multi-server systems, and in common with other multi-server based
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approaches, deployment cost is also an issue.

Recently, with the development of broadband Internet and high performance

personal computers, some peer-to-peer based approaches have been proposed for

streaming media delivery. Such approaches have the potential to minimize the de-

ployment cost of a streaming media delivery system, as well as the required server

and network bandwidth. Typically, these approaches adapt some previously pro-

posed scalable delivery technique for use in a peer-to-peer system. For example,

the patching technique and the layered-multicast scheme are respectively applied in

P2Cast [21] and layered peer-to-peer streaming [11]. Of interest here are those scal-

able techniques that provide immediate service, such as patching and hierarchical

multicast stream merging (HMSM) [18]. HMSM out-performs patching with respect

to the required server bandwidth, especially at high request rates [18]. In addition,

the bandwidth skimming variant of HMSM allows the client receive bandwidth to

be less than twice the media playback bit rate, in contrast to patching and basic

HMSM [17]. Delivering media content in a peer-to-peer system that employs the

HMSM technique to achieve optimal efficiency with respect to both the required

server and network bandwidth has not been addressed in prior work.

With the discussion of those previously proposed techniques for scalable stream-

ing media delivery, some key properties desired in the new protocol can be summa-

rized as follows:

• Scalable: The new protocol should be applicable in any large-scale network-

ing environment in which there are a large number of heterogeneous clients

requesting services.

• Efficient: The new protocol should be efficient in both the server and net-

work bandwidth costs. The required server bandwidth should be close to the

lower bound of the server bandwidth requirement, and the required network

bandwidth should be significantly less than any conventional approach.

• Deployable: The new protocol should allow easy deployment and be of min-

imal deployment cost.
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3.2 Protocol Overview

The peer-to-peer stream merging protocol proposed in this work aims at implement-

ing the technique of hierarchical multicast stream merging (HMSM) [18] in a peer-

to-peer environment. As noted, HMSM has been studied previously only in the

single and multi-server contexts. The main goal of the new protocol is to relieve the

burden on the server with the assistance of all participating peers, i.e., to adapt the

centralized technique to a decentralized environment. Note that, although the new

protocol is not a pure peer-to-peer protocol since it requires a media server acting

as a control point, all clients in the stream merging system are still referred to as

“peers” as in any pure peer-to-peer system. This section presents an overview of

the architecture of the new stream merging system and the key techniques applied

to achieve the decentralization.

3.2.1 System Architecture

Like other VOD systems, the peer-to-peer stream merging system consists of a media

server which stores all the media files, and a set of clients (peers) who may request

a media file at any time and from any starting position. As HMSM requires the

support of multicast for media delivery, it is assumed that the media server and all

the peers in the system are multicast-capable (either the native IP multicast or the

application layer multicast).

Basically, while the media server still replies to all peer requests, all participating

peers that have requested a particular media file can cooperatively provide assistance

in the streaming media delivery using the technique of HMSM. Any appropriate peer

is able to be a stream provider and is able to initiate and deliver a media stream to

any other peer. An appropriate peer is a peer that has enough bandwidth to deliver

a stream to another peer, and enough storage capacity to buffer data after playback

so it can be later streamed elsewhere.

One notable characteristic of a peer-to-peer system is that a peer not only receives

service, but also provides service. Some recently developed peer-to-peer file sharing
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systems even restrict the amount of service received according to the amount of

service provided. Similarly, in a peer-assisted VOD system, peers provide streams

as well as receive streams, typically using a scalable technique called cache-and-relay

[29], which is also employed in this peer-to-peer stream merging approach. Basically,

while receiving a requested stream, a peer also acts as a temporary server, i.e., it

caches the received stream in local storage and can later relay the cached stream to

other peers that request the same media file.

In the conventional HMSM technique, each requesting client is typically required

to listen on two streams, a new primary stream and an existing secondary stream,

each delivered by the media server. The primary stream is provided for the initial

portion of the requested file and the secondary stream is actually the merge target

(i.e., the stream with which a merger is attempted). Now in the new peer-to-

peer stream merging system, with the cache-and-relay technique incorporated into

HMSM, those two streams are no longer necessarily delivered by the media server.

Instead, each peer caches its received streams for a certain length and can be the

stream provider to another peer requesting the same file, as long as the starting

point of the requested file is within the cached length.

As mentioned in Section 3.1, the main objective of this peer-to-peer stream

merging approach is to further improve the delivery efficiency in a scalable VOD

system in terms of the server and network bandwidth requirement, especially the

latter. As cache-and-relay requires peers to store the streams they received, any

one peer can be a temporary stream provider. If another peer requests the same

file later, the media server can choose those existing peers who are geographically

close to the new peer, and ask them to relay either the primary or the secondary

stream. Thus, the total network bandwidth cost can be reduced. Furthermore, the

server bandwidth requirement in the new system is at least as efficient as in the

conventional HMSM, which increases logarithmically with the client request rate,

since now the task of delivering multicast streams is shared by all participating peers

instead of only the media server itself.
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3.2.2 Relocating Server Responsibilities

In the conventional HMSM system, the responsibilities of the media server include

delivering media streams, processing client requests as well as building and main-

taining the hierarchical stream merging structure. The major portion of the server

bandwidth is consumed on delivering media data streams, i.e. being the stream

provider is the main responsibility of the server. In the peer-to-peer stream merg-

ing approach, this is no longer the case, due to the peer-to-peer nature of the new

system. In this section, the relocation of server responsibilities in the new approach

is explained in more detail.

One key element of the HMSM delivery technique is that clients accumulate data

faster than their media playback bit rate by listening on more than one stream, so

that they can catch up to earlier clients. In this technique, it is essential for the

media server to keep track of the progress of all ongoing streams and meanwhile

dynamically maintain the hierarchical stream merging structure. Changes of stream

merging structure could result from some basic events such as stream initiations and

stream mergers. These events are triggered at the media server by the reception of

join requests and merge notifications.

The join request is issued by a client when it requests a particular media file.

Upon receiving the message, the server will provide the requesting client two dedi-

cated streams: a primary stream that is newly initiated for the initial portion of the

requested file for immediate playback, and a secondary stream (merge target) that

is chosen from the existing streams that have been recently initiated for the same

file.

The merge notification is issued when a merge completion is detected, i.e., an

existing client (or group of clients) has accumulated enough data to catch up to an

earlier stream. As the media server tracks all active streams and has full knowledge

of ongoing mergers, it can be assumed that the merge notification is generated by

the server system itself. Upon receiving such a notification, the server will reassign

the client(s) a new merge target for the next merger. The client(s) will listen to
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both the new target stream and the initial target stream. At this time, the initial

target stream changes its role for the client(s) to be the primary stream. The initial

primary stream will be terminated.

These basic events are the same for all VOD systems that apply the HMSM

technique, no matter whether in a conventional client-server approach or a peer-to-

peer based approach. However, a key difference between the two approaches lies

in the way a primary stream is initiated upon receiving a join request, and who is

responsible for initiating this stream in particular.

In the conventional HMSM approach, the media server is the only stream provider

in the system. For this reason, processing client requests that requires the server to

communicate with the stream initiators is quite straightforward, since the initiator

of all streams is the server itself. There is no need for the server to contact any

clients for the addition of a new stream or removal of an existing stream. This is

not the case, however, in a peer-to-peer based approach. Although the media server

could still initiate new streams, in many cases participating peers will be the stream

initiators. If an approach in which the media server controls events such as initi-

ating stream and stream mergers is used, communication is required between the

media server and peers, whenever a peer is selected to initiate the primary stream

or it owns the selected merge target stream. At this point, the media server acts

more like a control centre that mainly deals with the control messages and main-

tains the hierarchical stream merging structure. Note that, to properly perform the

peer selection, the media server needs to keep track of the per-client state, which is

unnecessary in the conventional approach. This requirement has a negative impact

on the scalability of the system. How to address this issue is an important concern.

The following subsections give more details about the server responsibilities men-

tioned above. Specifically, Section 3.2.2.1 describes how the media server deals with

join requests and merge notifications, and Section 3.2.2.2 presents a proposed scheme

for maintaining state information concerning the requesting clients, at the media

server.

27



3.2.2.1 Processing Control Messages

The media server controls the initiation of new streams and the merger of any two

streams when receiving corresponding control messages. This section presents the

detail of this server responsibility in terms of the type of control messages.

Join Request

When a new peer sends a join request, it will be provided the identity of a primary

stream and a secondary stream to which it needs to listen. As every existing peer

or the server itself could be a stream provider, it is necessary to determine which

one should initiate the new primary stream, and which existing stream is chosen

to be the secondary stream. Specifically, when the server receives a join request

for a particular file, the server will: 1) initiate a new stream if there are no active

streams delivering that file, (as in this case, no peer will be able to serve as initiator),

or otherwise 2) initiate the selection processes for determining the primary stream

initiator and the secondary stream (merge target). In either case, the new peer will

be informed of which stream(s) it should listen to, and if applicable, the selected peer

initiator will be informed that it should create the primary stream for the requesting

peer.

The key issue here is how to select the initiator for the primary stream and

which active stream is most appropriate to be the merge target. As will be discussed

later, the best choices depend on the objectives (e.g., minimizing network bandwidth

and/or balancing peer bandwidth load), and on factors such as the peer locations,

and the available peer bandwidth and buffer space.

Merge Notification

A merge notification is issued by the server system indicating the completion of a

stream merging operation (a stream merger). It implies that the primary stream

associated with a group of peers (merger group) has progressed to the merge point

which means the merger peers have accumulated enough data to catch up to another
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group of peers (mergee group). According to the conventional HMSM technique,

when a stream merger is completed, two groups (i.e., a merger group and a mergee

group) are merged into a larger group. With a new merge target assigned by the

server, the merged group will listen on a new target stream as well as the primary

stream of the old mergee group. The primary stream of the old merger group will

be terminated.

Stream merging operation is carried out similarly in the peer-to-peer stream

merging approach, however it must be defined to be adaptable to the peer-to-peer

system in which peers participate in the media delivery. Basically, communication

is needed between the media server and a participating peer when a stream merger

occurs. The details of how this process is performed are explained as follows:

• Upon receiving a merge notification, the server will initiate a selection process,

trying to find a new merge target for the merged group if possible. The merge

target selection is based on the merging policies discussed later.

• At the peer side, if the merged group obtains a merge target, it will listen

on the new target stream and the stream that was the primary stream of the

mergee group as well as the merge target of the merger group; otherwise, the

group will listen on the latter stream only. Note that, to the merger group, the

initially associated merge target now changes its role to the primary stream of

the merger group.

• As the old primary stream of the merger group is no longer useful, it can be

terminated. Special consideration is needed when the stream is delivered by a

peer. There are two options. One is for the server to inform the peer delivering

the stream to terminate it, which involves communication between the server

and the peer. Alternatively, if the peer can detect when there are no peers

listening to the stream, the peer can decide to terminate the stream.

One point to note here is that the mergee group may have its own merge target

when it is caught by the merger group. As required by the merging principles defined
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in the conventional HMSM, the mergee group may have to alter its merge target

and listen on a newly assigned merge target.

3.2.2.2 Maintaining Peer State

One complication in the new protocol is that the media server necessarily maintains

state for use in the peer selection process. For the peer selection, the useful state

information could include workload, available outbound bandwidth, liveness, etc.

Since there might be thousands of peers participating at the same time, precisely

maintaining per-client state may result in significant communication overhead. Al-

though this control overhead cannot be completely eliminated, there are many ways

to reduce it to an acceptable level to improve the scalability of the new protocol.

The scheme proposed in this work is explained as follows.

Basically, scalability is achieved in a similar fashion as in the RTP control pro-

tocol (RTCP) [40]. Instead of keeping precise per-client state, the media server

maintains an approximate view of the state of all participating peers. The server

still updates the peer state upon receiving update messages from peers; however,

each peer only sends an update message with a probability p after each time interval

of some fixed duration. The value of the probability p is adaptive according to the

volume of traffic generated, and is periodically multicast by the media server. With

this scheme, during each time interval, only partial peer state will be updated so

that the bandwidth consumed on the peer update messages can be controlled to a

reasonable level.

3.2.3 Reconsidering Early Merging Policies

In the conventional HMSM approach, as new client requests arrive and stream merg-

ers occur, the media server dynamically builds and maintains a data structure that

allows it to determine merge targets. The determination of merge targets follows

the early merging heuristic [16]. One should merge the neighbouring streams that

can be merged at the earliest point in time. To implement this heuristic, there are
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two key merging principles followed. First, a merge target should be chosen for

a client (or group of clients) when the client’s request is first made and when it

merges with another group of clients. Second, the client(s) should keep listening to

the merge target stream until the merger is successful or another (group of) client(s)

preemptively merges with its primary stream. The latter principle implies that a

merge target may have to be re-selected for a client (or group of clients) when it is

caught by any later clients.

Based on the two merging principles, some efficient early merging policies have

been proposed, such as Earliest Reachable Merge Target (ERMT) and Closest Target

(CT), which can be employed by the media server for the determination of a merge

target [16]. Note that the definitions of these early merging policies are all time-

based; i.e., the progress point in time of each stream is used in determining merge

targets. They try to make stream merging events occur as soon as possible with the

goal of minimizing the server and network bandwidth requirement.

In order to design merging policies for the peer-to-peer stream context, the two

merging principles mentioned above are still followed. However, some modifications

need to be made to those conventional early merging policies. To determine a

merge target, besides the key parameter which is the progress point in time, other

parameters are also considered such as the peer location and the peer bandwidth

and storage availability. These parameters are also used for determining a stream

initiator for a new request. Using these new parameters, some new policies are

defined in this proposed work, as will be described in Section 3.3.

3.2.4 Identifying Peer Characteristics

Redundant servers can be used to address the single point of failure problem in

conventional centralized HMSM systems. However, reliability is more difficult to

address in the peer-to-peer context, since any peer in the system has the potential

to be a temporary server of media streams. The reliability of such a temporary server

will significantly affect the performance and reliability of stream delivery, as will its
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available bandwidth and storage resources. It is essential to understand how the

characteristics of peer systems differ from those of a server in a conventional VOD

system, if an appropriate system design is to be achieved. In this section, issues

concerning peer behaviour and capability with respect to resource heterogeneity

and reliability are briefly discussed.

Resource Heterogeneity

When a peer requests a media file, the media server will select one of the peers whose

cache still retains the beginning of the media file, if there is at least one such peer, to

initiate the primary stream for the newcomer. The peer is selected based on one of

the policies that will be discussed in Section 3.3.2.2. For example, to minimize the

required network bandwidth cost, the candidate (a peer or the server itself) that is

closest to the new peer in terms of the network distance will be selected. However,

it is not always the case that the closest peer should be selected due to the nature

of heterogeneous peer resource capabilities.

One of the important peer characteristics is the heterogeneity. Peers may be

located in different parts of the Internet, may have differing inbound and outbound

bandwidth and may have differing storage capacities. To meet the requirement

of initiating a media stream, a peer must have available bandwidth sufficient for

delivering a stream, and also must have the requested data stored in its buffer.

Thus, two important peer parameters are the constrained peer bandwidth and the

constrained storage capacity.

In the conventional stream merging solutions, the client bandwidth is typically

referred to as the client receive bandwidth on which there is a corresponding re-

quirement for a specific solution. For example, the most basic HMSM technique [18]

requires the client receive bandwidth to be at least two times the media playback

bit rate, while bandwidth skimming [17] can reduce this requirement to less than

two times the media playback bit rate.

In the peer-to-peer stream merging solution, besides the receive bandwidth, the

bandwidth constraints also include constraints on the peer outbound bandwidth
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and the end-to-end bandwidth. Considering the dynamics of a peer and network

connections between peers, note that: 1) the outbound bandwidth of a peer is not

stable, since the peer might start a new network application at any time, or an

existing application might occupy more outbound bandwidth (e.g., a peer-to-peer

file sharing application); and 2) the end-to-end bandwidth available along the path

from the providing peer to the requesting peer may dynamically change due to

changes in congestion levels or underlying network topology.

The other important parameter related to peer resource capabilities is the storage

capacity. In previous stream merging techniques, the local storage is used to buffer

data which must be received ahead of its scheduled playback time, so as to enable

stream merging. After its playback, the data will be discarded. It is different in

the peer-to-peer stream merging system. While a peer still stores data ahead of

its playback for later mergers, the data remains in the local buffer even after its

playback and no data is discarded until the local buffer is full, which is the basic

requirement of the cache-and-relay technique. Note that the larger the local storage

capacity that a peer has, the wider the time range of requests that a peer can serve,

and the greater the probability that a peer can be served by a close-by peer.

Reliability

As in any other peer-to-peer system, peer reliability is a critical issue. Unlike the

media server in a conventional stream merging system which is typically dedicated

and static, peers in a peer-to-peer system are often short-lived and their resource

capabilities dynamically change. Thus, a peer that is providing one or more streams

may terminate an ongoing stream at any time, or severe congestion on the delivery

path from that peer may develop. It is essential to develop mechanism to cope with

such disruptions.

Disruption in delivery of a stream can be graceful, or unexpected. A graceful

disruption occurs when a peer must stop an ongoing streaming session because of a

user request to leave the peer group or to terminate the incoming stream that is the

source of the outgoing stream (owing to use of a VCR function, for example). An
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unexpected disruption could be caused by a peer machine crash, underlying network

failure (e.g., link breakdown) or available bandwidth fluctuation (at end point or

on the path). In any such cases, the listening peer(s) and the media server will

not be notified of the stream delivery failure, and thus the listening peer(s) may

suffer media playback disruption. In Section 3.5, a recovery scheme is introduced

for graceful as well as for unexpected stream delivery disruptions.

3.3 Selection Policies

In the peer-to-peer stream merging system, when a new peer arrives, it typically

listens on two streams: a new primary stream and an existing secondary stream

(merge target). The media server is responsible for selecting an initiator of the pri-

mary stream and selecting the secondary stream from the existing streams. Also,

when a stream merging operation occurs, the server needs to select a new merge tar-

get stream for the merged group. This section presents some design policies related

to these selection processes. Specifically, Section 3.3.1 introduces some policies for

selecting a primary stream initiator, and Section 3.3.2 presents policies for selecting

a merge target stream.

3.3.1 Selecting Primary Stream Initiator

A new primary stream is, and must be, initiated only when there is a new request

for a media file. At this time, the media server is responsible to initiate the process

of selecting a stream initiator which could be a peer or the server itself. A peer

selection policy is required to determine the most appropriate peer. The selection

result depends on the selection policy applied. In all cases, only qualified peers are

considered; i.e., peers with sufficient bandwidth and with the required media file

data cached locally. The media server stores all the media files and is equipped with

the bandwidth required to serve a relatively large number of clients, so it will always

be a qualified candidate.

The design of a peer selection policy should be consistent with the main objective
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which is to minimize the overall delivery cost of the system. In this section, three

alternative peer selection policies are described: location-first, location-bandwidth

ratio, and load-first. The location-first policy attempts to minimize the required

network bandwidth, the location-bandwidth ratio policy tries to balance the network

bandwidth requirement and the delivery workload, and the load-first policy considers

only workload.

Location-first Policy

As the name suggests, in this policy, the initiator candidate that is closest to the

requesting peer in terms of the network distance (i.e., transmission latency) will

be chosen. It is reasonably effective since, for a new peer, listening to a primary

stream that is delivered by a close one (a peer or the server itself) will be efficient

with respect to the network bandwidth cost. The idea is quite similar to that of

content distribution network (CDN), except that stream initiators are not dedicated

and static as CDN servers.

The media server initiates the selection process, as it keeps track of the infor-

mation of all current peers as well as the associated ongoing streams. The process

is started with a set of initiator candidates provided to the requesting peer. The

requesting peer can then choose the closest one from the candidate set based on

the measurement of the network distance along the path from the peer to those

candidates. The determination of the candidate set is straightforward. It simply

consists of the server and any peers that are currently receiving the same file, and

that are expected to have cached all of the data from the beginning of the file to

the current stream position. In large-scale systems, there could be hundreds or even

thousands of qualified candidates. It might be impractical to require the requesting

peer to evaluate such large number of candidates. To address this issue, the media

server may randomly (or using some better method) pick K peers from all qualified

candidates, and then the requesting peer need only choose among those K.

The method for measuring network distance is out of the scope of this work, since

the performance evaluation of this work will be simulation-based. For estimating
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network distance in a real system, a number of approaches have been proposed

[12, 19, 20, 35]. Based on the constrained peer resource capability, of interest are

those approaches that are decentralized and have low processing overhead, such as

King and Vivaldi described below.

King, a simple but effective solution proposed by Gummadi et al. [20] does

not require any infrastructure deployment or landmark setups as in other solutions

[19, 35]. The technique is based on two observations: 1) most end hosts in the

Internet are close to their DNS name servers, and 2) recursive DNS queries can

be used to measure the latency between pairs of DNS servers. Thus, the latency

between two end hosts can be estimated by locating nearby DNS name servers

and measuring the latency between them. The latency between two DNS servers

is estimated by the difference of two latencies (one end host to two name servers)

which can be measured using recursive queries.

Vivaldi [12] is another simple, light-weight approach that applies synthetic coor-

dinate system to accurately predict the communication latency between two hosts.

Each host has a coordinate in a synthetic coordinate system such that the distance

between two hosts’ synthetic coordinates predicts the RTT latency between them

in the Internet. This approach is fully distributed, requiring no fixed network in-

frastructure, and thus fits well in a peer-to-peer system. Specifically, without an

explicit measurement, a host can collect latency information from only a few other

hosts, compute good coordinates for itself, and then scale its coordinate information

to a large number of hosts.

Location-bandwidth Ratio Policy

Both the location of a candidate and the available bandwidth on the path between

the candidate and the requesting peer are considered in this policy. For a requesting

peer r, the metric used in the selection process is defined as Dri/Bi, where Dri is

the network distance from the requesting peer r to the candidate i, and Bi is the

available bandwidth between the candidate i and the requesting peer r (including any

constraint imposed by limited outgoing bandwidth at the candidate i). Intuitively,
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selecting a candidate with larger available bandwidth helps to balance the workload

among all participating peers, while a short network distance reduces the network

bandwidth consumed in the media delivery. This location-bandwidth ratio policy

tries to achieve a good balance between the above two factors.

As in the location-first policy, the server can provide a requesting peer with a

set of at most K candidates, which the requesting peer can then evaluate. This

evaluation requires measurement of the end-to-end available bandwidth between a

candidate and the requesting peer, which is constrained by the bottleneck link along

the path. Although broadband access becomes more popular in recent years, the

bottleneck constraint on the last-mile link is still an issue, even in some broadband

networks [33]. Since all the stream providers in the peer-to-peer stream merging

system are normal peers (home computers), it is more likely that the end points

of the path becomes the bottleneck, especially when the outbound bandwidth is

concerned. Thus, in this work, it is assumed that bottleneck links are at end-points,

and the end-to-end available bandwidth between the requesting peer and a candidate

can then be simplified to be the available outbound bandwidth at the candidate,

which is simply the difference of the outbound bandwidth capacity and the outbound

bandwidth that has been used for delivering streams.

To more precisely measure the end-to-end available bandwidth in a real system, a

number of approaches have been proposed [24, 27, 41]. The basic strategy applied in

one of these approaches is using a probe packet stream whose rate is slowly increased

[27]. One can determine the available end-to-end bandwidth through observation of

the trend of the one-way delay differences of the probe stream packets. If the stream

rate is higher than the available bandwidth, then the one-way delays of successive

packets at the receiver show an increasing trend, otherwise it will stay unchanged.

Thus, by monitoring the transition of the trend, the available end-to-end bandwidth

can be determined.

The approach to measuring the end-to-end available bandwidth described above

can be modified to be used in the peer-to-peer stream merging protocol, with the

attempt to minimize measurement overhead. Specifically, a simplification and two
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modifications are proposed, for this specific scalable media streaming context. The

approach is simplified by requiring each peer to keep track of its available outbound

bandwidth. Since it is most likely that the bandwidth bottleneck would be at the

end points rather than on the in-between path, if a peer pre-detects a bandwidth

bottleneck at its outgoing link, the path measurement will not be initiated. If two

end points are not bottlenecked, two modifications can be made to the path mea-

surement, which is similar to the approach in PROMISE [22]. First, the starting

rate of sending probe packets can be set equal to the required rate for delivering a

media stream, which saves both the processing time and the network resource con-

sumed for transferring unnecessary probe packets. Second, the probe packets can

be constructed from the actual media data, which can significantly reduce the com-

munication overhead regarding the network bandwidth usage. Since the evaluation

of this work will be based on simulations, these modifications are out of the scope

of this work, and will be evaluated in future work.

Load-first Policy

The most appropriate candidate defined in this policy would be the one that is

with the least workload regarding the bandwidth contribution to other peers. The

contribution workload of a candidate peer is defined as the ratio of the bandwidth

consumed by the stream(s) currently being delivered to the available end-to-end

bandwidth. This policy is proposed for the two purposes. First, although this

policy does not intend to minimize the total network bandwidth cost, it can be a

comparison to the performance of the other two peer selection policies. Second,

with the focus on the bandwidth load in this policy, the fairness regarding a peer’s

contribution can be achieved so that a distributed workload among all participating

peers can be better balanced.

As in the previous two policies, the selection process is initiated by the server

and is accomplished at the requesting peer. The measurement of the contribution

load consists of two components: the bandwidth currently consumed on delivering

stream(s) and the available end-to-end bandwidth. The first component can be
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obtained from the candidate peers, which is simply the product of the required rate

for delivering a media stream and the number of media streams being delivered. The

measurement of the second component (the available end-to-end bandwidth) follows

the strategy described in the location-bandwidth ratio policy. With the assumption

made in that policy, this bandwidth can be simplified to the available outbound

bandwidth.

3.3.2 Selecting Merge Target

The process of selecting a merge target is initiated by the media server both when

a new request is made and when a stream merger occurs. As in conventional ap-

proaches, the determination of a merge target depends on the merging policy em-

ployed by the server. However, changes need to be made to the conventional early

merging policies to adapt them to the peer-to-peer context. This section presents

the details of these changes.

The conventional early merging policies intend to find the earliest possible merg-

ers since these give the earliest reductions in the required server bandwidth. All

variants of the early merging policies that were considered in previous work have

close to optimal server bandwidth requirement, leaving little room for improvement

[16]. However, in the peer-to-peer stream merging system, the determination of a

stream initiator and a merge target can have a substantial impact on the network

bandwidth requirement. The following design goals with respect to stream merg-

ing policies are adapted in this work: 1) the design should follow the basic stream

merging principles described in Section 3.2.3; 2) the design should be an adaption

of the early merging policies, rather than a replacement; and 3) the design should

not be significantly more complex than the existing early merging policies.

The overall stream merging policy defined in the new protocol includes two

components: an extended early merging policy and a peer selection policy. The

extended early merging policy follows the same basic strategy as the previously

proposed early merging policies, and thus it can be considered as a variant in that
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family. The peer selection policy is a new component, with no analogue in the

previously proposed early merging policies. It is motivated by the differing network

bandwidth costs of listening to a stream sourced by different peers. The early

merging policy extended in this work can be based on any conventional variant in

the family of early merging policies (e.g., ERMT and CT).

The remainder of this section is organized as follows. The details of the extended

early merging policy regarding the determination of a merge target are presented in

Section 3.3.2.1, followed by related peer selection policy given in Section 3.3.2.2. Sec-

tion 3.3.2.3 describes a special case of selecting a merge target, and a brief summary

is given in Section 3.3.2.4.

3.3.2.1 Extended Early Merging Policy

Early merging policies such as ERMT and CT attempt to find the earliest possible

mergers. The main difference among the policy variants is with respect to their

complexity. These existing variants could be applied in the peer-to-peer stream

merging system as well, but this would leave no flexibility with respect to peer

selection; i.e., with respect to the goal of choosing a merge target stream that is

sourced by a peer that is close in terms of network distance. In this section, a

variant of early merging policy is proposed that is compatible with use of a peer

selection policy.

The new early merging policy attempts to identify a number of candidate merge

targets, rather than only the merge target that is soonest possible to be merged

with, which can then be selected among using a peer selection policy. To more

precisely define these candidate merge targets, a threshold T is introduced, which

represents a time range starting from the current progress point of the merge target

computed by a conventional early merging policy such as CT or ERMT. Any active

stream whose progress point is located in that range is a candidate merge target.

For example, assume that the merge target stream computed by a conventional early

merging policy is at a position of 10 minutes into the media file. If the threshold T

is set to 20, then any active streams whose current progress point is between 10 and
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30 minutes will constitute the candidate merge target set.

Now that the extended early merging policy yields as output a set of candidate

merge targets, it is straightforward to generate the merge target that will be finally

assigned to a peer (or group of peers), using a peer selection policy. The stream

associated with the chosen peer is the final merge target to be assigned. If more

than one stream is associated with that peer, the one that would yield the earliest

merger is chosen.

Overall, by extending the conventional early merging policies with the capability

of generating multiple merge targets, the peer-to-peer stream merging approach is

able to determine a merge target using both the early merging policy and the peer

selection policy. With this extension, any variant of conventional early merging

policies (e.g., ERMT and CT) is appropriate to be applied cooperatively with the

peer selection policy. While still aiming at improving the overall delivery efficiency,

a balance can be achieved between server/peer and network bandwidth.

3.3.2.2 Peer Selection Policy

A peer selection policy, one component of the new stream merging policy, is required

in the process of selecting a merge target when a new client request is made or when

a stream merger occurs. In both cases, the associated peer(s) will listen to the

new target stream, resulting in change of receivers associated with the merge target

stream. Note that the change of receivers will have impact mostly on the network

bandwidth cost of a particular stream, rather than the workload of a stream provider.

Thus, among the peer selection policies described in Section 3.3.1, the location-

first policy is the only appropriate choice to be combined with the extended early

merging policy, for use in selecting a merge target. With the location-first policy,

the new stream merging policy is efficient with respect to the network bandwidth

consumption, which follows the design goal of the new protocol.

The location-first policy is used to select a merge target from the candidate target

set generated by the extended early merging policy described in the previous section.

For a new peer request, it is straightforward to select a merge target which is simply
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the stream being delivered by the closest peer to the requesting peer in terms of

network distance. However, there is a complication in the case when a merge target

is selected for a newly merged group. The issue is how to properly select the closest

providing peer for a merged group which may include a large number of peers. To

address this issue, it may be feasible to find a particular peer in that merged group

to be the representative of the whole group, and then select a merge target for

that representative. One option is to randomly select a peer from that group. It is

effective since the selection processes performed at the first time when the stream

is initiated and at all the subsequent times when other peers joins the group are

all based on the location-first policy. Although the closest candidate peer to the

representative might not be the closest to all the other members in the group, it is

definitely a closer one to them. Furthermore, since the selection process is performed

at peers, selecting a random peer can avoid substantial workload imbalance.

3.3.2.3 Elaboration on Merge Target Selection

Compared to previously proposed single-server based techniques for scalable stream-

ing media delivery, the new peer-to-peer stream merging protocol attempts to de-

livery media files more efficiently in terms of the network bandwidth requirement,

as described in Section 3.1. This goal can be achieved in the location-first policy

designed for selecting a primary stream initiator and in the stream merging policy

pair used for selecting a merge target. However, based on careful examination of

cases in which these policies are applied, it is possible to refine the protocol so as to

further reduce the network bandwidth cost.

There is a special case that may have negative impact on the network bandwidth

requirement when a merge target is being selected. According to the merging prin-

ciples in the conventional HMSM technique, which is described in Section 3.2.3, a

merge target should be chosen for a peer (or group of peers) when the peer’s re-

quest is first made and when it merges with another group of peers. Although the

extended early merging policy can generate a candidate set of merge targets, the

actual number of candidates is still limited due to some restrictions (e.g., threshold
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T). When a merge target is finally determined from the candidate set using the

peer selection policy, it may be the case that the peer that is delivering the selected

merge target is not close to the requesting peer(s). In such case, it becomes an issue

whether or not the requesting peer(s) should still listen to a merge target which is

delivered by a remote peer (i.e., a peer that is far away from the requesting peer(s)).

It is required in the basic merging principles that a requesting peer or a newly

merged group should listen to a merge target no matter where the peer delivering the

merge target is located. However, it will obviously influence the network bandwidth

efficiency if the merge target is delivered by a remote peer. Note that those basic

merging principles were defined in the conventional HMSM technique in which the

system is server-based and the server bandwidth cost is of most concern. The

conventional HMSM technique attempts to maximally merge streams since the fewer

the number of streams being delivered, the lower the server bandwidth cost. Now

that the server bandwidth efficiency can simply be achieved by distributing the task

of delivering media streams to all participating peers, and the network bandwidth

cost is a major concern in the peer-to-peer stream merging approach, the merging

principles may be slightly modified to be adaptable for the peer-to-peer context.

Basically, when using the peer selection policy to determine a merge target for

the requesting peer(s), if the chosen merge target is delivered by a remote peer, the

merge target is simply discarded. In such case, the requesting peer(s) will listen to

only the primary stream until the primary stream reaches the end of the media file.

Although the modification causes the number of active streams to increase in the

new system, higher network bandwidth efficiency can be achieved, and meanwhile,

there will be no negative impact on the server bandwidth cost since these active

streams are delivered by all participating peers. In this work, threshold D is used

for determining whether a merge target selected by a stream merging policy should

be discarded. When a merge target is delivered by a peer, whose distance from the

representative of the requesting peer(s) exceeds the threshold D, the merge target

is then rejected.
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3.3.2.4 Summary

By illustrating an example of stream merging policy in the peer-to-peer stream

merging technique, a brief summary is given in this section.
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Figure 3.1: Peer-to-peer Hierarchical Multicast Stream Merging

Figure 3.1 illustrates an example of stream merger in the peer-to-peer HMSM

technique using stream merging policy pair (location-first policy and extended early

merging policy based on CT). In the figure, four peers P1, P2, P3 and P4 arrive

at times T0, T1, T2 and T3, respectively. For immediate playback, each peer is

provided with a primary stream, accordingly marked as stream A, B, C and D.

These four primary streams are delivered by another four peers PA, PB, PC and

PD, respectively. At the same time, except P1, the other three peers also listen to

a merge target stream for an attempted merger. Each of these three peers should

listen to the closest target stream (e.g., peer P4 arriving at T3 listens to stream C)

if the conventional CT policy is used. However, it is different if the stream merging

policy pair is used. With an appropriate threshold T, for requesting peer P4, assume

that the extended early merging policy generates two candidate target streams B

and C which are delivered by PB and PC , respectively. According to the location-

first policy, if PB is closer to P4 than PC in terms of the network distance, then
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stream B (delivered by PB) will be the merge target stream to P4, which is the case

in the example. As shown in the figure, streams B and D merge at time T4, streams

A and C merge at time T5, and finally merged stream BD merges with another

merged stream AC at time T6. One thing to note is that the attempted merges for

some peers may not occur. For example, for P2, it initially has stream A as the

merge target when it arrives. However, this attempted merge is not completed since

P2 will merge with a later arriving peer P4 before the merge could happen.

As shown in the example, in the peer-to-peer stream merging approach, a stream

is not necessarily merged with the earliest stream as does in conventional early

merging policies, so it seems not most efficient in terms of the bandwidth consumed

at senders. However, as now each peer receives streams delivered by close peers,

in terms of the network bandwidth cost, it is more efficient than any conventional

approaches. Moreover, instead of the media server delivering all data streams, the

task is distributed to all participating peers, thus the server bandwidth efficiency

can also be achieved.

3.4 Limited Peer Storage Capacity

So far, the basic techniques of the peer-to-peer stream merging approach and various

design policies compared to those in the conventional HMSM technique have been

discussed. As mentioned in Section 3.2.4, one of the important peer characteristics

is the limited storage capacity. It is essential to study this characteristic in a peer-

to-peer based approach. In fact, even in those techniques using proxy caching, the

limited storage of the proxy servers is also a key issue so that many researchers

have proposed various caching techniques as well as cache replacement schemes. In

this section, the impact of this issue on the overall system performance regarding

the total network bandwidth cost will be further discussed, and the possibility of

achieving improvement upon this limitation will be analyzed.

In the previously proposed stream merging techniques (e.g., HMSM), local stor-

age is used to buffer data that must be received ahead of its scheduled playback
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time and for all possible mergers. If a client does not have sufficient storage space

for a particular merger, the merger is simply not scheduled. The requirement on the

client storage capacity has been studied in the approaches using the HMSM tech-

nique [18]. It is shown that, to keep the impact on the system performance regarding

the required server bandwidth at a fairly small level, a client storage capacity of up

to 10% of the file size is sufficient even when the system is under high load.

Compared to the conventional stream merging approaches mentioned above, the

peer-to-peer stream merging approach has two differences with respect to the limi-

tation on the peer storage capacity. First, peers are required to have larger storage

capacity to achieve the desired system performance. While the same storage space

as in conventional approaches is required to accomplish possible stream mergers, a

peer needs extra local space to store data even after its playback so that it is able

to serve any late-coming peers. Second, instead of having impact on the required

server bandwidth, the limited storage capacity in the peer-to-peer stream merging

approach will mostly affect the required network bandwidth since the media delivery

is accomplished by a set of participating peers all around the network. For example,

a requesting peer A asks its closest neighbour peer B for the requested file. If peer B

cannot satisfy peer A due to the insufficient local storage space, peer A has to look

for another peer who is located further away until it is satisfied, which will obvi-

ously increase the network bandwidth cost. Apparently, larger peer storage capacity

enables a peer to serve more late-coming peers and to be with greater probability

to serve close-by peers, thus resulting in the improvement on the total delivery effi-

ciency. The key point here is how much storage capacity is sufficient for achieving

the desired overall system performance, i.e., to find the minimum requirement of the

peer storage capacity to achieve the maximum performance gain.

3.5 System Robustness

Another critical issue in a peer-to-peer based approach is the system robustness.

Peers are often short-lived, and during a long streaming session either the peer re-
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source capability or network environment on the delivery path dynamically changes.

How to handle such peer and network dynamics is an important issue in any peer-

to-peer based system. Specifically, as peers are required to participate in stream

delivery, in any case of early peer departure, it is essential to accurately and quickly

recover a disrupted stream. In this section, a stream recovery scheme that is de-

signed to minimize the impact of stream disruption is presented.

There are two types of early peer departure: graceful departure and unexpected

failure. Recovering a stream disruption caused by a graceful peer departure seems

not complicated, since the departing peer is able to initiate the stream recovery

mechanism before its departure takes real effect. However, recovering a disrupted

stream due to a peer failure is not trivial, as there is no prediction of such a stream

failure. In order to be consistent for both types of peer departure and meanwhile

reduce the complexity of implementation, the stream recovery scheme is designed as

a receiver-driven process that is applicable for recovering stream disruption caused

by both graceful peer departure and unexpected peer failure.

The stream recovery scheme is based on two components, disruption detection

and disruption recovery. The disruption detection process is performed at the re-

ceiving peers. Although a disruption event may also be reported by the providing

peers in some cases (e.g., graceful departure), it is preferred to be initiated at re-

ceivers so that the stream recovery scheme can be applied to both types of peer

departure. The disruption detection works as follows. Any receiving peers in the

system constantly monitor the incoming traffic including the primary stream and

the merge target stream. If the rate of an incoming stream degrades to a certain

degree, a stream disruption will be reported. Note the stream disruption in such

case could be caused by any reason such as graceful peer departure, peer failure or

network fluctuations.

After detecting a stream disruption, the receiving peers report the disruption

event to the media server. However, in a real system, there might be more than

hundreds or even thousands of receiving peers listening on the disrupted stream.

For the server to be notified of the stream disruption, one message will be sufficient.
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As recalled in Section 3.2.2.2, a RTCP-like scheme is introduced for maintaining an

approximate peer state at the server. In that scheme, peers would periodically send

status results with a probability. The status report could include one item of stream

status that is used for the stream disruption. Since peers might send their status

reports at different time, those whose sending time is coming soon (i.e., sending time

– current time ≤ interval) will immediately initiate the sending process.

Once the media server is notified of a stream disruption, the stream recovery

process is started. Since the disruption of the primary stream will directly affect

the media playback, it is quite important to quickly recover the disrupted stream,

especially the disrupted primary stream. For this reason, the server will take the

responsibility to initiate the recovery stream. Specifically, upon receiving a stream

disruption report, the server initiates a new stream starting from the disrupted point,

and then notify all the peers who were initially listening on the disrupted stream.

Although this scheme may not be the most efficient with respect to the network

bandwidth cost, it is chosen as the first choice for continuous media playback.

The recovery scheme described above works for all kinds of stream disruption.

However, it cannot completely remove the disruption encountered at peers. In order

to minimize the disruption during the media playback, some techniques can be

applied to improve the design. Two possible choices are: 1) setting the stream

delivery bit rate a little higher than the media playback bit rate, or alternatively, 2)

adding an initial startup delay before the media playback. Both choices ensure that

more data is received from the primary stream than consumed during the media

playback so that more time is allowed to recover the failure. The evaluation of these

two techniques is out of the scope of this work, and will be done in future work.
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Chapter 4

Protocol Performance

This chapter presents a performance study of the peer-to-peer stream merging pro-

tocol based on simulations. The performance of the protocol and the design policies

presented in Section 3.3 are evaluated under various network conditions. Section

4.1 presents the goals of the performance study. Section 4.2 describes the design of

the simulation study including network topologies, simulation methodology, perfor-

mance metrics, and experimental parameters. The simulation results are presented

and analyzed in Section 4.3.

4.1 Experimental Goals

The peer-to-peer stream merging protocol is developed based on the previously

proposed HMSM techniques. It attempts to achieve additional benefit in terms of the

network bandwidth cost required in streaming media delivery while still ensuring the

server bandwidth efficiency. The main goal of the performance study is to illustrate

this benefit over conventional stream merging techniques. Besides that, it also aims

at exploring the performance properties of the protocol under a heterogeneous peer-

to-peer environment. Specifically, the following questions are considered in this

simulation study:

• In terms of the server and network bandwidth requirement, how does the

performance of the peer-to-peer stream merging protocol compare to that of

the conventional HMSM protocol?
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• What is the performance gain of the stream merging policies proposed in this

work over the conventional early merge policies?

• How does the performance of the three peer selection policies described in

Section 3.3.1 compare?

• How do peer resource capacity limitations on outbound bandwidth and buffer

capacity impact the overall system performance?

• How efficient is the failure recovery scheme presented in Section 3.5?

4.2 Experimental Design

Experimental design plays an important role in evaluating network mechanisms and

protocols. This section describes the details of the experimental design that is used

to evaluate the peer-to-peer stream merging protocol and various related policies.

The section is structured as follows. Section 4.2.1 describes how synthetic, repre-

sentative network topologies are generated for use in the simulation experiments.

Section 4.2.2 presents the major part of the experimental design including some sys-

tem assumptions and the simulation method. Section 4.2.3 defines the performance

metrics and related experimental parameters utilized in the simulation.

4.2.1 Network Topology

To simulate activities in various large scale networks, two types of network topology

generators are used in this simulation study to obtain representative AS-level and

router-level underlying network topologies: GT-ITM [48] and Inet-3.0 [47]. This

section provides a brief overview of these two network topology generators.

GT-ITM is one of the most widely-used topology generators for networking re-

search. It can generate both flat random and hierarchical network topologies, typ-

ically of tens or hundreds of nodes. While a flat random topology does not reflect

the structure of a real internetwork, a topology generated using hierarchical models
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(e.g., the GT-ITM Transit-Stub model) can model a portion of the real Internet, in

which a node represents a router or a switch.

The following explains how a topology is hierarchically constructed in the Transit-

Stub model. First, a connected random graph is generated, in which each node

represents an entire transit domain. Next, each node in that graph is expanded to

another connected random graph, representing the backbone topology of one tran-

sit domain. Each node in each transit domain is then attached with a number of

random graphs representing stub domains that are connected to that node. Finally,

some additional edges are added between pairs of nodes, where a pair of nodes con-

sists of a node from a transit domain and another from a stub domain, or one node

from each of two different stub domains.

Inet is another popular network topology generator that constructs models more

accurately reflecting the Internet’s AS-level structure. In contrast to GT-ITM, it

models the entire Internet as a network of inter-connected Autonomous Systems

(ASs), and generates larger network topologies with at least 3037 nodes, each rep-

resenting a single AS.

Inet is a degree-based generator that aims to imitate the connectivity proper-

ties of real Internet topologies. The node degree follows power-law distributions.

Basically, there are three steps when constructing a topology. First, each of the

topology nodes is assigned an outdegree based on power-law distributions. Second,

a feasibility test is performed to ensure the resulting topology is a connected net-

work. Finally, the topology is constructed by following three steps: (1) forming a

spanning tree using nodes with outdegree of at least two; (2) attaching nodes with

degree one to the spanning tree; and (3) according to the pre-assigned outdegree on

each node, matching the remaining unfulfilled degrees of all nodes with each other.

In the simulation experiments, various sizes of network topologies are used to

simulate either the router-level or the AS-level Internet topologies. For GT-ITM,

only the Transit-Stub model is used, yielding topologies varying in size from 25 to

1000 nodes. For Inet, the generated network topologies varies in sizes from 3050 to

7000.
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4.2.2 Simulation Methodology

Network topologies generated as described in Section 4.2.1 are used as input to the

simulation. Based on the input topology, various events in the peer-to-peer stream

merging system can be simulated. This section describes the method used in the

simulation for generating various results. So as to simplify the simulation design,

the following assumptions are made regarding the network topologies and media

delivery:

• Network topologies are modelled in the simulations by undirected and un-

weighted graphs, with identical unit bandwidth cost on each link.

• It is assumed that shortest-path trees are used for delivering multicast streams.

Since any peer or the server could be the root of a multicast delivery tree and

the set of peers receiving a stream will generally be different for different

streams, a separate shortest path tree is built for each media stream.

• Client accesses to only a single media file are modelled in the simulations. It

is assumed that media file data is delivered on each stream at a constant bit

rate, equal to the file playback bit rate.

• It is assumed that requests for the media file are generated according to a

Poisson process, and that each request is for a full-file playback.

• For the network distance between two peers, the length of the shortest path

between them is used, as measured by the number of links.

• For stream delivery, it is assumed that potential bandwidth bottlenecks are

at the end-points rather than at interior points along the delivery path, as

discussed in Section 3.3.1. The end-to-end available bandwidth between a

source peer and a requesting peer can then be simplified to be the available

outbound bandwidth at the source peer.

• As long as a peer is active in its uploading session(s), unless stated otherwise,

it will stay in the system even after its own receptions complete. However, in
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such a case, the peer will not be able to initiate and deliver any new stream

to other peers.

• There is an issue in evaluating the media delivery cost. The network topologies

generated by the two generators described in Section 4.2.1 are at either the

router-level or the AS-level, whereas the peer-to-peer stream merging protocol

operates at the host-level. For simplicity, network bandwidth consumption of

media delivery among the hosts associated with a single node in the generated

topologies is ignored. Specifically, each peer is associated with a network

node which is randomly picked when the peer joins the system. There is a

possibility that a peer listens to a stream which is delivered by another peer

located at the same network node. In such a case, the network bandwidth

cost of that particular stream is neglected. In the simulation, only the costs

on the links between two routers or two ASs (i.e., two nodes in the topology)

are considered.

Based on the above assumptions, the peer-to-peer stream merging protocol was

implemented in an event-driven simulator that models a series of events which occur

asynchronously in the real stream merging system. Each simulation run consists of

a particular combination of a peer selection policy, a stream merging policy, and an

input network topology. A peer selection policy is used mostly for selecting stream

initiators. With a specific purpose, it could be either of the three peer selection

policies defined in Section 3.3.1. For the stream merging policy, either the extended

stream merging policy defined Section 3.3.2.1 or a conventional early merging policy

could be used in the simulation to determine merge targets. Since the extended

stream merging policy is defined on the basis of a conventional early merging policy,

it is assumed that the conventional early merging policy used in the simulation is

“Earliest Reachable Merge Target” (ERMT) [16]. In those experiments that directly

apply a conventional early merging policy for determining merge targets, ERMT is

also used for consistency.
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Both the media server and each active peer are associated with a network node.

As mentioned, each time a file request is generated, the requesting peer is randomly

assigned a network node and will be associated with that node until the peer leaves

the system. The node corresponding to the media server is picked at the beginning

of a simulation run, also at random. For each media stream, a multicast distribution

tree is constructed and maintained over the network topology based on the shortest-

path algorithm. For the simulation to be more efficient, the shortest path between

any two network nodes in a network topology is pre-computed and loaded at the

beginning of a simulation run.

After a network topology is loaded, a simulation run starts and the simulator

generates a series of system events over time. Each time an event is generated, the

type of the event will be determined, which is either a new peer request, a completion

of an existing media stream, or a stream merger event. Based on the type of the

event, a corresponding change to the delivery system will be performed, as described

as follows:

• New request: The new peer obtains a new primary stream, and if possible,

an existing stream as the merge target. For the primary media stream, a

new multicast distribution tree will be created and added to the system. As

mentioned, it is a shortest-path tree and rooted at the node with which the

selected initiator is associated. For the merge target stream, the only change

is to add the new peer to the current multicast group.

• Stream completion: A media stream completes when the associated group of

peers has received all data of the requested file. At this time, the corresponding

multicast distribution tree currently active in the system will be stopped and

removed.

• Stream merger: A stream merger event causes changes to the distribution

trees associated with the two media streams, the merger stream and the mergee

stream. Specifically, the merger tree associated with the merger stream will

54



be removed, and the group initially associated with the merger stream will be

added to the mergee tree which is associated with the mergee stream.

4.2.3 Metrics and Parameters

In this section, the performance metrics and experimental parameters defined in the

simulation study are described in Section 4.2.3.1 and Section 4.2.3.2, respectively.

4.2.3.1 Performance Metrics

The performance metrics demonstrate the effectiveness of various policies proposed

in the peer-to-peer stream merging protocol and help in illustrating the performance

efficiency in terms of the server and network resource usages over conventional stream

merging approaches. The performance metrics defined in this study are summarized

as follows:

• Total network bandwidth cost, defined as the total amount of network link

bandwidth consumed by stream delivery. It is one of the major costs that

need to be concerned in the media delivery, and is essential in evaluating

the performance of the new protocol regarding the network efficiency. The

measurement of this metric will be given below in this section.

• Total server bandwidth cost, defined as the total amount of server outgoing

bandwidth consumed by stream delivery. It is another major cost that can

illustrate the performance efficiency on the server requirement compared with

the conventional stream merging protocols.

• Total peer bandwidth cost, defined as the sum of outgoing bandwidth con-

sumed at all peers who participate in delivering media streams. This metric

can be applied to evaluate the peer participation in the media delivery.
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Measurement of Media Delivery Cost

The total media delivery cost considered in this work includes both the server and

network bandwidth costs. The total network bandwidth consumed in the delivery

system during the simulation is simply the sum of the network bandwidth consumed

by each multicast stream. The method used to measure the network bandwidth cost

of a particular multicast stream is briefly described below.

It follows the approach proposed by Zhao et al. [50]. Specifically, for a single

multicast stream, the total network bandwidth cost can be computed by taking the

product of the stream bit rate, the stream duration, and the sum over all links of

the multicast distribution tree of the unit bandwidth cost on that link. Since it is

assumed that the unit bandwidth cost is identical for all network links, the latter

sum is proportional to the total number of the links in the distribution tree. With

two previous assumptions of constant stream bit rate (i.e., media playback bit rate)

and full-file playback, the total network bandwidth cost of a particular distribution

tree can thus be simplified to be proportional to the total number of the links in that

tree. As a stream merging event could occur at any time, and to any delivery tree,

such that the structure of a distribution tree changes over time and the durations

between two changes are variant, the total network bandwidth cost is computed by

taking the sum of the network bandwidth cost in each period during which the tree

structure remains unchanged. For each period, since the stream rate is constant, the

network bandwidth cost can be computed as the period duration times the number

of links in the delivery tree.

The total server bandwidth cost during the simulation is simply proportional

to the number of streams delivered by the server since the stream delivery rate is

constant. As the number of streams delivered by the server changes over time due

to the creation of a new stream or the completion of an existing stream, the total

server bandwidth cost is computed in the same way as the total network bandwidth

cost described above, which is the sum of the server bandwidth cost in each period

during which the number of streams delivered by the server remains unchanged.
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4.2.3.2 Experimental Parameters

In this section, a number of experimental parameters used in the simulation study

are identified. Two types of parameters are summarized in Table 4.1 and Table 4.2,

respectively. The parameters shown in Table 4.1 remain constant in all simulation

experiments, as described as follows:

Parameters Constant Value
Stream duration 1
Stream bit rate 1
Unit link bandwidth cost 1
Peer receive bandwidth 2
Threshold T 0.2
Threshold D (GT-ITM) 3
Threshold D (Inet) 2

Table 4.1: Experimental Parameters I

• Stream duration, defined as the time from stream creation to stream comple-

tion for a stream delivering the entire file. Since, as described in Section 4.2.2,

it is assumed that the stream bit rate is equal to the file playback bit rate, the

value of this constant parameter is 1, measured in units of the file playback

time.

• Stream bit rate, defined as the bit rate of a stream required for delivering the

requested file. The constant value of this parameter is 1, measured in units of

the file playback bit rate.

• Unit link bandwidth cost, defined as the unit bandwidth cost on a link in a

network topology. Since each link in a network topology is assumed to be

identical, constant value of 1 is used for unit link bandwidth cost so that the

network bandwidth cost of a stream can be computed by the total number of

links in the distribution tree.

• Peer receive bandwidth, defined as the inbound bandwidth capacity that a

peer can use for receiving streams, in units of the stream delivery bit rate.
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As the inbound bandwidth is not a major concern in this work, each peer is

assumed to have sufficient receive bandwidth which is two times the stream

bit rate for receiving two streams, the primary stream and the merge target

stream.

• Threshold T, defined as the percentage of the full-file stream duration. It is

used in the extended stream merging policy to identify the qualified merge

targets. As described in Section 3.3.2.1, it represents a time range starting

from the current progress point of the merge target computed by a conventional

early merging policy (e.g., ERMT). Any active stream whose current progress

point is located in that range is qualified to be a candidate of merge target.

Obviously, the greater the value of threshold T, the more qualified merge target

candidates among which a merge target can be later selected using the location-

first policy, i.e., the greater the probability that the selected merge target is

delivered by a closer peer. However, with a too large value of T, it is possible

to obtain a merge target whose progress point is far from that of the mergee

stream, in which case it will take more time to accomplish the merging process.

To be relatively consistent with the conventional early merging policies that

attempt to make stream merging events occur as soon as possible, a reasonable

value of 20% is used for the threshold T in this simulation study.

• Threshold D, defined as the network distance (measured by number of links)

beyond which a merge target selected by a stream merging policy should be

discarded, as described in Section 3.3.2.3. With the use of this threshold in

the extended stream merging policy, the performance in terms of the network

bandwidth cost can be improved. Different values of the threshold are used for

GT-ITM and Inet topologies, owing to the differing path length distributions

in these networks.

The experimental parameters summarized in Table 4.2 have significant impact

on the performance of the new protocol. The values of these parameters may vary

in some experiments and be constant in the others, depending on the type of the
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experiment. Thus, as shown in Table 4.2, each parameter has a default value and a

range in which its value can vary. In all sets of experiments, if a parameter is not

further specified, its default value will be used. The definitions and settings of these

parameters are described as follows:

Parameters Default Value Range
Network size (GT-ITM) 500 25 - 1000
Network size (Inet) 4000 3050 - 7000
File request rate 1000 10 - 2000
Stream merging policy extended conventional, extended
Peer selection policy location-first three selection policies
Peer outbound bandwidth unlimited unlimited, 1 - 10
Peer buffer size 100% 5% - 100%
Peer failure rate 0 0 - 0.8
Heterogeneity homogeneous homogeneous, heterogeneous

Table 4.2: Experimental Parameters II

• Network size, defined as the number of nodes in a network topology. For the

router-level hierarchical network topology GT-ITM, a range of network sizes

from 25 to 100 is chosen. For the larger AS-level network topology Inet, as it

generates network topologies with at least 3037 nodes, a value of 3050 is used

as minimum. A maximal network size of 7000 is used due to the high system

resource requirement of the simulation experiments.

• The file request rate, defined as the number of file requests that arrive in the

duration of time required for a full-file playback. Its default value is 1000, and

it can vary from 10 to 2000.

• The stream merging policy. A stream merging policy is required in determin-

ing a merge target stream. The extended stream merging policy proposed

in Section 3.3.2.1 is compared with the conventional early merging policy in

the experiments presented in Section 4.3.3. By default, the extended stream

merging policy is used in the other experiments.
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• Peer selection policy. A peer selection policy is a major part in the simulation

for the new protocol to be effective. The performance of three peer selection

policies defined in Section 3.3.1 are evaluated in the experiments presented in

Section 4.3.2. By default, the location-first policy, one of the core design in

this work, is used in the other experiments.

• Peer outbound bandwidth, defined as the outgoing bandwidth capacity that

a peer can use for delivering streams, in units of the stream delivery bit rate

which is assumed to be equal to the file playback bit rate in this work. Except

for the experiments that study the impact of limited peer outbound bandwidth,

in which the peer outbound bandwidth varies from 1 to 10, it is unlimited by

default in all the other experiments.

• Peer buffer size, defined as the storage capacity that a peer uses to buffer file

data, in percentage of the full-file length. As described in Section 3.4, the file

data to be cached includes those being read ahead of its playback time so as

to enable stream merging, and those after its playback, so that the peer can

initiate streams for other peers. The default value of peer buffer size is 100%

which can be thought of as unlimited storage capacity. In those experiments

that study the impact of limited peer buffer space, the value of this parameter

varies from 5% to 100%.

• Peer failure rate, defined as the number of peers that depart early during the

simulation time, divided by the number of active peers in the system. Here, an

active peer is a peer who is actively receiving or delivering at least one stream.

Note that, this parameter is only applicable in the simulation conducted for

peer departure at random (Section 4.3.6), in which its value varies from 0 to

0.8.

• Heterogeneity. This parameter is closely related to the peer resource capability

including the outbound bandwidth capacity and the storage capacity, which

can be homogeneous or heterogeneous. In the simulation experiments, homo-

60



geneous peer resource capability is used by default, and in those experiments

that assume limited peer outbound bandwidth or limited peer buffer space,

the impacts of both homogeneous and heterogeneous peer resource capabilities

are studied.

4.3 Experimental Results

A number of experiments were performed in this simulation study. These experi-

ments evaluate the performance of the new protocol including various related design

policies, and study the impact of limited peer resource capability as well. This

section presents the details of these experiments and analyzes the detailed results

obtained from these experiments.

To show the performance in different aspects, each experiment is generally per-

formed by varying one of the experimental parameters shown in Table 4.2 such as

the file request rate and the network size. In order to generate more accurate results,

each experiment includes multiple number of runs that differentiate at the network

topology input. In each simulation run, a different network topology is used for

each particular size of network topology. The different network topologies in same

size are generated using different random number seeds. If not further specified,

3 simulation runs were performed in those experiments in which the network size

varies, and 10 runs in all the other experiments. Typically, the results shown in

figures presented in this section are computed by averaging the results generated

from multiple runs.

All simulation results presented in this section have 95% confidence intervals

that are within ±5% of the reported values. The confidence intervals are computed

using the method of batch means which is based on T distribution. Basically, due

to the initial transient, a warm-up period of results is rejected from the beginning

of a simulation run. The remainder after the warm-up period can be divided into

a number of batches. The duration of a batch is long enough so that the batches

are approximately independent. The number of batches in a particular run is dy-
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namically calculated. Each time at the end of a batch, the confidence interval up

to the current batch is computed using T distribution, and then compared with

the expected confidence interval. The simulation is not stopped until the expected

confidence interval is satisfied. In all experiments, lengths of 10 and 20 units of

full-file playback duration are used for the warm-up period and the batch duration,

respectively.

The remainder of this section is organized as follows. Section 4.3.1 compares

the performance of the peer-to-peer stream merging protocol with the conventional

HMSM protocol. Section 4.3.2 compares the performance of three peer selection

policies defined in Section 3.3.1. Section 4.3.3 evaluates the performance of the

extended stream merging policy defined in Section 3.3.2.1 with a comparison to a

conventional early merging policy. The impacts of limited peer outbound bandwidth

and limited peer buffer space are studied in Section 4.3.4 and Section 4.3.5. Finally,

the performance of the stream recovery scheme proposed in Section 3.5 is evaluated

in Section 4.3.6.

4.3.1 Comparing Peer-to-peer Stream Merging with HMSM

The conventional stream merging approaches (e.g., HMSM) mainly concern the de-

livery efficiency at the server side. For example, the server bandwidth requirement of

HMSM grows only logarithmically as the client request rate increases. Compared to

the conventional approaches, the main goal of the new peer-to-peer stream merging

approach is to achieve efficient delivery in terms of the network bandwidth require-

ment while still ensuring the efficiency on the server bandwidth requirement. Before

evaluating protocol performance with the limitation of peer resource capability, the

new protocol is studied in an ideal environment. Assuming that all peers have un-

limited outbound bandwidth and unlimited buffer space, the performance of the

new protocol is first evaluated with a comparison to that of a conventional stream

merging approach. In this section, the results of these experiments are presented.

The peer-to-peer stream merging protocol consists of two key components: a
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peer selection policy and a stream merging policy. To achieve the design goal of the

new protocol, the basic form of the combination of these two policies would be the

location-first policy and the extended stream merging policy, both of which attempt

to reduce the network bandwidth cost. Unless stated otherwise, this basic combi-

nation is used in the evaluation described in this section, representing the default

setting of the peer-to-peer stream merging protocol. Regarding the conventional

stream merging approach used for the comparison, the single-server based HMSM

approach is applied, in which the media server initiates and delivers all streams,

and stream merging operation follows a conventional early merging policy which is

ERMT in this work.

The following two subsections study the protocol performance affected by file

request rate and network size, and present the obtained results. Note that, in all

figures presented in this section, the lines marked by “P2P” represent the results for

the new protocol and those marked by “HMSM” are for the conventional HMSM.

4.3.1.1 Effect of File Request Rate

The first set of experiments studies how protocol performance scales with increase

in file request rate. Figure 4.1 and Figure 4.4 present the results in terms of the

network/server bandwidth cost, and illustrate how efficient the new protocol is com-

pared with the conventional HMSM. Both bandwidth costs shown in figures are

assessed as a function of file request rate.

Figure 4.1 provides the network bandwidth costs for the new protocol and the

conventional HMSM. For each protocol, the experiments use both network topologies

of GT-ITM and Inet, the results of which are respectively illustrated in Figure 4.1(a)

and Figure 4.1(b).

Two observations can be obtained from Figure 4.1. First, in both types of net-

work topologies, the network bandwidth cost of HMSM shows an increasing trend as

the file request rate increases, and the increasing rates are quite similar. Second, no

matter in which type of network topology, the peer-to-peer stream merging protocol

always performs better than the conventional HMSM, i.e., less network bandwidth
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Figure 4.1: Effect of File Request Rate on Network Bandwidth Cost: Peer-to-peer
Stream Merging vs. HMSM (unlimited peer resource capability)

is consumed in the peer-to-peer stream merging protocol than it is in HMSM.

However, there are two variances in performance of peer-to-peer stream merging

protocol between two types of network topologies. First, the network bandwidth cost

varies quite differently in both network topologies as the file request rate grows. In

Inet, like HMSM, it shows an constantly increasing trend, except that the increasing

rate is slightly lower than that of HMSM. In GT-ITM, the network bandwidth cost

is increasing until it reaches the peak at the file request rate of around 750, and then

slowly decreases. Second, compared to HMSM, the amount of network bandwidth

that can be saved by the new protocol largely differs in both network topologies. As

can be observed from Figure 4.1(a), the network bandwidth cost of the new protocol

in GT-ITM is about 50% of that in HMSM at the request rate of 500, and is only

about 10% at the request rate of 2000. However, the new protocol saves much less

network bandwidth in Inet. As shown in Figure 4.1(b), only about 10% of saving

can be achieved even at the request rate of 2000.

The following analyzes some possible reasons for the above performance variances

between GT-ITM and Inet topologies.

First, the internal structures of GT-ITM and Inet topologies are different. As

described in Section 4.2.1, GT-ITM and Inet topologies used in this work reflect

router-level and AS-level network structures respectively. The particular Transit-
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Stub model of GT-ITM generates topologies with hierarchical internal structure,

while Inet generates degree-based network topologies.

To further investigate such difference regarding the nature of internal structure

between two types of network topologies, an additional experiment was performed to

study the allocation of network distance in both GT-ITM and Inet. As mentioned,

both of GT-ITM and Inet are connected topologies, in which each pair of network

nodes is associated with a network distance that can be measured as the number of

links. Thus, in terms of the value of network distance, there is a distance allocation

for all pairs of nodes in a network topology. Figure 4.2 illustrates such distance

allocation in a 500-node GT-ITM topology and in a 4000-node Inet topology. In the

figure, Y-axis labelled by “Percentage” is expressed as the percentage of two-node

pairs among all node pairs at a particular distance. Some observations obtained

from the figure are described as follows:
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Figure 4.2: Comparing Network Distance Allocation: GT-ITM vs. Inet

• The ranges of distance allocation in GT-ITM and Inet are different. In Inet,

the distances of all node pairs allocate in the range of 1 and 8, while the

allocation range is wider in GT-ITM, which is from 1 to 14.

• About 80% of distances in Inet densely distribute at distances of 3 and 4 (38%

at distance 3 and 41.5% at distance 4). However, around 80% of node pairs in
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GT-ITM are with distances in a larger scatter from distance 5 to 9, and the

maximal percentage is only 22.5% at distance 7.

The above observations likely explains why the new protocol yields better per-

formance in GT-ITM than in Inet. Comparing the new protocol to the conventional

HMSM, the saving on the network bandwidth cost is minor in Inet, since the dis-

tances of most node pairs are close at 3 and 4 as described in the second observation,

resulting in no big difference between the network bandwidth consumed by a stream

delivered by a close peer as defined in peer-to-peer stream merging, versus that con-

sumed by a stream delivered by the server as required in HMSM. However, with a

wider range of distance allocation in GT-ITM, it can save much network bandwidth

cost since a peer located far from the server (e.g., with a distance of 8) will listen to

a stream delivered by a close peer (e.g., with a distance of 5) in the new protocol,

instead of having to listen to a stream delivered by the server in HMSM.

Second, different network sizes of GT-ITM and Inet could also be the reason that

causes the performance variance. As shown in Figure 4.1, the default network sizes

of GT-ITM and Inet used in experiments are 500 and 4000 respectively. At the same

file request rate, it is normal for the same protocol to achieve distinct performance in

networks of different sizes. To study how this issue is strongly related to the above

performance variance, further investigation was performed as introduced below.

Recall there is an assumption concerning the evaluation of stream delivery cost

in Section 4.2.2. In both router-level or AS-level topologies, the network bandwidth

cost of media delivery among the hosts associated with a single node is not cal-

culated, since the network bandwidth cost of such stream delivery is neglectable

compared to the costs of other deliveries over routers or ASs. Any such stream is

referred to as an “no-cost” stream in this simulation work. Apparently, the pro-

portion of such “no-cost” delivery will significantly affect the performance in terms

of network bandwidth cost in a simulation run. Figure 4.3 shows the comparison

of peer-to-peer stream merging protocol in both GT-ITM and Inet topologies, in

terms of the scale of “no-cost percentage” with increase in file request rate. Here,
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Figure 4.3: Effect of File Request Rate on No-cost Percentage for Peer-to-peer
Stream Merging: GT-ITM vs. Inet

“no-cost percentage” is defined as the percentage of new arrivals that listen to a

no-cost stream (i.e., the primary stream for a new peer).

Observe from Figure 4.3 that the no-cost percentage is much higher in GT-ITM

than in Inet, which means much more peers in GT-ITM listens to no-cost streams.

This explains why the new protocol has a better performance in GT-ITM as shown

in Figure 4.1. It is further observed that, in Figure 4.3, the no-cost percentage of

GT-ITM increases rapidly till the request rate at around 750 and then slows down,

meanwhile the network bandwidth cost of GT-ITM in Figure 4.1(a) reaches the peak

and starts to decrease at around the same request rate.

Besides the network bandwidth cost, the server bandwidth cost is studied as well

for both the peer-to-peer stream merging protocol and the conventional single-server

based HMSM. Figure 4.4 provides the results in both GT-ITM and Inet topologies,

which were obtained from the same experiments as above. With respect to the

conventional HMSM, the results show that the performance is nearly identical in

GT-ITM and Inet, and is consistent with the result obtained in previous study [18]

which shows the server bandwidth cost increases logarithmically with the file request

rate.

It is also shown in Figure 4.4 that the new protocol yields better performance
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Figure 4.4: Effect of File Request Rate on Server Bandwidth Cost: Peer-to-peer
Stream Merging vs. HMSM (unlimited peer resource capability)

no matter in which type of topology, substantially improving on the conventional

HMSM. However, similar to the performance on network bandwidth cost, the perfor-

mance variance is presented again on server bandwidth cost between GT-ITM and

Inet topologies. The protocol yields much better performance in GT-ITM. As the

file request rate grows, the server bandwidth cost slightly decreases to 0 in GT-ITM,

but slowly increases from 4 to 8 in Inet. A possible reason is an implementation

issue related to the difference in internal topology structure between GT-ITM and

Inet. In the simulator, the new protocol is implemented in which the server is set

by default to be the initial candidate to deliver a stream for a new arrival. The ac-

tual initiator will be resulted by comparing all the other candidates with the server

based on a particular peer selection policy, which is the location-first policy in this

experiment. As implied in Figure 4.2(b) that most of the peer candidates are with

distance 3 or 4 to the new peer in Inet, there is a higher possibility in Inet for the

server to be the actual initiator for the new arrival, thus resulting in more server

bandwidth consumed in Inet than in GT-ITM.

4.3.1.2 Effect of Network Size

The next set of experiments studies how protocol performance scales with increase

in network size. Figure 4.5 and Figure 4.8 respectively present the results in terms
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of the network and server bandwidth costs assessed as a function of network size,

and give a comparable view of the new protocol with the conventional HMSM.
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Figure 4.5: Effect of Network Size on Network Bandwidth Cost: Peer-to-peer Stream
Merging vs. HMSM (unlimited peer resource capability, file request rate = 1000)

Figure 4.5 presents the network bandwidth costs for the new protocol and HMSM,

with the results in GT-ITM and Inet topologies shown in Figure 4.5(a) and Figure

4.5(b), respectively. Some observations are summarized and analyzed as follows:

• The peer-to-peer stream merging protocol yields better performance in both

GT-ITM and Inet as the network size increases. Also, similar to the perfor-

mance on the effect of file request rate (shown in Figure 4.1), better perfor-

mance is achieved in GT-ITM. Results in Figure 4.5(a) show that the new

protocol applied in GT-ITM can save on average over 50% of the network

bandwidth consumed in the conventional HMSM, while only about 20% of

network bandwidth cost can be saved in Inet as shown in Figure 4.5(b). The

reason for this is similar to that analyzed in Section 4.3.1.1 for the perfor-

mance variance presented on the effect of file request rate. Here, with a fixed

file request rate, it is more likely related to the no-cost percentages in network

topologies of different sizes. As shown in Figure 4.6, with increase in network

size, the no-cost percentage in GT-ITM remains in overall at a much higher

level (over 60%) compared to that in Inet (around 20%), which can probably
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explain the performance variance presented in Figure 4.5.
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Figure 4.6: Effect of Network Size on No-cost Percentage for Peer-to-peer Stream
Merging

• Also observe that, as the network size increases, the percentage of network

bandwidth cost saved by the new protocol shows a decreasing trend in both

GT-ITM and Inet, with a high decreasing rate in GT-ITM and only a slight

decreasing in Inet. As shown in Figure 4.5, the network bandwidth saved in

GT-ITM decreases from over 90% to 50% as the network size increases from

200 to 1000, while there is only a minor decrease overall in Inet. Similarly,

this is closely related to the no-cost percentages in GT-ITM and Inet, which

is illustrated in Figure 4.6. In the figure, the no-cost percentage decreases in

both GT-ITM and Inet as the network size increases. Also, compared to GT-

ITM in which the no-cost percentage steadily decreases from 100% to 60%,

the no-cost percentage in Inet shows a nearly flat decreasing from 22% to 12%.

This explains why the network bandwidth saving constantly decreases as the

network size increases, and why it is with a different view in GT-ITM and Inet.

It can be expected that the network bandwidth saving in GT-ITM would have

a similar view to that in Inet when the network size of GT-ITM increases to

thousands.

• A further observation from Figure 4.5 is that, with increase in network size,
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Figure 4.7: Comparing Network Distance Allocation in Topologies of Different Sizes

the network bandwidth cost for both the new protocol and HMSM shows an

increasing trend in GT-ITM, but remains almost at the same level in Inet. To

explore the reason for this, the network distance allocations in network topolo-

gies of four different sizes (100, 400, 700, 1000 nodes for GT-ITM, and 4000,

5000, 6000, 7000 nodes for Inet) are plotted and compared in Figure 4.7 which

shows the similar information to that in Figure 4.2. In the figure, the percent-

ages in topologies of four network sizes are clustered at each particular network

distance so that the comparison can be easily illustrated. From Figure 4.7(b),
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observe that, no matter in which size of network topology of Inet, the allo-

cated percentage of node pairs is nearly the same at each distance, which can

clearly explain why the network bandwidth cost remains almost unchanged in

Figure 4.5. However, this is not the case for GT-ITM topologies. As shown in

figure 4.7(a), the percentage of node pairs in four sizes of topologies, especially

the 100-node and 400-node topologies, is obviously different at each distance,

with higher percentages allocated at smaller distances for smaller-size topolo-

gies (e.g., higher percentages at distance 5 and 6 for the 100-node topology),

and at larger distances for larger-size topologies (e.g., higher percentages at

distance 7 and 8 for the 700-node topology). Based on that, as the network

size increases, it is more likely for nodes to have a longer distance between

each other, and thus costs more network bandwidth for stream delivery, as

shown in Figure 4.5.
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Figure 4.8: Effect of Network Size on Server Bandwidth Cost: Peer-to-peer Stream
Merging vs. HMSM (unlimited peer resource capability, file request rate = 1000)

For the server bandwidth cost, Figure 4.8 presents the results in both GT-ITM

and Inet topologies. The results show that the server bandwidth for HMSM is

constant and of exactly same value in both GT-ITM and Inet. This can be expected

since the server bandwidth cost is irrelevant to the network size and the type of

topology, and only changes with the file request rate as shown in the previous study
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[18]. Since the file request rate is fixed at 1000 in experiments for both GT-ITM and

Inet, the obtained server bandwidth cost is identical in both types of topologies.

Regarding the new protocol, the results in both topologies fluctuate frequently

and show no explicit regular pattern, and are more widely ranging in Inet. Compared

to HMSM, the new protocol saves much more server bandwidth cost in GT-ITM,

and achieves little saving in Inet. The reason for the variance between GT-ITM

and Inet is discussed in the analysis of Figure 4.4. Although there is no obvious

benefit from using the new protocol in Inet in terms of the server bandwidth cost,

the performance on average is at least close to that in the conventional HMSM which

is also considered to be efficient.

4.3.2 Comparing Peer Selection Policies

A peer selection policy is a key component in the design of peer-to-peer stream merg-

ing. It is essential when selecting stream initiators for new arrivals. As described

in Section 3.3.1, the location-first policy aims at minimizing the network bandwidth

cost, the load-first policy considers solely the workload balance on delivering media

streams, and the location-bandwidth ratio policy attempts to achieve a balance be-

tween the network bandwidth cost and the workload. With the experimental results

presented, this section studies and compares the performance of these three selection

policies, attempting to find the best fit to stream merging applied in a peer-to-peer

environment.

For the consistency of stream merging policy, the extended stream merging policy

based on ERMT, which is expected to be efficient in terms of the network bandwidth

cost, is used in all experiments that were conducted for the comparison of three peer

selection policies. In all experiments, each peer is assumed to be with unlimited

outbound bandwidth and unlimited buffer space. Also, instead of the available

outbound bandwidth defined in the location-first policy and the workload of a peer

defined in the load-first policy, the actual number of streams a peer is delivering is

measured in the experiments. Since the outbound bandwidth of a peer is defined as
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units of the stream delivery bit rate as described in Section 4.2.3.2, and the network

distance between two peers is measured as the number of links, there is a possibility

that more than one peer could be generated by a peer selection policy. For example,

a peer with location-bandwidth ratio of 2/4 (i.e., distance 2 and bandwidth 4), and

another peer with a ratio of 1/2, will be of same interest to the location-bandwidth

ratio policy. In such cases, it is assumed for both the location-bandwidth ratio and

the load-first policies that, if more than one peer resulted in a policy, the one who

is located at the same node as the requesting peer (i.e., with distance 0) will be

selected; otherwise if there is no such peer, one will be selected at random from all

resulted peers.

With the main focus on the delivery efficiency, Section 4.3.2.1 and Section 4.3.2.2

study the effects of file request rate and network size, concerning mostly on perfor-

mance in terms of the network and server bandwidth costs. The issue of workload

balancing is studied in Section 4.3.2.3 with the illustration of corresponding per-

formance in three peer selection policies. In all figures presented in this section, if

it is not further specified, the lines labelled by “Location” represent results for the

location-first policy, “Ratio” is for the location-bandwidth ratio policy, and “Load”

is for the load-first policy.

4.3.2.1 Effect of File Request Rate

In this set of experiments, the performance of three peer selection policies are eval-

uated in terms of the effect of file request rate. With results illustrated in Figure

4.9, Figure 4.11, and Figure 4.12, these policies are compared in terms of various

bandwidth costs assessed as a function of file request rate.

Figure 4.9 provides the network bandwidth costs for the three peer selection

policies in both GT-ITM and Inet topologies. Corresponding results of single-server

based HMSM is also presented in the figure for comparison. Some observations

obtained from the figure are summarized as follows:

• Regarding the performance on network bandwidth cost, three peer selection
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Figure 4.9: Effect of File Request Rate on Network Bandwidth Cost: Peer Selection
Policies (unlimited peer resource capability)

policies yield similar scaling as the file request rate increases. In GT-ITM,

as shown in Figure 4.9(a), the network bandwidth costs of three policies all

increase at lower request rates and then gradually decrease after they reach the

corresponding peaks; and in Inet, they similarly remain an increasing trend

within the range of file request rate used in the experiment, as shown in Figure

4.9(b). The reasons for the performance variance between GT-ITM and Inet

are discussed in Section 4.3.1.1.

• Comparing three selection policies, no matter in which type of topology, 1)

the protocol with the location-first policy and that with the location-bandwidth

ratio policy achieve almost the same performance; and 2) the load-first policy

is the least efficient when the protocol is evaluated in terms of the network

bandwidth cost, which can be expected from the policy definition described in

Section 3.3.1.

• The new protocol with either the location-first or the location-bandwidth ratio

policy consumes less network bandwidth than the conventional HMSM proto-

col in both GT-ITM and Inet. However, the new protocol with the load-first

policy performs differently. Compared with the conventional HMSM protocol,

it does not always consumes less network bandwidth within the range of re-
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quest rate measured in GT-ITM, and almost always consumes more network

bandwidth in Inet.
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Figure 4.10: No-cost Percentage for Three Peer Selection Policies

To provide a further explanation, no-cost percentages for these three selection

policies are also studied, and results are plotted in Figure 4.10. Compared with

Figure 4.9, consistency can be observed in Figure 4.10, i.e., the no-cost percentage

presented for the load-first policy is lower than those for the other two policies, re-

sulting in more network bandwidth cost consumed in protocol with the load-first

policy, as illustrated in Figure 4.9. Moreover, nearly fully overlapped no-cost per-

centages are observed for the location-first and location-bandwidth ratio policies,

which is certainly related to the same performance of two policies as shown in Fig-

ure 4.9. The location-first policy is expected to be the most efficient in terms of the

network bandwidth cost among the three policies. However, under the assumption

of unlimited peer outbound bandwidth, there is a big possibility for a new arrival

to find another peer who is not only nearby but also with less workload, to create

and deliver a stream, and thus the location-bandwidth ratio policy yields the same

performance as the location-first policy.

The server bandwidth costs for the three peer selection policies and the conven-

tional HMSM are provided in Figure 4.11, including results in both GT-ITM and

Inet topologies. Overall, the new protocol with either of the three selection policies
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Figure 4.11: Effect of File Request Rate on Server Bandwidth Cost: Peer Selection
Policies (unlimited peer resource capability)

performs better than the conventional HMSM protocol. This is expected, since the

task of delivering streams is distributed among all participating peers in the new

protocol. However, distinct performance can be identified among the three policies,

as discussed below:

• The protocol with the location-bandwidth ratio policy performs similarly to

that with the load-first policy in both GT-ITM and Inet, i.e., the consumed

server bandwidths of both policies are much less than that consumed in con-

ventional HMSM. Since both policies partially or completely concern about

the workload balance among all participating peers, it is reasonable for the

server, which can also be considered as one of the participating peers, to con-

sume bandwidth on average less than 1. This implies that, with good workload

balance, the capability of delivering one media stream for each active peer is

sufficient for the overall system to achieve good performance. As with the

location-first policy, the protocol performs differently in GT-ITM and Inet.

The reason for this performance variance is explained in the analysis for Figure

4.4 in Section 4.3.1.1, which is mainly due to the difference in topology struc-

ture. It exposes the weakness of a location-only policy, i.e., the randomness

regarding the number of streams that a peer is asked to deliver. This number
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could be unacceptably large for a normal peer in some type of topology, such

as Inet, in which most of the distances between two nodes are similar.

• Regarding the location issue, it has a positive effect on the server bandwidth

cost. As shown in the figure, although the protocol with load-first policy

performs well with the server bandwidth cost close to 1, the location-bandwidth

ratio policy is still a bit more efficient in both GT-ITM and Inet. Also, in a

topology in which the distances between two nodes are dispersedly distributed

(e.g., GT-ITM), the server bandwidth costs for the two location-related policies

(i.e., location-first and location-bandwidth ratio) all show a decreasing trend as

the file request rate grows.

As one of the important measures for evaluating peers’ contribution to the media

delivery, the total peer bandwidth cost is also studied in this experiment. Figure

4.12 provides the peer bandwidth costs for the three peer selection policies, and

illustrates how these costs scale with increase in file request rate. Three major

observations are described as follows:
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Figure 4.12: Effect of File Request Rate on Peer Bandwidth Cost: Peer Selection
Policies (unlimited peer resource capability)

• In both GT-ITM and Inet, the peer bandwidth costs for all the three selection

policies steadily increase as the file request rate grows. As recalled, the total
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number of active streams in a single-server based HMSM system remains low

since streams constantly merge with previous streams. However, it is not the

same case in the new protocol. As described in Section 3.3.2.3, a peer who

is listening on a no-cost stream will listen to only that stream till the stream

reaches the end of the media content. It implies that the total number of

active streams in a peer-to-peer stream merging system is much more than

that in a conventional HMSM system, and highly depends on the percentage

of no-cost streams. Now that almost all the streams are delivered by peers in

the new protocol, the total peer bandwidth consumed on delivering streams is

closely related to the total number of streams in the system. Figure 4.13 plots

the maximums of the total number of active streams for new protocol with

the three selection policies and for the conventional HMSM. Observe that, the

maximal numbers of streams for protocol with the three policies show the same

trend as that for the peer bandwidth costs shown in Figure 4.12, i.e., more

streams exist in the system as the file request rate increases, resulting in more

peer bandwidth consumed in media delivery. Also observe that, the maximal

number of streams in the conventional HMSM is almost constant and remains

low, which is consistent with the expectation.
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Figure 4.13: Maximal Number of Streams for Peer Selection Policies (unlimited peer
resource capability)
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• With either of the three policies, the new protocol consumes much less peer

bandwidth in Inet than in GT-ITM. For example, an approximate peer band-

width of 1800 is consumed in GT-ITM at file request rate 2000, but only about

400 is consumed in Inet. Since it is mentioned in the previous observation that

the peer bandwidth cost highly depends on the percentage of no-cost streams,

the performance variance in the peer bandwidth cost is well explained by the

difference of no-cost percentage between GT-ITM and Inet (shown in Figure

4.10). With a higher percentage of no-cost streams in GT-ITM, more streams

don’t merge with any other streams, i.e., more active streams exist in the

system as shown in Figure 4.13, and thus more peer bandwidth is consumed.

• Comparing three selection policies, there is no obvious difference in the peer

bandwidth cost. As shown in Figure 4.12(a), the corresponding peer band-

width costs are almost completely overlapped in GT-ITM. Although Figure

4.12(b) shows that the protocol with the load-first policy consumes compara-

tively the most peer bandwidth in Inet, followed in descending order by the

location-bandwidth ratio policy and the location-first policy, the differences

among the three policies are minor. Considering the difference in network

size, which causes the difference in no-cost percentage between two types of

topologies, one can expect that the peer bandwidth cost in Inet will show a

similar view to that in GT-ITM if the file request rate is sufficiently high.

4.3.2.2 Effect of Network Size

The set of experiments presented in this section compares the performance of three

peer selection policies in terms of the effect of network size. Various bandwidth costs

are studied and presented in Figure 4.14, 4.17, and 4.18, assessed as a function of

network size.

Figure 4.14 provides the network bandwidth costs for the new protocol with

three peer selection policies and for the conventional HMSM, including results in

both GT-ITM and Inet topologies. The following summarizes some observations
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obtained from the figure:
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Figure 4.14: Effect of Network Size on Network Bandwidth Cost: Peer Selection
Policies (unlimited peer resource capability, file request rate = 1000)

• Similar to the results in terms of the file request rate, the network bandwidth

cost consumed in the protocol with the location-bandwidth ratio policy is nearly

identical to that consumed with the location-first policy, which is only slightly

more in Inet and in large network size of GT-ITM topology. Compared with

the conventional HMSM, the new protocol with these two location-related

policies saves considerable amount of network bandwidth cost, which implies

that the location is the dominant factor for the new protocol to achieve good

performance in terms of the network bandwidth cost. More analysis on the

comparison with HMSM is presented in Section 4.3.1.2.

• The load-first policy is the least efficient among the three policies. As Fig-

ure 4.14(a) shows, in GT-ITM, the network bandwidth consumed with this

policy shows a faster increasing trend compared with the other two policies.

Although it is still overall less than that consumed in the conventional HMSM

in GT-ITM, it will not likely remain so if a wider range of network size is mea-

sured. Moreover, as shown in Figure 4.14(b), the overall network bandwidth

consumed in Inet is even more than that consumed in the conventional HMSM.

It appears that there should be no cause for the new protocol with either of
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Figure 4.15: No-cost Percentage for Three Peer Selection Policies
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Figure 4.16: Maximal Number of Streams for Peer Selection Policies (unlimited peer
resource capability, file request rate = 1000)

the three policies to perform worse than the conventional HMSM in the first

place, since the high percentage of no-cost streams in the new protocol (shown

in Figure 4.15) results in the network bandwidth savings from the conventional

HMSM in which there is almost no no-cost stream. However, from another

point of view on the total number of streams in the system, there surely exists

some inefficiency in the new protocol, especially with the load-first policy. As

shown in Figure 4.16, the maximal number of streams in the new protocol

is much more than that in the conventional HMSM. When the new protocol

applies the load-first policy, a considerable number of streams are delivered by
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peers who are far from the requesting peers, causing substantial redundant use

of network links, compared with the conventional HMSM in which the number

of streams remains low and each stream is delivered via efficient multicast.
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Figure 4.17: Effect of Network Size on Server Bandwidth Cost: Peer Selection
Policies (unlimited peer resource capability, file request rate = 1000)

Figure 4.17 provides the server bandwidth cost for the three selection policies

with increase in network size. Observe that, compared to the server bandwidth costs

for the location-bandwidth ratio policy and the load-first policy which are stable and

around 1, the cost for the location-first policy is higher and fluctuates frequently

in Inet and in large network size of GT-ITM. Such fluctuation implicitly exposes

the workload imbalance in the protocol with the location-first policy. Also observe

that, the protocol with both load-related (location-bandwidth ratio and load-first)

policies consumes much less server bandwidth cost than the conventional HMSM,

which demonstrates the benefit of using workload balance in a peer selection policy.

For the performance variance of the location-first policy in GT-ITM and Inet, the

reader is referred to the analyses of Figure 4.4 and Figure 4.8 for more details.

Figure 4.18 provides the peer bandwidth costs for the three selection policies.

Two major observations are described as follows:

• With a fixed file request rate of 1000, it is shown that the peer bandwidth cost

is extremely high in GT-ITM when the network size is less than 200. This is
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Figure 4.18: Effect of Network Size on Peer Bandwidth Cost: Peer Selection Policies
(unlimited peer resource capability, file request rate = 1000)

expected, since the request rate of 1000 is sufficiently high for such a small

network size, almost every peer can obtain a no-cost stream from another peer

who is located at the same node, resulting in a extremely high percentage

of no-cost streams as shown in Figure 4.15, and thus in high peer bandwidth

cost. When the network size continuously grows after 200, the peer bandwidth

cost gradually declines and is stabilized approximately at 600. For Inet, since

the starting network size measured is 3050, which is considerably large for the

fixed request rate of 1000, the possibility is low for a peer to obtain a no-cost

stream. Thus, the overall peer bandwidth costs remain relatively stable within

the range of the network size measured.

• Comparing the three selection policies, the corresponding three peer band-

width costs scale very similarly as the network size increases, and are very

close in GT-ITM and not significantly different in Inet, as shown in Figure

4.18. Also observe that the protocol with the load-first policy performs dif-

ferently in GT-ITM and Inet. One possible reason would be the difference in

internal structure between the two types of topologies. More study is needed

in the future work for further investigation on this issue.
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4.3.2.3 Workload Balance

The previous two subsections study the performance of the peer selection policies

mainly on the various bandwidth costs. Results show, with the two location-related

policies, the new protocol performs similarly well on the network bandwidth cost,

but differently on the server bandwidth cost. The location-bandwidth ratio policy

that concerns both the location and the workload balance, is more efficient in terms

of the server bandwidth cost, which implies the workload is also an issue that may

affect the performance of the new protocol. To further investigate the workload

issue as a supplement to this performance study, this section provides some sample

results that illustrate and compare how the workload is distributed among the three

peer selection policies.

The workload in the peer-to-peer stream merging system refers to the task of

delivering streams. The workload is assigned to all active peers. Specifically, the

workload of a particular peer is defined as the number of streams the peer is de-

livering, and the balance issue of system workload refers to how the total number

of streams is distributed among all participating peers. One thing to note is that

the number of streams delivered by a peer dynamically changes over time. Rather

than the average workload of a peer during its life time, the maximal number of

streams that a peer delivers is measured in the experiment, since a extremely high

workload on a peer at a certain point of time may affect the overall system workload

balance and will likely cause stream disruption. Figure 4.19 provides the maximal

peer stream count (i.e., the maximal number of streams delivered by a peer among

all participating peers) for the three selection policies, assessed as functions of file

request rate and network size.

Observe that, in both figures, the maximal peer stream counts for both the load-

related policies are constant and remain at low values – 2 for the location-bandwidth

ratio policy and 1 for the load-first policy. It implies that, for each peer, the outbound

bandwidth for delivering at most 2 streams is sufficient for the entire system to

be effective if the peer workload is well balanced. However, for the location-first
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Figure 4.19: Maximal Peer Stream Count for Peer Selection Policies

policy, although it is the most efficient in terms of the network bandwidth cost, its

maximal peer stream count is unacceptably high in both GT-ITM and Inet, which

is impractical in a real system.

The experiment collected the maximal number of streams that each peer delivers.

For all active peers, there is an allocation of percentage of peers in terms of the

maximal number of streams. As a further reference, Figure 4.20 provides two sample

results of this allocation for the three policies. The maximal peer stream count for

the location-first policy is used as the maximal axis value. Two observations are

described as follows:

• Although the maximal peer stream count for the location first policy is 9 or

10 as shown in the figure, almost all peers are with maximal stream count less
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Figure 4.20: Percentage of Peers in Stream Count Allocation for Peer Selection
Policies

than 3. For the percentages of peers at maximal stream counts larger than 2,

the results are too small to be visible.

• No matter which policy is used, most of the peers are with maximal stream

count of 1, and there is a considerable number of peers who don’t participate

in delivering streams, which implies the abundance of resource for contributing

to stream delivery.

4.3.3 Comparing Stream Merging Policies

A stream merging policy is essential for any stream merging protocol to be effective

and efficient. Conventionally, it follows the heuristic of early merging to achieve

soonest stream mergers which can greatly reduce the required server bandwidth. In

peer-to-peer stream merging, the conventional early merging policy is extended to be

adaptable to the peer-to-peer context, mainly attempting to improve the efficiency

in terms of the network bandwidth cost.

Previously in Section 4.3.1, the new protocol with the extended stream merging

policy is compared with the single-server based HMSM that applies one of the con-

ventional early merging policies (i.e., ERMT). In this section, further comparison

is presented with the conventional ERMT and the extend stream merging policy

87



respectively applied in the new protocol and combined with the location-first pol-

icy. Again, each peer is assumed to be with unlimited outbound bandwidth and

unlimited buffer space. In all figures presented in this section, unless stated other-

wise, the lines labelled by “Extended” represent results for the new protocol with

the extended stream merging policy and those labelled by “Early” are for the new

protocol with the conventional early merging policy (ERMT).
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Figure 4.21: Network Bandwidth Cost: Stream Merging Policies (unlimited peer
resource capability)

Figure 4.21 provides the network bandwidth costs for both types of stream merg-

ing policies, assessed as functions of file request rate and network size. Two obser-

vations are described as follows:

• In terms of the network bandwidth cost, the extended stream merging policy

is more efficient than the conventional early merging policy when both are
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applied in the new protocol. As defined in the conventional early merging

policy, each peer, without any exception, has to listen to a merge target stream

no matter whether or not the merge target is delivered by a remote peer.

Comparatively, more network bandwidth can be saved in the extended stream

merging policy, since the merge target is delivered by a close-by peer if a peer

successfully obtains one, otherwise, the peer listens to its primary stream only.
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Figure 4.22: The Maximal Number of Streams: New Protocol with Early Merging
Policy vs. HMSM

• Also, interestingly, the new protocol with the conventional ERMT consumes

the nearly identical network bandwidth to the conventional HMSM, no matter

in GT-ITM or in Inet. When the early merging policy is applied, the new

protocol has a similar stream merging structure to the conventional HMSM,

except that all streams are delivered by peers instead of the server itself only.

89



Unlike the extended stream merging policy that allows a peer to listen to

only its primary stream, it requires each peer to listen to two streams so

that streams constantly merge with previous streams, which leads to a low

number of active streams in the system. This can be verified by Figure 4.22

that illustrates the maximal numbers of streams for the new protocol with

two stream merging policies and the conventional HMSM. It shows that the

results for the new protocol with ERMT and the conventional HMSM are fully

overlapped, representing the same numbers of streams in both cases. Overall,

this implies that the stream merging policy is also a key factor that affects the

network bandwidth cost. For the new protocol that applies the early merging

policy, although the use of the location-first policy saves network bandwidth,

the protocol is still not efficient in terms of the total network bandwidth cost.

Figure 4.23 and Figure 4.24 illustrate the comparison of both the early and

the extended stream merging policies applied in the new protocol in terms of the

server/peer bandwidth cost. Comparing two stream merging policies, the main

observation is that, the protocol with the early merging policy consumes less server

bandwidth cost and much less peer bandwidth cost. As mentioned, the total number

of active streams in peer-to-peer stream merging is closely related to the total peer

bandwidth cost. It is also related to the server bandwidth cost since the server in the

new protocol behaves more like a normal peer than a conventional dedicated server.

Now that the total number of streams in the new protocol with the early merging

policy is significantly less than that with the extended stream merging policy, as

shown in Figure 4.22, it is reasonable for the protocol with the early merging policy

to consume less peer/server bandwidth cost.

4.3.4 Impact of Limited Peer Outbound Bandwidth

So far, the performance study is based on the assumption of that each peer has

unlimited outbound bandwidth that allows a peer to deliver a large number of

streams whenever required to optimize the protocol performance. For the peer-
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Figure 4.23: Server Bandwidth Cost: Stream Merging Policies

to-peer stream merging technique, more realistically, if a peer generated by the

location-first policy doesn’t have sufficient outbound bandwidth to deliver a stream

requested by a new peer, the stream will be simply delivered by a more distant peer,

which requires more network bandwidth for the stream delivery. In this section,

such impact on the protocol performance is studied.

With the default policy and parameter settings, the impact of limited peer out-

bound bandwidth is studied in both homogeneous and heterogeneous settings. While

all peers are simply assigned the same outbound bandwidth capacity in the homo-

geneous setting, it is more complicated in the heterogeneous setting. Specifically,

with an expected value of the limited outbound bandwidth capacity assigned in each

simulation run, the system keeps track of the current outbound bandwidth capacity
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Figure 4.24: Peer Bandwidth Cost: Stream Merging Policies

which is simply the average of the outbound bandwidth capacities over all active

peers. When a new peer joins, its outbound bandwidth capacity is randomly se-

lected from a range determined by comparing the current average with the expected

capacity, and the current average is updated whenever a peer joins or leaves the

system. In both settings, the media server is treated as a normal peer and assigned

the averaged outbound bandwidth capacity. In the circumstances that all the peers

and the server are at their full load which causes no outbound bandwidth available

in the system to serve any new peer, the server takes the responsibility.

In the figures presented in this section, the results of the new protocol with both

homogeneous and heterogeneous limited outbound bandwidth settings are respec-

tively labelled by “P2P homo” and “P2P hete” followed by a number in Figure
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4.25 and Figure 4.27 representing the corresponding averaged outbound bandwidth

capacity measured as units of the stream delivery bit rate. The lines labelled by

“P2P unlimited” represent the results of the new protocol with unlimited outbound

bandwidth, and those labelled by “HMSM” are for the conventional HMSM.
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Figure 4.25: Impact of Limited Outbound Bandwidth on Network Bandwidth Cost

Figure 4.25 illustrates the comparison of the new protocol with limited and un-

limited outbound bandwidth in both GT-ITM and Inet, in terms of the network

bandwidth cost assessed as functions of file request rate and network size. Since it

is shown in Figure 4.19 that the capability of delivering one stream for each peer is

sufficient for the whole system to be effective, the limited outbound bandwidth ca-

pacities of 1 and 2 are respectively used in both the homogeneous and heterogeneous

settings. Some observations are described as follows:
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• For the outbound bandwidth capacity limited at 1 and 2, the new protocol

with the homogeneous setting performs very closely to that with the unlimited

outbound bandwidth in terms of the network bandwidth cost, which implies

the capability of delivering one stream for a peer is sufficient for the new

protocol with homogeneous limited outbound bandwidth to be efficient. In

fact, with the homogeneous outbound bandwidth limited at 1, the new protocol

based on the location-first policy is very similar to the new protocol with the

location-bandwidth ratio policy that achieves the full balance of the system

workload.

 0

 20

 40

 60

 80

 100

 0  250  500  750  1000  1250  1500  1750  2000

N
o-

co
st

 P
er

ce
nt

ag
e 

(%
)

File Request Rate

P2P homo 1
P2P homo 2

P2P hete 1
P2P hete 2

(a) GT-ITM (500 network nodes)

 0

 20

 40

 60

 80

 100

 0  250  500  750  1000  1250  1500  1750  2000

N
o-

co
st

 P
er

ce
nt

ag
e 

(%
)

File Request Rate

P2P homo 1
P2P homo 2

P2P hete 1
P2P hete 2

(b) Inet (4000 network nodes)

 0

 20

 40

 60

 80

 100

 0  200  400  600  800  1000

N
o-

co
st

 P
er

ce
nt

ag
e 

(%
)

Network Size

P2P homo 1
P2P homo 2

P2P hete 1
P2P hete 2

(c) GT-ITM (request rate = 1000)

 0

 20

 40

 60

 80

 100

 3000  3500  4000  4500  5000  5500  6000  6500  7000

N
o-

co
st

 P
er

ce
nt

ag
e 

(%
)

Network Size

P2P homo 1
P2P homo 2

P2P hete 1
P2P hete 2

(d) Inet (request rate = 1000)

Figure 4.26: No-cost Percentage for Protocol with Limited Outbound Bandwidth

• When the heterogeneous setting is used, in spite of the performance vari-

ance between GT-ITM and Inet, the new protocol consumes more network
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bandwidth than that with the homogeneous setting. Compared with the new

protocol in the homogeneous setting and the conventional HMSM, which are

two extremes in terms of the workload balance, the new protocol with the

heterogeneous setting achieves workload balance somewhere in-between and

performs more like a multi-server version of the conventional HMSM, in which

the majority of streams are delivered by a small number of peers who are

assigned relatively high outbound bandwidth. Thus, in this case, there is a

higher possibility for a peer, to listen to a stream delivered from another peer

located at a different node, which causes lower no-cost percentage as shown in

Figure 4.26, compared with the homogeneous setting. Figure 4.26 also shows

that, as the limited capacity of heterogeneous outbound bandwidth increases

from 1 to 2, more peers listen to no-cost streams, resulting in a visible reduc-

tion on the network bandwidth cost as observed from Figure 4.25.

• Although the new protocol with the heterogeneous outbound bandwidth, which

is more realistic, consumes more network bandwidth than it is with unlimited

or homogeneous limited outbound bandwidth, results show, with a reason-

able limited capacity of outbound bandwidth, it still performs better than the

conventional HMSM, which is more meaningful to this performance study.

Figure 4.27 provides the server bandwidth cost for the new protocol with limited

outbound bandwidth, in terms of the effects of file request rate and network size.

Results show that the new protocol with limited outbound bandwidth, homoge-

neously or heterogeneously, achieves a significant reduction on the server bandwidth

cost, compared with the conventional HMSM. Also, since the outbound bandwidth

limitation implicitly leads to a better workload balance, the new protocol with the

limitation is more steadily efficient in terms of the server bandwidth cost than it is

with unlimited outbound bandwidth.

The effect of limited outbound bandwidth capacity is also studied in this section.

Figure 4.28 provides the sample results of the network and server bandwidth costs

for both homogeneous or heterogeneous settings. Two observations are presented as
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Figure 4.27: Impact of Limited Outbound Bandwidth on Server Bandwidth Cost

follows:

• For the new protocol with homogeneous outbound bandwidth, the performance

of the network/server bandwidth cost is constant in the range of outbound

bandwidth capacities measured in simulation (i.e., 1 to 10), which means out-

bound bandwidth of 1 is sufficient to achieve good performance.

• For the new protocol with the heterogeneous setting in which the measured

outbound bandwidth capacity could be less than 1, the network bandwidth

cost shows a sharp decrease followed by a slow decrease, and finally stabilizes

at the same value as that of the homogeneous setting; the server bandwidth

cost reaches its critical point at around 0.4, which implies the outbound band-

width average of 0.4 is sufficient for serving all peer requests and for the whole
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Figure 4.28: Effect of Limited Outbound Bandwidth Capacity on Network/Server
Bandwidth Cost

system to be effective. Overall, the outbound bandwidth from 1 to 3 is an

acceptable range, considering the trade-off between high outbound bandwidth

requirement and low network/server bandwidth cost.

4.3.5 Impact of Limited Peer Buffer Space

In peer-to-peer stream merging, each peer needs local storage to buffer data even

after its playback, which is not only for the attempted stream mergers but also for

serving other peers. The results presented so far are derived from simulations that

assume unlimited peer buffer space that enables a peer to deliver streams to any

late-coming peers as long as it stays in the system, which is unlikely in practice.

When the buffer space is more restrictive in the system, some peers may not be
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able to serve streams since the requested data is not available in the buffer due to

a buffer overflow. In this section, the impact of such limitation on the performance

reductions is studied.

Similar to the study on the impact of limited peer outbound bandwidth, the

impact of limited peer buffer space is studied using both the homogeneous and

heterogeneous settings in simulations. With the homogeneous setting, all peers are

assumed to have the same buffer capacity; and with the heterogeneous setting, the

buffer capacities of all participating peers in the system are determined using the

same method for the allocation of heterogeneous outbound bandwidth described in

Section 4.3.4, i.e., the buffer capacity of a new peer is dynamically determined by

comparing the averaged buffer capacity of all peers currently active in the system

to the expected peer buffer capacity.
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Figure 4.29: Impact of Limited Buffer Space on Network Bandwidth Cost
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The default policies (i.e., the location-first policy and the extended stream merg-

ing policy) is used in the simulations that were conducted for the study on the

impact of limited peer buffer space. Figure 4.29 provides the network bandwidth

costs for the new protocol with limited and unlimited peer local storage and for

the conventional HMSM as well, and illustrates how much reduction is induced by

the limitation. In the figure, the results of the new protocol with homogeneous

and heterogeneous buffer space are respectively labelled by “P2P homo” and “P2P

hete” followed by a number that represents the corresponding averaged peer buffer

capacity expressed in percentage of the full-file length. The lines labelled by “P2P

unlimited” and “HMSM” represent results for the new protocol with unlimited buffer

space and the conventional HMSM, respectively. Some observations obtained from

the figure are described as follows:

• Unlike the new protocol with the limited outbound bandwidth that presents

distinct performance between the homogeneous and heterogeneous settings,

the variance between the performance of homogeneous and heterogeneous peer

buffer space is minor. As shown in the figure, when the buffer size is either 20%

or 50% of the full-file length, the network bandwidth costs in both settings are

close in both GT-ITM and Inet.

• No matter which of the two settings is used, the buffer size is the dominant

factor that affects the protocol performance. Results show, in either case,

the protocol consumes more network bandwidth when the buffer size is 20%

of the file length than 50%. This is reasonable since, with less buffer space,

more peers are not able to store data that may be useful later so that more

new peers have to request data from the server or small number of peers who

still have the requested data stored in their buffer, thus causing more network

bandwidth consumed in delivery.

Figure 4.30 presents the comparison on the server bandwidth cost. As observed

from the two sample results for buffer sizes set to 20% and 50% of the file length, in

terms of the server bandwidth cost, the new protocol performs very similarly in both
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Figure 4.30: Impact of Limited Buffer Space on Server Bandwidth Cost

homogeneous and heterogeneous settings, and is more efficient than the conventional

HMSM. Also it is expected that more server bandwidth will be consumed when peers

have less buffer space, since the server alway stores the full-length file and is more

possibly requested for data when fewer peers have the requested data stored in their

buffers. It shows that the results conform to this expectation more clearly in the

GT-ITM topology.

The scale of performance on the effect of buffer size is also studied. Figure

4.31 shows the network and server bandwidth costs in both the homogeneous and

heterogeneous settings for buffer sizes in range of 5% to 100% of the full-file length,

with the fixed file request rate and network size. Two observations are described as

follows:
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Figure 4.31: Effect of Limited Buffer Capacity on Network/Server Bandwidth Cost

• It shows again that the performance is nearly identical for the homogeneous

and heterogeneous peer buffer space. As observed in the study on the impact

of limited outbound bandwidth (Section 4.3.4), in which the protocol with the

homogeneous setting performs better than that with the heterogeneous set-

ting, a better-balanced workload helps to reduce the total network bandwidth

consumed in media delivery. However, in the case of limited storage space,

the workload balance is mostly affected by the buffer size regardless in which

way, homogeneously or heterogeneously, the buffer capacity is allocated in the

system.

• Also observe that both the network and server bandwidth costs are extremely

high when the buffer size is set to 5% of the full-file length. As the buffer size
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increases, both costs start with a sharp decrease and then slowly decline after

the buffer size reaches approximately 10% or 20% of the file length (different in

GT-ITM and Inet). Overall, the capability of storing 20% of the media file for

each peer is sufficient for the new protocol to achieve performance competitive

to that in the ideal case.

4.3.6 Stream Failure Recovery

Some important peer characteristics such as the short lifetime and the insufficient

capability to be a dedicated server may easily cause a stream failure during a long

streaming session. Section 3.5 introduces a recovery scheme that is designed to be

receiver-driven and aims at recovering any stream failure caused by graceful and

unexpected peer departures. This section evaluates the performance of this stream

recovery scheme in terms of when the departure occurs. Specifically, two cases are

studied: peer departure when receptions complete and peer departure at random.

Previous sections assume no stream failure in media delivery. In particular, to

avoid stream failures caused by the peer departures when receptions complete, peers

are assumed to stay in the system as long as they are still active in their uploading

sessions even after their own receptions complete. However, this assumption is not

valid in the simulation conducted for the first case of peer departure. Instead,

each peer is assumed to leave the system as soon as its receptions complete. Note

that, this is the extreme case of peer departure, i.e., all peers are assumed to leave,

resulting in failures of all existing streams.

In the simulation conducted for the case of peer departure at random, the de-

parting peers are chosen in random. Specifically, the failure events are designed

to be evenly distributed over the simulation time. The time interval between two

successive failure events depends on the failure rate which is defined as the num-

ber of peer departures divided by the number of active peers in the system. Since

the number of active peers changes over time, the interval is dynamically updated

whenever a new peer joins or an existing peer leaves gracefully or unexpectedly.
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Figure 4.32: Network Bandwidth Cost for Protocol with Stream Failure Recovery

Figure 4.32 shows the network bandwidth costs for the new protocol in two cases

of peer departures which are compared with the new protocol without failure and

the conventional HMSM. In the figure, the results of protocol with two types of peer

departures and without failure are respectively labelled by “Reception Complete”,

“Random”, and “No Failure”. The number following “Random” represents the

failure rate. Some observations are discussed as follows:

• With the assumption of peer departure when receptions complete, the new

protocol requires much more network bandwidth than that in the case of no

stream failure, and it performs even worse than the conventional HMSM in

GT-ITM. As shown in previous sections, the existence of “no-cost” streams

allows the new protocol to be efficient in terms of the network bandwidth cost.
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However, with the presence of peer departure when receptions complete, those

“no-cost” streams, sooner or later, will fail and be replaced by recovery streams

delivered by the server, which will certainly increase the network bandwidth

cost.

• In the case of random departures, for the two sample failure rates 0.2 and

0.5, the new protocol consumes less network bandwidth than the conventional

HMSM. However, two variances are present between GT-ITM and Inet: 1)

compared with the protocol with no stream failure, the new protocol consumes

more network bandwidth in GT-ITM, but less in Inet; 2) a higher failure rate

causes more network bandwidth consumed in GT-ITM, but on the contrary

in Inet. Note that, for any random departure, there are two possible effects

on the total network bandwidth cost. If the departing peer is delivering one

or more streams, the network bandwidth cost would possibly increase since

more network bandwidth is required by the recovery stream; otherwise, the

total network bandwidth cost would decrease since the data reception of the

departing peer stops. Owing to the structure difference between GT-ITM and

Inet, the dominance of which effect on the network bandwidth cost results in

the above performance variances. The second performance variance is more

clearly illustrated in Figure 4.33(a) which provides the network bandwidth

costs assessed as function of failure rate in GT-ITM and Inet.

The server bandwidth cost is an important metric for evaluating the new proto-

col when stream failure is assumed. Figure 4.34 presents the server bandwidth costs

assessed as functions of file request rate and network size, and Figure 4.33(b) shows

the results assessed as function of failure rate for the case of random departure. Re-

sults show, the server bandwidth cost is extremely high in the case of peer departure

when receptions complete, especially at high file request rate. This is not surprising

since the case studied is the extreme case of peer departure, in which hundreds or

even thousands of active streams will fail, requiring the server to initiate and deliver

recovery streams. For the case of random departure, although the new protocol
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Figure 4.33: Effect of Peer Failure Rate on Network/Server Bandwidth Cost for the
Case of Random Departure (file request rate = 1000)
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Figure 4.34: Server Bandwidth Cost for Protocol with Stream Failure Recovery
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performs better than that in the case of peer departure when reception complete, it

still consumes more server bandwidth than the new protocol with no stream failure

and the conventional HMSM, especially in GT-ITM.

Overall, although having the server handle stream recovery is the simplest and

most robust option, the new protocol yields unsatisfactory performance and can not

cope with a high rate of peer departures due to server overloading. For the protocol

to be effective in real system, further changes could be considered to reduce the server

bandwidth cost and hopefully the network bandwidth cost as well. The following

briefly discusses two possible options that could be evaluated in the future work:

• One possible change is regarding the selection of the recovery stream initiators.

Instead of the server only, the initiators could be peers which are selected based

on the location-first or location-bandwidth ratio policies so that the server work-

load can be greatly reduced. Since this change requires additional time for the

initiator selection, alternative methods can be applied to reduce the recovery

time, e.g., adding a small start-up delay before the playback or increasing the

stream delivery bit rate.

• Another possible change is to restrict the selection of stream initiators. In

previous simulations that assume no peer departure, a peer could be chosen to

deliver streams regardless of its own receptions. Considering that the recovery

workload can be reduced if the remaining duration of a failed stream is short,

a threshold on data reception can be used to restrict the initiator selection,

i.e., only peers whose data receptions are less than the threshold are qualified

to be candidates of a stream initiator.

4.3.7 Summary

Previous sections describe a number of simulations that have been done in the

performance study. Based on the obtained results, a brief summary is presented in

this section. Basically, the performance of the peer-to-peer stream merging protocol

is evaluated under two different assumptions: unlimited and limited peer resource
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capabilities. The remainder of this section separately summarizes the simulations

under these two categories.

Unlimited Peer Resource Capability

With the assumption of unlimited peer outbound bandwidth and unlimited buffer

space, four sets of simulations are performed as summarized as follows:

• The new protocol with the default policy and parameter settings is compared

with the conventional HMSM protocol. Although there is performance vari-

ance between GT-ITM and Inet, overall the new protocol yields better perfor-

mance than the conventional HMSM, in terms of both the network and server

bandwidth costs.

• The performance of the three peer selection policies is compared. Among the

three policies, the location-bandwidth ratio policy yields the best performance.

It achieves almost the same efficiency on the network bandwidth cost as the

location-first policy, and meanwhile, the overall system is well balanced and

at most two streams are delivered by a peer or the server. The location-first

policy is efficient on the network bandwidth cost but its performance on the

server bandwidth cost is not stable. For the load-first policy, it is the best

option only when the system workload balance is concerned.

• The extended stream merging policy is compared with the conventional early

merging policy when both are applied in the new protocol and combined with

the location-first policy. In terms of the network bandwidth cost, the new

protocol with the early merging policy is less efficient than that with the

extended stream merging policy, and performs very closely to the conventional

HMSM. This implies that, besides the peer selection policy, the stream merging

policy is also a key factor that affects the network bandwidth cost.

• The proposed stream recovery scheme is evaluated in two cases of peer depar-

tures. Owing to the server overloading problem, the performance is unsatis-
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factory. For the recovery scheme to be effective in large-scale systems with a

high early peer departure rate, modifications need to be made in the future

research.

Limited Peer Resource Capability

Two sets of simulations are performed to study the impacts of limited peer outbound

bandwidth and limited peer buffer space, respectively. The following summarizes

these simulations:

• The first set of simulation evaluates the impacts of both the homogeneous and

heterogeneous limited peer outbound bandwidths on the performance reduc-

tions. Results show, if the same capacity is used, the protocol with the ho-

mogeneous setting generally consumes less network bandwidth than that with

the heterogeneous setting, which implies that better workload balance helps

to reduce the network bandwidth cost. When the system is more realistically

set with the heterogeneous outbound bandwidth, the outbound bandwidth

average from 1 to 3 is an acceptable range for the protocol to achieve rea-

sonably good performance, considering the trade-off between high outbound

bandwidth requirement and low network/server bandwidth cost.

• The second set of simulation evaluates the impact of limited peer buffer space,

also with both the homogeneous and heterogeneous settings. Results show,

the performance is mostly affected by the amount of buffer capacity rather

than the type of buffer space setting. Overall, for both settings, the buffer

capacity of 10% or 20% of the file length (different in GT-ITM and Inet) is

sufficient for the new protocol to achieve relatively good performance.
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Chapter 5

Conclusions

To achieve a more scalable VOD system design that enables efficient concurrent ser-

vice to large numbers of wide-area clients, this thesis develops a streaming protocol

that adapts the previously proposed HMSM protocol to use a peer-to-peer delivery

approach. To conclude the work that has been done in this thesis including the

protocol design and the simulation-based performance study, this chapter provides

a brief summary of the thesis, states the contributions, and presents some possible

future research directions.

5.1 Thesis Summary

The first two chapters of the thesis provide a brief introduction and a literature

review of VOD streaming. Various previously proposed techniques for scalable VOD

streaming are reviewed, and the corresponding constraints and limitations of each

technique are summarized.

Chapter 3 develops a new VOD streaming protocol that adapts a previously pro-

posed stream merging protocol (i.e., HMSM) for use in a peer-to-peer system. The

overview of the new protocol is first provided including the system architecture, the

stream merging structure, and some important peer and server characteristics. The

two key components of the new protocol, the selection policy for the primary stream

initiator and the stream merging policy, are then discussed in detail. Three policies

are proposed for selection of the primary stream initiator that differ according to
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how they take into account peer location and workload, and a new stream merging

policy is proposed by adapting the conventional early merging policies to the peer-

to-peer context. Lastly, approaches for dealing with peer storage limitations and

the stream disruptions caused by peer departures are discussed.

Chapter 4 presents the performance evaluation of the new protocol. Based on a

number of assumptions and the simulation methodology that are described at the

beginning, six sets of simulations are conducted. First, the performance of the new

protocol with the default policy and parameter settings is compared with that of the

conventional HMSM. The performance of the three peer selection policies is then

studied and compared. The performance of the extended stream merging policy

is also compared with that of the conventional early merging policy. Furthermore,

the impacts of limited peer outbound bandwidth and limited peer buffer space on

the overall performance are studied. Finally, a performance study of the proposed

stream recovery scheme is presented.

5.2 Contributions

This work aims at improving the scalability of a VOD streaming system. In sum-

mary, the main contributions of the thesis are as follows:

• The key contribution of this thesis is the development and evaluation of a

scalable VOD streaming protocol that enriches the stream merging technique

by adapting the conventional HMSM protocol to the peer-to-peer context. It

improves the efficiency of previously proposed stream merging protocols in

terms of both the server and network bandwidth requirements.

• Three peer selection policies are developed and evaluated. The location-

bandwidth ratio policy is efficient in terms of the network and server bandwidth

costs, and meanwhile, achieves the system workload balance as well.

• A new stream merging policy is developed that adapts the conventional early
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merging policies to provide efficient stream merging in the peer-to-peer con-

text.

• The impacts on performance of limited peer outbound bandwidth and limited

client buffer space are studied, both for homogeneous and heterogeneous peer

scenarios. The new protocol with limited peer outbound bandwidth is more

efficient when the workload is balanced, and the buffer size of about 10% or

20% of the file length (different in GT-ITM and Inet) is sufficient for the new

protocol with limited peer buffer space to achieve relatively good performance.

• A scheme of stream failure recovery is developed to handle stream failures

caused by any type of peer departure.

5.3 Future Work

This thesis studies some important issues related to scalable VOD streaming. This

section discusses some possible directions that can be investigated following this

work in future research:

• Modifying the stream recovery scheme so that it will be effective and efficient

in large-scale systems with a substantial early peer departure rate. Results

show that the stream recovery scheme proposed in this work can not effec-

tively cope with a high rate of early peer departures due to server overloading.

As mentioned in Section 4.3.6, several modifications are possible to improve

the efficiency in terms of the server bandwidth cost and likely the network

bandwidth cost.

• Improving the design of the peer-to-peer stream merging protocol and imple-

menting a prototype to support experiments in large scale real systems. In

this thesis, some details of the protocol design are simplified since the perfor-

mance evaluation of this work is simulation-based. One example is the method

for measuring network distance which needs to be determined for real-system
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experiments. Another example concerns the network bottleneck between two

nodes which in the simulation experiments is simply assumed to be at an end

point rather than at some intermediate point on the communication path. To

more precisely measure the bottleneck and the related end-to-end available

bandwidth between two peers, a more specific method needs to be included

in the design and implemented in the prototype. Moreover, another possible

future work direction is the implementation of suitable application-layer mul-

ticast support for the protocol prototype, as motivated by the lack of reliable

wide-area IP multicast service in the current Internet.

• If a prototype is implemented in future work, experiments could be conducted

in LAN environments as well as over the Internet. This thesis uses a simple

simulator that is based on a number of assumptions. For experiments in a

real system, many other issues are of concern, for instance, the impact of the

delivery latency on the media playback, the control overhead of the protocol,

and the real-system evaluation of the stream recovery scheme. For such issues,

additional performance metrics can be used besides the three bandwidth costs.

For example, the time required for recovering a failed stream can be another

metric for the evaluation of the stream recovery scheme.

• Providing support for interactive functions such as pause, rewind, and fast-

forward, which is essential for the peer-to-peer stream merging protocol to

be used in VOD streaming applications. Since peers generally have storage

limitations in real systems, it is not trivial to design these interactive functions.

New protocol techniques may be required when newly requested data is not

available in the buffer, in which case additional overhead is probably exposed.
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