
 

 

 

 

BIOPHYSICAL INVESTIGATION OF M-DNA 

 

 

 A Thesis Submitted to the College of Graduate Studies and Research 

in Partial Fulfillment of the Requirements for the 

Degree of Doctor of Philosophy 

in the Department of Biochemistry 

University of Saskatchewan, Saskatoon 

 

 

 

by 

David Owen Wood 

 

 

 

 

 
© David Owen Wood, May 2005. All Rights Reserved. 



Permission To Use 

 

 In presenting this thesis in partial fulfillment of the requirements for a 

postgraduate degree from the University of Saskatchewan, I agree that the libraries of this 

University may make it freely available for inspection. I further agree that permission for 

copying of this thesis in any manner, in whole or in part, for scholarly purposes may be 

granted by the professors who supervised my thesis work, or in their absence, by the 

Head of the Department of Biochemistry or the Dean of the College of Medicine. It is 

understood that any copying or publication or use of this thesis or parts thereof for 

financial gain shall not be allowed without my written permission. It is also understood 

that due recognition shall be given to me and to the University of Saskatchewan  in any 

scholarly use which may be made of any materials in my thesis. 

 Requests for permission to copy or make other use of material in this thesis in 

whole or in part should be addressed to: 

 

Head of the Department of Biochemistry 

University of Saskatchewan 

Saskatoon, Saskatchewan, S7N 5E5 

 i 



Abstract 

 

 M-DNA is a complex formed between normal double-stranded DNA and the 

transition metal ions Zn2+, Ni2+, and Co2+ that is favoured by an alkaline pH. Previous 

studies have suggested that M-DNA formation involves replacement of the imino protons 

of G and T bases by the transition metal ions involved in forming the complex. Owing to 

the conductive properties of this unique DNA conformation, it has potential applications 

in nanotechnology and biosensing. This work was aimed at improving existing methods 

and developing new methods of characterizing M-DNA. The effects of base substitutions, 

particularly those of G and T, were evaluated in light of the proposed structure. 

Differences between M-DNA conformations induced by Zn2+ and Ni2+ were also 

investigated with a variety of techniques and compared to the effects of Cd2+ and Mg2+ on 

double-stranded DNA. 

M-DNA formation and stability were studied with an ethidium bromide (EtBr) 

based assay, M-DNA induced fluorescence quenching of DNA labelled with fluorescein 

and a compatible quenching molecule, isothermal titration calorimetry (ITC), and surface 

plasmon resonance (SPR). Production of monoclonal antibodies against the conformation 

was also attempted but was unsuccessful. The EtBr-based assay showed Ni(II) M-DNA 

to be much more stable than Zn(II) M-DNA as a function of pH and in the presence of 

ethylenediaminetetraacetic acid. Sequence-dependency and the effect of base 

substitutions were measured as a function of pH. With regards to sequence, d(G)n•d(C)n 

tracts were found to form the conformation most easily. Base substitutions with G and T 

analogues that lowered the pKa of these bases were found to stabilize M-DNA more 
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strongly than other base substitutions. A combination of temperature-dependant EtBr and 

ITC assays showed M-DNA formation to be endothermic, and therefore entropy driven. 

The SPR studies demonstrated many qualitative differences between Zn(II) and Ni(II) M-

DNA formation, allowed characterization of  Zn2+, Ni2+, Cd2+, and Mg2+ complexes with 

single-stranded DNA, and provided unambiguous evidence that M-DNA formation 

results in very little denaturation of double-stranded DNA. Specifically, the SPR study 

showed Ni(II) M-DNA to be more stable than Zn(II) M-DNA in the absence of transition 

metal ions, but also showed that Ni(II) M-DNA required higher concentrations of Ni2+ 

than Zn2+ to fully form the respective M-DNA conformations. Finally, quenching studies 

demonstrated Zn(II) M-DNA formation over a pH range from 6.5 to 8.5 provided that a 

Zn2+:H+ ratio of roughly 105 was maintained. The Keq for this interaction was 1.3 x 10-8 

with 1.4 H+ being liberated per base bair of M-DNA formed. 

These results support the proposed structural model of M-DNA, as lowering the 

pKa of the bases having titratable protons over the pH range studied facilitated M-DNA 

formation. The fact that Zn(II) M-DNA formation was observed by fluorescence 

quenching at any pH provided that a constant ratio of Zn2+:H+ was maintained was 

consistent with a simple mass-action interaction for M-DNA formation. The differences 

between Zn(II) and Ni(II) M-DNA formation show that although it requires a higher pH 

or transition metal ion concentration, Ni(II) M-DNA is more stable than Zn(II) M-DNA 

once formed. This difference could play an important role in applications of M-DNA 

which required modulation in the stability of the M-DNA conformation. 
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1.0 Introduction 

 

1.1 DNA Structure 

 

There are two types of nucleic acids found in nature:  DNA and RNA. Together, 

they are responsible for the transmission and expression of genetic information. The 

characterization of these polymers and their subunits is the cornerstone of molecular 

biology and one of the most important achievements of modern chemistry. This section 

will outline the important structural features of DNA and its subunits that are relevant to 

this study. 

 

1.1.1 Subunits of DNA 

 

 The basic monomers of DNA and RNA are called nucleotides. These in turn 

consist of three subunits:  a phosphate, a sugar, and a base. There are three bases common 

to DNA and RNA:  adenine (A), guanine (G), and cytosine (C). In addition, uracil (U) is 

found primarily in RNA while its 5-methyl analogue, thymine (T) is found exclusively in 

DNA. Adenine and guanine are purine bases whereas cytosine, thymine, and uracil are 

pyrimidines. All the bases are aromatic and planar, forming rigid structures. The aromatic 

nature of the bases gives them substantial extinction coefficients in the ultraviolet (UV) 

range and the absorbance of solutions of DNA and RNA at 260 nm (A260) allows easy 

quantification of the concentration of monomers in solution. These bases along with the 

structures of purine and pyrimidine are depicted in figure 1.1. 
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Figure 1.1:  The ring structures of purine and pyrimidine, the parent molecules of the 
five bases found in DNA and RNA, as well as the five bases found in DNA and/or RNA:  
A, C, G, T, and U. The numbering schemes depicted on purine and pyrimidine apply to 
the five bases as well as their analogues and these positions will be referred to throughout 
the text. 
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The combination of a base and 5C furan sugar is referred to as a nucleoside. The 

base is joined to C1’ of the sugar by N1 of pyrimidines and N9 of purines. For clarity, 

positions on bases are referred to simply as the number of the atom while those on the 

furan sugar are numbered with a prime symbol. The sugar present in DNA is β-D-2’-

deoxyribose and the subunits are referred to as 2’-deoxyribonucleotides. The sugar 

present in RNA is β-D-ribose and its subunits are in turn called ribonucleotides. 

Ribonucleosides of the respective bases are called adenosine, guanosine, cytidine, and 

uridine while those of deoxyribonucleosides simply have deoxy- added as a suffix and 

include deoxythymidine. Unlike those in the bases, the bonds in the sugar ring display 

conformational lability. There are two major conformations the furan ring can adopt in 

DNA and RNA: the C2’ endo and C3’ endo conformations. Dubbed “sugar puckers”, 

these are defined by which carbon (C3’ or C2’) is on the same side of the C4’-O-C1’ 

plane as the base and C5’, as depicted for 2’-deoxyribose in figure 1.2. Another 

conformationally labile portion of nucleosides is the bond between the base and sugar. 

Thus syn or anti conformers are illustrated for guanosine and cytidine in figure 1.3. The 

anti conformer is generally preferred due to fewer steric interactions. The rotation about 

the sugar-base bond and the sugar pucker differ depending on the specific conformation 

of double-stranded DNA (dsDNA) or double-stranded RNA (dsRNA) present. 

A nucleotide consists of a nucleoside and a 5’-phosphate. Ribonucleotides 

containing each base referred to as adenylic acid, guanylic acid, cytidylic acid, and 

uridylic acid. From this point forward, the ribonucleotides will be referred to as rA, rG, 

rC, and rU, while the 2’-deoxyribonucleotides will be referred to as dA, dG, dC, dT, and 

dU (Although dU is not typically found in DNA in nature, it can be incorporated 
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artificially). A polymer of 2’-deoxyribonucleotides is called DNA while a polymer of 

ribonucleotides is called RNA. In either case, the 5’ phosphate group of the first 

monomer is joined to the 3’OH group of the following monomer. Thus, the sequences are 

listed from the 5’ to the 3’ end of the polynucleotide chain. A four base DNA 

oligonucleotide of the sequence dATGC with each base in the anti conformation is 

pictured in figure 1.4. 

 Although the five bases detailed above are those predominantly found in DNA 

and RNA in nature, there are many known variations on these structures. Some are 

present in nature while others are purely synthetic. Those relevant to this thesis are 

diaminopurine (n2A), 6-methyladenine (m6A), 7-deazaadenine (z7A), 7-deazaguanine 

(z7G), 8-bromoguanine (Br8G), 8-methylguanine (m8G), 5-bromocytosine (Br5C), 5-

methylcytosine (m5C), 2-thiothymidine (s2T), 4-thiothymidine (s4T), 5-bromouracil 

(Br5U), 5-fluorouracil (F5U), and hypoxanthine (I). The structures of all these modified 

bases are presented in figure 1.5. 

 

1.1.2 Hybridization and Denaturation of DNA 

 

 The vast majority of DNA in the cell is double-stranded, and most single-stranded 

segments of DNA are present only transiently within larger sequences of dsDNA. The 

specific interaction of two DNA strands is referred to as hybridization, while the reverse 

process, the separation of dsDNA into single strands, is referred to as denaturation.
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Figure 1.2:  The numbered structure of 2’-deoxyribose, the sugar found in DNA, and the 
two possible sugar puckers it can adopt, C2’-endo, which is typically found in B-DNA, 
and C3’-endo, which is typically found in A-DNA or dsRNA. In either type of 
polynucleotide, the bases are attached to C1’ by N1 of pyrimidine bases or N9 of purine 
bases. 
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Figure 1.3:  The two possible orientations of the bases of 2’-deoxyguanosine and 2’-
deoxycytosine about their bonds between C1’ and N9 or N1, respectively. The syn and 
anti conformations are named as to whether the bases are arranged with a higher or lower 
degree of steric interactions with the 2’-deoxyribose sugar, respectively. 
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Figure 1.4:  A tetranucleotide with the sequence dATGC. The bases are named from the 
5’ phosphate end of the polymer to the 3’ hydroxyl end. 
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Figure 1.5:  The modified bases referred to and in some cases used in this study. For 
reference, the standard bases are also included in this figure. 



  9 

 Hybridization of two strands is specific and mediated by the formation of Watson-

Crick (WC) base pairs. In this base-pairing scheme, first proposed by Watson and Crick 

(Watson and Crick, 1953), G pairs with C and A pairs with T in anti-parallel strands, 

meaning that the individual strands run 3'-5' in opposite directions. From this point 

forward, WC duplexes will be described using a "•" symbol to denote a base pair. Thus, a 

sequence consisting exclusively of dC on one strand and dG on the complimentary strand 

would be called d(C)n•d(G)n while a sequence having repeats of dTG on one strand and 

dCA on the other would be called d(TG)n•d(CA)n. A sequence having alternating dG and 

dC on each strand would simply be called d(GC)n since it is self-complementary. 

Another base-pairing scheme, observed by Hoogsteen between 9-methyladenine 

and 1-methylthymine (Hoogsteen, 1963), is present in folded tRNA molecules as well as 

in triplexes (which will be discussed in more detail in section 1.2.2.3), but not in normal 

dsDNA. The WC base pairs are shown in figure 1.6. The WC base-pairing scheme was in 

agreement with observations that DNA samples contained equivalent amounts of A to T 

as well as G to C and that the ratio of A:G was equal to that of T:C (Chargaff et al., 

1951). WC base pairing allows accurate DNA replication to take place by allowing one 

strand to act as a template for the other. The specificity of WC base pairing is due to the 

formation of intermolecular hydrogen bonds between the two DNA strands. There are 

three such bonds in G•C base-pairs (bps; singular bp) and two in A•T bps.  This 

phenomenon imparts specificity but little stability to the dsDNA structure, as there would 

be just as many hydrogen bonds present in denatured DNA in contact with solvent. The 

stability of dsDNA is due largely to the presence of stacking interactions. 
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Figure 1.6:  The standard WC base pairing schemes for A•T and G•C base pairs. The 
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 Once hybridized, the typical structure of dsDNA, referred to as B-DNA, is an 

anti-parallel right-handed helix. B-DNA has a diameter of ~20 Å and 10.4 bps per turn, 

with an average rise of 3.4 Å per bp. The helix has a major groove and a narrower minor 

groove, both deep, which are defined relative to the base pairs as pictured in figure 1.6. 

The sugar pucker for all residues is C2'-endo and all bases are in the anti configuration. 

The bases are almost planar, being tilted on average 6º relative to the helical axis.

 Hydrophobic Van der Waals interactions play a large role in determining the 

stability of a double helix. The planar aromatic bases interact through their π orbitals in 

what are referred to as stacking interactions. Individual purine nucleoside and 

mononucleotide molecules show stronger self-associative stacking interactions when a 

lower degree of phosphorylation and therefore a lower charge is present on the molecule 

(Yamaguchi et al., 1996). This is due to lowered negative charge density on the 

molecules, which acts as a repulsive force.   This charge-induced repulsion also affects 

the stability of dsDNA, which cannot remain hybridized without some degree of charge 

neutralization on the phosphate backbone. In the case of mononucleotides as well as 

dsDNA, the presence of metal ions shields the negative charge of the phosphates 

allowing closer association of the bases and hence stronger stacking interactions to occur. 

This will be covered in more detail in section 1.2.1. Stacking interactions also play a role 

in intermolecular contacts between proteins and DNA, such as recognition of G residues 

on RNA by ribonuclease T1 mediated through interaction of a Tyr side chain with the 

base (Yamaguchi et al., 1996). 

 Denaturation of DNA occurs at elevated temperatures. Close interaction between 

base pairs allows a stronger overlap between their π orbitals which in turn results in a 
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smaller difference in the energy levels for π-π* transitions and hence a weaker absorption 

relative to isolated bases in single-stranded DNA (ssDNA) (Cowan, 1997). Thus, when 

DNA undergoes a transition from a double- to single-stranded form, there is an associated 

hyperchromicity of roughly 1.4 fold. Since denaturation is a cooperative process, there is 

a well-defined temperature at which the transition occurs, and the midpoint of this 

transition (Tm) is considered to be the temperature at which denaturation occurs. The Tm is 

influenced by the ratio of G•C to A•T base pairs. Since G•C base pairs have stronger 

stacking interactions than A•T base pairs, a higher G•C content will allow a duplex to 

remain hybridized at higher temperatures. This was quantified in a study of 41 purified 

genomic DNA samples of varying base composition and led to the conclusion that at 200 

mM Na+ at pH 7.0 ± 0.3, a linear relationship between Tm and G•C content existed such 

that TM = 69.3 + 0.41 (%G•C) (Marmur and Doty, 1962). The fact that this was done with 

genomic data, representing an essentially random sequence, ruled out sequence effects, 

which have a large effect on the Tm, as illustrated in studies on repeating sequence DNA 

(Saenger, 1984). 

 

1.2 DNA-Metal Ion Interactions 

 

 The structures of all nucleotides provide chemically distinct interaction sites for 

different types of metal cations. Interactions between DNA and metal ions play a crucial 

role in DNA function in vivo and the stability and structure of DNA in vitro.   This 

section will summarize some of the more common and important interactions and how 

they play a role in determining the stability and tertiary structure of DNA helices. 



  13 

Interactions between DNA and metal ions are also integral to M-DNA formation and, 

thus, will be discussed in detail. 

 

1.2.1 Interaction Sites on DNA and their Effects on Duplex Stability 

 

 There are four chemically-distinct potential interaction sites on nucleic acids:  the 

phosphate backbone, the cyclic base nitrogens, the exocyclic keto groups and the sugar 

hydroxyls. Each of these sites acts as a ligand of varying strength for different metal ions 

and these interactions play an integral role in the stability and shape of dsDNA. 

 Metal ions, which act as Lewis acids towards the ligands present on 

polynucleotides, are classified as being either hard or soft acids based on their affinities 

for different types of ligands. Soft ions are more polarizable than hard ions and 

interactions between soft acids and soft ligands have more covalent character than those 

between hard acids and hard ligands, which are primarily electrostatic in nature. 

Examples of hard ions often studied in conjunction with nucleic acids are Li+, Na+, K+, 

Mg+2, Ca2+, Mn2+, Ba2+ and Co3+ while soft ions are Cu+, Ag+, Hg+, Hg2+ Cd+2, and Pt2+. 

Many transition metals are intermediate between hard and soft, such as Ru+, Co2+, Ni2+, 

Cu2+, and Zn2+ (Cowan, 1997). 

Of the different sites available on dsDNA, sugar hydroxyl groups are bound 

almost exclusively by hard ions and will not be discussed further. The keto groups of 

pyrimidines can participate in direct metal ion interactions as can those on position 6 of 

G. The latter case is unlikely since most metal ions would preferentially interact with N7 

and coordination to both of these sites is geometrically unlikely. Despite the fact that they 
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are hard ligands, phosphate groups are typically bound non-specifically by all metal ions 

due to their negative charge, which allows ionic interactions to take place (Saenger, 

1984). Exocyclic amine groups are present on position 4 of C, 6 of A, and 2 of G, but do 

not participate in metal ion binding with any type of ion. This is due to partial double 

bonding character in the C-N bond and consequently electron delocalization into the ring, 

which imparts partial positive charge to the amine group that is repulsive to cations 

(Martin and Yitbarek, 1979). 

The most intricate interaction patterns between metal ions and DNA are with the 

heterocyclic ring nitrogens. Since the ring nitrogens are potential protonation sites, their 

acidity is highly relevant to the binding of metal ions. The pKa values for the ring 

nitrogens of nucleotide monophosphates are given in parentheses in the following series: 

T3 (9.9) > G1 (9.4) ~ U3 (9.3) >> C3 (4.4) > A1 (3.9) > G7 (2.5) >> A7 

For 9-substituted purines, N3 has a pKa at least four units lower than N7 and therefore is 

unlikely to bind protons or metal ions under most circumstances. The preference for 

metal ions to interact with these sites follows the pKa pattern closely, but not precisely. 

Despite their low pKa values, there is a high propensity for metals to interact 

preferentially with N7 of purines. Thus, the interaction order for metal ions at elevated 

pH is likely to be as follows: 

T3 > G1 ~ U3 > G7 > A7 > C3 > A1 

As is apparent from the pKa series, there are protons present on the first three positions at 

neutral pH. Thus, the pattern of ligation towards metal ions at netural pH is likely to be: 

G7 > A7 > C3 > A1 > G1 ~ U3 > T3 
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Therefore, pH is important for determining the interaction sites of metal ions with DNA 

(Martin and Yitbarek, 1979; Martin, 1996). 

As described in section 1.1.2, the stacking interactions between purine 

nucleosides or mononucleotides are stronger when there is less negative charge present 

on the molecule. The presence of Mg2+, Zn2+, or Cd2+ ions has been found to increase the 

strength of the interaction between the molecules to a higher degree than would be 

expected simply due to neutralization of charge. Thus, Mg(ATP)2- and Zn(ATP)2- display 

2 and 5 fold stronger stacking interactions, respectively, than AMP2-. This difference is 

due to the fact that the metal ion provides an intermolecular bridge between the two 

molecules. Further, the higher degree of stabilization imparted by the transition metals is 

due to the fact that they interact with N7 of the adenine ring as well as with the phosphate 

group (Yamaguchi et al., 1996). 

 In dsDNA, the trend is not as simple as in nucleotide monophosphates. The 

duplex is still stabilized by stacking interactions as described in section 1.1.2, and metal 

ions, particularly hard ions, still facilitate this interaction by reducing the level of charge 

repulsion between the phosphate backbones. However, some intermediate and soft 

divalent ions have a twofold effect on helix stability due to their ability to bind both 

phosphates and base nitrogens as indicated by Tm measurements with genomic calf 

thymus (CT) DNA. These ions stabilize the duplex until a threshold is reached (between 

0.25 and 1.75 M2+/DNA phosphate depending on the ion) after which they destabilize the 

DNA and cause denaturation at temperatures lower than in the absence of added divalent 

ion. It was found that stabilization of the duplex was imparted by Mg2+ > Co2+ > Ni2+ 

regardless of concentration while denaturation induced by Cu2+ > Cd2+ > Zn2+ > Mn2+. 
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Thus, these metals were classified in order of phosphate vs base binding as such:  Mg2+ > 

Co2+ > Ni2+ > Mn2+ > Zn2+ > Cd2+ > Cu2+ (Eichhorn and Shin, 1968). A later study 

showed that the base binding affinity of Mn2+ was more specific for G residues, as 

increasing G•C content of a sequence allowed for a greater degree of Mn2+-induced 

lowering of Tm (Anderson et al., 1971). This work was also supported by Raman 

spectroscopy studies that showed interactions between the above-mentioned transition 

metals (except Zn2+) and N7 of purine and N3 of pyrimidine rings. These interactions 

were observed to disrupt stacking interactions and disorder the backbone of B-DNA and 

paralleled changes associated with thermal denaturation of DNA (Duguid et al., 1993). 

Various crystal structures have shown N7 coordination to be important in structures of 

nucleosides, nucleotides, and dinucleotides (Yamaguchi et al., 1996), but a recently 

solved structure shows that Co2+, Ni2+, and Zn2+ only bind terminal N7 positions on the 

terminal G residues of d(GGCGCC) (Labiuk et al., 2003). 

 

1.2.2 Induction of Specific Conformations 

 

 In addition to affecting the stability of dsDNA through interactions on the bases 

and phosphates, metal ions are capable of inducing major structural rearrangements in 

these molecules. These changes are often dependent on the identity and concentration of 

the metal ion, the pH of the medium, and the sequence of and degree of supercoiling in 

the polynucleotide. Three specific metal ion-induced conformations of dsDNA have been 

thoroughly characterized and will be reviewed here:  Z-DNA, triplex DNA, and 
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quadruplex DNA. In addition, A-DNA, which is typically present in low humidity 

conditions, implying a higher ionic strength, is also covered in this section. 

 

1.2.2.1 A-DNA 

 

 Early work on DNA structure showed two different conformations of the double 

helix molecule that shared many characteristics. B-DNA, which has come to be 

recognized as the typical conformation of dsDNA in biological systems, was the high-

humidity form. A-DNA was the low-humidity form (Franklin and Gosling, 1953). 

Subsequent studies showed that under dehydrating conditions brought on by addition of 

ethanol, the circular dichroism (CD) spectrum of B-DNA would change which was 

attributed to formation of A-DNA. The percentage of ethanol necessary to cause this 

change was reduced in the presence of Na+ but increased in the presence of Li+, Cs+, 

Mg2+, and Ca2+ (Ivanov et al., 1974). 

Like B-DNA, A-DNA consists of an anti-parallel duplex of two strands linked by 

WC base pairs in a right-handed helix. However, the helix is wider and shorter than that 

observed in B-DNA, with a diameter of ~26 Å and 11 residues per turn with a rise of 2.55 

Å per base. Although the bases of A-DNA are in the anti conformation relative to their 

sugar rings like those in B-DNA, the sugar puckers are C3' endo rather than C2' endo as 

found in B-DNA. Another dramatic difference between A- and B-DNA is that there is a 

20º tilt of the bases relative to the helix axis in A-DNA. In the overall structure of A-

DNA, the major groove is narrower and deeper, while the minor groove is wider and 

shallower  (Sinden, 1994). 
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While dsRNA adopts a conformation similar to A-DNA, the only evidence for 

actual A-DNA in nature is in complex with small acid soluble protein (SASP) present in 

the spores of Bacillus subtilis. Upon binding CT-DNA in vitro, SASP induces a CD-

detectable change from B- to A-DNA. The lower humidity of these spores was previously 

thought to impart UV damage resistance to DNA by sequestering it in the A- 

conformation and it is thought that binding of the SASP facilitates this conformational 

change (Mohr et al., 1991). The structure of A-DNA is thought to impart resistance to 

UV-induced cyclobutane-type thymidine dimers due to the twist of the bases. 

 

1.2.2.2 Z-DNA 

 

 While A-DNA is in most respects structurally similar to B-DNA, Z-DNA 

represents a radical structural departure from standard B-DNA. Z-DNA formation was 

first observed by CD spectroscopy when the NaCl concentration of a solution of d(GC)n 

was raised from 0.2 to 2.5 M or with the addition of 700 mM MgCl2 (Pohl and Jovin, 

1972). Following that initial discovery, the crystal structure of Z-DNA, the first crystal 

structure of a DNA molecule to be solved, revealed a wealth of information about the 

structure of Z-DNA (Wang et al., 1979). 

Like B-DNA, Z-DNA is composed of anti-parallel WC base pairs with a helical 

tilt relative to the axis of 7º, but the similarity ends there. The most obvious departure 

from B-DNA structure is that the Z-DNA helix is left-handed rather than right-handed. 

The alternating d(GC)n sequence of typical Z-DNA has a dinucleotide repeat unit rather 

than a mononucleotide repeat as in B-DNA with unusual stacking interactions. The twists 



  19 

of each base pair relative to the next one in sequence are -9° for dCpG and -51° for dCpG 

whereas those for B-DNA are +29.8° and +40.0°, respectively. The sugar puckers of G 

residues are C3' endo rather than the C2' endo typical of B-DNA and C residues of Z-

DNA. These two features, along with the fact that G residues are syn relative to the sugar 

portion of the nucleotide generate the characteristic zig-zag pattern in the phosphate 

backbone of Z-DNA (Wang et al., 1979). 

Other helical parameters of Z-DNA differ from those of B-DNA as well. The 

minor groove of Z-DNA is deep and narrow compared to that of B-DNA while the major 

groove is absent altogether. The helix is narrower and longer, having a width of 18 Å and 

12 residues per turn with a rise of 3.7 Å per base (Wang et al., 1979). Despite the 

increased rise per residue the alternating sugar puckers draw the negatively charged 

phosphate residues of subsequent bases much closer to each other than in B-DNA, 

explaining the dependence of the conformation on a high ionic strength (Sinden, 1994). 

Apart from an elevated ionic strength, Z-DNA can be stabilized by covalent modification 

of bases, supercoiling, and the presence of Z-DNA binding proteins. 

The dependence of Z-DNA on ionic strength is not entirely due simply to 

relaxation of electrostatic interactions between the phosphates. Although all monovalent 

metal ions stabilize the structure, divalent metal ions have the same effect at lower 

concentrations, partly owing to their greater ability to shield negative charges (Sinden, 

1994). However, early studies showed that whereas MgCl2 allowed Z-DNA formation at 

700 mM, less than 5 mM of Co2+, Ni2+, or Mn2+ was required to elicit the same response 

under comparable conditions. Further, when Mg2+ was present in 20% ethanol, it had a 

potency similar to the transition metals (Van De Sande et al., 1988). This effect was 
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interpreted in the context of increased binding of the transition metals to N sites on the 

bases and in the case of the ethanol/Mg2+ mixture to be due to partial unwinding of the 

helix by the ethanol, facilitating the change in conformation. A later study using infrared 

(IR) spectroscopy verified that Co2+ and Ni2+ were binding more effectively to N7 

positions of G residues that stabilized the syn conformation required for Z-DNA 

formation relative to the anti conformation of B-DNA. This effect was also observed to 

increase for Mg2+ in the presence of dehydrating agents such as alcohol that allowed 

better direct coordination of the ion to N7 positions (Taboury et al., 1984). 

Co(III)hexamine complexes (Behe and Felsenfeld, 1981; Peck et al., 1982; 

Stirdivant et al., 1982) and their derivatives (Bauer and Wang, 1997) have been found to 

be even more potent stabilizers of Z-DNA formation, working in the submillimolar range. 

X-ray crystallographic studies have shown that the complex binds through its amine 

groups to O6 and N7 of G residues on the surface of the molecule, as well as to N4 of C 

residues at sufficiently high concentration (Thiyagarajan et al., 2004). Other studies with 

complexes of Pt4+ and spermidine derivatives, which are potential anti-cancer agents, 

have shown that they are even more potent Z-DNA stabilizers than Co(III)hexamine. 

Further, they determined that in the presence of these complexes, Z-DNA was more 

resistant to ethidium bromide (EtBr)-induced reversion to B-DNA than in the presence of 

Co(III)hexamine (Qu et al., 2004). 

The level of supercoiling present in a DNA molecule also affects the propensity 

with which it will form Z-DNA. This is due to the fact that Z-DNA formation unwinds 

the DNA, reducing the number of negative supercoils. Thus, the more negative 

supercoiling present in a DNA molecule, the larger its propensity to form Z-DNA due to 
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a more favorable free energy (ΔG) of conversion (Peck et al., 1982; Stirdivant et al., 

1982). 

Chemical modification of the bases on a Z-DNA forming duplex can also 

facilitate formation of, as well as stabilize, the Z-DNA conformation. Bromination of 38 

% of G residues on C8 and 19% of C residues on C5 locks the molecule in the Z 

conformation even after removal of high NaCl concentrations by dialysis (Moller et al., 

1984). This effect is even stronger if I is substituted for Br (Rich et al., 1984) and 

methylation of C8 of G residues also favours the Z conformation (Xu et al., 2003). These 

modifications stabilize Z-DNA by locking G residues in the syn conformation, as bulky 

substituents on C8 prevent its rotation back to anti (Rich et al., 1984). Replacement of C 

residues with m5C also stabilizes Z-DNA (Behe and Felsenfeld, 1981). This is due to 

filling of a hydrophobic pocket on the surface of the molecule with the methyl group 

(Rich et al., 1984). 

There is much evidence for Z-DNA formation in vivo. The stabilization of Z-

DNA under physiological ionic strengths with less supercoiling than nuclear DNA (Peck 

et al., 1982) as well as its stabilization in m5C-substituted DNA (Behe and Felsenfeld, 

1981) were suggestive of a role for Z-DNA in the cell. Antibodies against Z-DNA have 

also detected the presence of Z-DNA in the Drosophila polytene chromosomes and these 

antibodies have also been implicated in the pathogenesis of systemic lupus erythematosus 

(SLE). Sequences favouring Z-DNA formation have also been found in abundance in 

human chromosome 22 (Rich and Zhang, 2003). It has recently been determined that 

these sequences are often found in conjunction with promoter binding sites for nuclear 

factor-I (Champ et al., 2004). The findings resulting from studies using anti-Z-DNA 
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antibodies must be interpreted with caution however, as it has been found that these 

proteins can induce the conformation in sequences capable of forming Z-DNA (Lafer et 

al., 1985). Finally, the helix-turn-helix domain of dsRNA deaminase-1 has been found to 

bind Z-DNA regions, suggesting that Z-DNA formation may play a role recruiting this 

enzyme to active sites of transcription (Schade et al., 1999; Schwartz et al., 1999). 

 

1.2.2.3 Triplex DNA 

 

 First observed in 1957 (Felsenfeld et al., 1957), triplex polynucleotides, as the 

name implies, involve coordination of three bases per monomer and are possible in 

systems with RNA, DNA, or a combination of the two (Frank-Kamenetskii and Mirkin, 

1995). Two of the bases are paired in normal WC fashion and run anti-parallel to each 

other, while the third base is paired to the purine of the WC duplex in a Hoogsteen or 

reverse-Hoogsteen fashion as depicted in figure 1.7. Each base triad has a central purine 

residue that must be base paired in a WC fashion to a pyrimidine and in a Hoogsteen or 

reverse-Hoogsteen fashion to a pyrimidine or purine respectively. Thus, the WC portion 

of the sequence must have exclusively purines on one strand and pyrimidines on the 

other, while the third strand has exclusively either type of base. In both cases, the third 

strand resides in the major groove and runs anti-parallel to the WC strand that has the 

same type of base. In purine-purine-pyrimidine (pu•pu•py; the abbreviation in italics 

representing the non-WC strand) triplexes, the third strand is symmetrically located in the 

centre of the major groove, while in pyrimidine-purine-pyrimidine triplexes (py•pu•py), 

the third strand is asymmetrically located closer to the pyrimidine strand of the WC 
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duplex (Sinden, 1994). The orientations of the bases relative to the sugar rings are similar 

to those found in B-DNA in both types of triplexes (Malkov et al., 1993). The sugar 

puckers of the WC portion of py•pu•py DNA triplexes are C2' endo while those of the 

third strand show partial C3' endo character only at cytosine residues (Asensio et al., 

1998); similarly, in DNA/RNA hybrid py•pu•py triplexes, the RNA third strand shows 

only partial C3' endo character (Gotfresden et al., 1998). 

 Formation of triplexes has various requirements depending on the specific 

sequence involved. Early studies with py•pu•py triplexes employing dsDNA and RNA as 

the third strand demonstrated that d(A)n•d(T)n formed a triplex with r(U)n at any pH 

while a pH of 5.8 or below was necessary to form d(TC)n•d(GA)n•r(UC+)n (Morgan and 

Wells, 1968). It was correctly inferred that the low pH was necessary in order to 

protonate the N1 position of C, the nucleoside of which has a pKa of 4.5. The presence 

and identity of divalent metal ions also has a sequence dependent effect on triplex 

formation. One study showed that at neutral pH, pu•pu•py triplexes d(C)n•d(G)n•d(G)n 

and d(TC)n•d(GA)n•d(AG)n were both stabilized by Cd2+, Co2+, Mn2+, Ni2+, and Zn2+, but 

only the former sequence was also stabilized by Ca2+ and Mg2+ (Malkov et al., 1993). A 

later study on GC rich pu•pu•py DNA triplexes showed that at sub-millimolar 

concentrations, stabilization by cations had a pattern of Co2+>Mn2+>Mg2+, while at 

millimolar concentrations, the pattern was Mn2+>Mg2+>Co2+ (Blume et al., 1999). The 

polyamines spermine and sperimidine (Hampel et al., 1991) and their analogues have 

also been shown to facilitate py•pu•py triplex formation. Modifications of the bases (Lee 

et al., 1984) or phosphates (Latimer et al., 1989) in a DNA sequence can also modulate 

triplexe formation. Substitution of m5C for C increases the propensity for triplex 
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Figure 1.7:  The hydrogen-bonding patterns present in each type of triplex. On the left 
are py•pu•py, while pu•pu•py triplexes are shown on the right. Those with an A•T duplex 
base pair are pictured on the top row while those with a G•C duplex base pair are 
pictured on the bottom row. 
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formation while substitution of z7A or m6A for the central A strand renders triplex 

formation impossible by eliminating an essential hydrogen bond. Thus, triplex formation 

is a process dependent on the nucleotide sequence, pH, and the presence of divalent metal 

ions in a manner that cannot be due simply to electrostatic interactions since the identity 

of the metal ions present drastically alters their ability to induce the conformation. 

 Although early work with triplexes showed three separate polynucleotide 

molecules to be involved in formation of the triplexes (Felsenfeld et al., 1957; Felsenfeld 

and Rich, 1957; Lee et al., 1979; Morgan and Wells, 1968), later developments suggested 

(Lee et al., 1984) and demonstrated (Kohwi and Kohwi-Shigematsu, 1988; Mirkin et al., 

1987) that it was possible to form intramolecular triplexes from two or one (Sklenar and 

Feigon, 1990) polynucleotide strand(s). In the case of triplexes formed from one or two 

strands, there are necessarily regions of single-stranded polynucleotide formed to liberate 

one strand from part of the duplex to act as the third strand in the resulting triplex. 

Triplexes formed from one or two DNA strands are illustrated in figure 1.8. 

Intramolecular py•pu•py triplexes formed from dsDNA, dubbed H-DNA, have 

been used to explain the sensitivity of py•pu tracts to S1 nuclease. In order for a dsDNA 

sequence to form H-DNA, it must contain mirror repeats of py•pu (Mirkin et al., 1987). 

As is apparent from figure 1.8, due to the presence of the mirror repeat, there are four 

possible ways for a given intramolecular triplex to form. H-DNA and its pu•pu•py 

counterpart, H*-DNA, can each be formed with the 5' or 3' portion of the third strand, 

resulting in the possibility of Hy5 and Hy3 isomers for H-DNA and Hr5 and Hr3 isomers 

for H*-DNA; all of these isomers have been observed (Sinden, 1994). As with 
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intermolecular triplexes, modification of the bases involved in forming an intramolecular 

duplex has shown some success in stabilizing the conformation (Phipps et al., 1998). 

Although any of the four intramolecular triplex structures are possible within a 

given mirror repeat, the conditions under which each one forms varies. Formation of Hy3 

by d(G)n•d(C)n at acidic pH can be modulated to Hr3 by addition of Mg2+ (Kohwi and 

Kohwi-Shigematsu, 1988). Another study on d(G)n•d(C)n at acidic pH showed that Zn2+ 

and Mn2+ induced Hr3 in a sequence with a 3 bp interruption between the mirror repeats 

while Ca2+ and Mg2+ induced Hr5 in a sequence with a 5 bp interruption and Hy3 in the 

absence of metal ions (Kang and Wells, 1992). The Hy5 isomer was observed in the 

presence of Mg2+, Zn2+, Mn2+ or Ca2+ when a 5 bp interruption was inserted within a 

mirror repeat of d(GAA)4, while changing the length of the interruption caused it to form 

Hy3 regardless of metal ions present (Kang et al., 1992). The preference for Hy3 over 

Hy5 has been attributed to the greater relaxation of negative supercoiling induced by the 

former isomer compared to the latter (Sinden, 1994). Thus, as with intermolecular 

triplexes, formation of H-DNA and H*-DNA can be modulated by adjusting the pH, the 

addition of different metal ions and changing the DNA sequence. In addition, these 

intramolecular complexes are very sensitive to the degree of supercoiling in the DNA and 

this as well as previously discussed factors can have a dramatic effect on the specific H-

DNA or H*-DNA isomer formed by the dsDNA. 

There are numerous findings that suggest triplexes have a role in vivo. Early 

research demonstrated that py•pu•py triplex formation with m5C substituted DNA (Lee et 

al., 1984) as well as H*-DNA formation in the presence of Mg2+ were both possible at 

neutral pH (Kohwi and Kohwi-Shigematsu, 1988) raising the possibility that formation of 
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(A) 

 
(B) 

 
 
Figure 1.8:  (A) Schematic illustration of the folding pattern present in a single-stranded 
triplex molecule. The 3' end is the Hoogsten-paired pyrimidine strand. Adapted from 
Sklenar and Feigon, 1990. (B) Schematic illustrations of the four possible isomers of 
triplexes generated by unwinding of a duplex DNA sequence with a mirror repeat of 
pyr•pur sequences in which one strand becomes the third strand in a triplex structure and 
the other strand remains unpaired. The black and white circles represent 5’ and 3’ end 
purine runs, respectively. Adapted from Kang and Wells, 1992. 
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 intramolecular triplexes could be responsible for the sensitivity of py•pu sequences in 

dsDNA to S1 nuclease. Several surveys of eukaryotic and prokaryotic genomes showed 

that potential triplex forming sequences were over-represented in eukaryotes relative to 

prokaryotes, particularly in promoter regions. An example of this found in intron 21 of 

the PKD1 gene, a 2.5 kbp py•pu sequence which is likely to form Hy3 H-DNA at low 

superhelical densities (Blaszak et al., 1999). Formation of this triplex has been implicated 

in interfering with replication and causing mutations leading to kidney disease (Patel et 

al., 2004). 

Evidence for triplex formation in vivo has also been supplied through binding 

studies of a monoclonal antibody (MAb), Jel 318. Jel 318 was raised against 

d(Tm5C)n•d(GA)n•d(m5CT)n and shown to bind to eukaryotic chromosomes but not to 

sequences from Escherichia coli (E. coli) (Lee et al., 1987; Lee et al., 1989). Another 

MAb raised against the same antigen, Jel 466, was later produced and showed greater 

sequence specificity than Jel 318 and displayed a different binding pattern on 

chromosomes (Agazie et al., 1994). These two mABs were used in tandem to stain nuclei 

and it was found that the reactivity of the cell to the mABs was dependent on the stage of 

the cell cycle, suggesting a role for H-DNA or intermolecular triplexes in chromosome 

condensation (Agazie et al., 1996). 

 

1.2.2.4 Quadruplex DNA 

 

Quadruplex DNA was first suggested as a possibility during the interpretation of 

the X-Ray fiber diffraction pattern of r(I)n•r(G)n (Zimmerman et al., 1975). Later, Tm and 
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CD studies demonstrated that four-stranded DNA structures were likely in the case of 

polypurine runs under sufficient monovalent ion concentrations (Lee et al., 1980). Prior 

to this, four-stranded structures consisting of pairs of WC base pairs joined on the major 

groove side of the duplex were proposed but no evidence has been found for their 

existence (Sinden, 1994). The quadruplexes suggested by these early studies and 

subsequently characterized by a variety of biochemical and structural methods consisted 

of Hoogsteen paired G residues arranged in a parallel (Sen and Gilbert, 1992) or anti-

parallel (Kang et al., 1992; Smith and Feigon, 1992) fashion. The base-pairing scheme of 

these quadruplexes is illustrated in figure 1.9. 

Quadruplexes composed of four strands with G rich runs unable to otherwise 

hybridize were studied by gel electrophoresis assays and found to assemble into a 

quadruplex in a concentration dependent manner at physiological ionic strength and pH. 

Likewise, these sequences were able to form the same complex but at twice the molecular 

weight when they were mixed as duplexes with their complimentary strands, which were 

presumed to remain hybridized at their ends but denatured in the region around the G-

quartet. The four strands implicated in forming the quartet were presumed to be parallel  

with their G residues all in the anti conformation, as depicted in figure 1.9 (Sen and 

Gilbert, 1988). This would provide strong stacking interactions, explaining the high Tm  

values associated with these structures (Lee et al., 1980). 

Another type of quadruplex has been characterized in d(G4T4) sequences found in 

the telomeres of Tetrahymena and Oxytricha (Kang et al., 1992; Smith and Feigon, 1992) 

species. X-ray crystallography showed separate dsDNA molecules forming two 

Hoogsteen-bonded hairpin structures with single-stranded T residues in the loops. The 
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two molecules then associate with anti-parallel strands from each hairpin molecule 

forming the two remaining G-G interactions to complete the quadruplexes as depicted in 

figure 1.10. The hydrogen-bonding pattern alternates with each successive tetrad, as 

illustrated in figure 1.9; one tetrad would have the pattern shown in the all-parallel 

quadruplex (but with alternating anti and syn conformations) while the next tetrad would 

have that shown in the anti-parallel diagram (Smith and Feigon, 1992). NMR studies on 

the same complex displayed a similar interaction except that the hairpins were bridging 

the corners of the quadruplex so as to place parallel as well anti-parallel strands beside 

each other (Kang et al., 1992). This structure is also depicted in figure 1.10. In both 

cases, successive G residues on the same strand were alternating syn and anti 

arrangements to allow the association to take place. As with the all-parallel conformation, 

stacking interactions stabilize the interaction and high ionic strengths favor the 

interaction. 

As with Z-DNA and triplex DNA, there is some specificity in the metal ions that 

will induce quadruplexes in different sequences. In quadruplexes formed by strands with 

multiple G-rich runs it has been found that K+ ions stabilize the G quartet to such a high 

degree that the interactions between two hairpin molecules is heavily favored over 

interactions between four separate strands to yield an all-parallel quadruplex. The all-

parallel structure would form in the presence of mM [K+] with a high overall ionic 

strength generated by the presence of Na+. However, in the presence of sufficiently high 

[K+], the hairpin parallel quadruplex would form (Hardin et al., 1991; Sen and Gilbert, 

1990). Further, studies on parallel quadruplexes formed by d(GA)n, d(GAA)n, and 

d(GGA)n showed that formation of a quadruplex had multiple steps that resulted in  
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Figure 1.9:  The hydrogen-bonding schemes present in G-quadruplex structures. The 
hydrogen bonding pattern observed in the tetrads of parallel quadruplexes are shown in 
the upper figure with all anti conformations. The hydrogen-bonding pattern present in 
anti-parallel quadruplexes alternates between that shown in the upper figure (except that 
the second and fourth bases, clockwise from the top are syn) with that shown in the lower 
with each successive tetrad. 
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(A) 

 
 
(B) 

 
 
Figure 1.10:  Schematic illustrations of the distinct folding of DNA to produce different 
quadruplexes from two duplex molecules. (A) All anti-parallel orientation as observed by 
X-ray crystallography. Adapted from Smith and Feigon, 1992. (B) Anti-parallel as well 
as parallel orientations as observed by NMR studies. Adapted from Kang et al., 1992. 
Both of these patterns were observed with sequences from the telomeres of Oxytricha. 
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different denaturation behaviors. Formation of the more stable quadruplex was correlated 

to the ionic radius of mono- and divalent ions present that stabilized the interaction. It 

was found that in general, divalent ions stabilized the quadruplex structure at much lower 

concentrations than the monovalent ions. It was also found that the more stable form of 

the quadruplex was only formed by ions having an ionic radius near 1.35 Å. Thus, Ba2+ 

and K+ stabilized the structure more easily than larger or smaller ions with the same 

valency (Lee, 1990). 

The results from these studies indicated that the size of the cavity formed between 

successive base tetrads allowed coordination of a mono- or divalent cation and that one 

with an ionic radius near 1.35 Å was ideal. The 6-keto groups of G residues are believed 

to coordinate the ion in a similar fashion to crown ethers. The effectiveness of the K+ ion 

at allowing G tetrads to form explains the trapping of sequences that could unwind to 

form parallel quadruplexes in hairpin intermediates. This is further supported by the fact 

that sequences too short to form hairpin quadruplexes between two duplexes form 

parallel quadruplexes equally well with K+ or Na+, provided that the concentrations of 

either ion are sufficient to allow formation of the quadruplex (Sen and Gilbert, 1990). 

Since the centromeres and telomeres in most eukaryotic organisms are comprised 

of G-rich sequences, it has been thought that quadruplex formation may occur in these 

regions.  Further, fragile X chromosome repeats as well as portions of chromosome 19 in 

humans have been found to contain sequences which could form quadruplexes (Gilbert 

and Feigon, 1999). Formation of quadruplexes has been shown to inhibit telomerase 

(Zahler et al., 1991) and has been suspected of playing a role in tethering of 

chromosomes for meiosis (Sen and Gilbert, 1988). Finally, the recent in vitro production 
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of antibodies against quadruplex structures have provided further evidence that anti-

parallel quadruplexes are present in the macronuclei of Sylonychia lemnae (Schaffitzel et 

al., 2001). 

 

1.2.2.5 M-DNA 

 

 It can be seen from the above analysis that DNA-metal ion interactions can have a 

profound effect on DNA conformation. Another alternative conformation in which DNA-

metal ion interactions play an intimate role was recently discovered at the University of 

Saskatchewan. M-DNA is a pH-dependent complex formed between certain transition 

metals and DNA and has sparked interest due to its unique properties and potential 

applications. 

 

1.2.2.5.1 Characterization of M-DNA Formation and Inferred Structure 

 

M-DNA formation occurs when dsDNA is exposed to the transition metal ions 

Zn2+, Ni2+, or Co2+ at pH values above 8.0. Zn(II) M-DNA formation at pH 9.0 in CT 

DNA causes an increase in Tm relative to DNA in the absence of divalent metal ions at 

any pH up to a Zn2+:phosphate ratio of 10:1 (Lee et al., 1993). This is indicative of a 

conformational change as at neutral pH, such a high ratio of Zn2+:phosphate would 

facilitate denaturation of the DNA (Eichhorn and Shin, 1968). Further, raising the pH of a 

solution would cause the deprotonated forms of T and G to become more abundant, 

favoring their interactions with metal ions. In the absence of a stabilizing conformational 
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change, the Tm at elevated pH in the presence of transition metals would be even lower 

than at neutral pH. M-DNA is also resistant to digestion by DNAse I under conditions in 

which B-DNA is readily degraded (Aich et al., 2000). All three forms of M-DNA 

facilitate UV-induced crosslinking of the two strands while Co(II) M-DNA facilitates the 

same phenomenon induced by γ radiation (Labiuk et al., 2001). M-DNA also shows 

different electrophoretic mobility than B-DNA, with reduced separation of nicked and 

supercoiled species and approximately 5% fewer bp per turn (Lee et al., 1993). 

Unlike B-DNA, M-DNA does not bind EtBr. This forms the basis of a convenient 

EtBr-based fluorescence assay that has been a very useful tool in studying M-DNA 

formation. This assay was used to obtain much of the data detailed in this section (Aich et 

al., 1999; Aich et al., 2000; Labiuk et al., 2001; Lee et al., 1993). The basis behind this 

assay will be discussed in more detail in section 1.3.1.1. 

Although M-DNA formation has been found to be independent of base 

composition in genomic DNA, there is a large degree of sequence dependence in 

repeating sequence synthetic polymers. The propensity of different repeating sequences 

to form Zn(II) M-DNA was found to follow the following order: 

d(TG)n•d(CA)n > d(TCC)n•d(AGG)n ~ d(A)n•d(T)n > d(TTC)n•d(AAG)n > d(GC)n >> d(AT)n

Thus, pur•pyr tracts form the conformation better than those with alternating pur/pyr on 

the same strand and increasing G•C content seems to favour M-DNA formation. (Lee et 

al., 1993). 

There are several findings that suggest M-DNA formation may involve 

replacement of the imino protons of G and T with the divalent metal ions. First, the imino 

proton signals of those bases disappear from the H1 NMR spectrum of d(TG)15•d(CA)15 

at pH 9.0 upon addition of Zn2+ (Lee et al., 1993). Second, one proton is released per 
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metal ion per base pair upon Ni(II) M-DNA formation as revealed by titration 

experiments (Aich et al., 1999). Third, GC-rich repeating sequences form Zn (II) M-

DNA more quickly and more completely than analogous AT rich sequences, which could 

be due to the lower pKa of G (9.4) compared to T (9.9). Further, substitution of dU for dT 

also facilitates Zn(II) M-DNA formation, which could also be due to the lower pKa of U 

(9.3) compared to T (9.9) (Lee et al., 1993). 

M-DNA formation has been shown to be reversible, as addition of 

ethylenediaminetetraacetic acid (EDTA) or lowering the pH of the solution causes it to 

dismutate back to B-DNA. This feature distinguishes formation of M-DNA from 

denaturation due to high pH and the presence of transition metal ions, which would also 

result in a loss of EtBr binding, but would not be fully reversible by chelation. A pH-

dependent hysteresis has been observed in the formation and reversion to B-DNA of 

Ni(II) M-DNA but not with Zn(II) or Co(II) M-DNA. This effect was more pronounced 

in d(GC)n. Therefore, once formed, the conformation is stable at pH values at which it 

will not form, suggesting that the transition is cooperative (Aich et al., 2000). 

 M-DNA formation does not induce large spectroscopic changes. It shows only 

small changes in its CD spectrum relative to B-DNA and a 10% hypochromicity at 260 

nm. Further, M-DNA formation is not inhibited by substitution of z7A or me6A for A, 

indicating that a triplex-like bonding pattern is not occurring, which was an initial 

concern due to the high propensity of pur•pyr tracts to form the conformation (Aich et al., 

2000; Lee et al., 1993). In conclusion M-DNA may have a structure similar to that 
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Figure 1.11:  The proposed structure of M-DNA. The base pairs indicated are (A) G•C 
and (B) A•T. The indicated metal ion, which replaces the 1- and 3-imino protons of G 
and T, respectively, can be Zn2+, Ni2+, or Co2+. 
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depicted in figure 1.11 although attempts to crystallize and solve the structure of M-DNA 

have so far proven unsuccessful. 

 

1.2.2.5.2 Electron Transfer Properties of M-DNA 

 

M-DNA has been shown by direct measurements to allow metallic-like 

conduction, whereas B-DNA is a semi conductor with a wide band gap (Rakitin et al., 

2001). AC impedance studies on immobilized DNA have shown M-DNA to have a much 

lower resistance than B-DNA (Long et al., 2003), while other electrochemical studies 

have shown it to have a much faster rate of electron transfer than B-DNA (Li et al., 

2003).  

Fluorescence quenching studies between fluorophores and quenchers covalently 

attached to the 5’ ends of a duplex have shown that M-DNA allows quenching of 

fluorescence (implying electronic communication between the attached molecules), while 

B-DNA does not (Aich et al., 1999; Aich et al., 2002; Wettig et al., 2003). Like the direct 

electrical studies, this is indicative of electron transfer, and the basis of the assay will be 

discussed in more detail in section 1.3.1.2. 

One of the fluorescence studies employed a three-way DNA junction in which 

rhodamine as well as anthraquinone were available to act as quenchers for fluorescein 

(Fl). When the redox state of anthraquinone was modulated, the degree of quenching 

changed, enabling the three-way DNA junction to act as a molecular switch (Wettig et 

al., 2003). In another fluorescence study, binding of a sequence-specific protein 

prevented quenching which was in turn reactivated through addition of proteinase, 
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suggesting another way in which electron transfer through M-DNA could be modulated 

(Aich et al., 1999). 

These studies have indicated that M-DNA may be useful as a molecular wire with 

a variety of ways to modulate its activity, so that nano-electronic devices could be 

constructed. DNA is an attractive template to work with in nanotechnology as a variety of 

enzymes capable of manipulating DNA on a molecular scale already exist, and DNA 

replication could be exploited for production of defined sequences that would then be 

easily converted to M-DNA. 

 

1.3 Measuring M-DNA formation 

 

 Since M-DNA formation does not yield large changes relative to B-DNA in UV 

absorbance or CD studies, these important techniques useful in the characterization of 

other alternate structures are ruled out. Fluorescence-based methods taking advantage of 

the lack of appreciable EtBr binding by M-DNA as well as quenching of fluorophores 

observed in double-labelled M-DNA have been employed to characterize the 

conformation. As shown in this thesis, the direct biophysical methods of isothermal 

titration calorimetry (ITC) and surface plasmon resonance (SPR) have also proven useful 

in characterizing M-DNA. 
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1.3.1 Fluorescence Experiments 

 

 Two fluorescence-based methodologies have been employed in this study. 

Foremost, an EtBr-based assay has been developed (Lee et al., 1993) that has been of 

great use in characterizing the conditions under which M-DNA will form as well as its 

stability once formed. Second, an assay based on quenching of Fl-labeled DNA was 

developed to measure M-DNA formation (Aich et al., 1999). The principles behind each 

of these methods will be outlined in this section. 

 

1.3.1.1 Ethidium bromide-based assays 

 

 EtBr is a 390 Da cationic DNA-binding drug that is widely used in molecular 

biology due to its well-characterized interactions with nucleic acids. EtBr was originally 

used as a trypanocidal agent by inhibiting nucleic acid synthesis (Waring, 1965) and is 

now commonly used to stain agarose gels for visualization of DNA (Sharp et al., 1973). 

EtBr binds nucleic acids by intercalation (Jain et al., 1977; Jain and Sobell, 1984; Sobell 

et al., 1977) and binding of one EtBr molecule to a base pair has been shown to prevent 

binding of a second molecule to an adjacent base pair of B-DNA, a phenomenon known 

as neighbour exclusion (Bresloff and Crothers, 1981; Crothers, 1968); in the case of A 

form DNA or dsRNA sequences, the neighbour exclusion extends to 3 base pairs 

(Bresloff and Crothers, 1981). The structure of EtBr as well as a crystal structure of it 

bound with a WC paired dinucleotide of r(CG) is shown in figure 1.12. The binding of 
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EtBr to nucleic acids has been observed in both DNA and RNA with little sequence 

specificity (Bresloff and Crothers, 1981; Lepecq and Paoletti, 1967; Waring, 1965). 

 Visualization of DNA in agarose gels by EtBr takes advantage of the fact that the 

DNA-EtBr complex fluoresces in the visual range around 600 nm when excited by light 

around 320 or 520 nm (Lepecq and Paoletti, 1967; Sharp et al., 1973); the absorption 

spectra in the visual range for various sequences in complex with EtBr all show 

maximums around 520 ± 3 nm regardless of nucleic acid type or sequence (Bresloff and 

Crothers, 1981; Waring, 1965), while the visual absorbance maximum for EtBr alone is 

480 nm (Hudson and Jacobs, 1975; Latimer and Lee, 1991; Waring, 1965). The 

fluorescent properties of the EtBr-nucleic acid complex have been exploited to produce a 

rapid fluorescence assay which can be used to quantify DNA or RNA in solution, to 

determine the extent of hybridization of the sample (Morgan et al., 1979) and to asses the 

activity of enzymes which synthesize (Lee et al., 1980) or degrade (Latimer et al., 1989; 

Morgan et al., 1979) DNA.  

The EtBr-nucleic acid complex displays roughly 25 times the fluorescence of free 

EtBr with CT DNA or RNA when either nucleic acid is in large excess (Lepecq and 

Paoletti, 1967). This enhancement only occurs when EtBr complexes with double-

stranded nucleic acids or with single-stranded ones capable of forming hairpin loops; in 

the latter case the fluorescence is much lower than in the former (Morgan et al., 1979). 

The mechanism of enhanced EtBr fluorescence in the presence of nucleic acids is likely 

due to hydrophobic shielding of the EtBr molecule from solvent, preventing proton 

exchange to the solvent and extending the lifetime of the excited singlet state thus 

favoring fluorescence as a means to return to the ground state after the complex has been 
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Figure 1.12:  (A) Structure of EtBr. Note the planar aromatic ring system that intercalates 
between base pairs with favorable stacking interactions. (B) X-ray crystal structure of 
EtBr bound to the self-complimentary WC paired dinucleotide r(CG). Note the stacking 
interactions between EtBr and the bases. Adapted from Jain and Sobell, 1984. 
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excited by the incident light (Hudson and Jacobs, 1975; Olmsted and Kearns, 1977). This 

mechanism is supported by extentsion of the excited state’s lifetime in the presence of 

D2O (Olmsted and Kearns, 1977) and larger fluorescence enhancement upon binding of 

EtBr to triplex than the corresponding duplex sequences. However, if a triplex carries a 

positive charge no fluorescence is observed in the presence of EtBr (Morgan et al., 1979). 

The lack of fluorescence in the latter case of triplex formation is likely due to the 

presence of a positive charge on the DNA, which repulses the positively charged 

ethidium ions and prevents binding to the DNA (Lee et al., 1979; Lee et al., 1984; 

Morgan et al., 1979); the presence of metal ions, particularly divalent ones, has been 

shown to inhibit the binding of EtBR to DNA (Lepecq and Paoletti, 1967). 

The enhancement of EtBr fluorescence upon binding nucleic acids is sequence 

specific to some extent, with sequences having exclusively pyrimidines on one strand and 

purines on the other showing much less enhancement than mixed sequences and 

sequences rich in A•T base pairs showing a larger enhancement than those rich in G•C 

base pairs (Latimer and Lee, 1991; Morgan et al., 1979). Further, sequences with the 

modified bases 7-deazaadenine and 7-deazaguanine showed 70 % and 0 % of the 

fluorescence of their parent sequences, respectively, despite the fact that binding of EtBr 

to DNA containing these modified bases was largely unaffected as demonstrated by 

absorption studies (Latimer and Lee, 1991). 

 EtBr fluorescence studies have been used to probe the structure of nucleic acids 

on E. coli tRNA (Bittman, 1969; Tao et al., 1970), CT deoxynucleoproteins (Angerer and 

Moudrianakis, 1972; Angerer et al., 1974), triplex-forming DNA sequences (Hampel et 

al., 1991; Lee et al., 1979; Lee et al., 1984; Morgan et al., 1979), Z-DNA (Qu et al., 
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2004; Van De Sande et al., 1982) and to determine the presence or absence of cross links 

using fluorescence in conjunction with thermal denaturation studies (Labiuk et al., 2001; 

Morgan et al., 1979). 

M-DNA formation has also been studied by EtBr fluorescence based studies. Like 

py•pu•py triplexes with C+ residues on the third strand, M-DNA base pairs are believed to 

carry a positive charge due to the replacement of a proton by a divalent metal ion (Lee et 

al., 1993) and therefore does not bind EtBr (Lee et al., 1979). Thus, M-DNA will not 

bind EtBr and no enhancement of fluorescence is observed upon addition of M-DNA to 

an EtBr solution. Likewise, formation of M-DNA from B-DNA disrupts the DNA-EtBr 

interaction and the fluorescence drops to baseline. Reversion of M-DNA to B-DNA 

allows intercalation of EtBr to take place and subsequently restores the EtBr-DNA 

complex, increasing fluorescence. Millimolar concentrations of EtBr also prevent M-

DNA formation, presumably by competing with the metal ions for binding sites on the 

DNA (Lee et al., 1993). As covered in section 1.2.2.5.1, many properties of M-DNA 

have been elucidated using this assay. 

 

1.3.1.2 Quenching of Fluorophore-Labeled DNA 

 

Since the proposed structure of M-DNA has metal ions between the base pairs as 

depicted in figure 1.11, it has been postulated that it could serve as a molecular wire. The 

stacked aromatic bases of native B-DNA have been evaluated as an electron transfer 

medium (Arkin et al., 1996; Dandiker et al., 1997; Hall et al., 1996) but other studies 

have shown that B-DNA is not an efficient conductor (Lewis et al., 1997; Taubes, 1997). 
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The possibility that M-DNA is capable of charge transfer has been evaluated in several 

studies employing a fluorescence-based assay in which fluorophores covalently attached 

to each 5’ end of a DNA duplex (Aich et al., 1999; Aich et al., 2002) or three-way 

junction (Wettig et al., 2003) interact with each other. 

In studies employing Fl as an electron donor and rhodamine as an electron 

acceptor, the quenching observed is likely due to an electron-transfer process as indicated 

by lifetime measurement studies (Aich et al., 1999). Another type of quenching, 

fluorescence resonance energy transfer (FRET), is possible when fluorophores display 

spectral overlap (as Fl and rhodamine do). This mechanism of quenching has a distance 

dependency of 1/r6 and is therefore unlikely at distances greater than 50 Å (Clegg, 1992); 

the length of a 20mer, the shortest sequences studied, is 60-70 Å, and significant 

quenching has been observed in duplexes up to 496 bp (Aich et al., 2002). Further, 

quenching is still observed between fluorophores that do not display spectral overlap, 

effectively ruling out FRET as a quenching mechanism in this assay (Aich et al., 2002; 

Wettig et al., 2003). Due to a shallow distance-dependence on the degree of quenching, it 

was concluded that the most likely mechanism of electron transfer was a "hopping 

mechanism" in which the electron moves in random directions between metal centers 

until it is absorbed by the quencher (Giese et al., 2001; Meggers et al., 1998). 

A limitation of this assay is that it is restricted to the study of the Zn(II) form of 

M-DNA. Complexes of Ni(II) and Co(II) often display absorbance around 500 nm. The 

Ni(II) and Co(II) forms of M-DNA have this characteristic, although the extinction 

coefficient is too low for this to be a useful method by which to assay M-DNA formation. 

However, the presence of a weakly absorbing coordination compound at each base pair 
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allows FRET-based quenching of Fl fluorescence. Thus the Fl emission is quenched in 

Ni(II) or Co(II) M-DNA even in the absence of an acceptor molecule at the other end of 

the duplex (Aich et al., 1999). Despite this, it is an effective and simple way to measure 

the formation of Zn(II) M-DNA in solution. 

 

1.3.2 Isothermal Titration Calorimetry 

 

 Isothermal titration calorimetry (ITC) is a biophysical technique commonly used 

to characterize interactions between two species in solution. It functions by measuring the 

amount of energy required to heat or cool a solution in order to maintain a constant 

temperature as a function of the concentration of one of the interacting species. The 

experiment is typically carried out by adding one interacting species to two separate 

chambers, one containing the other interacting species in buffer, the second containing 

only buffer to provide a background heat of dilution. Thus, the change in enthalpy (ΔH) 

associated with the reaction can be directly measured, whether it is exo or endothermic. 

Based on binding constants obtained through this value and modelling, ΔG values [and 

therefore entropy (ΔS) values] can be calculated (Matulis et al., 2000; Zhang et al., 

2000). 

ITC has been employed in a number of studies to characterize interactions 

between DNA molecules (Goobes and Minsky, 2001) as well as between DNA and 

peptides (Keller et al., 2002) and small molecules (Matulis et al., 2000; Ren et al., 2000). 

It has also been used to characterize interactions between transition metal ions and 

proteins (Ditusa et al., 2001), peptides (Zhang et al., 2000), DNA (Matulis et al., 2000), 
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and dinucleotides (Tanner et al., 2002). In each of these cases, an expression for ΔG was 

obtained by modelling the interactions, which were all relatively simple. Thus, like SPR, 

ITC is a useful technique for directly studying interactions between biomolecules without 

the use of labels. However, unlike SPR, large concentrations of interacting species are 

often necessary to produce a significant signal since the signal depends on the ΔH value 

associated with the binding event. 

 

1.3.3 Surface Plasmon Resonance 

 

 Surface plasmon resonance (SPR) is an optical phenomenon that has been used in 

recent years to study interactions between biomolecules, interactions between 

biomolecules and small molecules, and conformational changes in biomolecules (Rich 

and Myszka, 2002). To measure interactions by SPR, a three-layer system is often used, 

as depicted in figure 1.13. This configuration is known as the attenuated total reflection 

(ATR), or Kretschmann configuration (Liedberg et al., 1993) and is employed in the 

commercially available BIAcore systems (Jonsson et al., 1991; Jonsson and Malmqvist, 

1992), the most widely used SPR biosensors in the world (Rich and Myszka, 2002). The 

three layers that determine the signal are a glass prism, a metal film, and a dielectric with 

a lower refractive index (nd) than that of the prism (np) (Homola, 1997; Liedberg et al., 

1993). When SPR is used to study biomolecules, the dielectric layer consists of 

immobilized biomolecules that are exposed to a flow system containing an aqueous 

component consisting of buffer and molecules that interact with the immobilized 

biomolecules. As shown in figure 1.13, the detector measures the intensity of light 
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reflected off the metal film after passing through the prism. When the angle θ is larger 

than the critical angle, θc, total internal reflection will occur, meaning that the incident 

light is reflected back out of the prism on the same side it entered from relative to the 

metal surface. At these angles, an evanescent electromagnetic field with amplitude 

perpendicular to the plane of the glass/metal interface will penetrate from the prism into 

the metal film (Stenberg et al., 1991). Under the correct conditions, this evanescent field 

can couple to electrons in the metal film to create an electromagnetic charge density wave 

which propagates along the interface between the metal and the dielectric on the side 

opposite the prism. The charge density wave is referred to as a surface plasmon, and 

under the conditions that allow coupling of the evanescent field to the electrons in the 

metal to form a surface plasmon, SPR occurs (Liedberg et al., 1993). 

 The conditions that allow SPR to occur are dependent on the wavelength (λ), 

polarization state, and angle of incidence θ of the incident light, and the optical properties 

of the prism, metal, and dielectric layers (Jonsson et al., 1991). The incident light must be 

plane polarized relative to the surface of the metal (Nagata and Handa, 2000) and it must 

be of a λ suitable to cause resonance in the conduction band electrons of the metal being 

used. The latter condition is satisfied in the visible and near IR light ranges by Al, Ag, 

and Au (Jonsson and Malmqvist, 1992). The metal at the interface between the prism and 

the dielectric must be one in which the electrons display a gas-like behavior, meaning 

that the electrostatic potential of the ion cores must have little effect on their spatial 

motion; thus Al, Cu, Ag, and Au are the best choices for the metal to be used (Liedberg et 

al., 1993). Finally, θ must be such that the wave vector of the surface plasmon (ksp) is 

equal in magnitude to the component of the incident light's wave vector that is parallel to  
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Figure 1.13:  The Kretschmann or ATR configuration used in many SPR setups. The 
indident light is contacting the surface at an angle θsp and has a wave vector k with kx and 
ky components parallel and perpendicular to the plane of the metal/dielectric interface, 
respectively. The wave vector of the surface plasmons is represented by ksp while the 
dielectric constants of the prism and the dielectric are indicated by np and nd, respectively. 
The conditions of total internal reflection are illustrated by the vector marked TIR, which 
represents the bulk of the incident light. 
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Figure 1.14: The intensity of reflected light as a function of angle. The minimum in 
reflected light intensity represents the θsp at which SPR occurs. The dashed line 
represents a reading obtained from a system with a higher nd than that represented by the 
solid line. The higher nd causes SPR to occur at a larger angle of incidence. 
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that of ksp (kx) as shown in figure 1.13; hereafter this angle will be referred to as the 

resonance angle (θsp) (Liedberg et al., 1993). 

 In the case of total internal reflection, the intensity of the reflected light is nearly 

equal to that of the incident light. However, when employing an ATR device, the 

reflected intensity drops measurably under conditions that allow SPR (Stenberg et al., 

1991). Thus, by keeping all factors described in the previous paragraph equal but varying 

the angle of incidence, one would generate a spectrum in which the reflected light 

intensity passes through a minimum at θsp as depicted in figure 1.14. Angle-resolved SPR 

biosensors such as the BIAcore series which are employed in the vast majority of 

commercially available instruments (Rich and Myszka, 2002), measure binding of 

molecules to the sensor surface as a function of an increase in θsp which in turn occurs as 

a result of an increase in nd due to an increased surface concentration of a given molecule 

(Jonsson and Malmqvist, 1992; Liedberg et al., 1993). In the BIAcore SPR-based 

biosensors, the change in θsp is expressed as in resonance units (RU), where 1 RU 

corresponds to a 0.0001 º increase in θsp. This is also illustrated in figure 1.14. An 

alternative to angle-resolved SPR is to keep θ constant but to modulate λ in order to 

generate a similar spectrum (Salamon et al., 1994), in which case the value λsp would 

increase upon binding of molecules to the surface (Boussaad et al., 2000; Salamon et al., 

1997). This approach is not as widely used as angle-resolved SPR (Akimoto et al., 2000). 

Regardless of the variable used to probe the SPR condition, the increase in nd is due to 

displacement of buffer, which has a lower n (~1.33) than protein (~ 1.5 for a protein 

monolayer) (Boussaad et al., 2000), or other biomolecules or small molecules. 
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If Al is used as the metal layer between the dielectric and the prism, the dip 

observed at θsp is broader than that for Ag or Au, thus lowering the resolution of the 

signal (Nagata and Handa, 2000). On the other hand, the signal generated by a Ag surface 

displays a narrower SPR response than that of Au, regardless of θsp or λsp (Salamon et al., 

1997), making this surface a better choice for determining either nd or the thickness of an 

adsorbed monolayer (dd) (Homola, 1997; Salamon et al., 1997). However, due to its low 

reactivity with biomolecules and resistance to oxidation, Au is used in the BIAcore series 

of SPR biosensors (Jonsson and Malmqvist, 1992) as well as some in-house built SPR 

systems (Gaus and Hall, 1998; May and Russell, 2002; Peterlinz and Georgiadis, 1996; 

Peterlinz and Georgiadis, 1996; Sarkar and Somasundaran, 2004). Other in-house built 

systems use Ag to take advantage of the increased sensitivity of this metal (Boussaad et 

al., 2000; Salamon et al., 1994). 

 

1.3.3.1 Detection of Molecular Interactions 

 

 The sensitivity of SPR responses to changes in refractive index has led to its 

application for studying biomolecular interactions (Jonsson et al., 1991; Jonsson and 

Malmqvist, 1992; Lofas et al., 1991). Typically, a protein is immobilized covalently to a 

carboxymethyldextran (CMD) layer bound to the gold surface through formation of 

amide linkages between free amine groups on the protein and activated carboxylic acid 

moieties on the CMD matrix (Johnsson et al., 1991; Lofas and Johnsson, 1990). 

Alternative immobilization chemistries have been performed for ligands in which this 

standard practice is not acceptable and immobilization of nucleic acids or other molecules 
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which are not easily covalently bound to this surface can be done by adding biotin (btn) 

to the molecule and attaching it to covalently bound strepatvidin (Oshannessy et al., 

1992). Apart from allowing simple, reproducible immobilization of proteins and other 

ligands, the CMD matrix provides a more accessible environment for the interaction of 

immobilized proteins with those in solution than a monolayer. Proteins immobilized to a 

CMD matrix are also in an environment that more closely resembles a solution than those 

on a monolayer. Finally, a CMD matrix enhances the binding capacity and sensitivity of 

the measurements to binding events (Lofas et al., 1991), and blocks non-specific 

adsorption of molecules to the Au surface (Lofas and Johnsson, 1990). Since proteins 

between 20 and 200 kDa show similar specific responses, the CMD matrix does not 

constrain their movement toward the immobilized ligand (Jonsson and Malmqvist, 1992). 

The signals obtained due to immobilization of protein to the CMD matrix, which extends 

between 100 and 200 nm from the gold surface, have been verified by parallel studies 

using radiolabeled proteins (Stenberg et al., 1991). 

When SPR is used to study biomolecular interactions, the immobilized 

biomolecule binds to an interacting species that is delivered through a flow system and 

the corresponding change in local protein concentration affects the refractive index as 

detailed in section 1.3.3 (Jonsson et al., 1991). Due to the evanescent nature of the SPR 

wave, the changes sensed are restricted to the area in the vicinity of the metal/dielectric 

interface, encompassing the CMD matrix, and not past it (Salamon et al., 1997; Stenberg 

et al., 1991). Since proteins have a large molecular mass and all have comparable 

refractive index increment (RII -- an expression of how much a given material changes 

the refractive index of a solution as a function of mass) values, SPR has achieved great 
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success as a method for biomolecular interaction analysis (BIA) (Jonsson and Malmqvist, 

1992; Perlmann and Longsworth, 1948). Many studies using BIAcore systems and CMD 

coated chips have been carried out on interactions between purified proteins (Allauzen et 

al., 1995; Haimovich et al., 1998; Moghaddam et al., 2001; Ozawa et al., 1999; 

Tufvesson and Westergren-Thorsson, 2002; Vales-Gomez et al., 2001), purified and 

serum proteins (Cain et al., 2000; Gonzales et al., 2002; Haimovich et al., 1998; Karlsson 

et al., 1993; Laricchia-Robbio et al., 1998; Takacs et al., 1999; Vikinge et al., 1998), 

nucleic acids (which have RII values comparable to protein; (Davis and Wilson, 2000)) 

(Asensio et al., 1998; Bates et al., 1995; Jensen et al., 1997; Nilsson et al., 1995; 

Sugimoto and Wakizaka, 1998; Sugimoto et al., 2001; Wood, 1993; Zhao et al., 2004), or 

between nucleic acids and proteins (Jost et al., 1991; Polymenis and Stollar, 1995; 

Portmann et al., 2004; Schade et al., 1999; Tsoi and Yang, 2004; Yi et al., 1999). Kinetic 

and equilibrium interaction constants can typically be extracted from these data. More 

recently, interactions between small molecules and protein (Karlsson and Stahlberg, 

1995) or nucleic acids (Bischoff et al., 1998; Ciolkowski et al., 2000; Gambari et al., 

2000) have been studied directly, although in the case of small molecule drugs, 

corrections have to be made for their RII values, which can deviate substantially from 

those of proteins (Davis and Wilson, 2000). Typically, detection of binding of molecules 

below 2 kDa is problematic. However, in the case of drug molecules binding to nucleic 

acids, low molecular weight analytes can generate a significant signal if there is a 

stochiometric excess of drug molecule in the interaction. 

 

 



  55 

1.3.3.2 Detection of Conformational Changes 

 

 Since the SPR signal is a product not only of nd but also of dd, it is possible to 

detect conformational changes in immobilized molecules (Boussaad et al., 2000; 

Salamon et al., 1997; Salamon et al., 1997). This approach has been used to characterize 

deposition of small molecules on bare Ag (Salamon et al., 1994) and Au surfaces, in the 

latter case with one (Sarkar and Somasundaran, 2004) or two (Peterlinz and Georgiadis, 

1996; Peterlinz and Georgiadis, 1996) λ values used. Similarly, studies on monolayers of 

biomolecules using monochromatic techniques on Au (May and Russell, 2002; May and 

Russell, 2003) or Ag surfaces (Salamon et al., 1994; Salamon et al., 2000) as well as 

polychromatic techniques on Au (Georgiadis et al., 2000; Peterlinz et al., 1997; Peterson 

et al., 2000; Peterson et al., 2001; Peterson et al., 2002) or Ag surfaces (Boussaad et al., 

2000) have all been undertaken. All studies discussed in this paragraph yielded detailed 

quantitative information on the thickness as well as the refractive index of the layer, 

extraction of which was facilitated by the fact that the studies were carried out on a 

monolayer rather than in a CMD matrix. 

There have also been studies that claim to characterize conformational changes in 

proteins immobilized to CMD matrices (Mannen et al., 2001; Sota et al., 1998) that have 

since been found to be erroneous on the grounds that the signals observed were likely due 

to changes in electrostatic interactions between the immobilized protein and the CMD 

matrix induced by changes in pH (Paynter and Russell, 2002). Other studies of 

conformational changes in proteins immobilized to CMD matrices have proven (Flatmark 

et al., 2001; Gestwicki et al., 2001) to be well founded (Winzor, 2003). However, even 
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when considering these cases, studies on monolayers yielded more quantitative and 

unambiguous data than those on a CMD matrix, although the environment of the 

molecules bears less resemblance to those in solution than when using a matrix. 

 

1.4 Nucleic Acid Immunogenicity 

 

 Unlike proteins, foreign nucleic acids do not universally provoke a response from 

mammalian immune systems. However, certain unusual conformations or repeating 

sequences can elicit an immune response with production of antibodies specific for the 

structure. In many cases, DNA with modifications to the bases or backbone are even 

more immunogenic than DNA with standard bases and a normal phosphate backbone. In 

addition, anti-DNA antibodies have been detected in SLE patients. Thus, anti-DNA 

antibodies have been of interest both for studying nucleic acid structure and the presence 

of unusual structures in vivo as well as for studies on SLE. 

 

1.4.1 Antibodies specific for DNA 

 

 Although most dsDNA is not immunogenic, antibodies specific for DNA are 

present in the sera of patients or mice with SLE. SLE is an autoimmune disease in which 

tissues are damaged by pathogenic autoantibodies and immune complexes. There is no 

cure for SLE and the 20 year survival rate is between 63 and 75% (Hahn, 1998). The 

antibodies produced are specific for a variety of antigens including histones, 

immunoglobulin G antibodies (IgG), single- and dsRNA and DNA, phospholipids, 
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lymphocytes, and platelets. The prevalence of anti-DNA antibodies in SLE is high and 

increases as the disease progresses. Many of the antibodies are not sequence specific, and 

bind both single- and dsDNA (Zouali et al., 1988). 

 A variety of anti-DNA antibodies from lupus-prone mice have been characterized 

and display a wide variety of specificities. Some bind exclusively to dsDNA with varying 

degrees of sequence specificity (Braun and Lee, 1986; Lafer et al., 1981; Stollar et al., 

1986; Tanha and Lee, 1997) while others bind only to ssDNA (Lee et al., 1982). Others 

bind either type of DNA (Swanson et al., 1996). In no case was there as large a degree of 

sequence specificity as that which results from immunization with repeating sequence 

DNA. 

 Immunization of mice with repeating-sequence base- or phosphate backbone-

modified DNA has shown that such sequences are capable of producing immune 

responses. Enhanced immunogenicity in modified sequences is believed to be due in part 

to the nuclease resistance imparted by phosphate backbone modifications. One study 

showed that some DNA sequences containing phosphorothioates were resistant to 

pancreatic nucleases, which could cause the DNA to be more immunogenic by having a 

longer half-life in the body (Latimer et al., 1989). In some cases, the resulting antibodies 

were specific for the sequence used to elicit the response, and also bound the same 

sequence in the absence of base modifications (Latimer et al., 1995; Lee et al., 1985). In 

other cases, the antibodies produced displayed a similar non-specific response to those 

present in SLE sera or were specific only for the modified phosphate backbone (Latimer 

et al., 1995). 
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 Anti-DNA antibodies have also been obtained by immunization with M13 phage 

displaying peptide motifs, which bound to autoantibodies from lupus-prone mice. Some 

of the reactive epitopes displayed by the phage contained aromatic and negatively 

charged residues, which were believed to mimic the bases and phosphate backbone, 

respectively, of DNA (Sibille et al., 1997). 

 

1.4.2 Antibodies specific for unusual DNA conformations 

 

 Unlike normal dsDNA, unusual DNA conformations, particularly Z-DNA and 

triplex DNA, can be immunogenic. Since these conformations can be stabilized by base-

modification, DNA containing modified bases is often used as an antigen to generate a 

response against the conformation in question. Like antibodies generated in SLE, these 

antibodies have a variety of sequence specificities and some bind only modified DNA 

while others bind unmodified DNA if it is in the correct conformation. 

 An early example of this technique employed chemically brominated d(GC)n to 

raise antibodies against Z-DNA (Lafer et al., 1981). These antibodies bound both 

modified and unmodified DNA, provided it was in the Z conformation. Other antibodies 

recognizing different epitopes on the brominated DNA would not bind Z-DNA if it 

contained m5C (Moller et al., 1982). Similarly, antibodies have been raised against 

d(Tm5C)•d(GA)•d(m5CT) which also bind to other triplex forming sequences, albeit with 

less specificity (Lee et al., 1987). Other antibodies raised with the same triplex react also 

with unmodified polymers but not with triplexes of other sequences (Agazie et al., 1994). 

As discussed in section 1.2.2.3, these two antibodies stained different regions of 
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eukaryotic chromosomes. Thus, it has been shown that in some cases, nucleic acids are 

immunogenic, particularly if they contain unusual bases, and that their immunogenecity 

can be due to the conformation they adopt. 

 

1.5 Objective 

 

 The objective of this study was to gain a better understanding of the M-DNA 

conformation by further characterization of the conditions under which it forms using 

more developed versions of existing techniques as well as developing new techniques. 

Specifically, the effects of base substitutions, DNA concentration, temperature, and 

sequence on the equilibrium position of M-DNA formation as a function of pH or metal 

ion concetration were investigated. Differences between the M-DNA conformations 

induced by Zn2+, Ni2+, and Co2+ were also characterized and compared to the pH-

dependent effects of Cd2+ on dsDNA. These experiments were designed with a view to 

testing the hypothesis that M-DNA formation occurs through substitution of the imino 

protons of G and T bases by the transition metal ions.  

The goals of this study were accomplished in part using the EtBr based assay and 

fluorescence quenching techniques. These techniques have been modified greatly from 

their original forms for greater versatility. Two other techniques that had not previously 

been used to characterize the M-DNA conformation, ITC and SPR, were also employed 

in this study. Development of these assays has allowed new ways to measure M-DNA 

formation and shown properties of the conformation that would not be obtainable by 
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other methods. Finally, as another method to characterize the conformation, attempts 

were made to raise MAbs against M-DNA, but this did not succeed. 

 Accomplishment of these goals will allow progress toward potential applications 

of the M-DNA conformation, and will also facilitate structural studies by further defining 

the conditions under which M-DNA exists. Since M-DNA formation requires an elevated 

pH as well as the presence of transition metal ions whose solubility decreases with 

increasing pH, crystallization of the conformation has remained elusive. By 

characterizing M-DNA formation at lower pH values, more options for crystallization of 

the structure are available. 
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2.0 Materials and Methods 

 

2.1 Reagents and Equipment 

 
   
Item Supplier 
 
Biological Reagents 
 
Calf Thymus DNA (type I: sodium salt) Sigma 
Escherichia coli DNA (type VIII: sodium salt) Sigma 
Female Balb-C Mice University of Saskatchewan 

Animal Resources 
Fetal Bovine Serum Gibco BRL 
Freund's Complete Adjuvant Sigma 
Freund's Incomplete Adjuvant Gibco BRL 
I125-labelled goat anti-mouse IgG Pharmacia 
Jel 42 IgG Dr. J. Lee 
Jel 274 IgG Dr. J. Lee 
Jel 352 IgG Dr. J. Lee 
Jel 542 IgM Dr. J. Lee 
λ phage DNA Pharmacia 
0.54 src-cat plasmid Dr. K. Bonham 
Streptavidin (dessicate) Sigma 
Taq DNA polymerase Pharmacia 
Tth DNA polymerase Roche 
Vent DNA polymerase New England Biolabs 
 
Chemical Reagents 
 
2-amino-2'-deoxyadenosine-5'-triphosphate Trilink Biotechnologies 
5-bromo-2'-deoxyuridine-5'-triphosphate Trilink Biotechnologies 
5-bromouridine Sigma 
CdCl2 Fisher 
CoCl2·6H2O Sigma 
Co(ClO4)2·6H2O  Sigma 
Concert Rapid PCR purification system Gibco BRL 
2-(N-cyclohexylamino)ethanesulfonic acid Sigma 
7-deaza-2'-deoxyadenosine-5'-triphosphate Trilink Biotechnologies 
2'-deoxyadenosine-5'-triphosphate Pharmacia 
2'-deoxycytidine-5'-triphosphate Pharmacia 
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2'-deoxyguanosine-5'-triphosphate Pharmacia 
2'-deoxyinosine-5'-triphosphate P-L Chemicals 
2'-deoxythymine-5'-triphosphate Pharmacia 
2'-dexoxyuridine-5'-triphosphate P-L Chemicals 
Ethanolamine BIAcore 
Ethyldimethylcarbodimide BIAcore 
Ethylenediaminetetraacetic acid (disodium salt) BDH 
Ethylenediamine Dr. M. Majewski 
5-fluoro-2'-deoxyuridine-5'-triphosphate Trilink Biotechnologies 
5-fluorouridine Sigma 
HCl E-M Science 
Hepes-buffered saline BIAcore 
N-(2-hydroxyethyl)piperazine-N'-(2-ethanesulfonic acid) Sigma 
5-methyl-2'-deoxycytidine-5'-triphosphate P-L Chemicals 
MgCl2 Sigma 
Mg(ClO4)2·6H2O Sigma 
2-(N-morpholino)ethanesulfonic acid Sigma 
3-(N-Morpholino)propanesulfonic acid Sigma 
NaCl Sigma 
NaOH BDH 
N-hydroxysuccinimide BIAcore 
NiCl2·6H2O Sigma 
Ni(ClO4)2·6H2O Sigma 
Polyoxyethylenesorbitan monolaureate Sigma 
Polsorbate-20 BIAcore 
4-thio-2'-deoxythymine-5'-triphosphate Trilink Biotechnologies 
Tris[hydroxymethyl]aminomethane Sigma 
Uridine Sigma 
ZnCl2 Sigma 
Zn(ClO4)2·6H2O Sigma 
 
All metal ion solutions and buffers were supplied in solid form with a purity of 97.0 % or 
greater. 
 
Supplies and Equipment 
 
Accumet Basic pH electrode Fisher 
Absorbance Spectrophotometer 260 Gilford 
BIAcore X BIAcore 
Disposable fluorescence cuvettes VWR 
Falcon tubes, 15 mL and 50 mL VWR 
0.20 μM filter discs Nalgene  
F-2000 fluorescence spectrophotometer Hitachi 
F-2500 fluorescence spectrophotometer Hitachi 
18- and 30-guage needles Becton Dickinson 
Micropipettors Eppendorf 
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Model 4200 titration calorimeter Calorimetry Sciences Corp. 
Model 1271 Riagamma gamma counter Wallac 
96-well polyvinyl chloride plates VWR 
Mark II Abbe Refractometer Leica 
Quartz cuvettes Fisher 
Sensor chip CM4 BIAcore 
Sensor chip SA BIAcore 
Single block easy cycler system Ericomp 
Syringes, 20 mL and 1 mL Becton Dickinson 
 
Synthetic DNA 
 
Sequences Purchased from the University of Calgary Regional DNA Synthesis Lab
 
C-src-(–793) 5'-d(TGAGCAGCTTAGCATGGCGC)3' 
C-src-(–277) 5'-d(GCAGACGGACGCACGGGAGG)3' 
λ-13 5'-d(GCGGGTTTTCGCTATTATG)3' 
λ-509 5'-d(CAGCGGAGTCTCTGGCATTC)3' 
 
Sequences Purchased from the Plant Biotechnology Institute 
 
A30 5'-Biotin-d(A30)3' 
btn-CTL-2 5'-Biotin-d(CATTTGGTCGTGGAATGCGTAGTTAGCCAC)3' 
C30 5'-Biotin-d(C30)3' 
CTL-1 5'-d(GTGGCTAACTACGCATTCCACGACCAAATG)3' 
CTL-2 5'-d(CATTTGGTCGTGGAATGCGTAGTTAGCCAC)3' 
Fl-CTL-1 5'-Fluorescein-d(GTGGCTAACTACGCATTCCACGACCAAATG)3' 
QSY7-CTL-2 5'-QSY7-d(CATTTGGTCGTGGAATGCGTAGTTAGCCAC)3' 
T30 5'-Biotin-d(T30)3' 
 
-Also ordered were 5FUCTL-1 and 5FUCTL-2, which are CTL-1 and CTL-2 sequences, 
respectively, with F5U replacing T. 5FUCTL-2 is biotinylated on its 5' end. 
 

2.1.1 Preparation of Divalent Metal Ion Solutions 

 

 All metal ion solutions were prepared by dissolving the solid compounds to 2.0 M 

concentration in 50 mL of double-distilled H2O (ddH2O). The solutions were then filtered 

through a 0.20 μM filter disc attached to a 20 mL syringe into a 50 mL falcon tube for 

storage. Due to its acidity, Zn(ClO4)2 was prepared to 100 mM otherwise it would 
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damage the filter. Prior to preparation, solid ZnCl2 was heated to 120 °C overnight. Stock 

solutions of ZnCl2 were acidified to a pH of 4.0 by addition of HCl to prevent 

precipitation unless otherwise specified. Working solutions for experiments were diluted 

from these stock solutions. 

 

2.1.2 Purification of Ethylenediamine 

 

Ethylenediamine (ED) was purified by distillation under vacuum with constant 

stirring using a standard distillation apparatus. The vacuum line ran through a dessicator 

and sand was used as a medium to conduct heat to the round-bottom flask. The boiling 

point of ED is normally 116 °C, but under vacuum, boiling was achieved at 91 °C. The 

ED was harvested and frozen at -20 °C until needed. 

 

2.1.3 Determination of Thymidine Analogue pK s a

 

The pKa values for F5U and Br5U were unavailable in the literature. Uridine, 5-

bromouridine and 5-fluorouridine were dissolved to 10 mM and titrated with 1 N NaOH. 

The pH values obtained were plotted as a function of added NaOH concentration to 

determine the pKa values. It was found that the 5-bromouridine had a pKa of 8.2 while the 

corresponding value for 5-fluorouridine was 7.8. The pKa values for s4T and s2 were also 

unknown and obtaining enough of the nucleosides for a pH titration was cost-prohibitive. 

Thus, the difference between the pKa values of these analogues and the corresponding 

thiolated uracil analogues (Testa et al., 1999) was assumed to be the same as the 
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difference between the pKa values of U and T. This estimation gave pKa values of 9.4 and 

8.8 for s2T and s4T, respectively. 

 

2.2 Nucleic Acids 

 

 All nucleic acid concentrations are expressed in molarity of phosphates. This 

standard applies to single-stranded and ds- DNA or RNA. In all cases, solutions of 

nucleic acids were stored at -20 ˚C when not in use and thawed at room temperature. 

While in use, nucleic acid stock solutions were kept on ice. 

 

2.2.1 Genomic DNA 

 

 CT and E. coli DNA were purchased as a sodium salt in a dessicated form. In 

either case, the DNA was dissolved in 10 mM NaCl, 10 mM TRIS-HCl pH 8.0 to at least 

1.5 mM and diluted to different concentrations in various buffers depending on the 

experiment. Final DNA concentrations were determined by A260 using quartz cuvettes in 

an absorbance spectrophotometer with a zero concentration standard being buffer 

containing no DNA. 

 

2.2.2 Production of Nucleic Acids by PCR 

 

All PCRs contained 0.25 mM of each dNTP, 15 µM of template DNA and 9.6 µM 

of each primer. The appropriate buffer (as suggested by the supplier) was used for each 
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polymerase, and Mg2+ concentrations were optimised separately for each different PCR. 

Cycling conditions were 30 sec each at 94, 45 and 72 °C for Taq and Vent DNA 

polymerase. PCRs with Tth DNA polymerase were cycled at 94 °C for 2 min, then 10 

cycles of 94 °C for 30 sec, followed by 50 °C for 30 sec, followed by 72 °C for 45 sec. 

Twenty more cycles followed, with each successive 72 °C step being elongated by 5 sec 

and a final 72 °C step of 2 min. All DNA produced by PCR was purified using the 

Concert Rapid PCR purification system. DNA concentrations were verified by A260 or by 

the standard EtBr fluorescence assay. 

The length of PCR products was determined by agarose gel electrophoresis. The 

samples, along with a molecular weight standard, were loaded into 10 cm long 2% (w/v) 

agarose gels. The running buffer for the electrophoresis and the liquid component of the 

gel were composed of 40 mM TRIS-Acetate pH 8.0, 20 mM sodium acetate, and 0.1 mM 

EDTA. The samples were electrophoresed at 80 V and 100 mA for 2h then stained with 

2.0 μg/mL EtBr. The gels were then photographed under illumination by UV light at 365 

nm. 

 

2.2.2.1 DNA Containing Standard Bases 

 

Template DNA for amplification by PCR was either λ phage DNA or a plasmid, 

0.54 src-cat, containing the human c-src proto-oncogene. Primers for the λ genome 

amplified between bases 13 and 509; 496 bp total with a GC content of 54%. The primers 

used were λ-13 and λ-509. Primers for the 0.54 src-cat plasmid amplified a 73% GC 516 

bp region between bases –793 and –277 of the upstream non-coding sequence of the c-src 
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gene. The primers used were C-src-(–793) and C-src-(–277). Both reactions were 

catalyzed by Taq DNA polymerase. 

 

2.2.2.2 DNA Containing Modified Bases 

 

All PCRs with modified bases employed λ phage DNA as a template and λ-13 

and λ-509 as primers. Substitution of 5-methyl-2'-deoxycytidine-5'-triphosphate for 2'-

deoxycytidine-5'-triphosphate was performed with Vent DNA polymerase. Substitutions 

of 2-amino-2'-deoxyadenosine-5'-triphosphate for 2'-deoxyadenosine-5'-triphosphate and 

of 4-thio-2'-deoxythymine-5'-triphosphate for 2'-deoxythymine-5'-triphosphate required 

Tth DNA polymerase. All other substitutions were performed with Taq DNA polymerase. 

Reaction concentrations of all modified dNTPs were 0.25 mM. Reactions with  4-thio-2'-

deoxythymine-5'-triphosphate contained 25 % 2'-deoxythymine-5'-triphosphate and had 

an incorporation efficiency of s4T of 75 % as judged by absorbance at 340 nm. 

 

2.2.3 Repeating Sequence DNA 

 

The synthetic DNAs d(GC)n, d(AU)n, d(G)n•d(C)n, d(A)n•d(T)n, and d(GGCC)n, 

were gifts from J.S. Lee. Synthetic RNA r(AU)n and synthetic DNAs d(AT)n, 

d(TG•CA)n, d(As2T)n, d(As4T)n, d(s2TG)n•d(CA)n,  and d(s4TG)n•d(CA)n were gifts from 

M.J. Dinsmore. 
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2.2.4 Oligonucleotides 

 

 All PCR primers and labelled oligonucleotides were purchased in a dessicated 

form. PCR primers were dissolved in ddH2O to 100X of the concentration needed for the 

PCR. Other oligonucleotides were also purchased in a dessicated form and dissolved in 

ddH2O to between 10X and 200X concentration. In either case, oligonucleotides were 

synthesized by phosphoramidite chemistry and btn, Fl, or QSY7 were attached via 

standard six carbon linkers to the 5' end of the sequence. 

 

2.3 Ethidium Fluorescence Assay 

 

A standard fluorescence assay was used to quantify DNA out as follows. The 

standard quantitation ethidium fluorescence buffer (QEFB) consisted of 1.0 mM EDTA, 

0.5 μg/mL EtBr (approximately 1.3 μM), and 10 mM TRIS-HCl pH 8.0. A 10 μL aliquot 

of DNA was added to 2 mL QEFB and the fluorescence at 600 nm resulting from 

excitation at 525 nm recorded. All fluorescence experiments were carried out on either a 

Hitachi F-2000 or F-2500 fluorescence spectrophotometer. The response to DNA 

concentration is linear when aliquots of 0.015 - 0.30 mM are added; concentrations 

higher than this can be assayed accurately by adding aliquots smaller than 10 μl. The 

assay was standardized with an aliquot of 150 μM dsDNA. Detection of M-DNA was 

possible in a different ethidium fluorescence buffer (Zn-EFB) that contains 0.20 mM 

ZnCl2, 0.5 μg/mL EtBr, and 10 mM buffer; a 10 μL aliquot of DNA was added to 2 mL 

Zn-EFB and the fluorescence read in the same manner as with QEFB. The pH and buffer 
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used to make Zn-EFB depend on the individual experiment. Data from the experiments 

detailed in section 2.3.4 were plotted as percent B-DNA remaining, with 100% being set 

at the fluorescence value obtained at pH 6.0. Data for other M-DNA assays were plotted 

as percent fluorescence, with 100% being set at the fluorescence value obtained in the 

absence of Zn2+, Ni2+, or Co2+. All EtBr fluorescence readings were obtained at room 

temperature (21 ˚C) and all incubations were carried out at room temperature unless 

otherwise specified. 

 

2.3.1 Preparation of Nucleic Acids 

 

 All of these assays use either genomic, PCR product, or repeating-sequence DNA. 

All were prepared as detailed in section 2.2 and purified or dissolved to either 10X 

concentration in 100 mM NaCl, 40 mM 2-(N-cyclohexylamino)ethanesulfonic acid 

(CHES) pH 9.0 or 1X concentration in 10 or 20 mM buffer, 10 mM NaCl. In the latter 

case, the buffer and pH used depend on the particular experiment carried out. 

Concentrations were verified by A260 as well as by QEFB. 

 

2.3.2 Detection of M-DNA Formation and Stability with Zn2+, Ni2+, and Co2+

 

Aliquots of 100 µl of 15 µM λ496mer in 10 mM NaCl, 4 mM CHES pH 9 were 

converted to M-DNA by addition of 0.2 mM ZnCl2, 0.3 mM NiCl2 or 0.5 mM CoCl2. The 

aliquots were incubated for 2 h with and without metal ion added. Following M-DNA 

formation, 100 µl of 25 mM buffer with 10 mM NaCl was added to the incubation, giving 
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a final DNA concentration of 7.5 µM and the metal ion concentration was adjusted to 

0.25 mM in all cases. The pH values of the buffers added were 5.0, 5.5 (sodium acetate), 

6.0, 6.5 (2-[N-morpholino]ethanesulfonic acid [MES] buffer), 7.0 (N-[2-

hydroxyethyl]piperazine-N'-[2-ethanesulfonic acid] [HEPES]), 7.5, 8.2, 8.5 (TRIS 

buffer), and 9.0 (CHES buffer). The mixture was allowed to incubate for 10 min, then 

assayed immediately in Zn-EFB, pH 8.3, before and after addition of 1.0 mM EDTA to 

the Zn-EFB. Hysteresis experiments with incubations times of 30 or 60 min showed 

similar results to those with the 10 min incubation time, and so these conditions were 

considered to be under equilibrium. The readings at the lowest three pH values were 

averaged and used as a 100% B-DNA standard against which the other readings were 

normalized. 

 

2.3.3 Slow Reversion of Ni(II) M-DNA 

 

A 75 µM solution of CT DNA in 10 mM NaCl, 20 mM CHES pH 9.0 was 

incubated in the presence of 0.5 mM NiCl2 or CoCl2
 for 2 h to form M-DNA. Following 

this, EDTA was added at concentrations between 0.1 and 1.0 mM. Aliquots of 20 µl were 

then taken at intervals over a 22h period and the fluorescence measured immediately in 

Zn-EFB, pH 8.3, before and after addition of 1.0 mM EDTA to Zn-EFB. The values 

obtained were normalized against a value obtained from DNA in the absence of divalent 

metal ion. 
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2.3.4 Effect of DNA concentration on M-DNA formation 

 

CT-DNA was dissolved in 10 mM NaCl, 20 mM TRIS–HCl pH 8.5 or 20 mM 

CHES pH 9.0 to concentrations of 4.5, 7.5, 15, 45, 75, 150 and 450 µM. ZnCl2, NiCl2 and 

CoCl2 were added to aliquots of the DNA over a concentration range of 0.1–1.0 mM and 

incubated for 2 h. Following incubation, aliquots containing 1.3 nmol of DNA were 

added to 2 mL of Zn-EFB, pH 8.3, and fluorescence measured immediately before and 

after addition of EDTA. The concentration of metal ion required for 50% M-DNA 

formation was estimated by interpolation from a graph obtained by normalizing all 

readings against one of the same concentration in the absence of divalent metal ion. 

 

2.3.5 Detection of Zn(II) M-DNA Formation in 54% GC DNA with Modified Bases 

and Repetitive Sequence DNA. 

 

Aliquots of 100 µl of 15 µM DNA in 10 mM NaCl, 4 mM CHES pH 9.0 were 

converted to M-DNA by addition of 0.2 mM ZnCl2 and incubation for 2 h. Following M-

DNA formation, 2 mL of Zn-EFB was added to each sample, as well as to samples of B-

DNA, giving a final DNA concentration of 0.71 µM. Zn-EFB preaparations of six pH 

values were used: pH 6.0 with MES buffer, pH 7.5, 7.75, 8.0, 8.3 and 8.6 with TRIS–HCl 

buffer. The aliquots were incubated in the Zn-EFB for 30 min then the fluorescence was 

measured before and after addition of 1.0 mM EDTA. This procedure was applied for 

d(AT)n, d(AU)n,  r(AU)n, d(GC)n, d(A)n•d(T)n, d(G)n•d(C)n, d(GGCC)n, the c-src 516 bp 

fragment, and the λ 496 bp fragments containing standard bases as well as substitutions 
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of n2A, z7A, m5C, I, U, Br5U, F5U for their respective standard bases, and a double-

substituted sequence containing I and Br5U. 

A slightly modified procedure was also used in which 10 μL 150 μM DNA in 5 

mM NaCl, 10 mM CHES pH 9.0 was added to 2 mL of Zn-EFB, giving a final DNA 

concentration of 0.71 μM. Eight pH values of Zn-EFB were used:  pH 6.0 with MES 

buffer, pH 7.0 and 7.2 with 3-(N-Morpholino)propanesulfonic acid (MOPS), and pH 7.6, 

7.8, 8.0, 8.2, and 8.4 with TRIS-HCl buffer. The aliquots were incubated in the Zn-EFB 

for 30 minutes then the fluorescence measured before and after addition of 1.0 mM 

EDTA. This procedure was applied for d(AT)n, d(As2T)n, d(As4T)n, d(TG•CA)n, 

d(s2TG)n•d(CA)n,  and d(s4TG)n•d(CA)n. In either procedure, all measurements were 

normalized against the pH 6.0 values for each sequence. 

 

2.3.6 Effect of Temperature on M-DNA Formation 

 

CT DNA of 15 μM concentration was incubated in 10 mM NaCl, 10 mM TRIS-

HCl, pH 8.5 in the presence of various Zn(ClO4)2 concentrations at temperatures of  4, 

10, 21, and 37 °C for 2 h; the long incubation time ensured that the measurements were 

taken under equilibrium conditions. The pH values of each TRIS buffer were set at the 

temperatures used in the experiment. Aliquots of 100 μL were then added to 2 mL of pH 

8.3 Zn-EFB at room temperature and the fluorescence measured under constant stirring. 

Fluorescence values were measured before and after the addition of EDTA. All data were 

plotted as a percentage of the fluorescence intensity observed prior to EDTA addition for 

the 0 mM Zn(ClO4)2 reading. 
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2.4 Isothermal Titration Calorimetry 

 

2.4.1 Preparation of Nucleic Acids 

 

CT and E. coli DNA were dissolved in 10 mM NaCl, 10 mM Tris-HCl pH 8.0 to a 

concentration of 0.75 mg/mL. The DNA solutions were then sheared by being passed 

through a 30-guage needle five times under maximum thumb pressure. Working solutions 

were diluted to final concentrations of 50 and 100 μg/mL in 10 mM NaCl, 10 mM Tris-

HCl, pH 7.5 or 8.5. 

 

2.4.2 Detection of DNA-Metal Interactions 

 

Enthalpies were measured using a CSC Model 4200 isothermal titration 

calorimeter with 1.3 mL cells. The sample and reference cells were filled with 1.0 mL of 

DNA or buffer and 1.1 mL of buffer solution, respectively. A 2.5 mM solution of either 

Zn(ClO4)2 or Mg(ClO4)2 was injected in 10-μL increments every 10 min into the sample 

cell using a 250-μL Hamilton syringe controlled by the injection apparatus of the 

instrument. A stir rate of 150 rpm was maintained in the sample cell throughout the 

experiment. The same titrants were added to buffer solutions without DNA; these data 

were subtracted from the readings obtained in the presence of DNA to account for the 

heat of dilution. All of these measurements were carried out at 25 (±0.02) °C. 
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2.5 Surface Plasmon Resonance 

 

 A BIAcore X SPR biosensor was used for all measurements. The sensor chips 

used were the SA variety, which consist of a CMD matrix with covalently bound 

streptavidin. This allows easy immobilization of biotinylated oligonucleotides. 

 

2.5.1 Preparation of Nucleic Acids 

 

 A total of seven sequences were employed in this study:  CTL-1, 5FUCTL-1,  

CTL-2, 5FUCTL-2, A30, C30, and T30. All oligonucleotides were supplied as a 

dessicate and dissolved in ddH2O to at least 150 μM then diluted into TBS buffer (150 

mM NaCl, 3.4 mM EDTA, 0.005 % polysorbate-20, and 10 mM TRIS-HCl pH 7.4) prior 

to use. 

 

2.5.2 Preparation of Surface 

 

 Prior to exposure to nucleic acids, the sensor chips were treated with several 8 μL 

pulses of 50 mM NaOH 1 M NaCl over both flow cells at a flow rate of 20 μL/min to 

remove loosely bound streptavidin. This was repeated until no further decrease in 

baseline on either flow cell was observed upon pulsing, corresponding to a decrease of up 

to 800 RU, or 800 pg/mm2 of protein. Following this, both flow cells were exposed to 30 

μL of CTL-1 at 21 μM in TBS at 5 μL/min to verify that the DNA did not attach non-

specifically to the surface. Biotinylated sequences btn-CTL-2, 5FUCTL-2, A30, C30, and 
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T30 were prepared to 0.21 μM in TBS buffer. Each sequence was immobilized on a 

separate sensor chip SA by injecting the appropriate DNA solution over flow cell 2 at a 

flow rate of 5 μL/min with the manual injection command, so that the response due to 

immobilization could be ascertained 1 minute after a small amount of DNA was added, 

and then more added incrementally until a response of about +185 RU was achieved. In 

the case of CTL-2 or 5FUCTL-2, hybridization was then verified by injection of 30 μL 

CTL-1 or 5FUCTL-1 at 21 μM concentration with a flow rate of 5 μL/min. Thus, 

duplexes with F5U on either strand, both strands, or neither strand were generated. This 

allowed 0, 6, 9, or 15 modified bases to be present in the dsDNA sequence. 

 A CM4 sensor chip was also used in these experiments as a possible means to 

reduce background binding. Prior to binding nucleic acids, strepatvidin was immobilized 

on the surface of the chip. These procedures were carried out at a flow rate of 5 μL/min in 

HEPES-buffered saline (150 mM NaCl, 3.0 mM EDTA, 0.005 % polysorbate-20, and 10 

mM HEPES pH 7.4). The carboxyl groups of the CMD matrix were activated by 

exposure of the surface to 35 μL of a 0.1 M 1:1 mixture of N-hydroxysuccinimide and 

ethyldimethylcarbodimide. Immobilization of streptavidin was performed by injection of 

95 μL of 400 μg/mL streptavidin in 10 mM Acetate pH 5.0. Following this, deactivation 

of the surface was carried out by exposure to 35 μL of 1.0 M either ethanolamine or 

ethylenediamine. 
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2.5.3 Detection of DNA-Metal Interactions 

 

 Most of these experiments used 10 mM NaCl, 10 mM TRIS-HCl pH 7.5 or 8.5 as 

a flow buffer and were conducted at a flow rate of 50 μL/min. Others, as noted, were 

performed in 10 mM MES pH 6.5, 10 mM NaCl. Following hybridization (in the case of 

dsDNA assays), a 100X stock solution of MgCl2, CaCl2, ZnCl2, NiCl2, CoCl2, or CdCl2 

was dissolved in flow buffer and 100 μL of this solution was immediately injected over 

both flow cells. The signals resulting from interactions between the metals and the CMD 

matrix with streptavidin in flow cell 1 were then subtracted from those obtained on flow 

cell 2. All sensorgrams shown in figures and all response levels discussed have this 

baseline subtraction taken into account. One minute after the end of the metal chloride 

injection, 80 μL of TBS was injected over both flow cells followed by a wash procedure 

(which the BIAcore X performs automatically upon request) to regenerate the surface, 

then five minutes were allowed for the baseline to reestablish before another injection of 

metal chloride was performed. The necessity of this step was judged according to 

whether the signal on flow cell 1 had returned to baseline as well as that on flow cell two. 

This procedure was performed on each of the nucleic acids detailed above, and in the 

case of btn-CTL-2, the assay was performed on the ssDNA as well as on the duplex 

formed between it and its compliment, CTL-1; hereafter this duplex is referred to as 

dsCTL. In the case of dsCTL, when 10% or more of the DNA was denatured during the 

exposure to metal ions, 10 μL of 21 μM CTL-1 was injected over both flow cells to 

regenerate the dsCTL. All spectra shown are averaged from between 2 and 5 individual 

readings. 
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2.5.3.1 BIAcore Maintenance 

 

It is important to note that when doing experiments of this nature, it is possible 

that metal ion precipitates will deposit in the integrated microfluidics cartridge (IFC) 

which delivers analytes to the DNA surface. Thus, once per 10 hours of experiments, a 

customized cleaning procedure was performed. A maintenance chip, which is essentially 

a glass surface with no gold, was docked and Millipore water was primed twice and 

unclogged once (prime and unclog are preset procedures which the BIAcore X can 

perform). The same procedure was then repeated with 100 mM HCl and Millipore water 

again. Both solutions were heated to ~55 °C prior to cleaning. A sensitivity check was 

then performed to verify that the IFC was not plugged. These procedures were carried out 

in addition to standard “desorb” and “sanitize” protocols which are used to clean the 

BIAcore X. 

 

2.5.4 Estimation of the SPR Response due to Increased Mass 

 

 The RII values of Ni2+ and Zn2+ were not available in the literature. Thus, the RII 

values of NiCl2 and ZnCl2 were obtinaed. A Leica Mark II Abbe refractometer was used 

to measure the refractive index values of solutions of the two metal chlorides between 20 

mM and 1.0 M concentration. These values were then plotted against concentration and 

the slope of the resulting linear response is taken as the RII value. This value was then 

used to estimate the maximum SPR responses due to increased mass on the surface. 
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 The maximum SPR response due to increased mass on the surface was predicted 

with the following formula, as described in (Davis and Wilson, 2000). The value 

(RUpred)max is defined as: 

(1) (RUpred)max = RUL x MWA x RIIA
 MWL xRIIL
 

Where RUL is the level of immobilization of the ligand in RU; MWA and MWL are the 

molecular weights of the analyte and ligand, respectively; and RIIA and RIIL are the 

refractive index increments of the analyte and ligand, respectively. This value is then 

multiplied by the stoichiometry of the interaction (analyte:ligand) to obtain the value 

(RUpred)sat. The (RUpred)sat value is the estimated maximum response due to the 

interaction. 

This calculation works well for systems in which the analyte is either a 

macromolecule or a small molecule with sufficient mass for the contribution due to mass 

to be the main factor in determining the SPR signal. In the case of metal ions binding to 

DNA, this becomes complicated by the fact that other ions will be displaced to some 

degree. However, as discussed in section 1.2, ions have different affinities for different 

sites on DNA and it is not simple to predict to what degree monovalent ions binding to 

the DNA will be displaced by the divalent metal ion being treated as the analyte. Thus, 

these calculations assume that no mass in Na+ is lost, making it likely that the signal due 

to increased mass is overestimated and therefore provides only an estimate which should 

at least be correct as to the order of magnitude of the signal. 
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2.6 Fluorescence Quenching of Fluorophore-labelled DNA 

 

2.6.1 Preparation of Nucleic Acids 

 

Oligonucleotides were dissolved to concentrations of at least 1.5 mM in ddH2O 

and diluted to 150 μM in 10 mM NaCl, 10 mM TRIS-HCl pH 8.0. Hybridization was 

carried out at room temperature for four hours in the dark. Two duplexes were generated:  

Fl-CTL-1/CTL-2 and Fl-CTL-1/QSY7-CTL-2. 

 

 

2.6.2 Quenching Studies 

 

 A 20 μL aliquot of DNA at 0.15 mM was diluted into 2 mL of 10 mM Buffer with 

10 mM NaCl to a final DNA concentration of 1.5 μM. The buffers and pH values 

employed were as follows:  MES pH 6.5, HEPES pH 7.0, TRIS pH 7.5, TRIS pH 8.0, 

and TRIS pH 8.5. The emission spectrum of Fl was then taken from 500-800 nm 

following excitation at 490 nm. A peak in the fluorescence was observed around 520 nm 

with an intensity dependent on the pH. Five μL aliquots of 400X ZnCl2, MgCl2, or CdCl2 

were added to the cuvette, stirred for 30 sec, then another spectrum was taken 5 min after 

addition of metal ion. The increments were 0.02 mM at pH 8.5, 0.04 mM at pH 8.0, 0.20 

mM at pH 7.5, 1.00 mM at pH 7.0, and 2 mM at pH 6.5. The fluorescence intensity at a 

given concentration of metal ion (f) was divided by the initial fluorescence intensity (f0) 

to calculate the percent quenching. The values obtained from the Fl-CTL-1/QSY7-CTL-2 
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duplex were divided by those obtained from the Fl-CTL-1/CTL-2 duplex to account for 

background quenching of the Fl by metal ions. All spectra shown are the average of at 

least three independent trials. 

 

2.7 Production of Antibodies Specific for M-DNA 

 

2.7.1 Preparation of Nucleic Acids 

 

 I- and F5U-substituted λ 496mers were produced by PCR and purified to 0.40 mM 

in 10 mM NaCl, 10 mM CHES pH 9.0. They were then converted to M-DNA by addition 

of either 10 mM NiCl2 or 2 mM ZnCl2. The DNA for the solid-phase radioimmuno assay 

(SPRIA) was diluted to 6 μM in the same buffer and converted to M-DNA by incubation 

with 0.20 mM NiCl2 or ZnCl2. The target DNA for the SPR-based immunoassay was the 

CTL-1/CTL-2 duplex and was prepared as described in section 2.5.2. 

 

2.7.2 Immunization of Mice 

 

 Female Balb/c mice were immunized with 100 μL of a 1:1 mixture of M-DNA 

and Freund’s complete adjuvant on day 1 using an 18 guage needle. They were 

reimmunized with a 1:1 mixture of M-DNA and Freund’s incomplete adjuvant on days 

10, 20, and 30. On days 13, 23, and 33, a blood sample of at least 20 μL was collected by 

tail bleeding. This was used for immunological assays. As a control, mice immunized 

with only buffer and NiCl2 or ZnCl2 as well as mice that were not immunized at all were 
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also bled at the same intervals and assayed.  Two mice were immunized with each 

combination of metal ion and base substitution, as well as two of each class of control 

mice. After collection, the blood was centrifuged in a microcentrigue to separate the 

serum from the cells and the serum was harvested while the cells were discarded. 

 

2.7.3 Solid-Phase Radioimmuno Assay 

 

 The SPRIA was performed on each blood sample. The wells of a 96-well 

polyvinyl chloride plate were coated with M-DNA by incubation with 50 μL of 6 μM M-

DNA in each plate for 2 h. The serum was then diluted 1:1 in 20 mM TRIS-HCl pH 8.5, 

20 mM NaCl, 1.0 % (v/v) fetal bovine serum, and 0.20 mM ZnCl2 and then added to the 

second well. The contents of the second well were then diluted 1:1 with those of the third 

and a similar procedure was in turn applied to each successive well up to the twenty-third 

well. The first well was incubated only in the presence of the secondary antibody to 

determine background binding to the DNA. As a control, the test was repeated with Jel 

274, an anti-DNA IgG, as well as Jel 42, an anti-protein IgG, Jel 352, a catalytic IgG, and 

Jel 542, an anti-protein IgM, for the serum to determine the specificity of the response. 

All purified antibodies were diluted 1:1 with the same buffer as the serum from a 0.67 

mg/mL stock solution. Antibody concentrations were determined by UV absorbance at 

280 nm. Following incubation with the serum or primary antibody for 4 hours, the wells 

were washed three times with 20 mM TRIS HCl pH 8.5, 20 mM NaCl, 0.05 % (v/v) 

polyoxyethylenesorbitan monolaureate, and 0.20 mM ZnCl2 and exposed to 

approximately 50,000 counts per minute of I125-labelled goat anti-mouse IgG for 2 hours. 
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The plates were then washed again and the radioactivity was measured in a gamma 

counter. The relative responses to antigen provoked in the mice could thus be assessed. 

As a control, the same procedure was also performed in the absence of ZnCl2 with B-

DNA coated plates. 

 

2.7.4 Surface Plasmon Resonance Immunoassay 

 

 As an alternative to the SPRIA, an SPR-based immunoassay was also performed. 

The SPR immunasssay was carried out by exposing serum diluted 1/40 or 1/80 into 10 

mM TRIS-HCl pH 7.5 or 8.5, 10 mM NaCl, which was also used as a running buffer, to 

the dsCTL surface. The sera used were from either pre-immunized mice or mice 

immunized with F5U substituted Zn(II) or Ni(II) M-DNA. These assays were performed 

after exposing the surface to 0.20 mM ZnCl2 or NiCl2 using the three applications wash 

command followed by replacement of the running buffer with one containing the metal 

ion being used to convert the dsCTL to M-DNA. The metal ion used to form M-DNA 

was in all cases the same one used to form the M-DNA with which the mice were 

immunized. They were also performed in the absence of added metal ion. When 

antibodies bound the DNA, dissociation was achieved by injecting 30 μL of 10 mM 

acetate pH 5.0 with 1.0 M NaCl. All experiments were performed at 25 °C and a flow 

rate of 5 μL/min. 
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3.0 Results 

 

3.1 Preparation of M-DNA-Specific Antibodies 

 

 Antibodies to M-DNA were to be prepared in order to provide another method of 

detecting M-DNA. This would be applicable to in vitro studies aimed at characterization 

of the conformation as well as detection of M-DNA in vivo. Further, if antibodies specific 

for M-DNA (with lower or no specificity for B-DNA) were produced, this would provide 

additional confirmation that the conformation is unique. Due to its great stability as a 

function of pH (see section 3.2.4) I- and F5U-substituted DNA was used to form the M-

DNA with which the mice were immunized. No adverse effects were observed in the 

mice immunized with M-DNA or control preparations. All assays with serum from 

immunized animals were performed with serum from the final serum collection. 

 

3.1.1 Solid Phase Radioimmuno Assay 

 

 The SPRIA is a well-established immunological procedure to detect and 

characterize serum antibodies. Mice immunized with either I- or F5U-substituted Ni(II) 

M-DNA both showed slightly higher binding against B-DNA following immunization, 

but when assays were conducted in the presence of Zn2+, all sera showed very high 

responses regardless of whether they were harvested before or after immunization, 

suggesting that a non-specific interaction was producing the signals. These results are 

illustrated in figure 3.1. Further, Jel 274, an IgG specific for B-DNA, also showed higher 
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responses against M-DNA than B-DNA as shown in figure 3.2. Finally, as shown in 

figure 3.3, incubation with Jel 541 (an IgM specific for protein) as a primary antibody 

produced even higher counts than Jel 274, serum immunized against F5U-containing 

DNA, or pre-immunization serum. IgG antibodies specific for proteins, Jel 42 and 352, 

gave small signals in the presence or absence of added metal ions. Thus, it appeared that 

IgM molecules were giving rise to non-specific interactions with the DNA mediated by 

the metal ions.  All SPRIA data shown are single experiments that are representative of at 

least three independent trials. 

 

3.1.2 Surface Plasmon Resonance 

 

 One of the chief applications of SPR-based biosensors is to detect the presence of 

and characterize antibodies. A procedure for serum detection of anti-M-DNA antibodies 

was performed on immobilized dsCTL. These experiments were carried out multiple 

times and representative results will be described. Responses of serum samples from the 

Zn(II) M-DNA immunized mice are shown at a serum dilution of 1:40 in figure 3.4. The 

responses are higher for immunized serum than pre-immunized serum and in either case 

are higher in the presence of Zn2+. However, the increased response in the presence of 

Zn2+ is not pH dependent and the overall responses are much higher at pH 7.5 than at pH 

8.5. The responses of serum samples from Ni(II) M-DNA immunized mice are shown at 

the same dilution in figure 3.5. As with the samples in the presence of Zn2+, responses 

were higher at pH 7.5 than 8.5 and higher in the presence of Ni2+ regardless of pH or 

whether the sample was from an immunized animal. Unlike the Zn2+ samples, in some  
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Figure 3.1:  SPRIA results obtained with serum from mice immunized with I- (circles) or 
F5U-substituted DNA (diamonds) as well as with serum harvested from each mouse prior 
to immunization (squares and triangles, respectively). The white symbols are against B-
DNA while the black symbols are against M-DNA. 
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Figure 3.2:  SPRIA results obtained with serum from mice immunized with F5U-
substituted DNA (diamonds), serum harvested prior to immunization (triangles), and with 
an anti-DNA IgG, Jel 274 (squares). The white symbols are against B-DNA while the 
black symbols are against M-DNA. 
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(A) 

 
(B) 

 
Figure 3.3:  (A) SPRIA results obtained with serum from mice immunized with F5U-
substituted DNA (diamonds), serum harvested prior to immunization (triangles), an anti-
DNA IgG, Jel 274 (squares), and an anti-protein IgM, Jel 542 (circles). (B) SPRIA results 
obtained from an anti-protein IgG, Jel 42 (triangles) and a catalytic phophatase abzyme, 
Jel 352 (diamonds). The white symbols are against B-DNA while the black symbols are 
against M-DNA. 
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(A) 

 
(B) 

 
Figure 3.4:  SPR responses from exposure to serum harvested before (solid lines) and 
after (dotted lines) immunization with Zn(II) F5U-substituted M-DNA. Pre- (dashed 
lines) and post-immunization (dot-dashed lines) in the presence of 0.20 mM Zn2+ in the 
running buffer are also shown. The responses are shown at pH 7.5 (A) and pH 8.5 (B). 
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(A) 

 
(B) 

 
Figure 3.5:  SPR responses from exposure to serum harvested before (solid lines) and 
after (dotted lines) immunization with Ni(II) F5U-substituted M-DNA. Pre- (dashed lines) 
and post-immunization (dot-dashed lines) in the presence of 0.20 mM Ni2+ in the running 
buffer are also shown. The responses are shown at pH 7.5 (A) and pH 8.5 (B). 
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cases the pre immunization animals’ sera gave higher responses. All SPR immunoassay 

data show representative single experiments from at least three independent assays. 

 

3.1.3 Conclusions on Production of M-DNA-Specific Antibodies 

 

 It is possible that anti-M-DNA antibodies are produced during immunization of 

mice. However, attempts to detect the antibodies were confounded by artefacts in the 

assays used. Non-specific interactions between IgM molecules and DNA caused false 

positives in the SPRIA. The SPR studies showed very large differences in signal in the 

presence or absence of metal ions, necessitating a control based on pH to be used. 

However, large differences in the signals obtained at pH values of 7.5 and 8.5 and the 

fact that the difference in response caused by the presence of Zn2+ or Ni2+ was not 

specific to pH 8.5 made interpretation of the results very difficult. Most SPR-based 

immunoassays are with proteins, which are not likely to be bound by components of the 

plasma.  DNA, on the other hand, is bound by a variety of proteins which could be 

present in the plasma due to damaged cells and thus the response in a study with DNA as 

an immunogen is likely to have more interactions that are not due to an immune response.  

Further, it was concluded in a study aimed at reducing background-binding signals in 

SPR-based immunoassays that a key component of a running buffer in this regard was 

EDTA (Vikinge et al., 1998), which obviously could not be included in these 

experiments.  In conclusion, with the techniques at hand, it was impossible to discern a 

positive immunogenic response against M-DNA and thus this aspect of the project was 

abandoned in favour of further characterization of the structure. 
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 Should the difficulties surrounding detection of antibodies specific to M-DNA 

discussed in the previous paragraph be unsolvable by improved methodology, there are 

several alternatives to immunization of mice with M-DNA. Phage display is a well-

proven technique for in vitro production of monoclonal antibodies and has been 

successfully used in the Lee lab to create anti-DNA antibodies that bound a variety of 

DNA sequences with varying specificities (Tanha et al., 1997). Further, as indicated in 

section 1.4.2, antibodies specific for quadruplex DNA have also been created using this 

technique (Schaffitzel et al., 2001). Random mutagenesis induced in cells producing 

antibodies specific for other DNA conformations could also produce antibodies specific 

for the M-DNA conformation. However, whatever the method used to create the 

antibodies, the method used to detect and characterize the antibodies must be subjected to 

stringent controls, as MAbs specific for B-DNA could be inducing B-DNA under M-

DNA conditions; the inverse would also likely occur. The potential for false positives or 

negatives (relative to B-DNA bindng) would be great in an assay to characterize 

antibodies specific for M-DNA but not for B-DNA. 

 

3.2 Ethidium Bromide Based Assays 

 

 In the past, the EtBr assay has been used to characterize many aspects of M-DNA 

formation (Aich et al., 2000; Lee et al., 1993). These include the effects of changing the 

sequence, base composition, base substitution, temperature, metal ions, and pH. This 

study expands on these findings, using the EtBr assay to further characterize the effects 

of these factors on the equilibrium position of M-DNA formation. The parameters studied 
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are the different effects of each metal ion on M-DNA formation, characterization of the 

high degree of stability observed in Ni(II) M-DNA, the effect of changing the DNA 

concentration on M-DNA formation, the effects of drastically different sequences or base 

substitutions on Zn(II) M-DNA formation, and the effect of changing the temperature on 

Zn(II) M-DNA formation. The experiments are discussed in that order and in each case, 

the EtBr assay employed is slightly different. The differences as well as the rationale 

behind them are described for each set of experiments. All EtBr assay data presented 

(figures 3.6 – 3.10 and table 3.1) are averages of between 3 and 12 individual 

experiments. 

 

3.2.1 Formation and Stability of Zn(II), Ni(II), and Co(II) M-DNA 

 

 Although all of the divalent metal ions Zn2+, Ni2+, and Co2+ are capable of 

forming M-DNA, the properties of each form of M-DNA are different. An EtBr assay 

similar to the original assay was employed to detect M-DNA formation, to asses M-DNA 

stability, and to characterize differences between these three forms of M-DNA. In this 

assay, a 200 μL aliquot of 7.5 μM DNA is added to 2 mL of pH 8.3 Zn-EFB for a final 

DNA concentration of 680 nM. The pH of this buffer was chosen during early studies on 

M-DNA (Lee et al., 1993) as it allowed both M- and B-DNA to be transiently stable, 

although if left for periods in excess of 10 minutes, most of the DNA converted to the M 

form. The 200 μL sample consisted of a 100 μL aliquot of 15 μM DNA in 4 mM CHES 

pH 9.0 and 100 μL of 25 mM buffer with a pH between 5.0 and 9.0, both with 10 mM 

NaCl. The low concentration of CHES was sufficient to keep the DNA at pH 9.0 in the 
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absence of additional buffer but weak enough to allow the final mixture to adopt the pH 

of the 25 mM buffer added. This method allowed formation and stability of M-DNA to 

be measured as a function of pH since M-DNA can be formed in the 4 mM CHES buffer 

and the pH of the solution then adjusted to a desired value by addition of the second 

buffer. Formation of M-DNA for stability studies required different concentrations of 

metal ion for each species of M-DNA. Zn(II) M-DNA required 0.20 mM Zn2+, while 0.30 

and 0.50 mM of Ni2+ and Co2+, respectively, were required to cause complete dismutation 

to their respective forms of M-DNA with 15 μM DNA at pH 9.0. In all cases, stability 

studies as well as formation studies were carried out at a final concentration of 0.25 mM 

of divalent metal ion for 7.5 μM DNA. All readings were normalized against the average 

value obtained from the B-DNA incubated at pH values of 5.0-6.5. Thus, some formation 

of M-DNA occurred immediately upon addition of DNA to the Zn-EFB and therefore the 

values obtained are given as “Percent Fluorescence”, as opposed to “Percent B-DNA”. 

As can be seen in figure 3.6, Zn(II) and Co(II) M-DNA display a similar degree 

of pH-stability, although Zn(II) M-DNA is formed much more readily than the Co(II) 

form. Ni(II) M-DNA, on the other hand, displayed radically different properties. 

Formation of Ni(II) M-DNA occurred sharply at pH 9.0, while Zn(II) M-DNA formation 

occurred over a pH range of 8.2 - 9.0. Further, while little hysteresis was observed with 

Zn(II) or Co(II) M-DNA, the Ni(II) form displayed strong hysteresis, being stable down 

to pH 5.5. This is in agreement with previous results with d(GC)n and CT-DNA (Aich et 

al., 2000). All of the fluorescence readings were raised to values comparable to those 

obtained in QEFB upon addition of 1.0 mM EDTA to the DNA/Zn-EFB mixture with the 
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Figure 3.6:  Conversion of the λ 496 bp fragment from B- to M-DNA (diamonds) or M- 
to B-DNA (squares) as a function of pH. The metal ions used are Zn2+ (A), Co2+ (B), and 
Ni2+ (C). 
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 exception of Ni(II) M-DNA, in which no fluorescence was restored upon addition of 

EDTA. A similar effect was observed with Co(II) M-DNA, although some fluorescence 

was restored with addition of EDTA; this was observed when M-DNA was formed for 2 

h, but not when it was formed for only 30 min. Inability of EDTA to restore fluorescence 

would appear to be indicative of denaturation. However, heat-denatured CT-DNA placed 

in QEFB or Zn-EFB with added EDTA shows roughly 50% of the fluorescence of native 

DNA, presumably due to the formation of hairpin structures (Morgan et al., 1979) while 

this sample did not display any enhancement of fluorescence. This led to further 

experiments aimed at determining whether or not Ni2+ and Co2+ were causing 

denaturation of the DNA. 

 

3.2.2 Slow Reversion of Ni(II) M-DNA 

 

To evaluate whether Co2+ and Ni2+ were denaturing the DNA, an assay similar to that just 

described was carried out. CT-DNA was dissolved to 75 μM concentration in 20 mM 

CHES pH 9.0, 10 mM NaCl and 500 μL samples were fully converted to M-DNA by 

addition of 0.50 mM CoCl2 or NiCl2. Conversion to M-DNA was verified by addition of 

a 20 μL aliquot to 2.0 mL Zn-EFB. Addition of EDTA had little or no effect for Co(II) 

and Ni(II) M-DNA, respectively. Following this, EDTA concentrations between 0.25 and 

1.00 mM were added to the remaining 480 μL of 75 μM M-DNA. The fluorescence was 

then measured in Zn-EFB before and after addition of 1.0 mM EDTA to the 2 mL at 

varying intervals over the next 22 h. After several hours had passed, the samples with 

more than 0.50 mM EDTA had reverted completely to B-DNA, as illustrated in figure 
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3.7. Samples incubated with 0.50 mM Ni2+ or Co2+ did not revert completely to B-DNA 

in the presence of 0.25 or 0.50 mM EDTA but did so in the presence of 0.75 or 1.0 mM 

EDTA. Thus, these experiments also indicate that the DNA is not denatured. 

The Ni(II) form of M-DNA required a long period of time and excess 

concentrations of EDTA to revert to B-DNA, while the Zn(II) form reverts instantly. In 

addition to the increased pH-stability of Ni(II) M-DNA relative to Zn(II) M-DNA, it is 

more stable it the presence of EDTA. Another distinction between Ni(II) and Zn(II) M-

DNA is the higher pH necessary to form Ni(II) M-DNA. 

 

3.2.3 Effect of DNA Concentration on M-DNA Formation 

 

 Although earlier studies have shown that M-DNA formation was dependent on 

the concentration of metal ion present (Lee et al., 1993), it was also found that 

modulating the DNA concentration has a substantial effect on M-DNA formation, with 

higher concentrations of DNA requiring higher metal ion concentrations in a logarithmic 

relationship, as depicted in figure 3.8. This assay was performed in a similar way to the 

work of the previous two sections, with CT-DNA of concentrations between 4.5 and 450 

μM being dissolved in 10 mM NaCl with either 20 mM TRIS-HCl pH 8.5 or CHES pH 

9.0. These were then incubated in the presence of Zn2+, Ni2+, or Co2+ at concentrations 

between 0.1 and 1.0 mM for 2 h. Aliquots containing 1.3 nmols of DNA were then added 

to 2.0 mL Zn-EFB and the fluorescence read before and after addition of 1.0 mM EDTA 

to the Zn-EFB. The fluorescence values were then compared to those obtained from 

samples which did not contain added divalent metal ion. The concentrations of Zn2+ and 
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Figure 3.7:  Slow conversion of CT DNA from the M- to the B-form. Samples are shown 
for exposure of Co(II) M-DNA to 0.50 mM (circles) and 1.00 mM (triangles) EDTA. 
Analogous experiments with Ni(II) M-DNA are shown with 0.50 mM (squares) and 1.00 
mM (diamonds) EDTA. 
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Figure 3.8:  The metal ion concentrations necessary to convert 50% of the CT DNA to 
M-DNA as a function of DNA concentration with Zn2+ (diamonds), Co2+ (triangles), and 
Ni2+ (squares) at pH 8.5 and with Ni2+ (circles) at pH 9.0. 
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 Co2+ necessary to convert 50% of the DNA to M-DNA were found to be similar at pH 

8.5, while much higher concentrations of Ni2+ were required at DNA concentrations 

below 15 μM, and dismutation did not occur even with 1.0 mM Ni2+ at DNA 

concentrations higher than this. However, when assayed at pH 9.0, the relationship 

between NiCl2 concentration required to convert 50% of the DNA to M-DNA and the 

DNA concentration were similar to that observed for the other two metals at pH 8.5. 

Thus, not only is Ni(II) M-DNA more stable than the other forms, it also requires either a 

higher pH or a higher metal ion concentration to form. 

 

3.2.4 Zn(II) M-DNA Formation in Base-Substituted or Repetative Sequence DNA 

 

 When assaying the effect of various base substitutions on M-DNA formation, it 

was observed that some base-substituted sequences did not cause an enhancement of 

fluorescence when added to Zn-EFB, although they did when added to QEFB or when 

EDTA was added to Zn-EFB. Thus, it was hypothesized that the substitutions were 

facilitating M-DNA formation to such a high degree that the Zn-EFB was causing them 

to convert immediately and fully to this conformation. This led to a modified EtBr based 

assay in which several pH values of Zn-EFB were used. In this form of the assay, a final 

DNA concentration of 0.71 μM was incubated in Zn-EFB with pH values varying from 

6.0 to 8.6 and 0.20 mM ZnCl2. The assay could not be performed at pH 9.0, since the 

ZnCl2 would not remain soluble at this pH. Precipitation of 0.20 mM ZnCl2 did not occur 

at pH 9.0 in the presence of 15 μM DNA, but 0.71 μM DNA was not sufficient to 

solubilize that concentration of ZnCl2 at that pH. The added DNA, which consisted of a 



  100 

100 μL aliquot of 15 μM DNA in 10 mM NaCl, 4 mM CHES pH 9.0, was converted to 

M-DNA prior to addition to the Zn-EFB by incubation with 0.20 mM Zn2+ for 2 h. Thus, 

this method allowed stability as well as formation of the base-modified M-DNA to be 

measured. Further, since an equilibrium is reached in the presence of EtBr and added 

metal ion, the readings can be normalized against the pH 6.0 Zn-EFB, where it is 

assumed that no M-DNA formation can take place. Although the DNA-EtBr fluorescence 

obtained was lower prior to addition of EDTA in pH 6.0 Zn-EFB, this is likely due to 

inhibition of EtBr binding by electrostatic competition between the 1.3 μM EtBr and the 

0.20 mM ZnCl2. This type of fluorescence inhibition occurs with addition of any divalent 

metal ion to the Zn-EFB. Thus, these normalized values can be referred to as "% B-

DNA" rather than "% Fluorescence". The results of this assay with several base 

substitutions and some repetitive sequences are shown in figure 3.9. As shown in figure 

3.8, DNA concentration has a substantial effect on M-DNA formation, but Zn(II) M-

DNA formation was similar over a range of 4.5 - 15 μM, suggesting that results obtained 

at 0.71 μM would be comparable to these results. Comparison of figures 3.6a and 3.9a 

shows this to be true:  roughly 60% B-DNA/fluorescence remains around pH 8.2 while 

there is less than 20% remaining around pH 8.5 in both cases. 

 While this technique proved useful to measure the formation and stability of 

Zn(II) M-DNA with any sequence or any base substitution, it could not be employed to 

measure the analogous interactions between DNA and Ni2+ of Co2+. When 0.20 mM of 

any of these metals was substituted for Zn2+ in the Zn-EFB, the fluorescence values 

obtained were very low and had little pH-dependence. The low fluorescence values 

greatly lowered the signal to noise ratio of the readings, leaving little difference between 
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Figure 3.9:  Effect of base substitutions in the λ 496 bp fragment on (A) the conversion 
of B-DNA to M-DNA and (B) the conversion of M-DNA to B-DNA with 0.2 mM ZnCl2. 
The following base substitutions are shown in those figures:  n2A (squares), control 
(diamonds), I (triangles); Br5U (circles), Br5U and I (inverted triangles). (C) The 
conversion of B-DNA to M-DNA for repeating sequence nucleic acids: 
poly(dG)•poly(dC) (diamonds), poly[d(GGCC)] (triangles), poly[d(GC)] (squares), 
poly[d(AU)] (circles), poly[r(AU)] (inverted triangles). 
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M- and B-DNA readings. This is likely due to quenching of EtBr fluorescence by 

available empty 3d orbitals. This was not a problem in the assays described in sections 

3.2.1-3.2.3 likely due to the lower concentrations 10 fold lower of Ni2+ or Co2+ ions 

present and the presence of 0.20 mM Zn2+. 

 Representative results of this assay are depicted in figure 3.9 while the midpoint 

of the transition from M- to B-DNA or vice versa (pHm) for all sequences and 

substitutions are listed in table 3.1. As is apparent from the table, some base substitutions 

strongly facilitate the formation of and stabilize M-DNA. Substitutions of F5U, Br5U, or 

s4T for T or of I for G most strongly favoured the M-DNA conformation. Further, a 

double substitution of Br5U for T and of I for G in the same sequence had a cumulative 

effect, lowering the pHm of formation to 7.8 while either substitution alone gave values of 

8.0 and 8.1, respectively. Substitution of U for T had little effect on the pHm values. 

However, s4T and s2T substitutions showed effects that depended strongly on the 

sequence into which they were inserted. This will be addressed in detail in section 4.1. A 

dsRNA sequence, r(AU)n, showed similar results to d(AU)n. Thus, the substitutions 

which replaced bases with titratable imino protons with bases having lower pKa values at 

that site more strongly favoured M-DNA formation than those which replace bases 

lacking titratable imino protons. 

  The sequence of the DNA also had a large impact on the propensity of the 

sequences to adopt the M-DNA conformation. This assay showed that sequences with 

pur•pyr motifs formed the conformation at lower pH values than those with alternating 

pur and pyr on each strand. Random sequence DNA fell between these two extremes. The 

base composition of different sequences showed that in general, a higher GC content 
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DNA pHm B- to M-DNA pHm M- to B-DNA 
Control 54 % GC 8.4 8.3 
c-src 73 % GC 8.2 7.9 
n2A 8.6 8.0 
z7A 8.2 8.0 
m5C 8.5 8.2 
I 8.1 7.8 
U 8.3 8.1 
Br5U 8.0 7.8 
F5U 7.9 7.7 
s4T 8.1 - 
Br5U/I 7.8 7.6 
d(G)n•d(C)n 7.8 7.6 
d(GGCC)n 8.2 7.8 
d(GC)n 8.5 8.3 
d(A)n•d(T)n 8.1 7.8 
d(AT)n 8.6 8.4 
d(AU)n 8.4 8.1 
r(AU)n 8.5 8.1 
d(TG)n•(CA)n 8.1 - 
d(As2T)n 8.3 - 
d(As4T)n 8.3 - 
d(s2TG)n•d(CA)n 8.3 - 
d(s4TG)n•d(CA)n 7.7 - 
 
 
Table 3.1:  The effect of base substitutions or sequence changes on the formation and 
stability of 0.71 μM M-DNA with 0.20 mM Zn2+ in the presence of 1.3 μM EtBr. All 
base substitutions are for the λ 496mer. 
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 favoured the M-DNA conformation. A notable exception to these generalizations is that 

the sequence d(TG)n•d(CA)n formed the conformation much better than any repeating 

polymer except d(G)n•d(C)n. All of these results are in agreement with previously 

obtained data (Lee et al., 1993). The 73% GC DNA showed M-DNA formation at a 

lower pH than the 54% GC DNA for sequences of 516 and 496 base pairs, respectively. 

This may appear to conflict with previously obtained data, in which there was little 

difference observed between genomic DNAs of differing base content (Lee et al., 1993). 

However, that data was measured as a function of time following addition of ZnCl2, 

while the current data was ascertained as a function of pH under equilibrium conditions. 

Thus, while the GC content of the DNA did not appear to have a large impact on the 

kinetics of M-DNA formation, it had a substantial impact on the position of the 

equilibrium between B- and M-DNA at different pH values. 

 

3.2.5 Effect of Temperature on M-DNA Formation 

 

 The effect of temperature on Zn(II) M-DNA formation at pH 8.5 was evaluated 

by measuring the formation of M-DNA as a function of Zn(ClO4)2 concentration at 

temperatures between 4 and 37 °C. The level of M-DNA formation at each temperature 

was normalized against the readings obtained in the absence of Zn2+ ions. Zinc 

perchlorate was used instead of ZnCl2 to more closely parallel complimentary studies 

done by ITC. Control experiments have shown that perchlorate salts give similar results 

to the analogous chloride salts in EtBr studies. As previous studies had suggested (Lee et 

al., 1993), increased temperature favours M-DNA formation. This was supported by this 
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study, as is apparent from figure 3.10. The higher the temperature of incubation, the less 

Zn2+ was required to induce M-DNA formation. This is suggestive of an endothermic 

process. 

 

3.3 Isothermal Titration Calorimetry 

 

 ITC was chosen as a method to measure M-DNA formation since it is a direct 

biophysical method that does not rely on measuring the binding of a third molecule. That 

is, only the DNA and the metal interacting with each other generate the signal and no 

other molecules are present in the equilibrium. A drawback to this assay was that in order 

to generate a signal, DNA concentrations in excess of 0.15 mM had to be used. It was not 

possible to cause a conversion to M-DNA at soluble Zn2+ concentrations at DNA 

concentrations higher than 0.30 mM. Thus, the lower sensitivity limit of the instrument 

was close to the maximum concentration of sample that could be successfully converted 

to M-DNA. This resulted in large deviations in the measurements, and the error of the ΔH 

values was 10% or greater. At sufficient DNA concentrations, a signal was obtained in 

the presence of soluble Zn(ClO4)2 concentrations at pH 8.5, but not at pH 7.5. Aliquots of 

25 μM Zn(ClO4)2 were added every 10 min to allow equilibration to occur between 

injections. The readings were normalized against the same injections into buffer without 

DNA at each pH, and the net ΔH values obtained at each pH are depicted in figure 3.11. 

As can be seen in figure 3.11, there is no substantial enthalpic change at pH 7.5 

over the concentration of Zn(ClO4)2 added. Further, exposure to titrations of Mg(ClO4)2
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Figure 3.10:  Conversion of 15 μM CT-DNA into M-DNA at pH 8.5 as a function of 
Zn2+ concentration at temperatures of 4 (diamonds), 10 (squares), 21 (triangles), and 37 
(circles) ˚C. 
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Figure 3.11:  Effect of pH and DNA concentration on the formation of M-DNA with CT-
DNA at 25 ˚C. Plots are shown for 0.15 mM (triangles) and 0.30 mM (circles) DNA at 
pH 8.5 and 0.30 mM (squares) DNA at pH 7.5. The curves at pH 8.5 have been shifted by 
5 kJ/mol to assist in visualization. This work was done in close cooperation with Dr. S. 
Wettig, whose work in preparation of this figure is gratefully acknowledged. The data 
shown in this figure are averages of 3 independent trials. 
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 at pH 7.5 or 8.5 shows weak signals similar to those obtained with Zn(ClO4)2 at pH 7.5. 

However, at pH 8.5, Zn(ClO4)2 causes significant changes at DNA concentrations of 0.15 

and 0.30 mM. Further, the transition begins at a higher concentration of Zn(ClO4)2 at 0.30 

mM than at 0.15 mM DNA. It also occurs over a broader range of Zn(ClO4)2 at the 0.30 

mM DNA. This is in agreement with the results of the experiments in section 3.2.3, 

which show that higher DNA concentrations require higher concentrations of Zn2+ to 

allow conversion to M-DNA. The ΔH values calculated for each concentration of CT-

DNA were 18 ± 4 and 21 ± 1.4 kJ per mole of phosphate (kJ/Mol PO4
-) for 0.15 and 0.30 

mM DNA, respectively. This illustrates the higher degree of accuracy at higher DNA 

concentrations and also demonstrates that the same process was occurring at either 

concentration, since the ΔH values were within error on a per mole basis. E. coli DNA, 

which has a similar base composition to CT-DNA, showed a ΔH of 26 ± 6 kJ/Mol PO4
- at 

0.150 mM. The enthalpies were also positive, indicative of an entropy-driven process. 

This is in agreement with data obtained by the variable temperature EtBr assay detailed in 

section 3.2.5. 

 

3.4 Surface Plasmon Resonance 

 

 Like ITC, SPR was chosen as a method to assess M-DNA formation due to the 

direct nature of the technique. Since signals arising during an SPR experiment are due 

solely to changes in the properties of the probed layer, it was considered likely that 

changes in DNA conformation would be detectable by this method. Indeed, although no 

precedent had been established with nucleic acids, changes in the conformation of 
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surface-immobilized proteins are detectable by SPR as discussed in section 1.3.3.2. The 

data presented in figures 3.12, 3.13 and 3.15 are all single experiments representative of 

multiple assays, while the data shown in figure 3.18 was only obtained once. The data 

presented in figures 3.14, 3.16, 3.17, and 3.19 – 3.32 are averages of between 3 and 6 

individual experiments, all of which had a standard deviation of less than 5 %. 

 

3.4.1 Surface Preparation 

 

The SA type of sensor chip was used in this study. This is the most common 

choice for studies on immobilized nucleic acids using a BIAcore as oligonucleotides can 

be easily modified with biotin on their 5' ends and anchored by strong non-covalent 

interactions to streptavidin which is covalently attached to the CMD matrix on the chip. 

In this study, between 180 and 200 RU of ssDNA was immobilized in this manner on the 

surface of a chip. The sequences immobilized consisted of either a 50% GC random 

sequence or one of three homopolymers, all thirty bases in length. The immobilization 

was performed on flow cell 2 because the interaction anchoring the DNA to the surface, 

while strong, was not covalent. Thus, if a biotinylated sequence were to detach, it would 

simply flow out of the system and not onto a bare surface that was to be referenced as a 

background signal. Immobilization was performed in small increments to ensure that no 

more than the desired amount of DNA was immobilized. If too much ssDNA is attached 

to the surface, complete hybridization cannot be achieved due to crowding (Peterson et 

al., 2001). This was observed experimentally when more than 325 RU of btn-CTL-2 was 

immobilized. 
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In the case of the random sequence, hybridization was verified by addition of the 

complimentary strand at a low flow rate. Immobilization of btn-CTL-2 and hybridization 

with CTL-1 in TBS are shown in figure 3.12. The increase in RU corresponding to 

hybridization was typically 95% or more of that achieved due to immobilization, 

corresponding to complete hybridization. Exposure of dsCTL surface to 50 mM NaOH 

for 24 sec completely denatured the surface, leaving only the CTL-2. A second exposure 

to CTL-1 would result in rehybridization of the DNA to produce dsCTL. This cycle is 

also depicted in figure 3.12. When hybridizing, the flow rate was low, 5 μL/min, to allow 

the molecules to interact, but when denaturing, the flow rate was set much higher, at 50 

μL/min, to limit exposure of the IFC to harsh chemical conditions. Regardless of the 

running buffer in use, the actual exposure of the surface to complementary strand during 

hybridization was always carried out in the high ionic strength TBS. 

It was observed that after several days of experiments, the hybridization capacity 

of the surface would drop by up to 10%. When this occurred, more btn-CTL-2 was added 

to flow cell 2 to bring the hybridization activity back up to the original values observed. 

In the case of surface with homopolymers immobilized, there was no simple way to 

verify how much DNA remained on the surface, so all necessary M-DNA formation 

experiments were carried out quickly over a period of 2-3 days. Within this time frame, 

the results observed were reproducible. However, when a three-week-old chip with 

immobilized A30 was assayed once again, the results were not similar to the first trials. 

Thus, in all cases, the experiments were performed in as small a time frame as possible, 

particularily in the case of homopolymers, to ensure reproducibility. 
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(A) 

 
(B) 

 
Figure 3.12:  (A) immobilization of btn-CTL-2. Injections of between 5 and 50 μL 
volume were repeatedly administered until the desired level of immobilization was 
obtained. (B) Hybridization of CTL-1 with immobilized CTL-2 to form dsCTL, 
denaturation of the resulting duplex, and renaturation. 
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3.4.2 DNA-Metal Ion Interactions 

 

 The interactions between DNA and a variety of divalent metal ions were 

characterized at pH values of 6.5, 7.5, and 8.5. The metal ions studied were Mg2+, Ca2+, 

Zn2+, Ni2+, and Cd2+. Interactions between DNA and Co2+ were not evaluated as the 

reproducibility of these studies was very low. All data shown is for the chloride salts of 

the metal ions. Parallel trials were performed with perchlorate salts but the data was 

identical to that obtained with the chlorides. Under no conditions did the use of ZnCl2 

that originated from 2.0 M stocks in which the pH was or was not lowered to solubilize 

the ZnCl2 have any substantial impact on the signals obtained. The flow rate was set at 50 

μL/min to eliminate mass transport effects, which were apparent at flow rates of 30 

μL/min or lower. Experiments were not carried out at pH 9.0 because the ZnCl2 had a 

tendency to precipitate at this pH and this not only resulted in poor-quality sensorgrams 

but also had the potential to damage the IFC. The principal experiments examined a 50% 

GC duplex, dsCTL, while studies were also carried out on CTL-2, T30, C30, and A30. 

The results of these experiments will be presented in that order. 

As detailed in section 2.5.4, the RII values of NiCl2 and ZnCl2 were determined 

and the maximum responses due to increased mass upon metal ion binding to the various 

DNA sequences were calculated. The RII values of NiCl2 and ZnCl2 were found to be 

0.216 and 0.195 mL/g, respectively. The RII values of the various DNA sequences were 

estimated from literature values (Davis and Wilson, 2000) and these values, along with 

their molecular weights and immobilization levels are presented in table 3.2. The 

calculated (RUpred)sat values for each polymer are also given in table 3.2. In some cases, 
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the responses obtained were significantly larger than these values. The large responses 

elicited by some metal ions upon exposure to some of the DNA sequences studied were 

likely due to formation of M-DNA or to an analogous single-stranded conformation. Data 

obtained at pH values of 7.5 and 8.5 over metal ion concentration ranges in which M-

DNA normally forms at pH 8.5 are detailed in the following subsections and the 

implications of these findings are addressed in section 4.3. Signals resulting from 

exposure of dsCTL to higher concentrations of Cd2+, Zn2+, and Ni2+ at pH values of 7.5 

and 6.5 are detailed in section 3.4.3 and discussed in section 4.3. 

For clarity, complete representative sensorgrams of the results presented in the 

following subsections are given for the interaction of Zn2+ with dsCTL at pH 7.5 and 8.5 

in figure 3.13. The figure shows hybridization as well as NaOH-induced denaturation 

events with 10 mM TRIS-HCl pH 7.5 or 8.5 10 mM NaCl as a running buffer. Exposure 

of the dsCTL surface to 0.20 mM Zn2+ at each pH is also shown. The differing responses 

dependent on pH are covered in section 3.4.2.1. Section A of figure 3.13 shows the 

baseline of CTL-2 in flow buffer. Section B shows injection of 30 μL of 21 μM CTL-1 in 

TBS at a flow rate of 5 μL/min; all other sections are at a flow rate of 50 μL/min. Section 

C follows injection of CTL-1 and is about 185 RU higher than the response level of A, 

representing complete hybridization; this is the baseline value for the sensorgram. Section 

D shows exposure of dsCTL to 0.20 mM ZnCl2 in flow buffer. At pH 7.5 (top panel), 

little change occurs during the injection, on the order of +10 RU, while at pH 8.5 (bottom 

panel), the ZnCl2 induces a response of about +130 RU, indicating that a conformational 

change has taken place. Section E shows resumption of running buffer without ZnCl2 

over both flow cells and the subsequent rapid dissociation of the ZnCl2, returning the  
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DNA MW (g/mol) RII (mL/g) Imm. (RU) Zn2+ (15) Ni2+ (15) Zn2+ (30) Ni2+ (30) 
CTL-2 9678.3 0.212 185 17.2 17.1 34.4 34.2 
DsCTL 19356.6 0.212 370 17.2 17.1 34.4 34.2 
T30 9427.2 0.207 220 21.5 21.4 43.0 42.8 
C30 8706.6 0.212 214 22.1 22.0 44.2 44.0 
A30 9156.9 0.217 206 19.8 19.7 39.6 39.3 
 
 
Table 3.2:  Molecular weights, RII values, and immobilization levels of each polymer 
used. The estimated (RUpred)sat values for 15 or 30 binding sites are also given for each 
polymer with Zn2+ and Ni2+. 
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Figure 3.13:  Sensorgrams showing the events involved in M-DNA detection on a chip 
with immobilized dsCTL, carried out in pH 7.5 (top panel) and pH 8.5 (bottom panel) 
running buffer at a flow rate of 50 μL/min unless otherwise stated. The labelled portions 
of the graph indicate the following:  A, CTL-2 only; B, during injection of 21 μM CTL-1 
in TBS at 5 μL/min; C, dsCTL in running buffer; D, during injection of 0.20 mM ZnCl2 
in running buffer; E, resumption of running buffer without ZnCl2; F, during injection of 
80 μL TBS; G, resumption of running buffer; H, in running buffer after injection of 50 
mM NaOH 1 M NaCl, leaving CTL-2 on the surface. The response baseline is set to 
equal the level of dsCTL while time zero is set at the time of injection of CTL-1. Both 
experiments are performed on the same sensor chip. 
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signal to the baseline value. Section F corresponds to injection of 80 μL of TBS, which 

contains EDTA and can chelate any metal ions bound to either the DNA or the CMD 

matrix, allowing the net baseline to return to the value in section C. Section G 

corresponds to resumption of running buffer, and is at least 5 minutes to allow each flow 

cell to return to baseline. This is required as the ionic strength difference between flow 

buffer and TBS is sufficient to cause residual effects in the CMD matrix which, although 

not apparent in the net signal, are substantial on either flow cell. Section H shows the 

baseline after injection of 20 μL of 50 mM NaOH, 1 M NaCl. This treatment denatures 

the DNA and leaves btn-CTL-2 on the surface. If the magnitude of the change from G-H 

corresponds to the magnitude of the change from A-C, then dsCTL has not been 

denatured during treatment of C-G as is the case in figure 3.13. The large spikes that 

occur after section B, before and after section F, and between sections G and H are due to 

large changes in the ionic strength of the solution being measured which in turn cause 

large changes in the bulk refractive index between the injected buffer and flow buffer. 

Sensorgrams shown in subsequent sections only show the exposure to metal ions over the 

periods 50 sec before and 60 sec following this exposure. This corresponds to the end of 

section C and all of sections D and E. When the level of the baseline following exposure 

is discussed, it is implied that the baseline being referred to is that observed 5 min after 

administration of TBS unless otherwise specified, corresponding to the end of section G. 

Since the analyte being studied is a metal ion and the CMD matrix is negatively 

charged over the pH range being analyzed, there is a substantial degree of background 

interaction. Attempts were made to alleviate this by using CM4 chips with streptavidin 

immobilized following purchase rather than SA chips, which are purchased with 
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streptavidin already immobilized with standard immobilization chemistry. The CM4 have 

a lower degree of carboxylation on the CMD, leaving fewer sites for the cations to 

interact with. Immobilization chemistries in which unreacted carbodiimide groups were 

deactivated with ethanolamine (standard reagent used in SA chips and most studies with 

immobilized proteins) and with ED were both assayed. However, despite the lower 

degree of carboxylation, neither immobilization chemistry produced background signals 

that were significantly lower than those observed with SA chips. 

 

3.4.2.1 Double-Stranded DNA with 50% GC Content 

 

 The effect of the metal ions on dsCTL varied greatly depending on which metal 

ion was being exposed to the surface and at what pH the interaction was occurring. The 

response of the surface to 0.20 mM of several metal ions at pH values 7.5 and 8.5 is 

shown in figure 3.14. As is apparent from figure 3.14, Mg2+ does not cause a substantial 

change in the SPR signal regardless of the pH. The response of the surface to Ca2+ is not 

shown but was very similar to that of Mg2+. On the other hand, Cd2+, Zn2+, and Ni2+ ions 

had differing effects that were all heavily pH-dependant. The results of exposure of these 

metal ions to dsCTL will be discussed in that order. 

 Although Cd2+ lowers the melting temperature of DNA at neutral pH (Eichhorn 

and Shin, 1968) it had not been previously observed that it causes room temperature 

denaturation of DNA at alkaline pH. This was observed to occur by SPR since exposure 

of the surface to 0.20 mM Cd2+ lowered the baseline signal by over 70 RU, 

corresponding to denaturation of over 40 % of the duplex on the first exposure. A similar  
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Figure 3.14:  Sensorgrams showing the response of ~370 RU dsCTL to 0.20 mM metal 
ions with a pH 7.5 (A) and pH 8.5 (B) running buffer. The region between time points 0-
120 sec corresponds to the D portion of figure 3.13, while that between time points 121-
180 sec corresponds to portion E of figure 3.13. This holds true for all remaining figures 
in section 3.4 unless otherwise indicated. The metal ions used are:  solid lines, Zn2+ (solid 
lines), Ni2+ (dashed lines), Mg2+ (dotted lines), and Cd2+ (dot-dashed lines). The response 
baseline is set to equal the level of hybridized DNA while time zero is set at the time of 
injection of the metal ion. 
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effect was observed at 1.00 mM Cd2+. Subsequent exposures to Cd2+ further lowered the 

baseline until only 20 % of DNA remained hybridized. At pH 7.5, repeated exposure to 

Cd2+ concentrations in excess of 5.0 mM also causes denaturation, although not as 

completely as that caused by 0.20 mM Cd2+ at pH 8.5. The results of repeated exposure 

to Cd2+ at pH values of 7.5 and 8.5 are shown in figure 3.15. In agreement with previous 

work (Eichhorn and Shin, 1968), exposure to Cd2+ at pH 6.5 does not denature dsDNA. 

 The responses obtained at pH values 7.5 and 8.5 over a Zn2+ concentration range 

of 0.05 - 0.20 mM are shown in figure 3.16. As is apparent from the figure, there is little 

change in signal under these conditions at pH 7.5. At pH 8.5, however, signals well in 

excess of the estimates of (RUpred)sat are observed at Zn2+ concentrations as low as 0.10 

mM. The signals show a maximum of ~130 RU at Zn2+ concentrations of 0.15 and 0.20 

mM. This value does not increase at Zn2+ concentrations up to 0.40 mM and above that, 

precipitation occur which disrupt the signal. At concentrations below 0.15 mM, the 

response reaches an equilibrium value below that obtained at 0.15 mM or above. Unlike 

experiments with EtBr, the ZnCl2 is not added to a system containing DNA, which 

solubilizes the Zn2+ somewhat and prevents precipitation. In the SPR experiments, a 

solution containing only ZnCl2, NaCl, and buffer is added and thus the maximum 

concentration of Zn2+ that can remain soluble is lower. The sensorgrams return to 

baseline quickly in the absence of Zn2+ even before TBS is added, indicating a weak 

binding event. This is observed on the individual signals obtained on each flow cell as 

well as on the net signal. Following exposure to Zn2+, some denaturation occurs, but 

never more than ~8 RU, corresponding to less than  5 % of the total dsCTL. 
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Figure 3.15:  Effect of repeated exposure of a fully hybridized dsCTL surface to 0.20 
mM Cd2+ at pH 7.5 (A) and to 20.0 mM Cd2+ at pH 8.5 (B). A zero value on the response 
axis corresponds to the starting hybridization level. The baseline becomes lower with 
each subsequent injection of 0.20 mM Cd2+. 
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Figure 3.16:  Sensorgrams showing the response of dsCTL to various concentrations of 
Zn2+ in pH 7.5 (A) and pH 8.5 (B) running buffer. The Zn2+

 concentrations used are 0.05, 
0.10, 0.15, and 0.20 mM. The progressively larger responses are due to progressively 
higher metal ion concentrations. Both of these studies were carried out with the same 
sensor chip with 370 RU of dsCTL immobilized. 
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The signals obtained upon exposure of this surface to Ni2+ are in many ways similar to 

those obtained with Zn2+. As with Zn2+, there is little response observed at pH 7.5, 

whereas signals in excess of (RUpred)sat are observed at pH 8.5. These signals are shown 

over a concentration range of 0.20 - 3.50 mM at pH values 7.5 and 8.5 in figure 3.17. 

There is no further increase in signal at pH 8.5 upon exposure to 5.00 mM Ni2+. The 

concentrations at which the maximum signal occurs are an order of magnitude higher 

than those observed with Zn2+. The amplitude of the peak signal at pH 8.5 is also higher, 

being ~200 RU compared to ~130 RU. As with Zn2+-induced sensorgrams, the response 

is very rapid at concentrations that elicit the maximum response. Unlike the responses 

induced by Zn2+, at concentrations below this threshold, the response continues to rise 

throughout the injection of Ni2+. The dissociation rate of Ni2+ from the DNA is much 

slower than that of Zn2+. Finally, there is no evidence for denaturation following Ni(II) 

M-DNA formation. Although the baseline following exposure to TBS is not shown in 

figure 3.17, following this exposure, the baseline remained at the same value as before 

the exposure to Ni2+.  

When DNA is exposed to metal ions, signals well in excess of (RUpred)sat are only 

obtained in the presence of metal ions known to form M-DNA, Zn2+ and Ni2+, and are 

observed at pH 8.5 but not at pH 7.5. In addition, a higher concentration of Ni2+ than Zn2+ 

is required to elicit a maximum response and once this response is obtained, it is more 

stable than that obtained due to the presence of Zn2+. These results are in agreement with 

data obtained by the EtBr based assays detailed in section 3.2. A linear relationship is 

observed between the level of dsCTL immobilized on the surface and the responses 

obtained from exposure to 0.20 mM Zn2+ or 2.00 mM Ni2+ at pH 8.5. This is illustrated in  
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Figure 3.17:  Sensorgrams showing the response of dsCTL to various concentrations of 
Ni2+ in pH 7.5 (A) and pH 8.5 (B) running buffer. The Ni2+ concentrations shown are 
0.20, 0.40, 0.60, 0.80, 1.00, 2.00, and 3.50 mM. The progressively larger responses are 
due to progressively higher metal ion concentrations. Both of these studies were carried 
out with the same sensor chip with 370 RU of dsCTL immobilized.  
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 figure 3.18 and indicates that the signals are due exclusively to changes in the nd and/or 

dd values of the immobilized DNA, suggesting they are due to M-DNA formation. 

 

3.4.2.2 Single-Stranded DNA with 50% GC Content 

 

 As with dsCTL, there was a dependence on pH in the response surface to the 

various metal ions. The responses of btn-CTL-2 to 0.20 mM of Mg2+, Cd2+, Zn2+ and Ni2+ 

at each pH are shown in figure 3.19. As with dsCTL, there is little response to Mg2+ at 

either pH while the other metal ions all elicit pH-dependent responses. 

 The responses of btn-CTL-2 to Zn2+ concentrations between 0.05 and 0.20 mM 

are shown in figure 3.20. The signals obtained at pH 8.5 are roughly twice the amplitude 

of those obtained at pH 7.5, and at the higher pH are approximately half the amplitude of 

those obtained with dsCTL. As with dsCTL, the dissociation rates are very rapid. The 

signals originating from exposure to Ni2+ concentrations between 0.20 and 5.00 mM, 

shown in figure 3.21, are also roughly twice as strong at pH 8.5 relative to pH 7.5. The 

dissociation rates are very slow. The large positive signals beginning at the end of the 

injections are due to a rapid reversion to baseline of the background signal but a much 

slower reversion of the signal on the sample cell, causing a net increase in signal. At pH 

7.5, the signals are somewhat higher than those obtained under the same conditions with 

dsCTL for Zn2+ and slightly higher for Ni2+. The signals observed at pH 8.5 upon 

exposure of btn-CTL-2 to Zn2+, Ni2+, or Cd2+ are likely due to formation of a complex 

similar to M-DNA in which formation of fold-back structures mediate binding of the 

metal ions and cause the change in signal. The results obtained upon exposure of the 
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Figure 3.18:  Responses of surfaces with increasing levels of immobilized dsCTL to 
exposure to 0.20 mM Zn2+ (diamonds) or 2.00 mM Ni2+ (squares) at pH 8.5 as a function 
of immobilization level of dsCTL. The fits indicated are linear. 
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Figure 3.19:  Sensorgrams showing the response of 185 RU btn-CTL-2 to 0.20 mM 
metal ions with a pH 7.5 (A) and pH 8.5 (B) running buffer. The metal ions used are:  
solid lines, Zn2+ (solid lines), Ni2+ (dashed lines), Mg2+ (dotted lines), and Cd2+ (dot-
dashed lines). 
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Figure 3.20:  Sensorgrams showing the response of btn-CTL-2 to various concentrations 
of Zn2+ in pH 7.5 (A) and pH 8.5 (B) running buffer. The Zn2+

 concentrations used are 
0.05, 0.10, 0.15, and 0.20 mM. The progressively larger responses are due to 
progressively higher metal ion concentrations. Both of these studies were carried out with 
the same sensor chip with 185 RU of btn-CTL-2 immobilized. 
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Figure 3.21:  Sensorgrams showing the response of btn-CTL-2 to various concentrations 
of Ni2+ in pH 7.5 (A) and pH 8.5 (B) running buffer. The Ni2+ concentrations shown are 
0.20, 0.40, 0.60, 0.80, 1.00, 2.00, and 3.50 mM. The progressively larger responses are 
due to progressively higher metal ion concentrations. Both of these studies were carried 
out with the same sensor chip with 185 RU of btn-CTL-2 immobilized.  



  129 

surface to Zn2+, Ni2+, or Cd2+ at pH 7.5 are similar to those obtained with dsCTL 

indicating that these metal ions have little effect on either hybridized or denatured DNA 

at this pH. 

 

3.4.2.3 Single-Stranded Homopolymers 

 

 The homopolymers T30, C30, and A30 were subjected to the same trials as 

dsCTL and CTL-2; the responses of each of these sequences to 0.20 mM of each metal 

ion are shown in figures 3.22, 3.25, and 3.28, respectively. As with the 50% GC 

sequences, Mg2+ has little effect at either pH on any of these sequences. T30 displayed a 

strong pH-dependence in its responses to Zn2+, Ni2+, and Cd2+, while C30 and A30 

showed very weak pH-dependences in their responses. 

 The responses of T30 to Zn2+ and Ni2+ are shown in figures 3.23 and 3.24, 

respectively. A dependence on pH is observed in both cases, although it is more 

pronounced with Zn2+ than with Ni2+. C30 has almost no pH-dependence in its responses 

to increasing Zn2+ concentrations, but some degree of pH-dependence in those to 

increasing Ni2+ concentrations, as shown in figures 3.26 and 3.27, respectively. Exposure 

of A30 to Zn2+ at either pH showed signals near the 30-site predictions of (RUpred)sat; 

these responses are shown in figure 3.29. On the other hand, signals well in excess of 

those (RUpred)sat were observed at pH values 7.5 and 8.5 when A30 was exposed to Ni2+, 

as shown in figure 3.30. Thus, a larger difference between the signals obtained at each pH 

was observed for Zn2+ than Ni2+ with T30, but with C30 and A30 a stronger pH-

dependency was observed with Ni2+ than with Zn2+. However, regardless of which metal 
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ion the surface was exposed, a larger dependence of the signal obtained on pH was 

observed with T30 than with C30 or A30. 

 The results obtained by exposure of T30 to Zn2+ are, as with btn-CTL-2, likely 

due to the formation of fold-back structures with metal ions bridging base pairs at pH 8.5 

but not at pH 7.5. The lack of large differences between signals obtained with Zn2+ at 

each pH with C30 or A30 are likely due to the absence of binding sites which are likely 

to undergo proton exchange over this pH range. 

T30, C30, btn-CTL-2, and dsCTL all showed similar responses to Ni2+ at pH 7.5 

while those of A30 were substantially higher. This difference is likely due to 

conformational changes caused by binding of Ni2+ to N7 positions in A30 that could 

result in formation of a secondary structure. All five sequences showed a larger response 

to Ni2+ at pH 8.5 than at pH 7.5, although the largest pH-difference by far was observed 

with dsCTL. Of the single-stranded sequences, the responses to 1.00 mM Ni2+ at pH 8.5 

followed the order T30 ~ A30 > btn-CTL-2 > C30. The responses obtained with T30 and 

btn-CTL-2 could be due to fold-back M-DNA-like structures as with Zn2+ while the weak 

responses of C30 could be due to a lack of potential secondary structures. The large 

responses obtained at pH 8.5 with A30 could be due to formation of secondary structures 

as well as binding at N7 positions. Increased signals at pH 8.5 with C30 or A30 could 

also be due to changes in the properties of the Ni2+ ion and the complexes it forms with 

solvent molecules. This will be further discussed in section 4.3. 
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Figure 3.22:  Sensorgrams showing the response of 206 RU of T30 to 0.20 mM metal 
ions with a pH 7.5 (A) and pH 8.5 (B) running buffer. The metal ions used are:  solid 
lines, Zn2+ (solid lines), Ni2+ (dashed lines), Mg2+ (dotted lines), and Cd2+ (dot-dashed 
lines). 
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Figure 3.23:  Sensorgrams showing the response of T30 to various concentrations of 
Zn2+ in pH 7.5 (A) and pH 8.5 (B) running buffer. The Zn2+

 concentrations used are 0.05, 
0.10, 0.15, and 0.20 mM. The progressively larger responses are due to progressively 
higher metal ion concentrations. Both of these studies were carried out with the same 
sensor chip with 206 RU of T30-immobilized. 
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Figure 3.24:  Sensorgrams showing the response of T30 to various concentrations of Ni2+ 
in pH 7.5 (A) and pH 8.5 (B) running buffer. The Ni2+ concentrations shown are 0.20, 
0.40, 0.60, 0.80, and 1.00 mM. The progressively larger responses are due to 
progressively higher metal ion concentrations. Both of these studies were carried out with 
the same sensor chip with 206 RU of T30 immobilized.  
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Figure 3.25:  Sensorgrams showing the response of 214 RU of C30 to 0.20 mM metal 
ions with a pH 7.5 (A) and pH 8.5 (B) running buffer. The metal ions used are:  solid 
lines, Zn2+ (solid lines), Ni2+ (dashed lines), Mg2+ (dotted lines), and Cd2+ (dot-dashed 
lines). 
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Figure 3.26:  Sensorgrams showing the response of C30 to various concentrations of 
Zn2+ in pH 7.5 (A) and pH 8.5 (B) running buffer. The Zn2+

 concentrations used are 0.05, 
0.10, 0.15, and 0.20 mM. The progressively larger responses are due to progressively 
higher metal ion concentrations. Both of these studies were carried out with the same 
sensor chip with 214 RU of C30 immobilized. 
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Figure 3.27:  Sensorgrams showing the response of C30 to various concentrations of Ni2+ 
in pH 7.5 (A) and pH 8.5 (B) running buffer. The Ni2+ concentrations shown are 0.20, 
0.40, 0.60, 0.80, and 1.00 mM. The progressively larger responses are due to 
progressively higher metal ion concentrations. Both of these studies were carried out with 
the same sensor chip with 214 RU of C30 immobilized.  
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Figure 3.28:  Sensorgrams showing the response of 220 RU of A30 to 0.20 mM metal 
ions with a pH 7.5 (A) and pH 8.5 (B) running buffer. The metal ions used are:  solid 
lines, Zn2+ (solid lines), Ni2+ (dashed lines), Mg2+ (dotted lines), and Cd2+ (dot-dashed 
lines). 



  138 

 
Figure 3.29:  Sensorgrams showing the response of A30 to various concentrations of 
Zn2+ in pH 7.5 (A) and pH 8.5 (B) running buffer. The Zn2+

 concentrations used are 0.05, 
0.10, 0.15, and 0.20 mM. The progressively larger responses are due to progressively 
higher metal ion concentrations. Both of these studies were carried out with the same 
sensor chip with 220 RU of A30 immobilized. 
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Figure 3.30:  Sensorgrams showing the response of A30 to various concentrations of 
Ni2+ in pH 7.5 (A) and pH 8.5 (B) running buffer. The Ni2+ concentrations shown are 
0.20, 0.40, 0.60, 0.80, and 1.00 mM. The progressively larger responses are due to 
progressively higher metal ion concentrations. Both of these studies were carried out with 
the same sensor chip with 220 RU of A30 immobilized.  
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3.4.3 Low-pH M-DNA Formation 

 

 When dsCTL was exposed to millimolar Zn2+ concentrations at pH 7.5, signals 

indicative of M-DNA formation were observed. At pH 7.5, peak signals were observed at 

5 mM Zn2+; they were equal to 95 % of those observed with 0.20 mM Zn2+ at pH 8.5. 

Similar results were not observed upon exposure of dsCTL to millimolar Ni2+ at pH 7.5. 

At pH 7.5, plateau signals were observed upon exposure of dsCTL to 10 mM Ni2+. 

However, this pleateau was only equal to 39 % of that observed with 2.0 mM Ni2+ at pH 

8.5. 

 At pH 6.5, signals of approximately 145 RU were observed upon exposure of 

dsCTL to 20 mM Zn2+, Ni2+, or Cd2+. Peak responses for all concentrations of Zn2+ and 

Ni2+ are shown at all three pH values in figure 3.31A. Although these signals are larger 

than those observed at pH 7.5 for both metal ions, the signals obtained upon exposure of 

dsCTL to Mg2+ at pH 6.5 are also much higher than those obtained at pH 7.5. Thus, it is 

difficult to asses M-DNA formation at pH values of 6.5 and 7.5 by SPR. These results are 

discussed further in section 4.3. 

 

3.4.3.1 5-Fluorouracil Substituted Double-Stranded DNA 

 

 Sequences with 6, 9, or 15 T residues replaced with F5U were assayed in addition 

to the standard dsCTL sequences detailed in section 3.4.2.1. In no case was there a 

significantly increased propensity to form M-DNA relative to unsubstituted sequences. 

The peak values of the responses obtained in these experiments plotted against metal ion 
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 (A) 

 
(B) 

 
Figure 3.31:  Peak values of responses to (A) Zn2+ (white symbols), Ni2+ (black symbols) 
and (B) Mg2+ (white symbols). Both sets of data were obtained with the same chip with 
approximately 370 RU of dsCTL immobilized. The readings were obtained at pH values 
of 6.5 (diamonds), 7.5 (squares), and 8.5 (triangles). 
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(A) 

 
(B) 

 
Figure 3.32:  The response peaks of dsCTL with varying degrees of F5U substitution to 
Zn2+ (A) and Ni2+ (B). Four hybridization states are shown:  CTL-1 / btn-CTL-2 (pH 8.5, 
white diamonds; pH 7.5, white triangles; pH 6.5, white inverted triangles), 5FUCTL-1 / 
btn-CTL-2 (pH 8.5, white squares; pH 7.5, white circles; pH 6.5, white stars), CTL-1 / 
5FUCTL-2 (pH 8.5, black diamonds; pH 7.5, black triangles; pH 6.5, black inverted 
triangles), and 5FUCTL-1 / 5FUCTL-2 (pH 8.5, black squares; pH 7.5, black circles; pH 
6.5, black stars). 
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concentrations at all three pH values with Zn2+ and Ni2+ are shown in figure 3.32. The 

only difference between signals obtained with sequences containing F5U and those that 

did not was that the substituted sequences were denatured more severely by Zn2+ and 

were denatured by Ni2+. These results are surprising given the increased formation and 

pH stability of M-DNA observed in F5U-substituted DNA observed with the EtBr-based 

assay. Small differences between readings in figures 3.32 and 3.31 are due to deviations 

encountered when using different sensor chips. 

 

3.5 Quenching of Fluorophore-labeled DNA at Low pH 

 

 Fluorescence quenching studies were performed on Fl/QSY7 double-labeled 

DNA to verify SPR results that suggested low pH M-DNA formation was possible. As 

the corrected quenching titrations in figure 3.33 show, quenching occurs at all pH values, 

although the required metal ion concentration raises as the pH drops. The Zn2+ 

concentrations necessary to form M-DNA at pH 7.5 are roughly 100-fold higher than 

those causing dismutation at pH 8.5. Thus, low-pH quenching was not observed in 

previous studies since pH 7.5 controls were carried out at the same Zn2+ concentrations as 

the studies at pH 8.5. Further, MgCl2 had no effect on quenching regardless of 

concentration or pH, while CdCl2 allowed quenching at low pH and denatured the DNA 

at high pH. The denaturation induced by CdCl2 at pH 8.5 is apparent from the increase to 

baseline following a small amount of quenching allowed by concentrations of CdCl2 

below 0.08 mM. The data from the MgCl2 and CdCl2 trials is presented in figure 3.34.  
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Figure 3.33:  Corrected quenching profiles for the Fl-CTL-1 / QSY7-CTL-2 duplex at 
pH 6.5 (diamonds), pH 7.0 (squares), pH 7.5 (triangles), pH 8.0 (circles), and pH 8.5 
(inverted triangles). The remaining fluorescence divided by the initial fluorescence is 
shown as a function of added Zn2+ cocentration. 
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(A) 

 
(B) 

 
Figure 3.34:  Corrected quenching profiles for the Fl-CTL-1 / QSY7-CTL-2 duplex with 
(A) Mg2+ at and (B) Cd2+ at pH 6.5 (diamonds), 7.5 (squares), and pH 8.5 (triangles). 
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The data shown in figure 3.33 are averages of between 3 and 6 individual experiments, 

while data shown in figures 3.34 – 3.36 are averages of 2 individual experiments. 

 Two different ZnCl2 solutions were used for this portion of the study. Both were 

initially prepared at 2.0 M and diluted to the desired 400X solution for each experiment. 

The pH of the first was adjusted to 4.0 as described in section 2.1. In the second case, the 

ZnCl2 was dissolved to 2.0 M without addition of HCl resulting in a solution of pH 

~4.40. At all pH values except pH 6.5, no significant difference was observed between 

the two experiments, and readings with both ZnCl2 stock solutions are averaged together 

with no effect on the standard deviation. However, as illustrated in figure 3.35, there is a 

substantial difference between titrations using the two different stock solutions at pH 6.5. 

When the acidified stock is used, the midpoint of the transition occurs at 50 mM ZnCl2 

while with the unacidified ZnCl2, the midpoint of the transition occurs at 9 mM ZnCl2. 

These figures are the average of several readings and three separately prepared 2.0 M 

ZnCl2 stocks of each type were used, with all three producing the same results. As 

illustrated in figure 3.36, the final pH of the solution varies little with addition of either 

ZnCl2 solution. Finally, there is almost no difference between the changes in pH caused 

by each stock solution of ZnCl2 over the ZnCl2 concentration range that cause a large 

change with the unacidified stock but not with the acidified one. As a control, assays 

were also done using Zn(ClO4)2 as a titrant, which showed results similar to those 

obtained with the acidified ZnCl2 solution, as shown in figure 3.35. 

 Figure 3.37 summarizes the concentrations of ZnCl2 necessary to drop the 

corrected fluorescence intensities to 50% of their starting values at each pH. For pH 6.5, 

the values obtained with each stock solution of ZnCl2 as well as Zn(ClO4)2 are indicated.  
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Figure 3.35:  Corrected quenching profiles for the Fl-CTL-1 / QSY7-CTL-2 duplex with 
at pH 6.5 with adjusted pH ZnCl2 stock solution (white diamonds), unadjusted pH ZnCl2 
stock solution (black diamonds), and Zn(ClO4)2 stock solution (white squares). 
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Figure 3.36:  The effect of each ZnCl2 stock solution on the pH of a 10 mM MES pH 6.5, 
10 mM NaCl as a function of added Zn2+ concentration.  Values are shown for the 
adjusted pH ZnCl2 solution (white diamonds) and the unadjusted pH ZnCl2 solution 
(black diamonds). 
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Figure 3.37:  The concentration of Zn2+ necessary to cause 50% quenching of the Fl-
CTL-1 / QSY7-CTL-2 duplex as a function of H+ concentration. The [Zn2+] values at pH 
6.5 are shown for the adjusted pH ZnCl2 stock solution (white diamonds), the unadjusted 
pH ZnCl2 stock solution (black diamond), and the Zn(ClO4)2 stock solution (white 
square). A logarithmic fit is indicated for the acidified ZnCl2 stock solution by the dashed 
line. 
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When acidified ZnCl2 or Zn(ClO4)2 is used at pH 6.5, the relationship between this 

concentration and the pH is logarithmic. The relationship is similar with unacidified 

ZnCl2 except that a plateau value is reached at pH 7.0 that does increase with a further 

decrease in pH. 

 These results suggest that formation of Zn(II) M-DNA is possible at any pH with 

sufficient concentrations of Zn2+ and reinforce the distinction between M-DNA formation 

and denaturation. The differences between the readings obtained at pH 6.5 with each 

stock solution of ZnCl2 are likely due to differences in the ionization states of the Zn2+ 

ions in each solution and this will be further discussed in section 4.4. 
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4.0 Discussion 

 

4.1 Ethidium Bromide-Based Assay 

 

 The lack of EtBr binding to M-DNA was the basis of an early method used to 

characterize the conformation. This technique was initially used to demonstrate M-DNA 

formation as a function of time following addition of the metal ion with a variety of 

variables, including DNA sequence, metal ion, temperature, and pH (Lee et al., 1993). As 

outlined in section 3.2, two forms of the EtBr-based assay were used in the current study, 

both of which measured the level of M-DNA formation under equilibrium conditions. 

The first assay was conducted by exposing DNA to metal ions and adding a final 

concentration of 0.71 μM to Zn-EFB at pH 8.3. This technique was used to measure M-

DNA formation with a variety of metal ions, at different DNA concentrations, and at 

different temperatures, all as a function of either pH or metal ion concentration. The 

second assay was performed by adding B- or Zn(II) M-DNA to Zn-EFB at a variety of 

pH values and allowing an equilibrium to be reached in the presence of 1.3 μM EtBr at a 

DNA concentration of 0.71 μM in the presence of 0.20 mM Zn2+. The latter technique 

was used to measure Zn(II) M-DNA formation with a variety of base modifications and 

different DNA sequences. The second assay allowed measurement of M-DNA formation 

with sequences or base substitutions that facilitated formation of the conformation at low 

pH values. Use of the second EtBr assay was necessary since some repetitive sequences 

or base-substituted DNAs converted immediately and fully to M-DNA upon addition of 

the DNA to pH 8.3 Zn-EFB. 
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As shown in figure 3.6, Zn(II) and Co(II) M-DNA have similar degrees of pH 

stability once formed, but Zn(II) M-DNA forms much more readily than the Co(II) form. 

Ni(II) M-DNA forms with a propensity intermediate between the other two forms but has 

the greatest degree of pH-stability once formed. In all cases, however, there is some 

degree of hysteresis present, indicating that M-DNA formation is likely a cooperative 

process. As shown in figure 3.7, Ni(II) M-DNA is also far more stable than M-DNA 

formed by the other metal ions when exposed to EDTA. Further, an excess of EDTA 

relative to the Ni2+ concentration must be added or complete reversion does not occur. 

This is not due to a lower affinity of EDTA for Ni2+ than Zn2+, as the log k values for 

EDTA-Ni and EDTA-Zn interactions are 18.6 ± 0.1 and 16.4 ± 0.1, respectively (Martell 

and Smith, 1975). 

It was previously known that increasing the metal ion concentration increases the 

conversion to M-DNA (Lee et al., 1993), but as shown in figure 3.8 the concentration of 

CT DNA also affects the dismutation. At a DNA concentration of 15 µM and a pH of 8.5, 

50 % conversion to M-DNA occurs with 0.25 mM Zn2+ but with 150 µM DNA 0.6 mM 

Zn2+ is required and for 1.5 mM DNA 50 % conversion cannot be achieved at a 

concentration of Zn2+ which remains soluble. The Co(II) form of M-DNA is similar to the 

Zn(II) form but M-DNA conversion induced by Ni2+ at pH 8.5 cannot be achieved above 

a DNA concentration of 10 µM. It is clear that higher DNA concentrations require more 

metal ion than that which is required to replace the imino protons. A possible explanation 

is that the negatively charged phosphates on the DNA backbone must be saturated before 

the metal can occupy sites within the helix. However, at pH 9.0 the Ni(II) form of M-

DNA can be prepared readily at much lower concentrations of Ni2+. In addition, the 
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slopes of the plots for Ni2+ are different at pH 8.5 and 9.0 suggesting that the structure of 

the Ni2+ aquo ion may be important for the formation of M-DNA. The differences 

between Zn(II) and Ni(II) M-DNA observed by this technique as well as by SPR and 

their implications are further considered in section 4.5.2. 

The second form of the EtBr based assay was used to assess the differences in M-

DNA formation between repetitive sequences of DNA or those containing various base 

modifications with the same λ 496 bp fragment used in the assays shown in figure 3.6. 

This assay was also performed on genomic CT DNA and the CTL-1 / CTL-2 duplex as 

well as the λ 496mer, which have GC contents of 42, 50, and 54 % respectively. The 

results were not significantly different with any of these three sequences. Thus it appears 

that the length of the DNA molecule used to form M-DNA does not have a large impact. 

The length of the sequence can, however, have an impact on the extent to which M-DNA 

formation allows communication between 5' end-labeled fluorophores (Aich et al., 2002). 

The effect of base substitutions on the λ 496 bp sequence was assayed by the 

second EtBr method with respect to the formation and stability of Zn(II) M-DNA as a 

function of pH. The conversion and stability behaviour of representative base 

substitutions are shown in figures 3.9A and 3.9B, respectively. Complete data for all 

substitutions are given in table 3.1. In all cases, the pHm values for the B- to M-DNA 

transition were higher than those for the M- to B-DNA transition, again indicating 

hysteresis. Substitution of n2A or z7A for A, of m5C for C, or of U for T all had minor 

effects on the pHm values for each transition, being within 0.2 pH units of the control 

sequence with the exception of the M- to B-DNA transitions for the A substitutions 

which were 0.3 pH units lower than the control sequence. On the other hand, substitution 
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of I for G or of Br5U, F5U, or s4T for T had larger effects on the transitions, with changes 

between 0.3 and 0.6 pH units. In all of these cases, the unusual bases incorporated into 

the DNA had lower pKa values than the corresponding standard bases. The pKa values of 

Br5U, F5U, s4T, and T are 8.2, 7.8, 8.8 (estimated), and 9.9, respectively. The pKa value 

of U, which had little effect on M-DNA formation, is 9.3. Likewise, the pHm values for 

the other three T analogues are all close to each other, and the pHm values for their 

transitions are also close to each other. Similarly, I has a pKa of 8.8 while that of G is 9.4, 

and this substitution also had a large impact on the pHm values as well. In light of the 

proposed M-DNA structural model, a lower pKa on either T or G would favour the 

conformation since these bases need to be deprotonated in order to form the structure 

given in figure 1.11. Further structural implications for the effects of some of the base 

substitutions are considered in detail in section 4.5.1. In addition to the base substitutions 

inserted into the λ 496 bp fragment with a GC content of 54 %, a 73 % GC 516 bp 

fragment from the c-src oncogene was assayed. The latter sequence was found to have a 

lower pHm value for both transitions. This is likely due to the lower pKa of the titratable 

imino proton in G•C base pairs relative to the A•T base pairs; G has a pKa of 9.4, while T 

has a pKa of 9.9. 

In order to investigate the effects of the sequence in more detail, several synthetic 

DNAs were evaluated. Representative data for the formation of M-DNA are depicted in 

figure 3.9C and the complete values obtained are listed in table 3.1. For the conversion of 

B- to M-DNA (dG)n•(dC)n
 has a pHm value of 7.8 compared with 8.5 for d(GC)n with 

d(GGCC)n having an intermediate value. For AT sequences the homopolymer 

(dA)n•(dT)n also has a lower pHm
 value than the alternating polymer d(AT)n (pHm values 
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of 8.1 and 8.6, respectively). Therefore, pur•pyr tracts form M-DNA most readily, 

presumably because the repeating sequence with all purines on one strand allows for 

better stacking interactions. Alternatively, pur•pyr tracts tend to be overwound compared 

with B-DNA. M-DNA is also overwound relative to B-DNA so that the increased twist of 

these sequences might facilitate M-DNA formation (Lee et al., 1993). With respect to 

base content, the sequences composed exclusively of G•C base pairs consistently formed 

and stabilized M-DNA at lower pH values than those composed exclusively of A•T base 

pairs. As with the 73 % GC 516 bp fragment relative to the 54 % GC 496 bp fragment 

assayed by this method, this difference is likely due to the lower pKa of G relative to T. 

Finally, the duplex RNA r(AU)n showed similar properties to d(AT)n and d(AU)n 

indicating that the M-conformation is also available to RNA sequences. 

Substitution of s4T for T had a predictable effect on the propensity of the λ 

496mer to form M-DNA. The lowered pKa of the base analogue facilitated M-DNA 

formation similarly to other T analogues as discussed above. The λ 496 bp fragment 

could not be prepared with s2T substitutions by PCR as no PCR-compatible DNA 

polymerase would incorporate it. However, s2T and s4T were both incorporated into the 

sequences d(AT) and d(TG)n•d(CA)n through use of E. coli DNA polymerase. The results 

of the EtBr assays on these base-substituted repeating sequences are detailed in table 3.1. 

Incorporation of either analogue into d(AT)n lowered the pHm of the B- to M-DNA 

transition by 0.3 pH units, which was not surprising given that both base analogues have 

lower pKa values than T and that transition metals bind well to sulfur-containing 

functional groups. However, when incorporated into d(TG)n•d(CA)n, the pHm of M-DNA 

formation was lowered by 0.4 pH units through substitution with s4T but raised by 0.2 pH 
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units by substitution with s2T. The opposite effects of s2T substitution on M-DNA 

formation in d(AT)n as opposed to d(TG)n•d(CA)n could be due to the presence of 2-

amino groups on G bases bases which are unfavourable ligands for transition metals. 

Thus, it appears that the effects of some base substitutions can be sequence-specific. 

The EtBr studies done at different temperatures, illustrated in figure 3.10, showed 

Zn(II) M-DNA formation to be strongly favoured at 37 °C relative to 4 °C. Previous 

results showed Zn(II) M-DNA formation as a function of time to be much faster at 

elevated temperatures (Lee et al., 1993). However, increased kinetics at higher 

temperatures are expected with any process dependent on intermolecular interactions. 

The current study shows that under equilibrium conditions M-DNA is favoured over B-

DNA by elevated temperatures. This shift in equilibrium is manifested as a five-fold 

decrease in the concentration of Zn2+ required to completely form M-DNA at pH 8.5 as 

the temperature increases from 4 to 37 °C. In light of this, it appears that M-DNA 

formation is an entropy-driven process, since ΔG = ΔH – TΔS. Direct studies on the ΔH 

associated with M-DNA were investigated calorimetrically and found to agree with the 

variable-temperature EtBr assay. 

 

4.2 Isothermal Titration Calorimetry 

 

 As outlined in section 3.3, the ITC studies showed M-DNA formation to be an 

endothermic process. Thus, M-DNA formation is an entropy-driven process in agreement 

with the EtBr assays carried out at various temperatures under equilibrium conditions 

(see section 4.1). 
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Small exothermic changes were observed upon exposure of the DNA to 

Mg(ClO4)2 at either pH 7.5 or 8.5 as well as upon exposure of the DNA to Zn(ClO4)2 at 

pH 7.5. These changes were likely due to coordination of the metal ions to the phosphate 

backbone through electrostatic interactions. This type of binding is generally weak and 

involves hydrated metal ions (Chiu and Dickerson, 2000). Since the hydration sphere of 

the metal ions remains for the most part intact, large ΔH values are not typically 

associated with these interactions (Misra and Draper, 1999; Misra and Draper, 2001). Site 

specific binding, on the other hand, often results in removal of all but the innermost 

hydration spheres of the metal ion. The disruption of ordered solvent molecules 

coordinated around the ions provides the source of entropy that is the driving force 

behind these interactions. Site-specific interactions can also be involved in Z-DNA 

formation, which is also an entropy-driven process (Klump et al., 1993). When induced 

by divalent ions, formation of Z-DNA is enhanced when the hydration layers of the metal 

ions are removed (Taboury et al., 1984). 

There was a large degree of error associated with the readings obtained in the ITC 

experiments. This error was due to a limitation of the system. Since better signals were 

obtained with higher concentrations of DNA, it was desirable to use as high a DNA 

concentration as possible. However, as discussed in section 4.1, the higher the 

concentration of DNA, the more Zn2+ is required to convert it to M-DNA. This imposed a 

limitation on the amount of DNA that could be used in the experiment in order to keep 

the Zn2+ concentration within a range that would remain soluble. Both of these 

phenomena are apparent in figure 3.11, which shows a larger transition at a higher Zn2+ 

concentration with 0.30 mM DNA compared to 0.15 mM. In addition, the error in the ΔH 
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values obtained at the higher concentration was three fold lower than at the lower 

concentration. 

In many cases, ITC experiments are undertaken on simple or well-characterized 

systems and the data can be fit to a model to elucidate ΔG and therefore ΔS values. 

However, M-DNA formation involves many distinct events. These events include 

displacement of ions bound to the phosphate backbone of the helix, deprotonation of G 

and T bases, and binding of metal ions to different sites on the bases. Further, the change 

in conformation itself is likely to result in a ΔG that would be observed as a ΔH signal. 

Development of a formula that would account for all of these factors placing the 

appropriate emphasis on those generating the M-DNA signal would be complex and it 

would be difficult to test the validity of such a model. There were also difficulties with 

changing the temperature of the system in order to elucidate the ΔS and ΔG values of the 

transition. Converting high concentrations of DNA to M-DNA at lower temperatures 

would have required addition of Zn2+ concentrations which would have led to 

precipitation, while raising the temperature increased the background noise. Thus, 

detailed thermodynamic information was not obtained, although an estimate of ΔH was 

obtained. The shape of the ΔH vs Zn2+ concentration curve in figure 3.11 is 

approximately gaussian, indicative of a complex binding process, and the sudden increase 

in ΔH values around 0.10 mM Zn2+ is indicative of a cooperative binding process, in 

agreement with hysteresis data detailed in section 4.1.  
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4.3 Surface Plasmon Resonance 

 

 In light of the large number of SPR studies in which conformational changes of 

proteins have been characterized both in the presence and absence of a CMD matrix, it is 

not unreasonable to attribute the SPR signals observed under some of the conditions 

employed in this study to M-DNA formation. The results obtained in experiments with 

dsCTL as the target sequence at pH 8.5 with Zn2+ and Ni2+ are viewed as being due to M-

DNA formation. However, some caution is required when interpreting changes in an SPR 

signal as being due to a change in conformation of the immobilized species, particularly 

when dealing with a surface on which the biomolecule is immobilized within a CMD 

matrix rather than on bare gold. Two studies made this claim when exposing proteins 

immobilized in a CMD matrix to extreme changes in pH (Mannen et al., 2001; Sota et 

al., 1998). Subsequent analysis of these studies suggested that the changes observed were 

due primarily to changing electrostatic interactions between the CMD matrix and the 

immobilized proteins (Paynter and Russell, 2002). 

There are several indications that the changes observed at pH 8.5 upon exposure 

of dsCTL to Zn2+ or Ni2+ are due to M-DNA formation. First, the signals are much larger 

than (RUpred)sat, indicating that factors other than an increase in mass due to condensation 

of divalent metal ions on the DNA are causing the signal. Second, it is unlikely that this 

data is an artifact as was the case in the studies described in the previous paragraph since 

large pH changes that would change the ionization state of the CMD matrix are not 

employed. Third, if the signal were primarily due to enhanced electrostatic interactions 

between the DNA and the CMD matrix, then it is likely that Mg2+ or Ca2+ ions would 
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elicit signals comparable to those induced by Zn2+ or Ni2+ ions, and that a change in pH 

over the range of 7.5-8.5 would have little effect on the signal. In summary, the signal 

which results from M-DNA formation is likely due to a combination of an increase in 

mass on the surface due to replacement of imino protons by Zn2+ or Ni2+ and a change in 

shape of the DNA upon converting to M-DNA. This shape change is likely to be to a 

more compact state, as this would increase the mass closer to the surface of the chip and 

therefore result in a positive signal. 

Formation of M-DNA by Zn2+ or Ni2+ shows distinct conversion and reversion 

kinetics, depending on which metal ion is present. Unfortunately, quantitative evaluation 

of these kinetics is complicated by the contributions from mass and conformational 

change together in a system which has at least 30 potential binding sites outside the helix 

and another 30 inside the helix per molecule, all of which are likely involved in a 

cooperative reaction to form M-DNA. Thus, the high stoichiometry of the interaction 

contributes in part to the presence of the signal but also makes detailed evaluation of it 

difficult. However, a qualitative assessment was possible and yielded some interesting 

observations. 

The Zn2+ induced M-DNA profiles show rapid equilibrium values regardless of 

concentration, while the Ni2+ profiles reach equilibrium at concentrations below 0.60 mM 

or above 2.00 mM. Between these low and high points, the Ni2+ induced signals rise 

continuously throughout the exposure, suggesting that little Ni(II) M-DNA formation 

occurs below 0.60 mM and that it plateaus at 2.00 mM. Also, Ni(II) M-DNA reverts 

more slowly than Zn(II) M-DNA, as is apparent from figure 3.17. Further, the 

concentration that gives 50% of the maximum response for dsCTL at pH 8.5 is 0.50 mM 
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for Ni2+, while that of Zn2+ is 0.06 mM, an order of magnitude difference. These results 

are supported by those obtained with the EtBr assay (discussed in section 4.1), which 

demonstrated that to convert equivalent concentrations of DNA at pH 8.5, substantially 

more Ni2+ is required than Zn2+. The maximum responses which each metal ion elicits in 

dsCTL are different as well; +130 RU for Zn2+ compared to +185 RU for Ni2+ on the 

same sensor surface. The higher maximum response with Ni2+ relative to Zn2+ could be 

due to stronger interactions between the DNA and the Ni2+, meaning that in a dynamic 

process, the ions spend more of their time bound to the DNA, resulting in a larger signal. 

The larger signal could be due in part to stronger interactions between Ni2+ and the 

phosphate backbone relative to those of Zn2+. This interpretation is supported by the 

slower dissociation rate of Ni2+. None of these changes are observed at pH 7.5. At pH 

7.5, weak signals arise from interactions between the metal ions and dsCTL. Further, 

weak signals are detected in the presence of Mg2+ and Ca2+. These findings are consistent 

with M-DNA formation being dependent on a high pH. 

In figure 3.15, 0.20 mM Cd2+ at pH 8.5 is shown to cause an initial increase in 

signal which then drops off sharply as the Cd2+ denatures the DNA. Part of this large 

increase in signal could be due to the higher mass of Cd2+ relative to the other metal ions, 

but it is likely that it is forming a complex with the DNA similar to M-DNA. It is 

apparent from the change in baseline following a 0.20 mM Cd2+
 injection at pH 8.5 that 

the Cd2+ denatures roughly 40 % of the dsDNA. A stoichiometric excess of Cd2+ is 

known to destabilize dsDNA at acidic pH (Duguid et al., 1995; Eichhorn and Shin, 

1968). However, figure 3.15 shows the first observation of denaturation of DNA at room 

temperature by Cd2+, which is dependent on an alkaline pH. Subsequent injections of 
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CdCl2 further dropped the baseline. At pH 7.5, an initial exposure of 5.00 mM Cd2+ was 

required to cause denaturation of roughly 20 % of the dsCTL, while subsequent 

exposures had little effect as illustrated in figure 3.15. Similar results were obtained upon 

exposure of the surface to Cd2+ concentrations of up to 20 mM. At pH 6.5, Cd2+ did not 

denature dsCTL regardless of the concentration of Cd2+ used. It is not surprising that Cd2+ 

can complex with DNA in a similar manner to Zn2+ or Ni2+ as it has similar coordination 

properties to Zn2+ (Cotton and Wilkinson, 1966), and both metal ions are known to 

interact with base nitrogens of dsDNA (Eichhorn and Shin, 1968). It is possible that the 

larger atomic radius of Cd2+ compared with Zn2+ or Ni2+ (1.13 Å compared with ~0.70 Å 

) disrupts the helix due to coordination with the imino nitrogen atoms at position 1 in 

purines and 3 in pyrimidines. In addition to the interactions of Zn2+, Ni2+, and Cd2+ with 

dsCTL, there were significant interactions between these metals and the four single-

stranded sequences studied. 

For comparison, the responses of each sequence to 0.20 mM of every metal ion at 

pH values 7.5 and 8.5 are presented in figure 4.1. The data in figure 4.1 were normalized 

by dividing the background subtracted RU observed at 95% of the injection volume by 

the value RUM/MWratio. Following this, the highest response was set at a value of 1.00, 

and all other responses are shown relative to that. RUM is the amount of immobilized 

DNA in RU, and MWratio is the molecular weight of the polymer in question divided by 

the molecular weight of dsCTL. This normalization accounts for differences in the 

amount of DNA the metal ions are interacting with as well as the varying molecular 

weights of the different polymers. The only uniform results across all sequences was that 

Mg2+ did not cause a large signal regardless of pH. 



  163 

 

 

Figure 4.1:  Bar graphs showing responses of all DNA sequences to all metal ions 
at 0.20 mM concentration at pH values 7.5 (A) and 8.5 (B). In each case the legend is as 
follows:  black bar, ZnCl2; white bar, NiCl2; patterned grey bar, CdCl2; dark grey bar, 
MgCl2. 
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As is apparent from figure 4.1, there were substantial pH-dependent signals 

observed with btn-CTL-2 and T30 in the presence of Zn2+, Ni2+, and Cd2+ as was the case 

when dsCTL was exposed to Zn2+ and Ni2+. The response of these sequences could be 

due to metal ions coordinating to the deprotonated bases as well as to the phosphate 

backbone of the DNA, folding the DNA back upon itself with subsequent alteration of 

the refractive index of the polymer. It is possible that the btn-CTL-2 and T30 sequences 

are folding back upon themselves to allow Zn2+, Ni2+, or Cd2+ to bridge base pairs in the 

resulting hairpin or between T bases as has been observed previously with Hg2+ and 1-

methylthymine monomers (Kosturko et al., 1974). The slower dissociation of Ni2+ at pH 

8.5 observed with CTL-2 and T30 relative to A30 or C30 is likely due to tighter binding 

of the metal ion to deprotonated imino positions on G and T bases. The pH-dependence 

of the signals induced by Zn2+ with btn-CTL-2 and T30 but not A30 or C30 is likely also 

due to interactions with deprotonated imino positions on the former sequences. A d(G)30 

sequence was not assayed as it would likely form parallel tetrameric structures which 

would interefere with the analysis, and also due to the low solubility of guanine rich 

DNA. The signals obtained with the btn-CTL-2 surface due to Zn2+ exposure at pH 7.5 

were slightly higher than those obtained with dsCTL which could be due to the higher 

accessibility of N1 and N3 binding sites on A and C residues, respectively, which do not 

require deprotonation for binding, and would allow them to participate in formation of 

hairpin loops. 

Unlike single-stranded sequences with titratable protons, C30 did not display a 

large signal upon exposure to any of the metal ions at either pH, likely due to the lack of 

potential secondary structures or protons titratable over the pH range studied. C30 did, 
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however, display a small difference in its responses to Ni2+ at concentrations above 0.40 

mM, as illustrated in figure 3.27. The behavior of A30 was less straightforward; this 

sequence did not show any pH-dependence in its responses to Zn2+ and displayed very 

weak responses at either pH, close to those of (RUpred)sat as shown in figure 3.29. 

However, in the presence of Ni2+ or Cd2+, A30 showed much larger responses at pH 8.5 

than at 7.5 and in the case of Ni2+ concentrations above 0.60 mM, the responses at pH 8.5 

were more than double (RUpred)sat. It is possible that Ni2+ is inducing a helical structure in 

A30 that is facilitated by a high pH. It has been observed in DNA melting studies that 

d(A)n sequences can form a helical structure. As with the observations shown in figure 

3.8, facilitation of this structure by Ni2+ at high pH could be due to changes in the 

coordination properties of the Ni2+ ion. In contrast to the data obtained by the EtBr assay, 

SPR studies did not detect differences in M-DNA formation when F5U was substituted 

for T in the sequences, as illustrated in figure 3.32. A possible explanation is that this 

system was already allowing complete M-DNA formation at pH 8.5, while pH 7.5 was 

too low to allow enhanced formation of M-DNA even with the base substitution. Further, 

the data being assessed in the EtBr assay was shown as a function of pH, while SPR data 

was evaluated as a function of metal ion concentration. Another difference between the 

results obtained by SPR and those of the EtBr assay was that SPR showed maximum 

responses at the same Zn2+ concentration regardless of the level of immobilized DNA on 

the surface. However, the amount of immobilized dsCTL on the surface was increased 

only two fold at most in the SPR experiments. As illustrated in figure 3.8, the increase in 

Zn2+ concentration required for dismutation to M-DNA increased linearly as the DNA 

concentration increased logarithmically. Further, at low DNA concentrations, there is 
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little difference in the amount of Zn2+ required to convert the DNA to M-DNA at pH 8.5. 

Thus lack of dependence of the Zn2+ concentration required for a maximal response in 

SPR could be due in part to the large excess of metal ions in the system and the rapid 

establishment of an equilibrium as well as to the small DNA concentration range studied. 

When Zn2+ concentrations in excess of 2.0 mM were added to the system with 

dsCTL at pH 7.5, significant signals that appeared to be indicative of M-DNA formation 

were observed. These signals reached a plateau of ~115 RU for exposure to 5 mM Zn2+. 

The signals resulting from exposure to similarly high concentrations of Ni2+ reached a 

lower plateau of ~80 RU at 5 mM Ni2+. Due to the very large concentrations of divalent 

metal ions employed in these experiments, the interactions between Mg2+ and the DNA 

also gave substantial signals, reaching a plateau of ~25 RU at 20 mM. The peak values of 

these experiments are listed as a function of metal ion concentration in figure 4.2. When 

the signals due to Mg2+ were subtracted from those occurring during exposure to the 

other metal ions, only Zn2+ still displayed signals which were over double the (RUpred)sat 

values, as illustrated in figure 4.3. Thus, it appears that Zn(II) M-DNA formation is 

detectable at pH 7.5 by SPR but that Ni(II) M-DNA formation is not. 

Exposure of dsCTL to Zn2+, Ni2+, and Cd2+ at pH 6.5 all gave similar results well 

in excess of (RUpred)sat at concentrations over 2.0 mM. However, as shown in figure 4.2, 

exposure to Mg2+ had a similar effect albeit with lower plateau values. All of these 

signals were larger than those observed with the same metal ions at pH 7.5. When the 

signals due to Mg2+ exposure were subtracted from those of the other metal ions, as 

shown in figure 4.3, the low values observed were not believed to be indicative of M-

DNA formation. It is unclear why the signals are all so much larger at pH 6.5 than at 7.5,  
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(A) 

 
(B) 

 
Figure 4.2: The responses of dsCTL to high concentrations of Zn2+ (diamonds), Ni2+ 
(squares), Cd2+ (triangles), and Mg2+ (circles) at pH 6.5 (A) and pH 7.5 (B). The data are 
averages of 2 individual experiments with a standard deviation of less than 2 %. 
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(A) 

 
(B) 

 
 

Figure 4.3: The responses of dsCTL to high concentrations of Zn2+ (diamonds), 
Ni2+ (squares), Cd2+ (triangles) after subtraction of the responses due to the same 
concentrations of Mg2+ at pH 6.5 (A) and pH 7.5 (B). 
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but it appears that they are largely due to an interaction independent of M-DNA 

formation. The results obtained by SPR at low-pH prompted parallel quenching studies 

with Fl/QSY7-double labeled DNA in the presence of Zn2+ as a control, which yielded 

very compelling findings. 

 

4.4 Quenching of Fluorophore-labeled DNA 

 

 In order to verify whether the results observed by SPR at pH 7.5 were indicative 

of Zn(II) M-DNA formation, quenching experiments were undertaken. These were 

performed with the same sequence used in the SPR experiments with Fl labels attached to 

the 5' end of CTL-1 and QSY7 attached to the 5' end of CTL-2. All quenching data was 

corrected by taking into account the background quenching of Fl on a duplex with the Fl 

attached to the 5' end of CTL-1 hybridized to unlabeled CTL-2. 

As shown in figure 3.34A, Mg2+ did not induce quenching at any pH or 

concentration. This acted as a control against the possibility that aggregation would allow 

quenching of the QSY7 at very high Zn2+ concentrations. In the case of aggregation, a 

quenching mechanism mediated by FRET would be likely. However, at the DNA 

concentrations employed, this did not occur even at very high concentrations of Mg2+. In 

addition, Cd2+ caused denaturation of the DNA at pH 8.5 but allowed some degree of 

quenching at pH 6.5 and pH 7.5. As explained in section 4.3, the SPR data was 

inconclusive as to whether a complex similar to M-DNA is formed by Cd2+ at either pH 

6.5 or 7.5. However, this study indicates that some degree of M-DNA formation is 

occurring in the presence of elevated Cd2+ concentrations at pH 6.5 and 7.5. Although it 
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is possible that the Cd2+ denatures small amounts of the DNA at pH 7.5, it appears that 

sufficient amounts of dsDNA remain to allow quenching of most of the Fl fluorescence. 

When ZnCl2 stock solutions are prepared, a small amount of HCl is typically 

added to the solution to prevent formation of insoluble Zn(OH)2. Addition of HCl results 

in a drop in pH from 4.4 ± 0.1 to 4.0 ± 0.1 for a 2.0 M stock solution. Whether or not HCl 

is added typically has no effect on the results obtained by experiments in which the 

solutions are used, and as indicated in section 3.5, results from both stock solutions were 

collated to generate the averaged quenching profiles at all pH values except pH 6.5 in 

figure 3.33. However, at pH 6.5, there is a large difference between the quenching 

profiles obtained with the two stock solutions, as illustrated in figure 3.35. Thus, when an 

acidified ZnCl2 stock solution is used, a logarithmic relationship between the 

concentration of Zn2+ required to convert 50 % of the DNA to M-DNA and the proton 

concentration is observed over all pH values. However, as illustrated in figure 3.37, this 

relationship does not hold up at pH 6.5 when the unacidified stock solution is employed. 

The possibility of high Zn2+ concentrations lowering the pH of the solution is ruled out 

by the data in figure 3.36, which shows no significant difference in the final pH of the 

buffered 6.5 mM solution between titrations of each ZnCl2 solution. 

When a stock solution of Zn(ClO4)2 is used rather than ZnCl2, 50 % M-DNA 

formation occurs around 26 mM Zn2+. Thus, the data obtained with Zn(ClO4)2 is more 

similar to that of the acidified ZnCl2, suggesting that the acidification of the stock 

solution causes Zn2+ to show weaker interactions with Cl-. This inference follows from 

studies on CdCl2 and Cd(ClO4)2 which show that in the former ion pair, there is a much 

tighter association between the two ions than in the latter. Similar behaviour by 
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compounds formed between the respective anions and Zn2+ is likely since Zn2+ has 

similar coordination properties to Cd2+. There are many distinct equilibria in which the 

Zn2+ ion could be participating in order to bind to the DNA, some of which are shown 

below, where “B” represents a T or G base: 

Zn2+-H2O + BH ↔ Zn+-B + H3O+

   ZnCl2 + BH ↔ Zn+-B + HCl +H+

Zn+OH + BH ↔ Zn+-B + H2O 

In view of the possibility that the above examples and other equilibria play a role in 

determining the exact state of the Zn2+ ion interacting with the DNA, it is difficult to 

determine the exact cause of the differences between the acidified ZnCl2, unacidified 

ZnCl2, and Zn(ClO4)2 stock solutions on the Zn2+ concentration at which M-DNA occurs 

at pH 6.5. This already complicated analysis would be exacerbated by the fact that Zn2+ is 

usually coordinated to six different inner-sphere ligands, meaning that different 

combinations of the above indicated equilibria could play a role in M-DNA formation. 

These differences do, however, show that the interaction between Zn2+ and its counterion 

have an effect on the interaction between Zn2+ and DNA that only manifests itself at very 

high Zn2+ concentrations. Since the data obtained with Zn(ClO4)2, which likely represents 

a nearly completely dissociated form of Zn2+, agree more with the data obtained with the 

acidified ZnCl2 stock, data from that stock solution will be considered in the following 

discussion. 

 The results obtained upon exposure of Zn2+ to the double-labeled DNA at each 

pH were indicative of M-DNA formation regardless of pH. As the pH was lowered, the 

concentration of Zn2+ required changes on a similar scale, with roughly a 10-fold increase 
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in required Zn2+ concentration per 10-fold increase in H+ concentration as depicted in 

figure 3.33. The midpoints of the transition are 3.2 and 50 mM Zn2+ at pH values 7.5 and 

6.5, respectively, in keeping with the observation of M-DNA formation at pH 7.5 but not 

at pH 6.5 by SPR. The logarithmic relationship between the concentration of Zn2+ 

required to induce quenching and the pH at which the experiment is conducted is 

summarized in figure 3.37. The trend in figure 3.37 was then fit to the following model 

for M-DNA formation, where “B” represents a T or G base: 

BH + Zn2+ ↔ Zn+-B + n H+

This model can be expressed as an equation, with an an equilibrium constant Keq as 

follows: 

 
(2) Keq = [Zn-DNA] [H+]n   o 

  [DNA] [Zn2+] 
 

Thus, at 50% M-DNA formation, equation 2 becomes: 

Keq =   [H+]n  . 
        [Zn2+] 

In this form, equation 2 can be expressed as a plot of log [Zn2+] vs log [H+] with a slope 

of n and a y-intercept of –(log Keq) as such: 

 

log [Zn2+] = n log [H+] – log Keq 

This yielded a line with the following equation fit with an R2 value of 0.995: 

y = 1.4 x + 7.9 

Thus, n = 1.4 and Keq = 1.3 x 10-8. This suggests that roughly 1.4 protons are released per 

base pair upon M-DNA formation, in agreement with previous observations (Aich et al., 

1999). It also indicates that the Keq for Zn(II) M-DNA formation is on the order of 10-8 
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indicating a fairly strong interaction. However, this interaction is still dependent on the 

presence of Zn2+ ions to maintain the M-DNA conformation as illustrated by the effect of 

EDTA in EtBr experiments or in SPR experiments upon termination of the exposure to 

metal ions. Thus, the interaction between DNA and Zn2+ to form M-DNA necessitates a 

roughly 105-fold excess of Zn2+ compared to H+ in order to maintain a Keq of 1.3 x 10-8. 

The difference between this ratio and the Keq value is due to the non-unity value of n. 

  

4.5 Implications for Data on M-DNA Model 

 

 Data gathered from the different assays support the M-DNA structural model in 

many ways. They also outline some of the differences between the Zn(II) and Ni(II) 

forms of M-DNA.  Finally, data obtained in this study have shown directly and 

conclusively that M-DNA is distinct from denaturation of the DNA. 

 

4.5.1 Support for the Structural Model 

 

 There are several lines of evidence produced by this study that support the 

structural model for M-DNA depicted in figure 1.11. Foremost is the fact that of the base 

modifications studied in section 3.2.4, those that had the largest impact on M-DNA 

formation were also those that replaced T or G with bases having much lower pKa values 

for their imino protons than T or G. This relationship is illustrated in figure 4.4, which 

shows a linear relationship between the pKa of the base pairing with A and the pH at 

which 50 % M-DNA formation occurs in the presence of EtBr. It is also interesting that 
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n2A had little effect since ring amine groups are not good ligands for transition metal 

ions. Likewise, the loss of a ring amino group from G did not negatively impact M-DNA 

formation; rather, the lowered pKa of this analogue facilitated the conversion to M-DNA. 

It is worth noting that in the X-ray crystallography study carried out by Thiyagarajan et 

al. in 2004, Co(III) hexamine bound the 4-amino group of C through a hydrogen bond 

mediated by one of the amines coordinated to the Co(III) ion. The model is also 

supported by the fact that purine N7 positions are not important for M-DNA formation 

since z7A substituted DNA also formed the conformation. A sequence containing z7G 

could not be assayed by EtBr since it does not fluoresce. Further, the fact that "M-RNA" 

formation was similar to M-DNA formation with r(AU)n as compared to d(AT)n suggests 

that the interaction is primarily with the bases of the DNA. 

 A more subtle effect observed in the EtBr study was that n2A and m5C 

substitutions, both of which increases the Tm of DNA, shift the B- to M-DNA pHm to 

higher values but conversely lower the M- to B-DNA pHm value. These effects support 

the notion that the metal ion is bound in the middle of the DNA, as a helix which 

denatures less easily would breath less thereby making exchange between the inside of 

the helix and the solvent more difficult. This is analogous to raising the activation energy 

of conversion in either direction. It is worth noting that a higher GC content raises the Tm 

as well lowering the pHm values of transitions in both directions. This is not in 

contradiction to the reasoning presented above, since the pKa of the available imino 

protons are lower in G•C base pairs than in A•T base pairs. 

 The SPR studies also supported the structural model since M-DNA formation was 

only observed when deprotonation of imino protons was possible. In addition, the 
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Figure 4.4:  The relationship between the pKa of the base pairing with A and the pH at 
which 50% M-DNA formation occurs as determined by the EtBr assay detailed in section 
2.3.5. The pKa values displayed are, from lowest to highest, those of F5U, Br5U, s4T, U, 
and T. A linear fit is indicated by the dashed line. 
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foldback structures that were believed to have formed with btn-CTL-2 or T30 sequences 

were not present with C30 or A30. In addition, the Cd2+ induced denaturation of DNA at 

pH 8.5 suggests that Cd2+ is forming a complex with the bases in the middle of the helix. 

Since the coordination properties of Cd2+ and Zn2+ are similar, it is likely that this type of 

binding is also occurring between Zn2+ and DNA at elevated pH, although it obviously 

does not result in denaturation of the dsDNA to the same extent as with complexes 

between DNA and Cd2+. A similar phenomenon is likely occurring between Ni2+ and 

DNA, although many differences between Ni(II) M-DNA and Zn(II) M-DNA were 

apparent from this study. 

 

4.5.2 Differences Between Zn(II) and Ni(II) M-DNA 

 

 When the data obtained by SPR and through the EtBr assay are considered 

together, several differences between these two forms of M-DNA are apparent. In the 

EtBr assay, Ni(II) M-DNA was shown to be more stable than Zn(II) M-DNA as a 

function of pH as well as in the presence of EDTA. Similarly, the SPR work showed 

Ni(II) M-DNA to be more stable in the absence of Ni2+ compared to Zn(II) M-DNA in 

the absence of Zn2+. In both the EtBr and SPR assays, a higher concentration of Ni2+ than 

Zn2+ is required to elicit a plateau response at pH 8.5. The greater propensity for Zn2+ to 

induce M-DNA formation could be due to the higher affinity of Zn2+ than Ni2+ for 

positions on the bases as well as to differences in the coordination preferences between 

the two ions. The small amount of denaturation observed by SPR following formation of 

Zn(II) M-DNA but not Ni(II) M-DNA is also likely due to this difference in affinity. 



  177 

Thus, although Ni(II) M-DNA is more stable, it is also more difficult to form than Zn(II) 

M-DNA. It is possible that these differences arise from the coordination chemistries of 

Zn2+ and Ni2+. Since it has a completed 3d shell, there are no ligand field stabilization 

effects in Zn2+ and consequently it is among the most conformationally labile transition 

metals, with the most common coordination environments being tetrahedral or 

octahedral. The coordination environment of Ni2+ is octahedral for the aquo ion, and 

tetrahedral and square planar structures are preferred with some ligands. Further, the 

coordination environment adopted by this ion is often affected by temperature or 

concentration (Cotton and Wilkinson, 1966). Characterization of the coordination 

environment of Ni2+ in M-DNA has not been possible owing to weak extinction 

coefficients (Aich et al., 1999). It is also possible that the coordination environment of 

Ni2+ changes upon an increase in pH from 8.5 to 9.0, as there is a sudden increase in 

Ni(II) M-DNA formation observed at that pH as opposed to the gradual increase in Zn(II) 

M-DNA formation observed as the pH is increased. This is also supported by the 

differing slopes of the Ni(II) M-DNA data at each pH shown in figure 3.8.  

 

4.5.3 Evidence Against Denaturation 

 

 Since early data on M-DNA formation relied heavily on EtBr-based assays that 

showed a lack of binding to the conformation, it was suspected that what was actually 

being measured was denaturation of DNA. The basis for this suspicion was that since 

elevated pH and the presence of transition metals capable of binding the bases could 

drastically lower the Tm of a duplex (Eichhorn and Shin, 1968), the two together could be 
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inducing denaturation. However, the fact that the Tm of a given sequence could be raised 

substantially in the presence of certain transition metals only at high pH was compelling 

evidence that denaturation was not taking place. This study has provided two further 

strong pieces of evidence that only a small amount of denaturation occurs concomitantly 

with Zn(II) M-DNA formation and that this cannot account for the observations made. 

Further, it has shown that the most stable form of M-DNA, Ni(II) M-DNA, does not incur 

any denaturation of a normal duplex. 

 Since the SPR experiments take place in a system with a mobile phase, any 

denaturation would be obvious. This is because there is no possibility that the strands can 

rehybridize since upon denaturation, the strand that is not anchored to the surface would 

be carried away by the flowing buffer resulting in a lowered baseline. As the data in 

figure 3.16 shows, there is only a small amount of denaturation (about 3%) occurring 

upon Zn(II) M-DNA formation in a normal DNA duplex. Further, no denaturation occurs 

at all upon formation of Ni(II) M-DNA. On the other hand, exposure of dsDNA to Cd2+ 

seems to transiently form a complex similar to M-DNA, but which results in denaturation 

of over 40% of the duplex on the first exposure and further loss of dsDNA upon further 

exposure, as illustrated in figure 3.15. Therefore the SPR assay conclusively 

demonstrated that Cd2+ denatures DNA at room temperature under alkaline conditions 

and also shows that Zn(II) M-DNA formation results in only a small amount of 

denaturation whereas Ni(II) M-DNA formation does not denature the duplex at all. These 

results are strongly supported by parallel quenching studies. 

 While exposure to Zn(II) causes quenching of fluorophore-labelled DNA at 

different concentrations depending on the pH, exposure to Mg2+ and Cd2+ have markedly 
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different effects on the emission spectra of labeled molecules. In agreement with SPR 

studies, exposure to Mg2+ has little effect regardless of pH or concentration. Further, 

exposure to Cd2+ at pH 6.5 or 7.5 causes some degree of quenching suggestive of 

formation of an M-DNA-like complex as depicted in figure 3.34B. However, at pH 8.5, 

as shown in figure 3.34B, there is a drop in fluorescence initially up to a concentration of 

about 0.10 mM after which the signal climbs back to baseline. Further addition of Cd2+ 

has little effect on this signal, presumably since the DNA is now denatured. Since the 

DNA is denatured, it is not possible for the QSY7 to communicate electronically with the 

excited Fl, and the fluorescence cannot be quenched. The differing effects of Cd2+ and 

Zn2+ at pH 8.5 not only strongly support the notion that M-DNA formation is distinct 

from denaturation but also verifies the validity of the quenching approach to 

measurement of M-DNA formation. 

 

4.6 Summary 

 

 The EtBr and SPR studies demonstrated many qualitative differences between 

Zn(II) and Ni(II) M-DNA, likely due to the differing ligand affinities and coordination 

properties of the respective transition metal ions involved in their formation. The EtBr 

experiments also provided support for the proposed structural model of M-DNA based on 

the effect of base substitutions on the B- to M-DNA equilibrium. The ITC experiments 

unambiguously showed that M-DNA formation is an entropy-driven process, while the 

SPR work indicated that a process similar to M-DNA formation is also possible with 

single-stranded DNA provided that titratable protons are present in the sequence. The 



  180 

SPR work also unambiguously demonstrated that M-DNA formation is distinct from 

denaturation. These two techniques are typically used to obtain quantitative 

thermodynamic and kinetic data, respectively. Unfortunately, in both cases, detailed 

quantitative data about the M-DNA formation process were unobtainable due to the 

complexity of the process being studied. These results would include ΔG and ΔS values, 

and rates of association and dissociation as well as interaction constants from ITC and 

SPR experiments, respectively. Quenching experiments did yield some quantitative data, 

showing that Zn(II) M-DNA formation is possible regardless of pH, provided that Zn2+ 

concentration is in roughly 1011-fold excess over the H+ concentration, although at pH 6.5 

and presumably lower, the activity of the metal ion is extremely sensitive to its ionization 

state. This mass-action view of M-DNA formation is also supported by the fact that 

higher concentrations of metal ion are necessary to form M-DNA at higher DNA 

concentrations. 

 The data obtained by the EtBr assay indicates that M-DNA formation is possible 

with any sequence of DNA, as both CT and a 496 bp random sequence DNA form the 

conformation. In addition, the propensities of different repeating sequences of DNA to 

form M-DNA are different, indicating that there is some degree of sequence specificity in 

the conformation. In particular, the data shown by EtBr indicating that d(G)•d(C) tracts 

can form M-DNA at particularly near-physiological pH values in the presence of 0.20 

mM Zn2+ suggest that there is a possibility for M-DNA to play a role in vivo, whether in 

the normal functioning of the cell or in the pathogenesis of a disease. This is further 

reinforced by the observation that M-DNA formation is entropy driven and therefore 

facilitated by higher temperatures. 
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4.7 Future Directions 

 

 This study has shown that M-DNA formation is facilitated by some base 

substitutions and in certain sequences. It has also shown that Zn(II) M-DNA formation is 

possible regardless of the pH as long as the correct ratio of metal ions to protons is 

maintained. These findings suggest two logical extensions of the current work. The first 

would be to localize M-DNA to different parts of a DNA molecule. Localization could be 

achieved by creating a sequence in which one portion has a high propensity for M-DNA 

formation perhaps also containing base substitutions that facilitate the conformation with 

the remainder of the molecule being comprised of a sequence that does not favour M-

DNA formation. These findings should also facilitate crystallization of M-DNA since it 

has been demonstrated that certain base substitutions and sequences favour M-DNA 

formation. Further, M-DNA formation at low pH values could be exploited to solve the 

problem of base-induced precipitation of divalent metal ions, particularly Zn2+ by 

attempting to crystallize the conformation at a lower pH. 

 More detailed SPR studies could also be undertaken, perhaps with an in-house 

built system that does not immobilize the DNA to a CMD matrix but rather measures the 

properties of DNA monolayers immobilized on a gold surface. Such a system would 

allow measurements of the thickness of the DNA in addition to measurements on the bulk 

refractive index, yielding more information about the structural changes occurring upon 

formation of M-DNA. In short, application of the findings of this study towards a specific 

goal or product involving M-DNA would be a logical future direction, as would 

refinement of a potentially powerful technique developed during this study. 
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