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Abstract

The current thesis studies a model of two dimensional convection of an ideal gas in a

rectangular domain having walls of finite thickness. The temperature outside of walls is

considered constant (Tleft > Tin > Tright). Heat exchange between walls and outside/inside

air is computed using Newton’s law of cooling. Heat transfer inside walls is modelled with the

heat equation. The mathematical model inside enclosure involves Navier-Stokes equations

coupled with equation of state for gas. The model is numerically studied using the method

of large particles. One of the main goals of the current thesis was to develop a software in

C# language for numerical solution of the above-described model. Physically meaningful

results, including stream lines and distribution of parameters of gas and temperature inside

solid walls were obtained.
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Chapter 1

Introduction

The current thesis is devoted to a mathematical model involving a two-dimensional flow

of a compressible gas in a rectangular chamber, coupled through the Newton’s law of cooling

to the process of heat conduction in walls of the chamber.

The research is motivated by the problem of modeling high-performance sealed multi-

pane windows. In cold climates, sophisticated window designs are used in order to provide

sufficient thermal insulation. A reliable model for such windows is required to take into

account both gas dynamics and heat transfer effects. Models considered within the current

thesis were created as initial steps towards a complete and reliable model of window units,

which would be capable of accurate prediction of heat transfer properties of actual windows

that satisfy a given set of specifications.

1.1 Basic equation of gas and fluid dynamics

In this chapter discussed necessary theory for describing model of this thesis, also represented

different basic methods in area of fluid dynamics.

1.1.1 Continuity equation (Conservation of mass)

The continuity equation represents the law of conservation of mass. The quantity of fluid

entering a certain volume in space must be balanced by the quantity leaving, unless com-

pression occurs [17]. One can obtain this by using equality between net rate of mass outflow

and net rate of mass inflow at arbitrary control volume. The continuity equation is given by

∂ρ

∂t
+ div(ρV) = 0 (1.1)
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where V = (u, v,w) is velocity vector field and ρ is density.

1.1.2 Equation of motion (Conservation of momentum)

Another important quantity in the description of continuum gas/fluid dynamics is the linear

momentum density. This equates the rate of change of momentum density of a body of the

fluid with the sum of all forces acting on that body of fluid. Thus using the second Newton’s

law of classical mechanics, one can obtain a vector equation(three scalar equations):

ρ
DV

Dt
≡ ρ(∂V

∂t
+ (V ⋅ ▽)V) = ρF − gradp + µ△V, (1.2)

where F is the body force per unit mass acting on the fluid element, V is velocity vector, µ

is viscosity coefficient and p is pressure.

1.1.3 Navier-Stokes equations

The Navier-Stokes equations describe the motion of a viscous compressible fluid in a given

domain. They are given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ρ

∂t
+ div(ρV) = 0,

ρ(∂V
∂t
+ (V ⋅ ▽)V) = ρF − gradp + µ△V.

(1.3)

The inviscid fluid case for the Navier-Stokes equations is known as Euler’s equations and

are given by
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ρ

∂t
+ div(ρV) = 0,

ρ(∂V
∂t
+ (V ⋅ ▽)V) = ρF − gradp.

(1.4)

There are four independent variables in the equations: the spatial coordinates x, y, z, and

the time t, and five dependent variables: the pressure p, the density ρ, and three components

of the velocity vector V [16]. It follows that both Euler and Navier-Stokes systems need an

extra equation in order to be closed. There are different possibilities in different cases, which

are described below.
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1.1.4 Equations of state

Ideal gas and its generalization

Gases are highly compressible in comparison to liquids, with changes in gas density directly

related to changes in pressure and temperature through the classical equation of state for

ideal gas:

p = ρRT (1.5)

where R is the gas constant, p is pressure, ρ is density and T is the absolute temperature.

It is used to closely approximate the behavior of real gases under normal conditions when

the gases are not approaching liquefaction.

The kind of effect which intermolecular forces have on the equations of state of a ideal

gas can be illustrated by examining modified equations of state.

In the hard sphere model of a gas, each molecule has a definite volume so that if V is

volume of the vessel containing one mole of the gas, then the volume which is not occupied

by molecules is V − b, where b is approximately N0 times the volume of one molecule. The

pressure is thereby increased, so that instead of classical equation of state one should write

p = RT

V − b
(1.6)

Equation (1.6) is known as the Clausius equation of state. To include attractive forces, one

must consider the reduced velocity with which the molecules on the average strike the walls of

the container. The reduction in pressure will be proportional both to the number of molecules

striking the wall and to the number of molecules in the interior of the container. Both are

proportion to the number density of molecules, n. Then p will be decreased proportionally

to n2, or 1
V 2 . Thus

p = RT

V − b
− a

V 2
(1.7)

where a is constant. Equation (1.7) is called van der Waals equation of state.

Conservation of energy

To close system (1.3) or (1.4), one can add equation of state such as the ideal gas law, but it

will add new unknown T , and consequently system will be needed one more equation such

3



as conservation of energy
∂ρE

∂t
+ div(ρEV) + div(pV) = 0 (1.8)

where energy is assumed to be

E = ρe + 1

2
ρ(u2 + v2 +w2) (1.9)

is the total energy per unit volume. In (1.9), e being the internal energy per unit mass for

the fluid. The internal energy at constant volume of an ideal gas is given by:

e = CV nRT (1.10)

where CV is a constant dependent on temperature, and n is the amount of substance of the

gas.

Incompressibility condition

All liquids and gases are compressible to some extent that is changes in pressure or temper-

ature will result in changes in density. However, in many situations the changes in pressure

and temperature are sufficiently small that the changes in density are negligible. In this

case the flow can be modeled as an incompressible flow. Mathematically, incompressibility

is expressed by saying that the density ρ of a fluid parcel does not change as it moves in the

flow field, i.e., ρ, is a constant throughout the flow field so that (1.1) becomes

divV = 0 (1.11)

This additional constraint simplifies the governing equations, especially in the case when the

fluid has a uniform density. Otherwise the more general compressible flow equations must

be used. Incompressibility condition plays the role of the equation of state. It is used in

many applications, in particular, for distribution of water, plasma flow and etc. For flow of

gases, to determine whether to use compressible or incompressible fluid dynamics, the Mach

number is a commonly used dimensionless parameter. The Mach number Ma at any point

in a compressible flow field is given by ratio of the local stream velocity V and the speed of

sound c:

Ma = ∣V∣
c

(1.12)
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The speed of sound is computed from the local thermodynamic conditions of the stream.

For a ideal gas,

c = cideal =
√

γ
p

ρ
=
√

γRT

M
=
√

γkT

m
(1.13)

where R is the molar gas constant, k is the Boltzmann constant, γ is the adiabatic index, T

is the absolute temperature, M is the molar mass, m is the mass of a single molecule.

When the Mach number is relatively small (≲ 0.2 − 0.3), the inertial forces induced by

the fluid motion are not sufficiently large to cause a significant change in the fluid density,

and in this case the compressibility of the fluid can be neglected. Thus to close system (1.3)

or (1.4), one can use condition (1.11) as extra equation.

Adiabatic process

Processes in which no heat is transferred to, or removed from, the system and which the work

is done reversibly are known as adiabatic, isentropic or reversible, processes. So using the

definition of an adiabatic process is that heat transfer to the system is zero and the first law

of thermodynamic, one can obtain the mathematical equation for an ideal fluid undergoing

a reversible adiabatic process

pV
α+1
α = pV γ = const, (1.14)

where p is pressure, V is specific or molar volume, and

γ =
Cp

CV

= α + 1
α

, (1.15)

Cp being the specific heat for constant pressure, CV being the specific heat for constant

volume, γ is the adiabatic index, and α is the number of degrees of freedom of molecule

divided by 2 (32 for monatomic gas, 5
2 for diatomic gas). Using the ideal gas law and assuming

a constant molar quantity, one also can obtain

T2 = T1 (
p2
p1
)

γ−1
γ

(1.16)

Incompressible flows there are two additional unknowns: density and temperature. the

continuity and momentum equation must now be augmented by the equation of state and

the energy equation to render the system determinable. The second law of thermodynamics

5



asserts that all the thermodynamic systems possess a state variable called entropy, s, defined

by

s1 − s2 =△s = ∫
r
ev

dQ

T
. (1.17)

this implies that the change of entropy between two states 1 and 2 is the sum of all dQ
T

produced by any reversible change which joins two states.For a perfect gas,

s = ∫ CV
dT

T
+R ln v + const (1.18)

So, for compressible gas to close system (1.3) or (1.4), one can combine the ideal gas equation

of state (1.5) with adiabatic condition:

∂S

∂t
+V ⋅ gradS = 0, P = ργe

S
CV , (1.19)

where S is the entropy density.

1.1.5 Laminar and turbulent flows. Reynolds numbers.

Laminar flow is characterized by low velocity and calm flow without distribution, swirls of

fluid and mixing between layers, whereas turbulent flow is characterized by chaotic, stochastic

property changes. The Reynolds number

Re = ρ∣V∣l
µ

(1.20)

was created as a criterion to distinguish laminar and turbulent flow. In (1.20), l is charac-

teristic length, V is characteristic velocity, ρ is characteristic density, and µ is viscosity.

The Reynolds number is a measure of the ratio of the inertia force on an element of

fluid to the viscous force on an element. Flows with high Reynolds numbers usually become

turbulent, while those with low Reynolds numbers usually remain laminar. For example,

for pipe flows, Reynolds numbers above about 4000 will most likely correspond to turbulent

flow, while a Reynold’s number below 2100 indicates laminar flow. The region in between

(2100 < Re < 4000) is called the transition region.
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1.2 Basic computational method for fluid/gas dynam-

ics

1.2.1 Finite difference method

In order to illustrate method, we apply it to the one-dimensional diffusion equation

∂u

∂t
= ∂2u

∂x2
(1.21)

For using finite difference method first of all one should establish the domain where the

equation is studied, i.e., area in spatial and time coordinates. If, for example, we model the

diffusion of a gas into a tube of length l the spatial domain is the interval of the Ox axis

associated to this length, i.e., (0, l). The time domain begins at t = 0 and ends at final time

t = T , i.e., (0, T ). Concluding the equation domain is Ω = (0, l) × (0, T ) ⊂ R2.

Second step is to choose the grid. The grid can be chosen by determining steps for all

axis and grid will be formed by intersection of hyper surface. For this one should choose

constant step sizes △x = xj+1 −xj and △t = tk+1 − tk. Then the nodes will be the intersection

of these straight lines.

!t

x
0

l 
IC

BC

 xt!

After these procedures one is able to discretize the equation by the derivatives by finite

differences. If uk
j = u(xj, tk), then for the node (xj, tk) equation is

uk+1
j − uk

j

△t
=
uk
j−1 − 2uk

j + uk
j+1

(△x)2
(1.22)
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which could be reset in the form

uk+1
j = △t

(△x)2
uk
j−1 + (1 − 2

△t
(△x)2

)uk
j +

△t
(△x)2

uk
j+1 (1.23)

Applying these formulas for any j = 1, ..., n − 1, one can see that from known values for

k = 0(the initial conditions) we can calculate those for k = 1, then from these values we

calculate those for k=2 and so on. At each step, we must know the values uk
0 and uk

n(from

the boundary conditions) in order to complete the time level values.

1.2.2 Lax-Friedrichs method

This method is first order finite difference method, which is build using stencil on figure 1.1.

 

tn+1 

tn 

j!1 j j+1

Figure 1.1: Stencil for Lax-Friedrichs method

First of all, let’s approximate this linear equation with this method

∂u

∂t
+A∂u

∂x
= 0, A = const. (1.24)

The value of un
j in the time derivative ∂u

∂t is replaced by average at neighbor nodes:

∂u

∂t
=
un+1
j − 1

2
(un

j−1 + un
j+1)

△t
(1.25)

and
∂u

∂x
=
un
j+1 − un

j−1

2△ x
. (1.26)
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Using (1.25) and (1.26) for approximation of (1.24) one gets the expression for un+1
j :

un+1
j = 1

2
(un

j−1 + un
j+1) −

△t
2△ x

A(un
j+1 − un

j−1). (1.27)

The method is stable for the linear hyperbolic equation (1.24) if ∣A△t
△x
∣ ≤ 1. [13]

The method can be extended to solve, for example, Riemann problems for nonlinear

systems (conservation laws) given by

∂

∂t
V + ∂

∂x
f(V) = 0 (1.28)

with initial conditions

V0(x) =V(x,0) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Vl x < 0

Vr x > 0

. (1.29)

For any finite difference model of (1.28) a robust first order numerical flux function F n
j+ 1

2

=

F (Vn
j ,V

n
j+1) usually is used in the conservation form

Vn+1
j =Vn

j −
△t
△x
(F n

j+ 1
2

− F n
j− 1

2

). (1.30)

In conservation form Lax-Friedrichs scheme defined through the numerical flux [22]

F n
j+ 1

2

= △t
2△ x

(Vn
j+1 −Vn

j ) +
1

2
{f(Vn

j+1) + f(Vn
j )} . (1.31)

For the one-dimensional Euler equations, V and f(V) have form

V =

⎛
⎜⎜⎜⎜
⎝

ρ

ρu

E

⎞
⎟⎟⎟⎟
⎠

, f(V) =

⎛
⎜⎜⎜⎜
⎝

ρu

ρu2 + p

u(E + p)

⎞
⎟⎟⎟⎟
⎠

, E = ρ(u
2

2
+ p) (1.32)

Lax-Friedrichs method has first order precision in time and space, and is stable when

∣△t
△xf

′(Vn
j )∣ ≤ 1 for all Vn

j . However this method has very strong dissipation, which is often

not acceptable for computing discontinuous solutions.

1.2.3 Godunov’s method

Godunov’s method is built by using information about characteristic solution of Riemann

problems (1.28) forward in time.
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First step is to define initial conditions Ṽn(x, tn) as piecewise constant function with the

value vnj on the grid cell xj− 1
2
≤ x ≤ xj+ 1

2
, but Ṽn is not a constant over the time tn ≤ t ≤ tn+1

and Ṽn(x, tn) is used as initial data for the conservation law. Then conservation law is solved

exactly to get Ṽn(x, t) for tn ≤ t ≤ tn+1. After obtaining the solution over tn ≤ t ≤ tn+1, one

needs to define the piecewise constant approximate solution at tn+1 using the formula

Ṽn+1 = 1

△x ∫
x
j+ 1

2

x
j− 1

2

Ṽn(x, tn+1)dx. (1.33)

And then process can be repeated using Ṽn+1(x, tn+1) as initial data for time tn+2. Also this

process can be written in conservative form

vn+1j = vnj −
△t
△x
(F (vnj+1) − F (vnj−1)), (1.34)

with numerical flux

F (vnj+1) =
1

△t ∫
tn+1

tn
f(Ṽn(xj+ 1

2
, t))dt. (1.35)

The method is stable when ∣λp(vnj )
△t
△x
∣ ≤ 1 for all eigenvalues λp at each vnj . Also the method

has numerical viscosity s△t
△x , where s is Rankine-Hugoniot shock speed. Godunov’s method,

similarly to Lax-Friedrichs method, is accurate to the first order in time and space. In

practice to solve Riemann problem at every cell boundary in each time step is very expensive

and the exact solution is average over the cell. Therefore modern methods, where Godunov’s

scheme is a building block, use approximate Riemann solution obtained by less expensive

algorithms.

1.2.4 Finite element method

The solution of a continuum problem by the finite element method is approximated by the

following step-by-step process.

1. Discretize the continuum

Divide the solution region into non-overlapping elements or sub-regions. The finite el-

ement discretization allows a variety of element shapes, for example, triangles, quadri-

laterals. Each element is formed by the connection of a certain number of nodes
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As example to illustrate method we would apply it to the same problem as in section

1.2.1. So to discretize the solution region, one can divide the spatial domain (0, l) into

elements, for example (x1, x2)⋃(x2, x3).

X1 X2 X3 

2
nd

element1
st

  element 

0 l 

x

2. Select interpolation or shape functions

The next step is to choose the type of interpolation function that represents the vari-

ation of the field variable over an element. The number of nodes form an element; the

nature and number of unknowns at each node decide the variation of a field variable

within the element.

By dividing the solution region into a number of small regions, called elements, and

approximating the solution over these regions by a suitable known function, a rela-

tion between the differential equations and the elements is established. The functions

employed to represent the nature of the solution within each element are called shape

functions, or interpolating functions, or basis functions.Polynomial type functions have

been most widely used as they can be integrated, or differentiated, easily and the ac-

curacy of the results can be improved by increasing the order of the polynomial.On

each element we seek the unknown function under the form u = ∑2
j=1Njuj where Nj

are the shape functions and uj are those corresponding to that elements nodal values.

Main properties of the Shape Functions

(a) Shape functions are linearly-independent.

(b)

Ni(xj) = δij =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, i = j

0, i ≠ j
, (1.36)
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i j

Ni Nj

where δij is the delta function. The delta function property implies that the shape

function Ni should be unit at its home node i, and vanishes at the remote nodes

j ≠ i of the element.

(c) Shape functions are partitions of unity:

n

∑
i

Ni(x) = 1 (1.37)

if the constant is included in the basis.

Considering all of above, for an element with n nodes,the shape function could be (n−1)

order Lagrange interpolation polynomial

Nk(x) =
n

∏
i=1

x − xi

xk − xi

. (1.38)

For a one-dimensional linear element it can be rewritten, as (n = 2)

N1 =
x − x2

x1 − x2

, N2 =
x − x1

x2 − x1

(1.39)

3. Form element equations

Next, we have to determine the matrix equations that express the properties of the

individual elements by forming matrix form, these equations are, for each element

⎛
⎜
⎝

a11 a12

a21 a22

⎞
⎟
⎠

⎛
⎜
⎝

uk+1
1

uk+1
2

⎞
⎟
⎠
=
⎛
⎜
⎝

f1

f2

⎞
⎟
⎠

Assembling these elements, the local numbering 12 becomes a global numbering 123 and

the above systems become

12



⎛
⎜⎜⎜⎜
⎝

a11 a12 0

a21 a22 0

0 0 0

⎞
⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜
⎝

uk+1
1

uk+1
2

uk+1
3

⎞
⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜
⎝

f1

f2

0

⎞
⎟⎟⎟⎟
⎠

(1.40)

for the first element and

⎛
⎜⎜⎜⎜
⎝

0 0 0

0 b11 b12

0 b21 b22

⎞
⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜
⎝

uk+1
1

uk+1
2

uk+1
3

⎞
⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜
⎝

0

g1

g2

⎞
⎟⎟⎟⎟
⎠

. (1.41)

for the second.

4. Assemble the element equations to obtain a system of simultaneous equations

Combining (1.40) and (1.41) local systems into a global system , one get

⎛
⎜⎜⎜⎜
⎝

a11 a12 0

a21 a22 + b11 b12

0 b21 b22

⎞
⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜
⎝

uk+1
1

uk+1
2

uk+1
3

⎞
⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜
⎝

f1

f2 + g1
g2

⎞
⎟⎟⎟⎟
⎠

(1.42)

Here one introduce the boundary conditions and then, by solving the system, one get

the nodal values of the solution at the instant tk+1 from the values at the instant tk

(which appear on the right-hand side).

1.2.5 Finite volume method

At the first step we discretize in time the equation,

uk+1 − uk

△t
= ∂2u

∂x2
.

Then, at the time instant tk we divide the spatial domain (0, l) into finite volumes (in 1D

case they are intervals too) but having the reference point P at the center. Considering three

such neighboring finite volumes, with centers at the points W and E (to West respectively

to East of P ), these volumes have their interior boundaries placed at the points w between

W and P , respectively e between P and E.

13



V1 V2 V3

W P Ee w 

The discretization of the spatial derivative is now performed by the formula

∂2u

∂x2
∣
P

=
∂u
∂x
∣
e
− ∂u

∂x
∣
w

xe − xw

(1.43)

and then
∂u

∂x
∣
e

= uE − uP

xE − xP

,
∂u

∂x
∣
w

= uP − uW

xP − xW

. (1.44)

Replacing into the above equation for every reference point E,P,W we obtain another system

from which we can calculate uE, uP , uW at the next time instant tk. This step is performed

as for the finite differences method, using the initial and boundary conditions. What is

different in these two methods is the discretization procedure.

1.2.6 Eulerian and Lagrangian flow description

There are two approaches in analyzing fluid problems. The first method, called Eulerian

method, in this method the fluid motion is given by completely prescribing the necessary

properties(pressure, density, velocity, etc.) as functions of space and time. From this method

one can obtain information about the flow in terms of what happens at fixed points in space

as fluid flows past those points.

The second method, called the Lagrangian method, involves following individual fluid

particles as they move about and determining how the fluid properties associated with these

particles change as a function of time.

1.2.7 Coupled Eulerian-Lagrangian (CEL) methods

It should be pointed out that all methods introduced in the previous chapters are based on

the Eulerian coordinates in which computational nodes are fixed in space and all variables
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are calculated at these fixed nodes. In some instances in reality, however, it is of interest to

compute variables in the Lagrangian coordinates where the mesh points arc allowed to move

along with the fluid particles. Furthermore, it is often convenient to have both Eulerian

and Lagrangian coordinates coupled, known as the coupled Eulerian - Lagrangian methods,

useful in highly distorted flows or multiphase flows. The basic idea is that the boundary Γ

of the region Ω given by

Ω =
n

⋃
i=1

Ωi (1.45)

and the curves Di which separate the subregions Ωi- are to be approximated by time depen-

dent Lagrangian lines Li(t). A subregion Ri which is approximated by the time independent

Eulerian mesh E will consequently have its boundary Γi, prescribed by the Lagrangian cal-

culations. Thus, the Eulerian calculation reduces to a calculation on a fixed mesh having

a prescribed moving boundary and therefore contributes one of the central calculations in

the CEL methods. The calculations that are made at each time step are divided into three

main parts: Lagrange calculations, Eulerian calculations, and a calculation that couples the

Eulerian and Lagrangian regions by defining that part of the Eulerian mesh which is active

and by determining the pressures from the Eulerian region which act on the Lagrangian

boundaries.

1.2.8 Particle-In-Cell (PIC) method

In this method, Eulerian mesh is used and the cell is filled with particles of the same kind or

a mixture of different kinds. The calculation of changes in the fluid configuration proceeds

through a series of time steps or cycles. Each cell is characterized by a set of variables

describing the mean components of velocity, the internal energy, the density, and the pressure

in the cell. In the Eulerian part of the calculations, only the cellwise quantities are changed

and the fluid is assumed to be momentarily completely at rest. In order to accomplish the

particle motion, it is convenient to prepare as a first step for the possibility of particles

moving across cell boundaries. For this purpose, the specific quantities in each of the cells

are transformed to cellwise totals.
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1.2.9 Monte Carlo methods (MCM) methods

Monte Carlo methods are a class of computational algorithms that rely on repeated ran-

dom sampling to compute their results. Monte Carlo methods are often used in simulating

physical and mathematical systems. Because of their reliance on repeated computation of

random or pseudo-random numbers. MCM have been successfully used in many problems in

physics and engineering where stochastic or statistical approaches can describe the physical

phenomena more realistically. They have been extensively applied to electron distributions,

neutron diffusion, radiative heat transfer, probability density functions for turbulent mi-

croscale eddies, etc.

1.2.10 Spectral methods

Spectral methods are a class of techniques used in applied mathematics and scientific com-

puting to numerically solve certain PDEs, often involving the use of the Fast Fourier Trans-

form. Where applicable, spectral methods have excellent error properties, with the so called

”exponential convergence” being the fastest possible. The spectral method and the finite

element method are closely related and built on the same ideas; the main difference between

them is that the spectral method approximates the solution as linear combination of con-

tinuous functions that are generally nonzero over the domain of solution (usually sinusoids

or Chebyshev polynomials), while the finite element method approximates the solution as a

linear combination of piecewise functions that are nonzero on small subdomains. Because

of this, the spectral method takes on a global approach while the finite element method is

a local approach. This is part of why the spectral method works best when the solution is

smooth.

1.3 Discussion

A wide variety of models exists in field of computational fluid and gas dynamics. For numer-

ical solution of the corresponding problem, the above methods, their modifications, as well

as other methods are used in practice. To name few, such models include laminar and tur-
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bulent gas and fluid flows, flows of plasma and flows with chemical, thermal and mechanical

interactions. A few examples are discussed below.

In [21], iterative finite volume method is developed for calculation of compressible, vis-

cous, heat conductive gas flows at all speeds. The method is derived from a general form of

system of equations describing the motion of compressible, viscous is given in a general form

of the Navier-Stokes-Fourier equations. In work concluded that model captures the basic

flow effects of the motion of compressible viscous heat-conducting gas in continuum.

Work [5] studied the effect of surface and gas radiation on the turbulent natural convec-

tion in a tall differentially heated cavity. The turbulent flow is described by Navier-Stokes

equations with added the subgrid-scale viscosity. An explicit finite volume fractional step

based algorithm is used.

In [1], direct numerical simulations of an anisothermal reacting turbulent channel flow

with and without radiative source terms have been performed to study the influence of the

radiative heat transfer on the optically non-homogeneous boundary layer structure. In the

studied case, representing a low optical thickness and low temperature gradient configuration.

It is shown that it is not necessary to resolve the coupled Navier-Stokes/radiation equations

in the turbulent boundary layer to capture the correct physics of the energy transfer to the

wall. The contribution of the radiative heat fluxes at the boundaries can be independently

calculated using a radiation solver and added to the flux prediction of the law-of-the-wall.

In work the adding radiative source influenced the heat flux prediction of 7%.

Paper [20] presented a comparative study of the physical differences between numerical

simulations obtained with both the conservation and incompressible forms of the Navier-

Stokes equations for natural convection flows in simple geometries with the goal of investi-

gating the possible consequences of assuming incompressible flow in Next Generation Nuclear

Plant simulations, specifically for helium-cooled reactor concepts. Results show that there

was only a 1.0% variation in local density from the incompressible reference density, for this

low-temperature difference and the comparison results diverged significantly for the high-

temperature difference. In general, the incompressible flow assumption is valid in the case of

isothermal, or nearly isothermal, single phase flows under relatively small pressure gradients.

Work [2] represents model of gas flow in pipeline networks ranging from partial differential
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equation models (the isothermal Euler equations) to algebraic models from an analytical and

a numerical point of view. Work shows that models of different types can be coupled and

this coupling yields well-posed mathematical problems.

Turbulent natural convection in a rectangular enclosure having finite thickness heat-

conducting walls at local heating at the bottom of the cavity provided that convective-

radiative heat exchange with an environment on one of the external borders has been nu-

merically studied in [11]. Mathematical simulation has been carried out in terms of the

dimensionless Reynolds averaged Navier-Stokes equations in stream function-vorticity for-

mulations. Equations have been solved numerically using finite difference method with the

implicit two-layer difference scheme. The enclosure is filled with uniform rectangular grid.

The convective terms are discretised applying the scheme of the second order allowing con-

sidering a sign of velocity and the diffusive terms with the central difference scheme.
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Chapter 2

The method of large particles

2.1 Overview

Firstly for modeling compressible ideal gas, in inviscid fluid case one should describe it with

Euler’s equations plus continuity equation.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ρ

∂t
+ div(ρV) = 0,

ρ(∂V
∂t
+ (V ⋅ ▽)V) = ρF − gradp.

(2.1)

Main idea of the method is to split initial Euler or Navier-Stokes system, represent as con-

servation laws system, on every time step onto separate calculation stages, which are divided

by physical processes. Fluid is considered continuous complex of N large particles, which

match with Eulerian mesh in initial moment of time. Particles determine parameters of fluid

such as mass, energy and velocity, and Eulerian mesh are used to detect parameters of field:

pressure, density and temperature.

For each time steps there is three calculation stages:

1. Eulerian stage

At this stage particles are considered static and only changes in inner state of cell are

studied, i.e. there is no mass flow through boundaries of cell at this moment. So to

determine transient values of flow parameters ũ,ṽ and Ẽ one can only consider effects

of pressure in cell, so one should take look at differences of momentum and energy of

large particle for △t time.

2. Lagrangian stage
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After first stage, next step is to take into consideration displacements of cells propor-

tionally their velocity and △t time, without changes in inner state. So at this stage

flow of mass through the boundaries of cell should be computed to consider interaction

between surrounding cells.

3. Final stage

Computing of redistribution mass, energy and momentum in space accordingly with

conservation laws for each cell and whole system. This helps to determine new spread-

ing of velocity, energy and density in domain.

2.2 Eulerian stage

As discussed earlier at this stage density is distribution considered static, so
∂ρ

∂t
= 0 and

from conservation of mass one can get that divρV = 0. Then in (2.1) ρ can be taken out of

time derivation and parts of type divϕρV can be neglected, then this modified system can

be group by time derivatives. Below Navier-Stokes system described using this assumptions.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ
∂u

∂t
+ ∂p

∂x
= µ∆u,

ρ
∂v

∂t
+ ∂p

∂y
= −ρg + µ∆v,

ρ
∂E

∂t
+ divpV = E(g).

(2.2)
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Using finite difference approximation for (2.2) at time tn, one can get following equations for

i, j cell:

ρnij (
∂u

∂t
)
n

i,j

= −
[pn

i+ 1
2
,j
− pn

i− 1
2
,j
]

△x
+ µ(

un
i+1,j − 2un

i,j + un
i−1,j

(△x)2
+
un
i,j+1 − 2un

i,j + un
i,j−1

(△y)2
)

ρnij (
∂v

∂t
)
n

i,j

= −
[pn

i,j+ 1
2

− pn
i,j− 1

2

]

△y
− ρnijg + µ(

vni+1,j − 2vni,j + vni−1,j
(△x)2

+
vni,j+1 − 2vni,j + vni,j−1

(△y)2
)

ρnij (
∂E

∂t
)
n

i,j

= −
⎛
⎜⎜⎜
⎝

[pn
i+ 1

2
,j
un
i+ 1

2
,j
− pn

i− 1
2
,j
un
i− 1

2
,j
]

△x
+
[pn

i,j+ 1
2

vn
i,j+ 1

2

− pn
i,j− 1

2

vn
i,j− 1

2

]

△y

⎞
⎟⎟⎟
⎠
− gρnijvij

(2.3)

where derivatives in times are defined as:

(∂f
∂t
)
n

ij

=
f̃n
ij − fn

ij

△t
, f = (u, v,E).

After these steps one can get equations for velocity and energy at Euler’s stage:

ũn
ij = un

ij −
pn
i+ 1

2
,j
− pn

i− 1
2
,j

△x
△t
ρnij
+ µ△ t

ρnij
(
un
i+1,j − 2un

i,j + un
i−1,j

(△x)2
+
un
i,j+1 − 2un

i,j + un
i,j−1

(△y)2
) ,

ṽnij = vnij −
pn
i,j+ 1

2

− pn
i,j− 1

2

△y
△t
ρnij
− g△ t + µ△ t

ρnij
(
vni+1,j − 2vni,j + vni−1,j

(△x)2
+
vni,j+1 − 2vni,j + vni,j−1

(△y)2
) ,

Ẽn
ij = En

ij −
⎡⎢⎢⎢⎢⎣

pn
i+ 1

2
,j
un
i+ 1

2
,j
− pn

i− 1
2
,j
un
i− 1

2
,j

△x
+
pn
i,j+ 1

2

vn
i,j+ 1

2

− pn
i,j− 1

2

vn
i,j− 1

2

△y

⎤⎥⎥⎥⎥⎦

△t
ρnij
− gvij △ t,

(2.4)

where ũ, ṽ, Ẽ are transitional values of velocity and energy at time tn + △t. And variable

with fractional indexes should be computed as:

un
i+ 1

2
,j
=
un
ij + un

i+1,j

2
.

2.3 Lagrangian stage

At this stage flow of masses △Mn through boundaries of cell are computed at time △t with

consideration that only normal to boundary component of velocity move all masses. For

21



example, continuity equation (1.1) can be written in difference form:

ρn+1ij △ x△ y = ρnij △ x△ y −△Mn
i+ 1

2
,j
+△Mn

i− 1
2
,j
−△Mn

i,j+ 1
2

+△Mn
i,j− 1

2

,

where flow of mass is

△Mn
i+ 1

2
,j
=< ρn

i+ 1
2
,j
>< ũn

i+ 1
2
,j
>△y△ t. (2.5)

Here symbol <> means values of ρ and ũ on boundary of cell. △Mn could be computed using

formulas of second order.Then △Mn
i+ 1

2
,j
is computed as:

If ũn
ij + ũn

i+1,j > 0 and ũn
i+ 1

2
,j
= ũn

ij + (
∂ũ

∂x
)
n

ij

△x
2
= ũn

ij +
ũn
i+1,j − ũn

i−1,j

4
> 0,

then △Mn
i+ 1

2
,j
= (ũn

ij +
ũn
i+1,j − ũn

i−1,j

4
)(ρnij +

ρni+1,j − ρni−1,j
4

)△ y△ t.

If ũn
ij + ũn

i+1,j < 0 and ũn
i+ 1

2
,j
= ũn

i+1,j − (
∂ũ

∂x
)
n

i+1,j

△x
2
= ũn

i+1,j −
ũn
i+2,j − ũn

i,j

4
< 0,

then △Mn
i+ 1

2
,j
= (ũn

i+1,j −
ũn
i+2,j − ũn

i,j

4
)(ρni+1,j −

ρni+2,j − ρni,j
4

)△ y△ t.

In other case, if ũn
ij + ũn

i+1,j > 0 and ũn
ij +

ũn
i+1,j − ũn

i−1,j

4
< 0,

or ũn
ij + ũn

i+1,j < 0 and ũn
i+1,j −

ũn
i+2,j − ũn

i,j

4
> 0,

then △Mn
i+ 1

2
,j
= 0.

(2.6)

Such order of computation allows to have stable result if only first stage was stable, so for this

purpose in (2.4) thermodynamic pressure p should be replaced by p + q, where q is artificial

viscosity.

Also flow of mass △Mn could be computed using formulas of first order. In this case it
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can be done without adding artificial viscosity.

△Mn
i+ 1

2
,j
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρnij
ũn
ij + ũn

i+1,j

2
△ y△ t, if ũn

ij + ũn
i+1,j > 0,

ρni+1,j
ũn
ij + ũn

i+1,j

2
△ y△ t, if ũn

ij + ũn
i+1,j < 0.

(2.7)

2.4 Final stage

When Euler and Lagrangian stages completed, one can finish iteration and compute new

distribution parameters at time tn+1 = tn +△t. Equation of this stage are conservation laws

of mass M , momentum P and full energy E, which are written for cell in difference form:

Mn+1 =Mn +∑△Mn
boundary,

P n+1 = P n +∑△P n
boundary,

En+1 = En +∑△En
boundary.

(2.8)

Here △Mn
boundary is mass of gas, which move through one of boundaries for time △t. So final

values of ρ, X = (u, v,E) at new time tn+1 = tn +△t are computed as:

ρn+1ij = ρnij +
△Mn

i− 1
2
,j
+△Mn

i,j− 1
2

−△Mn
i,j+ 1

2

−△Mn
i+ 1

2

, j

△x△ y
,

Xn+1
ij = {Dn

ij(1)X̃n
i−1,j △Mn

i− 1
2
,j
+Dn

ij(2)X̃n
i,j−1△Mn

i,j− 1
2

+Dn
ij(3)X̃n

i+1,j △Mn
i+ 1

2
,j
+

+Dn
ij(4)X̃n

i,j+1△Mn
i,j+ 1

2

+ X̃n
i,j (ρnij △ x△ y − [1 −Dn

ij(1)]△Mn
i− 1

2
,j
−

−[1 −Dn
ij(2)]△Mn

i,j− 1
2

− [1 −Dn
ij(3)]△Mn

i+ 1
2
,j
− [1 −Dn

ij(4)]△Mn
i,j+ 1

2

)} /{ρn+1ij △ x△ y} ,
(2.9)

where Dn
ij(k) is using to determine direction of flow at a cell boundary, k is index for each

of four boundaries: 1 is left, 2 is bottom, 3 is right and 4 is top boundary of cell.

Dn
ij(k) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, if fluid flow in (ij) cell through k-boundary;

0,otherwise.
(2.10)
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2.5 Stability condition and error estimation

Thorough analysis can be found in [3]. The method of large particles is an explicit first order

differences schemes which lead to stability condition in the form C △t
△s < 1, where C is speed

of sound, s is coordinate x or y. The method is first order. The stability properties can be

improved by introducing artificial viscosity as outlined below.

2.6 Artificial and numerical viscosity

Numerical viscosity appears in methods that use discretization of domain and approximation

of values at nodes or cell volumes. This type of viscosity follows from approximation structure

of difference scheme and mesh itself. For example, the value of numerical viscosity for Lax-

Friedrichs method (discussed above) is A△x
△t ,where A is constant from equation (1.24). For

method of large particle numerical viscosity is εx = 1
2 ∣u∣△ x, εy = 1

2 ∣v∣△ y.

On the other hand, artificial viscosity can be manually added to method to increase nu-

merical stability. Method of large particles in areas with small velocities tends to accumulate

instability. So in order to correct this effect one needs to change pressure from p to p + q in

Euler equations, adding necessary viscous pressure q to the method. For example, in [3], the

following form of artificial viscosity q is used:

q = ν△u
△x
= BCρ△ u, (2.11)

where C =
√
γp/ρ is local speed of sound, B is some empirical constant and ν = BCρ△ x.

Then at the Euler stage the finite difference approximation yields

ũn
ij = un

ij −
pn
i+ 1

2
,j
− pn

i− 1
2
,j

△x
△t
ρnij
+ ν △ t

ρnij

(ui+1 − ui−1)
△x2

. (2.12)

On the other hand, one may choose to discretize Navier-Stokes equations with physical

viscosity µ instead of Euler equations with artificial viscous pressure q, i.e. follow the physical

model for viscous fluid. Then the formulas for Euler stage take the form

ũn
ij = un

ij −
pn
i+ 1

2
,j
− pn

i− 1
2
,j

△x
△t
ρnij
+ µ△ t

ρnij
(uxx + uyy) (2.13)
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with a similar form for the y-component ṽnij of the velocity. Computations for most models

considered in the current Thesis show that results are consistent for added viscosity µ ≥ 0.9;

results for smaller viscosities involve development of instability (see, e.g., Fig. B.23).

2.7 Discussion

Method of large particles has been used to perform computations for different models.

Method of large particles allows to make computations using one algorithm for different

complex models without preliminary determination of singularities, such models as stream-

lines of different shapes, transition through sound speed, inner shock waves and others. Some

examples are given below.

Work [4] obtains results for three dimensional viscous flows with shock waves in channels

and engine nozzles using modified method of large particles. In this model existence of mixed

subsonic and transonic flows makes it impossible to use many classical methods, however as

shown in [4], method of large particles is the most appropriate for this type of problems.

For example, in [12], the flow of gas and dust in atmosphere after volcanic eruption was

described by system of equations of gas-suspension mechanics. Parameters of volcanic erup-

tion were computed, using method of large particles in cylindrically symmetric formulation.

In [10] studied model of probe was placed in a flow of slowly moving collisional plasma

in the wall region in the neighborhood of a cylindrical. The problem was solved by the

time relaxation method using the algorithm of the method of large particles.The mathemat-

ical model of the problem included equations of continuity for ions, electrons, and neutral

particles, equations of motion for all components of plasma, energy equation for neutral

component, and Poisson equation for self-consistent electric field. The computations were

compared with experiment and showed adequate agreement.
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Chapter 3

The mathematical model and numerical com-

putations

Firstly two test models are discussed, in order to examine properties of method of bulk

particles applied to different physical situations. After that main model is formulated, and

computations are performed.

3.1 Test model 1

x

y 

Ly 

Lxx1 x2 

!, p, u, v, T 

v=vin   

T=Tin 

x3 x4 

v=vout 

Figure 3.1: Test model 1

First test model considers a rectangular area with two “no-leak” boundaries. At the

bottom, there is a part of the boundary (x1 ≤ x ≤ x2) with a gas stream of higher temperature

flowing in vertically with velocity vin; in the top wall, there is a part of the boundary

(x3 ≤ x ≤ x4) has corresponding to a “fan” blowing the gas out vertically with velocity vout.
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Thus the model represent enclosure with some current with higher temperature passing

through. Parameters x1, x2, x3, x4, vin, vout can be change manually in program form 3.2.

 

Figure 3.2: Test model 1, Input form
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Boundary conditions are:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(0, y, t) = u(Lx, y, t) = 0,0 ≤ y ≤ Ly,

v(x,Ly, t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0,0 ≤ x ≤ x3, x4 ≤ x ≤ Lx

vout, x3 ≤ x ≤ x4,

v(x,0, t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0,0 ≤ x ≤ x1, x2 ≤ x ≤ Lx

vin, x1 ≤ x ≤ x2,

T (x,0, t) = Tin,

ρ(x,0, t) = ρ0,

p(x,0, t) = p0,

(3.1)

Initial conditions are: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V = 0,

T = T0,

ρ = ρ0,

p = R

M
ρT,

(3.2)

where p is pressure, ρ is density, R is the gas constant, M is the molar mass and T is tem-

perature, Tin is temperature of flow in and T0 < Tin is initial inside temperature. Gravity

coefficients equal 0. Results contain velocity field u, v; density ρ; pressure p and temper-

ature distribution T . Results for two different times 2.52 s and 12 s for model with initial

temperature inside T0 = 290 K and temperature of influent flow Tin = 300 K can be seen

in Figures B.1, B.2 and B.3; they show physically meaningful development of a gas stream

between inflow and outflow locations.

3.1.1 Effects of step sizes

For analyzing the computation results, let us look at the effects of changing different pa-

rameters in Test model 1. As a benchmark, we take results corresponding to the following

parameters: Lx = Ly = 2 m, x1 = 0.2 m, x2 = 0.4 m, vin = 1 m/s, x3 = 0.4 m, x4 = 0.6 m,

vout = 1 m/s, dimensionless time step τ = 0.008, control time t = 0.316 s, artificial viscosity
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coefficient µ = 1 m2/s. For such parameters, the flow current passes through the left side of

the domain, and a swirl is formed in the right side (Figure B.5).

The first series of tests was done to compare benchmark results with results for the same

physical model, but with different numerical space steps (bigger and smaller than for chosen

model). The time step is considered fixed at τ = τ0. Results in Figures B.6 shows result for

bigger cell approximation in particular h = 0.2 m and h = 0.067 m. For N = 30 results very

close to benchmark, but further increase in space steps (N ≤ 10) leads to the loss of accuracy.

Even for large particle sizes, the numerical method is stable and gives acceptable results which

can be used for fast first computation to estimate the behavior of the flow. Comparatively

small number of cell for domain allows to reduce computational time. Results in Figures B.7

shows result for smaller cell approximation in particular h = 0.02m and h = 0.028 m shows

no significant change in results. From this series of tests, it can be concluded that one may

start by choosing a large step size h, without loss of stability, and and continue until desired

accuracy is obtained.

The next comparisons are made with fixed space step h = h0 and for different time steps

(bigger and smaller than the chosen benchmark). Results in Figure B.8 are close to the

benchmark results. Results of comparison of velocity components (absolute differences) in

the case when τ = 0.01 with the benchmark case τ0 = 0.008 are given in Figure B.9 and

demonstrate rather small differences (∼ 10−3). This test shows that for a faster computation,

one might choose the largest possible time step from the stability condition.

3.1.2 Effects of artificial viscosity

Model 1 is also helpful to demonstrate the work of the method of large particles for higher

velocities, where there is no need in artificial viscosity. Results in Figure B.10 correspond

to velocities ∼ 10 m/s and no artificial viscosity (Reynolds number Re ≫ 1); Figure B.11

contains comparison results for the same problem with viscosity µ = 1 m2/s (Re = 200).
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T=Tleft 
!, p, u, v, T T=Tright

Figure 3.3: Test model 2

3.2 Test model 2

The second test model considers a rectangular domain, with initial conditions corresponding

to hydrostatic equilibrium of gas at a fixed temperature, with gravity taken into account:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V = 0,

T = Tin = T0,

ρ = ρ0e−
Mg
RT

y,

p = R

M
ρT0.

(3.3)

In this model, artificial viscosity is introduced for stable computations, and Navier-Stokes

equations (1.3) are solved instead of Euler’s equations (1.4). Boundary conditions are set

as follows: “no-leak” boundaries on top and bottom of rectangle and with left boundary

temperature Tleft > Tin and right boundary temperature Tright < Tin.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(0, y, t) = u(Lx, y, t) = 0,0 ≤ y ≤ Ly,

v(x,0, t) = v(x,Ly, t) = 0,

T (0, y, t) = Tleft,

T (Lx, y, t) = Tright.

(3.4)

As a result, thermal convection is expected to be observed in the gas domain.
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Results for progressing times are presented in Figure B.12 (10 s, flow goes straight from

left to right due to compressibility assumptions), Figure B.13 (18.9 s), and finally , Figure

B.14 (31 s, stabilized convection roll). The results show development of convection, with

gas warming and rising near the hot boundary, and cooling and going down near the cold

boundary.

3.3 Main model

 

x

y 

Ly 

Lx 

T=Tleft 
!, p, u, v, T

T=Tright

W W

T T

Figure 3.4: Main model

The main model is based on the Test model 2, with modifications at boundaries. For this

model, two rectangular domains representing glass walls are added on the left and on the

right. At the left boundary of the left glass, the temperature of the environment assumed

constant and equal to Tleft; similarly at the right boundary of the right glass, the temperature

of the environment is Tright < Tleft.

In this model, the linear heat equation is used to describe temperature distributions

s(x, y, t) inside glass domains:

st = k(sxx + syy), (3.5)

where k is thermal diffusivity of material. Using explicit finite differences to approximate
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the heat equation, one obtains

sn+1ij = snij + k△ t{
sni−1,j − 2snij + sni+1,j

(△x)2
+
sni,j−1 − 2snij + sni,j+1

(△y)2
} (3.6)

In places of contact between glass and gas, one needs to set proper boundary conditions.

There are various kinds of heat transfer. Conduction is heat transfer which occur inside

medium due to molecular activity of material. Convection is heat transfer come due to a

superposition of energy transport by the random motion of the molecules and by the bulk

motion of the fluid. In this model particulary, convection heat transfer occurs between glass

surface and a fluid in motion when the two are at different temperatures. Thermal radiation

is energy emitted by matter that is at finite temperature [8].

 

x
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T=Tleft T=Tright

q2 

cond 

q6 

cond 

q1 convec 
q7 convec

q4 convecq3 convec 

q5 rad 

Figure 3.5: Types of heat transfer

Figure 3.5 shows different types of heat transfer discussed above: q1 is the heat flux

corresponding to convection between gas and the left glass, q2 corresponds to heat conduction

through the left glass, q3 and q4 correspond to convection between glasses, q5 is net radiation

exchange heat flux between the inner surface of the left glasses, q6 is the conduction heat

flux through the right glass, q7 is the heat flux corresponding to convection between gas and

the right glass. The main model takes into account all types of heat transfer except for the

radiation flux q5.

Initial conditions for the gas domain is the same as in previous test model: (3.3). For

glass areas initial temperature distributions are s0ij = T0. Top and bottom boundaries of glass
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domains are assumed perfectly insulated:

∂s

∂y
(x,0, t) = 0, ∂s

∂y
(x,Ly, t) = 0. (3.7)

Inner and outer surface boundary conditions are computed using the mixed boundary con-

dition (Newton’s law of cooling)

−K0
∂s

∂x
(0, y, t) = h(Tair − s(0, y, t)), (3.8)

where s(0, y, t) is Tsurface temperature of surface of a glass, K0 (W /m ⋅K) is thermal conduc-

tivity of material, and h (W /m2 ⋅K) is convection heat transfer coefficient. Other parameters

use the same boundary conditions as for Test model 2.

Results for time t = 0.3 s are given in Figures B.15 (temperature distribution in glass and

gas domains) and B.16 (velocity field inside the gas domain). We note that time needed to

establish convection is longer than in Test model 2, due to time necessary for glasses to be

warmed/cooled, in order to create differences of temperature at air domain boundaries.

Final results at time 171 s where convection is established are shown in Figure B.18;

the corresponding temperature distribution is given in Figure B.17. Computations were

conducted in the presence of artificial viscosity µ = 1 m2/s. It was shown numerically that

the viscosity cannot be decreased lower than 0.92 m2/s without loss of numerical stability

(see Figure B.23).

Comparison of results for different computation parameters are presented in Figure B.19

(a different thermal conductivity), Figure B.20 (a different viscosity coefficient), Figure B.21

(different temperatures to the left of the left glass) and Figure B.22 (different mesh size).

All comparison results are well within physical expectations.
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Chapter 4

Conclusions and future work

4.1 Conclusion

The current thesis is devoted to numerical solution of gas dynamics problem, in particular, a

system of two dimensional Navier-Stokes equations. Fundamentals of fluid and gas dynam-

ics, conservation principles and various equations of state for fluid and gas dynamics were

discussed in Chapter 1. In particular, the conservation of mass follows from assumption

that mass leaving the given volume must be balanced by the same quantity of mass entering

the volume. The same principle holds for conservation of momentum and energy. These

equations together form a system of equations describing motion known as Navier-Stokes

equations for viscous fluids, or Euler’s equations for inviscid fluids/gases. When modeling

gas or fluid dynamics, equation of state is used to complete the system of equations. and

relate parameters of the system such as pressure p, density ρ and temperature T . Differ-

ent assumptions can be applied to problem in order to make computations simpler, such as

incompressibility, using the adiabatic process, etc. Depending on the type and complexity

of model, the gas/fluid dynamics equations can be coupled with other equations, describing

particular process. For example, this is applicable for flows with chemical reactions, plasma

flows, flame propagation, etc. A final nonlinear system usually contains several unknown

functions which makes the exact solution solution of the system unlikely; in practice, such

problems are often solved numerically.

In the last decades, many numerical methods have been developed for particular problems

in fluid dynamics. Benefits of methods and views was combined to obtain universal methods.

Even nowadays this quest is not finished. Some of fundamental methods in this area discussed
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in second part of Chapter 1. Most of the classical methods aren’t used directly, but the ideas

were used to develop new methods in the modern computational fluid dynamics.

In the current thesis, we performed computations using the method of large particles.

This is a finite volume method developed based on the idea of combining the benefits of

Eulerian and Lagrangian frameworks. The process of computation is split in different stages

by physical processes. The domain is subdivided using Eulerian mesh which is considered

static, the medium in it considered to be a set of “particles” with fixed mass that move

through the Eulerian mesh. Thus the mesh is used to determine parameters of the field

(pressure, density and temperature), whereas particles are used to determine parameters of

fluid itself (mass, energy, velocity). Stability issues and their possible solutions are discussed

in Chapter 2.

The obtained results correspond to three two-dimensional models, to which the method

of large particles was applied in the current work. For the method of large particles, a com-

putational software package was developed using C# programming language. The software

provides results in text files, which then visualize the data using Matlab. The first consid-

ered model describes a rectangular cavity with open segments on top and bottom boundaries,

through which a gas flow of slightly higher temperature moves in and out of the gas cavity.

The second model describes rectangular enclosure with fixed temperatures at left and right

boundaries (Tleft > Tin > Tright). Initially gas inside is in the state of hydrostatic equilibrium;

due to temperature differences, an eventually stabilized convection roll is observed.

The third model is the main model for this work. There, the method of large particles is

applied for two dimensional convection problem in rectangular domain with finite thickness

walls. This test model was developed as a step towards a model of processes taking place in

a multi-pane window. Within the model, glass walls participated in heat exchange through

Newton’s law of cooling used as a boundary condition. Obtained results show the develop-

ment of convection and have a direct physical interpretation. Future work in the direction

of extension of numerical model may include extension of the model into three dimensions.

One also could include radiative heat exchange component in the model. For comparison

purposes, the model can also be studied using alternative numerical methods.
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Appendix A

Programming code

This chapter contains source code written in C#.

A.1 Code for solving heat equation

This section contains code for solving equation (3.5) using scheme (3.6), where TglassRight
is a matrix for values of function u(x, y, t) at nodes of mesh. The same procedure for left
glass, where TglassLeft is a matrix for function u(x, y, t).

public stat ic void HeatEqRight ( )
{

double externalTempr ;

// i n s u l a t e d BC fo r top& bottom
for ( int i = 0 ; i < W; i++)
{

TglassRight [ i , 0 , newl ] = TglassRight [ i , 1 , o ld ] ;
TglassRight [ i , M + 1 , newl ] = TglassRight [ i , M, o ld ] ;

}

for ( int j = 1 ; j < M + 1; j++)
{

////BC Newton ’ s law o f coo l i n g f o r inner and outer s i d e o f g l a s s
externalTempr = p [N, j , o ld ] ∗ P ∗ mu / ( ro [N, j , o ld ] ∗ R ∗ Rgas ) ;
TglassRight [ 0 , j , newl ] = ( TglassRight [ 1 , j , o ld ] + coefNewt ∗

externalTempr ) / coefNewtPlusOne ;
TglassRight [W − 1 , j , newl ] = ( TglassRight [W − 2 , j , o ld ] + coefNewt ∗

TemprRight ) / coefNewtPlusOne ;
}
//Computing o f main e x p l i c i t scheme
for ( int j = 1 ; j < M+1; j++)
{

for ( int i = 1 ; i < W − 1 ; i++)
{

TglassRight [ i , j , newl ] = TglassRight [ i , j , o ld ]
+ Ktau ∗ ( coefX ∗ ( TglassRight [ i − 1 , j , o ld ] − 2 ∗

TglassRight [ i , j , o ld ] + TglassRight [ i + 1 , j , o ld ] )
+ coefY ∗ ( TglassRight [ i , j − 1 , o ld ] − 2 ∗ TglassRight [ i , j ,

o ld ] + TglassRight [ i , j + 1 , o ld ] ) ) ;
}

}
}
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A.2 Euler stage code

This section represent code for eulerian stage scheme (2.4) of method of bulk particles
form chapter 2. In code p{p/m}xHalf stands for pn

i{+/−} 1
2
,j
and p{p/m}yHalf for pn

i,j{+/−} 1
2

;

uXX,uY Y are for uxx, uyy; u{p/m}Half is for un
i{+/−} 1

2
,j
; v eu,u eu and E eu are for ũn

ij, ṽ
n
ij

and Ẽn
ij.

for ( int i = 1 ; i < N + 1 ; i++)
{

for ( int j = 1 ; j < M + 1; j++)
{

ppxHalf = (p [ i , j , o ld ] + p [ i + 1 , j , o ld ] ) ∗ 0 . 5 ;
pmxHalf = (p [ i , j , o ld ] + p [ i − 1 , j , o ld ] ) ∗ 0 . 5 ;
ppyHalf = (p [ i , j , o ld ] + p [ i , j + 1 , o ld ] ) ∗ 0 . 5 ;
pmyHalf = (p [ i , j , o ld ] + p [ i , j − 1 , o ld ] ) ∗ 0 . 5 ;

uXX = (u [ i + 1 , j , o ld ] − 2 .0 ∗ u [ i , j , o ld ] + u [ i − 1 , j , o ld ] ) /
hx2 ;

uYY = (u [ i , j + 1 , o ld ] − 2 .0 ∗ u [ i , j , o ld ] + u [ i , j − 1 , o ld ] ) /
hy2 ;

vXX = (v [ i + 1 , j , o ld ] − 2 .0 ∗ v [ i , j , o ld ] + v [ i − 1 , j , o ld ] ) /
hx2 ;

vYY = (v [ i , j + 1 , o ld ] − 2 .0 ∗ v [ i , j , o ld ] + v [ i , j − 1 , o ld ] ) /
hy2 ;

u eu [ i , j ] = u [ i , j , o ld ] + (− tau hx ∗ ( ppxHalf − pmxHalf ) +
coef f mu ∗ (uXX + uYY) ) / ro [ i , j , o ld ] ; // v e l o c i t y f o r x

v eu [ i , j ] = v [ i , j , o ld ] + (− tau hy ∗ ( ppyHalf − pmyHalf ) +
coef f mu ∗ (vXX + vYY) ) / ro [ i , j , o ld ] − c f g ; // v e l o c i t y f o r
y

upHalf = (u [ i , j , o ld ] + u [ i + 1 , j , o ld ] ) ∗ 0 . 5 ;
umHalf = (u [ i , j , o ld ] + u [ i − 1 , j , o ld ] ) ∗ 0 . 5 ;
vpHalf = (v [ i , j , o ld ] + v [ i , j + 1 , o ld ] ) ∗ 0 . 5 ;
vmHalf = (v [ i , j , o ld ] + v [ i , j − 1 , o ld ] ) ∗ 0 . 5 ;
E eu [ i , j ] = E[ i , j , o ld ] − ( tau hx ∗ ( ppxHalf ∗ upHalf − pmxHalf

∗ umHalf ) + tau hy ∗ ( ppyHalf ∗ vpHalf − pmyHalf ∗ vmHalf ) ) −
c f g ∗ ro [ i , j , o ld ] ∗ v [ i , j , o ld ] ;

i f ( i == 1)
{

l e f tT = Tgla s sLe f t [W − 1 , j , newl ] + inv coefNewt ∗ (
Tg la s sLe f t [W − 1 , j , newl ] − Tgla s sLe f t [W − 2 , j , newl ] ) ;
//Newton ’ s law o f coo l i n g

E eu [ i , j ] = (R ∗ ro [ i , j , o ld ] ) ∗ ( 0 . 5 ∗ C ∗ C ∗ ( v eu [ i , j ]
∗ v eu [ i , j ] + u eu [ i , j ] ∗ u eu [ i , j ] ) + kappa ∗ l e f tT /
gammaMinus1) / Edim ;

}
i f ( i == N)
{

r ightT = TglassRight [ 0 , j , newl ] + inv coefNewt ∗ ( TglassRight
[ 0 , j , newl ] − TglassRight [ 1 , j , newl ] ) ; //Newton ’ s law o f
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coo l i n g
E eu [ i , j ] = (R ∗ ro [ i , j , o ld ] ) ∗ ( 0 . 5 ∗ C ∗ C ∗ ( v eu [ i , j ]

∗ v eu [ i , j ] + u eu [ i , j ] ∗ u eu [ i , j ] ) + kappa ∗ r ightT /
gammaMinus1) / Edim ;

}
}

}
//−−−−−−−−−−−−−−−−−−−−−−−
//BC fo r Euler matrix
//−−−−−−−−−−−−−−−−−−−−−−−−
for ( int i = 1 ; i < N + 1 ; i++)
{

//normal component i s v=> v = −v
v eu [ i , 0 ] = −v eu [ i , 1 ] ;
u eu [ i , 0 ] = u eu [ i , 1 ] ;
E eu [ i , 0 ] = E eu [ i , 1 ] ;

//normal component i s v=> v = −v
v eu [ i , M + 1 ] = −v eu [ i , M] ;
u eu [ i , M + 1 ] = u eu [ i , M] ;
E eu [ i , M + 1 ] = E eu [ i , M] ;

}
for ( int j = 1 ; j < M + 1; j++)
{

//normal component i s u=> u = −u
v eu [ 0 , j ] = v eu [ 1 , j ] ;
u eu [ 0 , j ] = −u eu [ 1 , j ] ;
E eu [ 0 , j ] = E eu [ 1 , j ] ;

//normal component i s u=> u = −u
v eu [N + 1 , j ] = v eu [N, j ] ;
u eu [N + 1 , j ] = −u eu [N, j ] ;
E eu [N + 1 , j ] = E eu [N, j ] ;

}

A.3 Lagrange stage code

In this section lagrange stage code uses equations (2.7) for mass flux, where M{p/m}xHalf
stands for Mn

i{+/−} 1
2
,j
in formula.

upHalf = ( u eu [ i , j ] + u eu [ i + 1 , j ] ) ∗ 0 . 5 ;
//compute M(p/m) xHal f ( border 1 and 3)
i f ( upHalf > eps ) // r i g h t
{

MpxHalf = ro [ i , j , o ld ] ∗ upHalf ∗ htau y ;
d3 = 0 . 0 ;

}
else i f ( upHalf < −eps )
{

MpxHalf = ro [ i + 1 , j , o ld ] ∗ upHalf ∗ htau y ;
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d3 = 1 . 0 ;
}
else
{

MpxHalf = 0 . 0 ;
d3 = 0 . 0 ;

}
umHalf = ( u eu [ i , j ] + u eu [ i − 1 , j ] ) / 2 ;
i f ( umHalf > eps ) // l e f t
{

MmxHalf = ro [ i − 1 , j , o ld ] ∗ umHalf ∗ htau y ;
d1 = 1 . 0 ;

}
else i f ( umHalf < −eps )
{

MmxHalf = ro [ i , j , o ld ] ∗ umHalf ∗ htau y ;
d1 = 0 . 0 ;

}
else
{

MmxHalf = 0 . 0 ;
d1 = 0 . 0 ;

}
//compute M(p/m) yHal f ( border 2 and 4)
vpHalf = ( v eu [ i , j ] + v eu [ i , j + 1 ] ) / 2 ;
i f ( vpHalf > eps )
{

MpyHalf = ro [ i , j , o ld ] ∗ vpHalf ∗ htau x ;
d4 = 0 . 0 ;

}
else i f ( vpHalf < −eps )
{

MpyHalf = ro [ i , j + 1 , o ld ] ∗ vpHalf ∗ htau x ;
d4 = 1 . 0 ;

}
else
{

MpyHalf = 0 . 0 ;
d4 = 0 . 0 ;

}

vmHalf = ( v eu [ i , j ] + v eu [ i , j − 1 ] ) / 2 ;
i f ( vmHalf > eps ) // bottom
{

MmyHalf = ro [ i , j − 1 , o ld ] ∗ vmHalf ∗ htau x ;
d2 = 1 . 0 ;

}
else i f ( vmHalf < −eps )
{

MmyHalf = ro [ i , j , o ld ] ∗ vmHalf ∗ htau x ;
d2 = 0 . 0 ;

}
else
{
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MmyHalf = 0 . 0 ;
d2 = 0 . 0 ;

}

A.4 Final stage code

Formulas (2.9) represented in code in this section.

d1m = d1 ∗ MmxHalf ;
d2m = d2 ∗ MmyHalf ;
d3m = d3 ∗ MpxHalf ;
d4m = d4 ∗ MpyHalf ;
ro [ i , j , newl ] = ro [ i , j , o ld ] + (MmxHalf + MmyHalf − MpyHalf − MpxHalf ) /

( hyx ) ;
ro hyx = ro [ i , j , newl ] ∗ hyx ;
inv ro hyx = 1 .0 / ro hyx ;

calctmp = ( ro hyx + (1 . 0 − d1 ) ∗ MmxHalf + (1 . 0 − d2 ) ∗ MmyHalf − ( 1 . 0 −
d3 ) ∗ MpxHalf − ( 1 . 0 − d4 ) ∗ MpyHalf ) ;

v [ i , j , newl ] = (d1m ∗ v eu [ i − 1 , j ] + d2m ∗ v eu [ i , j − 1 ] − d3m ∗ v eu [
i + 1 , j ] − d4m ∗ v eu [ i , j + 1 ] + v eu [ i , j ] ∗ calctmp ) ∗ ( inv ro hyx
) ;

u [ i , j , newl ] = (d1m ∗ u eu [ i − 1 , j ] + d2m ∗ u eu [ i , j − 1 ] − d3m ∗ u eu [
i + 1 , j ] − d4m ∗ u eu [ i , j + 1 ] + u eu [ i , j ] ∗ calctmp ) ∗ ( inv ro hyx
) ;

E[ i , j , newl ] = E eu [ i , j ]
+ (1 / hyx ) ∗ (

d1m ∗ E eu [ i − 1 , j ] + MmxHalf ∗ ( 1 . 0 − d1 ) ∗ E eu [ i , j ]
+ d2m ∗ E eu [ i , j − 1 ] + MmyHalf ∗ ( 1 . 0 − d2 ) ∗ E eu [ i , j ]
− d3m ∗ E eu [ i + 1 , j ] − MpxHalf ∗ ( 1 . 0 − d3 ) ∗ E eu [ i , j ]
− d4m ∗ E eu [ i , j + 1 ] − MpyHalf ∗ ( 1 . 0 − d4 ) ∗ E eu [ i , j ]

) ;

A.5 Boundary conditions for final stage

//BC fo r new t f o r unleak wa l l
for ( int i = 1 ; i < N + 1 ; i++)
{

//normal component i s v=> v = −v
v [ i , 0 , newl ] = −v [ i , 1 , newl ] ;
u [ i , 0 , newl ] = u [ i , 1 , newl ] ;
// o ther components b r ing wi thout change
ro [ i , 0 , newl ] = ro [ i , 1 , newl ] ;
p [ i , 0 , newl ] = 2 ∗ p [ i , 1 , newl ] − p [ i , 2 , newl ] ;
E [ i , 0 , newl ] = E[ i , 1 , newl ] ;

//normal component i s v=> v = −v
v [ i , M + 1 , newl ] = −v [ i , M, newl ] ;
u [ i , M + 1 , newl ] = u [ i , M, newl ] ;
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// o ther components b r ing wi thout change
ro [ i , M + 1 , newl ] = ro [ i , M, newl ] ;
p [ i , M + 1 , newl ] = 2 ∗ p [ i , M, newl ] − p [ i , M − 1 , newl ] ;
E [ i , M + 1 , newl ] = E[ i , M, newl ] ;

}
for ( int j = 1 ; j < M + 1; j++)
{

//normal component i s u=> u = −u
v [ 0 , j , newl ] = v [ 1 , j , newl ] ;
u [ 0 , j , newl ] = −u [ 1 , j , newl ] ;
// o ther components b r ing wi thout change
ro [ 0 , j , newl ] = ro [ 1 , j , newl ] ;
p [ 0 , j , newl ] = 2 ∗ p [ 1 , j , newl ] − p [ 2 , j , newl ] ;
E[ 0 , j , newl ] = E[ 1 , j , newl ] ;

//normal component i s u=> u = −u
v [N + 1 , j , newl ] = v [N, j , newl ] ;
u [N + 1 , j , newl ] = −u [N, j , newl ] ;
// o ther components b r ing wi thout change
ro [N + 1 , j , newl ] = ro [N, j , newl ] ;
p [N + 1 , j , newl ] = 2 ∗ p [N, j , newl ] − p [N − 1 , j , newl ] ;
E [N + 1 , j , newl ] = E[N, j , newl ] ;

}
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Appendix B

Pictures of results
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Figure B.1: Test model 1, graphs for density (left) ρ, temperature (middle) T and
pressure (right) p at time 2.52 s for N = 50, h0 = 0.04 m, τ0 = 0.008, µ = 1, Lx = Ly = 2
m, Vin = Vout = 1 m/s, x1 = 0.2 m, x2 = 0.4 m, x3 = 0.4 m, x4 = 0.6 m.
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Figure B.2: Test model 1, graphs for velocity field at time 2.52 s
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Figure B.3: Test model 1, graphs for density (left) ρ, temperature (middle) T and
pressure (right) p at time 12 s
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Figure B.4: Test model 1, graphs for average temperature (left) and energy (right)
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Figure B.5: Test model 1, graphs for x and y components of velocity field and velocity
field for N = 50, h0 = 0.04m, τ0 = 0.008, µ = 1, Lx = Ly = 2m, Vin = Vout = 1m/s, x1 = 0.2
m, x2 = 0.4 m, x3 = 0.4 m, x4 = 0.6 m.
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Figure B.6: Test model 1, velocity fields for N = 10, h = 0.2 m > h0 (left) and N = 30,
h = 0.067 m > h0 (right), τ0 = 0.008, µ = 1 m2/s, Lx = Ly = 2 m, Vin = Vout = 1 m/s.
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Figure B.7: Test model 1, velocity fields for N = 70, h = 0.028 m < h0 (left) and
N = 100, h = 0.02 m < h0 (right), τ0 = 0.008, µ = 1 m2/s, Lx = Ly = 2 m, Vin = Vout = 1
m/s, x1 = 0.2 m, x2 = 0.4 m, x3 = 0.4 m, x4 = 0.6 m.
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Figure B.8: Test model 1, velocity fields for τ = 0.005 < τ0 (left) and τ = 0.01 > τ0
(left), N = 50, h = h0 = 0.04 m , µ = 1 m2/s, Lx = Ly = 2 m, Vin = Vout = 1 m/s, x1 = 0.2
m, x2 = 0.4 m, x3 = 0.4 m, x4 = 0.6 m.
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Figure B.9: Test model 1, graphs of differences ∣u − u0∣ and ∣v − v0∣ of x- and y-
components of velocity field for N = 50, h = h0 = 0.04 m, τ = 0.01 and τ0. Here µ = 1
m2/s, Lx = Ly = 2 m, Vin = Vout = 1 m/s, x1 = 0.2 m, x2 = 0.4 m, x3 = 0.4 m, x4 = 0.6 m.
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Figure B.10: Test model 1, graphs for x- and y- components of the velocity field and
streamlines for computations without artificial viscosity: µ = 0, N = 50, h = 0.4 m,
τ = 0.008, Lx = Ly = 20 m, Vin = Vout = 10 m/s, x1 = 8 m, x2 = 12 m, x3 = 8 m, x4 = 12
m.
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Figure B.11: Test model 1, graphs for x- and y- components of the velocity field and
streamlines for computations without artificial viscosity: µ = 1 m2/s, N = 50, h = 0.4
m, τ = 0.008, Lx = Ly = 20 m, Vin = Vout = 10 m/s, x1 = 8 m, x2 = 12 m, x3 = 8 m, x4 = 12
m.
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Figure B.12: Test model 2, graphs for velocity at time 10 s.
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Figure B.13: Test model 2,graphs for velocity at time 18.9 s.
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Figure B.14: Test model 2,graphs for velocity at time 31 s.
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Figure B.15: Main model, initial temperature distribution at time 0.3 s.
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Figure B.16: Main model, initial velocity field at time 0.3 s.
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Figure B.17: Main model, final temperature distribution at 171 s.
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Figure B.18: Main model, final form of the velocity field inside gas chamber at 171
s.
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Figure B.19: Main model, comparison of results for different glass thermal conduc-
tivity at time 41 s. The conductivity is K0 = 3.4E −7 W /m ⋅K (left) and K0 = 3.4E −4
W /m ⋅K (right).
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Figure B.20: Main model, comparison of velocity fields for different viscosity values
at time 41 s, µ = 1 m2/s (left) and µ = 2 m2/s (right).
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Figure B.21: Main model, comparison of temperature distribution inside glasses
result for different outside temperatures at time 41s. Tleft = 300 K (left) and Tleft = 320
K (right).
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Figure B.22: Main model, comparison of velocity fields for different mesh sizes at
time 25s (left: N = 50, h = 0.04 m, right: N = 100, h = 0.02 m).
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Figure B.23: Main model, a typical instability result for gas velocity components
when the artificial viscosity is insufficient.
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