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Abstract

Flexible link manipulators (FLM) are well-known for their light mass and small 

energy consumption compared to rigid link manipulators (RLM). These advantages of 

FLM are even of greater importance in applications where energy efficiency is crucial, 

such as in space applications. However, RLM are still preferred over FLM for industrial 

applications. This is due to the fact that the reliability and predictability of the 

performance of FLM are not yet as good as those of RLM. The major cause for these 

drawbacks is link flexibility, which not only makes the dynamic modeling1 of FLM very 

challenging, but also turns its end-effector2 trajectory tracking (EETT) into a complicated 

control problem.  

The major objectives of the research undertaken in this project were to develop a 

dynamic model for a FLM and model-based controllers for the EETT. Therefore, the 

dynamic model of FLM was first derived. This dynamic model was then used to develop 

the  EETT controllers.   

A dynamic model of a FLM was derived by means of a novel method using the 

dynamic model of a single flexible link manipulator on a moving base (SFLMB). The 

computational efficiency of this method is among its novelties. To obtain the dynamic 

model, the Lagrange method3 was adopted. Derivation of the kinetic energy and the 

calculation of the corresponding derivatives, which are required in the Lagrange method, 

are complex for the FLM. The new method introduced in this thesis alleviated these 

complexities by calculating the kinetic energy and the required derivatives only for a 

SFLMB, which were much simpler than those of the FLM. To verify the derived dynamic 

model the simulation results for a two-link manipulator, with both links being flexible, 

were compared with those of full nonlinear finite element analysis. These comparisons 

showed sound agreement.  

A new controller for EETT of FLM, which used the singularly perturbed form4 of 

the dynamic model and the integral manifold concept, was developed. By using the 
                                                
1 The term “dynamic model” refers to the differential equations which relate the time derivatives of the 
degrees-of-freedom of FLM to the input torques. 
2 The tip of the end-link of the manipulator is called “end-effector”.     
3 Largange method is an approach for the derivation of the dynamic model.  
4 Dynamic model of FLM can be expressed in the singularly perturbed form which is composed of slow 
and fast subsystems. This can be achieved since the response of FLM consists of the rotations of the links 
(slow subsystem) and the links’ lateral deflections, links’ vibration (fast subsystem). 
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integral manifold concept the links’ lateral deflections were approximately represented in 

terms of the rotations of the links and input torques. Therefore the end-effector 

displacement, which was composed of the rotations of the links and links’ lateral 

deflections, was expressed in terms of the rotations of the links and input torques. The 

input torques were then selected to reduce the EETT error. The originalities of this 

controller, which was based on the singularly perturbed form of the dynamic model of 

FLM, are: (1) it is easy and computationally efficient to implement, and (2) it does not 

require the time derivative of links’ lateral deflections, which are impractical to measure. 

The ease and computational efficiency of the new controller were due to the use of the 

several properties of the dynamic model of the FLM. This controller was first employed 

for the EETT of a single flexible link manipulator (SFLM) with a linear model. The novel 

controller was then extended for the EETT of a class of flexible link manipulators, which 

were composed of a chain of rigid links with only a flexible end-link (CRFE). Finally it 

was used for the EETT of a FLM with all links being flexible. The simulation results 

showed the effectiveness of the new controller. These simulations were conducted on a 

SFLM, a CRFE (with the first link being rigid and second link being flexible) and finally 

a two-link manipulator, with both links being flexible. Moreover, the feasibility of the 

new controller proposed in this thesis was verified by experimental studies carried out 

using the equipment available in the newly established Robotic Laboratory at the 

University of Saskatchewan. The experimental verifications were performed on a SFLM 

and a two-link manipulator, with first link being rigid and second link being flexible. 

Another new controller was also introduced in this thesis for the EETT of single 

flexible link manipulators with the linear dynamic model. This controller combined the 

feedforward torque, which was required to move the end-effector along the desired path, 

with a feedback controller. The novelty of this EETT controller was in developing a new 

method for the derivation of the feedforward torque. The feedforward torque was 

obtained by redefining the desired end-effector trajectory. For the end-effector trajectory 

redefinition, the summation of the stable exponential functions was used. Simulation 

studies showed the effectiveness of this new controller. Its feasibility was also proven by 

experimental verification carried out in the Robotic Laboratory at the University of 

Saskatchewan. 
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Chapter 1. Introduction 
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1.1. Background 

Industrial robots are mechanical devices which can be programmed to perform 

different tasks [1]. The ease with which they can be programmed and the accuracy with 

which they can carry out repetitive tasks leads to their wide spread use in industry. 

Moreover, increasing labor costs, as well as the capability of executing tasks which are 

impossible, difficult, or dangerous to humans are other motives for the increased use of 

robots in manufacturing lines. The average yearly installation of robots in the United 

States between the years 2002 to 2004 was 10,000 units [2], which showed their great 

industrial application. One of the most important classes of industrial robots is that of 

manipulators. A manipulator is a robot that can accomplish different tasks. An example 

of an industrial manipulator which is available in the robotic laboratory of the University 

of Saskatchewan is shown in Fig. 1-1.   

Fig. 1-1: Three-rigid-link manipulator in the robotic laboratory of the University of 

Saskatchewan 

The point where two parts of a manipulator are connected is called a joint, while 

the part by itself is referred to as a link. As an example, in Fig. 1-1 a joint and a link of 

the manipulator are shown. The links of the manipulators can be manufactured from 

different types of materials and designed in various forms. However, based on the 

flexibility of the links of the manipulators, they fall into two main categories: rigid link 

manipulators and light weight, flexible, link manipulators.        

Joints 

Links 
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If the links of a manipulator are designed so as to remain almost stiff during 

maneuvers, the manipulator is called a rigid link manipulator (RLM). Almost all the 

manipulators which are currently used in the manufacturing lines are RLM; that is, their 

flexibility can be neglected. Perhaps the simple dynamic modeling of the RLM which 

eases their controller design is one of the main reasons for their large industrial 

applications. However, RLM are heavy and massive, and their load-carrying capacity is 

limited to 5-10% of their weight [3]. Therefore, they are not easily transportable nor are 

they energy efficient. The considerable mass of RLMs, and consequently their energy 

consumption are of even more concern when RLMs are used in space applications. To 

reduce the mass of RLMs, the length of their links can be shortened or the cross section 

area of their links can be reduced. Shortening the length of the links results in a smaller 

workspace for the manipulator and is not practical. However, reducing the cross section 

area of links is feasible and does not reduce the workspace. The remedy of reducing the 

cross section area of links to decrease the mass of the RLM creates a new class of 

manipulators, usually referred to as light weight manipulators.     

The links of light weight manipulators are slender since, at least one dimension of 

their cross section is relatively small compared to their length. Therefore, the links of 

light weight manipulators will vibrate and bend during and after a maneuver. The faster 

the maneuver, the greater will be their deflection and the more severe will be their 

vibration. It is because of this vibrating behavior that light weight flexible manipulators 

are usually referred to as flexible link manipulators (FLM). Moreover, these vibrations 

limit the performance of FLM compared to that of RLM. A flexible two-link 

manipulator, which is available at the robotic laboratory of the University of 

Saskatchewan, is shown in Fig. 1-2.  

Provided that the performance of FLMs is predictable and reliable, they can be 

promising substitutes for RLMs since they are compact, light and energy efficient. The 

performance of FLMs can be improved through the design of proper controllers. 

Although many controllers have been developed for the RLM and have been 

experimentally verified, the application of these controllers to FLM does not lead to 

satisfactory performance. This is due to flexibility of the links of FLM which do not exist 

for RLM, thus, in their controller design, this flexibility is not considered. For example, 
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vibration suppression is not of a concern in the controller design of RLMs whereas it is 

one of the main concerns that should be addressed in the controller design of FLMs. The 

link flexibility makes the dynamic model of a FLM much more complicated than that of a 

RLM and increases the numbers of the degrees-of-freedom of the FLM. This complicated 

dynamic model thus creates several challenges in the design and implementation of 

model-based controllers for FLM.  

Fig. 1-2: Flexible two-link manipulator at the robotic laboratory of the University of 

Saskatchewan 

While researchers have done much during the past few decades [4,5], much more 

has to be done before FLM can be widely used. Because of link flexibility, the governing 

dynamic equations for multilink flexible manipulators are nonlinear partial differential 

equations (PDE) [6]. Therefore, theoretically, the numbers of the degrees-of-freedom for 

a FLM is infinite, whereas the numbers of the degrees-of-freedom for a RLM is finite. 

Finding an exact solution for the governing PDE of a FLM for a given input torque is 

very difficult, if not impossible. Thus, to solve these nonlinear PDE, approximate 

methods like the finite element method [7] have to be adopted to change the PDE into 

ordinary differential equations (ODE). The resulting ODE can then be solved using the 

strategies like Newark Newton-Raphson technique. The transformation of the PDE of 

flexible link manipulators into ODE is also critical from the controller design view point, 

since almost all the developed controllers in the published works are studies for the ODE 

and not PDE [4]. The complex nature of the governing ODE of FLM still requires 

considerable effort for the controller design and increases the computational cost of the 

controller. Finally, since the numbers of the degrees-of-freedom for the FLM are much 

Link 

Link 
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larger than that for their rigid link counterparts, the required numbers of sensors for the 

implementation of controllers are considerably larger.  

1.2. Problem statement 

          In most industrial applications, such as painting or welding, the end-effector of a 

robot has to move along a desired path with a specified speed, which is referred to as end-

effector trajectory tracking (EETT). In this type of application, for example, for the 

flexible two-link manipulator shown in Fig. 1-3, with the desired path (DP) and a given 

velocity profile, the end-effector (EE) has to move along the DP with the assigned 

velocity to accomplish the EETT. For the EETT, the actuators apply the control torque 

(or force) according to the end-effector feedback of position and velocity, so that the 

tracking error becomes as close as possible to zero. From Fig. 1-3, it is clear that the 

control of the links’ rotation angles, 1θ and 2θ , does not lead to the EETT. This is due to 

the fact that not only 1θ and 2θ , but also the links’ deflections, 1ξ and 2ξ , contribute to the 

exact location of the end-effector.  

Fig. 1-3: Schematic of a flexible two-link manipulator 

The links’ flexibility of the FLM creates difficulties for the EETT, which are the 

under-actuation feature and nonminimum phase characteristics that are discussed in detail 

below. 
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1.2.1. Under-actuation 

  The under-actuation feature is due to the fewer number of actuators for FLM 

compared to their numbers of degrees-of-freedom [8]. As already explained, theoretically 

FLM have infinite numbers of the degrees-of-freedom, while the number of actuators is 

finite. Even after changing the governing PDE into ODE by using an approximate 

method, such as finite element method, the under-actuation feature still exists. As an 

example, the flexible two-link manipulator shown in Fig. 1-3 has two actuators to move 

the first and second links. However, the degrees-of-freedom are the links’ rotation angles, 

1θ and 2θ , and the degrees-of-freedom to describe the lateral deflection of the flexible 

links, 1ξ and 2ξ .  Therefore, the numbers of the degrees-of-freedom will be more than 

two, which is the number of actuators. It is worth recalling that the governing equations 

of the FLM are dynamically coupled. That is, there are constraints which relate the 

degrees-of-freedom. These constraints are non-holonomic; which means they are 

differential equations that can not be transferred into a complete differential form. In 

other words, these constrains can not be obtained by differentiation from an algebraic 

equation.  

1.2.2. Nonminimum phase feature 

The nonminimum phase feature can be considered as the side effect of the under-

actuation of the FLM. In fact, the non-holonomic constraints that exist due the 

underaction of the FLM have an unbounded response during the causal end-effector 

dynamic inversion and, thus, the calculated torque is not acceptable. From the 

mathematical point of view, the unbounded torque which is obtained in the end-effector 

inversion of FLM is due to the unstable internal dynamics5 of the FLM. Therefore, the 

nonminimum phase feature of FLM is equal to the instability of their internal dynamic. 

The flexibility of the links and noncollocation of the sensor and actuators are the reasons 

for the nonminimum phase characteristic of FLM [10, 11]. The noncollocation of the 

sensor and actuators means that the actuators, which apply the torques, are located on the 

                                                
5 The part of the system which is rendered unobservable during the input-output linearization is called 
internal dynamics [9]. For FLM internal dynamic can be considered as a representation of the non-
holonomic constraints. 
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joints, while the measurement of the end-effector displacement occurs at the end of the 

last link, which is not the same as the location of the actuators. For example, for the 

single flexible link manipulator (SFLM) shown in Fig. 1-4, the torqueτ  is applied at the 

base while the measurement of the end-effector displacement is on the other end of the 

link. 

Fig. 1-4: Schematic of the movement of the end-effector of a SFLM upon 

applying a torque 

The initial movement of the end-effector in the opposite direction of the applied base 

torque, as shown in Fig. 1-4 for a SFLM, is the consequence of the nonminimum phase 

characteristic. For a stable linear system, the nonminimum property means that the 

corresponding transfer function in the S-plane has right-hand-side zeros.  For example, 

for a SFLM which is modeled linearly, let the transfer function F(s) between the end-

effector displacement,y , and applied torque,τ , be:  

)(

)(

)(

)(
)(

sq

sp

s

sy
sF ==

τ
                                                 (1-1) 

Then, some roots of numerator 0)( =sp are located on the right-hand-side of the S-plane.

In Fig. 1-5, the schematic of the locations of the two sets of zeros for a SFLM, namely

),( 11 ss− and ),( 22 ss− , are shown. The right-hand-side zeros in Fig. 1-5 are 1s and 2s . The 

zeros of a SFLM are always conjugate as is clear from Fig. 1-5, which is also proven in 

[10, 11, 12].    

Fig. 1-5: Schematic of the two sets of zeros for a SFLM  
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1.3. Research objectives 

The research that is described in this thesis was undertaken to further pave the 

ground of industrial implementation of the FLM. Due to the importance of the EETT, as 

explained in Section 1.2, developing a controller to reduce the EETT error, as small as 

possible, is of vital importance if the FLM is to be used in manufacturing. Thus, in this 

research, model-based controllers for the EETT of FLM have been developed. Because of 

the model-based nature of the study, deriving the dynamic model of the FLM was the 

first step that had to be taken; then, based on the derived dynamic model, the EETT 

controllers were developed. Finally, the effectiveness of the proposed controllers was 

verified by experimental studies.  Therefore, the objectives of this research fell into the 

two main categories: 

1- Developing the dynamic model of FLM; and   

2- Developing controllers for the EETT of FLM and their experimental verifications. 

To accomplish objective 2, the following sub-objectives were defined and achieved: 

2-1- Approximate end-effector inversion of a SFLM and experimental verification; 

2-2-Model-based EETT of a SFLM using the integral manifold concept and 

experimental verification; 

2-3- Model-based EETT of a class of FLM which is composed of a chain of rigid links 

with the flexible end-link and experimental verification by using the integral manifold 

concept; and 

2-4- Model-based EETT of the multilink flexible manipulator using the integral 

manifold concept. . 

Remark: Because of the manuscript nature of this thesis, figures as well as references 

might be repeated several times in the thesis.  
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1.4. Synopsis of thesis 

The chapters of this thesis have been arranged in order to cover the objectives 

explained above. That is, the dynamic model of the FLM is first derived and then it is 

used to develop different controllers. Therefore, in Chapter 2 the dynamic model of FLM 

is obtained and verified. In Chapter 3 a new controller for the EETT of a single flexible 

link manipulator (SFLM) is introduced which combines the joint proportional-derivative 

(PD) controller with the approximate end-effector inverse dynamic torque. The feasibility 

of the introduced controller in Chapter 3 was shown by experimental study. In Chapter 4 

a new controller for the EETT of a SFLM based on the concept of the integral manifold 

of the singularly perturbed differential equations [13] was proposed and experimentally 

verified. In Chapter 5, the developed EETT controller of Chapter 4, which was for a 

SFLM with linear dynamics, was extended to a class of nonlinear FLM. This class of 

FLM was composed of a chain of rigid links with a flexible end-link. The introduced 

controller in Chapter 5 was experimentally verified.  Finally, in Chapter 6, the EETT 

controller proposed earlier in Chapter 5, which was based on the concept of the integral 

manifold of the singularly perturbed differential equations, was extended to the multi-link 

flexible manipulators. The summaries of each chapter are as follows. 

Chapter 2:  

The content of chapter 2 was published in the ASME Journal of Vibration and 

Acoustics under the title of “A constrained Lagrange formulation of multi-link planar 

flexible manipulator” [14]. In this chapter, the closed form dynamic equation of a FLM 

which can be used in the design of a model-based EETT controller was developed. The 

proposed approach in this chapter combined the assumed mode (shape) method, to model 

flexibility of the links, with Lagrange equations. In the assumed mode method the lateral 

deflections of the links were represented by the summation of a number of predefined 

spatial functions which were multiplied by time varying weight functions [15]. That is 

2,1, =iiξ in Fig. 1-3, were: 

∑
=

=
n

j
ijiiji t

1

)()( λγφξ                                                    (1-2) 
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where )(xijφ was the assumed jth mode shape for the ith link’s lateral deflection, 

)(tijλ was its time varying weight function, called flexible variables, and n was the 

number of assumed modes used to model the flexibility. However, combining the 

assumed mode method with the Lagrange equations had the drawbacks of complicated 

and lengthy Lagrangian function calculations and derivative evaluations. To alleviate this 

drawback, in Chapter 2 a new method was introduced that evaluated the Lagrangian 

function and the required derivatives only once for a single flexible link manipulator on a 

moving base, which were not lengthy or complex. Then, using the dynamic model of a 

single flexible link manipulator on a moving base, the dynamic equation of a FLM was 

obtained without any further derivative calculations or Lagrangian function evaluations. 

It is worth emphasizing that the proposed method here was computationally cost effective 

and less prone to error compared to the available methods which combined the assumed 

mode method with the Lagrange equations.  

The method was employed to derive a dynamic model of the flexible two-link 

manipulator which is schematically shown in Fig. 1-3.  For verification, the results of the 

dynamic analysis from the dynamic model, obtained after adopting the method proposed 

in Chapter 2, were compared with those found using full nonlinear finite element 

analysis. In the verification examples, a bang-bang torque and the torque from the rigid 

manipulator were applied to a flexible two-link manipulator. For these examples, the joint 

rotations, end-effector path, components of the end-effector velocity, and deviation index 

from the model and the full nonlinear finite element analysis were compared so as to 

check the accuracy of the developed model. These comparisons showed sound 

agreement.  

The dynamic model derived in Chapter 2, was used in Chapters 3, 4, 5 and 6 to 

develop EETT controllers.  

Chapter 3: 

The content of this chapter has been submitted for possible publication in the 

CSME transactions under the title of “Piece-wise causal inversion by output redefinition 

for a flexible link manipulator” [16]. In this chapter, a new EETT controller for a SFLM 
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was introduced and its effectiveness and feasibility investigated through the simulation 

and experimental studies. The new controller in [16] added the off-line torque obtained 

from the end-effector inversion to the on-line state feedback controller which was a joint 

PD controller, as shown in the figure below.  

Fig. 1-6: Schematic of the end-effector trajectory tracking method, 1: off-line signal, 2: 

on-line signal 

The novelty of this method was in introducing a new technique for the end-effector 

inversion. The new end-effector inversion method redefined the end-effector trajectory so 

that causal stable end-effector inversion could be achieved. For this purpose, the internal 

dynamics of a SFLM was first obtained. It was shown that the states of the internal 

dynamics were the variables used to describe the lateral deflection of the link, 

njj K1,1 =λ  in Eq. (1-2), and their time derivatives, njj K& 1,1 =λ . Then the desired 

end-effector trajectory was redefined so that the bounded values for the states of the 

internal dynamic could be obtained. For the redefinition of the end-effector trajectory, the 

summations of stable exponential functions were used, that is:

0,)(~
0

<=∑
=

j

r

j

tm
jd mecty j                                                    (1-3)

where )(~ tyd is the redefined end-effector trajectory (the desired end-effector trajectory 

was )(tyd )  and jc are constants which were calculated, after the selection of 

ther and jm , so that a bounded continuous torque could be obtained. An example which 

was provided in Chapter 3 clarified the main concept of the approach.  

To achieve the EETT, the torque derived based on the new end-effector inversion 

method had to be combined with a state-feedback controller, as shown in Fig. 1-6. It is 

worth mentioning that the addition of the inverse dynamic torque to the state feedback 
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controller made the proposed method a closed-loop controller. For this purpose, the joint 

proportional-derivative (PD) controller, a state feedback, was added to the inverse 

dynamic torque. The stability of the proposed end-effector controller was proven using 

the Lyapunov criterion.  Simulation studies carried on SFLMs showed the effectiveness 

of the new method. The experimental verification conducted on the SFLM, available at 

the robotic laboratory of the University of Saskatchewan, proved the feasibility of this 

approach.  

Although new end-effector inversion was studied in Chapter 3 for a SFLM, it can 

be easily extended for the output inversion and thus for the output tracking of any linear 

single-input single-output nonminimum phase system. Moreover, this method can be 

used for the end-effector inversion of a single flexible link manipulator with nonzero 

initial conditions [17].    

The main limitation of the proposed method was its applicability to a linear 

dynamic model. Thus it could only be used for the EETT of a SFLM and could not be 

extended to the EETT of multilink FLM with a nonlinear dynamic model. Since EETT 

for multilink FLM, with nonlinear model, was the goal of the candidate’s research, 

another controller, which work even for nonlinear systems, had to be developed. This 

new controller was introduced in Chapter 4, 5 and 6.  

Chapter 4: 

The content of this chapter has been submitted for the possible publication in the 

International Journal of Robotics and Automation under the title of “End-effector 

trajectory tracking of a flexible link manipulator using integral manifold concept” [18]. In 

this chapter a new end-effector controller for a linear model of a SFLM was introduced 

and experimentally verified. The new method was based on the singularly perturbed 

model of the manipulator.  

A singularly perturbed system is a system in which derivatives of some states are 

multiplied by a small parameter,ε . The following is an example of a singularly perturbed 

system in which the derivative of state z is multiplied by the small parameterε : 
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In Eqs. (1-4), x and z are the states of the system and u is the input. One of the main 

features of the system in Eq. (1-4) is that the dynamic of the state z is relatively faster 

than that of the state x. That is why z in Eq. (1-4) is called the state of the fast subsystem, 

while x is the state of the slow subsystem. The dynamic response of FLM, in general, has 

slow rigid body link rotations (slow subsystem) and relatively fast links’ vibration (fast 

subsystem). Therefore, the dynamic model of FLM can be expressed in the singularly 

perturbed form, as in Eq. (1-4). Consequently, the possibility of using the concepts and 

control strategies developed for the singularly perturbed systems can be explored for the 

EETT of the FLM [13]. 

In Chapter 4, the concept of the integral manifold of the singularly perturbed 

differential equations was used to develop a new EETT controller for a SFLM with a 

linear model. Based on this concept it was possible to find an approximate solution for z

from Eq. (1-4b) in terms of x and u. For a SFLM it meant that the lateral deflection of the 

link could be expressed in terms of the link’s rotation and input torque, details of which 

are available in Chapter 4. Therefore, the end-effector displacement that was described by 

the link’s rotation and lateral deflection could be described only in terms of the link’s 

rotation and input torque. Finally, since the number of link’s rotation and input torque 

were the same, the under-actuated SFLM appeared to change to an approximate fully-

actuated system and its EETT could be accomplished.  

Almost always the implementation of the controller developed for the FLM 

required the links’ lateral deflections and their time derivative. Although measuring the 

links’ lateral deflections was possible, for example by strain gauges, the measurements of 

the time derivatives of the links’ lateral deflections were hardly practical. One of the 

valuable features of the controller introduced in Chapter 4 was that its implementation 

did not require the measurement of the time derivative of the single link’s lateral 

deflection. This was achieved by an observer designed to estimate the time derivative of 

the link’s lateral deflection.   
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The stability of the new proposed controller was proven using the Lyapunov 

criterion. Simulation studies showed the superiority of this new controller in the 

reduction of the EETT error. The experimental verification of the new controller which 

was conducted on a SFLM available at the robotic laboratory of the University of 

Saskatchewan showed the feasibility of the method. The limitation of the proposed 

method is its applicability to only linear systems.  

Chapter 5:  

The content of chapter 5 has been submitted for possible publication in Journal of 

Vibration and Control under the title of “End-effector trajectory tracking for a class of 

flexible link manipulator” [19]. In this chapter the EETT controller developed in Chapter 

4, which was based on a linear dynamic model of a SFLM, was successfully extended to 

a class of flexible link manipulator. This class was composed of a chain of rigid links 

with the flexible end-link (CRFE), which had nonlinear dynamic model. A schematic of a 

member of a CRFE with the first link rigid and second link flexible is shown in Fig. 1-7. 

Therefore, the concept of the integral manifold of the singularly perturbed differential 

equations was successfully used to reduce the EETT error of the CRFE.  

To investigate the possibility of implementing the controller introduced in [18], 

which was for a SFLM with linear dynamics, for the EETT of the multilink FLM with 

nonlinear dynamic model, first its extension to the CRFE was studied in Chapter 5. This 

was due to the fact that the CRFE had a simpler dynamic model than the multilink 

flexible manipulator. The successful extension of the method developed in [18] for the 

EETT of the partially flexible nonlinear system, CREF, increased the possibility of its 

application to a full flexible nonlinear multilink manipulator. The implementation of the 

introduced controller, similar to that developed in Chapter 4, did not require the 

measurement of the time derivative of the link’s lateral deflection.  This feature made the 

implementation of the controller feasible. The time derivative of the link’s lateral 

deflection was estimated by using an observer which was designed based on the gain-

scheduling technique, detail of gain-scheduling can be found in [20].  
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Fig. 1-7: Schematic of a two link manipulator with first link rigid and second link flexible 

The stability of the proposed controller was proven using the Lyapunov criterion. 

Simulation studies were performed on the manipulator shown in Fig. 1-7. Experimental 

verification was conducted on the manipulator, shown in Fig. 1-8, with the first link rigid 

and second link flexible, a configuration called rigid shoulder-link flexible elbow-link 

manipulator. The limitation of the proposed method in chapter 5 was that it could only be 

used for the EETT of CREF, and could not be used for the EETT of multilink flexible 

manipulators. 

Fig. 1-8: Rigid shoulder-link flexible elbow-link manipulator available at the robotic 

laboratory of the University of the Saskatchewan 

Chapter 6: 

The content of chapter 6 has been submitted for possible publication in the 

International Journal of Non-linear Mechanics under the title of “End-effector maneuver 

control of the multilink flexible manipulators” [21]. In this chapter, the EETT controller 

which was studied, developed and experimentally verified in Chapters 4 and 5 for SFLM 
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and CREF, respectively, was successfully extended to the EETT of multilink flexible 

manipulators with full nonlinear dynamic models. That is, the concept of the integral 

manifold of the singularly perturbed differential equations was successfully employed to 

reduce the EETT error of the multilink flexible manipulators.  

Similar to Chapters 4 and 5, the implementation of the controller did not require 

the measurement of the time derivatives of the links’ lateral deflections, making this 

feature practical. The stability of the new controller was proven using the Lyapunov 

criterion. The simulation results for the EETT of a two-link flexible manipulator, shown 

in Fig. 1-3, proved the effectiveness of the new controller in reducing the EETT error.   

Chapter 7:  

             In this chapter the summary and conclusionsof the thesis are presented. The 

contributions of the research are discussed. The directions for the future research study 

are also provided in this chapter.  
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Chapter 2. A constrained Lagrange formulation 

of multi-link planar flexible 

manipulator  
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Abstract: 

In this chapter, the closed form dynamic equations of planar flexible link manipulators 

(FLM), with revolute joints and constant cross sections, are derived combining the 

Lagrange’s equations and the assumed mode shape method. To overcome the lengthy and 

complicated derivative calculation of the Lagrangian function of a FLM, these 

computations are done only once for a single flexible link manipulator with a moving 

base (SFLMB). Employing the Lagrange multipliers and the dynamic equations of the 

SFLMB, the equations of motion of the FLM are derived in terms of the dependent 

generalized coordinates. To obtain the closed form dynamic equations of the FLM in 

terms of the independent generalized coordinates, the natural orthogonal complement of 

the Jacobian constraint matrix, which is associated with the velocity constraints in the 

linear homogeneous form, is used. To verify the proposed closed form dynamic model, 

the simulation results obtained from the model were compared with the results of the full 

nonlinear finite element analysis. These comparisons showed sound agreement. One of 

the main advantages of this approach is that the derived dynamic model can be used for 

the model based end-effector control and the vibration suppression of planar flexible link 

manipulators. 

Keywords: Flexible link manipulators, dynamics, Lagrange multipliers

2.1. Introduction 

             The derivation of a dynamic model for a flexible link manipulator (FLM) which 

captures the effects of the link’s flexibility is the first step in model based research. To 

apply the control strategies developed for a finite order system to a FLM [1], the partial 

integro-differential equations (PDE) of a FLM [2,3] have to be changed into ordinary 

differential equations (ODE).  

2.1.1. Literature review 

An effective technique for converting the governing PDE of a FLM [2,3] into an 

ODE is to employ finite element analysis (FEA) [4] as was done in [5-10,46]. In [5] the 

dynamic equations, as well as the natural frequencies of a single flexible link manipulator 
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(SFLM) rotating with a constant angular velocity were discussed. It was shown in [5] that 

by increasing the angular velocity, the natural frequencies of the rotating SFLM increase 

due to the centrifugal force and consequently stress stiffening effect. In [6] a linear shape 

function was employed to derive the dynamic model of a planar FLM. In [7] using cubic 

or Hermitian shape functions, the dynamic model of a planar FLM was derived. In [8,9] 

the dynamic equations of a rotating SFLM were first obtained and then a piezoelectric 

actuator was used to suppress the vibration. In [10] the dynamic equations of several 

flexible link mechanisms considering complete geometrical nonlinearity [11 p. 338] were 

derived.  

Another method of changing the PDE of a FLM into an ODE is to use the 

assumed mode shape method (AMM) [12 Section 7.6]. This approach was used in [13-

17]. The concept of using the AMM to derive the dynamic model of a FLM was explored 

in [13]. In [14] the details of the dynamic equations of a planar flexible two-link 

manipulator using the first two mode shapes of a clamped-free beam per link were given. 

In [15], the dynamic equations of a planar FLM were obtained and the results were 

compared with the results of experimental studies. In [16] the linearization technique and 

the dynamics of rigid link manipulators were combined to model the dynamics of a 

planar FLM.  In [17] the model of a SFLM was derived and used to experimentally 

suppress the vibration employing piezoelectric actuators.  

2.1.2. FEA for dynamics, AMM for control 

FEA is usually used to obtain the static and dynamic response of a system to 

known forces. However, the AMM is used not only to obtain the dynamic response of the 

system, but also to control unwanted vibration and end-effector. Compared to FEA, the 

drawbacks of the AMM are (1) - the mode shapes employed in the AMM are an 

approximation of the real mode shapes of the system (2) - the nonlinear terms in the 

strain energy which lead to effects such as stress stiffening can not be addressed properly 

and (3) - the AMM does not lead to realistic approximation for the dynamic model of a 

FLM with a varying cross section such as a tapered beam. These drawbacks are the 

source of errors in the use of the AMM for modeling a FLM. Therefore, the FEA 

provides a more precise dynamic model for a FLM than the AMM [18]. However, the 
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FEA not only requires more complicated modeling and calculation but it also needs 

considerable more computational time than the AMM. It is to be noted that among the 

main motivations for using the AMM over FEA, is to have a closed form dynamics of a 

FLM to design computationally fast controllers. This is a critical requirement, to have 

states of the system available with essentially small delay [19]. As a comparison the 

simulation of example 2 given in Section 2.5 took 7 (sec) using the AMM but 170 (sec) 

employing the FEA6.  Moreover, fewer degrees of freedom, which means fewer sensors 

and measurements, is another motivation for utilizing the AMM instead of FEA for 

controller development and experimental verification. Many controllers which have used 

dynamics based on the AMM for the FLM with constant cross sections were 

experimentally verified [20-23]. Moreover, for a practical difference between AMM 

modeling and the use of real apparatus, robust control techniques [24,25] can compensate 

for drawbacks (1) and (2) above. Thus, for preliminary studies on the design of a 

controller, it is reasonable to start with AMM which is a model that is less complicated 

than the one obtained using FEA.  

2.1.3. The proposed approach 

In this chapter a combination of the AMM and the Lagrange’s equations is used to 

derive the dynamic model of a FLM with revolute joints and constant cross sections. 

However, in adopting the Lagrangian approach for the dynamic model derivation, after 

the evaluation of the Lagrangian function, L= FMFM UT − , a set of derivative calculations 

have to be carried out [26, 27]. For a FLM considering the AMM for the modeling of the 

flexibility, as the number of links increases, the calculation of the Lagrangian function 

and evaluation of the derivatives becomes more lengthy and complicated and thus more 

prone to error [14,16]. Previous attempts to alleviate this problem employed computer 

programming for symbolic simplification [28] or reduced computation [29], but the 

evaluation of the Lagrangian and/or calculation of the derivatives still required 

considerable effort. In this chapter the problem is overcome as follows. 

                                                
6 To solve the governing equations in the AMM model, the fourth-order Runge-Kutta with a sampling time 
of 0.0008 (sec) was used. The solver of the FEA was the Newmark method with the full Newton-Raphson 
technique for updating matrices with the same sampling time of 0.0008 (sec). 
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The Lagrangian function calculation and derivative evaluation are computed just 

once for a single flexible link manipulator with a moving base (SFLMB) and with a 

constant cross section.  Then, using the dynamic equations of a SFLMB, and defining a 

set of dependent generalized coordinates, the dynamic equations of the FLM are derived. 

In this approach there is no need to calculate the lengthy derivatives of the Lagrangian 

function of the FLM. However, since the manipulator kinematics are based on the 

dependent coordinates7, the forces associated with the constraint conditions will enter the 

Lagrange’s equations; that is, the constraint forces are considered as a part of the 

generalized forces. This issue is addressed by the use of the Lagrange multipliers ([26] 

Section 7.1, [27] Section 6.7).  To express the dynamic equations in terms of the 

independent coordinates and also to eliminate the Lagrange multipliers, the orthogonal 

complement of the Jacobian constraint matrix, the matrix associated with the velocity 

constraints in the linear homogeneous form, is used. Since the orthogonal complement of 

the Jacobian constraint matrix is obtained naturally from the velocity constraint 

equations, without any complex computations, it is referred to as a natural orthogonal 

complement (NOC) [30, 31]. Therefore the closed-form dynamic model of the planar 

FLM with revolute joints and constant cross section is derived in terms of the 

independent coordinates. The validity of the proposed approach was checked by a fully 

nonlinear finite element analysis (FEA) [32].  It is essential that the results of the full 

nonlinear FEA must be reliable; that is they must be close to the experimental results.  

Therefore, the verification of the derived dynamic model with the full nonlinear FEA 

implies close agreement between the results of the model introduced here with the 

experiment.  It is worth noting that the dynamic model derived here was used in the 

design of our proposed model based controllers for the end-effector trajectory tracking 

and vibration suppression and was experimentally verified for a SFLM [33, 34].  

                                                
7 For simplicity in the rest of this chapter, the term “coordinate” refers to the “generalized coordinate”.  
(The generalized coordinates of a system are the geometrical quantities that by knowing them it is possible 
to draw a diagram of the system. The minimum number of generalized coordinates required to specify the 
position of a system is the number of degree of freedom (DOF) of that system [26].)  
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2.1.4. Outline of the chapter 

In Section 2.2, the mass and stiffness matrices, the matrix representing the 

Coriolis and centrifugal forces and the gravity matrix for a SFLMB are presented. In 

Section 2.3, introducing the Lagrange multipliers, the dynamic equations of a FLM are 

derived. In Section 2.4, using the NOC method, the Lagrange multipliers are eliminated 

from the dynamic equations of a FLM and the closed form dynamic equations in terms of 

the independent coordinates are proposed. In Section 2.5 the simulation results for a 

flexible two-link manipulator are presented. For verification purposes, the results 

explained in detail in Section 2.5 obtained from the simulation of the proposed dynamic 

model, are compared with those obtained employing full nonlinear FEA.  Finally, in 

Section 2.6 conclusions of the research are presented.  

2.2. Dynamic equations of a single flexible link manipulator with a 

moving base (SFLMB) 

               A SFLMB with a constant cross section, as shown in Fig. 2-1, is considered for 

the dynamic model derivation. The flexible link is modeled as an Euler-Bernouli beam. 

Therefore, deformations due to shear and rotary inertia are neglected [35]. The ),( II YX

and ),( ξx , shown in Fig. 2-1, are the inertial and moving coordinate frames, respectively. 

The ),( ξx coordinate frame, attached to the link, has base translation ( oo YX , ) and rotation 

(θ ). The mass and the mass moment of inertia at the tip of this link represent the motor 

which moves the next link. For the last link, the mass and the mass moment of inertia at 

the tip represent the end-effector. To consider the hub of the first link, an additional mass 

moment of inertia is added to the base of the SFLMB shown in Fig. 2-1. A schematic of 

the first link is shown in Fig. 2-2. In this way all the links, mass and mass moment of 

inertia of the motors and end-effector are taken into consideration. Since the first link of a 

FLM is attached to the ground, the ),( ξx  coordinate frame attached to the first link can 

only rotate. 
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Fig. 2-1: Schematic of a SFLMB with a moving base 

Fig. 2-2: Schematic of the first link of a FLM 

According to the AMM the lateral deflection of the link, ),( txξ in Fig. 2-1 (or Fig. 

2-2), is 

∑
=

=
n

i
ii xttx

1

)()(),( φλξ                                                   (2-1) 

where )(xiφ  is the ith spatial assumed mode shape, out of n mode shapes and )(tiλ is its 

time varying weight function. The closer the selected mode shapes, )(xiφ , are to the exact 

real mode shapes of the system, the more accurate will be the approximation proposed in 

Eq. (2-1). The approximation of the mode shapes is a source of error for AMM. The other 

source of error is the truncation on the number of mode shapes, n.  Increasing this number 

usually improves the approximation given in Eq. (2-1) at the expense of computational 

time. However, in the case of a real system and in the presence of the internal material 
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damping, which is usually modeled proportional to the stiffness matrix [36], the higher 

modes of vibration will be damped out more quickly than the first few modes. Therefore, 

only the first few modes of vibration mainly contribute to the dynamic response. It is 

clear then, that since the method introduced in this chapter is based on the AMM, it has 

the same source of error as the AMM, as explained above, and will not introduce extra 

error to the system.  

              To derive the dynamic equations of a SFLMB, a combination of the Hamiltonian 

principle and the AMM is used. Since the number of required independent coordinates to 

define kinematically the SFLMB shown in Fig. 2-1, ],....,,,[ 1 noo YXq λλθ= , is finite, it 

has been proven ([26] Section 6.5) that to satisfy the Hamiltonian principle, each 

independent generalized coordinate has to satisfy the following Lagrange’s equation8
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where, SMT  is the kinetic energy of the SFLMB,SMU is the potential energy of the 

SFLMB and SMQ is the generalized force vector corresponding to q . 

2.2.1. Derivation of the kinetic energy of a SFLMB 

             The kinetic energy of the SFLMB shown in Fig. 2-1, SMT , is composed of the 

kinetic energy of the flexible link, lT , and the kinetic energy of the tip mass, tipT . The 

kinetic energy of the link and the corresponding terms after its differentiation are first 

derived. Then, the effect of the tip mass is added.

The kinetic energy of the link of a SFLMB 

The kinetic energy of the link,lT , ignoring the rotational kinetic energy (based on 

the Euler- Bernoulli beam assumption) is 

1
( . )

2l p pT V V dm= ∫                                                  (2-3) 

                                                
8 The Lagrange’s equation, Eq. (2), must be satisfied for every single component of the vector q. 
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where pV  is the velocity of an arbitrary point p  on the link as shown in Fig. 2-1 and “.” is 

the dot product. pV  can be expressed as opop VVV /+= , where oV is the velocity of point 

o, the origin of the ),( ξx coordinate frame, and opV / is the relative velocity of point p

with respect to point o. Hence 

ξ)/()/( opxopop VVVV ++=                                         (2-4) 

where
xopV )/( and 

ξ)/( opV are the components of opV /  in the x  and ξ  directions, 

respectively, as illustrated in Fig. 2-1. Substituting Eq. (2-4) into Eq. (2-3) and 

using dxdm ρ= , whereρ  is the mass per unit length, leads to 

54321 )()()()()( llllll TTTTTT ++++=                                    (2-5) 

where 
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xopol dxVVT
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opol dxVVT
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)/(5)(
ξ

ρ                                                        (2-6)   

 and 0.
0

)/()/( =∫
L

oPxoP dxVV ξρ . The term 1)( lT  is the kinetic energy due to the translation of 

the ),( ξx  coordinate frame, 2)( lT and 3)( lT are the kinetic energies due to the relative 

velocities of the pointp with respect to the point o and 4)( lT and 5)( lT  are the kinetic 

energies due to the interaction of the ),( ξx  coordinate frame’s translations and the 

relative velocity of the pointp with respect to the point o. Based on the AMM, Eq. (2-

1),  
xopV )/(  and 

ξ)/( opV  are 

))()((
1

)/( ∑
=

−=−=
n

i
iixop xtV φλθξθ &&   ,   ∑

=

+=+=
n

i
iiop xtxxV

1
)/( )()( φλθξθ
ξ

&&&&           (2-7) 

Moreover, oV in the ),( II YX  coordinate frame is 
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[ ]TooYXo YXV
II

&&=)(                                             (2-8) 

For the calculations of 4)( lT and 5)( lT , the velocities
xopV )/( ,

ξ)/( opV  and oV  should be 

defined in the same coordinate frame. Thus, oV  is expressed in the ),( ξx coordinate frame  

II YXo
T

xo VRV )()( θξ =                                           (2-9) 

where 
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θθ
θθ

θ
TR                                          (2-10) 

Substituting Eqs. (2-7), (2-8) and (2-9) into Eqs. (2-5) and (2-6) , the first two terms of 

Eq. (2-2) become  
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1               (2-11)  

where  ilM )(   and  ilC )(   are  the  mass  matrix  and  the  matrix  representing  the  

Coriolis  and centrifugal forces obtained after the differentiation of ilT )( , 5..1=i , 

respectively9. Moreover, ∑
=

=
5

1

)(
i

ill MM and ∑
=

=
5

1

)(
i

ill CC . The elements of  ilM )(   and  

ilC )(   modeling the  flexibility of the link with two assumed mode shapes, n=2 in Eq. (2-

1), are given in Appendix 2.I. 

Remark 2.1: Alternatively, after obtaining the kinetic energy of the system and writing it 

in the form qMqT T &&)2/1(= , the mass matrix,M , can be obtained. Moreover, the 

elements of the matrixC  can be obtained from the mass matrix using the Christoffel 

symbol. That is  

k

p

k
jki qcjiC &∑

=

=
1

,),(

                                                
9 Hereafter, the terms “mass matrix” and “matrix representing the Coriolis and centrifugal forces” refer to 
the coefficients of the multiplier of the second and first derivative of the generalized coordinate with 
respect to time which is obtained after the differentiation of the kinetic energy, respectively.  
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jkjki qkiMqjiMc ∂∂+∂∂= /),(/),()(2/1(, )/),( iqkjM ∂∂−

 where p is number of the element in the vector q  and jkic ,  is the   Christoffel  symbol. 

The elements of the mass matrix, and the matrix representing the Coriolis and centrifugal 

forces, given in Appendices I and II, were checked using the above method. 

The kinetic energy of the tip mass of a SFLMB 

The tip mass has both linear and angular velocities. Thus, its kinetic energy is 

angulartiplineartiptip TTT )()( +=                                       (2-12) 

where lineartipT )(  and angulartipT )(  are the translational and rotational kinetic energies of the 

tip mass, respectively. The translational kinetic energy, lineartipT )( , can be derived from lT

as follows. Assume that the tip mass,tipm , is a virtual link with length VL  and mass per 

unit length Vρ attached to the flexible link such that VVtip Lm ρ= . Therefore  

V

tip
V L

m
=ρ                                                      (2-13) 

Shrinking the length of the virtual link to the zero and knowing that VVtip Lm ρ=  is 

constant turns Vρ  into the Dirac delta function, that is 

)( Lxm dtipV −= δρ                                              (2-14)

where L is the length of the flexible link with tipm  at its tip and x  is as shown in Fig. 2-

1. For an arbitrary function  f(x) it is known that 

)()()(
0

LfmdxxfLxm tip

L

dtip =−∫ δ                                    (2-15) 

Using Eqs. (2-14) and (2-15), the translational kinetic energy and the corresponding 

terms (mass matrix,  lineartipM )( , and the matrix representing the Coriolis and centrifugal 

forces, lineartipC )( ) are obtained from the relations given in Eqs. (2-6) and (2-5) and the 

expressions given in Appendix 2.I. Thus, 
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The rotational kinetic energy of the tip mass is  
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where tipI  is the mass moment of inertia of the tip mass, θ  is as shown in Fig. 2-1, 

andξ is given in Eq. (2-1). Therefore  
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The elements of angulartipM )(  and angulartipC )(   modeling the flexibility of the link with two 

assumed mode shapes, n=2 in Eq. (2-1), are given in Appendix 2.II. Combining Eqs. (2-

16) and (2-19) 
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where angulartiplineartiptip MMM )()( +=  and angulartiplineartiptip CCC )()( += . 

Kinetic energy of a SFLMB  

The (total) kinetic energy of a SFLMB,SMT , is composed of the link and tip mass 

kinetic energies,lT  and tipT  respectively. Thus, 
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where 
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SMM  is the mass matrix, and SMC  is the matrix representing the Coriolis and centrifugal 

forces for a SFLMB.  

Remark 2.2: To have a linear model for a single flexible link manipulator with a fixed 

base, which is usually used in the design of the linear controllers [1, 37], the lateral 

deflection of the link with respect to the shadow link,ξ , is considered to be very small. 

Then, 3)( lT  as defined in Eq. (2-6), can be neglected from the kinetic energy’s 

expression. As well, for a single flexible link manipulator with a fixed base 41 )(,)( ll TT

and 5)( lT are zero.  

2.2.2. Potential energy of a SFLMB 

To derive the last term on the left hand side of Eq. (2-2), iqU ∂∂ /  is required. The 

term U , called SMU   for a SFLMB, is composed of the potential energy due to the 

gravitational force if the manipulator moves in the vertical plane, and the potential energy 

(strain energy) due to the link’s flexibility. Assuming that the SFLMB is utilized in the 

vertical plane, the potential energy of the link due to gravity, for IX  as the datum, is 

dxxYgU
L

potentiall ∫ ++=
0

0  ))cos()sin(()( θξθρ                              (2-23) 

whereg is the gravitational acceleration, ρ  is the mass per unit length and ξ,,0 xY  and 

θ are shown in Fig. 2-1. The potential energy (strain energy) due to the link’s flexibility, 

neglecting the geometric effect for a beam in bending ([11] p. 388) and the shear and 

axial deformations, and assuming linear elastic material, is: 

dx
x

EIU
L

strainl ∫ ∂
∂=

0

2
2

2

)(
2

1
)(

ξ
                                     (2-24) 

where E and I are respectively the Young’s modules and the second moment of area for a 

SFLMB. It is to be noted that addressing all neglected terms in the strain energy requires 

use of full nonlinear FEA [32, 38] at the expense of high computational time. In the three 

examples presented in Section 2.5, the section dealing with the simulation, the results of 

the full nonlinear FEA are compared with the AMM without these nonlinear terms. The 
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close agreement of the FEA and AMM indicates that neglecting these nonlinear terms in 

the AMM modeling of those examples are reasonably justifiable. These nonlinear terms 

may have some effects, which are not captured by AMM, on the dynamic motion for 

special circumstances, such as a very flexible beam or high speed maneuvers [10, 32, 38].   

 The potential energy of the link of a SFLMB,lU , is the summation of potentiallU )(  

and strainlU )( , that is 

strainlpotentialll UUU )()( +=                                     (2-25) 

By substituting Eq. (2-1) into Eq. (2-25), qU ∂∂ / is 

qKG
q

U
Bll

l )(+=
∂

∂
                                          (2-26) 

where lG  represents the gravity matrix and BlK )(  is the stiffness matrix of the (flexible) 

link. The elements of lG  and BlK )(  modeling the flexibility of the link with two mode 

shapes, n=2 in Eq. (2-1), are given in Appendix  2.III.  

To consider the potential energy due to the gravitational force for the tip mass, the 

strategy of derivingtipT , tipM  and tipC  is adopted. That is, the mass per unit length given 

in Eq. (2-14) is substituted in the expression of potentiallU )(  and lG  given in Eq. (2-25) and 

Appendix 2.III, respectively and are calledtipU and tipG . Thus,  

qKG
q

U
BlSM

SM )(+=
∂

∂
                                        (2-27)                                                

and   

tiplSM GGG +=                                               (2-28) 

where tiplSM UUU +=  is the potential energy of a SFLMB,  shown in Fig. 2-1, including 

the link’s flexibility  and the gravity of the link and tip mass.  
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2.3. Dynamics of a FLM using dynamics of a SFLMB and Lagrange 

multipliers  

To derive the dynamic equations of a flexible link manipulator (FLM) with 

revolute joints and constant cross sections, which is composed of several links, the 

dynamic equations of a SFLMB can be used. Fig. 2-3 illustrates a FLM composed of 

three links. For each link a set of coordinates, equivalent to the ones adopted for the 

SFLMB in Section 2. 2, is used. Therefore, for the FLM the coordinates are

[ ]TrqqqZ ......21=                                     (2-29) 

where [ ]Tniiioioii YXq λλθ ....1=  is the coordinates of the ith SFLMB. The 

kinetic and potential energies of the FLM are  

∑
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=
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i
iSMFM TT

1

)(                                             (2-30) 

∑
=

=
r

i
iSMFM UU

1

)(                                            (2-31) 

where sets of (FMT  and iSMT )( ) and ( FMU and iSMU )( ) are the kinetic and potential 

energies of the FLM and the ith SFLMB, respectively, and r is the number of the links. 

Substituting Eqs. (2-30) and (2-31) in the Lagrange’s equations 
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and iSMM )( , iSMC )( , iSMG )(  and iBlK ))(( are the mass matrix, matrix representing the 

Coriolis   and centrifugal forces, gravity matrix, and stiffness matrix for the ith SFLMB, 

respectively. These matrices are obtained in Section 2.2. The right hand side of Eq. (2-

32),Q , is addressed later in this section, Eqs. (2-36) to (2-44). 

Fig. 2-3: Schematic of a FLM  

Remark 2.3: The elements of the mass matrix in Eq. (2-32), iSMM )(  i=1..r , are for the 

SFLMB shown in Fig. 2-1, which does not take into account the first SFLMB’s hub,hI . 

This difference can be observed by comparing Figs. 2-1 and 2-2. To consider the mass 

moment of inertia of the hub,hI has to be added to the element of the third row and third 

column of 1)( SMM , the mass matrix of the first SFLMB. 
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Remark 2.4: Since the first two rows and columns of SMM and SMC , and the first two 

rows of SMG are related to the displacement at the origin of the attached coordinate frame 

to each link, and due to the fact that for the first SFLMB the origin is fixed, the first two 

rows and corresponding columns have to be omitted from 1)( SMM and  1)( SMC . 

Moreover, for the same reason, the first two rows of 1)( SMG  are omitted. This is similar 

to modifying the matrices in FEA when applying boundary conditions. The changes that 

have to be applied to the stiffness matrix BFMK )( are discussed is Section 2.4.  

Lagrange’s equation for the FLM is 

Q
Z

U

Z

T

Z

T

dt

d FMFMFM =
∂

∂
+

∂
∂

−
∂

∂
)(

&
                                   (2-35)

To complete the derivation of the dynamic model, the generalized forces Q

corresponding to generalized coordinates have to be calculated. Since there are more 

generalized coordinates than the DOF of the system, the coordinates are not independent; 

that is, there are constraint equations. These constraint equations create constraint forces 

which must be considered in the generalized forces expressions ([26] Chapter 7.1, [27] 

Chapter 6.7). In other words, when the generalized coordinates form a constrained set, 

the reactions associated with the constraint conditions enter into the Lagrange’e equations 

([26] p.324). Thus, the generalized forces at the right-hand side of Eq. (2-35) consist of 

the actuator’s forces aQ  and constraint force CFQ

CFa QQQ +=                                             (2-36) 

Recalling the fact that the lateral displacement of the ith link is ∑
=

=
n

j
ijiji xt

1

)()( φλξ , where 

ijφ  is the jth  mode shape of the ith flexible link, assuming thatijφ  satisfies the clamped 

boundary condition, and considering the ith link, shown in Fig. 2-4, the virtual work 

( wδ ) due to the virtual displacement of the coordinates  is 

riLw iji

r

j
ijiiiii ≠′−−= ∑

=
++ δλφτδθττδ )()(

1
11       ,       riw iii == δθτδ       (2-37) 
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Fig. 2-4: The ith link of a FLM with the applied actuator torques 

The virtual work due to the constraint forces will be addressed later. Therefore, the 

generalized forces for the ith flexible link due to the actuators’ forces (torques), using Eq. 

(2-37), are 
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Thus 

τBQa =                                                  (2-40) 
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and )1(:,iB  and )2(:,iB represent the first and second columns of iB  in Eq. (2-39). The 

consideration of the constraint forces in the Lagrange’s equations is addressed by 

employing the Lagrange multipliersγ . The constraint forces are due to the holonomic 

constraints10 on  the  coordinates:  The  displacement  of  the tip of  the  ith link  is the  

same as the displacement at the base of the i+1 th link, which is 
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where iRθ is the rotation matrix for the ith SFLMB, as defined in Eq. (2-10). Taking the 

derivative of Eq. (2-42) with respect to time, the velocity constraints are obtained, that is 

the velocity of the tip of the ith link has to be the same as the velocity of the base of the 

i+1 th link. The velocity constraint can be rewritten as  

0=ZAJ
&                                                     (2-43) 

Details of matrix JA , called the Jacobian constraint matrix, for a flexible two link 

manipulator modeling the flexibility of each link with two assumed mode shapes are 

given in Appendix 2.IV. Using the Lagrange multipliers,γ , the constraint forces are [26, 

27] 

γT
JCF AQ =                                             (2-44) 

Combining Equations (2-35), (2-36), (2-40) and (2-44), the dynamic equation of the FLM 

is 

γτ T
JBFMFMFMFM ABZKGZCZM +=+++ )(&&&                         (2-45) 

To solve the dynamic equation of the FLM for a given input torque,τ , the equations of 

motion, Eq. (2-45), and the constraint equations, Eq. (2-42), have to be solved 

simultaneously. Thus, the values of the time varying Lagrange multipliers and 

constrained coordinates are obtained. 

                                                
10 If a velocity constraint is holonomic, then there exists an integration factor for which the Pfaffian form of 
the constraint equation becomes a perfect differential [16].  



38 

2.4. Eliminating Lagrange multipliers from the dynamic equations 

In this section, the Lagrange multipliers are eliminated from Eq. (2-45) and the 

dynamic equation of the FLM is obtained in terms of the independent coordinates. To 

eliminate the Lagrange multipliers from Eq. (2-45), the orthogonal complement matrix, 

T, of the Jacobian constraint matrix, JA  in Eq. (2-43), is obtained. This matrix, T, is 

called the natural orthogonal complement (NOC) [30], because it is obtained naturally 

from the velocity constraint equations without any complex computation.  Therefore, to 

derive the closed form dynamic equation in terms of the independent generalized 

coordinates, the NOC of matrix JA  in Eq. (2-43), is combined with Eq. (2-45). It should 

be mentioned that NOC is a projection method of the dynamic equations into the tangent 

space of the constraint manifold. The concept of this projection technique is discussed in 

[39 Sections 6.5 and 6.7]. More details of the NOC can be found in [31, 40, 41]. A brief 

description of this method is as follows. The independent coordinates for the FLM are 

[13-17] 

[ ]TrnrrnnIDZ λλθλλθλλθ ............. 122121111=            (2-46) 

where r is the number of the link and n is the number of the assumed mode shapes per  

link. The relation between the velocity of the dependent coordinates,Z& , and the velocity 

of the independent coordinates,IDZ& , is  

IDZTZ && =                                                 (2-47) 

Details of the transformation matrix T, for a flexible two-link manipulator using two 

assumed mode shapes per link are given in Appendix 2.IV. Substituting Eq. (2-47) into 

Eq. (2-43) leads to 

 0== T
J

T
J ATTA                                           (2-48) 

Eq. (2-48) shows that T  is an orthogonal complement ofJA  and is referred to as the 

natural orthogonal complement (NOC) since it is obtained from the velocity constraint, 

Eq. (2-47), without complex calculations. Taking the derivative of Eq. (2-47) one obtains 

IDID ZTZTZ &&&&&& +=                                        (2-49) 
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Substituting Eqs. (2-47) and (2-49) into Eq. (2-45) results in 

γτ T
JBFMFMIDFMFMIDFM ABZKGZTCTMZTM +=++++ )()()( &&&&                (2-50) 

Pre-multiplying both sides of Eq. (2-50) with TT  and considering Eq. (2-48), Eq. (2-50) 

is changed to:  

τBZKTGZCZM BFM
T

IDID

~
)(

~~~ =+++ &&&                             (2-51) 

where 

                    MTMT FM
T ~

)( =                    CTCTMT FMFM
T ~

)( =+&                   (2-52) 

                           GGT FM
T ~=                                      BBT T ~=                

are the dynamic equations without Lagrange multipliers. However, the stiffness matrix is  

multiplied byZ  and not by IDZ . The stiffness matrix of the FLM can be expressed in 

terms of IDZ  as follows. The stiffness matrix of the dynamic model is derived by 

differentiating Eq. (2-24). Since Eq. (2-24) is independent of iθ , oiX and oiY , the elements 

of the stiffness matrix corresponding to iθ , oiX and oiY  are zero and the only non-zero 

elements are those corresponding toijλ , see matrix BlK )(  in Appendix 2.III. Given that 

the transformation between IDZ  and Z does not affect ijλ , the non-zero elements of the 

stiffness matrix related to the ijλ  will not change. Thus, ZKT FMT can be replaced by 

IDZK
~
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                       (2-53)    

and )..,2,1())(( rpK pBl =′ is obtained by omitting the first two rows and corresponding 

columns of pBlK ))(( . Therefore, the closed form dynamic equations for the FLM in terms 

of the independent coordinates are 

τBZKGZCZM IDIDID

~~~~~ =+++ &&&                              (2-54) 
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To summarize the steps taken to obtain the closed form dynamic Eq. (2-54) a flowchart is 

given in Appendix 2.V. 

2.5. Simulation Results 

In the simulation study, the joints’ rotations, end-effector path, components of the end-

effector velocity in the IX  and IY  directions and the absolute value of the end-effector 

deviation with respect to the shadow manipulator for a flexible two-link manipulator 

were considered. In Fig. 2-5, the flexible two-link manipulator and the end-effector 

deviation with respect to the shadow manipulator11, called “D”, are shown. The physical 

properties of the flexible two-link manipulator are provided in Table 2-1. To verify the 

proposed dynamic model, the simulation results from Eq. (2-54), referred to here as the 

LNOC (Lagrange and Natural Orthogonal Complement), were compared with the results 

of the full nonlinear dynamics employing finite element analysis (FEA) [32].  

Table 2-1: Physical properties of the flexible two-link manipulator 

Physical properties Value(s) 

21,LL  (Length of the links) 0.5000 (m) 

21,EE  (Young’s modulus) 20.00 (GPa) 

21, ρρ (Mass per unit length) 0.7800 ( /kg m ) 

21, AA (area cross section) 0.0001 ( 2m ) 

21, II (second moment of area) 12103.833 −×  )( 4m

21, hh II (mass moment of inertia of hubs) 410200.1 −× ).( 2mkg

2hm (mass of the motor at the elbow joint) 0.0100 )(kg

tiptip Im , (mass and mass moment of inertia at the tip of the manipulator) 2.000 )(kg , 0.0100 ).( 2mkg

                                                
11 The difference between the end-effector location of a FLM and the end-effector location of a rigid, 
shadow, link manipulator with the same lengths and joint rotation is called end-effector deviation of a FLM 
with respect to the shadow manipulator (See Fig. 2-5) 
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In the LNOC simulation, the flexibility of each link was modeled using two assumed 

mode shapes per link; that is, n=2 in Eq. (2-1). The mode shape of each link,ijφ  which 

was the ith mode shape of the jth link, was selected based on the mode shapes introduced 

in [42]. Although increasing the number of mode shapes per link may improve the 

accuracy of the approximation of the AMM to some extent, it also increases the 

computational time. However, for a physical system, FLM, there is internal material 

damping, which is usually modeled proportional to stiffness [36]. Due to this material 

damping, the high frequency vibration is damped out more quickly than the low 

frequency vibration. Hence, even if the higher modes are excited, the first few modes of 

vibration are dominant in the dynamic response. In the simulations reported here, the 

damping was not modeled so that the effect of the high frequency vibration, if any, would 

be captured in the FEA. Moreover, the applied torques in example one and two were of 

the bang-bang type which can excite high frequency vibration. The good agreement of 

the AMM results, based on only n=2, with the FEA results justified the use of two mode 

shapes per links. Having said that, the use of only two modes per link in this approach 

may be seen as a limitation, but also is an advantage of being fast and reasonably 

accurate. Furthermore, the results can easily be used by a model based controller for the 

end-effector control and suppression of unwanted vibration of the manipulator during and 

at the end of its motion.  

Fig. 2-5: Schematic of a flexible two-link manipulator 
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For the FEA, the links were modeled by the BEAM3 element and the hubs and end-

effector mass were modeled by MASS21 from the ANSYS library [43]. The BEAM3 

element is a two-dimensional uniaxial element with three DOF at each node, two 

translations and one rotation. It has the ability to model tension, compression and 

bending. The MASS21 is a point element with three DOF, two translations and one 

rotation. Details of a similar FEA and simulation to the ones presented here can be found 

in [32] and Appendix B of [44]. 

2.5.1. Example one: One element per link, Bang-bang torque

For the first example, each link in the FEA was modeled with one BEAM3 element.

Thus, the LNOC model, assuming two mode shapes per link, and the finite element (FE) 

model had approximately the same DOF; that is six and eight, respectively. To generate 

relatively severe vibrations, the applied torques to the shoulder and elbow joints were 

chosen as bang-bang with switches at 0.6 and 0.4 seconds, respectively, as shown in Fig. 

2-6.  

Fig. 2-6: Example one, applied bang-bang torque to the shoulder and elbow joints  

The joints’ rotations, end-effector path, components of the end-effector velocity in the 

IX  and IY  directions and the absolute value of the end-effector deviation with respect to 

shadow manipulator are shown in Figs. 2-7, 2-8, 2-9, 2-10, 2-11, and 2-12, respectively.  
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Fig. 2-7: Example one, rotation of the shoulder joint, one element per link in FEA 

Fig. 2-8: Example one, rotation of the elbow joint, one element per link in FEA 

Fig. 2-9: Example one, end-effector paths, one element per link in FEA 



44 

Fig. 2-10: Example one, end-effector velocity, IX  direction, one element per link in FEA 

Fig. 2-11: Example one, end-effector velocity, IY  direction, one element per link in FEA 

Fig. 2-12: Example one, absolute value of D shown in Fig. 5, one element per link in FEA 

From Figs. (2-7 to 2-9), the maximum difference between the results of the FEA, 

with one element per link, and the LNOC, with two mode shapes per link, for the 

shoulder joint rotation, elbow joint rotation and end-effector position were 0.1278 (rad), 
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0.0676 (rad), and 0.0268 (m), respectively. It is worth noting that, like the examples in 

[44], the end-effector vibration was not obvious from Fig. 2-9. However, the components 

of the end-effector velocity in the IX  and IY  directions, shown in Figs. 2-10 and 2-11, 

clearly showed the existence of the links’ vibrations. The maximum difference between 

the result of the FEA, with one element per link, and the LNOC, with two mode shapes 

per link, for the end-effector velocities in the IX  and IY  directions were 0.2994 (m/s), 

and 0.0968 (m/s), respectively. To determine the average normalized deviation of the 

end-effector of the FLM with respect to the (rigid) shadow link manipulator over the 

manoeuvre time,ft , the following deviation index was defined

)max(

)(
0

Dt

dtD

D
f

t f

×
=

∫
                                              (2-55)               

where “D”, the end-effector deviation with respect to shadow manipulator, is as shown in 

Fig. 2-5. From Fig. 2-12, the deviation index for the LNOC and the FE models were 

0.4270 and 0.4470, respectively. 

2.5.2. Example two: 10 elements per link, Bang-bang torque

For the second example, the physical properties and the applied torques were the 

same as in example one (See Table 2-1 and Fig. 2-6, respectively). However, in the FEA 

the number of the elements per link was increased from 1 to 10 since it was expected that 

by increasing the number of the elements per link, the accuracy of the FEA result would 

improve. The number of elements, 10, was chosen for the following two reasons, (1) - to 

comply with the Euler-Bernoulli (thin) beam theory, theoretically the length-to-height 

ratio of the elements has to be about five or larger and (2) - to capture the effect of the 

higher modes (perhaps up to fifth12). In this particular example, about 10 elements per 

link satisfied the above two requirements. Moreover this number, 10 elements per link, 

made the FEA computationally efficient.  

                                                
12 From a simple analysis for a rotating single flexible link manipulator, the first five nonzero natural 
frequencies were compared against the analytical values when increasing the number of elements from 2 to 
10. The finding indicated that 10 elements is reasonably capable of capturing up to five natural frequencies. 
Details can be found in appendix 2-VI. 
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The joints’ rotations, end-effector path, components of the end-effector velocity in 

the IX  and IY  directions and the deviation index, given in Eq. (2-55), were obtained 

from the LNOC, with two mode shapes per link, and compared with the FEA, with 10 

elements per link. These results are given in Figs. 2-13, 2-14, 2-15, 2-16, 2-17, and 2-18, 

respectively. 

       

Fig. 2-13: Example two, rotation of the shoulder joint, 10 elements per link in FEA 

Fig. 2-14: Example two, rotation of the elbow joint, 10 elements per link in FEA 
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Fig. 2-15: Example two, end-effector paths, 10 elements per link in FEA 

Fig. 2-16: Example two, end-effector velocity, IX  direction, 10 elements per link in FEA 

Fig. 2-17: Example two, end-effector velocity, IY  direction, 10 elements per link in FEA 
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Fig. 2-18: Example two, absolute value of D shown in Fig. 5, 10 elements per link in FEA 

 From Figs. (2-13 to 2-15), the maximum difference between the results of the 

FEA, with 10 elements per link, and the LNOC, with two mode shapes per link,  for the 

shoulder joint rotation, elbow joint  rotation and end-effector position were 0.1241 (rad), 

0.0311 (rad) and 0.0051 (m), respectively. These differences were small compared to 

those given in the example 1, when only one element per link was used for the FEA. 

Moreover, the maximum difference between the end-effector velocities in the IX  and IY

directions obtained from the FEA, with 10 elements per link, and the LNOC, with two 

mode shapes per link, were 0.2003 (m/s) and 0.0705 (m/s) which were smaller than their 

counterparts in example 1. Finally, the deviation index for the FEA, with 10 elements per 

link,  was 0.4040. It is to be noted that the deviation index for the FE model, with 10 

element per link, (||D||=0.4040) was closer to this index for the LNOC model 

(||D||=0.4270) than its one element per link counterpart, (||D||=0.4470) (compare the 

difference of 0.4270-0.4040=0.0230 with 0.4470-0.4040=0.043). Thus, although, in the 

first example the DOF of the LNOC with two assumed mode shapes per link was almost 

the same as in the FE model with one element per link, differences existed between the 

results. In the second example, for the FEA each link was modeled with 10 elements and 

the difference between the results were smaller compared to the first example. Therefore, 

it is seen that the LNOC with many fewer DOF produced similar results to the FEA with 

many DOF.  



49 

2.5.3. Example three: 10 elements per link, Rigid torque 

For this example, the same manipulator was used as in the previous examples. In 

the FE model, as in the second example, each link was composed of 10 BEAM3 

elements. The torques, shown in Fig. 2-19, were calculated from the inverse dynamic of 

the rigid link counterpart [45] of the FLM to follow a given trajectory and were referred 

to as rigid torques.  

Fig. 2-19: Example three, applied rigid torque to the shoulder motor and elbow joints  

The reference trajectories, rigid trajectories, were quintic trajectories for 0.5 

seconds, and are shown in Figs. 2-20 and 2-21. The final values for the rigid trajectories 

of the shoulder and elbow joints, as shown in Figs. 2-20 and 2-21, were 0.7850 (rad) and 

-0.7850 (rad).  

Fig. 2-20: Example three, rotation of the shoulder joint, 10 elements per link in FEA 
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Fig. 2-21: Example three, rotation of the elbow joint, 10 elements per link in FEA 

The joints’ rotations, end-effector path, components of the end-effector velocity in 

the IX  and IY  directions and the absolute value of the end-effector deviation with 

respect to shadow manipulator are shown in Figs. 2-20, 2-21, 2-22, 2-23, 2-24, and 2-25, 

respectively.  

Fig. 2-22: Example three, end-effector paths, 10 elements per link in FEA 
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Fig. 2-23: Example three, end-effector velocity, IX  direction, 10 elements per link in FEA 

Fig. 2-24: Example three, end-effector velocity, IY  direction,10 elements per link in FEA 

Fig. 2-25: Example three, absolute value of D shown in Fig. 5, 10 elements per link in FEA 

The differences between the rotations of the elbow and shoulder joints of the 

flexible two-link manipulator compared to its rigid link counterpart, rigid trajectory, as 

shown in Figs. 2-20 and 2-21 were due primarily to the flexibility of the links. From Figs. 
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(2-20 to 2-24) the maximum differences between the shoulder joint rotation, elbow joint 

rotation, end-effector position, and the end-effector velocities in the IX  and IY  directions  

from the LNOC, with two mode shapes per link, and the FEA, with 10 elements per link, 

were 0.0054 (rad), 0.0308 (rad), 6.311 ×10-4 (m), 0.0059 (m/s), and 0.0031 (m/s) 

respectively. The differences between the LNOC and the FEA results in the third 

example were considerably smaller than in the second example. This was due to the fact 

that torque in the third example was much more smooth than the bang-bang torque in the 

second example. In addition, the deviation indices from Eq. (2-55) for the LNOC and the 

FE model were 0.4060 and 0.3830, respectively. Again the closeness of these values 

indicated the validity of the proposed approach.  

Comparison of the results based on the dynamic model derived here with those of 

the full nonlinear dynamic simulation using the FE with 10 elements per link justified the 

proposed LNOC method which used only two mode shapes per link. In the FEA, the 

axial deformation, shear deformation, and the nonlinear terms in strain energy which lead 

to effects such as stress stiffening [10, 32, 38, 43] were also considered, while they were 

neglected in the LNOC model. Thus, differences between the simulation results must 

exist. Nevertheless, the results of the LNOC model, as shown in the examples for a bang-

bang and rigid torques, were reasonably accurate and were comparable with the FEA.  

It is worth noting that in examples 2 and 3, the results of a full nonlinear, FEA 

were used as the basis for the comparison and verification of the dynamic equations 

presented in Eq. (2-54). In this context, full nonlinear FEA here is taken to mean that a 

sufficient number of elements were used, all the nonlinearities were considered, and the 

time integration and iterative solver (the Newmark and full Newton/Raphson) provided 

accurate results. Obviously, comparing the numerical simulation with the experimental 

results is the best way to validate an approach; which we have done in our published and 

in progress papers [33,34], which examine the use of AMM for design of othe proposed 

controller for a SFLM. In the absence of the experimental results for a two-link flexible 

manipulator, comparison with full nonlinear FEA is the second best choice. It is believed 

that the results of such a full nonlinear FEA will be quite reliable and close to the 
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experimental results. Thus, verification of the AMM with the full nonlinear FEA implied 

the sound agreement of the AMM results to the experimental results.  

2.6. Conclusions  

The derivation of the dynamic models of flexible link manipulators (FLM) based 

on the combination of the Lagrange’s equations and the assumed mode shape method 

requires evaluation and differentiation of the Lagrangian function. A new method was 

introduced in this chapter to alleviate the lengthy evaluation and complicated derivative 

calculation of the Lagrangian function of a FLM. All the computations, evaluation and 

derivative calculations of the Lagrangian function were carried out only once and for a 

single flexible link manipulator with a moving base (SFLMB). Details of the dynamic 

equations of a SFLMB when the flexibility of the link is modelled with two mode shapes 

were presented.  

Based on the dynamic model of a SFLMB and by employing the Lagrange 

multipliers, the dynamic equations of a FLM in terms of the dependent generalized 

coordinates were obtained. To have the closed form dynamic equations without Lagrange 

multipliers, the natural orthogonal complement of the Jacobian constraint matrix was 

combined with the dynamic equation of a FLM obtained in terms of the dependent 

generalized coordinates. Thus, the closed form dynamic equations of a FLM in terms of 

the independent generalized coordinates and without the Lagrange multipliers were 

achieved. Details of the matrices to obtain the dynamic model of a flexible two-link 

manipulator were given. To verify the derived dynamic equations, the results of 

simulation from the introduced model were compared with the ones obtained from the 

full nonlinear finite element analysis and were found to be in very good agreement. In the 

three examples in the simulation study a bang-bang torque, and the torque from the rigid 

manipulator, were applied to a flexible two-link manipulator. For these examples, joints’ 

rotations, end-effector path, components of the end-effector velocity and deviation index, 

from the model and the full nonlinear finite element analysis were compared as checks 

for the accuracy of the developed model.  

It is to be noted that the sources of the errors of the introduced approach are only 

those typical of the AMM, which are approximations of the mode shapes and the number 
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of the mode shapes used. Thus, the proposed method detailed here will not introduce 

extra error to the system other than the AMM above mentioned errors.  
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2.8. Nomenclature 

JA : Jacobian constraint matrix. 

B : Torque mapping matrix for a FLM derived based on the dependent generalized 

coordinates. 

B
~

: Torque mapping matrix for a FLM derived based on the independent generalized 

coordinates. 

ilC )( : Matrix representing the Coriolis and centrifugal forces obtained after the 

differentiation of ilT )( . 

lC : Matrix representing the Coriolis and centrifugal forces for the link of a SFLMB, 

∑
=

=
5

1

)(
i

ill CC . 

lineartipC )( , angulartipC )( : Matrices representing the Coriolis and centrifugal forces obtained 

after the differentiation of lineartipT )(  and angulartipT )( , respectively. 

tipC  : Matrix representing the Coriolis and centrifugal forces for the tip mass of a 

SFLMB, angulartiplineartiptip CCC )()( += . 

SMC : Matrix representing the Coriolis and centrifugal forces for SFLMB, 

ltipSM CCC += . 
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FMC : Matrix representing the Coriolis and centrifugal forces for a FLM derived based on 

the dependent generalized coordinates. 

C
~

: Matrix representing the Coriolis and centrifugal forces for a FLM derived based on 

the independent generalized coordinates. 

D: End-effector deviation with respect to the shadow manipulator. 

E : Young’s modules. 

EI : Rigidity of the link. 

lG : Gravity matrix of the link of a SFLMB. 

tipG : Gravity matrix of the tip mass of a SFLMB.  

SMG : Gravity matrix of a SFLMB, ltipSM GGG += . 

FMG : Gravity matrix of a FLM derived based on the dependent generalized coordinates. 

G
~

: Gravity matrix of a FLM derived based on the independent generalized coordinates. 

I : Second moment of area. 

tipI : Mass moment of inertia at the tip of a SFLMB (or Mass moment of inertia of the 

end-effector of a FLM).  

hI : Mass moment of inertia of the hub. 

BlK )( : Stiffness matrix of the link of a SFLMB.  

BlK )( ′ : Stiffness matrix obtained by omitting the first two rows and corresponding 

columns of BlK )( . 

BFMK )( : Stiffness matrix of a FLM derived based on the dependent generalized 

coordinates. 

K
~

: Stiffness matrix of a FLM derived based on the independent generalized coordinates. 

L : Length of a SFLMB.  
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L: Lagrangian function, L = FMFM UT − . 

ilM )( : Mass matrix obtained after the differentiation of ilT )( . 

lM : Mass matrix of the link of a SFLMB, lM =∑
=

5

1

)(
i

ilM . 

lineartipM )( , angulartipM )(  : Mass matrix obtained after the differentiation of lineartipT )( and 

angulartipT )( , respectively.  

tipM : Mass matrix of the tip mass of a SFLMB,tipM = angulartiplineartip MM )()( + . 

SMM : Mass matrix of a SFLMB, SMM = ltip MM + . 

FMM : Mass matrix of a FLM derived based on the dependent generalized coordinates. 

M
~

: Mass matrix of a FLM derived based on the independent generalized coordinates.  

tipm : Mass at the tip of a SFLMB (or Mass of the end-effector for FLM).  

aQ : Generalized force for a FLM due to the actuator forces derived based on the 

dependent generalized coordinates. 

CFQ : Generalized force for a FLM due to the constraint forces derived based on the 

dependent generalized coordinates. 

Q : Generalized force for a FLM derived based on the dependent generalized coordinates, 

CFa QQQ += . 

iq : Generalized coordinates for the ith SFLMB  

r: number of the flexible links of a FLM 

θR : Rotation matrix  

T : Transformation matrix  

ilT )( : The ith component of the lT
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lT : Kinetic energy of the link of a SFLMB, ∑
=

=
5

1

)(
i

ill TT . 

lineartipT )( , angulartipT )( : Translational and rotational kinetic energies of the mass at the tip 

of a  SFLMB, respectively. 

tipT : Kinetic energy of the mass at the tip of a SFLMB,tipT = angulartiplineartip TT )()( + . 

SMT : Kinetic energy of a SFLMB, SMT = ltip TT + . 

FMT : Kinetic energy of a FLM, ∑
=

=
r

i
iSMFM TT

1

)( . 

potentiallU )( : Potential energy of the link of a SFLMB due to gravity. 

tipU : Potential energy of the tip mass of a SFLMB due to gravity. 

strainlU )( : Potential energy (strain energy) of the link of a SFLMB due to flexibility. 

lU : Potential energy of the link of a SFLMB,lU = potentiallU )( + strainlU )( . 

SMU : Potential energy of a SFLMB, SMU = tipl UU + . 

FMU : Potential energy of a FLM, ∑
=

=
r

i
iSMFM UU

1

)( . 

pV : Velocity of point “p”  on the link.  

oV : Velocity of point “o” , origin of ),( ξx  coordinate frame.  

opV / : Relative velocity of point “p”  with respect to point “o”. 

xopV )/( , 
ξ)/( opV : Components of opV /  in the x  and ξ  directions, respectively. 

),( II YX  : Inertial coordinate frames. 

),( ξx : Moving coordinate frame attached to a SFLMB. 

oo YX , : Base translation of the ),( ξx coordinate frame attached to a SFLMB. 
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oo YX && , : Derivatives of oo YX ,  with respect to time, respectively. 

Z : Dependent generalized coordinates for a FLM.  

IDZ : Independent generalized coordinates for a FLM. 

θ  : Rotation of the ),( ξx  coordinate frame.  

ξ : Spatial, lateral, deformation of the flexible link.  

jφ : The jth assumed mode shape.  

ijφ : The jth mode shape of the ith link. 

jλ : Time varying weight function of the jth mode shape. 

λ : Vector composed of the time varying weights of the mode shape.  

ρ : Mass per unit length.  

iτ : The input actuator torque for the ith SFLMB.  

τ : A vector composed of iτ .  

)(xdδ : Dirac delta function. 

γ : Lagrange multipliers. 

2.9. Appendices 

Appendix 2.I: Elements of ilM )(  and ilC )(
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The elements of ilM )( and ilC )( , modeling the flexibility by two mode 

shapes, 2211 φλφλξ +=  are as follows: 
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Appendix 2.III: Elements of lG  and BlK )(
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Appendix 2.IV: Elements of matrix A and T for a flexible two-link manipulator 

For the flexible two link manipulator shown in Fig.2-5, assuming that the flexibility of 

each link is modeled with two mode shapes, the dependent generalized coordinates are 

[ ]222122212111 λλθλλθ oo YXZ =

and the matrices A and T are 
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and mn×0 and nnI × are the zero matrix and the unity matrix of ordermn× and nn× , 

respectively.  



62 

Appendix 2.V: Flowchart of the steps for the dynamic model derivation 

Derive the kinetic and potential energies of a SFLMB after modeling the flexibility by 
AMM (the generalized coordinate for a SFLMB are[ ]nYXq λλθ K1= ) 

Using Lagrange equations, derive the mass matrix, matrix representing the Coriolis and 
centrifugal forces, stiffness matrix and gravity matrix for a SFLMB, that 

is BlSMSM KCM )(,, and SMG respectively 

Using BlSMSM KCM )(,, , SMG  and B  of a SFLMB, derive FMBFMFMFM GKCM ,)(,, andB  for 

a FLM (See Eqs. (2-33), (2-34) and (2-41)) 

Decompose the FLM consists of “r” flexible link into “r” SFLMB (The dependent 
generalized coordinates for the FLM are [ ]rqqZ K1= , where iq  is composed of the 

generalized coordinates of the ith SFLMB) 

Derive the matrix B for the SFLMB (See Eqs. (2-38) and (2-39)) 

Derive the relation between the velocities of the dependent generalized coordinatesZ&

and velocity of the independent generalized coordinates IDZ& , that is  IDZTZ && =  (See 

Eq. (2-46) for the definition of IDZ  ) 

Derive  

)(
~

,
~

TCTMTCTMTM FMFM
T

FM
T +== & , BTBGTG T

FM
T == ~

,
~

DeriveK
~

from FMK (See Eq. (2-53)) 

Dynamic equation of the FLM in term of the independent generalized coordinates is 

τBZKGZCZM IDIDID

~~~~~ =+++ &&&
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Appendix 2.VI: Natural frequencies versus number of elements 

A single flexible link manipulator rotating in the horizontal plane, as shown in 

Fig. 2-26, was considered.  

Fig. 2-26: Schematic of a rotating single flexible link manipulator 

The length, L, second moment of area, I, cross section area, A, young modules, E, 

mass moment of inertia of the hub,hI , mass moment of inertia of the payload, tipI , the 

beam’s mass per unit length, ρ , and mass of the payload, tipm , of this manipulator were: 

                          L = 0.5000 (m)                   hI = 410200.1 −× (kg.m2) 

                         I =  12103.833 −× )( 4m           E = 20.00 (GPa) 

                                  tipI = 0.0100 (kg.m2)                 tipm = 2.000 (kg) 

                                   A= 0001.0 )( 2m                       0.7800 ( / )kg mρ =

These physical parameters were the same as those of the second link of the 

manipulator used in Section 2.5. 

The analytical natural frequencies of the manipulator were calculated [042] and 

compared against the natural frequencies obtained by ANSYS-FEA for different number 

of elements. In Fig. 2-27, the percentages of the frequency error for the first five nonzero 

natural frequencies versus number of elements are shown. The frequency error for the ith 

mode is defined as: 

i

iFEAi
i nf

nfnf
errorFrequency

)(

)()(
)(

−
=
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where inf )( and iFEAnf )( are the analytical and FEA natural frequencies for the ith mode 

shape, respectively. From Fig. 2-27, it can be seen that 10 elements per link can capture 

up to fifth nozero natural frequencies accurately. 

Fig. 2-27: Comparison of FEA and analytical natural frequency errors as a function of 

number of elements for the first five modes of a rotating single flexible manipulator 
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Chapter 3. Piece-wise causal inversion by output 

redefinition for a flexible link 

manipulator 
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Abstract: 

A new causal dynamic end-effector inversion method for a single flexible link 

manipulator is introduced. Contrary to the available non-causal inversion technique, this 

method does not lead to pre-actuation and works even in the presence of the purely 

imaginary zeros for the transfer function. Based on this approach, the desired end-effector 

trajectory is divided into a finite number of segments. In each segment, the desired 

trajectory is redefined so that a bounded continuous torque through causal dynamic 

inversion is obtained. The redefinition of the desired trajectory at each segment employs 

summation of stable exponential functions, which leads to a family of answers for the 

redefined trajectory which is an advantage for control engineers. The included results of 

the simulation and experimental studies show the feasibility and effectiveness of this new 

technique. 

Key words: Flexible link Manipulator, Causal dynamic inversion, Dynamic modeling, 

Non-minimum phase system

3.1. Introduction 

Smaller mass, lower peak power and less energy consumption are among the 

main potential advantages of Flexible Link Manipulators (FLM) over rigid link 

manipulators [1].  Because of these potential advantages, their application in industry is 

expected to increase provided their performance becomes more predictable and reliable. 

To improve the general performance of FLM, much research has been carried out during 

the past decade; in particular, because of the importance of End-Effector Trajectory 

Tracking (EETT), many of them have been focused on the EETT of FLM.  The 

challenging aspect of the research, the EETT of FLM, is due to the fact that the system is 

non-minimum phase [2]. The non-minimum phase property is the consequence of the 

flexibility of the link and the non-collocation of the actuator, which is the input, at the 

base and sensor, which is the output, at the end-effector of the manipulator [3,4,5].  

A possible approach for the EETT of FLM is the use of the output regulation 

technique introduced in [6]. The feasibility of applying this method to FLM was studied 

in [7]. To apply this method, the nontrivial solution for a set of first order partial 
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differential equations is required. Moreover, for the EETT of a FLM which has non-

minimum phase characteristics, the application of the method introduced in [6] leads to 

transient errors at the initial and final portions of the manoeuvre [8]. Another alternative 

for the EETT of a FLM is the use of stabilizing feedback (on-line signal indicated by 2 in 

Fig. 3-1) with the feedforward command (off-line signal indicated by 1 in Fig. 3-1) 

created by the inversion of the system dynamic. Due to the non-minimum phase property 

of the system, bounded causal inversion of the dynamic equation for a desired end-

effector trajectory is not achievable [9 Ch. 6].  However, for a linear model of a Single 

Flexible Link Manipulator (SFLM), the non-causal inversion of the dynamic equations 

for a desired end-effector trajectory was introduced in [10,11] and the extension of the 

method to the general nonlinear systems was studied in [8]. Rather than the non-causal13

input torque, in [12] a method was proposed that creates a causal end-effector inversion 

for a SFLM through rest-to-rest and point-to-point motion planning. In general, however, 

it is more desirable to invert the dynamic equations for the desired end-effector trajectory 

rather than planning a point-to-point and rest-to-rest motion.  

Fig. 3-1: Schematic of the end-effector trajectory tracking method, 1: off-line signal, 2: 

on-line signal 

In this chapter a causal end-effector trajectory inversion by the output redefinition 

for a SFLM is introduced. This new causal method, unlike the available non-causal 

inversion technique [10,11] which does not tolerate the existence of purely imaginary 

zeros [13], works even if the transfer function of the system has purely imaginary zeros. 

To utilize this new technique, the desired end-effector trajectory is divided into several 

segments and is redefined in each segment by the Summation of Stable Exponential 

Functions (SSEF) [14], that is: 

                                                
13 The causal signal at any time depends on the values of the states up to that time, while the non-causal 
signal depends on the values of states before and after that time. 
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Here )(~ tyd  is the redefined end-effector trajectory and jc  are constants which are 

calculated, after the selection of r and jm , so that a bounded continuous torque through 

causal inversion is possible. To clarify the concept an example is provided in Section 3.4. 

There are four steps to this approach which are explained in Section 3.5. Also a method 

for the selection ofr and jm  is introduced in Section 3.6. Comparing the SSEF with a 

polynomial function having r terms, which has the same number of terms as the SSEF, 

that is: 

∑
=

=
r

j

j
jp tpty

0

)(                                                      (3-2) 

it can be seen that the number of the choices available using SSEF, jc  and jm  in Eq. (3-

1), is twice the number of choices available in the polynomial, jp  in Eq. (3-2). Therefore, 

while for a predefined set of conditions equal to the number of coefficients in )(typ  there 

is only one solution set for the polynomial function, for the same conditions there is a 

family of possible solution for )(~ tyd  in SSEF. Hence, by minimizing the error between 

the desired trajectory and the redefined trajectory, it is possible to find the best member 

of the family of the solutions. Finally, although, this method has been developed for the 

end-effector trajectory inversion of a SFLM, it can easily be extended to any linear 

single-input single-output nonminimum phase system with or without purely imaginary 

zeros. It is worth noting that as a limitation, this approach can not be applied to any 

nonlinear system.  

In the following sections, first the dynamic equation of a SFLM is derived. The 

piece-wise stable inversion is then introduced. After presenting the simulation and 

experimental results, the conclusions drawn from the research are provided. 
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3.2. Dynamic modeling of a SFLM  

Due to the link flexibility, FLM have an infinite number of degrees of freedom 

and their dynamic equations have infinite dimensions characteristics [15,16]. Not only is 

working with infinite dimensional dynamic equations troublesome, but also controllers 

are generally designed for finite dimensional systems [17, p. 194]. Therefore, the infinite 

dimensional dynamic equations should be changed into finite dimensional, truncated 

ones. In this chapter, to change the infinite dimensional dynamic equations of a SFLM 

into a finite dimensional one, a combination of the Lagrange equations and the Assumed 

Mode shape Method (AMM) approximation [18,19] is used. Also, the flexible link is 

modeled as an Euler-Bernoulli beam. Therefore, the rotary inertia and deformation due to 

shear are neglected.  

In the AMM the spatial deflection of the flexible link, ),( tγξ  in Fig. 3-2, is 

described by a finite series composed of spatial pre-defined shape functions, )(γφ j , 

multiplied by the time varying weight functions , )(tjλ . Therefore:  

)()(),(
1

tt j

n

j
j λγφγξ ∑

=
=                                                (3-3) 

where n is the number of the assumed mode shapes and the)(γφ j which were adopted 

from [20], are the exact mode shape of a slewing SFLM. To employ the Lagrange 

equation, the kinetic and potential energies of the SFLM are required and will be 

obtained in the following. 

Fig. 3-2: Schematic of a SFLM 

The kinetic energy of the SFLM, shown in Fig. 3-1, is:   
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tiphlM TTTT ++=                                                     (3-4) 

where 

γξθξθγρ dT
L

l ∫ ++=
0

22 ))()(()2/1( &&&                                  (3-4a) 

2)2/1( θ&hh IT =                                                   (3-4b) 

=tipT 2)),((()2/1( tLLmtip ξθ && + ++ ))),(( 2tLξθ& 2))/),((()2/1( γξθ ∂∂+ tLI tip
&&        (3-4c) 

and MT  is the total kinetic energy of the manipulator,lT  is the kinetic energy of the 

flexible link, hT  is the kinetic energy of the hub, tipT  is the kinetic energy of the end-

effector,ρ is the mass per unit length of the flexible link,θ& ,ξ&and γξ ∂∂ /& represent, 

respectively, the time derivatives of θ ,ξ and γξ ∂∂ / , hI  is the mass moment of inertia of 

the hub, tipm  and tipI  are the mass and mass moment of inertia of the end-effector, andL  is 

the length of the link.  

Since the manipulator motion is in the horizontal plane, there is no potential 

energy due to gravity. However, there is a strain energy due to the link’s flexibility. This 

strain energy, neglecting the geometric effect for a beam in bending ([21], p. 388) and 

neglecting the portion of the strain energy due to the shearing and axial strains, for a 

linear elastic material is: 

γγξ dEIU
L

M
222

0

)/()2/1( ∂∂= ∫                                 (3-5)                                      

whereE  is Young’s modulus and I  is the second moment of area . Substituting Eq. (3-3) 

into Eqs. (3-4) and (3-5), and using the Lagrange equations14 with the consideration that 

θ  and nii K1=λ  are the generalized coordinates, the dynamic equations of a SFLM are: 

( ) ( , , ) Bθ+ + =ccM C K& &&& &λ q λ λ q q F                                    (3-6)    

                                                
14

iiMiMiM fqUqTdtqTd =∂∂+∂∂−∂∂ ///)/( &  where iq  is the ith generalized coordinate and if   is 

the corresponding generalized force.  
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where [ ]TTλq θ= , [ ]Tnλλλ K21=λ , nλ  is the weighting parameter  for the nth 

mode shape, )(λM is the mass matrix, ),,( λλ &&θccC is the matrix representing the Coriolis 

force and the component of the centrifugal force in the lateral direction, BK  is the 

stiffness matrix and F is the  force vector. Since )(xjφ is selected to satisfy the clamped 

boundary condition [19,20], F is: 

τHF =                                                  (3-7)                                                 

whereτ is the actuator torque and [ ]Tn×= 11 0H . Details of Eq. (3-6) are given in 

Appendix 3.I.  

It is clear that the dynamic equation of a SFLM, Eq. (3-6), is nonlinear. The 

nonlinearity is the result of the 2)( ξθ&  in the kinetic energy expressions of lT  and TipT  in 

Eqs. (3-4a) and (3-4c), respectively. Neglecting the nonlinearities in the kinetic energy 

expressions by assuming small lateral deflection, the linear time invariant dynamic 

equation of a SFLM is:  

τHqq =+ BKM &&                                                    (3-8) 

where M  is constant contrary to )(λM  in Eq. (3-6). Details of Eq. (3-8) are available in 

the Appendix 3.I.  

Finally, considering the material damping due to the internal friction and using 

the Rayleigh damping model, the damping matrixDC , is: 

BD KC )/2( ωη=                                                   (3-9)                                                 

whereη andω are the damping ratio and natural frequency of the fundamental vibration 

mode shape, respectively. Thus, the linear time invariant dynamic model of a SFLM is: 

τHqqq =++ BD KCM &&&                                           (3-10) 

3.3. End-effector inversion procedure 

Definition 1: Consider the linear single-input single-output system of the form: 
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whereA , B and C  are called state, input and output matrices respectively, and τ is the 

input and y is the output. This system has a well-defined relative degree wr  if and only if 

0)1( ≠− BC wrA . In other words, in the wr th time differentiation of Eq. (3-11b), the inputτ

appears explicitly; that is, τBCXC )1()( −+= www rrry AA . 

The linear time invariant dynamic model of a SFLM, Eq. (3-10), considering the 

base torque as the input and the end-effector displacement as the output can be written as 

Eqs. (3-11a) and (3-11b), where: (y is shown in Fig. 3-2) 
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[ ])()(1 LLL nφφ K=D                                       (3-12) 

For the purpose of inversion the output y has to be differentiated 2=wr  times 

[10,11] so that the input τ  appears explicitly. That is, for a SFLM considering the end-

effector displacement as the output, the relative degree is two and 0≠BCA . Thus, 

differentiating y in Eq. (3-11b) twice and noting that 0=CB leads to:  

τBCXC AA += 2y&&                                       (3-13)                                                

Using the input-output linearization technique ([9] Ch. 6.1.3 and 6.4), the base torque has 

to be:  

)()/1( 2 XCBC AA −= dl y&&τ                                  (3-14) 

where dy is the desired end-effector trajectory and, for a SFLM, the scalar 

value 0≠BCA . Thus, replacing τ  in Eq. (3-13) with the torquelτ  given in Eq. (3-14), 

results in:  

dyy &&&& =                                                       (3-15) 
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However, since the order of this inversed system, Eq. (3-15), is two and the order 

of the original system, Eq. (3-11a) with A  andB defined in Eq. (3-12), is )1(2 +n  there is 

an internal dynamics15 of order )1(2 +n -2 as pointed out in [9] which is discussed in the 

following. To obtain the associated internal dynamics, the transformation:  

Xψ T=                                                       (3-16) 

is considered where: 

=ψ [ ]Tnnyy λλλλ &&& ....... 11 ,
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The transformation given in Eq. (3-16), changes the dynamic model of a SFLM, given in 

Eq. (3-11a) considering X, A , B and C as given in Eq. (3-12), into:  

τBψψ TTAT-1 +=&                                        (3-17) 

Replacing τ in Eq. (3-17) with the torque lτ  given in Eq. (3-14) results in: 

dy&&& ψψ Bψψ += A                                           (3-18) 

where ψA  and ψB are: 

)/()( 12 BCC ATATBTATA -1 −−=ψ         ))/(( BCBB AT=ψ                (3-19) 

and as mentioned earlier the scalar BCA is not zero. According to the definition ofψ , and 

using the torque given in Eq. (3-14), for a SFLM the matrices ψA and ψB  are: 
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and the internal dynamics is: 

dIIII y&&& BXX += A                                          (3-21) 

                                                
15 The part of the system dynamic which has been rendered “unobservable” in the input-output linearization 
is called the internal dynamics (See [9 Ch. 6] for more detail) 
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 where
IX [ ]Tnn λλλλ && ...... 11= . 

After the inversion   procedure, since [ ]TT
Idd yy XX &1−= T , if  IX   is   bounded    

for   a boundeddy&& , X is also bounded. Thus, the inversion torque from Eq. (3-14) is 

bounded. However, because SFLM is a non-minimum phase system, some of the 

eigenvalues of IA  in Eq. (3-21) have positive real parts ([9] Ch. 6.1.3, [10], [11]) and 

thus the internal dynamics is unstable.  This means that the feedforward integration of Eq. 

(3-21), even for a boundeddy&& , generally leads to an unbounded16  response for IX . For 

stable inversion if there are no purely imaginary eigenvalues for IA , the non-causal 

integration explained in [8,10,11] can be adopted. However, in this chapter, to have a 

bounded response forIX , dy  is redefined so that the causal integration of Eq. (3-21) 

assures a boundedIX . It should be noted that existence of the purely imaginary 

eigenvalues for IA  is not a restriction for implementing this method.

3.4. Causal inversion by output redefinition  

By using the transformation [ ]TTu
I

Ts
II )()( XXX G= , where the columns of the 

matrixG  are the eigenvectors of the matrixIA , GAG I
1−  is a diagonal matrix in Jordan 

canonical form. Eq. (3-21) can then be written as:

du
I
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I
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I
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                              (3-22) 

where −
IA  is a diagonal matrix with the diagonal elements that are the eigenvalues of IA

with negative real parts, and +IA   is a diagonal matrix with the diagonal elements that are 

the eigenvalues of IA  with positive real parts. Also, if IA  has purely imaginary 

eigenvalues, the corresponding diagonal matrix, also known as the Jordan block, will be 

included in +
IA . Due to the existence of+IA , the causal integration of Eq. (3-22) for a 

                                                
16 The unbounded signal grows to infinity as time goes to infinity. Also, a signal which has an ever-
oscillating behavior is classified here as an unbounded signal.    
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bounded desired accelerationdy&& , generally results in an unbounded response for u
IX  and 

thus IX  will be unbounded. 

For a   given set of initial condition(s), to   have   a   bounded   causaluIX ,   the   

desired accelerationdy&& , is replaced by its redefinition,dy
~
&& , so that the causal solution for:  

d
u
I

u
II

u
I y

~
&&& BXX += +A                                              (3-23)

is bounded. After finding the bounded uIX  from Eq. (3-23), the boundeds
IX  can be 

calculated by the feedforward integration of: 

d
s
I

s
II

s
I y

~
&&& BXX += −A                                              (3-24)

Having u
IX and s

IX  for the redefined accelerationdy
~
&& , the bounded IX , 

=ψ [ ]TT
Idd yy X&~~ , andX  (from Eq. (3-16)) can be calculated. Thus, by 

substituting dy
~
&&  and X  in Eq. (3-14), the required causal torque for the inversion of dy~  is 

obtained.  

To clarify the basic concept of calculating a bounded u
IX  by output redefinition, 

the following example is provided.  

Example:  Find the bounded u
IX by the output redefinition for 0>=− aybaXX d

u
I

u
I &&&

Without loss of generality, it is assumed that the following differential equation 

has to be solved for u
IX : 

d
u
I

u
I ybaXX &&& =−         0>a                                (3-25) 

where 0>a  and b are arbitrary constants and dy&& is the acceleration of the desired 

trajectory. Also it is assumed that the initial condition on u
IX  is: 

0)0( XX u
I =                                                   (3-26)

The complete answer of u
IX  from Eq. (3-25) is composed of two parts, the 

particular part p
u
IX )( , and complementary part c

u
IX )( , that is: 
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p
u
Ic

u
I

u
I XXX )()( +=                                      (3-27) 

The particular part p
u
IX )( , depends on dy&& and can be found by the convolution integral. 

The complementary part c
u
IX )( , is: 

at
c

u
I seX =)(                                               (3-28) 

where s is constant and will be found from the initial condition and excitation 

function dy&& . Since 0>a  if 0≠s , c
u
IX )(  is unbounded; thus, generally an unboundedu

IX

will exist. To have a boundedu
IX  the desired accelerationdy&& , is replaced by its 

redefinition dy
~
&& , in Eq. (3-25) so that: 

1- The constant s  in Eq. (3-28) is zero  

2- The particular solution p
u
IX )( , corresponding tody

~
&& , is bounded and satisfies the 

initial condition 0)0( XX u
I = , as given in Eq. (3-26). 

 For this purpose, dy&&  is redefined by: 

     ∑
=

=
r

j

tm

jd
jecy

1

~
&&        0<jm                                  (3-29) 

By replacing dy&&  in Eq. (3-25) with dy
~
&& : 

d
u
I

u
I ybaXX

~
&&& =−                                        (3-30) 

Moreover, in order for the redefined accelerationdy
~
&& , to have the same values as the 

desired accelerationdy&&  at zero time and the final time ft , the following conditions must 

be satisfied: 

)()(
~

),0()0(
~

fdfddd tytyyy &&&&&&&& ==                                (3-31) 

The complete answer of u
IX  for Eq. (3-30) is given in Eq. (3-27), where c

u
IX )( is 

given in Eq. (3-28), and p
u
IX )(  for the redefined accelerationdy

~
&& , is: 
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)(                                                     (3-32) 

Thus by selecting 0<jm  and amj ≠ , p
u
IX )( is bounded. To have a bounded solution for 

u
IX , c

u
IX )(  must then be zero, which means that 0=s . Therefore, assuming that the 

jm in Eq. (3-29) are known, the unknowns jc  are chosen to make 0=s . A method for 

the section of jm is given in Section 3.6. 

To have a unique solution forjc , the number of the conditions,  Eqs. (3-26) and 

(3-31),  have  to be the same as the number of the unknowns jc . Therefore, for 3=r  to 

force 0=s  the 31, K=jc j  is calculated as: 

kTkk )(1 Cc −= Z                                              (3-33)     
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After finding )31( K=jc j  for the given )31( K=jmj  from Eq. (3-33), dy
~
&&  is known as 

given in Eq. (3-29). In addition by integrating dy
~
&&  with respect to time for the given initial 

conditions, dy
~
& and dy~ are also known. As well, u

IX = p
u
IX )( , as given in Eq. (3-32), is 

bounded. 

Remark 3.1: The smaller the error between dy
~
&& and dy&& , the closer will be dy

~
&  to dy&  and dy~

to dy . To make dy
~
&& closer to dy&& , one can set the conditions that the time derivatives of the 

redefined accelerationdy
~
&& , up to the order h where wh ≤ , be equal to the original desired 

acceleration dy&& , at zero andft . This is in addition to the settings given in Eq. (3-31) and 

assuming that the desired acceleration is continuous up to the order w; that is, w
d Cy ∈&& .  

It is to be noted that, for the addition of these conditions, r in the above example has to be 

increased from 3 to 2h+3 (see Section 3.6).  



82 

Remark 3.2: For the redefinition of the desired trajectory, the orthogonality of the 

employed functions, which are stable exponential functions, is not necessary. The 

orthogonality of two functions f (x) and g(x) over the range (a,b) with respect to the 

weight function w(x) is defined as ∫ ==
b

a

dxxwxgxfgfO 0)().().(),( . Generally for the 

redefinition of a function, orthogonality of the contributing function is not a concern. As 

another example, in the finite element method, the solution of a differential equation is 

approximated (redefined) by shape functions, which are not orthogonal; for instance, the 

shape functions of the beam element, which is used in the structural analysis with 

bending, are cubic polynomials that are not orthogonal to each other; see Appendix 3.II 

for more details. 

3.5. Piece-wise trajectory inversion by output redefinition 

As explained in Section 4 to calculate the required torque through the end-effector 

inversion, a bounded response from the internal dynamics, Eq. (3-21), has to be obtained.

Since the input to the internal dynamics is the acceleration of the end-effector trajectory 

(See Eq. (3-21) or (3-22)), the desired acceleration dy&&  is redefined to find a bounded 

response from the internal dynamics. Furthermore, by dividing the acceleration into 

several segments the accuracy of the redefinition of the desired trajectory is increased.   

For the piece-wise trajectory inversion the following steps have to be taken. 

1- Divide the desired accelerationdy&& , into several consecutive segments such that: 

  vktttyy fkikdkd ..1,,)( =≤≤= &&&&                                   (3-35) 

where v is the number of the segments, ikt  and fkt are the initial and final times of the 

kth segment and kdy )( &&  is  in the kth segment. Note that ii tt =1 and ffv tt = are the 

initial and the final maneuver times, respectively.  

2- In the kth segment, redefine the desired accelerationkdy )( &&  by the SSEF:  

0,)
~

(
0

<=∑
=

jk

r

j

tm
jkkd mecy jk&&                                        (3-36) 
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The selection of jkm  andr  are explained in detail in Section 3.6. 

3- Find the contribution of each exponential function, jkc , for the kth segment such 

that the following three conditions are met: 

3-1- Assuming that the original desired acceleration is continuous up to order w;

that is, w
d Cy ∈&& , the values of the redefined acceleration and its derivatives up to 

order h, where wh ≤ , at the beginning and end of each segment are equal to 

values of the original desired acceleration, that is:(see remark 3.1) 17: 

ikikikik t

h
kdt

h
kdtkdtkd yyyy )()( )()

~
(,.....,)()

~
( &&&&&&&& ==

fkfkfkfk t

h
kdt

h
kdtkdtkd yyyy )()( )()

~
(.....,)()

~
( &&&&&&&& ==                         (3-37a) 

3-2- The complementary part of the solution of Eq. (3-23) is zero. 

This condition assures that a bounded solution for the unstable part of the internal 

dynamics, Eq. (3-23), exists.  

3-3- The continuity of u
IX  at the beginning of each segment is satisfied, which 

guarantees that X and torque lτ  are continuous. 

To have a continuous torque from Eq. (3-14) when dy&&  is replaced by dy
~
&& ,  and dy

~
&&   

have to be continuous.  From Eq. (3-37a), it can be seen that dy
~
&&  is continuous. 

Also, [ ]TT
Idd yy XX &1−= T and [ ]TTu

I
Ts

II )()( XXX G= . Thus, to have a 

continuous X, IX  has to be continuous. This means uIX and s
IX  must be 

continuous. Since s
IX , which is calculated by the causal integration of Eq. (3-24) 

is continuous, if u
IX  is also continuous, then X and consequently the 

corresponding torque are continuous. Thus, to have a continuous solution for u
IX

                                                
17 The first and second derivatives of y  with respect to time are shown as yy &&&,  and the higher ones by 

)2()2()( // ++== hhhhh dtyddtydy &&&&
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the final value of u
IX  at the kth segment is considered as the initial condition of 

u
IX  at the k+1th segment. 

4- After calculating dy
~
&& and the corresponding boundeduIX , find the corresponding s

IX

from Eq. (3-24).   

Finally, having u
IX and s

IX  for the redefined accelerationdy
~
&& , the bounded IX , 

=ψ [ ]TT
Idd yy X&~~ , andX  (from Eq. (3-16)) can be calculated. Then, the required 

causal torque for dy~  is obtained from Eq. (3-14). 

It is to be noted that the causal integration of the inverse dynamic equations when 

dy is replaced with dy~ , will be carried on from it to ft . That is, the inverse dynamic 

feedforward command in Fig. 3-1 is only active from it to ft . After ft , only the joint PD 

feedback control assuming Ltyt fdd /)()( =θ  and 0)( =tdθ& , is active (see the simulation 

and experimental study sections). Therefore, since the feedforward inverse dynamic 

signal will not be used afterft , the stability of the inverse dynamic equation for ftt > is 

not a concern. 

Remark 3.3: Besides the conditions imposed in Eq. (3-37a), which were discussed in 

Remark 3.1, to makedy~  closer to dy  in the kth segment, the following conditions can 

also be imposed.  

,)()~(
ikik tkdtkd yy =

fkfk tkdtkd yy )()~( =    

,)()
~

(
ikik
tkdtkd yy && =

fkfk
tkdtkd yy )()

~
( && =                               (3-37b) 

 As a result the redefined velocity,dy
~
& , and  redefined displacement,dy~ , will have the 

same values as the desired velocity,dy& , and the desired displacement,dy , at times ikt

and fkt . The extension of the proposed method by adding conditions (37b) is under 

investigation [22] and its experimental verification is underway; the results will be 

reported in the near future. However, even after imposing the above conditions, the 
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desired and redefined trajectories are not exactly the same at all times during the 

maneuver. This is due to the fact that the method presented in this chapter is based on the 

redefinition of the desired trajectory. It has to be emphasized that the approximation is 

the key in performing the causal inversion for non-minimum phase systems with 

hyperbolic and non-hyperbolic internal dynamics; for example, several other 

approximations has also been used in the pervious approaches [9 p. 264, 13,23,24], which 

neglected a part of the internal dynamics, utilized the feedback of the internal dynamics 

states to stabilize the internal dynamics or used the reflected new end-effector 

displacement. Thus, there is always a difference between dy~  and dy . The closeness of the 

desired and redefined trajectories can be measured by an error index which, for example, 

can be the normalized maximum difference between these trajectories; that is, 

)max(/)~max( ddd yyy − . If this index is not small enough, the redefined trajectory can 

be modified to bring the error index to an acceptable range.  This modification can be 

done by increasing the number of segments or changing the value of jkm  of the kth 

segment.  

3.6. Selection of variables ( rmjk , ) of the redefined output 

If the exact model of the system without any perturbation was available, the 

introduced inversion method could be used to calculate the required causal torque on-

line. However, in the presence of the uncertainty, the required torque is calculated off-

line using the nominal dynamic model and a state feedback is added for the robustness, as 

shown in Fig. 1, similar to [12]. Therefore, the end-effector inversion technique 

introduced here using the piece-wise trajectory redefinition is done off-line with causal 

integration. As a result, the selection of jkm  for the redefinition of the desired trajectory 

should also be done off-line. This off-line approach is explained in the following.   

After the selection of jkm  for the kth segment, (explained later in this section) jkc

are found by solving a set of linear algebraic equations (see example in Section 3.4 and 

Eq. (3-33)). To find a unique jkc  from the linear algebraic equations the number of 
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unknowns, r in ∑
=

=
r

j

tm

jkkd
jkecy

0

)
~

( && , must be equal to the number of the equations 

resulting from imposing the conditions 3-1, 3-2 and 3-3 discussed in Section 3.5. 

Therefore, the required number of the exponential functions for each segment is: 

nuhr ++= )1(2                                               (3-38) 

Here )1(2 +h  equations come from the condition 3-1, Eq. (3-37a), where h is the highest 

derivative of the redefined acceleration used in Eq. (3-37a). Also, nuequations are due to 

the continuity of u
IX  at the start of each segment wherenu is the size of the vector u

IX

(condition 3-3). After determining the required number of the exponential functions from 

Eq. (3-38), the satisfaction of conditions 3-1 to 3-3 results in the relationship between jkc

and jkm  (see example in the previous Section and Eq. (3-33)). Therefore, jkc is available 

in terms of jkm  ( kTkk )(1 Cc −= Z ) and, consequently, kdy )
~

( &&  in each segment can be 

calculated in terms of jkm . Thus, it is possible to find the best set of jkm  for each segment 

by minimizing the cost function, dtyymerror
kf

ki

t

t

kdkdjk ∫ −= 2))
~

()(()( &&&&  . It is one of the 

potential benefits of the redefinition of the output through exponential functions.  

However, to find jkm  from this optimization approach, a set of nonlinear algebraic 

equations has to be numerically solved, which requires a set of initial values (guesses) for 

the unknown variables. Not only solving this nonlinear optimization might not be easy, 

but also without a suitable set of initial conditions obtaining the solution is not 

computationally efficient. As a remedy, in the following, a more computationally 

effective method is introduced and used. It should be noted that this method is easier to 

implement and more time efficient compared to calculating jkm by optimization. Also, 

this method provides reasonably acceptable jkm  and makes it possible to continue and 

explore the concept of piece-wise trajectory redefinition by SSEF which is the main focus 

of this paper.  

Consider the exponential function: 

0<= mcey mt                                             (3-39) 
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which has to be calculated in the interval fi ttt << . The decay of the exponential 

function, y in Eq. (3-39) at ft  with respect to its value at time it  is:  

if mtmt
ifdec eetytyC /)(/)( ==                                 (3-40) 

Assuming a value for the decaydecC , in the specified time interval ( fi ttt << ), the 

corresponding m is obtained by combining Eqs. (3-39) and (3-40), which is: 

)/()( ifdec ttCLnm −=                                        (3-41) 

Thus, if the fastest and slowest decays for the exponential functions used in the kth 

segment are assumed to be k
f

decC )( and k
s
decC )(  respectively, the corresponding m from Eq. 

(3-41), are: 

)/()( kifkk
f

dec
f
k ttCLnm −= ,       )/()( kifkk

s
dec

s
k ttCLnm −=                  (3-42) 

According to Eq. (3-36), the number of the m at each segment has to be the same 

as the number of the required exponential functions. Thus, having the required number of 

the exponential functions for the kth segment from Eq. (3-38),  and the slowest and the 

fastest m after the selection of k
f

decC )( and k
s
decC )( from Eq. (3-42), the other m are chosen 

between f
km  and s

km . To have the maximum difference between the m for the numerical 

stability of the solution of the linear equations (see matrix kZ  in Eq. (3-33)), the other m

are equally spaced between fkm  and s
km . Therefore, the m for the kth segment are: 

rjj
r

mm
mm

s
k

f
ks

kjk ...1,)1(
)1(

=−
−
−

+=                              (3-43) 

From Eqs. (3-42) and (3-43) it is clear that by selecting different pairs of 

k
f

decC )( and k
s
decC )(  different values for jkm  can be obtained. Thus, the redefinition of the 

desired trajectory at each segment can be done in several different ways, which is a 

benefit of using the SSEF instead of the polynomial functions.  
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3.7. Simulation results 

To show the effectiveness of the proposed method in the cases of linear 

nonminimum phase systems with non-hyperbolic, near non-hyperbolic and hyperbolic 

internal dynamics, the simulation results of three examples are presented. The first 

example is a nonminimum phase SFLM with a non-hyperbolic internal dynamics; that is, 

there are purely imaginary zeros for its transfer function (or equally there are purely 

imaginary eigenvalues for matrix IA in Eq. (3-21)). The second example is a 

nonmimimum phase SFLM with a near non-hyperbolic system, which means that its 

transfer function has zeros that are close to the imaginary axis. The third example is a 

nonminimum phase SFLM with hyperbolic internal dynamics and therefore it does not 

have any purely imaginary zeros or zeros that are close to the imaginary axis.  The third 

example is also the simulation results for the SFLM which is available in the robotics 

laboratory of the University of Saskatchewan and its results are compared against the 

experimental ones given in Section 3-8.  

3.7.1. Example 1: A SFLM with non-hyperbolic internal dynamics  

For the first example, a SFLM with the physical properties given in table 3-1 was 

considered. This SFLM had the same physical parameters as in [12]. Moreover, the 

flexibility of the link was modeled with the first two flexible modes. The zeros of the 

transfer function which are the eigenvalues of matrix IA in Eq. (3-21) were 25.61±  and 

34.54± i.  

Table 3-1: Example 1: physical properties of the SFLM  

)(mL ).( 2mNEI ).( 2mkgI h )/( mkgρ ).( 2mkgI tip )(kgmtip

005.1 25.47 800.1 310−× 032.2 742.4 210−× 790.6

Since the transfer function of the SFLM had purely imaginary zeros 34.54± i, it 

has non-hyperbolic internal dynamic. Thus, the non-causal inversion introduced in 

[8,10,11] was not possible [13]. However, the method described here can handle purely 

imaginary zeros. It is worth noting that although the linear model of a SFLM considering 
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the end-effector displacement as the output and the base torque as the input does not have 

purely imaginary zeros [25], due to the truncation, non-collocation of the sensor and 

actuator and without material damping consideration, purely imaginary zeros are 

inescapable [26, p.73].   

For comparison, the desired end-effector displacement for the first example, as 

shown in Fig. 3-3, is taken exactly from [12], although this is a relatively slow trajectory. 

For the second example the speed of the maneuver was almost twice that of the first 

example. Although, these two examples may not be the best representations for (very) 

flexible link manipulators, nonetheless they are flexible manipulators with unstable 

internal dynamics.   

That trajectory was obtained, using a polynomial for the planned output and 

assuming the following initial and final conditions (details can be found in [12]):  





=====
=======

00.0)5.5()5.5()5.5()5.5()5.5(

0.0)0()0()0()0()0()0(),(57.1)50.5(
)3()2()1(

)3()2()1(

yyyyy

yyyyyymy

&&&&&&&&&

&&&&&&&&&
        

 (3-44) 

where )2()2()( // ++== hhhhh dtyddtydy &&&& . The reason for selecting this trajectory is for 

comparison as discussed in the following. In [12] the trajectory, as given in Fig. 3-3, was 

obtained by adopting a point-to-point maneuver. However, the problem here was to 

follow a desired trajectory as opposed to a point-to-point motion. Therefore, the 

trajectory given in [12], and also shown in Fig. 3-3, was assumed as the desired trajectory 

and the piece-wise causal inversion was used to follow this trajectory. Thus, the required 

causal torques have to be the same here and in [12]. By comparing the torque in Fig. 3-4 

and that obtained in [12] it was seen that these torques are in fact the same. This 

comparison can serve as a check for the validity of our new method.   



90 

Fig. 3-3: Example 1, simulation, desired end-effector displacement 

Since the input to the inverse equations was the second derivative of the desired 

end-effector displacement, Eqs. (3-14), (3-18) and (3-21), the acceleration of the end-

effector was redefined by SSEF. Therefore, the desired end-effector acceleration, derived 

from the desired end-effector displacement, was divided into 5 equal segments which 

were: 

5.54.4.....,,2.21.1,1.100.0 ≤≤≤≤≤≤ ttt                         (3-45) 

It was assumed that h=2 (see Eq. (3-37a) and remark 3.1 in Section 3.4). Moreover nu=3, 

where nu was the size of the vector u
IX  in Eq. (3-23). Therefore, the number of 

exponential functions for each segment was r= 9 from Eq. (3-38). Also, the “m” for each 

segment were derived using Eqs. (3-42) and (3-43) and assuming: 

0001.0)( =k
f

decC                     000.1)( =k
s
decC                     (3-46) 

Due to the redefinition of the acceleration, the end-effector velocity at the end of the 

maneuver would not necessary be zero and the final position of the end-effector might be 

different from the desired one. The closer the redefined acceleration is to the desired 

acceleration, the smaller will be the difference. However, the addition of a joint PD 

controller to the nominal input torque, derived by piece-wise causal inversion, not only 

makes the closed loop control robust but also reduces these errors to zero  and suppresses 

the link’s vibration [27]. Therefore, the input torque to the dynamic model was set to: 

)()( θθθθττ && −+−+= dDdPl kk                                (3-47) 
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where lτ  was the piece-wise causal torque calculated from the inversion of the linear 

dynamic equation, of Eq. (3-8),Pk and Dk were the scalar gains, anddθ and dθ&  were the 

redefined joint rotation and velocity, respectively. The torque obtained from Eq. (3-47) 

was applied to the linear dynamic model, Eq. (3-8). After 5.5 (s), the computed inverse 

dynamic torque,lτ  in Eq. (3-47), was set to zero. Thus for 5.5>t  (s) only the joint PD 

controller, assuming the desired joint rotation stayed constant at 56.1/)( =Lty fd (rad), 

was active. The stability of the proposed controller is given in Appendix 3.III.  

In Fig. 3-4, the simulation torque employing 15=Pk  and 30=Dk is shown. These 

gains were obtained by trial and error observing the system’s response (relatively fast 

settling time and small overshoot) and also noting that Pk  and Dk  had to be selected so 

that all the eigenvalues of matrix EA  in Eq. (3- A20) in Appendix 3. III had negative real 

parts. For the initial estimate in the trial and error procedure, the gains Pk  and Dk  were 

selected based on the single rigid link counterpart of the SFLM as in [27]. By selecting 

the gains 15=Pk  and 30=Dk , the eigenvalues of EA in this example were 

,00.60435.3,2.573{ i±−− }5858.0,456.3445.3 −±− i . Since all the eigenvalues of matrix 

EA  had negative real parts, the closed-loop system was stable and thus its response was 

guaranteed to be bounded (see the stability proof in Appendix 3. III). 

Fig. 3-4: Example 1, simulation, required base torque for causal end-effector trajectory 

inversion of the SFLM  
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The small value of the torque after 5.5 (s) was due to the joint PD controller. 

Moreover, it was observed that the torque was discontinuous at 5.5 (s) as expected. This 

was due to the fact that after 5.5 (s) the off-line inverse torque was set to zero and only 

the joint PD controller was active.  

In Fig. 3-5, the desired and actual end-effector displacements are shown. In Fig. 

3-6, the difference between the actual and desired end-effector displacements, 

yyerror d −= , is shown. As can be seen, after 5.5 (s), due to the PD controller, the 

actual displacement approached the desired displacement.  

Fig. 3-5: Example 1, simulation, desired and actual end-effector displacements for the 

SFLM 

Fig. 3-6: Example 1, simulation, the difference between the actual and desired end-

effector displacements of the SFLM which are shown in Fig. 3-5 
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Remark 3.4: To make the torque discontinuity at the end of the maneuver approach zero, 

the desired trajectory in the last segment can be redefined so that, at the end of the 

maneuver, ft ,  not only the redefined displacement and its velocity have the same values 

as their desired ones, as explained in Remark 3.3, but also the link’s deflection, due to the 

link flexibility, and its velocity set to be zero, that is 0)( =fI tX , where IX  is defined in 

Eq. (3-21). Therefore, after applying the torque obtained by the inversion process to the 

dynamic model, the manipulator comes to rest at the end of the maneuver, for a rest-to-

rest motion, while the end-effector moves along a desired path. However, due to the 

existence of the unmodeled dynamic, even after applying such an inversion torque, the 

joint PD controller must be employed to suppress the link’s vibration and reduce the 

steady tracking error to zero. This leads to a torque jump at the end of the maneuver. 

Nevertheless, the jump in the torque will be smaller compared to the case where the 

conditions 0)( =fI tX  and Eq. (3-37b) are not imposed on the redefined trajectory. The 

addition of these conditions to the method discussed in this chapter is under investigation 

[22] and the results will be available in the near future.  

3.7.2. Example 2: A SFLM with near non-hyperbolic internal dynamics 

The physical properties for the second example are given in Table 3-2. These 

properties were slightly different than those in Table 3-1. Moreover, to change the non-

hyperbolic internal dynamics (purely imaginary zeros) into near a non-hyperbolic one 

(zeros which are close to imaginary axis) Rayleigh’s material damping given in Eq. 3-9, 

was considered. The damping ratio of Rayleigh’s material damping was set to 02.0=η , 

which corresponded to manipulators working in outer space [28]. The zeros of the 

transfer function were 17.72,58.77 − , and i20.5231.1 ±− . Therefore there were no purely 

imaginary zeros, but, there were zeros ( i20.5231.1 ±− ) which were very closer to the 

imaginary axis than other two zeros (58.77 and 17.72− ). 
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Table 3-2. Example 2, physical properties of the SFLM 

)(mL ).( 2mNEI ).( 2mkgI h )/( mkgρ ).( 2mkgI tip )(kgmtip

1.000 00.47 800.1 310−× 500.1 210800.4 −× 000.7

  

The desired end-effector acceleration and the corresponding desired velocity and 

displacement, shown in Fig. 3-7, were considered. The desired end-effector acceleration 

was composed of several continuous third order polynomials, for time from 0 to 1, 1 to 3, 

and 3 to 4 (s). The average maneuver speed in this example was almost twice that of the 

first example.  It is worth noting that by increasing the speed of maneuver, the link’s 

lateral deflection will increase. However, if the link’s lateral deflection is not small, then 

the nonlinear model of a SFLM has to be used. Therefore, there is a limitation for the 

speed of maneuver if the linear Euler-Bernoulli model of SFLM is to be used.  

Fig. 3-7: Example 2, simulation, desired end-effector acceleration, velocity and 

displacement of the SFLM  

For the stable inversion, the desired acceleration of the end-effector was divided 

into 8 equal segments which were: 

45.3.....,,15.0,5.00.0 ≤≤≤≤≤≤ ttt                           (3-48) 

In addition, in each segment the desired acceleration was redefined by SSEF. The zeros 

of the transfer function which are the eigenvalues of the matrix IA in Eq. (3-21) 
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were 17.72,58.77 − , and i20.5231.1 ±− , as already mentioned. Due to the material 

damping consideration, there were no purely imaginary zeros [26 p. 73]. Also only one of 

the zeros had a positive real part, which was 77.58; that is, nu=1. Similar to Example 1, it 

was assumed that h=2. Therefore the required number of exponential functions in each 

segment was r= 7 from Eq. (3-38). The “m” for each segment were found assuming: 

0001.0)( =k
f

decC                     000.1)( =k
s
decC                                  (3-49) 

To investigate the response of the actual system, the evaluated torque from the 

inversion of the linear dynamic model with a joint PD controller, Eq. (3-47), was applied 

to the actual nonlinear model of the SFLM, Eq. (3-6), using 30,15 == DP kk . These 

gains were found as explained in example 1. By using these gains the eigenvalues of the 

matrix EA in Eq. (3-A20) in Appendix 3.III were

,99.61904.4,4.769{ i±−− }5851.0,460.3447.3 −±− i . Since all these eigenvalues ofEA

in this example had negative real parts, the closed-loop system was stable and thus it 

response was bounded as proved in Appendix 3.III. It is to be noted that in example 1, the 

torque was applied to the linear dynamic model presented in Eq. (3-8). The simulation 

torque is shown in Fig. 3-8. The off-line inverse torque was applied up to 4 (s). Due to 

the redefinition of the acceleration and also application of the torque evaluated from the 

inversion of the linear system to the nonlinear system, the actual values of the end-

effector velocity and displacement at the end of the maneuver differed from the desired 

ones. However, as already stated in example 1, the application of a joint PD controller 

can reduce these errors and the vibration of the link to zero and also the small torque after 

0.4=ft (s) from the PD controller was used to eliminate the tracking error. The desired 

joint rotation for ftt > stayed constant at 1.2/)( =Lty fd (rad). Moreover in Fig. 3-8, as in 

Fig. 3-4, the torque had a small jump at 0.4=ft (s) for the same reason as explained in 

example one, (See remark 3.4).  
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Fig. 3-8: Example 2, simulation, required base torque for causal end-effector trajectory 

tracking of the SFLM  

The actual and desired end-effector displacements are shown in Fig. 3-9. 

Moreover, the difference between the actual and desired trajectories, yyerror d −= , is 

shown in Fig. 3-10. There are two reasons why the difference between the actual and 

desired trajectories in example 2, Fig. 3-10, is larger than the difference between the 

actual and desired trajectories in example 1, Fig. 3-6, as follows. First, the average speed 

of the maneuver for example 2 was approximately twice that for example 1. Second, in 

example 2 the inverse off-line computed torque obtained from linear model, Eq. (3-47), 

was applied to the nonlinear model, Eq. (3-6). 

Fig. 3-9: Example 2, simulation, desired and actual end-effector displacements of the 

SFLM  
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Fig. 3-10: Example 2, simulation, the difference between the actual and desired end-

effector displacements of the SFLM which are shown in Fig. 3-9 

The satisfactory results of the simulation with the nonlinear dynamic model 

confirm that the combination of the joint PD controller and the off-line inverse dynamic 

torque, computed from the linear model, can deal with the perturbation and uncertainty in 

this example.  

3.7.3. Example 3: A SFLM with hyperbolic internal dynamics

For the third simulation example, the SFLM setup available in the robotics 

laboratory at the University of Saskatchewan (Robotics Lab of the U of S) was 

considered. This SFLM is shown in Fig. 3-11. 

Fig. 3-11: The SFLM in the Robotics Lab at the U of S 

The robot consisted of a DC driving via harmonic gearbox.  The harmonic drive 

was a Precision Servo Actuator from Harmonic Drive Technologies. Specially, its model 

number was PSA-8-080. It offered zero backlash and used Maxon 118752 precision 

brush motor (20 watts). The flexible link of the SFLM in Fig. 3-11, was made of stainless 

Flexible link 

Payload 

Actuator 
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steel with a length of 0.2300 (m), a thickness of 410890.8 −×  (m) and a width of 

0.0381(m). The mass moment of inertia of the hub was 0.0198 (kg.m2), and the 

coefficient of viscous damping in the rotating joint was 0.3200 (N.m.s/rad).  Moreover, 

the SFLM had a payload at the tip with the mass of 0.1690 (kg) and a mass moment of 

inertia of 510570.2 −× (kg.m2).  

The link flexibility was modeled with one mode shape per link as will be 

explained later in this section. The time varying weight of this mode was measured with 

an stain gauge mounted on the base. The resolution of the end-effector measurement by 

using this strain gauge was 41005.4 −× (m). The zeros of the corresponding transfer 

function considering the end-effector displacement as the output were at 0.212± . Thus, 

this SFLM was a nonminimum phase system with hyperbolic internal dynamics. It was 

nonminimum phase since it had a zero at +212.0 and it had hyperbolic internal dynamics 

since none of its zeros were on the imaginary axis or even close to it.  

The link flexibility was modeled with one mode shape per link, since the 

maximum bandwidth of the actuator, in Fig. 3-11, was smaller than the second natural 

frequency. The maximum actuator bandwidth was 50 (Hz) while the natural frequency of 

the second mode was 54.25 (Hz). Therefore, the first mode of vibration was dominant 

and the contributions of the second and higher modes of vibration were minimal which 

justified modeling the link with only one mode.  Moreover, generally, for a typical SFLM 

(or even multilink flexible manipulator) contributions of the higher modes of vibration 

are very small as also observed in the examples 1 and 2.  

The desired end-effector acceleration, shown in Fig. 3-12, was considered to be 

composed of several third order polynomials, from 0 to 0.2, 0.2 to 0.4, and 0.4 to 0.6 (s). 

The corresponding desired velocity and displacement are presented in Fig. 3-13.  
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Fig. 3-12: Example 3, simulation, desired end-effector acceleration of the SFLM in the 

Robotics Lab at the U of S 

Fig. 3-13: Example 3, simulation, desired end-effector velocity and displacement of the 

SFLM in the Robotics Lab at the U of S 

The desired end-effector acceleration was divided into 6 equal segments which were,  

6.05.0.....,,2.01.0,1.00.0 ≤≤≤≤≤≤ ttt                             (3-50) 

Similar to the previous two simulation examples, h=2 was selected in Eq. (3-37a).  

Moreover, since there was only one unstable zero 0.212− , nu was equal to 1. Using Eq. 

(3-38), the required number of exponential functions for each segment was r=7. Also “m” 

for each segment was selected using Eqs. (3-42) and (3-43) and 

assuming 0100.0)( =k
f

decC and 000.1)( =k
s
decC .  As in examples 1 and 2, the off-line 

inverse torque was combined with the joint PD controller, Eq. (3-47), and after 0.6 (s) 



100 

only the joint PD controller with Lty fdd /)(=θ  and 0=dθ& was active. The gains of the 

PD controller were Pk =1.4 and Dk =0.40. These values for the gains were again obtained 

by trial and error and observing the system’s response as explained in the first example. 

For Pk = 1.4 and Dk = 0.40, the eigenvalues of EA  in Eq. (3-A20) in Appendix III were 

,163.2,86.23{ −− }86.30971.4 i±−  which, since they all had negative real the closed-loop 

system was stable and consequently its response  was assured to be bounded.  To observe 

the response of the system under uncertainty, in the simulation the linear dynamic model 

of the SFLM given in Eq. (3-8) when the link flexibility was modeled with two mode 

shapes was used. The second mode shape was an uncertainty because the link flexibility, 

and consequently off-line inverse dynamic torque were obtained using only the first mode 

shape. In Fig. 3-14 the required base torque is shown. The reason that the shape of the 

torque in Fig. 3-14 was different than the torques in examples 1 and 2, Figs. 3-4 and 3-8 

respectively, was due to the high value of the joint viscous friction in this example. 

Moreover, the discontinuity of the torque at =ft 0.6 (s) was expected since, for ftt >  , 

the off-line computed torque was set to be zero and only the joint PD controller was 

active, as in the previous examples.  However, in this example due to the larger error at 

ft  between the desired and actual displacements, than the error in the previous two 

examples, the jump in the torque, as shown in Fig. 3-14, was larger than the jump in the 

torques in Figs. 3-4 and 3-8 (see remark 3.4). 

Fig. 3-14: Example 3, simulation, required base torque for causal end-effector trajectory 

tracking of the SFLM in the Robotics Lab at the U of S 
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The desired and actual end-effector displacements for the SFLM are presented in 

Fig. 3-15. Moreover, the difference between the desired and actual end-effector 

displacement yyerror d −=  is given in Fig. 3-16. From Figs. 3-15 and 3-16, it is clear 

that eventually the joint PD controller eliminates the steady end-effector trajectory 

tracking error, which is consistent with the result of [27].  

Fig. 3-15: Example 3, simulation, desired and actual end-effector displacements for the 

SFLM in the Robotics Lab at the U of S 

Fig. 3-16: Example 3, simulation, the difference between the actual and desired end-

effector displacements of the SFLM in the Robotics Lab at the U of S which are shown in 

Fig. 3-15 
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3.8. Experimental results

To  show  the  feasibility of the  introduced  technique,  in  this  section  the  

results  of  an experimental study are presented. The SFLM in the robotics laboratory at 

the University of Saskatchewan, shown in Fig. 3-11, was used for this experimental 

verification. It is to be noted that in example 3, the simulation result for this SFLM was 

given, while in this section the experimental results will be presented. 

3.8.1. Example 4: End-effector trajectory tracking of an experimental SFLM 

The physical parameters of the SFLM are given in example 3. The link flexibility 

is modeled using one mode shape due to the reason explained in example 3. The time 

varying weight of this mode was measured using a strain gage located at the clamped-

base.  The desired end-effector acceleration, velocity and displacement were the same as 

those used in example 3, which were shown in Figs 3-12 and 3-13, respectively.  

Besides the physical parameters given in example 3, there was a high rotational 

dry friction in the experimental setup due to the employed harmonic drive. This friction is 

refereed to as joint dry friction in the following and might be modeled approximately, for 

instance, by the model available in [29]. The existence of this joint dry friction, which is 

hard to model exactly, deteriorates the performance of the model-based controllers [30]. 

In this chapter, like in [31,32], to compensate for the friction, the average value of the 

joint dry friction was measured and added to the control torque in Eq. (3-47). Moreover, 

since the selected desired displacement was unidirectional, the dynamic effect of friction 

was easier to model [31]. That is because the manipulator does not change its direction.  

The average value of the joint dry friction was obtained experimentally by 

applying a step input torque to the motor and recording the joint angular velocity versus 

time (velocity profile). Repeating this experiment gave different velocity profiles for 

different values of the step input torques. Since the closed-form function of the velocity 

profile for a step input torque is known, by using a curve fitting scheme the average value 

of the joint dry friction was obtained.  This average value was 0.45 (N.m) which was 

added to the torque given in Eq. (3-47) and applied to the experimental setup. The gains 

of the joint PD controller in Eq. (3-47) were set Pk = 1.4 and Dk = 0.40. As in the pervious 
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examples, after 6.0=ft  (s) only the joint PD controller was active. Moreover, for the 

joint PD controller, for ftt > , Lty fdd /)(=θ  (rad) and 0=dθ& were utilized. The results 

of this experimental study are reported in Appendix 3.IV. From the reported results in 

Appendix 3.IV it is clear that a steady trajectory tracking error existed of about )(01.0 m . 

That is, the joint PD controller by itself could not eliminate the steady trajectory tracking 

error, contrary to simulation examples 1, 2 and 3 where the joint PD controller reduced 

the steady tracking error to zero. Moreover, it was clear that after =ft 0.6 (s), the actuator 

applied a constant torque. This torque was due to the existence of the steady tracking 

error and application of the joint PD controller. Since the value of the constant torque was 

less than the value of the joint dry friction, it could not rotate the hub and reduce the 

steady tracking error to zero. By increasing the gains of the PD controller, the constant 

value of the torque would increase and allow overcoming the joint dry friction. But, 

implementing a joint PD controller in the presence of friction will eventually lead to a 

steady tracking error, where for higher PD gains the error becomes smaller [33]. As a 

side effect, selecting larger gains for a PD controller increases the sensitivity of the 

controller to noise and leads to torque saturation. Moreover, although applying a PID 

(proportional-derivative-integral) controller instead of PD controller for ftt >  might be a 

solution for the reduction of the steady state error to zero; the combination of the PID 

controller and joint dry friction results in hunting limited cycles [33,34]. Finally, adding 

the calculated average value of the joint dry friction to the PD controller did not appear to 

be a solution. This is due to the fact that the successful reduction of the error by the PD 

controller to zero would occur [27] if the exact model of the joint dry friction, and not an 

average value, was used for compensation.  

In the following section, a new controller in introduced to compensate for the 

joint dry friction. The utilization of this new controller does not indicate inefficiency of 

the new causal inversion end-effector controller introduced here. However, since the 

causal end-effector inversion is a model based controller and joint friction is not exactly 

known, a different controller is necessary to reduce the error to zero at the end of 

maneuver.  



104 

Introducing a new controller  

As a remedy, to reduce the steady trajectory tracking error to zero, in the 

following a new two stage controller is proposed at the expense of torque discontinuity. 

Based on this proposed controller for the first stage up to 6.0=ft  (s), a constant torque of 

0.45 (N.m) was added to that given is Eq. (3-47) and applied to the SFLM (like before). 

For the second stage, for ftt > , the pulse width control (PWC) [35,36] was used to 

reduced the steady state error of the hub to zero. According to the PWC, to reduce the 

steady trajectory tracking error to zero, the following steps have to be taken in each 

interation j [35]:  

1- j = 0 

2- Measure the current hub position error θθυ −= dj where Lty fdd /)(=θ and 

θ  is the actual hub rotation. 

3- Calculate the width )sgn( jjj ku υυ= of the pulse torqueImτ , as shown in 

Fig. 3-17, where18

)(

)3/(2

ImIm

32

a

tiptipha LLmII
k

τττ
ρτ

−
+++

= , Imττ <a , aτ is the 

average value of the joint dry friction and parameters ρ,tiptiph m,I,I and L are 

defined in Section 3.2 after Eq. (3-4c). If ju is positive (or negative) the pulse 

torque will be in the InertialZ  (or InertialZ− ) direction where 

InertialInertialInertial YXZ ×=  and InertialX and InertialY are shown in Fig. 3-2 in 

Section 3.2.  

Fig. 3-17: Schematic of the jth iteration of the PWC 

                                                
18  The effect of viscous damping was not considered in calculating k. This is based on the assumption that  
the duration of the pulse is short, so the velocity remains small and the linear damping is negligible 
compared to dry friction [36].  
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4- Apply the torque Imτ with the duration obtained in step 3 to the SFLM 

5- Wait so that the hub comes to rest 

6- if 0≠υ  then j = j+1 and go to step 3, otherwise stop. 

The schematic of the proposed two-stage controller is shown in Fig. 3-18. The 

stability of the first stage of this controller is similar to the stability analysis of the “joint 

PD controller plus the off-line computed inverse torque” given in Appendix 3.III. 

Moreover, the stability of the PWC, which is the second stage of this controller, is 

available in [35]. Therefore, the closed loop controller given in Fig. 3-18 is stable.  

Fig. 3-18: Example 4, experimental, schematic of the two-stage controller used to 

eliminate the steady trajectory tracking error 

The torque applied to the experimental SFLM using this two-stage controller is 

presented in Fig. 3-19. For the calculation of the duration of the PWC, which is ju in step 

3 above, )m.N(46.0Im =τ was selected. From Fig. 3-19, it can be seen that only one 

PWC after =ft 0.6 (s) was required to reduce the error close to zero. 



106 

Fig. 3-19: Example 4, experimental, required base torque for causal end-effector 

trajectory tracking of the SFLM in the Robotics Lab at the U of S using the two-stage 

controller given in Fig. 3-18 

The actual and desired displacements and their differences yyerror d −=  using 

the controller presented in Fig. 3-18 are shown in Figs. 3-20 and 3-21.   

Fig. 3-20: Example 4, experimental, desired and actual end-effector displacements for the 

SFLM in the Robotics Lab at the U of S using the two-stage controller given in Fig. 3-18 
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Fig. 3-21: Example 4, experimental, the difference between the actual and desired end-

effector trajectories of the SFLM in the Robotics Lab at the U of S using the two-stage 

controller which are shown in Fig. 3-20 

Comparing Figs. 3-20 and 3-21, with the end-effector displacement and error 

given in Appendix 3.IV, Figs. 3-24 and 3-25, which are the experimental results without 

PWC, showed that the steady tracking error was reduced essentially due to the PWC. 

That is, the steady state trajectory tracking error was reduced from about )(010.0 m  to 

about )(001.0 m .  

Figs. 3-20 and 3-21 show that there existed a slowly vanishing vibration of the 

manipulator. When the hub reached L/1.0 (rad) if the link vibration was suppressed, the 

steady end-effector trajectory tracking vanished. The joint PD controller was able to 

suppress the link’s vibration [27] when there was no joint dry friction. However in the 

presence of the joint dry friction, the internal material damping was the only source of the 

suppression of the link’s vibration. While relying on the link’s material damping for 

eliminating the vibration is not always satisfactory, the available experimental SFLM has 

this limitation. The application of a piezoelectric actuator to overcome this drawback is 

among the possible solutions which are currently under study [37]. 

Finally, the difference between the actual and desired displacements in example 3, 

which is the simulation, is smaller compared with experimental example 4, even for t < 

0.6 (s). The main reason for this difference was the joint dry friction, which was the 

drawback of the harmonic drive used in the experimental setup at the expense of no 
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backlash.  In the experimental study, to compensate for this joint dry friction a constant 

torque was added to the controller torque. Moreover, in addition to the existence of the 

joint dry friction as a source for such a difference, the encoder and strain gauge noise 

[38], and the contribution of higher frequency modes contributed to this variation. It is to 

be noted that the controller proposed here, a combination of the joint PD with the inverse 

dynamic torque, was a model based controller. Therefore, the existence of unavoidable 

small differences between the real system physical parameters and the derived model 

deteriorated the performance of the controller, despite the fact that the controller was still 

stable.   

3.9. Conclusions 

A novel causal end-effector trajectory inversion of a Single Flexible Link 

Manipulator (SFLM) by means of output redefinition has been introduced. The desired 

trajectory is divided into a finite number of segments and in each segment is redefined so 

that a bounded causal continuous inversion torque can be found.  The redefinition of the 

desired trajectory employed summation of stable exponential functions which led to a 

family of possible solutions. Thus, by minimizing the error between the desired trajectory 

and the redefined trajectory, the best member of the family could be found.  

Although the available non-causal end-effector inversion technique did not 

tolerate existence of purely imaginary zeros for the transfer function between end-

effector displacement and applied torque, the proposed method in this chapter is still 

valid even in the presence of purely imagery zeros. The off-line computed inverse 

dynamic torque was combined with a joint PD controller and the stability of the proposed 

controller against the unmodeled dynamic was investigated. The joint PD controller 

suppressed the link’s vibration at the end of the motion and was also robust against 

unmodeled dynamic due to its model independent nature. The simulation results for 

SFLMs with hyperbolic, non-hyperbolic and near non-hyperbolic internal dynamics, 

which is without purely imaginary zeros, with purely imaginary zeros and zeros which 

are close to imaginary axis respectively, were included. The experimental results showed 

the feasibility of the introduced method. In the experimental study, due to the existence of 

the joint dry friction, a new two-stage controller was used to reduce the trajectory 
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tracking error close to zero. While the method was studied here for the inversion of a 

SFLM, its extension to the causal inversion of linear single-input single-output, non-

minimum phase systems with hyperbolic or non-hyperbolic internal dynamics is straight 

forward. 

3.10.Nomenclature  

a: A positive constant number  

b: A constant number  

jkc  : Coefficient of the jth exponential function used to redefine the desired trajectory in 

the kth segment 

h: The highest derivative of the redefined acceleration that has to be the same as its 

corresponding from the desired acceleration 

Pk : Scalar gain 

Dk : Scalar gain 

jkm : Exponent of the jth exponential function used to redefine the desired trajectory in 

the kth segment 

tipm : Mass of the end-effector 

n : Number of the assumed mode shapes 

nu : Size of the vector u
IX

jp : the jth coefficient of the polynomial py

q : A vector composed of the degree of freedoms 

r : Required number of the exponential functions for each segment 

wr : Relative degree 

it : Initial manoeuvre time 

ft : Final manoeuvre time 



110 

ikt  : Initial time of the kth segment 

fkt : Final times of the kth segment 

ju : Width of the pulse torqueImτ

y: End-effector displacement  

dy : Desired end-effector displacement 

dy~ : Redefinition of the desired end-efffector displacement with the summation of the 

exponential functions 

py : Redefinition of the desired end-efffector displacement with the polynomial functions 

kdy )( && : Desired end-effector acceleration in the kth segment 

A : State matrix when the dynamic model is expressed in the state-space form 

ψA : State matrix when X is transformed intoψ

IA : State matrix of the internal dynamic 

-A I : A diagonal matrix with the diagonal elements that are the eigenvalues of IA  with 

negative real parts  

+
IA : A diagonal matrix with the diagonal elements that are the eigenvalues of IA  with 

positive real parts 

B : Input matrix when the dynamic model is expressed in the state-space form 

ψB : Input matrix when X is transformed intoψ

IB : Input matrix of the internal dynamic 

s
IB : Input matrix which corresponds to -A I

u
IB : Input matrix which corresponds to +IA

decC : Decay of the exponential function  
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k
f

decC )( : The fastest decays for the exponential functions used in the kth          

k
s
decC )( : The slowest decays for the exponential functions used in the kth                                            

C : Output matrix when the dynamic model is expressed in the state-space form and the 

end-effector displacement is the output 

ccC : Matrix representing the Coriolis force and the component of the centrifugal force in 

the lateral direction 

[ ])()(: 1 LLL nφφ K=D

E:  Young’s modules  

F : Force vector

G : Matrix with columns which are the eigenvectors of the matrix IA

H : Mapping matrix between F and τ

hI  : Mass moment of inertia of the hub 

tipI : Mass moment of inertia of the end-effector 

I : Second moment of cross section area 

BK  : Stiffness matrix 

[ ]0000: DPct kk=K

PK : Matrix gain                                             

DK : Matrix gain

L: Length of the link 

M : Mass matrix 

MT : Total kinetic energy of the manipulator 

lT : Kinetic energy of the flexible link 

hT :  Kinetic energy of the hub 
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tipT :  Kinetic energy of the end-effector 

T : Transformation matrix between X  and ψ

MU : Strain energy due to the link’s flexibility  

fpV : Lyapunov candidate function selected for the stability analysis of the first stage of 

the proposed controller                       

spV  : Lyapunov candidate function selected for the stability analysis of the second stage 

of the proposed controller                       

p
u
IX )( : The particular part of u

IX   

c
u
IX )( : The complementary part of uIX

u
IX : Stable part of IX

s
IX : Unstable part of IX

IX : State vector of the internal dynamics 

X : State vector when the dynamic model is expressed in the state-space 

1β , 2β :  Positive scalars 

ξ : Spatial deflection of the flexible link 

jφ : The jth spatial pre-defined shape functions 

jλ : The jth time varying weight functions 

ρ : Mass per unit length of the flexible link 

θ : Rotation of the hub 

τ : Actuator torque 

η : Damping ratio of the fundamental vibration mode shape 

ω : Natural frequency of the fundamental vibration mode shape  
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ψ : The vector obtained after transforming X  by T

v: Number of the segments 

lτ : The torque obtained after end-effector inversion of the linear dynamic model  

aτ : Average value of the joint dry friction 

Imτ : Value of the pulse torque 

Λ : Deviation of the linear mode from nonlinear model and non-modeled dynamics 

Π : A positive definite matrix obtained from the Lyapunov equation  

Γ  : A positive definite matrix  

3.11.Appendices  

Appendix 3.I: The elements of the matrices in the nonlinear and linear dynamic 

equation 

The nonlinear dynamic equation of a single flexible link manipulator, Eq. (3-6), is: 

τθ Hqqλλ,qλ B =++ KCM cc &&&&& ),()(                                      (3-A1)                                  

or: 
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1..2)()( 11,111 +=′++== −−− niLILLmMM itipitipiii φφΦρ γ                    (3-A4) 

1..2,)()()()( 11111,1 +=′′++== −−−−−− njiLLILLmMM jitipjitipiijiij φφφφΦρ     (3-A5) 
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11 ,
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= Φ +∑∑ ∑∑& &            (3-A6) 

1 1 ( 1), ( 1)
1 1

( ) ( ) ( ) ( ( ) ( )) 2.. 1
n n

cc i cc i j i j tip j i j
j j

C C m L L i nρθ λ θ λ φ φ− −
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( ) ( ) 0, , 1cc ij cc jiC C i j= = ≠                                                  (3-A8)                                                

2.. 1, 2.. 1

0 1 1
ij

B

K i n j n

i or j

 = + = +
=  = =

K                              (3-A9)                                         

0

L

ij i jK EI dφ φ γ′′ ′′= ∫                                                   (3-A10) 

In the linear dynamic ),( λλ, &&θccC  does not exist and the elements for the mass matrix are: 

( ) 23
11 3/ LmIILM tiptiph +++= ρ                                 (3-A11) 

1..2)()( 11,111 +=′++== −−− niLILLmMM itipitipxiii φφΦρ            (3-A12) 

1..2,)()()()( 11111,1 +=′′++== −−−−−− njiLLILLmMM jitipjitipiijiij φφφφΦρ       (3-A13) 

Moreover, the stiffness matrix is as in (3-A9) and (3-A10)  

Appendix 3.II: Checking the orthogonality of the shape function of beam element 

The shape functions for the beam element are cubic polynomials [39, p. 242] as: 

)2()1(
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1 2
1 ηη +−=N , 
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2
22

4 ηηL
N              (3-A14) 

where eL is the length of the beam element and η  is the linear distance measured from the 

center of the master beam element, which is  changing from -1 to 1.  These shape 

functions are shown in Fig. 3-22. 
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Fig. 3-22: Graph of the shape functions of the beam element 

If the above shape functions with the weight function to be 1 were orthogonal to each 

other, ∫=
b

a

jiji dNNNNO ηηη )().(),(  was equal to zero for 41,41, KK ==≠ jiji . 

However, calculation of ),( ji NNO  for 41,41, KK ==≠ jiji shows that: 

0105.0),(),( 1221 ≠== eLNNONNO ,      0257.0),(),( 1331 ≠== NNONNO

0062.0),(),( 1441 ≠−== eLNNONNO ,    0062.0),(),( 2332 ≠== eLNNONNO

0014.0),(),( 2
2442 ≠−== eLNNONNO ,    0105.0),(),( 3443 ≠−== eLNNONNO

(3-A15) 

Therefore the shape functions used to redefine the displacement along a beam element 

are not orthogonal.   

Appendix 3.III: Stability proof 

The proposed controller had two stages. In the first stage for ftt < , a joint PD 

controller which is added to the off-line computed inverse dynamic torque was utilized. 

In the second stage for ftt > , only the joint PD controller assuming constant Lty fd /)(=θ

, and 0== dd θθ &&& , was active. For the stability analysis, it will be first proven that the first 

stage controller, a joint PD controller plus the off-line computed inverse torque, leads to a 

trajectory tracking error dynamic which is stable. Then, it will be established that the 
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second stage controller, the joint PD controller, suppresses the vibration of the link and 

eliminates the steady tracking errors.      

Proof of the Lyapunov stability of the joint PD controller plus the off-line computed 

inverse torque for ftt <

The dynamic model of a SFLM in the state space form is: 

ΛBXX ++= τA&                                          (3-A16)                                        

where B,A and X are defined in Eq. (3-12), τ is the actuator torque, and Λ represents the 

deviation of the linear mode from the nonlinear model and unmodeled dynamics. 

Moreover, according to the end-effector inversion procedure the off-line computed 

inverse torquelτ  satisfies: 

lτBXX dd += A&                                          (3-A17)                                                   

where dX  are the states corresponds tody~ which are calculated during the inversion 

procedure and  

dCX=dy~                                              (3-A18)                                                   

where C  is defined in Eq. (3-12). The torque given in Eq. (3-47), which is the off-line 

computed inverse torque with the joint PD controller, can be written as: 

∆ctl K+= ττ                                           (3-A19)                                         

where [ ]0000 DPct kk=K and XX −= d∆ . By replacing τ from Eq. (3-A19) 

into Eq. (3-A16) and utilizing Eq. (3-A17), the error dynamic is: 

Λ−= ∆A∆ E
&                                        (3-A20)                                                   

where ctE BK-AA = .  

Theorem: If: 

1- The gains Pk and Dk are selected so that the matrix EA is Hurwitz  
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2- The unmodeled dynamic and the deviation of linear model from nonlinear model 

satisfy )2/()(min1 ΓΠµβ <  where )(min Πµ represents the minimum eigenvalue 

of Πdefined in Eq. (3-A21) and positive scalar1β  is defined in Eq. (3-A25) 

then the error dynamic state ∆  is globally bounded.  

Proof: Since EA is a Hurwitz matrix, there exists a symmetric positive definite matrix 

Γwhich satisfies the following Lyapunov equation:  

ΠΓAΓA −=+ E
T
E                                              (3-A21) 

where Π  is a positive definite matrix. Choosing the Lyapunov candidate function: 

Γ∆∆
TV =fp                                                 (3-A22) 

and taking its time derivative along the trajectories of Eq. (3-A20) yields:  

Λfp Γ∆-Π∆∆
TTV 2−=&                                      (3-A23) 

From Eq. (3-A23), it is concluded that: 

)
2

min Λfp Γ∆2∆(Π +−< µV&                             (3-A24) 

where )(min Πµ represents the minimum eigenvalue of Π . Moreover, it is assumed that 

on a bounded region around origin, Λ is: 

21 ββ +< ∆Λ                                          (3-A25) 

where 1β and 2β are positive scalars. Combining Eqs. (3-A24) and (3-A25) leads to: 

∆Γ2∆Γ2-) Π ( 2

2

1min )( ββµ +−<fpV&

Since )2/()(min1 ΓΠµβ < , the state error ∆  is globally bounded [17 p. 22] and the 

closed loop system is stable.  

Proof of the suppression of the link’s vibration and vanishing of the steady tracking error 

by utilizing joint PD controller for ftt >

The nonlinear dynamic model of SFLM as given in Eq. (3-6) is: 
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τθ Hqqλλqλ =++ BKCM cc &&&&& ),,()(                            (3-A26) 

where the elements of  )(λM , ),,( λλ &&θccC , BK and H are defined in Appendix 3.I. 

Moreover τ is the actuator torque. If the joint PD controller is only active, the actuator 

torque, as in Eq. (3-47), is: 

)()( θθθθτ && −+−= dDdP kk                                  (3-A27) 

or 

ee qKqK &DP −−=τ                                          (3-A28) 

where  

[ ]nPP k ×= 10K                                              (3-A29) 

[ ]nDD k ×= 10K                                              (3-A30) 

[ ]nde λλθθ K1−=q                                     (3-A31) 

Theorem: The joint PD controller given in Eq. (3-A28) asymptotically stabilized a 

SFLM with the nonlinear dynamic model given in Eq. (3-A26)  

Proof: Applying the torque given in Eq. (3-A28) to the nonlinear dynamic model given 

in Eq. (3-A26) leads to: 

0(),,(()( =++++ ePeDe )qHKq)HKλλqλ BKCM cc &&&&& θ               (3-A32) 

It is to be noted that in deriving Eq. (3-A32), it was assumed that 0== dd θθ &&& . The 

assumption that 0== dd θθ &&&  is the consequence of the fact thatdθ  is constant for ftt > . 

For the stability analysis, the Lyapunov candidate function is selected to be: 

ePB
T
ee

T
esp )qHKqqλq ++= KM (1/2)(1/2 &&V                       (3-A33) 

where )(λM and PB HK+K matrices are positive definite matrices. Taking the derivative 

of spV , given in Eq. (3-A33), with respect to time along the trajectories of Eq. (3-A32) 

and using the fact that 01/2,,( =+ e
T
e q)λλq &&&&& )M(-Ccc θ  [40] yields:  
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2)( θθ −−= dDkV &&
sp                                       (3-A34) 

which shows that spV& is a negative semi-definite scalar. However, by adopting the 

LaSalle’s theorem [9], the asymptotic stability of the closed-loop system can easily be 

concluded [27, p. 210]. It is worth noting that the proposed PD controller in Eq. (3-A28) 

is robust against the unmodeled dynamics because this controller is not model-dependent. 

Therefore, the stability proof given here will stand as along as the dynamic model of the 

real system can be expressed as Eq. (3-A26).  

Appendix 3.IV: The experimental result without the PWC controller 

In Fig. 3-23, the applied torque to the experimental SFLM is shown. This torque 

was the off-line inverse dynamic torque plus the joint PD controller and the PWC was not 

used. The actual end-effector displacement and the desired end-effector displacement are 

shown in Fig. 3-24. Moreover, the difference between the actual and desired end-effector 

trajectories yyerror d −=  is presented in Fig. 3-25. 

   

Fig. 3-23: Experimental, required base torque for causal end-effector trajectory tracking 

of the SFLM in the Robotics Lab at the U of S without PWC 
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Fig. 3-24: Experimental, desired and actual end-effector displacements for the SFLM in 

the Robotics Lab at the U of S without PWC 

Fig. 3-25: Experimental, the difference between the actual and desired end-effector 

displacement of the SFLM in the Robotics Lab at the U of S which are shown in Fig. 3-24 
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Chapter 4. End-effector trajectory tracking of 

a flexible link manipulator using      

integral manifold concept 



126 

Abstract:  

A new controller for the end-effector trajectory tracking of a single flexible link 

manipulator is introduced. The linear dynamic model of the single flexible link 

manipulator is expressed in the singularly perturbed form. To reduce the end-effector 

trajectory tracking error, a corrective torque is added to the computed torque command of 

the rigid link counterpart of the single flexible link manipulator. The corrective torque is 

derived based on the concept of the integral manifold of the singularly perturbed 

differential equations. This corrective torque is of order 2ε  where )2/(1 fπε = and f is 

the fundamental natural frequency of the single flexible link manipulator. The 

implementation of the introduced technique does not require the full-state measurements 

since, by designing an observer the time derivative of the link’s lateral deflection is 

estimated. The stability proof of the new controller, which is based on Lyapunov 

criterion, is presented.  The results of the simulation and experimental studies which 

show the feasibility of the new approach are included. Making the error of the end-

effector trajectory tracking smaller by using a new computationally cost effective 

controller, which was verified by simulation and experimental results, and reducing the 

numbers of state-measurements are the main contributions of this work. 

Keywords: Flexible link manipulator, vibration control, trajectory tracking, Integral 

manifold, Singular perturbation 

4.1. Introduction 

Light-weight manipulators, usually called flexible link manipulators (FLM), are the next 

generation of the industrial manipulators provided that the challenges encountered during 

their dynamic modeling and control are addressed effectively. Since, for many industrial 

applications the time history of the end-effector’s movement is given, end-effector 

trajectory tracking (EETT) of the FLM is of great importance and it has been studied for 

many years [1-9]. The challenging aspects of EETT of FLM are due to the facts that they 

are underactuated [10] and have non-minimum phase characteristics [11]. 

 Since the FLM have a link rotations (slow subsystem) and the links’ vibrations 

(fast subsystem), its dynamic model can be expressed in the singularly perturbed form 
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[1]. Consequently, the control strategies developed for singularly perturbed systems can 

be adopted for their EETT [12]. In this chapter, based on the concept of the integral 

manifold of the singularly perturbed differential equations [13,14], a new controller for 

the EETT of a single flexible link manipulator (SFLM) is proposed. By utilizing the 

concept of the integral manifold, a corrective torque is added to the computed torque 

command (CTC) of the rigid link counterpart of the SFLM [15 p. 135] so that the EETT 

error decreases. This corrective torque is of order2ε  where )2/(1 fπε = and f is the 

fundamental natural frequency of the SFLM.  

 The implementation of the controller introduced here does not require the direct 

measurement of the full-state; since by an observer the time derivative of the link’s lateral 

deflection is estimated. It is worth noting that the measurement of the time derivative of 

the link’s lateral deflection is difficult, if not impossible, in practice. The fact that the new 

controller does not require this measurement makes it feasible.  

 The stability of the new proposed controller is proven using the Lyapunov 

criterion. The effectiveness and feasibility of the new controller is shown through several 

simulation and experimental studies.  

 The main contribution of this paper is in utilizing the concept of the integral 

manifold of singularly perturbed systems for the EETT. Although this concept is well-

documented, there are very few reports of it being used for the EETT of FLM with 

experimental verification. Moreover, compared to the few available EETT controllers 

derived based on the concept of the integral manifold, such as [16], the method presented 

here is the most computationally efficient one due to the fewest corrective torques that 

have to be added to the CTC for the EETT reduction. Finally, the proper use of several 

mass matrix properties, introduced in Section 4.2, which facilitates the derivation of the 

corrective torque and ease the implementation of the controller, is another contribution of 

this work. Without the proper use of these properties the calculation of the controller 

command was very difficult.    
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4.2. Dynamic model derivation 

The link’s lateral deflection of a SFLM, ξ in Fig. 4-1, is modeled by using the 

assumed mode shape method [7,17] that is:  

∑
=

=
n

i
ii tt

1

)()(),( γφλγξ                                              (4-1) 

where )(γφi  is the ith assumed mode shape out of n and )(tiλ is its time varying weight 

function which is also referred to as ith flexible variable. Combining the assumed mode 

shape method with the Lagrange equation [7], the dynamic model of a SFLM is: 

τHXKXM B =+&&                                                (4-2) 

where [ ] [ ]T
n

TTX λλλλθ ..., 1== ,θ is shown in Fig. 1, M is the mass matrix, BK is 

the stiffness matrix which are: 
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[ ]T
nH ×= 101  andτ is the actuator torque. Details of the elements for the mass matrix 

and stiffness matrix are given in [7]. 

Fig. 4-1: Schematic of a SFLM

Assuming small lateral deformation, the end-effector’s (angular) position for a 

SFLM will be defined by the variable r, shown in Fig. 4-1, which is: 



129 

λθφλθξθϕθ WLLLtLr
n

i
ii∑

=

+=+=+=+=
1

/))((/),(                     (4-4)  

where [ ]LLLLW n /)(..../)(1 φφ=  and L  is the length of the single flexible link 

manipulator.  

Properties of the mass matrix

The mass matrix, M in Eqs. (4-2) and (4-3), has specific properties which are used 

in deriving the controller in Section 4.4. These properties are as follows.   
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θλθθ J= , then the following 

equalities between the components of M  and J  exist:

θλθθλλθλ JJMM 11 −− −=          (4-5a) TT JJMM θλλλθθθλ
11 −− −=           (4-5b)

TMMMJM θλλλθλθθθθ
11 −− +=       (4-5c) TJJJJM θλλλθλθθθθ

11 −− −=        (4-5d)

θλθθθλλλλλ JJJMJ T 11 −− +=           (4-5e) θλθθθλλλλλ MMMMJ T 11 −− −=      (4-5f)

Proof: See Appendix  

4.3. Singularly perturbed form and integral manifold concept 

To express the dynamic model of a SFLM, Eq. (4-2), in the singularly perturbed 

form, the following new states are introduced: 

θθ &== 21 xx                                                    (4-6a)                                                

ελελ // 2
2

1
&== zz ,                                            (4-6b)   

where [ ]Txxx 21= and [ ]TTT zzz 21= represent the vectors composed of the states of the 

slow and fast subsystems respectively, and fπε 2/1=  where f  is the fundamental 

natural frequency of the SFLM [16]. Using the new states defined in Eqs. (4-6a) and (4-

6b), the dynamic model of a SFLM is: 
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where 2
1 )2/( fKJK πλλλλ= and 2

2 )2/( fKJK πλλθλ= . Moreover, the end-effector’s 

(angular) position as given in Eq. (4-4) is:  

1
2

1 Wzxr ε+=                                                 (4-8) 

For Eqs. (4-7a) and (4-7b) with a given actuator torque,τ , the manifold  defined 

by: 
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is called the integral (invariant) manifold if 19:  

∗∗∗∗∗ >∀=⇒= ttttxtxhtzttxtxhtz ee )),(),,(),,((),()),(),,(),,((),( 2121 ετεεεετεεε

        (4-10) 

By definition, the integral manifold, Eq. (4-9), has to satisfy the following equations 

which are called the integral manifold conditions [12-14]: 
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To have an approximate solution for Eq. (4-11) up to O ( 1+pε ), where p can be any                                      

positive integer, eh andτ  are expressed by series expansion in terms of ε  that is : 

∑
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19 The superscript “e” emphasizes that eh is the exact solution of the integral manifold. 
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The approximation of )2,1( =ihe
i  up to O ( 1+pε ) is called )2,1( =ihi . Moreover, sτ  is the 

component of τ  restricted (corresponded) to the approximate solution of the manifold up 

to O ( 1+pε ). Substituting Eq. (4-12) into Eq. (4-11) and equating the terms which have 

the same power ofε , ijh and jτ  will be obtained iteratively.  

According to Eq. (4-6b), 1
2zελ = . Thus forp less than 2, the flexible variablesλ

will not be observed in the end-effector’s (angular) position given in Eq. (4-8), as also 

discussed in [16]. Furthermore, increasing p to more than 2 will increase the control 

effort and the linear modeling of the SFLM will not be valid (see simulation examples in 

[16]). Thus, in this article it is assumed that p=2. As a result Eq. (4-12) is:          

2,1)( 3
2

2
10 =+++= iOhhhh iiii εεε                       (4-13a)                                    

)( 3
2

2
10 ετεετττ Os +++=                                        (4-13b)                                               

Substituting Eqs. (4-13a) and (4-13b) in Eq. (4-11) and equating the terms having the 

same power ofε , )20,2,1( K== jihij  in terms of )2...0( =iiτ are: 

0
1

110 τθλ
TJKh −=             (4-14a) 1

1
111 τθλ

TJKh −=             (4-14b)

)( 212
1

112 hJKh T &−= − τθλ         (4-14c) 020 =h                    (4-14d)

1021 hh &=                      (4-14e) 1122 hh &=                    (4-14f)

4.4. Controller design 

Assuming that z is restricted to its integral manifold h, and by utilizing the 

approximate solution of the integral manifold up to O( 3ε ) given in Eqs. (4-13a) and (4-

13b), Eq. (4-7a) is:
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Employing the definition of )20,2,1( K== jihij  provided in Eqs. (4-14a) to (4-14f) 

changes Eq. (4-15) into: 
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By recalling that 2
1 )2/( fKJK πλλλλ=  and 2

2 )2/( fKJK πλλθλ= , using Eq. (4-14e), and 

utilizing the mass matrix properties given in Eqs. (4-5b) and (4-5d), Eq. (4-16) becomes: 
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Moreover, using Eqs. (4-8) and (4-13a) and ignoring terms of order higher than2ε , the 

end-effector’s (angular) position r shown in Fig. 4-1 is: 

10
2

1 Whxr ε+=                                              (4-18)                                                

where W is defined after Eq. (4-4). It is worth noting that the concise Eq. (4-17) would 

not have been derived if the properties of the mass matrix, given in Section 4.2, had not 

been introduced and used.  

The subsystem described by Eq. (4-17) is called the second order corrected slow 

subsystem. Also the output defined in Eq. (4-18) is referred to as the output restricted to 

the second order manifold. This definition is due to the fact that the approximation of the 

integral manifold up to O ( 3ε ) is used to obtain Eqs. (4-17) and (4-18). The objective is 

to design 10,ττ  and 2τ so that the output,r  given in Eq. (4-18), follows a given desired 

trajectory, dr  .  

Lemma: If the desired trajectory is 4Crd ∈ , that is the desired trajectory and its time 

derivatives up to the fourth order are continuous and bounded, anddK and pK are positive 

constants, then: 

)(0 eKeKrM pdd −−= &&&θθτ                                     (4-19) 

01 =τ                                                      (4-20) 

VMhM θθθλτ += 102
&&                                       (4-21)                                                
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where 

101010 WhKhWKhWV pd −−−= &&&                            (4-22)                             

drxe −= 1                                                  (4-23) 

maker , the output of the system restricted to the second order manifold as given in Eq. 

(4-18), asymptotically track dr .  

Proof: From Eq. (4-18):

10
2

1 Whxr ε+=                                           (4-24)                                                         

Taking the derivatives of Eq. (4-24) with respect to time and using Eq. (4-17), results in: 

10
2

2 hWxr && ε+=                                           (4-25)                                                

10
2

102
2

10
1 ))(( hWhMMr &&&&&& ετεεττ θλθθ +−++= −                    (4-26)                                                

By using Eqs. (4-19) to (4-21) for 10 ,ττ and 2τ  and Eq. (4-22) for V, Eq. (4-26) becomes: 
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dd rWhxKrhWxKrr −+−−+−=
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&&&&&
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or 

0)()()( =−+−+− dspdsdds rrKrrKrr &&&&&&                            (4-28)                                      

Therefore, based on the assumption thatdK and pK are positive constants, the error 

dynamic ofr , Eq. (4-28), is asymptotically stable. The assumption that 4Crd ∈ , makes 

the control signal continuous and bounded. This is due to the fact that the calculation 

of 2τ , given in Eq. (4-21), requires the evaluation of 10h&&  and from Eqs. (4-14a) and (4-19) 

the calculation of 10h  requiresdr&& , and thus the calculation of 2τ  needs the fourth 

derivative of dr  (QED) 

According to the Lemma, if the output is restricted to the second order manifold, 

then r , given in Eq. (4-18), tracks the desired trajectory dr  by applying the 

torque 2
2

0 τετ + . Recalling that θθM is the mass matrix of the rigid link counterpart of the 
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SFLM, 0τ  given in Eq. (4-19) corresponds to the CTC of the rigid counterpart of the 

SFLM [15 p. 135]. Thus, to reduce the EETT error of a SFLM, the corrective torque 2
2τε

has to be added to0τ .  

 The fact that the fast variable,z , is restricted to its  integral manifold is a key 

assumption in the Lemma. Therefore, to guarantee that the differences betweenzand its 

approximate manifold up to O( 3ε ) become essentially small, the fast component of the 

controller, fτ , is designed as follows. For this purpose, the difference between zand its 

approximate manifold up to O( 3ε ), is defined here by [ ]TTT zzz 21 ˆˆˆ =  which is: 
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Taking the derivative of Eq. (4-29) with respect to time, replacing 1z& and 2z&  by their 

equivalences from Eq. (4-7b), substituting the control torque by fττεττ ++= 2
2

0 , 

utilizing the expressions given for )20,2,1( K== jihij in Eqs. (4-14a) to (4-14f), and 

neglecting  higher  order terms of O( 3ε ), the dynamics of ẑ is found to be: 

fzz BzAz τε += ˆ&̂                                             (4-30) 

 where 
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and 1K  and TJθλ are defined in Eq. (4-7b). Moreover, I is the identity matrix. Considering 

Eq. (4-30), the full-state control command zK czf ˆ−=τ  makes the dynamics of 

ẑasymptotically stable, providedczK  is selected so that czzz KBA − is a Hurwitz matrix. 

However, for implementation of the full-state feedback controller zK czf ˆ−=τ , the 

calculation  of ẑand thus the measurement of [ ]TTT zzz 21=  is required. From Eq. (4-

6b), the measurement of z requires that the variablesλ andλ&  are available. Although 

λ can be measured, for example with strain gauges,λ& is not easily measurable.  To 
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alleviate this problem, an observer-based controller for Eq. (4-30) is designed, assuming 

1ẑ as the output which is available if λ  can be measured. That is, by assuming the 

following output for the system given in Eq. (4-30): 

zCy z ˆ=     [ ]nnnnz IC ××= 0                                   (4-32)                                       

an observer-based controller is designed. This controller is:   

zK czf
~−=τ                                                   (4-33) 

where z~ , the estimate of ẑ , is calculated from the following observer equation:  

yKzCKKBAz ozozczzz +−−= ~)(~&ε                                 (4-34) 

and ozK , the observer gain matrix, has to be selected so that zozz CKA − is a Hurwitz 

matrix.  

Remark 1: According to Eqs. (4-21) and (4-22), evaluation of 2τ  requires calculation of 

10h , 10h& , and 10h&&  which are obtained as follows. By combining Eqs. (4-14a) and (4-19), 

10h is: 

)()2( 112
10 eKeKrMJJKfh pdd

T −−= −− &&&θθθλλλλλπ                      (4-35) 

Using Eq. (4-5b) , Eq. (4-35) is:  

)()2( 12
10 eKeKrMKfh pdd

T −−−= − &&&θλλλπ                         (4-36) 

Thus 10h  is obtained in terms of dre −= θ and dre &&& −= θ .  Moreover, from Eq. (4-36), 

10h& is: 

)()2( 12
10 eKeKrMKfh pdd

T &&&&&&& −−−= −
θλλλπ                          (4-37) 

 Since 10h  is the integral manifold when 0=ε , the error dynamic on this rigid manifold, 

is 0=++ eKeKe pd &&& [13 p. 147, 18 p. 297] . Thus, eKeKe pd −−= &&& . Substituting this into 

Eq. (4-37),  10h&  is: 

))(()2( 12
10 eKeKeKKrMKfh ppddd

T &&&&&& −++−= −
θλλλπ                   (4-38) 
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Hence, 10h&  can also be evaluated in terms of the available signals, 

dre −= θ and dre &&& −= θ . The same procedure can be employed for the evaluation of 10h&& .  

Remark 2: To implement the observer-based controller, 1ẑ  should be available. From 

Eq. (4-29) to have1ẑ , the values of 1z and 12
2

1110 hhh εε ++ should be calculated. 

According to Eq. (4-6b) the value of 1z is available since λ  is measured. Moreover, 10h

is given in Eq. (4-36). Also, combination of Eqs. (4-14b) and (4-20) results in 011 =h . 

Thus to have1ẑ , only 12h is required which is calculated as follows. From Eq. (4-14c), 12h

is: 

)()2()()2( 10
1

2
112

102
112

12 hJJJKfhJJKfh TT &&&& −−−−− −=−= λλθλλλλλθλλλλλ τπτπ             (4-39) 

Combining Eq. (4-5b) and Eq. (4-39) results in:  

)()2( 10
1

2
112

12 hJMMKfh T &&−−− −−= λλθθθλλλ τπ                               (4-40) 

and utilizing 2τ  provided in Eq. (4-21) leads to: 

))(()2( 10
1112

12 VMhMMMJKfh TT
θλθλθθθλλλλλπ −+−= −−− && .                    (4-41) 

Finally using Eq. (4-5f) 12h  given in Eq. (4-41) changes to: 

)()2( 10
12

12 VMhMKfh T
θλλλλλπ +−= − && .                                (4-42) 

It is worth emphasizing that the use of the mass matrix properties given in Section 

4.2 shortens the expressions of 10h , 10h& , 10h&& and 11h and 12h  and makes the required 

computational effort minimum. 

4.5. Stability analysis 

In this section, the controller proposed in this chapter is summarized in the 

following theorem. Also, its stability analysis, which is similar to those explained in 

[8,16] and is based on the Lyapunov criterion, is presented as the proof of the proposed 

theorem.  
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Theorem: For a SFLM with the dynamic model given in Eqs. (4-7a) and (4-7b), applying 

the torque fττεττ ++= 2
2

0 , where 0τ , 2τ , and fτ are given in Eqs. (4-19), (4-21) and 

(4-33) respectively, makes z, given in Eqs. (4-6b), restricted to its second order integral 

manifold. Moreover, on this manifold the output given in Eq. (4-4) tracks the desired 

trajectory dr  provided that: 

1: The gains dK and pK are positive constants, 

2: The gains czK and ozK are selected so that the matrices czzz KBA − and zozz CKA − are 

Hurwitz, 

3: The condition 2
1minmin )()( l>rSS µµ η  is satisfied, where rSS ,η and 1l are defined in 

Eqs. (4-49), (4-50) and (4-53) respectively, and )(min Qµ is the minimum eigenvalue of 

matrix Q; and  

4: The desired trajectory 4Crd ∈ , that is the desired trajectory and its derivative up to the 

fourth order are continuous and bounded.  

Proof: The schematic of the closed loop system is shown in Fig. 4-2. 

Fig. 4-2: Schematic of the closed-loop control system utilizing the concept of the integral 

manifold 

By applying the torque fττεττ ++= 2
2

0  to a SFLM and after algebraic manipulation 

and neglecting term of order higher than2ε , the error dynamic becomes:  

ηηε ηA=&                                                   (4-43)                                                
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ηrrrr BeAe +=&                                               (4-44)                                                

where 
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[ ] cz
T

dpr KwJJwKfwKKfwKB )()2/()()2/()()( 12
2

1 θλθθππ +−−−=         (4-47)                    

cz
T

czr KwJKJB θλθθ +=2)(                                       (4-48) 

Since dK  and pK  are positive constants, rA  in Eq. (4-46) in Hurwitz. Moreover, 

according to the observer-based controller design procedure )( czzz KBA − and 

)( zozz CKA −  are Hurwitz, and so isηA  in Eq. (4-46). Therefore, since rA  and ηA  are 

Hurwitz, there exist symmetric positive definite matrices ηP  and rP  that satisfy the 

following Lyapunov equations: 

ηηηηη SAPPAT −=+                                              (4-49)                                              

rrrr
T
r SAPPA −=+                                               (4-50)                                                

where ηS and rS are symmetric positive definite matrices. For the stability analysis, the 

Lyapunov candidate function is selected as:  

rr
T
r

T
L ePePV += ηεη η                                           (4-51)                                                

Taking the time derivative of LV along the trajectories of Eqs. (4-43) and (4-44) and using 

Eqs. (4-49) and (4-50), yields: 

rr
T
r

T
rr

T
r

T
L ePBeSeSV ηηη η 2+−−=&                             (4-52)

Since rB and rP are constant matrices: 

rrr
T
r

T eePB ηη 1l<                                      (4-53)                                                
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Using Eq. (4-53) and defining the symbol )(min Qµ as the minimum eigenvalues of a 

matrixQ , LV& is: 

[ ] 







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r
rL e

eV
η

η&                                       (4-54)                                              

where: 
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µ η
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l
                                      (4-55)                                                

Therefore, provided that 

2
1minmin )()( l>rSS µµ η                                         (4-56) 

the matrix Ω defined in Eq. (4-55) will be positive definite and consequently the closed-

loop control system is Lyapunov stable since 0<LV& . The fact that 4Crd ∈ , makes the 

control signals continuous and bounded, see the proof of the Lemma given in Section 4.4;  

otherwise, the tracking error will be unsatisfactory and large.

4.6. Simulation results 

The SFLM shown in Fig. 4-1 with the physical properties given in Table 4-1 was

considered. Here, L is the length of the link, EI is the link rigidity, hI  is the mass moment 

of inertia of the hub with respect to its center of mass,ρ  is the mass per unit length, and 

tipI  and tipm are the mass and the mass moment of inertia of the payload with respect to 

the payload center, respectively.  

Table 4-1. Physical properties of the SFLM used for simulation study 

)(mL ).( 2mNEI ).( 2mkgI h )/( mkgρ ).( 2mkgI tip )(kgmtip

000.1  00.45  310800.1 −× 000.2  210800.4 −× 000.4  
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The flexibility of the link was modeled with two assumed mode shapes; that is, n 

= 2 in Eq. (4-1). The desired trajectory was selected for the end-effector’s (angular) 

position r, which is shown in Fig. 4-1. This trajectory was chosen as the ninth order 

polynomial satisfying: 

0)0( =dr        4,..10/
0

==
=

idtrd
t

i
d

i                         (4-57)                                                

ffd tr θ=)(        4,..10/ == idtrd
ft

i
d

i                         (4-58)   

and it was kept constant at fdr θ= rad for ftt > . The simulation studies for the seventh 

and fifth order polynomials were also successfully conducted which their results are not 

reported here for briefness. For the seventh order polynomial, in addition to 

0)0( =dr and ffd tr θ=)( , it was assumed that the velocity, acceleration and jerk of 

desired trajectory at time zero and ft were all zero. To derive the fifth order polynomial, 

in addition to 0)0( =dr and ffd tr θ=)( , the conditions that the velocity and acceleration 

were zero at the initial and final instant of maneuver were imposed. Both the fifth and 

seventh order polynomials were kept constant at fd rr =  for ftt >  similar to the ninth 

order polynomial.  

Example one:  

For the first simulation study, the angular position of fθ =1.570 rad in Eq. (4-58) 

at the end of the maneuver time ft = 3.000 sec was selected. This desired trajectory is 

shown in Fig. 4-3.  

Fig. 4-3: Simulation, example 1, desired trajectory of the SFLM 
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The new controller proposed here for the SFLM was referred to as “integral manifold 

controller”. This controller, which was based on the integral manifold concept, added a 

corrective torque to the CTC of the rigid link counterpart of the SFLM. It should be noted 

that the controller without the corrective term was a combination of the CTC for a rigid 

link manipulator and state-feedback for suppressing the vibration [1] which was derived 

based on the singular perturbation model of the SFLM. The result of this controller was 

referred here to as the “rigid link controller”. To illustrate the superiority of the new 

controller introduced here, the results of the integral manifold controller were compared 

with the rigid link controller since both of these controllers were obtained according to 

the singular perturbation model of the SFLM.   

For the slow component of the controller, it was assumed that 000.1=dK

and 2500.0=pK in Eq. (4-19). Moreover, if )(Qµ represents the eigenvalues of the 

matrixQ , the eigenvalues of matrices czzz KBA − and zocz CKA − , which were related to 

the fast component of the controller, were set to be 

{ }iiKBA czzz 660.21000.0,000.11000.0)( ±−±−=−µ and ±−=− 2000.0{)( zocz CKAµ ,000.2 i

}320.52000.0 i±− . It is worth noting that )( czzz KBA −µ and )( zocz CKA −µ  have to be 

chosen so that the observer acts faster than the controller. That is, the real parts of 

)( zocz CKA −µ are farther from the origin than the real parts of )( zocz CKA −µ . 

The trajectory tracking errors, drrerror −= , employing the integral manifold 

controller and rigid link controller, are shown in Figs. 4-4 and 4-5, respectively. By 

comparing Fig. 4-4 with Fig. 4-5 the superiority of the new controller proposed here in 

reducing the EETT error over the rigid link controller is evident. The maximum absolute 

value of the EETT error for the integral manifold controller was 410680.2 −× rad while it 

was much larger for the rigid link controller as 4100.210 −× rad.  
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Fig. 4-4: Simulation, example 1, tracking error of r, integral manifold controller 

Fig. 4-5: Simulation, example 1, tracking error of r, rigid link controller 

Example 2:  

For the second simulation example, the final maneuver time ft  was set to 1.500

sec and the angular position was 570.1=fθ rad in Eq. (4-58). Therefore, the average 

desired maneuver speed in the second example was twice the average desired maneuver 

speed in the first example. The desired trajectory for example 2 is shown in Fig. 4-6.   

Fig. 4-6: Simulation, example 2, desired trajectory of the SFLM 
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The gains dp KK , , czK , and ocK  were the same as those selected in example 1. The 

end-effector trajectory tracking errors, drrerror −= , after utilizing the integral manifold 

controller and rigid link controller are shown in Figs. 4-7 and 4-8, respectively. 

Fig. 4-7: Simulation, example 2, tracking error of r, integral manifold controller 

Fig. 4-8: Simulation, example 2, tracking error of r, rigid link controller 

From Figs. 4-7 and 4-8, it was observed that the maximum tracking error of the integral 

manifold controller was 410000.8 −× rad which was much smaller than 4100.510 −× rad of 

the rigid link controller. This result showed the superiority of the new proposed controller 

here. Moreover, by comparing Fig. 4-4 with Fig. 4-7 and Fig. 4-5 with Fig. 4-8, it was 

seen that by increasing the speed of maneuver, the trajectory tracking error was 

increased. For the integral manifold controller, by doubling the average speed of 

maneuver, the maximum trajectory tracking error was increased from 410680.2 −× rad to 

410000.8 −× rad; for the rigid link controller this increase was from 0.0210 rad to 0.0510 

rad.  Therefore, as expected, the faster the maneuver, the higher the tracking error.   
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4.7. Experimental results 

The SFLM that was used for the experimental study consisted of a DC motor, 

encoder, strain gage, data acquisition board, universal power module and flexible link 

with a hub. The DC motor was a Micro Mo Coreless DC motor which had high 

efficiency with low motor’s inductance. The motor connection was a 4-pin DIN 

connector configured to be driven by a Quanser universal power module. The encoder 

was a US digital optical kit encoder having high resolution, 4096 counts in quadrature. 

The encoder sent a digital signal. The data acquisition board and the control software are 

provided by the Quanser Company. There was no payload at the tip of the manipulator. 

The flexible link, which was made of stainless steel, had a length of 4300.0 m, a 

thickness of 3108200.0 −× m and a width of 31074.20 −× m.  The hub mass moment of 

inertia with respect to its center of mass was approximately 310500.6 −× kg.m2. The 

flexibility of the link was modeled with one mode shape and its time varying weight 

function was measured using a strain gauge mounted at the base. The strain gauge was 

calibrated to give 0.75 (volt) (approximately) for an inch deflection of the tip. The strain 

gauge measurement range was from -5 (volt) to 5 (volt). The experimental setup is shown 

in Fig. 4-9.  

Fig. 4-9: The setup of SFLM used for experimental study 

In the experimental setup, the control command was voltage. The relation between 

the applied voltage and the torque was θτ &bavvolt −=   where constants aandb  were 

approximately 1440.0 N.m/volt and 1050.0 N.m.s/rad, respectively. For the experimental 

Universal power 
modules 

Single flexible 
link manipulator 

Data acquisition 
board 

Strain gage 
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studies, the torque θτ &bavvolt −=  was used in Eqs. (4-7a) and (4-7b). Pursuing the same 

approach as that given in the controller design section of this chapter, the control voltages 

svoltv )( and fvoltv )( , which corresponded to sτ and fτ  respectively, were obtained.  

Example 1:

For the first experiment verification, the desired trajectory was obtained using, 

000.1=ft sec, 7800.0=fθ rad in Eq. (4-58). This desired trajectory is shown in Fig. 4-

10. 

Fig. 4-10: Experiment, example 1, desired trajectory of the SFLM 

 For the controller implementation, it was assumed that ,000.2,000.4 == pd KK

{ }0230.0,9700.0)( −−=− czzz KBAµ  and }8100.0,180.1{)( −−=− zocz CKAµ   where 

)(Qµ  represents the eigenvalues of matrixQ . The trajectory tracking errors employing 

the integral manifold controller and rigid link controller are shown in Figs. 4-11 and 4-12, 

respectively.  

Fig. 4-11: Experiment, example 1, tracking error of r, integral manifold controller 
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Fig. 4-12: Experiment, example 1, tracking error of r, rigid link controller 

Although, the experimental results were not as good as the simulation results as 

far as the overall improvement of EETT error was concerned, they verified the 

effectiveness of the integral manifold controller over the rigid link controller20. For the 

former, the maximum absolute values of the tracking error was 1160.0 rad , while for the 

latter it was bigger as 1460.0 rad, respectively. Therefore, after applying integral 

manifold controller, the maximum trajectory tracking error was about 1.26 times smaller.  

The reasons that large differences between the EETT errors of the integral 

manifold and rigid link controllers were observed in the simulation section, while they 

were not observed in this experiment, might be attributed to the following : nonlinear 

friction, effects due to the movement of the strain gage cable, controller delay, modeling 

imperfection, not having proper values for the hub’s mass moment of inertia, 

approximate values of aand b in θτ &bavvolt −= , existence of backlash, the contribution 

of higher frequencies, and strain gauge error reading. Among the above sources of error, 

the movement of the cables and un-modeled nonlinear friction made major contributions. 

It is worthy to note that the integral manifold controller and rigid link controller are 

model based controllers. Therefore, the performance of the controller depends on how 

accurately the derived dynamic model represents the real physical system. Non-modeled 

dynamics, such as cable movement and nonlinear friction, or uncertainty in the physical 

system parameters, deteriorate the controller’s performance. To recover the performance 

of the controller in the presence of the parameters’ uncertainty, adaptive controllers may 

                                                
20 Note that the physical parameters in the simulation and experimental studies are different,. Therefore 
only the overall efficiency improvement can be compared with each other in the simulation and 
experimental studies and not the numerical values. 



147 

be implemented, such as the one used in [19] for flexible joint manipulators; this is the 

subject of the authors’ future studies.  

Example 2:

For the second experiment, the desired trajectory is shown in Fig. 4-13, which 

was obtained assuming 5000.0=ft sec, 7800.0=fθ rad and Eq. (4-58). The desired 

average maneuver speed in this experiment was twice of the first experiment. 

Fig. 4-13: Experiment, example2, desired trajectory of the SFLM 

The controller gains for this experiment were selected as in the first experiment. 

The trajectory tracking errors employing the integral manifold controller and the rigid 

link controller are shown in Figs. 4-14 and 4-15, respectively. Although, as in the 

previous experiment, the results of this experiment are not as good as the simulation, they 

illustrate that the tracking error of the integral manifold controller is smaller than the rigid 

link controller. In this experiment, it was observed that, because of the corrective torque, 

the maximum tracking error was reduced from 5070.0 rad to 2790.0 rad. That is, the 

trajectory tracking error of the integral manifold controller was about 1.8 times smaller 

compared with the rigid link controller.  

Comparing the results of this section with those of previous section showed that 

faster maneuver speed leads to higher trajectory tracking error, which was also observed 

in the simulation studies. In the experimental verification, by doubling the average speed 

of maneuver, the trajectory tracking error of the integral manifold controller was 

increased from 0.1160 rad to 0.2790 rad while for the rigid link controller it was 

increased from 0.1460 rad to 0.5070 rad.  



148 

Fig. 4-14: Experiment, example 2, tracking error of r, integral manifold controller 

Fig. 4-15: Experiment, example 2, tracking error of r, rigid link controller 

4.8. Conclusions 

A new controller for the end-effector trajectory tracking of a single flexible link 

manipulator (SFLM) was presented. Based on the concept of the integral manifold of the 

singularly perturbed differential equations, a corrective term was added to the computed 

torque command of the rigid link counterpart of the SFLM, which was of order 2ε

whereε was the singular perturbation parameter. This scalar value,ε , was a function of 

the fundamental natural frequency of the manipulator and a measure of the flexibility of 

the link. 

The implementation of the new controller did not require the measurement of the 

time derivative of the link’s lateral deflection. This was achieved by designing an 

observer to estimate the time derivative of the link’s lateral deflection. Practically, direct 

measurement of this time derivative is very difficult, if not impossible. Consequently, this 

feature made the introduced controller a novel and practical one. 

Several simulation and experimental studies, which were conducted on SFLMs 

proved the effectiveness and feasibility of the proposed controller. That is the end-
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effector trajectory tracking error was reduced in both the simulation and experimental 

studies. These studies were carried out for different desired maneuver speeds and it was 

observed that the faster the maneuver the higher the EETT error.   

Since the proposed method here is model-based, a small difference between the 

derived dynamic model and the experimental setup deteriorates the expected performance 

of the controller. A possible remedy to recover the performance of the controller, even in 

the presence of these differences, is to use the adaptive control technique which can be 

the subject of future research.     

4.9. Nomenclature  

e: difference between the joint rotation and desired trajectory  

T
ddr rrrre ][ && −−= : Vector composed of the states of the error dynamics 

f : Fundamental natural frequency 

eh : Integral (invariant) manifold 

h : Approximation of eh

ih : The ith element of vector h

ijh : Coefficient of jε in ih

n : Number of the assumed mode shapes 

r :  End-effector’s (angular) position 

dr : Desired trajectory 

ft : Final maneuver time 

[ ]Txxx 21,= : Vector composed of the states of the slow subsystem 

[ ]TTT zzz 21 ,= : Vector composed of the states of the fast subsystem 

ẑ: Difference between zand its approximate manifold 

z~ : Estimate of ẑ  obtained from observer 
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zA : State matrix of the fast subsystem 

zB : Input matrix of the fast subsystem 

zC : Output matrix of the fast subsystem 

H : Matrix which corresponds τ  to the generalized coordinates  

I : Identity matrix 

J : Inverse of the mass matrix 

λλθλθθ JJJ ,, : Component of matrix J

BK : Stiffness matrix 

λλK : Matrix composed of the nonzero elements of BK

1K : 2)2/( fKJ πλλλλ

2K : 2)2/( fKJ πλλθλ

DP KK , : Positive constants 

ozcz KK , : Controller and observer gains of the observer-based controller of fast subsystem 

L : Length of the single flexible link manipulator 

M : Mass matrix 

λλθλθθ MMM ,, : Components of matrix M

rPP ,η : Symmetric positive definite matrices 

ηS , rS : Symmetric positive definite matrices 

LV : Lyapunov candidate function 

[ ]LLLLW n /)(..../)(1 φφ= :  

[ ]TTX λθ= : Matrix composed of the generalized coordinates  

θ : Rotation of the hub  
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fθ : Desired hub rotation at ft

iλ : ith flexible variable, time varying weight function of iφ   

iφ : ith assumed mode shape  

ε : Singular perturbation parameter 

ξ : Link’s lateral deflection of a SFLM 

τ : Actuator torque 

jτ : Coefficient of jε in sτ

sτ : Component of τ  restricted (corresponds) to the approximate solution of the manifold, 

slow component of the controller 

fτ : Fast component of the controller 

)(min Qµ : Minimum eigenvalue of Q

4.10. Appendix 

Since the proofs for all of the equalities given in Eqs. (4-14a) to (4-14f) are 

similar, in this section, only the proofs for the following two equalities are provided.  

θλθθλλθλ JJMM 11 −− −=                                             (4-A1) 

TMMMJM θλλλθλθθθθ
11 −− +=                                       (4-A2) 

where 
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According the Eq. (4-A3), since J  is the inverse of the mass matrix ,M , it is 

concluded that: 
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IJMMM ==−1 .                                          (4-A4) 

Therefore from Eq. (4-A4): 
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Equating the elements of the first row of the Eq. (4-A5):  

11×=+ IMJMJ T
θλθλθθθθ                                        (4-A6) 

and 

nMJMJ ×=+ 10λλθλθλθθ                                      (4-A7)                                                

From Eq. (4-A7): 

λλθλθλθθλλθλθλθθ MJMJMJMJ n −=⇒=+ ×10                        (4-A8)                                                

Pre-multiplying both sides of Eq. (4-A8) with 1−
θθJ and post-multiplying it with 1−

λλM result 

in: 

θλθθλλθλ JJMM 11 −− −=                                                  (4-A9) 

and the property given in Eq. (4-A1) is proved.  

From Eq. (4-A6): 

11
11

−−
× =+⇒=+ θθθλθλθθθθθλθλθθθθ JMJJMIMJMJ TT                   (4-A10) 

Substituting Eq. (4-A9), into Eq. (4-A10), leads to: 

TMMMJM θλλλθλθθθθ
11 −− +=                                         (4-A11) 

which is the property given in Eq. (4-A2).  
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Chapter 5. End-effector trajectory tracking 

for a class of flexible link 

manipulators 
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Abstract: 

A new controller for the end-effector trajectory tracking (EETT) of a class of 

planar flexible link manipulators which consists of a chain of rigid links with the flexible 

end-link (CRFE) is introduced. The dynamic model of the CRFE is expressed in the 

standard singularly perturbed form that is decomposed into slow and fast subsystems. 

The states of the slow subsystem are the rotations of the joints and their time derivative, 

while the states of the fast subsystem are flexible variables which model the lateral 

deflection of the end-link and their time derivative. 

 For the slow subsystem, a corrective torque is added to the computed torque 

command (CTC) of the rigid link counterpart of the CRFE to reduce the EETT error. The 

corrective torque is derived based on the concept of the integral manifold of the 

singularly perturbed differential equations. It is shown that this corrective term is of order 

2ε  where 1/(2 )fε π=  and f  is the smallest non-zero natural frequency of the CRFE in 

the specified workspace of the manipulator. 

To stabilize the fast subsystem, an observer-based controller is designed 

according to the gain-scheduling technique.  Due to the application of the observer-based 

controller there is no need for the measurement of the time derivative of the flexible 

link’s lateral deflection, which is difficult in practice, if not impossible.  

 To facilitate the derivation and implementation of the controller introduced here, 

several properties of the matrices in the dynamic model of the CRFE are described and 

used. The stability of this new controller is proved using the Lyapunov criterion. The 

effectiveness and feasibility of the new controller are shown by simulation and 

experimental studies.  

The main contribution of this work is in introducing a new EETT controller, 

derived based on the singular perturbation model, which (1) - adds only one corrective 

term to the CTC, (2) - does not require the time derivative of the flexible link’s lateral 

deflection for implementation, (3)- the calculation effort is minimized due to the use of 

several properties of the matrices in the dynamic model of the CREF , and (4) - is 

experimentally verified on the a nonlinear system.   
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Key words: Flexible multi-link manipulator, end-effector trajectory tracking, integral 

manifold concept, singularly perturbed differential equation 

5.1. Introduction 

Flexible link manipulators (FLM) are underactuated systems [1]; that is, they have 

more degrees-of-freedom than the number of actuators. Moreover, considering the end-

effector displacement as the output, FLM are nonminimum phase systems [2], which 

means their end-effector inverse dynamic calculation results in a noncausal input 

torque21. These limitations of the FLM have made their end-effector trajectory tracking 

(EETT) a challenging subject which has been studied for years. Although, there are many 

controllers for the EETT of FLM, the controllers developed based on singularly perturbed 

systems [3] are promising candidates for the EETT of the FLM, which is the main motive 

of the new controller reported here. This is due to the fact that the dynamic response of a 

FLM is similar to that of a singularly perturbed system which has slow and fast 

subsystems. For the FLM, the states of the slow subsystem are the rotations of the joints 

and their time derivative, while the states of the fast subsystems are the flexible variables, 

which model the lateral deflections of the links, and their time derivative [4]; 

)1(, nii K=λ in Eq. (5-1) are referred to here as flexible variables.  In this chapter, after 

expressing the dynamic model of the FLM in the singularly perturbed form [4], a new 

EETT controller based on the concept of the integral manifold of the singularly perturbed 

differential equations [5, 6,7] is proposed. Since the integral manifold concept is utilized, 

the effect of flexible motion is also included in the EETT. Thus, this controller results in 

an essential improvement in reducing EETT error compared to controllers derived based 

on the singular perturbation approach which neglect the influence of the flexible motion. 

The controller introduced here is applicable to a class of planar FLM which consists of a 

chain of rigid links with a flexible end-link (CRFE) [12]; the CRFE is defined in Section 

5.2. It is worth noting that this controller is an extension of the controller proposed by the 

authors in [7] which is for the EETT of a linear single flexible link manipulator.  

                                                
21 A noncausal signal at any time depends on the values of the states before and after that time. 
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To reduce the EETT error, the new controller requires a corrective torque in 

addition to the computed torque command (CTC) of the rigid link counterpart of the 

CRFE, see [8] for the CTC. It was shown in this chapter that this corrective torque is of 

order 2ε  where 1/(2 )fε π=  and f  is the smallest non-zero natural frequency of the 

CRFE in the specified workspace of the manipulator. To prove that the new controller 

adds a corrective torque to a CTC and also to derive its expression, several properties of 

the matrices associated with the dynamic modeling of a CRFE are introduced and used. 

These properties also facilitate the implementation of the new proposed controller.  

The application of the new controller does not require the measurement of the 

time derivative of the flexible variables (time derivative of the flexible link’s lateral 

deflection), which are cumbersome if not impossible in practice.  This is due to the use of 

an observer-based controller to stabilize the fast subsystem, which is designed based on 

the gain-scheduling procedure [9]. The operating points for the gain scheduling are the 

joints’ rotations, which are easy to measure. This ease in measurement is achieved  due to 

the re-arrangement of the state and input matrices in the fast subsystem, detailed in 

Section 5.4. This rearrangement reduces the computational effort of the gain scheduling 

procedure considerably.   

The main contribution of this paper is in utilizing the concept of the integral 

manifold of the singularly perturbed differential equations to design a controller for the 

EETT of a FLM which has nonlinear dynamics. Although the concept of the integral 

manifold is well-documented, to the best of authors’ knowledge, there are very few 

reports of it being used for the EETT of nonlinear models of FLM [11]. Moreover, 

compared to the few available EETT controllers derived based on this concept, the 

novelties of the controller presented here are: 

-  It is computationally efficient since (1)- it only requires one corrective torque in 

addition to the CTC; (2)- the derivation of the control command is simplified by the 

use of properties of the matrices in the dynamic model; (3)- the operating point for 

the gain scheduling method, which is used for the calculation of the stabilizing 

controller of the fast subsystem, are the least possible one. 
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- It is feasible and practical since (1)- it is experimentally verified on a nonlinear 

model of a CRFE (2)- its implementation does not require measuring the time 

derivative of the flexible link’s lateral deflection; thus, it is practical.  

The rest of the present chapter is organized as follows. In Section 5.2, the CRFE 

is introduced and its dynamic model, including the properties of the associated matrices, 

as well as the control output variable, is given. The singular perturbed model of the 

CRFE and the controller design with its stability proof using the Lyapunov criterion are 

explained in Sections 5.3 and 5.4, respectively. The simulation study and experimental 

verification are presented in Sections 5.5 and 5.6, respectively, and the conclusions drawn 

from the research are given in Section 5.7.  

5.2. A class of FLM with a chain of rigid links and the flexible end-link 

A class of FLM consisting of a chain of rigid links with the flexible end-link 

(CRFE) will now be considered. A planar FLM falls into the category of CRFE if the 

following conditions are met: 

1: All the links except the last one are rigid. Moreover, the links are serially connected to 

each other through the revolute joints. 

2: The deflection of the flexible link is small; thus quadratic terms of2iλ ),,1( ni K=  may 

be neglected in the kinetic energy expression; ),,1( nii K=λ  is defined in Eq. (5-1).  

However, the terms 2
iλ&  and ji λλ & )1,( nji K= are considered in the kinetic energy 

derivation.  

3: The end-link has a constant density and cross section. Furthermore, the flexible end-

link complies with the Euler- Bernoulli beam theory.  

4: All the revolute joints are active, which means there is an actuator for each revolute 

joint. 

As an example, a schematic of a CRFE with two links is shown in Fig. 5-1 where 

the first link of length L1 is rigid while the second link with the unstretched length L2 is 

flexible.  
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Fig. 5-1: Schematic of a CRFE with two links 

5.2.1. Dynamic model of the CRFE 

In deriving the dynamic model of the CRFE, the assumed mode method (AMM) 

[13,14] approximation is adopted to express the lateral deflection of the flexible link. 

Based on the AMM this deflection, ),( tγξ  shown in Fig. 5-2, is: 

∑
=

=
n

i
ii tt

1

)()(),( λγφγξ                                              (5-1) 

where )(γφi  is the ith spatial assumed mode shape out of n mode shapes, and )(tiλ is its 

time varying weight function, which is also referred to as a flexible variable. The 

generalized coordinates of the CRFE, adopting AMM to model the flexibility, will be 

finite and are: 

[ ]na
Tq λλλθθθ KK 2121=                             (5-2) 

where )1( aii K=θ is the relative rotation of the ith revolute joint with respect to the (i- 

1)th joint, a is the number of links, and )1( nii K=λ  is the ith flexible variable. Since the 

generalized coordinates of the CRFE are finite, based on the Hamiltonian principle, each 

generalized coordinate has to satisfy the following Lagrange equation: 
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where, CRFET  is the kinetic energy of the CRFE,CRFEU is the combination of the potential 

energy of the CRFE due to the gravity and its strain energy due to the link’s flexibility, 

iq is the ith element of the vector q in Eq. (5-2), and iQ  is the generalized force 

corresponding toiq . 

Fig. 5-2: A general CRFE with a link 

Using Eq. (5-3), the dynamic equation of a CRFE is:

τBqGKqqCqqCqqM D =++++ )()),(()( &&&&                           (5-4) 

where )(qM is the mass matrix, ),( qqC & is the matrix representing the Coriolis and 

centrifugal forces, DC  represents the joints’ viscous damping22, K is the stiffness matrix, 

)(qG is the gravity matrix, and B is the matrix which relates the vector of the input 

torques, [ ]
aactuatoractuatoractuator

T ττττ K
21

= , to their corresponding generalized 

coordinates.  

                                                
22  The internal material damping of the flexible link is neglected because of its small values [16]. It is to be 
noted that existence of the inherent damping facilitates the stability of the proposed controller here as 
discussed in [17, p. 316] for the flexible joint manipulator.  Thus, the stability of the controller developed 
by neglecting the material damping, guarantee its successful implementation even in the presence of the 
link’s damping.   
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The matrices in the dynamic model given in Eq. (5-4) have several properties that 

will be used in the next section for the controller design.  To explain these properties, Eq. 

(5-4) is re-written as:  
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where  

[ ]TTT qqq λθ=                  (5-6a)                                        [ ]a
Tq θθθθ K21=             (5-6b)                                            

[ ]n
Tq λλλλ K21=          (5-6c)                                            [ ] )(),( qGqqqCFF TTT += &&λθ       (5-6d)                           
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θθ)( DC is a diagonal matrix composed of the coefficients of the viscous damping of the 

actuators, and ),,1( aii K=θ  and ),,1( nii K=λ  are defined in Eq. (5-2). The reasons for 

the assumptions that the mass matrix, M, is a function of onlyθq  and λF is a function of 

only θq and θq& , as seen from Eq. (5-5), are explained in Section 5.2.2.  

5.2.2. Properties of the matrices in the dynamic model of the CRFE 

Property 1- The stiffness matrix, λλK given in Eq. (5-5), is constant, symmetric and 

positive definite.  

Proof: Since, in deriving the strain energy of the flexible link, the geometric nonlinear 

terms for a beam in bending [15, p. 388] and axial deformation are neglected, λλK will be 

a constant matrix. MoreoverλλK is symmetric and positive definite as proved in [18].  

Property 2- Vector λF  in Eq. (5-5), is independent of λq and λq& , thus it can be written as 

),( θθλ qqF & .  
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Proof: Matrix ),( qqC & and )(qG  in Eq. (5-4) can be partitioned as:  
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Based on Eq. (5-7) and considering Eqs. (5-6a) and (5-6d), λF is: 

λλλλθλθλ GqCqCF ++= &&                                          (5-8) 

Since λθC is independent of λq and λq& , nnC ×= 0λλ  (properties 8 and 9 in [12]) and λG  is 

independent of λq  (property 11 in [12]), λF  in Eq. (5-8) is independent of λq and λq& .

Property 3- If the inverse of the mass matrix in Eq. (5-5) is defined as:  
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then the following equalities between the components of M and J exist:

θλθθλλθλ JJMM 11 −− −=          (5-10a) TT JJMM θλλλθθθλ
11 −− −=           (5-10b)

TMMMJM θλλλθλθθθθ
11 −− +=       (5-10c) TJJJJM θλλλθλθθθθ

11 −− −=        (5-10d)

θλθθθλλλλλ JJJMJ T 11 −− +=         (5-10e) θλθθθλλλλλ MMMMJ T 11 −− −=       (5-10f)

Proof: These properties are found after equating the corresponding terms from both sides 

of the equality IMJ = , where I is the identity matrix. Details can be found in Section 

4.10.  

Property 4: )(qM , the mass matrix in Eq. (5-4), is independent of λq and it can be thus 

written as a function of onlyθq . 

Proof: This is due to the assumption 2 in Section 5.2; see properties 5, 6, and 7 in [12]. 

Moreover, this can also be concluded from matrices in Appendix 2.I and noting that 

3)( LM  and 4)( LM  are negligible.  

Property 5: Matrix J , which is the inverse of the mass matrix )( θqM , is independent 

of λq .  Thus it can be written as )( θqJ
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Proof: According to property 4, )( θqM  is independent ofλq , and therefore its inverse J

is also independent ofλq .  

Property 6- The derivative 
0

/),(
==

∂∂
λλ

λλθθ qq
qqqF

&
 is a function of θq  only.  

From Eq. (5-7) and considering Eqs. (5-6a) and (5-6d), θF is: 

θλθλθθθθ GqCqCF ++= &&                                            (5-11)  

The element of the matrix ),( qqC & given in Eq. (5-7) can be obtained from the element of 

the mass matrix using the Christoffel symbol as follows: 
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where s is number of the components of  vector q , jkic ,  is the   Christoffel  symbol and 

),( jiM is the ith row and jth column component of the mass matrix. Due to the fact that 

the mass matrix is independent ofλq , property 4, and by using the Christoffel symbol in 

Eq. (5-12), the matrices θθC and θλC in Eq. (5-11) do not depend onλq . Thus: 
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Moreover, θG is a linear function in terms of λq with the coefficients that are functions of 

θq  (Appendix III in [14] or Appendix 2.I). Thus 
0

/),(
==

∂∂
λλ

λλθθ qq
qqqF

&
 will only be a 

function of θq . 

5.2.3. The control variable of the CRFE 

To consider the link flexibility of a CRFE in the EETT, the modified joint rotation 

for the ath link, aθ~  shown in Fig. 5-3, is:  
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where 

[ ])()()(
1

21 anaa
a

LLL
L

w φφφ K=                                 (5-15) 

and aL is the unstretched length of the end-link.  

Fig. 5-3: The schematic of modified joint rotation,aθ~ , of the end-link 

Using the modified joint rotation for the end-link, the control variable, r, for the 

CRFE is: 

[ ]aa
Tr θθθθ ~

121 −= K                                         (5-16) 

where )11( −= aii Kθ are the joint rotations of the rigid links. Eq. (5-16) can also be re- 

written as: 

λθ Wqqr +=                                                  (5-17) 

where [ ]T
an

T wW )1(0 −×= .  

The output in Eq. (5-17) can be used for the precise EETT of the CRFE. As an 

example, the EETT of the manipulator shown in Fig. 5-1 can be converted to the 

trajectory tracking of its corresponding control variable defined in Eq. (5-17).  
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5.3. Singularly perturbed model of the CRFE and the integral manifold 

concept 

Since the dynamic response of the CRFE is composed of slow joints’ rotations 

and relatively fast link’s vibration, this dynamic model can be represented into the 

singularly perturbed form. To express the dynamic model of a CRFE, in the singularly 

perturbed form, the following new states are defined [4]:   

θθ qxqx &== 21 ,                                              (5-18a) 

εε
λλ q

z
q

z
&

== 221 ,                                             (5-18b) 

where the state vector of the slow subsystem[ ]TTT xxx 21=  are composed of the joints’ 

rotations, 1x , and their time derivative, 2x ,  while the states vector of the fast subsystem 

[ ]TTT zzz 21=  are composed of flexible variables, 1z , and their time derivative2z . 

Moreover, ε  is the singular perturbation parameter which is [11]: 

))((min
1

λλθλλµε KqJ=−                                           (5-19) 

where )(min λλλλµ KJ is the minimum eigenvalue of the matrix λλλλ KJ . Since the matrix 

)( θλλ qJ depends onθq , for the calculation of ε  in Eq. (5-19) the minimum eigenvalue of  

λλλλ KJ , among all specified values ofθq , should be selected. Physically, ε  corresponds 

to the inverse of the smallest natural frequency of the CRFE over the specified range 

of θq . This is due to the fact that the eigenvalues of λλλλ KJ are the square of the natural 

frequencies of the CRFE. Using the new states defined in Eqs. (5-18a) and (5-18b), the 

dynamic model of a CRFE, given in Eq. (5-5), becomes: 
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and, the control variable defined in Eq. (5-17) is:

1
2

1 Wzxr ε+=                                                 (5-21) 

For Eqs. (5-20a) and (5-20b) with a given actuator torque,τ , the manifold defined 

by: 
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is called the integral (invariant) manifold if 23 :  

∗∗∗∗∗ >∀=⇒= ttttxtxhtzttxtxhtz eeeeee )),(),,(),,((),()),(),,(),,((),( 2121 ετεεεετεεε
           (5-23)  

That is if z, which represents link’s lateral deflection and its derivatives, reach to eh at ∗t

it stays on eh thereafter. Consequently, when the fast variables,[ ]TTT zzz 21= , are 

restricted to the integral manifold defined in Eq. (5-22), the (r+n) second order governing 

equations in Eq. (5-5) are reduced to n second order differential equations which is called 

the corrected slow subsystem. As a result, the original underactuated CRFE system with 

(r+n) degrees-of-freedom and n actuators, is converted to an approximate fully actuated 

control system, which has n degrees-of-freedom.  

According to the definition of the integral manifold, eh has to satisfy the 

following so called integral manifold conditions [3,5,6,7,10,11] which obtains by 

substituting eh  in Eq. (5-20b):  
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The possibility of finding an exact algebraic solution for the integral manifold is 

hindered by the fact that Eq. (5-24) is a nonholonomic constraint. However, an 

approximation of the integral manifold can be obtained by the power series expansions of 

eh1 , eh2 and τ  around 0=ε . For this purpose, eh1 , eh2 and τ  are expressed as: 
                                                
23 The superscript “e” emphasizes that eh is the exact solution of the integral manifold. Moreover, when z

is restricted to its exact integral manifoldeh , the corresponding x from Eq. (20a) is calledex .  
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where 1h  and 2h are the approximations of eh1  and eh2 , respectively, and sτ is the torque 

corresponding to the approximate solution of the integral manifold. By substituting Eqs. 

(5-25a) to (5-25c) into Eq. (5-24) and equating the terms having the same power ofε , the 

expressions of ),,0,12,1( pjihij K==  are found iteratively in terms of ),,1,0( pjj K=τ . 

That is, the flexible link’s lateral deflection and its derivatives can be found in terms of 

the input torque and joints’ rotations and their derivatives.  

For these calculations, p = 2 is selected in the rest of this chapter. The manifold 

obtained by assuming p = 2 in Eqs. (5-25a) to (5-25c), is called the second order integral 

manifold. To obtain the second order integral manifold, terms of order pε , where p > 2, 

are considered negligible and, consequently are omitted from the expressions. The 

reasons for the selection of p = 2 and the iterative calculation ofijh  and jτ  will now be 

discussed.   

According to Eq. (5-18b), 1
2zq ελ = . Therefore, for p < 2 the flexible variableλq

will not be observed in the control variable r [11]. Moreover, for p > 2, the control effort 

will increase and the higher vibration modes will be excited [10]. Therefore, p = 2 is 

optimal and the expressions of 1h , 2h and sτ are: 

12
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11101 hhhh εε ++=                                        (5-26a) 

22
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21202 hhhh εε ++=                                       (5-26b) 
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10 τεετττ ++=s                                          (5-26c) 

Substituting Eqs. (5-26a) to (5-26c), in Eq. (5-24) leads to: 
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where 1x  and 2x are the approximations of ex1  and ex2 respectively. Due to the properties 

of the dynamic model of CRFE, explained in Section 5.2.2, only ),,,( 21
2

21 hhxxF εεθ  in 

Eq. (5-27) is a function ofε . To iteratively find ijh in terms of jτ , and based on the 

assumption that ε is small, the series expansion of θF around 0=ε  is used. This series 

expansion around 0=ε is: 
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where 
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= εθθ FF  ; the expressions of 1)( θF and 2)( θF are 

available in Appendix 5.I. Replacing θF  in Eq. (5-27) by its series expansion given in Eq. 

(5-28), and considering only the first three terms of the series expansion in Eq. (5-28) 

yields:   
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By equating the terms in Eq. (5-29) which have the same power ofε , the expression ofijh

in terms of jτ are: 
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1021 hh &=                                                    (5-30d) 
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1122 hh &=                                                    (5-30f) 

5.4. Controller design 

Assuming that 1z  is restricted to its integral manifold1h , given in Eq. (5-26a), and 

by utilizing the expressions of 1h andτ provided in Eqs. (5-26a) and (5-26c) respectively, 

Eq. (5-20a) becomes:
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which is the second order corrected slow subsystem. Moreover, the control variable, r

defined in Eq. (5-21), after neglecting terms of order pε  where 2>p  is: 

10
2

1 Whxr ε+=                                                (5-32) 

Substituting θF  with its series expansion, given in Eq. (5-28), changes Eq. (5-31) to: 
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After grouping the terms in Eq. (5-33) that have the same order of ε , the second order 

corrected slow subsystem is: 
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Replacing )2,1,02,1( == iihij  in Eq. (5-34) with their equivalences provided in Eqs. (5-

30a) to (5-30f) leads to the fact that the second order corrected slow subsystem has 

2,1,0, =jjτ  as the control inputs. These control inputs are designed in Lemma 2 so that 

the output in Eq. (5-32) tracks a desired trajectory. Before obtaining jτ , it is shown in 

Lemma 1 that, by the utilization of the mass matrix property, which are given in property 

3 at Section 5.2.2, Eq. (5-34) will be shorter after replacing ijh  with their equivalences 

provided in Eqs. (5-30a) to (5-30f), without omitting any details. Therefore, the 

complicated mathematical equation will be simplified and the selection of the control 

inputs will be much easier.  

Lemma 1: By the use of the expressions given in Eqs. (5-30a) to (5-30f) for 

)2,1,02,1( == jihij and also the properties of the mass matrix given in Eqs. (5-10b) and 

(5-10d), Eq. (5-34) changes to:
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Proof: See Appendix 5.II 

Lemma 2:  For the second order corrected slow subsystem given in Eq. (5-35) selecting 

20120 )()()]()([ xCFrxKrxKrM DdPdDd θθθθθτ ++−−−−= &&&                      (5-36) 

01 =τ                                                              (5-37) 

VMhMF θθθλθτ ++= 122 )(
2

1 &&                                          (5-38) 

where 

)( 101010 hWKhWKhWV PD ++−= &&&                                (5-39) 

makes the output r given in Eq. (5-32) asymptotically track the desired trajectory 

dr provided that: 

1- The gain matrices PK and DK are positive definite; 
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2- The desired trajectory is 4Crd ∈ ; that is, its time derivatives up to the fourth order 

are continuous and bounded.   

Proof:  

From Appendix 5.I and on the second order integral manifold, defined in Section 

5.3, 20
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. Also, from Eqs. (5-26b) and (5-30b), it is 

concluded that 020 =h  and therefore 0)( 1 =θF . Replacing 0τ , 1τ and 2τ  from Eqs. (5-36) to 

(5-38) into Eq. (5-35) and knowing that 0)( 1 =θF  yields: 
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Moreover, by taking time derivatives of Eq. (5-32) and employing the fact that 21 xx =& , 

then: 

10
2

210
2

1 hWxhWxr &&&& εε +=+=                                       (5-41) 

and 

10
2

2 hWxr &&&&& ε+=                                                   (5-42) 

Replacing 2x& from Eq. (5-40) into Eq. (5-42) and using the definition of V given in Eq. 

(5-39) results in: 

)()( 10
2

110
2

2 dPdDd rWhxKrhWxKrr −+−−+−= εε &&&&&&                        (5-43) 

Finally using Eqs. (5-32) and (5-41) for r and r& , respectively, Eq. (5-43) becomes:

0)()()( =−+−+− dPdDd rrKrrKrr &&&&&&                                   (5-44) 

Since the matrices DK and PK are positive definite, from Eq. (5-44) r asymptotically 

tracks dr .  From Eqs. (5-30a), (5-36) and (5-38), it is clear that calculation of 2τ  requires 

the fourth derivative ofdr . Therefore, the condition  4Crd ∈  makes the control torque 

bounded and continuous (QDE).  
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As given in Eq. (5-36),0τ  is the CTC [8] for the rigid link counterpart of CRFE 

[4]. Therefore, based on Lemma 2, only the corrective torque 2
2τε  has to be added to the 

CTC of the rigid link counterpart of the CRFE for the EETT. 

Remark 1: From Eq. (5-39), the implementation of the introduced controller requires the 

calculation of 10h , 10h& and 10h&& . By substituting 0τ from Eq. (5-36) into Eq. (5-30a) and 

using the property given in Eq. (5-10b), 10h  is: 

))]()([()( 12
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T +−−−−−= − &&&             (5-45) 

and its time derivative is: 
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Since 10h is the integral manifold of the CRFE when 0=ε , on this so called rigid 

manifold [6p. 147, 20p. 297] )( 2 drx &&& − is: 

)()()( 122 dPdDd rxKrxKrx −−−−=− &&&&                          (5-47) 

Therefore, by substituting )( 2 drx &&& −  from Eq. (5-47) in Eq. (5-46), 10h&  can be calculated 

in terms of the available signals 1x and 2x  where θqx =1 and θqx &=`2 . The calculation of 

10h&& is similar to 10h& and is not discussed in this article for brevity.  

The restriction of the fast variables [ ]TTT zzz 21=  to their manifold is the key 

assumption in deriving the control torques given in Eqs. (5-36) to (5-38). This 

assumption means that the link’s lateral deflection and its derivative can be obtained in 

terms of the joints’ rotations and their time derivative and input torque; and consequently, 

the underactuated system, CRFE, changes to an approximately fully actuated one. To 

ensure that this assumption is satisfied, the fast component of the controller,
`fτ , is chosen 

in the following way. The deviation [ ]TTT zzz 21 ˆˆˆ =  of the state of the fast subsystem from 

their integral manifolds is: 

`12
2

111011 )(ˆ hhhzz εε ++−=                                   (5-48a) 
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`22
2

212022 )(ˆ hhhzz εε ++−=                                   (5-48b) 

Taking time derivative from Eqs. (5-48a) and (5-48b), using Eq. (5-20b) for ̀z& , replacing 

`τ with 2
2

0 τεττ ++f where 0τ  and 2τ are defined in Eqs. (5-36) and (5-38) respectively, 

utilizing )2,1,02,1( == jihij defined in Eqs. (5-30a) to (5-30f), and neglecting terms of 

order pε  where p > 2 results in: 

111 ˆˆ zfzz NBzAz ++= τε &                                               (5-49) 
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and I is the identity matrix. Detailed investigation shows that 0/
0

22 =∂∂
== λλ

λθ qq
qF

&
&  for the 

CRFE and consequently 01 =zN . Thus, Eq. (5-49) will represent a linear dynamic 

equation for ẑ  with time varying coefficients 1zA and 1zB . To stabilizeẑ with the 

dynamics given in Eq. (5-49), the full-state feedback controller zKczf ˆ−=τ can be used 

provided that czzz KBA 11 − is a Hurwitz matrix. Since the matrices 1zA and 1zB are functions 

of the slow variables1x and 2x , the gain scheduling procedure [9] has been employed for 

the calculation of czK . Based on the gain scheduling procedure, in the range of variation 

of 1x and 2x several operating points like ( )ii xx 21,=υ  are selected, where i is varied to 

cover all the possible values of1x and 2x .  At each operating point ( )ii xx 21,=υ , the 

controller gain 
iczK υ)(  is calculated so that

iczzz KBA υ)(11 −  is a Hurwitz matrix; between 

operating points the controller gain is linearly interpolated.  The higher the number of the 

elements of iυ , the more complicated will be the linear interpolation in the gain 
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scheduling procedure and the higher the computational cost. To decrease the number of 

elements of iυ  and ,thus, to ease the linear interpolation, Eq. (5-49) is re-written as: 

222 ˆˆ zfzz NBzAz ++= τε &                                      (5-51) 

where 
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Considering properties 1, 5 and 6 in Section 5.2.2, 2zA and 2zB in Eq. (5-51) are functions 

of 1x  (compare it with 1zA and 1zB in Eq. (5-49) which were functions of1x  and 2x ). Thus, 

the operating points for Eq. (5-51) in the gain scheduling procedure will be ( )ii x1=ϑ

which have fewer elements than ( )ii xx 21,=υ  of Eq. (5-49). It is to be noted that for a 

bounded 1x and 2x , since zNz ˆ12 l< , where 2zN  is the Euclidean norm of 2zN  in Eq. 

(5-51) and 1l is a constant scalar, it is possible to select the gain 
iczK υ)(  so that the full-

state feedback zK
iczf ˆ)( υτ −=  stabilizes Eq. (5-51) at ( )ii x1=ϑ  (see, page 161 in [21] and 

the stability proof in Appendix 5.III).  

Applying the torque zKczf ˆ−=τ  to stabilize Eq. (5-51), requires the calculations 

of  1̂z  and 2ẑ , and thus measurements of 1z  and 2z . From Eq. (5-18b) to measure 1z

and 2z , the variables λq and λq& have to be available. Although λq  can be directly 

measured, e.g. with strain gauge, the direct measurement of λq&  is difficult if not 

impossible. To overcome this problem, an observer-based controller for Eq. (5-51) 

assuming 1̂z  as the output, which is available by measuringλq , is proposed. That, is the 

output for Eq. (5-51) is assumed to be: 

zCy z ˆ=              [ ]nnnnz IC ××= 0                                  (5-53)                  
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and fτ  is selected as: 

zKczf
~−=τ                                                          (5-54) 

where z~ , the estimate of ẑ , is calculated from: 

yKzCKKBAz ozozczzz +−−= ~)(~
22

&ε                                    (5-55) 

and ozK is chosen so that zozz CKA −2 is a Hurwitz matrix.  

Remark 2: To calculate 1ẑ  for the implementation of observer-based controller, 10h , 

11h and 12h are required (see Eq. (5-48a) and note the1z is already measured ). Parameter 

10h  is given in Eq. (5-45). From Eq. (5-30c) since 01 =τ , 0)( 1 =θF , and 020 =h , then 

011 =h . Moreover: 

)()( 10
1

min12 hMVMKKJh T &&
λλθλλλλλλλµ +−= −                             (5-56) 

where V is given in Eq. (5-39). The expression, given in Eq. (5-56) for 12h  , can be 

obtained by replacing 2τ  from Eq. (5-38) and 21h  from Eq. (5-30d) into Eq. (5-30e) and 

using the properties of the mass matrix given in Eqs. (5-10a) and (5-10f).  

Theorem: For a CRFE with the dynamic model given in Eqs. (5-20a) and (5-20b), 

applying the torque fττετ ++ 2
2

0  where 0τ , 2τ and fτ  are defined in Eqs. (5-36), (5-38) 

and (5-54) respectively, makes the fast variables[ ]TTT zzz 11= , defined in Eq. (5-18b), 

restricted to its second order integral manifold defined in Eqs. (5-26a) to (5-26b), and on 

this manifold the output r, given in Eq. (5-17), track the desired trajectory dr  provided 

that: 

1- The gain matrices PK and DK are selected to be positive definite; 

2- The gain matrices czK  and ozK  are selected so that czzz KBA 22 −  and zozz CKA −2  are 

Hurwitz matrices, where 2zA , 2zB and zC  are given in Eqs. (5-52a) and (5-53) 

respectively; 
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3- The condition 2
2minmin )()( l>rSS µµ η  is satisfied, where rSS ,η and 2l are defined in 

Eqs. (5-A31), (5-A32) and (5-A34) in Appendix 5.III, and )(min Qµ  is the minimum 

eigenvalue of the matrix Q ; and 

4- The desired trajectory and its time derivatives up to the fourth order are continuous 

and bounded, 4Crd ∈ .   

Proof: The proof of this theorem, which is based on the Lyapunov criterion and is similar 

to those in [7,11], is given in Appendix 5.III. 

5.5. Simulation results 

In this section the results of simulation study for a manipulator called rigid

shoulder-link flexible elbow-link manipulator, with the schematic shown in Fig. 5-1 are 

presented. The first and second joints of this manipulator were called shoulder and elbow 

joints, respectively. Moreover, the actuators located on the shoulder and elbow joints 

were referred to as shoulder and elbow actuators, respectively. The physical parameters 

of the rigid shoulder-link flexible elbow-link manipulator used for the simulation studies 

are given in Table 1. The flexibility of the second link was modeled using two mode 

shapes, which were adopted from [14]. Moreover, it was assumed that the manipulator 

was operated in the horizontal plane and, consequently, there was no force of gravity 

involved. The   desired   trajectories   were    selected   for   the   elements   of   the    

vector [ ] [ ]2121

~θθ== rrrT  where 1θ  was the rotation of the first link (rigid shoulder-

link), and 2

~θ which was the modified joint rotation for the flexible elbow-link, defined in 

Eq. (5-14). The desired trajectories1dr  and 2dr  were selected to be the ninth order 

polynomials and satisfying conditions: 

0)0( =djr        2,14,,10/
0

===
=

jidtrd
t

i
dj

i
K                        (5-57)                                                

fjfjdj tr θ=)(        2,14,,10/ === jidtrd
fjt

i
dj

i
K                        (5-58)   

These trajectories were kept constant at fjdjr θ= (rad) for fjtt > , where fjθ were the desired 

final positions ofdjr  at times )2,1( =jt fj , respectively.  The simulation studies for the 
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seventh and fifth order polynomials were also successfully conducted which their results 

are not reported here for briefness. For the seventh order polynomial, in addition to 

0)0( =dr and ffd tr θ=)( , it was assumed that the velocity, acceleration and jerk of 

desired trajectory at time zero and ft were all zero. To derive the fifth order polynomial, 

in addition to 0)0( =dr and ffd tr θ=)( , the conditions that the velocity and acceleration 

were zero at the initial and final instant of maneuver were imposed. Both the fifth and 

seventh order polynomials were kept constant at fd rr =  for ftt >  similar to the ninth 

order polynomial.  

Table 1: Physical parameters of the rigid shoulder-link flexible elbow-link manipulator 

Physical parameters values

1L  (Length of the rigid shoulder-link) 0.250 (m) 

1m (Mass of the rigid shoulder-link) 0.585 (kg) 

1I (Mass moment of inertia of the rigid shoulder-link) 3.04×10-3 (kg.m2) 

1hI ( Mass moment of inertia of the shoulder actuator) 2.00×10-3 (kg.m2) 

2L  (Length of the flexible elbow-link) 1.00 (m) 

2ρ (Mass per unit length of the flexible elbow-link) 0.468 (kg/m) 

EI (Rigidity of the flexible elbow-link) 4.00 (N.m2) 

2hm (Mass of the elbow actuator) 0.250(kg) 

2hI  (Mass moment of inertia of the elbow actuator) 2.00×10-3 (kg.m2) 

tipm (End-effector mass) 0.700 (kg) 

tipI (End-effector mass moment of inertia) zero (kg.m2) 
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For the simulation study, reported here, the desired trajectories 1dr  and 2dr  were obtained 

by selecting )0.45)((785.021
o==−= radff θθ and )(00.321 stt ff ==  in Eqs. (5-57) and 

(5-58) and; these trajectories are shown in Fig. 5-4.  

Fig. 5-4:  Simulation, example 1, Desired trajectories 1dr  and 2dr

To implement the controller, gains IKP 360.0= and IKD 20.1=  in 0τ , 2τ andV

were selected, where I is the identity matrix and the expressions of0τ , 2τ andV were 

given in Eqs. (5-36), (5-38) and (5-39), respectively. For the design of the observer-based 

controller, the gain scheduling procedure, explained in Section 5.4, was employed. The 

matrices 2zA  and 2zB  which were used in design of the controller and observer gains, 

czK and ozK , were functions of2θ . Thus, the operating points were ii )( 2θϑ = . Since the 

values of 22

~
ddr θ=  varied from zero to o0.45− ))(785.0( rad− , it was assumed that the 

possible range of the variation of 2θ  was from o0.12  to o0.57− . That is,  

22222 )max()min( dddd rrrr δθδ +<<− in which o0.122 =drδ . Therefore, the selected range of 

variation of 2θ  was o0.12  wider from both sides compared to the range of the variation 

of 2dr . As a result, when in the simulation the value of 2θ  passed the limits of2dr , the 

gains czK and ozK  could still be calculated. This range of2θ , from o0.12  to o0.57− , was 

divided into 23 equal segments and the operating points were selected 

as )1(312)( 2 −−== iii θϑ , )24,,1( K=i . Then, the gains czK  and ozK  were selected so 

that, { }jjKBA czzz 0.14.0,0.25.0)( 22 ±−±−=−µ and 8.0,0.40.1{)( 2 −±−=− jKCA ozzzµ
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}0.2 j±  at each operating point, where )(Qµ represent the eigenvalues of the matrixQ . 

Finally, the controller and observer gains were linearly interpolated between the 

operating points.  In the design of the controller gain czK , it was considered that the elbow 

actuator was active and the shoulder actuator was deactive. This could be justified by the 

fact that the model accessibility of the second link vibration from the first link actuator 

was small.  

The new controller proposed in this article is refereed to as “integral manifold 

controller”  which adds a corrective term to the computed torque command (CTC) of the 

rigid link counterpart of the CRFE. The controller without the corrective term is the CTC 

of the rigid link manipulator plus a state-feedback controller for the vibration suppression 

similar to the one developed in [4], which is refereed to here as the “rigid link 

controller”. To observe the effectiveness of adding the corrective torque, the results of 

the integral manifold controller were compared with the rigid link controller. The 

trajectory tracking errors for 1r  and 2r  , measured by 111 drrerror −= and 222 drrerror −= , 

after applying the integral manifold controller are given in Figs. 5-5 and 5-6, respectively. 

Moreover, the trajectory tracking errors for 1r  and 2r , employing the rigid link controller, 

are shown in Figs. 5-7 and 5-8,  respectively.   

Fig. 5-5: Simulation, trajectory tracking error of1r , integral manifold controller 
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Fig. 5-6: Simulation, trajectory tracking error of2r , integral manifold controller 

Fig. 5-7: Simulation, trajectory tracking error of1r , rigid link controller 

Fig. 5-8: Simulation, trajectory tracking error of2r , rigid link controller 

By comparing Figs. 5-5 and 5-6 with Figs. 5-7 and 5-8, respectively, it is clear 

that the new integral manifold controller resulted in the trajectory tracking errors which 

were considerably smaller than those of the rigid link controller. The absolute maximum 

value of the 1error and 2error  after the integral manifold controller were 0.0019 (rad) 
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and 0.0027 (rad) while for the rigid link controller they were larger, being 0.0221 (rad) 

and 0.0336 (rad), respectively. That is, the maximum tracking errors for the integral 

manifold controller were about twelve times smaller than those of the rigid link 

controller. Besides comparing the maximum absolute values of the errors, in the 

following a normalized index which was defined over the entire manoeuvre time was 

introduced and used. This index, which signified the overall tracking error reduction, was 

called the normalized mean square error (NMSE), and was defined as: 

∫ +=
mt

m

dterrorerror
t

NMSE
0

2
2

2
1 )(

1
                               (5-59) 

where 

111 drrerror −= ,       222 drrerror −=                                   (5-60) 

and mt is the total time of the simulation or experiment. Using Eqs. (5-59) and (5-60), the 

NMSE for the integral manifold controller was 0.0022 (rad) while for the rigid link 

controller it was 0.0264 (rad), which clearly indicated the effectiveness of addition of the 

new controller introduced here in reducing the overall tracking error. Finally, the end-

effector paths, which are shown in Fig. 5-9, illustrated the reduction in the end-effector 

path tracking error due to the use of the integral manifold controller instead of the rigid 

link controller. In Fig. 5-9 the integral manifold controller path and desired path can 

hardly be distinguished, while the difference between the rigid link controller path and 

the desired path is apparent. For the integral manifold controller, the absolute maximum 

difference of the desired path and actual path was 410979.5 −× (m) while for the rigid 

link controller this difference was 41000.91 −×  (m).  
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Fig. 5-9: Simulation, Actual paths after applying the integral manifold and rigid link 

controllers as well as the desired path 

More simulation studies were performed on the manipulator used in this section 

but with different average speeds for 1dr  and 2dr  than those of the simulation presented 

here. The results of these simulations were not reported here. The conclusion after these 

simulations was the same as the one reached after the above simulation; that is, the 

integral manifold controller reduced the EETT error considerably. Moreover, these 

simulations showed that by increasing the average speeds of 1dr  and 2dr , the maximum 

absolute value of the tracking errors were increased, as expected, which means the faster 

the maneuver, the greater the EETT error. 

5.6. Experimental results 

In this section the results of an experimental study carried out using the rigid 

shoulder-link flexible elbow-link manipulator, shown in Fig. 5-10, which is available in 

the robotic laboratory of the University of Saskatchewan, are presented. This manipulator 

has two DC motors which, by the means of harmonic gearboxes, drive the links. Both 

motors have quadrature optical endcoders which have 1024 lines per revolution and are 

from Harmonic Drive technologies. The model number for the first one is PSA-14-100 

and it uses Maxon 273759 precision brush (90 Watts). The model number of the second 

harmonic drive is PSA-8-080 and utilized the Maxon 118752 precision brush motor (20 

Watts). The physical parameters of this manipulator are as follows. The length of the 

rigid shoulder-link is 0.3500 (m). The mass moment of inertia of the rigid shoulder-link 

with respect to the shoulder joint including the shoulder actuator, its hub and mounting 
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bracket is 0.2800 (kg.m2). The flexible elbow-link is made of stainless steel with a length 

of 0.2300 (m), a thickness of 8.890×10-4 (m) and a height of 0.0381 (m). The mass 

moment of inertia of the actuator on the elbow joint, its hub and mounting bracket is 

0.0198 (kg.m2). Finally, the mass and mass moment of inertia of the end-effector are 

0.1649 (kg) and 2.570×10-5 (kg.m2), respectively24.  

Fig. 5-10: Rigid shoulder-link flexible elbow-link manipulator in the robotics laboratory 

of the University of Saskatchewan used for experimental verification 

In addition to the above physical parameters, due to the application of harmonic 

gearbox, there is rotational friction in each joint, which was referred to as joint friction 

(torque) in the rest of this chapter. The mostly used available model of this joint friction 

is a nonlinear dynamic equation in which the joint rotational velocity is the input [22]. As 

explained in [23], this modeling reveals that there are two different frictional regions 

namely pre-sliding region and sliding region. In the pre-sliding region the friction is a 

function of displacement, while in the sliding region the friction depends on the velocity 

[23]. In this article rather than using the nonlinear dynamic equation to model the friction 

of the harmonic gearboxes, it was assumed that the friction was only velocity dependent. 

That is, the friction in the sliding region was modeled and the pre-sliding friction was not. 

Although neglecting the pre-sliding friction resulted in an approximate friction model, it 

lead to a computationally simpler model which was easier and less costly to implement. 

                                                
24 The physical parameters of the manipulator used in the simulation and experimental studies are not the 
same.  

Shoulder joint 

Rigid shoulder-link 

Elbow joint 

Flexible elbow-link 

   Mounting bracket 

  of the elbow joint 

Mounting bracket 

of the shoulder joint 



185 

This was due to the fact that instead of having a model composed of differential 

equations, the friction was represented by an algebraic equation, Eq. (5-61). Therefore, in 

this study the joint friction frictionτ  was assumed to be as [22]: 

θσθττττ θ &&&

v
v

cstcfriction
se +−+= − )sgn())((

2)/(                               (5-61) 

where the terms θσ &
v and )sgn())((

2)/( θτττ θ &&
sv

cstc e −−+  were called the viscous and dry 

friction torques, respectively. Moreover cτ , stτ sv  and vσ  were the coulomb friction, 

static friction, Stribeck velocity constant, and the viscous damping coefficient, 

respectively, and )sgn(θ& : 
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



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                                         (5-62) 

The friction model presented in Eq. (5-61) is known as the LuGre model. To calculate 

the cτ , stτ , sv  and vσ for the shoulder and elbow joints, a constant velocity experiment 

[24] was performed for each joint as follows. First, the average value of the friction 

torque frictionτ  was experimentally determined for different constant values ofθ& . Then 

having the corresponding frictionτ  for each constantθ& , a least square curve fitting scheme 

was used to findcτ , stτ , sv  and vσ , which were the contributing parameters in Eq. (5-61). 

For the curve fitting scheme the MATLAB command “lsqcurvefit” was used. The values 

of the identified parameterscτ , stτ , sv  and vσ  for the elbow and shoulder joint frictions 

are presented in  Table 2.  
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Table 2: Identified parameters of the LuGre friction model, Eq. (5-61), for the shoulder 

and elbow joints, Positive: Clockwise,  Negative: Counter clockwise 

Joint Velocity cτ stτ sv vσ

Positive mN.788.1  mN.580.2  10065.0 −s 1...855.2 −radsmN
Shoulder

Negative mN.963.1− mN.889.2− 10071.0 −s 1...827.2 −radsmN

Positive mN.3753.0  mN.2041.0  11935.0 −s 1...6239.0 −radsmN
Elbow 

Negative mN.4947.0− mN.2012.0− 12055.0 −s 1...4999.0 −radsmN

Since the control strategy developed in Section 5.4 was based on the model which 

had joint viscous friction, θσ &
v , and not joint dry friction, )sgn())((

2)/( θτττ θ &&
sv

cstc e −−+ , 

to compensate for the joint dry friction, the torque )sgn())((
2)/( θτττ θ &&

sv
cstc e −−+  was 

added to the control command. The schematic of the control diagram of the experimental 

setup is shown in Fig. 5-11. The parameterscτ , stτ , sv , and vσ , given in table 2, were 

used for the calculation of the joint dry friction, frictionτ  . The acronyms “RSFEM” and 

“CC” in Fig. 5-11 were used for the rigid-shoulder link flexible-elbow link manipulator 

and control command, respectively. It is to be noted that the addition of the joint dry 

friction to the control signal to counterbalance the effect of the friction which is not 

included in the mathematical model of the system, was also used in the experimental 

study of [23] and [25].  
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Fig. 5-11: Schematic of the control diagram employed in the experimental study 

In the experimental study, the flexibility of the elbow-link was modeled using one 

mode shape and the time varying weight function of this mode, 1λ  in Eq. (5-1), was 

measured using a strain gauge mounted at the base of the link. Modeling the flexibility 

with one mode shape was reasonably accurate and justifiable due to the limited 

bandwidth of the actuators in the experimental setup as explained in the following. The 

natural frequency for the second mode of vibration for the experimental setup was 55 

(Hz) while the maximum bandwidths for the actuators were 50 (Hz). Therefore the first 

mode of vibration was dominant and the contribution of higher modes of vibration was 

small and thus negligible. Moreover, in addition to the limited bandwidth of the actuator 

the first mode of vibration generally can predict the dynamic response quite well even for 

relatively large lateral deflection as explained in, which was also observed in simulation 

study presented in Section 5-5. The resolution of the end-effector measurement by using 

this strain gauge was theoretically 41005.4 −× (m).

 The desired trajectories 1dr  and 2dr  were selected using Eqs. (5-57) and (5-58) 

and assuming 047.121 == ff θθ (rad) and )(500.321 stt ff == . Since 21 ff θθ =  and 

21 ff tt = ,  then  1dr  and 2dr  were identical, as shown Fig. 5-12. Moreover, 1dr  and 2dr were 

selected to be unidirectional, to reduce the possibility that )sgn(θ&  in the 

expression )sgn())((
2)/( θτττ θ &&

sv
cstc e −−+  changed values during maneuver.  
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Fig. 5-12: Experiment, desired trajectories 1dr  and 2dr

For the experimental implementation of the proposed controller, the gains 

IKP 20= and IKD 5= were used to calculate0τ  and 2τ  in Eqs. (5-36) and (5-38), 

respectively and I is the identity matrix. Moreover, to obtain the fast component of the 

controller, fτ , the gain scheduling procedure, discussed in Section 5.4, was utilized. The 

operating points for the gain scheduling were selected to be ii )( 2θϑ =  for the reason 

explained in the simulation section. Since 22

~
ddr θ=  changed from zero to o0.60

( )(047.1 rad ), it was assumed that 2θ varied between o0.20− and o0.80 . That is, the 

possible range of variation for 2θ  was selected to be o0.20 wider from both sides 

compared to 2dr . As a result when the value of 2θ  passed the limits of2dr  during the 

experiment, the observer and controller gains for the calculation of fτ  could still be 

obtained and the algorithm could still be implemented. This range of2θ , from o0.20−

to o0.80 , was divided into 10 equal segments with the operating point 

of ),1(1020)( 2 −+−== iii θϑ )11,,1( K=i . Then at each operating point, czK and ozK

were selected so that { }jKBA czzz 0.12.0)( 22 ±−=−µ  and }0.24.0{)( 2 jKCA ozzz ±−=−µ

where )(Qµ represents the eigenvalues of the matrixQ . Similar to the simulation study 

the fast controller in the experimental study was designed as if the elbow actuator was 

only active.   

The trajectory tracking errors, 111 drrerror −= and 222 drrerror −= , in the 

experimental study after applying the integral manifold controller are given in Figs. 5-13 
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and 5-14, respectively. To compare the effectiveness of the new controller in reducing the 

EETT, the trajectory tracking error adopting rigid link controller, are also presented in 

Figs. 5-15 and 5-16.  

Fig. 5-13: Experiment, trajectory tracking error of1r , integral manifold controller 

Fig. 5-14: Experiment, trajectory tracking error of2r , integral manifold controller 

Fig. 5-15: Experiment, trajectory tracking error of1r , rigid link controller 
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Fig. 5-16: Experiment, trajectory tracking error of2r , rigid link controller 

From Figs. 5-13 to 5-16 it is observed that the tracking errors for the integral 

manifold controller were smaller than those of the rigid link controller. The maximum 

absolute value of the 111 drrerror −=  and the 222 drrerror −=  for the integral manifold 

controller were 0.1250 (rad) and 0.0588 (rad), respectively, while for the rigid link 

controller they were larger as 0.1541 (rad) and 0.1890 (rad), respectively. Also, the 

normalized mean square error (NMSE) from Eqs. (5-59) and (5-60) for the integral 

manifold controller was 0.0874 (rad) which was smaller than the 0.1599 (rad) of the rigid 

link controller. Finally, as shown in Fig. 5-17, the end-effector path of the experimental 

setup, indicated that the integral manifold controller was superior to the rigid link 

controller in reducing the tracking error.  

Fig. 5-17: Experiment, actual paths after applying the integral manifold and rigid link 

controllers 
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Although, compared to the results of the simulation study those of the 

experimental study appeared not to be as good as far as the overall improvement of EETT 

error was concerned;25 they still, however, verified the advantage of the integral manifold 

controller over the rigid link controller. The main reason for the overall difference 

between the simulation and experimental results, was the high value of the dry frictions 

in the shoulder and elbow joints. Although, this friction was compensated by using the 

LuGre model, it has been argued in [23,26,27] that this model is not the most precise 

model for the friction. Moreover, the adopted model )sgn())((
2)/( θτττ θ &&

sv
cstc e −−+  was 

only valid for the sliding region. Therefore, the friction in the pre-sliding region could not 

be compensated for. The pre-sliding friction was of importance at the beginning and end 

of the maneuver when the velocity was small. The steady tracking error at the end of the 

maneuver was due to the existence of the unmodeled pre-sliding friction which could not 

be compensated for by using the employed model. Furthermore, it had been observed that 

the parameterscτ , stτ sv  and vσ in Eq. (5-61) did not have a constant value and  were 

functions of load, room temperature, room humidity and the starting position of the 

motion. In addition, cτ , stτ sv  and vσ  of the elbow joint had been obtained in the absence 

of the flexible elbow-link for practical reasons. The flexible elbow-link had to be 

removed during the constant velocity experiment of the elbow joint since the slow 

damping vibration of the link was a substantial source of error for the experiment.   Due 

to the load dependent nature of the friction, the flexible link removal could be a source of 

error in identifying the friction of the elbow joint. Finally, the noise in the sensors’ 

readings and time delay could be among the other source of errors.  

5.7. Conclusions 

A class of flexible link manipulator consisting of a chain of rigid links with a 

flexible end-link (CRFE) have been considered. A new controller for the end-effector 

trajectory tracking (EETT) of the CRFE which utilized the concept of the integral 

manifold of the singularly perturbed differential equations was introduced. The dynamic 

                                                
25 Note that the physical parameters of the manipulators used in the simulation and experimental studies are 
different. Therefore, only the overall efficiency of reducing the tracking errors, not the numerical values, 
can be compared.  
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model of the CRFE was expressed into the standard singularly perturbed form where the 

joints’ rotations and their time derivatives were the states of the slow subsystem while the 

states of the fast subsystem were the flexible variables, which model the link’s lateral 

deflection, and their time derivative. Moreover, the singular perturbation parameter was 

selected as 1/(2 )fε π= wheref  was the smallest non-zero natural frequency of the 

CRFE in the specified workspace of the manipulator 

Compared to the few available EETT controller desired based on the singularly 

perturbed model of  flexible link manipulators, the controller introduced here was new 

since (1) -  it only required one corrective term of order 2ε  besides computed torque 

command of the rigid link counterpart of the CRFE, (2) - the derivation of the corrective 

torque and implementation of the controller was simplified by the use of the properties of 

the matrices associated with the dynamic model of CRFE, (3)- the calculation of the 

stabilizing torque for the fast subsystem did not require the time derivative of the flexible 

variables (time derivative of the link’s lateral deflection) which was not easily available. 

Moreover, this stabilizing torque was obtained based on the gain scheduling procedure in 

which least possible interpolation effort is required.  

The stability of the new controller was proven using the Lyapunov criterion. The 

effectiveness and feasibility of the new controller introduced here were shown by the 

simulation study and experimental verification. The simulation and experimental studies 

were carried on a two-link manipulator with the first link rigid and second link flexible.  

The improvement in reducing the EETT error, both in the simulation and experimental 

studies, justified the application of the proposed new controller.  

Due to the model-based nature of the controller, the successful implementation of 

the controller requires accurate modeling of the apparatus. Therefore, unavoidable 

differences between the derived model and apparatus deteriorate the performance of the 

controller. To recover the performance of the controller the adaptive control strategy can 

be employed which is the subject of the future research.   

5.8. Nomenclature  

a: Number of links 
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1zA : State matrix of the fast subsystem which represents the deviation of the z from h and 

is a function of 21,xx

2zA : State matrix of the fast subsystem which represents the deviation of the z from h and 

is a function of 1x

B: Mapping matrix which relates the vector of input torques to their corresponding 

generalized coordinates 

1zB : Input matrix corresponds to 1zA

2zB : Input matrix corresponds to 2zA

jkic , : Christoffel symbol 

),( qqC & : The matrix which represents the Coriolis and centrifugal forces 

DC : Joints’ viscous damping matrix 

zC : Output matrix 

[ ]TTT FF λθ : Vector composed of the summation of the Coriolis, centrifugal and gravity 

forces 

)(qG : Gravity matrix 

eh : Integral (invariant) manifold 

h : Approximation of eh

ih : The ith element of vector h

ijh : Coefficient of jε in ih   

I: Identity matrix   

tipI : Mass moment of inertia of the end-effector 

J: Inverse of the mass matrix )(qM

θθJ , θλJ , λλJ : Components of the matrix J 
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K: Stiffness matrix 

λλK : Non-zero sub-matrix of K

PK , DK , czK , ozK : Controller gains  

61, Kl =ii : Positive constants 

iL : Length of the ith link 

tipm : Mass of the end-effector 

)(qM : Mass matrix 

θθM , θλM , λλM : Components of the mass matrix )(qM

n: Number of mode shapes used to model the flexibility of the link 

q: Generalized coordinates of the CREF 

θq : Part of the generalized coordinate q which is composed of aii K1, =θ

λq : Part of the generalized coordinate q which is composed of nii K1, =λ

iQ : Generalized force corresponding to iq

r: Control variable for CREF 

dr : Desired trajectory for r  

CREFT : Kinetic energy of the CREF 

CREFU : Combination of the potential energy of the CREF due to the gravity and its strain 

energy due to the link’s flexibility 

[ ]TeTee xxx )()( 21= : States of slow subsystem when the states of the fast subsystem are 

restricted to their exact integral manifold eh

[ ]TTT xxx 21= : Approximation of ex  when states of the fast subsystem are restricted toh   

y: output of the fast subsystem  
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[ ] `21

TTT zzz= : States of the fast subsystem 

ẑ: Deviation of the states of the fast subsystems from their integral manifolds 

z~ : Estimate of ẑ which is obtained from observer 

ξ : Deflection of the flexible link 

iφ : The ith spatial mode shape, assumed mode shape 

iλ : Time varying weight function of iφ

iθ : Relative rotation of the ith revolute joint with respect to the (i- 1)th revolute joint 

aθ~ : Modified joint rotation for the flexible link 

ε : Singular perturbation parameter 

)(min Qµ : Minimum eigenvalue of the matrix Q

frictionτ : Joint friction torque 

cτ : Coulomb friction 

stτ : Static friction 

iactuatorτ : The torque of the ith link’s actuator  

τ : Vector composed of the 
iactuatorτ

sv : Stribeck velocity constant 

vσ : Viscous damping coefficient 

fτ : Fast component of the controller 

iυ : The ith operating point in the gain scheduling procedure

ψ : Euclidean norm ofψ
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5.9. Appendix 

Appendix 5.I: Calculation of 1)( θF and 2)( θF

From Eq. (5-18b): 

1
2zq ελ =                                                    (5-A1) 

2zq ελ =&                                                    (5-A2) 

Using the chain rule: 
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From Eqs. (5-A1) and (5-A2): 
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Using Eqs. (5-A4) and (5-A5), 1)( θF from Eq. (5-A3) is: 
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By adopting the same technique used for the derivation of 1)( θF , the expression for 

2)( θF is: 
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Appendix 5.II: Simplifying the expression of the corrected slow subsystem 

The corrected slow subsystem given in Eq. (5-34) is: 
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Eq. (5-A8) can be written as: 
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where:  
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In the following it will be proven that ))()(( 200
1

20 xCFMx D θθθθθ τ −−= − , 

))(( 11
1

21 θθθ τ FMx −= − and )))(
2

1
(( 1022

1
22 hMFMx &&

θλθθθ τ −−= − . Then by using these 

expressions for ,, 2120 xx 22x  the corrected slow subsystem will be shorter and thus easier 

to use. 

  Substituting 10h  from Eq. (5-30a) in Eq. (5-A10) results in: 
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(5-A13) 

Regrouping the terms in Eq. (5-A13) leads to: 
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Using the equality TJJJJM θλλλθλθθθθ
11 −− −=  given in Eq. (5-10d), Eq. (5-A14) is changed 

to: 

))()(( 200
1

20 xCFMx D θθθθθ τ −−= −                                   (5-A15) 

 Utilization of 11h given in Eq. (5-30c) in Eq. (5-A11) and knowing that 020 =h , 

turns 21x into:  
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1121 θθλλλθλθθθ ττ FJJJFJx T −−−= −                            (5-A16) 

Using the equality TJJJJM θλλλθλθθθθ
11 −− −=  given in Eq. (5-10d), Eq. (5-A16) becomes: 
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Employing the expression of 12h given in Eq. (5-30e) in Eq. (5-A12) results in: 
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By rearrangment Eq. (5-A18), becomes: 
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11 −− −=  given in Eq. (5-10d), the expression 
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)))(
2

1
(( 1022

1
22 hMFMx &&

θλθθθ τ −−= −                                  (5-A20) 

Replacing 20x , 21x , and 22x  in Eq. (5-A9) with their equivalence given in Eqs. (5-

A15), (5-A17) and (5-A20) respectively, results in:
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Therefore, by the use of Eqs. (5-30a) to (5-30f) for 2,1=ihij  and 2,1,0=j , and also the 

properties of the mass matrix given in Section 5.2.2, Eq. (5-A8) was converted to Eq. (5-

A21) as stated in Lemma 1.  

Appendix 5.III: Stability analysis of the proposed theorem in Section 5.4 

For  the  stability  analysis the   torque fττεττ ++= 2
2

0 ,  where  the  expressions

of 0τ , 2τ and fτ are given in Eqs. (5-36), (5-38) and (5-54) respectively, is applied to the 

dynamic model given in Eqs. (5-20a) and (5-20b). After algebraic manipulation and 

neglecting the terms of order 3ε  and higher, the errors’ dynamics are: 

rrrr NeAe +=&                                              (5-A22) 

ηηηηε NA +=&                                              (5-A23) 

where:  
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Since matrices PK and DK are positive definite, the matrix rA in Eq. (5-A25) is Hurwitz. 

Moreover, according to the observer-based controller design procedure czzz KBA 22 −  and 

CKA ozz −2 are Hurwitz matrices and so is the matrixηA  in Eq. (5-A25). Given that rA

and ηA  are Hurwitz matrices, there exist symmetric positive definite matrices ηP  and rP

that satisfy the following Lyapunov equations: 

ηηηηη SAPPAT −=+                                               (5-A31)                                              

rrrr
T
r SAPPA −=+                                                (5-A32) 

where ηS and rS  are symmetric positive definite matrices.  For the stability analysis the 

Lyapunov candidate function is selected as:  

ηεη ηPePeV T
rr

T
rLyp +=                                            (5-A33) 

Calculating the time derivative of the Lyapunov candidate function defined in Eq. (5-

A33) along the trajectories of Eqs. (5-A22) and (5-A23) and using Eqs. (5-A31) and (5-

A32) results in: 
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On a bounded region around the origin of re andη , it is possible to assume [11,19]: 
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where 2l , 3l , 4l , 5l and 6l are positive constants. By using Eqs. (5-A35) to (5-A37) and 

defining the symbol )(min Qµ as the minimum eigenvalues of a matrixQ ,  LypV& given in 

Eq. (5-A34) changes to: 
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where  
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As 0→ε  and provided that 2
2minmin )()( l>rSS µµ η , the matrix Ω defined in Eq. (5-

A39) is positive definite. Thus, there existsmaxε so that for all max0 εε << , Ω is a positive 

definite matrix. As a result, assuming that ),0( maxεε ∈  the trajectory tracking error with 

the dynamics given in Eqs. (5-A22) and (5-A23), is Lyapunov stable. By imposing the 

positive definite property on matrixΩ which is defined in Eq. (5-A39), maxε is: 
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In deriving the expression formaxε , given in Eq. (5-A40), it is assumed that the terms of 

order 2ε are negligible compared to the terms of orderε . The fact that 4Crd ∈ , makes the 

control signals continuous and bounded. Otherwise, the tracking error will be 

unsatisfactory and large. 

5.10. Reference  

1. A. De Luca, S. Iannitti, R. Mattone,  and G. Oriolo,  “Control Problems in

Underactuated Manipulators”, Proceeding of the IEEE/ASME International Conference 

on Advanced Intelligent Mechatronics, Vol. 2, pp. 855-861, 2001.  

2. M. Bensman, and G. Le Vey, “Stable Inversion of SISO Nonminimum Phase Linear 

System Through Output Planning: An Experimental Application to the One-Link Flexible 

Manipulator”, IEEE Transactions on Control System Technology, Vol. 11, No. 4, pp. 

588-597, 2003. 

3. P. V. Kokotovic, H. K. Khalil, and J. O’Reilly, “Singular Perturbation Methods in 

Control: Analysis and Design”, Academic, New York, USA, 1999. 



202 

4. B. Siciliano, J. V. R. Prasad, and A. J. Calise, “Output Feedback Two-Time Scale 

Control of Multi-link Flexible Arms”, Journal of Dynamics, Measurement and Control, 

Vol. 114, pp. 70-77, 1992. 

5. V. A. Sobolev, “Integral Manifolds and Decomposition of Singularly Perturbed 

Systems”, Systems and Control Letters, Vol. 5, pp. 169-179, 1984. 

6. F. Ghorbel, and M. W. Spong, “Integral Manifold of Singularly Perturbed Systems 

with Application to Rigid-Link Flexible-Joint Multibody System”, International Journal 

of Non-linear Mechanics, Vol. 35, pp. 133-155, 2000.   

7. M. Vakil, R. Fotouhi, R., and P. N. Nikiforuk, “Application of the Integral Manifold 

Concept for the End-effector Trajectory Tracking of a Flexible Link Manipulator”, 

American Control Conference, July 11-13, New York, USA, pp. 741-747, 2007.   

8. H. Asada, and J. J. E. Slotine, “Robot Analysis and Control”, John Wiley and Sons, 

New York, USA, 1986.  

9. S. M. Shahruz, and S. Behtash, “Design of Controllers for Linear Parameter-Varying 

System By Gain Scheduling Technique”, Journal of Mathematical Analysis and 

Application, Vol. 168, pp. 195-217, 1992. 

10. K. Hashtudi Zaad, and K. Khorasani, “Control of Non-minimum Phase Singularly 

Perturbed System with Application to Flexible-link Manipulators”, International Journal 

of Control, Vol. 63, No. 4, pp. 679-701, 1996. 

11. M. Moallem, K. Khorasani and R.V. Patel, “An Integral Manifold Approach for Tip 

Position Tracking of Flexible Multi-Link Manipulators,” IEEE Transactions on Robotics 

and Automation, Vol. 13, No. 6, pp. 823-837, 1997.  

12. P. Bigras, M. Saad, and J. O’shea, “Exponential Trajectory Tracking Control in the 

Workspace of a Class of Flexible Robots”, Journal of Robotic Systems, Vol. 15, No. (9), 

pp. 487-504, 1998.  

13. W. J. Book, “Recursive Lagrangian Dynamics of Flexible Manipulator Arms,” 

International Journal of Robotics Research, Vol. 3, No. 3, pp. 87-101, 1984. 



203 

14. M. Vakil, R. Fotouhi and P. N. Nikiforuk, “A Constrained Lagrange formulation of 

multi-link planar flexible manipulator”, Accepted for publication in the Journal of 

Vibration and Acoustics, 2007.   

15. J. S., Prezemienecki, “Theory of Matrix Structural Analysis”, McGraw-Hill, New 

York, USA, 1967.  

16. A. T. Alberts, H. Xia, Y.  Chen, “Dynamic Analysis to Evaluate Viscoelastic Passive 

Damping Augmentation for the Space Shuttle Remote Manipulator System” Advances in 

Dynamic and Control of Flexible Spacecraft and Spaced-based Manipulators, Vol. 20, 

pp. 35-41, 1990. 

17. M. W. Spong, “Modeling and Control of Elastic Joint Manipulators”, Journal of 

Dynamic Systems, Measurement and Control, Vol. 109, pp. 310-319, 1987.

18. M. A. Arteaga, “On the Properties of a Dynamic Model of Flexible Robot 

Manipulators”,  Journal of Dynamic Systems, Measurement and Control, Vol. 120, No. 1, 

pp. 8-14, 1998. 

19. K. Khorasani, “Adaptive Control of Flexible-Joint Robots”, IEEE Transactions on 

Robotics and Automation, Vol. 8, No. 2, pp. 250-267, 1992. 

20. M. W. Spong, K. Khorasani, and P. V. Kokotovic, “An Integral Manifold Approach 

to the Feedback Control of Flexible Joint Robots”, IEEE Transactions on Robotics and 

Automation, Vol. 3, No. 4, pp. 291-300, 1987. 

21. H. K. Khalil, “Nonlinear Systems”, Prentice Hall, New Jersey, USA, 2002. 

22. C. C. de Wit, H. Olsson, K. J. Astrom, and P. Lischinsky, “A new model for control 

of systems with friction”, IEEE Transactions on Automatic Control, Vol. 40. No. 3, pp. 

419-425, 1995.   

23. J. Swevers, F. Al-Bender, C. G. Ganseman, and T. Prajogo, “ An integrated friction 

model structure with improved presliding behaviour for accurate friction compensation”, 

IEEE Transactions on Automatic Control, Vol. 45, No. 4, pp. 675-686, 2000.  



204 

24. P. S. Gandhi, F. H. Ghorbel, and J. Dabney, “ Modeling, identification and 

compensation of friction in harmonic drives”, IEEE Conference on Decision and Control, 

December 10-13, Las Vegas, NV, USA, pp. 160-166, 2002. 

25. P. S. Gandhi, and F. H. Chorbel, “Closed Loop Compensation of Kinematic Error in 

Harmonic Drives for Precision Control Application”,IEEE Transactions on Control 

Systems Technology, Vol. 10, No. 6, 759-768, 2002. 

26. V. Lampaert, J. Swevers, and F. Al-Bendar, “ Modification of the Leuven integrated 

friction model structure”, IEEE Transactions on Automatic Control, Vol. 47, No. 4, pp. 

683-687, 2002. 

27. P. Dunpont, V. Hayward, F. Armstrong, and F. Altpeter, “Single state elastoplastic 

friction models”, IEEE Transactions on Automatic Control, Vol. 47, No. 5, pp. 787-792, 

2002. 



205 

Chapter 6. Maneuver control of the multilink 

flexible manipulators 
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Abstract: 

In this chapter a new controller for the end-effector trajectory tracking of 

multilink flexible manipulators (MLFM) is introduced. The new controller is derived 

utilizing the concept of the integral manifold of the singularly perturbed differential 

equations.  

 Based on the new controller, to reduce the end-effector trajectory tracking error, 

a corrective term of order 2ε  has to be added to the computed torque command (CTC) of 

the rigid link counterpart of the MLFM, where the parameter fπε 2/1=  and f is the 

smallest non-zero natural frequency of the MLFM in the specified range of operation of 

the manipulator. The implementation of the new controller requires measurement of the 

links’ rotations, their time derivative and the flexible variables which represent the links’ 

lateral deflections, but not the measurement of the time derivative of the flexible 

variables (time derivative of links’ lateral deflections) which may be practically 

impossible.  This is achieved since the time derivative of the links’ lateral deflections 

estimated using an observer which is designed based on the gain-scheduling technique. 

The stability of the proposed controller is proven using the Lyapunov criterion. 

Simulation results showed the effectiveness of the new controller.  

One of the main contributions of this work is in the derivation of a new controller 

for the EETT of nonlinear MLFM, based on the integral manifold concept, which (1)- 

requires the fewest corrective terms in addition to the CTC and (2)- its calculation effort 

is minimized.   

6.1. Introduction 

The energy consumption and heavy mass of rigid link manipulators reduce their 

mobility and efficiency. As a remedy, the use of the slender links decreases the mass and 

increases the mobility of the manipulators. However, the slender links vibrate and bend 

during, at the end of and after the maneuver, and this behavior leads to limited 

performance. Thus, provided that the performance of the flexible (slender) link 

manipulators becomes reliable through the utilization of suitable controllers, the flexible 

link manipulators can be a promising substitute for the rigid link manipulators. Since in 
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most of the industrial application, like welding, the end-effector trajectory tracking 

(EETT) is of importance, the EETT of the multilink flexible manipulators (MLFM) has to 

be addressed properly if they want to be industrially implemented. 

 Here, a new EETT controller considering the full nonlinear dynamic model of the 

MLFM is introduced. The proposed controller is derived based on the singularly 

perturbed form of the MLFM. Although there are many control strategies for the flexible 

link manipulator, the techniques for the control of singularly perturbed systems [1], are 

potential candidates for the EETT of the MLFM. This is due to the fact that the dynamic 

model of the MLFM can be expressed in the singularly perturbed form [2], which 

composed of slow and fast subsystems. For a MLFM, the states of the slow subsystem 

are the links’ rotations and their time derivative while the states of the fast subsystem are 

the relatively fast links’ lateral deflections, modeled by parameters called flexible 

variables, and their time derivative. In this chapter, after expressing the dynamic model of 

MLFM into the singularly perturbed form, the concept of the integral manifold [3,4] is 

used to introduce a new EETT controller. Based on this concept a corrective term 

(torque) is added to the computed torque command (CTC) of the rigid link counterpart of 

the MLFM for the reduction of the EETT error, see [5] for the CTC. This corrective term 

is of order 2ε , where fπε 2/1= and f is smallest non-zero natural frequency of the 

MLFM in the specified range of operation of the manipulator. To stabilize the subsystem 

which composed of the flexible variables and their time derivative (links’ lateral 

deflections and their time derivative), an observer-based feedback controller according to 

the gain-scheduling technique is employed, see [6] for the gain-scheduling technique. 

Due to the use of the observer-based feedback controller, there was no need for the direct 

measurement of the time derivative of the flexible variable, which is hardly practical. It is 

worth noting that the operating points in the gain-scheduling procedure were the links’ 

rotations, which can be easily measured.  

The major contribution of this work is in utilizing the concept of the integral 

manifold of the singularly perturbed differential equations to design an EETT controller 

for the MLFM considering the full nonlinear dynamic model. To the authors’ best 

knowledge, this concept has only been used so far for single flexible link manipulators 
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with linear models [7,8,10], two-link manipulators with one rigid link one flexible link 

[11], or the joint trajectory tracking of two-link manipulators with both links flexible 

[9,12], but not for their EETT. In contract in this chapter, based on the concept of integral 

manifold, a new EETT controller for MLFM is introduced whose performance has been 

verified by simulation studies on a two-link manipulator with both links flexible and also  

is to be experimentally validated in a later research.  Moreover, compared to the above 

developed methods based on this concept [7-12], the controller introduced here is the 

most computationally efficient one since only one corrective term was added to the CTC 

of the rigid link counterpart of the MLFM.  Furthermore, another contribution of this 

work is the use of several properties of the mass matrix of MLFM in design of the 

controller. The importance of the use of these properties is in the ease of calculation and 

implementation of the controller proposed here. Without the proper use of these 

properties it may not be possible to use this controller for MLFM, e.g. two-link 

manipulators with both links flexible. It is worth noting that the new EETT controller 

proposed here is an extension of our previously introduced controllers for the single 

flexible link manipulators [13] and a class of flexible link manipulator composed of a 

chain of rigid links with a flexible end-link [14], which have been experimentally 

verified.  

The rest of this chapter is organized as follows. In Section 6.2, the singularly 

perturbed dynamic model of the MLFM and the properties associated with its mass 

matrix as well as the integral manifold concept are discussed. In Section 6.3 the 

corrective term which has to be added to the CTC of the rigid link counterpart of the 

MLFM to reduce the EETT error, and the observer-based feedback controller, which 

stabilizes the subsystem composed of the links’ lateral deflections and their time 

derivative, are designed. Moreover in Section 6.3, the stability of the proposed controller 

using the Lyapunov stability criterion is discussed.  The simulation results for a flexible 

two-link manipulator with both links flexible, which showed the effectiveness of the 

introduced technique is presented in Section 6.4. Finally in Section 6.5 the conclusions 

drawn from the research are given.  
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6.2. Dynamic model of MLFM and the integral manifold concept 

In this section first the dynamic model of MLFM and the properties of its mass 

matrix are presented. Then this dynamic model is presented into the singularly perturbed 

form and the integral manifold concept is detailed.   

6.2.1. Dynamic model of MLFM 

The dynamic model of a MLFM [15,16] with n links is: 

τBqKqqFqqM =++ ),()( &&&                                              (6-1) 

where )(qM is the mass matrix, ),( qqF &  represents the summation of the Coriolis, 

centrifugal, gravity and viscous damping forces, K is the stiffness matrix, q is the vector 

composed of the generalized coordinates of the MLFM, [ ]naa
T τττ K1=  where iaτ is 

the torque of the ith link’s actuator and B is a constant  matrix which maps τ  to their 

corresponding generalized coordinates. The vectors and matrices in Eq. (6-1) can be 

expanded as:  
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where )1( nii K=θ is the rotation of the ith link, )1( nii K=λ is the vector composed of 

the flexible variables used to describe the lateral deflection of the ith link, ijλ

)1,1( mjni KK ==  is the time varying coefficient of the jth mode of the ith link and m

is the number of the mode shapes used to describe the lateral deflection of the ith link. 

Although, the number of mode shapes used to model the flexibility of each link can be 

different, for the simplicity of notation it is assumed that this number, m, is the same for 

all the links. 

Properties of the mass matrix of the MLFM 

The components of the mass matrix in Eq. (6-2) have several properties that 

facilitate the derivation and implementation of the controller proposed here. These 
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properties are given in this section. If the inverse of the symmetric positive definite mass 

matrix26  M is J, then: 
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and the following equalities between the components of M and J exist:

θλθθλλθλ JJMM 11 −− −=             (6-4a) TT JJMM θλλλθθθλ
11 −− −=             (6-4b)

TMMMJM θλλλθλθθθθ
11 −− +=         (6-4c) TJJJJM θλλλθλθθθθ

11 −− −=          (6-4d)

θλθθθλλλλλ JJJMJ T 11 −− +=           (6-4e) θλθθθλλλλλ MMMMJ T 11 −− −=         (6-4f)

Proof: See Section 4.10 

6.2.2. Singularly perturbed form and the integral manifold concept 

Since the dynamic response of MLFM is composed of slow links’ rotations upon 

which there are relatively fast links’ vibrations, the dynamic model of MFLM can be 

expressed in the singularly perturbed form. For this purpose, the new states:

θθ &== 21 , xx                                                      (6-5a) 

ε
λ

ε
λ &

== 221 , zz                                                     (6-5b) 

are defined where [ ]TTT xxx 21= and [ ]TTT zzz 21= are the vectors composed of the 

states of the slow and fast subsystems and the vectorsθ andλ  are defined in Eq. (6-2). 

Moreover,ε  is the singular perturbation parameter and is defined as: 

))(( 0min
1

λλλλµε KJ=−                                           (6-6) 

where
00)(

=
= λλλλλ JJ and ))(( 0min λλλλµ KJ  is the smallest eigenvalue of the matrix 

                                                
26 For brevity in the rest of this chapter the arguments of functions are dropped unless their appearance 
leads to further clarification. 
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)( λλλλ KJ when 0=λ  andθ  is varied in the specified range of operation of the 

manipulator [11,14]. Physically since the eigenvalues of ))(( 0 λλλλ KJ  are the square of 

the natural frequencies of the linearized dynamic model of the MFLM, ε  is equal to the 

inverse of the smallest natural frequency over the specified range of θ . 

 Using the new states defined in Eqs. (6-5a) and (6-5b), the dynamic model given 

in Eq. (6-1) with details in Eq. (6-2), is expressed in the singularly perturbed form as: 
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where Eqs. (6-7a) and (6-7b) represent the dynamics of the slow and fast subsystems, 

respectively. For the above dynamic model, the manifold defined by: 
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is called the integral (invariant) manifold if 27 :  

∗∗∗∗∗ >∀=⇒= ttttxtxhtzttxtxhtz eeeeee )),(),,(),,((),()),(),,(),,((),( 2121 ετεεεετεεε (6-9)            

That is, if the fast variable z (which represented the links’ lateral deflections and their 

time derivative) reaches to the manifold eh at time ∗t , it staies on this manifold thereafter. 

To assure that the fast variable z will eventually restrict to its integral manifold, the fast 

component of the controller,fτ , is designed in Section 6.3. The restriction of z to 

eh means that the links’ lateral deflections and their time derivative can be obtained in 

terms of the joints’ rotations, their time derivative and input torques.  

                                                
27 The superscript “e” emphasizes that eh is the exact solution of the integral manifold. Moreover, when z

is restricted to its exact integral manifoldeh , the corresponding x from Eq. (7a) is calledex .  
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 According to the definition of the integral manifold, [ ]TeTeTe hhh )()()( 21=  has 

to satisfy the following so called integral manifold condition, which obtains by 

substituting z in Eq. (6-7b) with eh  from Eq. (6-8) [3]: 
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Since the above constraints on eh are nonholonomic, finding an algebraic 

expression for eh from Eq. (6-10) is unattainable. However, it is possible to find an 

approximate solution by using the series expansions of eh1 , eh2  and τ around 0=ε . 

Therefore, based on the assumption that ε is small, eh1 , eh2  and τ are expanded as: 
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where 1h  and 2h  are the approximations of eh1  and eh2  and sτ is the approximation of τ

when the approximate solutions of eh1  and eh2 , that is 1h  and 2h , are used. By 

substituting the expression of 1h , 2h  and sτ , given in Eqs. (6-11a) to (6-11c), in Eq. (6-10) 

and equating the terms having the same power ofε , ijh  in terms of jτ  where 2,1=i  and 

pj ,,0 K=  will be found iteratively. To find ijh  and jτ  in this chapter, the series 

expansions, given in Eqs. (6-11a) to (6-11c), are truncated by assuming p = 2, similar to 

our pervious work [13,14]. This is due to the fact that if 2<p , then the contribution of 

the links’ flexibility will not be observed in the end-effector displacement, while on the 

other hand for 2>p  the control effort will increase. Therefore p = 2 is the optimal value 

and with this selection, Eqs. (6-11a) to (6-11c) become:  

12
2

11101 hhhh εε ++=                                              (6-12a) 
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22
2

21202 hhhh εε ++=                                            (6-12b) 

2
2

10 τεετττ ++=s                                              (6-12c) 

The manifold obtained by assuming p = 2 in Eqs. (6-11a) to (6-11c), is called the second 

order integral manifold. Substituting the 1h , 2h and sτ  from Eqs. (6-12a) to (6-12c) into 

Eq. (6-10) leads to: 
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Since TJθλ , θF , λF , and λλJ  in Eq. (6-13) are functions of ε ,  to find ijh  and jτ   from 

this equation by iteratively equating the terms having the same power of ε , the series 

expansions of TJθλ , θF , λF , and λλJ  around 0=ε  is used. These series expansions 

of TJθλ , θF , λF , and λλJ   neglecting terms of orderpε where 2>p (for the same reason 

that in Eqs. (6-12a) to (6-12c) terms of orderpε where 2>p  are neglected) are: 

2
2

10 )(
2

1
)()( TTTT JJJJ θλθλθλθλ εε ++=     2

2
10 )(

2

1
)()( λλλλλλλλ εε JJJJ ++=

2
2

10 )(
2

1
)()( θθθθ εε FFFF ++=         2

2
10 )(

2

1
)()( λλλλ εε FFFF ++=      (6-14) 

where for the arbitrary function )(εg , 
0

/)(
=

=
ε

ε ii
i dgdg  and )0()( 0 gg = . As an example 

the derivations of 1)( θF and 2)( θF  are presented in Appendix I.  

Substituting Eq. (6-14) into Eq. (6-13) and equating the terms having the same 

power of ε yields: 

[ ]000000
1
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0
10 )()()()()()

))((

)(
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λλλλ τ
µ

FJFJJ
KJ

KJ
h TT −−= −                (6-15a) 

020 =h                                                            (6-15b) 
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1021 hh &=                                                        (6-15d) 
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1122 hh &=                                                             (6-15f) 

The usage of obtaining the integral manifold concept, as has been done in this 

section, can be summarized as follows. The dynamic model of the MLFM presented in 

Eqs. (6-7a) and (6-7b) has (n+nm) degrees-of-freedom while it has only n actuators, thus 

MLFM is an underactuated system (number of degrees-of-freedom is more the number of 

actuators). By using the integral manifold concept, an approximate solution for Eq. (6-7a) 

will be obtained. That is, if z is restricted to its integral manifold, the links’ lateral 

deflections and their time derivative can be obtained in terms of the links’ rotations, their 

time derivative and input torques (note that links’ lateral deflections and their derivative 

on the integral manifold are represented by ijh   and see Eqs. (6-15a) to (6-15f)). Thus by 

using this concept changes the underactuated MLFM, appears to be a fully actuated one 

and its EETT can be accomplished. 

6.3. End-effector trajectory tracking 

In this Section it is proven that to reduce the EETT error of MLFM, a corrective 

term of order 2ε  has to be added to the computed torque command (CTC) of the rigid 

link counterpart of the MFLM. Since the addition of the corrective term to the CTC for 

the EETT error reduction is based on the assumption that z (the parameters represent 

links’ lateral deflections and their time derivative) is restricted to its integral manifolds, a 

fast component of controller fτ  is also designed to assure the satisfaction of this 

assumption. The implementation offτ , which was initially a full-state feedback 

controller, needed the direct measurement of the time derivative of the flexile variables 
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(time derivative of λ defined in Eq. (6-2)), which made the implementation of the 

proposed controller almost impractical. However, this drawback has been removed by the 

design of an observer to estimate the time derivative of the flexile variables. That is, fτ  is 

an observer-based feedback controller. Finally the stability of the proposed controller is 

proven by the Lyapunov criterion.  

The end-effector displacement of the MLFM can be described by: 

λθ Wr +=                                                          (6-16) 

where the components of the vectorr  represent the end-effector displacement, vectorsθ

andλ are defined after Eq. (6-2), and W is the matrix that relates the flexible variables,λ ,   

to the end-effector displacement. As an example for the two-link-flexible manipulator 

shown in Fig. 6-1, [ ]21 rrr T = . Details of Eq. (6-16) for the end-effector displacement of 

a two-flexible-link manipulator as well as the definition of its W are given in Appendix II. 

Fig. 6-1: Schematic of a two-flexible-link manipulator 

After describing the end-effector displacement in terms of θ  andλ , substitutions 

ofθ andλ   from Eqs. (6-5a) and (6-5b) into Eq. (6-16) result in: 

1
2

1 Wzxr ε+=                                                  (6-17) 
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Assuming that z is restricted to its integral manifold, 1z in Eq. (6-17) is replaced with 1h , 

as given in Eq. (6-12a). Thus: 

 )( 12
2

1110
2

1 hhhWxr εεε +++=                                  (6-18) 

Since terms of order pε  where 2>p  are neglected in this chapter, (see Eqs. (6-12a) to (6-

12c) and (6-14) for example), the end-effector displacement given in Eq. (6-18) is: 

10
2

1 hWxr ε+=                                                   (6-19) 

In the following, the toques0τ , 1τ and 2τ will be selected so that the end-effector 

displacement, given in Eq. (6-19), tracks a desired trajectory, dr .  

Lemma 1: Selecting 

000 )()()( θθθτ FeKeKrM PDd +−−= &&&                             (6-20a) 

01 =τ                                                      (6-20b) 

2010002 )(
2

1
)()()( θθθθλθθτ FdMhMVM +−+= &&                         (6-20c) 

where 

drxe −= 1                                                           (6-21a) 

)( 101010 hWKhWKhWV PD ++−= &&&                                    (6-21b) 
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makes the end-effector displacement given in Eq. (6-19) asymptotically track the desired 

trajectory, dr , provided that: 

1- The gain matrices PK and DK are positive definite;  
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2- 4Crd ∈ , that is the desired trajectory and its time derivatives up to the fourth order 

are continuous and bounded.   

Proof:  

Replacing 1z , 2z  and τ in Eq. (6-7a) by 1h , 2h  and sτ  given in Eqs. (6-12a) to (6-

12c) respectively, and also using the expression of ijh given in Eqs. (6-15a) to (6-15f), 

yields: 
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(6-22) 

where d is defined in Eq. (6-21c). Details of the derivation of Eq. (6-22) can be found in 

Appendix III. It is worth noting that without the use of the properties of the mass matrix 

introduced in Section 6.2.1, which is one of the contributions of this chapter, the concise 

derivation of Eq. (6-22) is not possible. This simplification makes the selection of the 

control inputs easier and less computationally costly. 

Taking the first and second time derivatives from Eq. (6-19) and replacing1x&

with 2x  results in: 

10
2

210
2

1 hWxhWxr &&&& εε +=+=                                         (6-23a) 

10
2

2 hWxr &&&&& ε+=                                                    (6-23b) 

By substituting 2x&  from Eq. (6-22) into Eq. (6-23b) and using torques0τ , 1τ and 

2τ defined in Eqs. (6-20a) to (6-20c), r&&  is:  

)( 10
2 VhWeKeKrr PDd ++−−= &&&&&&& ε                                     (6-24) 

The utilization of e and V, which are given in Eqs. (6-21a) and (6-21b) respectively, 

changes Eq. (6-24) into: 

0)()()( 10
2

110
2

2 =−++−++− dPdDd rhWxKrhWxKrr εε &&&&&&                (6-25) 
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Finally, considering Eqs. (6-19) and (6-23a) for r andr& , the error dynamics from Eq. (6-

25) is: 

 0)()()( =−+−+− dPdDd rrKrrKrr &&&&&&                                     (6-26) 

which is asymptotically stable since PK and DK are positive definite matrices. The 

assumption that 4Crd ∈ , makes the control command continuous and bounded. This is 

due to the fact that the calculation of 2τ  requires evaluation of 10h&&  (Eq. (6-20c)), and 

computation of 10h  by itself needs having0τ  (Eq. (6-15a)) which depends on dr&&  (Eq. (6-

20a)). Thus, calculation of 2τ  requires the fourth derivative ofdr , and the assumption that 

4Crd ∈  makes 2τ  and 0τ ; thus the control command, to be continuous and bounded. 

QED

The expression given in Eq. (6-20a) for0τ  is the CTC of the rigid link counterpart 

of the MLFM [2]. Therefore, based on Lemma 1, to reduce the EETT error only the 

corrective term 2
2τε , which is of order 2ε ,  has to be added to the CTC of the rigid link 

counterpart of the MLFM.   

Remark 6.1: To calculate10h , which is required for the calculation of the corrective term, 

0τ  from Eq. (6-20a) is substituted into Eq. (6-15a) and the property of the mass matrix 

given in Eq. (6-4b) is used which after some algebraic manipulations results in:  

))()()(()(()( 0120
1

min10 λθλλλλλλλµ FrxKrxKrMKKJh dPdDd
T +−−−−−= − &&&       (6-27) 

Moreover, by taking time derivatives from Eq. (6-27), the expressions of 10h& and 10h&& , 

which are required for the evaluation of V in Eq. (6-21b) can be obtained, employing the 

analysis similar to that in [4p. 147, 20 p. 297, 13,14]. Furthermore, to evaluate d in Eq. 

(6-21c), 222 )(,)(,)( θλλλθθ JJJ and 2)( TJθλ are required. Although these terms can be 

obtained from: 

  
0

212
2 /))(()(

=

−=
ε

εε dMdJ                                             (6-28) 
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finding 2)(J from Eq. (6-28) requires that the second derivative of )(1 ε−M  with respect 

toε  be calculated which is a complicated task and prone to error. In the following 2)(J , 

and consequently its components 222 )(,)(,)( θλλλθθ JJJ and 2)( TJθλ , are obtained by a new 

method which does not need this derivative calculation. Since )(εJ  is the inverse 

of )(εM : 

IJM =)()( εε                                                     (6-29) 

By substituting the series expansions of )(εM and )(εJ  around 0=ε  as: 

2
2

10 )(
2

1
)()()( MMMM εεε ++=         2

2
10 )(

2

1
)()()( JJJJ εεε ++=            (6-30) 

into Eq. (6-29), equaling the terms having the same power of ε  and knowing that 

0)()( 11 == JM : 

1
02

1
02 )()()( −−−= MMMJ                                                  (6-31) 

which contrary to Eq. (6-28) does not need the derivative calculation of )(1 ε−M with 

respect to ε .  

The key assumption in Lemma 1 is that the vectors1z  and 2z  have to be 

respectively restricted to their second order integral manifold 1h  and 2h  given in Eqs. (6-

12a) and (6-12b). To assure this key assumption is satisfied the fast component of the 

controller fτ  is designed as follows. The deviation of the vector of fast variables 

[ ]TTT zzz 21=  from their integral manifold [ ]TTT hhh 21=  is: 
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Using Eqs. (6-12a) and (6-12b) for1h and 2h , Eq. (6-32) changes to: 










++−
++−

=







=

)(

)(

ˆ

ˆ
ˆ

22
2

21202

12
2

11101

2

1

hhhz

hhhz

z

z
z

εε
εε

                                 (6-33) 



220 

Multiplying both sides of Eq. (6-33) withε , taking time derivative from it, replacing 

1z&ε and 2z&ε with their equivalences form Eq. (6-7b), substituting τ  with fττετ ++ 2
2

0 , 

using Eqs. (6-15a) to (6-15f) for ijh and Eqs. (6-20a) to (6-20c) for0τ and 2τ , and 

neglecting the terms of order pε where 2>p , yields: 

2
2

1ˆˆ zzfzz NNBzAz εετε +++=&                                (6-34) 

where 














−= 0

))((

)(
0

0min

0

λλλλ

λλλλ

µ KJ

KJ
I

Az , 







=

0)(

0
Tz J

B
θλ

, 







=

1
1

0

z
z O

N , 







=

2
2

0

z
z O

N          (6-35) 

and the expressions of 1zO and 2zO are given in Appendix IV. In the absence of 

1zN and 2zN in Eq. (6-34), the full-state feedback controller zKczf ˆ−=τ  stabilizes the 

dynamic equation ofẑ provided that the gain czK  is selected so that the 

matrix czzz KBA − is Hurwitz. The stability of the dynamic equation ofẑ, Eq. (6-34), 

means that eventually the vectors1z  and 2z  will get restricted to their second order 

integral manifold 1h  and 2h .  In the presence of 1zN and 2zN  with the assumptions that 

zNz ˆ11 l< and zNz ˆ22 l< , where 1zN  and 2zN  are the Euclidean norm of1zN  and 

2zN and 1l and 2l  are scalar constants, still the full-state feedback controller zKczf ˆ−=τ

can stabilize the dynamic equation ofẑ [page 161 in 21]. However, this time there is 

another extra restriction on the gain czK  besides the requirement to make the 

matrix czzz KBA −  Hurwitz. This extra restriction is explained in the stability proof, given 

in Appendix V, where the stability of the whole system with the control 

torque fττετ ++ 2
2

0  is studied.  

Since matrices zA and zB in Eq. (6-35) are functions of1x , the gain matrix czK is 

selected according to the gain-scheduling procedure [6]. Based on the gain-scheduling 

procedure, first in the possible range of the variation of 1x , several operating points like 

( )ii x1=ν  are selected, where i is varied to cover all the possible1x . Then, at each 
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operating point the gain 
iczK ν)(  is designed so that the stability of the system at ( )ii x1=ν

is guaranteed. Finally, the gain matrix is linearly interpolated between these operating 

points. After adopting the gain scheduling procedure, implementing the full-state 

feedback controller zKczf ˆ−=τ  requires that ẑ be available, which from Eqs. (6-32) and 

(5b), need the measurement ofλ  andλ& . Although, the measurement ofλ , which is 

required for the calculation 1z and consequently1ẑ , is possible, for example by strain 

gauges, the measurement ofλ& , which is needed for the evaluation of 2z  and 

consequently2ẑ , is not easy. As a remedy, to remove the need for measuring λ&  which 

was required by the full-state feedback controller, an observer-based feedback controller 

assuming 1z as the output is employed to stabilize the dynamic equations ofẑ. That is the 

output for Eq. (6-34) is assumed to be: 

zCy z ˆ=              [ ]nnnnz IC ××= 0                                  (6-36)                  

which only requires the measurement of  1ẑ , and fτ  is selected as: 

zKczf
~−=τ                                                           (6-37) 

where z~ , the estimate of ẑ , is calculated from: 

yKzCKKBAz ozzozczzz +−−= ~)(~&ε                                    (6-38) 

and the observer gain ozK is selected so that zozz CKA − is a Hurwitz matrix. The same 

gain scheduling procedure is used for the evaluation of ozK  as did for czK .  

Remark 6.2: To implement the above observer-based controller 1ẑ  should be calculated, 

which according to Eq. (6-32) needs evaluation of10h , 11h  and 12h .  The expression of 10h

is given in Eq. (6-27). Combining Eq. (6-15c) with Eq. (6-20b) and considering the fact 

that 0)()( 11 == λθ FF  (See Eq. (6-A22) in Appendix V), resulted in 011 =h . Finally, the 

expression of 12h is given in Eq. (6-15e) where for its calculation, 0τ and 2τ are presented 

in Eqs. (6-20a) and (6-20c) respectively, 2)( θF and 2)( λF can be obtained as explained in 
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Appendix I, and 2)( TJθλ and 2)( λλJ can be computed according to  Remark 6.1, Eq. (6-

31).  

Theorem: For the MLFM with the dynamic model given in Eqs. (6-7a) and (6-7b), 

applying the torque fττετ ++ 2
2

0  where 0τ , 2τ , and fτ are given in Eqs. (6-20a), (6-

20c) and (6-37) respectively, restricts the fast variables 1z and 2z  to their manifold 

defined in Eqs. (6-12a) and (6-12b), and makes the output r given in Eq. (6-16) track the 

desired trajectory dr  provided that: 

1- The gain matrices PK and DK are positive definite; 

2- The gain matrices czK  and ozK  are such that czzz KBA −  and zozz CKA − are 

Hurwitz, where zA , zB and zC  are given in Eqs. (6-35) and (6-36), respectively;

3- The condition 2
3minmin )()( l>rSS µµ η  is satisfied, where rSS ,η and 3l are 

defined in Eqs. (6-A38), (6-A39) and (6-A41) in Appendix V, respectively and 

symbol )(min Sµ  represents the minimum eigenvalue of the matrix S; and  

4- The 4Crd ∈ , that is up to the fourth order derivative of the desired trajectory 

has to be continuous and bounded.    

Proof: The proof of the stability which is based on the Lyapunov criterion is given in 

Appendix V.  

6.4. Simulation Studies 

In this section, the results of simulation studies for the two-flexible-link 

manipulator, shown in Fig. 6-1, are presented. The first and second links of this 

manipulator were the shoulder and elbow links, while their corresponding actuators were 

the shoulder and elbow actuators. It was assumed that the manipulator operated in the 

horizontal plane; therefore gravity was not a factor. Moreover, the flexibility of each link 

was modeled using one mode shape, similar to the previously reported simulation and 

experimental studies in [9,22,23].   
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The physical parameters of the two-flexible-link manipulator which are given in 

table 1 were the same as those in [16]. Here, 1L and 2L were the length of the shoulder and 

elbow links respectively, 1ρ and 2ρ  were the mass per unit length for the shoulder and 

elbow links respectively, 1hI and 2hI were the shoulder and elbow actuators’ mass moment 

of inertias respectively, 1hm and 2hm  were the shoulder and elbow actuators’ masses 

respectively, 1EI and 2EI were the rigidity of the shoulder and elbow links respectively, 

and tipm and tipI  were the mass and mass moment of inertia of the end-effector payload, 

respectively. 

Table 1: Physical parameters of a two-flexible-link manipulator 

Physical Properties Value unit  

21,LL   0.5000  ( m) 

21,ρρ 0.2000  ( mkg / ) 

21, hh II 0.1000  ( 2.mkg ) 

21, hh mm 1.000  ( kg ) 

21, EIEI 000.1   ).( 2mN

tipm 0.1000  (kg ) 

tipI 0.0005  ( 2.mkg ) 

  

As in Eq. (6-16) the end-effector displacement can be represented by 

[ ]21 rrr T = , where 1r and 2r are shown in Fig. 6-1, and their relations to the links’ 

rotations,θ , and flexible variables,λ , are given in Appendix II. The desired trajectories 

1dr and 2dr , to be followed by 1r and 2r  respectively, were selected to be the ninth order 

polynomial satisfying the following conditions:  

0)0( =djr        2,14,,10/
0

===
=

jidtrd
t

i
dj

i
K                          (6-39)                                                
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fjfjdj tr θ=)(        2,14,,10/ === jidtrd
fjt

i
dj

i
K                         (6-40)   

where fjθ were the desired final values for djr  at the final maneuver times fjt )2,1( =j , 

respectively. These trajectories were kept constant at fjθ for fjtt >  .  

The end-effector controller introduced in this chapter was referred to as the 

“integral manifold controller”, which added a corrective term to the CTC of the rigid link 

counterpart of the MFLM, as explained in Section 6.3. The controller without the 

corrective terms discussed in [2] and was called here as “rigid link controller”. To 

illustrate the reduction in the ETT error due to the new controller, the results using 

integral manifold controller were compared against those of the rigid link controller in 

the following studies. 

4-1- Example 1: two-flexible-link manipulator, relatively slow speed maneuver  

In the first simulation, the desired trajectories 1dr and 2dr  were selected according 

to Eqs. (6-39) and (6-40) by using  )(621 stt ff == , ))(047.1(0.601 radf
o=θ  and 

(0.452
o=fθ ))(785.0 rad . These desired trajectories are shown in Fig. 6-2.   

Fig. 6-2: Example 1, desired trajectories 1dr and 2dr  for the  

two-flexible-link manipulator of Fig. 6-1 

For the calculation of 0τ and 2τ , given in Eqs. (6-20a) and (6-20c), the 

gains 16.0=PK  and 80.0=DK  were selected. To calculate czK  and ozK  of the fast 

component of the controllerfτ , the gain-scheduling technique, as discussed in Section 
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6.3, was used. Since, for the two-flexible-link manipulator of Fig. 6-1, the matrices 

zA and zB were functions of 2θ , then the operating points in the gain-scheduling 

technique were ii )( 2θν = .  Because oo 450 2 << dr , the possible range of2θ  was selected 

as 22222 )max()min( dddd rrrr δθδ +<<− , in which o0.202 =drδ  was chosen, such that 

oo 0.650.20 2 <<− θ . That is the possible range of variation for 2θ  was selected to be 

o0.20 wider from both sides compared to2dr . Therefore, when during the simulation the 

value of the 2θ  passed the limits of 2dr , the observer-based controller still worked. This 

range of 2θ , oo 0.650.20 2 <<− θ , was divided into 13 equal segments and the operating 

points were )14,,1(),1(520 K=−+−= iiiν . The gain matrix czK  at each operating point 

was obtained using the Linear-quadratic regulator, as in [2]. The gain ozK was selected at 

each operating point such that )( zozz CKA −µ = )(2 czzz KBA −µ , where the symbol )(Qµ

represents the eigenvalues of matrix Q. That is the observer gain was selected so that the 

observer acted twice as fast as the controller. The commands “lqr” and “place” in 

MATLAB were respectively used for the calculation of  czK  and ozK  at each operating 

point.   

The trajectory tracking errors, 111 drrerror −=  and 222 drrerror −=  respectively, 

for the integral manifold controller and rigid link controller are shown in Figs. 6-3 and 6-

4. These figures clearly illustrate the superiority of the integral manifold controller 

compared to the rigid link controller in reducing the tracking errors. The maximum 

absolute values of 1error and 2error  using the rigid link controller were 0.0261 (rad) and 

0.0280(rad), respectively, while for the integral manifold controller they were much 

smaller; 0.0011(rad) and 0.0014(rad), respectively. That is, the new controller made the 

maximum of the 1error and the 2error  about 24 and 20 times smaller, respectively. In 

addition to comparing the maximum absolute value of the errors, a normalized index, 

called the normalized mean square error (NMSE) was also introduced and used. This 

index, which signified the overall tracking error reductions over the entire maneuver 

time, was defined as: 
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2
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1
                                 (6-41) 

where 

111 drrerror −= ,       222 drrerror −=                                     (6-42) 

and mt was the total time of the simulation. The NMSE for the rigid link controllers was 

4100.175 −× (rad), while it was much smaller beign 410743.9 −× (rad) for the integral 

manifold controller.  

Fig. 6-3: Example 1, tracking error for1r , 111 drrerror −= , using two controllers 

Fig. 6-4: Example 1, tracking error for2r , 222 drrerror −= , using two controllers 

Finally, the difference between the desired and the actual end-effector paths 

adopting the integral manifold and rigid link controllers are shown in Fig. 6-5. The 

acronym “DADP” in Fig. 6-5 was used for the difference between the actual and desired 

end-effector paths and was shown in Fig. 6-6. The improvement in reducing the EETT 
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error due to the new controller introduced in this chapter is evident from Fig. 6-5. The 

maximum difference between actual and desired end-effector paths for the integral 

manifold was 0.0018(m) which was about 21 times smaller compared to the 0.0380(m) of 

the rigid link controller.      

Fig. 6-5: Example 1, difference between the actual and desired end-effector paths (DADP) 

Fig. 6-6: Schematic of the DADP 

4-2- Example 2: two-flexible-link manipulator, relatively fast speed maneuver

For the second simulation example, 1dr and 2dr  were obtained assuming == 21 ff tt

)(4 s , ))(047.1(0.601 radf
o=θ  and ))(785.0(0.452 radf

o=θ in Eqs. (6-39) and (6-40). These 

desired trajectories are given in Fig. 6-7. The average speed of the desired trajectories in 

the second simulation was 1.5 faster compared to those of the first simulation.   
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Fig. 6-7: Example 2, Desired trajectories 1dr and 2dr  for the  

two-flexible-link manipulator of Fig. 6-1 

For the implementation of the controller the same gains that were used in the first 

example were employed here as well. In Figs. 6-8 and 6-9, the tracking errors of1r  and 

2r using the rigid link controller as well as the integral manifold controller are presented. 

The maximum absolute values of 1error  and 2error for the rigid link controller were 

0.0492(rad) and 0.0579(rad) respectively, while these errors using the integral manifold 

controller were only =1error 0.0023(rad) and =2error 0.0050(rad). That is, 1error  and 

2error  of the new controller were respectively about 21 and 12 respectively smaller than 

those of the rigid link controller. Moreover, the small value of NMSE for the integral 

manifold controller, which was 0.0034(rad) compared with 0.0281(rad) of the rigid link 

controller is another evidence of the improvement due to the controller introduced in this 

chapter.   

Fig. 6-8: Example 2, tracking error for1r , 111 drrerror −= , using two controllers 
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Fig. 6-9: Example 2, tracking error for2r , 111 drrerror −= , using two controllers 

Finally, the differences between the actual and desired paths utilizing the rigid 

link and integral manifold controller are shown in Fig. 6-10 (See Fig. 6-6 for the 

definition of DADP). The maximum difference between the desired and actual end-

effector paths for the rigid link controller was 0.0699(m), while it was considerably 

smaller, 0.0034(m), for the integral manifold controller.  

Fig. 6-10: Example 2, difference between the actual and desired end-effector paths (DADP) 

Two other examples were also conducted on the same manipulator used here, but for 

different average speeds for the 1dr and 2dr .  In these two tests, the values of 1fθ and 2fθ , as 

well as the controller gains, were the same as those used in the first and second simulations 

here. However in the third simulation (relatively very fast speed maneuver) )(321 stt ff ==

and in the fourth simulation (relatively moderate speed maneuver) )(521 stt ff == . Details of 

the results of these two more simulations are not reported here for  purpose of brevity; 

however a summary of the results for all four tests are given in table 2 and Figs. (6-11a) to 

(6-11d). The acronyms used in table 2 and Figs. (6-11a) to (6-11d) were (1)- RLC for the 
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rigid link controller, (2)- IMC for the integral manifold controller and (3)- max)(DADP  for 

the maximum difference between the actual and desired paths, respectively.  From table 2 

and Figs. (6-11a) to (6-11d) , it is obvious that the integral manifold controller has very small 

tracking errors compared with those of the rigid link controller independent of the average 

speed of the desired trajectories. Moreover, by decreasing the average speed of the desired 

trajectories, that is selecting a larger 1ft and 1ft , the max1)(error , max2 )(error , NMSE and 

max)(DADP were all decreased, as expected.  

Table 2: Summary of simulation examples, o601 =fθ and o452 =fθ

CASE 
21 ff tt =

(s) 
Controller

max1)(error

(rad) 

max2 )(error

(rad) 

NMSE  

(rad) 

max)(DADP

(m) 

RLC 0.0770 0.0986 0.0410 0.1058 Very high speed 

(Example 3) 
3

IMC 0.0095 0.0159 0.0123 0.0056 

RLC 0.0492  0.0579  0.0281 0.0699 High speed  

(Example 2) 
4

IMC 0.0023 0.0050 0.0034 0.0034 

RLC 0.0347 0.0387 0.0215 0.0501 Moderate speed 

(Example 4) 
5 

IMC 0.0015 0.0024 0.0015 0.0023 

RLC 0.0261 0.0280 0.0175 0.0380 Low speed 

(Example 1) 
6

    IMC 0.0011 0.0014 9.743×10-4 0.0018 
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Fig. 6-11: summary of the examples for different desired maneuver time,  

fff ttt ==
21

max1)(error , max2 )(error  ,NMSE, max)(DADP

6.5. Conclusions 

A new controller for the end-effector trajectory tracking (EETT) of general multi-link 

flexible manipulators (MLFM) based on the concept of the integral manifold of the 

singularly perturbed differential equations was introduced. The new controller added a 

corrective term to the computed torque command (CTC) of the rigid link counterpart of 

the MLFM for the reduction of the EETT error. This corrective torque was of second 

order of the parameter fπε 2/1= , where f was the smallest non-zero natural frequency of 

the MLFM in the specified range of operation of the manipulator. The implementation of 

the new controller did not require measurement of the time derivative of the links’ lateral 

deflections, measurements that are hardly practical. This is due to the use of an observer-

based controller where the observer estimates the time derivative of the links’ lateral 

deflections. The employed observer based-controller was designed using the gain-

scheduling procedure. The stability of the new controller was proven by the Lyapunov 

stability criterion. To show the effectiveness of the new controller several simulation 

studies were carried out on a two-link manipulator with both links flexible. The average 
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speed of maneuver was varied in these examples from relatively low to high. In all these 

examples a great improvement was observed in reducing the EETT error, which justified 

the effectiveness of the new controller. Moreover, it was observed that, for the same 

controller gains, the EETT error was increased when the average maneuver speed was 

increased.  

The main contribution of this work is in the introduction of a new EETT controller, 

designed based on the concept of integral manifold, which (1)- needs the fewest 

corrective terms in addition to the CTC of its rigid link counterpart, thus is 

computationally efficient (2)- its implementation did not require measurement of the time 

derivative of the flexible variables, thus is practical and (3)- calculation of its 

corresponding terms is simplified by introducing and using several mass matrix 

properties thus its calculation effort is minimized.  

6.6. Nomenclature  

zA : State matrix of the fast subsystem which represents the deviation of the z from h

zB : Input matrix of the fast subsystem which represents the deviation of the z from h

B : Constant matrix which maps vector τ to their corresponding generalized coordinates 

zC : Output matrix of the fast subsystem which represents the deviation of the z from h

21, EIEI : Rigidity of the shoulder and elbow links, respectively 

F : Summation of the Coriolis, centrifugal, gracity and viscous damping forces 

λθ FF , : Components of the vector F

f: The smallest non-zero natural frequency of the MLFM in the specified range of the 

operation of the manipulator 

eh : Integral (invariant) manifold 

h : Approximation of eh

ih : The ith element of vector h
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ijh : Coefficient of jε in ih

I : Identity matrix 

tipI : Mass moment of inertia of the end-effector 

J : Inverse of the mass matrix M

λλθλθθ JJJ ,, : Components of the matrix J

K : Stiffness matrix 

λλK : Non-zero sub-matrix of K

DP KK , , ozcz KK , : Controller gains 

21, LL : Length of the shoulder and elbow links 

M : Mass matrix 

λλθλθθ MMM ,, : Components of the mass matrix M

m: Number of mode shapes used to model the flexibility of the link 

21, hh mm : 

tipm : Mass of the end-effector 

n: Number of links 

q: Vector composed of  generalized coordinates 

r: End-effector displacmenet 

W: Matrix that relates λ  to the end-effector displacement  

x: Vector composed of the states of the slow subsystem 

z: Vector composed of the states of the fast subsystem 

ẑ: Deviation of z from h

z~ : Estimate of ẑ

ε : Singular perturbation parameter 
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τ : Vector composed of iaτ

iaτ : torque of the ith link’s actuator 

fτ : Fast component of the controller 

iθ : Relative rotation of the ith revolute joint with respect to the (i- 1)th revolute joint 

θ : Vector composed of iθ

λ : Vector composed of iλ

iλ : Vector composed of the flexible variable used to describe the lateral deflection of the 

ith link 

ijλ : time varying coefficient of the jth mode of the ith link 

ig)( : is equal to 
0

/
=ε

ε ii dgd  for arbitrary function )(εg

81 ,, lKl : Positive constants 

21,ρρ : Mass per unit length for the shoulder and elbow links, respectively 

djθ : Desired final value for the djr

fjt : Final maneuver time for the ith link 

iν : the ith operating point the gain scheduling procedure 

)(min Qµ : Minimum eigenvalue of the matrix Q

6.7. Appendices  

Appendix I: Sample calculation of the terms in the series expansion 

given in Eq. (6-14).  

From Eq. (6-5b) 

1
2zελ =       2zελ =&                                                (6-A1) 



235 

Since θF is a function of λ and λ& , the expression for 1)( θF  using the chain rule is : 
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Moreover, from Eq. (6-A1): 
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Using Eq. (6-A3), 1)( θF from Eq. (6-A2) is: 

02
0

1)(
=

==∂
∂= ε

λλ

θ
θ λ

z
F

F
&

&
                                         (6-A4) 

By adopting the same technique used for the derivation of 1)( θF , the expression for 

2)( θF is: 
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Appendix II: Derivation of matrix W for a two-flexible-link manipulator 

The schematic of a two-flexible-link manipulator, shown in Fig. 6-1, is presented 

in Fig. 6-12 with more details. The angular positions 1r   and 2r , which represent the 

location of the end-effector, are respectively: 

111 ϕθ +=r                                                   (6-A6) 

αϕθ ++= 222r                                               (6-A7) 

where 1θ  is the angle between theInertialX and 1γ , 2θ is the angle between 2γ  and the 

tangent to the shoulder link (first link) at the elbow joint, α is the angle between the line1 

and tangent to the shoulder link at the elbow joint, 1ϕ is the angle between the line1 and 

1γ , and  2ϕ  is the angle between the line2 and 2γ . The angles1θ  and 2θ , represent rigid 

body rotation of the links, while1ϕ , 2ϕ  and α  are due to the flexibility of the links. 
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Fig. 6-12: Detailed schematic of a two-flexible-link manipulator 

Assuming small lateral deflection of the links,1ϕ , 2ϕ  and α are, respectively:  

1
1
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i
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where m is the number of the mode shapes used to represent the flexibility, 1L  and 2L are 

the length of the shoulder and elbow links (first and second links) respectively, ijφ is the 

ith mode shape of the jth link, ijλ is the time varying weight function of ijφ  and 

dxd ijij /φφ =′ . Combing Eqs. (6-A8) to (6A-10) with Eqs. (6-A6) and (6-A7), 1r   and 2r

are: 
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where W is: 
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Appendix III: Derivation of Eq. (6-22) 

By replacing 1z andτ in Eq. (6-7a) with ∑
=

=
2

0
11

i
i

ihh ε and ∑
=

=
2

0i
i

iτετ respectively and 

using the series expansions given in Eq. (6-14) for θλλθλ FJJ T ,, and λF , the corrected 

second order slow subsystem is: 
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By using 10h  from Eq. (6-15a) and after algebraic manipulation, 0Π  from Eq. (6-

A15) is: 

))(]()()()()[( 000
1

0000 θθλλλθλθθ τ FJJJJ T −−=Π −                            (6-A18)  

Employing the property of the mass matrix given in Eq. (6-4d), Eq. (6-A18) changes to: 
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))(()( 00
1

00 θθθ τ FM −=Π −                                                (6-A19) 

Substituting 11h from Eq. (6-15b) into Eq. (6-A16) results in: 

))(]()()()()[( 110
1

0001 θθλλλθλθθ τ FJJJJ T −−=Π −                           (6-A20) 

Using Eq. (6-4d), which is a property of the mass matrix, Eq. (6-A20) is: 

))(()( 11
1
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From Eq. (6-A4) in Appendix II 
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& . However 020 =h  (See Eq. (6-15b)) and 

thus: 

0)( 1 =θF                                                      (6-A22) 

 and Eq. (6-A21) is: 

1
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01 )( τθθ
−=Π M                                                    (6-A23) 

The procedure for the derivation of 2Π is similar to those detailed above to obtain 

Eqs. (6-A19) and (6-A23) for 0Π and 2Π . This procedure is briefly explained in the 

following with the details removed for the brevity. Substituting 12h from Eq. (6-15e) into 

Eq. (6-A17), replacing 21h& with 10h&&  (See Eq. (6-15d)), using the properties of the mass 

matrix given in Eqs. (6-4b) and (6-4d) and after some algebraic manipulation, 2Π is: 
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where d is given in Eq. (6-21c). Finally, combing Eq. (6-A14) with Eqs. (6-A19), (6-

A23) and (6-A24), the corrected slow subsystem given in Eq. (6-22) obtained.  

Appendix IV: Expressions of 1zO and 2zO in Eq. (35) 

The expressions of 1zO and 2zO are: 
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where 1)( θF , 1)( λF , 2)( λF , 2)( θF , 2)( TJθλ and 2)( λλJ  are evaluated when hz = , while 

1)ˆ( θF , 1)ˆ( λF , 2)ˆ( λF , 2)ˆ( θF , 2)ˆ( TJθλ and 2)ˆ( λλJ  are evaluated when hzz += ˆ . By using the 

chain rule to calculate terms in Eqs. (6-A25) and (6-A26) which contain differentiation, 

(See Appendix I), 1zN and 2zN are respectively:
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Appendix V: The stability proof of the proposed controller 

After applying torque fττετ ++ 2
2

0 , where 0τ , 2τ ,and fτ are given in Eqs. (6-

20a), (6-20c) and (6-37) respectively, to the governing dynamic equations of MLFM, 

Eqs. (6-7a) and (6-7b), and neglecting the terms of order ,pε 2>p , the errors’  dynamics 

are: 

rrrr NeAe +=&                                                (6-A29) 

ηηηηε NA +=&                                                (6-A30) 
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(6-A34) 
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Moreover 1zN and 2zN in Eq. (6-A34) are given in Eq. (6-35) in Section 3, 

2)( θθJ , 2)( θλJ , 2)( λF  and 2)( θF  in Eq. (6-A36) are evaluated when hz =  and 1)ˆ( λF , 

1)ˆ( θF , 2)ˆ( θθJ , 2)ˆ( θλJ , 2)ˆ( λF  and 2)ˆ( θF  in Eqs. (6-A35) and (6-A36) are evaluated 

when hzz += ˆ . It is to be noted that 1)ˆ( λF , 1)ˆ( θF , 2)ˆ( θθJ , 2)ˆ( θλJ , 2)ˆ( λF , 2)ˆ( θF , 2)( θθJ , 

2)( θλJ , 2)( λF  and 2)( θF  in Eqs. (6-A35) and (6-A36) can be re-written in terms of ẑand 

h  by using the chain rule, similar to Appendix IV, which is not repeated here. 

For the stability analysis of the error dynamics, the Lyapunov candidate function 

is selected as: 

ηεη ηPePeV T
rr

T
rLyp +=                                            (6-A37) 

where rP and ηP are symmetric positive definite matrices obtaining from the following 

Lyapunov equations, in which ηS and rS  are also symmetric positive definite matrices: 

ηηηηη SAPPAT −=+                                                 (6-A38)                                              

rrrr
T
r SAPPA −=+                                                 (6-A39) 

The existence of positive definite matrices rP and ηP  satisfying Eqs. (6-A38) and (6-A39) 

is due to the fact that rA and ηA  given in Eq. (6-A32) are Hurwitz, which is the 

consequence of having PK  and DK  positive definite and zozz CKA −  and czzz KBA −

Hurwitz.  

Calculating the time derivative of LypV along the trajectories of Eqs. (6-A29) and 

(6-A30) and using Eqs. (6-A38) and (6-A39) results in: 
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On a bounded region around the origin of re andη , it is possible to assume [11,13,14]: 
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where the symbol ψ  is the Euclidean norm of the arbitrary matrixψ  and 

543 ,, lll , 76,ll and 8l are positive constants. By employing Eqs. (6-A41) to (6-A43), 

LypV& in Eq. (6-A40) is:  
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and the symbol )(min Sµ represents the minimum eigenvalues of a matrixS . As 0→ε

and provided that 2
3minmin )()( l>rSS µµ η , the matrixΩ defined in Eq. (6-A45) is positive 

definite. Thus there exists maxε  so that for all max0 εε << , matrix Ω is positive definite 

and consequently, the error dynamics in Eqs. (6-A29) and (6-A30) is Lyapunov stable. 

The maxε , after imposing the positive definite property on Ω and considering only terms 

of orderε is: 
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The fact that 4Crd ∈ , makes the control signals continuous and bounded. Otherwise, the 

tracking error will be large and unsatisfactory. 
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Chapter 7. Closing  
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In this section the summary and conclusion of the thesis are presented.  The 

contributions of the candidate’s work are highlighted and the potential future extensions 

of the candidate’s research are discussed. 

7.1. Summary and Conclusion 

The dynamic modeling and model-based end-effector trajectory tracking of 

flexible link manipulators have been addressed in this thesis.  

 In Chapter 2 the dynamic modeling of flexible link manipulators was discussed 

and simulation studies preformed on a two-link flexible manipulator and compared with 

those of the full nonlinear finite element analysis. Also details of the matrices in the 

dynamic modeling of flexible link manipulator were provided. The introduced method in 

Chapter 2 reduced the computational complexity of the dynamic model derivation which 

was its advantages. This dynamic model was used in the rest of the chapters for the 

design of model-based end-effector trajectory tracking controllers.   

In Chapter 3, a new end-effector inversion method for the linear model of a single 

flexible link manipulator was introduced and experimentally tested. This new end-

effector inversion method redefined the desired end-effector trajectory so that the end-

effector inversion was possible. For the purpose of output redefinition the summation of 

stable exponential function was used which lead to a family of possible solutions for the 

redefined trajectory. Therefor, the member of the family of the redefined trajectory, best 

member, which had the smallest difference with the desired trajectory, can be selected.  

In Chapter 4 a new end-effector trajectory tracking controller for a single flexible 

link manipulator was introduced and experimentally verified. This new controller was 

based on the concept of the integral manifold of the singularly perturbed differential 

equations. Based on this concept, the link’s lateral deflection and its time derivative was 

approximately represented in terms of the link’s rotation, its time derivative and input 

torque. Consequently, the underactuated single flexible link manipulator approximately 

appreaed to be a fully actuated system and its end-effector trajectory tracking was 

accomplished.  

In Chapter 5, the new end-effector trajectory tracking control, which was 

introduced in Chapter 4 for a single flexible link manipulator, has been extended to a 
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class of flexible link manipulators composed of a chain of rigid link with the flexible end-

link (CRFE) and experimentally verified. The extension of the controller, introduced in 

Chapter 4 for a linear system, to end-effector trajectory tracking of CRFE, with nonlinear 

dynamic model, increased its possibility of implementation to the multilink flexible 

manipulator. 

In Chapter 6, the new end-effector trajectory tracking controller (introduced in 

Chapter 4 for a single flexible link manipulator and extended in Chapter 5 to a class of 

flexible link manipulators) was successfully extended to the multilink flexible 

manipulator and the simulation results for a two-link flexible manipulator has been 

presented. Simulation studies were performed for different maneuver speeds. It was 

observed that for the same controller gains the faster the maneuver, the greater will be the 

tracking error. This was also seen in the simulation studies and experimental verfications 

carried out in Chapters 4 and 5.  

7.2. Contributions of the research: 

The contributions of the candidate’s research cover the objectives set out for his 

thesis. These objectives were: 

1- Developing the dynamic model of FLM.   

2- Developing controllers for the EETT of FLM and its feasibility study through the 

experimental verifications. 

For this objective the following sub-objectives were defined and achieved:  

2-1- Approximate end-effector inversion of a SFLM and experimental verification 

2-2- EETT of a SFLM and experimental verification 

2-3- EETT of a class of FLM which is composed of a chain of rigid links with the 

flexible end-link and experimental verification 

2-4- EETT of the multilink flexible manipulator

Contribution 1 (objective 1) - A new method of obtaining a dynamic model of flexible 

link manipulators has been developed which combines the assumed mode shape method 

with the Lagrange equations. The novelty of this method is in deriving the dynamic 

model without calculating the lengthy Lagrangian function of the flexible link 
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manipulator and without evaluating its corresponding derivatives. Thus, the calculation 

effort of the new method is minimized. To verify this new method the result of the 

dynamic simulation for a two-link manipulator with both links flexible were compared 

with those obtained using full nonlinear finite element analysis from ANSYS. These 

comparisons showed sound agreement. This contribution was discussed in Chapter 2.  

Contribution 2 (objective 2-1) - A new dynamic end-effector inversion technique for a 

single flexible link manipulator with a linear dynamic model has been developed. The 

novelty of this technique is in redefining the desired end-effector trajectory so that the 

dynamic end-effector inversion is achievable. For the redefinition of the desired 

trajectory the summation of the stable exponential functions was used. The experimental 

verification of the technique was performed on a single flexible link manipulator which is 

available in the robotic laboratory at the University of Saskatchewan. This contribution 

was detailed in Chapter 3 of this thesis.  

Contribution 3 (objectives 2-2, 2-3, 2-4) – A new end-effector trajectory tracking 

controller for flexible link manipulators has been developed. This new end-effector 

trajectory tracking controller has been derived based on the concept of the integral 

manifold of the singularly perturbed differential equations. For this purpose, the singular 

perturbed form of the dynamic models of flexible link manipulators was used. The 

novelties of this controller compared to available controllers are: 

- It is computationally efficient, since (1) - it only requires one corrective torque 

in addition to the computed torque command of the rigid link counterpart of the 

flexible link manipulator (2)- several properties of the matrices in the dynamic 

model of the flexible link manipulator were used, the derivation of the control 

command is simplified. 

- It is feasible and practical, since (1) - it has been experimentally verified on a 

linear model of a single flexible link manipulator and a nonlinear model of a two-

link manipulator with the first link rigid and second link flexible (2)- its 

implementation does not require measuring the time derivative of links’ lateral 

deflections, which are not easily available. 

This contribution resulted in three submitted journal papers which are Chapters 4, 5 and 

6.  
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Contribution 4 - A new method for deriving the zeros of the transfer function of a single 

flexible link manipulator considering the end-effector displacement as the output without 

evaluating the transfer function has been introduced by the candidate. The possibility of 

removing the nonminimum phase characteristic of a single flexible link manipulator by 

the partial collocation of the sensor and actuator was studied by the candidate. For this 

purpose, a small actuator was placed on the end-effector of a single flexible link 

manipulator. This actuator applied a torque at the end-effector which was synchronized 

with the base actuator. The variation of the location of right-hand-side zeros due to the 

existence of the end-effector actuator was studied.  It was observed that the partial 

collocation of the sensor and actuator for a single flexible link manipulator can not 

completely remove the right-hand-side zeros to the left-hand-side of the S-plane. That is, 

the partial collocation of the sensor and actuator can not change the nonminimum phase 

transfer function of a single flexible link manipulator into a minimum phase one.  The 

publications from this contribution were the following conference papers 

- Vakil M., Fotouhi R., Nikiforuk P. N., “Zeros of the transfer function of a rigid-

flexible manipulator”, 21st Canadian Congress on Applied Mechanics, Toronto, 

Canada (CD-Rom), June 3rd - 7th, 2007. 

- Vakil M., Fotouhi R., Nikiforuk P. N., “On the zeros of the transfer function of a 

single flexible link manipulator”, 17th IASTED International Conference on 

Modeling and Simulation, Montreal, Quebec, Canada, pp. 20-25, May 24th - 26th  

2006. 

7.3. Potential Future research  

 The extension of the research presented here can be from the theoretical and 

the experimental points of views. The possible future research directions are as follows: 

1- The end-effector trajectory tracking derived based on the concept of the integral 

manifold of the singularly perturbed differential equations, discussed in Chapters 4, 5 and 

6 is a model based controller. To account for the disturbances in the physical parameters 

of the system and improve the performance, the controller proposed here should be 
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adaptive. The possibility of combining adaptive control strategies with the new controller 

introduced here and its experimental verification can be an interesting research subject. 

2- For the precise end-effector trajectory tracking the joints’ flexibilities should also be 

considered in the dynamic model. In the controllers described in Chapters 3, 4, 5 and 6 

the flexibility of joints were not considered in the dynamic model. The extension of the 

controller for the end-effector trajectory tracking of the flexible link manipulators with 

joints’ flexibilities with experimental verification is another potential extension of the 

research presented here.  

3- The dynamic end-effector inversion method, discussed in Chapter 3, used the 

summation of the exponential function for the redefinition of the desired end-effector. As 

a possible extension, the combination of the summation of stable exponential functions 

with the sinusoidal or polynomial functions can be used for the redefinition of the desired 

end-effector trajectory. Therefore, a wider family of answers for the redefined trajectory 

will be available which an advantage is for control engineers. 
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