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Abstract

Flexible link manipulators (FLM) are well-known fdineir light mass and small
energy consumption compared to rigid link manipast(RLM). These advantages of
FLM are even of greater importance in applicatioiieere energy efficiency is crucial,
such as in space applications. However, RLM aikeps@ferred over FLM for industrial
applications. This is due to the fact that the at@lity and predictability of the
performance of FLM are not yet as good as thosBLldfl. The major cause for these
drawbacks is link flexibility, which not only makéise dynamic modelirfgof FLM very
challenging, but also turns its end-effeétimajectory tracking (EETT) into a complicated
control problem.

The major objectives of the research undertakehigproject were to develop a
dynamic model for a FLM and model-based controllersthe EETT. Therefore, the
dynamic model of FLM was first derived. This dynamiodel was then used to develop
the EETT controllers.

A dynamic model of a FLM was derived by means ofoael method using the
dynamic model of a single flexible link manipulaten a moving base (SFLMB). The
computational efficiency of this method is amorg ribvelties. To obtain the dynamic
model, the Lagrange methbevas adopted. Derivation of the kinetic energy &nel
calculation of the corresponding derivatives, whach required in the Lagrange method,
are complex for the FLM. The new method introdudedhis thesis alleviated these
complexities by calculating the kinetic energy ahd required derivatives only for a
SFLMB, which were much simpler than those of th&/FI o verify the derived dynamic
model the simulation results for a two-link mangtor, with both links being flexible,
were compared with those of full nonlinear finitereent analysis. These comparisons
showed sound agreement.

A new controller for EETT of FLM, which used theagularly perturbed forfhof
the dynamic model and the integral manifold concegis developed. By using the

! The term “dynamic model” refers to the differehtiguations which relate the time derivatives @f th
degrees-of-freedom of FLM to the input torques.

% The tip of the end-link of the manipulator is cdltend-effector”.

% Largange method is an approach for the derivatfdhe dynamic model.

“ Dynamic model of FLM can be expressed in the dartyuperturbed form which is composed of slow
and fast subsystems. This can be achieved sindeshense of FLM consists of the rotations of thikesl
(slow subsystem) and the links’ lateral deflectidimks’ vibration (fast subsystem).



integral manifold concept the links’ lateral detieas were approximately represented in
terms of the rotations of the links and input tasu Therefore the end-effector
displacement, which was composed of the rotatiohshe links and links’ lateral
deflections, was expressed in terms of the rotatminthe links and input torques. The
input torques were then selected to reduce the EE&Tdr. The originalities of this
controller, which was based on the singularly pbed form of the dynamic model of
FLM, are: (1) it is easy and computationally efiti to implement, and (2) it does not
require the time derivative of links’ lateral deftens, which are impractical to measure.
The ease and computational efficiency of the nemtroler were due to the use of the
several properties of the dynamic model of the FOMis controller was first employed
for the EETT of a single flexible link manipulat@@FLM) with a linear model. The novel
controller was then extended for the EETT of a<laisflexible link manipulators, which
were composed of a chain of rigid links with onlflexible end-link (CRFE). Finally it
was used for the EETT of a FLM with all links beifigxible. The simulation results
showed the effectiveness of the new controller.s€h&mulations were conducted on a
SFLM, a CRFE (with the first link being rigid andcond link being flexible) and finally
a two-link manipulator, with both links being flée. Moreover, the feasibility of the
new controller proposed in this thesis was verifigdexperimental studies carried out
using the equipment available in the newly esthblis Robotic Laboratory at the
University of Saskatchewan. The experimental veatfons were performed on a SFLM
and a two-link manipulator, with first link beingygrd and second link being flexible.
Another new controller was also introduced in thissis for the EETT of single
flexible link manipulators with the linear dynanmeodel. This controller combined the
feedforward torque, which was required to moveehd-effector along the desired path,
with a feedback controller. The novelty of this EIEGontroller was in developing a new
method for the derivation of the feedforward torqUdie feedforward torque was
obtained by redefining the desired end-effectgettary. For the end-effector trajectory
redefinition, the summation of the stable exporsniinctions was used. Simulation
studies showed the effectiveness of this new ctetrdts feasibility was also proven by
experimental verification carried out in the Robotiaboratory at the University of

Saskatchewan.
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Chapter 1. Introduction



1.1. Background

Industrial robots are mechanical devices which loarprogrammed to perform
different tasks [1]. The ease with which they canpbogrammed and the accuracy with
which they can carry out repetitive tasks leadghiir wide spread use in industry.
Moreover, increasing labor costs, as well as thpalsdity of executing tasks which are
impossible, difficult, or dangerous to humans ateomotives for the increased use of
robots in manufacturing lines. The average yean8tallation of robots in the United
States between the years 2002 to 2004 was 10,069 [@h which showed their great
industrial application. One of the most importaf#sses of industrial robots is that of
manipulators. A manipulator is a robot that canoagglish different tasks. An example
of an industrial manipulator which is availabletie robotic laboratory of the University

of Saskatchewan is shown in Fig. 1-1.

Links

Joints

Fig. 1-1: Three-rigid-link manipulator in the robotaboratory of the University of

Saskatchewan

The point where two parts of a manipulator are ected is called a joint, while
the part by itself is referred to as a link. Asexample, in Fig. 1-1 a joint and a link of
the manipulator are shown. The links of the mamifmus can be manufactured from
different types of materials and designed in vasidarms. However, based on the
flexibility of the links of the manipulators, thdwll into two main categories: rigid link

manipulators and light weight, flexible, link maualptors.



If the links of a manipulator are designed so aseimain almost stiff during
maneuvers, the manipulator is called a rigid linnipulator (RLM). Almost all the
manipulators which are currently used in the maectufing lines are RLM,; that is, their
flexibility can be neglected. Perhaps the simpleayic modeling of the RLM which
eases their controller design is one of the mamsars for their large industrial
applications. However, RLM are heavy and massiwud, their load-carrying capacity is
limited to 5-10% of their weight [3]. Thereforeethare not easily transportable nor are
they energy efficient. The considerable mass of RLEhd consequently their energy
consumption are of even more concern when RLMsuaes in space applications. To
reduce the mass of RLMs, the length of their linka be shortened or the cross section
area of their links can be reduced. Shorteningehgth of the links results in a smaller
workspace for the manipulator and is not practiemwever, reducing the cross section
area of links is feasible and does not reduce thekspace. The remedy of reducing the
cross section area of links to decrease the masheoRLM creates a new class of

manipulators, usually referred to as light weiglatnmpulators.

The links of light weight manipulators are slenderce, at least one dimension of
their cross section is relatively small comparedheir length. Therefore, the links of
light weight manipulators will vibrate and bend ithgr and after a maneuver. The faster
the maneuver, the greater will be their deflectaord the more severe will be their
vibration. It is because of this vibrating behauioat light weight flexible manipulators
are usually referred to as flexible link maniputatgFLM). Moreover, these vibrations
limit the performance of FLM compared to that of ML A flexible two-link
manipulator, which is available at the robotic lediory of the University of

Saskatchewan, is shown in Fig. 1-2.

Provided that the performance of FLMs is prediatadhd reliable, they can be
promising substitutes for RLMs since they are corhplight and energy efficient. The
performance of FLMs can be improved through theigmef proper controllers.
Although many controllers have been developed foe RLM and have been
experimentally verified, the application of thesentrollers to FLM does not lead to
satisfactory performance. This is due to flexigitif the links of FLM which do not exist

for RLM, thus, in their controller design, thisibility is not considered. For example,

3



vibration suppression is not of a concern in thetimdler design of RLMs whereas it is

one of the main concerns that should be addressticontroller design of FLMs. The

link flexibility makes the dynamic model of a FLMuth more complicated than that of a
RLM and increases the numbers of the degrees-etin@ of the FLM. This complicated

dynamic model thus creates several challenges end#sign and implementation of
model-based controllers for FLM.

- Link

Link

Fig. 1-2: Flexible two-link manipulator at the rdlwlaboratory of the University of

Saskatchewan

While researchers have done much during the pastiéeades [4,5], much more
has to be done before FLM can be widely used. Becatilink flexibility, the governing
dynamic equations for multilink flexible manipulatoare nonlinear partial differential
equations (PDE) [6]. Therefore, theoretically, thanbers of the degrees-of-freedom for
a FLM is infinite, whereas the numbers of the degref-freedom for a RLM is finite.
Finding an exact solution for the governing PDEaoFLM for a given input torque is
very difficult, if not impossible. Thus, to solvdase nonlinear PDE, approximate
methods like the finite element method [7] havébéoadopted to change the PDE into
ordinary differential equations (ODE). The resuti®DE can then be solved using the
strategies like Newark Newton-Raphson techniquee ansformation of the PDE of
flexible link manipulators into ODE is also critidaom the controller design view point,
since almost all the developed controllers in thblighed works are studies for the ODE
and not PDE [4]. The complex nature of the govegnddDE of FLM still requires
considerable effort for the controller design andréases the computational cost of the

controller. Finally, since the numbers of the degref-freedom for the FLM are much
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larger than that for their rigid link counterpartise required numbers of sensors for the

implementation of controllers are considerably ¢arg

1.2. Problem statement

In most industrial applications, suchpagting or welding, the end-effector of a
robot has to move along a desired path with a pd@peed, which is referred to as end-
effector trajectory tracking (EETT). In this typd application, for example, for the
flexible two-link manipulator shown in Fig. 1-3, thithe desired path (DP) and a given
velocity profile, the end-effector (EE) has to moatng the DP with the assigned
velocity to accomplish the EETT. For the EETT, #wtuators apply the control torque
(or force) according to the end-effector feedbatlpasition and velocity, so that the
tracking error becomes as close as possible ta Feomn Fig. 1-3, it is clear that the

control of the links’ rotation anglesj andd,, does not lead to the EETT. This is due to
the fact that not only,andé, , but also the links’ deflectiong, and &,, contribute to the

exact location of the end-effector.

DpP

Fig. 1-3: Schematic of a flexible two-link maniptda

The links’ flexibility of the FLM creates difficukes for the EETT, which are the
under-actuation feature and nonminimum phase ctearstics that are discussed in detail

below.



1.2.1. Under-actuation

The under-actuation feature is due to the fewanlyer of actuators for FLM
compared to their numbers of degrees-of-freedomAS8Jalready explained, theoretically
FLM have infinite numbers of the degrees-of-freedavhile the number of actuators is
finite. Even after changing the governing PDE ii@®E by using an approximate
method, such as finite element method, the undeiation feature still exists. As an
example, the flexible two-link manipulator shownhig. 1-3 has two actuators to move
the first and second links. However, the degreefseafdom are the links’ rotation angles,

g,andd,, and the degrees-of-freedom to describe the latlfbection of the flexible
links, é,and &,. Therefore, the numbers of the degrees-of-freedalinbe more than

two, which is the number of actuators. It is wartiealling that the governing equations
of the FLM are dynamically coupled. That is, them® constraints which relate the
degrees-of-freedom. These constraints are non-bol@my which means they are
differential equations that can not be transferirdd a complete differential form. In
other words, these constrains can not be obtaiyedifferentiation from an algebraic

equation.

1.2.2. Nonminimum phase feature

The nonminimum phase feature can be consideredeaside effect of the under-
actuation of the FLM. In fact, the non-holonomicnstraints that exist due the
underaction of the FLM have an unbounded responsmgl the causal end-effector
dynamic inversion and, thus, the calculated torgsienot acceptable. From the
mathematical point of view, the unbounded torquéctviis obtained in the end-effector
inversion of FLM is due to the unstable internahamyics of the FLM. Therefore, the
nonminimum phase feature of FLM is equal to thealsity of their internal dynamic.
The flexibility of the links and noncollocation tife sensor and actuators are the reasons
for the nonminimum phase characteristic of FLM [1Q]. The noncollocation of the

sensor and actuators means that the actuatord) wppdy the torques, are located on the

® The part of the system which is rendered unob&éduring the input-output linearization is called
internal dynamics [9]. For FLM internal dynamic daa considered as a representation of the non-
holonomic constraints.



joints, while the measurement of the end-effecispldcement occurs at the end of the
last link, which is not the same as the locationthe&f actuators. For example, for the
single flexible link manipulator (SFLM) shown ing=il-4, the torque is applied at the
base while the measurement of the end-effectodatisment is on the other end of the
link.

v
\

L\

T Y

o -

Fig. 1-4: Schematic of the movement of the endetdieof a SFLM upon
applying a torque
The initial movement of the end-effector in the ogipe direction of the applied base
torque, as shown in Fig. 1-4 for a SFLM, is thesemuence of the nonminimum phase
characteristic. For a stable linear system, themmoimum property means that the
corresponding transfer function in the S-plane fhgist-hand-side zeros. For example,
for a SFLM which is modeled linearly, let the trersfunction F(s) between the end-

effector displacemeny,, and applied torque,, be:

_y() _ p(s) .
T v

Then, some roots of numerafa(s) = 0 are located on the right-hand-side of the S-plane.
In Fig. 1-5, the schematic of the locations of thwe sets of zeros for a SFLM, namely
(-s,,s8,)and(-s,,s,), are shown. The right-hand-side zeros in Fig. 1eé5sgands, . The

zeros of a SFLM are always conjugate as is clean fFig. 1-5, which is also proven in
[10, 11, 12].

-S> -S S1 S»
Fig. 1-5: Schematic of the two sets of zeros f&FAM
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1.3. Research objectives

The research that is described in this thesis wakenaken to further pave the
ground of industrial implementation of the FLM. Digethe importance of the EETT, as
explained in Section 1.2, developing a controlteréduce the EETT error, as small as
possible, is of vital importance if the FLM is te lnsed in manufacturing. Thus, in this
research, model-based controllers for the EETTLd Rave been developed. Because of
the model-based nature of the study, deriving tyreachic model of the FLM was the
first step that had to be taken; then, based ondérered dynamic model, the EETT
controllers were developed. Finally, the effecties of the proposed controllers was
verified by experimental studies. Therefore, tihgectives of this research fell into the

two main categories:

1- Developing the dynamic moddl of FLM; and

2- Developing controllersfor the EETT of FLM and their experimental verifications.

To accomplish objective 2, the following sub-obpees were defined and achieved:
2-1- Approximate end-effector inversion of a SFLM amrperimental verification;

2-2-Model-based EETT of a SFLM using the integralnifioéd concept and

experimental verification;

2-3- Model-based EETT of a class of FLM which isposed of a chain of rigid links
with the flexible end-link and experimental veation by using the integral manifold

concept; and

2-4- Model-based EETT of the multilink flexible marngor using the integral

manifold concept. .

Remark: Because of the manuscript nature of this thesgjsrdis as well as references

might be repeated several times in the thesis.



1.4. Synopsisof thesis

The chapters of this thesis have been arrangeddier do cover the objectives
explained above. That is, the dynamic model ofRh# is first derived and then it is
used to develop different controllers. ThereforeChapter 2 the dynamic model of FLM
is obtained and verified. In Chapter 3 a new cdletrdor the EETT of a single flexible
link manipulator (SFLM) is introduced which combsthe joint proportional-derivative
(PD) controller with the approximate end-effectovarse dynamic torque. The feasibility
of the introduced controller in Chapter 3 was shdyrexperimental study. In Chapter 4
a new controller for the EETT of a SFLM based om tbncept of the integral manifold
of the singularly perturbed differential equatida8] was proposed and experimentally
verified. In Chapter 5, the developed EETT conémolbf Chapter 4, which was for a
SFLM with linear dynamics, was extended to a clalsaonlinear FLM. This class of
FLM was composed of a chain of rigid links with laxible end-link. The introduced
controller in Chapter 5 was experimentally verifieFinally, in Chapter 6, the EETT
controller proposed earlier in Chapter 5, which Wwased on the concept of the integral
manifold of the singularly perturbed differentigjuations, was extended to the multi-link

flexible manipulators. The summaries of each chagte as follows.
Chapter 2:

The content of chapter 2 was published in the ASMErnal of Vibration and
Acoustics under the title of “A constrained Lagrangrmulation of multi-link planar
flexible manipulator” [14]. In this chapter, theoskd form dynamic equation of a FLM
which can be used in the design of a model-basedTEontroller was developed. The
proposed approach in this chapter combined theresgmode (shape) method, to model
flexibility of the links, with Lagrange equationis the assumed mode method the lateral
deflections of the links were represented by th@reation of a number of predefined
spatial functions which were multiplied by time yig weight functions [15]. That is
é,i =12in Fig. 1-3, were:
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whereg (x) was the assumegth mode shape for théh link's lateral deflection,
A; (t)was its time varying weight function, called flelabvariables, anch was the

number of assumed modes used to model the fleyibiliowever, combining the
assumed mode method with the Lagrange equationghieadrawbacks of complicated
and lengthy Lagrangian function calculations andvdéive evaluations. To alleviate this
drawback, in Chapter 2 a new method was introdubetl evaluated the Lagrangian
function and the required derivatives only oncedaingle flexible link manipulator on a
moving base, which were not lengthy or complex.nfhesing the dynamic model of a
single flexible link manipulator on a moving ba#iee dynamic equation of a FLM was
obtained without any further derivative calculagoor Lagrangian function evaluations.
It is worth emphasizing that the proposed methad nas computationally cost effective
and less prone to error compared to the availalghnods which combined the assumed

mode method with the Lagrange equations.

The method was employed to derive a dynamic moti¢he flexible two-link
manipulator which is schematically shown in Fig3.1+or verification, the results of the
dynamic analysis from the dynamic model, obtainker adopting the method proposed
in Chapter 2, were compared with those found udirb nonlinear finite element
analysis. In the verification examples, a bang-bmmgue and the torque from the rigid
manipulator were applied to a flexible two-link nyauator. For these examples, the joint
rotations, end-effector path, components of theedfettor velocity, and deviation index
from the model and the full nonlinear finite elerhamalysis were compared so as to
check the accuracy of the developed model. Thesepaosons showed sound

agreement.

The dynamic model derived in Chapter 2, was use@hapters 3, 4, 5 and 6 to

develop EETT controllers.
Chapter 3:

The content of this chapter has been submittedoémsible publication in the
CSME transactions under the title of “Piece-wisaesead inversion by output redefinition
for a flexible link manipulator” [16]. In this chégr, a new EETT controller for a SFLM
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was introduced and its effectiveness and feagihitivestigated through the simulation
and experimental studies. The new controller in ddded the off-line torque obtained
from the end-effector inversion to the on-line stitedback controller which was a joint

PD controller, as shown in the figure below.

Desired Inverse +
: ( . e FLM
trajectory ' dynamic uh e,
e feedforwar v_|_
(end-cffector) @
Ufeedback
State -
Desired states”” | feedback | Actual states®

Fig. 1-6: Schematic of the end-effector trajectivagking method, 1: off-line signal, 2:

on-line signal

The novelty of this method was in introducing a n@ghnique for the end-effector
inversion. The new end-effector inversion methatefmed the end-effector trajectory so
that causal stable end-effector inversion coulddtgeved. For this purpose, the internal
dynamics of a SFLM was first obtained. It was shaivat the states of the internal

dynamics were the variables used to describe theraladeflection of the link,
A, J=1..n in Eq. (1-2), and their time derivativei§j,,j =1...n. Then the desired

end-effector trajectory was redefined so that tbandled values for the states of the
internal dynamic could be obtained. For the rediidim of the end-effector trajectory, the
summations of stable exponential functions werel Lbat is:

Vo) =>c,e™, m <0 (1-3)
j=0

where y, (t) is the redefined end-effector trajectory (the dabiend-effector trajectory
wasy,(t)) and c; are constants which were calculated, after thecsefe of
ther andm, , so that a bounded continuous torque could be aifaiAn example which

was provided in Chapter 3 clarified the main conaéphe approach.

To achieve the EETT, the torque derived based eméw end-effector inversion
method had to be combined with a state-feedbackatar, as shown in Fig. 1-6. It is

worth mentioning that the addition of the inversamaimic torque to the state feedback
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controller made the proposed method a closed-loograller. For this purpose, the joint
proportional-derivative (PD) controller, a stateedback, was added to the inverse
dynamic torque. The stability of the proposed efidetor controller was proven using
the Lyapunov criterion. Simulation studies carr@dSFLMs showed the effectiveness
of the new method. The experimental verificatiomdwacted on the SFLM, available at
the robotic laboratory of the University of Saskegwan, proved the feasibility of this

approach.

Although new end-effector inversion was studie€hmapter 3 for a SFLM, it can
be easily extended for the output inversion and flou the output tracking of any linear
single-input single-output nonminimum phase systdforeover, this method can be
used for the end-effector inversion of a singlibige link manipulator with nonzero

initial conditions [17].

The main limitation of the proposed method wasapplicability to a linear
dynamic model. Thus it could only be used for tH€TE of a SFLM and could not be
extended to the EETT of multilink FLM with a nondiar dynamic model. Since EETT
for multilink FLM, with nonlinear model, was the goof the candidate’s research,
another controller, which work even for nonlinegstems, had to be developed. This

new controller was introduced in Chapter 4, 5 and 6
Chapter 4.

The content of this chapter has been submittethiipossible publication in the
International Journal of Robotics and Automationdem the title of “End-effector
trajectory tracking of a flexible link manipulatosing integral manifold concept” [18]. In
this chapter a new end-effector controller forreeéir model of a SFLM was introduced
and experimentally verified. The new method wasetlasn the singularly perturbed

model of the manipulator.

A singularly perturbed system is a system in whdehvatives of some states are
multiplied by a small parameter, The following is an example of a singularly pereob

system in which the derivative of states multiplied by the small parameter
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x=f(x,zu,¢) (1-4a)
£z=9(x,z,u,¢) (@-4b)

In Egs. (1-4)x andz are the states of the system ant the input. One of the main
features of the system in Eq. (1-4) is that theattyic of the state is relatively faster
than that of the state That is whyz in Eq. (1-4) is called the state of the fast ssbay,
while x is the state of the slow subsystem. The dynansioaniese of FLM, in general, has
slow rigid body link rotations (slow subsystem) amthtively fast links’ vibration (fast
subsystem). Therefore, the dynamic model of FLM banexpressed in the singularly
perturbed form, as in Eq. (1-4). Consequently, gbssibility of using the concepts and
control strategies developed for the singulariytyrded systems can be explored for the
EETT of the FLM [13].

In Chapter 4, the concept of the integral manifofdthe singularly perturbed
differential equations was used to develop a newEEontroller for a SFLM with a
linear model. Based on this concept it was posddlnd an approximate solution far
from Eq. (1-4b) in terms of andu. For a SFLM it meant that the lateral deflectidnh®
link could be expressed in terms of the link’s tioia and input torque, details of which
are available in Chapter 4. Therefore, the endetdfedisplacement that was described by
the link’s rotation and lateral deflection could Bescribed only in terms of the link’s
rotation and input torque. Finally, since the numbklink’s rotation and input torque
were the same, the under-actuated SFLM appearebaioge to an approximate fully-

actuated system and its EETT could be accomplished.

Almost always the implementation of the controldgveloped for the FLM
required the links’ lateral deflections and thé&me derivative. Although measuring the
links’ lateral deflections was possible, for exaempy strain gauges, the measurements of
the time derivatives of the links’ lateral deflexts were hardly practical. One of the
valuable features of the controller introduced ima@ter 4 was that its implementation
did not require the measurement of the time davigabf the single link's lateral
deflection. This was achieved by an observer desigo estimate the time derivative of
the link’s lateral deflection.
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The stability of the new proposed controller wasven using the Lyapunov
criterion. Simulation studies showed the supegouwtf this new controller in the
reduction of the EETT error. The experimental veaiion of the new controller which
was conducted on a SFLM available at the robotioratory of the University of
Saskatchewan showed the feasibility of the methidte limitation of the proposed

method is its applicability to only linear systems.
Chapter 5:

The content of chapter 5 has been submitted fosiplespublication in Journal of
Vibration and Control under the title of “End-effec trajectory tracking for a class of
flexible link manipulator” [19]. In this chapter¢lEETT controller developed in Chapter
4, which was based on a linear dynamic model oflaMg was successfully extended to
a class of flexible link manipulator. This classsnamposed of a chain of rigid links
with the flexible end-link (CRFE), which had nordar dynamic model. A schematic of a
member of a CRFE with the first link rigid and seddink flexible is shown in Fig. 1-7.
Therefore, the concept of the integral manifoldtled singularly perturbed differential

equations was successfully used to reduce the E&DF of the CRFE.

To investigate the possibility of implementing tbentroller introduced in [18],
which was for a SFLM with linear dynamics, for tBRETT of the multilink FLM with
nonlinear dynamic model, first its extension to @RFE was studied in Chapter 5. This
was due to the fact that the CRFE had a simpleamyn model than the multilink
flexible manipulator. The successful extensionh# method developed in [18] for the
EETT of the partially flexible nonlinear system, ER increased the possibility of its
application to a full flexible nonlinear multilinknanipulator. The implementation of the
introduced controller, similar to that developed @hapter 4, did not require the
measurement of the time derivative of the link®tal deflection. This feature made the
implementation of the controller feasible. The tirderivative of the link’'s lateral
deflection was estimated by using an observer winal designed based on the gain-
scheduling technique, detail of gain-scheduling leafound in [20].
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Fig. 1-7: Schematic of a two link manipulator wiitst link rigid and second link flexible

The stability of the proposed controller was prousimg the Lyapunov criterion.
Simulation studies were performed on the manipulskmwn in Fig. 1-7. Experimental
verification was conducted on the manipulator, shawFig. 1-8, with the first link rigid
and second link flexible, a configuration calledidi shoulder-link flexible elbow-link
manipulator. The limitation of the proposed metihdhapter 5 was that it could only be
used for the EETT of CREF, and could not be usedhie EETT of multilink flexible

manipulators.

Fig. 1-8: Rigid shoulder-link flexible elbow-link amipulator available at the robotic

laboratory of the University of the Saskatchewan

Chapter 6:

The content of chapter 6 has been submitted fosiples publication in the
International Journal of Non-linear Mechanics unther title of “End-effector maneuver
control of the multilink flexible manipulators” [21In this chapter, the EETT controller

which was studied, developed and experimentallyfieerin Chapters 4 and 5 for SFLM
15



and CREF, respectively, was successfully extendetheé EETT of multilink flexible
manipulators with full nonlinear dynamic models.aths, the concept of the integral
manifold of the singularly perturbed differentiajuations was successfully employed to

reduce the EETT error of the multilink flexible nigmlators.

Similar to Chapters 4 and 5, the implementatiomhef controller did not require
the measurement of the time derivatives of theslinateral deflections, making this
feature practical. The stability of the new corlegolwas proven using the Lyapunov
criterion. The simulation results for the EETT ofva-link flexible manipulator, shown

in Fig. 1-3, proved the effectiveness of the newtagler in reducing the EETT error.
Chapter 7:

In this chapter the summary and casiolsof the thesis are presented. The
contributions of the research are discussed. Trextthns for the future research study

are also provided in this chapter.
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Chapter 2. A constrained L agrange formulation
of multi-link planar flexible

manipulator
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Abstract:

In this chapter, the closed form dynamic equatiohplanar flexible link manipulators
(FLM), with revolute joints and constant cross smus$i, are derived combining the
Lagrange’s equations and the assumed mode shapedn&b overcome the lengthy and
complicated derivative calculation of the Lagramgi&unction of a FLM, these
computations are done only once for a single flexlmk manipulator with a moving
base (SFLMB). Employing the Lagrange multipliersl@ahe dynamic equations of the
SFLMB, the equations of motion of the FLM are dedvin terms of the dependent
generalized coordinates. To obtain the closed fdymamic equations of the FLM in
terms of the independent generalized coordinaltespatural orthogonal complement of
the Jacobian constraint matrix, which is associatéd the velocity constraints in the
linear homogeneous form, is used. To verify theppsed closed form dynamic model,
the simulation results obtained from the model weEmn@pared with the results of the full
nonlinear finite element analysis. These compasssiltowed sound agreement. One of
the main advantages of this approach is that thgetedynamic model can be used for
the model based end-effector control and the vitmaguppression of planar flexible link

manipulators.

Keywords: Flexible link manipulators, dynamics, Lagrange nplikrs

2.1. Introduction

The derivation of a dynamic model éoflexible link manipulator (FLM) which
captures the effects of the link’s flexibility ibe first step in model based research. To
apply the control strategies developed for a fiortder system to a FLM [1], the patrtial
integro-differential equations (PDE) of a FLM [2,B&ve to be changed into ordinary
differential equations (ODE).

2.1.1. Literaturereview

An effective technique for converting the governPQE of a FLM [2,3] into an
ODE is to employ finite element analysis (FEA) B was done in [5-10,46]. In [5] the
dynamic equations, as well as the natural freq@snai a single flexible link manipulator
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(SFLM) rotating with a constant angular velocityrevgliscussed. It was shown in [5] that
by increasing the angular velocity, the naturafjfirencies of the rotating SFLM increase
due to the centrifugal force and consequently ststiffening effect. In [6] a linear shape
function was employed to derive the dynamic model planar FLM. In [7] using cubic
or Hermitian shape functions, the dynamic modeh planar FLM was derived. In [8,9]
the dynamic equations of a rotating SFLM were fobtained and then a piezoelectric
actuator was used to suppress the vibration. I fi® dynamic equations of several
flexible link mechanisms considering complete gewita nonlinearity [11 p. 338] were

derived.

Another method of changing the PDE of a FLM into @DE is to use the
assumed mode shape method (AMM) [12 Section 78k @pproach was used in [13-
17]. The concept of using the AMM to derive the d@ync model of a FLM was explored
in [13]. In [14] the details of the dynamic equasoof a planar flexible two-link
manipulator using the first two mode shapes ofamgpled-free beam per link were given.
In [15], the dynamic equations of a planar FLM wetdained and the results were
compared with the results of experimental studie§l6] the linearization technique and
the dynamics of rigid link manipulators were condainto model the dynamics of a
planar FLM. In [17] the model of a SFLM was dedvand used to experimentally

suppress the vibration employing piezoelectric acits.

2.1.2. FEA for dynamics, AMM for control

FEA is usually used to obtain the static and dywcamsponse of a system to
known forces. However, the AMM is used not onlytdain the dynamic response of the
system, but also to control unwanted vibration and-effector. Compared to FEA, the
drawbacks of the AMM are (1) - the mode shapes eyed in the AMM are an
approximation of the real mode shapes of the syg®m the nonlinear terms in the
strain energy which lead to effects such as ss&fsning can not be addressed properly
and (3) - the AMM does not lead to realistic appmation for the dynamic model of a
FLM with a varying cross section such as a tapdredm. These drawbacks are the
source of errors in the use of the AMM for modeliagFLM. Therefore, the FEA

provides a more precise dynamic model for a FLWhttlee AMM [18]. However, the
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FEA not only requires more complicated modeling aadculation but it also needs
considerable more computational time than the AMiMs to be noted that among the
main motivations for using the AMM over FEA, isltave a closed form dynamics of a
FLM to design computationally fast controllers. §hs a critical requirement, to have
states of the system available with essentiallyllsgelay [19]. As a comparison the
simulation of example 2 given in Section 2.5 toofsé&c) using the AMM but 170 (sec)
employing the FEA Moreover, fewer degrees of freedom, which mdan&r sensors
and measurements, is another motivation for utidizthe AMM instead of FEA for
controller development and experimental verificatidany controllers which have used
dynamics based on the AMM for the FLM with constambss sections were
experimentally verified [20-23]. Moreover, for aaptical difference between AMM
modeling and the use of real apparatus, robusta@aethniques [24,25] can compensate
for drawbacks (1) and (2) above. Thus, for prelmmnstudies on the design of a
controller, it is reasonable to start with AMM whics a model that is less complicated

than the one obtained using FEA.

2.1.3. Theproposed approach

In this chapter a combination of the AMM and theyiange’s equations is used to
derive the dynamic model of a FLM with revolutenis and constant cross sections.
However, in adopting the Lagrangian approach ferdiinamic model derivation, after

the evaluation of the Lagrangian functidix T.,, —U,, , a set of derivative calculations

have to be carried out [26, 27]. For a FLM consittethe AMM for the modeling of the
flexibility, as the number of links increases, tedculation of the Lagrangian function
and evaluation of the derivatives becomes moretlgngnd complicated and thus more
prone to error [14,16]. Previous attempts to adevithis problem employed computer
programming for symbolic simplification [28] or neced computation [29], but the
evaluation of the Lagrangian and/or calculation tbé derivatives still required

considerable effort. In this chapter the probleraviercome as follows.

® To solve the governing equations in the AMM mode# fourth-order Runge-Kutta with a sampling time
of 0.0008 (sec) was used. The solver of the FEA tvasNewmark method with the full Newton-Raphson
technigue for updating matrices with the same sengpime of 0.0008 (sec).
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The Lagrangian function calculation and derivatxluation are computed just
once for a single flexible link manipulator withmaoving base (SFLMB) and with a
constant cross section. Then, using the dynanuateans of a SFLMB, and defining a
set of dependent generalized coordinates, the dgneguations of the FLM are derived.
In this approach there is no need to calculateéhgthy derivatives of the Lagrangian
function of the FLM. However, since the manipulatonematics are based on the
dependent coordinateshe forces associated with the constraint commtitiwill enter the
Lagrange’s equations; that is, the constraint ®reee considered as a part of the
generalized forces. This issue is addressed byidkeof the Lagrange multipliers ([26]
Section 7.1, [27] Section 6.7). To express theadyio equations in terms of the
independent coordinates and also to eliminate #grdnge multipliers, the orthogonal
complement of the Jacobian constraint matrix, ttegrion associated with the velocity
constraints in the linear homogeneous form, is uSette the orthogonal complement of
the Jacobian constraint matrix is obtained natyrdibm the velocity constraint
equations, without any complex computations, iteferred to as a natural orthogonal
complement (NOC) [30, 31]. Therefore the closearfatynamic model of the planar
FLM with revolute joints and constant cross sectisnderived in terms of the
independent coordinates. The validity of the pregloapproach was checked by a fully
nonlinear finite element analysis (FEA) [32]. ¢t essential that the results of the full
nonlinear FEA must be reliable; that is they mustchose to the experimental results.
Therefore, the verification of the derived dynamodel with the full nonlinear FEA
implies close agreement between the results ofntibeel introduced here with the
experiment. It is worth noting that the dynamicdabderived here was used in the
design of our proposed model based controllerdiferend-effector trajectory tracking

and vibration suppression and was experimentalljied for a SFLM [33, 34].

" For simplicity in the rest of this chapter, thene“coordinate” refers to the “generalized coordéria
(The generalized coordinates of a system are tbheggical quantities that by knowing them it is gibte

to draw a diagram of the system. The minimum nunabeyeneralized coordinates required to specify the
position of a system ihe number of degree of freed¢DOF) of that system [26].)
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2.1.4. Outlineof the chapter

In Section 2.2, the mass and stiffness matrices, rnfatrix representing the
Coriolis and centrifugal forces and the gravity mxator a SFLMB are presented. In
Section 2.3, introducing the Lagrange multipligree dynamic equations of a FLM are
derived. In Section 2.4, using the NOC method,Lthgrange multipliers are eliminated
from the dynamic equations of a FLM and the cloeeth dynamic equations in terms of
the independent coordinates are proposed. In $etid the simulation results for a
flexible two-link manipulator are presented. Forrifieation purposes, the results
explained in detail in Section 2.5 obtained frora gimulation of the proposed dynamic
model, are compared with those obtained employulgrfonlinear FEA. Finally, in

Section 2.6 conclusions of the research are predent

2.2. Dynamic equationsof a single flexible link manipulator with a
moving base (SFLMB)

A SFLMB with a constant cross settias shown in Fig. 2-1, is considered for
the dynamic model derivation. The flexible link iodeled as an Euler-Bernouli beam.
Therefore, deformations due to shear and rotartienare neglected [35]. THX,,Y,)
and(x,¢ ), shown in Fig. 2-1, are the inertial and moving coate frames, respectively.

The(x,¢ )coordinate frame, attached to the link, has baseskation (X,,Y,) and rotation

(6). The mass and the mass moment of inertia atiphef this link represent the motor
which moves the next link. For the last link, thags and the mass moment of inertia at
the tip represent the end-effector. To considethtlie of the first link, an additional mass
moment of inertia is added to the base of the SFL$¥iBwn in Fig. 2-1. A schematic of
the first link is shown in Fig. 2-2. In this wayl #lhe links, mass and mass moment of
inertia of the motors and end-effector are takéo aonsideration. Since the first link of a

FLM is attached to the ground, tlfg, cdordinate frame attached to the first link can

only rotate.
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Fig. 2-1: Schematic of a SFLMB with a moving base
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Fig. 2-2: Schematic of the first link of a FLM
According to the AMM the lateral deflection of thek, &(x,t) in Fig. 2-1 (or Fig.
2-2), is

£ =3 A (029 2.9)

where ¢ (x ) is theith spatial assumed mode shape, out nfode shapes and (t is)its
time varying weight function. The closer the setecinode shapeg,(x , are to the exact

real mode shapes of the system, the more accuithteevthe approximation proposed in
Eq. (2-1). The approximation of the mode shapesssurce of error for AMM. The other
source of error is the truncation on the numbenoéle shapes,. Increasing this number
usually improves the approximation given in Eqg.lj2at the expense of computational

time. However, in the case of a real system anthenpresence of the internal material
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damping, which is usually modeled proportional e stiffness matrix [36], the higher
modes of vibration will be damped out more quictign the first few modes. Therefore,
only the first few modes of vibration mainly cobuie to the dynamic response. It is
clear then, that since the method introduced is thapter is based on the AMM, it has
the same source of error as the AMM, as explaiteve and will not introduce extra

error to the system.
To derive the dynamic equations 8fF.MB, a combination of the Hamiltonian

principle and the AMM is used. Since the numberegjuired independent coordinates to
define kinematically the SFLMB shown in Fig. 215[X,,Y,,8,4,,...4, , i$ finite, it
has been proven ([26] Section 6.5) that to satibly Hamiltonian principle, each

independent generalized coordinate has to satisfydllowing Lagrange’s equatidn

M. = 2-2
g o Qs (2-2)

d (aTSM ) 0T, , 0U
dt " dq

where, T,, is the kinetic energy of the SFLMB,,is the potential energy of the

SFLMB andQq,, is the generalized force vector corresponding to

2.2.1. Derivation of the kinetic energy of a SFLMB

The kinetic energy of the SFLMB shownFig. 2-1T,,, is composed of the
kinetic energy of the flexible linkT,, and the kinetic energy of the tip masg,. The
kinetic energy of the link and the correspondingnte after its differentiation are first
derived. Then, the effect of the tip mass is added.

Thekinetic energy of thelink of a SFLMB

The kinetic energy of the link,, ignoring the rotational kinetic energy (based on

the Euler- Bernoulli beam assumption) is

1
T, ZEI(VP.Vp)dW -

® The Lagrange’s equation, Eq. (2), must be satidtie every single component of the veator
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whereV, is the velocity of an arbitrary poirg on the link as shown in Fig. 2-1 and “.” is

the dot productV, can be expressed & =V, +V ,,, wheré/,is the velocity of point

p/o?
o, the origin of the(x,¢ goordinate frame, and,,is the relative velocity of poinfp

with respect to poind. Hence

+V

V, =V, +V, (blo) (2-4)

(p/0)x

wherev,,, and V. are the components o¥ , in the x and ¢ directions,

p/o)g
respectively, as illustrated in Fig. 2-1. Substitgt Eq. (2-4) into Eq. (2-3) and

usingdm= pdx, whereo is the mass per unit length, leads to
T =)+ (M) + (M) +(M)s +(T)s (2-5)
where
L

1Y 1 1Y
(M), :E J-pvo W,dx  (T)), :E J-pv(plo){ w(p/o){dx (M) :E jpv(p/o)x m/(p/o)xdx
0 0

0

L L
(M), = J.IOVO Vipr0dx (T))s = J-IOVO Vipr0) X (2-6)
0 0

L
and J',oV(P,O)X.V(P,O)de =0. The term(T,), is the kinetic energy due to the translation of
0

the(x,¢) coordinate frame(T,),and(T,),are the kinetic energies due to the relative
velocities of the pointp with respect to the poird and (T,),and(T,), are the kinetic

energies due to the interaction of tlie, ¢ cQordinate frame’s translations and the

relative velocity of the pointp with respect to the poird. Based on the AMM, Eqg. (2-

1), Vipro, andv(p,o)g are
Vipray, = =06 ==0Q A OAX) + Vipro, =Xx0+&=x0+3 A 10@(X) (2-7)
i=1 i=1

Moreover,V, in the(X, ,Y,) coordinate frame is
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. . T
(Vo)X|Y, = [Xo Yo] (2'8)
For the calculations ofT,),and(T, )5, the velocitie¥,,, .V, andV, should be

defined in the same coordinate frame. ThYsis expressed in t&, & cpordinate frame
(\/o)xf = R;— (\/0)X|Y| (2_9)
where

- { cos@) sin(H)} (2-10)

—-sin@) cosP)

Substituting Egs. (2-7), (2-8) and (2-9) into E(&5) and (2-6) , the first two terms of
Eq. (2-2) become

d 0T, 0T| > d 6(T|), aT), < R .
a(a) |=1a o )~ o —(;(MJJQ"‘(;(Q)JQ (2-11)
—M|q+C|q

where (M), and (C,), are the mass matrix and the matrix repreésg the

Coriolis and centrifugal forces obtained after ttiéferentiation of (T,),,i =1..5,
5 5

respectively. Moreover, M, = Z(Ml)i andC, = Z(Cl)i . The elements of(M,), and
i=1 i=1

(C,); modeling the flexibility of the link with twossumed mode shapes;2 in Eq. (2-

1), are given in Appendix 2.1.

Remark 2.1: Alternatively, after obtaining the kinetic energiytbe system and writing it
in the formT = (1/2)g" M@, the mass matridd , can be obtained. Moreover, the

elements of the matr@ can be obtained from the mass matrix using thds@ifiel

symbol. That is

p
C(,j)= zci,jqu
k=1

® Hereafter, the terms “mass matrix” and “matrixrementing the Coriolis and centrifugal forces” refe
the coefficients of the multiplier of the secondddiirst derivative of the generalized coordinatehwi
respect to time which is obtained after the diffeiaion of the kinetic energy, respectively.

28



Cx = W2OM(,j)/aq, +oM(i,k)/0q; —oM (j,k)/aqg;)

wherep is number of the element in the vecwprand ¢, , is the Christoffel symbol.

The elements of the mass matrix, and the matrisesgmting the Coriolis and centrifugal
forces, given in Appendices | and Il, were checlsithg the above method.
Thekinetic energy of thetip mass of a SFLMB

The tip mass has both linear and angular velociliess, its kinetic energy is
Ttip = (Ttip )Iinear + (Ttip)angular (2'12)

where(Ty, ) jnear @NA(Ty, ) anguar @re the translational and rotational kinetic gres of the

tip mass, respectively. The translational kinetiergy,(T,, can be derived fronf,

) linear !

as follows. Assume that the tip masg,, is a virtual link with lengthL, and mass per

unit length p, attached to the flexible link such tmg, =L, o, . Therefore
oy =—> (2-13)

Shrinking the length of the virtual link to the meand knowing thatm,, =L, o, is

constant turngo, into the Dirac delta function, that is
Py = My, Jd (X - L) (2‘14)

wherelL is the length of the flexible link witim,; at its tip andx is as shown in Fig. 2-

1. For an arbitrary functiori(x) it is known that
L
[ M, (x= L) f (x) dx=m,, (L) (2-15)
0

Using Egs. (2-14) and (2-15), the translationalekim energy and the corresponding

terms (mass matrix,(M and the matrix representing the Coriolis andirdeigal

tip )Iinear !

forces, (C ) are obtained from the relations given in Eqs6)and (2-5) and the

tip )Iinear

expressions given in Appendix 2.l. Thus,
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i a(T'[ip )Iinear ) _ a(Ttip )Iinear
dt* g aq

= (M tip )Iinear q + (Ctip )Iinear q (2-16)

The rotational kinetic energy of the tip mass is

(T = 5 11 0+ E (L) =2 1,06+ (X AL @-17)
fLy=28 )= (2-18)
X x=L dX x=L

where |, is the mass moment of inertia of the tip ma8sis as shown in Fig. 2-1,

tip

and¢is given in Eq. (2-1). Therefore

i a(Ttip ) angular ) a( tip )angular

dt aq aq = (M tip )angular q + (Ctip )angular q (2'19)

The elements ofM and(Cy,) modeling the flexibility of the link with two

tip )angular angular

assumed mode shapes;2 in Eq. (2-1), are given in Appendix 2.l1l. Combigi&qgs. (2-
16) and (2-19)

d aT| i
ol ”’) “’-Mt.pq Cypd (2-20)

WhereM = (M tip )Iinear + (M tip ) angular anCK:tlp = (Ctlp )Imear (Ctip )angular '

tip
Kinetic energy of a SFLMB

The (total) kinetic energy of a SFLMHB,,,, is composed of the link and tip mass

kinetic energies], andT,, respectively. Thus,

tip
ooy Do € Ty ey TPy s mgteCo (220
dt" aq dq dt aq aq SM SV
where
{MSM :_M| +My, (2-22)
Cow =G +Cy,
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Mg, Is the mass matrix, an@y,, is the matrix representing the Coriolis and céundal
forces for a SFLMB.
Remark 2.2: To have a linear model for a single flexible limanipulator with a fixed

base, which is usually used in the design of theai controllers [1, 37], the lateral

deflection of the link with respect to the shadomk ¢, is considered to be very small.
Then, (T,), as defined in Eq. (2-6), can be neglected from kiveetic energy’'s
expression. As well, for a single flexible link mpmlator with a fixed bas€T, ),,(T,),

and (T,)  are zero.

2.2.2. Potential energy of aSFLMB

To derive the last term on the left hand side of @eR),0U /dq, is required. The
term U, calledUg,, for a SFLMB, is composed of the potential enedye to the

gravitational force if the manipulator moves in thegtical plane, and the potential energy
(strain energy) due to the link’s flexibility. Assung that the SFLMB is utilized in the

vertical plane, the potential energy of the linkeda gravity, forX, as the datum, is
L
U)) poenia = [0 (Yo +xsin(6) + £ cos)) dx (2-23)
0

wheregis the gravitational acceleratiom is the mass per unit length aig, x,é and

Gare shown in Fig. 2-1. The potential energy (steairrgy) due to the link’s flexibility,
neglecting the geometric effect for a beam in begdi11] p. 388) and the shear and

axial deformations, and assuming linear elasticennt is:
_ 1% 0%,
(U I )strain - E JEI (W) dx (2_24)

whereE and| are respectively the Young’s modules and the stoomment of area for a
SFLMB. It is to be noted that addressing all negldderms in the strain energy requires
use of full nonlinear FEA [32, 38] at the expensaigh computational time. In the three
examples presented in Section 2.5, the sectionngeaith the simulation, the results of

the full nonlinear FEA are compared with the AMMthaut these nonlinear terms. The
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close agreement of the FEA and AMM indicates tleglecting these nonlinear terms in
the AMM modeling of those examples are reasonaliyifjable. These nonlinear terms
may have some effects, which are not captured byMANMN the dynamic motion for

special circumstances, such as a very flexible baanigh speed maneuvers [10, 32, 38].

The potential energy of the link of a SFLMB,, is the summation ofU,)

potential

and (U,) that is

strain !

UI = (UI ) potential + (U | )strain (2-25)
By substituting Eq. (2-1) into Eq. (2-2%9U /0q is

U
a_I:GI +(K\)s 0 (2-26)
q

whereG, represents the gravity matrix afi] ), is the stiffness matrix of the (flexible)
link. The elements o6, and(K,), modeling the flexibility of the link with two mal
shapesn=2 in Eq. (2-1), are given in Appendix 2.lII.

To consider the potential energy due to the graweital force for the tip mass, the

strategy of deriving,,, M, andC,, is adopted. That is, the mass per unit lengthrgive

in Eq. (2-14) is substituted in the expressionWf) ..., andG, given in Eq. (2-25) and

Appendix 2.11I, respectively and are callég andG,, . Thus,
ouU
WSM: sw T (K)gd &F)
and
Gow =G +Gy, (2)28

whereUg,, =U, +U, is the potential energy of a SFLMB, shown in B, including

tip

the link’s flexibility and the gravity of the linand tip mass.
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2.3. Dynamicsof a FLM using dynamics of a SFLMB and L agrange
multipliers
To derive the dynamic equations of a flexible linkanipulator (FLM) with
revolute joints and constant cross sections, whscltomposed of several links, the
dynamic equations of a SFLMB can be used. Fig.iR48trates a FLM composed of

three links. For each link a set of coordinateyivalent to the ones adopted for the
SFLMB in Section 2. 2, is used. Therefore, for i the coordinates are

z=[g, 9, .. .. q] (2-29)
where ¢, =[XOi Y, 6 A ... A,|" is the coordinates of thith SFLMB. The

kinetic and potential energies of the FLM are

Tew = i(TSM)i (2-30)

Uey :Zr:(u sm)i (2-31)

where sets of T, and(Tg,),) and U.,andU,,);) are the kinetic and potential

energies of the FLM and théh SFLMB, respectively, andis the number of the links.
Substituting Eqgs. (2-30) and (2-31) in the Lagrasgguations
— ( N =
dt az s} oq, oq (2-32)
MFMZ+CFMZ + Gey +(KFM)BZ =Q

d aTFM) _Z(d a(TSM a(TSM) a(USM)

where
(Mgu), 0 0 0 (Csu)s 0 0 0
0 (Mgw), O 0 0 (Csu), O 0
M., = C., = 2-33
M 0 0 0 FM 0 0 0 (2-33)
0 0 0 (Mgy), 0 0 0 (Csu):
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(Gsum): (K)g): 0 0 0

_ (GSM)Z _ 0 ((KI)B)Z 0
Geu = Kanda =) g 0 0 (2-34)
(Gsm): 0 0 0 ((K)e),

and (Mg,),,(Csv)i . (Ggy), and((K,)p), are the mass matrix, matrix representing the

Coriolis and centrifugal forces, gravity matraqd stiffness matrix for theh SFLMB,
respectively. These matrices are obtained in Se@i@. The right hand side of Eq. (2-
32),Q, is addressed later in this section, Eqs. (2-362144).

@3\
. S
33
\ X03 \%/////t 0.,
/)
DS

A Y,
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-

i)
0

Fig. 2-3: Schematic of a FLM

Remark 2.3: The elements of the mass matrix in Eq. (2-38),,); i=1..r, are for the
SFLMB shown in Fig. 2-1, which does not take inte@unt the first SFLMB’s hub, .

This difference can be observed by comparing Rgk.and 2-2. To consider the mass

moment of inertia of the hub, has to be added to the element of the third rowthmd

column of (M, ),, the mass matrix of the first SFLMB.
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Remark 2.4: Since the first two rows and columns bf,, and Cg,,, and the first two
rows of Gg,, are related to the displacement at the origin efattached coordinate frame

to each link, and due to the fact that for thet i85LMB the origin is fixed, the first two

rows and corresponding columns have to be omittedn f(Mg,),and (Cgy),-
Moreover, for the same reason, the first two rovg§@,,), are omitted. This is similar
to modifying the matrices in FEA when applying bdary conditions. The changes that
have to be applied to the stiffness maiflk.,, ), are discussed is Section 2.4.

Lagrange’s equation for the FLM is

d ey 0Tey , O
dt' 92’ 9z 0

Z = Q (2-35)

To complete the derivation of the dynamic modelg tgeneralized forcesQ
corresponding to generalized coordinates have tecdbeulated. Since there are more
generalized coordinates than the DOF of the sydtieencoordinates are not independent;
that is, there are constraint equations. Theseti@nsequations create constraint forces
which must be considered in the generalized foecgsessions ([26] Chapter 7.1, [27]
Chapter 6.7). In other words, when the generalzsatdinates form a constrained set,
the reactions associated with the constraint carditenter into the Lagrange’e equations
([26] p.324). Thus, the generalized forces at tghtshand side of Eq. (2-35) consist of

the actuator’s force®, and constraint forc€..
Q = Qa + QCF (2'36)

Recalling the fact that the lateral displacementhefith link is & = Zn‘/}ij (t)g (x), where
j=1

@ is thejth mode shape of théh flexible link, assuming thg satisfies the clamped

boundary condition, and considering ttie link, shown in Fig. 2-4, the virtual work

(ow) due to the virtual displacement of the coordisaie

ow, = (7, —1,,,)06, — Ti+1z¢.j (Li)JAij N ) oW, = 1,00, i=r (2-37)
=1
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€.\ The ith link

Fig. 2-4: Thdth link of a FLM with the applied actuator torques

The virtual work due to the constraint forces vk addressed later. Therefore, the
generalized forces for théh flexible link due to the actuators’ forces (toes), using Eq.
(2-37), are

Ti
Qa| = B||: i| -$8)
lin
0 0 | [0]
1 -1 0 0 0
0 -¢g,(L 1 -1 1
B = ak) i=1,B = i=23.,r-1,B =
e e 0 -g¢g, (L) 0
0 -4,(L) o2 .. .
0 - @ (L )] @+n)x2 1 0] @)l
i=r (39)
Thus
Q, =BT -4P)
where
'B,(:) B,(:2) 0 0 0 0 | 1, ]
0 B,:1) B,(:2) 0 0 0 I,
0 0 B,(:D) B;(:,2) . . T,
B= 0 0 0 , T= (2-41)
0 0 0 0 .
. y .. B,_(1D) B,_(2 T,
0 0 0 0 0 B (-1 | s
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and B,(:, 1) andB, (:, 2represent the first and second columnsBpfin Eq. (2-39). The

consideration of the constraint forces in the Lages equations is addressed by

employing the Lagrange multiplieps The constraint forces are due to the holonomic

constraint!’ on the coordinates: The displacement of tinef the ith link is the

same as the displacement at the base afttté link, which is

Xoi + R n Li — Xoi+1 (2 42)
Yoi ? 2/1” (0'1 (L' ) B Yoi+1
=1

whereR; is the rotation matrix for theh SFLMB, as defined in Eq. (2-10). Taking the

derivative of Eq. (2-42) with respect to time, tredocity constraints are obtained, that is
the velocity of the tip of th&h link has to be the same as the velocity of dxelnf the
i+1th link. The velocity constraint can be rewritte a

A,Z=0 (2-43)

Details of matrix A,, called the Jacobian constraint matrix, for a ifiex two link

manipulator modeling the flexibility of each linkittw two assumed mode shapes are

given in Appendix 2.IV. Using the Lagrange multgsb,y , the constraint forces are [26,

27]
QCF = AJTy (2‘44)

Combining Equations (2-35), (2-36), (2-40) and &);4he dynamic equation of the FLM

IS
MFMZ+CFMZ+GFM +(KFM)BZZET+AJTV (2-45)

To solve the dynamic equation of the FLM for a giveput torquer , the equations of
motion, Eg. (2-45), and the constraint equationg, E2-42), have to be solved
simultaneously. Thus, the values of the time vayibagrange multipliers and

constrained coordinates are obtained.

19)f a velocity constraint is holonomic, then thepdsts an integration factor for which the Pfafffanm of
the constraint equation becomes a perfect diffexiio].
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2.4. Eliminating Lagrange multipliersfrom the dynamic equations

In this section, the Lagrange multipliers are etiated from Eq. (2-45) and the
dynamic equation of the FLM is obtained in termstle#é independent coordinates. To
eliminate the Lagrange multipliers from Eq. (2-4%)k orthogonal complement matrix,
T, of the Jacobian constraint matrid, in Eq. (2-43), is obtained. This matriX, is
called the natural orthogonal complement (NOC) [3@cause it is obtained naturally
from the velocity constraint equations without amomplex computation. Therefore, to
derive the closed form dynamic equation in termstled independent generalized
coordinates, the NOC of matriR, in Eq. (2-43), is combined with Eq. (2-45). It sk
be mentioned that NOC is a projection method ofdyreamic equations into the tangent
space of the constraint manifold. The concept ©f pinojection technique is discussed in
[39 Sections 6.5 and 6.7]. More details of the N€&x@ be found in [31, 40, 41]. A brief
description of this method is as follows. The indegent coordinates for the FLM are
[13-17]

Zo =0 Ay o A, 8, Ay . A, Ay o AT (2-46)

n n

wherer is the number of the link andis the number of the assumed mode shapes per
link. The relation between the velocity of the degent coordinateg, , and the velocity

of the independent coordinaté&s, , is
Z2=T2, 47)

Details of the transformation matrik, for a flexible two-link manipulator using two
assumed mode shapes per link are given in Appehtk Substituting Eqg. (2-47) into
Eqg. (2-43) leads to

AT=T"A =0 (2-48)

Eq. (2-48) shows thal is an orthogonal complement &f and is referred to as the

natural orthogonal complement (NOC) since it isaoled from the velocity constraint,
Eq. (2-47), without complex calculations. Taking tterivative of Eq. (2-47) one obtains

Z2=T2,+TZ, (2-49)

38



Substituting Egs. (2-47) and (2-49) into Eq. (2-dsults in
(M FMT)ZID + (M FMT + CFMT)Z‘ID + C;FM + (KFM )BZ = §Z_- + A:]ry (2'50)

Pre-multiplying both sides of Eq. (2-50) wilh" and considering Eq. (2-48), Eq. (2-50)

is changed to:

MZ, +CZ, +G+T (K, )sZ =BT (2-51)
where
(TTMFMT)=M T'(M FMT+CFMT):6 (2-52)
TGy, =G T'B=B

are the dynamic equations without Lagrange muétipliHowever, the stiffness matrix is

multiplied byZ and not by, . The stiffness matrix of the FLM can be expressed
terms of Z, as follows. The stiffness matrix of the dynamic debis derived by

differentiating Eq. (2-24). Since Eq. (2-24) isepeéndent o, X, andY,,, the elements

oi?
of the stiffness matrix corresponding th, X andY,, are zero and the only non-zero

elements are those correspondind,tpsee matrixK,), in Appendix 2.1ll. Given that

the transformation betweed , and Z does not affect, , the non-zero elements of the

ij?
stiffness matrix related to tha, will not change. ThusT'K™ Z can be replaced by

KZ,, where

((K)s)y 0 0 0
0 ((KDg), O O
0 0 0
0 0 0 (KD

Al
I

(2-53)

and ((K/)g), (p=212..,r)is obtained by omitting the first two rows and esponding

columns of(K,)g) . Therefore, the closed form dynamic equatiomgife FLM in terms

of the independent coordinates are

MZ, +CZ, +G+KZ, =BT (2-54)
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To summarize the steps taken to obtain the closed flynamic Eq. (2-54) a flowchart is

given in Appendix 2.V.

2.5. Simulation Results

In the simulation study, the joints’ rotations, egftector path, components of the end-
effector velocity in theX, and, directions and the absolute value of the end-tifec

deviation with respect to the shadow manipulatar doflexible two-link manipulator
were considered. In Fig. 2-5, the flexible two-linkanipulator and the end-effector
deviation with respect to the shadow manipufdtaralled “D”, are shown. The physical
properties of the flexible two-link manipulator goeovided in Table 2-1. To verify the
proposed dynamic model, the simulation results fim (2-54), referred to here as the
LNOC (Lagrange and Natural Orthogonal Complememére compared with the results
of the full nonlinear dynamics employing finite elent analysis (FEA) [32].

Table 2-1: Physical properties of the flexible td« manipulator

Physical properties Value(s)
L,,L, (Length of the links) 0.5000 M)
E,,E, (Young's modulus) 20.00 GPa)
P1, P, (Mass per unit length) 0.7800 kg/ m)
A, A, (area cross section) 0.0001(m?)
l,,1,(second moment of area) 8333x107" (m*)
l..,1,,(mass moment of inertia of hubs) 1.200x10™ (kg.m?)
m,, (mass of the motor at the elbow joint) 0.0100(kg )

my,, I;, (Mass and mass moment of inertia at the tip ofrtaeipulator) 2.00(kg ,)0.0100(kg.m?)

" The difference between the end-effector locatibra &"LM and the end-effector location of a rigid,
shadow, link manipulator with the same lengths jaimd rotation is called end-effector deviationabFLM
with respect to the shadow manipulator (See Fig) 2-
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In the LNOC simulation, the flexibility of each knwas modeled using two assumed

mode shapes per link; that i%52 in Eq. (2-1). The mode shape of each ligkwhich

was theth mode shape of thén link, was selected based on the mode shapesiuded

in [42]. Although increasing the number of mode p#sa per link may improve the
accuracy of the approximation of the AMM to someeex, it also increases the
computational time. However, for a physical systéfiM, there is internal material
damping, which is usually modeled proportional tiéfreess [36]. Due to this material
damping, the high frequency vibration is damped mdre quickly than the low
frequency vibration. Hence, even if the higher nsodee excited, the first few modes of
vibration are dominant in the dynamic responsethi simulations reported here, the
damping was not modeled so that the effect of thle fiequency vibration, if any, would
be captured in the FEA. Moreover, the applied tesgin example one and two were of
the bang-bang type which can excite high frequenbyation. The good agreement of
the AMM results, based on onhg2, with the FEA results justified the use of two reod
shapes per links. Having said that, the use of bmty modes per link in this approach
may be seen as a limitation, but also is an adgents#f being fast and reasonably
accurate. Furthermore, the results can easily bd bg a model based controller for the
end-effector control and suppression of unwantedation of the manipulator during and
at the end of its motion.

. Itip mtip
/ N\
Y \
N / / 0
// P
/// )( ,//} /H
v 4 ‘\
_~ elbow Jomt P N
v g I / 7
\/ WYI h2 \\ 92 ///,
R oY - g
/
Shoulder joint ‘4, // 91= \N
! XI ) ,V\\ \/

\\‘—///////'// ///X:\
Fig. 2-5: Schematic of a flexible two-link maniptda
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For the FEA, the links were modeled by the BEAM8neént and the hubs and end-
effector mass were modeled by MASS21 from the ANSY&ry [43]. The BEAM3
element is a two-dimensional uniaxial element witinee DOF at each node, two
translations and one rotation. It has the abiliy nbodel tension, compression and
bending. The MASS21 is a point element with thré®H) two translations and one
rotation. Details of a similar FEA and simulatianthe ones presented here can be found
in [32] and Appendix B of [44].

2.5.1. Exampleone: One element per link, Bang-bang torque

For the first example, each link in the FEA was eled with one BEAM3 element.
Thus, the LNOC model, assuming two mode shapesnerand the finite element (FE)
model had approximately the same DOF; that is stk @ight, respectively. To generate
relatively severe vibrations, the applied torqueghe shoulder and elbow joints were
chosen as bang-bang with switches at 0.6 and 0ahds, respectively, as shown in Fig.
2-6.

Shoulder torque

— O = N W

Elbow .forqué

Torque (N.m)

)
L

1
(8}
T

0.2 0.4 0.6 0.8 1
time (8)

1
O—P

Fig. 2-6: Example one, applied bang-bang torquéecshoulder and elbow joints

The joints’ rotations, end-effector path, composeot the end-effector velocity in the
X, andY, directions and the absolute value of the end-tffedeviation with respect to

shadow manipulator are shown in Figs. 2-7, 2-8, 2-90, 2-11, and 2-12, respectively.
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Fig. 2-7: Example one, rotation of the shouldengoone element per link in FEA
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Fig. 2-8: Example one, rotation of the elbow jomte element per link in FEA
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Fig. 2-9: Example one, end-effector paths, one etdrper link in FEA
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Fig. 2-11: Example one, end-effector veloci¥y,direction, one element per link in FEA
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Fig. 2-12: Example one, absolute value of D shawhig. 5, one element per link in FEA

From Figs. (2-7 to 2-9), the maximum differencewssn the results of the FEA,
with one element per link, and the LNOC, with twade shapes per link, for the

shoulder joint rotation, elbow joint rotation anddeeffector position were 0.1278 (rad),
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0.0676 (rad), and 0.0268 (m), respectively. It igtlvaroting that, like the examples in
[44], the end-effector vibration was not obviousnfr Fig. 2-9. However, the components

of the end-effector velocity in th&, andY, directions, shown in Figs. 2-10 and 2-11,
clearly showed the existence of the links’ vibraioThe maximum difference between
the result of the FEA, with one element per linkgd dhe LNOC, with two mode shapes
per link, for the end-effector velocities in th¢, andY, directions were 0.2994 (m/s),

and 0.0968 (m/s), respectively. To determine theage normalized deviation of the
end-effector of the FLM with respect to the (rigishadow link manipulator over the
manoeuvre timé, , the following deviation index was defined
ty

[(D| dt)

D|=—%——— 2)55

el t, xmax(DJ) @
where ‘D", the end-effector deviation with respect to shadoanipulator, is as shown in
Fig. 2-5. From Fig. 2-12, the deviation index foetLNOC and the FE models were
0.4270 and 0.4470, respectively.

2.5.2. Exampletwo: 10 elementsper link, Bang-bang torque

For the second example, the physical propertiestlamépplied torques were the
same as in example one (See Table 2-1 and Figréspectively). However, in the FEA
the number of the elements per link was increas®d . to 10 since it was expected that
by increasing the number of the elements per limé,accuracy of the FEA result would
improve. The number of elements, 10, was choseth&following two reasons, (1) - to
comply with the Euler-Bernoulli (thin) beam theotpeoretically the length-to-height
ratio of the elements has to be about five or laegel (2) - to capture the effect of the
higher modes (perhaps up to fifth In this particular example, about 10 elements pe
link satisfied the above two requirements. Moreavés number, 10 elements per link,

made the FEA computationally efficient.

2 From a simple analysis for a rotating single fiéilink manipulator, the first five nonzero natura
frequencies were compared against the analytidaésavhen increasing the number of elements fram 2
10. The finding indicated that 10 elements is raabty capable of capturing up to five natural frexgies.
Details can be found in appendix 2-VI.
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The joints’ rotations, end-effector path, composesftthe end-effector velocity in
the X, andY, directions and the deviation index, given in E2:56), were obtained
from the LNOC, with two mode shapes per link, andhpared with the FEA, with 10
elements per link. These results are given in RgE3, 2-14, 2-15, 2-16, 2-17, and 2-18,

respectively.
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Fig. 2-13: Example two, rotation of the shouldenjpl0 elements per link in FEA
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Fig. 2-14: Example two, rotation of the elbow joih@ elements per link in FEA
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Fig. 2-15: Example two, end-effector paths, 10 @ets per link in FEA
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Fig. 2-16: Example two, end-effector velocity, direction, 10 elements per link in FEA

0.8 ‘ :

g
o

I
.

Velocity (m/s)
o
[\

time (s8) -

Fig. 2-17: Example two, end-effector velocil, direction, 10 elements per link in FEA
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Fig. 2-18: Example two, absolute value of D showfig. 5, 10 elements per link in FEA

From Figs. (2-13 to 2-15), the maximum differermegween the results of the
FEA, with 10 elements per link, and the LNOC, wityo mode shapes per link, for the
shoulder joint rotation, elbow joint rotation aedd-effector position were 0.1241 (rad),
0.0311 (rad) and 0.0051 (m), respectively. Thesterdnces were small compared to
those given in the example 1, when only one elementlink was used for the FEA.

Moreover, the maximum difference between the efektdr velocities in theX, and,

directions obtained from the FEA, with 10 elemepms link, and the LNOC, with two
mode shapes per link, were 0.2003 (m/s) and 0.0M2% which were smaller than their
counterparts in example 1. Finally, the deviatiotex for the FEA, with 10 elements per
link, was 0.4040. It is to be noted that the deeraindex for the FE model, with 10
element per link, (||D||=0.4040) was closer to timgex for the LNOC model
(I|D]|=0.4270) than its one element per link coynate:, (||D||=0.4470) (compare the
difference of 0.4270-0.4040=0.0230 with 0.4470-@3#0.043). Thus, although, in the
first example the DOF of the LNOC with two assunmeolde shapes per link was almost
the same as in the FE model with one element pky differences existed between the
results. In the second example, for the FEA eadhwas modeled with 10 elements and
the difference between the results were smallempeoed to the first example. Therefore,
it is seen that the LNOC with many fewer DOF prastlisimilar results to the FEA with

many DOF.
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2.5.3. Examplethree: 10 elements per link, Rigid torque

For this example, the same manipulator was used @® previous examples. In
the FE model, as in the second example, each liak wsomposed of 10 BEAM3
elements. The torques, shown in Fig. 2-19, wereutatled from the inverse dynamic of
the rigid link counterpart [45] of the FLM to folloa given trajectory and were referred

to as rigid torques.

9

=)

Shoulder torque

Torque (N.m)
j) 98]

% 0.1 0.2 0.3 0.4 0.5

time (s)
Fig. 2-19: Example three, applied rigid torquelte shoulder motor and elbow joints

The reference trajectories, rigid trajectories, eveuintic trajectories for 0.5
seconds, and are shown in Figs. 2-20 and 2-21fimakvalues for the rigid trajectories
of the shoulder and elbow joints, as shown in FAg20 and 2-21, were 0.7850 (rad) and
-0.7850 (rad).
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Fig. 2-20: Example three, rotation of the shoufdert, 10 elements per link in FEA

49



0.2
0 —LNOC |
5 —FEA
.02 - Rigid trajectory
5
204
@]
a2 .
060 s
08 0.1 0.2 0.3 0.4 05

time (s)

Fig. 2-21: Example three, rotation of the elbowjpil0 elements per link in FEA

The joints’ rotations, end-effector path, composeasftthe end-effector velocity in
the X, and, directions and the absolute value of the end-tdfedeviation with
respect to shadow manipulator are shown in Fig¥),2-21, 2-22, 2-23, 2-24, and 2-25,

respectively.
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Fig. 2-22: Example three, end-effector paths, &dnelnts per link in FEA
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Fig. 2-24: Example three, end-effector velocity,direction,10 elements per link in FEA
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Fig. 2-25: Example three, absolute value of D showFig. 5, 10 elements per link in FEA
The differences between the rotations of the ellama shoulder joints of the

flexible two-link manipulator compared to its rigithk counterpart, rigid trajectory, as

shown in Figs. 2-20 and 2-21 were due primarilthi flexibility of the links. From Figs.
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(2-20 to 2-24) the maximum differences betweenstin@ulder joint rotation, elbow joint
rotation, end-effector position, and the end-efieslocities in theX, andY, directions

from the LNOC, with two mode shapes per link, amel EEA, with 10 elements per link,
were 0.0054 (rad), 0.0308 (rad), 6.3k10* (m), 0.0059 (m/s), and 0.0031 (m/s)
respectively. The differences between the LNOC #mel FEA results in the third
example were considerably smaller than in the stexample. This was due to the fact
that torque in the third example was much more smtimn the bang-bang torque in the
second example. In addition, the deviation indicesn Eq. (2-55) for the LNOC and the
FE model were 0.4060 and 0.3830, respectively. mdghe closeness of these values

indicated the validity of the proposed approach.

Comparison of the results based on the dynamic humtered here with those of
the full nonlinear dynamic simulation using the WkEh 10 elements per link justified the
proposed LNOC method which used only two mode shagee link. In the FEA, the
axial deformation, shear deformation, and the maalf terms in strain energy which lead
to effects such as stress stiffening [10, 32, 33 wkre also considered, while they were
neglected in the LNOC model. Thus, differences ketwthe simulation results must
exist. Nevertheless, the results of the LNOC maaekhown in the examples for a bang-

bang and rigid torques, were reasonably accuratevane comparable with the FEA.

It is worth noting that in examples 2 and 3, theufts of a full nonlinear, FEA
were used as the basis for the comparison andicatitin of the dynamic equations
presented in Eqg. (2-54). In this context, full noehr FEA here is taken to mean that a
sufficient number of elements were used, all thelinearities were considered, and the
time integration and iterative solver (the Newmarid full Newton/Raphson) provided
accurate results. Obviously, comparing the numestaulation with the experimental
results is the best way to validate an approachgiwive have done in our published and
in progress papers [33,34], which examine the Gg&MM for design of othe proposed
controller for a SFLM. In the absence of the expental results for a two-link flexible
manipulator, comparison with full nonlinear FEAtl& second best choice. It is believed

that the results of such a full nonlinear FEA Wik quite reliable and close to the
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experimental results. Thus, verification of the AM#th the full nonlinear FEA implied

the sound agreement of the AMM results to the erpartal results.

2.6. Conclusions

The derivation of the dynamic models of flexiblekimanipulators (FLM) based
on the combination of the Lagrange’s equations thiedassumed mode shape method
requires evaluation and differentiation of the laaggian function. A new method was
introduced in this chapter to alleviate the lengévgluation and complicated derivative
calculation of the Lagrangian function of a FLM.| Ahe computations, evaluation and
derivative calculations of the Lagrangian functiware carried out only once and for a
single flexible link manipulator with a moving ba6@FLMB). Details of the dynamic
equations of a SFLMB when the flexibility of thakiis modelled with two mode shapes

were presented.

Based on the dynamic model of a SFLMB and by emptpyhe Lagrange
multipliers, the dynamic equations of a FLM in terraf the dependent generalized
coordinates were obtained. To have the closed thymamic equations without Lagrange
multipliers, the natural orthogonal complement loé tJacobian constraint matrix was
combined with the dynamic equation of a FLM obtdina terms of the dependent
generalized coordinates. Thus, the closed form myn&quations of a FLM in terms of
the independent generalized coordinates and withlogit Lagrange multipliers were
achieved. Details of the matrices to obtain theadyic model of a flexible two-link
manipulator were given. To verify the derived dymanequations, the results of
simulation from the introduced model were compandith the ones obtained from the
full nonlinear finite element analysis and wererfduo be in very good agreement. In the
three examples in the simulation study a bang-largge, and the torque from the rigid
manipulator, were applied to a flexible two-link migulator. For these examples, joints’
rotations, end-effector path, components of theedfettor velocity and deviation index,
from the model and the full nonlinear finite elerhanalysis were compared as checks

for the accuracy of the developed model.

It is to be noted that the sources of the erromhefintroduced approach are only

those typical of the AMM, which are approximatiafdhe mode shapes and the number
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of the mode shapes used. Thus, the proposed mettaded here will not introduce

extra error to the system other than the AMM aboeationed errors.
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2.8. Nomenclature

A, : Jacobian constraint matrix.

B : Torque mapping matrix for a FLM derived basedlmdependent generalized

coordinates.

B: Torque mapping matrix for a FLM derived basedtbe independent generalized

coordinates.

(C,), : Matrix representing the Coriolis and centrifufmices obtained after the

differentiation of (T,), .

C, : Matrix representing the Coriolis and centrifufiaices for the link of a SFLMB,
5

C = Z(Cl)i :
i=1

(Ciip Diinear 1 (Ciip ) anguiar - Matrices representing the Coriolis and centrdfigrces obtained

after the differentiation ofT,;, )., @nd (T, ) respectively.

angular ?

C;,  Matrix representing the Coriolis and centrifudatces for the tip mass of a

SI:LI\/lB'Ctip = (Ctip)linear + (Ctip)

angular *
C,,, : Matrix representing the Coriolis and centrifuiices for SFLMB,

Cqy =Cy, +C, .

tip
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C.y : Matrix representing the Coriolis and centrifumices for a FLM derived based on

the dependent generalized coordinates.

C: Matrix representing the Coriolis and centrifufiaices for a FLM derived based on

the independent generalized coordinates.

D: End-effector deviation with respect to the shadoanipulator.
E: Young’s modules.

El : Rigidity of the link.

G, : Gravity matrix of the link of a SFLMB.

G;, - Gravity matrix of the tip mass of a SFLMB.

Gy, : Gravity matrix of a SFLMBGg,, =G, +G;.

tip

Gy, : Gravity matrix of a FLM derived based on the degent generalized coordinates.

G : Gravity matrix of a FLM derived based on the ipdedent generalized coordinates.

| : Second moment of area.
l4, - Mass moment of inertia at the tip of a SFLMB Kass moment of inertia of the

end-effector of a FLM).

l,,: Mass moment of inertia of the hub.
(K,)g: Stiffness matrix of the link of a SFLMB.

(K|)g : Stiffness matrix obtained by omitting the firgtat rows and corresponding

columns of(K, );.

(Kgy ) g: Stiffness matrix of a FLM derived based on thpetelent generalized

coordinates.

K : Stiffness matrix of a FLM derived based on thdejpendent generalized coordinates.

L : Length of a SFLMB.
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L: Lagrangian functionf =T, U, .

(M,),: Mass matrix obtained after the differentiatidr{1), .

5
M, : Mass matrix of the link of a SFLMBWI, => (M), .

i=1

(Miip inear » (M o) anguiar - Mass matrix obtained after the differentiatafn(T,, and

)Iinear

(Ttip ) angular ! reSpeCt|V6|y

M, : Mass matrix of the tip mass of a SFLM8

tip = (M tip )Iinear + (M tip )angular :

Mgy - Mass matrix of a SFLMBM i, =M, + M, .

tip

M, : Mass matrix of a FLM derived based on the depenhdeneralized coordinates.

-~

M : Mass matrix of a FLM derived based on the indeleah generalized coordinates.
my, : Mass at the tip of a SFLMB (or Mass of the enfie@br for FLM).

Q,: Generalized force for a FLM due to the actuatocés derived based on the
dependent generalized coordinates.

Q. : Generalized force for a FLM due to the constrdortes derived based on the

dependent generalized coordinates.

Q: Generalized force for a FLM derived based ondéygendent generalized coordinates,
Q=Q, + Q-

g,: Generalized coordinates for ttie SFLMB

r: number of the flexible links of a FLM

R, : Rotation matrix

T : Transformation matrix

(T,); : Theith component of th&,
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5
T, : Kinetic energy of the link of a SFLMB, = Z(‘I’I )i -

i=1
(Tip Diinear » (Tip ) anguiar - Tr@nslational and rotational kinetic energiestid mass at the tip

of a SFLMB, respectively.

T,, - Kinetic energy of the mass at the tip of a SFLNMB= (T, )inear + (T,

tip * tip )angular :

Tu: Kinetic energy of a SFLMBT,, =T,

tip

+T,.
Tey : Kinetic energy of a FLMI, =Y (Tgy); -
i=1

(U)) poteniar- POtENtIAl €nergy of the link of a SFLMB due tagty.

U,, - Potential energy of the tip mass of a SFLMB dugravity.

(U,)«an - Potential energy (strain energy) of the linkadbFLMB due to flexibility.
U, : Potential energy of the link of a SFLMB,= (U ) ,sentiart U, ) strain -

U, : Potential energy of a SFLMRJ,, =U, +U

tip "
U, : Potential energy of a FLMJ, = > (Ugy); -
i=1

V,: Velocity of point p” on the link.
V, : Velocity of point '0”, origin of (x,¢ ) coordinate frame.
V, .- Relative velocity of point” with respect to pointd”.

V,

(p/o)x?

V

(p/oy¢ - COMpoONenNts o¥,,, inthex and¢ directions, respectively.

(X,,Y,) : Inertial coordinate frames.
(x,€) : Moving coordinate frame attached to a SFLMB.

X, Y, : Base translation of thex,é cdordinate frame attached to a SFLMB.
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X.,,Y, : Derivatives ofX,,Y, with respect to time, respectively.
Z : Dependent generalized coordinates for a FLM.

Z, : Independent generalized coordinates for a FLM.
6 : Rotation of the(x,é )oordinate frame.

¢ : Spatial, lateral, deformation of the flexibleKin

@ : Thejth assumed mode shape.

@ : Thejth mode shape of thé link.

A, : Time varying weight function of thigh mode shape.

A Vector composed of the time varying weights & thode shape.

p . Mass per unit length.

7,: The input actuator torque for tite SFLMB.
T : A vector composed of; .

d,4(x) : Dirac delta function.

y: Lagrange multipliers.

2.9. Appendices

Appendix 2.1: Elementsof (M,), and (C,),

L L L L
m_ = J.,OdX Lo = j,@(dX I = '[/w(zdx o, = Ipxqux
0 0 0 0
L L L L
P, = IPX@dX P, = Jqudx P, = Ip@@dx Py, = J-p@dx
0 0 0 0
L L L d2 L d2
®,, = Jpﬂdx b, = 6|.,0¢12dx Dy = 6[( dxfi)zdx Dy = 6[( dx?)zdx
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2

L
d°g
P 120 OI dx? dx

_ dg|
a(L) =
dx],

The elements of (M,), and(C,),, modeling the flexibilty by two mode

shapesf = A,¢g + A, are as follows:

m O 00O
O m O0O0O
(M),=| 0 0 O0OO
O O O0O0OO
|0 0 0 0 O
(C).,=0
0 0 O 0 0 |
00 O 0 0
(M),={0 0 I, &, @,
00 o, &, 9,
00 o, o, 9,
(C),=0
0 0 0 0 O]
00 0 00
(M);=[0 0 (K, + D, +244,P,,) 0 O
00 0 00
0 0 0 0 0]

0 0 0 0 0
00 0 0 0
(G);=|0 0 /il(Al(I)ll + /]?q)lz) + /iz (A, @4, +A,Dy,) 9(/]1@11 +4,0,,) Q(Azq)zz +A,Dy,)
00 01,0, +1,D,,) 0 0
00 - 0(A,d,, + D)) 0 0
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0 0 - (A0, + A,D,,)cos@) O O
0 0 (AP, +A,P,)sin@) 0 O
(M), =|- (Alq)lo + /]2(1)20) cos@) - (Alq)lo + /]2(1)20) sin() 0 00
0 0 0 00
| 0 0 0 0 0]
I 0 0 OGN, +A,D,)sin@) -Hcos@)d,, —Hcos@)d,, ]
0 0 -6\ D,, + A, D,,)cos@) -0Osin@)D,, -Osin@)d,,
(C)s =| = (4D + A,0,,)C0S6) = (AP, +A,D,0)siN(E) 0 0 0
fcosP)d,, fsin(@)®,, 0 0 0
0cos@)d,, Gsin(6)D,, 0 0 0 |
[ 0 0 —1,sin@) -®,sin@) -, sin@)]
0 0 l,cos@) @d,cosf) P, ,cosE)
(M) =| —1,sin@) 1,cos@) 0 0 0
-®,sinl@) P,,cos@) 0 0 0
| — P, sin@E) P,,cosP) 0 0 0 ]
I 0 0 - (a at /ilq)lo + /12CD20) cos@) 0 0]
0 0 -(@,+A®,, +A,d,)sin@ 0 O
(CI )5 = (/ilq)lo + /iZCDZO) COS@) (A-lcblo + A.ZCDZO)Sin(B) 0 0 0
- 0P, cosp) - 0P, sin(@) 0 00
-9®,,cosf) -0®,,sin@) 0 0 0]

Appendlx 211: Elernents Of (Mtip)angular and (Ctip)angular
0 0 0 0 0 ]
00 0 0 0
(Mtip)angular: 0 O Itip ltipﬂ(L) |tip@(|—)
0 0 lud(L) lp@L)’ 1,dLaL)
0 0 1,6(L) 1,dL@L) 1, (@(L)” |
(Ctip)angular = 0
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Appendix 2.111: Elementsof G, and (K|);

0 0 00O 0 0
m.g 0 0O 0 0
G, =|g1,,CoS6) — gAD, + A, 0)sin@) | (K)s=|{0 0 0 0 0
gP,,cos@) 0O 0 0 El®,,,, ElP,,
i gP,,cos@) | 0 0 0 El®,, EID,, |

Appendix 2.1V: Elementsof matrix A and T for aflexible two-link manipulator

For the flexible two link manipulator shown in R2gb, assuming that the flexibility of

each link is modeled with two mode shapes, the niggret generalized coordinates are
Z = [gl All AlZ X02 Y 2 62 /‘21 /122]

(o]

and the matriced andT are

A = ~ @, (LA — A (L)AL, 0 0 _ R;l 0,
L a.(L)  a.(L)
| 53 05
T= R91|:_ A: (L)AL — @,(L)A, 00 } »
L, a.(L)  a.(L)
O3 | 53

where

. _[ cos@,) sin(el)}

% | -sin@,) cos@,)

andO,,, andl ., are the zero matrix and the unity matrix of orslermand nxn,

respectively.
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Appendix 2.V: Flowchart of the stepsfor the dynamic model derivation

[ Derive the kinetic and potential energies of a SBLMter modeling the flexibility by‘
AMM (the generalized coordinate fora SFLMB gre[X Y 8 A ... A])

|

( Using Lagrange equations, derive the mass matmtrixrepresenting the Coriolis anl
centrifugal forces, stiffness matrix and gravitytmafor a SFLMB, that
ISM gy, Cau» (K, ) g @andGg,, respectively

|

[ Derive the matrixB for the SFLMB (See Egs. (2-38) and (2-3%))

|

Decompose the FLM consists af flexible link into “r” SFLMB (The dependent
generalized coordinates for the FLM dre [0,1 qr], whereg, is composed of the

generalized coordinates of thh SFLMB)

|

[UsingMSM,CSM,(K)B ,Gg,, and B of a SFLMB, deriveM ,, ,C,, , (Ks ) > Gpy @andB for]

J

a FLM (See Egs. (2-33), (2-34) and (2-41))

l

Derive the relation between the velocities of tepehdent generalized coordinates
and velocity of the independent generalized coateis  , thatis Z=T Z, (See
Eq. (2-46) for the definition df,; )

|

Derive
M=T"M_,T,C=T"(M_,,T+C.,,T), G=T'G,,,B=T"B

|

[DeriveIZfrom Ky (See Eq. (2-53])

|

[ Dynamic equation of the FLM in term of the indepentdgeneralized coordinatesj

MZ, +CZ, +G+KZ, =BT
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Appendix 2.VI: Natural frequencies ver sus number of elements

A single flexible link manipulator rotating in theorizontal plane, as shown in

Fig. 2-26, was considered.

_ Liip ,migp
> 4\)
\ﬁ
T SR
y: 0
I, @ |

Fig. 2-26: Schematic of a rotating single flexibigk manipulator

The lengthL, second moment of arda,cross section areA, young modulest,

mass moment of inertia of the hlip, mass moment of inertia of the paylodd,, the

beam’s mass per unit lengtp,, and mass of the payloauh,, , of this manipulator were:

E 0.5000 M) |, = 1.200x10™ (kg.nf)
+ 8333x107%(m*) E =20.00 GPa)
|, = 0.0100 kg.nf) m, = 2.000 ko)
=A0.0001(m?*) ©=0.7800 kg /m)

These physical parameters were the same as tho#®e adecond link of the

manipulator used in Section 2.5.

The analytical natural frequencies of the manimulatere calculated [042] and
compared against the natural frequencies obtaigefINSYS-FEA for different number
of elements. In Fig. 2-27, the percentages of taguency error for the first five nonzero
natural frequencies versus number of elementshemers The frequency error for thih

mode is defined as:

(nf), = (nfeey),
(nf),

(Frequencyerror), =
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where (nf), and(nf..,), are the analytical and FEA natural frequenciestifierith mode

shape, respectively. From Fig. 2-27, it can be ¢banl10 elements per link can capture

up to fifth nozero natural frequencies accurately.

3

14%10° . . — .
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=10 29 !
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2 3 4 5 6 7 8 9 10
Number of elements

Fig. 2-27: Comparison of FEA and analytical natdiradjuency errors as a function of

number of elements for the first five modes of &@tiag single flexible manipulator
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Chapter 3. Piece-wise causal inversion by output
redefinition for a flexible link

manipulator
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Abstract:

A new causal dynamic end-effector inversion metHod a single flexible link
manipulator is introduced. Contrary to the avagabbn-causal inversion technique, this
method does not lead to pre-actuation and works é@vethe presence of the purely
imaginary zeros for the transfer function. Basedhos approach, the desired end-effector
trajectory is divided into a finite number of segite In each segment, the desired
trajectory is redefined so that a bounded contisutarque through causal dynamic
inversion is obtained. The redefinition of the degitrajectory at each segment employs
summation of stable exponential functions, whichdeto a family of answers for the
redefined trajectory which is an advantage for e@régngineers. The included results of
the simulation and experimental studies show thasilidity and effectiveness of this new

technique.

Key words: Flexible link Manipulator, Causal dynamic inversi@ynamic modeling,

Non-minimum phase system

3.1. Introduction

Smaller mass, lower peak power and less energyuoguiton are among the
main potential advantages of Flexible Link Manipata (FLM) over rigid link
manipulators [1]. Because of these potential athges, their application in industry is
expected to increase provided their performanceres more predictable and reliable.
To improve the general performance of FLM, mucleaesh has been carried out during
the past decade; in particular, because of the rtapce of End-Effector Trajectory
Tracking (EETT), many of them have been focusedtlms EETT of FLM. The
challenging aspect of the research, the EETT of FishMlue to the fact that the system is
non-minimum phase [2]. The non-minimum phase pryper the consequence of the
flexibility of the link and the non-collocation dhe actuator, which is the input, at the

base and sensor, which is the output, at the efiedtef of the manipulator [3,4,5].

A possible approach for the EETT of FLM is the wdethe output regulation
technique introduced in [6]. The feasibility of &ipg this method to FLM was studied

in [7]. To apply this method, the nontrivial sotuti for a set of first order partial
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differential equations is required. Moreover, faetEETT of a FLM which has non-
minimum phase characteristics, the applicationhef method introduced in [6] leads to
transient errors at the initial and final portiasfsthe manoeuvre [8]. Another alternative
for the EETT of a FLM is the use of stabilizing d&ack (on-line signal indicated by 2 in
Fig. 3-1) with the feedforward command (off-lineysal indicated by 1 in Fig. 3-1)
created by the inversion of the system dynamic. @u@e non-minimum phase property
of the system, bounded causal inversion of the mymaquation for a desired end-
effector trajectory is not achievable [9 Ch. 6]oviever, for a linear model of a Single
Flexible Link Manipulator (SFLM), the non-causalé@rsion of the dynamic equations
for a desired end-effector trajectory was introduge [10,11] and the extension of the
method to the general nonlinear systems was studif&]. Rather than the non-causal
input torque, in [12] a method was proposed thaatas a causal end-effector inversion
for a SFLM through rest-to-rest and point-to-pamttion planning. In general, however,
it is more desirable to invert the dynamic equatitor the desired end-effector trajectory

rather than planning a point-to-point and restestmotion.

Desired o ~ Inverse | + FLM
trajectory " dynamic ul VY,
- feedforward ]

(end-effector) +(2)
U feedback

State | _
Desired states"” | feedback  Actual states®

Fig. 3-1: Schematic of the end-effector trajectivagking method, 1: off-line signal, 2:

on-line signal

In this chapter a causal end-effector trajectovgrsion by the output redefinition
for a SFLM is introduced. This new causal methodlike the available non-causal
inversion technique [10,11] which does not tolerdie existence of purely imaginary
zeros [13], works even if the transfer functiontloé system has purely imaginary zeros.
To utilize this new technique, the desired endeaffetrajectory is divided into several
segments and is redefined in each segment by thandtion of Stable Exponential
Functions (SSEF) [14], that is:

3 The causal signal at any time depends on the salfithe states up to that time, while the non-abus
signal depends on the values of states before feerctlaat time.
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Vo) =>c,e™, m <0 (3-1)
=0

Here y,(t) is the redefined end-effector trajectory and are constants which are
calculated, after the selection ondm,, so that a bounded continuous torque through

causal inversion is possible. To clarify the cot@pexample is provided in Section 3.4.
There are four steps to this approach which aréagyar in Section 3.5. Also a method
for the selection afand m; is introduced in Section 3.6. Comparing the SSHiR &

polynomial function having terms, which has the same number of terms as S-S
that is:

V0= pit 32)

it can be seen that the number of the choicesablaiusing SSEF;; andm; in Eg. (3-
1), is twice the number of choices available inggbg/nomial,p; in Eq. (3-2). Therefore,
while for a predefined set of conditions equalite humber of coefficients i), (t) there

is only one solution set for the polynomial functidor the same conditions there is a

family of possible solution foy,(t) in SSEF. Hence, by minimizing the error between

the desired trajectory and the redefined trajectibrig possible to find the best member
of the family of the solutions. Finally, althoughjs method has been developed for the
end-effector trajectory inversion of a SFLM, it caasily be extended to any linear
single-input single-output nonminimum phase systeth or without purely imaginary

zeros. It is worth noting that as a limitation,sttapproach can not be applied to any

nonlinear system.

In the following sections, first the dynamic eqoatiof a SFLM is derived. The
piece-wise stable inversion is then introduced.eAfpresenting the simulation and

experimental results, the conclusions drawn froenrédsearch are provided.
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3.2. Dynamic modeling of a SFLM

Due to the link flexibility, FLM have an infiniteumber of degrees of freedom
and their dynamic equations have infinite dimensioharacteristics [15,16]. Not only is
working with infinite dimensional dynamic equatiotreublesome, but also controllers
are generally designed for finite dimensional syst¢17, p. 194]. Therefore, the infinite
dimensional dynamic equations should be changeal finite dimensional, truncated
ones. In this chapter, to change the infinite disr@mal dynamic equations of a SFLM
into a finite dimensional one, a combination of tlagrange equations and the Assumed
Mode shape Method (AMM) approximation [18,19] iseds Also, the flexible link is
modeled as an Euler-Bernoulli beam. Thereforeyakary inertia and deformation due to

shear are neglected.
In the AMM the spatial deflection of the flexiblenk, &(y,t) in Fig. 3-2, is
described by a finite series composed of spatiatdefined shape functiong,(y),

multiplied by the time varying weight functiond, (t) . Therefore:

7.0 =3 00,0 3-3

wheren is the number of the assumed mode shapes ang ($)evhich were adopted

from [20], are the exact mode shape of a slewingMeFTo employ the Lagrange
equation, the kinetic and potential energies of 8€L.M are required and will be
obtained in the following.

Ylnertial
‘& \ - ltip ’ mtip
s Lg)&@‘

\ =
oy
=Y '\
0

1 L

Xlnertial

Fig. 3-2: Schematic of a SFLM

The kinetic energy of the SFLM, shown in Fig. 3st,

73



Ty =T +T,+T,, (3-4)
where
T = U2) [p((y0+&)* +(66)*)dy (3-4a)
T, = @U/2),6° 3-4b)

Ty = @2)my, (LO+E(L1)* +(BE(L,1)7) + (L2, (0 +(0(L,1)/9y)*  (3-40)

andT,, is the total kinetic energy of the manipulalior,is the kinetic energy of the

flexible link, T, is the kinetic energy of the hub,

& IS the kinetic energy of the end-

effector,pis the mass per unit length of the flexible lifk¢ anddé / dyrepresent,
respectively, the time derivatives 6f,{ anddé/dy, |, is the mass moment of inertia of

the hubm,, andl,, are the mass and mass moment of inertia of theeHadtor, and. is

tip
the length of the link.

Since the manipulator motion is in the horizont&ne, there is no potential
energy due to gravity. However, there is a straiergy due to the link’s flexibility. This
strain energy, neglecting the geometric effectddseam in bending ([21], p. 388) and
neglecting the portion of the strain energy duehi® shearing and axial strains, for a

linear elastic material is:
L
U, = (1/2)jE|(azf/ay2)2dy (B)
0

whereE is Young’s modulus andl is the second moment of area . Substituting E&) (3
into Egs. (3-4) and (3-5), and using the Lagrangeagons® with the consideration that
6 and A i =1...n are the generalized coordinates, the dynamic esadf a SFLM are:

M (A)G+Cy(6,4,4)4+K sq=F (3-6)

“d(aT,, /0g,)/dt-aT,, /dqg, +dU,, /dq, = f, whereq, is theith generalized coordinate arfig is
the corresponding generalized force.

74



whereq:[e ,IT]T, ,1:[/11 A, )ln]T, A, is the weighting parameter for thth

mode shapéJl(2)is the mass matrif;cc(ﬁ',i,,i) is the matrix representing the Coriolis
force and the component of the centrifugal forcetha lateral directiorK ; is the
stiffness matrix andr is the force vector. Singg(x) is selected to satisfy the clamped
boundary condition [19,20F is:

F=Hr -3
wherer is the actuator torque an# =[1 0, ] . Details of Eq. (3-6) are given in
Appendix 3.1.

It is clear that the dynamic equation of a SFLM, E8t6), is nonlinear. The

nonlinearity is the result of thég#)? in the kinetic energy expressions Bf andr;,, in

Egs. (3-4a) and (3-4c), respectively. Neglecting tionlinearities in the kinetic energy
expressions by assuming small lateral deflectibw, linear time invariant dynamic

equation of a SFLM is:
MG+Kgg=Hr (3-8)

whereM is constant contrary twl (1) in Eq. (3-6). Details of Eq. (3-8) are availabie i

the Appendix 3.1.

Finally, considering the material damping due te thternal friction and using

the Rayleigh damping model, the damping mé&irix is:

Cp = @7/ WK 4 3-9)

wheren anda are the damping ratio and natural frequency offtimelamental vibration

mode shape, respectively. Thus, the linear timariant dynamic model of a SFLM is:

MG+C,q+Koq=Hr (3-10)

3.3. End-effector inversion procedure

Definition 1. Consider the linear single-input single-outputeysof the form:
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X =AX +Br (3-11a)
y = CX (3-11b)

whereA ,B and C are called state, input and output matrices resdyg, and r is the
input andy is the output. This system has a well-definedtinedadegreer,, if and only if
CA™™B #0. In other words, in the, th time differentiation of Eq. (3-11bdhe inputr
appears explicitly; that ig{™ = CA™ X + CA“™Br .

The linear time invariant dynamic model of a SFLE4. (3-10), considering the

base torque as the input and the end-effectoratisptent as the output can be written as
Egs. (3-11a) and (3-11b), wherg:ig shown in Fig. 3-2)

q On+1><n+1 I n+ixn+1 On+l><1
X=|"|,A= B = ,C=[D 0,..]
M {—M'lKB —M'lCJ L\A‘lH} [ 0,
D=[L g(L) ... a) (3-12)

For the purpose of inversion the outpuhas to be differentiated, = H#mes

[10,11] so that the input appears explicitly. That is, for a SFLM considgrthe end-
effector displacement as the output, the relatiegree is two anGAB #0. Thus,
differentiatingy in Eq. (3-11b) twice and noting th&B = Oleads to:

= CA2X +CABT (@)

Using the input-output linearization technique (). 6.1.3 and 6.4), the base torque has

to be:
7, = (L/CAB)(y, —CA?X) (3-14)

wherey,is the desired end-effector trajectory and, for &L, the scalar

valueCAB # 0. Thus, replacing in Eqg. (3-13) with the torque given in Eq. (3-14),

results in:

y=Vq (3-15)
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However, since the order of this inversed system,(&15), is two and the order
of the original system, Eq. (3-11a) with andB defined in Eq. (3-12), &n+1) there is
an internal dynamics of order2(n+1) -2 as pointed out in [9] which is discussed in the

following. To obtain the associated internal dynesnthe transformation:

w=TX (3-16)
is considered where:
‘ ) s Dl><n+1 01><n+1 Inxn Onxn+1
w=ly v A o A A o A T=0pn Dpn .= ) |
nxn+1 nxn

o

2nx1 (I o)2n><2n+l

The transformation given in Eq. (3-16), changesdyreamic model of a SFLM, given in
Eq. (3-11a) considering, A, B andC as given in Eq. (3-12), into:

y =TAT 'y +TBr (3-17)
Replacingr in Eq. (3-17) with the torque, given in Eq. (3-14) results in:
w=A,w+B,¥, (3-18)
whereA , and B, are:
A, =TAT'-(TBCA’T™)/(CAB) B, = (TB)/(CAB) (3-19)

and as mentioned earlier the scal#B is not zero. According to the definitionyf and

using the torque given in Eq. (3-14), for a SFLM thatricesA ,and B, are:

0o 1 Oporn 0
A,=| 0 0 Ovon, B,=| 1 (3-20)
OZnXl 02n><1 (AI )2n><2n (BI )2n><1

and the internal dynamics is:

X| :AIXI +B|yd (3'21)

!5 The part of the system dynamic which has beenerett‘unobservable” in the input-output linearieati
is called the internal dynamics (See [9 Ch. 6]mfare detail)
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wherex, :[/11 e AA AH]T.

After the inversion procedure, singe= T‘l[yd Y, X,T]T if X, is bounded
for a bounded,, X is also bounded. Thus, the inversion torque from [-14) is
bounded. However, because SFLM is a non-minimumsehsystem, some of the
eigenvalues oA, in Eq. (3-21) have positive real parts ([9] Chl.8, [10], [11]) and
thus the internal dynamics is unstable. This mélaaisthe feedforward integration of Eq.

(3-21), even for a boundégqg, generally leads to an unboundfedresponse fox, . For

stable inversion if there are no purely imaginargeavalues foA,, the non-causal
integration explained in [8,10,11] can be adoptddwever, in this chapter, to have a

bounded response fi,, y, is redefined so that the causal integration of Be21)

assures a bounded . It should be noted that existence of the purehagdinary

eigenvalues foA, is not a restriction for implementing this method.

3.4. Causal inversion by output redefinition

By using the transformatiax, :G[(Xf)T (Xf‘)T]T, where the columns of the

matrixG are the eigenvectors of the matkix, G *A,G is a diagonal matrix in Jordan

canonical form. Eg. (3-21) can then be written as:

XSl _[A; 0| X?| [BY].. ]
{X.“Ho Ar}{erBr}y" (22

whereA, is a diagonal matrix with the diagonal elements Hre the eigenvalues #f,
with negative real parts, andl; is a diagonal matrix with the diagonal elemeht tire
the eigenvalues ofA, with positive real parts. Also, ifA, has purely imaginary
eigenvalues, the corresponding diagonal matrixg kfown as the Jordan block, will be

included inA|. Due to the existence Aff, the causal integration of Eq. (3-22) for a

'® The unbounded signal grows to infinity as time gyoe infinity. Also, a signal which has an ever-
oscillating behavior is classified here as an umed signal.
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bounded desired acceleratippn generally results in an unbounded responsexiprand

thus X, will be unbounded.
For a given set of initial condition(s), to leava bounded causé}, the
desired acceleratioy), , is replaced by its redefinitioﬁd, so that the causal solution for:
X|'= ATX} +B}'Y, (3-23)
is bounded. After finding the bounded, from Eq. (3-23), the bounde€]’ can be
calculated by the feedforward integration of:
XP=ATX; + B}y, (3-24)
Having X/and X; for the redefined accelerati&g, the bounded, ,

w=1Y, Y, XlTT, andx (from Eq. (3-16)) can be calculated. Thus, by

substituting?]d and X in Eq. (3-14), the required causal torque foritheersion ofy, is

obtained.

To clarify the basic concept of calculating a boeshd,' by output redefinition,

the following example is provided.
Example: Find the boundedX " by the output redefinition foX ' —aX = by, a>0

Without loss of generality, it is assumed that thieowing differential equation

has to be solved fof,':

X/ —aX| = by, a>0 (3-25)
wherea>0 and b are arbitrary constants ani,is the acceleration of the desired
trajectory. Also it is assumed that the initial dgion on X' is:

X" (0) = X, 3-26)
The complete answer oK,' from Eqg. (3-25) is composed of two parts, the

particular par¢X\') ,, and complementary p&iX;')., that is:
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X\ = (X)) + (X)), (3-27)
The particular paftX,') ,, depends ory,and can be found by the convolution integral.
The complementary pdiX')., is:
(X)), = s€" (3)28

where s is constant and will be found from the initial cdition and excitation

functiony,. Sincea>0 if s#0, (X}'), is unbounded; thus, generally an unbourdgd
will exist. To have a boundeX|' the desired acceleratigp, is replaced by its
redefinition%, in EQ. (3-25) so that:

1- The constant in Eqg. (3-28) is zero

2- The particular solutiofX,') ,, corresponding t§~'1d, is bounded and satisfies the

initial condition X' (0) = X,, as given in Eq. (3-26).

For this purposey, is redefined by:
yo=>.ce™  m <0 (3-29)
j=1

By replacingy, in Eq. (3-25) Wit@d:
X} -aX| = by, (3-30)
Moreover, in order for the redefined accelera&gn to have the same values as the

desired acceleratioy), at zero time and the final timg , the following conditions must

be satisfied:
V0 =9,0,  Va(t;)=9a(t,) (3-31)
The complete answer o' for Eqg. (3-30) is given in Eq. (3-27), whetX "), is

given in Eq. (3-28), an@X "), for the redefined accelerati&'@, ¥
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(x,“)p=zrj be, e™ (3-32)

=1 m]- —a

Thus by selectingn, <0 andm; # a, (X}'),is bounded. To have a bounded solution for
X!, (X}'). must then be zero, which means tlsat 0. Therefore, assuming that the
m;in Eqg. (3-29) are known, the unknowis are chosen to make=0. A method for

the section ofm, is given in Section 3.6.

To have a unique solution for, the number of the conditions, Egs. (3-26) and
(3-31), have to be the same as the number ofitkeownsc, . Therefore, for =3 to

forces=0 the C j =1...3 is calculated as:

C =Z.(Cr) (3-33)
b b b
m-a m-a m-a C Xo
Z,=| 1 1 1 [ S=|c [ (G =| ¥,(0) (3-34)
em.ltf emstf em3tf c, yd (tf )

After finding c;(j =1...3) for the giverm,(j =1...3) from Eq. (3'33),% is known as
given in Eqg. (3-29). In addition by integratir{l‘]j with respect to time for the given initial
conditions, §d and y,are also known. As welK/'=(X}"),, as given in Eq. (3-32), is

p?

bounded.

Remark 3.1: The smaller the error betwee";"ra andy, , the closer will bej,/rd to y, andy,
toy,. To make§d closer toy,, one can set the conditions that the time dexieatbf the
redefined acceleratid}h, up to the ordeh whereh < w, be equal to the original desired

acceleratioty,, at zero ant| . This is in addition to the settings given in E8:31) and

assuming that the desired acceleration is contiwgputo the ordew; that is, y, OC".

It is to be noted that, for the addition of thesaditions,r in the above example has to be

increased from 3 tol33 (see Section 3.6).

81



Remark 3.2: For the redefinition of the desired trajectoriie torthogonality of the
employed functions, which are stable exponentiaicfions, is not necessary. The

orthogonality of two function$ (x) and g(x) over the rangda,b) with respect to the
b
weight functionw(x) is defined a®(f,g) = If (x).g(x).w(x)dx=0. Generally for the

redefinition of a function, orthogonality of therdabuting function is not a concern. As
another example, in the finite element method,sthletion of a differential equation is
approximated (redefined) by shape functions, whaihnot orthogonal; for instance, the
shape functions of the beam element, which is usethe structural analysis with
bending, are cubic polynomials that are not ortimadjeo each other; see Appendix 3.1I

for more details.

3.5. Piece-wisetrajectory inversion by output redefinition

As explained in Section 4 to calculate the requicedue through the end-effector
inversion, a bounded response from the internahayos, Eq. (3-21), has to be obtained.
Since the input to the internal dynamics is thesbration of the end-effector trajectory
(See Eq. (3-21) or (3-22)), the desired accelandtjois redefined to find a bounded

response from the internal dynamics. Furthermoxedividing the acceleration into
several segments the accuracy of the redefinitidheodesired trajectory is increased.

For the piece-wise trajectory inversion the follogisteps have to be taken.

1- Divide the desired acceleratigp, into several consecutive segments such that:
(V) = V4, e St<t,, k=1lv (3-35)

wherev is the number of the segments, andt,, are the initial and final times of the

kth segment andy,), is in thekth segment. Note thgt=t, and t,, =t, are the

initial and the final maneuver times, respectively.

2- In thekth segment, redefine the desired accelergfigh, by the SSEF:
(g/:d)k = zcjkem,-kt’ mjk <0 (3‘36)
j=0
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The selection afh, andr are explained in detail in Section 3.6.

3- Find the contribution of each exponential functgn for thekth segment such
that the following three conditions are met:
3-1- Assuming that the original desired accelerationaistinuous up to ordew;,
that is,y, OC", the values of the redefined acceleration andetsvatives up to

order h, where h< w, at the beginning and end of each segment arel ¢égua

values of the original desired acceleration, tagsee remark 3.1}:

(Vo)

. = (Ya)icly, -+ AR fk :(yd)(kh)‘tfk (3-37a)

t

3-2- The complementary part of the solution of Eq. 8348 zero.

This condition assures that a bounded solutioniferunstable part of the internal

dynamics, Eg. (3-23), exists.

3-3- The continuity of X;' at the beginning of each segment is satisfiedchwhi

guarantees that¢ and torque, are continuous.

To have a continuous torque from Eq. (3-14) whgnis replaced b:y7d, and:)7d
have to be continuous. From Eq. (3-37a), it carsden that3~7d is continuous.
Also, X :T‘l[yd Yy X,T]TandxI :G[(Xf)T (XIU)T]T. Thus, to have a
continuous X, X, has to be continuous. This mean§'andX’ must be
continuous. Sinc¥;’, which is calculated by the causal integratiorEqf (3-24)
is continuous, X, is also continuous, therX and consequently the

corresponding torque are continuous. Thus, to laagentinuous solution fof

"The first and second derivatives yf with respect to time are shown gsy and the higher ones by
y(h) - d hy/ dth - d (h+2)y/dt(h+2)
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the final value ofX|' at thekth segment is considered as the initial conditibn o

X} at thek+1th segment.

4- After calculatingy~'d and the corresponding boundeéd, find the corresponding;’
from Eq. (3-24).

Finally, having X/and X; for the redefined accelerati&@, the boundeX,,

W= [yd ?d X,T]T, andX (from Eq. (3-16)) can be calculated. Then, theuregl
causal torque fory, is obtained from Eq. (3-14).

It is to be noted that the causal integration ofittverse dynamic equations when
y4is replaced witly,, will be carried on fromt tot, . That is, the inverse dynamic

feedforward command in Fig. 3-1 is only active frartot, . Aftert, , only the joint PD

feedback control assuming, (t) = y,(t;)/L andé'?0| (t) =0, is active (see the simulation

and experimental study sections). Therefore, sithee feedforward inverse dynamic

signal will not be used after, the stability of the inverse dynamic equation fort, is

not a concern.

Remark 3.3: Besides the conditions imposed in Eg. (3-37a), Whiere discussed in

Remark 3.1, to makg, closer toy, in thekth segment, the following conditions can

also be imposed.

(yd)kL‘k = (yd)kLik’ (yd)kak = (yd)kLm
T, =Gl - T, =, (3-37b)

As a result the redefined velocit;%,,, and redefined displacemeny, will have the
same values as the desired veloagtty, and the desired displacement, at timest,
andt,. The extension of the proposed method by addimgditons (37b) is under

investigation [22] and its experimental verificatios underway; the results will be

reported in the near future. However, even aftepasing the above conditions, the
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desired and redefined trajectories are not exaitiey same at all times during the
maneuver. This is due to the fact that the methredgnted in this chapter is based on the
redefinition of the desired trajectory. It has ® é&mphasized that the approximation is
the key in performing the causal inversion for momimum phase systems with
hyperbolic and non-hyperbolic internal dynamics;r fexample, several other
approximations has also been used in the pervippaches [9 p. 264, 13,23,24], which
neglected a part of the internal dynamics, utilileel feedback of the internal dynamics
states to stabilize the internal dynamics or uskd teflected new end-effector

displacement. Thus, there is always a differen¢cedren y, andy,. The closeness of the

desired and redefined trajectories can be measiyreah error index which, for example,

can be the normalized maximum difference betweeesehtrajectories; that is,
max(¥, - yq|)/ max(y,|). If this index is not small enough, the redefiriajectory can
be modified to bring the error index to an accelgtabnge. This modification can be

done by increasing the number of segments or chgntiie value ofm, of the kth

segment.

3.6. Selection of variables (m,,r) of theredefined output

If the exact model of the system without any pdyation was available, the
introduced inversion method could be used to cateuthe required causal torque on-
line. However, in the presence of the uncertaititg, required torque is calculated off-
line using the nominal dynamic model and a statelback is added for the robustness, as
shown in Fig. 1, similar to [12]. Therefore, thedegffector inversion technique
introduced here using the piece-wise trajectoryefiadion is done off-line with causal

integration. As a result, the selectionrof, for the redefinition of the desired trajectory

should also be done off-line. This off-line approa explained in the following.

After the selection ofm, for thekth segment, (explained later in this sectiop)

are found by solving a set of linear algebraic ¢éigna (see example in Section 3.4 and

Eqg. (3-33)). To find a unique, from the linear algebraic equations the number of
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_ r
unknowns, rin(y,), :chkemlkt, must be equal to the number of the equations
j=0

resulting from imposing the conditions 3-1, 3-2 aBeé8 discussed in Section 3.5.

Therefore, the required number of the exponentiattions for each segment is:
r=2(h+1)+nu (3)38

Here 2(h+1) equations come from the condition 3-1, Eq. (3-3Wdiereh is the highest
derivative of the redefined acceleration used in(Be37a). Also,nuequations are due to
the continuity of X' at the start of each segment wharés the size of the vectoX|
(condition 3-3). After determining the required roen of the exponential functions from

Eq. (3-38), the satisfaction of conditions 3-1 8 Besults in the relationship betweep

and m, (see example in the previous Section and Eq. J3-3Berefore,c, is available

in terms of m, (C, =Z.(C;),) and, consequentlﬁf;}d)k in each segment can be

calculated in terms a@f, . Thus, it is possible to find the best setaf for each segment

e
by minimizing the cost functioerror(m, ) = j((yd)k —(Y4),)?dt . It is one of the

t|k
potential benefits of the redefinition of the outpinrough exponential functions.

However, to findn, from this optimization approach, a set of nonlmedgebraic

equations has to be numerically solved, which megua set of initial values (guesses) for
the unknown variables. Not only solving this noehn optimization might not be easy,
but also without a suitable set of initial condit® obtaining the solution is not
computationally efficient. As a remedy, in the @vling, a more computationally
effective method is introduced and used. It shdddoted that this method is easier to

implement and more time efficient compared to dakbeg m, by optimization. Also,
this method provides reasonably acceptablge and makes it possible to continue and
explore the concept of piece-wise trajectory redefin by SSEF which is the main focus
of this paper.
Consider the exponential function:
y=ce™ m<O0 (3-39)
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which has to be calculated in the intetyalt <t,. The decay of the exponential

function,y in Eq. (3-39) at, with respect to its value at tinte is:
Coee = Yt )/ y(t;) =€™ /€™ (3-40)

Assuming a value for the dec@y,., in the specified time intervalt(<t<t,), the
correspondingn is obtained by combining Egs. (3-39) and (3-40jiolv is:

m= Ln(Cdec) /(tf - ti ) (3_41)

Thus, if the fastest and slowest decays for theoe&ptial functions used in thidh
segment are assumed to(Bg ), and (C3..), respectively, the correspondingfrom Eq.

dec

(3-41), are:

mkf = Ln(cdfec)k I(ta — i), my = Ln(Cgo) /(tg —tiy) (3-42)

dec

According to Eq. (3-36), the number of tireat each segment has to be the same
as the number of the required exponential functidhsis, having the required number of
the exponential functions for theéh segment from Eq. (3-38), and the slowest aerd th

fastestm after the selection ofC..), and (C3..), from Eq. (3-42), the othem are chosen
betweenm' and ny. To have the maximum difference betweenrthfor the numerical
stability of the solution of the linear equatioseé matrixZ, in Eq. (3-33)), the othen

are equally spaced betweey] andny. Therefore, then for thekth segment are:

.. m-m :
m; = m; +ﬁ(] -, j=1.r (3-43)

From Egs. (3-42) and (3-43) it is clear that byesghg different pairs of

dec

(Ct.).and(C:), different values fom, can be obtained. Thus, the redefinition of the

desired trajectory at each segment can be doneviera different ways, which is a
benefit of using the SSEF instead of the polynoruattions.
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3.7. Simulation results

To show the effectiveness of the proposed methodhan cases of linear
nonminimum phase systems with non-hyperbolic, mear-hyperbolic and hyperbolic
internal dynamics, the simulation results of theemples are presented. The first
example is a nonminimum phase SFLM with a non-Hyplér internal dynamics; that is,
there are purely imaginary zeros for its transiamction (or equally there are purely

imaginary eigenvalues for matri¥A,in Eq. (3-21)). The second example is a

nonmimimum phase SFLM with a near non-hyperbolistay, which means that its
transfer function has zeros that are close to meginary axis. The third example is a
nonminimum phase SFLM with hyperbolic internal dynes and therefore it does not
have any purely imaginary zeros or zeros that Exgecto the imaginary axis. The third
example is also the simulation results for the SFkich is available in the robotics
laboratory of the University of Saskatchewan arsdrésults are compared against the

experimental ones given in Section 3-8.

3.7.1. Example l: A SFLM with non-hyperbolic internal dynamics

For the first example, a SFLM with the physical gedies given in table 3-1 was
considered. This SFLM had the same physical paemnets in [12]. Moreover, the
flexibility of the link was modeled with the firdvo flexible modes. The zeros of the

transfer function which are the eigenvalues of mat, in Eq. (3-21) weret 61.25 and

+54.34i.

Table 3-1: Example 1: physical properties of th&I8F

L(m) | EI(N.m?) | 1,(kgm?) | p(kg/m) | 14, (kgm®) | my,(kg)

1.005 4725 1.800x107° 2.032 4742x107 6.790

Since the transfer function of the SFLM had purehaginary zerost 54.34i, it
has non-hyperbolic internal dynamic. Thus, the nausal inversion introduced in
[8,10,11] was not possible [13]. However, the mdthlescribed here can handle purely

imaginary zeros. It is worth noting that althougke tinear model of a SFLM considering
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the end-effector displacement as the output antvdlse torque as the input does not have
purely imaginary zeros [25], due to the truncatioon-collocation of the sensor and
actuator and without material damping consideratiparely imaginary zeros are

inescapable [26, p.73].

For comparison, the desired end-effector displacerfee the first example, as
shown in Fig. 3-3, is taken exactly from [12], aligh this is a relatively slow trajectory.
For the second example the speed of the maneuveralmaost twice that of the first
example. Although, these two examples may not leebist representations farefy)
flexible link manipulators, nonetheless they arexithle manipulators with unstable
internal dynamics.

That trajectory was obtained, using a polynomial ttee planned output and

assuming the following initial and final conditio(details can be found in [12]):

y(6.50) =1.57(m), y(0) = y(0) = ¥(0) = y¥ (0) = ¥ (0) = ¥ (0) = 0.0
y(55) = y(65)=y® 55 =y@ (55) =y (55) = 0.00

(3-44)

where y" =d"y/dt" =d™?y/dt™? . The reason for selecting this trajectory is for

comparison as discussed in the following. In [11§ trajectory, as given in Fig. 3-3, was
obtained by adopting a point-to-point maneuver. Ewsy, the problem here was to
follow a desired trajectory as opposed to a parnpdint motion. Therefore, the
trajectory given in [12], and also shown in Fig3 3was assumed as the desired trajectory
and the piece-wise causal inversion was used tovichis trajectory. Thus, the required
causal torques have to be the same here and inB¥2jomparing the torque in Fig. 3-4
and that obtained in [12] it was seen that thesques are in fact the same. This

comparison can serve as a check for the validiguofnew method.
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Fig. 3-3: Example 1, simulation, desired end-effedisplacement

Since the input to the inverse equations was thergkderivative of the desired
end-effector displacement, Egs. (3-14), (3-18) &@1), the acceleration of the end-
effector was redefined by SSEF. Therefore, therdeésnd-effector acceleration, derived
from the desired end-effector displacement, wasddd/ into 5 equal segments which

were:
000<t<11 , 11<t<22 ..., 44<t<55 (3-45)

It was assumed that2 (see Eq. (3-37a) and remark 3.1 in Section 3Mdyeovernu=3,
where nu was the size of the vectoK, in Eq. (3-23). Therefore, the number of

exponential functions for each segment wa8 from Eq. (3-38). Also, theni’ for each
segment were derived using Eqs. (3-42) and (3-48)aasuming:

(Cl.), = 00001 (C:.), =1.000 (3-46)

dec

Due to the redefinition of the acceleration, thel-effector velocity at the end of the
maneuver would not necessary be zero and thegdosition of the end-effector might be
different from the desired one. The closer the fiedd acceleration is to the desired
acceleration, the smaller will be the differenceowdver, the addition of a joint PD
controller to the nominal input torque, derived figce-wise causal inversion, not only
makes the closed loop control robust but also resltitese errors to zero and suppresses
the link’s vibration [27]. Therefore, the input tppre to the dynamic model was set to:

r=1,+k (6, —6) +k, (6, — 6) (3-47)
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where 7, was the piece-wise causal torque calculated frioenitversion of the linear

dynamic equation, of Eq. (3-&), andk, were the scalar gains, afigandd, were the

redefined joint rotation and velocity, respectivelihe torque obtained from Eq. (3-47)
was applied to the linear dynamic model, Eqg. (3A)er 5.5 (s), the computed inverse
dynamic torqueg, in Eq. (3-47), was set to zero. Thus tor 5.5 (s) only the joint PD

controller, assuming the desired joint rotationysthconstant aty, (t,)/L =1.56(rad),

was active. The stability of the proposed contrabeagiven in Appendix 3.111.

In Fig. 3-4, the simulation torque employikg =15 andk, = 30is shown. These
gains were obtained by trial and error observing shistem’s response (relatively fast
settling time and small overshoot) and also nothmagk, and k, had to be selected so
that all the eigenvalues of matr& . in Eq. (3- A20) in Appendix 3. Il had negativeate
parts. For the initial estimate in the trial andoemprocedure, the gains, and k, were
selected based on the single rigid link counterpathe SFLM as in [27]. By selecting
the gains k, =15 and k, =30, the eigenvalues ofA_in this example were
{-573.2,-3.435+ 60.00i, — 3.445+ 3.456,-0.5858 . Since all the eigenvalues of matrix
A . had negative real parts, the closed-loop systemstable and thus its response was

guaranteed to be bounded (see the stability proAppendix 3. 111).

o

Torque (N.m)
N

0 05115 2253 35445 555 6 65 7 75 8
time (s)

Fig. 3-4: Example 1, simulation, required baseuertpr causal end-effector trajectory

inversion of the SFLM
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The small value of the torque after 5.5 (s) was ttu¢he joint PD controller.
Moreover, it was observed that the torque was discoous at 5.5 (s) as expected. This
was due to the fact that after 5.5 (s) the off-limeerse torque was set to zero and only
the joint PD controller was active.

In Fig. 3-5, the desired and actual end-effectgpldicements are shown. In Fig.
3-6, the difference between the actual and desieed-effector displacements,

error =y, -y, is shown. As can be seen, after 5.5 (s), duén¢oRD controller, the

actual displacement approached the desired dispkte

1.6 T 1
1.4r
1.2
1k N
0.8

0.6 |

0.4- —Desired displacement

0.2 ----Actual displacement
0 |
-0.2

0 051 15 2 25 3 35 4455 55 6 65 7 75 8
time (s)

End-effector displacement (m)

Fig. 3-5: Example 1, simulation, desired and actual-effector displacements for the
SFLM

Error (m)
—

1
—_

-2 \\
_3 1 1 1 1 1 1
0051 15 2 25 3 35 445 555 6 65 775 8

time (s)

Fig. 3-6: Example 1, simulation, the differencevizn the actual and desired end-
effector displacements of the SFLM which are shawhig. 3-5
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Remark 3.4: To make the torque discontinuity at the end efrttaneuver approach zero,
the desired trajectory in the last segment canduefined so that, at the end of the

maneuvert., not only the redefined displacement and its ciglchave the same values

as their desired ones, as explained in Remarkb8t3lso the link’s deflection, due to the

link flexibility, and its velocity set to be zerthat is X, (t;) =0, whereX, is defined in

Eq. (3-21). Therefore, after applying the torquéaoted by the inversion process to the
dynamic model, the manipulator comes to rest atetig of the maneuver, for a rest-to-
rest motion, while the end-effector moves alongesirgd path. However, due to the
existence of the unmodeled dynamic, even afteryapplsuch an inversion torque, the
joint PD controller must be employed to suppress lthk’s vibration and reduce the

steady tracking error to zero. This leads to auerjump at the end of the maneuver.
Nevertheless, the jump in the torque will be smatlempared to the case where the

conditionsX, (t;) =0 and Eq. (3-37b) are not imposed on the redefingedtory. The

addition of these conditions to the method disatigsehis chapter is under investigation

[22] and the results will be available in the nkdaure.

3.7.2. Example2: A SFLM with near non-hyperbolic internal dynamics

The physical properties for the second examplegaren in Table 3-2. These
properties were slightly different than those irblEa3-1. Moreover, to change the non-
hyperbolic internal dynamics (purely imaginary zrinto near a non-hyperbolic one
(zeros which are close to imaginary axis) Raylesginaterial damping given in Eq. 3-9,
was considered. The damping ratio of Rayleigh’semal damping was set o= 0.02,
which corresponded to manipulators working in oupace [28]. The zeros of the

transfer function weré7.58-72.17, and-1.31+52.20 . Therefore there were no purely

imaginary zeros, but, there were zeresl@1+52.20) which were very closer to the

imaginary axis than other two zero&/(58and—72.17).
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Table 3-2. Example 2, physical properties of thel8F

L(m) | EI(Nm?) | I,(kgm?) | p(kg/m) | I, (kgm?) | my (kg)

1.000 47.00 1.800x10°° 1.500 4.800%102 7.000

The desired end-effector acceleration and the spomding desired velocity and
displacement, shown in Fig. 3-7, were considerdxt desired end-effector acceleration
was composed of several continuous third orderrptyals, for time from O to 1, 1 to 3,
and 3 to 4 (s). The average maneuver speed irexiaisiple was almost twice that of the
first example. It is worth noting that by incraagithe speed of maneuver, the link’s
lateral deflection will increase. However, if thel's lateral deflection is not small, then
the nonlinear model of a SFLM has to be used. Taerethere is a limitation for the

speed of maneuver if the linear Euler-Bernoulli mioaf SFLM is to be used.
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Fig. 3-7: Example 2, simulation, desired end-effeeicceleration, velocity and
displacement of the SFLM

For the stable inversion, the desired acceleratfothe end-effector was divided

into 8 equal segments which were:
00<t=<05 , 05=<t<] ... , 35<t<4 (3-48)

In addition, in each segment the desired acceteratias redefined by SSEF. The zeros

of the transfer function which are the eigenvalwésthe matrixA, in Eq. (3-21)
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were77.58-7217, and-1.31+52.20i, as already mentioned. Due to the material
damping consideration, there were no purely imagiaaros [26 p. 73]. Also only one of
the zeros had a positive real part, which was 7 &8 is,nu=1. Similar to Example 1, it
was assumed thét=2. Therefore the required number of exponentiatfioms in each

segment was=7 from Eq. (3-38). Thet’ for each segment were found assuming:

(Cl.), =0.0001 (C:.), =1000 (3-49)

dec

To investigate the response of the actual systemgetaluated torque from the
inversion of the linear dynamic model with a joRD controller, Eq. (3-47), was applied
to the actual nonlinear model of the SFLM, Eq. J34singk, =15k, =30. These
gains were found as explained in example 1. Byguiese gains the eigenvalues of the

matrixA ¢ in Eq. (3-A20) in Appendix 3.1 were
{-769.4,-4904+ 61.99, —3.447+ 3.460,-0.585% . Since all these eigenvalues 6f.

in this example had negative real parts, the clkbsed system was stable and thus it
response was bounded as proved in Appendix 3i8.tb be noted that in example 1, the
torque was applied to the linear dynamic model gmeed in Eq. (3-8). The simulation

torque is shown in Fig. 3-8. The off-line inverseque was applied up to 4 (s). Due to
the redefinition of the acceleration and also aggpion of the torque evaluated from the
inversion of the linear system to the nonlineartays the actual values of the end-
effector velocity and displacement at the end ef mlaneuver differed from the desired
ones. However, as already stated in example lapipécation of a joint PD controller

can reduce these errors and the vibration of thetb zero and also the small torque after

t, = 40(s) from the PD controller was used to eliminate titacking error. The desired
joint rotation fort > t, stayed constant a,(t,)/L = 2.1(rad). Moreover in Fig. 3-8, as in
Fig. 3-4, the torque had a small jumptat= 40(s) for the same reason as explained in

example one, (See remark 3.4).
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Fig. 3-8: Example 2, simulation, required baseuertpr causal end-effector trajectory
tracking of the SFLM

The actual and desired end-effector displacemengs shown in Fig. 3-9.

Moreover, the difference between the actual andretedrajectoriesrror=y, -y, is

shown in Fig. 3-10. There are two reasons why fifferdnce between the actual and
desired trajectories in example 2, Fig. 3-10, igéda than the difference between the
actual and desired trajectories in example 1, i@, as follows. First, the average speed
of the maneuver for example 2 was approximatelgawhat for example 1. Second, in
example 2 the inverse off-line computed torque iolkth from linear model, Eq. (3-47),

was applied to the nonlinear model, Eq. (3-6).

2.5 T

2 / ]

1.5

—Desired displacement

1 - Actual displacement §

0.5

End-effector displacement (m)

0

_ I I I I 1
O‘50 05 1 15 2 25 3 35 445 5 55 6 65 7 75 8

time (s)

Fig. 3-9: Example 2, simulation, desired and actunal-effector displacements of the
SFLM
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Fig. 3-10: Example 2, simulation, the differencénsen the actual and desired end-

effector displacements of the SFLM which are shawhig. 3-9

The satisfactory results of the simulation with thenlinear dynamic model
confirm that the combination of the joint PD cotigo and the off-line inverse dynamic
torque, computed from the linear model, can deth e perturbation and uncertainty in

this example.

3.7.3. Example3: A SFLM with hyperbolic internal dynamics

For the third simulation example, the SFLM setumilable in the robotics

laboratory at the University of Saskatchewan (RwmisotLab of the U of S) was

considered. This SFLM is shown in Fig. 3-11. / Actuator

Payload

Flexible link ~Fig. 3-11: The SFLM in the Robotics Lab at the Usof

The robot consisted of a DC driving via harmoniap@x. The harmonic drive
was a Precision Servo Actuator from Harmonic Difeshnologies. Specially, its model
number was PSA-8-080. It offered zero backlash aseld Maxon 118752 precision

brush motor (20 watts). The flexible link of thel3Fin Fig. 3-11, was made of stainless

97



steel with a length of 0.2300 (m), a thickness 8890x10™* (m) and a width of
0.0381(m). The mass moment of inertia of the huts WeD198 (kg.), and the
coefficient of viscous damping in the rotating jomas 0.3200 (N.m.s/rad). Moreover,

the SFLM had a payload at the tip with the mas8.2690 (kg) and a mass moment of
inertia of 2570x10°7° (kg.n).

The link flexibility was modeled with one mode skaper link as will be
explained later in this section. The time varyingigint of this mode was measured with

an stain gauge mounted on the base. The resolotitre end-effector measurement by

using this strain gauge wa4.05x10™*(m). The zeros of the corresponding transfer
function considering the end-effector displacemesthe output were at212.0. Thus,
this SFLM was a nonminimum phase system with hyperbnternal dynamics. It was
nonminimum phase since it had a zero at +212.0itamatl hyperbolic internal dynamics
since none of its zeros were on the imaginary axeven close to it.

The link flexibility was modeled with one mode skaper link, since the
maximum bandwidth of the actuator, in Fig. 3-11svemaller than the second natural
frequency. The maximum actuator bandwidth was 5f) (khile the natural frequency of
the second mode was 54.25 (Hz). Therefore, the riiede of vibration was dominant
and the contributions of the second and higher madevibration were minimal which
justified modeling the link with only one mode. kover, generally, for a typical SFLM
(or even multilink flexible manipulator) contribotis of the higher modes of vibration
are very small as also observed in the examplesl Ra

The desired end-effector acceleration, shown in Bi§2, was considered to be
composed of several third order polynomials, fromo ©@.2, 0.2 to 0.4, and 0.4 to 0.6 (S).

The corresponding desired velocity and displacerasmpresented in Fig. 3-13.
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Fig. 3-12: Example 3, simulation, desired end-dtieacceleration of the SFLM in the
Robotics Lab at the U of S
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Fig. 3-13: Example 3, simulation, desired end-dtiegelocity and displacement of the
SFLM in the Robotics Lab at the U of S

The desired end-effector acceleration was dividea 6 equal segments which were,
00<t<01 , 0l1<st<02 ... , 05<t<06 (3-50)

Similar to the previous two simulation examplés;2 was selected in Eq. (3-37a).
Moreover, since there was only one unstable z&120, nuwas equal to 1. Using Eq.
(3-38), the required number of exponential fundifor each segment was7. Also ‘m’
for each segment was selected wusing Egs. (3-42) 4&d43) and
assumingC,..), = 0.0100and (C;,), =1000. As in examples 1 and 2, the off-line

dec

inverse torque was combined with the joint PD calidr, Eq. (3-47), and after 0.6 (s)
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only the joint PD controller withg, =y, (t,)/L andé"d =0was active. The gains of the

PD controller werek, =1.4 andk, =0.40. These values for the gains were again odxain
by trial and error and observing the system’s raspaas explained in the first example.
For k, = 1.4 andk, = 0.40, the eigenvalues & in Eq. (3-A20) in Appendix Il were
{-23.86,-2.163 —4.971+ 30.86} which, since they all had negative real the cldsep
system was stable and consequently its responseasgaired to be bounded. To observe
the response of the system under uncertainty,arsittimulation the linear dynamic model
of the SFLM given in Eq. (3-8) when the link flekity was modeled with two mode
shapes was used. The second mode shape was ataunmtgdrecause the link flexibility,
and consequently off-line inverse dynamic torqueensbtained using only the first mode
shape. In Fig. 3-14 the required base torque isvshdhe reason that the shape of the
torque in Fig. 3-14 was different than the torquesxamples 1 and 2, Figs. 3-4 and 3-8
respectively, was due to the high value of thetjaiiscous friction in this example.

Moreover, the discontinuity of the torque tat=0.6 (s) was expected since, fort, ,

the off-line computed torque was set to be zero amg the joint PD controller was
active, as in the previous examples. Howeverhis ¢éxample due to the larger error at

t, between the desired and actual displacements, ttigrerror in the previous two

examples, the jump in the torque, as shown in &ig}4, was larger than the jump in the

torques in Figs. 3-4 and 3-8 (see remark 3.4).
0.6

0.5

Torque (N.m)
o o o
(¥ [ .x?

o
—_

(=

-0.1

_ 12 14 16 18 2
time (s)

Fig. 3-14: Example 3, simulation, required baseguerfor causal end-effector trajectory
tracking of the SFLM in the Robotics Lab at the 5o
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The desired and actual end-effector displacementthe SFLM are presented in
Fig. 3-15. Moreover, the difference between theirddsand actual end-effector

displacementerror =y, -y is given in Fig. 3-16. From Figs. 3-15 and 3-I6isiclear

that eventually the joint PD controller eliminatdse steady end-effector trajectory
tracking error, which is consistent with the resil{27].
012 : ‘

0.1

0.08 / |

—Desired displacement

0.06r ---Actual displacement

0.04

0.02r ]

End-effector displacement (m)

_0‘020 02 04 06 038 1 12 14 16 138 2

time (s)

Fig. 3-15: Example 3, simulation, desired and datnd-effector displacements for the
SFLM in the Robotics Lab at the U of S
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Fig. 3-16: Example 3, simulation, the differencéwsen the actual and desired end-
effector displacements of the SFLM in the Roboliab at the U of S which are shown in
Fig. 3-15
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3.8. Experimental results

To show the feasibility of the introduced tecjue, in this section the
results of an experimental study are presented.SFLM in the robotics laboratory at
the University of Saskatchewan, shown in Fig. 3-WAs used for this experimental
verification. It is to be noted that in exampletl3e simulation result for this SFLM was

given, while in this section the experimental reswill be presented.

3.8.1. Example4: End-effector trajectory tracking of an experimental SFLM

The physical parameters of the SFLM are given sngxe 3. The link flexibility
is modeled using one mode shape due to the reaguaireed in example 3. The time
varying weight of this mode was measured usingr@rsgage located at the clamped-
base. The desired end-effector acceleration, itgland displacement were the same as

those used in example 3, which were shown in F& and 3-13, respectively.

Besides the physical parameters given in examptbe3e was a high rotational
dry friction in the experimental setup due to thegpéoyed harmonic drive. This friction is
refereed to as joint dry friction in the followiragnd might be modeled approximately, for
instance, by the model available in [29]. The etisk of this joint dry friction, which is
hard to model exactly, deteriorates the performarfae model-based controllers [30].
In this chapter, like in [31,32], to compensate tioe friction, the average value of the
joint dry friction was measured and added to thetrod torque in Eq. (3-47). Moreover,
since the selected desired displacement was uaidinal, the dynamic effect of friction
was easier to model [31]. That is because the mdatigr does not change its direction.

The average value of the joint dry friction was abéd experimentally by
applying a step input torque to the motor and réiogr the joint angular velocity versus
time (velocity profile). Repeating this experimegave different velocity profiles for
different values of the step input torques. Sirtee ¢dlosed-form function of the velocity
profile for a step input torque is known, by usangurve fitting scheme the average value
of the joint dry friction was obtained. This avgeavalue was 0.45 (N.m) which was
added to the torque given in Eq. (3-47) and applethe experimental setup. The gains
of the joint PD controller in Eq. (3-47) were det= 1.4 andk, = 0.40. As in the pervious
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examples, aftet, = 0.6 (s) only the joint PD controller was active. Moveo, for the

joint PD controller, fort >t,, 8, =y,(t,)/L (rad) andd, = Owere utilized. The results

of this experimental study are reported in Appenglix/. From the reported results in
Appendix 3.1V it is clear that a steady trajecttngcking error existed of abod01(m).

That is, the joint PD controller by itself couldtreliminate the steady trajectory tracking
error, contrary to simulation examples 1, 2 andi&me the joint PD controller reduced

the steady tracking error to zero. Moreover, it wigsr that aftet, =0.6 (s), the actuator

applied a constant torque. This torque was dud¢oelistence of the steady tracking
error and application of the joint PD controllem&: the value of the constant torque was
less than the value of the joint dry friction, @utd not rotate the hub and reduce the
steady tracking error to zero. By increasing thegaf the PD controller, the constant
value of the torque would increase and allow owvericg the joint dry friction. But,
implementing a joint PD controller in the presemddriction will eventually lead to a
steady tracking error, where for higher PD gaires ¢hror becomes smaller [33]. As a
side effect, selecting larger gains for a PD cdl@rancreases the sensitivity of the
controller to noise and leads to torque saturatMoreover, although applying a PID

(proportional-derivative-integral) controller inateof PD controller fot >t, might be a

solution for the reduction of the steady state retoozero; the combination of the PID
controller and joint dry friction results in hungimited cycles [33,34]. Finally, adding
the calculated average value of the joint dry ilmictto the PD controller did not appear to
be a solution. This is due to the fact that thecessful reduction of the error by the PD
controller to zero would occur [27] if the exact aeb of the joint dry friction, and not an

average value, was used for compensation.

In the following section, a new controller in intiwced to compensate for the
joint dry friction. The utilization of this new ctmoller does not indicate inefficiency of
the new causal inversion end-effector controll@roduced here. However, since the
causal end-effector inversion is a model basedrotbet and joint friction is not exactly
known, a different controller is necessary to reddlece error to zero at the end of

maneuver.
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Introducing a new controller

As a remedy, to reduce the steady trajectory treckeérror to zero, in the
following a new two stage controller is proposedha expense of torque discontinuity.

Based on this proposed controller for the firsgetap tot, = 06 (S), a constant torque of

0.45 (N.m) was added to that given is Eq. (3-40 applied to the SFLM (like before).
For the second stage, tort,, the pulse width control (PWC) [35,36] was used to

reduced the steady state error of the hub to Zeroording to the PWC, to reduce the
steady trajectory tracking error to zero, the foilog steps have to be taken in each

interationj [35]:
1- j=0
2- Measure the current hub position erwor =6, — 6 whereg, =y, (t,;)/Land

@ is the actual hub rotation.

3- Calculate the widthu, :kﬁsgn@j)of the pulse torque,,, as shown in

2T I + I .+ . L2 + L3 /3
Flg 3-17, Wherg k =\/ a( h tip rnup P ) .
Tlm (Tlm - Ta)

<r, ,T.is the

a Im?*a

average value of the joint dry friction and paraenet , I,,,,m,,, pand L are
defined in Section 3.2 after Eq. (3-4c).ufis positive (or negative) the pulse

torque will be in the Z (or -Z,.u) direction where

Inertial

Zlnertial:XInertialelnertial and Xlnertialand YInertialare ShOWﬂ in Flg 3'2 in

Tim
Ta

Fig. 3-17: Schematic of th&n iteration of the PWC

Section 3.2.

'8 The effect of viscous damping was not considémezhlculatingk. This is based on the assumption that
the duration of the pulse is short, so the veloatyains small and the linear damping is negligible
compared to dry friction [36].
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4- Apply the torquer,, with the duration obtained in step 3 to the SFLM

5- Wait so that the hub comes to rest

6- if v’#£0 thenj =j+1 and go to step 3, otherwise stop.

The schematic of the proposed two-stage contradleshown in Fig. 3-18. The
stability of the first stage of this controllergsnilar to the stability analysis of the “joint
PD controller plus the off-line computed inverseqte” given in Appendix 3.111.
Moreover, the stability of the PWC, which is thecaed stage of this controller, is

available in [35]. Therefore, the closed loop colr given in Fig. 3-18 is stable.

5nvers¢_l
ynamic
M.; JOint PD @* on fort < 0.6
Stiction 4‘ e 0 é.
compensation o SFLM | o
o o e
6,= 0.1/L on fort> 0.6
4{: PWC

Fig. 3-18: Example 4, experimental, schematic efttho-stage controller used to

eliminate the steady trajectory tracking error

The torque applied to the experimental SFLM usimg two-stage controller is

presented in Fig. 3-19. For the calculation ofdbeation of the PWC, which ig; in step
3 above,r,, =046 (N.m)was selected. From Fig. 3-19, it can be seen thbt one

PWC aftert, =0.6 (s) was required to reduce the error closeto.z
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Fig. 3-19: Example 4, experimental, required basgue for causal end-effector
trajectory tracking of the SFLM in the Robotics Latithe U of S using the two-stage
controller given in Fig. 3-18
The actual and desired displacements and thekerdifteserror =y, —y using
the controller presented in Fig. 3-18 are showhigs. 3-20 and 3-21.
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Fig. 3-20: Example 4, experimental, desired andae&nd-effector displacements for the
SFLM in the Robotics Lab at the U of S using the-stage controller given in Fig. 3-18
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Fig. 3-21: Example 4, experimental, the differebetwveen the actual and desired end-
effector trajectories of the SFLM in the Robotiablat the U of S using the two-stage

controller which are shown in Fig. 3-20

Comparing Figs. 3-20 and 3-21, with the end-effecisplacement and error
given in Appendix 3.1V, Figs. 3-24 and 3-25, whiate the experimental results without
PWC, showed that the steady tracking error wascediwessentially due to the PWC.

That is, the steady state trajectory tracking ewas reduced from abou®010(m) to

about0.001(m).

Figs. 3-20 and 3-21 show that there existed a gla&hishing vibration of the
manipulator. When the hub reached /L (rad) if the link vibration was suppressed, the
steady end-effector trajectory tracking vanishete Joint PD controller was able to
suppress the link’s vibration [27] when there wasjoint dry friction. However in the
presence of the joint dry friction, the internalteraal damping was the only source of the
suppression of the link’s vibration. While relyirap the link’'s material damping for
eliminating the vibration is not always satisfagtahe available experimental SFLM has
this limitation. The application of a piezoelectactuator to overcome this drawback is

among the possible solutions which are currentenrstudy [37].

Finally, the difference between the actual andrddsilisplacements in example 3,
which is the simulation, is smaller compared wi¥perimental example 4, even fok
0.6 (s). The main reason for this difference was jthint dry friction, which was the

drawback of the harmonic drive used in the expemialesetup at the expense of no
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backlash. In the experimental study, to compenfatéhis joint dry friction a constant
torque was added to the controller torque. Moreoweaddition to the existence of the
joint dry friction as a source for such a differenthe encoder and strain gauge noise
[38], and the contribution of higher frequency medentributed to this variation. It is to
be noted that the controller proposed here, a caation of the joint PD with the inverse
dynamic torque, was a model based controller. Tosrethe existence of unavoidable
small differences between the real system phygeshmeters and the derived model
deteriorated the performance of the controllerpdeghe fact that the controller was still

stable.

3.9. Conclusions

A novel causal end-effector trajectory inversion af Single Flexible Link
Manipulator (SFLM) by means of output redefinitibas been introduced. The desired
trajectory is divided into a finite number of segiteand in each segment is redefined so
that a bounded causal continuous inversion torgmebe found. The redefinition of the
desired trajectory employed summation of stableoagptial functions which led to a
family of possible solutions. Thus, by minimizirtgeterror between the desired trajectory

and the redefined trajectory, the best memberefamily could be found.

Although the available non-causal end-effector s technique did not
tolerate existence of purely imaginary zeros foe thansfer function between end-
effector displacement and applied torque, the pegomethod in this chapter is still
valid even in the presence of purely imagery zemse off-line computed inverse
dynamic torque was combined with a joint PD comérohnd the stability of the proposed
controller against the unmodeled dynamic was ingattd. The joint PD controller
suppressed the link’'s vibration at the end of thatiom and was also robust against
unmodeled dynamic due to its model independentreatlihe simulation results for
SFLMs with hyperbolic, non-hyperbolic and near roperbolic internal dynamics,
which is without purely imaginary zeros, with pyreéiaginary zeros and zeros which
are close to imaginary axis respectively, wereudell. The experimental results showed
the feasibility of the introduced method. In thgpesmental study, due to the existence of

the joint dry friction, a new two-stage controlleras used to reduce the trajectory
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tracking error close to zero. While the method whaslied here for the inversion of a
SFLM, its extension to the causal inversion of dinsingle-input single-output, non-
minimum phase systems with hyperbolic or non-hypketinternal dynamics is straight
forward.

3.10.Nomenclature

a: A positive constant number

b: A constant number

¢, : Coefficient of thgth exponential function used to redefine the desirajectory in

thekth segment

h: The highest derivative of the redefined accelenathat has to be the same as its

corresponding from the desired acceleration
k. : Scalar gain
ko, : Scalar gain

m, : Exponent of thgth exponential function used to redefine the desirajectory in

thekth segment

my, : Mass of the end-effector

n : Number of the assumed mode shapes

nu: Size of the vectoX,'

P, : thejth coefficient of the polynomiay,

g: A vector composed of the degree of freedoms

r : Required number of the exponential functionsgach segment

r,: Relative degree
t.: Initial manoeuvre time

t, : Final manoeuvre time
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t, : Initial time of thekth segment
t, : Final times of th&th segment
u; : Width of the pulse torqus,,

y. End-effector displacement

y, - Desired end-effector displacement

Yy, : Redefinition of the desired end-efffector disglaent with the summation of the

exponential functions

Y, : Redefinition of the desired end-efffector disglaent with the polynomial functions
(V4)« : Desired end-effector acceleration in ke segment

A : State matrix when the dynamic model is expressdige state-space form

A, : State matrix wherX is transformed intay

A, : State matrix of the internal dynamic

A : A diagonal matrix with the diagonal elements thi the eigenvalues &, with

negative real parts

A7 : A diagonal matrix with the diagonal elements tha the eigenvalues &, with

positive real parts
B : Input matrix when the dynamic model is expredsdtie state-space form

B, : Input matrix whenX is transformed intay
B, : Input matrix of the internal dynamic

B’ : Input matrix which corresponds #,

B/ : Input matrix which corresponds #,

C,..: Decay of the exponential function

dec "
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(Cio). : The fastest decays for the exponential functisse in thekth

(Cio) - The slowest decays for the exponential functiosed in thekth

dec

C: Output matrix when the dynamic model is expressdte state-space form and the

end-effector displacement is the output

C..: Matrix representing the Coriolis force and thenpmnent of the centrifugal force in

the lateral direction

D:=[L g .. g)]

E: Young’s modules

F : Force vector

G : Matrix with columns which are the eigenvectorshe matrixA
H : Mapping matrix betweehk andr

I, : Mass moment of inertia of the hub

l,,- Mass moment of inertia of the end-effector

| : Second moment of cross section area

K g : Stiffness matrix

K,=[k, 0 0 k, 0 0O
Kp : Matrix gain

Kp : Matrix gain

L: Length of the link

M : Mass matrix

T, : Total kinetic energy of the manipulator
T, : Kinetic energy of the flexible link

T,: Kinetic energy of the hub
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T .

w. Kinetic energy of the end-effector
T : Transformation matrix betweeX andy
U, : Strain energy due to the link’s flexibility

V(,: Lyapunov candidate function selected for theiitplanalysis of the first stage of

the proposed controller

V,, : Lyapunov candidate function selected for theititg analysis of the second stage

of the proposed controller

(X}'),: The particular part o'

(X\").: The complementary part of}’

X|': Stable part ofX,

X;: Unstable part ofX,

X, : State vector of the internal dynamics

X . State vector when the dynamic model is express#tk state-space
B, B,: Positive scalars

¢ . Spatial deflection of the flexible link

@ : Thejth spatial pre-defined shape functions
A; : Thejth time varying weight functions

p© . Mass per unit length of the flexible link

@ : Rotation of the hub
7 : Actuator torque

n . Damping ratio of the fundamental vibration motiafse

« : Natural frequency of the fundamental vibrationdeshape
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w . The vector obtained after transformig by T

v: Number of the segments

7, : The torque obtained after end-effector inversibthe linear dynamic model
7,: Average value of the joint dry friction

I,,: Value of the pulse torque
A : Deviation of the linear mode from nonlinear mioailed non-modeled dynamics
IT: A positive definite matrix obtained from the Lyapv equation

I' : A positive definite matrix

3.11.Appendices

Appendix 3.I: The elements of the matrices in the nonlinear and linear dynamic

equation

The nonlinear dynamic equation of a single flexibld& manipulator, Eq. (3-6), is:

M(2)d+C.(6,4,4)4+Kgq=Hr (3-A1)
or.
M 11 " M 1n+1 9 (Ccc)ll " (Ccc)ln+l 5 Kll e Kln+l 0 1
M n+11 e M n+ln+1 /'1'n (CCC) n+11 e (Ccc)n+ln+1 /in K1n+l . Kn+1n+1 /1n 0
(3-A2)
| [ g(y) ,_9a)
where @, . = |pg dy, @ = dy, g =—""2= ¢ =—"17~
@, OIM y. @, ij 4=y 5y

My = (00 13)+ oS AN, )+ 1y + 1y +my 2 +my (O @(L)g (LA, (3-A3)

i=1 j=1 i=1 j=1
My =M, =p®_ , +m,Lg. (L)+1,4,(L) i=2.n+1 (3-A4)

My =M, = 0@, + M@, (D@ (L) + 1@, (Dd (L) i,j=2.n+1 (3-A5)

1j
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C)n=p> Y AAo ) +m O @(Dg(DAA)  (3-A6)

i=1 j=1 i=1j=1

(Coi = (€)= P AP )+ MA@ (DR (Y)  i=2.n+1 (A7)

(Ccc)ij :(Ccc) ji :O! i’ J ¢ 1 -M)
0 i=lorj=1
L
K, = El jgzgzq'd % 3-A10)
0

In the linear dynami@cc(é,z,i) does not exist and the elements for the massxraati
My, = (o2 73)+1, +1, +m, 12 (3-A11)
My =M, =p®_,+m Ly (L)+1,4.,(L) i=2.n+1 (3-A12)
My =M; =p®_, +mya. (L)@, (L)+1,¢4,(L)¢g, (L) i,j=2.n+1 (3-Al3)
Moreover, the stiffness matrix is as in (3-A9) 4B86A10)

Appendix 3.11: Checking the orthogonality of the shape function of beam element

The shape functions for the beam element are @ddhymomials [39, p. 242] as:

N, :%(1_,7)2(2+,7), N, =%E (1-/7)2(1+/7)}
N, =2 @+n2@-n), N =i[i(1+n)2(—1+,7)} (3-AL4)
g 4T o4

where L,is the length of the beam element andk the linear distance measured from the

center of the master beam element, which is chgnfiom -1 to 1. These shape

functions are shown in Fig. 3-22.
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Fig. 3-22: Graph of the shape functions of the besment

If the above shape functions with the weight fumrctio be 1 were orthogonal to each
other,O(Ni,Nj):bINi(n).Nj(/])dn was equal to zero fo j,i=1..4,j=1..4.
However, calculation 0O(N;,N;) fori# j,i=1..4, j=1..4shows that:
O(N;,N,) =O(N,,N,) =010, #0, O(N,;,N,;) =0O(N,,N,) =0.257#% 0
O(N,,N,) =O(N,,N,) =-0.062, 20, O(N,,N,) =O(N,,N,) =0.062_ % 0
O(N,,N,) =O(N,,N,) =-00142 20, O(N,,N,)=0O(N,,N,)=-0.105, 0

(3-A15)

Therefore the shape functions used to redefinedisigacement along a beam element

are not orthogonal.
Appendix 3.111: Stability proof

The proposed controller had two stages. In the §tage fot <t,, a joint PD

controller which is added to the off-line computaderse dynamic torque was utilized.

In the second stage for t, , only the joint PD controller assuming cons@nt y(t,)/L

, andd, = 8, =0, was active. For the stability analysis, it wid first proven that the first

stage controller, a joint PD controller plus th&lofe computed inverse torque, leads to a

trajectory tracking error dynamic which is stablden, it will be established that the
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second stage controller, the joint PD controllepmesses the vibration of the link and

eliminates the steady tracking errors.

Proof of the Lyapunov stability of the joint PD tafler plus the off-line computed

inverse torque fot <t

The dynamic model of a SFLM in the state space fierm
X=AX+Br+4 (3-A16)

whereA,Band X are defined in Eq. (3-12), is the actuator torque, andl represents the
deviation of the linear mode from the nonlinear wlodnd unmodeled dynamics.
Moreover, according to the end-effector inversiomcpedure the off-line computed

inverse torque, satisfies:
X, =AX, +Br, (3-A17)

where X, are the states correspondsyjwhich are calculated during the inversion
procedure and
Ya =CX, (3-A18

where C is defined in Eq. (3-12). The torque given in E247), which is the off-line

computed inverse torque with the joint PD contmlé&n be written as:

r=1,+ KA (@)

where K, =[k, 0 0 k, 0 0]land A= X, -X. By replacingr from Eq. (3-A19)
into EQ. (3-A16) and utilizing Eq. (3-A17), the erdynamic is:

A=A A-A (3-A20)
whereA. = A - BK,,.
Theorem: If:

1- The gainsk, and k, are selected so that the matrix is Hurwitz
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2- The unmodeled dynamic and the deviation of limaadel from nonlinear model

satisfy B, <, () /(2|T) where u,;, (IT) represents the minimum eigenvalue
of IIdefined in Eq. (3-A21) and positive scafaris defined in Eq. (3-A25)
then the error dynamic state is globally bounded.

Proof: Since A is a Hurwitz matrix, there exists a symmetric pesitlefinite matrix

I'which satisfies the following Lyapunov equation:

ALl+TA. =-T1 (3-A21
wherell is a positive definite matrix. Choosing the Lyapurcandidate function:

V, =A'TA A22)

and taking its time derivative along the trajeasrof Eq. (3-A20) yields:

Vi, =-ATTIA-2A'TA (3-A23)
From Eg. (3-A23), it is concluded that:

Vi <=4 (A + 2t (3-A24)

where y .. (IT) represents the minimum eigenvalue Iéf Moreover, it is assumed that

on a bounded region around origjut is:
] < Bla]+ 2, (3-A25)
where S and g, are positive scalars. Combining Egs. (3-A24) ané23) leads to:

Vip < ~(n (1) - AT B)]A]" + 25, [ o]

Sincef, < Uy, (M) /(2|T]), the state error is globally bounded [17 p. 22] and the

closed loop system is stable.

Proof of the suppression of the link’s vibratiordaranishing of the steady tracking error

by utilizing joint PD controller for > t,

The nonlinear dynamic model of SFLM as given in E396) is:
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M(D)§+C. (6,4, 4)q+K q=Hr (3-A26)

where the elements ofM(4), Ccc(é?,,l,,i) ,Kzand H are defined in Appendix 3.1.

Moreover 7 is the actuator torque. If the joint PD controlieronly active, the actuator
torque, as in Eq. (3-47), is:

7=k, (6, -0) +k, (6, -6 (3-A27)
or
r=-Ku0, - Ky, (3-A28)
where
Ko =[kp  Ou (3-A29
Ko =[ko Oy (3-A30
a.=[6-6, A .. A] (3-A31)

Theorem: The joint PD controller given in Eq. (3-A28) asytatically stabilized a
SFLM with the nonlinear dynamic model given in E8tA26)

Proof: Applying the torque given in Eq. (3-A28) to thentinear dynamic model given
in Eq. (3-A26) leads to:

M (2)8, +(C (6, 4,4) + HK,, )d, + (K 5 + HK,, ), =0 (3-A32)

It is to be noted that in deriving Eq. (3-A32),vias assumed tha#l, =&, =0. The

assumption tha, = 8, =0 is the consequence of the fact #ats constant for>t, .

For the stability analysis, the Lyapunov candidatestion is selected to be:
Vg = 1/24I M (2)g, +1/29. (K ; + HK, )q, (3-A33)

whereM(4)and K ; + HK, matrices are positive definite matrices. Takingdbavative

of V,,, given in Eq. (3-A33), with respect to time alotg trajectories of Eq. (3-A32)

and using the fact thaf! (-C_(8,4,4) +1/2M)q, =0 [40] yields:
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V,, =K, (6, - 6)? (3-A34)

which shows thatVis a negative semi-definite scalar. However, by pédg the

LaSalle’s theorem [9], the asymptotic stabilitytbe closed-loop system can easily be
concluded [27, p. 210]. It is worth noting that fh®posed PD controller in Eq. (3-A28)
is robust against the unmodeled dynamics becaisedhtroller is not model-dependent.
Therefore, the stability proof given here will sdass along as the dynamic model of the

real system can be expressed as Eq. (3-A26).
Appendix 3.1V: The experimental result without the PWC controller

In Fig. 3-23, the applied torque to the experime8tLM is shown. This torque
was the off-line inverse dynamic torque plus thatj@D controller and the PWC was not
used. The actual end-effector displacement andékseged end-effector displacement are
shown in Fig. 3-24. Moreover, the difference betwtdee actual and desired end-effector

trajectorieserror = y, —y is presented in Fig. 3-25.

0.07 ; ;
_r_k_y__k_y__&— 4

0088 1 12 14 16 18 2

Torque (N.m)

% 05 1 15 2
time (s)

Fig. 3-23: Experimental, required base torque &ursal end-effector trajectory tracking
of the SFLM in the Robotics Lab at the U of S with&WC
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Fig. 3-24: Experimental, desired and actual endedfir displacements for the SFLM in
the Robotics Lab at the U of S without PWC
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Fig. 3-25: Experimental, the difference betweenatial and desired end-effector
displacement of the SFLM in the Robotics Lab atlthef S which are shown in Fig. 3-24
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Chapter 4. End-effector trajectory tracking of
a flexible link manipulator using

Integral manifold concept
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Abstract:

A new controller for the end-effector trajectorgdking of a single flexible link
manipulator is introduced. The linear dynamic moaél the single flexible link
manipulator is expressed in the singularly pertdrbmm. To reduce the end-effector
trajectory tracking error, a corrective torquedsl@d to the computed torque command of
the rigid link counterpart of the single flexibi@k manipulator. The corrective torque is

derived based on the concept of the integral mhhifdf the singularly perturbed
differential equations. This corrective torque fsooders® wheres = 1/(27f ) and f is

the fundamental natural frequency of the singlexilfie link manipulator. The
implementation of the introduced technique doesrequire the full-state measurements
since, by designing an observer the time derivatiVehe link’'s lateral deflection is
estimated. The stability proof of the new contmllevhich is based on Lyapunov
criterion, is presented. The results of the sitmmaand experimental studies which
show the feasibility of the new approach are inethdMaking the error of the end-
effector trajectory tracking smaller by using a neamputationally cost effective
controller, which was verified by simulation andpeximental results, and reducing the

numbers of state-measurements are the main cotmbmiswf this work.

Keywords: Flexible link manipulator, vibration control, trafery tracking, Integral

manifold, Singular perturbation

4.1. Introduction

Light-weight manipulators, usually called flexidlak manipulators (FLM), are the next
generation of the industrial manipulators provideat the challenges encountered during
their dynamic modeling and control are addresséztefely. Since, for many industrial
applications the time history of the end-effecton®vement is given, end-effector
trajectory tracking (EETT) of the FLM is of greawportance and it has been studied for
many years [1-9]. The challenging aspects of EEfTFLM are due to the facts that they

are underactuated [10] and have non-minimum pHasecteristics [11].

Since the FLM have a link rotations (slow subsygtand the links’ vibrations

(fast subsystem), its dynamic model can be expdessé¢he singularly perturbed form
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[1]. Consequently, the control strategies develojpedsingularly perturbed systems can
be adopted for their EETT [12]. In this chaptersdxh on the concept of the integral
manifold of the singularly perturbed differentiajuations [13,14], a new controller for
the EETT of a single flexible link manipulator (SH) is proposed. By utilizing the
concept of the integral manifold, a corrective teggs added to the computed torque
command (CTC) of the rigid link counterpart of tRELM [15 p. 135] so that the EETT

error decreases. This corrective torque is of ar@ewhere ¢ = 1/(27f ) and f is the

fundamental natural frequency of the SFLM.

The implementation of the controller introducedehdoes not require the direct
measurement of the full-state; since by an obsehetime derivative of the link’s lateral
deflection is estimated. It is worth noting tha¢ tneasurement of the time derivative of
the link’s lateral deflection is difficult, if nampossible, in practice. The fact that the new

controller does not require this measurement makKeasible.

The stability of the new proposed controller ioyen using the Lyapunov
criterion. The effectiveness and feasibility of tiew controller is shown through several

simulation and experimental studies.

The main contribution of this paper is in utiliginthe concept of the integral
manifold of singularly perturbed systems for theTEHE Although this concept is well-
documented, there are very few reports of it baisgd for the EETT of FLM with
experimental verification. Moreover, compared te fiew available EETT controllers
derived based on the concept of the integral mlhiguch as [16], the method presented
here is the most computationally efficient one tlu¢he fewest corrective torques that
have to be added to the CTC for the EETT reducfiamally, the proper use of several
mass matrix properties, introduced in Section Wl2ich facilitates the derivation of the
corrective torque and ease the implementationettntroller, is another contribution of
this work. Without the proper use of these propsertihe calculation of the controller

command was very difficult.
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4.2. Dynamic model derivation

The link’s lateral deflection of a SFLM{ in Fig. 4-1, is modeled by using the

assumed mode shape method [7,17] that is:
=2 AMaw) (4-1)
i=1

where ¢()) is theith assumed mode shape outno&ndA (t)is its time varying weight
function which is also referred to &k flexible variable. Combining the assumed mode

shape method with the Lagrange equation [7], thehyc model of a SFLM is:

MX + K X = Hr (3-2

whereX :[6? AT]T,/l :[/11 )ln]T,éi is shown in Fig. 1M is the mass matriX zis
the stiffness matrix which are:

M = |:(M ie)lxl (M [ )1xn:| KB — |:le1 len :| (4_3)
(M oA )nxl (M AA )nxn On><1 (K/l)l )nxn

H :[1 0 ]T andr is the actuator torque. Details of the elementstlier mass matrix

1xn

and stiffness matrix are given in [7].

YInertia]

XInertial
Fig. 4-1 Schematic of a SFLM

Assuming small lateral deformation, the end-efféstgangular) position for a
SFLM will be defined by the variabke shown in Fig. 4-1, which is:

128



r:9+¢:H+£(L,t)/L:6’+(zn:/1i¢((L))/L:9+\N/1 (4-4)

i=1
where W=[g(L)/L ... @(L)/L] and L is the length of the single flexible link

manipulator.
Properties of the mass matrix

The mass matriXyl in Egs. (4-2) and (4-3), has specific propertiésciv are used

in deriving the controller in Section 4.4. Thesep®rties are as follows.

If M -1 =|:(M€€)1x1 (M 1 )1><n:|_ |:(‘]€9)1><1 (‘JH/l)lxn

(M;—/])nxl (MAA)nxn (‘J;—/l)nxl (‘J/M)nxn

equalities between the componentdfand J exist:

}:J, then the following

Mg, M/l_/ll = _‘J;el‘Je/i (4-5a) M ;AMgel = _‘J/i_/il‘];/l (4-5b)
My, = ‘]9_91 + MBAM/I_/IlM;/I (4-5¢) Me;; =Jp JGAJ/i_j‘];A (4-5d)
J = M/; + ‘];/1‘](;91‘]9/1 (4-5e) ‘]/I_j =M, - M;AM;;M a  (4-5f)

Proof: See Appendix

4.3. Singularly perturbed form and integral manifold concept

To express the dynamic model of a SFLM, Eq. (4#2}Yhe singularly perturbed

form, the following new states are introduced:

x=6 x,=80 (4-6a)
z=Ale* z,=Al¢, (4-6b)

wherex =[x, x,] andz= [le z ]T represent the vectors composed of the states of the
slow and fast subsystems respectively, &ard/27f where f is the fundamental

natural frequency of the SFLM [16]. Using the ndatas defined in Egs. (4-6a) and (4-
6b), the dynamic model of a SFLM is:

129



. _ X _ X,
s X, B Jo T K,z )

o _ 4| Z,
gz_({zj_{‘]; T_Klzl:| ®)

whereK, =J,,K , /(27f)*andK, = J,K ,, /(27f)?*. Moreover, the end-effector’s
(angular) position as given in Eq. (4-4) is:
r=x +&Wz -
For Egs. (4-7a) and (4-7b) with a given actuatogque,r , the manifold defined

by:

h®(X,,%,,7,€) {Eﬁg:f;iﬂ @

is called the integral (invariant) manifold't
z(t", &) = h*(x, (t",€), %, (t", &), 7(t"), €) = z(t, &) = h* (X (t, £), X, (t, &), 7(t),&) Ot >t”
(4-10)

By definition, the integral manifold, Eq. (4-9),t0 satisfy the following equations

which are called the integral manifold conditiod2{14]:

ehf =h¢
o (4-11)
eh; =J,T—K hy

To have an approximate solution for Eq. (4-11) at(& "), wherep can be any

positive integem®andr are expressed by series expansion in ternss thiat is :

h, :(Zp:gjhij)"'o(gpﬂ) =12
I, = (Zp:f:jrj) +0(e™) (4-12)

j=0

The superscripte” emphasizes thal®is the exact solution of the integral manifold.
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The approximation df®(i = 1,2) up toO (& **) is callech (i = 1,2) . Moreover, 7, is the
component ofr restricted (corresponded) to the approximate swiuwdf the manifold up
to O (&P*). Substituting Eq. (4-12) into Eq. (4-11) and eingthe terms which have

the same power @&f, h, and 7; will be obtained iteratively.

According to Eq. (4-6b)} =&z . Thus forpless than 2, the flexible variablés

will not be observed in the end-effector’'s (angulaosition given in Eq. (4-8), as also
discussed in [16]. Furthermore, increasmgo more than 2 will increase the control
effort and the linear modeling of the SFLM will nme valid (see simulation examples in
[16]). Thus, in this article it is assumed tha2. As a result Eq. (4-12) is:

h =h,+&h, +£?h, +0(e%) =12 (4-13a)
T, =T, +&r, +&°T,+0(%) ¥Bb)

Substituting Egs. (4-13a) and (4-13b) in Eq. (4-atyl equating the terms having the
same power of, h; (i =12, j =0...2) interms of, (i =0... Zjre:

hyo = K, 347, (4-14a) h, =K, 77, (4-14b)
h, = Kl_l(J.sTu I, ~ I:‘21) (4-14c) h,, =0 (4-14d)
hy, = hyg (4-14e) hy, =y, (4-14f)

4.4. Controller design

Assuming thatz is restricted to its integral manifold, and by utilizing the

approximate solution of the integral manifold upQps®) given in Egs. (4-13a) and (4-
13b), Eq. (4-7a) is:

X = {Xl} = [ 2 & 2 } (4-15)
X, J oo (TO+£T1+£ Tz)_Kz(h10+‘Sh11+‘9 h12)
Employing the definition ofh, (i =12, j =0...2) provided in Egs. (4-14a) to (4-14f)

changes Eq. (4-15) into:
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. X2
X . ;
X =L,(l}= (‘JBB - K2K1 l\];)ro+£(‘]99 _K2K1 lJ;A)T1+ (4-16)
? 52((‘J99 - KzKl_l‘];\)Tz + K2K1h21)
By recalling thak, =J,,K,, /(27)* andK, = J, K, /(27f)?, using Eq. (4-14e), and
utilizing the mass matrix properties given in E@s5b) and (4-5d), Eq. (4-16) becomes:

X,

" {Xl}{ . ; ) } (4-17)
X, M o (7o + €T, +E°(T, = My hy))

Moreover, using Egs. (4-8) and (4-13a) and ignotargs of order higher thad, the

end-effector’s (angular) positianshown in Fig. 4-1 is:
r=x+&Wh, 18)

whereW is defined after Eq. (4-4). It is worth noting thiae concise Eq. (4-17) would
not have been derived if the properties of the nmaatix, given in Section 4.2, had not

been introduced and used.

The subsystem described by Eq. (4-17) is calledséo®nd order corrected slow
subsystem. Also the output defined in Eq. (4-18gferred to as the output restricted to
the second order manifold. This definition is daette fact that the approximation of the

integral manifold up t® (&%) is used to obtain Egs. (4-17) and (4-18). Thesctbje is
to designr,,r, andr,so that the output, given in Eq. (4-18), follows a given desired

trajectoryy, .

Lemma: If the desired trajectory is, JC*, that is the desired trajectory and its time
derivatives up to the fourth order are continuowns ounded, and, andK jare positive

constants, then:

To = My (f, ~K e~ K ) (4-19)
r,=0 (4-20)
I, = Mmﬁlo"'MaeV @)
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where

V= _Wﬁlo - KdWth -K ano (4-22)

e=X -28)
maker , the output of the system restricted to the seanddr manifold as given in Eq.
(4-18), asymptotically track, .

Proof: From Eq. (4-18):
= x, + £3Wh, (4-24)
Taking the derivatives of Eq. (4-24) with respectime and using Eq. (4-17), results in:
=X, + ey es)
F =M (1, + &1, + £2(1, - M, h,)) + £2Wh, (426)

By using Egs. (4-19) to (4-21) fog,7,andr, and Eq. (4-22) fo¥, Eq. (4-26) becomes:

r r

-r-:ﬁj_Kd(x2+52\M'110—r‘d)—Kp(x1+52WnO—rd) (4-27)
or

(s —1g) + Ky (fs = rg) + K (rg—13) =0 (28)

Therefore, based on the assumption thgtandK  are positive constants, the error
dynamic ofr , Eq. (4-28), is asymptotically stable. The assuompthat r, 1C*, makes
the control signal continuous and bounded. Thidus to the fact that the calculation
ofr,, given in Eq. (4-21), requires the evaluatiorﬁgfand from Egs. (4-14a) and (4-19)
the calculation ofh, requires,, and thus the calculation of, needs the fourth
derivative ofr, (QED)

According to the Lemma, if the output is restrictedhe second order manifold,
then r, given in Eq. (4-18), tracks the desired trajectpr by applying the
torquer, + £°r,. Recalling thatM ,,is the mass matrix of the rigid link counterparttod
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SFLM, 7, given in Eq. (4-19) corresponds to the CTC of ttiggd counterpart of the

SFLM [15 p. 135]. Thus, to reduce the EETT erroa@FLM, the corrective torquér,
has to be added tg.

The fact that the fast variable, is restricted to its integral manifold is a key
assumption in the Lemma. Therefore, to guarantaetktie differences betweeand its

approximate manifold up t@(£®) become essentially small, the fast componenhef t

controller,r, , is designed as follows. For this purpose, théedihce betweerz and its

approximate manifold up 10(£?), is defined here by = [21T z; ]T which is:

{21=21_(hlo+5hu+52h12) (29)

2, =z, — (hy, + &h,, +£%h,,)
Taking the derivative of Eq. (4-29) with respecttime, replacingzandz, by their
equivalences from Eq. (4-7b), substituting the mmntorque by r =71, +£°r, +1,,
utilizing the expressions given fdr, (i =12, j =0...2)in Egs. (4-14a) to (4-14f), and
neglecting higher order terms®©({&°), the dynamics of is found to be:
£2=A2+B,T, (4-30)

where
0 | 0 R P
AZ:[—K o} BZ{JT} 2=lo ] (4-31)
1 oA

and K, andJj, are defined in Eq. (4-7b). Moreoveris the identity matrix. Considering
Eg. (4-30), the full-state control command=-K_z makes the dynamics of
Z asymptotically stable, providéd, is selected so tha#, - B,K ,is a Hurwitz matrix.

However, for implementation of the full-state feadk controller, =-K_z, the

calculation ofZand thus the measurement nf [le z;]T is required. From Eq. (4-

6b), the measurement dfrequires that the variabldsandi are available. Although

Acan be measured, for example with strain gaupissnot easily measurable. To
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alleviate this problem, an observer-based contrédlie Eq. (4-30) is designed, assuming
Zas the output which is available # can be measured. That is, by assuming the
following output for the system given in Eg. (4-30)
y=C,z2 C,=[l, O] @)
an observer-based controller is designed. Thisrobbet is:
7, =-K,Z 4-33)

cz

where 7 , the estimate of , is calculated from the following observer equatio
8-2 :(Az _BZKCZ_KOZC)E+KOZy (4_34)

andK_,, the observer gain matrix, has to be selectedhav A, -K_,C,is a Hurwitz

oz’

matrix.
Remark 1: According to Egs. (4-21) and (4-22), evaluatidnrg requires calculation of
h,,h,, and h, which are obtained as follows. By combining Egs14a) and (4-19),
h,,is:

hy = (278)° K535 I Mg (Ty — K& =K €) (4-35)
Using Eq. (4-5b) , Eq. (4-35) is:

ho = =(27 )* K3 iM, (F, — K&~ K €) (4-36)

Thush,, is obtained in terms oé=@-r,ande=6-r,. Moreover, from Eq. (4-36),
hyis:

hyg

—(278 )2 K ;M g, (t; — K 8- K &) (4-37)
Since h,, is the integral manifold when= ,Ghe error dynamic on thiggid manifold
isé+K,e+K e=0[13 p. 147, 18 p. 297] . Thug,=-K &-K e. Substituting this into
Eq. (4-37), hy, is:

hy = =276 )* K ;M g, (i + K (K e+ K e) =K ¢) (4-38)
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Hence, h, can also be evaluated in terms of the availablgnass,

e=@-r,ande= @ -r,. The same procedure can be employed for the ei@iuafh,,.

Remark 2: To implement the observer-based controlzr,should be available. From
Eg. (4-29) to havg , the values ofz and hy,+é&h, +£°h,should be calculated.
According to Eq. (4-6b) the value of is available sincel is measured. Moreoveh,,
is given in Eqg. (4-36). Also, combination of Eg4-14b) and (4-20) results Im, =0.
Thus to have, , only h,,is required which is calculated as follows. From @&gl14c),h,,
¥
hy, = (278)* K355 Qa2 —hy) = (278) K3 (353907, = 35hy) (4-39)
Combining Eq. (4-5b) and Eq. (4-39) results in:
hy, = (27 )* K35 (=M M o7, = 3 hyo) (4-40)
and utilizing 7, provided in Eq. (4-21) leads to:
h, = (Zlf)zK;j(—(J;j + M;M;;M 9,1)H10 _M;V)- (4-41)
Finally using Eq. (4-5fh,, given in Eq. (4-41) changes to:
h, = =(27) K3 (Mg + MG V) (4-42)
It is worth emphasizing that the use of the massixiproperties given in Section
4.2 shortens the expressions of,,h,,h,andh andh, and makes the required
computational effort minimum.
4.5. Stability analysis

In this section, the controller proposed in thiamer is summarized in the
following theorem. Also, its stability analysis, wh is similar to those explained in
[8,16] and is based on the Lyapunov criterion,rsspnted as the proof of the proposed

theorem.
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Theorem: For a SFLM with the dynamic model given in Eqs7@)-and (4-7b), applying
the torquer =7, + £°r, + 7, , Wherer,,7,, and 7, are given in Egs. (4-19), (4-21) and

(4-33) respectively, makes given in Egs. (4-6b), restricted to its secondeorintegral
manifold. Moreover, on this manifold the output givin Eq. (4-4) tracks the desired

trajectoryr, provided that:

1: The gainsK; andK  are positive constants,

2: The gainsK_,and K ,are selected so that the matricks- B,K ,and A, -K_,C,are
Hurwitz,

3: The condition t;,(S,) 4y (S) > ¢ is satisfied, whereS , S and ¢, are defined in
Eqgs. (4-49), (4-50) and (4-53) respectively, amg, (Q)is the minimum eigenvalue of
matrix Q; and

4: The desired trajectory, [1C*, that is the desired trajectory and its derivatipeto the
fourth order are continuous and bounded.

Proof: The schematic of the closed loop system is shaviAig. 4-2.

Controller
: :
| |
i L, Fast component ‘ U i A
i i Plant
| hiy | hp  hy (L= SFLM [
|t |
d |
} r:Slow cornponent‘17 e | 0 9
| 2|
| |
| T
| [

Fig. 4-2: Schematic of the closed-loop control sgsttilizing the concept of the integral

manifold

By applying the torquer =7, + £°r, + 7, to a SFLM and after algebraic manipulation

and neglecting term of order higher tizdn the error dynamic becomes:

&= AJ 4-43)
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& =Ag +B7 )

where

/7:[2T eoT]T & =2-Z e =[r-r, r._r'd]T (445)

— AZ_BZKCZ BZKCZ - 0 1 B = 0 0 4-46
A?'{ 0 AZ—KOZCJ ATk, -k, "[(Bm (Br)j (4-48)

(B,), =|(K,w)/(27F)2 K, (K,w) /(27 ) = WK, |~ (3 +WI5)K,,  (4-47)
(Br)z = ‘]GGKCZ +W‘];/1Kcz (4_48)

Since K; and K, are positive constantsf, in Eq. (4-46) in Hurwitz. Moreover,
according to the observer-based controller desigocealure (A, -B,K_)and
(A, -K,C,) are Hurwitz, and so i, in Eq. (4-46). Therefore, sincd, and A, are

Hurwitz, there exist symmetric positive definite tnzes P, andPF, that satisfy the

following Lyapunov equations:
AIPH *EA =S, )
AR +PA =-S £0)

where S, and S are symmetric positive definite matrices. For ttebgity analysis, the

Lyapunov candidate function is selected as:
V. =en'Bn+ePe D)

Taking the time derivative of, along the trajectories of Egs. (4-43) and (4-44) asing
Egs. (4-49) and (4-50), yields:

V. =-n"S/1-€e Se +27'BPe, (4-52)
Since B, and P, are constant matrices:

I8 Pe,

<l &8)
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Using Eqg. (4-53) and defining the symbgi,,(Q)as the minimum eigenvalues of a

matrixQ, V_is:

Vo<l lelle] 1) o
where:
:Umin (S ) - gl j|
Q= 7
{ _El :umin (Sr) 55)
Therefore, provided that
:umin (Sq):umin (Sr) > éi (4'56)

the matrix Q defined in Eq. (4-55) will be positive definite andnsequently the closed-
loop control system is Lyapunov stable singe< . The fact that, JC*, makes the

control signals continuous and bounded, see thef pfdhe Lemma given in Section 4.4;

otherwise, the tracking error will be unsatisfagtand large.

4.6. Simulation results

The SFLM shown in Fig. 4-1 with the physical prdpes given in Table 4-1 was

considered. Herd, is the length of the link&l is the link rigidity, I, is the mass moment
of inertia of the hub with respect to its centemwssp is the mass per unit length, and
Iy, and my are the mass and the mass moment of inertia gbalgvad with respect to

the payload center, respectively.

Table 4-1. Physical properties of the SFLM usedsforulation study

L(m) EI(Nm?) |,(kgm?)  p(kg/m) I, (kgm?)  my, (kg)

1.000 45.00 1.800x10°3 2.000 4.800x107? 4.000
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The flexibility of the link was modeled with two ftsmed mode shapes; thatns,
= 2 in Eq. (4-1). The desired trajectory was seleédor the end-effector’'s (angular)
positionr, which is shown in Fig. 4-1. This trajectory wasosen as the ninth order

polynomial satisfying:

r,©=0 dr/dt| =0 i=1.4 (57)

rq (t;) =6 d'r, /dt“ =0 i=1.4 (4-58)

t

and it was kept constant af =&, rad fort >t,. The simulation studies for the seventh

and fifth order polynomials were also successfatipducted which their results are not
reported here for briefness. For the seventh orgelynomial, in addition to

ry (@) =0andr,(t;) =6, , it was assumed that the velocity, acceleratiod park of
desired trajectory at time zero ahdwere all zero. To derive the fifth order polynomial
in addition tor, (0) = Candr,(t,) =&, , the conditions that the velocity and acceleration

were zero at the initial and final instant of maveuwere imposed. Both the fifth and

seventh order polynomials were kept constant,atr, fort>t, similar to the ninth

order polynomial.

Example one:
For the first simulation study, the angular positmfg, =1.570rad in Eq. (4-58)
at the end of the maneuver time= 3.000secwas selected. This desired trajectory is

shown in Fig. 4-3.

e m——————— >
Constant |
angle

[ 7S ) P——
.

0 1 2

time (8)

Fig. 4-3: Simulation, example 1, desired trajectoithe SFLM
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The new controller proposed here for the SFLM weferred to asiftegral manifold
controller’. This controller, which was based on the integranifold concept, added a
corrective torque to the CTC of the rigid link coenpart of the SFLM. It should be noted
that the controller without the corrective term veasombination of the CTC for a rigid
link manipulator and state-feedback for suppressiegvibration [1] which was derived
based on the singular perturbation model of theMbFLhe result of this controller was
referred here to as theidid link controller’. To illustrate the superiority of the new
controller introduced here, the results of the gra manifold controller were compared
with the rigid link controller since both of thesentrollers were obtained according to
the singular perturbation model of the SFLM.

For the slow component of the controller, it wasumsed thatK, =1.000
andK , =0.2500in Eq. (4-19). Moreover, ifu(Q)represents the eigenvalues of the

matrixQ, the eigenvalues of matrices, —B,K_and A, -K_.C,, which were related to
the fast component of the controller, were set toe b
U(A, -B,K_,) ={-0.1000+ 1.00G,-0.1000+ 2.660} andu(A, - K, .C,) ={-0.2000+ 2.000,
—-0.2000+ 5320} . It is worth noting thatu(A, -B,K,, and u(A -K,C, ) have to be

chosen so that the observer acts faster than thotler. That is, the real parts of

H(A, - K,C,) are farther from the origin than the real partg(@%, -K,C, . )

The trajectory tracking errorserror=r —r,, employing the integral manifold

controller and rigid link controller, are shown kgs. 4-4 and 4-5, respectively. By
comparing Fig. 4-4 with Fig. 4-5 the superioritytbe new controller proposed here in

reducing the EETT error over the rigid link conkeolis evident. The maximum absolute
value of the EETT error for the integral manifolshtroller was2.680x10™* rad while it

was much larger for the rigid link controller 2800x10™ rad.
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Fig. 4-4: Simulation, example 1, tracking error pintegral manifold controller

0.03
0.02/
0.01]
0
001}
002
0.3 1 2 3 4

time (8)

Error (rad)

Fig. 4-5: Simulation, example 1, tracking error pfigid link controller

Example 2:

For the second simulation example, the final maaetimet, was set to 1.500

secand the angular position wa =1.570 rad in Eq. (4-58). Therefore, the average

desired maneuver speed in the second example vies tive average desired maneuver

speed in the first example. The desired trajectorgxample 2 is shown in Fig. 4-6.

1.6

Constant
angle

0 0.5 1 15 2

time (s)

Fig. 4-6: Simulation, example 2, desired trajectoithe SFLM
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The gainK ,K,,K.,, andK . were the same as those selected in example 1. The

end-effector trajectory tracking errorsgror =r —r,, after utilizing the integral manifold

controller and rigid link controller are shown ig§. 4-7 and 4-8, respectively.

x10™

8

~

Error (rad)
o

A

1
OOO

0.5 1 15 2
time (s)

Fig. 4-7: Simulation, example 2, tracking error pintegral manifold controller

0.02
s 0
&
= -0.02t
(o]
£
M .0.04
-0.06 0.5 1 15 2
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Fig. 4-8: Simulation, example 2, tracking error pfigid link controller

From Figs. 4-7 and 4-8, it was observed that thgimam tracking error of the integral
manifold controller was8.000x10™ rad which was much smaller th&100x10™ rad of
the rigid link controller. This result showed thesriority of the new proposed controller
here. Moreover, by comparing Fig. 4-4 with Fig. 47d Fig. 4-5 with Fig. 4-8, it was
seen that by increasing the speed of maneuver,trjectory tracking error was
increased. For the integral manifold controller, dgubling the average speed of
maneuver, the maximum trajectory tracking error waseased from2.680x10“rad to
8.000x10™rad; for the rigid link controller this increase wasr 0.0210rad to 0.0510

rad. Therefore, as expected, the faster the manetheshigher the tracking error.
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4.7. Experimental results

The SFLM that was used for the experimental studysisted of a DC motor,
encoder, strain gage, data acquisition board, usavgower module and flexible link
with a hub. The DC motor was a Micro Mo Coreless D®tor which had high
efficiency with low motor’s inductance. The motoonmection was a 4-pin DIN
connector configured to be driven by a Quanserarsal power module. The encoder
was a US digital optical kit encoder having higbalation, 4096 counts in quadrature.
The encoder sent a digital signal. The data adguisboard and the control software are
provided by the Quanser Company. There was no pdydb the tip of the manipulator.
The flexible link, which was made of stainless ktdmd a length 0f0.4300 m, a

thickness 0f0.8200x10° m and a width 0f20.74x10°m. The hub mass moment of

inertia with respect to its center of mass was exprately 6.500x10°kg.nf. The
flexibility of the link was modeled with one modéape and its time varying weight
function was measured using a strain gauge mouattéide base. The strain gauge was
calibrated to give 0.75 (volt) (approximately) fam inch deflection of the tip. The strain
gauge measurement range was from -5 (volt) to B)(Vikhe experimental setup is shown
in Fig. 4-9.

Universal power
modules

Data acquisition
board

Singleflexible
link manipulator

Fig. 4-9: The setup of SFLM used for experimentatlyg

Strain gage

In the experimental setup, the control commandwedtaige. The relation between

the applied voltage and the torque was av,,, -b8 where constant@andb were

olt

approximately0.1440 N.m/voltand 0.1050 N.m.s/rad respectively. For the experimental
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studies, the torque = av,, —bé& was used in Egs. (4-7a) and (4-7b). Pursuing dhees

approach as that given in the controller desigtiGeof this chapter, the control voltages

(Vyor)sand(v,,,) ; ,» which corresponded tp,andr, respectively, were obtained.

Example 1:

For the first experiment verification, the desiredjectory was obtained using,

t, =1.000sec 6, =0.7800rad in Eq. (4-58). This desired trajectory is showrfig. 4-
10.

Constant
angle

0 025 05 075 1 125

time (s)
Fig. 4-10: Experiment, example 1, desired trajgctdrthe SFLM
For the controller implementation, it was assurtteat K, =4.00Q K, =2.00Q
H(A, -B,K,,) = {— 09700 -0.023¢ and u(A -K.C,) ={-1180-0810Q0 where
H(Q) represents the eigenvalues of ma@ixThe trajectory tracking errors employing

the integral manifold controller and rigid link dooller are shown in Figs. 4-11 and 4-12,

respectively.

0.05

Error (rad)
S
o
(¥,

0 025 05 075 1 125
time (8)

Fig. 4-11: Experiment, example 1, tracking error,ahtegral manifold controller
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Fig. 4-12: Experiment, example 1, tracking error,afgid link controller

Although, the experimental results were not as ga®dhe simulation results as
far as the overall improvement of EETT error wasmaaned, they verified the
effectiveness of the integral manifold controllereo the rigid link controllé’. For the
former, the maximum absolute values of the tracldmgr was0.1160rad , while for the
latter it was bigger as0.1460rad, respectively. Therefore, after applying integral

manifold controller, the maximum trajectory traakierror was about 1.26 times smaller.

The reasons that large differences between the EE&drs of the integral
manifold and rigid link controllers were observedthe simulation section, while they
were not observed in this experiment, might bebatted to the following : nonlinear
friction, effects due to the movement of the strga&ge cable, controller delay, modeling
imperfection, not having proper values for the Isubhass moment of inertia,

approximate values adiandbin 7 = av,,, — bé, existence of backlash, the contribution

volt
of higher frequencies, and strain gauge error rpdhmong the above sources of error,
the movement of the cables and un-modeled nonliineéion made major contributions.
It is worthy to note that the integral manifold tafler and rigid link controller are
model based controllers. Therefore, the performanicie controller depends on how
accurately the derived dynamic model representsehlkephysical system. Non-modeled
dynamics, such as cable movement and nonlinediofricor uncertainty in the physical
system parameters, deteriorate the controllersopeance. To recover the performance

of the controller in the presence of the parametearsertainty, adaptive controllers may

%0 Note that the physical parameters in the simutagiod experimental studies are different,. Theeefor
only the overall efficiency improvement can be cangal with each other in the simulation and
experimental studies and not the numerical values.
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be implemented, such as the one used in [19] &xildle joint manipulators; this is the

subject of the authors’ future studies.
Example 2:

For the second experiment, the desired traject®rghown in Fig. 4-13, which

was obtained assuming, =0.5000se¢ &, =0.7800rad and Eq. (4-58). The desired

average maneuver speed in this experiment was diite first experiment.

0.8

g e L e e

Constant
angle

0 0.25 05 0.75
time (s)

Fig. 4-13: Experiment, example2, desired trajectdrshe SFLM

The controller gains for this experiment were selé@s in the first experiment.
The trajectory tracking errors employing the intdgnanifold controller and the rigid
link controller are shown in Figs. 4-14 and 4-1Bspectively. Although, as in the
previous experiment, the results of this experinaatnot as good as the simulation, they
illustrate that the tracking error of the integranifold controller is smaller than the rigid
link controller. In this experiment, it was obseaivihat, because of the corrective torque,
the maximum tracking error was reduced frans070rad to 0.2790rad. That is, the
trajectory tracking error of the integral manifatdntroller was about 1.8 times smaller

compared with the rigid link controller.

Comparing the results of this section with thosem@vious section showed that
faster maneuver speed leads to higher trajectackitng error, which was also observed
in the simulation studies. In the experimental figation, by doubling the average speed
of maneuver, the trajectory tracking error of theegral manifold controller was
increased from 0.116@ad to 0.2790rad while for the rigid link controller it was
increased from 0.146@&d to 0.5070rad.
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Fig. 4-14: Experiment, example 2, tracking error,ahtegral manifold controller
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Fig. 4-15: Experiment, example 2, tracking error,afgid link controller

4.8. Conclusions

A new controller for the end-effector trajectorgdking of a single flexible link
manipulator (SFLM) was presented. Based on theepinaf the integral manifold of the
singularly perturbed differential equations, a eotive term was added to the computed
torque command of the rigid link counterpart of tBELM, which was of ordets?
wheres was the singular perturbation parameter. This saalhre.e, was a function of
the fundamental natural frequency of the manipulatal a measure of the flexibility of

the link.

The implementation of the new controller did najuige the measurement of the
time derivative of the link’s lateral deflection.hif was achieved by designing an
observer to estimate the time derivative of th&'sinateral deflection. Practically, direct
measurement of this time derivative is very difficid not impossible. Consequently, this

feature made the introduced controller a novel@adtical one.

Several simulation and experimental studies, whwele conducted on SFLMs

proved the effectiveness and feasibility of thepomsed controller. That is the end-
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effector trajectory tracking error was reduced othbthe simulation and experimental
studies. These studies were carried out for diffiedesired maneuver speeds and it was

observed that the faster the maneuver the higleeEBTT error.

Since the proposed method here is model-basedall diffierence between the
derived dynamic model and the experimental setigrideates the expected performance
of the controller. A possible remedy to recover peeformance of the controller, even in
the presence of these differences, is to use thptiad control technique which can be

the subject of future research.

4.9. Nomenclature

e difference between the joint rotation and destragectory

e =[r—-r, ¢-r,]": Vector composed of the states of the error dynami
f : Fundamental natural frequency

h®: Integral (invariant) manifold

h: Approximation ofh®

h : Theith element of vectoh

h, : Coefficient ofe’inh,

n: Number of the assumed mode shapes

r : End-effector’s (angular) position

r,: Desired trajectory

t, : Final maneuver time
x = [x,,%,]": Vector composed of the states of the slow subsyst

z= [le 2, ]T . Vector composed of the states of the fast subsyst

Z: Difference betweerz and its approximate manifold
Z . Estimate ofZ obtained from observer
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A, : State matrix of the fast subsystem
B, : Input matrix of the fast subsystem
C,: Output matrix of the fast subsystem

H : Matrix which corresponds to the generalized coordinates
| : Identity matrix
J: Inverse of the mass matrix

Jgerdar»J,, - Component of matriy
Kg : Stiffness matrix

K,,: Matrix composed of the nonzero elementsgf
K,:J,,K,, [(27f)?

K,:J,K,, 1(2rf)?

Ks, Ky : Positive constants

K. K,,: Controller and observer gains of the observeetacontroller of fast subsystem

L : Length of the single flexible link manipulator

M : Mass matrix

Mg, Mg, M, Components of matrik
P,, P, : Symmetric positive definite matrices
S ,S : Symmetric positive definite matrices

/A

V, : Lyapunov candidate function
W=[gL)/L ... g)/L]:

X = [6? AT ]T . Matrix composed of the generalized coordinates
6 : Rotation of the hub
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g, : Desired hub rotation dt
A« ith flexible variable, time varying weight functiah ¢
@ ith assumed mode shape

£ Singular perturbation parameter

& Link’s lateral deflection of a SFLM

7 : Actuator torque

7,: Coefficient ofe’inz,

r,: Component off restricted (corresponds) to the approximate swiudf the manifold,
slow component of the controller

7, : Fast component of the controller

Hoin (Q) : Minimum eigenvalue of)

4.10. Appendix

Since the proofs for all of the equalities givenkns. (4-14a) to (4-14f) are

similar, in this section, only the proofs for tla@léwing two equalities are provided.
M M =-1,, (4-A1)
My =g +MuM M, (4-A2)
where

M :|:(M$5)1X1 (Me/l)lxn:|
(Mﬁ/l)nX1 (M/M)nxn

(‘J;l )n><1 (JM )nxn

ML= |:(M$6)1x1 (M g1 ) an ] _ |:(‘]69)1><1 (Jan )1xn} =J (4-A3)
(MH/l)nX1 (M/I/I)nxn

According the Eg. (4-A3), sincd is the inverse of the mass matrid ,, it is

concluded that:
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M™™ =JM =1. (4-A4)

Therefore from Eqg. (4-A4):

JooM g +IaMg JpMy +I M, | [l Oy,
L; Mg, +J,M] LM, +3,, MJ ~ ) {om |} (4-A5)
Equating the elements of the first row of the EGQAbL):
JM g +I M, =1, (4-A6)
and
JgMy +IuM ,, =0, A7)
From Eq. (4-A7):
JeMg +IuM,, =0, = I, M, =-I M, (A8)

Pre-multiplying both sides of Eq. (4-A8) with,,and post-multiplying it wittM ; result
in:
MaM i = =Jgd -R9)
and the property given in Eq. (4-Al) is proved.
From Eq. (4-A6):

JMy +I M, =1, =M, +3),M,, =1, (4-A10)

Substituting Eq. (4-A9), into Eq. (4-A10), leads to
My =Jag+M oM M) (4-A11)

which is the property given in Eq. (4-A2).
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Chapter 5. End-effector trajectory tracking
for a class of flexible link

manipulators
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Abstract:

A new controller for the end-effector trajectoryadking (EETT) of a class of
planar flexible link manipulators which consistsaothain of rigid links with the flexible
end-link (CRFE) is introduced. The dynamic modeltlté CRFE is expressed in the
standard singularly perturbed form that is decoragosito slow and fast subsystems.
The states of the slow subsystem are the rotatbtise joints and their time derivative,
while the states of the fast subsystem are flexit@gables which model the lateral
deflection of the end-link and their time derivativ

For the slow subsystem, a corrective torque isedd the computed torque
command (CTC) of the rigid link counterpart of @RFE to reduce the EETT error. The
corrective torque is derived based on the concdpthe integral manifold of the

singularly perturbed differential equations. Islsown that this corrective term is of order
£> wheree =1/(2rrf ) and f is the smallest non-zero natural frequency ofGRFE in

the specified workspace of the manipulator.

To stabilize the fast subsystem, an observer-basmuroller is designed
according to the gain-scheduling technique. Duth¢oapplication of the observer-based
controller there is no need for the measuremenheftime derivative of the flexible

link’s lateral deflection, which is difficult in pictice, if not impossible.

To facilitate the derivation and implementationtloé controller introduced here,
several properties of the matrices in the dynamideh of the CRFE are described and
used. The stability of this new controller is prdvesing the Lyapunov criterion. The
effectiveness and feasibility of the new controli@re shown by simulation and

experimental studies.

The main contribution of this work is in introdugira new EETT controller,
derived based on the singular perturbation modhlchv(1) - adds only one corrective
term to the CTC, (2) - does not require the timavd#ive of the flexible link’'s lateral
deflection for implementation, (3)- the calculatieffort is minimized due to the use of
several properties of the matrices in the dynamadeh of the CREF , and (4) - is

experimentally verified on the a nonlinear system.
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Key words: Flexible multi-link manipulator, end-effector trajery tracking, integral

manifold concept, singularly perturbed differentigluation

5.1. Introduction

Flexible link manipulators (FLM) are underactuasydtems [1]; that is, they have
more degrees-of-freedom than the number of actsiaMoreover, considering the end-
effector displacement as the output, FLM are noimmim phase systems [2], which
means their end-effector inverse dynamic calcutatiesults in a noncausal input
torqué’. These limitations of the FLM have made their efféctor trajectory tracking
(EETT) a challenging subject which has been stuftiegears. Although, there are many
controllers for the EETT of FLM, the controllersvé¢oped based on singularly perturbed
systems [3] are promising candidates for the EEfTth@® FLM, which is the main motive
of the new controller reported here. This is duéhtofact that the dynamic response of a
FLM is similar to that of a singularly perturbedssym which has slow and fast
subsystems. For the FLM, the states of the slovgysibm are the rotations of the joints
and their time derivative, while the states of fde&t subsystems are the flexible variables,
which model the lateral deflections of the linkspdatheir time derivative [4];

A, (@ =1...n)in Eq. (5-1) are referred to here as flexible Vaga. In this chapter, after

expressing the dynamic model of the FLM in the slady perturbed form [4], a new
EETT controller based on the concept of the integianifold of the singularly perturbed
differential equations [5, 6,7] is proposed. Sittoe integral manifold concept is utilized,
the effect of flexible motion is also included metEETT. Thus, this controller results in
an essential improvement in reducing EETT error marad to controllers derived based
on the singular perturbation approach which negleetinfluence of the flexible motion.
The controller introduced here is applicable tdas< of planar FLM which consists of a
chain of rigid links with a flexible end-link (CRFEL2]; the CRFE is defined in Section
5.2. It is worth noting that this controller is artension of the controller proposed by the

authors in [7] which is for the EETT of a lineangie flexible link manipulator.

2L A noncausal signal at any time depends on theesabfi the states before and after that time.

157



To reduce the EETT error, the new controller reggiin corrective torque in
addition to the computed torque command (CTC) ef tigid link counterpart of the
CRFE, see [8] for the CTC. It was shown in thisptbathat this corrective torque is of

order £ where £ =1/(2f ) and f is the smallest non-zero natural frequency of the

CRFE in the specified workspace of the manipulaiar.prove that the new controller
adds a corrective torque to a CTC and also to detsvexpression, several properties of
the matrices associated with the dynamic modeling GRFE are introduced and used.

These properties also facilitate the implementatibthe new proposed controller.

The application of the new controller does not rexjthe measurement of the
time derivative of the flexible variables (time nkative of the flexible link’s lateral
deflection), which are cumbersome if not impossiblpractice. This is due to the use of
an observer-based controller to stabilize the $asisystem, which is designed based on
the gain-scheduling procedure [9]. The operatinoptgdfor the gain scheduling are the
joints’ rotations, which are easy to measure. Baise in measurement is achieved due to
the re-arrangement of the state and input matricethe fast subsystem, detailed in
Section 5.4. This rearrangement reduces the coriquaid effort of the gain scheduling

procedure considerably.

The main contribution of this paper is in utilizinge concept of the integral
manifold of the singularly perturbed differentiajuations to design a controller for the
EETT of a FLM which has nonlinear dynamics. Althbutipe concept of the integral
manifold is well-documented, to the best of auth&rsowledge, there are very few
reports of it being used for the EETT of nonlingaodels of FLM [11]. Moreover,
compared to the few available EETT controllers wsdi based on this concept, the

novelties of the controller presented here are:

- It is computationally efficient since (1)- it gnkequires one corrective torque in
addition to the CTC; (2)- the derivation of the tohcommand is simplified by the
use of properties of the matrices in the dynamidaho(3)- the operating point for
the gain scheduling method, which is used for thkuwation of the stabilizing
controller of the fast subsystem, are the leassiptesone.
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- It is feasible and practical since (1)- it is espentally verified on a nonlinear
model of a CRFE (2)- its implementation does najunee measuring the time

derivative of the flexible link’s lateral deflechothus, it is practical.

The rest of the present chapter is organized d@wsl In Section 5.2, the CRFE
is introduced and its dynamic model, including fineperties of the associated matrices,
as well as the control output variable, is giveheTsingular perturbed model of the
CRFE and the controller design with its stabilitpgf using the Lyapunov criterion are
explained in Sections 5.3 and 5.4, respectivelye $imulation study and experimental
verification are presented in Sections 5.5 andrg€pectively, and the conclusions drawn

from the research are given in Section 5.7.

5.2. A classof FLM with a chain of rigid links and the flexible end-link

A class of FLM consisting of a chain of rigid linkegith the flexible end-link
(CRFE) will now be considered. A planar FLM fallgto the category of CRFE if the

following conditions are met:

1. All the links except the last one are rigid. Maver, the links are serially connected to

each other through the revolute joints.

2: The deflection of the flexible link is small; thgsadratic terms of (i =1,...,n) may
be neglected in the kinetic energy expressigi;=1...,n is)defined in Eq. (5-1).
However, the termsAi? andxii)ij (i,j=1...n)are considered in the kinetic energy
derivation.

3: The end-link has a constant density and crososed-urthermore, the flexible end-

link complies with the Euler- Bernoulli beam theory
4. All the revolute joints are active, which meahsre is an actuator for each revolute
joint.

As an example, a schematic of a CRFE with two liskshown in Fig. 5-1 where

the first link of lengthL; is rigid while the second link with the unstretdiengthL is

flexible.
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Fig. 5-1: Schematic of a CRFE with two links

5.2.1. Dynamic model of the CRFE

In deriving the dynamic model of the CRFE, the asstt mode method (AMM)
[13,14] approximation is adopted to express therddtdeflection of the flexible link.
Based on the AMM this deflectiod,(y,t shown in Fig. 5-2, is:

£ = Y8040 (5-1)

where ¢ (y ) is theith spatial assumed mode shape out ofode shapes, and| (t is)its

time varying weight function, which is also refatréo as a flexible variable. The
generalized coordinates of the CRFE, adopting AMiVintodel the flexibility, will be

finite and are:

q=[6 6, .. @

a

A A oA (5-2)
where 8 (i =1...a )s the relative rotation of thih revolute joint with respect to tHe
1)th joint, a is the number of links, and (i =1...n i} theith flexible variable. Since the
generalized coordinates of the CRFE are finitegtas the Hamiltonian principle, each

generalized coordinate has to satisfy the followiagrange equation:

g(aTc‘RFE) _ OTcree + OU e =Q, (5-3)
dt” og, oo, oq
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where, T, is the kinetic energy of the CRRE,,.is the combination of the potential

energy of the CRFE due to the gravity and its stemiergy due to the link’s flexibility,

g,is the ith element of the vectoq in Eq. (5-2), an@ is the generalized force

corresponding tq, .

Itip Myip

\em _—
A

Tactu ator;

Fig. 5-2: A general CRFE witalink
Using Eq. (5-3), the dynamic equation of a CRFE is:
M(a)g+(C(q.4) +Cp)aq+Kq+G(q) =Br (5-4)
where M(q)is the mass matrixC(q,q i$ the matrix representing the Coriolis and

centrifugal forcesC, represents the joints’ viscous dampmd is the stiffness matrix,

G(q)is the gravity matrix, andBis the matrix which relates the vector of the input

to their corresponding generalized

T -
torques, r = |_Tactuatog 4 TactuatogJ !

actuatop

coordinates.

2 The internal material damping of the flexiblekliis neglected because of its small values [16% 10 be
noted that existence of the inherent damping fat#s the stability of the proposed controller hase
discussed in [17, p. 316] for the flexible joint mygulator. Thus, the stability of the controllexvetloped
by neglecting the material damping, guaranteeltseassful implementation even in the presence of th
link’s damping.
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The matrices in the dynamic model given in Eq. h@ve several properties that
will be used in the next section for the controtlessign. To explain these properties, EQ.

(5-4) is re-written as:
i B[ SRR e e
MH) M/M q/i O O q/l F/l O KM q/l O

q =lay o (%a) w=la 6 .. 6] (56b)

where

= 4 .. Al ©66) |F F/|'=c(q,9q+G(@ (56d)

Mg Myl (Cole O] _

[M; MJ—M(q) (56e) { . o}—CD (56f)
0 O T|
{O KAJ:K (560) [J—Br (Bf)

(Cp) e is a diagonal matrix composed of the coefficierftshe viscous damping of the
actuators, anf (i=1...,a andA (i =1,...,n) are defined in Eq. (5-2). The reasons for
the assumptions that the mass matvx,is a function of onlg, and F, is a function of

only g,andq,, as seen from Eq. (5-5), are explained in Sed&iar?.

5.2.2. Propertiesof the matricesin the dynamic model of the CRFE

Property 1- The stiffness matrixX ,, given in Eqg. (5-5), is constant, symmetric and

positive definite.

Proof. Since, in deriving the strain energy of the flézilink, the geometric nonlinear
terms for a beam in bending [15, p. 388] and ad&ibrmation are neglected ,, will be

a constant matrix. Moreov#,, is symmetric and positive definite as proved in][18
Property 2- VectorF, in Eq. (5-5), is independent of, and g, , thus it can be written as

F,(G,05) -
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Proof. Matrix C(qg,q)and G(q)in Eq. (5-4) can be partitioned as:

CGH CB/\ GH
c<q,q)={c C} G(q){e} &7

Based on Eq. (5-7) and considering Egs. (5-6a)a+6tl), F, is:
Fy =Culs +Cya, +G, (5-8)

SinceC,,is independent of,and q,, C,, =0,,,, (properties 8 and 9 in [12]) ard, is

nxn

independent ofy, (property 11 in [12]),F, in Eq. (5-8) is independent of, and g, .

Property 3- If the inverse of the mass matrix in Eq. (5-5) édidled as:

{(Mig)m (M )} Moo [(Jig)m (J&)ﬂ (5.9)
(Mg)na (M3 o )ma (I )nn
then the following equalities between the composentM and J exist:

MuM o =-3,3, (5-10a) MuM =-3,13, (5-10b)

My =Jg+MuM M, (5-10c) Mg =34 —Jdu3534 (5-10d)

J, =M1 +3,3.:3, (5-10e) J =M, -M/,M_ M,  (5-10f)

Proof. These properties are found after equating theesponding terms from both sides
of the equalityMJ =1, wherel is the identity matrix. Details can be found incten
4.10.

Property 4: M(q) , the mass matrix in Eq. (5-4), is independeng|pand it can be thus
written as a function of only,.

Proof. This is due to the assumption 2 in Section 5e2; groperties 5, 6, and 7 in [12].
Moreover, this can also be concluded from matriceé\ppendix 2.1 and noting that
(M), and(M ), are negligible.

Property 5: Matrix J, which is the inverse of the mass mawiXg, , i3 independent

ofq,. Thus it can be written a¥(q, )
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Proof. According to property 4M (g, )s independent af, , and therefore its inversé

is also independent qf .
Property 6- The derivativeaFg(qg,qA)/()q,]|qquO is a function ofg, only.
From Eq. (5-7) and considering Egs. (5-6a) anddp-B,is:
F, =C,0, +Cy0, +G, (5-11)

The element of the matri€(q,q g)ven in Eq. (5-7) can be obtained from the elenoént

the mass matrix using the Christoffel symbol akofes:

C(,j)= Zci,jqu
k=1

_LOMG) , OMGK) _OM(j.K),
bk T o aq, 0C|,- g

(5-12)

wheres is number of the components of vectprc , is the Christoffel symbol and
M (i, j) is theith row andjth column component of the mass matrix. Due tofdlee that
the mass matrix is independentggf property 4, and by using the Christoffel symbol i

Eqg. (5-12), the matrice€,, and C,, in Eq. (5-11) do not depend gp. Thus:

oF,(q,.9,)
aq,

-9G,

(5-13)
aq,

g,=0,=0 =9, =0

Moreover, G, is a linear function in terms af, with the coefficients that are functions of

_, Will only be a

g, (Appendix Il in [14] or Appendix 2.1). Thusii?Fg(qé,,qA)/c)qA|qfq

function ofdq,.

5.2.3. Thecontrol variable of the CRFE

To consider the link flexibility of a CRFE in theEET, the modified joint rotation

for theath link, §a shown in Fig. 5-3, is:
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6,=6,+* =g, +uq, (5-14)

a

where
1
W:L_[gq(La) o) ... o) (5-15)

and L, is the unstretched length of the end-link.

Fig. 5-3: The schematic of modified joint rotatiégl, of the end-link

Using the modified joint rotation for the end-lintke control variables;, for the
CRFE is:

" =l6, 6 .. 6. 4] (5-16)
where g (i =1...a—1) are the joint rotations of the rigid links. Eq.16) can also be re-
written as:

r=q, +Waq, -19)
whereW' = [Onx(a_l) WT].

The output in Eq. (5-17) can be used for the peeBETT of the CRFE. As an
example, the EETT of the manipulator shown in Fgl can be converted to the

trajectory tracking of its corresponding controfigéle defined in Eq. (5-17).
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5.3. Singularly perturbed model of the CRFE and theintegral manifold

concept

Since the dynamic response of the CRFE is compogetbw joints’ rotations
and relatively fast link’s vibration, this dynammodel can be represented into the
singularly perturbed form. To express the dynamadeh of a CRFE, in the singularly
perturbed form, the following new states are defi[¥g:

X, =g, X, =0 (5e08

21:

™2

_ 9
7= 5-8b
& ( :D

where the state vector of the slow subsystém[x1T x}] are composed of the joints’
rotationsx,, and their time derivativex,, while the states vector of the fast subsystem

z' :[le z;J are composed of flexible variableg,, and their time derivativg,.

Moreover, ¢ is the singular perturbation parameter which i§:;[1

£t= \/,umin (35, (A)K 1) (5-19)

where u..(J,,K,, s the minimum eigenvalue of the matrik,K,,. Since the matrix
J,,(g,) depends oqg,, for the calculation of in Eq. (5-19) the minimum eigenvalue of
J,,K,,, among all specified values @f, should be selected. Physically,corresponds
to the inverse of the smallest natural frequencyhef CRFE over the specified range
ofg,. This is due to the fact that the eigenvalueslgK,, are the square of the natural

frequencies of the CRFE. Using the new states éeéfin Egs. (5-18a) and (5-18b), the
dynamic model of a CRFE, given in Eq. (5-5), beceme

' X
X 2
] JaK 5-20a
L(j JooT ~JaolFo +(Cop)aXo] ~IanFs _m ( )
; - J,K
’ i 5-20b
[Zj I =3alFs +(Co) X1 = J,uF, _ma ( )
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and, the control variable defined in Eq. (5-17) is:
r=x +&Wz y49)
For Egs. (5-20a) and (5-20b) with a given actutdogques , the manifold defined
by:

h*(8,X6.7,) = m&i;g} )

is called the integral (invariant) manifoldf:

Z(t”, &) = h* (xS (t%, &), xS (17, &), (1Y), &) = z(t, &) = h*(X (1, &), X5 (t, ), (), &)  Ot>t"
(5-23)

That is if z, which represents link’s lateral deflection argiderivatives, reach to®at t"
it stays orh°thereafter. Consequently, when the fast varialzﬂes,[ziT z J are
restricted to the integral manifold defined in E8+22), the (+n) second order governing
equations in Eq. (5-5) are reducechtsecond order differential equations which is chlle
the corrected slow subsysters a result, the original underactuated CRFEesgsivith

(r+n) degrees-of-freedom andactuators, is converted to an approximate fullpaed

control system, which hasdegrees-of-freedom.

According to the definition of the integral mandopl h®*has to satisfy the

following so called integral manifold conditions ,$3%,7,10,11] which obtains by

substitutingh® in Eq. (5-20b):

A k
el |= e JuK e 5-24
hS I =Ig[Fy +(Cp)eeXs]1- I ,F, _mhl ( )
The possibility of finding an exact algebraic sauatfor the integral manifold is
hindered by the fact that Eq. (5-24) is a nonhoioito constraint. However, an

approximation of the integral manifold can be oh¢al by the power series expansions of

h?,h;and7 arounde = 0 For this purposeh’,h;and 7 are expressed as:

23 The superscripte” emphasizes thah®is the exact solution of the integral manifold. Mover, wherz
is restricted to its exact integral maniféid, the corresponding from Eq. (20a) is calley®.
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e =hy =hg e, +ehy, += Y elhy (5-250)

1l
o

P
he=h, =h, +eh, +e?h, +..= Y elh, (5-25D)

j=0

N
T=T =Ty +&r, +&1,+...=) &'t (5-25¢)
=0

where h, and h,are the approximations df’ andh;, respectively, and is the torque
corresponding to the approximate solution of thegral manifold. By substituting Egs.
(5-25a) to (5-25c¢) into Eg. (5-24) and equatingtdrens having the same powersgfthe
expressions ofy, (i =12 j =10,..., p pre found iteratively in terms of(j = 0L,...,p .)
That is, the flexible link’s lateral deflection aftd derivatives can be found in terms of

the input torque and joints’ rotations and theirgives.

For these calculationg, = 2 is selected in the rest of this chapter. Tlamifold
obtained by assuming= 2 in Egs. (5-25a) to (5-25c), is called gezond order integral
manifold To obtain the second order integral manifoldnteof ordee®, wherep > 2,
are considered negligible and, consequently arettednifrom the expressions. The

reasons for the selection pf= 2 and the iterative calculation lgf andr; will now be

discussed.

According to Eq. (5-18b}j, =£%z,. Therefore, fop < 2 the flexible variablg,

will not be observed in the control variabl§l1]. Moreover, fop > 2, the control effort
will increase and the higher vibration modes w#l éxcited [10]. Thereforgy = 2 is

optimal and the expressions laf, h,and 7 are:

h,=h,+eh, +£°h, (5-26a)
h, = h,, +£h,, +2h,, (5-26b)
I, =T, +&r, +£°T, (5-26¢)

Substituting Egs. (5-26a) to (5-26c¢), in Eq. (5-B&ds to:
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hy +&h,, +£%hy,
{%’ffhlﬁfz%}: ‘]ZM(TO +‘9T1+‘9272)_J;[F9 +(Cp) Xl =InF =

hZO +£h21 +£2h22 M(hlo +£hl:|_ +£2h12)
Hein (31K 1)

(5-27)

where x, and x, are the approximations of; andx;respectively. Due to the properties
of the dynamic model of CRFE, explained in Secta2.2, only F,(x,, X,,£°h,£h, )in
Eq. (5-27) is a function a&f. To iteratively find h; in terms of;, and based on the

assumption thatis small, the series expansion Bfaround & = 0Ois used. This series

expansion aroungl=i8:
1.
Fo =(F5)O+E(Fe)1+§5 (Fg), +... (5-28)

where(F,), =d'F, /ds‘LzO and(F,), =(F,)|_, ; the expressions @F,),and (F,),are

available in Appendix 5.1. Replacinig, in Eq. (5-27) by its series expansion given in Eq.
(5-28), and considering only the first three terofighe series expansion in Eq. (5-28)
yields:

2
hy +&h,, + €7y,

) . . 1
£ hl0+€hll+£2hl2 — J;(To+€T1+£2T2)—J;[(F9)0+£(F9)1+§£2(F9)2+(CD)55X2]—
I:]20 + £h21 + 52h22
‘]MKM

Hirin (33K 1) (o £y, +&a)

(5-29)

‘JM A

By equating the terms in Eq. (5-29) which havedhme power of, the expression df

in terms otrj are:

— ‘JM K)l)l -1r 17T _ — — -
10 — (m) [JH/l (To (Fe)o (CD)HH Xz) ‘]M F/\] (5 303)
h,, =0 (5-30b)
— ‘]M KM -1r 9T _ K _
h, = (m) [Ja (71 = (Fg)1) =yl (5-30c)
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h21 = th (5‘30d)

= ( I Ky
12

-1y 9T _1 e -
ﬂmm(JMKM)) a1 (72 =5 (Fo)2) = il (5-30€)

h,, = hy, (5-30f)

5.4. Controller design

Assuming thatz, is restricted to its integral manifdhd, given in Eq. (5-26a), and
by utilizing the expressions df andr provided in Egs. (5-26a) and (5-26c) respectively,
Eq. (5-20a) becomes:

% %
= J K
L(j Jee(ro T ET, +5272) - Jee(Fe + (CD)eexz) =JaF, _%(hlo + £h11 +‘92h12)
min AT AA
(5-31)

which is thesecond order corrected slow subsystéforeover, the control variable,

defined in Eq. (5-21), after neglecting terms afere® wherep > 2is:
r=x +&Wh, (33

SubstitutingF, with its series expansion, given in Eq. (5-28amtes Eq. (5-31) to:

— X2 ]
1
M: Yoo €0+ £°12) = Jal(Fodo +£(Fo), + 567, + Codwd = | o
X, JaK
+IF —— YoM h Leh 42
] ' A /.lmin(J/M K/M)(hlo hll hl2) |

After grouping the terms in Eq. (5-33) that have same order of , the second order

corrected slow subsystem is:

X,
J. K
{X1i|_ Jao(To = (F)o =(Cp) %) = I F _%mo"'g[*]ee(rl_(':e)l)_ (5-34)
. - min AN A =
X,
‘]E’AKM 2 1 ‘]HAKM
—— |+ e[ (T, — 2 (Fp) ) ——— 2 —hy,]
Hinin (311K 1) ' wrE e Hinin (311K 1) ?
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Replacingh; (i =12i = 012)in Eq. (5-34) with their equivalences provided igsE(5-
30a) to (5-30f) leads to the fact that the secordkrocorrected slow subsystem has

r;,] =012 as the control inputs. These control inputs asegied in Lemma 2 so that
the output in Eq. (5-32) tracks a desired trajgct@efore obtaining;, it is shown in

Lemma 1 that, by the utilization of the mass maprigperty, which are given in property

3 at Section 5.2.2, Eq. (5-34) will be shorter afeglacingh; with their equivalences

provided in Eqgs. (5-30a) to (5-30f), without omiginany details. Therefore, the
complicated mathematical equation will be simplifisdd the selection of the control

inputs will be much easier.

Lemma 1. By the use of the expressions given in Egs. (5-3@a)(5-30f) for
h; (i =12 j = 012) and also the properties of the mass matrix givegs. (5-10b) and
(5-10d), Eqg. (5-34) changes to:
% _ % .
X, - Me_ral(ro =(Fo)o —(Cp)aXy) +5(M9_;(T1 =(Fp).) +52(M;;(T2 _E(Fe)z - MH/lﬁl))
(5-35)
Proof: See Appendix 5.1

Lemma 2: For the second order corrected slow subsystenm@givEq. (5-35) selecting

To = Mgglfy =K (%, =1y) =Ko (% = 1)1 +(Fp)o +(Cp) g X, (5-36)
r,=0 (5-37)
T, :%(F9)2+M&ﬁ1+M99V (5-38)
where
V = -(Wh + Ky Why + K, Why) (5-39)

makes the output given in Eq. (5-32) asymptotically track the dedirtrajectory
r, provided that:

1- The gain matrice&, and K, are positive definite;
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2- The desired trajectoryig[1C*; that is, its time derivatives up to the fourther

are continuous and bounded.
Pr oof:

From Appendix 5.1 and on the second order integrifold, defined in Section

oF
5'3! (Fe)l :a_.g

2

|-@

= oq,

h,. Also, from Egs. (5-26b) and (5-30b), it is

%= =0

0=,=0
concluded that,, = @nd thereforéF,), = OReplacingr,, 7, andr, from Egs. (5-36) to
(5-38) into Eq. (5-35) and knowing thé,), = yields:

o e 5-40
L(j_[rd_KD(Xz_rd)_Kp(Xl_rd)+£2\/} (5-40)

Moreover, by taking time derivatives of Eq. (5-32)d employing the fact that = x,,

then:
F =% +&Why, = X, + £2Wh,, (5-41)
and
F = x, + £2Wh,, 5-42)
Replacingx, from Eg. (5-40) into Eq. (5-42) and using the digfam of V given in Eq.
(5-39) results in:
P =y = Kp (X, + £Why, = 1) = Ko (X + £Wh, = 1y) (5-43)
Finally using Egs. (5-32) and (5-41) foand r , respectively, Eq. (5-43) becomes:
(F=r)+Ky(r=ry)+Ko(r—-ry) =0 (5-44)
Since the matriceK, and K, are positive definite, from Eq. (5-44) asymptotically
tracksr,. From Egs. (5-30a), (5-36) and (5-38), it is clémat calculation ofr, requires

the fourth derivative af, . Therefore, the conditionr, 1C* makes the control torque

bounded and continuou®DE).
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As given in Eq. (5-36),, is the CTC [8] for the rigid link counterpart oREE

[4]. Therefore, based on Lemma 2, only the corvedidbrques’r, has to be added to the
CTC of the rigid link counterpart of the CRFE foetEETT.

Remark 1: From Eq. (5-39), the implementation of the introdd controller requires the
calculation ofh,, h,and h,. By substitutingz,from Eq. (5-36) into Eq. (5-30a) and

using the property given in Eq. (5-10M), is:

th = _lumin(‘]M KM)KA_Al(M;[rd - KD(Xz - rd) - KP(Xl —Iy )] + F)I) (5'45)
and its time derivative is:

Mo = = Ao (310 K K (M [y = K (%, =1) = Ko (% =1 )]+ F, + (5-46)
M;('I‘('j —Kp (%, = 1y) = Kp (%, = 1))
Since hyis the integral manifold of the CRFE when=0, on this so calledigid

manifold[6p. 147, 20p. 297{x, —f,)is:
(%, —y) = =Kp (X, =Fy) = Kp (%, = 1y) (5-47)

Therefore, by substitutingx, — ;) from Eq. (5-47) in Eq. (5-46)I,i10 can be calculated
in terms of the available signalgandx, wherex, =q,and x,. =¢,. The calculation of

h,,is similar toh,and is not discussed in this article for brevity.

The restriction of the fast variableg =|2 Z| to their manifold is the key

assumption in deriving the control torques given Eqgs. (5-36) to (5-38). This
assumption means that the link’'s lateral deflecaod its derivative can be obtained in
terms of the joints’ rotations and their time dative and input torque; and consequently,
the underactuated system, CRFE, changes to anxamgattely fully actuated one. To

ensure that this assumption is satisfied, thedastponent of the controller,., is chosen

in the following way. The deviatiod" = [2; z J of the state of the fast subsystem from

their integral manifolds is:
2=z _(hlo'*'éhn"'gzhlz)‘ (5-48a)
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2,=2,—(h,+eh, +£°h,,). (5-48b)
Taking time derivative from Egs. (5-48a) and (5-4&Ising Eq. (5-20b) foi, replacing
r.with 7, +7,+&°r,wherer, and r,are defined in Egs. (5-36) and (5-38) respectively,
utilizing h; (i =12 j = 012)defined in Egs. (5-30a) to (5-30f), and neglectiagns of

orders” wherep > 2 results in:

£2=A,2+B,1, +N, (5)49
where
0 I 0
A, = _—JASKAIQ -523;? —53;? BH{J;J (5-50a)
Hin (311K 31) 0, s 1g,=q,0
0
=1 0°F, . _
Noa =| 2237 2 To 32 (5-50b)
2 od; o =¢; =0

andl is the identity matrix. Detailed investigation shotat 0°F,/dq; 01,0 =0 for the

CRFE and consequenty, =0. Thus, Eqg. (5-49) will represent a linear dynamic
equation for 2 with time varying coefficientsA,andB,,. To stabiliz& with the
dynamics given in Eq. (5-49), the full-state feedkbaontroller 7, =-K_zcan be used
provided thatA, - B, K, is a Hurwitz matrix. Since the matricés, and B,, are functions

of the slow variables, andx,, the gain scheduling procedure [9] has been erepldgr
the calculation oK ,. Based on the gain scheduling procedure, in thger®f variation

of x andx,several operating points like :(xl,xz)i are selected, whereis varied to
cover all the possible values xBndx,. At each operating poiuit:(xl,xz)i, the
controller gain(K.,), is calculated so th#, -B,(K.), is a Hurwitz matrix; between

operating points the controller gain is linearl{empolated. The higher the number of the

elements ofu,, the more complicated will be the linear interpmlatin the gain
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scheduling procedure and the higher the computticost. To decrease the number of

elements ofy, and ,thus, to ease the linear interpolation, &gt9) is re-written as:

£2=A,2+B,T, +N,, (5-51)
where
Aoz IuKu g O g 2= 1| (5-522)
Hrin (3,4 K1) 0q, P g’

0
N, = {_ £J] a—Fiz} (5-52b)
=0, =0

2|

Considering properties 1, 5 and 6 in Section 5.2,2and B,,in Eq. (5-51) are functions
of x, (compare it withA, and B, in Eq. (5-49) which were functions xf andx,). Thus,
the operating points for Eq. (5-51) in the gainestiling procedure will bed :(xl)i
which have fewer elements than=(x,x,) of Eq. (5-49). It is to be noted that for a
boundedx, andx,, since|N,,|<¢,|Z, where|N,,| is the Euclidean norm of,, in Eq.

(5-51) and/,is a constant scalar, it is possible to selectgtia (K so that the full-

cz) U

state feedback, =—(K,,), 2 stabilizes Eq. (5-51) a# =(x,), (see, page 161 in [21] and
the stability proof in Appendix 5.111).

Applying the torquer, =-K_zZ to stabilize Eq. (5-51), requires the calculations
of 2z andz,, and thus measurements pf andz,. From Eq. (5-18b) to measurg
andz,, the variablesq,and ¢, have to be available. Althougly, can be directly

measured, e.g. with strain gauge, the direct measne of g, is difficult if not

impossible. To overcome this problem, an obserasetl controller for Eq. (5-51)

assumingz, as the output, which is available by measugngis proposed. That, is the

output for Eq. (5-51) is assumed to be:

y=C,? C,=[l O] (5-53)
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andr, is selected as:
r, =-K_Z (5-54)
where Z , the estimate of , is calculated from:
£7=(A, = B,K, ~K,C)Z+K,y (5-55)
and K ,is chosen so thad,, -K_,C, is a Hurwitz matrix.

Remark 2: To calculateZ, for the implementation of observer-based contrdilg,
h,,and h,are required (see Eq. (5-48a) and noteztiealready measured ). Parameter
h, is given in Eqg. (5-45). From Eg. (5-30c) simce0,(F,), =0, and h,, = Q then

h, =0. Moreover:

My = = (34K DKMV + M, hy) (5-56)
where Vis given in Eq. (5-39). The expression, given in Est56) for h, , can be
obtained by replacing, from Eq. (5-38) andh,, from Eq. (5-30d) into Eq. (5-30e) and
using the properties of the mass matrix given is.E8-10a) and (5-10f).

Theorem: For a CRFE with the dynamic model given in Egs. @a)2and (5-20b),
applying the torquer, + £°r, + 7, wherer,, r,and 7, are defined in Egs. (5-36), (5-38)
and (5-54) respectively, makes the fast variaﬂlers[zlT A ] defined in Eq. (5-18b),
restricted to its second order integral manifoléirael in Egs. (5-26a) to (5-26b), and on

this manifold the output, given in Eq. (5-17), track the desired trajectoyyprovided
that:

1- The gain matrice&, and K, are selected to be positive definite;

2- The gain matrice_, and K, are selected so that,, —-B,,K_, and A,, -K_,C, are

Hurwitz matrices, whereA,,B,and C, are given in Egs. (5-52a) and (5-53)

respectively;
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3- The condition f/,,, (S,) i (S;) > (5 is satisfied, whereS , S, and/,are defined in

Egs. (5-A31), (5-A32) and (5-A34) in Appendix 5.1, danu,,;,, (Q) is the minimum

eigenvalue of the matriQ; and

4- The desired trajectory and its time derivativgsto the fourth order are continuous

and bounded, OC*.

Proof: The proof of this theorem, which is based on tii@dunov criterion and is similar

to those in [7,11], is given in Appendix 5.111.

5.5. Simulation results

In this section the results of simulation study #ormanipulator called rigid
shoulder-link flexible elbow-link manipulator, witihe schematic shown in Fig. 5-1 are
presented. The first and second joints of this maatpr were called shoulder and elbow
joints, respectively. Moreover, the actuators ledabn the shoulder and elbow joints
were referred to as shoulder and elbow actuatorpecésely. The physical parameters
of the rigid shoulder-link flexible elbow-link mgmilator used for the simulation studies
are given in Table 1. The flexibility of the secolwk was modeled using two mode
shapes, which were adopted from [14]. Moreover, it @wasumed that the manipulator
was operated in the horizontal plane and, conselyye¢here was no force of gravity
involved. The desired trajectories were leded for the elements of the

vectorr” =[r, 1,]=|6, 8] whered, was the rotation of the first link (rigid shoulder-

link), andgzwhich was the modified joint rotation for the flelabelbow-link, defined in
Eq. (5-14). The desired trajectorigs and r,, were selected to be the ninth order

polynomials and satisfying conditions:
ry (0)=0 dirdj/dti‘t:O:O i=1...4 j=12 (B7)
y(ty)=6;  d'rg/dt| =0 i=1..4 j=12 (5-58)

These trajectories were kept constant,at g, (rad) fort >t , whereg, were the desired

final positions of, at timed,(j =12), respectively. The simulation studies for the
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seventh and fifth order polynomials were also susfodlg conducted which their results
are not reported here for briefness. For the sévender polynomial, in addition to

ry(0)=0andr,(t,) =6, , it was assumed that the velocity, acceleration penkl of
desired trajectory at time zero ahdwere all zero. To derive the fifth order polynomial,
in addition tor, (0) = CGandr,(t,) =4, , the conditions that the velocity and acceleration

were zero at the initial and final instant of marsuwere imposed. Both the fifth and

seventh order polynomials were kept constant,atr, fort>t, similar to the ninth

order polynomial.

Table 1: Physical parameters of the rigid shoulohérflexible elbow-link manipulator

Physical parameters values
L, (Length of the rigid shoulder-link) 0.250 ()
m, (Mass of the rigid shoulder-link) 0.585 ko)
|, (Mass moment of inertia of the rigid shoulder-link) 3.04x10% (kg.nf)

|, ( Mass moment of inertia of the shoulder actuator) 2.00x10° (kg.nf)

L, (Length of the flexible elbow-link) 1.00 ()
P, (Mass per unit length of the flexible elbow-link) 0.468 kg/m
El (Rigidity of the flexible elbow-link) 4.00N.nt)
m,,(Mass of the elbow actuator) 0.250kgQ)
l,, (Mass moment of inertia of the elbow actuator) 2.00x10° (kg.rr?)
m,, (End-effector mass) 0.700 kg)
|, (End-effector mass moment of inertia) zero kg.nf)
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For the simulation study, reported here, the dddi@ectoriesr,, andr,, were obtained
by selectingd,, = -6,, = 0.785rad)(=450")and t,, =t,, =3.00(s) in Egs. (5-57) and

(5-58) and; these trajectories are shown in Fig. 5-4

0.8
0'67 : -
0.4r ——Tn y
0.2 | :
0 . |
-0.2r
-0.4
-0.61
-0.8 :

0 05 1 15 2 25 3 35 4 45 5 55 ¢
time (s)

T (rad)

Fig. 5-4: Simulation, example 1, Desired traje@srj,, andr,,

To implement the controller, gaiks =0.360I and K, =120l inz,, 7,andv
were selected, wherkis the identity matrix and the expressiongof r,andv were

given in Egs. (5-36), (5-38) and (5-39), respedyivEor the design of the observer-based
controller, the gain scheduling procedure, expladimeSection 5.4, was employed. The

matrices A, and B,, which were used in design of the controller andeolsr gains,

K,andK_, were functions of,. Thus, the operating points wete= (6,),. Since the

values ofry, :éjz varied from zero te 450" (-0.785rad)), it was assumed that the
possible range of the variation of, was from 120° to -570°. That is,
min(,,) —dry, <8, <maxg,,) + or,in whichdr,, =120°. Therefore, the selected range of
variation of 8, was120° wider from both sides compared to the range efvéiriation
ofr,,. As a result, when in the simulation the value&fpassed the limits of,, the

gains K_,andK_, could still be calculated. This range&f from 120° to —-57.0°, was

divided into 23 equal segments and the operatingntpo were selected

asd, =(6,), =12-3(i — 1),(i =1,...,24). Then, the gainK_, and K, were selected so

that,u(A,, - B,,K_) ={- 05+ 20j,-04+ 10j}andu(A, -C,K,,) ={-10+ 40j,-08

179



+ 20j} at each operating point, whepgQ) represent the eigenvalues of the ma@rix
Finally, the controller and observer gains were dihe interpolated between the
operating points. In the design of the controflamK_,, it was considered that the elbow
actuator was active and the shoulder actuator wastide. This could be justified by the
fact that the model accessibility of the seconé hbration from the first link actuator

was small.

The new controller proposed in this article is reéet to as ihtegral manifold
controller” which adds a corrective term to the computed tomumemand (CTC) of the
rigid link counterpart of the CRFE. The controleithout the corrective term is the CTC
of the rigid link manipulator plus a state-feedbaoktroller for the vibration suppression
similar to the one developed in [4], which is retsteto here as therijid link
controller’. To observe the effectiveness of adding the @tinre torque, the results of
the integral manifold controller were compared witte trigid link controller. The

trajectory tracking errors for, and r, , measured byerror, =r,-r,and error, =r,-r,,,

after applying the integral manifold controller gigen in Figs. 5-5 and 5-6, respectively.
Moreover, the trajectory tracking errors forandr,, employing the rigid link controller,

are shown in Figs. 5-7 and 5-8, respectively.
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Fig. 5-5: Simulation, trajectory tracking erromgfintegral manifold controller

180



<) )
wm O W
T
Il Il

S sl
S \

g .15 \ 1
5 \

-2.5 a

0 05 1 15 2 25 3 35 4 45 5 55 6

time (s)

Fig. 5-6: Simulation, trajectory tracking erromgfintegral manifold controller
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Fig. 5-7: Simulation, trajectory tracking erromgfrigid link controller
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Fig. 5-8: Simulation, trajectory tracking erromgfrigid link controller

By comparing Figs. 5-5 and 5-6 with Figs. 5-7 an8, Bespectively, it is clear
that the new integral manifold controller resuliadhe trajectory tracking errors which
were considerably smaller than those of the rigiét Bontroller. The absolute maximum

value of theerror,and error, after the integral manifold controller were 0.001&d)
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and 0.0027r@ad) while for the rigid link controller they were langéeing 0.0221rad)
and 0.0336 rad), respectively. That is, the maximum tracking esréor the integral
manifold controller were about twelve times smallaart those of the rigid link
controller. Besides comparing the maximum absok#dues of the errors, in the
following a normalized index which was defined ovee #ntire manoeuvre time was
introduced and used. This index, which signifieddkerall tracking error reduction, was

called the normalized mean square error (NMSE) veasidefined as:

tm
NMSE = \/ti j(errorf +error}) dt (5-59)

m 0
where
error, =r, —ry,, error, =r, —ry, (5-60)

andt, is the total time of the simulation or experimdusing Egs. (5-59) and (5-60), the
NMSE for the integral manifold controller was 0.00@ad) while for the rigid link

controller it was 0.0264r&d), which clearly indicated the effectiveness of &ddiof the
new controller introduced here in reducing the oNdracking error. Finally, the end-
effector paths, which are shown in Fig. 5-9, illustdathe reduction in the end-effector
path tracking error due to the use of the integrahifold controller instead of the rigid
link controller. In Fig. 5-9 the integral manifolebntroller path and desired path can
hardly be distinguished, while the difference betwdenrigid link controller path and
the desired path is apparent. For the integral fol@ncontroller, the absolute maximum

difference of the desired path and actual path &839x10™*(m) while for the rigid

link controller this difference wa81.00x10™ (m).
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Fig. 5-9: Simulation, Actual paths after applying thtegral manifold and rigid link
controllers as well as the desired path

More simulation studies were performed on the mdatpu used in this section

but with different average speeds figf andry, than those of the simulation presented

here. The results of these simulations were notrtegpdiere. The conclusion after these
simulations was the same as the one reached a#tealibve simulation; that is, the
integral manifold controller reduced the EETT ermmnsiderably. Moreover, these

simulations showed that by increasing the averagedspofr,, andr,,, the maximum

absolute value of the tracking errors were increaasexpected, which means the faster

the maneuver, the greater the EETT error.

5.6. Experimental results

In this section the results of an experimental wtadrried out using the rigid
shoulder-link flexible elbow-link manipulator, shavin Fig. 5-10, which is available in
the robotic laboratory of the University of Saskatehn, are presented. This manipulator
has two DC motors which, by the means of harmonichgeas, drive the links. Both
motors have quadrature optical endcoders which h82d lines per revolution and are
from Harmonic Drive technologies. The model numhmrthe first one is PSA-14-100
and it uses Maxon 273759 precision brush (90 Wartts® model number of the second
harmonic drive is PSA-8-080 and utilized the Maxd®8252 precision brush motor (20
Watts). The physical parameters of this manipulai@ as follows. The length of the
rigid shoulder-link is 0.3500nf). The mass moment of inertia of the rigid shouldec

with respect to the shoulder joint including the @Wker actuator, its hub and mounting

183



bracket is 0.2800k().nf). The flexible elbow-link is made of stainless $tsith a length
of 0.2300 ), a thickness of 8.890xT0(m) and a height of 0.0381Imj. The mass
moment of inertia of the actuator on the elbow tjoits hub and mounting bracket is
0.0198 kg.nf). Finally, the mass and mass moment of inertidhef end-effector are
0.1649 kg) and 2.570x18 (kg.nf), respectivel§’.

Rigid shoulder-link

Mounting bracket Elbow joint Shoulder joint

Mounting bracket

of the shoulder joint
Flexible elbow-link

Fig. 5-10: Rigid shoulder-link flexible elbow-linkamnipulator in the robotics laboratory

of the University of Saskatchewan used for experialererification

In addition to the above physical parameters, duthe application of harmonic
gearbox, there is rotational friction in each jowhich was referred to as joint friction
(torque) in the rest of this chapter. The mostlgduavailable model of this joint friction
is a nonlinear dynamic equation in which the jootational velocity is the input [22]. As
explained in [23], this modeling reveals that thare two different frictional regions
namely pre-sliding region and sliding region. I thre-sliding region the friction is a
function of displacement, while in the sliding regitine friction depends on the velocity
[23]. In this article rather than using the nonéineynamic equation to model the friction
of the harmonic gearboxes, it was assumed thatittteoh was only velocity dependent.
That is, the friction in the sliding region was mizdkand the pre-sliding friction was not.
Although neglecting the pre-sliding friction resulten an approximate friction model, it

lead to a computationally simpler model which wadezaand less costly to implement.

4 The physical parameters of the manipulator usetdrsimulation and experimental studies are ret th
same.
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This was due to the fact that instead of having adleh@womposed of differential
equations, the friction was represented by an adgelequation, Eq. (5-61). Therefore, in

this study the joint frictiom was assumed to be as [22]:

friction
Tfriction = (Tc + (Tst - Tc)e_(B/VS)Z)Sgn@) + ng (5-61)

where the terms,@and (7, + (7, - 7,)e"?"*")sgn@) were called the viscous and dry
friction torques, respectively. Moreovet,7, v, and g, were the coulomb friction,
static friction, Stribeck velocity constant, andethviscous damping coefficient,

respectively, anggn@):

1 for 6>0
sgn@) =10 for 6=0 (5-62)
-1 for 6<0

The friction model presented in Eq. (5-61) is knoamtheLuGre model. To calculate

ther_,7,,v, and g, for the shoulder and elbow joints, a constant véfoekperiment

st?

[24] was performed for each joint as follows. Fiste average value of the friction

torque 7., Was experimentally determined for different constemues of. Then

having the corresponding, ., for each consta@t, a least square curve fitting scheme

was used to find, 7, v, andg,, which were the contributing parameters in Eq. (h-61

c?tst?
For the curve fitting scheme the MATLAB commarddcurvefit was used. The values

of the identified parameters,r,,v, and g, for the elbow and shoulder joint frictions

st?

are presented in Table 2.
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Table 2: Identified parameters of the LuGre frictrandel, Eq. (5-61), for the shoulder

and elbow joints, Positive: Clockwise, Negative: Geurclockwise

Joint Velocity I, T A g,

Positive  1.788N.m 2580N.m  0.0065s* 2.855N.msrad™
Shoulder

Negative —1963N.m -2889N.m 0.0071s™ 2.827N.msrad™

Positive  0.3753N.m 0.204IN.m  0.19355* 0.6239N.msrad™
Elbow

Negative —04947N.m -02012N.m 02055s" 0.499N.msrad™

Since the control strategy developed in SectionAad based on the model which
had joint viscous frictionz,&, and not joint dry friction(r, + (7, — 7.)e"" %" ) sgn@) ,

to compensate for the joint dry friction, the toeqm, +(r,, —7.)e"™*")sgn@) was

added to the control command. The schematic ofdmérol diagram of the experimental
setup is shown in Fig. 5-11. The parameters,,v,, and og,, given in table 2, were
used for the calculation of the joint dry friction,,,, . The acronyms “RSFEM” and

“CC” in Fig. 5-11 were used for the rigid-shouldekl flexible-elbow link manipulator
and control command, respectively. It is to be ddteat the addition of the joint dry
friction to the control signal to counterbalance tbffect of the friction which is not
included in the mathematical model of the systeras wlso used in the experimental
study of [23] and [25].
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Fig. 5-11: Schematic of the control diagram emptbiyethe experimental study

In the experimental study, the flexibility of thbbew-link was modeled using one
mode shape and the time varying weight functionhid tnode, A, in Eq. (5-1), was
measured using a strain gauge mounted at the lbdbe bnk. Modeling the flexibility
with one mode shape was reasonably accurate andiajpisti due to the limited
bandwidth of the actuators in the experimental sesgxplained in the following. The
natural frequency for the second mode of vibrafimnthe experimental setup was 55
(Hz) while the maximum bandwidths for the actuatorsens® (Hz). Therefore the first
mode of vibration was dominant and the contributsdrhigher modes of vibration was
small and thus negligible. Moreover, in additiorthe limited bandwidth of the actuator
the first mode of vibration generally can predi@ tlynamic response quite well even for
relatively large lateral deflection as explainegdwhich was also observed in simulation
study presented in Section 5-5. The resolutiorhefdnd-effector measurement by using
this strain gauge was theoreticafy05x10™* (m).

The desired trajectories, and r,, were selected using Egs. (5-57) and (5-58)
and assumingé,, = 6,, =1.047(rad) and t,, =t,, =3.500(s). Since 6,,=6,, and
t., =t,,, thenr, andr,, were identical, as shown Fig. 5-12. Moreowgrandr,,were
selected to be unidirectional, to reduce the pdigibthat sgn@) in the

. . 2 . .
expressioir, + (r,, - 7.)e""" )sgn@) changed values during maneuver.
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Fig. 5-12: Experiment, desired trajectorigsandr,,

For the experimental implementation of the proposedtroller, the gains
K, =20l and K, =5l were used to calculatg and 7, in Egs. (5-36) and (5-38),

respectively and is the identity matrix. Moreover, to obtain thesttomponent of the

controller,r,, the gain scheduling procedure, discussed in &eé&ti4, was utilized. The
operating points for the gain scheduling were setedb be? =(6,), for the reason
explained in the simulation section. Sincr&zédz changed from zero tc50.0°

(1.047rad)), it was assumed thafl,varied between-20.0°and30.0°. That is, the
possible range of variation fof, was selected to b&0.0"wider from both sides
compared to,,. As a result when the value &, passed the limits of, during the

experiment, the observer and controller gains fer ¢alculation ofr, could still be

obtained and the algorithm could still be impleneentThis range &,, from - 20.0°

t080.0°, was divided into 10 equal segments with the op®gatipoint
of4 =(6,), =-20+10(i -1), (i=1....1). Then at each operating poink_ andK_,
were selected so that(A,, - B,,K_,) ={- 02+ 10j} andu(A, -C,K,,) ={-04+ 20j}
where u(Q) represents the eigenvalues of the m&riSimilar to the simulation study

the fast controller in the experimental study wasigleed as if the elbow actuator was

only active.

The trajectory tracking errors,error, =r,—r,anderror, =r,-r,,, in the

experimental study after applying the integral n@dicontroller are given in Figs. 5-13
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and 5-14, respectively. To compare the effectiverméshe new controller in reducing the
EETT, the trajectory tracking error adopting rididk controller, are also presented in

Figs. 5-15 and 5-16.

0.03 ! ! 1 !

0
-0.03+ 1
-0.06+ f .
-0.09

-0.12- \/ .
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time (s)

error, (rad)

Fig. 5-13: Experiment, trajectory tracking error,pfntegral manifold controller
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Fig. 5-14: Experiment, trajectory tracking error,pintegral manifold controller
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Fig. 5-15: Experiment, trajectory tracking error,ofigid link controller
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Fig. 5-16: Experiment, trajectory tracking error,ofigid link controller

From Figs. 5-13 to 5-16 it is observed that thekirzg errors for the integral
manifold controller were smaller than those of tlggdrlink controller. The maximum

absolute value of thesrror,=r,-r,, and theerror,=r,-r,, for the integral manifold

controller were 0.1250rg¢d) and 0.0588 rad), respectively, while for the rigid link
controller they were larger as 0.154hd) and 0.1890 r@d), respectively. Also, the
normalized mean square error (NMSE) from Eqgs. (5-&%) (5-60) for the integral
manifold controller was 0.0874ad) which was smaller than the 0.1598d) of the rigid
link controller. Finally, as shown in Fig. 5-17, thad-effector path of the experimental
setup, indicated that the integral manifold comérolwas superior to the rigid link

controller in reducing the tracking error.

0.6
05 — e — . -
Finish 7 77TTTreees T
0.4t ' TR : 1
g 0.3r —Desired path |
»~ 0.2 ---Integral manifold controller path ]
01- ---Singular perturbation controller path _
o Start | |
_O' 1 1 1 1 1 1
0 0.1 0.2 0.3 04 0.5 0.6

X (m)

Fig. 5-17: Experiment, actual paths after applyimgintegral manifold and rigid link

controllers

190



Although, compared to the results of the simulatistudy those of the
experimental study appeared not to be as good as filne overall improvement of EETT
error was concerned;they still, however, verified the advantage of ifitegral manifold
controller over the rigid link controller. The maneason for the overall difference
between the simulation and experimental results, thasigh value of the dry frictions
in the shoulder and elbow joints. Although, thistfdn was compensated by using the

LuGre model, it has been argued in [23,26,27] thet model is not the most precise
model for the friction. Moreover, the adopted mogg) + (7, - 7,)e"?"*")sgn@) was

only valid for the sliding region. Therefore, threction in the pre-sliding region could not
be compensated for. The pre-sliding friction wasngfortance at the beginning and end
of the maneuver when the velocity was small. Thedstéiacking error at the end of the
maneuver was due to the existence of the unmogeéedliding friction which could not
be compensated for by using the employed modeth&umore, it had been observed that

the parameters,r, v, and g,in Eq. (5-61) did not have a constant value andrewe

functions of load, room temperature, room humidityd the starting position of the

motion. In addition,r,, 7, v, andg, of the elbow joint had been obtained in the absence

of the flexible elbow-link for practical reasons. €Ttilexible elbow-link had to be
removed during the constant velocity experimenttled elbow joint since the slow
damping vibration of the link was a substantial seusf error for the experiment. Due
to the load dependent nature of the friction, theilble link removal could be a source of
error in identifying the friction of the elbow jdinFinally, the noise in the sensors’

readings and time delay could be among the othecemf errors.

5.7. Conclusions

A class of flexible link manipulator consisting ofchain of rigid links with a
flexible end-link (CRFE) have been considered. A rewatroller for the end-effector
trajectory tracking (EETT) of the CRFE which utilizehe concept of the integral

manifold of the singularly perturbed differenti@uations was introduced. The dynamic

%% Note that the physical parameters of the maniprdaised in the simulation and experimental stualies
different. Therefore, only the overall efficienc§ educing the tracking errors, not the numericalues,
can be compared.
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model of the CRFE was expressed into the standaglilsirly perturbed form where the
joints’ rotations and their time derivatives were #tates of the slow subsystem while the
states of the fast subsystem were the flexible bkasa which model the link’s lateral
deflection, and their time derivative. Moreovere thingular perturbation parameter was

selected ass =1/(2r7f )wheref was the smallest non-zero natural frequency of the

CRFE in the specified workspace of the manipulator

Compared to the few available EETT controller dekipased on the singularly

perturbed model of flexible link manipulators, tbentroller introduced here was new

since (1) - it only required one corrective terfmooder £° besides computed torque
command of the rigid link counterpart of the CREE), - the derivation of the corrective

torque and implementation of the controller was siied by the use of the properties of
the matrices associated with the dynamic model oFER?3)- the calculation of the

stabilizing torque for the fast subsystem did majuire the time derivative of the flexible
variables (time derivative of the link’s lateralfiégetion) which was not easily available.
Moreover, this stabilizing torque was obtained bamethe gain scheduling procedure in

which least possible interpolation effort is reqdire

The stability of the new controller was proven gsihe Lyapunov criterion. The
effectiveness and feasibility of the new controlietroduced here were shown by the
simulation study and experimental verification. ™waulation and experimental studies
were carried on a two-link manipulator with the filisk rigid and second link flexible.
The improvement in reducing the EETT error, botltha simulation and experimental

studies, justified the application of the proposew controller.

Due to the model-based nature of the controllerstleeessful implementation of
the controller requires accurate modeling of theaagtus. Therefore, unavoidable
differences between the derived model and appad#iesiorate the performance of the
controller. To recover the performance of the calidr the adaptive control strategy can

be employed which is the subject of the future netea

5.8. Nomenclature

a: Number of links
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A, : State matrix of the fast subsystem which represtat deviation of thefrom h and

is a function ofx,, X,

A, : State matrix of the fast subsystem which represtat deviation of thefrom h and

is a function ofx;

B: Mapping matrix which relates the vector of inparigues to their corresponding

generalized coordinates
B, : Input matrix corresponds té,,
B,,: Input matrix corresponds té,,

C. i : Christoffel symbol

C(q,q) : The matrix which represents the Coriolis and d¢trgal forces
C, : Joints’ viscous damping matrix

C,: Output matrix

[FHT F/ ]T : Vector composed of the summation of the Coriashtrifugal and gravity

forces

G(q) : Gravity matrix

h®: Integral (invariant) manifold
h: Approximation ofh®

h : Theith element of vectoh
h, : Coefficient ofe’inh,
I: Identity matrix

.. : Mass moment of inertia of the end-effector

tip *
J: Inverse of the mass matrM (q )

Joe134,d,,: Components of the matrik
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K: Stiffness matrix

K ;- Non-zero sub-matrix df

K., Ky, K, K,,: Controller gains
¢,,i=1...6: Positive constants

L, : Length of thath link

my, : Mass of the end-effector

M (q) : Mass matrix

Mg Mg, M, - Components of the mass matik(q )

n: Number of mode shapes used to model the fleytwlithe link

g: Generalized coordinates of the CREF

g, Part of the generalized coordinatevhich is composed of ,i =1...a
g,: Part of the generalized coordingtevhich is composed ofl,,i =1...n
Q.: Generalized force correspondingdo

r: Control variable for CREF

ry - Desired trajectory for
T.rer - Kinetic energy of the CREF

U rer - Combination of the potential energy of the CREiE ¢b the gravity and its strain

energy due to the link’s flexibility

x® = [(xf)T (x§)T]: States of slow subsystem when the states of thedasystem are

restricted to their exact integral manifdid

X= [xlT XJ ]T: Approximation ofx® when states of the fast subsystem are restricted to

y: output of the fast subsystem
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z:[le z, ]T«: States of the fast subsystem

Z: Deviation of the states of the fast subsystemms fiteeir integral manifolds

: Estimate ofZz which is obtained from observer

N

& Deflection of the flexible link
@: Theith spatial mode shape, assumed mode shape
A : Time varying weight function o

6 : Relative rotation of theh revolute joint with respect to tife 1)th revolute joint

g?a: Modified joint rotation for the flexible link

£: Singular perturbation parameter

M. (Q) - Minimum eigenvalue of the matriQ
T qiciion - JOINt friction torque

7.: Coulomb friction

1, Static friction

Tocwatgr- 1 NE torque of theth link’s actuator
r: Vector composed of the,, .,

v, : Stribeck velocity constant

o,: Viscous damping coefficient

7, : Fast component of the controller

u.: Theith operating point in the gain scheduling procedure

l|: Euclidean norm a
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5.9. Appendix
Appendix 5.1: Calculation of (F,),and (F;),

From Eq. (5-18b):

q, =&z (5-A1)
q,=€z, (5-A2)
Using the chain rule:
dF, oF oq oF oq
(Fp): = del =a‘9| aAI +a.9| aAI (5-A3)
€ £=0 q"‘q/]:(hzo £ £=0 qA‘QA:q/IZO € £=0
From Egs. (5-Al) and (5-A2):
0
ke Pl R _A3)
o€ £=0
04
a—; =2, (5-A5)
£=0
Using Egs. (5-A4) and (5-A5)F,),from Eq. (5-A3) is:
oF
(Fe)l = a_.g Zz|£=0 (5‘A6)
A 1g,=9,=0

By adopting the same technique used for the desivanf(F,),, the expression for
(Fp),is:

0°F

(Fy), :a—.zg

2

zai + 6F9

d
z,, a %

—

(22|‘s:0)2 +

4)=6,=0 9

(5-A7)

q,=¢,=0 £=0

Appendix 5.11: Simplifying the expression of the corrected slow subsystem

The corrected slow subsystem given in Eq. (5-34) is:
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X,

J, K
; Joo(To = (Fg)o =(Cp)epX) = I Fy ———2—2—h, + €[ (7, — (F,),) —
{;(1}: 99( 0 ( e)o ( D)ee z) A lumin(‘J/l/lKM)hlo [ 99( 1 ( 9)1)
2 J, K 1 J, K
— B 1470 (7, ~ S (Fy),) ——E My ]
Hinin (311K 11) ' oy v Hinin (311K 1) ’ ]
(5-A8)
Eq. (5-A8) can be written as:
X X
{ﬂ{_ o } (5-A9)
X2 X20+€X21+€ X22
where:
X :‘]99(7' _(Fe) -(C )99X )_‘JHAF/I _MI’H (5-A10)
20 0 0 D 2 0
Hiin (332K 1)
>—<21=J96(r1—(Fg)l)——Jg”K“ h,, (5-A11)
Hirin (33K 11)
1 J, K
X, =J o (T, —=(F,) )—Ah1 (5-A12)
SR A Hiin (32K 1) ’

In the following it will be proven that,=M (7, —(F,), —(Cp)wX,),
< - - . 1 - :
X1 = MQ;(Tl = (Fp),) andx,, = MH;((Tz _E(Fg)z) -Mgh,). Then by wusing these
expressions foix,,,X,,, X,, the corrected slow subsystem will be shorter and #asier
to use.
Substitutingh,, from Eq. (5-30a) in Eq. (5-A10) results in:
X0 = Jge(To = (Fg)o =(Cp)eXz) = IanF) _‘]9/1‘]/1_;(‘]; (7o =(Fo)o = (Cp)ap %) =1, F))
(5-A13)
Regrouping the terms in Eq. (5-A13) leads to:

Xp = (‘]00 - JH/IJA_Al'J-arA )(To - (Fe)o _(CD)BB Xz) (5-Al14)
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Using the equalityM ; = J,, — J,,J,; 34 given in Eq. (5-10d), Eq. (5-Al14) is changed

to:
Xo0 = Me;;(ro - (Fe)o _(CD)HH Xz) (5'A15)

Utilization of h,given in Eq. (5-30c) in Eq. (5-A11) and knowing thgt=0,

turnsx,, into:
X1 = Jgo(Ty = (Fp)1) =31 355 (n (7, = (Fy)1)) (5-A16)
Using the equalityM ,, = J,, — J,,J,,J,, given in Eq. (5-10d), Eq. (5-A16) becomes:
Xo1 = Mgo(7, = (Fp),) -A87)
Employing the expression d¢f,given in Eq. (5-30e) in Eq. (5-A12) results in:
R = dao(T =2 (F)2) =30 03 (05, =5 (F).) =) (5-AL8)
By rearrangment Eq. (5-A18), becomes:

_ _ 1 a0
Xoo = (Jg = Ind 1y (T 5 (Fo)2)+ Judinn, (5-A19)

Using the equality M =J, -J,J,;J; diven in Eg. (5-10d), the expression

M} M 2 =-J;}J] given in Eq. (5-10b) and knowinlg,, = h,,from Eq. (5-30d) X,,is:

R =M (T2 =2 (F)2) =M i) (5-A20)

Replacing,,, X,,, and X,, in Eq. (5-A9) with their equivalence given in Egs- (
A15), (5-Al17) and (5-A20) respectively, results in:
% _ X .
5(2 - M;;(To _(Fe)o _(CD)HHXZ) +£(|V|9_§(T1 _(F9)1) +£2(M¢;;(T2 _E(Fe)z - Mﬁ/lﬁl))
(5-A21)
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Therefore, by the use of Egs. (5-30a) to (5-30f)Hpi =12 andj = 012 and also the

properties of the mass matrix given in SectionZ.Eq. (5-A8) was converted to Eq. (5-

A21) as stated in Lemma 1.

Appendix 5.111: Stability analysis of the proposed theorem in Section 5.4

For the stability analysisthe torqoe r,+&°r, +7,, where the expressions

ofr,, r,and r, are given in Egs. (5-36), (5-38) and (5-54) respebt, is applied to the

dynamic model given in Egs. (5-20a) and (5-20b).eAfalgebraic manipulation and

neglecting the terms of order and higher, the errors’ dynamics are:

& =Ae +N,
en=An+N,
where:
erT:[(r—rd)T (r‘—r‘d)T], /7T=[e1 ZTJ, e=2-7

0 | A,-K_C 0
A= -K, -K,| = B K -
P D 22" Mcz AzZ Bzchz

A

- F
N, = _‘9‘];6_.8 2

A lg,=0,=0
Dr = (\NJ;—/I Kcz + JﬁﬁKcz)ez + ([Drl Drz] _WJ,; Kcz - J%KCZ)Z
oF, J, K J, K
D,, =& (KW -(WJj, +J,,)—2 )-W VLAY a ™

aq 4=, =0 i D Kn)  Hein (30K )

2

oF
Dr2 = E(KDW_(\N‘];A +‘]99)_.9

2

)

9=0,=0
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(5-A22)

(5-A23)

(5-A24)

(5-A25)

(5-A26)

(5-A27)

(5-A28)

(5-A29)

(5-A30)



Since matricek,and K are positive definite, the matrid in Eq. (5-A25) is Hurwitz.
Moreover, according to the observer-based contraésign proceduré\, -B,,K_, and
A, -K,Care Hurwitz matrices and so is the mafjxin Eq. (5-A25). Given thath
and A, are Hurwitz matrices, there exist symmetric positieéinite matricesP, andR,

that satisfy the following Lyapunov equations:
AR +RA =S, 1)
AR +RA =-§ (32

where S, andS, are symmetric positive definite matrices. Forgtability analysis the

Lyapunov candidate function is selected as:

Vi, =€ Pe +en'Pn (5-A33)

Lyp
Calculating the time derivative of the Lyapunov d@aate function defined in Eq. (5-
A33) along the trajectories of Eqgs. (5-A22) and (5-A28d using Egs. (5-A31) and (5-
A32) results in:

V,,=-€'Se -n"Sn+2NPe +2N,Pn+enPn (5-A34)

Lyp ~

On a bounded region around the originephndy, it is possible to assume [11,19]:

IN7R

<(ly+el,+e%,)hn| (5-A35)
.
IN;R < &l 456)

7ol <t 487)

where?,, /5, ¢,, ¢/.and ¢ are positive constants. By using Egs. (5-A35) té&\g5) and
defining the symboly,,,(Q)as the minimum eigenvalues of a ma@ix \/Lypgiven in

Eq. (5-A34) changes to:

Vor<lel a7 (5-A38)
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where

(S —(0,+&l,+E%0
- /'Imlrl( r) ) ( 2 3 4) (5_A39)
_(£2+5€3+‘9€4) ﬂmin(Sq)_‘c"gS_z“jS

As ¢ - 0 and provided that,,, (S,) 4, (S,) > (2, the matrix Q defined in Eq. (5-

A39) is positive definite. Thus, there exists,so that for alD<e<¢,_ ., Q is a positive

max?

definite matrix. As a result, assuming treit! (0, &, ) the trajectory tracking error with

the dynamics given in Egs. (5-A22) and (5-A23), isjhynov stable. By imposing the
positive definite property on matrfX which is defined in Eq. (5-A39k,

m

S

_p2
- — /umin (Sr )lumin (Sr ) 4 2 (5_A40)
(U +205) i (S ) + 20,04

In deriving the expression fer,_,, given in Eqg. (5-A40), it is assumed that the t®wh

order £° are negligible compared to the terms of o&lefhe fact that, 1C*, makes the

control signals continuous and bounded. Otherwise, titacking error will be

unsatisfactory and large.
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Chapter 6. Maneuver control of the multilink

flexible manipulators
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Abstract:

In this chapter a new controller for the end-efbectrajectory tracking of
multilink flexible manipulators (MLFM) is introduck The new controller is derived
utilizing the concept of the integral manifold dfet singularly perturbed differential

equations.

Based on the new controller, to reduce the end:effdrajectory tracking error,

a corrective term of ordes® has to be added to the computed torque comman@)(GfT

the rigid link counterpart of the MLFM, where thergmeter & =1/27f andf is the

smallest non-zero natural frequency of the MLFMha specified range of operation of
the manipulator. The implementation of the new maldr requires measurement of the
links’ rotations, their time derivative and theXilele variables which represent the links’
lateral deflections, but not the measurement of tihee derivative of the flexible
variables (time derivative of links’ lateral deftems) which may be practically
impossible. This is achieved since the time dérxeaof the links’ lateral deflections
estimated using an observer which is designed bassdtie gain-scheduling technique.
The stability of the proposed controller is provesing the Lyapunov criterion.

Simulation results showed the effectiveness of ¢ controller.

One of the main contributions of this work is in thexivation of a new controller
for the EETT of nonlinear MLFM, based on the intdgmanifold concept, which (1)-
requires the fewest corrective terms in additiotheds CTC and (2)- its calculation effort

is minimized.
6.1. Introduction

The energy consumption and heavy mass of rigid hiva@ipulators reduce their
mobility and efficiency. As a remedy, the use of stender links decreases the mass and
increases the mobility of the manipulators. Howetee, slender links vibrate and bend
during, at the end of and after the maneuver, dns behavior leads to limited
performance. Thus, provided that the performanceth& flexible (slender) link
manipulators becomes reliable through the utilorabf suitable controllers, the flexible

link manipulators can be a promising substitutetfa rigid link manipulators. Since in
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most of the industrial application, like weldindhet end-effector trajectory tracking
(EETT) is of importance, the EETT of the multilifikxible manipulators (MLFM) has to
be addressed properly if they want to be indusyriatiplemented.

Here, a new EETT controller considering the full imeear dynamic model of the
MLFM is introduced. The proposed controller is ded based on the singularly
perturbed form of the MLFM. Although there are maaytrol strategies for the flexible
link manipulator, the techniques for the controlsaigularly perturbed systems [1], are
potential candidates for the EETT of the MLFM. Thliddue to the fact that the dynamic
model of the MLFM can be expressed in the singulgérturbed form [2], which
composed of slow and fast subsystems. For a MLl states of the slow subsystem
are the links’ rotations and their time derivatwhile the states of the fast subsystem are
the relatively fast links’ lateral deflections, medeld by parameters called flexible
variables, and their time derivative. In this cleapafter expressing the dynamic model of
MLFM into the singularly perturbed form, the conteb the integral manifold [3,4] is
used to introduce a new EETT controller. Based da toncept a corrective term
(torque) is added to the computed torque commani€j©f the rigid link counterpart of
the MLFM for the reduction of the EETT error, séfor the CTC. This corrective term
is of order?, where £ =1/27f and f is smallest non-zero natural frequency of the

MLFM in the specified range of operation of the mpatator. To stabilize the subsystem
which composed of the flexible variables and thémet derivative (links’ lateral
deflections and their time derivative), an obsetvased feedback controller according to
the gain-scheduling technique is employed, seefd6lthe gain-scheduling technique.
Due to the use of the observer-based feedback dientthere was no need for the direct
measurement of the time derivative of the flexideable, which is hardly practical. It is
worth noting that the operating points in the gathesluling procedure were the links’

rotations, which can be easily measured.

The major contribution of this work is in utilizinthe concept of the integral
manifold of the singularly perturbed differentiajuations to design an EETT controller
for the MLFM considering the full nonlinear dynamicodel. To the authors’ best

knowledge, this concept has only been used so fagifgle flexible link manipulators
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with linear models [7,8,10], two-link manipulators wibne rigid link one flexible link
[11], or the joint trajectory tracking of two-link amipulators with both links flexible
[9,12], but not for their EETT. In contract in thekapter, based on the concept of integral
manifold, a new EETT controller for MLFM is introded whose performance has been
verified by simulation studies on a two-link mangar with both links flexible and also
is to be experimentally validated in a later reskarMoreover, compared to the above
developed methods based on this concept [7-12]cdméroller introduced here is the
most computationally efficient one since only owerective term was added to the CTC
of the rigid link counterpart of the MLFM. Furtmeore, another contribution of this
work is the use of several properties of the massixnaf MLFM in design of the
controller. The importance of the use of these erigs is in the ease of calculation and
implementation of the controller proposed here. Wit the proper use of these
properties it may not be possible to use this otletr for MLFM, e.g. two-link
manipulators with both links flexible. It is worth tirog that the new EETT controller
proposed here is an extension of our previouslsodthtced controllers for the single
flexible link manipulators [13] and a class of filebe link manipulator composed of a
chain of rigid links with a flexible end-link [14]which have been experimentally

verified.

The rest of this chapter is organized as followsSéttion 6.2, the singularly
perturbed dynamic model of the MLFM and the prapertassociated with its mass
matrix as well as the integral manifold concept discussed. In Section 6.3 the
corrective term which has to be added to the CT@hefrigid link counterpart of the
MLFM to reduce the EETT error, and the observeretdateedback controller, which
stabilizes the subsystem composed of the linkserdht deflections and their time
derivative, are designed. Moreover in Section th8,stability of the proposed controller
using the Lyapunov stability criterion is discussebhe simulation results for a flexible
two-link manipulator with both links flexible, whichhewed the effectiveness of the
introduced technique is presented in Section Grallly in Section 6.5 the conclusions

drawn from the research are given.
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6.2. Dynamic model of MLFM and the integral manifold concept

In this section first the dynamic model of MLFM atite properties of its mass
matrix are presented. Then this dynamic modelesgmted into the singularly perturbed
form and the integral manifold concept is detailed.

6.2.1. Dynamic model of MLFM
The dynamic model of a MLFM [15,16] withlinks is:
M(q)d+F(q,0)+Kqg=Br (6-1)
whereM (q )is the mass matrix,F(q,q Yepresents the summation of the Coriolis,
centrifugal, gravity and viscous damping forc&sis the stiffness matrixgis the vector

composed of the generalized coordinates of the MLEM= [r161 rna] wherer, is

the torque of theth link’s actuator and is a constant matrix which mags to their
corresponding generalized coordinates. The veaads matrices in Eqg. (6-1) can be
expanded as:

M (8,4) M, (6,1 g ) A 0 O
M = ia( ) 2 (60,4) q= F(q.6) = Fg(e,/],@.,/].) K = Br= r
Mg (6,4) M,,(6,4) A F,(6,1,6,4) 0 Ky 0
6" =6 ... gl A= .. A, A=A A, . A (62)
where 8 (i =1...n)is the rotation of theth link, A, (i =1...n)is the vector composed of

the flexible variables used to describe the latetaflection of theith link, A

(i=1...n,j =1...m) is the time varying coefficient of thth mode of theth link andm

is the number of the mode shapes used to destrebtateral deflection of theh link.
Although, the number of mode shapes used to moeell¢Ribility of each link can be
different, for the simplicity of notation it is agmed that this numbem, is the same for

all the links.
Properties of the mass matrix of the MLFM
The components of the mass matrix in Eq. (6-2) heeveral properties that

facilitate the derivation and implementation of thentroller proposed here. These
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properties are given in this section. If the inveséhe symmetric positive definite mass
matrix*® M is J, then:

[Mig MQA}*:M_EJ:{J? Jﬂ (©:3)
Mg, M, Ja I
and the following equalities between the componehtd cand J exist:
M, M =-3,J, (6-4a) MM =-3,;3, (6-4b)
My =Jm+M,uM M}, (6-4c) M = = Jadiida (6-4d)
J, =M} +3),3.53, (6-4€) J =M, -M,;MzZM, (6-4f)

Proof: See Section 4.10

6.2.2. Singularly perturbed form and the integral manifold concept

Since the dynamic response of MLFM is composedaf $inks’ rotations upon
which there are relatively fast links’ vibrationsietdynamic model of MFLM can be

expressed in the singularly perturbed form. Fa thirpose, the new states:
X =0, x,=0 (6-5a)

_A _
21—?’ L=

A (6-5b)
£
are defined wherex” =[x/ x|and 2" =|z/ z|are the vectors composed of the

states of the slow and fast subsystems and thergéciadA are defined in Eq. (6-2).

Moreover g is the singular perturbation parameter and isndeffias:

£ = \/,umin ((I11)0Ki) (6-6)

where(J ), = JM|A:Oand,umin ((3,,)0K,, ) is the smallest eigenvalue of the matrix

% For brevity in the rest of this chapter the argnta®f functions are dropped unless their appearanc
leads to further clarification.
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(J,,K,,))when A= 0 andd is varied in the specified range of operation bé t
manipulator [11,14]. Physically since the eigeneslwf ((J,,),K,, ) are the square of
the natural frequencies of the linearized dynamodeh of the MFLM, ¢ is equal to the

inverse of the smallest natural frequency oversihecified range o#& .

Using the new states defined in Egs. (6-5a) andj6tbe dynamic model given

in Eq. (6-1) with details in Eq. (6-2), is expressethe singularly perturbed form as:

)'(1=XZJ K .
T I Kl o
£2,=12,
. 3, K i
e L I K WO KR o

where Egs. (6-7a) and (6-7b) represent the dynaofitee slow and fast subsystems,

respectively. For the above dynamic model, the folthdefined by:

he (e, xe. 7, £) =| 1 O %e T 8) .
hs (X7, X5, 7,€)
is called the integral (invariant) manifold?ff:

Z(t”, &) =h* (X (t°, &), x5 (17, &), 7(t"), &) = z(t, €) = h*(X{ (t,€), X5 (t,€),7(t), &) Ot >t°(6-9)

That is, if the fast variable (which represented the links’ lateral deflectiomsl aheir
time derivative) reaches to the manifdiflat timet"”, it staies on this manifold thereafter.
To assure that the fast varialdewill eventually restrict to its integral manifolthe fast

component of the controllar,, is designed in Section 6.3. The restriction zofo

h®means that the links’ lateral deflections and thiere derivative can be obtained in
terms of the joints’ rotations, their time deriva&tiand input torques.

2" The superscript “e” emphasizes tHltis the exact solution of the integral manifold. Mover, wherz
is restricted to its exact integral maniféid, the corresponding from Eq. (7a) is callex®.
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According to the definition of the integral mandpl(h®)" = [(hf)T (h§)TJ has
to satisfy the following so called integral manifoltbndition, which obtains by

substitutingz in Eq. (6-7b) witth® from Eq. (6-8) [3]:

eh? =h¢
ehy =-J5F, = J,,F, - Ko h' +J,7 (6-10)
Hoin ((313)0 Kp)

Since the above constraints dm’are nonholonomic, finding an algebraic
expression forh®from Eq. (6-10) is unattainable. However, it is pbksito find an

approximate solution by using the series expansafng’, h; and r around £ = Q

Therefore, based on the assumption thiastsmall,h’, h; and 7 are expanded as:

N
hi=h =) e'h, =hy,+eh, +e’h, +... (6-11a)
=0
D
h; =h,=>¢'h,, =h, +eh, +&h,, +... (6-11b)
=0
N
T=1,=) &7, =T, +£1, +£°T, +... (6-11c)
i=0

where h, andh, are the approximations &f andh; andr.is the approximation of
when the approximate solutions ¢ff and h;, that is h, and h,, are used. By
substituting the expression bf, h, andr,, given in Egs. (6-11a) to (6-11c), in Eq. (6-10)
and equating the terms having the same power bf in terms ofr; wherei = 12and
j=0,...,p wil be found iteratively. To findh; and 7, in this chapter, the series

expansions, given in Egs. (6-11a) to (6-11c), aredated by assumirg= 2, similar to
our pervious work [13,14]. This is due to the fdwttif p < 2, then the contribution of

the links’ flexibility will not be observed in thend-effector displacement, while on the

other hand forp > 2Zhe control effort will increase. Therefgoe= 2 is the optimal value

and with this selection, Egs. (6-11a) to (6-11c)doee:
h,=h,+eh, +’h, (6-)2a
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h, = h,, +&hy, +£%h,, (6-12b)

[, =T, +&, +E°T, (6-)2c

S

The manifold obtained by assumipg= 2 in Egs. (6-11a) to (6-11c), is called gezond
order integral manifold Substituting then, h,and r, from Egs. (6-12a) to (6-12c) into
Eq. (6-10) leads to:

5(h10 +5h11+€2|:112) =h,, +&h,, +‘92h22

J K 2
(ho +&h, +£%h,) +
Hinin ((301)0 K1) ° ! v

I (T, + €T, +€7T,)

&( I;‘zo +‘f'hn +£2h22) = _J;AFH —JuF -

(6-13)

Since Jg,, F,, F,, and J,, in Eq. (6-13) are functions of, to find h, and 7, from
this equation by iteratively equating the termsih@wthe same power of , the series

expansions ofl;,, F,, F,, and J,, around ¢ = Qis used. These series expansions
ofd,,, F,, F,, andJ,, neglecting terms of ordef wherep > ZXfor the same reason

that in Egs. (6-12a) to (6-12c) terms of ordewherep > 2are neglected) are:

1 1
J(; :(Jz;)o +5(J;)1+§52(Jz;)2 I =)o +£(‘]/1/1)1+§£2(‘])I)|)2

Fo = (Rl v e (R + 2 2(F),  Fy =(F)ove(F) w5 8(F)),  (614)

where for the arbitrary functiay(e , X9), = dig/d‘s‘LZO and (g), =9 (0). As an example

the derivations ofF,),and (F,), are presented in Appendix I.
Substituting Eq. (6-14) into Eq. (6-13) and equatihe terms having the same

power of € yields:

_ (J/I/l)OK/M -1 T T
0~ JHAOO_‘JQ/IOFHO_JMOFAO 6-15
ho=C 5 ) (323070 = (30)6(F)o = (3,1 )o(F o] (6-15a)

h20 =0 (6-15b)



hu=(umii‘g;jlijiﬁM)>‘1[(J;)orl—(J;)O(Fg)l—(amo(a)l] (6-150)
h,=h, (6-15d)
e = TR 50T 5 RFe)e =5 (F0:(Fedo -
L L 30K A (6-15e)
R R R T
h, =hy, (6-15f)

The usage of obtaining the integral manifold comcap has been done in this
section, can be summarized as follows. The dynanoideinof the MLFM presented in
Egs. (6-7a) and (6-7b) hasthm) degrees-of-freedom while it has omactuators, thus
MLFM is an underactuated system (number of degoédseedom is more the number of
actuators). By using the integral manifold conceptapproximate solution for Eq. (6-7a)
will be obtained. That is, ik is restricted to its integral manifold, the linkigiteral
deflections and their time derivative can be olgdim terms of the links’ rotations, their
time derivative and input torques (note that linkéral deflections and their derivative

on the integral manifold are representedrhy and see Egs. (6-15a) to (6-15f)). Thus by

using this concept changes the underactuated Mldgdears to be a fully actuated one

and its EETT can be accomplished.

6.3. End-effector trajectory tracking

In this Section it is proven that to reduce the EEFror of MLFM, a corrective

term of orders® has to be added to the computed torque comman@)(@f the rigid

link counterpart of the MFLM. Since the additiontbk corrective term to the CTC for
the EETT error reduction is based on the assumghahz (the parameters represent
links’ lateral deflections and their time deriva)us restricted to its integral manifolds, a

fast component of controller, is also designed to assure the satisfaction o thi
assumption. The implementation r9f which was initially a full-state feedback
controller, needed the direct measurement of the tlerivative of the flexile variables
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(time derivative of Adefined in Eqg. (6-2)), which made the implementatmnthe
proposed controller almost impractical. However, thiewback has been removed by the

design of an observer to estimate the time devieadf the flexile variables. That ig, is
an observer-based feedback controller. Finallystiadility of the proposed controller is
proven by the Lyapunov criterion.
The end-effector displacement of the MLFM can bscdbed by:
r=6+WA (6-16)

where the components of the vectarepresent the end-effector displacement, veétors
andA are defined after Eq. (6-2), aMiis the matrix that relates the flexible variablkes,

to the end-effector displacement. As an examplethertwo-link-flexible manipulator
shown in Fig. 6-1t™ =[r, r,]. Details of Eq. (6-16) for the end-effector disgiaxent of

a two-flexible-link manipulator as well as the defiom of itsW are given in Appendix II.

)
\\
\
o
Ylnenial A
T
~.2a
N
‘\ /,,,"
Vo
P \\
/ /m \\\\
7 / h2 \
\\ 5
\
i
\
|
|-
X Inertial

Shoulder joint

Fig. 6-1: Schematic of a two-flexible-link manipwat

After describing the end-effector displacement irmte of & andA, substitutions
ofdandA from Egs. (6-5a) and (6-5b) into Eq. (6-16) resul

r=x+&Wz -18)
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Assuming that is restricted to its integral manifold, in Eq. (6-17) is replaced with,,

as given in Eq. (6-12a). Thus:
r=x +&W(hy +eh, +&°h,) (6-18)

Since terms of ordes” wherep > 2are neglected in this chapter, (see Egs. (6-12¢-t

12c) and (6-14) for example), the end-effector ldispment given in Eq. (6-18) is:
r=x +&Why, 6-19)

In the following, the toques, 7,and 7,will be selected so that the end-effector

displacement, given in Eq. (6-19), tracks a dediraj@ctoryy, .

Lemma 1: Selecting

Ty = (M go)o (Fy —Kp €= K,8) +(F,), (6-20a)
7, =0 (6-20b)
£, = (M) +(M )i = (Mgp)od +%(Fé,)2 (6-20c)
where
e=x -, (6-21a)
V =-(Why, + K, Wh,, + K, Why) (6-21b)

d= [(‘Jee)z _(‘JBA)O(J/M 61(354)2][%(% _(Fe)o)}_
(6-21c)

1 K
Ja)2 = (Ja)o(In 61 )2l Z((Fy)o M 0
[( )2~ (ai)sl () ]{2(( ) +:umin((‘]M)0KM)hl )}

makes the end-effector displacement given in Eq.9)6asymptotically track the desired

trajectoryy,, provided that:

1- The gain matrice&, and K, are positive definite;
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2- r, 0C*, that is the desired trajectory and its time dafixes up to the fourth order

are continuous and bounded.
Proof:

Replacingz,z, andrin Eq. (6-7a) byh,,h, and 7, given in Egs. (6-12a) to (6-
12c) respectively, and also using the expressioh, given in Egs. (6-15a) to (6-15f),
yields:

X =X,
%, = (Mgg)o 170 = (Fp)ol + E(M )5 7y + €7[(M o) ' (7, _%(Fe)z =(Mg),hy) +d
(6-22)

whered is defined in Eq. (6-21c). Details of the deriwatiof Eq. (6-22) can be found in
Appendix IlII. It is worth noting that without the uséthe properties of the mass matrix
introduced in Section 6.2.1, which is one of thetdbations of this chapter, the concise
derivation of Eq. (6-22) is not possible. This siifiigation makes the selection of the

control inputs easier and less computationallylgost

Taking the first and second time derivatives from. 6-19) and replacing

with x, results in:
F=x +&Wh,=x, +£Wh, (6-23a)
F =%, +&£°Why, (6-23b)

By substituting x, from Eq. (6-22) into Eq. (6-23b) and using torgogs r,and
r,defined in Egs. (6-20a) to (6-204),is:

i =f, —K,e-Kpe+£2(Wh, +V) (6-24)

The utilization ofe andV, which are given in Eqgs. (6-21a) and (6-21b) retpely,
changes Eq. (6-24) into:

(F =1y) + Ko (% +£2Wh10_rd)"'KP(X1+£2\Nth_rd):O (6-25)
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Finally, considering Egs. (6-19) and (6-23a) f@andr , the error dynamics from Eq. (6-
25) is:

(F=F) + Ko (F=Fy) + Ko (r—ry) =0 (6-26)

which is asymptotically stable sinc&,and K,are positive definite matrices. The

assumption that, 0C*, makes the control command continuous and bouritied. is

due to the fact that the calculation of requires evaluation oh,, (Eq. (6-20c)), and
computation ofh,, by itself needs having (Eg. (6-15a)) which depends dj (Eq. (6-
20a)). Thus, calculation af, requires the fourth derivative Qf, and the assumption that
r, 0C* makesr, andr,; thus the control command, to be continuous anghded.
QED

The expression given in Eq. (6-20a) fpiis the CTC of the rigid link counterpart
of the MLFM [2]. Therefore, based on Lemma 1, tduee the EETT error only the
corrective terme’r,, which is of ordeg?, has to be added to the CTC of the rigid link
counterpart of the MLFM.
Remark 6.1: To calculaté,, which is required for the calculation of the cetiee term,
7, from Eq. (6-20a) is substituted into Eq. (6-15ayl dhe property of the mass matrix

given in Eq. (6-4b) is used which after some algebranipulations results in:
h10 = _:umin(‘]M KM)KA_Al((M;)o(ﬁj - KD(XZ - rd) - KP(Xl - rd) + (Fa)o) (6-27)

Moreover, by taking time derivatives from Eq. (6}2the expressions ofi,and h,,

which are required for the evaluation\6in Eq. (6-21b) can be obtained, employing the
analysis similar to that in [4p. 147, 20 p. 297,143. Furthermore, to evaluatkin Eq.
(6-21c), (Jg)5r(3,,)..(3g),and (J;,),are required. Although these terms can be

obtained from:

(J), =d*(M ‘1(5))/d£2|£:0 (6-28)
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finding (J),from Eq. (6-28) requires that the second derivatif/éV () with respect
tos be calculated which is a complicated task and ptoresror. In the followingJ),,
and consequently its componefls,),,(J,,),,(Jz),and(J;,),, are obtained by a new
method which does not need this derivative calauatiSince J(¢) is the inverse
of M (¢):

M(£)I(e) =1 (6-29)

By substituting the series expansionaw{s) and J(¢) arounde =0 as:
1 1
M(g):(M)O+£(M)l+§£2(M)2 J(g):(J)0+£(J)1+§£2(J)2 (6'30)
into Eq. (6-29), equaling the terms having the sgmower of £ and knowing that
(M), =(J),=0:
(3); ==(M)g'M, (M) -36)

which contrary to Eq. (6-28) does not need the d¢isie calculation ofM (&) with

respect tos .

The key assumption in Lemma 1 is that the vedorandz, have to be
respectively restricted to their second order irdkganifold h, andh, given in Egs. (6-
12a) and (6-12b). To assure this key assumptiagatisfied the fast component of the

controllerr, is designed as follows. The deviation of the veabbrfast variables

Z' = [le ng from their integral manifolch™ = [th hzT] is:

=z
] |z-h

Using Egs. (6-12a) and (6-12b) fgand h,, Eq. (6-32) changes to:

2{%}{21'(“"*5“1*52“2)} 6:33)
Z, Zz_(h20+gh21+£ hzz)
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Multiplying both sides of Eq. (6-33) with, taking time derivative from it, replacing
£ z ande z,with their equivalences form Eq. (6-7b), substitgtin with 7, + £°7, + 1, ,
using Egs. (6-15a) to (6-15f) foh, and Egs. (6-20a) to (6-20c) fgyandr,, and
neglecting the terms of order where p > 2 yields:

EZ=AZ+BT, +eN, +£N, (6-34)

where

0 |
A = =(In)oKu 0l B, = 0 , N, = 0 , N, = 0 (6-35)
:umin((‘JM)OKM) (J‘;)O Ozl Ozz

and the expressions oD, and O,,are given in Appendix IV. In the absence of

N,,andN,,in Eq. (6-34), the full-state feedback controfler=-K_z stabilizes the
dynamic equation df provided that the gainK_ is selected so that the
matrixA, - B,K_,is Hurwitz. The stability of the dynamic equationzofEq. (6-34),
means that eventually the vectarsandz, will get restricted to their second order
integral manifoldh, andh,. In the presence oN, andN,, with the assumptions that
INL| < ¢.|Z|and|N,,| < ¢,|Z], where|N,| and|N,,| are the Euclidean norm Nf, and
N,,and/,and/, are scalar constants, still the full-state feedlbeantrollerr, = -K_,Z
can stabilize the dynamic equationZofpage 161 in 21]. However, this time there is

another extra restriction on the gaik_, besides the requirement to make the
matrix A, — B,K_, Hurwitz. This extra restriction is explained in ttability proof, given
in Appendix V, where the stability of the whole systemith the control

2 . .
torquer, +£°1, + 1, is studied.

Since matricesA, and B, in Eq. (6-35) are functions af, the gain matrixK_,is

selected according to the gain-scheduling procefijteBased on the gain-scheduling

procedure, first in the possible range of the wemmaofx,, several operating points like

v, =(X1)i are selected, whereis varied to cover all the possibie Then, at each
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operating point the gaigK,,), is designed so that the stability of the system & (X1).

is guaranteed. Finally, the gain matrix is lineanyerpolated between these operating
points. After adopting the gain scheduling proceduraplementing the full-state

feedback controllar, = -K_,Z requires thatz be available, which from Egs. (6-32) and
(5b), need the measurementlofandi. Although, the measurement bf which is
required for the calculatiorz, and consequentBy, is possible, for example by strain
gauges, the measurementAgf which is needed for the evaluation o, and

consequently,, is not easy. As a remedy, to remove the need fmsoring A which
was required by the full-state feedback controber,observer-based feedback controller
assumingz, as the output is employed to stabilize the dynaeqgigations of . That is the

output for Eq. (6-34) is assumed to be:

y=C,2 C, =l Onel (6-36)
which only requires the measurement if, andr, is selected as:

r, =-K_Z (6-37)

where Z , the estimate of , is calculated from:
gz = (AZ - BZl<CZ - KOZCZ)Z + KOZy (6-38)

and the observer gaiK,is selected so thaf, -K_C,is a Hurwitz matrix. The same

gain scheduling procedure is used for the evalnaif , as did foK, .

Remark 6.2: To implement the above observer-based contrdleshould be calculated,
which according to Eq. (6-32) needs evaluatioh gh,, andh,. The expression adf,,

is given in Eq. (6-27). Combining Eq. (6-15c) withy.E6-20b) and considering the fact
that (F,), = (F,), = 0 (See Eq. (6-A22) in Appendix V), resultedhjn=0. Finally, the
expression oh,,is given in Eq. (6-15e) where for its calculatiagand 7, are presented

in Egs. (6-20a) and (6-20c) respective(,),and (F,),can be obtained as explained in
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Appendix 1, and(J;,),and (J,,),can be computed according to Remark 6.1, Eq. (6-
31).

Theorem: For the MLFM with the dynamic model given in Egs-7®) and (6-7b),
applying the torque, + £°r, +7, wherer,, 7,, and 7, are given in Egs. (6-20a), (6-
20c) and (6-37) respectively, restricts the fastiaides z and z, to their manifold

defined in Egs. (6-12a) and (6-12b), and make®thputr given in Eq. (6-16) track the

desired trajectory, provided that:
1- The gain matrice&, and K are positive definite;

2- The gain matrice_, and K_, are such thatA, -B,K_, and A -K_C,are

Hurwitz, whereA,,B,and C, are given in Egs. (6-35) and (6-36), respectively;

3- The condition £, (S,) (S ) > (5 is satisfied, whereS,,S and/are
defined in Egs. (6-A38), (6-A39) and (6-A41) in Appeni, respectively and

symbol y,.(S) represents the minimum eigenvalue of the ma#jxand

4- Ther, OC*, that is up to the fourth order derivative of thesired trajectory

has to be continuous and bounded.

Proof: The proof of the stability which is based on thgpunov criterion is given in

Appendix V.

6.4. Simulation Studies

In this section, the results of simulation studies the two-flexible-link
manipulator, shown in Fig. 6-1, are presented. Tingt fand second links of this
manipulator were the shoulder and elbow links, whikdrtcorresponding actuators were
the shoulder and elbow actuators. It was assumedtteamanipulator operated in the
horizontal plane; therefore gravity was not a fackdoreover, the flexibility of each link
was modeled using one mode shape, similar to thagusy reported simulation and

experimental studies in [9,22,23].

222



The physical parameters of the two-flexible-link npamator which are given in

table 1 were the same as those in [16]. HeyandL, were the length of the shoulder and
elbow links respectively,o,andp, were the mass per unit length for the shoulder and
elbow links respectively|,, andl,,were the shoulder and elbow actuators’ mass moment
of inertias respectivelym  andm, , were the shoulder and elbow actuators’ masses
respectively, El,andEl,were the rigidity of the shoulder and elbow linkspetively,

and m;, and I, were the mass and mass moment of inertia of thesHadtor payload,

tip

respectively.

Table 1: Physical parameters of a two-flexible-lm&nipulator

Physical Properties Value unit
L,,L, 0.5000 (m)
01, 0, 0.2000 (kg/m)

0.1000 (kg.m?)

Ih1’|h2

my,,m., 1.000 (kg)
El,, El, 1.000 (N.m?)
m, 0.1000 (kg)

0.0005 (kg.mz)

tip

As in Eq. (6-16) the end-effector displacement cam fepresented by
r" =[r, r,], where r,and r,are shown in Fig. 6-1, and their relations to thekdl
rotations@, and flexible variableg,, are given in Appendix Il. The desired trajectories

ri,andr,,, to be followed byr,and r, respectively, were selected to be the ninth order

polynomial satisfying the following conditions:

ry(0) =0 dirdj/dtit:OZO i=1...4 j=12 (89)
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rdj(tfj) :gfj dirdj /dt y =0 i=1...4 j=12 (6-40)

where g, were the desired final values foy at the final maneuver times (j =12),
respectively. These trajectories were kept consta#f fort >t .

The end-effector controller introduced in this deaspwas referred to as the
“integral manifold controller”, which added a cortige term to the CTC of the rigid link
counterpart of the MFLM, as explained in Sectio®. 6The controller without the
corrective terms discussed in [2] and was calleck rees “rigid link controller”. To
illustrate the reduction in the ETT error due t@ thew controller, the results using
integral manifold controller were compared agaihstse of the rigid link controller in

the following studies.
4-1- Example 1: two-flexible-link manipulator, relaly slow speed maneuver

In the first simulation, the desired trajectorigsand r,, were selected according
to Egs. (6-39) and (6-40) by using t,, =t,, =6(s),8,, =600 (1.047qrad)) and

6., =450°( 0.785rad)) . These desired trajectories are shown in Fig. 6-2.

1.2
1
0.8
% rdl —> /
<
= 0.6
o I,
0.4+ /
0.2r / )
O Il Il Il Il 1
0 1 2 3 4 5 6 9 10

time (s)
Fig. 6-2: Example 1, desired trajectorigsandr,, for the
two-flexible-link manipulator of Fig. 6-1

For the calculation ofryandr,, given in Egs. (6-20a) and (6-20c), the
gainsKk, =016 andK, =0.80 were selected. To calculat&_, and K, of the fast

component of the controlley, the gain-scheduling technique, as discussed atidde
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6.3, was used. Since, for the two-flexible-link mamgor of Fig. 6-1, the matrices

A andB,were functions of ,, then the operating points in the gain-scheduling
technique werey, = (6,),. Because)’ <r,, <45, the possible range 6f was selected
as min(ry,) — ory, <@, <maxf,,) +or,,, in which dr,, =20.0° was chosen, such that
—-20.0° < g,<650°. That is the possible range of variation ¥ was selected to be
20.0° wider from both sides comparedrip. Therefore, when during the simulation the
value of thed, passed the limits of,,, the observer-based controller still worked. This

range ofd,,—20.0" < g, <65.0°, was divided into 13 equal segments and the operati
points werev, = -20+5(i —1), (i =1,...,14 ) The gain matriX_ at each operating point
was obtained using the Linear-quadratic regula®ing2]. The gairk ,was selected at
each operating point such thaf(A - K_,C,)=2u(A, - B,K_,), where the symbgl(Q )
represents the eigenvalues of ma@ixThat is the observer gain was selected so that the

observer acted twice as fast as the controller. ddramands [gr” and “plac€ in

MATLAB were respectively used for the calculation d€_, andK_ , at each operating

point.

The trajectory tracking errorsrror, =r, —r,, and error, =r, —r,, respectively,
for the integral manifold controller and rigid limontroller are shown in Figs. 6-3 and 6-
4. These figures clearly illustrate the superioritly the integral manifold controller
compared to the rigid link controller in reducinigettracking errors. The maximum
absolute values oérror, and error, using the rigid link controller were 0.026a¢) and
0.0280(¢ad), respectively, while for the integral manifold ¢amiler they were much
smaller; 0.001¥@d) and 0.0014@d), respectively. That is, the new controller made th
maximum of theerror,and theerror, about 24 and 20 times smaller, respectively. In
addition to comparing the maximum absolute valuehef errors, a normalized index,
called the normalized mean square error (NMSE) wss mitroduced and used. This
index, which signified the overall tracking errodoetions over the entire maneuver

time, was defined as:

225



trn
NMSE = \/ti j(errorf +error/) dt (6-41)
m 0
where
error, =r, —ry,, error, =r, —ry, (6-42)

and t,, was the total time of the simulation. The NMSE floe tigid link controllers was

175.0x107* (rad), while it was much smaller beigf.743x10™ (rad) for the integral

manifold controller.

0.03
0.02"
5 001 L ]
g P .
[ 0 RN /’ --------
e ™ /
8 -0.01F / R iy
\ / ---Rigid link controller
-0.02 ) S v —Integral manifold controller .
0y 2 3 4 5 6 7 8 9 1o
time (s)

Fig. 6-3: Example 1, tracking error fiQr error, =r, —ry,, using two controllers

0.02
0.01r
-:3 O—== - N ‘,’/\ = ST H
o \ /
£ -001f / e 1
3 \ ---Rigid link controller
20.02 N\ ,'/ —Integral manifold controller
-0.03 R ‘
0 1 2 3 4 5 6 7 8 9 10

time (s)
Fig. 6-4: Example 1, tracking error figrerror, =r, —ry,, using two controllers

Finally, the difference between the desired and dbtial end-effector paths
adopting the integral manifold and rigid link caniters are shown in Fig. 6-5. The
acronym “DADP” in Fig. 6-5 was used for the differerween the actual and desired

end-effector paths and was shown in Fig. 6-6. Thaorgment in reducing the EETT
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error due to the new controller introduced in thismter is evident from Fig. 6-5. The
maximum difference between actual and desired efedtef paths for the integral
manifold was 0.0018¢) which was about 21 times smaller compared to H880m) of

the rigid link controller.

0.04 \
64 \\\ 5.0 5
7 \ --—Rigid link controller

0.03r / \ —Integral manifold controller||
~~ i ' P
g / ! N
Nt ’I “ // \\\
é 0.02 i \
a Vo

0.01r v Pag ]

0 . T
0 | 2 3 4 5 6 7 8 9 10
time (s)

end-effectorpath
desired path

shoulder joint
Fig. 6-6: Schematic of the DADP
4-2- Example 2: two-flexible-link manipulator, relaly fast speed maneuver
For the second simulation exampig,andr,, were obtained assumitig =t,, =
4(s), 6, =600 (L.047rad)) andd,, =450 (0.785rad)) in Egs. (6-39) and (6-40). These

desired trajectories are given in Fig. 6-7. Therage speed of the desired trajectories in

the second simulation was 1.5 faster compared setbbthe first simulation.

227



o ’ -
0.4 / 2
02

0 1 2 3 4 5 6 7 8 9 10
time (s)

Fig. 6-7: Example 2, Desired trajectorigsandr,, for the

two-flexible-link manipulator of Fig. 6-1

For the implementation of the controller the saramg that were used in the first
example were employed here as well. In Figs. 6-8GBAdthe tracking errors gf and
r,using the rigid link controller as well as the int@gmnanifold controller are presented.
The maximum absolute values efror, and error, for the rigid link controller were
0.0492(ad) and 0.0579¢@d) respectively, while these errors using the integranifold
controller were onlyerror, =0.0023(¢ad) and error, =0.0050¢ad). That is, error, and
error, of the new controller were respectively about 21 ahdespectively smaller than

those of the rigid link controller. Moreover, thmall value of NMSE for the integral
manifold controller, which was 0.0034¢]) compared with 0.028d4d) of the rigid link
controller is another evidence of the improvemarg tb the controller introduced in this

chapter.

0.04

0.02

%

error, (rad)

-0.02- — |
. ) ---Rigid link controller

-0.04 N / —Integral manifold controller i

- I I i | I

0‘060 1 2 3 4 5 6 7 8 9 10

time (s)

Fig. 6-8: Example 2, tracking error fiQr error, =r, —ry,, using two controllers
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0,_),~\
=) \ N S O
£ \ s e
L« -0.02 —
S ---Rigid link controller
o —Integral manifold controller
0.04 .
O‘060 1 2 3 4 5 6 7 8 9 10

time (s)
Fig. 6-9: Example 2, tracking error figrerror, =r, —r,;, using two controllers

Finally, the differences between the actual andreeégpaths utilizing the rigid
link and integral manifold controller are shown kig. 6-10 (See Fig. 6-6 for the
definition of DADP). The maximum difference between thesired and actual end-
effector paths for the rigid link controller was0699¢n), while it was considerably

smaller, 0.00341), for the integral manifold controller.

0.07 ~
0.06/ JA |
_0.05 / --Rigid link controller
§0.04f ," —Integral manifold controller| |
5 / AN
20.03 / AN |
%002 / L |
001/ \ S |
Qe T : :
o 1 2 3 4 5 6 7 8 9 10

Fig. 6-10: Example 2, difference between the acundldesired end-effector paths (DADP)

Two other examples were also conducted on the samm@puoiator used here, but for

different average speeds for thgandr,,. In these two tests, the valuesé&fand &,,, as

well as the controller gains, were the same as thsed in the first and second simulations

here. However in the third simulation (relatively ydast speed maneuvet), =t., =3(s)
and in the fourth simulation (relatively moderapeed maneuver),, =t,, =5(s) . Details of

the results of these two more simulations are nported here for purpose of brevity;
however a summary of the results for all four tests given in table 2 and Figs. (6-11a) to
(6-11d). The acronyms used in table 2 and Figd.1@-to (6-11d) were (1)- RLC for the
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rigid link controller, (2)- IMC for the integral nméfold controller and (3){DADP),.,, for

the maximum difference between the actual and degaths, respectively. From table 2
and Figs. (6-11a) to (6-11d) , it is obvious threg integral manifold controller has very small
tracking errors compared with those of the rigik lsontroller independent of the average
speed of the desired trajectories. Moreover, byeadsing the average speed of the desired

trajectories, that is selecting a larggrandt,,, the(error,), ... (error,). ... NMSE and

(DADP), ., were all decreased, as expected.
Table 2: Summary of simulation exampl&s,=60 andd,, =45
t, =t, (error),., (error,) .. NMSE  (DADP),.,
CASE Controller
(s) (rad) (rad) (rad) (m)

Very high speed RLC 0.0770 0.0986 0.0410 0.1058

(Example 3) ’ IMC 0.0095 0.0159 0.0123 0.0056

High speed RLC 0.0492 0.0579 0.0281 0.0699

(Example 2) ’ IMC 0.0023 0.0050 0.0034 0.0034
Moderate speed RLC 0.0347 0.0387 0.0215 0.0501

(Example 4) ° IMC 0.0015 0.0024 0.0015 0.0023

Low speed RLC 0.0261 0.0280 0.0175 0.0380

(Example 1) ° IMC 0.0011 0.0014 9.743xf0  0.0018
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11b]
ERigid link controller
Il integral manifold controller

NMSE (rad)

t:(s) t.(s)

Fig. 6-11: summary of the examples for differendicked maneuver time,

t,, =t,, =t,

1_

(error) (error,) NMSE, (DADP) ...

max’? max ?

6.5. Conclusions

A new controller for the end-effector trajectory kimg (EETT) of general multi-link
flexible manipulators (MLFM) based on the concepttlee integral manifold of the
singularly perturbed differential equations wasadtrced. The new controller added a
corrective term to the computed torque command (CdiCGhe rigid link counterpart of
the MLFM for the reduction of the EETT error. Thisrrective torque was of second

order of the parameter=1/27f , wheref was the smallest non-zero natural frequency of

the MLFM in the specified range of operation of thanipulator. The implementation of
the new controller did not require measuremenheftime derivative of the links’ lateral
deflections, measurements that are hardly pracfid¢as is due to the use of an observer-
based controller where the observer estimates the derivative of the links’ lateral
deflections. The employed observer based-controMas designed using the gain-
scheduling procedure. The stability of the new aulgr was proven by the Lyapunov
stability criterion. To show the effectiveness oé thew controller several simulation

studies were carried out on a two-link manipulatohviabth links flexible. The average
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speed of maneuver was varied in these examplesritatively low to high. In all these
examples a great improvement was observed in regliticenEETT error, which justified
the effectiveness of the new controller. Moreovenvas observed that, for the same

controller gains, the EETT error was increased wihenaverage maneuver speed was
increased.

The main contribution of this work is in the intradion of a new EETT controller,
designed based on the concept of integral manifaldich (1)- needs the fewest
corrective terms in addition to the CTC of its dgiink counterpart, thus is
computationally efficient (2)- its implementatiordadot require measurement of the time
derivative of the flexible variables, thus is preat and (3)- calculation of its
corresponding terms is simplified by introducingdamsing several mass matrix
properties thus its calculation effort is minimized

6.6. Nomenclature

A, : State matrix of the fast subsystem which represtnat deviation of thefrom h

B, : Input matrix of the fast subsystem which represéim¢ deviation of thefrom h

B : Constant matrix which maps vectoto their corresponding generalized coordinates
C,: Output matrix of the fast subsystem which represtre deviation of thefrom h

El,, El,: Rigidity of the shoulder and elbow links, respeely

F : Summation of the Coriolis, centrifugal, gracitydaviscous damping forces

F,,F,: Components of the vectbr

f: The smallest non-zero natural frequency of theFMLin the specified range of the

operation of the manipulator
h®: Integral (invariant) manifold
h: Approximation ofh®

h : Theith element of vectoh
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h, : Coefficient ofe’inh,
| : Identity matrix

.. : Mass moment of inertia of the end-effector

tip *
J : Inverse of the mass matri
JgorJdarrJ,, - Components of the matrik

K : Stiffness matrix

K ,,: Non-zero sub-matrix df

Ks, Kp, K, K, : Controller gains

L,,L,: Length of the shoulder and elbow links

M : Mass matrix

Mg, Mg, M, Components of the mass mativk

m: Number of mode shapes used to model the flexolithe link
m,,, M., :

m, : Mass of the end-effector

n: Number of links

g: Vector composed of generalized coordinates

r: End-effector displacmenet

W. Matrix that relates! to the end-effector displacement
X: Vector composed of the states of the slow subsyste

2: Vector composed of the states of the fast subsyste

: Deviation ofz from h

ND

: Estimate of?

N

)

: Singular perturbation parameter
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7 : Vector composed of,,

1, : torque of thath link’s actuator

T, : Fast component of the controller

6 : Relative rotation of théh revolute joint with respect to tife 1)th revolute joint
6 : Vector composed off

A : Vector composed of,

A - Vector composed of the flexible variable useddeatibe the lateral deflection of the
ith link

A; : time varying coefficient of thgh mode of theth link
(9),: is equal tod' g/de' ‘ __, Tor arbitrary functiory(e )

/,,...,L4: Positive constants

P1, P, Mass per unit length for the shoulder and elbakdj respectively

6, : Desired final value for the,
t; : Final maneuver time for théh link
v, : theith operating point the gain scheduling procedure

M. (Q): Minimum eigenvalue of the matri®Q

6.7. Appendices

Appendix |: Sample calculation of the terms in the series expansion
given in Eq. (6-14).
From Eg. (6-5b)

A=z A=¢z (A
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SinceF,is a function ofA and A, the expression f¢F,), using the chain rule is :

(), =% -9 oA OF 01 (6-A2)
de |,y 04 |,.i0008|,0g 04,50 o
Moreover, from Eq. (6-Al):
04 0/
a0 = 2 = 6-A3
0€|,.- oe| g ( )
Using Eq. (6-A3),(F,),from Eq. (6-A2) is:
oF
F =8 6-A4
(Fok=35| 2l (6-A4)

By adopting the same technique used for the desivadf(F,),, the expression for
(Fp),is:

0°F,

oF
oF 2o

oF, . OF,
a

0z,
Zl E: N3 YN
A=4=0 | ° 04

(Fo), =
o A=1=0 oe

(2], + (6-A5)

A=4=0

£=0
Appendix I1: Derivation of matrix W for a two-flexible-link manipulator

The schematic of a two-flexible-link manipulatorpsm in Fig. 6-1, is presented
in Fig. 6-12 with more details. The angular posiian andr,, which represent the

location of the end-effector, are respectively:
=6+ 6-46)
r,=6,+¢,+a (6-A7)

where 6, is the angle between tbe, .., and y,,6,is the angle betweer, and the

tangent to the shoulder link (first link) at thé@lv joint, a is the angle between the linel

and tangent to the shoulder link at the elbow jofhis the angle between the linel and
y,, and @, is the angle between the line2 apgd. The angle#, andd, , represent rigid

body rotation of the links, whilg,, ¢, anda are due to the flexibility of the links.
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lenertial

[

Shoulder joint ' X nertial
Fig. 6-12: Detailed schematic of a two-flexible-limanipulator

Assuming small lateral deflection of the links, ¢, anda are, respectively:

¢1 = (i /11i G (Ll))/ L1 (6'A8)
#:= (X e (L)L, (6-A9)
a=F-4,= 3 A (L) -0 Aa (L)L, (6-A10)

where mis the number of the mode shapes used to reprisefiexibility, L, and L, are

the length of the shoulder and elbow links (firstl @@cond links) respectively is the
ith mode shape of thigh link, A, is the time varying weight function of; and
¢; =dg, /dx. Combing Egs. (6-A8) to (6A-10) with Eqgs. (6-A6) ai6dA7), r, andr,
are:

r 6,
Ll}:{gl}w[/yl o Ay Ay AT (6-A11)
2

whereW is:
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W, W,
W = |:W11 le} -AA2)
21 22

and

W=l Wl We=lo ol
Way == [3,(L) - (L)L Ba(L) = (L)L ]

1
W, == [@u(L) o @n(Lo)]i (6-A13)
2
Appendix I11: Derivation of Eq. (6-22)
2 2
By replacing z,andr in Eq. (6-7a) withh, =) &'h; and 7 = )_ £'r; respectively and
i=0 i=0

using the series expansions given in Eq. (6-14) X, J,,,F,and F,, the corrected

second order slow subsystem is:

X, = X,
{. 2 (6-A14)
X, =MNy+el, +&°01,
where
_ (Jam)o K
Mo =(Jas)oTo = (Ja)o(Fado = (Iam)o(F;)o = 0 6-Al15
0 = (Ja)oTo = (Ja)o(Fa)o = (Ig)o(Fy) /Jmin((JM)oKM)hl ( )
_ (Ja)o K
M, =(Je)oTi = (Jan)o(Fo)i = (I )o(Fy)1 — 1 6-A16
Uaados = Jardo(Fe)s = Hando(Fi) :Umin((JM)OK/M)hl ( )

. 1 . . . -
M2 = Qadols 5 Ban)aTo =5 Gando(Fo) = Gan)a(Fodo =5 (o )o(F)

o)oKy h, - Ja)2 Ky
Hinin ((330)0K12) ? 2 i (1) 0 K1) w0

1
E(JGA)Z(FA)O -

(6-A17)
By using h,, from Eq. (6-15a) and after algebraic manipulatibiy, from Eq. (6-
A15) is:
Mo =[(J)o = FBa)o(Ia)o (3a)ol(To = (Fy)o) (6-A18)
Employing the property of the mass matrix giverlemq (6-4d), Eq. (6-A18) changes to:
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Mo = (Mg)s (7o = (Fs)o) (6:9)
Substitutingh,, from Eq. (6-15b) into Eq. (6-A16) results in:

My =[(Jg)o = (Ian)o(I s 61(‘];1)0](7'1 = (Fp).) (6-A20)
Using Eq. (6-4d), which is a property of the massrixaEq. (6-A20) is:
rll = (M 66 61(7-1 - (Fe)l) (6'A21)

From Eq. (6-A4) in Appendix I(F,), :aFH/a)iL:j:Ozszo and since on the second order

manifold 22|£:O =h,, then(F,), =dF, /aj\m_ h,,. Howeverh,, = 0(See Eg. (6-15b)) and

=
thus:
(Fp), =0 (6-A22)
and Eq. (6-A21) is:
M, =(My).'r, (6-A23)
The procedure for the derivation Bf, is similar to those detailed above to obtain
Eqgs. (6-A19) and (6-A23) fol,andl,. This procedure is briefly explained in the
following with the details removed for the brevityulstituting h,,from Eq. (6-15e) into
Eq. (6-Al17), replacinghzlwith ﬁm (See Eq. (6-15d)), using the properties of thesmas

matrix given in Egs. (6-4b) and (6-4d) and aftensalgebraic manipulatior]) , is:
) 1 .
M, =My ol(rz_E(Fe)z_(MeA)orHo)"'d (6-A24)

whered is given in Eq. (6-21c). Finally, combing Eq. (84 with Egs. (6-A19), (6-
A23) and (6-A24), the corrected slow subsystem gindgg. (6-22) obtained.
Appendix IV: Expressionsof O,,and O,,in Eq. (35)
The expressions &, and O,, are:

O, = (J;A )o((Fe)l_(ﬁe)D +(J1)o((Fy )1_(|£)| )1) (6-A25)

0.0 = 21320 ((Fo)a = (F)) + (002 = (G20 (F)s = 70) + (B)o((F), = (F).) +

9 KM th 9 K/]/lii 9
‘]M 2 JM 2 F/l 0 - ‘J/M 2 Je/\ 2t f
() ()2 )(F) +/Jmin((JM)oKM)) ) lumin((‘]/M)OKM) * e

(6-A26)
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where(F,),,(F,),,(F,),,(F,),,(J;),and(J,,), are evaluated whenz=h, while

(Ifg)l,(lfA)l,(Ifﬂ)z,(lfg)z,(j;)zand(jM)2 are evaluated whez =2z+h. By using the
chain rule to calculate terms in Egs. (6-A25) and\P®) which contain differentiation,

(See Appendix I)N,, and N, are respectively:

oF oF .
0, =—((3;)e—=2 +(J,,)g—2 )2 (6-A27)
1 6170 a/] o AN70 a/] o 2
1 0°F . oF U N D B 0J
Ozz = __(J;A)o[—-g (22)2 + 2_9 22] - Z 21((F9)0 - To) - 4
2 |, 0N [,-icq A |, A |,
A K 33, (ho+2)K,2 33| .
21[(F ) + AA h:l ] — AA 10 + (21 + I"ll )T —_
YO i (()oKa) T 0| i ((3)0K ) 04 | o
1 0°F . oF .
(Il @)+ Z]
2 /o 6/]2 i mio

(6-A28)
Appendix V: The stability proof of the proposed controller
After applying torque, + £°r, + 7., where 7,,7,,andr, are given in Egs. (6-
20a), (6-20c) and (6-37) respectively, to the gower dynamic equations of MLFM,
Egs. (6-7a) and (6-7b), and neglecting the termmraére®, p>2, the errors’ dynamics

are:
& =Ae +N, (29)
& =A~Al+N, (B8
where:
e =[r-r,)" -1, n=lg 7 e=2-7  (6-A31)
0 ! A -K.LC, 0
Az{ﬁ% -&j’ &:{ BK., A—B%%] (6-A32)
o et SRR

D, =~(W(3})oKe, + (J)oKe)(e, - 2) +[52pr—<‘”“’“)° ooy erw}ﬂ

Hinin (311K 1)
g(DrS +Ozl) +£2(Dr4 +022)
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(6-A34)
Drs = ~(Ja0)o(Fo)s = (34 )o(Fy)s (6-A35)

_1 “ _ : 1 /3 tho
D =5 (ao): = U)o ) (70 = (Fodo) *+ 5 () = Uan)) (Fido +- — 7= ) +

1 _(E l _(C _E ) 5 _} (‘jH/l)ZKM 5
E(Jae)o((Fe)z (F9)2)+2(JHA)O((FA)2 (F1)2) Z(Jgg)chz(Z &) 20 (3,K,)
(6-A36)

MoreoverN,,andN,,in Eq. (6-A34) are given in Eq. (6-35) in Section, 3
(Jg)2:(J3a),,(F,), and (F,), in Eq. (6-A36) are evaluated when=h and (I%)l,
(Ifg)l,(jgg)z,(ng)z,(Ifﬂ)2 and (Ifg)2 in Egs. (6-A35) and (6-A36) are evaluated
whenz =2 +h. Itis to be noted th&E,),,(Fs)1,(Js)2»(35)5 (F1)50 (Fo)as (405

(J4),.(F,)), and(F,), in Egs. (6-A35) and (6-A36) can be re-writtenénnts of Zand

h by using the chain rule, similar to Appendix IVihah is not repeated here.
For the stability analysis of the error dynamit¢e tyapunov candidate function
is selected as:

— Al T
Ve =6 Pe +en Pn (6-A37)

Lyp

where P, and P, are symmetric positive definite matrices obtainfrgm the following
Lyapunov equations, in whicB, andS, are also symmetric positive definite matrices:
AR +PA =S, 469)
AR +RA =S 489)
The existence of positive definite matricBsand P, satisfying Egs. (6-A38) and (6-A39)
is due to the fact thath and A, given in Eq. (6-A32) are Hurwitz, which is the

consequence of having, andK, positive definite andA, -K_ C, and A -B,K,

Hurwitz.

Calculating the time derivative of , along the trajectories of Egs. (6-A29) and

yp
(6-A30) and using Egs. (6-A38) and (6-A39) resiits
V,, =-€'Se -n"Sn+2NPe +2N]Pn+enPn (6-A40)

Lyp —
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On a bounded region around the originepndy , it is possible to assume [11,13,14]:

IN7R

<(ly+et, +e2)n)| (6-A41)
DHANCRZER (6-A42)

AN (6-A43)

where the symbol || is the Euclidean norm of the arbitrary magix and

a0, 0, 0s, 0 and (g are positive constants. By employing Egs. (6-A41)(@-A43),

V,,,in EQ. (6-A40) is:
: e
vor<lel a7 (o
where
_ 2
— :umin(sr) (€3+£€4+£ 65) (6-A45)
_(63 +‘9£4 +‘92£5) lumin(Sly) _£(2£6 +£8) _252K7

and the symbolu ;, (S) represents the minimum eigenvalues of a m&triAs £ - 0
and provided that, ;. (S,) 4, (S) > /2, the matrixQ defined in Eq. (6-A45) is positive

definite. Thus there exists,,, so that for all0<e <¢,_ ., matrixQ is positive definite

and consequently, the error dynamics in Eqgs. (6}A#2fl (6-A30) is Lyapunov stable.

Thee_ .., after imposing the positive definite property @h and considering only terms

max?

of orderesis:

— tumin(Sr)tumin(Sq) —Kg
T @+ ) in(S) + 2040,

The fact that, 1C*, makes the control signals continuous and boun@guerwise, the

(6-A46)

tracking error will be large and unsatisfactory.
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Chapter 7. Closing
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In this section the summary and conclusion of thesis are presented. The
contributions of the candidate’s work are highlgghtand the potential future extensions

of the candidate’s research are discussed.

7.1. Summary and Conclusion

The dynamic modeling and model-based end-effeatajedtory tracking of
flexible link manipulators have been addressedhig thesis.

In Chapter 2 the dynamic modeling of flexible limlanipulators was discussed
and simulation studies preformed on a two-link it manipulator and compared with
those of the full nonlinear finite element analysddso details of the matrices in the
dynamic modeling of flexible link manipulator wepeovided. The introduced method in
Chapter 2 reduced the computational complexityhefdynamic model derivation which
was its advantages. This dynamic model was usdtidrrest of the chapters for the
design of model-based end-effector trajectory fragkontrollers.

In Chapter 3, a new end-effector inversion mettardtie linear model of a single
flexible link manipulator was introduced and expentally tested. This new end-
effector inversion method redefined the desired-efifiector trajectory so that the end-
effector inversion was possible. For the purposeutput redefinition the summation of
stable exponential function was used which lead tamily of possible solutions for the
redefined trajectory. Therefor, the member of #mify of the redefined trajectory, best
member, which had the smallest difference withdésired trajectory, can be selected.

In Chapter 4 a new end-effector trajectory trackingtroller for a single flexible
link manipulator was introduced and experimentaiyified. This new controller was
based on the concept of the integral manifold @ s$ingularly perturbed differential
equations. Based on this concept, the link’s latde#lection and its time derivative was
approximately represented in terms of the link’&tion, its time derivative and input
torque. Consequently, the underactuated singlebfieexink manipulator approximately
appreaed to be a fully actuated system and itseffiedtor trajectory tracking was
accomplished.

In Chapter 5, the new end-effector trajectory tinagkcontrol, which was

introduced in Chapter 4 for a single flexible linkanipulator, has been extended to a
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class of flexible link manipulators composed ohaia of rigid link with the flexible end-

link (CRFE) and experimentally verified. The extemsof the controller, introduced in
Chapter 4 for a linear system, to end-effectoettry tracking of CRFE, with nonlinear
dynamic model, increased its possibility of impletaion to the multilink flexible

manipulator.

In Chapter 6, the new end-effector trajectory tnagkcontroller (introduced in
Chapter 4 for a single flexible link manipulatordaextended in Chapter 5 to a class of
flexible link manipulators) was successfully exteddto the multilink flexible
manipulator and the simulation results for a twdkliflexible manipulator has been
presented. Simulation studies were performed féferdint maneuver speeds. It was
observed that for the same controller gains thefdee maneuver, the greater will be the
tracking error. This was also seen in the simutasitudies and experimental verfications

carried out in Chapters 4 and 5.

7.2. Contributions of the research:

The contributions of the candidate’s research cdiverobjectives set out for his

thesis. These objectives were:
1- Developing the dynamic model of FLM.
2- Developing controllers for the EETT of FLM and its feasibility study through the
experimental verifications.
For this objective the following sub-objectives welefined and achieved:

2-1- Approximate end-effector inversion of a SFLM arperimental verification

2-2- EETT of a SFLM and experimental verification

2-3- EETT of a class of FLM which is composed @hain of rigid links with the

flexible end-link and experimental verification

2-4- EETT of the multilink flexible manipulator

Contribution 1 (objective 1) - A new method of obtaining a dynamic model okitide

link manipulators has been developed which combinesassumed mode shape method
with the Lagrange equations. The novelty of thisthad is in deriving the dynamic

model without calculating the lengthy Lagrangianndiion of the flexible link
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manipulator and without evaluating its correspogditerivatives. Thus, the calculation
effort of the new method is minimized. To verifyighnew method the result of the
dynamic simulation for a two-link manipulator wiboth links flexible were compared
with those obtained using full nonlinear finite mlent analysis from ANSYS. These
comparisons showed sound agreement. This contributas discussed in Chapter 2.
Contribution 2 (objective 2-1) - A new dynamic end-effector inversion techniquedo

single flexible link manipulator with a linear dym& model has been developed. The
novelty of this technique is in redefining the dediend-effector trajectory so that the
dynamic end-effector inversion is achievable. Fbe tredefinition of the desired
trajectory the summation of the stable exponeiftiattions was used. The experimental
verification of the technique was performed onragyl& flexible link manipulator which is
available in the robotic laboratory at the Universaof Saskatchewan. This contribution
was detailed in Chapter 3 of this thesis.

Contribution 3 (objectives 2-2, 2-3, 2-4) — A new end-effector trajectory tracking

controller for flexible link manipulators has beeeveloped. This new end-effector
trajectory tracking controller has been derivedeblasn the concept of the integral
manifold of the singularly perturbed differentiguations. For this purpose, the singular
perturbed form of the dynamic models of flexibleklimanipulators was used. The
novelties of this controller compared to availatdbatrollers are:
- It is computationally efficient, since (1) - inly requires one corrective torque
in addition to the computed torque command of tgel dink counterpart of the
flexible link manipulator (2)- several propertietthe matrices in the dynamic
model of the flexible link manipulator were uselde tderivation of the control
command is simplified.
- It is feasible and practical, since (1) - it Hesen experimentally verified on a
linear model of a single flexible link manipulatand a nonlinear model of a two-
link manipulator with the first link rigid and sewd link flexible (2)- its
implementation does not require measuring the wi@evative of links’ lateral
deflections, which are not easily available.
This contribution resulted in three submitted jalrpapers which are Chapters 4, 5 and
6.
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Contribution 4 - A new method for deriving the zeros of the trangtinction of a single

flexible link manipulator considering the end-etf@cdisplacement as the output without
evaluating the transfer function has been introdung the candidate. The possibility of
removing the nonminimum phase characteristic ohgles flexible link manipulator by
the partial collocation of the sensor and actuatas studied by the candidate. For this
purpose, a small actuator was placed on the emdteff of a single flexible link
manipulator. This actuator applied a torque atehd-effector which was synchronized
with the base actuator. The variation of the larawf right-hand-side zeros due to the
existence of the end-effector actuator was studiddwas observed that the partial
collocation of the sensor and actuator for a sirftg®ible link manipulator can not
completely remove the right-hand-side zeros td¢hehand-side of the S-plane. That is,
the partial collocation of the sensor and actuagor not change the nonminimum phase
transfer function of a single flexible link maniptor into a minimum phase one. The
publications from this contribution were the follawgiconference papers
- Vakil M., Fotouhi R., Nikiforuk P. N., “Zeros of the tramsffunction of a rigid-
flexible manipulator”, 21* Canadian Congress on Applied Mechanics, Toronto,
Canada (CD-Rom)lune &- 7", 2007.
- Vakil M., Fotouhi R., Nikiforuk P. N., “On the zeros of ttransfer function of a
single flexible link manipulator”,17th IASTED International Conference on
Modeling and Simulation, Montreal, Quebec, Canagip, 20-25 May 24" - 26"
2006.

7.3. Potential Futureresearch

The extension of the research presented here edroim the theoretical and

the experimental points of views. The possiblereitesearch directions are as follows:

1- The end-effector trajectory tracking derived dshon the concept of the integral
manifold of the singularly perturbed differentiguations, discussed in Chapters 4, 5 and
6 is a model based controller. To account for tiseucbances in the physical parameters
of the system and improve the performance, therctbet proposed here should be
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adaptive. The possibility of combining adaptive ttohstrategies with the new controller

introduced here and its experimental verificatian be an interesting research subject.

2- For the precise end-effector trajectory trackihg joints’ flexibilities should also be
considered in the dynamic model. In the controlscribed in Chapters 3, 4, 5 and 6
the flexibility of joints were not considered inetllynamic model. The extension of the
controller for the end-effector trajectory trackinfythe flexible link manipulators with
joints’ flexibilities with experimental verificatio is another potential extension of the

research presented here.

3- The dynamic end-effector inversion method, dised in Chapter 3, used the
summation of the exponential function for the r@a&bn of the desired end-effector. As
a possible extension, the combination of the sunomaif stable exponential functions
with the sinusoidal or polynomial functions canused for the redefinition of the desired
end-effector trajectory. Therefore, a wider fanmofyanswers for the redefined trajectory

will be available which an advantage is for conagngineers.
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