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ABSTRACT 

 

Ethanol can be used as a complete fuel or as an octane enhancer, and has the advantages 

of being renewable and environmentally friendly.  Ethanol produced by a fermentation process, 

generally referred to as bioethanol, is considered to be a partial solution to the worldwide 

energy crisis.  Traditionally, industrial bioethanol fermentation involves two major steps: starch 

hydrolysis and fermentation.  Since the key microorganism, Saccharomyces cerevisiae, lacks 

amylolytic activity and is unable to directly utilize starch for proliferation and fermentation, it 

requires intensive amount of energy and pure starch hydrolyzing enzymes to gelatinize, liquefy 

and dextrinize the raw starch before fermentation.   

It has been suggested that genetically engineered yeast which expresses amylolytic 

enzymes could potentially perform simultaneous starch hydrolysis and fermentation.  This 

improvement could greatly reduce the capital and energy costs in current bioethanol producing 

plants and make bioethanol production more economical.  In this project, a novel yeast strain of 

Saccharomyces cerevisiae was genetically engineered in such a way that barley α-amylase was 

constitutively expressed and immobilized on the yeast cell surface.  This particular α-amylase 

was selected based on its superior kinetic properties and its pH optimum which is compatible 

with the pH of yeast culture media.  The cDNA encoding barley α-amylase, with a secretion 

signal sequence, was fused to the cDNA encoding the C-terminal half of a cell wall anchoring 

protein, α-agglutinin.  The fusion gene was cloned downstream of a constitutive promoter 

ADH1 in a yeast episomal plasmid pAMY.  The pAMY harbouring yeast showed detectable 

amylolytic activity in a starch plate assay.  In addition, α-amylase activity was detected only in 

the cell pellet fraction and not in the culture supernatant.  In batch fermentation studies using 

soluble wheat starch as sole carbon source, even though pAMY harbouring yeast was able to 

hydrolyse soluble starch under fermentation conditions, no ethanol was produced.  This was 

probably due to insufficient α-amylase activity which resulted from the enzyme being anchored 

on the cell wall by α-agglutinin.  Further research using alternative cell surface anchoring 

system might be able to produce yeast with industrial applications. 
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1.0 INTRODUCTION 

 

The baker’s yeast, S. cerevisiae, is generally considered an efficient expression system 

for heterologous genes.  Yeast has a eukaryotic cellular organization similar to those of plants 

and animals, making it a desirable host for the production of proteins that require 

posttranslational modifications for full biological activities.  Functional amylolytic enzymes 

from various sources have been expressed and secreted at high levels in yeast (Rothstein et al., 

1984; Filho et al., 1986; Toshihiko et al., 1986; Wong et al., 2002).   

It has been suggested that using genetically engineered yeast expressing amylolytic 

enzymes could greatly advance bioethanol production at the industrial scale (de Moraes et al., 

1995; Murai et al., 1997; Lipke et al., 1998; Murai et al. 1999; Kondo et al., 2002; Matsumoto 

et al., 2002).  However, genetic modification may cause changes in yeast metabolic pathways, 

and could affect yeast proliferation and ethanol production during fermentation.  In addition, 

the use of yeast cell wall anchoring proteins, such as α-agglutinin, to immobilize active 

enzymes on cell surface has been intensively studied (Lipke et al., 1989, 1992; Cappellaro et al., 

1994; Chen et al., 1995; Vaart et al., 1995; Schreuder et al., 1996; Vaart et al., 1997 Zou et al., 

1995; Shen et al., 2001).  This approach has been shown to have several advantages compared 

with secreted enzyme systems where amylolytic enzymes are expressed and secreted into the 

culture medium.  However, cell surface anchoring may result in altering the protein native 

structure thereby leading to changes in enzymatic activity.  Although many studies have been 

done on anchoring different starch hydrolysing enzymes on the yeast cell surface, the issues 

described above have not been fully addressed.  Currently, most of the different methods for 

converting starch into ethanol by recombinant yeast are very complicated and not particularly 

efficient.  The development of cold starch hydrolysis eliminated the cooking step in traditional 

starch hydrolysis process by liquefing and saccharifing raw starch directly with amylolytic 

enzymes at temperatures below the gelatinisation temperature of starch (Hill et al., 1997; 

Textor et al., 1998).  Barley α-amylase was found to be superior to bacterial and fungal α-

amylase for cold hydrolysis of wheat starch (Hill et al., 1997; Textor et al., 1998).  This finding 
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suggested that a novel yeast strain could be designed to optimize the amylolytic activity and 

ethanol production of recombinant yeast in the fermentative process.   

My objective was to develop a novel yeast strain which expressed and anchored barley 

α-amylase on the cell surface, and to test its ability to perform starch hydrolysis.  Moreover, my 

goal was to examine the effects of over-expression of barley α-amylase on the recombinant 

yeast’s ability to proliferate and produce ethanol under fermentation conditions. 

 The following literature review focuses on previous efforts that have been undertaken to 

generate yeast stains that express amylolytic enzyme, especially those that have employed a cell 

wall anchoring system.   
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2.0 LITERATURE REVIEW 

 

 

2.1 Bioethanol 

The energy crisis has become a major issue due to the depletion of fossil fuels. The 

demand for an economical renewable energy resource is urgent.  In comparison to many other 

fuel resources, ethanol has advantages of being renewable and environmentally friendly: it is 

biodegradable and burns cleanly with less generation of greenhouse gases than fossil fuels.   

Ethanol can contribute to the solution related to the diminishing supplies of fossil fuels and 

environmentally related problems that we are currently facing.    

Bioethanol is referred to ethanol produced from the fermentation process performed by 

microorganisms.  The brewing industry has been using this technique for decades to produce 

wines and beers.  The baker’s yeast, S. cerevisiae is the primary microorganism used for 

industrial bioethanol production.  When incubated under anaerobic conditions, S. cerevisiae 

converts each glucose residue into two ethanol molecules and two carbon dioxide molecules 

with the net generation of two ATPs.  The process is generally referred to as fermentation 

(Figure 2.1).  Although sugar cane is reported to be the most widely used raw material for 

bioethanol production (Lang et al., 2001), in North America, starch is currently the most 

economical raw material (Ingledew, 1993; Lang et al., 2001; Bothast et al., 2005).   

Starch is a product of our agriculture industry.  In the USA, corn is the major source of 

starch; in Western Canada, starch is mainly supplied by wheat with 50% of it being produced in 

Saskatchewan (Lang et al., 2001; Bothast et al., 2005).  Studies have suggested that the 

bioethanol industry could potentially benefit farmers and rural areas, and have positive effects 

on agricultural economics (Lang et al., 2001; Bothast et al., 2005; Editorials Nature 

Biotechnology, 2006).  In addition, production of bioethanol from starch could reduce the 

consumption of fossil fuels and also reduce the net emission of CO2 (Bourne, 2007).  

 However, there have been many concerns regarding the use of starch as the substrate for 

bioethanol production.  The use of corn and wheat for bioethanol production has been causing a 

dramatic rise in food cost over the past 10 years (Bourne, 2007; Robert, 2007).  Brazil has been 

successful  at  using  sugar  cane as a  substrate  for  bioethanol production and this industry has 
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Figure 2.1  Aerobic and Anaerobic Catabolic Pathways for Glucose Utilization in Yeast.  Yeast 
is able to utilize glucose aerobically (respiration) and anaerobically (fermentation).  Glucose is 
converted into pyruvate via the glycolytic pathway, and then pyruvate is converted into carbon 
dioxide and energy (with oxygen) or is converted into ethanol, carbon dioxide and less energy 
(without oxygen). 
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been  greatly  reducing  the  country’s  reliability  on  fossil  fuels  (Bothast et al., 2005; Bourne, 

2007; Robert, 2007).  However, the climate of North America is not suitable for wide 

cultivation of sugar cane.  In addition, studies have estimated that even if all of the crops 

available in North American were used for bioethanol production, the supplied amount of 

starchy materials would be far from sufficient if bioethanol is going to replace fossil fuel as the 

main energy source (Bourne, 2007; Robert, 2007; Wald, 2007).  Further complications arise 

when determining if ethanol from starch is an environmentally friendly process.  Some reports 

suggest that the use of large quantities of nitrogen fertilizer, pesticides and herbicides that is 

associated with excessive cultivation of corn and sugar cane can cause enormous contamination 

to surrounding environments and rivers (Editorial Nature Biotechnology, 2006).  Furthermore, a 

study done by a research group at the University of California, Berkeley, reported that current 

bioethanol production based on corn fermentation could only reduce greenhouse gas emission 

by 18% compared to gasoline (Farrell et al., 2006).  They also suggested that in order for 

ethanol production to contribute to energy and environmental goals in the future, starch will 

have to be replaced by cellulose as the substrate for fermentation processes. 

Cellulose is a much cheaper carbon resource and available in abundance.  However, it 

has a more complex structure than starch.  Cellulosic materials that could be potentially used 

for bioethanol production can be obtained from agricultural residues such as leaves, stalks and 

husks of corn plants, forest wastes such as wood chips and tree barks, paper pulp and grasses 

(Farrell et al., 2006; Bourne, 2007; Robert, 2007; Wald, 2007).  Studies have been suggesting 

that bioethanol produced from cellulosic materials could reduce greenhouse gas emission by 

88%-90% compared to gasoline (Farrell et al., 2006; Bourne, 2007).  Even though still in its 

early stage, much effort has gone into the investigation to commercialize cellulosic 

fermentation (Ho et al., 1999; Aristidou et al., 2000; Lynd et al., 2005; Himmel et al., 2007).   

However, these issues do not reduce the importance of starch fermentation research.  An 

editorial article “Bioethanol needs biotech now” in Nature Biotechnology (2006) stated that 

even though in the long-term bioethanol production from cellulose is the best way to contribute 

to our energy and environment goals, currently starch fermentation is the most economical way 

for bioethanol production, and biotechnology should play an important role in advancing starch 

fermentation into a more economical and environmentally friendly industry.  Furthermore, 
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research discoveries on starch fermentation could also potentially benefit cellulose fermentation 

in the future. 

 

 

2.2 Current Industrial Starch Fermentation Process 

Starch exists as insoluble polymers of glucose residues linked to each other by α-1,4 

and α-1,6 covalent bonds.  Glucose residues linked by α-1,4 bonds form a linear chain.   Single 

residues on the linear chains can also attach to other glucose molecules by a α-1,6 bond to form 

branched chains.  Starch molecules ((C6H10O5)n) arranged solely by α-1,4 glucose linkages are 

linear, and are known as “amylose”.  When α-1,6 linkages are introduced into the amylose 

chain, the chain with branches is known as “amylopectin” (Figure 2.2).  In normal corn starch, 

27% is amylose and 73% is amylopectin (Bothast et al., 2005).  

Although starchy materials are available in abundance as carbon sources for cultivation, 

S. cerevisiae, the key organism used for alcohol fermentation, lacks amylolytic activity and is 

unable to directly utilize starch as a carbon source.  Today, the process whereby most 

bioethanol is produced by fermentation can be generally categorized into two major steps.  The 

first is starch hydrolysis.  The raw starchy materials such as corn kernels are first crushed in a 

harmmermill and then slurried with water to form a mash.  Next, with the addition of a 

thermostable α-amylase, the starch in the mash is gelatinized and broken down into dextrins by 

cooking the mash at high temperatures.  This step is generally referred to as liquefaction.  

Following liquefaction, the dextrinized starch is cooled and further hydrolyzed into glucose 

residues by another starch hydrolysing enzyme glucoamylase.  In the second step, after 

completion of starch hydrolysis, the mash that is composed mostly of glucose is mixed with 

yeast, which ferments the sugars into ethanol and carbon dioxide under anaerobic conditions.  

This step is generally referred to as fermentation.  α-Amylase (EC 3.2.1.1, 1,4-α-D-glucan-4-

glucanohydrolase) performs random endoamylolytic cleavage of 1,4-α-glycosidic linkages in 

starch to release oligosaccharides.  Glucoamylase (EC 3.2.1.3, 1,4-α-D-glucanglucohydrolase) 

cleaves starch or oligosaccharides exoamylolytically, resulting in the removal of a single 

glucose residue one at a time from the reducing end of the polymer.  Normally, α-amylase is 

first added to break down the long chains of the starch molecule into small pieces to generate 

more   reducing  ends   for   glucoamylase  to  attack.      Glucoamylase  will  then  digest   these  
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Figure 2.2  Structure of Amylose and Amylopectin.  In amylose, the glucose residues are linked 
together by α-1,4 linkage (A).  In amylopectin, parallel amylose chains are linked together by 
two glucose residues at the branch points by α-1,6 linkage (B).  The diagram is taken from 
“Starch in general” by Archer Daniels Midland Company. 
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oligosaccharides into glucose.  Both enzymes working together greatly increase the rate and 

efficiency of starch hydrolysis (Figure 2.3). 

Although this process is commonly used today, and has been well studied to reduce the 

costs and give the maximum yield of ethanol, several disadvantages are limiting ethanol as a 

competitive fuel for the future.  A large amount of energy is required during the pre-cooking 

process for gelatinizing the starch granules, consisting of 30–40% of all energy spent for 

ethanol production (Long et al., 2003).  Additionally, a large amount of enzyme primarily α-

amylase, is used in starch hydrolysis, and it was estimated that this costs contributes about 11% 

to the total annual operating expense for a cold starch hydrolysis plant (Lang et al., 2001).  Also, 

special equipments are needed for the pre-cooking process, such as heat exchangers, steam jet 

cookers and holding tanks.   Collectively, these factors greatly increase the eventual production 

costs of ethanol fermentation, and limit the economic potential of bioethanol as a fuel. 

 

 

2.3  Application of DNA Recombinant Techniques to Make Bioethanol Production 

More Economically Competitive 

Much effort has already been completed to reduce the capital cost of ethanol production.   

The development of cold starch hydrolysis has greatly reduced the thermal energy investment 

in the pre-cooking step (Textor et al., 1998; Lang et al., 2001).  During the last 30 years, with 

the rapid development of DNA recombinant biotechnology, researchers have realized that 

construction of a genetically modified yeast strain with amylolytic activity, that can directly 

utilize starch for proliferation and fermentation, could greatly reduce the operation, equipment 

and enzyme costs on fuel bioethanol production. 

 

2.3.1 Recombinant Yeast Strains that Secrete Starch Hydrolysing Enzymes 

As stated in section 2.2, wild type S. cerevisiae strains are unable to directly utilize 

starch materials because they lack starch-hydrolysing activity.  Two key starch-hydrolysing 

enzymes, glucoamylase and α-amylase, are generally used in bioethanol production to fully 

break down the starch polymers into single glucose residues.  By using DNA recombinant 

technology, a gene coding for specific starch hydrolysing enzymes can be inserted into a 

designed DNA expression vector, called a plasmid.   
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Figure 2.3  Schematic Representation of the Action of Amylases on Starch.  Raw starch is 
slurried with water and then cooked at high temperature to its gelatinized state (more soluble), 
and with addition of thermal stable α-amylase, the mash is further liquefied into dextrins 
(referred to as liquefaction).  Next, the mash is cooled and glucoamylase is added to convert the 
dextrins into fermentable sugars (referred to as saccharification). Then yeast is added to the 
mash to ferment the sugars to ethanol and carbon dioxide (fermentation). 
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After yeast are transformed with the plasmid, it is recognized by the cell’s gene 

expression machinery, and the gene coding for the starch-hydrolysing enzyme is expressed.  If 

the gene is attached to a secretion signal, the expressed enzyme can be exported out of the cell.  

Such genetically modified yeast, called recombinant yeast, should be able to utilize starch for 

proliferation and fermentation simultaneously. 

Yeast is considered to be a good expression system for heterologous proteins (Schreuder 

et al., 1996).  Many studies have demonstrated expression and secretion of functional starch 

hydrolysing enzymes from various sources by genetically modified yeast strains.  Many strains 

were shown to be able to utilize soluble or raw starch as the sole carbon source for proliferation.  

Rothstein et al. (1984) genetically engineered a yeast strain secreting functional wheat α-

amylase.  The expression level was relatively low, and the secreted α-amylase showed reduced 

activity compared to that purified from wheat seeds.  The ability of the recombinant yeast to 

grow on starch was not studied at that time.  Toshihiko et al. (1986) genetically engineered S. 

cerevisiae XS-30-2B to express Rhizopus oryzae glucoamylase.  This particular strain was able 

to grow on starch as the sole carbon source.  However, they reported that the expression level of 

glucoamylase was not sufficient to be commercialized for starch fermentation, since high-level 

expression of amylolytic enzymes is important for achieving efficient starch hydrolysis and 

utilization.  Following this work, by employing the GAPDH constitutive promoter, Toshihiko et 

al. (1989) were able to achieve high-level expression (above 300 mg/L) of Rhizopus oryzae 

glucoamylase in S. cerevisiae EH13-15.  In addition, other studies were able to show that 

GAPDH and ADH1 promoters are strong constitutive promoters, and both promoters were 

shown to provide high-level expression of heterologous proteins in yeast (Ruohonen et al., 

1995; Vainio, 1994; Bitter et al., 1984). 

Effective secretion of heterologous proteins was also considered to be a critical step.  

Research showed that the secretion signals of many precursor proteins from yeast, bacteria or 

mammals could be recognized by the yeast protein secretion machinery and used to direct 

efficient secretion of heterologous proteins from the yeast.  Studies done on bacterial 

amylolytic enzymes showed that functional prokaryotic α-amylase from Bacillus 

amyloliquefaciens with its own secretion signal peptide (Ruohonen et al., 1987) or with a yeast 

pheromone α-factor secretion signal peptide (Southgate et al., 1993) could be expressed and 

secreted at high levels in yeast.  Similar studies were carried out with mouse pancreatic α-
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amylase, which was expressed and secreted at high levels by attaching to a yeast pheromone α-

factor secretion signal sequence (Filho et al., 1986).  In addition, barley α-amylase has been 

expressed and secreted by a genetically modified S. cerevisiae in a highly active form (Wong et 

al., 2002).   

To further improve rate of the starch hydrolysis performed by amylolytic enzyme 

expressing recombinant yeasts, Steyn et al. (1991) were able to show that co-expression of 

glucoamylase and α-amylase was much more efficient for starch hydrolysis than if only one of 

the starch hydrolysing enzymes was expressed.  However, interestingly, if both enzymes were 

expressed as a fusion protein, their activities were both reduced (Moraes et al., 1995). 

These studies demonstrated that it is feasible to express and secrete highly active 

heterologous glucoamylase and α-amylase in yeast with high expression levels.  In addition, 

related studies were able to show that some recombinant yeast strains that secrete amylolytic 

enzymes were able to utilize soluble starch for proliferation and fermentation (Nakamura et al., 

1996, 2002; Birol et al., 1998).  However, problems in these studies include in complete 

hydrolyses of starch during the fermentation process and ethanol production was relatively low.  

Deactivation of secreted amylolytic enzymes and loss of plasmids in recombinant yeasts 

through prolonged incubation are also important issues in recombinant yeast strains that secrete 

amylolytic enzymes. 

 

2.3.2 Recombinant Yeast Strains With Cell Surface Anchored Amylolytic Enzymes 

 

2.3.2.1 Enzyme Stability  

As described above, enzyme stability can be a limiting factor for efficient starch 

hydrolysis.  Also as demonstrated by some early studies, enzyme stability can affect the cost of 

ethanol production since high enzyme stability can reduce the cost for enzymes (Kvesitadze et 

al., 1982; Kondo et al., 1994; Leng et al., 2003).  Enzymes secreted by recombinant yeast often 

become rapidly deactivated during fermentation (Kvesitadze et al., 1982; Kondo et al., 1994; 

Leng et al., 2003).  Even though the enzymes can be continuously expressed and secreted into 

the fermentation broth, the accumulation of a large amount of deactivated enzymes could cause 

difficulty in ethanol distillation where ethanol is purified and concentrated.  In addition, it is a 
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waste of fermentable sugars, which have to be continuously used for enzyme production rather 

than for the production of ethanol.  

Studies have been carried out to physically attach enzymes to a solid surface to improve 

their thermal and operational stability.  It was reported that the thermostability of barley α-

amylase could be greatly enhanced by covalent immobilization on silica particles (Long et al., 

2003).  However, the operational stability of immobilized barley α-amylase did not change 

compared to soluble barley α-amylase under the same reaction conditions.  This suggests that 

during starch hydrolysis, the immobilized enzymes tend to deactivate at the same rate as the 

soluble enzymes.  In addition, product inhibition was not improved for immobilized barley α-

amylase, suggesting that maltose and glucose still inhibited the immobilized enzymes in a 

similar manner as the soluble enzyme.  

 

2.3.2.2 A Cell Wall Anchoring Protein α-Agglutinin and GPI Anchor 

With accumulating studies on yeast cell wall structure and cell wall involved proteins, it 

was suggested that heterologous proteins could be immobilized on the yeast cell wall by being 

expressed as fusion proteins with one of the yeast’s surface targeting proteins (Schreuder et al., 

1996).  Many different cell wall proteins have been identified, such as cell wall protein 1 

(Cwp1), cell wall protein 2 (Cwp2), flocculation protein 1 (Flo1) and α-agglutinin (αGA1) 

(Vaart et al., 1995; Schreuder et al., 1996; Vaart et al., 1997).  Among those cell wall target 

proteins, α-agglutinin is the one that has been studied the most (Lipke et al., 1989, 1992; 

Cappellaro et al., 1994; Chen et al., 1995; Zou et al., 1995; Shen et al., 2001; Zhao et al., 2001; 

Huang et al., 2003).  

The cell wall anchoring mechanism of α-agglutinin involves many sub-cellular 

compartments in the yeast secretory pathway and many components in the cell wall.  The cell 

wall of S. cerevisiae is mainly composed of glucan and mannoproteins. Glucan, which is 

composed of β-1,3 and β-1,6 linked glucose, is complexed with chitin to provide mechanical 

strength to the cell wall.  β-1,3 glucan forms a fibrous network, but β-1,6 glucan is highly 

branched.  The outer layer of the cell wall is coated with mannoproteins, which are highly 

glycosylated.  Lipke et al. (1998) suggested that mannoproteins are covalently linked to glucan, 
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because they are resistant to extraction in hot SDS but can be cleaved from the wall by β-1,3- 

and β-1,6-glucanase (Figure 2.4). 

α-Agglutinin was originally identified as a mannoprotein involved in the sexual 

adhesion of S. cerevisiae mating type α cells with S. cerevisiae mating type a cells (Lipke et al., 

1989, 1992).  α-Agglutinin consists of 650 amino acid residues, including a N-terminal 

secretion signal (1-19 residues), N-terminal binding domain (20-350 residues, consisting of 

three different domains that involve in interaction with a S. cerevisiae cells), a C-terminal 

Ser/Thr rich domain (351-627 residues) and a C-terminal GPI addition signal that is involved in 

cell wall anchorage (628-650 residues) (Chen et al., 1995).  Evidence showed that α-agglutinin 

is covalently linked to the cell wall glucan (Lipke et al., 1989, 1992; Cappellaro et al., 1994).  

In addition, studies showed that the C-terminal Ser/Thr rich domain is extensively O-

glycosylated, which suggests that this domain might have a rod-like conformation that acts as a 

spacer to extend the N-terminal binding domains to the cell surface (Lipke et al., 1989, 1992; 

Cappellaro et al., 1994; Chen et al., 1995; Zou et al., 1995; Shen et al., 2001) (Figure 2.5). 

Schreuder et al. (1993) and Lu et al. (1995) showed that the 320 amino acids at the C-

terminal half of α-agglutinin are responsible for the cell wall anchoring ability.   A well-

accepted explanation of the anchoring process of α-agglutinin is that the GPI anchor attachment 

signal is recognized in the yeast ER.  Then, the hydrophobic attachment signal is replaced by a 

GPI anchor by a trans-peptide reaction in the ER.  Following the attachment of the GPI anchor, 

α-agglutinin is transferred to the outer leaflet of the plasma membrane. The GPI anchor is then 

cleaved at its C-terminal glycan position and the remnant forms a glycosidic linkage with the 

branched β-1,6 glucan in the cell wall (Lipke et al., 1989; Lipke et al., 1992; Huang et al., 2003; 

Chen et al., 1995) (Figure 2.6). 

 

2.3.2.3 Recombinant Yeast with Cell Surface Anchored Starch Hydrolysing Enzymes 

As described above, by fusing starch-hydrolysing enzymes with α-agglutinin, the 

starch-hydrolysing enzyme can be stabilized on the yeast cell surface.  The recombinant yeast 

strains with cell surface anchored starch hydrolysing enzymes have the advantage that the 

surface expressed enzymes are covalently linked to glucan in the cell wall, rendering them 

resistant to extraction.  In 1997, Toshiyuki et al. (1997) anchored Rhizopus oryzae 

glucoamylase  on   the  cell  surface  of   S.  cerevisiae  MT8-1 by  fusing  the  Rhizopus  oryzae 
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Figure 2.4  Structure of the Cell Wall of S. cerevisiae.  The cell wall is located outside of the 
plasma membrane, and it is mainly composed of glucan and mannoproteins.  The location of 
each component is shown above.  The diagram is taken from Schreuder et al. (1996). 
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Figure 2.5  Structure of α-Agglutinin.  The features of the α-agglutinin amino acid sequence 
are shown as indicated above (left panel).  The structure of the cell wall anchored α-agglutinin 
is shown above (right panel) with the three binding domains at N-terminal and the spacer 
domain (stalk) spans the cell wall structure.  The spacer domain is highly N-glycosylated and 
O-glycosylated as indicated.  The diagram is taken from Chen et al. (1995). 
 

 

 15



 

 

 

 

 

Figure 2.6  Schematic Representation of α-Agglutinin Localization by the GPI Anchor.  In ER, 
the C-terminal hydrophobic sequence is cleaved, and a GPI anchor is attached (as the arrows 
indicate).  Then the GPI attached α-agglutinin is transferred through Golgi and targeted to the 
cell membrane.  After reaching the cell surface, α-agglutinin is cleaved from GPI anchor and 
transferred to β-1,6 glucan of the cell wall.  Even though GPI anchor is still linked to the cell 
membrane, α-agglutinin is anchored in the cell wall structure at the final stage.  The diagram is 
taken from Lipke et al. (1992). 
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glucoamylase cDNA with the 3’ half of α-agglutinin cDNA, which is the part that has the GPI 

anchor attachment signal and is involved in anchoring proteins on the yeast cell wall.  They also 

attached the secretion signal of the glucoamylase precursor protein at the 5’ end of the fusion 

gene.  This secretion signal sequence is a short peptide sequence that is recognized as an 

exporting signal in ER, such that the fusion protein attached to it is directed to the cell 

membrane.  They hypothesized that when the fusion protein reaches the cell membrane, 

Rhizopus oryzae glucoamylase would be covalently linked to glucan in the cell wall through the 

GPI anchor, with the enzyme facing away from the cell wall structure.  When the recombinant 

yeast is incubated with starch, the surface anchored glucoamylase would theoretically be able to 

break down starch and release glucose, which could in turn be utilized by the yeast for 

proliferation and fermentation.  To test if the enzymes were covalently anchored on the cell 

wall, they first extracted the cell wall with hot SDS, which removed non-covalently bound 

proteins or proteins bound through disulfide bridges.  Then, they treated the hot SDS extracted 

cell wall with β-1,3-glucanase.  Their results showed that 93.2% of the total extractable 

glucoamylase was covalently anchored on the cell walls.  The recombinant yeast cells were 

aerobically cultivated on 1% soluble starch as the sole carbon source for over 100 hours.  They 

were able to show that the recombinant yeast could grow on starch and that cell growth was 

comparable to those grown on 1% glucose. The activity of cell wall anchored glucoamylase 

was comparable to secreted enzymes. 

 Murai et al. (1999) developed several recombinant yeast strains that displayed Rhizopus 

oryzae glucoamylase and/or α-amylase from Bacillus stearothermophilus on the surface of the 

cell wall.  The enzymes were anchored with α-agglutinin.  They found that the recombinant 

strains displaying either Rhizopus oryzae glucoamylase alone or both Rhizopus oryzae 

glucoamylase and Bacillus stearothermophilus α-amylase were able to grow on starch as the 

sole carbon source.  In contrast, the recombinant strain displaying Bacillus stearothermophilus 

α-amylase alone was unable to grow on starch.  Their results indicated a dramatic activity 

reduction for cell surface anchored Bacillus stearothermophilus α-amylase.  

 Kondo et al. (2002) genetically engineered a flocculant yeast strain S. cerevisiae YF207 

by anchoring Rhizopus oryzae glucoamylase on the cell surface.  They were able to achieve a 

high-level of ethanol production of 50 g/L on soluble starch.  The average percentage of 

theoretical yield of ethanol was 100% based on seven, 120-hour batch fermentation runs using 
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this recombinant yeast strain.  However, the starch degradation rate was relatively low 

compared to that using soluble enzyme.  In order to enhance the strain’s starch degradation rate 

and ethanol production rate, in a later study, Rhizopus oryzae glucoamylase and Bacillus 

stearothermophilus α-amylase were co-anchored on the yeast cell surface (Shigechi et al., 

2004).  This new recombinant yeast strain was able to directly utilize raw starch for 

fermentation.  Shigechi et al. (2004) reported that in a 72-hour fermentation run, ethanol 

production from raw starch was 61.8 g/L with a theoretical yield of 86.5%.  Two different 

anchoring proteins, α-agglutinin and flocculation protein 1, were utilized to attach Bacillus 

stearothermophilus α-amylase in the cell wall.  α-Amylase anchored with α-agglutinin showed 

little activity; however, when anchored with flocculation protein 1, activity was restored.  

Shigechi et al. (2004) proposed that since the C-terminal of Bacillus stearothermophilus α-

amylase is involved in starch binding, that when the C-terminal of the enzyme was fused to α-

agglutinin, the anchoring might have hindered the enzyme’s accessibility to its substrate.   In 

contrast, flocculation protein 1, which is a cell wall protein involved in flocculation activity 

between yeast cells (Miki et al., 1982; Straveret et al., 1994; Bony et al., 1997), when attached 

to the N-terminal of Bacillus stearothermophilus α-amylase, allowed the enzyme’s C-terminus 

to extend freely into the medium.  Different from α-agglutinin, the N-terminal of flocculation 

protein 1 anchors itself on the cell wall by non-covalently attaching to the mannoproteins of the 

outer layer of the cell wall (Takeshi et al., 2002).   

A similar study done by Takeshi et al. (2002) showed that Rhizopus oryzae lipase, 

which also has a C-terminal located substrate-binding site and showed no detectable activity 

when anchored in the cell wall with α-agglutinin, had its activity restored when anchored with 

Flo1.  However, since enzymes anchored by Flo1 are not covalently linked to the cell wall 

structures, the anchored proteins could be extracted with hot SDS. 

 

2.3.2.4 Domain Functions and Structure of Barley α-Amylase 

Barley α-amylase has been intensively studied over the past 20 years since its high rate 

of hydrolysis towards raw starch has huge potential for industrial applications.  Previous studies 

showed that in germinating barley seeds, there are different α-amylase isozymes, encoded by 

two multi-gene families and referred to as AMY1 and AMY2.  The two isozymes were reported 

to display 80% sequence identity, with AMY1 composed of 414 amino acids and AMY2 
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composed of 403 amino acid residues.  They are also distinguished by their pIs with AMY1 

known as the low-pI (pI = 4.9) isozyme, and AMY2 as the high-pI (pI = 5.9) isozyme (Rogers 

et al., 1983, 1984; Rogers, 1985; Khursheed et al., 1988).  Interestingly, studies showed that 

several features of the two isozymes differ greatly.  Compared to AMY2, AMY1 is more stable 

at acidic pH, but less stable at elevated temperature (Rodenburg et al., 1994).  Importantly, 

AMY1 was shown to have higher affinity and activity toward starch granules than AMY2 

(MacGregor et al., 1980, 1986; Sogaard et al., 1990). These properties have made AMY1 more 

favourable for industrial application of starch hydrolysis.   

A much more complete picture of the three-dimensional structure of AMY1 has been 

recently solved and the functions of the major domains were described (Kadziola et al., 1998; 

Gottschalk et al., 2001; Robert et al., 2003, 2005).  The three dimensional structure of barley α-

amylase is shown in Figure 2.7.  Barley α-amylase is composed of three domains, including a 

major domain consisting of 288 amino acids forming a (β/α)8-barrel (domain A), a small loop 

with 65 amino acids protruding between β3 and α3 of domain A (domain B) and a C-terminal 

domain with 61 amino acids organized into five-stranded anti-parallel β-sheets (domain C).  

Domain A was first characterized and recognized as the main location of starch binding and 

catalytic activity.  Recently, an additional starch-binding site was found in domain A.  Its 

function was proposed to be involving in enhancing starch binding of the enzyme.  Domain B is 

responsible for binding of calcium ions and maintenance of the enzyme’s three-dimensional 

structure.  Domain C has recently been recognized as the third potential starch-binding site in 

the enzyme.  Robert et al. (2003) showed that even though AMY1 and AMY2 share high 

similarity in domain C, this binding site does not exist in AMY2.  It has been suggested that the 

two extra starch binding sites located at domain A and C play important roles for orienting the 

substrates in the right position towards the enzyme’s catalytic site, and are critical to barley α-

amylase’s starch hydrolysis rate (Robert et al., 2003, 2005).  However, their specific role during 

the starch hydrolysis reaction needs to be further investigated. 

 

2.3.3 Plasmid Stability 

Plasmid stability in recombinant yeast can be an issue during prolonged fermentations 

when antibiotic selection is  used.   Plasmid  stability  is  normally  measured  as  a  ratio  of  the  
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Figure 2.7  Three Dimensional Structure of Barley α-Amylase Isozyme AMY1.  Calcium ions 
in domain B (green dots), the active site in domain A (top), the starch granule binding site in 
domain A (left) and the sugar tongs binding site (bottom) in domain C are shown as indicated 
above.  The three binding maltoheptaose molecules (mimic molecules of short starch chain) are 
shown in a gray transparent surface.  The diagram is taken from Robert et al. (2005). 
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number of plasmid bearing cells  over  that  of  the  plasmid  free  cells  at  a certain  time  point  

during the fermentation (Filho et al., 1986; Ruohonen et al., 1987; Kondo et al., 2002).  Since 

the selection pressure is lost as a result of the degradation of the antibiotic, the plasmid-free 

cells grow whenever free fermentable sugars are available in the fermentor.  The plasmid-free 

cells always overgrow the plasmid bearing cells under the conditions without enough selection 

pressures (Altintas et al., 2001; Nakamura et al., 2002).  High plasmid stability is desired, since 

a greater plasmid stability corresponds to a higher ratio of the number of plasmid bearing cells 

over the number of plasmid free cells in the fermentor at the checked time point.  Continuous 

addition of large amount of antibiotics can maintain high plasmid stability during fermentation; 

however, it is not applicable for industry ethanol production. The added antibiotics increase 

ethanol production cost and additional procedures have to be carried out to separate the 

antibiotics from the final products.  

In some cases, instead of using antibiotics, plasmid stability of the recombinant yeast 

strains can be maintained by using minimal medium.  Recombinant yeast strains selected in this 

way have to be yeast mutants with a genetic deficiency, and they are selected by transforming 

them with plasmids containing auxotrophic selection markers such as Leu- or Trp- (Murai et al., 

1997; Kondo et al., 2002).  However, most industrial ethanol producing strains are not 

genetically modified in this way, and cannot be selected by using minimal medium.  

It was reported that without selection pressures, plasmid-free cells can quickly overgrow 

plasmid-bearing cells (Alintas et al., 2001).  Plasmid stability was studied based on data from 

starch fermentation using recombinant S. cerevisiae strain YPB-G, which expresses and 

secretes Bacillus subtilis α-amylase and Aspergillus awamori glucoamylase as a fusion protein.  

The recombinant yeast were pre-cultured in minimal medium, and used to inoculate a 2.5-litre 

bioreactor containing 30 g/L soluble starch at 30°C.  A mathematical model was used to 

simulate plasmid stability in the fermentation broth and then actual experimental data was 

obtained to confirm the prediction from the model.  Based on experimental observations, during 

the first generation, plasmid-free cells and plasmid-bearing cells grew at the same rate.  

However, starting in the second generation, the growth rate of plasmid-free cells surpassed 

plasmid-bearing cells and reached twice the growth rate of plasmid-bearing cells.  Their results 

indicated that as more fermentable sugars became available, plasmid-free cells tend to outgrow 

plasmid-bearing cells, with the biomass of plasmid-free cells and plasmid-bearing cells 
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becoming 2.27g/L to 0.51 g/L, respectively.  Based on the data, the authors suggested that high 

copy number plasmid is relatively stable under selection conditions but not suitable for large-

scale fermentation in long term culturing conditions. They further suggested using an 

integrative plasmid to insert the DNA sequence into the yeast chromosome to solve the plasmid 

stability problem. 

The results from the above study of Alintas et al. (2001) were based on recombinant 

yeast that were secreting starch-hydrolysing enzymes. However, the situation might be quite 

different if the enzymes are anchored on the cell surface.  A recombinant yeast strain was 

constructed by introducing a multicopy plasmid containing a Rhyzopus oryzae glucoamylase/α-

agglutinin fusion gene into a flocculent yeast strain YF207 (Kondo et al., 2002).  The 

recombinant yeast was pre-cultured in minimal medium to ensure 100% plasmid-bearing cells.  

These pre-cultured yeast cells were used to inoculate a two litre bioreactor containing 40g/L of 

soluble starch at 30°C.  Plasmid stability was monitored, and high plasmid stability was 

maintained during the fermentation (approximately 85-90%).  The result indicates that 

approximately 90% of cells in the fermentation culture were plasmid-bearing cells.  

Interestingly, they were unable to detect glucose in the medium during the fermentation.   

Kondo et al. (2002) proposed that since the glucoamylase was anchored on the yeast cell wall, 

only those starch molecules close to the yeast cells were degraded by the enzymes, and the 

released glucose was readily taken up by these yeast cells.  This suggests that there would be no 

accumulation of large quantities of glucose in the fermentation medium over time, consistent 

with their observations of glucose concentrations in the fermentor.  If no free glucose was 

available in the medium, plasmid-free cells would not be able to proliferate. Thus, starch 

degradation ability potentially plays the role of a selection agent.  By using the recombinant 

yeast with cell surface anchored glucoamylase during starch fermentation, contamination 

caused by bacteria would be prevented, since no free glucose would accumulate in the 

fermentation medium.  

Based on the two studies with cell surface anchored starch-hydrolysing enzymes 

(Alintas et al., 2001; Kondo et al., 2002), recombinant yeast harbouring multiple-copy plasmids 

appear to work more efficiently for starch hydrolysis than yeast with integrated expression 

plasmids, as multiple-copy plasmids give 10 to 50-fold higher expression levels. 
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2.3.4 Cell Surface Anchored Yeast Expression System vs. Secreted Yeast Expression 

 System 

There are several disadvantages to using recombinant yeast strains that secrete 

amylolytic enzymes.  Direct inoculation of recombinant yeast that secrete amylolytic enzymes 

into media that contains starch as the sole carbon source is impossible, since expression and 

secretion of amylolytic enzyme by the recombinant yeast is a prerequisite for starch utilization.  

Pre-cultivation is needed since recombinant yeasts need to express enough amylolytic enzymes 

to break down starch.  In industry, yeast cells are normally recycled after each fermentation run, 

and in this case, the recycled yeast can not be directly used for the next fermentation process 

since they lack amylolytic activity.  Yeast cells can be easily separated from the fermentation 

broth by gravity or centrifugation.  Secreted amylolytic enzymes would be considered as 

contaminants during the fermentation process and would have to be separated from the ethanol 

product.  This could increase costs in the distillation step.  In addition, secreted amylolytic 

enzymes are quickly deactivated during fermentation, as they suffer the same thermal stability 

problems as added enzymes. 

As mentioned in section 2.3.3, cell surface anchored yeast expression systems are more 

efficient for starch utilization than secreted expression systems.  Cell surface anchored systems 

also have the advantage of being recycled with the cells after each batch fermentation.  This is 

because all the enzymes are covalently linked to the cell wall, thus enzymes are easily recycled 

with cells, and no additional steps have to be taken to separate the enzymes from the final 

products.  Recombinant yeast cells can be readily used for the next fermentation cycles, and no 

pre-culturing step is needed to express the amylolytic activity of the recombinant cells before 

they can perform starch hydrolysis.  

 

 

2.4 Assays Used to Detect and Quantify Amylolytic Activities 

 

2.4.1 Starch Plate Assay 

The starch plate assay is widely used to screen for recombinant yeast that have 

amylolytic activities.  The basic idea of this assay is to use iodine vapour to stain YPD/Starch 
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plates with transformed yeast colonies growing on it.  Detection of α-amylase activity on the 

cell surface is based on halo formation around the colonies after staining with iodine vapour.  

However, it has been reported that this assay is not for quantitative purposes, since the size of 

the halo formation may not be proportional to the expression level and activity of amylolytic 

enzymes expressed by the recombinant yeast (Moraes et al., 1995). 

 

2.4.2 Iodine Assay 

Amylose forms α-helical coils in three-dimensional space.  In liquid solution, iodine 

molecules and iodide ions are able to fit into and line up inside the α-helical coils of amylose.  

The starch-iodine complex is soluble in water and gives a dark-blue colour.  Other 

polysaccharides and monosaccharides cannot complex with iodine or iodide ions since they do 

not have similar α-helical structures (Figure 2.8).  This feature is commonly used for measuring 

starch concentration and assaying for amylolytic activities (Filho et al., 1986; Ruohonen et al., 

1987; Kondo et al., 2002). The presence of amylolytic activity will cleave amylose into 

polysaccharides or monosaccharides, which can no longer complex with iodine or iodide ions.  

The amylolytic activity in the solution can be measured based on the reduction of the dark-blue 

colour in the assay.   

The assay can only be performed on soluble starch and the colour reagent is commonly 

composed of iodine (I2) and potassium iodide (KI) solutions.  However, the starch-iodine 

complex is sensitive to elevated temperature and pH.  Normally, the assay is performed at room 

temperature and at a pH lower than 8.  Related studies have shown that the assay is sensitive to 

most bacteria and yeast growth media (Manonmani et al., 1999).   

 

2.4.3  3, 5-Dinitrosalicylic Acid (DNS) Assay 

This assay is based on the detection of the presence of free carbonyl groups (C=O) in a 

reaction solution.  Since reducing sugars, such as glucose, fructose, lactose and maltose, contain 

a free carbonyl group (C=O) at their reducing end, the assay is commonly used to detect and 

quantify amylolytic activity which generates reducing sugars from starch polymers.  Using 

glucose as an example, the mechanism of the assay is shown in Figure 2.9.  In liquid solution, 

glucose exists in equilibrium between its ring conformation and chain conformation.  Under the 

DNS assay conditions,  the aldehyde group from glucose is oxidized into a carboxyl group,  and  
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Figure 2.8  Structure of the Starch-Iodine Complex.  The side view of the α-helical coils 
formed by amylose in three-dimensional space (left panel).  The front view of the starch-iodine 
complex (right panel).  The iodine molecules and iodine ions (indicated as purple spheres in 
right panel) are able to fit into and line up inside the α-helical coils of amylose and the complex 
gives a dark-blue colour in solution.  The diagram is taken from Ophardt, Virtual chembook 
(2003). 
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Figure 2.9  Reaction Mechanism of DNS Assay.  In liquid solution, glucose exists in 
equilibrium between its ring conformation and chain conformation.  Under the DNS assay 
conditions, the aldehyde group from glucose is oxidized to a carboxyl group, and at the same 
time, 3, 5-dinitrosalicylic acid is reduced into 3-amino, 5-nitrosalicylic acid. 
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at the same time, 3, 5-dinitrosalicylic acid is reduced to 3-amino, 5-nitrosalicylic acid.  The 

reaction is accompanied by a colour change from yellow (3, 5-dinitrosalicylic acid containing 

solution) to brown (3-amino, 5-nitrosalicylic acid containing solution).  Normally, the assay 

solution is boiled for 5-15 min to stabilize the colour formation.  The wavelength of 540 nm 

was reported to give maximum absorbance for 3-amino, 5-nitrosalicylic acid (Miller, 1959). 

 

 

2.5 Objectives 

Currently, most of the methods for converting starch into ethanol by recombinant yeast 

are not particularly efficient.  Barley α-amylase (α-1, 4 glucan glucanohydrolase) was found to 

be superior to bacterial and fungal α-amylase for cold hydrolysis of wheat starch at 45 °C and 

pH 4.5 by Textor et al. (2001). This suggested that a novel yeast strain could be designed to 

optimize amylolytic activity and ethanol production of recombinant yeast in a fermentation 

process.  The goal of this project was therefore to engineer a novel genetically modified yeast 

strain expressing anchored barley α-amylase in the cell wall, and to study its ability to carry out 

hydrolysis and fermentation of soluble starch. 

 

The specific objectives of this thesis were: 

1. Construction of a novel plasmid capable of expressing and anchoring barley α-amylase 

on the yeast cell wall. 

2. Transformation of yeast with the constructed plasmid and selection of yeast clones.  

3. Detection and quantification of cell wall anchored α-amylase activity.  

4. Examination of the ability of the recombinant yeast to proliferate and carry out 

fermentation on soluble starch. 
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3.0 MATERIALS AND METHODS 

 

 

3.1 Reagents 

The names of the reagents and their suppliers are listed in Table 3.1.  The addresses of 

the individual suppliers are given in Table 3.4. 

 

Table 3.1: Lists of Reagents and Suppliers. 

General Reagent Supplier 

Absolute Ethanol BDH 

Agarose Bio-Rad 

Calcium Chloride BDH 

Chloroform BDH 

Dimethylsulfoxide (DMSO) BDH 

Ethidium Bromide Sigma-Aldrich 

Ethylene-Diamine Tetraacetic Acid Disodium Salt (EDTA) BDH 

Glacial Acetic Acid EMD 

D-Glucose BDH 

Glycerol BDH 

Hydrochloric Acid (HCl) BDH 

Isopropanol BDH 

Phenol Sigma-Aldrich 

Potassium Chloride BDH 
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Sodium Acetate BDH 

Sodium Chloride BDH 

Sodium Hydroxide (NaOH) BDH 

Cell Culture Reagent Supplier 

Ampicillin ICN 

Blasticidin Invitrogen 

Bacto-Agar DIFCO 

Bacto-Tryptone DIFCO 

Bacto-Yeast Extract DIFCO 

Peptone DIFCO 

 

 

 

Table 3.2: List of Commercial Kits. 

Commercial Kit Supplier 

Qiagen PCR Purification Kit Qiagen 

DNS Assay Kit Sigma-Aldrich 

 

 

 

Table 3.3: List of Oligonucleotides (Invitrogen) for PCR. 

PF=Forward Primer PR=Reverse Primer 

Primer Names Primer Sequence 

Primer I (PF) 5’–CGCCATCGATAAGAACGGCAG–3’ 

Primer II (PR)  5’–TTCAGCTCCGCTCGAGTGTTG–3’ 
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Table 3.4: Names and Addresses of Suppliers. 

Supplier Address 

BDH 501-45th Street West, Saskatoon, SK., Canada 

Bio-Rad 5671 McAdam Road, Mississauga, Ont., Canada 

DIFCO 7 Loveton Circle, Sparks, MI 48232-7058, USA 

EMD Biosciences, Inc. 10394 Pacific Center Court, San Diego, CA 92121, USA 

ICN  12 Morgan, Irvine, CA 92618-2005, USA 

Invitrogen 100 Faraday Avenue, Carlsbad, CA 92008, USA 

Sigma-Aldrich 2149 Winston Park Drive, Oakville, Ont., Canada 

Qiagen 2800 Argentia Road, Unit 7, Mississauga, Ont. Canada 

 

 

3.2 Bacteria Strain, Yeast Strains and Media Preparations 

E.coli NM522 (New England, Biolabs) was used as the host for the propagation of 

plasmids. 

Yeast strain S. cerevisiae NRRL Y-132 was used as the host to express cell wall 

anchored barley α-amylase (S. cerevisiae NRRL Y-132 is an ethanol producing yeast strain 

used in industrial bioethanol production).  pAMY harbouring S. cerevisiae NRRL Y-132 was 

used in amylolytic assays and batch fermentation studies. 

Two different media, LB and TB were used to cultivate and propagate E. coli NM522.  

LBA plates were used to cultivate and select transformed bacterial cells.  LB consists of 1% 

(w/v) tryptone, 0.5% (w/v) yeast extract and 0.5% (w/v) sodium chloride.  TB consists of 1.2% 

(w/v) bacto-tryptone, 2.4% (w/v) bacto-yeast extract, and 0.4% (v/v) glycerol.  Both solutions 

were autoclaved for 20 min at 15 lb/sq. in. before used.  TB was completed by adding 10% (v/v) 

of sterile 0.17 M KH2PO4 and 0.72 M K2HPO4 to the cooled medium after autoclaving.  The 

solutions were placed at 4°C for long-term storage.  LBA consists of 1% (w/v) tryptone, 0.5% 

(w/v) yeast extract, 0.5% (w/v) sodium chloride and 1.5% (w/v) agar.  After autoclaving, 

ampicillin was added to a final concentration of 100 μg/mL into the cooled medium.  The 

medium was then mixed and poured into petri dishes.  The LBA plates were placed at 4°C for 

long-term storage. 
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Two different media were used for yeast cultivation and fermentation.  YPD medium 

consists of 1% (w/v) yeast extract, 2% (w/v) peptone and 2% (w/v) D-glucose.  This medium 

was used primarily for yeast pre-cultivation and propagation during competent yeast 

preparation and whole cell assays. For batch fermentation, yeast synthetic medium was used.  It 

contains (w/v) 0.25% NH4Cl, 0.291% Na2HPO4, 0.3% KH2PO4, 0.025% MgSO4, 0.008% 

CaCl2, 0.53% citric acid, 0.25% sodium citrate and 0.3% yeast extract.  Both media were 

autoclaved before use.  For batch fermentation, 2% (w/v) D-glucose or 2% (w/v) soluble wheat 

starch was added along with yeast cells into yeast synthetic media at the time of inoculation.   

 

 

3.3 DNA Sub-cloning and Plasmid Construction 

Protocols in this section are based on those described in Sambrook et al. (1989). 

 

3.3.1 Polymerase Chain Reaction (PCR) 

Two restriction digestion sites, ClaI (5’ end) and XhoI (3’ end), were generated at the 

ends of barley α-amylase (α-1, 4 glucan glucanohydrolase, EC 3.2.1.1, type VIII-A) cDNA by 

PCR (Table 3.3). 

The PCR mixture was set up as follows (in a total reaction volume of 50 μL): 1X 

reaction buffer (20 mM Tris-HCl, pH 8.8, 10 mM (NH4)2SO4, 10 mM KCl, 0.1% (v/v) 

Triton X-100, 0.1 mg/mL BSA), 4 mM MgSO4, 0.2 mM dNTPs, 0.5 pmol/μL primer I and II, 

respectively, 1.25 ng/μL barley α-amylase cDNA (GeneBank #J04202) and 1.25 U of Pfu 

DNA polymerase (Fermentas, catalog #EP0571).  PCR thermal cycling conditions were set up 

as follows: (1) initial denaturation step at 95°C for 5 min; (2) denaturation step at 95°C for 1 

min; (3) annealing step at 52°C for 30 sec; (4) extension step at 72°C for 3 min; (5) repeat 25 

cycles from step (2) to step (4); (6) final extension step at 72°C for 5 min. 

 Barley α-amylase cDNA was obtained from Rogers, J.C. (1983).  α-Agglutinin cDNA 

was obtained from Lipke, P. (1989). 
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3.3.2 Restriction Digestion of Plasmid DNA and PCR Generated DNA Fragments 

Digestion of DNA (plasmid DNA or PCR generated DNA fragments) with restriction 

enzymes was carried out with 1 μg DNA, 2 μL of 10X buffer, and 1-2 U of each restriction 

enzyme in a final volume of 20 μL.  Digestions were performed at 37°C for 1-2 hours.  

 

3.3.3 Agarose Gel Electrophoresis 

 DNA samples (plasmid DNA or PCR generated DNA fragments) digested with 

restriction enzymes were subjected to agarose gel electrophoresis on a 1% agarose gel 

containing 40 mM Tris-Acetate and 1 mM EDTA (TAE) at pH 8.0 and 1 μg/mL ethidium 

bromide in TAE running buffer.  DNA samples were mixed with an appropriate volume of 5X 

agarose gel sample buffer (New England, Biolabs), before being loaded onto the gel.  

Electrophoresis was carried out at 85 volts until the necessary resolution was achieved. 

 DNA samples were purified from the agarose gel by using the Qiagen Gel Purification 

Kit (Qiagen). 

 

3.3.4 Ligation of Digested Plasmid DNA and PCR DNA Fragments 

Generally, ligation reactions were performed in two different ways depending on the 

ends of the DNA fragments.  For blunt-ended DNA fragments, each reaction was set up as 

follows: 15-60 fmol of vector DNA, 45-180 fmol of insert DNA, and 1 unit of T4 DNA ligase 

were used for each 20 µL reaction, and the reaction was performed at 16ºC overnight.  For 

cohesive-ended DNA fragments, each reaction was set up as follows: 3-30 fmol of vector DNA, 

9-90 fmol insert DNA and 1 unit of T4 DNA ligase were used for each 20 µl ligation reaction 

and the reactions were performed for either 1-3 hours or overnight at room temperature.   For 

each ligation reaction, the total DNA used was less than 0.1 µg, and the insert:vector molar 

ratio was adjusted to 3:1.  Normally, for each given ligation, a background control ligation 

reaction was performed by replacing the insert DNA in the reaction mixture with water. 

 

3.3.5 Competent Bacteria Preparation 

A single colony of E. coli NM522 was picked from a LB plate and inoculated into 2 mL 

of LB medium, then incubated with shaking at 180 rpm at 37ºC overnight.  The 2 mL overnight 
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culture was transferred into another 200 mL of sterilized LB medium, followed by an additional 

1-2 hour growth with shaking at 200 rpm 37ºC.  The bacterial cultivation was stopped when the 

O.D.590 reached 0.375.  The cell culture was transferred into pre-chilled sterile 50 mL tubes, 

and centrifuged at 7,000X g at 4ºC for 7-10 min to collect the cells.  The cell pellet was 

resuspended in 10 mL of cold CaCl2 solution (60 mM CaCl2, 15% glycerol, and 10 mM PIPES 

pH 7.0).  The washing step was repeated twice and the cell suspension was kept on ice for 30 

min followed by a further centrifugation step to re-pellet the cells.  The cell pellet was 

resuspended in 4-8 mL of cold CaCl2 solution.  The concentrated cell suspension was aliquoted 

into 1.5 mL sterile tubes and stored at -80ºC. 

 

3.3.6 E. coli Transformation 

Competent E. coli NM522 cells were thawed on ice.  One hundred μL of competent 

cells were mixed and aliquoted into pre-chilled 14-mL BD Falcon polypropylene round-bottom 

tubes.  DNA ligation mixtures were mixed with competent cells by gently swirling the tube 

several times.  The tubes were incubated on ice for 30 min, then subjected to heat-pulse at 42ºC 

for 2 min.  The tubes were kept on ice for at least 1 min after heat-pulse.  The entire 

transformation mixture from each tube was spread onto a LBA plate under sterile conditions, 

and the plates were incubated at 37ºC overnight. 

 

3.3.7 Mini-Preparation of Plasmid DNA  

Selected colonies were inoculated into 5 mL of TB medium with the appropriate amount 

of antibiotic, and incubated with shaking at 37ºC overnight.  Plasmid was isolated by the 

alkaline lysis method described by Sambrook et al. (1989).  Plasmid DNA was resuspended in a 

solution of 10 mM Tris-HCl and 1 mM EDTA (pH 8.0).  The sequence of plasmid DNA was 

confirmed by DNA sequencing.  The α-amylase expression plasmid construct was named as 

pAMY.  Also, a control plasmid, pSAC, was constructed by deleting part of barley α-amylase 

cDNA in pAMY through a double Sac II enzyme digestion.  Samples were stored at -20ºC or 

directly used for restriction enzyme digestion. 
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3.4 Yeast Transformation and Selection 

Protocols in this section are modified versions of those described in Sambrook et al. 

(1989) and the lithium transformation method from Invitrogen (catalog #V510-20, version F 5-

20-2003). 

 

3.4.1 Preparation of Competent Yeast 

An entire yeast colony was picked from a YPD plate, transferred into 25 mL of YPD 

medium, and cultivated with shaking at 230 rpm at 30°C overnight.  The cell culture was 

gradually transferred into 300 mL of fresh YPD medium until the O.D.600 reached 0.4.   The 

fresh culture was allowed to grow for another 3 hours with shaking at 230 rpm at 30°C.  The 

cells were then pelleted at 3000X g for 5 min and washed once with 25 mL of sterile double-

distilled water.  After re-pelletting, cells were resuspended in 1 mL of 1X TE/LiAc solution 

(100 mM lithium acetate, 10 mM Tris-HCl, 1 mM EDTA, pH 8.0), and used immediately for 

transformation. 

 

3.4.2 Yeast Transformation 

For each transformation, 1 μg of plasmid DNA, 100 μg denatured sheared salmon 

sperm DNA (Sigma-Aldrich, catalog #D9156) and 100 μL of the yeast suspension in 1X 

TE/LiAc solution were added into a 13-mL Falcon tube.  Six hundred microlitres of PEG/LiAc 

solution (40% PEG-3350 solution, 100 mM lithium acetate, 10 mM Tris-HCl, 1 mM EDTA, 

pH 8.0) were added to the mixture and mixed by brief vortexing.  The yeast culture was then 

placed in a shaking incubator at 230 rpm at 30°C for 30 min.  After incubation, 70 μL of 

DMSO was added and the mixture was subjected to heat-pulse at 42°C for 15 min.  Cells were 

pelleted by centrifugation at 14,000X g for 15 sec in a microcentrifuge.  The collected cells 

were resuspended in 500 μL of 1X TE buffer (10 mM Tris-HCl, and 1 mM EDTA, pH 8.0).  

Cell suspension was plated on YPD plates containing the indicated concentration of blasticidin 

(see below). 
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3.4.3 Determination of the Appropriate Concentration of Blasticidin to Use for Selection 

The same amount of transformed yeast cells or wild type yeast cells was plated on a 

group of YPD plates that contained increasing concentrations of blasticidin ranging from 0 to 

100 µg/mL.  The plates were incubated at 30°C for 2 days, and the number of colonies on each 

plate was recorded for comparison.  The blasticidin concentration was determined based on the 

disappearance of wild type yeast colonies, and the ability of transformed yeast to produce 

colonies. 

 

 

3.5 α-Amylase Assays 

 

3.5.1 Detection of α-Amylase Activity on Starch Containing YPD Plate Using Iodine 

Vapour 

Transformed yeasts were incubated on YPD agar plates containing 1% soluble potato 

starch (Sigma-Aldrich, catalog #S4251) at 30°C for 2-3 days.  When the plates were prepared, 

potato starch powder was first added into the YPD-agar media and then autoclaved.  The 

starch-containing YPD-agar solution was poured into plates and solidified at room temperature.  

Blasticidin was added to 100 μg/mL.  Transformed yeast cells were plated on the starch-

containing YPD plates, at a dilution (approximately 1 in 1000) that gave colonies that were 

well-separated from each other after 3 days incubation at 30°C.  With clearly visible colonies, 

the plates were stained with iodine vapour.  The staining procedure was performed based on 

that described by Steven et al. (1984).  Iodine crystals (I2) vaporize at room temperature.  

Iodine crystals were placed into a beaker in a fume hood, with the circumference of the beaker 

matching that of the plate.  The plate was inverted onto the beaker, exposing the colonies to the 

vaporized iodine.  Staining was considered complete when the medium on the plate turned a 

dark purple colour.  Pictures were taken with a digital camera when the staining was complete.  
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3.5.2 Quantification of Cell Surface Anchored α-Amylase Activity by the 3, 5-

Dinitrosalicylic Acid (DNS) Assay and the Iodine Assay 

 The DNS assay kit was purchased from Sigma-Aldrich (catalog #A2771).  The colour 

reagent contains sodium potassium tartrate solution (5.3 M sodium potassium tartrate, 

tetrahydrade, Sigma-Aldrich, catalog #S2377 in 2 M NaOH) and 3, 5-dinitrosalicylic acid 

solution (96 mM 3, 5-dinitrosalicylic acid, Sigma-Aldrich, catalog #D0550 in 20 mL of 

deionized water).  The solutions were prepared according to the manufacturer’s instructions.  

 The iodine colour reagent contained iodine (1.5% (w/v) I2, Sigma-Aldrich, catalog 

#229695) and potassium iodide (5% (w/v), KI, Sigma-Aldrich, catalog #204102).  The solution 

was prepared as described in Wilson et al. (1982). 

The 1% starch solution used as the substrate for the α-amylase reaction was prepared by 

adding 1 g potato starch powder to 100 mL of 16 mM sodium acetate buffer (pH 4.5), and 

boiling for 15 min with constant stirring.  After the solution cooled to room temp, water was 

added to bring the solution up to 100 mL. 

Yeast were cultivated in a 250-mL shake flask containing 100 mL of YPD media with 

shaking at 200 rpm at 30°C until O.D.600 reached 0.9 to 1. Cells were harvested by 

centrifugation at 4000X g for 5 min at 4°C.  The cell pellet was washed twice with 16 mM 

sodium acetate buffer (pH 4.5), then resuspended in 3 mL of sodium acetate buffer (pH 4.5).  

When required, blasticidin was added to the medium to a final concentration of 100 μg/mL.  

Three mL of concentrated yeast cell suspension was mixed with 1 mL of 1% starch 

solution.  The reaction mixture was placed in a 45°C water bath and samples were taken every 

hour over a 6 hour period.  The reaction mixtures were re-mixed before each sample was taken.  

Cells were collected by centrifugation at 12,500X g for 1 min.  Three hundred μL of 

supernatant were carefully transferred into a test tube with the addition of 1 mL of DNS colour 

reagent for the DNS assay or into a test tube with the addition of 2 mL of iodine colour reagent 

for the Iodine assay.   

For the DNS assay, the test tube was placed in a boiling water bath for 15 min.  After 

boiling, the sample was diluted with 9 mL of water. Absorbance was determined using a 

spectrophotometer at 540 nm.  The blank was treated in the same way as the samples except 

that 3 mL of water instead of 3 mL of cell suspension were mixed with 1 mL of 1% starch 
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solution.  For the Iodine assay, the sample was diluted in 9 mL of water before absorbance was 

determined using a spectrophotometer at 580 nm.  The blank was treated in the same way as the 

samples except that 3 mL of water instead of 3 mL of cell suspension was mixed with 1 mL of 

1% starch solution. 

 

 

3.6  Batch Fermentation  

 

3.6.1 Seeding Cultures 

The yeast strains used in batch fermentation studies were wild type NRRL Y-132 and 

pAMY harbouring NRRL Y-132 (NRRL Y-132/pAMY).  The cell cultures used as the seeding 

cultures to inoculate batch fermentations were prepared as follows: 1 mL of frozen cell culture 

was added to 100 mL of fresh yeast synthetic media in a 250 mL-shake flask.  The culture was 

incubated on a shaking incubator at 150 rpm at room temperature overnight. When NRRL Y-

132/pAMY was cultivated, 100 μg/mL blasticidin was added to the broth. 

Frozen cultures were prepared by picking a single colony with a sterilized needle, and 

transferred into a 50-mL sterilized Falcon tube containing 10 mL of fresh yeast synthetic media.  

The culture was incubated with shaking at 180 rpm and 37°C overnight.  The next day, the 

overnight culture was transferred into a 250 mL-shake flask containing 200 mL of fresh yeast 

synthetic media.  The cell culture was incubated with shaking at 180 rpm at 37°C until the 

O.D.600 reached 0.9 to 1.0, and then 930 μL of the cell culture was transferred into a 1.5-mL 

sterilized microcentrifuge tube along with 70 μL of DMSO.  The tubes were stored at -80°C.   

 

3.6.2 Bioreactor Conditions and Media Composition 

Fermentation conditions were as follows: 100 mL of seeding culture was added to 1.9 L 

fresh medium to give a total reaction volume of 2 L.  The fermentation process was carried out 

in a bioreactor (New Brunswick Scientific model 2.5-L Bioflo 310 fermentor) at 30°C with the 

agitation rate at 375 rpm and airflow rate of 0.02 L/min.  When D-glucose was used as the 

carbon source, 1.9 L of yeast synthetic media containing and 2% (w/v) D-glucose was 

combined with the seeding culture into the medium at the beginning of batch fermentation.  

 37



When soluble starch was used as the carbon source, 1.9 L fresh medium was composed of 1.1 L 

of yeast medium and 800 mL of 2% (w/v) soluble wheat starch. 

The source of the soluble wheat starch was Wheat Starch 4 donated by CSP Mills, 

Saskatoon (manufactured by Archer-Daniels-Midland/Ogilvie in Montreal).  Wheat starch 4 is 

a class of A grade starch which consists of particles ranging from 18 to 20 μm in size.  Forty 

gram of starch particles were weighed and transferred into a 400 mL-shake flask and mixed 

with 200 mL of deionized water.  The slurry of starch-water mixture was slowly added into 400 

mL of boiling water with constant stirring.  One hundred mL of deionized water was used to 

wash the starch residues left in the flask.  The starch solution was boiled for another 15 min 

with constant stirring.  After the solution had cooled to room temperature, it was brought to 800 

mL with deionized water. 

 

3.6.3 Starch Hydrolysing Enzymes 

Barley malt α-amylase (α-1,4 glucan glucanohydrolase, EC 3.2.1.1, type VIII-A) 

(catalog #A-2771) and glucoamylase (amyloglucosidase; 1, 4, α-D-glucan glucanohydrolase, 

EC 3.2.1.3) (catalog #A-7255) from Rhizopus mold were obtained from Sigma-Aldrich.  In 

some batch fermentation experiments, the amount of 15 g/L barley α-amylase and/or 1 g/L 

glucoamylase was added into the fermentor 30 min prior to inoculation. 

 

3.6.4 Biomass Analysis 

Biomass at certain time point was recorded as either O.D.600 or total cell number, 

depending on the viscosity of fermentation broth caused by soluble starch. 

When glucose was used as sole carbon source or soluble starch as sole carbon source 

with the addition of amylolytic enzymes, biomass was initially recorded as O.D.600.  Samples 

were taken from the fermentor and measured on spectrophotometer at 600 nm.  Dilutions were 

made when O.D.600 exceeded 1.0.  Recorded O.D.600 was converted to biomass concentration 

(dry weight basis) using a previously constructed standard curve.   

When soluble starch was used as sole carbon source, direct measurement of biomass 

through spectrophotometer was impossible due to high viscosity of the fermentation broth 

caused by soluble starch.  Therefore, biomass was recorded as total cell number by counting the 

cell number of a sample through a Petroff Hauser hemocytometer under a microscope.  The cell 
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number counted in the sample was converted into the total cell number in the fermentor.  The 

sample applied on the Petroff Hauser hemocytometer was generally diluted 11 fold from the 

original sample taken from the fermentor to give clearly separated cells.  Normally, cell number 

was counted in 5 to 6 separate squares on the Petroff Hauser hemocytometer, and an average of 

these numbers was used to calculate the total cell number. 

The equation used was: Total cell number in 2-L fermentation broth = Average cell 

number × 11 (dilution factor) × 16 (number of the smallest squares in each square used for 

counting) × 1/400 mm2 × 1/50 mm (the last two values give the volume of each smallest square 

indicated on the Petroff Hauser hemocytometer).   

 

3.6.5 Ethanol Analysis  

Two different methods were used to collect samples for ethanol analysis depending on 

the viscosity of fermentation broth caused by soluble starch. 

When glucose was used as sole carbon source or soluble starch as sole carbon source 

with the addition of amylolytic enzymes, samples were taken from the fermentor and filtered 

through a 0.2 micron filter to produce a clear filtrate for ethanol analyses.  Filtrates were stored 

in 1.5-mL Agilent vials (Agilent Technology, U.S.) at -20°C. 

When soluble starch was used as sole carbon source, direct filtration of fermentation 

broth through 0.2 micron filter was impossible due to high viscosity of the fermentation broth 

caused by soluble starch.  Therefore, the sample collected from the fermentor was pre-treated 

with a small amount of barley α-amylase in a sealed container to hydrolyse the starch prior to 

filtration.  A detailed description of the procedure is given below. 

During fermentation, 15 mL samples were collected from the fermentor and placed into 

sterilized 50-mL Falcon tubes.   Cells were pelleted by centrifuging at 3000X g for 3 min and 

the supernatant was transferred into a glass container and mixed with approximately 10 μg of 

barley α-amylase.  The container was sealed and held at room temperature for 5 min.  The 

supernatant was then filtered through a 0.2 micron filter.  Filtrates were stored in 1.5-mL 

Agilent vials at -20°C.  

Ethanol concentrations were determined by gas chromatography using a flame 

ionization detector and a 30 m, 0.25 mm ID poly (5% phenyl, 95% dimethyl) siloxane capillary 

column.  The oven temperature was 60°C and 1-butanol was used as an internal standard (Lang 
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et al., 2001).  Frozen samples were thawed at room temperature.  Samples were placed on the 

sample region of the detector in order and injected automatically into the detector.  For each 

sample, three separate injections were analysed.  

The theoretical maximum yield of ethanol from 100 parts of glucose is 51.1 (Ingledew, 

1993).  The fermentation efficiency can be calculated as: 

% fermentation efficiency = (weight of ethanol produced × 100)/(theoretical weight of 

ethanol from produced glucose)  

 

3.6.6 Soluble Starch Concentration 

The method used to measure the soluble starch concentration in frozen samples 

collected from batch fermentation was modified from the Iodine assay method (section 3.5.2).  

Frozen samples were first boiled for 30 min. in a water bath.  Then 100 μL of samples 

were mixed with 100 μL of deionized water and 2 mL of Iodine Colour Reagent (5 mM I2 and 

5 mM KI).  Nine mL of water was added before measuring absorbance at wavelength 580 nm 

using a spectrophotometer.  The soluble starch concentration in the sample was calculated from 

a previously constructed standard curve. 

 

3.6.7 Plasmid Stability 

Cell samples were collected from the fermentor during batch fermentation, and diluted 

to the appropriate cell density with sterilized deionized water.  Equal amounts of cell 

suspension were plated on both YPD plates and blasticidin-containing YPD plates.  For each 

sample set, three different dilutions were prepared to ensure that one dilution would give the 

appropriate cell density such that the colonies on the plates were separate from each other for 

accurate counting.  For each dilution, three YPD plates and three blasticidin-containing YPD 

plates were plated to improve statistical accuracy.  Plates were incubated at 30°C for 1 to 2 days.  

After counting the number of colonies, the ratio of the number of colonies on blasticidin-

containing YPD plates over that on YPD plates was recorded as relative plasmid stability. 
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4.0 RESULTS 

 

 

4.1 Construction of Novel Recombinant Plasmid pAMY 

Naturally occurring yeast strains are unable to utilize starch as carbon sources for 

growth and fermentation because they lack the ability to hydrolyse starch.  Therefore, a novel 

recombinant yeast strain was designed and constructed from an industrial ethanol-producing 

yeast strain, S. cerevisiae NRRL Y-132.  This novel recombinant strain was designed to express 

and anchor a starch-hydrolysing enzyme, barley α-amylase on its cell surface, so that the novel 

strain is able to perform simultaneous starch hydrolysis and fermentation.  As detailed in 

section 2.4, functional α-amylases from various sources have been reported to be expressed in 

yeast.  Barley α-amylase was used in this study, since in cold-starch hydrolysis fermentation, 

barley α-amylase was shown to be superior to α-amylases from other sources due to its optimal 

kinetics at the temperature and pH that is compatible with that needed for yeast growth and 

fermentation (Lim et al., 2003).   

The first goal of my study was to construct a fusion gene composed of a barley α-

amylase cDNA that had an oligonucleotide coding for a secretion signal sequence attached to 

its 5’ end and its 3’ end fused to the 3’ half of the α-agglutinin cDNA.  The complete fusion 

gene was inserted into the MCS of yeast episomal plasmid pSCW231 at restriction sites EcoR I 

and Kpn I with constitutive promoter ADH1 at an upstream site and a transcription termination 

sequence, CYC1, at a downstream site (Figure 4.1). 

 The original yeast selection marker carried by pSCW231, Trp-, belongs to a group of 

auxotrophic markers which are used to select genetically-engineered yeast strains that are 

transformed with a plasmid carrying the auxotrophic marker gene.  However, the studied yeast 

strain, S. cerevisiae NRRL Y-132, is an ethanol producing strain that is used in the ethanol 

industry and, in this case, cannot be selected by using auxotrophic markers because there is no 

corresponding auxotrophic mutant.  Blasticidin is an antibiotic that inhibits the growth of a 

wide range of prokaryotic and eukaryotic cells by interfering with their protein synthesis 

(Invitrogen,  Catalog #R210-01).    Blasticidin  specifically  inhibits  protein  synthesis  through  
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Fig. 4.1  Structure of the Fusion Gene.  The fusion gene is composed of a contiguous sequence 
of the secretion signal of glucoamylase precursor protein (75SSS), complete cDNA of barley α-
amylase and the 3’ half of the α-agglutinin cDNA.  Transcription of the fusion gene is under 
control of the ADH1 promoter.  The restriction sites used to construct the fusion gene are 
indicated at their corresponding positions. 
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inhibition of peptide-bond formation in the ribosomal machinery (Izumi et al., 1991).  Yeast 

cells that are not transformed with a blasticidin resistance gene will not survive in the media 

containing an appropriate concentration of blasticidin. Thus, a blasticidin resistance gene was 

inserted into the plasmid.  The complete structure of pAMY is shown in Figure 4.2.  Also, a 

control plasmid, pSAC, was constructed by deleting part of barley α-amylase cDNA in pAMY 

through a double Sac II enzyme digestion.  The DNA sequence of pAMY was confirmed by 

DNA sequencing. 

 

 

4.2 Recombinant Yeast with Cell Surface Anchored Barley α-Amylase 

S. cerevisiae NRRL Y-132 was transformed with pAMY by performing a lithium 

acetate yeast transformation (section 3.5.2).  A general description of the fusion gene 

expression, cell surface anchoring of the fusion protein, and the pAMY harbouring yeast 

(NRRL Y-132/pAMY) as a whole cell catalyst for starch hydrolysis and fermentation is the 

objective of this section.  The fusion gene (75SSS/α-amylase/3’ half of α-agglutinin) was 

constitutively expressed in NRRL Y-132/pAMY. As detailed in section 2.3, the fusion protein 

is recognized as a cell wall-targeted protein inside the ER.  Following cleavage of the signal 

peptide 75SSS, the remaining part of the fusion protein (barley α-amylase and C-terminal half 

of α-agglutinin) would be transferred to a GPI anchor and transported to the cell surface.  When 

it reaches the cell surface, it is believed that the GPI attached protein is transferred from the 

GPI anchor to the glucan of the cell wall, with the C-terminal end of α-agglutinin covalently 

linked to the glucan structure and barley α-amylase facing into the medium. A diagram of 

NRRL Y-132/pAMY with cell surface-anchored barley α-amylase is shown in Figure 4.3. 

 

 

4.3 Determination of the Appropriate Concentration of Blasticidin to Use for Selection 

In order to identify positive yeast clones harbouring pAMY, the appropriate 

concentration of blasticidin used for selection had to be determined.  For comparison, two other 

yeast strains were used as controls: NRRL Y-132 transformed with control plasmid pSAC and 

wild type NRRL Y-132.  The same amount of cell suspension of each strain was plated on YPD  
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Fig. 4.2  The Structure of Yeast Expression Plasmid pAMY.  The plasmid was designed for cell 
surface expression of the barley α-amylase/3’ half of the α-agglutinin fusion gene.  It contains a 
constitutive promoter ADH1, a transcription termination sequence, CYC1, an ampicillin 
resistance gene for selection in E. coli, a 2μ origin sequence that keeps high copy numbers of 
the plasmid inside yeast cells and a blasticidin resistance (Bsd) gene as a selectable marker for 
selection in yeast, which is under the control of a constitutive yeast promoter TEF1.  Arrows 
are placed at each promoter region to indicate transcription directions.   
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Fig. 4.3  Model of α-Amylase Expressing Recombinant Yeast.  NRRL Y-132/pAMY expresses 
cell surface anchored barley α-amylase and is able to perform starch hydrolysis and 
fermentation.  After expression, the secretion signal (indicated as yellow bar in pAMY) is 
cleaved in ER and the rest of the fusion protein is transported to the cell surface through Golgi.  
The sizes of the cell wall anchored proteins and starch molecules are scaled up in the picture to 
give a better demonstration of the mechanism. 
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plates containing blasticidin concentration ranging from 0 to 100 μg/mL, respectively. The 

number of colonies of each strain that grew on the YPD plates containing the same amount of 

blasticidin was counted and compared (Figure 4.4).  In the absence of blasticidin, the number of 

colonies from each of the 3 strains was enough to cover the entire YPD plates.  Wild type 

NRRL Y-132 colony formation was significantly reduced at blasticidin concentration of 20 

μg/mL and no colonies were detected at 60 μg/mL.  Colony formation of yeast harbouring 

pAMY and pSAC were also reduced at blasticidin concentration of 20 μg/mL, but to a much 

less extent comparing to wild type NRRL Y-132.  In addition, this reduction was not 

significantly affected by increasing blasticidin concentrations up to 100 μg/mL.  Based on these 

observations, a blasticidin concentration of 100 μg/mL was determined to be the appropriate 

concentration to select NRRL Y-132/pAMY and NRRL Y-132/pSAC, and was used for 

culturing all of the transformed yeast cells in subsequent studies. 

 

 

4.4 Detection of α-Amylase Activity in NRRL Y-132/pAMY Using Iodine Vapour 

Approach 

Blasticidin resistant yeast were subjected to a starch plate assay to detect whether they 

expressed functional barley α-amylase.  Iodine complexes with starch, resulting in dark purple 

staining.  If the pAMY harbouring yeast expressed functional cell surface anchored barley α-

amylase, white haloes can be visualized around each colony formed on a starch plate after 

staining with iodine vapour due to amylolytic degradation of the surrounding starch (Filho et al., 

1986; Ruohonen et al., 1987; Kondo et al., 2002).  

 As detailed in section 3.7, the assay was performed using iodine vapour applied to yeast 

growing on YPD agar plates containing soluble starch.  As shown in Figure 4.5A and 4.5B (left 

panel), haloes were detected around each yeast colony harbouring pAMY after iodine vapour 

staining.  In contrast, yeast colonies harbouring control plasmid pSAC, which has the barley α-

amylase cDNA removed, showed no halo formation (Figure 4.5B, right panel).  This indicated 

that the yeast harbouring pAMY expressed functional barley α-amylase. 
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Fig. 4.4  Cell Growth Response to Various Blasticidin Concentrations on YPD Agar.  The 
pAMY harbouring (indicated as pAMY), pSAC harbouring (indicated as pSAC) and wild type 
(indicated as W.T.) S. cerevisiae NRRL Y-132 cell suspensions with the same cell density were 
plated on YPD agar plates with various blasticidin concentrations as indicated above.  Colonies 
became clearly visible after 2 days of incubation at 30°C.  A representative result from four 
independent experiments is shown. 
 

 

 

 

 

 47



 

 

 

 

                         

A 
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Fig. 4.5  Detection of α-Amylase Activity in NRRL Y-132/pAMY Using Iodine Vapour Assay.  
A. Yeast colonies harbouring pAMY were cultured on a YPD agar plate containing 1% soluble 
starch.  After iodine vapour staining, haloes were observed around the colonies.  B (left panel) 
Enlarged view of a single colony harbouring pAMY stained by iodine vapour; (right panel) 
enlarged view of a single colony harbouring pSAC stained by iodine vapour for comparison. 
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4.5 Quantification of α-Amylase Activity with DNS and Iodine Assays 

Halo formation around the colony of NRRL Y-132/pAMY cannot give quantitative 

information about how much α-amylase activity was actually expressed.  It was my objective to 

investigate the possible assays that could be used to quantify cell surface anchored α-amylase 

activity.   

Two different assays, the Iodine assay and DNS assay, were explored for their 

suitability.  As detailed in section 2.4, both assays are widely used to quantify α-amylase 

activity (Miller, 1959; Xiao et al., 2006).  Both assays have been used to measure the activity of 

α-amylase activity that had been expressed and secreted into the cultural medium (Filho et al., 

1986; Ruohonen et al., 1987; Moraes et al., 1995; Murai et al., 1999).  Information is limited 

on examining their use to measure cell surface anchored α-amylase activity.  Both assays are 

based on the principle that α-amylase breaks down starch polymers into reducing sugars, 

primarily maltose and glucose.  The Iodine assay measures the amount of soluble starch 

remaining after the reaction, and thus measures the change in substrate concentration, while the 

DNS assay measures the amount of reducing sugars released in the reaction, and thus measures 

the formation of product.   

The feasibility of the two assays for measuring the cell surface anchored α-amylase 

activity using NRRL Y-132/pAMY as the catalyst was investigated.  My first objective was to 

examine whether the two assays generated comparable results when they were performed under 

the same reaction conditions.  Colour development for each assay at 4 different time points is 

shown in Figure 4.6.  With increasing incubation time, the samples subjected to the Iodine 

assay showed a gradual decrease in colour intensity (Figure 4.6A), while samples subjected to 

the DNS assay showed a gradual increase in colour intensity (Figure 4.6B).  The results indicate 

that both the Iodine assay and DNS assay successfully measured product formation and 

substrate utilization, respectively, during the starch hydrolysis reaction when using NRRL Y-

132/pAMY as the catalysts. 

Quantitative data was obtained by measuring the absorbance of the assay solutions at 

wavelength 580 nm (for the Iodine assay) or 450 nm (for the DNS assay).  The measured 

absorbance  was  converted  into  corresponding  reducing  sugar or  starch concentrations using  
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    0                     2                   4                    6 hours 
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Fig. 4.6  Iodine Assay and DNS Assay for Measuring Cell Surface Anchored α-Amylase 
Activity.  The reaction was initiated by adding a cell suspension of NRRL Y-132/pAMY into 
soluble starch solution at pH 4.5, 45°C.  The samples were taken at the indicated time points 
and analysed by the Iodine assay (top) and DNS assay (bottom), respectively.  This is a 
representative result from three independent experiments. 
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previously constructed standard curves.  Two pAMY harbouring clones and one pSAC 

harbouring clone were cultivated for the assays.    

In the reactions catalyzed by NRRL Y-132/pAMY, reducing sugar concentration 

increased linearly during the 6-hour reaction in the DNS assay (Figure 4.7), while a decrease in 

starch concentration was detected using the Iodine assay (Figure 4.8).  In contrast, no obvious 

change was observed on reducing sugar and starch concentration in the control reaction 

containing NRRL Y-132/pSAC.  The results indicate that the soluble starch was hydrolysed 

into reducing sugars by NRRL Y-132/pAMY under the assay conditions.  All the reactions 

started with a soluble starch concentration of 5 mg/mL.  Interestingly, no starch was detected by 

the Iodine assay after about 4 hours, but only 4.0 (clone 1) and 3.7 (clone 2) mg/mL of reducing 

sugars were generated by the end of the reactions.  These data suggest that there is a higher 

starch-hydrolysing rate than reducing sugar generating rate in the NRRL Y-132/pAMY 

catalyzed reactions.  The specific activity of cell surface anchored α-amylase was converted 

into units (Table 4.1 and 4.2).  The calculated units based on the Iodine assay is about 2 times 

higher than the one based on the DNS assay.   

Furthermore, the cell surface anchoring property of the expressed α-amylase was 

investigated using these two assays.  By assaying the cell pellet and supernatant fraction of the 

cell culture, respectively, it was possible to identify whether the α-amylase was indeed 

anchored on the cell surface (Table 4.1 and 4.2).  After the cells were pelleted, no α-amylase 

activity was detected in the supernatant fraction of the cell cultures.  This indicated that the α-

amylase was anchored on the cell surface and not secreted into the medium.   
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Fig. 4.7  α-Amylase Activity of Intact NRRL Y-132/pAMY Measured by the DNS Assay.  The 
assay measured the amount of reducing sugars generated from the starch hydrolysis reaction 
catalyzed by NRRL Y-132/pAMY or NRRL Y-132/pSAC.  The reaction was performed by 
mixing 3 mL cell suspension and 3 mL of 1% soluble starch and incubating at 45°C for 6 hours.  
Samples were taken at each hour point, centrifuged to pellet the cells, and the supernatant was 
used for the DNS assay.  Values shown are the averages of 3 independent experiments.  The 
standard deviations were lower than 0.004 and therefore not shown.  pAMY1 and pAMY2 are 
both harbouring plasmid pAMY, cultured from two separate colonies from the original plate. 
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Fig. 4.8  α-Amylase Activity in Intact NRRL Y-132/pAMY Measured by the Iodine Assay.  
The assay measured the amount of remaining starch in the reaction catalyzed by NRRL Y-
132/pAMY or NRRL Y-132/pSAC.  The reaction was performed by mixing 3 mL cell 
suspension and 3 mL of 1% soluble starch and incubating at 45°C for 6 hours.  Samples were 
taken at each hour point, centrifuged to pellet the cells, and the supernatant was used for the 
Iodine assay.  Values shown are the averages of 3 independent experiments.  The standard 
deviations were lower than 0.004 and therefore not shown.  pAMY1 and pAMY2 are both 
harbouring plasmid pAMY, cultured from two separate colonies from the original plate. 
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TABLE 4.1.  Quantification and Distribution of α-Amylase Activity Using the DNS Assay 

Strain α-amylase activity (U/g [wet weight] of cells) 

 Culture medium Cell pellet 

NRRL Y-132/pAMY ND 1.3 

NRRL Y-132/pSAC ND ND 

 

One unit (U) of activity is defined as the amount of enzyme required to release 1 mg of 
reducing sugars per hour at pH 4.5, 45°C when 5 mg/mL of soluble starch was present at the 
start of the reaction.   
ND, not detectable. 
 

 

TABLE 4.2.  Quantification and Distribution of α-Amylase Activity Using the Iodine Assay 

Strain α-amylase activity (U/g [wet weight] of cells) 

 Culture medium Cell pellet 

NRRL Y-132/pAMY ND 2.5 

NRRL Y-132/pSAC ND ND 

 

One unit (U) of activity is defined as the amount of enzyme required to hydrolyze 1 mg of 
soluble starch per hour at pH 4.5, 45°C when 5 mg/mL of soluble starch was present at the start 
of the reaction.   
ND, not detectable. 

 

 

 

 

 

 54



 

 

4.6  Batch Fermentation Studies  

 

4.6.1 Batch Fermentation on Soluble Starch 

The experiments above indicated that NRRL Y-132/pAMY was able to hydrolyse starch.  

The question about whether this strain is able to efficiently utilize soluble starch as the sole 

carbon source to support its own growth and fermentation activity was addressed in batch 

fermentation studies.  First, it was necessary to determine whether the constitutive expression of 

α-amylase had effects on NRRL Y-132/pAMY cells’ ability to proliferate and ferment.  As 

detailed in section 3.6.2, NRRL Y-132/pAMY were inoculated into broth containing 20 g/L 

glucose as the sole carbon source.  Biomass and ethanol production were measured as shown in 

Figure 4.9.  Both biomass and ethanol production showed typical log shape curves, with both 

biomass and ethanol produced reaching their maximum values and plateauing at 15 hours.  At 

the end of the batch fermentation, 1.9 g/L of biomass and 10.3 g/L of ethanol were produced 

from 20 g/L of glucose.  The ethanol yield was 100% of the theoretical yield, which is 

comparable to the ethanol production of the wild type.  This suggests that the production of 

anchored α-amylase did not interfere with the ability of the pAMY harbouring yeast to ferment 

glucose.   

Next, the same amount of inoculate of NRRL Y-132 and NRRL Y-132/pAMY were 

used for batch fermentations under the same conditions except that 20 g/L of soluble starch was 

used as the sole carbon source.  Samples were collected for ethanol analyses and biomass 

measurements over a 72-hour period (Figure 4.10A).  NRRL Y-132/pAMY showed only a 

small amount of biomass increase on soluble starch, and no ethanol was detected for either 

strain (data not shown).  The biomass of both wild type and pAMY harbouring yeast slowly 

reached a peak value at around 10 hours.  Following this, the biomass of both strains 

continuously decreased until the end of the batch fermentations. 

NRRL Y-132 was not expected to proliferate or produce ethanol when starch was used 

as the sole carbon source.  However, since NRRL Y-132/pAMY had been shown to have starch 

hydrolysis ability, and considering the results that they did not perform better than NRRL Y-

132 under  batch fermentation  with starch,  it was speculated that cell death might be occurring 
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Fig. 4.9  Batch Fermentation of NRRL Y-132/pAMY on Glucose.  Fermentation was carried 
out in a 2.5-litre bioreactor at 30°C with an agitation rate of 375 rpm and airflow at 0.02 L/min.  
One hundred mL of pre-cultured NRRL Y-132/pAMY was used to inoculate the fermentor.  
Biomass changes and ethanol production were measured over a 24-hour period at the time 
points indicated.  NRRL Y-132/pAMY was pre-cultured with 100 μg/mL of blasticidin.  This 
batch fermentation was performed once.  
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Figure 4.10  Batch fermentation of NRRL Y-132 and NRRL Y-132/pAMY on Soluble Starch.  
(A) One hundred mL of pre-cultured wild type or pAMY harbouring yeast was used to 
inoculate the fermentor.  (B) Two hundred mL of cell suspension concentrated from 2 L late log 
phase cell culture using sodium acetate buffer at pH 4.5 was used to inoculate the fermentor.  
At the indicated time points, samples were collected and the number of cells was counted using 
a Petroff Hauser haemocytometer under a microscope.  NRRL U-132/pAMY was pre-cultured 
with 100 μg/mL of blasticidin.  Each of the batch fermentations was performed once.  
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due to a relative lack of α-amylase activity at the beginning of the batch fermentations.  As 

shown earlier in Figure 4.7 and 4.8, even though NRRL Y-132/pAMY were able to perform 

starch hydrolysis, the availability of utilizable reducing sugars at the start of fermentation may 

be limiting.  Therefore, a larger amount of inoculate was used to increase the initial amount of 

α-amylase available in the fermentor.  Hence, two litres of pre-cultured pAMY-harbouring cells 

were concentrated into a 200-mL cell suspension using sodium acetate buffer at pH 4.5 and 

used as the inoculate for batch fermentations under the same conditions as in Figure 4.10A.  As 

shown in Figure 4.10B, both NRRL Y-132 and NRRL Y-132/pAMY started at a higher initial 

biomass, and the biomass of both strains slowly increased to their maximum values at about 40 

hours then declined.  Following the peak, the biomass of NRRL Y-132 quickly declined to 

levels below its initial value; small increases in biomass were observed later in the fermentation, 

but never exceeded its initial value.  In contrast, the biomass of NRRL Y-132/pAMY showed 

an obvious increase following the first biomass decline; an oscillation in biomass was observed 

later in the fermentation (Figure 4.10B).  No ethanol was produced by either strain (data not 

shown).  NRRL Y-132/pAMY was able to hydrolyse over 75% of the starch in the fermentor 

after 160 hours of operation, however, the wild type showed only weak starch hydrolysis ability 

(Figure 4.11).  The results suggest that NRRL Y-132/pAMY was able to hydrolyse starch under 

fermentation conditions, however, at a very slow rate.  Thus, the reducing sugars generated may 

be insufficient for cell proliferation and ethanol formation. 

 

4.6.2 Batch Fermentation with Addition of Amylolytic Enzymes  

As shown in the starch batch fermentation experiments above, even though NRRL Y-

132/pAMY was able to hydrolyse soluble starch under fermentation conditions, it failed to 

proliferate significantly or produce ethanol.  Several factors might contribute to the failure, such 

as reduced α-amylase activity due to cell surface anchoring, inefficient utilization of maltose by 

this particular yeast strain, or inhibitory effects on cell metabolism when starch is used as the 

sole carbon source, could cause yeast to fail to proliferate and produce ethanol.  To investigate 

whether these factors could potentially affect NRRL Y-132/pAMY’s performance during starch 

fermentation, several parallel starch batch fermentations using both NRRL Y-132 and NRRL 

Y-132/pAMY with the addition of different amylolytic enzymes were carried out.   

First, the ability of wild  type yeast to utilize  maltose  was  investigated  by  inoculating  
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Fig. 4.11  Starch Hydrolysis in Batch Fermentation with Starch as the Sole Carbon Source.  
This chart shows the soluble starch concentration during the two batch fermentations showed in 
Figure 4.10B.  Samples were taken from the fermentor at the indicated time and stored in 1.5 
mL microcentrifuge tubes at -20°C.  Frozen samples were boiled in a water bath for 30 min and 
then analysed by the Iodine assay.  Absorbance at 580 nm was measured and the readings were 
converted to starch concentrations using the standard curve shown in Figure 4.15.  The values 
are the average of 2 independent experiments.  The standard deviations were lower than 0.004 
and therefore not shown. 
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100 mL pre-cultured NRRL Y-132 into the fermentor medium containing 2% soluble starch 

and 15 g/L of barley α-amylase.  Starch concentration, biomass and ethanol production were 

measured (Figure 4.12).  Most of the starch was hydrolysed in the first hour (data not shown).  

Over 24 hours of fermentation, 10.6 g/L of ethanol and 2.0 g/L of biomass were generated with 

ethanol production being close to 100% of the theoretical yield.  The results are comparable 

with the batch fermentation data obtained using 2% glucose (Figure 4.9).  The results indicate 

that NRRL Y-132 is able to utilize maltose for cell proliferation and fermentation as efficiently 

as glucose. 

The availability of utilizable reducing sugars can affect the proliferation and ethanol 

production of NRRL Y-132.  In order to investigate this possibility, glucoamylase was used to 

perform starch hydrolysis in batch fermentation.  As stated in section 2.3, glucoamylase 

hydrolyses starch polymers at a relatively slow rate compared to α-amylase and generates 

glucose residues.  The fermentation was carried out under the same conditions as above except 

that 1 g/L of glucoamylase was added instead of α-amylase.  The small amount of 

glucoamylase was used since this is the typical amount used in industrial fermentations, and to 

allow starch hydrolysis to occur at a relatively slow rate compared to the one performed with α-

amylase.  Ethanol was detected after 8 hours, and over a 36-hour fermentation, 6.1 g/L of 

ethanol and 1.3 g/L of biomass were produced (Figure 4.13A).  The yield of ethanol and 

biomass was relatively low compared to the fermentation with added α-amylase.  All of the 

starch was hydrolysed by the end of the fermentation (data not shown).      

For comparison, a parallel batch fermentation was performed with NRRL Y-132/pAMY 

(Figure 4.13B).  Over the 36 hours of fermentation, 6.8 g/L of ethanol and 2.0 g/L of biomass 

were produced, which are comparable to the results obtained from the batch fermentation using 

NRRL Y-132 under the same conditions (Figure 4.13A).  Interestingly, for the batch 

fermentation using NRRL Y-132/pAMY, no detectable ethanol was produced in the first 23 

hours, which was 15 hours delayed compared to NRRL Y-132 (Figure 4.13B).  The results 

suggest that the yield of biomass and ethanol were compromised when the availability of 

utilizable reducing sugars was limiting.   

In order to further confirm this, batch fermentation with the addition of both α-amylase 

(15 g/L) and glucoamylase (1 g/L) was performed, which would be expected to release glucose 

residues from starch polymer at a very fast rate.    Over  24  hours  of  fermentation,  10.2 g/L of  
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Fig. 4.12  Batch Fermentation of NRRL Y-132 with Addition of 15g/L of Barley α-Amylase.  
One hundred mL of pre-cultured NRRL Y-132 was used to inoculate the fermentor containing 
2% soluble starch.  Biomass changes and ethanol production were measured over 24 hour 
period at the time points indicated.  This batch fermentation was performed once.  
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Fig. 4.13  Batch Fermentation with the Addition of 1 g/L of Glucoamylase.  One hundred mL 
of pre-cultured NRRL Y-132 (A) or NRRL Y-132/pAMY (B) was used to inoculate the 
fermentor containing 2% soluble starch.  Biomass changes and ethanol production over time 
were measured.  Each of the batch fermentations was performed once. 
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ethanol and ~2.0 g/L of biomass were produced, and ethanol production was detectable after the 

first hour of fermentation (Figure 4.14A).  The results are comparable to the fermentation 

performed on 2% glucose (Figure 4.9), suggesting that the availability of reducing sugars in the 

fermentor did affect cell proliferation, ethanol production rate and total ethanol yield, and low 

availability of utilizable reducing sugars in the fermentor delayed the production of ethanol and 

lowered the overall yield of cell mass and ethanol.  

However, a parallel fermentation performed with NRRL Y-132/pAMY showed 

different results (Figure 4.14B).  Over a 24-hour fermentation, 7.9 g/L of ethanol and 2.0 g/L of 

biomass were produced.  Even though the availability of utilizable reducing sugars is the same 

for both batch fermentation experiments, ethanol production in the fermentation by NRRL Y-

132/pAMY was delayed about 5 hours compared with the one by NRRL Y-132, and total 

ethanol yield (7.8 g/L) was lower than that of NRRL Y-132 (10.2 g/L).  Prolonged incubation 

did not increase the overall ethanol yield.  NRRL Y-132/pAMY showed a reduced ethanol 

production rate and overall ethanol yield compared to the wild type as shown in Figure 4.14, 

suggesting over-expression of barley α-amylase may have generated stress on yeast 

fermentation pathway. 

Comparison between Figure 4.13A and Figure 4.14A shows that the addition of barley 

α-amylase (besides glucoamylase) did increase overall biomass and ethanol yield in NRRL Y-

132; however, less effect was observed in NRRL Y-132/pAMY (Figure 4.13B and Figure 

4.14B).  In addition, the addition of barley α-amylase increased the initial rate of biomass and 

ethanol production in both NRRL Y-132 and NRRL Y-132/pAMY. 
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Fig. 4.14  Batch Fermentation with the Addition of 15 g/L of Barley α-Amylase and 1 g/L of 
Glucoamylase.  One hundred mL of pre-cultured wild type NRRL Y-132 (A) or NRRL Y-
132/pAMY (B) was used to inoculate the fermentor containing 2% soluble starch.  Biomass 
changes and ethanol production over time were measured.  Batch fermentations were performed 
once. 
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4.6.3 Measurement of Starch Concentration in Batch Fermentation Using Iodine Assay 

Starch concentration is an important parameter to measure during batch fermentation.  

Since the Iodine assay was shown to be a valid method to measure starch concentration when 

quantifying α-amylase activity, the feasibility of using this assay to measure starch 

concentrations from samples collected from batch fermentation was investigated.  Synthetic 

yeast media was used for all batch fermentations instead of YPD medium (section 3.2).  It has 

been reported that the presence of YPD medium can cause a bleaching effect in the Iodine 

assay (Manonmani et al., 1999).  It was necessary to investigate whether the synthetic yeast 

media interfered with colour development in the Iodine assay.  As detailed in section 3.6.7, 

known concentrations of soluble starch solutions were mixed with either water or synthetic 

yeast media before being analysed by the Iodine assay.  Measured absorbances at 580 nm were 

plotted against the standard starch concentrations (Figure 4.15).  The assay performed using 

water (panel A) generated similar results compared to the one using synthetic yeast medium 

(panel B), with both graphs showing a linear relationship between absorbances taken at 580 nm 

and standard starch concentrations.  The results indicated that synthetic yeast media does not 

interfere with colour development in the Iodine assay.   The graphs in Figure 4.15 were later 

used as standard curves for calculating starch concentrations in samples taken from the various 

batch fermentation runs.  

When samples were frozen for future analysis, the starch became insoluble and formed 

aggregates upon being thawed at 37°C.  Furthermore, yeast cells contained in the samples 

might also cause bleaching which could interfere with the Iodine assay.  Because of these 

factors, samples were boiled in a water bath for 30 min before being analysed by the Iodine 

assay to re-solubilize the starch and break down yeast cells in the samples.  For comparison, the 

same samples with or without boiling treatment were analysed by the Iodine assay.  The results 

demonstrated that the measured starch concentrations were close to the expected values after 

boiling treatment (Table 4.3).  In order to confirm that the measurements were accurate, and not 

affected by unknown factors present in the samples, known concentrations of soluble starch 

solutions were used to spike two other frozen samples collected at the end of a batch 

fermentation, which was performed with NRRL Y-132 on 2% soluble starch with the addition 

of 1 g/L of  glucoamylase.    The  samples  were  boiled  for  30 min  and analysed by the Iodine  
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Fig. 4.15  Effect of Synthetic Yeast Media on the Iodine Assay When Measuring Starch 
Concentration.  Solutions containing 100 μL of known concentrations of soluble starch and 100 
μL of either water (A) or Synthetic yeast media (B) were subjected to the Iodine assay.  The 
measured absorbances at 580 nm were plotted against standard starch concentrations (5, 7, 10, 
15, 17, 20 g/L).  The values are the averages of 3 independent experiments.  The standard 
deviations were lower than 0.006 and therefore not shown. 
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     TABLE 4.3  Effect of Boiling on Starch Concentration Determination in Frozen Samples 

 

 Not Boiled Boiled  

 
Absorbance 

at 580 nm 
[Starch] (g/L) 

Absorbance 

at 580 nm 
[Starch] (g/L) 

Time 

(hours) 

1 0.076 1.5 0.929 18.4 0 

2 0.064 1.1 0.787 15.6 160 

 

Samples were taken from a batch fermentation with wild type NRRL Y-132 on 2% soluble 
starch.  Samples were stored at -20°C. Frozen samples were either boiled for 30 min or thawed 
at 37°C before being analysed.  The two samples were taken at different time points as 
indicated above.  Absorbance at 580 nm was measured and the readings were converted to 
starch concentration using the standard curve shown in Figure 4.15.  The values are the 
averages of 2 independent experiments.  The standard deviations were lower than 0.002 (not 
shown). 
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assay.  Boiled samples were spiked with 100 μL of 20 g/L and 5 g/L soluble starch solutions, 

respectively, and analysed by Iodine assay (Table 4.4).  The soluble starch concentrations in the 

spiked solutions were correctly measured by the Iodine assay.  The results indicate that, with 

boiling treatment of the samples, the Iodine assay generates reliable measurements of starch 

concentration in samples collected from batch fermentations. 

 

4.6.4 Plasmid Stability of NRRL Y-132 in Batch Fermentation 

Plasmid stability in NRRL Y-132/pAMY is important for the maintenance of 

constitutive expression of cell surface anchored α-amylase.  In small volume cultures of NRRL 

Y-132/pAMY, blasticidin was always added to ensure that all the cells maintained their 

plasmids.  However, adding blasticidin is not practical for large-scale fermentation processes 

and may increase the difficulty of purifying the final product.  The importance of blasticidin on 

maintaining the selection pressure on the amylolytic activity of NRRL Y-132/pAMY was 

investigated by performing the starch plate assay without addition of blasticidin.  As shown in 

Figure 4.16A, no halo formation was observed around colonies in the absence of blasticidin.  

This indicated that NRRL Y-132/pAMY lost their amylolytic activity without the selection 

pressure of blasticidin.     

As suggested in section 2.3.4, during batch fermentation, allowing NRRL Y-132/pAMY 

to grow on starch could act as a selection pressure since only yeast expressing α-amylase would 

be able to degrade starch and take up the released sugars for energy supply.  To investigate 

whether the ability of yeast to grow on starch as the sole carbon source could act as a selection 

pressure, plasmid stability was measured in starch fermentations where NRRL Y-132/pAMY 

was used.  As detailed in section 3.9, samples were taken from the fermentor at different time 

points, then diluted with sterile water.  The same amount of diluted cell suspension was plated 

on two YPD plates and two other YPD plates containing 100 μg/mL of blasticidin.  The 

number of colonies was counted from each plate after two days of incubation at 30°C, and 

plasmid stability was defined as the number of blasticidin resistant cells within the entire 

population of cells in the fermentor. 

As  described  previously,   three  batch  fermentations  under  different  conditions were 

performed with NRRL Y-132/pAMY.  In the batch fermentation with the addition of 1 g/L of 

glucoamylase  (Figure 4.13B),  the  samples  taken  at the beginning of the fermentation (0 hour) 
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TABLE 4.4  Effect of Synthetic Yeast Media on Starch Concentration Determination 

 

 

 Not spiked Spiked  

 
Absorbance 

at 580 nm 
[Starch] (g/L) 

Absorbance 

at 580 nm 
[Starch] (g/L) 

Time 

(hours) 

1 0.008 0.0 0.952 18.9 72 

2 -0.010 0.0 0.256 5.1 72 

 

Samples were collected from batch fermentation performed with wild type NRRL Y-132 on 2% 
soluble starch with the addition of 1 g/L of glucoamylase.  Frozen samples were boiled for 30 
min and analysed by the Iodine assay (un-spiked).  Then, known concentrations of starch 
solutions (1. 20 g/L; 2. 5 g/L) were added to the boiled samples (spiked), respectively.  
Absorbance at 580 nm was measured for each sample and the readings were converted to starch 
concentration using the standard curve shown in Figure 4.15.  The values are the averages of 2 
independent experiments.  The standard deviations were lower than 0.004 and therefore are not 
shown. 
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Fig. 4.16  Effect of Blasticidin Selection Pressure on Amylolytic Activity of NRRL Y-
132/pAMY Using the Starch Plate Assay.  A diluted cell suspension of NRRL Y-132/pAMY 
was plated on YPD plates containing 1% soluble starch without blasticidin (A) or with 100 
μg/mL of blasticidin (B).  Plates were incubated at 30°C for 2 days, then stained with iodine 
vapour. 
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showed that 100% of the yeast expressed the plasmid.  After 23 hours, plasmid stability 

dropped slightly to 89%, and was maintained at this level until the end of the fermentation 

(Figure 4.17A).  This suggested a much higher amount of plasmid-bearing cells in the 

fermentor than plasmid-free cells.  When both barley α-amylase and glucoamylase were added 

into the fermentor, plasmid stability quickly dropped to 40% at the 12-hour point, and remained 

between 40-50% until the end of the fermentation (Figure 4.17B).  In addition, compared with 

the plasmid stability described in the first fermentation experiment (Figure 4.17A), plasmid 

stability from this fermentation was much lower than the one with only glucoamylase added.  

For the batch fermentation without addition of any amylolytic enzymes, plasmid stability data 

was only available after 45 hours (Figure 4.18).  At the 45-hour point, plasmid stability was 

approximately 12%.  Following this, it gradually increased to 65% at the 116-hour point.  

Plasmid stability then remained between 75-85% until the end of the batch fermentation.   

The last batch fermentation involved a prolonged fermentation period, and the plasmid 

stability remained relatively high until the end of the experiment (Figure 4.18A).  For each 

sample point, the total number of colonies that grew on YPD plates was plotted against the 

number of colonies that grew on YPD plates with blasticidin.  Interestingly, after 123.5 hours, 

the number of plasmid bearing cells remained at a relatively constant level.  In contrast, it was 

the number of plasmid free cells that decreased over time (Figure 4.18B).   
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Fig. 4.17  Plasmid Stability During Batch Fermentation Using NRRL Y-132/pAMY with the 
Addition of Amylolytic Enzymes.  (A) With addition of glucoamylase; (B) With addition of 
both glucoamylase and α-amylase.  Samples were taken from the fermentor at the indicated 
time point as shown above.  Samples were diluted with sterile water and the same amount of 
diluted cell suspension was plated on two YPD plates and two other YPD plates containing 100 
μg/mL of blasticidin.  Plasmid stability is shown as the percentage of colonies grown on 
blasticidin containing plates compared with colony number on plates without blasticidin. 
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Fig. 4.18  Plasmid Stability During Batch Fermentation Using NRRL Y-132/pAMY without 
Addition of Amylolytic Enzymes.  Samples were taken from the fermentor at the indicated time 
points.  Samples were diluted with sterile water and the same amount of diluted cell suspension 
was plated on two YPD plates and two other YPD plates containing 100 μg/mL of blasticidin.  
Plasmid stability is shown as the percentage of the colonies grown on blasticidin containing 
plates compared with colony number on plates without blasticidin (A).  The actual colony 
numbers counted from the plates with or without 100 μg/mL of blasticidin are also shown 
above (B). 
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5.0 DISCUSSION 

 

 

5.1 Detection and Quantification of α-Amylase Activity in Intact Yeast 

The cDNA encoding barley α-amylase was fused to a fragment encoding the 3’ half of 

α-agglutinin, and the fusion gene was cloned downstream of the constitutive promoter ADH1 in 

the yeast expression plasmid pAMY containing the E. coli Amp gene and the blasticidin 

resistance gene.  Clones harbouring pAMY (NRRL Y-132/pAMY) were selected by incubating 

yeast cells on YPD agar plates containing 100 μg/mL of blasticidin.  The amylolytic activity of 

the NRRL Y-132/pAMY clones was detected by using the starch plate assay, which generated 

visible haloes around the colonies out of the dark purple background on the YPD-starch plate 

after iodine vapour staining. 

However, the starch plate assay does not generate quantitative data on α-amylase 

activity.  Moraes et al. (1995) suggested that the size of the halo generated by the starch plate 

assay does not positively correspond to the amount of amylolytic activity displayed by a 

particular clone.  Hence, the amylolytic activity generated by intact NRRL Y-132/pAMY was 

further quantified using the DNS and Iodine assays.  Both assays were used to measure the 

starch-hydrolysing rate in the same reaction catalyzed by NRRL Y-132/pAMY.  The DNS 

assay measured the amount of products, the reducing sugars, formed in the reaction solution, 

and the Iodine assay measured the amount of substrate, soluble starch, remaining in the reaction 

solution.  The data showed that both assays directly assessed the reduction of substrate and 

accumulation of product in the 6-hour reaction, respectively, by observing changes in colour 

intensity.  The results are consistent with the observation of the amylolytic activity generated by 

NRRL Y-132/pAMY using the starch plate assay, and confirmed the starch hydrolysis ability of 

NRRL Y-132/pAMY. 

 Interestingly, the specific activity of α-amylase measured by the Iodine assay was about 

2 times higher than the one measured by the DNS assay (Table 4.1 and 4.2).  Moreover, as 

shown in Figure 4.7 and 4.8, for the reactions catalyzed by NRRL Y-132/pAMY, after about 5 

hours, no soluble starch was detected in the reaction solutions.  However, reducing sugars were 
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measured at an almost linear rate until the end of the reaction.  Assuming an equal mass 

conversion between starch and the reducing sugars generated from it, the amount of hydrolyzed 

starch measured by the Iodine assay should be equal to the amount of reducing sugars generated 

as is measured by the DNS assay.  The reactions initiated in the presence of 5 mg/mL of soluble 

starch indicated the depletion of starch in the reaction solution after 4-5 hours.  However, only 

2.6 mg/mL of maltose were generated in the first 4 hours, and about a total of 4 mg/mL of 

reducing sugars was detected by the DNS assay after 6 hours.  Surprisingly, the results 

appeared to suggest an unequal conversion rate between the substrate and the products.  Based 

on the data, starch molecules were being broken down faster than the reducing sugars were 

generated. 

Xiao et al. (2006) reported a similar inconsistency between the Iodine assay and DNS 

assay when quantifying the amylolytic activity of Aspergillus oryzae α-amylase.  They found 

that the α-amylase activity measured with the Iodine assay was 5 times higher than the one 

measured by the DNS assay.  They speculated that the inconsistency was mainly due to the 

nature of the amylolytic activity of α-amylase on starch molecules.  α-Amylase hydrolyses 

starch molecules at the α-1,4 linkage, but only generates a small amount of reducing sugars.  

The oligosaccharides produced would not be detected by the Iodine assay.  Thus, based on the 

results from the two assays, a higher starch hydrolysis rate was observed comparing to the 

reducing sugar generation rate.  Xiao et al. (2006) also showed that better consistency was 

observed between the two assays when glucoamylase activity was measured, since 

glucoamylase removes one glucose residue from the non-reducing end of a starch polymer at a 

time.  Collectively, the Iodine assay appears to more accurately measure α-amylase activity.  

However, the DNS assay generates more accurate information on the availability of 

fermentable sugars.  

There are additional factors that may affect the assay results.  Some yeast strains are 

able to utilize maltose or even maltotriose in addition to glucose.  During batch fermentation 

studies, it was discovered that S. cerevisiae NRRL Y-132 could utilize maltose with high 

efficiency for cell proliferation and fermentation (Figure 4.10).  This strain’s ability to take up 

maltose may potentially affect the accuracy of the results from the DNS assay, since it is 

possible that the yeast cells take up some of the maltose generated from starch hydrolysis.  

Because of this, the amylolytic activity measured by the DNS assay could be potentially lower 
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than the actual α-amylase activity.  The issue could be addressed in the future by performing a 

control experiment in which known concentrations of maltose are used in batch fermentation 

experiments, and the amount of maltose measured after certain periods of time to check the 

maltose uptake rate by NRRL Y-132/pAMY. 

 In addition, it has been reported that the Iodine assay is sensitive to temperature changes 

and the presence of reducing factors in the assay (Manonmani et al., 1999). The thiol groups 

present in most bacteria and yeast media could compete with starch polymers for iodine binding, 

and cause a bleaching effect on the assay.  Because of this, the addition of both hydrogen 

peroxide and CuSO4 · 5H2O solutions into the assay was suggested to protect against a 

bleaching effect caused by reducing factors in the growth medium.  However, during these 

assay experiments, it was found that both yeast cells and YPD medium cause a bleaching effect 

in the Iodine assay.  When hydrogen peroxide and CuSO4·5H2O solutions were added into the 

solutions, it was difficult to obtain stable absorbances at 580 nm (data not shown).  

Alternatively, a different method was used to avoid these interferences.  The YPD medium was 

removed by repeated washings with sodium acetate buffer (pH4.5), and yeast cells were 

separated from the samples by centrifugation (refer to section 3.5.2) before being subjected to 

the assay.  In addition, since the starch-iodine complex is unstable at a temperature of 35°C or 

higher (data not shown), samples were first cooled on ice before they were used in the assay. 

 Even though YPD medium showed a strong bleaching effect in the Iodine assay, 

interestingly, synthetic yeast medium did not cause the bleaching effect, and gave the same 

result as when water was tested (Figure 4.15A).  The results suggested the possibility of using 

the Iodine assay to measure starch concentration in batch fermentation samples (Table 4.3).  As 

mentioned above, the results obtained by the Iodine assay may not be accurate for assaying 

reducing sugar formation.  However, as long as the amount of utilizable reducing sugars in the 

fermentor is not an issue, the Iodine assay is an effective method to measure starch-hydrolysing 

rate in batch fermentation studies. 

 

 

5.2 Effects of Cell Surface Anchoring on α-Amylase Activity 

S. cerevisiae is an efficient expression system for heterologous genes.  There are many 

examples of foreign proteins being expressed and secreted at high levels in yeast.  Functional 
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amylolytic enzymes from various sources have been successfully expressed in yeast, and 

particularly, constitutive production of active barley α-amylase with kinetic properties 

comparable to barley seed α-amylase in yeast was reported (Wong et al., 2002).  

Even though it was shown in this work that NRRL Y-132/pAMY was able to hydrolyse 

soluble starch under conditions favourable for barley α-amylase activity (pH 4.5, 45°C) (Figure 

4.7 and 4.8), the starch-hydrolysing rate of NRRL Y-132/pAMY was much lower than 

expected, and its starch hydrolysis rate was not sufficient to support yeast proliferation on 

soluble starch (Figure 4.10).  The results suggested that the amylolytic activity catalysed by the 

intact NRRL Y-132/pAMY on soluble starch is reduced compared to that of the free enzyme, 

and possible causes are discussed below.   

Reduction in activity has been observed for amylolytic enzymes expressed as fusion 

proteins or as cell surface anchored proteins, as detailed in section 2.4.  The folding of a protein 

might be changed when it is expressed as part of a fusion protein, and this might lead to 

changes in its three dimensional structure and its catalytic activity.  Also, when a protein is 

anchored on the cell wall, its motility towards substrates is reduced compared to free enzymes, 

and its accessibility to substrates may be hindered by the anchorage.  Previous studies have 

shown that fusing the C-terminus of α-amylase to a glucoamylase resulted in a reduction or 

total loss of its catalytic activity (Moraes et al., 1995), and dramatic activity losses on α-

amylase were observed when its C-terminus was anchored on the cell surface through α-

agglutinin (Shigechi et al., 2004).   

As stated in section 2.4.3, there is thought to be a substrate-binding site located within 

domain C, which was also reported to be a very flexible structure and may play an important 

role in facilitating the starch hydrolysis rate of barley α-amylase (Kadziola et al., 1998; 

Gottschalk et al., 2001; Robert et al., 2003, 2005).  It is speculated that the anchoring process 

might make domain C a rather rigid structure (since it is directly fused with α-agglutinin), 

preventing the starch-binding site within this domain from having access to starch molecules.  

This could be further studied by inserting a flexible peptide linker between barley α-amylase 

and α-agglutinin.  Changes in the binding constant (Kb) of cell wall anchored barley α-amylase 

can also be measured.  

Assuming that the starch binding site on domain C was unable to gain access to its 

substrate due to the anchoring process, with both the catalytic site and another major starch-
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binding site located at domain A, which is located at N-terminal of barley α-amylase and not 

directly affected by the anchoring process, barley α-amylase’s activity should only be partially 

affected.  However, this does not agree with my experimental observations: cell surface 

anchored barley α-amylase displayed only weak activity.  Another possible explanation would 

be that these starch binding domains of barley α-amylase work in a cooperative manner rather 

than working independently from each other.  It has been suggested that the starch-binding site 

at domain C may cooperate with the starch binding site at domain A to untangle and re-orient 

the α-helical structure of starch polymer so that the substrate is correctly positioned at the 

catalytic site (Robert et al., 2003, 2005).  However, there has been no direct evidence to support 

this hypothesis.   

Furthermore, anchorage may not be the only reason behind the reduction in activity.  

The yeast cell wall structure may also interfere with the accessibility of cell surface anchored 

enzymes towards their substrates, especially long hydrophobic chain molecules such as starch.  

The outer layer of the yeast cell wall is covered with mannoprotein, and its hydrophobic nature 

may drive the hydrophobic chains of starch away.  The barley α-amylase’s accessibility 

towards starch molecules may be reduced if the enzyme is not further extended away from the 

cell surface.   

 

 

5.3 Batch Fermentation on Soluble Starch 

In industrial starch fermentation, it is not practical to add large amounts of antibiotics.  

Changes in plasmid stability were monitored in 3 different batch fermentations on 2% soluble 

starch using NRRL Y-132/pAMY.  The observed plasmid stability varied greatly among the 

three batch fermentations.  Comparing plasmid stability between the batch fermentation with 

only addition of Rhyzopus glucoamylase and the fermentation with addition of both barley α-

amylase and Rhyzopus glucoamylase, plasmid stability in the former batch fermentation was 

almost twice as high than in the latter one (Figure 4.17).  Starch hydrolysis was carried out at a 

faster rate when both α-amylase and glucoamylase were used relative to when glucoamylase 

was used during fermentation, so glucose availability was speculated to be a major factor 

causing the difference on plasmid stability between the two runs. 
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Based on two previous studies on plasmid stability using recombinant yeast in batch 

fermentation (Alintas et al., 2001; Kondo et al., 2002), in the absence of antibiotics, plasmid 

stability was directly affected by the amount of glucose available in the fermentor.  It was 

reported that when there is a large amount of fermentable sugars available in the medium, 

plasmid-free cells tended to rapidly outgrow plasmid-bearing cells (Alintas et al., 2001).  My 

experiment results are consistent with this report (Figure 4.17). 

Interestingly, high plasmid stability was observed in batch fermentation using 

concentrated NRRL Y-132/pAMY as the inoculate (Figure 4.18A) even under prolonged 

incubation.  In this case, starch potentially maintained selection pressure on the plasmid-bearing 

cells when the amount of glucose was limiting in the fermentor, since only plasmid-bearing 

cells were able to hydrolyse starch and release fermentable sugars that could be taken up by the 

cells.  By limiting the amount of free glucose in the medium, the chances for plasmid-free cells 

and bacteria to proliferate are very small.  However, the reason for low plasmid stability at the 

early stage of fermentation is unclear.  It is possible that the fluctuation that occurred in the 

numbers of plasmid free cells may have been due to the utilization of nutrients from dead cells 

in the fermentor (Figure 4.18B).  There was a large biomass drop at the 60-hour point (Figure 

4.10B).  Cells may have died at that point due to a lack of glucose caused by a lack of sufficient 

amylolytic activity. 

Inhibition of enzyme activity caused by accumulation of products in the fermentation 

medium can be an issue when soluble amylolytic enzymes or those secreted by recombinant 

yeast are used for starch hydrolysis.  During my project, I obtained no actual data that 

suggested that product inhibition was occurring.  Kondo et al. (2002) anchored Rhyzopus 

oryzae glucoamylase on yeast cell surface.  In an 80 hours starch fermentation utilizing this 

genetically modified yeast strain, glucose could barely be detected in the fermentation medium.  

They suggested that since all of the amylolytic enzymes were anchored on the cell surface, 

starch hydrolysis was occurring in close proximity to the recombinant cells.  Because of this 

particular circumstance, almost all of the glucose released from starch hydrolysis would be 

readily taken up by the yeast cells and no accumulation of glucose would be found in the 

fermentation medium.  Based on their data, even though there is no direct evidence for product 

inhibition during cell surface anchored amylolytic experiments, it can be speculated that the 

glucose concentration close to the yeast cell surface was much higher than in the rest of the 
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medium.  I speculate that the uptake of glucose would be very quick and product inhibition was 

not a major issue for cell surface anchored amylolytic enzyme activity during starch 

fermentation. 

 

 

5.4 Conclusions 

Various biotechniques have been used to improve industrial ethanol production by 

fermentation.  Two different approaches have been generally used to achieve this goal.  One 

approach is to engineer amylolytic enzymes to optimize their functionality during starch 

hydrolysis.  The other approach is to select microorganisms with superior cellular abilities for 

ethanol productivity by mutation or metabolic engineering.  In this work, the two approaches 

were combined: barley α-amylase was engineered to be immobilized on the yeast cell wall and 

the new recombinant yeast gained starch utilizing ability.  The barley α-amylase gene was 

fused with a cell surface-anchoring gene, α-agglutinin, and inserted into a yeast expression 

plasmid.  An antibiotic resistance gene, blasticidin, was inserted into the expression plasmid as 

the selection marker, so that this new plasmid can be generally used to engineer a broad range 

of wild type industrial ethanol producing strains rather than the genetically modified yeast 

strains only available from research laboratories.   

To quantify expression, DNS and Iodine assays that are generally used to quantify 

amylolytic enzyme activities were further developed in this work.  Under specific assay 

conditions (pH4.5, 45°C), 100 mL NRRL Y-132/pAMY cell suspension was able to hydrolyse 

5 mg/mL of soluble starch in 6 hours. 

The ability of NRRL Y-132 and NRRL Y-132/pAMY on starch utilization and ethanol 

production was studied by anaerobic, batch fermentations using soluble starch as the sole 

carbon source.  The results of batch fermentation study demonstrated that NRRL Y-132 is a 

maltose utilizing strain, and glucoamylase activity may not be required for this particular strain 

during starch fermentation (Figure 4.12).  Strain NRRL Y-132/pAMY was able to show starch-

utilizing ability under the fermentation conditions with soluble starch as the sole carbon source. 

However, due to low amylolytic activity on the intact cell surface, the biomass yield was much 

lower than when glucose was used as the carbon source, and no ethanol was generated during 

the starch fermentation.  It is hypothesized that an improved cell surface amylolytic activity can 
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be achieved by employing an alternative anchoring protein, which will be further discussed in 

section 5.5.   

In addition, to study the effects of over-expression of cell surface anchored barley α-

amylase on cell metabolism, the overall biomass yield and ethanol producing ability of NRRL 

Y-132/pAMY were compared with those of NRRL Y-132 under the same batch fermentation 

conditions.  Even though NRRL Y-132/pAMY showed a lower biomass generation rate and a 

delay in ethanol production, the overall ethanol production was at a similar level as NRRL Y-

132.   

Furthermore, without the addition of antibiotics, high plasmid stability was observed 

during starch fermentations utilizing NRRL Y-132/pAMY.  This is probably due to the starch 

utilizing ability that acted as a positive selection pressure.  This suggests that this approach can 

be used to maintain high plasmid stability during industrial fermentation processes without the 

need for supplying costly and contaminating antibiotics. 

 

 

5.5 Future Directions 

The anchoring of barley α-amylase on yeast cell surface with α-agglutinin might have 

reduced the accessibility of starch molecules to the starch-binding site at its C-terminus.  Thus, 

a different anchoring protein such as flocculation protein 1 should be tested.  As detailed in 

section 2.3.2.3, flocculation protein 1 is also a cell surface protein, which is involved in the 

flocculation ability in certain yeast strains.  Structural studies have shown that flocculation 

protein 1 has two distinct domains that have cell wall anchoring properties: GPI anchoring 

domain at its C-terminus and mannoprotein binding domain at its N-terminus.  It has been 

reported that the N-terminal mannoprotein binding domain could bind non-covalently to the 

mannoproteins on the outer layer of yeast cell wall (Takeshi et al., 2002).  By deleting C-

terminal GPI anchoring domain of flocculation protein 1, its N-terminal mannoprotein binding 

domain can be used to anchor barley α-amylase on yeast cell wall.  In this way, barley α-

amylase is anchored on cell wall through its N-terminus with its C-terminal starch binding 

domain having free access to substrates (Figure 4.19).  To date, a Rhizopus oryzae lipase 

(Takeshi. et al., 2002) and a bacteria α-amylase (Shigechi et al., 2004) were successfully 

anchored on the cell surface by using flocculation protein 1.  Importantly, the studies were able 
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to show that the two enzymes, after being anchored by flocculation protein 1, showed 60 times 

higher activity than when they were anchored by α-agglutinin.   

Alternatively, based on the current design, a peptide linker might be inserted between 

barley α-amylase and α-agglutinin.  Suitable peptide linkers with different lengths could be 

studied. The peptide linkers may restore the flexibility of domain C of barley α-amylase and 

also extend the enzyme further away from the cell wall structure to increase its ability to bind to 

the starch substrate. 
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Figure 4.19 Structure of Fusion Protein Containing Flocculation Protein 1 as the Anchoring 
Protein.  The C-terminal GPI anchoring signal was removed from flocculation protein 1 in this 
design so that its mannoprotein binding domain will be responsible for cell wall anchorage.  
Barley α-amylase will be extended away from cell wall structure by the stalk domain of 
flocculation protein 1. 
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