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ABSTRACT 

 

Even though fluid mechanics is well developed as a science, there are many 

physical phenomena that we do not yet fully understand. One of these is the deformation 

rates and fluid stresses generated in a boundary layer for a non-Newtonian fluid. One 

such non-Newtonian fluid would be a waxy crude oil flowing in a centrifugal pump. This 

type of flow can be numerically modeled by a rotating disk system, in combination with 

an appropriate constitutive equation, such as the relation for a Bingham fluid. A Bingham 

fluid does not begin to flow until the stress magnitude exceeds the yield stress. However, 

experimental measurements are also required to serve as a database against which the 

results of the numerical simulation can be interpreted and validated.  

 

The purpose of the present research is to gain a better understanding of the 

behavior of a Bingham fluid in the laminar boundary layer on a rotating disk. For this 

project, two different techniques were employed: numerical simulation, and laboratory 

investigations using Particle Image Velocimetry (PIV) and flow visualization. Both 

methods were applied to the flow of a Bingham fluid over a rotating disk.  

 

In the numerical investigations, the flow was characterized by the dimensionless 

yield stress “Bingham number”, By, which is the ratio of the yield and viscous stresses. 

Using von Kármán’s similarity transformation, and introducing the rheological behavior 

of the fluid into the conservation equations, the corresponding nonlinear two-point 

boundary value problem was formulated. A solution to the problem under investigation 
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was obtained by numerical integration of the set of Ordinary Differential Equations 

(ODEs) using a multiple shooting method. The influence of the Bingham number on the 

flow behavior was identified. It decreases the magnitude of the radial and axial velocity 

components, and increases the magnitude of the tangential velocity component, which 

has a pronounced effect on the moment coefficient, CM, and the volume flow rate, Q.  

 

In the laboratory investigations, since the waxy crude oils are naturally opaque, an 

ambitious experimental plan to create a transparent oil that was rheologically similar to 

the Amna waxy crude oil from Libya was developed. The simulant was used for flow 

visualization experiments, where a transparent fluid was required. To fulfill the demand 

of the PIV system for a higher degree of visibility, a second Bingham fluid was created 

and rheologically investigated. The PIV measurements were carried out for both filtered 

tap water and the Bingham fluid in the same rotating disk apparatus that was used for the 

flow visualization experiments. Both the axial and radial velocity components in the (r-z) 

plane were measured for various rotational speeds. 

 

Comparison between the numerical and experimental results for the axial and 

radial velocity profiles for water was found to be satisfactory. Significant discrepancies 

were found between numerical results and measured values for the Bingham fluid, 

especially at low rotational speeds, mostly relating to the formation of a yield surface 

within the tank.  
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Even though the flow in a pump is in some ways different from that of a disk 

rotating in a tank, some insight about the behavior of the pump flow can be drawn. One 

conclusion is that the key difference between the flow of a Bingham fluid in rotating 

equipment from that of a Newtonian fluid such as water relates to the yield surface 

introduced by the yield stress of the material, which causes an adverse effect on the 

performance and efficiency of such equipment.  
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CHAPTER 1 
 
 
Introduction 
 
 

This thesis presents the results of a numerical and experimental investigation of 

the hydrodynamics of a Bingham fluid flowing over a rotating disk. The motivation for 

the present study is introduced in this chapter. The characteristics of non-Newtonian fluid 

behavior, with specific reference to the yield stress, are also introduced. Waxy crude oil 

is one example of such a fluid. General remarks about the characteristics of rotating disk 

systems are also presented. The introduction will conclude with the objectives and the 

scope of this study. 

 

1.1  Motivation 
 

Most fluid flows encountered in environmental and industrial applications are 

directly influenced by a solid boundary. Significant shear rates and shear stresses often 

develop in narrow boundary layers associated with solid bodies moving through a liquid, 

such as the impeller of a centrifugal pump or the vanes of a turbine.  

 

In the petroleum industry, centrifugal pumps are used extensively to transport 

fluids of high apparent viscosity such as waxy crude oils. Where the fluid has strong non-
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Newtonian characteristics, pump performance is often observed to be adversely affected. 

For example, the pump head at a given flow rate may be significantly reduced (Walker 

and Goulas, 1984; Li, 2000). These effects not only relate to the rheology of the fluid, but 

also reflect the special deformation rates created in a pump. 

 

A rotating disk system can be used to model the flow characteristics, including 

deformation rates, that occur in practical turbo-machinery such as the flow of waxy crude 

oils or foodstuffs in centrifugal pumps. There are various reasons for choosing the 

rotating disk system as a prototype for practical rotating flows. The rotating disk has 

proven to be a successful system for the study of transport phenomena in Newtonian 

fluids where a boundary layer type of flow occurs. It is one of the few three-dimensional 

flows which allow a complete analytical solution to the equations of motion. 

Experimentally, the rotating disk has many advantages over other geometries. For a 

liquid system, the apparatus consists of a housing to surround the disk and a motor-

control system to provide rotation. Surprisingly, the flow of a non-Newtonian fluid over a 

rotating disk has received little attention, even though it has extensive technical 

application, such as turbo-machinery, lubrication and chemical processes. One common 

application involves the use of a centrifugal pump to transport non-Newtonian waxy 

crude oils. However, non-Newtonian shear characteristics can cause the flow through the 

impeller to differ in an adverse manner from that of the original pump design. Also, the 

speed of the rotating impeller subjects the fluid to relatively high shear. This high shear 

can cause degradation and damage to shear sensitive fluids, such as blood and foodstuffs. 

Therefore, the underlying motivation for the present work is to better understand this 
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flow behavior, which includes developing a better understanding of the shear distribution 

over a range of operating conditions.  

 

1.2 Fluid Rheology 

Rheology is the study of deformation and flow of fluids in response to stress. To 

make an incompressible fluid flow, a shear stress must be applied. Fluids include both 

gases and liquids. Here the focus on the liquids. 

 

Consider a liquid placed between two parallel plates with area A as shown in Fig. 

1.1. The top plate is moved with constant velocity, V, by the action of a shearing force F , 

while the bottom plate is fixed.  Within this context, the following definitions apply: 

Shear stress: The shear stress, τ, is defined as the force per unit area F/A.  

Shear rate: If the variation in velocity between the plates is constant, the shear rate,γ& , is 

the velocity difference between the plates divided by the distance between them, h.  

Viscosity: For a Newtonian fluid the viscosity is defined by Newton’s law of viscosity, 

γµτ &=           (1.1) 

The fluid viscosity µ represents the resistance of the fluid to shearing force, and is called 

the dynamic viscosity. The kinematic viscosity is defined as 

ρ
µκ =           (1.2) 
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Figure 1.1: Shearing motion in a fluid between two parallel plates 

 

 

1.2.1 Classification of Fluids 

Fluids are normally classified into four categories, according to the relationship 

between the shear stress and shear rate: 

1- Newtonian fluids 

2- Time-independent non-Newtonian fluids 

3- Time-dependent non-Newtonian fluids 

4- Viscoelastic fluids 
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1.2.1.1 Newtonian Fluids 

Newtonian fluids follow the simple rheological equation known as Newton’s law 

of viscosity (Eq. 1.1). The magnitude of the viscosity is not dependent on shear rate or 

time. Its rheological behavior (shear stress versus shear rate) is shown in Fig. 1.2. It 

shows a linear relationship and passes through the origin. Water and mineral oils are 

common Newtonian liquids. 

 

1.2.1.2 Time-Independent Non-Newtonian Fluids 

Non-Newtonian fluids are only type of fluid which do not obey Newton’s law of 

viscosity (Eq.1.1). The shear stress is a non-linear function of the shear rate. Fig. 1.2 

shows the rheological behavior of several types fluids. The viscosity of a time-

independent non-Newtonian fluid is dependent on the shear rate (Skelland, 1967).  

Depending on how the apparent viscosity changes with shear rate the flow behavior is 

characterized as follows: 

Shear thinning 

The apparent viscosity of the fluid decreases with increasing shear rate. This type 

of behavior is also referred to as “pseudoplastic” and no initial stress (yield stress) is 

required to initiate shearing. A number of non-Newtonian materials are in this category, 

including grease, molasses, paint, starch and many dilute polymer solutions. 

Shear thickening 

The apparent viscosity of this fluid increases with increasing shear rate and no 

initial stress is required to initiate shearing. This type of behavior is also referred to as 

“dilatant.” Beach sand mixed with water and peanut butter are examples of dilatant 
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liquids. Dilatant liquids are not as common as pseudoplastic liquids. Dilatant rheological 

behavior is also shown in Fig. 1.2. 

Viscoplastic Fluids  

Viscoplastic materials are fluids that exhibit a yield stress.  Below a certain 

critical shear stress there is no permanent deformation of the fluid and it behaves like a 

rigid solid. When that shear stress value is exceeded, the material flows like a fluid. 

Bingham plastics are a special class of viscoplastic fluids that exhibit a linear behavior of 

shear stress versus shear rate once the fluid begins to flow. An example of a plastic fluid 

is toothpaste, which will not flow out of the tube until a finite stress is applied by 

squeezing.  

 

1.2.1.3 Time-Dependent Non-Newtonian Fluids 

For these kinds of fluids, their present behavior is influenced by what happened to 

them in the recent past. These fluids seem to exhibit a “memory” which fades with time. 

The apparent viscosity of the fluid depends on a number of properties including shear rate 

and the history of the shearing process. Depending on how the apparent viscosity changes 

with time the flow behavior is characterized as: 

Thixotropic 

A thixotropic liquid will exhibit a decrease in apparent viscosity over time at a 

constant shear rate. Once the shear stress is removed, the apparent viscosity gradually 

increases and returns to its original value. When subjected to varying rates of shear, a 

thixotropic fluid will demonstrate a "hysteresis loop". Drilling mud and cement slurries 

are among the many materials which can exhibit thixotropic behavior. 
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Rheopectic 

A rheopectic liquid exhibits a behavior opposite to that of a thixotropic liquid, i.e. 

the apparent viscosity of the liquid will increase over time at a constant shear rate. Once 

the shear stress is removed, the apparent viscosity gradually decreases and returns to its 

original value.  Rheopectic fluids are rare. Examples include specific gypsum pastes and 

printers inks. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Rheological behavior of various types of non-Newtonian fluids 

 

1.2.1.4 Viscoelastic fluids 

These materials exhibit both viscous and elastic properties. The rheological 

properties of such a substance at any instant of time will be a function of the recent 
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history of the material and cannot be described by simple relationships between shear 

stress and shear rate alone, but will also depend on the time derivatives of both of these 

quantities. Typical examples of viscoelastic material are bread dough, polymer melts and 

egg white. 

 

1.2.2 Viscoplastic Materials and the Yield Stress Concept 

A viscoplastic material possesses a yield stress which must be exceeded before 

significant deformation can occur. In limiting cases, a viscoplastic material may flow and 

deform throughout the domain it occupies if the stress is everywhere above the yield 

stress in the control volume of interest; on the other hand, it may not flow at all if the 

stress is everywhere below this value. Such materials include suspensions and fine 

particle slurries including paint, pastes and foodstuffs.  

 

A number of empirical relations have been proposed to account for the behavior 

of viscoplastic materials. The three most widely used are the Bingham, Casson, and 

Herschel-Buckley equations. The simplest and most widely used model is the two-

parameter model proposed by Bingham (Bird et al., 1982): 

ypy ττγµττ >+= &      (1.3) 

yττγ ≤= 0&      (1.4) 

The Bingham model takes into account two parameters, the yield stress, τy, and the 

plastic viscosity, µp, to fully characterize the material rheology. Note that once the fluid 

flows, the plastic viscosity defines the rate of change of the excess shear stress τ- τy with 

the shear rateγ& . shear stress with shear rate. In contrast, the apparent viscosity is the ratio 
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of the shear stress to the shear rate, and in this case it approaches the plastic viscosity at 

very high shear rates. Figure 1.3 shows how two Bingham materials could have one 

identical parameter and a very different second parameter. These materials would 

consequently exhibit different flow behaviors. 

 

Figure 1.3: Rheology of Bingham materials 

 
 

1.2.3 Waxy Crude Oils 

Crude oils, which are found in a number of reservoirs throughout the world, 

contain significant quantities of wax which can crystallize during production, 

transportation, and storage (Barry, 1971). This process can result in severe difficulties in 

pipelining and storage. The wax present in petroleum crudes consists of alkanes. Paraffin 

wax forms as a non-volatile long chain hydrocarbon with a composition of CnH2n+2 where 

n is 30 or greater. It crystallizes to form an interlocking structure of plate, needle, or 

malformed crystals (Lovell and  Seitzer 1981). When the oil is cooled to a temperature 
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lower than the crystallization point (generally called the pour point), the growing and 

agglomerating crystals entrap the oil into a gel-like structure. Consequently, the flow 

properties of the oil become distinctly non-Newtonian. At temperatures above the pour 

point, the waxy crude oils behave as Newtonian fluids. 

 

1.3 Rotating Flows 

Rotating flows are found in a number of technical applications including 

viscometry, lubrication, and rotating machinery such as centrifugal pumps. The internal 

geometry of centrifugal pumps is very complicated. In order to understand the flow and 

deformation that occurs in these pumps, it is common practice to approximate the 

geometries by plane rotating-disk systems. Fluid flows related to rotating disks can be 

classified into two main categories (Daily and Nece, 1960): 

(a) “Free disk” is a disk that rotates within an infinite medium. The free disk 

is shown in Fig. 1.4 (a). It provides an asymptotic reference for all 

rotating-disk systems. 

(b) “Enclosed disk” is a disk that rotates within a chamber of finite 

dimensions (rotor-stator system), as shown in Fig. 1.4 (b).  

 

1.3.1 Free Disk 

The case of laminar flow of an infinite flat disk rotating in a fluid represents one 

of the few exact solutions of the three-dimensional Navier-Stokes equations. This type of 

flow was first theoretically investigated using an approximate method developed by Von 

Kármán 1921 (Cochran, 1934). Using similarity transformations Von Kármán was able to 
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reduce the Navier-Stokes equations to a system of coupled ordinary differential 

equations. He found that this disk flow represents a boundary layer flow where the 

boundary layer thickness is independent of the radial distance. The tangential component 

of the shear stress at the disk surface imparts a circumferential velocity on the adjacent 

fluid layer, which in turn moves radially outwards due to the centrifugal forces. In other 

words, the fluid in the immediate neighborhood of the disk is circulated by friction, and 

then forced outwards by the centripetal acceleration. The velocity in the boundary layer 

has a radial and a tangential component. The fluid driven outwards by the centrifugal 

force is replaced by an axial flow toward the disk. 

 

In the current study, the flow over a rotating disk has been restricted to the 

laminar flow regime. As discussed in Wu and Squires (2000), for a Newtonian fluid, the 

flow over a rotating disk is laminar for a Reynolds number, φRe , less than about 4.5 x 

104. The flow is fully turbulent for φRe  greater than about 3.9 x 105. For some 

Newtonian fluids, it is possible to increase the rotation rate and/or disk size to reach the 

turbulent regime. However, for a disk rotating in a Bingham fluid, simply increasing the 

rotation rate is not sufficient to generate turbulence, due to the large plastic viscosity that 

is associated with many Bingham fluids. However, once turbulence is generated, it 

enhances the performance of equipment handling Bingham fluids.  
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1.3.2 Enclosed Disk 

Flows between a rotating and stationary disk in a fixed casing have been the 

subject of many investigations, since they model various practical configurations (Owen 

and Rogers, 1989). For a Newtonian fluid these flows are controlled by two parameters: 

the height to radius aspect ratio  

R
hAR =           (1.5) 

where h is the axial distance between the two disks and R is the radius of the rotating 

disk, and the rotational Reynolds number  

κφ

2
Re RΩ=          (1.6) 

 where Ω is the angular velocity of the rotating disk and κ the kinematic viscosity of the 

working fluid.  

 

 

 

 

 

 

 

 

 

 (a) Free disk      (b) Enclosed disk  

Figure 1.4: Schematic diagram of rotating-disk systems 
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1.4 Instrumentation 

Direct measurements of the velocity field in various flow configurations are 

important for verification of assumptions and predictions of various theoretical models. 

Only a limited number of experimental measurements of the velocity field in boundary 

layer flows induced by rotating bodies have been conducted (Wichterle et al., 1996). The 

lack of velocity data is partly due to the fact that conventional methods for measuring 

velocity, such as Pitot-tubes and thermal anemometry, are not suitable for such flows. 

 

The development of optical methods such as laser Doppler velocimetry (LDV) 

and particle image velocimetry (PIV), together with recent advances in signal processing, 

represent great advances in the measurement of fluid velocity fields. PIV has proven to 

be a useful tool for experimental measurement of velocity profiles in rotating flows, since 

precise measurements may be performed without significant disturbance of the flow 

(Pedersen et al., 2003).   

 

The PIV system measures velocity by determining particle displacement over 

time using a double-pulsed laser technique. A two frame cross-correlation method is 

employed in the present study. The synchronizer controls dual lasers through the 

computer which triggers and fires two laser pulse sequences at a given separation time 

and a given frequency during the measurement. The laser light sheets illuminate the plane 

of interest within the flowing fluid, which is seeded with tracer particles. The 

synchronizer also triggers the CCD camera and two image frames of particles in the 
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measurement region are obtained. Frame 1 contains the image from the first laser pulse, 

and frame 2 contains the image from the second laser pulse. The time between frame 1 

and frame 2 is the same as that between laser pulse 1 and laser pulse 2. The flow velocity 

is found by measuring the distance the particle has traveled from frame 1 to frame 2, and 

dividing by the time between pulses.  

 

1.5 Research Methodology 

This research will use both numerical and experimental methods. The mass and 

momentum transport equations govern the flow of both Newtonian and non-Newtonian 

fluids. Boundary-layer approximations are often valid near a solid surface, and the 

resulting equations may be expressed in either differential or partially integrated form. 

Similarity hypotheses can facilitate the solution of transport equations, by recasting the 

problem in a more convenient form. With respect to material properties, Newtonian or 

non-Newtonian behavior can be represented using the appropriate model.  

 

Experimental rotating flow investigations often employ both qualitative and 

quantitive measurements. Techniques of flow visualization and particle image 

velocimetry (PIV) can be used to map the velocity field in the region of high shear. 

 

1.6 Objectives 

The overall objective of the present thesis is to investigate the behavior of a 

Bingham fluid in the laminar boundary layer created on a rotating disk. The effect of the 

yield stress on the flow is of special interest. Two different techniques are adopted. The 
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first technique involved performing analytical modeling with numerical simulation. The 

second technique involved performing laboratory investigations using Particle Image 

Velocimetry (PIV) and a flow visualization technique. Both methods are applied to the 

flow of both Newtonian and Bingham plastic fluids over a rotating disk. The specific 

objectives of the thesis are as follows: 

 

1. Numerically solve the problem of the flow of a Bingham fluid over a rotating 

disk; to explore the influence of the yield stress on the flow patterns; and to 

determine how different the resulting flow field is from that of a Newtonian 

fluid. 

2. Create and measure the rheological properties of a transparent Bingham fluid 

that rheologically approximates the Amna waxy crude oil. 

3. Qualitatively visualize the extent of the flow of the simulated waxy oil over 

the rotating disk using a dye visualization technique. 

4. Measure the local velocity field of a Newtonian and a Bingham fluid 

flowingover a rotating disk using the PIV technique. The PIV measurements 

are not intended to be exhaustive but rather represent a first attempt to apply 

the technique to a Bingham fluid. Only laminar flow will be considered. 

5. Assess the adequacy of the approximations of the numerical model in the light 

of the experimental results, and integrate the numerical and experimental 

results to better understand the flow of a Bingham fluid over a rotating disk.  
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1.7 Thesis Organization  

The layout of the remaining chapters of this thesis is as follows. First, in Chapter 

2, a review of previous work related to the simulation of rotating disk systems, fluid 

characterization, and experimental measurement and visualization is presented. 

Following this, a numerical investigation is presented in the next two chapters. Chapter 3 

is devoted to the description of the problem, governing equations, Bingham and power 

law models, and use of similarity transformations to reduce the partial differential 

equations to a solvable set of ordinary differential equations. It also introduces the 

numerical solution of the system of non-linear ordinary differential equations, using a 

multiple shooting method. The results obtained from the numerical investigation are 

discussed in Chapter 4. The effects of fluid properties (plastic viscosity and yield stress) 

on the velocity field, torque and flow rate are also discussed. Then, the laboratory 

investigation is described in the next three chapters.  Chapter 5 describes the rheological 

experiments which includes development of transparent waxy oils, viscosity 

measurements and rheological characterization. Chapter 6 presents visualization of the 

flow of a Bingham fluid over the rotating disk, while Chapter 7 discusses the 

experimental particle image velocimetery (PIV) results. Comparison of numerical and 

experimental results is also given. Finally, Chapter 8 summarizes the main conclusions, 

states the contributions of the thesis, and gives recommendations for future research. 
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CHAPTER 2 
 
 
Literature Review 
 
 
2.1  Flow Properties of  Waxy Crude Oils 

 
Waxy crude is one of the most common crude oils in the petroleum industry. 

Waxy crudes are very important from an environmental viewpoint since they have a low 

sulfur content (Barry, 1970). Also, their availability combined with the need for new 

sources of petroleum has encouraged production of these crude oils. However, wax 

agglomerates increase the apparent viscosity of this oil which increases the energy 

requirements associated with pipeline transportation. Since the temperature at which 

paraffin crystallizes is not particularly low (usually between 10° C and 30° C), the 

problem of crystallization affects most of the waxy crude oils that are found in nature 

(Lorenzo, 2003). 

 

The successful and efficient production of waxy crudes requires knowledge and 

understanding of their rheological behavior. The rheological properties of different kinds 

of waxy crude oils have recently been studied. These studies report the existence of non-

Newtonian behavior for certain waxy crudes. Barry (1971) had investigated waxy crude 
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oils from North Africa and noticed that at surface temperatures, the wax from the pumped 

crude oil begins to precipitate. This changes the transport characteristics from those of a 

Newtonian fluid to a non-Newtonian fluid. His work shows that these crudes behave as 

Newtonian fluids at 10° C above the pour point temperature. When the waxy crude oils 

are cooled below this temperature, they become non-Newtonian Bingham fluids. 

Davenport and Somper (1971) have reported that waxy crude oils from Libya and Nigeria 

have exhibited similar behavior. They develop a gel structure when cooled quiescently 

resulting in the observed Bingham behavior. Waxy crude oils from Venezuela were 

investigated by Rojas et al. (1977). These crude oils exhibited a yield stress which was 

associated with the crystallization of waxes at temperatures below the pour point. Irania 

and Zajac (1982) studied the West African waxy crude oils in Zaire and Cabinda. Their 

study also showed that the crudes behaved as a Bingham plastic, and yield stress values 

were determined by extrapolation of the linear section of shear stress-shear rate data. 

 

Numerous studies (Wardhaugh and Boger, 1987; Wardhaugh and Boger, 1991; 

Ronningsen, 1992; Cheng, 1998) have also shown that below their pour point, waxy 

crude oils often exhibit time-dependent flow behavior which was believed to correspond 

to the gel structure gradually breaking down under the action of a constant shear stress or 

shear rate (termed “thixotropy”) (Davenport and Somper, 1971). This complicates 

measurement of the viscosity of waxy crude oil. Davenport and Somper (1971) noted that 

repeatable results could not be obtained even with the same apparatus. However, 

Wardhaugh and Boger (1987) showed that repeatable results could be achieved by the 

removal of the fluid memory and control of the shear and thermal history. This was 
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achieved by heating the sample to a sufficiently high temperature such that the wax 

crystals fully dissolve, loading the sample into a preheated viscometer and then cooling 

both the sample and instrument to the test temperature with careful control of the shear 

rate. Following this procedure, they concluded that the pretreated waxy (equilibrium 

state) oils behave as Bingham plastic fluids. 

 

Oil producers have been aware of the difficulties of pipelining waxy crude oil and 

fuel oils for several decades. Traditionally the issue has been avoided by heating the 

crude or the crude and the pipeline, thus holding the wax in solution (El-Eman et al., 

1993). It is possible to improve the flow of waxy crude oils by a number of alternative 

methods. Pipelining the crude as an oil in water (O/W) emulsion reduces the viscosity to 

nearly that of the continuous water phase (Marsden, 1973). Blending with a less waxy 

crude oil also improves the flow properties by altering the wax solubility relationships 

(Marsden, 1973). More recently, chemical additives, for example pour point depressants, 

flow improvers, paraffin inhibitors, or wax crystal modifiers have been developed. Small 

quantities of the additives are capable of affecting the crystal growth and as a result 

improve the flow properties (El-Eman et al., 1993 and Al-Fariss et al., 1993). 

 

The mechanisms by which these additives modify the wax structures, however, 

are not completely understood. As such, the choice of the most appropriate additives for 

crude oils are largely based on trial and error rather than scientific principles. Therefore, 

conducting a waxy oil rheological investigation is of importance in the design of 

pipelines and pumps. In earlier studies, the characteristics of these oils were found to be 
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affected by temperature, shear rate and wax concentration (Wardhaugh and Boger, 1987; 

Wardhaugh and Boger, 1991; Ronningsen, 1992; Al-Fariss, 1993; Cheng and Boger, 

1998). 

 

2.2  The Concept of Yield Stress and Its Measurement 

The yield stress concept was first introduced by Bingham and Green (1919) for a 

class of fluids known as viscoplastic fluids. After their initial work, many different 

equations have been proposed to describe the relationship between shear stress and shear 

rate for different viscoplastic materials (Nguyen and Boger, 1992). In many models, the 

yield stress was simply defined as the minimum stress required to produce a shear flow. 

As pointed out by Cheng (1998), for yield stress fluids in general, the yield stress is a 

time-dependent property. Upon yielding, the flow properties show time dependency 

indicating a degradation of structure with continued shear, finally developing equilibrium 

or time-independent flow properties (under certain circumstances) which still exhibit a 

yield stress which can be represented using the Bingham model. Early measurements of 

the yield point for waxy crude oils were performed with capillaries or pipelines 

(Davenport and Somper, 1971; Ronningsen, 1992). Both capillary and model pipeline 

techniques have now been rejected due to the uncertainties arising from the known 

effects of stress concentration, compressibility of the pipe and the oil, and diffusion of the 

wax-free oil (Davenport and Somper, 1971; Wardhaugh and Boger, 1991). Rotational 

viscometers with concentric cylinders, parallel plates, a cone–and plate, or vanes have 

also been used to study the yield stress of waxy crude oils (Davenport and Somper, 1971; 

Lovell and Seitzer, 1979; Wardhaugh and Boger, 1987; Al-Fariss et al., 1993; El-Eman et 
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al., 1993; Cheng and Boger, 1998; Kirsanov and Remizov, 1999). However, no standard 

test for determining the yield stress of waxy crude oils has been adopted by the petroleum 

industry because of the very poor repeatability between the different tests. One of the 

reasons for the poor repeatability is that the yield stress, along with other rheological 

properties of waxy crude oils, depend not only on what the sample is experiencing, i.e., 

temperature and shear rate, but also on what the sample has experienced, i.e., thermal and 

shear history (Wardhaugh and Boger, 1987; Ronningsen, 1992; Cheng and Boger, 1998). 

Wardhaugh and Boger, (1987, 1991) stated that even small variations in any of the test 

conditions or history can cause a marked difference in the measurement results. 

 

 

2.3  Flow in Turbo-Machinery 

In a turbo-machine, there is a conversion of the kinetic energy of a rotating shaft 

to the flow work of a moving stream.  For pumps, fans and compressors, this conversion 

is from shaft work to flow work.  For turbines, the conversion is from flow work to 

rotating shaft work. In all cases, the most important shear rates and shear stresses appear 

in narrow boundary layers of the moving solid parts, e.g. disks, impellers, and blades. 

 

A common type of momentum-based pump is a centrifugal pump. A centrifugal 

pump consists of an impeller with blades rotating inside a casing. The impeller rotation 

reduces the pressure at the pump inlet causing fluid to flow into the pump. The fluid is 

then accelerated outward along the blades and exits the pump casing. 
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Typically, the pump characteristics are established in the pump manufacturer’s 

test facilities using water as the test fluid. The performance data for media with other 

viscosities are only rarely tested in special closed-loop test facilities. In most cases, the 

water data will be converted to the new working conditions by applying formulas given 

in standard references (Hydraulic Institute Standard, 1975). 

 

To the author’s knowledge, the flow pattern of a non-Newtonian fluid in the 

impeller of a centrifugal pump has not yet been measured. This is due to the difficulty of 

measuring velocity and shear stress in rotating boundary layers, using conventional 

methods (Wichterle and Mitschka, 1998). For example, performing particle image 

velocimetry (PIV) measurements within turbine impellers is difficult due to the optical 

obstruction to the illuminating sheet and to the camera caused by the blades (Wichterle et 

al., 1996). However, studies have investigated the effect of non-Newtonian fluids on the 

performance of centrifugal pumps in general (Walker and Goulas, 1984; Li, 2000, Xu, et 

al., 2002). Li (2000) noted that using a viscous fluid drops the performance of a 

centrifugal pump because the high viscosity results in a rapid increase in the disk friction 

losses over the impeller shroud and hub as well as in the flow channels of the pump.  

 

Because of the speed of the impeller, the fluid passing through the pump is 

subjected to high shear. This high shear can cause degradation and damage to shear 

sensitive fluids, such as blood and foodstuffs. This concern was the primary motivation 

for researchers in the biomedical industry and other biotechnological or chemical 

processes, to investigate shear distribution in centrifugal pumps (Lutz, 1998; Yamane, 



Chapter 2 Literature Review 

 

 23

1999). Lutz (1998) presented electro-diffusional measurements of the wall shear rate at 

the impeller surface of a radial centrifugal pump. Using a different approach, Yammane 

(1999) conducted a flow visualization study of a centrifugal blood pump to determine the 

shear and velocity profiles in the back gap between the impeller and the casing. Blood 

has rheological properties similar to a waxy crude oil, and both of them are classified as 

Bingham fluids.  

 

Due to the geometric complexity of turbine impellers and the velocity field in a 

centrifugal pump, there is little chance for obtaining theoretical predictions from solution 

of the full equations of motion (Xu et al., 2002; Wichterle et al., 1996). However, for 

simplified rotating geometries, e.g., around rotating disks, such a solution can be 

obtained. 

 

2.4 Flow in Rotating Disk Systems 

The rotating disk is a popular geometry for studying different flows, because of its 

simplicity and the fact that it represents a classical fluid dynamics problem. It is a subject 

of widespread practical interest in connection with steam turbines, gas turbines, pumps, 

and other rotating fluid machines (Owen and Rogers, 1989). This flow paradigm has also 

been used to investigate the momentum (Andersson et al., 2001) and heat and mass 

transfer characteristics of Newtonian and non-Newtonian fluids (Kawase and Ulbrecht, 

1983; Hansford and Litt, 1968; Mishra and Singh, 1978).  
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2.4.1 Newtonian Rotating Disk Flow 

The rotating disk problem was first solved by von Kármán (1921). He showed 

that the Navier-Stokes equations for steady flow of a Newtonian incompressible fluid due 

to a disk rotating far from other solid surfaces can be reduced to a set of ordinary 

differential equations. These equations can be solved by an approximate integral method. 

The problem was further investigated both theoretically and experimentally by Cochran 

(1934), Goldstein (1935) and Gregory, Stuart, and Walker (1955). The disk acts like a 

centrifugal pump where the fluid near the disk is thrown radially outwards. This, in turn, 

creates an axial flow towards the disk to satisfy continuity. The mathematical solution of 

the Navier-Stokes equations for the Newtonian laminar case by von Kármán (1921) is an 

exact solution of the complete equations. However, the solution obtained is of the 

boundary-layer type. For the laminar case the boundary layer has a constant thickness, as 

shown theoretically by von Kármán (1921) and demonstrated experimentally by Gregory, 

Stuart and Walker (1955). 

 

Bodewadt (1940) studied the problem of the disk at rest and the fluid at infinity 

rotating with uniform angular velocity. Lance and Rogers (1961) numerically studied a 

similar problem with the disk rotating with a different angular velocity than that of the 

surrounding fluid. Stewartson (1953), following a suggestion made by Batchelor (1951), 

investigated the effect of uniform suction of fluid from the surface of the rotating disk. 

The effect of suction is essentially one of decreasing both the radial and tangential 

components of the velocity and increasing the axial flow towards the disk at infinity. The 

boundary layer thinned as a consequence. Wagner (1948) and Millsaps and Pohlhausen 
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(1952) found that the heat transfer from a disk with a uniform surface temperature was 

different from that of the isothermal surroundings. Later, Sparrow and Gregg (1959) 

obtained the rate of heat transfer from a rotating disk to a fluid based on an arbitrary 

Prandtl number. Sparrow and Gregg (1960), considering the same rotating disk. They 

extended their investigation to study the effects of mass injection or removal at the 

surface of the disk on heat transfer rates and on the flow field around the disk. 

 

A number of fluid flow devices have an internal geometry where non-rotating 

surfaces are located in close axial and radial proximity to rotating surfaces. This gives 

considerable attention to the case of a plane circular disk rotating in a concentric 

cylindrical housing closed at either end by flat circular end plates. This case includes the 

conditions obtained in centrifugal machinery where problems of disk friction torque and 

power loss, and heat transfer are related to the circulation and secondary flows induced 

by the rotating element (Daily and Nece, 1960). These induced flows are dependent on 

the geometries of the rotating element and its enclosure. Enclosed disk flow has been 

investigated analytically and experimentally by Soo (1958), Conover (1968), Mellor, 

Chapple and Stokes (1968), and Daily and Nece (1960). Soo (1958) performed an 

analytical study on the Newtonian laminar incompressible flow between a rotating disk 

and casing. His treatment addresses the case of radial inflow, radial outflow, and no-

through flow. Experimental measurements of disk friction in a finite housing have shown 

that the case of an enclosed disk is quite different from the case of a disk in an infinite 

medium, although many of the theoretical correlations follow the trends associated with 

an infinite system (Conover, 1968; Daily and Nece, 1960). 
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In all the above studies, the fluid was assumed to be isothermal and exhibit 

Newtonian behavior. However, it is known that this physical property may change 

significantly with temperature or shear rates. To predict the flow behavior more 

accurately it is necessary to take into account non-Newtonian fluid behavior. This is the 

subject of the following section. 

 

2.4.2 Non-Newtonian Rotating Disk Flow 

Although the solution for a Newtonian fluid in a rotating disk system was first 

given many years ago (von Kármán, 1921), the equivalent solutions for non-Newtonian 

fluids appeared more recently in the literature (Mitschka and Ulbricht, 1965). Several 

investigators have considered the flow of non-Newtonian liquids on a rotating disk from 

a theoretical prospective. Acrivos et al. (1960) investigated the flow of a non-Newtonian 

fluid (power-law fluid) on a rotating plate. Their industrial motivation was to determine 

whether the non-Newtonian character of the substance would produce uniform films if 

the materials were spun rapidly on a disk. Because of the non-linearity introduced by the 

viscosity function, a similarity transformation is no longer possible. However, by using 

boundary-layer approximations and the appropriate dimensionless variables, one arrives 

at a set of ordinary differential equations that can be solved numerically (Mitschka and 

Ulbricht, 1965; Balaram and Luthra, 1973; Wichterle and Mitschka, 1998; Andersson et 

al., 2001). Mitschka and Ulbricht (1965) were the first to obtain a numerical solution for 

the flow caused by a disk rotating in liquids with a shear dependent viscosity, in this case 

a power-law liquid in the range 0.2 ≤ n ≤ 1.5. Wichterle and Mitschka (1998) revisited 



Chapter 2 Literature Review 

 

 27

the same study, with a focus on the shear of liquid particles to fit with the application of 

micro-mixing technology.  

 

The work of Mitschka and Ulbricht (1965) was reconsidered by Andersson et al. 

(2001) to test the reliability of their numerical technique when considering shear-

thickening fluids beyond those considered by Mitschka and Ulbricht. Their results 

confirm the high quality of the calculations of Mitschka and Ulbrecht, and conclude that 

the effect of the rheological parameter is that the boundary layer thickness increases as 

the power-law index n is reduced throughout the entire parameter range from 2.0 to 0.2. 

 

Studies involving heat and mass transfer (Hansford and Litt, 1968; Mishra and 

Singh, 1978; Greif and Paterson, 1973) have used parts of the solutions provided by 

Mitschka and Ulbrecht (1965) in order to determine coefficients for heat and mass 

transfer.  

 

In recent years the process of spin coating has been widely used in the 

manufacture of semiconductor devices, optical devices and magnetic recording devices. 

Many of the coating materials are suspensions and the Bingham fluid equation may be 

chosen to describe the rheological properties of the materials (Bird et al., 1982).  

However very few numerical, theoretical or experimental works have considered the flow 

of yield-stress fluids, which is due to the difficulties bound up with the surface separating 

the solid and gel phases. Matsumoto et al. (1982) have used the momentum integral 

method to analyze the film thickness of a Bingham fluid on a rotating disk. Their work is 



Chapter 2 Literature Review 

 

 28

unique in that it made the first attempt to investigate the film thickness for a non-

Newtonian fluid. In this context, Jenekhe and Schuldt, (1985) have theoretically analyzed 

the free surface film flow of Bingham plastic liquids on a rotating disk. Their analysis 

found that the film thickness is not always uniform as was predicted for a Newtonian 

fluid by Emslie et al. (1958) and Brian (1986). Wilson et al. (1989) claimed that this 

defect was attributed to the original Bingham model that was used to describe the 

rheological properties of the materials. Because of the inherent discontinuity in the 

original Bingham model, the presence of the velocity gradients in the denominator of the 

constitutive equation makes this model singular as the yield surface is approached. 

Burgess and Wilson (1996) proposed the bi-viscosity model which was first introduced 

by O’Donovan and Tanner (1984). This model suggests a constitutive equation that is 

valid throughout the material. Other variations of the Bingham model have been 

introduced, for example, the exponential model proposed by Papanastasiou (1987) and 

the modified Bingham model by Bercovier and Engelman (1980) who added a small 

regularization parameter to the denominator of the viscosity function, so that it remains 

non-zero even when the yield surface is approached. 

 

2.4  Visualization of Fluid Flows 

Observations of flow patterns using streamlines or pathlines often reveal valuable 

qualitative information about fluid motion. In order to be able to investigate fluid motion, 

one must apply certain techniques to make the flow motion visible. Such methods are 

called flow visualization techniques.  
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One of the most important discoveries in the history of fluid mechanics was based 

on experimental observations by Reynolds (1883) using a dye injection technique to view 

the transition of flow from a laminar to a turbulent regime. Since then, flow visualization 

techniques have been used extensively in the development of many areas of fluid 

mechanics. Flow visualization techniques can be used to reveal qualitative features of the 

flow, and in some cases they even provide quantitive measurements of flow parameters. 

 

There are many factors which guide the selection of a particular flow visualization 

method. Fluid properties, flow geometry, and cost are some of the main factors one must 

consider. For aerodynamic flow visualization, smoke generation methods are the most 

popular. According to the shape of the object of study, smoke-tube equipment or a 

smoke-wire (Mueller and Batill, 1980) can be used to generate visible smoke in a wind 

tunnel. In viewing liquid flows, dye injection, surface-coating, and solid particle tracing 

techniques are the most popular. 

 

Visualization methods based on dye injection techniques have been reviewed by 

Werle (1973). Werle indicated that the primary concern with this technique is that the 

injection must not significantly alter the flow under study. For example, the velocity of 

the injected dye should be the same as the surrounding fluid. 

 

Surface-coating techniques are mainly used to observe the flow of fluid in contact 

with a solid surface (Pao, 1983). Pao used Nigrosine dye to coat a solid surface. When it 
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is in contact with liquid, this dye will slowly dissolve to give a color sheet downstream of 

the coated surface. 

 

2.5  Particle Image Velocimetry 

In the past, a variety of one-point measurement techniques have been applied to 

measure the velocities at some selected positions in rotating disk systems.  Daily and 

Nece (1960) used a Pitot tube to measure the velocities at some selected positions in a 

water rotating disk flow rig. Kang et al. (1998) obtained experimental results using a hot-

wire anemometer from a smooth disk rotating in air and suggested that the probe has a 

big influence on the flow field. Laser Doppler velocimetry (LDV) were also reported by 

Berman and Pasch, (1986), Sirivat et al. (1988) and Riahi and Hill, (1994). These 

methods have provided fundamental knowledge regarding the flow phenomena occurring 

in rotating disk system. However, a more detailed knowledge of the flow field of a 

rotating disk is needed to validate the results of a numerical model. For this purpose, the 

particle image velocimetry (PIV) technique is a powerful alternative to these methods. 

 

To date, there appears to have been no other reported PIV measurements of an 

infinite flow of a fluid over a rotating disk. The only previous works that are of relevance 

to our investigation are those by Prasad and Adrian (1993) and Zhou and Garner (1996). 

Although, the main attention of Prasad and Adrian (1993) was to test the stereoscopic 

PIV system (twin-camera), a basic distribution of the nature of a flow induced by a 

rotating disk in glycerin was given.  Zhou and Garner (1996) used a PIV technique to 

measure the flow field of water inside an enclosed cylindrical chamber containing a 
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rotating disk. Their measurements were compared with the results obtained from a CFD 

model, but very little information was given regarding the behavior of the flow. One of 

the objectives of the present work is to demonstrate the potential of using the PIV 

technique to measure the velocity field of a non-Newtonian Bingham plastic fluid over a 

rotating disk.  
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CHAPTER 3 
 
 
Numerical Model 
 
 

In this chapter, a classical problem considered by von Kármán is extended to the 

laminar flow of a Bingham fluid over a rotating disk. The solution for the case of a 

power-law fluid is also obtained as a validation of the numerical technique. The flow of a 

Newtonian fluid is a special case of the constitutive equations of both the solution of the 

Bingham and the power-law models. The numerical solution to the (highly) non-linear 

ODEs arising from the non-linear relationship between the shear stress and the shear rate 

is presented.  

 

Contrary to experiments, in numerical simulations it is possible to isolate certain 

properties of the fluid by using specific, idealized assumptions, and then study the effects 

of these assumptions on the flow. In this context, the numerical model assumes that the 

fluid near the disk has been sufficiently sheared for it to deform and flow to be 

established. The shear stresses in the vicinity of the disk are assumed everywhere to 

exceed the yield stress so that any plug-flow region is avoided. 
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3.1 Formulation of the Problem 

The laminar flow produced by a disk rotating in an infinite fluid, where the effects 

of flow confinement do not exist, is a classical fluid mechanics problem. For this system, 

it is usually convenient to use a stationary frame of reference. As shown in Fig.3.1 the 

disk rotates about the z-axis with a constant angular velocity Ω, and the origin, 0, is taken 

as the point where the axis of rotation intersects the rotating disk. A cylindrical 

coordinate system (r,φ, z) is adopted such that φ is orientated in the direction of rotation. 

Let vr, vφ  and vz represent the components of the velocity vector in cylindrical 

coordinates. Additional assumptions are as follows: 

• The flow is fully described by the continuity and conservation of momentum 

equations. 

• The fluid flow is isothermal, laminar and its density, ρ , is constant. 

• The flow is steady and axi-symmetric, i. e. 0=∂∂=∂∂ φt  for all dependent 

variables. 

 

 

 

 

 

 

 

 

Figure 3.1: Coordinate system for rotating disk flow 
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3.1.1 Boundary Conditions 

The boundary conditions for the velocity components at the surface and far away 

from the plate are given, respectively, by:      

0,,0 =Ω== zr vrvv φ   at ,0=z       (3.1) 

,0,0 →→ φvvr    as  ∞→z       (3.2) 

The value of vz vanishes near the surface of the disk, since there is no penetration. 

However, the value of zv as ∞→z  is not specified; it adjusts to a negative value, which 

provides sufficient fluid necessary to maintain the pumping effect. As shown below, it 

becomes part of the solution to the problem. In contrast to the axial velocity, both the 

radial and tangential velocities go to zero at large axial distances from the disk. 

 

3.1.2 Equations of Motions  

Applying the assumptions the transport equations for conservation of mass and 

momentum, in cylindrical co-ordinates, can be written as follows (Bird et al., 2002): 

Continuity equation 

0=
∂
∂++

∂
∂

z
v

r
v

r
v zrr          (3.3) 

Momentum equations  

in the r-direction: 
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in the φ -direction: 
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in the z-direction: 
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3.1.3 Boundary Layer Approximations 

Since the motion of the fluid is caused by the rotation of the disk, at sufficiently 

high Reynolds number the viscous effects will be confined within a thin layer near the 

disk. Therefore, further simplification can be obtained by considering the usual 

boundary-layer approximations (Owen and Rogers, 1989):  

• The component of velocity vz is very much smaller in magnitude than either of the 

other two components; 

• The rate of change of any variable in the direction normal to the disk is much 

greater than its rate of change in the radial or tangential directions 

rz ∂∂∂∂>>∂∂ andφ ; 

• The only significant fluid stress components are τφ z and τr z,. 

• The pressure depends only on the axial distance from the axis of rotation. 

 

Therefore, equation (3.3) is unchanged; it is repeated as equation (3.7). Equations (3.4) to 

(3.6) reduce to equations (3.8) to (3.10).  

0=
∂
∂++

∂
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z
v

r
v

r
v zrr          (3.7) 
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zr
vv

z
v

v
r

v
v zr

zr ∂
∂

=+
∂
∂

+
∂
∂ φφφφ τ

ρ
1        (3.9) 

z
p

∂
∂=0           (3.10) 

 

3.2 Similarity Transformations 

The classical approach for finding exact solutions of linear and non-linear partial 

differential equations is the similarity transformation. They are the transformations by 

which a system of partial differential equations with n-independent variables can be 

converted to a system with n-1 independent variables. The axisymmetric momentum 

equations associated with rotating disk flow have mainly been solved using a similarity 

transformation, which allows the governing partial differential equation set to be 

transformed into a set of ordinary differential equations. In the similarity solution, 

analytical relationships will be used and dimensionless parameters will be substituted so 

that the number of variables to be solved is reduced. 

 

The solution is based on the appropriate non-dimensional transformation variable 

given by von Kármán (Cochran, 1934) i.e., 

2/1







Ω=

κ
ζ z             (3.11) 

along with the associated set of dimensionless velocity components and pressure, i.e., 

( )
r

vF r

Ω
=ζ         (3.12 a) 
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( )
r

v
G

Ω
= φζ          (3.12 b) 

( ) ( ) 2/1κ
ζ

Ω
= zvH         (3.12 c) 

( )
κρ

ζ
Ω

−= pP         (3.12 d) 

This similarity transformation implies that all three dimensionless velocity components 

depend only on the distance from the disk, ζ. The boundary conditions are transformed 

into the ζ coordinate as follows: 

0)0(,1)0(,0)0( === HGF   at ,0=ζ          (3.13) 

,0)(,0)( →→ ζζ GF    as  ∞→ζ          (3.14) 

Note that the formulation above becomes problematic at the axis of the disk, where 

among other things the boundary layer assumptions break down. 

 

3.3 Constitutive Models 

3.3.1 Bingham Model 

Now consider the flow of a Bingham fluid over a rotating disk. A Bingham fluid 

does not deform until the stress level reaches the yield stress, after which the “excess 

stress” above the yield stress drives the deformation. This results in a two-layered flow 

consisting of a ‘plug layer’ and a ‘shear layer’. Figure 3.2 shows a sketch of a Bingham 

fluid flowing over a rotating disk, using a cylindrical coordinate system (r, φ, z).  

 

In a number of cases, the Bingham constitutive equation adequately represents the 

stress–deformation behavior of materials with a yield stress (Bird et al., 1982). This  
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Figure 3.2: Simplified schematic of the flow geometry of a Bingham fluid on a rotating 

disk   

 

 

model relates the rate-of-deformation tensor, jie , defined below in terms of the velocity 

field vector vi  
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to the deviatoric stress tensor, jiτ , using the following relations: 
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When the magnitude of the shear stress τ  is greater than the yield stress τy, the material 

flows with an apparent viscosity given by: 

γ
τ

µη
&
y

p += ,              (3.17) 

where µp is the viscosity of the deformed material, referred to as the plastic viscosity. The 

magnitudes of the shear stress and deformation rate are defined, respectively, as 

jiji τττ
2
1=           (3.18 a)  

jiji ee
2
1=γ&                 (3.18 b) 

using the summation convention for repeated indices. With the approximations noted in 

the preceding section, and assuming rotational symmetry, one then obtains 

z
vr

zr ∂
∂

=γ&                                                                                       (3.19 a)       

z
v

z ∂
∂

= φ
φγ&           (3.19 b)       

22
zzr φτττ +=          (3.20 a)        

22
zzr φγγγ &&& +=                               (3.20 b) 

using the conventional index notation to describe the individual components. 

 

It should be noted that it is not possible to explicitly express the deviatoric stress 

in terms of the rate-of-deformation for a region where the stress is below the yield value, 

τy. The areas where τ < τy have a zero rate-of-deformation, hence they translate like a 
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rigid solid. Thus, this numerical method will neglect any unsheared region which might 

exist outside the boundary layer region, and instead focus on the sheared region which 

flows with apparent viscosity, η. It follows that the apparent viscosity for a Bingham 

plastic fluid takes the following form 

 
2
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22
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For cylindrical coordinates, the two pertinent stress components in the plastic region 

assume the following forms:           
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For 
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∂

∂
∂>>∂

∂
rz  and φ  following boundary layer theory, the tangential 

component,τφ z, and the radial component, τr z, of the stress tensor become  

z
v

z ∂
∂

= φ
φ ητ               (3.24) 

z
vr

zr ∂
∂

=ητ               (3.25) 

Substitution of equation (3.21) into (3.24) and (3.25), gives 
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These are the components of stress required to close the momentum equations given by 

Eqs. (3.8) and (3.9). 

 

A useful parameter is the “Bingham Number”, which is the ratio of the yield 

stress, τy, to viscous stress. It is used to assess the viscoplastic character of the flow and is 

defined as: 

l
V

B
p

y
y

µ

τ
=            (3.28) 

which is expressed by the following relation (Matsumoto et al., 1982): 

( )2
1

2 ΩΩ
=

κρ

τ

r
B y

y ,          (3.29) 

where κ is the kinematic plastic viscosity of the fluid, ρ
µκ p=  , l is a characteristic 

length scale, and r indicates that this a local Bingham number.  
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It is possible to reduce the continuity and momentum equations to a set of 

ordinary differential equations by substitution of equations (3.12 a, b, c, d) for velocity, 

equations (3.26) and (3.27) for the shear stress components, and equation (3.29) for the 

ratio By, into equations (3.7) to (3.10) (see Appendix A). This was accomplished with the 

aid of Maple software, and the resultant equations are presented below. 

Continuity Equation 

02 =′+ HF                        (3.30) 

Momentum Equations  

r-wise 

( ) ( ) ( )
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 ′+′′+′+′′+′ GBGGFFFGFF y                 (3.31) 

φ-wise 
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 ′+′′+′+′′+′ FBGGFFGFF y                  (3.32) 

z-wise 

,HHHP ′′−′=′                       (3.33) 

where a prime denotes differentiation with respect to ζ. 
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Since the last equation, (3.33), is the only one involving P(ζ), it may be integrated 

directly to give 

 

)(2)(
2
1)0()( 2 ζζζ FHPP ++=        (3.34) 

where P(0) is the value of P at the disk. Hence no numerical integration for P is 

necessary once F and H are determined. 

 

For solution purposes, it is advantageous to eliminate the second derivatives on 

the right hand side of equations (3.31) and (3.32) so as to obtain a single second order 

variable for each equation. Algebraic calculations yield: 
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The resultant equations can be considered as a generalized case including both 

Bingham and Newtonian fluids, since setting By = 0 will simplify these equations to 

represent a Newtonian fluid, i.e., 

 

02 =′+ HF             (3.37) 

,22 HFGFF ′+−=′′            (3.38) 

,2 HGFGG ′+=′′            (3.39) 

,HHHP ′′−′=′            (3.40) 

 

The constitutive equation of the Bingham fluid has generated additional non-

linear terms in the momentum equations in comparison to the equations for a Newtonian 

fluid. Equations (3.35) and (3.36) are second order in both F and G, and first order in F, 

G and H. Therefore, we expect five arbitrary constants to appear in the general solutions 

for F, G and H, which are determined from the five boundary conditions given by (3.13) 

and (3.14). 

 

3.3.2 Power-Law Model 

As indicated in the literature review, power-law fluids have been considered by 

some researchers (Andersson et al., 2001). We include it in this study as a validation of 

the analysis being used for the Bingham fluid. Here we will only list the resulting ODEs. 

The development of these equations is given in Appendix B. The resulting ODEs are as 

follows: 
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3.4 Numerical Solution of Governing Equations  

From the basic theory of ODEs, there are two ways to solve the nonlinear second-

order system of ODEs, either as an initial value problem (IVP) or boundary value 

problem (BVP). One of the most popular methods for solving the general BVP is the 

shooting method (Roberts and Shipman, 1972). With the simple shooting method, one 

turns the BVP into a first-order IVP, and tries to obtain the solution based on a set of 

unspecified initial conditions which are then corrected through an iterative procedure 

(e.g., Newton’s method) to satisfy the boundary conditions. This procedure requires the 

transformation into the state-space form and also requires evaluation of the Jacobian. The 

success of the procedure depends on using an appropriate initial guess. 

 

The three sets of the ODEs given by equations (3.30), (3.35) and (3.36) for 

Bingham fluids, (3.37) to (3.39) for Newtonian fluids and (3.41) to (3.43) for power-law 

fluids represent a “two-point boundary value problems” (TPBVP) which must be solved 

numerically. Besides the shooting method, TPBVPs can also be solved by finite-
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difference methods. However, difficulties have been reported in the literature when 

implementing these methods to solve the ODEs associated with similarity problems in 

fluid mechanics (Kafoussias et al., 1993). These difficulties are mostly attributed to the 

fact that the ODEs are often extremely sensitive to the choice of initial conditions (Ariel, 

1992; Kafoussias et al., 1993; Andersson et al., 2001). In this case, the ODEs are indeed 

extremely sensitive to the initial guess, and both the single shooting method and the 

conventional finite-difference methods failed to converge even for the Newtonian case. 

This result notwithstanding, it is important to note that many techniques based on finite-

difference formulations have been reported as successful in solving the problem of 

sensitive initial values (Holodniok et al., 1977; Ariel, 1992; Kafoussias et al., 1993). 

 

An alternative approach is to use multiple shooting methods (Roberts and 

Shapman, 1972). Multiple shooting is a strategy that significantly enhances the stability 

of the shooting method. The approach has much in common with the single shooting 

method. The solution of the local BVP is also found by transforming the BVP into the 

IVP. The simple but very powerful idea behind this approach is to find solutions to the 

ODEs not over the full interval in a single step but to split the interval up into N sub-

intervals. The solution in each of the sub-intervals is found by integrating the ODEs using 

the fourth-order Runge-Kutta method with variable step size, and then these solutions are 

matched using Newton’s method. In this way we may think of it as being a compromise 

between the finite-difference and shooting methods. A full description of the multiple-

shooting method for a two-point boundary value problem (TPBVP) is given by Roberts 

and Shapman (1972). 



Chapter 3 Numerical Model 

 

 47

 

This method has been implemented in a subroutine called BVPMS contained in the 

International Mathematics and Statistics Libraries (IMSL). The routine BVPMS uses a 

multiple-shooting technique to solve the differential equation system ),( yxfy =′  with 

boundary conditions of the form, 0))(),(( =byayg . A fourth-order Runge-Kutta 

algorithm is used to perform the integration. An adapted version of the IMSL routine 

BVPMS has been used by the author to solve the problem specified in the previous 

section. To obtain a solution to the present problem, the domain is divided into N = 40 

sub-intervals. The nature of the problem requires a large number of BVPs to be solved. 

However, the procedure is fast, even in sequential processing, since the sub-intervals are 

short, with only a few integration points in each. The algorithm begins with a given initial 

guess [a, b] and iteratively corrects the initial value set using Newton’s method. Details 

of the algorithm that is responsible of implementing the model are described in Appendix 

E. The following computations were run on a personal computer in FORTRAN double 

precision, using the FORTRAN power station compiler. 

 

The system of coupled ordinary nonlinear differential equations given by (3.30), 

(3.35) and (3.36) for Bingham fluids are put into a standard form, suitable for numerical 

computation, by defining the functions 

.,,,, 54321 HyGyGyFyFy =′==′==                  (3.44) 

These functions will convert the two second order ODEs into five first order ODEs, 

which then are to be solved numerically. Following this approach, equations (3.30), 
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(3.35) and (3.36), together with the initial and boundary conditions given by (3.13) and 

(3.14), and the initial guesses aF =′ )0( and bG =′ )0(  become 

0)0(121 ==′ yyy          (3.45) 
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where for each equation, the initial condition is specified on the right hand margin. 
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Owing to the nonlinearity of the system, a parameterization of the problem was 

necessary in order to attain convergence. This can be done by using the so-called 

continuation method (Deuflhard et al., 1976) in conjunction with the multiple shooting 

method. Usually, the nonlinear system is partitioned into its linear and nonlinear parts, 

where nonlinear terms are multiplied by some continuation parameters, whose values 

range between 0 and 1. These parameters are initially set to zero, in which case only the 

linear part of the system takes effect. After the solution is readily found for the linear 

terms, the values of the continuation parameters are gradually increased to obtain a 

sequence of solutions that converges to the actual solution. This procedure, however, may 

take a long time to achieve the required solution, depending on the nonlinearity of the 

problem (Kaya and Noakes, 1998). The system was embedded in a one-parameter 

family ),,( qyxfy =′ , with boundary conditions 0)),(),(( =qbyayg , where q = 0 gives 

the linear problem and q = 1 represents the full nonlinear formulation. The routine 

BVPMS automatically moves the parameter from q = 0 toward q = 1. 

 

The numerical solution, which satisfies equations (3.45) to (3.49), was obtained by 

the above-mentioned multiple-shooting method. In the computation, the far-field 

boundary (ζ→ ∞) is replaced by a sufficiently large value, ζ(∞), which is determined by 

numerical experiments (Owen and Rogers, 1987). Typically, ζ(∞) ≈10 is used to represent 

the far-field flow behavior. In the present case, the boundary conditions at infinity could 

not be satisfied using either the finite-difference method or the single shooting method, 

but with the multiple shooting method convergence was obtained.  
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Having determined a successful solution technique, the system of Eqs. (3.45) to 

(3.49) was solved numerically for different values of the Bingham number, By. The 

program was run for fifteen values of By ranging in increments of 0.1 from 0 to 1 and 

increments of 0.5 from 1 to 3. This covers a reasonable range of values for common 

industrial fluids as characterized by their yield stress.  

 

3.5 Summary 

In this chapter, the flow of a Bingham fluid over a rotating disk was considered. 

The flow is characterized by the dimensionless yield stress “Bingham number”, By, which 

is the ratio of the yield and local viscous stresses. Using von Kármán’s similarity 

transformation, and introducing the rheological behavior law of the fluid into the 

conservation equations, the corresponding nonlinear two-point boundary value problem is 

formulated. A solution to the problem under investigation is obtained by a numerical 

integration of the set of Ordinary Differential Equations (ODEs), using a multiple 

shooting method, which employs a fourth order Runge–Kutta method to implement the 

numerical integration of the equations, and Newton iteration to determine the unknowns 

)0(F ′ and )0(G′ . Results of the numerical model will be presented in the following 

chapter. 
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CHAPTER 4 
 
 
Results and Discussion of the Numerical Model  
 
 
4.1 Introduction 

For a disk rotating in a Bingham fluid, viscous effects are typically confined 

within a thin layer near the surface. At larger distances from the disk, the shear rates and 

related stresses decrease. In fact, if the yield stress of the material is larger than the 

magnitude of the shear stress produced in the fluid, a so called “plug flow” region occurs. 

The unsheared region is separated from the shear flow region by a yield surface on which 

the shear stress is equal to the yield stress.  

 

Application of the present analysis is limited to flows where the shear stress 

exceeds the yield stress in the region adjacent to the disk surface. Typically the shear 

stresses have appreciable values in this region. We believe that this is a reasonable 

approximation for many Bingham fluids at practical rotation rates. In this investigation, 

for a wide range of yield values, we observed that the magnitude of the shear stress 

tensor, τ , always exceeded the yield stress in the boundary layer region, and even 

beyond that region in the case of relatively low yield stress values. Thus, the numerical 

solution neglected any unsheared region which might exist outside the boundary layer 
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region, and instead focused on the sheared region in which the fluid flows with apparent 

viscosity, η. 

 

In this chapter the results of the numerical simulation of boundary layer flow of a 

Bingham fluid over a rotating disk are presented.  Special attention is paid to the velocity 

field, the torque exerted on the disk, the boundary layer thickness and the volumetric flow 

rate produced by the rotation of the disk.  

 

Although the multiple shooting method was adopted to relieve the well known 

sensitivity to the initial guess of the shooting method as discussed by Andersson et al., 

2001 and Denier and Hewitt (2004), severe difficulties were still existing for the shear 

thinning fluids (i.e., n < 1). Therefore, the results for only one class of the power-law 

fluids, shear thickening fluids (i.e., n > 1) are presented as a validation of the numerical 

technique.  

 

4.2 Velocity Field 

 The velocity fields exhibit some general features for all types of fluids. The 

dimensionless velocity distributions are given by F in the radial direction, G in the 

tangential direction and H in the axial direction. These functions have been defined in 

Chapter 3 by Eqs. 3.12 a-c. Consider first the case of a Newtonian fluid: the computed 

velocity profiles F, G and H are plotted in Figs. 4.1 versus the dimensionless axial 

distance, ζ , (Eq. 3.11). The rotating disk acts like a pump, drawing fluid axially inward 

from the surroundings toward the disk surface. However, because the surface is solid, the 
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inflowing fluid finds its path blocked and is redirected in the radial direction. The fluid 

far away from the plane of rotation, i.e., ζ → ∞, does not rotate but moves in a purely 

axial direction. The axial velocity, H, starting from its maximum negative value at ζ(∞), 

decreases steadily as the disk is approached due to the fluid being redirected in the radial 

direction. Since the radial component, F, is zero both at the disk surface and in the 

ambient fluid, there must be a maximum value somewhere in between. The maximum 

value is positive since the radial flow is always outward along the disk. The tangential 

velocity component, G, is driven by the rotation of the disk. It increases with decreasing 

axial distance ζ, reaching a maximum value at the plate. Consequently, the shear stress 

also increases with decreasing ζ (approaching the disk surface). 

 

The numerical results are also compared to published values for the dimensionless 

velocity profiles (Ostrach and Thornton, 1958) [OT] in Fig. 4.1. The figure demonstrates 

that the numerical results are in good agreement with the published results.  The main 

features of the numerical curves are summarized as follows: 

•  While the tangential velocity, G, decreases continuously due to viscous 

diffusion, the radial velocity, F, peaks at ζ = 0.9. On the surface of the disk the 

radial velocity is zero due to the no-slip condition.  Far away from the disk, 

the radial velocity is significantly reduced as the tangential component 

responsible for the radial acceleration decreases rapidly.   

• From the continuity equation (Eq. 3.30):  

H = 2Fd ζ         (4.1) 
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 Because F decays rapidly at large ζ, H approaches an asymptotic value at 

finite value of ζ, far away from the disk, there is a constant dimensionless 

axial velocity of -H(∞) ≈ 0.8823 towards the rotating disk which is set up by 

the combined action of viscous diffusion and centripetal acceleration. Despite, 

the presumed uniqueness of the solution of the rotating disk problem, different 

models give slightly different values for the axial inflow. Schlichting (1979) 

and Andersson et al. (2001) have reported slightly higher values for the axial 

inflow than the present simulation, i.e., -H(∞) = 0.88446 and 0.883, 

respectively. The value of Ostrach and Thornton (1958) was -H(∞) = 0.8843. 

 

 

 

 

 

 

 

 

 

Figure 4.1: Velocity distribution near a rotating disk for a Newtonian fluid  
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Due to the sensitivity of the problem, precise values of the two missing boundary 

conditions )0(F ′ and )0(G ′ are required; these represent the derivatives of the 

dimensionless radial and tangential velocity functions at the disk surface, respectively. 

The present solution to the problem determines the following values (six digits) for )0(F ′  

and )0(G ′  that were also predicted by Lance and Rogers (1961):  

)0(F ′ = 0.510232         (4.2) 

)0(G ′ = -0.615922         (4.3) 

This level of accuracy is necessary for an accurate calculation of heat and mass transfer 

from a rotating disk (Millsaps and Pohlhausen, 1952; Sparrow and Gregg, 1960; 

Hansford and Litt, 1968; Rashaida et al., 2005). The derivatives, F' and G',  along the 

axial direction are shown in Fig. 4.2 and outlined along with the dimensionless velocity  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.2: Distributions of F' and G', along axial direction for a Newtonian fluid 
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profiles in Table C.1, Appendix C.  

 

Validation of the present numerical method was also achieved by obtaining the 

numerical solution for the case of power-law fluids. The sample results in Fig. 4.3 exhibit 

the same features as in the Newtonian case.  A comparison with the results reported by 

Andersson et al. (2001) is given in Table 4.1. Consideration of the data shows that the 

values of )0(G ′   and H(∞) in the present simulation differ by as much as 19% and 7%, 

respectively, from that of Andersson et al. (2001) for high shear thickening fluids (n = 1.5 

and 2). The value of )0(F ′  is within 0.5% of the values of Andersson et al. (2001).  
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Figure 4.3: Variation of the dimensionless velocity profiles, F, G and H, with the axial 

dimensionless distance, ζ, for different value of power-law index, n. (a): n =1, (b): n = 1.5 

and (c): n = 2 
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Table 4.1: Comparison of some characteristics of the present calculations with numerical 

results of Andersson et al. (2001) for power-law fluids 

 
F ′  (0) -G′  (0) −H(∞) Power-law  

index n 
 

Present Andersson Present  Andersson Present Andersson

1 0.5102 0.510 0.6159 0.616 0.8822 0.883 
1.5 0.5282 0.529 0.5298 0.601 0.6319 0.676 
2 0.5449 0.547 0.5085 0.603 0.5939 0.586 
 
 

Next, consider a Bingham fluid, for which the flow is characterized by the 

dimensionless yield stress Bingham number, By. Physically, the Bingham number is the 

ratio of the yield stress of a Bingham plastic fluid to the tangential shear stress induced in 

a fluid of viscosity µp on a rotating disk. The Bingham number varies with the radial 

location (local) and rotation rate. The smaller the radial distance, the larger the Bingham 

number.  The Bingham number decreases as the rotation rate increases. As seen, the 

Bingham number is an important dimensionless number for rotating disk flow. The 

computed velocity  profiles  F,  G  and H are plotted in Fig.4.4 versus the dimensionless 

axial distance, ζ, for different values of Bingham number, By. From the results obtained 

for By > 0, the following trends can be noted for the dimensionless axial, radial and 

tangential velocity components, respectively:  

 

1. Axial Velocity Distribution 

As can be seen from the Fig. 4.5, the value of –H(∞), the asymptotic limiting value of the 

axial velocity, decreases with an increase in the value of By, implying that the quantity of 

fluid drawn in from the surroundings decreases. In comparison with the case of a 
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Newtonian fluid, By = 0, the flow of a Bingham fluid produced by the rotation of the disk, 

is reduced due to the yield stress characteristics of the fluid. The greater the Bingham 

number, the stronger this effect. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Variation of the dimensionless velocity profiles, F, G and H, with the axial 

dimensionless distance, ζ, for different values of Bingham number, By 
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Figure 4.5: Variation of the axial velocity profile, H, with ζ, for different values of 

Bingham number, By 
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since the radial velocity is zero at both the surface of the disk and in the far field, there 

must be a maximum value somewhere in between. The profile of the radial velocity 

component shown in Fig. 4.6 becomes flatter as the value of By is increased, i.e., the 

maximum velocity decreases, and its location moves slightly further from the disk. For By 

> 0, the radial outflow must carry away the incoming axial flow with an apparent 
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Figure 4.6: Variation of the radial velocity profile, F, with ζ, for different values of 

Bingham number, By 

 

also persists a longer distance from the disk before it vanishes.  Notice the cross-over 

point of the curves near ζ = 3.5, showing that although increasing Bingham number 

decreases the velocity near the disk, it increases the velocity far from the disk.  
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follows the same trend as that of the Newtonian fluid, i.e. an exponentially decaying 

function of ζ. As By is increased, the shear-driven motion represented by G also increases. 

 

Overall, all velocity components require a longer distance from the disk to 

approach their asymptotic values as By is increased (see Figs. 4.5-4.7). Accordingly, in 

the numerical solution process, the value of ζ(∞)  has to be increased for larger values of 

By in order to obtain accurate results. For example, with a Newtonian fluid a value of 

ζ(∞) = 6 is usually considered large enough (Ariel, 1992). However, for the range of 

Bingham numbers considered in this study (By = 0 to 3), values of ζ(∞) as large as 10 

were used in the present algorithm.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: Variation of the tangential velocity profile, G, with ζ, for different values of 

Bingham number, By 
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It is of practical interest to determine )0(F ′  and )0(G ′ . A list of these values as a 

function of Bingham number is given in Table 4.2. Corresponding velocity profiles can 

be generated using these initial values. Moreover, it will be shown in the next section that 

)0(F ′ and )0(G ′ are required to compute the torque.  

 

Table 4.2:   Values of the functions )0(F ′ and )0(G′  for different values of By 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

By )0(F ′  )0(G′  

0.0 0.5102 -0.6159 

0.1 0.4598 -0.6124 

0.2 0.4197 -0.6070 

0.3 0.3869 -0.6007 

0.4 0.3596 -0.5941 

0.5 0.3363 -0.5873 

0.6 0.3164 -0.5806 

0.7 0.2989 -0.5741 

0.8 0.2836 -0.5678 

0.9 0.2700 -0.5617 

1.0 0.2578 -0.5558 

1.5 0.2119 -0.5298 

2.0 0.1814 -0.5085 

2.5 0.1595 -0.4906 

3.0 0.1429 -0.4754 
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4.3 Torque and Shear Rate 

The action of viscosity in the fluid adjacent to the disk creates a tangential shear 

stress which opposes the rotation of the disk. As a consequence, to sustain steady rotation 

of the disk, it is necessary to apply a torque at the shaft. This turning torque is equivalent 

to the resisting moment due to friction. If we neglect edge effect, it can be calculated 

from the product of the shear stress at the wall, the surface area and the moment arm 

integrated over the surface of the disk. The neglect of the edge effect is justified if the 

radius is large compared with the thickness of the boundary layer. The contribution of the 

frictional moment on an annular element of width dr at radius r is ,2 φτπ zrdrrdM −= . 

The total moment for a finite disk wetted on one side can be approximated by 

drrM
R

z∫−=
0

22 φτπ              (4.4) 

using the infinite disk solution for φτ z . For the sheared fluid, φτ z  is given by equation 

(3.26), and takes the following form after substituting the dimensionless velocity 

relations and Bingham number (see Appendix C): 
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( ) ρκτ φ 2
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Given that the Bingham number is a function of r, we cannot proceed with the integration 

at this stage; instead we approximate the Bingham number by a value based on the tip of 

the disk (r = R) and refer to it as the global Bingham number, Bn. Substituting equation 

(4.5) into (4.4), and integrating from r = 0 to r = R results in the following approximate 

expression for the total moment, M, acting on a disk wetted on both sides: 
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The corresponding dimensionless torque coefficient, CM, for a disk wetted on both sides 

can then be defined as:  

52
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Upon substitution of twice the moment given by equation (4.6) we obtain 
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Note that this expression is only approximate due to the substitution of Bn for By in Eq. 

(4.5). For the Newtonian case, the Reynolds number does not enter into the definition of 

the basic flow. However, the Reynolds number does enter into various practical 

problems. There are different definitions of the Reynolds number for a Bingham fluid 

(Rashaida et. al., 2005), which makes comparison of different results problematic. The 

fluids considered in this thesis approach a Newtonian fluid at ambient temperature 

because the ratio of plastic viscosity to yield stress is high (a low yield stress and high 

plastic viscosity). Therefore, the use of the plastic viscosity of the Bingham fluid to 

formulate a Reynolds number is reasonable. Here and throughout the thesis we use a 

Reynolds number based on the disk radius, R, tip velocity, RΩ ,and plastic viscosity, µp, 

following Matsumoto et al., 1982, i.e.  
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 For this Reynolds number relation, we can obtain the following expression for the torque 

coefficient: 
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The moment coefficient is plotted in Fig. 4.8 for different values of Bn. For each value of 

Bn, CM was determined for Reφ  up to 105. In general, the CM curves decrease as Reφ 

increases. In order to illustrate the effect of the Bingham fluid on the magnitude of the 

turning moment on the disk, Fig. 4.8 includes the moment coefficient for Bn = 0 

corresponding to a Newtonian fluid. Taking Bn = 0.5, corresponding to relatively a low 

value of Bingham number in this study, the value of CM is increased above the Newtonian 

case by about 5% at Reφ = 104. This increase rises to 30% for Bn = 3 at the same 

Reynolds number. These findings reflect the changes in tangential velocity profiles 

previously discussed. From Eq. (4.8), it can be concluded that for a Newtonian fluid (Bn = 

0), )0(G ′  is the most important parameter for determining CM. However, for By > 0 the 

derivative of the radial velocity component, )0(F ′ , along with the yield stress, τy, also 

have a significant effect on the torque. These comments relate to the discussion at the 

beginning of this section and re-emphasizes the influence of the apparent viscosity on the 

tangential shear stress and hence the torque. This effect is more pronounced at low shear 

rates, where the apparent viscosity is more sensitive to the yield stress. This can be seen 

from Fig. 4.8, where at lower values of Reφ the effect on CM of increasing Bn is larger 
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compared to that at higher values. We conclude that one of the main effects of a Bingham 

fluid on a rotating disk is to increase the magnitude of the turning moment on the disk. 

Hence, we require more torque to rotate a disk in a Bingham fluid. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8: Variation of the dimensionless moment coefficient, CM, with Reφ  , for 

different values of Bn 
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It is of interest to compare the shear rates on the surface of the disk calculated 

from this numerical model to the shear rates at a simplified impeller wall (Wichterle et 

al., 1996; Lutz et al., 1996) and to the analytical solution for the wall shear rate on an 

infinite rotating disk flow (Schlichting, 1979). Analytically, the wall shear rate over the 

surface of the disk is generally estimated according to the rheological model of the 

Bingham fluid. It can be expressed by the following dimensionless function, which is 

derived in Appendix C.  
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For By = 0, Eq. (4.11) reduces to the analytical solution of the wall shear rate on a rotating 

disk in a Newtonian fluid (Schlichting, 1979), 

2
1

Re88.3 φ
γ =
N
&

         (4.12) 

 

Figure 4.9 shows the variation of normalized wall shear rate on a rotating disk 

with Reynolds number in the range of laminar flow 510Re ≤φ . The variation is shown for 

different values of Bingham number, including the Newtonian case, By = 0. The solid 

symbols in Fig. 4.9 represent actual measurements on a simplified impeller (flat disk) of a 

centrifugal pump taken by Wichterle et al., 1996. It is seen that the shear rate for a 

Bingham fluid is higher than that for a Newtonian fluid, and that the higher the Bingham 

number the higher is the shear rate. We also conclude that the shear rate for the simplified 

impeller is almost the same as calculated from the von Kármán laminar boundary layer 

theory for a rotating disk (Eq. 4.12). 
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Figure 4.9: Comparison of the variation of the normalized shear rate vs. Reynolds 

number for Bingham and Newtonian fluids with that of an impeller of a centrifugal pump 
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boundary layer thickness of a Bingham fluid flowing over a rotating disk is derived in 

Appendix C to be  
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The variation of the normalized boundary layer thickness, ( ) 2/1/ Ωκ
δ , is shown  

in Fig 4.8 for different values of the Bingham number, By. It is clear that the boundary  

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 4.10: Normalized boundary layer thickness for different values of By 
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layer thickness increases with increasing Bingham number. The yield stress reduces both 

the axial and radial velocity components. The reduction in the radial velocity gives rise to 

the tangential shear stress (see Eq. 4.5), which is proportional to the tangential velocity. 

Consequently, the boundary layer thickness is increased as shown in Fig.4.8, where the 

tangential velocity components, G, claims 0.99% of its values. 

 

4.5 Volumetric Flow Rate 

The rotating disk resembles a centrifugal pump in so far as the disk imparts 

rotation to the fluid, which moves radially outwards and therefore, an axial motion 

develops towards the disk in order to satisfy continuity. It is obvious from this pump-like 

action that there is a close relation between the axial inflow and the radial out-flow. This 

flow phenomena is referred to von Kármán’s viscous pump (Owen and Rogers, 1989; 

Andersson et al., 2001). 

 

The quantity of fluid, Q, which is pumped outward is calculated as follows for 

one side of a disk of radius R, 

 

∫
∞

=
0

2 dzvRQ rπ          (4.14) 

Keeping in mind that )(ζFrvr Ω= , and using the continuity equation (3.30), equation 

(4.14) becomes: 
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Using the same definition of Reynolds number as before 

)(Re 2
13 ∞Ω−=

−
HRQ φπ         (4.18) 

or 

)(Re2 2
132 ∞−=

−
HRNQ φπ  ,       (4.19) 

where N is the rotational speed in radians per second. In dimensionless form, this can be 

written as 

)(Re2 2
12

3 ∞−==
−

H
RN

QQ φπ        (4.20) 

 

The delivery coefficient, Q , is a useful parameter for comparing different pumps 

(Lutz et al., 1996). In this case, it is used to show how the yield stress can affect the 

volumetric flow rate of the pump. Increasing By decreases H(∞),  which causes a lower 

volumetric flow rate as shown in Fig. 4.11. This result demonstrates the practical 

significance of an accurate determination of H(∞), and its effect on the volumetric flow 

rate.  H(∞)  is  a function of Bingham number and is tabulated in Table C.2, Appendix C.   
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Figure 4.11: Variation of the delivery coefficient with Reynolds number for different 

values of By 
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axial velocity components, and increases the magnitude of the tangential velocity 

component. An accompanying increase of the boundary layer thickness adjacent to the 

disk is observed. Moreover, the wall shear stress in the tangential direction increases 

monotonically with increasing By, thereby increasing the torque required to maintain 

rotation of the disk at the prescribed rotational speed. On the other hand, the volumetric 

flow rate, Q, is reduced with increasing By.  
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CHAPTER 5 
 
 
Rheological and Wax Appearance Temperature Experiments 

 

5.1 Introduction 

In this part of the thesis, the goal was to produce a transparent oil that 

rheologically simulates the Amna waxy crude oil. This involved conducting rheological 

measurements of different fluid mixtures. Once the waxy oil was simulated, the intention 

was to use it for the flow visualization experiments and the PIV measurements to be 

described in Chapters 6 and 7 respectively. However, preliminary measurements showed 

that the oil mixtures were not entirely transparent and therefore could not be used for PIV 

measurements. Instead, they were used only to visualize the flow over a rotating disk 

(Chapter 6) where a lesser degree of visibility is acceptable. The transparency 

requirement added an additional research component that was to produce a Bingham fluid 

that was sufficiently transparent so that it could be used for PIV measurements.  A diluted 

hair gel was found to both exhibit Bingham behavior and was acceptable for PIV 

measurements.  However, it exhibited higher plastic viscosities and yield stresses 

compared to the waxy oils.  
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In this chapter, Section 5.2 presents the materials that were used to produce the 

waxy oil and the gel solution. Section 5.3 describes the preparation of the waxy oils and 

the gel solutions. Sections 5.4 and 5.5 present the viscometer and the experimental 

procedure, respectively. Section 5.6 presents the rheological characterisation of both the 

waxy oils and the gel solutions. A summary of the rheological experiments are presented 

in Section 5.7.  

 

5.2 Materials 

For a fluid to properly simulate a waxy crude and be appropriate for visualization 

experiments it must be: (i) a fluid that exhibits a yield stress; (ii) transparent and (iii) 

chemically stable. After an extensive investigation, a mixture of paraffin waxes in white 

mineral oil was found to adequately simulate waxy crude oils. The mineral oil employed 

in this study was commercial oil, manufactured for the pharmaceutical industry by 

Rougier Pharma, Mirabel, QC, Canada. Its physical properties are listed in Table 5.1. The 

paraffin wax was manufactured by Salathe Oil Co. / Stevenson-Cooper Inc. Philadelphia, 

USA. Its physical properties are listed in Table 5.2.   The level of contaminants in the 

mineral oil and the wax was less then 1 wt%. Observations show that all the samples of 

wax/oil mixtures have a foggy appearance, which increased with wax concentration. 

However, the degree of transparency was sufficient to visualize the flow patterns when 

dye was added and the mixture was sheared with a disk. 

 

Since transparency of the mixture is essential for the PIV measurements, several 

substitutes were investigated with respect to their fluid properties. For the model 
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experiments, a hair gel was chosen because it satisfied the transparency requirement 

under the conditions of the model experiments and it exhibited Bingham fluid behaviour. 

The fluid appeared to exhibit a yield stress based on two observations. The substance 

does not return to a plane surface if the free surface is disturbed and air bubbles within 

the fluid do not rise to the surface. 

 

 

 

Table 5.1: Properties of the mineral oil (based on Manufacturer’s MSDS) 

 

 

 

 

 

 

 

 

 
 

 
 
 
 
 
 
 
 
 

Density at 15.6 °C, kg/m3      845-855 

Boiling point, °C       343 

Flash point, °C       188 

Pour point, °C        -9 

Color         Clear 

Water solubility       Insoluble 

Hydrocarbon solubility     Soluble 

Viscosity at 25 °C, cP 18 
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Table 5.2: Properties of the paraffin wax (based on Manufacturer’s MSDS) 
 
 

 

 

 

 

 

 

 

 

 

5.3 Preparation of Experimental Fluids  

 

5.3.1 Synthetic Waxy Oils 

The following procedure was employed to prepare the mixture: 

1. The paraffin wax was melted in a beaker at 63°C. The beaker was immersed in a 

heated water bath. The temperature was maintained at 10 degrees above the wax 

melting point (53°C), for 1 h. This pre-treatment was carried out to remove any 

thermal history effects.  

2. The mineral oil was then slowly mixed with the melted wax under continuous 

stirring conditions until a pre-specified concentration was attained. Additions of 

Density at 15.6 °C, kg/m3      810 

Boiling point, °C       343 

Flash point, °C       213 

Pour point, °C        NA 

Color         White 

Water solubility       Negligible 

Hydrocarbon solubility     Soluble 

Viscosity at 25 °C, cP       NA 
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mineral oil to the paraffin wax were made on the basis of percentage by weight of 

paraffin in the mixture. For this work, concentrations of 3, 4 5, 7, 10, 15 and 20 

wt% of wax in the mineral oil were selected. The choice of these concentrations 

was guided by preliminary experiments and by published data on the wax content 

in many of the waxy crude oils that exist in the world (Hydrocarbon Management, 

2004).  

3. Two batches at each of the concentrations were prepared, stored in 8 oz jars (225 

g), and kept in the water bath at 63°C until the time of measurement. 

4. The mixtures were cooled from 63°C to the desired temperature at a rate of 10 °C 

/h.  This rate of cooling was necessary in order to avoid time dependency, 

thixotropic behavior due to the crystallization of the wax (Wardaugh and Boger, 

1987).  

 

A compromise between the transparency and the desired properties of the fluid 

was taken into account in creating the waxy oil mixture. A series of rheological 

measurements of different waxy mixtures was performed to determine which 

concentration matched the rheological properties of the Amna waxy crude oil from Libya 

and at the same time met the transparency requirements. A mixture of 93 wt% mineral oil 

and 7 wt% paraffin wax was found to meet these requirements. The rheological 

properties of the Amna waxy crude oil are presented in Table 5.3. This table was 

prepared using information from Barry (1970) and Seitzer and Lovell (1981). However, 

experiments show that this oil can not be used for the PIV measurements because the 
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clarity of the fluid is not suitable. Instead, it can be used for flow visualization where a 

lesser degree of visibility is acceptable. 

 

Table 5.3: Properties of the Libyan Amna waxy crude oil 

 

 

 

 

 

 

 

 

 

 

 

5.3.2 Gel solutions 

In producing the hair gel solution, air bubbles became trapped within the fluid due 

the yield stress exhibited by the fluid. The presence of air bubbles compromises the 

transparency of the material because a laser light sheet will scatter significantly when it 

encounters the bubbles and thus would not penetrate the hair gel mixture adequately. The 

appearance of these bubbles gives the fluid a misty appearance similar to that 

experienced in the waxy oils. Several methods of removing the bubbles from the gel were 

investigated. These included:  

Density, kg/m3 846 

Pour point, °C 24 

Wax content, wt% 10-20 

Viscosity, 

cP (mPa.s) 

Temperature, 
            °C 

Yield stress,  

N/m2 (Pascal) 

Temperature, 
            °C 

          10 

          12.1 

          18 

          20 

          30.7 

          50 

        50 

        40 

        27 

       25 

       21.1 

       15 

        0.375  

         - 

         1 

          2 

          40 

          - 

25  

24  

21.1 

19  

15.6  

- 
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1. Placing the gel in a high vacuum of 5 kPa absolute pressure for an extended 

period of time. This method was not successful since it caused the gel to boil and 

foam.  

2. Placing the gel in a high pressure chamber for an extended period of time. This 

method was successful in releasing the bubbles to the air; however, it also 

changed the color of the gel.  

3. Finally, centrifuging the gel removed the bubbles, making the gel more 

transparent. 

 

Since the gel is water soluble, dilution with water was used to reduce the yield 

stress of the gel. The gel was diluted with specific amounts of water (12.5, 25 and 50 wt 

%). This permitted tests to be performed with yield stress values varying between 0.4 and 

28 times the yield stress of the waxy crude oil. 

 

5.4 Cone and Plate Viscometer 

Of the viscometers available, the cone and plate viscometer represents the most 

desirable viscometer geometry for this investigation because it resembles the rotating 

disk in that the shear increases from zero at the axis to a maximum value at the tip of the 

cone. Another significant advantage of the cone and plate viscometer is that it requires 

only a small sample volume, which simplifies temperature control. 

 

The rheological properties of the oil mixtures and the gel solutions were measured 

using a cone and plate viscometer manufactured by Brookfield Engineering Laboratories 
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Inc, Stoughton, MA, U.S.A. as shown in Fig. 5.1. The viscometer is connected, through 

the ports on the sample plate, to a circulating temperature bath which controlled  the 

temperature to within +/- 0.1 °C.  

 

The principle of the cone and plate viscometer shown in Fig. 5.1 involves the 

rotation of a cone upon a plane surface at selected rotational speeds (shear rates). A 

torque measuring device connects the driving mechanism to a vertical axel from which 

the cone is suspended. The small sample of fluid between the cone and plate resists the 

rotation of the cone and the torque that develops is related to the shear stress experienced 

by the fluid. Knowing the geometric constants of the cone, and measuring the rate of 

rotation and the torque, one can determine the shear stress and the shear rate in the liquid.  

 

For a cone and plate geometry (Fig. 5.2), with the conical spindle properly 

positioned, the shear stress and shear rate relationships are calculated from the measured 

torque and cone rotational speed by  

3

3
2 R

M
π

τ =               (5.1)                     

θ
πγ

tan
2 Ω=&           (5.2) 

where: τ  = shear stress 

 γ&  = shear rate 

M = torque  

 R = cone radius 
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 Ω  = cone speed 

 θ  = cone angle 

 

The type of plate and spindle employed was determined by the viscosity of the 

sample. Since the torque of the mixtures ranged widely for different test conditions, two 

different cones (CP-40 with 0.8 º cone angle, and CP-42 with 1.565 º cone angle) were 

used with a low torque viscometer (LVTDVCP-II).  The CP-40 and the CP-42 spindles 

require 0.5 ml and 1.0 ml of sample, respectively.  The gap between the cone and the 

plate must be adjusted to a specific value before measurements are performed. This is 

done by moving the plate up towards the cone until pins on the cone and plate come into 

contact  and then the plate is lowered by 0.0005 inches (0.013mm). 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Cone and plate viscometer (Brookfield Cone/Plate Viscometer manual) 
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Figure 5.2: Cone and plate geometry 

 

 

5.5 Experimental Technique 

Viscosity measurements were made under controlled conditions. Below are the 

steps that were followed in conducting the measurements: 

1. Prior to testing, the water bath was turned on and the temperature was adjusted to 

the desired temperature. 

2. The plate was detached from the viscometer 

3. The required sample volume was transferred to the center of the plate using a 

plastic syringe. 

4. The plate was reattached to the viscometer and secured with the clip 
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5. The viscometer was suspended in a constant temperature water bath at the 

desired temperature for 30 minutes to bring the sample to thermal equilibrium. 

6. The viscometer was started and the rotational speed was adjusted to give a torque 

higher than 10% but lower than 100%  of the full scale to be in the viscosity 

range (Table 5.4). 

7. The viscometer was run for 1 minute or until the torque did not drift more than 

1%, then a measurement was taken.  

8. For each determination, the following information was recorded: 

• apparent viscosity in mPa.s (cP) 

• spindle speed 

• temperature of sample to nearest 0.1°C 

9.  Following the measurement, either the sample was tested at another temperature 

or the plate was removed from the viscometer. If the plate was removed, it was 

cleaned using the steps described in the procedure below, prior to the 

measurement of a different sample. 

 

5.5.1 Viscometer Quality Control Procedure 

To ensure the instrument operated at its highest precision and accuracy the 

following quality control procedures were conducted. Whenever the plate was 

removed from the viscometer, the sample was discarded and the plate was cleaned 

thoroughly according to the following procedure: 

1. The plate was soaked in toluene to wash off the remaining wax. 

2. It was then washed with a detergent soap solution to remove oil residue. 
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3. The plate was then rinsed with water.. 

4. Then, it was wiped with a soft cloth. 

5. Finally, it was wiped with an acetone-soaked cloth. This procedure was done 

between each trial. 

 

5.5.2 Viscometer Calibration Procedure 

The viscometer was calibrated according to manufacturer’s instructions, using 

two viscosity standards (Brookfield Engineering Lab, Stoughton, MA). The standards 

were chosen within the viscosity range of the material being measured and the range 

of the viscometer. Therefore, a 10 cP at 25°C, standard silicone oil was chosen to 

account for the test material at high temperatures (10 cP at 40°C) and a 50 cP at 25°C, 

silicone oil was used to account for the test material at low temperature (50 cP at 

15°C). Calibration of the viscometer was accomplished by a simple mechanical 

procedure. This procedure was performed every time the spindle was removed from 

the viscometer. This procedure was: 

1. Turn on temperature bath and allow sufficient time for sample plate to reach the 

desired temperature. Ensure that the circulating bath used maintains the stated 

calibration temperature (25°C) to within ± 0.1ºC. 

2. Set speed at 12 rpm with motor OFF. 

3. Remove the sample plate and attach the cone to the viscometer. 

4. Start the viscometer running at 12 rpm. Percent of full-scale spring torque 

readings were utilized for setting the cone/plate gap. If the display reading 

jumped to 0.3 of scale (or higher), or did not settle to zero (indicating that the 
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cone and plate are hitting), unscrew the adjustment ring by turning it to the left 

(clockwise as you look down on the instrument) until the reading settles at 0.0. 

5. Turn the adjustment ring to the right in small increments while watching the 

viscometer display. Remember that you are trying to raise the plate so that the pin 

on the cone touches the pin on the plate. Once you have found this contact point, 

you can turn the ring counter clockwise to create the desired gap between cone 

and plate. Turn the adjustment ring until the display reading jumps from 0.0 to 

0.3. This is the CONTACT POINT. The plate may have to be adjusted up and 

down several times before this torque deflection is satisfactorily reached.  

6. When you are satisfied that the pins of the cone and plate are just making contact, 

make a pencil mark on the adjustment ring directly under the index mark on the 

pivot housing. 

7. Turn the adjustment ring to the left one division from the pencil mark you have 

just made. This will separate the pins by 0.013 mm. This is a very important step 

because if it is not done, the cone and plate may touch constantly and the 

instrument will make inaccurate measurements. The viscometer is now 

mechanically set and ready for sample measurement.  

8. Put the proper amount of viscosity standard fluid into the sample plate (0.5 ml for 

the CP-40 spindle and 1.0 ml for the CP-42). 

9. Attach sample plate to viscometer and allow approximately 15 minutes for 

temperature equilibrium. 

10. Measure the viscosity of the fluid and record the viscometer readings in cP. 
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Table 5.4: Full scale viscosity ranges (Brookfield Cone/Plate Viscometer Manual) 

 

 

 
 
5.5.3 Accuracy for the Calibration Check 

The total error is a combined error of the standard fluid and the viscometer. The 

instrument accuracy is 1% of Full Scale Range (the maximum viscometer range at each 

shear rate) in use and the standard fluid is accurate to 1% of the actual viscosity value 

written on the jar in cP. Using a digital cone and plate viscometer LDVCP with a CP-40 

spindle rotating at 12 rpm and a Brookfield standard fluid of 10 cp with the actual 

viscosity of 9.7 cP at 25°C, yielded a measurement of 9.9 cP. Therefore, the allowable 
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range was 9.7 ± 0.354 cP.  A measurement of 9.9 was within this range means the 

operation of the viscometer was verified. The same procedure was followed for the CP-

42 spindle rotating at 6 rpm and a Brookfield standard of 50 cP with the actual viscosity 

of 48 cP at 25°C, and was found that the measurements within the allowable range. 

Figure 5.3 (a, b) shows the results of Newtonian fluids dynamic viscosity measurements. 

From the figure, the accuracy (as compared to the standard fluid) is better than + 1% and 

the reproducibility is also better than + 1%. A summary of the calibration data was given 

in Table 5.5.  

 

 

 

Figure 5.3: Viscosity measurements for Brookfield standards at 25°C: (a) 10 cP silicone 

oil; (b) 50 cP silicone oil  
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Table 5.5: Summary of the calibration data 
 
 
Sample 
silicone 
oil 

Speed 
(rpm) 

Measured 
viscosity 
(cP) 

Nominal 
value 
(cP) 

Actual 
value 
(cP) 

Deviation 
from 

actual 
Value (cP) 

Accuracy 
Allowance 

by 
Brookfield 

(cP) 

Total 
errors 

Range 
Allowance 

10 cP  12 9.9 10 9.7 0.097 0.257 0.354 9.7 ± 0.354 

50 cP  6 48.1 50 48 0.48 0.514 0.994 48 ± 0.994 

 

 

5.6 Rheological Characterization  

5.6.1 Synthetic Waxy Oils 

The prepared mixture samples were characterized at a wide range of temperatures 

(from 15 to 40°C), employing the rotational viscometer at speeds of 0.3, 0.6, 1.5, 3, 6, 12, 

30 and 60 rpm. These speeds correspond to shear rates of 2.25, 4.5, 11.25, 22.5, 45, 90, 

225 and 450 s-1. In order to get stabilized readings, measurements were made every 30 s 

for a total of 30 min at each shear rate. Isothermal conditions were maintained during 

measurements using the circulating water bath. All of the rheological measurements were 

conducted on duplicate samples (a sample from each batch), and the whole process 

including sample preparation was repeated twice. In order to check the reproducibility of 

the experiment, one of the runs was chosen at random and repeated twice. The 

reproducibility was observed to within ± 2%. 

 

Measurements were repeated 60 times to arrive at an acceptable estimate of the 

average value, and, more importantly, to observe the scatter in the results. This allows an 
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assessment of the uncertainty in the measurements. The total uncertainty is given by 

(Stern, 1999): 

22
vvv PBU +=          (5.3) 

The Bias error, Bv, is a systematic error which is constant for the duration of the 

measurement and is estimated by non-statistical methods. According to the viscometer 

manufacturer and the calibration tests the viscometer was accurate to within ±1.0% of the 

working range. The precision error, Pv, is caused by lack of repeatability in measurement. 

It is given by: 

N
SaP c

v = ,          (5.4) 

where ac =1.96 for 95% confidence interval and S is the standard deviation. The range of 

the standard deviation of the measurements (0.08-0.1%) estimated the precision error to 

fall within the ±0.2% reproducibility claimed by the viscometer manufacturer. Therefore, 

in all of the viscosity measurements, the error bars on the graphs are 3.0% of the range of 

viscosity at each shear rate. 

 

5.6.1.1 Effect of Wax Concentration on the Shear Stress-Shear Rate Curve 

The viscometric tests were performed on all of the mixtures (3, 4, 5, 7, 10, 15, and 

20 wt% waxes) as well as the wax free oil. However, for some mixtures viscosity 

measurements could not be obtained, because the torque range was higher than the 

capability of the viscometer. The mixtures with concentrations of 3, 4, 5, 7 and 10 wt% 

are those for which the viscometer measurements were valid. Rheological measurements 

were performed for the different concentrations at room temperature (25°C) and are 
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shown in Fig. 5.4. It is clearly seen that the influence of wax concentration on the mineral 

oil rheology was significant since various ranges of wax concentration can lead to 

different types of flow curves. Linear fits of the experimental data show that at 

concentrations below 4 wt%, including wax-free oil, the fluids exhibit Newtonian 

behaviour (Figs. 5.4. a, b). Clearly, the oil rheological behaviour was transformed from 

Newtonian behaviour to that of a Bingham plastic, when the wax concentration was 

increased above 3 wt%. Thus, the shear rate appears to be linearly proportional to the 

shear stress with a reasonable correlation factor, R2, for all the wax concentrations.  

 

5.6.1.2 Effect of Wax Concentration on the Bingham Yield Stress and Bingham 

Plastic Viscosity 

 Extrapolation of the linear section to its intersection with the shear stress axis 

gives the yield value of the ideal Bingham plastic, i.e. due to the limited capability of the 

viscometer to perform measurements at low values of shear rate, experimental data in 

relatively a higher range of shear rate (> 5 s-1) was extended using a trendline. The 3 wt% 

sample (Fig. 5.4.b) did not appear to have yield stress, which is due to the relatively low 

wax concentration, compared to the other samples (Fig. 5.4. c, d, e, f). The extrapolated 

Bingham yield stress values for the oil samples as a function of wax concentration were 

plotted in Fig. 5.5. The extrapolated yield stress increases rather sharply in a non-linear 

form with increasing wax concentration when the wax concentration is larger than 3 wt%. 

It varied from 0.087 Pa at 4 wt% to 0.7 Pa at 10 wt%.  
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Figure 5.4: Shear stress-shear rate curve for the oil/ wax mixtures at 25°C, (a) 0 wt%; (b) 

3 wt%;  (c) 4 wt%;  (d) 5 wt%;  (e) 7 wt%;  (f) 10 wt%                                                                                       
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Figure 5.5: Bingham yield stress versus wax concentration at 25°C 

 

 

 

 

 

 

 

 

 

 

Figure 5.6: Bingham plastic viscosity versus wax concentration at 25°C 
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The Bingham plastic viscosity was found to increase with increasing wax 

concentrations as shown in Fig. 5.6. From this figure, an inverse proportion was noted 

between the increase in the Bingham plastic viscosity and wax concentrations. 

 

It can be concluded from Figs. 5.4-5.6 and Table 5.3 that a 7 wt% mixture 

resembles the rheological properties of the Amna waxy crude oil. 

 

5.6.1.3 Effect of Temperature on the Wax-Oil Mixture 

Rheological measurements with the 7 wt% mixture were performed at different 

temperatures, from 19.7°C to 40°C. These temperatures were chosen in accordance with 

the documented properties of the Amna waxy crude oil. The shear stress developed in the 

sample as a function of increasing shear rate was plotted in Fig.5.7. As indicated in Figs. 

5.7 a, b, c and d, at low temperatures (i.e., 19.7°C to 25°C), the change in temperature 

does not change the rheological behaviour that the oil exhibits (i.e., Bingham fluid). 

However, both the Bingham extrapolated yield stress and the Bingham plastic viscosity 

of the oil decrease with increasing temperature. This non-Newtonian behaviour results 

from the ability of the precipitated waxes to crystallize. Once these crystals have formed, 

they show a strong tendency to aggregate (Lorenzo, 2003).  

 

At the intermediate and high temperatures (30°C to 40°C), the curves shown in 

Figures (e) and (f) are straight lines passing through the origin. This suggests that high 

temperatures increase the solubility of the wax in the oil, resulting in Newtonian 

behaviour. 
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Figure 5.7: Shear stress-shear rate curve for the waxy oil simulant (7 wt%) at different 

temperatures, (a): 19.7°C; (b) : 21.1°C;  (c): 24°C;  (d): 25°C;  (e): 30.1°C;  (f): 40°C 
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The effects of temperature on the Bingham plastic viscosity, µp, and Bingham 

yield stress, τy, of the Amna crude simulant are shown, respectively, in Figs. 5.8 and 5.9. 

It is clear from Fig. 5.8 that the value of the Bingham plastic viscosity increases sharply 

as the temperature decreases. Also, from Fig. 5.9, as the temperature increases the 

Bingham yield stress decreases. At 30°C, the oil behaves as Newtonian fluid, i.e. the 

value of yield stress is equal to zero. At temperatures up to 25°C the mixture simulating 

Amna crude follows the non-Newtonian behaviour with a yield stress. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8: Bingham plastic viscosity versus temperature for the Amna crude oil simulant 

(7 wt%) 
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Figure 5.9: Bingham yield stress versus temperature for the Amna crude oil simulant (7 

wt%) 
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Khan et al. (1993) have demonstrated that the technique was accurate to ± 0.5°C, 

and the reproducibility of the results was ± 1°C. This accuracy was in agreement with our 

measurements. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10: Wax Appearance Temperature of paraffin wax and mineral oil samples. 
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fitted lines by extrapolating the linear lines to the zero shear rates. The yield stress of gel 

mixtures increased markedly, by about 28 times, as the concentration of gel was raised 

from 25 wt% to 50 wt% (Fig. 5.11).  

 

Viscosity measurements of the gel mixtures are more stable than those of the oil-

wax mixture. Repeatability was estimated to be within 2% and the percent error of 

viscosity caused by variation in temperature was negligible.  Because the error bars are 

the size of the symbols, they have not been plotted.  

 

5.6.3 Suitability of the Bingham Model 

 

The reliability of the experimental results presented in Figs 5.4, 5.7 and 5.11 was 

evaluated using regression analysis. By using this approach, trendlines of data were 

extended to include values at zero shear rates . Thus, the flow behaviour can be 

characterised by a slope (Bingham plastic viscosity) and intercept (Bingham yield stress). 

A trendline is most reliable when its coefficient, R2, is at or near 1. The regression 

coefficients were calculated automatically by Origin 6.0 software and their values were 

displayed on the figures.  

 

Based on the values of the regression coefficients, it can be observed that good 

agreement is achieved between the experimental data and the Bingham model for both 

the waxy oils and the gel solutions.  
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Figure 5.11: Shear stress-shear rate curve for the diluted gel mixtures for 12.5, 25, and 50 

wt% gel concentrations, respectively. 
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5.7 Summary 

Since waxy crude oils are naturally opaque, an experimental plan was undertaken 

to develop a transparent oil that is rheologically similar to the Amna waxy crude oil from 

Libya. A wide range of mineral oil-paraffinic wax mixtures were considered. Bingham 

plastic behavior was observed at wax concentrations higher than 3 wt%  at a temperature 

of 25°C. An oil-wax mixture that simulated specific properties of Amna waxy crude oil 

was achieved at a wax concentration of 7 wt% at a temperature of 25°C. At this 

concentration, the rheological parameters (i.e., plastic viscosity and Bingham yield stress), 

and WAT (which approximates pour point) of the crude were simulated. The plastic 

viscosity and yield stress, including their dependence on temperature and shear rate, were 

documented for the flow visualization experiments (Chapter 6). A summary of these 

parameters for the Amna oil and oil-wax mixtures is given in Table 5.6. 

 

To meet the requirements of the PIV system (Chapter 7), a higher degree of 

transparency was required.  A second Bingham fluid was created and rheologically 

investigated. Despite its high yield stress, a solution which had a gel concentration of 50 

wt% was found to be sufficiently transparent to perform the PIV measurements. 
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Table 5.6: Properties of the investigated waxy crude oil and the oil-wax mixtures 

 

*Data recorded at 6rpm 
† Newtonian  

 

Sample Property 

Amna Oil 3% 5% 7% 10% 15% 

Density, kg/m3 846 - - 880 - - 

Pour point, °C 24 16 20 24 30 35 

Wax content, wt% 10-20 3 5 7 10 15 

37.8 oC 11 10.6 † 10.8 † 11.5† 18.4† - 

25 oC 20 19.4 † 37 * 50* 64.1* - 

Viscosity, cP 

(mPa.s) 

21.1 oC 30.7 25.1 * 50* 152* 319* - 

25 oC 0.375 - 0.15 0.36 0.7 - Yield stress, N/m2 

(Pascal) 21.1 oC 1 0.03 0.25 1.01 2.4 - 
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CHAPTER 6 
 
 
Flow Visualization  
 
 
6.1 Introduction 
 
 

Rotating a solid body (disk, impeller or turbine) in a Newtonian fluid generates 

two effects. The first effect, which produces shear in the fluid, occurs in close proximity 

to the disk. The second effect of disk rotation is the generation of a circulation pattern 

that exchanges the fluid in the intensively rotated region near the disk with the fluid in the 

remainder of the tank. These two effects are the essence of designing mixing equipment, 

where a good balance between these two functions is required to achieve economical 

operation for a low-viscosity Newtonian fluid (Wichterle and Wein, 1981). 

 

The situation changes when standard mixing equipment is used for mixing non-

Newtonian fluids. Wichterle and Wein (1981) compared the flow of a non-Newtonian 

pseudoplastic fluid with that of a Newtonian fluid with a viscosity approximating the 

range of apparent viscosities of the pseudoplastic fluid.  They noted that the flow in the 

region of higher shear forces near the agitator is enhanced, while the slow recirculating 

flow is suppressed by the higher non-Newtonian apparent viscosities near the walls. In a 

Newtonian fluid, reducing the speed of the agitator is accompanied by a reduction of both 
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mixing effects. In a pseudoplastic fluid, reducing the agitator speed causes a nearly step-

wise change in the quality of the mixing at the point where the circulation no longer 

reaches the wall which produces a stagnation region. 

 

A similar effect is observed with fluids which exhibit a yield stress.  This effect 

can be detected by observing the formation of the so-called yield surface (Solomon et al., 

1981), i.e., the interface between the fluid in motion and the fluid at rest. The shear stress 

decreases with distance from the disk. The fluid in the tank will be sheared in the region 

of the tank where the applied stress exceeds the yield stress.  However, if the stress acting 

on the fluid is less than the yield stress, then there will be a region that is not sheared and 

which will stay stagnant. The flow pattern exhibits a recirculating zone separated from 

the walls by a region of stagnant fluid. The recirculating zone is to be considered in this 

study.  In this section, the nature of this phenomenon will be described.  A qualitative 

discussion of the development of the flow patterns around the rotating disk as the 

Bingham number changes will be presented. 

 

6.2 The Rotating Disk Apparatus 

To assess the behavior of non-Newtonian fluids under shear, a special rotating 

disk device was required. A rotating-disk apparatus, which is normally used for studying 

electrochemical kinetics, was adapted for this study. The disk apparatus, shown in Fig. 

6.1, consists of a disk on the end of a shaft that is mounted up to a Pine Instrument 

Company Model AFPIR analytical rotator.  
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Figure 6.1: Experimental arrangement for flow visualization measurements 

 

This instrument has a variable speed motor drive, which allows it to be driven at a 

constant speed in the range 0-10,000 rpm. The rotation direction is clockwise. The disk is 

34.6 mm in diameter and 1 mm in thickness. It was fabricated from aluminum as a single 

unit with a 6 mm shaft to ensure satisfactory alignment. To avoid reflection of light, the 

cylindrical shaft and disk were painted flat black. The disk is immersed to a depth of 25 

mm near the center of a 183 mm x 183 mm x 150 mm transparent box open at the top. 

Hansford and Litt (1968) demonstrated that a tank of these dimension was suitable for a 

disk of this size rotating in water and their results indicated that there were no wall 

effects. The rotation rate and fluid properties define the extent of the recirculating zone 

which then sets the limits of the flow. 
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6.3 Equipment and Fluids 

In this work, the flow visualization equipment included a digital camera (Nikon 

D70) and an image analysis system. The digital camera was used to observe the flow 

around the disk. The camera has a high magnification and a large depth of field.  This 

allows the flow patterns throughout the tank to be clearly observed. In the experiment, the 

working distance between the camera lens and the centerline of the disk was 700 mm. 

Illumination was applied by placing the disk and the tank facility on a light table where 

the light was placed over top of the field of view. For successful flow visualization, the 

light intensity should be evenly distributed throughout the tank. 

 

The observed results were recorded and stored in the memory of the camera, and 

subsequently processed by the image analysis system. The image analysis software that 

was used was a Corel DrawTM. The image quality was improved using this image 

analysis system permitting quantitative conclusions to be drawn. 

 

The Bingham fluid used in the experiment was the paraffin wax-mineral oil 

mixture (7 wt% wax) which modeled a waxy crude oil. The rheology of the fluid was 

described in Chapter 5. Two fluid mixtures of the same rheology were prepared; one was 

kept as a clear solution and one was dyed with an oil-soluble dye powder. Based on yield 

stress and plastic viscosity measurements, the presence of the dye did not have any effect 

upon the rheology of the solution. 
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6.4 Experimental Technique 

The tank was filled to a depth of 90 mm with the clear solution. The disk was 

positioned at the center, approximately 90 mm from the sides of the tank. Then, with the 

disk rotating slowly, a small quantity of the colored solution was added via a syringe into 

the disk region. The colored fluid subsequently mixed with the clear fluid, and formed a 

cavern of sheared material close to the disk. The fluid at a distance from the disk was 

assumed to be stagnant since the dye was not convected into this region. Thus the cavern 

was visualized as a colored region surrounding the disk. Observations were initiated at 

the lowest speed and then the speed was gradually increased. In this way the cavern size, 

as indicated by the colored region, always increased from one observation to the next. 

Occasionally it was necessary to inject additional colored solution into the cavern to 

increase the contrast between the fluid in the cavern and the surrounding stagnant fluid. 

This was due to the dilution of the colored fluid by the clear fluid as the cavern increased 

in size. When the rotation started, a uniform shape was immediately observed and the 

cavern size reached steady state after a few rotations. This was confirmed by monitoring 

the cavern size for approximately 1 minute during which no significant change occurred.  

 

The goal of this part of the experimental investigation was to visualize the 

development of the cavern around the disk as a function of the global Bingham number, 

Bn (based on the disk radius, R). For a specific fluid, the global Bingham number can 

only be changed by varying the speed of the disk. The range of rotational speed in this 

experiment was between 10 to 1000 rpm. The corresponding range of the Bingham 
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number for r = R, i.e. at the outer edge of the disk was 0.001 > Bn < 0.7. Photographs of 

the cavern at low and high speeds are shown in Fig. 6.2. 

 

6.5 Flow Patterns 

Agitation and mixing of Newtonian and power law fluids by impellers and disk 

turbines are reported elsewhere (Elson et al., 1986). When the fluids agitated at very low 

speeds, the main flow was an outward radial discharge with a return flow into the 

impeller at approximately 45° ; at higher speeds, a region of rapid turbulent motion 

developed close to the impeller.  

 

In our case, the flow of a Bingham fluid caused by rotation of a disk is observed 

to be quite different. The body of fluid is divided into two distinct zones, i.e. the cavern 

and stagnant fluid. Even at low speeds, a cavern could be seen with the fluid rotating due 

to the disk. As the speed was increased the cavern maintained the same shape but grew in 

size; the fluid outside of the cavern remained stagnant (see Fig. 6.2). Further increase in 

speed continued to increase the cavern size. 

 

Solomon et al. (1981) developed a theoretical model for a spherical cavern 

centered upon an impeller mixing a fluid with a yield stress. The present flow 

visualizations (see Fig. 6.2) suggested that the assumption of a spherical cavern is not 

appropriate. The caverns are obviously not spherical, but instead are somewhat 

“squashed” giving an  
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Figure 6.2: Growth of the cavern with speed for a disk rotating in a waxy crude oil 

simulant 
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elliptic shape. The dimension of the cavern was characterized by its dimensionless height 

to diameter ratio hc /dc (see Fig. 6.3). It should be noted that the shaft interferes with the 

upper region, so that for the sake of the experiment, only the bottom region will be 

considered, as it is shown in Fig. 6.3.  The measurement uncertainty for the dimensions 

of the cavern was estimated to be around 0.5 mm according to the pixel resolution. This 

uncertainty is partially due to the resolution of the camera, and partially due to the disk 

position. 

 

 

 

 

 

 

  

 

 

 

 

Figure 6.3: Schematic diagram of the shape and dimensions of the cavern 

 

 Figure 6.4 shows how the cavern shape, in terms of hc /dc, varies with disk speed. 

It is observed that for rotational speeds up to those at which the cavern boundary 
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approached the wall or the base, the height to diameter ratio varied over the following 

range: 

6.05.0 ≤≤
c

c
d

h         (6.1) 

Thus a value of hc /dc = 0.55 is a reasonable approximation. Therefore, an ellipse 

centered on and coaxial with the disk, with a height equal to 55% of its diameter, would 

be a better model of the cavern shape than a sphere.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4: Variation of cavern height to diameter ratio with disk rotational speed 

 

 

A plot of the dimensionless size of the cavern, dc/D, and  hc/D, where D is the 

disk diameter, versus global Bingham number, Bn,  is presented in Fig. 6.5. Figure 6.5 
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(using logarithmic scales) shows that the dimensions of the cavern decrease with 

increasing Bingham number, and they can be approximated by the following equations: 

23.068.0 −= n
c B

D
d

         (6.2) 

189.0437.0 n
c B

D
h

=          (6.3) 

 

From Eqs. (6.2) and (6.3) and the definition of Bingham number which was given in 

Chapter 3, at a given radial location and for a given fluid, i.e., constant τy, it can be 

concluded that the cavern size depends mainly on the rotational speed. Thus, a higher 

speed results in a lower Bingham number and larger cavern size.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5: Dependence of cavern geometry on Bingham number 
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Elson et al. (1986) have developed a cavern model for mixing a Bingham plastic 

fluid with an impeller. It has been used successfully to predict cavern dimensions for a 

wide range of impeller designs, including a flat disk. The basis of this model is similar to 

this research in that the stress imparted by the impeller or the disk at the cavern boundary 

is equal to the fluid yield stress. The model developed by Elson et al. (1986) relates the 

cavern dimensions, hc and dc, the impeller diameter, D, rotating speed, Ω, and material 

yield stress, τy, as follows: 
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14
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d
h

d
hV

p
c

c

y
c

c
c

ρ

τπ


















+

=Ω         (6.4) 

 

where, Vc is the cavern volume (m3), ρ is the fluid density (kg/m3), and Np is the impeller 

power number given by  

 

w
p P

DN Ω=
5ρ           (6.5) 

where Pw is the power required to rotate the impeller (watts). By adopting this model and 

using the correlations derived from our experiments, the cavern size of a given fluid can 

be predicted.  
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6.6 Summary 

 

The flow visualization technique allows observation of the shear flow patterns 

resulting from the rotation of a disk in a transparent Bingham fluid. Photographs clearly 

show the presence of a well-sheared cavern around the disk which grows in size with 

increasing rotation speed. Outside the cavern, the fluid is stagnant because of the yield 

stress.  

 

Working with correlations derived from these experiments, the size of the cavern 

in opaque waxy crude oils of similar rheology to the model fluid can be obtained. 
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CHAPTER 7 
 
 
PIV Measurements  
 

In this chapter, the particle-image-velocimetry (PIV) technique is employed for 

the investigation of both the flow of a Newtonian and a Bingham fluid over a rotating 

disk. To the author’s knowledge, the present study is the first attempt to use PIV to 

explore the rotating disk problem for a Bingham fluid. The aim of this chapter is to 

present the experimental results, and compare them to the results predicted by the 

numerical model, discussed in Chapter 4, and visualization, presented in Chapter 6.   

 
 
7.1 Experimental Set-Up  

PIV measurements were conducted using the experimental configuration shown 

schematically in Fig. 7.1. The tank and the rotating disk apparatus were the same ones 

used for the flow visualization described in Chapter 6. The tank provided optical access 

through all four sides, as well as from beneath via a 150 mm diameter hole in the base 

table. The laser head was placed horizontally in alignment with the apparatus’s base table 

at a distance of 700 mm from the center of the disk. The laser sheet illuminates the plane 

of interest within the flowing fluid which is seeded with tracer particles. It extends 

vertically (normal to the disk surface) and horizontally (parallel to the disk surface) so 
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that a measuring plane in the axial and radial directions can be illuminated. The particle 

images were recorded using a cross-correlation digital CCD camera viewing 

perpendicular to the laser sheet through the side of the tank for vertical plane 

measurements; then it was moved to the bottom of the tank for horizontal plane 

measurements. 
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Figure 7.1: Schematic of the PIV set-up 
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7.2 The PIV System 

The PIV system used for this investigation has been constructed in house over the 

last six years by Prof. J. D. Bugg, and allows two-dimensional planer measurements. 

Dual Nd:YAG lasers manufactured by New Wave Research Ltd. are used as the 

illumination source. They can supply pulses at a wavelength of 532 nm with energy of 50 

mJ/pulse and a very short individual pulse duration of 6 ns. A Berkeley Nucleonics Inc. 

500B pulse generator was used to trigger the lasers and provide synchronization with the 

camera.  It could be programmed to give any desired pulse separation. It is important to 

match the thickness of the illuminating light sheet to the flow field being investigated 

using PIV measurements. If too thin, particles will traverse the sheet too quickly and data 

will not be obtained; if too thick, the light intensity will not be great enough to illuminate 

the seeding particles and it also decreases spatial resolution. A spherical lens (250 mm 

focal length) combined with a cylindrical lens (-12.7 focal length) transform the laser 

beam into a thin light sheet. By adjusting the distance between these two lenses and the 

distance from lenses to field-of-view, the desired thickness and width of the light sheet 

can be obtained. The light sheet thickness in this work was approximately 1.0 mm at the 

center of the field-of-view.  

 

The field-of-view was imaged with a 1008 x 1018 pixel Kodak ES 1.0 Megaplus 

camera operating in dual capture. The camera was equipped with a 60 mm Nikon Micro 

Nikkor lens and the object distance was adjusted to give the field-of-view required for 

each image. The camera was then focused and calibrated by taking a picture of a ruler in 

the tank.  This allowed the computer to relate the actual length of the disk in the tank to 
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the distance in pixels on the computer screen.  This calibration also allowed the system to 

accurately determine the distance between two moving particles and it calibrates all 

positions on the image. The raw images typically looked like the image shown in Fig. 

7.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2: Typical instantaneous image in a vertical plane at Ω = 30 rpm 

 

7.3 Test Fluids and Flow Seeding  

In this study, the test fluids were filtered tap water and a commercial hair gel 

(Alberto ultra gel) diluted with water to a concentration of 50 wt%. Excessive dilution of 

the hair gel causes a loss of transparency of the fluid, which is a key issue for optical 
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access. Therefore, the 50 wt% concentration was the limit, even though the fluid is still 

very viscous with a high yield stress, all of which makes it very challenging to work with. 

The properties of the mixture were given previously in Chapter 5. 

 

Both fluids were seeded with tracer particles, in this case silicon carbide 2 µm in 

diameter and with a density of 3200 kg/m3. Even though the density of silicon carbide is 

high compared to water, the small particle size ensures that they passively follow the 

motion of the fluid. A specific advantage is that their refractive index is high (2.65) so 

they appear quite bright. Seed density control is important for the quality of PIV images. 

Keane and Adrian (1995) recommended minimum seed densities of 10-12 particle 

images within each interrogation volume. 

 

Flow seeding can be a problem in centrifugal flows, especially when the 

rotational speed is high. In swirling flow, a particle tends to move radially outward, and 

may vacate the flow region of interest.  Durst et al. (1981 p 292) and Burson et al. (1967) 

analyzed particle motion in a centrifugal field. They noted that the radial drift of the 

particle in a rotating flow may cause low particle concentration. The particle radial 

velocity Vp, following Stokes drag law can be calculated from the following equation 

(Burson et al., 1967), 

μ
ρ

18

22
pp

p

dr
V

Ω
=          (7.1) 

where r is the radial location, Ω is the rotational speed, dp is the diameter of the particle, 

ρp is the particle density and μ is the fluid viscosity. Clearly the particle radial velocity 

increases with both the square of the particle diameter and the rotational speed. If an 
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average particle diameter of 2 μm is assumed for this study, the Vp of a particle in water 

at r = 9 mm (approximately one half of the radius of the disk) for Ω = 1000 rpm was 

calculated to be approximately 1 μm/sec. This relatively low speed allowed sufficient 

time for operating the camera shutter and firing the laser. It was found that satisfactory 

particle concentration could be achieved for the disk rotating at speeds below 5,000 rpm, 

if sufficient care was taken (Durst et al., 1981). Particles with small diameters will easily 

follow the liquid flow induced by the disk.  

 

7.4 Field-of-View 

The fluid velocity was measured along the vertical (r-z plane) and horizontal (r-φ 

plane) planes. The vertical plane, for which the plane of illumination was normal to the 

disk and intersected the axis of rotation, gives the velocity field in the radial and axial 

directions. Velocities on the vertical plane were measured for both water and the gel for a 

range of rotational speeds, Ω. For water (BBy = 0) the measurements were taken at Ω = 10, 

30 and 60 rpm.  For the purpose of comparison with numerical results, the measurements 

for the gel (0 < ByB  ≤ 3) were taken at Ω = 30, 60 and 1200 rpm.  

 

Since the flow over a rotating disk is symmetric (Owen and Rogers, 1987). , only 

a single quadrant of the entire flow field was recorded in the vertical plane (r-z plane). 

The design, dimensions and the coordinate system related to the experimental setup are 

shown in Fig.7.3.  It also shows the two fields of view, the field of view denoted “I” was 

used for water, while the field of view denoted “II” was used for the gel. For water the 

field of view was relatively large, 21 mm x 16 mm, which corresponds to 22% and 12% 
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of the width and height, respectively, of the quarter of the tank profile located beneath the 

disk. However, due to the poor visibility of the diluted gel, which is less transparent than 

water, the camera was moved closer to the tank. In doing so, the size of the field of view 

was compromised; for the gel it was 14 mm x 10.7 mm, or 15% and 8% of the width and 

height, respectively, of the quarter of the tank profile beneath the disk.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3: Location of PIV measurement field in the vertical plane: I-Newtonian fluid; 

II-Bingham fluid  
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The horizontal plane, for which the plane of illumination was parallel to the disk, 

gives the velocity field in the radial and tangential directions. Velocities on the horizontal 

plane were measured for both water and the gel just below the surface of the disk (z = 0.5 

mm). The schedule for using the PIV system did not allow time to consider additional z 

locations. Even though measurements at the disk surface will not give information about  

 

Table 7.1: Characteristics of the two PIV measurement planes 
 
 

Orientation of 

measurements 

plane 

Rotational 

speed  

(Ω) 

Bingham 

number  

(BBy) 

Size 

(mm x mm) 

Δt  

(µs) 

Spatial  

resolution 

(mm)* 

Vertical 10 0 16 x 21 30,000 

Vertical 30 0 16 x 21 33,000 

 

Water 

Vertical 60 0 16 x 21 26,000 

 

0.1744 

 

Vertical 30 2.2  10.7 x 14 25,000 

Vertical 60 0.77 10.7 x 14 10,000 

 

Gel 

Vertical 1200 0.0086 10.7 x 14 800 

 

0.116 

Horizontal 10 0 & 11.3  44 x 44 18,000 

Horizontal 30 0 & 2.2  44 x 44 15,000 

Horizontal 60 0 & 0.77  44 x 44 7,500 

Horizontal 100 0 & 0.35  44 x 44 6,500 

Horizontal 250 0 & 0.09  44 x 44 4,000 

Horizontal 1200 0& 0.0086 44 x 44 400 

 

 

0.348 

* corresponds to 8 pixels 
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the variation of the velocity field along the axial direction, they can help to visualize the 

flow and understand the behavior of the material under shear. Thus, flow measurements 

at z = 0.5 were taken at a wide range of speeds, i.e., Ω = 10, 30, 60, 100, 250 and 1200 

rpm. Table 7.1 summaries the range of rotational speed, size of the two measurement 

planes considered in this study, the time between frames, and the achieved spatial 

resolution.  

 

7.5 Data Analysis 

7.5.1 PIV Image Analysis 

Interrogation of the recorded PIV images was performed by two-dimensional 

cross-correlation using PIV analysis software (Ver. 1.5.1) developed at the University of 

Saskatchewan. 

 

The basic image analysis procedure begins by extracting smaller portions 

(interrogation areas) of these images from the same location on each image. This analysis 

procedure used an interrogation area of 32 x 32 pixels and adjacent interrogation areas 

were overlapped by 50%. The software then computes a two-dimensional cross-

correlation function for this interrogation area. The correlation-based correction (CBC) 

method proposed by Hart (2000) was used to enhance the correlation signal-to-noise ratio 

and limit the number of spurious vectors. This analysis was repeated one more time to 

complete a two-level analysis and yield a final interrogation area size of 16x16 pixels. 

The actual computation of the cross-correlation function is most efficiently computed 

using Fast Fourier Transformations, FFTs. For good images there should be a distinct 
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peak in this correlation function. The location of this peak (spatial displacement) will 

correspond to the average particle displacement in the interrogation area. A peak finding 

algorithm locates the peak to sub-pixel accuracy using a Gaussian peak model. The 

average displacement of the particle is divided by the time between the laser pulses to 

yield a two-dimensional velocity measurement for that interrogation area. The procedure 

is then repeated for all interrogation areas on the image. It should be noted that the time 

between frames, Δt, varied to accommodate the significant range of rotational speeds (see 

Table 7.1).  

 

Even though the flow is known to be laminar, 50 images were acquired for each 

measurement. Ensemble averages based on these 50 pairs of images tend to eliminate any 

variation that might exist. Example of one velocity vector map and ensemble averaging 

of 50 velocity vector maps are given in Appendix D 

 

7.5.2 Outlier Rejection Strategy 

The raw (non-validated) vector maps resulting from the interrogation of original 

PIV images have a number of erroneous vectors depending on flow conditions and the 

PIV image quality. These erroneous vectors (outliers) could be attributed to a 

combination of the following effects: high velocity gradients; random positioning of 

particles in the images; out-of-plane velocity components causing one of the particle 

image pairs to move out of the illumination light sheet; as well as shot noise on the digital 

imaging device. To improve the measurement, a refinement procedure was necessary to 

correct any significant erroneous velocities. Outliers were rejected with software 
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developed in-house by Prof. J. D. Bugg (Ver. 1.1.0 mod). It uses the cellular neural 

network (CNN) method with a variable threshold as a post-interrogation algorithm to 

detect spurious vectors. A detailed explanation of how this procedure works was given in 

Shinneeb et al. (2004). Due to the use of silicon carbide seeding, a good signal-to-noise 

ratio was obtained even in the close proximity of the disk. Therefore, the number of 

rejected vectors (outliers) did not exceed 15% and were replaced using a Gaussian mean 

of their neighbors.  

 

7.5.3 Measurement Errors  

The estimation of the uncertainty of PIV velocity measurements requires 

consideration of several aspects. Systematic errors occur due to the uncertainty in the 

determination of the geometrical parameters (e.g. variations in the disk speed) and the 

fabrication tolerances of the camera devices and lenses. Non-systematic errors are mainly 

due to the uncertainty in the determination of the average particle displacement in the 

interrogation area. The errors depend on the size of the interrogation area, the time 

separation between the laser pulses, the magnification of the recording, the out-of-plane 

velocity component. The choice of the recording and interrogation parameters is therefore 

of significant importance for accurate and reliable velocity measurements. Also, it is 

necessary to make a compromise when selecting the minimum pulse time in areas with 

large velocity gradients in order to enable both the minimum and the maximum velocities 

to be reliably recorded. Further details of the PIV uncertainties are given in Westerweel 

(1997). Studies using similar methods have stated uncertainties of approximately 3% to 

10% (Prasad and Adrian, 1993).  
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7.6 PIV Experimental Results 

In this section we present PIV results for the shear dominated flow driven by a 

rotating circular disk. We are particularly interested in the flow characteristics of the 

near-disk region where the highest shear occurs. Numerous images such as Fig. 7.2 for 

both the vertical and the horizontal planes were recorded and analyzed following the 

procedure described in Section 7.5. Note that in all the figures the field of view in the 

vertical plane is smaller for the Bingham fluid as described in Section 7.4. 

 

7.6.1 Vertical Plane: Water 

Typical PIV velocity measurements for water, obtained from ensemble averaging 

50 pairs of images, in the disk region of the vertical plane (r-z) are shown in Fig. 7.4. It 

should be noted that the figure indicates the image boundaries and not the extent of the 

tank. Figure 7.4 (a), (b) and (c) show the PIV velocity measurements for speeds of Ω = 

10, 30 and 60 rpm, respectively. The arrow indicated above each figure represents the 

scale of the velocity vector. At all rotational speeds, away from the axis of rotation and 

near the disk surface, the radial velocity component always dominates over the axial one. 

To satisfy continuity, the axial inflow approaching the disk decreases and the effect of the 

disk is to redirect the fluid in the radial and tangential directions. Hence, this fluid flow 

has three non-zero velocity components and is certainly not parallel to the axis of 

rotation. Figure 7.5 (a), (b) and (c) show a blow-up of the near disk region, to give better 

idea of the flow pattern in the boundary layer. One may recognize that the upcoming flow 

is deflected radially before it reaches the disk due to the acceleration associated with the 

rotation of the disk. 
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Figure 7.4: PIV velocity measurements of water (field of view I) in the (r-z) plane: (a) Ω 

= 10 rpm; (b) Ω = 30 rpm; (c) Ω = 60 rpm 

 

 

The influence of increasing the rotational speed appears to shift the maximum velocity 

vector to a location closer to the disk. High velocities near the tip of the disk are apparent. 

These velocities indicate that the flow being deflected upward as a result of the large 

effect of the confinement of the tank. 
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Figure 7.5: A blow up of the PIV velocity measurements of water close to the disk 

region: (a) Ω = 10 rpm; (b) Ω = 30 rpm; (c) Ω = 60 rpm 

 

The dimensionless axial, H, and radial, F, velocity components were defined in 

Chapter 3, in Eq. (3.12). Their profiles for water, at Ω = 60 rpm, along the radial axis are 

shown in Figs. 7.6 and 7.7, respectively. This rotational speed was chosen to compare the 

flow of water and the gel over a rotating disk, given that a 60 rpm relatively represents 

high and low rotational speed for water and gel, respectively.  The irregularity in the axial 
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velocity profile near the disk surface is probably due to the perspective effect caused by 

the large out-of-plane displacement adjacent to the disk or the laser light sheet 

intersecting with the solid disk. Despite this irregularity, the notion of radial 

independency that was assumed in the numerical simulation appears to be approximately 

valid (see Fig. 7.7). The change of the flow from the axial to the radial direction is 

associated with a narrow boundary layer region, the thickness of which is approximately 

constant. This is demonstrated in Fig.7.7, which shows the variation of the radial velocity 

profile along the radial direction. The profile of the radial velocity decreases to zero at a 

location which marks the edge of the boundary layer. This figure also shows a significant 

variation of the profile outside the boundary layer region, which might be caused by the 

presence of the walls of the tank.  
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Figure 7.6: Dimensionless axial velocity of water at a rotational speed of Ω = 60 rpm 
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Figure 7.7: Dimensionless radial velocity, F, for water at a rotational speed of Ω = 60 

rpm 

 

It can also be noted that while the radial velocity, F, peaks at approximately z = 1, 

it vanishes at the wall due to the no-slip condition. In the boundary layer region (z < 4), 

because F decreases rapidly at large z, the axial velocity, H, approaches to an asymptotic 

value at finite z (see Fig. 7.6). 
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7.6.2 Vertical Plane: Gel 

Figures 7.8 (a) and (b) show the development of the velocity field for the gel in 

the (r-z) plane for speeds of Ω = 30 and 60 rpm, respectively. According to the von 

Kármán’s solution, one would expect, the rotation of the disk draws fluid axially toward 

the surface, and as the fluid approaches it gains tangential velocity and exits radially. 

However, the gel at relatively low rotational speeds (Figs. 7.8 (a) and (b)) shows a more 

complex behavior than does the water. This departure from the Newtonian case is 

attributed to the yield surface which confines the flow within a region of high shear. At 

low rotational speeds, the shear stress created by the disk is not strong enough to 

overcome the yield stress of the gel except near the disk,  
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Figure 7.8: PIV velocity measurements of gel (field of view II) in the (r-z) plane: (a) Ω = 

30 rpm; (b) Ω = 60 rpm 

 

   

and the rotational flow consists of a re-circulating cavern flow, similar to that observed in 

Chapter 6. This cavern shape identifies the yield surface which separates the plug region 

from the shear region. Figure 7.9 shows the PIV velocity profile superimposed on top of 

a visualized cavern at the same rotational speed (Ω = 60 rpm). The shape and the 

boundary of the yield surface can be clearly seen in this figure. 
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Figure 7.9: PIV vector maps of velocity data superimposed on top of a visualized cavern  

(Ω = 30 rpm) 
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In Fig. 7.10, a small negative axial velocity component is observed near the disk, 

while Fig. 7.11 indicates a strong radial variation in the profile of the radial velocity 

component. This departure from the Newtonian case is likely due to the finite domain of 

the flow caused by the yield surface. 

 

This surprising result can be explained by examining the r-wise momentum 

equation following the approach taken by Prasad and Adrian (1993) who implemented 

stereoscopic PIV to perform  three-dimensional measurements below a disk rotating in a 

tank of glycerine, a Newtonian fluid. The r-wise momentum equation was given in 

Chapter 3, Eq. (3.4), and it is given below to lead the following discussion.  
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  (7.2) 

 

The numerical solution (infinite disk) has p = p(z) and therefore the pressure 

gradient term in Eq. (7.2) is zero. However, in the case of the Bingham fluid which is 

bounded by the yield surface, p = p(r, z). The outward flow (radial velocity, vr) 

experiences an adverse pressure gradient, i.e., 0>∂∂ rp . As a consequence, the outward 

flow is reduced relative to the infinite disk case. (At a large enough distance from the 

axis, the adverse pressure gradient forces the flow downwards, as shown in Fig. 7.10). 
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The yield surface has a strong effect on the axial flow as well, since the axial flow 

predicted by the numerical model is now severely restricted by the cavern. While the 

axial velocity, vz, is large and positive along the axis of rotation (not measured, but it can 

be predicated by analogy to Prasad and Adrian’s measurement ), it decreases away from 

it, and eventually becomes negative. Therefore, the radial velocity along the radius is 

substantially smaller for the Newtonian case as is seen when comparing Figs. 7.11 and 

7.7. 
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Figure 7.10: PIV vector profile of the dimensionless axial velocity of the gel at rotational 

speed of Ω = 60 
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Figure 7.11: PIV vector profile of the dimensionless radial velocity of the gel at rotational 

speed of Ω = 60 

 

 

When the rotational speed is increased to 1200 rpm, Fig. 7.12, the disk induces a 

shear stress which overcomes the yield stress. More specifically, the local viscous 

stresses become larger than the yield stress of the gel for a large region of the flow. As a 

result, the flow field tends toward a pattern which is similar to the Newtonian case. A 

recirculation zone was also observed to be present in the far field. This was caused by the 

yield surface that formed in response to the viscous stresses. However, due to the limited 

field of view in the experiments, no clear conclusion on the formation of this 
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recirculation zone can be drawn. In order to study this behavior, a systematic study with a 

wider range of speeds should be carried out. 
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Figure 7.12: PIV velocity measurements of gel (field of view II) in the (r-z) plane: Ω = 

1200 rpm 

 

 

The development of the dimensionless radial and axial velocity profiles, for Ω = 

1200, along the radial axis is shown in Figs. 7.13 and 7.14, respectively. The negative 

axial component in the vectors adjacent to the disk could be due to the perspective effect 

caused by the large out-of-plane displacement adjacent to the disk (Prasad and Adrian, 
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1993). It is also noted that even at this relatively high rotation rate the velocity profiles 

still exhibit a radial variation. This behavior contradicts an important assumption of the 

similarity problem as formulated by von Kármán. 
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Figure 7.13: PIV vector profile of the dimensionless radial velocity of the gel at rotational 

speed of Ω = 1200 rpm. 
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Figure 7.14: PIV vector profile of the dimensionless axial velocity of the gel at rotational 

speed of Ω = 1200 rpm 

 

7.6.3 Horizontal Plane 

Figure 7.15 (a) and (b) shows the velocity vector maps acquired at a location just 

below the disk surface (approximately at z = 0.5 mm) in the horizontal plane (r-φ), for 

both water and the gel at rotational speed of Ω = 30 rpm, respectively. Figure 7.15 (a) 

shows that the water was sheared in the entire neighborhood of the disk. On the other 

hand, for the gel, Fig. 7.15 (b) indicates a low-velocity zone beyond the perimeter of the 

disk.  Note that the circle on the figures indicates the edge of the disk. Similar velocity 

vector maps at higher rotational speeds are given in Appendix D.  
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Figure 7.15: PIV velocity vectors at the surface of the disk in the (r-φ) plane at   Ω = 30 

rpm: (a) water; (b) gel 
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The yield stress has an important effect on the shape of the tangential velocity 

profile as shown in Fig. 7.16. It shows that the velocity profiles reach their peak values at 

r = R/2, and reduce to zero at the axis of symmetry and outer edge of the disk, r = R. A 

different trend was noticed at the higher speed, Ω = 1200 rpm as shown in Fig. 7.17, 

where the location of the maximum velocity shifts closer to the edge of the disk. This  
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Figure 7.16: PIV vector profile of the tangential velocity of the gel along the radial axis at 

rotational speeds of Ω = 30 rpm    
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behavior indicates that the gel begins to behave more like the Newtonian case as shown 

in Fig. 7.18 for water. This behavior of the gel at high speed is attributed to the reduction 

of the Bingham number with the rotation rate. 
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Figure 7.17: PIV vector profile of the tangential velocity of the gel along the radial axis at 

rotational speeds of Ω = 1200 rpm.    
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Figure 7.18: PIV vector profile of the tangential velocity of water along the radial axis at 

rotational speeds of Ω = 30 rpm    

 

 

7.6.2 Comparison with the Model Predictions 

The measurements for the gel are confined to a reduced region of the tank. The 

extent of the cavern can be compared to the value of ζ(∞)   for the model, which is given 

by: 
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For the gel, the kinematic plastic viscosity, κ, is relatively large, which causes small 

values of the far field, ζ(∞), for low rotational speeds, Ω. Therefore, the field of view did 

not extend to infinity. Also, the confinement of the flow by the cavern for the gel did not 

permit the flow field itself to reach infinity, and in fact made the notion of infinity 

ambiguous. However, as the speed is increased the Bingham number decreased, and the 

cavern size increases to an extent that allows the effective far field or infinity to be 

reached. For water, the dimensionless location of the far field is much larger due to the 

small kinematic viscosity.  A summary of the test parameters that determine the far field 

is given in Table 7.2. 

 

 

Table 7.2: Summary of test parameters 

 

Water Gel 

Ω (rpm) ζ(∞) κ (m2/sec) Ω (rpm) ζ(∞) κ (m2/sec) 

30 30 0.896x10-6 30 0.73 0.71x10-3

60 42 0.896x10-6 60 1.0 0.71x10-3

1200 190 0.896x10-6 1200 4.6 0.71x10-3
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One of the crucial assumptions adopted by von Kármán and applied in 

development of our numerical model is that the dimensionless velocity profiles are 

independent of r. The validity of this assumption was approximately confirmed for the 

Newtonian case (Fig. 7.7) and the case of gel at high rotational speed (Fig.7.13). 

Therefore, the dimensionless radial and axial velocity components acquired at only one 

radial location, r = 10 mm, were used for a quantitive comparison between the 

experimental and computational results. However, due to the confinement by the cavern, 

the velocity profiles for the gel at low rotational speeds were not independent of r (Figs. 

7.10 and 7.11). They were also acquired at r = 10 mm to explore their deviations from the 

corresponding high rotational speed one. 

 

The present boundary layer solution for a Newtonian fluid is compared to the 

results obtained with water in Fig. 7.19 for a rotational speed of 30 rpm.  The distribution 

of the dimensionless radial, F, and axial, H, velocity components are plotted. Due to the 

limitation of the PIV system available for measurements, the tangential velocity 

component was not captured. When ζ < 1, the PIV measurements show a higher measured 

radial velocity and lower axial velocity than predicted by the boundary layer solution.  

 

The dimensionless radial and axial velocity components for the 50 wt% gel 

solution at 30, 60 and 1200 rpm are shown in Figs. 7.20 and 7.21, respectively; the results 

for water at 30 rpm and numerical curves for different values of Bingham number, i.e., BBy 
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= 0 and 1, are also included. An important difference is that the measured radial 

velocities for the gel solution peak at higher values than both the water and the numerical 

results near the surface of the disk, and then diminish to zero at a location closer to the 

disk. A second difference is that the axial velocity components were shown to reach their 

“infinite values” much more rapidly than they did for water and numerical results. These 

differences were caused by the confinement due to the presence of the yield surface 

which was not considered by our numerical model. Due to the confinement introduced by 
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Figure 7.19: Comparison of F and H from the PIV measurements of water with numerical 

results of the Newtonian case  
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the yield surface, and possibly a pressure gradient, the velocity profiles were functions of 

both r and z. Therefore, significant quantitative differences were seen for the magnitude 

of the radial and axial velocities at all speeds compared to that of both water and the 

results of the numerical model.  
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Figure 7.20: Comparison of the dimensionless radial velocity from the PIV measurements 

of water and the gel with numerical results for different values of Bingham number, BBy
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Figure 7.21: Comparison of the dimensionless axial velocity from the PIV measurements 

of water and the gel with numerical results for different values of Bingham number, BBy

 

 

7.7 Summary 

PIV measurements were carried out for both distilled water and the 50 wt% gel in 

the same rotating disk apparatus that was used for the flow visualization experiments. 

Both the axial and radial velocity components in the (r-z) plane were measured at 

rotational speeds ranging from Ω = 10 to 1200 rpm. Due to experimental limitations, the 
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tangential velocity component was only measured close to the surface of the disk. 

Profiles of the dimensionless axial and radial velocity components were extracted from 

the measurements. The results for the water and the gel were compared at rotational 

speeds of 30, 60 and 1200 rpm. 

 

When analyzing the water data for various speeds, a clear rotational speed effect 

can be observed. The dimensionless radial velocity profiles were observed to be 

approximately constant for both water and the gel at high rotational speeds, along the 

radial direction which validated a critical assumption of the present numerical model. For 

the gel at low rotational speeds this assumption was not valid.  In conclusion, at relatively 

small Bingham numbers similar results as for water were obtained, both of which were 

quantitatively consistent with the results of the numerical model.  
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CHAPTER 8 
 
 
Conclusions, Contributions and Recommendations 

 

8.1 Introduction 

 

Several aspects of the behavior of a Bingham plastic fluid under rotational shear 

which were systematically investigated in this study, are believed to be original research. 

Specifically, the effects of the yield stress on the velocity field, boundary layer thickness, 

shear deformation rate and the torque exerted on the disk were investigated for the first 

time. 

 

First, a numerical simulation for laminar flow of a Bingham fluid over a rotating 

disk was obtained. Then, in a related physical experiment, the flow field was visualized 

using dye, and the velocity field was measured using PIV.  The conclusions following 

from these numerical and laboratory investigations are presented in the following section. 

Thereafter, the contributions are summarized, and some recommendations for future 

work are presented.  
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8.2 Conclusions from Numerical Investigation 

Numerical simulation of the flow of a Bingham fluid over a rotating disk was 

considered in this study. The flow field was modelled by assuming that the fluid is 

sheared throughout the domain. The use of this critical assumption limits the results to 

the sheared region, and neglects the effect of any unsheared region which might exist 

outside the boundary layer region. The problem was solved by using boundary-layer 

approximation, and applying a similarity transformation of the variables. The coupled 

nonlinear boundary layer equations were transformed, and the resulting system of 

ordinary differential equations were numerically solved using a multiple shooting 

method. This method was adopted to account for the extreme sensitivity to the initial 

condition that was encountered in solving this problem. Also, approximate dimensionless 

expressions for the moment coefficient on a finite disk, wall shear rate, boundary layer 

thickness and volumetric flow rate were obtained in terms of the Bingham number 

(which accounts for the yield stress effect).  

 

From the present investigation, we conclude that the effect of the Bingham model 

terms in the constitutive equation for the fluid, in comparison with the Newtonian case, 

are: 

 

1. To increase the thickness of the boundary-layer formed near the disk. 
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2. To decrease the magnitude of the radial and axial velocity components, and 

increase the magnitude of the tangential velocity component at any point in the 

fluid within the boundary-layer region. 

3. To increase the dimensionless moment coefficient. 

4. To increase the wall shear rate. 

5. To decrease the volumetric flow rate.  

  

8.3 Conclusions from Laboratory Investigation 

The original purpose of the measurements was to obtain a set of data against 

which the results of the numerical investigations, described in Chapter 4, could be tested. 

However, it turned out that the visualization and PIV results were also useful apart from 

their ability to validate the numerical model. These methods provide a general picture of 

the flow of a Bingham fluid over a rotating disk in a tank of finite extent. In this part of 

the thesis, the results of rheological measurements of simulated transparent Bingham 

fluids, visualization of the flow of a Bingham fluid over a rotating disk, and measurement 

of the local velocity field were presented. The major conclusions of the laboratory 

investigations are summarized in the subsections below. 

 

8.3.1 Rheological Experiments 

An experimental plan to simulate waxy crude oils has been developed and 

implemented. Transparent oil-wax mixtures were created for a wide range of wax 

concentrations having properties that could be measured by a viscometer. The Bingham 

plastic behavior was observed at wax concentrations higher than 3 wt%. At 3 wt%, the 
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yield stress was found to be negligible. The oil-wax mixture that best simulated Amna 

waxy crude oil occurred at wax concentration of 7 wt%. At this concentration, the plastic 

viscosity and yield stress, including their dependence on temperature and shear rate were 

documented. This mixture was used for the flow visualization experiments, where only 

moderate transparency of the fluid was required. 

 

To fulfill the demand of the PIV system for a higher degree of visibility, a 

second Bingham fluid was created and rheologically investigated. A 50 wt% diluted hair 

gel was found to be sufficiently transparent for the PIV measurements. It exhibited a 

relatively high yield stress. 

 

8.3.2 Flow Visualization 

Visualization of the flow of the simulated oil generated by a rotating disk revealed 

that there are two zones: an active zone or cavern around the disk of elliptic shape and a 

stagnant outer zone. The size of this active zone or well-sheared cavern depends on a 

balance between the yield stress of the fluid and the force exerted on the cavern boundary 

by the rotation rate of the disk. Approximate expressions for predicting cavern size have 

been developed in terms of the global Bingham number, Bn. As Bn decreased, the size of 

the cavern increased. Based on these visual observations and correlations, the size of the 

caverns in opaque waxy crude oils of similar rheology to the model fluid can be 

estimated.  
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8.3.3 PIV Measurements 

Two-dimensional PIV measurements were performed for laminar flows of water, 

as well as a 50 wt% gel-water solution, over a rotating disk. For the gel, the  velocity 

fields provide useful information about the effect of the yield stress on the flow, although 

only part of the area near the disk was observed. These measurements demonstrate that 

Bingham flows can be investigated using a typical PIV technique by careful use of a thin 

laser sheet and correct choice of laser pulse separation. For a boundary layer exhibiting 

large velocity gradients, the outlier rejected data was calculated to be small for both the 

Newtonian and Bingham fluid. 

 

Unlike the PIV measurements of water, the use of diluted gel was very 

challenging in terms of optical access, especially at low rotational speeds. At low 

rotational speeds, the gel produced different trends for the velocity components than 

those observed with water. This may be related to the yield stress. On the other hand, the 

gel at relatively high rotational speeds, and the water at both low and high speeds, 

exhibited similar flow behavior.   

 

Comparison between the model predictions and experimental observations, with 

regard to axial and radial velocity profiles was satisfactory for water. For the gel, large 

differences were observed, e.g., the radial component F exhibits a higher peak value than 

that of the water near the surface of the disk, and the axial component H reaches its 

infinite value much closer to the disk than does the water. These discrepancies appear to 

be caused by the confinement that was introduced to the flow due to presence of the yield 
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surface which was not considered by the numerical model. In retrospect, from a practical 

standpoint it would be difficult to create the conditions in a tank which would create the 

flow pattern considered by the numerical simulation. The presence of a tank confines the 

flow within a finite domain which causes a flow disturbance.  

 

8.4 Major Contributions 

 The present study provides new insight into the laminar boundary layer flow of a 

Bingham fluid generated by a rotating disk. The major contributions of this study are 

summarized as follows: 

 

1. The first numerical investigation to apply the Bingham constitutive equation to 

von Kármán’s classical problem. This numerical model provides insight into the 

role of the yield stress on the performance of equipment with characterstics which 

are physically similar to the rotating disk system. 

2. The first rheological measurements of a fluid, which successfully mimics the 

rheological behavior of a waxy crude oil and yet remains transparent.  

3. To the author’s knowledge, this is the first study to apply the PIV technique to a 

Bingham fluid in the specific case of the flow generated by a rotating disk. This 

experiment provides a good basis for future work using the PIV technique to 

observe the flow behavior of a Bingham fluid in fluid handling equipment, such 

as a centrifugal pump. 
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8.5 Recommendations for Future Work 

On the basis of the present study and our current understanding of the flow of a 

Bingham fluid over a rotating disk, the following recommendations are made with 

respect to future work: 

 

1. According to the general Bingham model, the shear stress in the region near the 

yield surface is below the yield stress.  As a result, the fluid in this region cannot 

flow. For such a material, a radially outward motion is physically impossible. 

This contradiction can be accounted for by the introduction of the bi-viscosity 

model, which assumes that the material behaves as a Newtonian fluid with very 

large viscosity until the critical yield stress is exceeded. Above the yield stress, 

the apparent viscosity of the material decreases. In this regard, modeling of the 

flow of a Bingham fluid over a rotating disk would have benefited from an 

investigation which employed the bi-viscosity model. However, this may require 

a different numerical approach.  

2. The PIV results presented in this thesis should be considered as preliminary 

measurements.  A more thorough experimental investigation would need to 

address the limitations associated with the current velocity measurements. For 

example, in order to get a complete picture of the flow patterns of a Bingham 

fluid, particularly at low rotational speeds, it would be desirable to perform 

measurements of the velocity field throughout the region below the disk. Further 

investigation of the effects of the wall on the PIV measurements would also be 
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useful in verifying the infinite medium assumption. It is recommended that a 

much larger tank be used with the current disk size. 

3. Future experimental and/or numerical investigations into the effect of turbulence 

on a Bingham fluid flowing over a rotating disk will also aid in understanding the 

behavior of such material under high shear.  
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APPENDIX A 
 

 
Reduction of the Transport Equations of Mass and Momentum 

to a Set of ODEs 

 
 

In this Appendix, a step by step algebraic manipulation for casting the final form 

of the ordinary differential equations, ODEs, is presented. It is helpful to understand the 

development of the model. 

 

Substitutions of the equations (3.12 a, b, c, d) for velocity, equations (3.26) and 

(3.27) for the shear stress components, and equation (3.28) for the ratio By, into equations 

(3.7) to (3.9) are as follows: 
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Momentum Equations  
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φ-wise (Eq. 3.9, p.36) 
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Now we have to eliminate the second derivatives in the right hand side of 

equations (A.17) and (A.28), since we derive a single second order variable for each 

equation. This can be done by substituting the value of F ′′  and G ′′  back into equations 

(A.27) and (A.16), respectively. Thus,  
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APPENDIX B 
 

 
Flow of a Power Law Fluid over a Rotating Disk 
 

 
The relation between the stress components ijτ  and the rate of deformation tensor 

eij (for steady, laminar, incompressible flow) using a power law model is given by 

 

ijij Ke−=τ                       (B.1) 

where K is the apparent viscosity of the fluid. With the standard boundary-layer 

approximations noted in Chapter 3 (Section 3.1.3) and assuming rotational symmetry, 

the apparent viscosity of a power-law fluid takes the following form  
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where  m is the fluid consistency constant and n is the power law index, with n > 1, n < 1 

corresponding to shear-thickening and shear-thinning fluids,  respectively. The classical 

Newtonian viscosity law is obtained by setting n = 1. 
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The flow is again governed by the transport equations of momentum and continuity (3.7) 

to (3.10) given in Chapter 3. In order to solve these equations, it is convenient to 

introduce a dimensionless distance, ζ, from the disk, following (Mitschka and Ulbrich, 

1965): 
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Furthermore, the following assumptions are made for the velocity components:   
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Inserting these expressions into equations (3.7) to (3.9), we obtain a system of ordinary 

differential equations for the functions F, G and H, as follows: 
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The set of the ODE’s given by equations (B.5) to (B.7) for a power law fluid 

represents a “two-point boundary value problems” (TPBVP) which must be solved 

numerically. Solution of these equations was obtained by the same method described in 

Chapter 3. The ODEs (B.5) to (B.7) can be cast into first order ODEs in a similar way to 

the Bingham fluid case. By putting  

HyGyGyFyFy =′==′== 54321 ,,,, , 

we are left with five nonlinear ODEs for the variables F ′ , F ′′ ,G′ , G ′′  and H ′  as 

functions of the independent variableζ  . 

The boundary conditions are given by 

,0)0(1 =y ,)0(2 ay = ),0()0(3 Gy = ,)0(4 by =  ,0)0(5 =y  

where a and b are unknown. 

 

A multiple shooting method was used for obtaining the numerical solution of this 

nonlinear boundary value problem. The details of these numerical calculations were 

given in Chapter 3.  
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Appendix D 
 
PIV Results 

 
 

Examples of one velocity vector map and  ensemble average of 50 velocity vector 

maps,  corresponding to the vertical plane for water at 10 rpm are shown in Figs. D.1 (a) 

and (b), respectively. It should be noted that the figure indicates the image boundaries not 

the extent of the tank. Figure D.1 shows that there are almost no differences between the 

two velocity figures, (a) and (b).  

 

 

 

 

 

 

 

 

 

 

 

Figure D.1: PIV vector maps of velocity data in the (r-z) plane for water: (a) one velocity 

vector map  , (b) ensemble average of 50 velocity vector maps. (Ω =10 rpm) 
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Figure D.2: PIV vector maps of velocity data in the (r-z) plane for the gel: (a) Ω =30 rpm; 

(b) Ω =60 rpm; (c) Ω =1200 rpm 
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Figure D.3: PIV vector profile of the dimensionless radial velocity of the gel at rotational 

speeds of Ω = 30, 60 and 1200 rpm, respectively. 
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Figure D.4: PIV vector profile of the dimensionless axial velocity of the gel at rotational 

speed of Ω = 30 
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Figure D.5: PIV velocity vectors for gel at z = 0.005 m from the surface of the disk in the 

(r-φ) plane at: Ω = 10, 30, 60, 100, 250 and 1200 rpm, respectively.  
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Figure D.6: PIV vector profile of the tangential velocity for the gel along the radial axis 

at rotational speeds of Ω = 10, 30, 60, 100, 250 and 1200 rpm, respectively.   
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Figure D.7: PIV vector profile of the tangential velocity for water along the radial axis at 

rotational speeds of Ω = 10 and 60 rpm.  
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Figure D.8: Distribution of the tangential velocity component for the gel along the radial 

axis at rotational speeds of Ω = 10, 30, 60, 100, 250 and 1200 rpm, respectively.    
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Figure D.9: Dimensionless radial velocity for 50 wt% gel solution at different rotational 

speeds. 

 

 

 

 

 

 

 

 

 

Figure D.10: Dimensionless axial velocity for 50 wt% gel solution at different rotational 

speeds. 
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APPENDIX E 
 

 
Solution Method 

 
A brief description of the multiple-shooting method for a two-point boundary value 

problem (TPBVP) is as follows (Roberts and Shapman, 1972): 

 

 

Each of the set of n nonlinear ODEs can be written as 

 

),( ii yxfy =′          (E.1) 

 

The range [a,b] is split into N parts by the partition Nxxx ....,,, 10  such that 

 

bxxxxa N =<<<<= .....210       (E.2) 

 

Initial conditions ( ) iii Sxy =  are chosen, and the equations 

 

),( ii yxfy =′          (E.3) 

 

are integrated using the fourth-order Runge-Kutta method with variable step size over the 

subinterval [xi,xi+1] to give 

 

)( 1+ii xy for 1,...1,0 −= Ni  

 

To find the solution of (E.1) we must satisfy the non-linear equation set 

 

0)( =ST          (E.4) 
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where 
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The first N-1 elements of T are continuity (matching) conditions while the last element 

represents the boundary condition. Equation (E.5) is solved by a modified Newton 

iteration as described by Roberts and Shapman (1972). The Jacobian S
T

∂
∂  can be 

calculated by differencing or can be supplied. In our case we supply them in a separate 

subroutine for the three cases, Newtonian, Bingham and power-law fluids. At each 

iteration in the Newton method a system of equations 

 

( ))()( jj STSJ −=∆ ,         (E.6) 

 

is solved for a correction )( jS∆  to )( jS , where J is the Jacobean (evaluated at )( jS ) with 

block form 
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where A and B are Jacobeans arising from the boundary conditions and where the 

matrices iG  and iG  arise from the continuity (matching) conditions. 

 

( )
,

)(
,

)(
,1,...,0,

,1

by
TB

ay
TANi

S
Sxy

G
j

ii
i ∂

∂=
∂
∂=−=

∂
∂

= +  

This procedure has been formulated in a subroutine called BVPMS from the 

International Mathematics and Statistics Libraries (IMSL). The pertained details of the 

subroutine are provided below. 

 

BVPMS/DBVPMS (Single/Double precision) 

Solve a (parameterized) system of differential equations with boundary conditions at two 

points, using a multiple-shooting method. 

Usage 

CALL BVPMS (FCNEQN, FCNJAC, FCNBC, NEQNS, TLEFT, TRIGHT, DTOL, 

BTOL, MAXIT, NINIT, TINIT, YINIT, LDYINI, NMAX, NFINAL, TFINAL, 

YFINAL, LDYFIN) 

Arguments 

FCNEQN — User-supplied SUBROUTINE to evaluate derivatives. The usage is 

CALL FCNEQN (NEQNS, T, Y, P, DYDT), where 

NEQNS – Number of equations. (Input) 

T – Independent variable, t. (Input) 

Y – Array of length NEQNS containing the dependent variable. (Input) 

P – Continuation parameter used in solving highly nonlinear problems. (Input) 

See Comment 4. 

DYDT – Array of length NEQNS containing y´ at T. (Output) 
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The name FCNEQN must be declared EXTERNAL in the calling program. 

FCNJAC — User-supplied SUBROUTINE to evaluate the Jacobian. The usage is 

CALL FCNJAC (NEQNS, T, Y, P, DYPDY), where 

NEQNS – Number of equations. (Input) 

T – Independent variable. (Input) 

Y – Array of length NEQNS containing the dependent variable. (Input) 

P – Continuation parameter used in solving highly nonlinear problems. (Input) 

See Comment 4. 

DYPDY – Array of size NEQNS by NEQNS containing the Jacobian. (Output) 

The entry DYPDY(i, j) contains the partial derivative ji yf ∂∂  evaluated at (t, y). 

The name FCNJAC must be declared EXTERNAL in the calling program. 

FCNBC — User-supplied SUBROUTINE to evaluate the boundary conditions. The 

usage is CALL FCNBC (NEQNS, YLEFT, YRIGHT, P, H), where 

NEQNS – Number of equations. (Input) 

YLEFT – Array of length NEQNS containing the values of Y at TLEFT. (Input) 

YRIGHT – Array of length NEQNS containing the values of Y at TRIGHT. (Input) 

P – Continuation parameter used in solving highly nonlinear problems. (Input) 

See Comment 4. 

H – Array of length NEQNS containing the boundary function values. (Output) 

The computed solution satisfies (within BTOL) the conditions hi =0, i = 1, …..., NEQNS. 

The name FCNBC must be declared EXTERNAL in the calling program. 

NEQNS — Number of differential equations. (Input) 

TLEFT — The left endpoint. (Input) 
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TRIGHT — The right endpoint. (Input) 

DTOL — Differential equation error tolerance. (Input) 

An attempt is made to control the local error in such a way that the global error is 

proportional to DTOL. 

BTOL — Boundary condition error tolerance. (Input) The computed solution satisfies the 

boundary conditions, within BTOL tolerance. 

MAXIT — Maximum number of Newton iterations allowed. (Input) Iteration stops if 

convergence is achieved sooner. Suggested values are MAXIT = 2 for linear problems 

and MAXIT = 9 for nonlinear problems. 

NINIT — Number of shooting points supplied by the user. (Input) It may be 0. A 

suggested value for the number of shooting points is 10. 

TINIT — Vector of length NINIT containing the shooting points supplied by the user. 

(Input) 

If NINIT = 0, then TINIT is not referenced and the routine chooses all of the shooting 

points. This automatic selection of shooting points may be expensive and should only be 

used for linear problems. If NINIT is nonzero, then the points must be an increasing 

sequence with TINIT(1) = TLEFT and TINIT(NINIT) = TRIGHT. 

YINIT — Array of size NEQNS by NINIT containing an initial guess for the values of Y 

at the points in TINIT. (Input) YINIT is not referenced if NINIT = 0. 

LDYINI — Leading dimension of YINIT exactly as specified in the dimension statement 

of the calling program. (Input) 

NMAX — Maximum number of shooting points to be allowed. (Input) If NINIT is 

nonzero, then NMAX must equal NINIT. It must be at least 2. 
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NFINAL — Number of final shooting points, including the endpoints. (Output) 

TFINAL — Vector of length NMAX containing the final shooting points. (Output) Only 

the first NFINAL points are significant. 

YFINAL — Array of size NEQNS by NMAX containing the values of Y at the points in 

TFINAL. (Output) 

LDYFIN — Leading dimension of YFINAL exactly as specified in the dimension 

statement of the calling program. (Input) 

Comments 

1. Automatic workspace usage is 

BVPMS NEQNS * (NEQNS + 1)(NMAX + 12) + 2 * NEQNS + 30 DBVPMS 2 * 

NEQNS * (NEQNS + 1)(NMAX + 12) + 3 * NEQNS + 60 Workspace may be explicitly 

provided, if desired, by use of B2PMS/DB2PMS. The reference is 

CALL B2PMS (FCNEQN, FCNJAC, FCNBC, NEQNS, TLEFT, TRIGHT, DTOL, 

BTOL, MAXIT, NINIT, TINIT, YINIT, LDYINI, NMAX, NFINAL, TFINAL, 

YFINAL, LDYFIN, WORK, IWK) The additional arguments are as follows: 

WORK — Work array of length NEQNS * (NEQNS + 1)(NMAX + 12) + NEQNS + 30. 

IWK — Work array of length NEQNS.  

2. Informational errors 

Type  Code 

1  5  Convergence has been achieved; but to get acceptably accurate approximations  

to y(t), it is often necessary to start an initial-value solver, for example IVPRK, at 

the nearest TFINAL(i) point to t with t ≥TFINAL (i). The vectors YFINAL (j, i), j 

= 1,….., NEQNS are used as the initial values. 
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4  1  The initial-value integrator failed. Relax the tolerance DTOL or see Comment 3 

4  2  More than NMAX shooting points are needed for stability. 

4  3  Newton’s iteration did not converge in MAXIT iterations. If the problem is 

linear, do an extra iteration. If this error still occurs, check that the routine 

FCNJAC is giving the correct derivatives. If this does not fix the problem, see 

Comment 3. 

4  4  Linear-equation solver failed. The problem may not have a unique solution, or 

the problem may be highly nonlinear. In the latter case, see Comment 3. 

3. Many linear problems will be successfully solved using program selected shooting 

points. Nonlinear problems may require user effort and input data. If the routine fails, 

then increase NMAX or parameterize the problem. With many shooting points the 

program essentially uses a finite-difference method, which has less trouble with 

nonlinearities than shooting methods. After a certain point, however, increasing the 

number of points will no longer help convergence. To parameterize the problem, 

see Comment 4. 

4. If the problem to be solved is highly nonlinear, then to obtain convergence it may be 

necessary to embed the problem into a one parameter family of boundary value problems, 

y´ = f(t, y, p), h(y(ta, tb, p)) = 0 such that for p = 0, the problem is simple, e.g., linear; and 

for p = 1, the stated problem is solved. The routine BVPMS/DBVPMS automatically 

moves the parameter from p = 0 toward p = 1. 

5. This routine is not recommended for stiff systems of differential equations. 
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Algorithm 

Define N = NEQNS, M = NFINAL, ta, = TLEFT and tb, = TRIGHT. The routine BVPMS 

uses a multiple-shooting technique to solve the differential equation system y´ = f (t, y) 

with boundary conditions of the form 

 0))(.........,),(),......,(( 1 =bNaNak tytytyh        for k = 1, ……., N  

A modified version of IVPRK is used to compute the initial-value problem at each 

“shot.” If there are M shooting points (including the endpoints ta and tb), then a system of 

NM simultaneous nonlinear equations must be solved. Newton’s method is used to solve 

this system, which has a Jacobian matrix with a “periodic band” structure. Evaluation of 

the NM functions and the NM x NM (almost banded) Jacobian for one iteration of 

Newton’s method is accomplished in one pass from ta to tb of the modified IVPRK, 

operating on a system of N(N +1) differential equations. For most problems, the total 

amount of work should not be highly dependent on M. Multiple shooting avoids many of 

the serious ill conditioning problems that plague simple shooting methods. For more 

details on the algorithm, see Sewell (1982). The boundary functions should be scaled so 

that all components hk are of comparable magnitude since the absolute error in each is 

controlled. 
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