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ABSTRACT 

The use of service-oriented (SO) distributed systems is increasing. Within service 

orientation web services (WS) are the de facto standard for implementing service-oriented 

systems. The consumers of WS want to get uninterrupted and reliable service from the service 

providers. But WS providers cannot always provide services in the expected level due to faults 

and failures in the system. As a result the fault management of these systems is becoming 

crucial. This work presents a distributed event-driven architecture for fault management of Web 

Services. According to the architecture the managed WS report different events to the event 

databases. From event databases these events are sent to the event processors. The event 

processors are distributed over the network. They process the events, detect fault scenarios in the 

event stream and manage faults in the WS.  
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CHAPTER 1 

INTRODUCTION 

In the last five years service-orientation (SO) has emerged as a new system 

design/integration paradigm for building distributed systems. The Service-Oriented-Architecture 

(SOA) is a paradigm for designing a software system that offers services to either end-user 

applications or to other services. SOA was first introduced by Gartner in April 1996. As a system 

design/integration philosophy it is independent of specific technologies, e.g., Web Services (WS) 

or J2EE [1]. 

 

Figure 1-1. Service Oriented Architecture 

The main building blocks of SOA are – service provider, the service registry, and the 

service consumer. Service providers are software applications that provide the service to the 

service consumer. The provider publishes a description of the services they provide via a service 

registry. Service consumers consume the service. Any software application can be both service 

client and service provider at the same time. Clients must be able to find the description of the 

services they require and must be able to bind to them. 
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Web services (WS) are the de facto standard for implementing service-oriented systems. 

WS enable different applications running on different machines to exchange data and integrate 

with one another without requiring additional software. The applications that are built on WS 

technology can exchange data regardless of the language, platform, or internal protocols they use.  

The WS providing organization owns the WS and implements business logic that 

underlies the service. WS are published in a service registry which is hosted by a service 

discovery agency. The description of the WS contains information on the business, service, and 

technical information of the WS. The WS publisher has to describe this information with a 

registry in a predefined format specified by the discovery agency. 

Currently there are two different ways to develop WS. One is SOAP (Simple Object 

Access Protocol) based WS and the other is RESTful WS. REST stands for Representational 

State Transfer. SOAP was developed at Microsoft and was designed to be platform and language 

independent.  It has become the standard for exchanging XML-based messages. Conceptually 

SOAP is more difficult than REST.  REST assumes a point to point communication model and is 

tied to the HTTP transport model. The use of SOAP based WS and RESTful WS both are 

popular with service providers.  

An example of SOAP request and response message, taken from [45], is shown here. In 

this example a GetStockPrice request is sent to a server which takes StockName as the parameter 

and the Price will be returned in the response from the server.  
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Figure 1-2: A SOAP request message [45]  

 

Figure 1-3: A SOAP response message [45]  

 In RESTful WS the request may be any url http://www.example.org/instock/ibm 

and the HTTP request will be a simple GET request as shown below. 

  

Figure 1-4: A Simple RESTful WS request  
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Similarly the response may be something like as shown in the following figure. 

 

Figure 1-5: A Simple RESTful WS response  

As a WS network grows, its existence and performance becomes crucial to the business’s 

core activities. So the management of WS is important for providing seamless access of the 

service to the user. The important functions of service management include Service Level 

Agreement (SLA) management, auditing, monitoring, troubleshooting, service redeployment, 

dynamic routing and graceful degradation, service life cycle and state management, dynamic 

service provisioning, security management, service maintenance, and service management for 

WS infrastructure and applications [1]. 

This research focuses on the fault management of SOAP based WS due to their wide 

acceptance in the WS provider community. This work focuses on services where multi-faults can 

occur simultaneously. The main goal of this research is to detect and manage faults in SOAP 

based WS. 

Here I propose an architecture of a system for fault management of WS. The proposed 

system is based on distributed event processing. The main components of the system are 

enterprise service bus, event database, event file generator, event object generator, event router 

and event processor. All components of the proposed architecture are distributed over the 

network. According to my system, all the WS will generate different events in its lifetime. These 
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events will be reported and stored in the event databases. I assume that there will be no noise in 

reporting of the events and no event will be lost. I also assume that the event databases are a 

reliable storage of events. The event processors will get events from the event databases and they 

will process the events to detect faults.  

The rest of the paper is organized as follows. Chapter 2 describes the problem definition. 

Chapter 3 presents related terms and related works on web services management. Chapter 4 

presents the proposed architecture. Chapter 5 presents the experimental setup and results. 

Chapter 6 presents conclusion and expected contribution. 
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CHAPTER 2 

PROBLEM DEFINITION 

The use of WS applications is increasing daily. Their size and complexity is also 

increasing to meet functional requirements. WS can be found in Online Transaction Processing 

applications, Banking applications, Database Management applications, Groupware applications, 

legacy resources and so on. As a result, we become increasingly dependent on them - making it 

necessary to monitor, track and manage them. 

The consumers of WS want to get uninterrupted and reliable service from the service 

providers. But WS providers cannot always provide services to the expected level due to faults 

and failures.  WS fail to perform in accordance with the service level objectives.  So services 

need to be monitored for availability and performance from the user’s perspective [1]. 

The faults can occur in different places, for example faults can occur in the software 

application, in the network connection, or in the hardware resources. So the resources that are 

distributed over the network have to be monitored for availability, performance, and utilization. 

Traditional fault management tools can’t automatically monitor, analyze, and resolve 

faults in WS when a large number of services, suppliers and technologies collaborate together to 

perform a business level activity. As WS are distributed in nature, it is hard to trace the flow of 

transactions within a distributed system. This makes monitoring and fault management of WS 

more difficult than centralized applications [1]. 

Let us consider a purchase order management web service (POMWS). The POMWS 

manages purchase orders submitted to a specific supplier by a client. There are some steps 

involved before the client gets an invoice for the purchase order (PO) from POMWS. Then the 

client confirms the PO. This completes the ordering process of the client. 
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For simplicity, let us assume that the following steps are performed by POMWS when a 

client submits a PO. 

1. POMWS calls credit checking WS to check the credit worthiness of the client. 

2. POMWS calls the supplier’s inventory WS to check if the items are available. 

3. POMWS calls shipping WS to calculate the shipping cost. 

4. POMWS calls billing WS to calculate the total bill 

5. POMWS sends the invoice to the client. 

 

Figure 2-1: Simple workflow of POMWS  

During a purchase order management different faults can occur and they can cause failure 

to complete the order. For example any of the participating WS can be unavailable to provide its 

service. The WS can be down because of a hardware fault or software fault, or the network 

connection can be down between POMWS and a specific WS. A PO can fail also due to invalid 

data in it. For example, the customer provides an invalid postal code and the shipping WS 
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identifies the invalid code when it tries to find the shipping cost.  This fault causes failure to 

complete the order.  

If credit checking WS, inventory WS, shipping WS and billing WS call other different 

services to complete their services then a series of nested service calls is involved to complete a 

PO. It is very hard to track and manage faults in this type of scenario. If POMWS has a fault 

management system which does not know about the services at the nested levels, it will not be 

able to find the root cause of the fault. So tracking and managing faults in a distributed 

environment need a new approach. 

In this research I want to investigate the following questions: 

1. How can we monitor SOAP based WS for faults?  

2. How can we detect faults in SOAP based WS? 

3. Which faults can be detected? Can the system detect faults if multiple faults occur 

simultaneously? 

4. What is the latency between occurrence and detection of faults? How can we improve 

it? 

5. How can WS recover when any fault occurs?  
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CHAPTER 3 

RELATED LITERATURE 

This chapter presents related technical terms and related works on management of 

distributed systems and management of web services. The works on management of distributed 

systems are related to fault management of WS as WS are distributed in the network.  

3.1 Web Services (WS) 

WS are self-describing, self-contained software modules available via a network, such as 

the internet, which completes tasks, solves problems, or conducts transactions on behalf of a user 

or application. WS constitute a distributed computer infrastructure made up of many different 

interacting application modules trying to communicate over a private or public network to 

virtually form a single logical system [1].  

WS are loosely coupled software modules. The service interface is defined in a neutral 

manner that is independent of the underlying platform, the operating system, and the 

programming language the service is implemented in. This allows services, built on a variety of 

such systems, to interact with each other in a uniform and universal manner. 

A WS is a self contained software module that performs a single task. The modules 

describes its own interface characteristics, i.e. the operations available, the parameters, data 

typing, and the access protocols, in such a way that other software modules can invoke its 

functionality and know what results to expect.  

WS can be accessed programmatically. A web service provides programmable access – 

this allows embedding WS into remotely located applications. 

WS can be dynamically found and included in applications at compile or runtime. WS are 

described in terms of a standard description language. The Web Services Description Language, 
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WSDL, describes both functional as well as non-functional service characteristics. Functional 

characteristics include operational characteristics that define the overall behavior of the service 

while non-functional characteristics mainly describe characteristics of the hosting environment.  

WS are distributed over the internet and make use of existing, ubiquitous transport 

internet protocols like HTTP. This helps to comply with current corporate firewall policies. 

3.1.1 Types of WS 

There are two types of web services – Simple or Informational services and Complex 

services or Business processes.  

There are two types of WS based on the protocol they use – SOAP based WS and REST 

(Representational State Transfer) WS. In REST WS the web services are viewed as resources 

that can be identified by their URLs [43]. 

3.1.1.1 Simple or informational services 

Informational services are of a simple nature. They provide access to content interacting 

with an end user by means of simple request/response sequences, or alternatively may expose 

back-end business applications to other applications. Informational services can be divided into 

three subcategories according to the business problem they solve. These are pure content services, 

simple trading services, and information syndication services. 

3.1.1.2 Complex services or business process 

Complex or composite services typically involve the assembly and invocation of many 

pre-existing services found in diverse enterprises to complete a multi-step business interaction. 
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Complex services can be divided into two groups – complex services that compose 

programmatic WS and complex services that compose interactive WS. 

3.1.2 Web Services Technology Stack 

WS allow communication between applications regardless of their platforms, languages, 

and operating systems. So the WS technology has to allow applications to work together over 

standard internet protocols, without direct human intervention. 

 

Figure 3-1: WS technology stack [1] 

WS represent a collection of several related technologies. As a result the WS technology 

stack consists of many collaborating standards. 
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3.1.2.1 Enabling technology standards 

At the transport level, WS use HTTP, or JMS, SMTP. WS use XML as the fundamental 

building block for nearly every other layer in the WS stack.  

3.1.2.2 Core services standards 

At the core the baseline standards are SOAP, WSDL, and UDDI.  

3.1.2.3 Service composition standards 

Service composition describes the execution logic of WS-based applications by defining 

their control flow (such as conditional, sequential, parallel, and exceptional execution) and 

prescribing the rules for consistently managing their unobservable data.  

The Business Process Execution Language (BPEL) can achieve composition for WS [4].  

3.1.2.4 Service collaboration standards 

Service collaboration describes cross-enterprise collaborations of web service participants 

by defining their common observable behavior, where synchronized information exchanges 

occur through their shared contact points, when commonly defined ordering rules are satisfied. 

Service collaboration is materialized by the web services choreography description language 

WS-CDL [7], which specifies the common observable behavior of all participants engaged in 

business collaboration. 
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3.1.2.5 Coordination/transaction standards 

Coordination/transaction standards provide mechanisms for defining specific standard 

protocols for use by transaction processing systems, workflow systems, or other applications that 

wish to coordinate multiple WS. 

3.1.2.6 Value added standards  

Value added standards include mechanisms for security and authentication, authorization, 

trust, privacy, secure conversations, contract management etc. 

3.2 Simple Object Access Protocol (SOAP) 

SOAP is an XML-based communication protocol for exchanging messages. WS rely on 

SOAP for exchanging messages between computers regardless of their operating systems, 

programming environment, or object model framework. 

A SOAP XML document instance is called a SOAP message or SOAP envelope. It is 

carried as the payload of some other network protocol like HTTP. The SOAP message consists 

of an <Envelope> element containing an optional <Header> and a mandatory <Body> element 

[3].  
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Figure 3-2: Construct of a SOAP message 

SOAP has a clear purpose: exchanging data over networks. It concerns itself with 

encapsulating and encoding XML data and defining the rules for transmitting and receiving that 

data [44].  

3.3 Web Services Description Language (WSDL) 

WSDL is an XML-based specification schema for describing the public interface of a 

web service. This public interface can include operational information relating to a web service 

such as all publicly available operations, the XML message protocols supported by web service, 

data type information for messages, binding information about the specific transport protocol to 

be used, and address information for locating the web service.  

WSDL defines six major elements. They are: 

1 Types: types provide data type definitions used to describe the messages exchanged. 

2 Message: message represents an abstract definition of the data being transmitted. A 

message consists of logical parts, each of which is associated with a definition within 

some type system.  



 

15  

3 Port Type: port Type is a set of abstract operations. Each operation refers to an input 

message and output messages. 

4 Binding: binding specifies the concrete protocol and data format specifications for the 

operations and messages defined by a particular port Type. 

5 Port: port specifies an address for a binding, thus defining a single communication 

endpoint.  

6 Service: service is used to aggregate a set of related ports. 

3.4 Business Process Execution Language (BPEL) 

BPEL now is an OASIS standard for defining workflows. Using BPEL web services can 

be orchestrated. BPEL mainly focuses on modern business processes. 

BPEL distinguishes five main sections: the message flow, the control flow, the data flow, 

the process orchestration, and the fault and exception handling sections.  

Workflows are related to business processes. A workflow system automates a business, in 

whole or in part, during which documents, information, or tasks are passed from one participant 

to another for action, according to a set of procedural rules [6]. 

3.5 Enterprise Service Bus (ESB)  

The Enterprise Service Bus is an open standards-based backbone designed to enable the 

implementation, deployment, and management of SOA-based solutions with a focus on 

assembling, deploying, and managing distributed service oriented architectures. An ESB is a set 

of infrastructure capabilities implemented by middleware technology that support the SOA and 

alleviate disparity problems between applications running on heterogeneous platforms and using 

diverse data formats. The key capabilities of an ESB are listed below [13] [14] [15] [16]. 
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1 Dynamic connectivity capability:  

2 Reliable messaging capability. 

3 Topic and content based routing capability. 

4 Transformation capability. 

5 Service enablement capability. 

6 Endpoint discovery with multiple QoS capability. 

7 Long running process and transaction capability. 

8 Security capability 

9 Integration capability. 

10 Management and monitoring capability. 

11 Scalability capability. 

Implementing an ESB requires an integrated set of middleware facilities that support the 

following interrelated architectural styles [17].  

1 In the SO architecture distributed applications are composed of granular reusable services 

with well-defined, published, and standards-compliant interfaces.  

2 In Message-driven architectures applications send messages through the ESB to receiving 

applications.  

3 In Event-driven architectures applications generate and consume messages independently 

of one another. 

3.6 Event 

“An event is an object that is a record of an activity in a system. The event signifies the 

activity”. An event has three aspects - form, significance and relativity [54]. The event’s form is 
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an object which can be a single value, or a set of data components. The following figure shows 

an event class in Java.  

 

Figure 3-3: Form of an event as a Java class 

“An event signifies an activity” [54]. From the values of the data components we get the 

description of the activity. “The relationships between an event and other events are together 

called its relativity.” An event is often related to other events by time, causality and aggregation 

[54].  If an event is created when a set of event happens then the created event is the aggregation 

of the set of the happened events. For example if event A is created for a set of events {Bi} then 

A is the aggregation of the events of {B
i
}. A is also a complex event.  

3.7 Web Services Eventing (WS-Eventing) 

When events occur in different services and applications some WS want to receive 

messages about the event (subscribe to the event). For receiving events the WS has to subscribe 

to the event source. WS-Eventing specification defines protocol for the subscriber WS to 

subscribe with event source. [23] 

This specification intends to meet the following requirements: 

1. Define means to create and delete event subscriptions. 

2. Define expiration for subscriptions and allow them to be renewed. 
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3. Define how one Web service can subscribe on behalf of another. 

4. Define how an event source delegates subscription management to another Web 

service. 

5. Allow subscribers to specify how event messages should be delivered. 

6. Leverage other Web service specifications for secure, reliable, transacted message 

delivery. 

7. Support complex eventing topologies that allow the originating event source and 

the final event sink to be decoupled. 

8. Provide extensibility for more sophisticated and/or currently unanticipated 

subscription scenarios. 

9. Support a variety of encoding formats, including (but not limited to) both SOAP 

1.1 and SOAP 1.2 Envelopes. 

3.8 Case Based Reasoning 

Case-based reasoning (CBR) is a major paradigm in automated reasoning and machine 

learning. In CBR, a new problem is solved by finding its similarity to one or several problems 

solved previously and by adapting their known solutions instead of working out a solution from 

scratch [24]. So in CBR, reasoning is done by remembering the previous solutions and the case 

based reasoner learns from its experience [31].  

The field of CBR was first introduced by Roger Schank and his colleagues [25] [26]. 

Cognitive Science and Artificial Intelligence are the main two fields that used CBR. Cognitive 

science tried to model human behavior using CBR.  Some pioneering works in this field are done 

by Ross [32][35], Pirolli & Anderson [33], Faries & Schlossberg [34], Lancaster & Kolodner 

[35], Schmidt, Norman, & Boshuizen [36], Read & Cesa [37], Klein & Calderwood [38][39].  
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Other pioneering works in CBR are done by Carbonell on Analogy [28], Kolodner on 

reconstructive memory [29] and Rissland on legal reasoning [30].  

In AI technology CBR can be helpful in five fields [31]. They are  

1. Knowledge acquisition 

2. knowledge maintenance 

3. increasing problem solving efficiency 

4. increasing quality of solutions 

5. user acceptance 

There are two types of CBR tasks [40] [42]. They are interpretive CBR and problem 

solving CBR. 

Given a case to solve, interpretive case-based reasoning involves the following steps:  

1. Retrieving relevant cases from the case memory (this requires indexing the cases by 

appropriate features); this step is called situation assessment in [40] [41]. 

2. Selecting a set of best cases; 

3. Deriving a solution; evaluating the solution (in order to make sure that poor solutions 

are not repeated); 

4. Storing the newly solved case in the case memory. 
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Figure 3-4: The 4 R’s in CBR 

According to these steps, Aamodt and Plaza describe a Case-Based reasoner as a cyclic 

process comprising "the 4 R's" i.e. Retrieve, Reuse, Revise and Retain [27]. 

Like interpretive CBR, problem-solving CBR performs situation assessment, case 

retrieval, and similarity assessment/evaluation. Problem solving CBR also finds the similarities 

and differences between new and prior cases. Then these similarities and differences are used to 

determine how the solution of the previous case can be adapted to solve the new situation. 

3.9 Fault and Failure 

 IEEE Standard Glossary of Software Engineering Terminology defined fault and failure 

[55].  According to IEEE a fault is (1)  A  defect  in  a  hardware  device  or component;  for  

example,  a  short  circuit  or broken  wire. (2) An incorrect step, process, or data definition in a 

computer program.  

According to IEEE, “failure” is the  inability  of  a  system  or  component  to  perform  its  

required  functions within  specified  performance  requirements.  The fault tolerance discipline  
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distinguishes  between  a  human  action  (a mistake),  its manifestation  (a hardware  or software 

fault), the result of  the fault (a failure), and the amount by which  the result  is incorrect (the 

error).  

In a nutshell, a fault is the cause of failure and failure is the result of fault. 

 

3.10 Terms Related to Management of Distributed Systems 

 

In [1] Michael P. Papazoglou defines “A managed or manageable resource in a 

distributed environment could be any type of a hardware or software component that can be 

managed and that can maintain embedded management related metadata. A managed resource 

could be a server, storage unit, database, application server, service, application, or any other 

entity that needs to be managed.” A distributed application management system controls and 

monitors an application throughout its lifecycle - from installing and configuring to collecting 

metrics and tuning the application to ensure responsive execution [47].  

In [9] Justin Murray emphasizes designing and developing software applications that are 

readily manageable. He defines "Manageability" as the ability to exercise administrative and 

supervisory actions and receive information that is relevant to such actions, on a component. He 

also states that manageability requires a mechanism to ensure that an application is both active 

and functioning properly, as well as the ability of checking an application’s performance over 

time. According to him “Manageability” can be distinguished by three functional parts: 

1. Monitoring: The ability to capture run-time and historical events from a particular 

component, for reporting and notification.  
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2. Tracking: the ability to observe aspects of a single unit of work or thread of execution 

across multiple resources.  

3. Control: The ability to alter the run-time behavior of a managed resource.  

 

M. P. Papazoglou also emphasizes monitoring in [1]. He proposes that distributed 

management solutions should have components for user experience monitoring, infrastructure 

monitoring, transaction monitoring, resource provisioning, SLA monitoring. 

According to T. Mehta any management solution must address four necessary management 

questions [10]. 

1. What resources need to be managed? 

2. What are their properties? 

3. How the management information is exchanged (operations, notifications, and kinds of 

protocols needed)? 

4. What are the relationships among the managed resources? 

In [11] D. Kakadia identifies enterprise management systems as network management 

systems capable of managing devices, independent of vendors and protocols, in IP based 

enterprise networks. Most Enterprise management systems use functions like fault management, 

configuration management, accounting management, performance management, and security 

management. 

3.11 Protocols and Frameworks for Management of Networked Systems 

There are many protocols and frameworks already in use for management of computer 

systems in the network.  
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The SNMP (Simple Network Management Protocol) is an application layer protocol for 

network management [22]. The SNMP framework lets network administrators manage network 

performance, find and solve network problems, and plan for network growth. 

The Common Information Model (CIM)/ Web based Enterprise Management also provides a 

solution for management of elements across the enterprises, including systems, networks, and 

applications [21].  

Java Management Extensions (JMX) technology provides the tools for building 

distributed, web-based, modular, and dynamic solutions for managing and monitoring devices, 

applications, and service driven networks [18]. 

With SOA, a standard WS management framework can provide support for discovering, 

introspecting, securing, and invoking managed resources, management functions, and 

management infrastructure services and toolsets [1].  A WS management framework is a set of 

components and objects that enable SLA management, auditing, monitoring, troubleshooting, 

dynamic service provisioning, and service management for WS infrastructure and applications. 

OASIS is developing Web Services Distributed Management (WSDM) standards to provide end-

to-end WS management. WSDM developed specifications on two standards - Management 

Using Web Services (MUWS) [19] and Management of Web Services (MOWS) [20]. 

Management Using Web Services (MUWS) enables management of WS using WS. 

MUWS provides management capability for monitoring the quality of a service, enforcing a 

service level agreement, controlling a task, and managing a resource lifecycle. 

MUWS is able to work with multiple, existing, domain-specific models. CIM from 

DTMF is the most prominent model for this work. SNMP information model is also considered. 

According to MUWS access to the manageability for a resource is provided by a web service 
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endpoint. The web service endpoint providing access to some managed resource is called a 

manageability endpoint. A manageability endpoint realizes a number of management interfaces. 

Each management interface represents all or part of a manageability capability. Similarly, a 

single manageability capability may be represented in one or more interfaces.  

Management of Web Services (MOWS) [20] is based on the concepts and definitions 

expressed in the MUWS specification. WSDM MOWS defines the MUWS capabilities that are 

applicable to WS endpoints are - Identity, Identification, Metrics (Number of requests, number of 

failed requests, number of successful requests, service time, max response time and last response 

time), Operational State, Operational status, request processing state. 

3.12 Related Works on Fault Management of WS 

Fault management of WS is a relatively a new field in research. Not much work has been 

done on this topic. Most of the works presented by the researchers are in ongoing stage. Most of 

the papers on this topic do not show any experimental results. The papers mostly present the 

architecture of the proposed systems.  

D. Ardanga et al. presents a classification of faults in web services and a self-healing 

platform for recovery of faults [48]. The paper classifies WS faults into three levels – 

infrastructural and middleware level, web service level, and web application level. This paper 

presents a self-healing platform which implements the run time service oriented fault analysis 

and recovery actions. The following table shows the fault types as presented by D. Ardanga et al. 
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Table 3-1.  Fault types in [48]. 

Level Fault type Examples 

Web Applications 1. internal data fault 

 

2. application coordination 

faults 

3. actor faults 

 

 

4. QoS violation faults 

1. data quality faults – value 

mismatch, missing data. 

2. resource unavailable at runtime 

 

3. customer not connected when 

synchronous communication is 

needed. 

4. QoS value beyond threshold 

Web Service 1. WS execution faults 

2. WS coordination faults 

1. missing part in input message 

2. process failure or timeout 

Infrastructural & 

middleware 

1. node faults 

 

2. network faults 

3. generic faults 

1. node (application server or client 

device) down 

2. missing connection, low bandwidth 

3. Denial of service, wrong 

authentication 

 

For correct recovery actions the system in Ardanga et al. has a log of faults for different 

levels. The fields of a log contain a fault id, a fault type id and a time stamp. The web application 

level log contains more specific fault parameters and a pointer to the logs of lower level faults 

that originated the fault. The recovery actions in Ardanga et al. are shown in the following table. 

Table 3-2.  Recovery actions in [48]. 

Recovery 

action type 

Actions Fault type Type 

Service 

oriented 

recovery 

action 

Retry 

Substitute 

Completion of missing 

message parts 

Reallocate 

Change process 

structure 

Process oriented 

methods 

Infrastructural, WS execution 

WS execution and coordination 

WS execution 

 

QoS 

All 

 

Application level 

Reactive 

Reactive 

Reactive 

 

Reactive/proactive 

Proactive 

 

Proactive 

Data quality 

recovery 

actions 

Insert data quality block 

Process oriented 

methods 

Internal data 

Application level 

Reactive 

Proactive 
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The architecture of the system has four modules to handle recovery action. They are  

1. reallocation module 

2. substitution module 

3. wrapper generator module 

4. quality module 

 

 

Figure 3-5: Self-healing platform architecture [48]  
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The paper shows the theoretical representation of the system [48]. It does not present any 

experimental data.  

He proposes an infrastructure to implement failure recovery capabilities in WS 

management systems [49]. He classifies failures in a Web Services Management System (WSMS) 

into five categories - functional failures, operational failures, semantic failures, privacy failures, 

and security failures. 

Table 3-3.  Failure types in [49]. 

Failure type Cause of failure Example 

Functional failure Software bug, hardware faults in the 

system 

Computer hard drive crashed. 

Operational failure System or some participant service is 

unavailable due to communication 

problem or unpredictable load. 

Heavy load in an air ticket 

booking WS makes it unable 

to accept new requests. 

Semantic failure Interacting operations between two 

participants are not compatible due to 

different ontology. Message 

exchanged between two services are 

incompatible. 

Hotel reservation WS and car 

rental WS communicates 

between each other and does 

not have same time format. 

Privacy failure Service or data are inaccessible 

because they are privacy sensitive and 

WS would not disclose information to 

everybody. 

Hotel reservation WS may not 

provide age of the customer to 

Car rental WS. 

Security failure Data are accessed without enough 

credential or authority, or without 

special secure link. 

the car rental Web Service 

only accepts SOAP messages 

over the secure HTTP, while 

the WSMS sends SOAP 

messages over standard HTTP 

 

The proposed architecture is shown in the following figure.  
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Figure 3-6: Reliable WS application infrastructure [49]  

In this work users’ requests are received by the Request Handler. The Request Handler 

interprets requests and checks their syntactic and semantic validity. Then a composite service is 

dynamically generated through the Composition Engine. The queries over Web services are 

processed and optimized by the Query Engine. Optimized query execution and composition 

plans are executed by the Execution Engine. The Privacy Preserving Processor ensures that all 

privacy requirements, from users, Web services, and data perspectives, are fulfilled. The Global 

Failure Manager (GFM) keeps a trace of all executions and repairs the system in case of failures. 

GFM monitors faults, conducts failure diagnosis and recovery coordination. The components of 

GFM are shown in the following figure. 
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Figure 3-7: Global Failure Manager [49]  

He  indicates that the work is ongoing.  However there is no experimental data. 

Benharref et al. presents a web service based architecture for detecting faults in web 

services [51]. The main component of the architecture is an observer. Observers are WS and 

published through UDDI. The observer is invoked by a manager. When the observer finds faults 

or the observation period expires it returns the result to the manager. The following figure shows 

the steps involved in reporting faults. 
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Figure 3-8: Fault detection and reporting step [51]  

In the paper, experimental results were not shown. In the presence of deadlocks the 

system does not work. 

Masoud Mansouri et al. present a functional model for monitoring of distributed systems 

[50]. This monitoring model has a set of monitoring functions: generation of monitoring 

information, processing of the information, dissemination of the information, and presentation of 

the information. The work presents a monitoring model only. It does not include overall 

management solution. It also does not present any results. 

Ertugrul Akbas  presents an RMI and JAVA based architecture of system independent 

and distributed fault management system [52]. However his work also does not show any results.  

Pankaj Kumar, HP presents best practices that can be used by web services during 

distributed system management [53]. These best practices are defined in the form of principles. 

They are : Service orientation has to be properly thought through, Design for evolution, Write 

wrappers (rather than doing a complete reimplementation), Handle failure conditions gracefully, 

Create models, Realize that you are an early adopter of technology. This paper has only a  

theoretical presentation of the system. No quantitative result is shown.  



 

31  

Table 3-4: Summary of Related Works 

Reference 

Paper 

Work and contribution Limitations 

D. Ardanga et 

al. [48] 

Presents classification of faults in web services 

and a self-healing platform for recovery of 

faults. This paper classifies WS faults into three 

levels – infrastructural and middleware level, 

web service level, and web application level. 

This work presents a self-healing platform 

which implements the run time service oriented 

fault analysis and recovery actions. 

 

This paper shows the 

theoretical representation 

of the system. It does not 

present any experimental 

data. 

Weiping He 

[49] 

Proposes an infrastructure to implement failure 

recovery capabilities in WS management 

systems. He classifies failures in WSMS into 

five categories - functional failures, operational 

failures, semantic failures, privacy failures, and 

security failures. 

Does not show any 

experimental data. 

Masoud 

Mansouri et al. 

[50] 

Presents a functional model for monitoring of 

distributed systems. Presented a monitoring 

model that has a set of monitoring functions: 

generation of monitoring information, 

processing of the information, dissemination of 

the information, and presentation of the 

information. 

Presents monitoring model 

only. Does not include 

overall management 

solution. It also does not 

present any results. 

A. Benharref et 

al. [51] 

Presents a web service based architecture for 

detecting faults in web services. 

Results were not shown. 

For deadlocks the system 

does not work. 

Ertugrul Akbas 

[52] 

Presents RMI and JAVA based architecture of 

system independent and distributed fault 

management system. 

This one also does not 

show any result. 

Pankaj Kumar, 

HP [53] 

This paper presents some best practices that can 

be used by web services during distributed 

system management. 

Theoretical presentation. 

No quantitative result is 

shown. 

 

 

All of the papers cited in the related works lack quantitative results. The authors did not show 

any experimental data. So we do not know how the systems perform. There are also some 

additional open questions regarding the proposed systems. 

1. How long does it take to detect and manage faults? 

2. Can it detect all the faults? 
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3. Is the system scalable? 

4. Is the system reliable? 
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CHAPTER 4 

PROPOSED ARCHITECTURE 

In this research work I introduce a case based distributed event processing tool for fault 

management of WS. It has the following major components: 

1 Enterprise Service Bus (ESB) 

2 Event Database (ED)  

3 Event File Generator (EFG) 

4 Event Object Generator(EOG) 

5 Event Router (ER) 

6 Event Processor (EP) 

 

In the proposed architecture I made the following assumptions 

1. Multiple faults can occur in the system simultaneously.  

2. Databases in the system are reliable and available all the time. 

3. There will be no noise in the case of reporting the events i.e. all the events will be 

reported and no event will be lost or garbled. 
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Figure 4-1: System Architecture  

4.1 Enterprise Service Bus (ESB)  

An Enterprise Service Bus is the main interface between the client and the web services. 

The client sends request for the web service to the ESB. ESB send the request to the proper WS. 

If the WS generates any response message of the request to the client that response is sent to the 

ESB at first and then the ESB sends the response to the client.  

For example, let’s assume that there is a web service provider who provides the current 

temperature of a place. If a client needs to know the temperature of a place it sends a request for 

the service to the ESB with the name of the place. ESB finds the service provider and sends the 

request to the WS. Then the WS replies with the temperature to the ESB. The ESB then forwards 

the temperature to the client.  

In the context of our POMWS example the client will send the PO to the ESB. Then ESB 

will send the PO to the POMWS.  
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Figure 4-2: Message flow among Client, ESB and WS  

The use of ESB has some advantages. If any WS is down then the client need not know 

about it. In this case ESB will re-direct the request to another WS which provides the same 

required service. This will improve availability of the service from the client’s perspective. The 

use of ESB also shields the WS from malicious clients.  

4.2 Event Database (ED)  

In a WS network different events occur all the time. For example, a service request event 

occurs when a client requests a service, a service response event occurs when the WS provider 

sends a response of a service request to the service consumer. There are situations when faults 

can occur in the system. These faults are also events. All these events are reported to and stored 

in an Event Database (ED). The events are reported in a standard format. The format includes 
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information about event type, address of event source, importance of the event, event generation 

time and some other relevant information.  The following figure shows the format of an event. 

 

 

Figure 4-3: Event format  

The event Id defines a globally unique id for the event. The event may be a service 

request event, service failure event, security event, status event, performance event etc. 

The event source describes the source of the event. This can be the address of the event 

source or any other unique identifier of the event source. 

The reporter id is the id of event detector that detects the event and reports the event to 

the event database. Event detectors can be the web service, client of a service, or the event 

processor itself. 

The event priority field describes the priority of the event. The higher number signifies 

the more important event whereas the low numbers mean less important event. The report time is 

the time when the event occurred. The Event description is a general description of the event. 

Figure 4-4 shows an example of a service request event.  Here the event id is 101 that 

indicates a service request. Event source is client1. ESB is the reporter of the event. ESB reports 

the event to the event database. The priority of this event is 3. The priority has a scale from 5 to 1 

an a higher number means higher priority. The event was reported at 1235375511706.  The 

description of the event says that it is a service request. 
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Figure 4-4: Example of an event 

In the context of POMWS all the participating WS will send events to the event database.  

POMWS will also send events to the database. Some of the events reported by POMWS is 

defined below. 

Service request: This event is reported when anyone makes a service request to a WS. For 

example, POMWS makes a service request to a participating WS.  

Service timeout: This event is reported when a service requester does not get a response 

from the WS within a certain time. For example, POMWS does not get a response for a service 

request within a certain time. 

Service retry: This event is reported when a service requester requests again for a service 

after a service timeout occurs. For example, POMWS re-sends a service request after a service 

time out occurred. 

Service unavailable: This event is reported when a service requester finds a service 

unavailable after retrying. For example, POMWS does not get a response from the WS after 

retrying the service. 
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4.3 Event File Generator 

The Event Stream Generator (EFG) collects the events from the event database and 

creates an XML file containing events.  The Event Object Generator (EOG) generates event 

objects from the XML event files created by EFG.  

The XML format of an event is shown in the following figure. 

 

 

Figure 4-5: Example of an event in XML format 

4.4 Event Object Generator (EOG) 

EOG reads the XML event file created by EFG. Then EOG creates instance of events 

from the XML event elements. EOG sends these event instances to the Event Router (ER) over 

network connection.   

4.5 Event Router (ER) 

ER delivers the event instances to the Event Processors (EP). ER determines what events 

the EP can handle. To determine this ER distributes case scenarios to the EP. The case scenarios 

define different cases of patterns of events.  

The case scenario files are in XML format. Each scenario has two main elements. It has a 

sequence of events and a list of actions. When the sequence of events is matched in the event 
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stream the actions will be executed.  ER creates instances of scenarios from this XML scenario 

file and distributes the scenarios among the EPs. 

The Event Router maintains connection with a number of Event Processors (EP). This 

connection can be a socket based connection or can be based on RMI. When an EP connects to 

the ER, the router sends case scenarios to the EP. Then ER sends the event instances for 

processing by EP. 

The following figure shows a sample scenario file in XML format. 

 

 

 

Figure 4-6: Example of a case scenario in XML format 
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4.6 Event Processor (EP) 

The event processor (EP) processes the events the ER sends. Before an event processor 

finds a fault scenario in the events, it has to know the case scenarios. ER sends the case scenarios 

to the event processor. EP can work only on the scenarios that ER sent to them.  

When EP is ready to process the events, ER sends the events to the EP. The Event 

Processor (EP) finds and matches patterns in these events. When any scenario is matched in the 

events, the EP can execute the actions described in the action part of the case scenario. This 

action can be 

1. To send a report to the management application 

2. To generate a new event and report to the ED.   

3. To take any other action described in the action element. 

For example in POMWS let us assume that the inventory WS is unavailable due to some 

software faults. In this case the following events should be reported. 

4. POMWS reports a service request event where the requested WS is the inventory WS. 

5. POMWS reports a service timeout event about the inventory WS. 

6. POMWS reports a service retry event about the inventory WS. 

7. POMWS reports a service unavailable event about the inventory WS. 

From this sequence of events EP will detect the fault. Then EP will take action to make 

the inventory WS available. The action can be simply restarting the service. 
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CHAPTER 5 

EVALUATION 

5.1 Algorithm and Complexity 

According to the proposed architecture events will be stored in the event database. The 

event file generator reads the events from the event database and writes them in files in XML 

format. The event object generator generates event objects from the files and sends them to the 

event router. The event router will send the event to the event processors that subscribe to the 

events. When event processors subscribe to event router for events they send the names of the 

required event sources.  

 

 

Figure 5-1: Pseudo code of event router  

 

 

Figure 5-3: Pseudo code of event processor  
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 The event processor receives case scenarios from the event router and stores the scenarios 

in a vector. When an event arrives for checking event processor checks the scenario vector to 

match the event with an event in the case scenario. So the size of the scenario vector plays a role 

to determine the runtime. As multiple faults can occur in the system, the event processor has to 

check all the scenarios of the scenario vector. As a result, when the number of case scenarios 

increases the event processing time increases linearly. Processing of one event does not affect the 

processing time of the next event. For a constant number of case scenarios processing time of 

events has linear relation with the number of events. More events will take more time for 

processing.  

 If the number of events is n and the number of case scenarios is m then the complexity of 

the algorithm is O(mn). 

5.2 Experimental data 

Experiments have been done to evaluate the performance of the system. The 

experimental data contains: 

1 Event processing time for different numbers of fault scenarios. 

2 Event processing time when Event Processors are not distributed. 

3 Event processing time when Event Processors are distributed. 

The proposed system has been implemented in the JAVA language. To evaluate the 

system eight simple WS and 50 clients are developed. The clients invoke these simple WS. 

During the runtime of the system different events are generated by the clients and the web 

services. These events are recorded in the event database (ED).  

The simple WS are created using JAX-WS 2.0 with the Java SE 6 platform. JAX-WS is 

the Java API for XML Web Services. JAXWS version 2.0 is the center of the API stack for WS. 
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It includes Java Architecture for XML Binding (JAXB) 2.0 and SOAP with Attachments API for 

Java (SAAJ) 1.3. 

The event database is implemented in MySQL Server 5.0. JDBC technology is used to 

connect to the database. JDBC technology is an API (included both in J2SE and J2EE) that 

provides connectivity with the databases. I used MySQL Connector/J 3.1 as the JDBC driver to 

implement the connection between the database and J2SE platform.  Event File Generator, Event 

Object Generator, Event Router and Event Processors are implemented in Java programming 

language. 

 

 

 

 

Figure 5-3: Experimental Setup  
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The setup was run in different large and small machines in Amazon EC2.  Amazon 

Elastic Compute Cloud (Amazon EC2) is a web service to provide cloud computing facility to 

the developers. It provides complete control over the computing resources to the developer. 

Developers can configure small, medium, large or extra large instances. For compute intensive 

applications the instances can be High-CPU medium instance or High-CPU extra large instance. 

In Amazon EC2 a standard large machine is a 64 bit platform. It has dual-Core-AMD 

Opteron processor 2218 HE of 3.07 GHz and 7.50 GB RAM. Operating system is Microsoft 

Windows Server 2003 R2 Datacenter x64 Edition with Service Pack 2.  The storage size of an 

instance is 850 GB. 

A standard small machine is a 32 bit platform. It has dual-Core-AMD Opteron processor 

2218 HE of 2.60 GHz and 1.66 GB RAM. Operating system is Microsoft Windows Server 2003 

R2 Datacenter Edition with Service Pack 2. The instance storage size is 160 GB. 

 

5.2.1 Processing Time of Events for Different Number of Case Scenarios 

In this experiment processing time was calculated for different number of case scenarios. 

This experiment was done in two large machines of amazon EC2. In the experiment the number 

of case scenarios was changed and two event processors were used. The events were stored in 

XML files and from these files the same event stream was sent for processing by event 

processors for different number of case scenarios. 
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Event processing time for different number of case scenarios
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Figure 5-4: Event processing time for different number of case scenarios 
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Event processing time for different number of case scenarios
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Figure 5-5: Event processing time for 10 and 18 case scenarios 
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Figure 5-6: Average event processing time for different number of case scenarios 

From the experimental data it can be seen that for a small number of case scenarios the 

processing time is less. When the number of case scenarios increases event processing time also 

increases. So when there are a lot of case scenarios the case scenarios should be distributed 
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among event processors so that each event processor has to process a small number of case 

scenarios. In this case more event processors need to be added in the system. 

 

5.2.2 Processing Time of Events When Event Processors Are Not Distributed 

In this experiment event processing time was calculated when the event processors and 

the event router were in a large machine. As EP and ER were in the same machine there was no 

network delay for sending events from ER to EP. In the experiment events were saved in files in 

XML format and sent to event processors i.e. same event stream was sent for different number of 

event processors. 
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Figure 5-7: Event processing time per 10000 eventsfor different number of event processors 
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Average event processing time for different number of event 
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Figure 5-8: Average event processing time for different number of event processors 

From the experimental data we can see that when the number of event processors 

increases event processing time decreases.  

5.2.3 Processing Time of Events When Event Processors Are Distributed 

In this experiment event processing time was calculated when the event processors and 

the event router were in two different large machines. As EP and ER were in the different 

machines there was network delay for sending events from ER to EP. In the experiment also 

events were saved in files in XML format and sent to event processors i.e. the same event stream 

was sent for different number of event processors. 
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Event processing time for different number of event processors
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Figure 5-9: Event processing time per 5000 events for different number of event processors  
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Figure 5-10: Average event processing time per 5000 events for different number of event 

processors 
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From the experimental data we can see that distributing event processing to different 

event processors improves the event processing time. When the number of event processors 

increases event processing time decreases. The processing time does not improve indefinitely. In 

the experimental data we can see that 4 and 8 event processors took nearly same amount of 

processing time. This is due to the low number of managed web services. In this experiment 8 

web services were used. When there was only one event processor, the event processor processed 

events for all the 8 WS. When there were 4 EP, each EP processed events for 2 WS. In case of 8 

EP each EP processed events for 1 WS. As 8 EP were underutilized, the processing time did not 

improve. So after adding certain number of event processors the processing time does not 

improve much because event processors do not become overloaded with the events. . Here the 

number of event processors depends on the number of WS in the system.  

 

 



 

51  

CHAPTER 6 

CONCLUSIONS AND EXPECTED CONTRIBUTION 

SOA is gaining its popularity in the service provider community. So the number of WS is 

increasing every day. To maintain desired quality of service WS require constant monitoring for 

faults and failures. Detection of faults and recovery from failure improves reliability and 

availability of the services. So fault management is a key issue in SOA. This research focuses on 

this key issue and presents an architecture for distributed fault management of WS. 

In this work a new approach for fault management of web services has been presented. 

This approach uses distributed case based event processing. Using this approach a fault 

management system for SOAP based WS have been implemented and its performance has been 

tested. The event processing applications in the implemented system can process the events to 

detect faults to help monitoring and management of the services successfully. The components of 

the fault management system are distributed in the network. The system is scalable and reliable 

also. 

The event processors receive the fault case scenarios and use them to detect faults in the 

system. From experimental data it can be seen that if the number of case scenarios increases then 

the processing time of events increases and if the number of event processors increases then the 

processing time of events decreases. So if there are a large number of case scenarios then these 

case scenarios can be distributed among the event processors. Then each event processor will 

have to work with a small number of case scenarios. This will improve the processing time of 

events. 

The components of the fault management system are distributed over the network. Single 

large resource is not required for implementing the system. The system will not stop working for 

single point of failure.  
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The processing load can be made balanced among the event processors. All the event 

processors do not need to process all the events. One event processor will get only the events it 

has subscribed for. One event processor can look after the faults of some specific web services 

instead of monitoring and managing all web services.  

The event processor needs to know the case scenarios related to the web services it is 

managing. The case scenarios are stored in XML formatted file. The creator of the case scenario 

file does not need to know all possible case scenarios of all the web services. He has to know 

only case scenarios related to the WS he is trying to manage. Anyone who has knowledge about 

creating XML files can create case scenario file and he does not need to have programming skills. 

The system will be able to detect the faults that are described in the case scenario files. If 

any new fault occurs in the system and the fault management system can not detect it then the 

case scenario file has to be updated. The creator of the case scenario has to append the file with 

new scenarios. 

The system is scalable since all the components are stand alone running processes. So in 

the system new event processors, event routers and event file generators, and event object 

generators can be easily included without stopping the running system.  

The fault management system is reliable. As the event processors are distributed over the 

internet, single component failure will not stop running the management system. This improves 

the reliability of the fault management system.  

There are some limitations in the implemented experimental setup. This work assumed 

that there will be no noise in reporting the events. But it is not always true in a real world 

scenario. Network connections are not always reliable. So due to network failure events can be 

lost. 
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In my work I assumed that the databases are reliable. If database is not reliable in the 

system then stored events can be lost. Storing the events in multiple databases can prevent event 

loss in case of database failure.  

In this research work JMX technology was not used. In my future work I want to 

incorporate the use of JMX technology. JMX technology provides tools for building distributed, 

web based, modular and dynamic solutions for monitoring managing devices, applications, and 

service driven networks.  JMX technology has the following advantages [56]. 

1. The JMX technology enables Java applications to be managed without heavy 

investment. 

2. The JMX technology provides a standard way to manage Java applications, systems, 

and networks. 

3. The JMX technology can be used for out-of-the-box management of the Java VM. 

4. The JMX technology provides scalable, dynamic management architecture. 

5. The JMX technology leverages existing standard Java technologies. 

6. The JMX technology integrates with existing management solutions and emerging 

technologies. 

In the future I also want to work on improving the analyzing capability of the event 

processing application. Then I want to use this approach to predict the future behavior of the 

services.  
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