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Abstract 

 

 The unfolded protein response
 
(UPR) is induced by a variety of external and internal 

stimuli, including
 
accumulation of misfolded proteins in the endoplasmic reticulum

 
(ER). Viruses 

such as Herpes Simplex Virus type 1 (HSV-1) induce host cells to produce viral proteins many 

of which undergo glycosylation and other modifications in the ER, causing stress to the ER and 

consequently UPR activation. I have tested the hypothesis that HSV-1 has evolved strategies to 

regulate the UPR in order to suppress aspects of the UPR that might interfere with viral 

replication and to promote pathways that aid its own survival and replication. 

The purpose of this study was to test the hypothesis that HSV-1 selectively modulates the 

three pathways (PERK, ATF6, and IRE-1) of the UPR in epithelial and neuronal cells and to 

examine the similarities and the differences between these two types of cells in their responses to 

ER stress. Vero and ONS-76 cells were used as models of epithelial and neuronal cells 

respectively and qRT PCR technique was used for analyzing RNA levels of transcripts of spliced 

Xbp1, HERP, CHOP and BIP, selected target genes for three pathways of the UPR. 

HSV-1 DNA synthesis and infectious virus production in infected cells showed that 

compared to the permissive Vero cells, ONS-76 cells seemed to be semi-permissive to HSV-1 

infection with limited viral DNA synthesis and infectious virus production. 

The kinetics of transcript and protein synthesis for genes representing immediate early, 

early and late classes of viral genes was also monitored. Expression of the immediate early gene, 

ICP0, was similar in both cell types but the expression of the early gene, TK and late genes VP16 

and VP 5 was different. 

My work reveals that HSV-1 infection in cells of epithelial and neuronal origins  results 

in activation of the UPR, but through cell type selective regulation of the three signal 

transduction pathways of the UPR (PERK, ATF6, and IRE-1).  While HSV-1 infection resulted 

in upregulation of Spliced Xbp1 and its target gene HERP (IRE1 pathway) and downregulation 

of BIP (ATF6 pathway) in both cell types, CHOP (PERK pathway) was upregulated only in 

ONS cells. My results suggest that some aspects of the UPR are regulated differently in cells 



 

 iii 

representing the sites for HSV-1 lytic and latent infections.  This may indicate the need for 

increasing the capacity for protein folding and degradation (Xbp1 and ATF6-induced) in both 

cells but a requirement for suppressing apoptosis (PERK-induced) only in epithelial cells.  

 As well, I show that HSV-1 infection not only selectively activates the UPR pathways in 

different cell types, but also inactivates some components of the UPR pathways activated by the 

drug thapsigargin.       
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CHAPTER 1: Introduction 

1.1. Unfolded Protein Response 

1.1.1. Endoplasmic reticulum (ER) 

The endoplasmic reticulum (ER) is a large network of folded membranes present 

throughout cytoplasm. It extends from the cell membrane through the cytoplasm to the nuclear 

membrane. It has an important role in the biosynthesis, assemble, glycosylation, folding and 

transport of proteins and lipids, which are destined for insertion in the cell membrane or for 

secretion to the outside of the cell. The internal compartment of the ER (lumen) collects proteins 

synthesized in the cytoplasm for modification and delivery to the secretory pathway (reviewed in 

38, 56).  

 The ER takes two forms, rough (granular) with ribosomes associated with the outer surface, 

and smooth (with no ribosomes attached). The rough endoplasmic reticulum is involved mainly 

with the production and processing of proteins that will be exported, or secreted from the cell. 

The ribosomes assemble amino acids into protein units, which are transported into the rough 

endoplasmic reticulum for further processing. These proteins may be either transmembrane 

proteins, which become inserted in the membrane of the endoplasmic reticulum, or water-soluble 

proteins, which are able to pass completely through the membrane into the lumen of ER. In ER, 

these proteins are folded into their required three-dimensional conformation and undergo 

posttranslational modification important for their final structure and function. Modifiers, such as 

carbohydrates or sugars are added, then the ER either transports the completed proteins to areas 

of the cell where they are needed, or they are sent to the Golgi apparatus for further processing 

and modification. 

 The smooth ER is involved in the synthesis of lipids, metabolism of carbohydrates, calcium 

homeostasis and detoxification of some toxic chemicals (reviewed in 23, 38, 56). It is also 

involved in the transport of the products of rough ER to Golgi apparatus. Protein folding is the 

post-translational process by which a polypeptide folds into its characteristic and functional 

(native) three-dimensional structure (reviewed in 23, 38, 56).  

 Since proper folding is essential for protein function, the ER has a quality control system 
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that identifies misfolded or unfolded proteins, transports them into the cytosol and finally labels 

them for degradation through the ER-associated degradation process (ERAD). Thus, any harmful 

effects that these protein might have are limited (reviewed in 31). This quality control process is 

supported and monitored by ER chaperones and folding enzymes including, the protein disulfate 

isomerase (PDI), endoplasmic reticulum protein 29 (ERp29), the 70 kilodalton heat shock protein 

(Hsp70) family member 78 kDa glucose-regulated protein (Grp78), calnexin, calreticulin, and the 

peptidylpropyl isomerase family. Therefore, only properly-folded proteins are transported from 

the rough ER to the Golgi complex (reviewed in 55).  

1.1.2. ER stress 

ER stress involves all the conditions that interfere with the function of ER. ER provides 

an environment for the production of secretory and membrane proteins. Almost 30% of newly 

synthesized proteins are rapidly degraded perhaps due to improper protein folding (reviewed in 

69). Even a temporary increase in the translation of secretory proteins may cause an accumulation 

of misfolded proteins. The situation becomes worse if the ER environment is disturbed following 

conditions such as change in redox state and calcium levels, or failure in the secretory proteins 

modification (reviewed in 45). Following conditions such as glucose deprivation, hypoxia, 

dysregulation of calcium homeostasis (i.e. treatment with thapsigargin a chemical compound that 

can disrupt calcium homeostasis through inhibition of the ER Ca2+-ATPase pump (SERCA), 

resulting in depletion of ER Ca2+ stores) and excessive protein traffic (i.e. such as occurs with 

HSV-1 infection), unfolded or misfolded proteins accumulate in the lumen of ER and cause ER 

stress (reviewed in 38). 

1.1.3. The Unfolded Protein Response 

The unfolded protein response (UPR) is the mechanism by which cells sense and respond 

to excess of unfolded or misfolded proteins in the ER. The UPR has a critical role in maintaining 

cellular functions under ER stress (reviewed in 53). The UPR triggers signaling pathways which 

have several goals: increasing the folding capacity of the ER by transcriptional activation of 

molecular chaperones and folding enzymes, decreasing the folding demand through 

downregulating gene transcription and protein synthesis, and finally increasing clearance of the 

misfolded or unfolded proteins through ER-associated degradation (ERAD) (reviewed in 68). 

The UPR signals through three proximal stress sensors located at the ER membrane; inositol 

http://en.wikipedia.org/wiki/Golgi_complex
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requiring enzyme1 (IRE1), protein kinase R (PKR)- like ER kinase (PERK) and activation 

transcription factor 6 (ATF6) (reviewed in 20, 38) also see Figure 1). In non-stressed conditions 

the three sensors of the UPR are suppressed by immunoglobulin binding protein (BIP) also 

known as Glucose Regulated Protein 78 (GRP78) (reviewed in 20, 38, 55). Following 

accumulation of unfolded proteins and leading to ER stress, BIP is released from the sensors, 

IRE1, PERK and ATF6 and then binds to unfolded proteins. Upon the release of BIP, the three 

sensors trigger a complex cascade of signals resulting in the activation of downstream UPR 

related genes (1, 4, 5) Figure 1.1. 

1.1.4. IRE1 

On activation of the UPR, BIP release allows IRE1 dimerizartion and trans-

autophosphorylation which activates its endoribonuclease activity and initiates splicing of the 

mRNA encoding the transcriptional factor Xbp1 (Xbp1 U).  Activated IRE1 removes a 26 

nucleotide intron from the Xbp1 transcript that, results in a frame shift at codon 165. Splicing of 

Xbp1 mRNA causes the removal of the 3’-terminal 97 codons from open reading frame (ORF) 1 

and addition of the 212 codon ORF 2 to the 5’ terminal 164 codons containing the b zip domain 

(89)(Figure 1.2). The spliced mRNA is called Xbp1 S. 

Xbp1 S is translated and transported to the nucleus where it upregulates the expression of 

the genes that are required to relieve ER stress. These include genes that are involved in protein 

folding, protein entry to the ER and ERAD (reviewed in 23, 29, 38, 68). Prolonged UPR 

activation leads to apoptotic cell death. In such an event, activation of IRE1 activates apoptosis 

signal-regulating kinase 1 (ASK 1), c-Jun-N terminal kinase (JNK) and mitogen activated protein 

kinase (p38)(29).  
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Figure 1.1 Schematic illustration of the Unfolded Protein Response. Three transmembrane 

sensors, IRE1, PERK and ATF6 are negatively regulated by binding to Immunoglobulin Binding 

Protein (BIP). Accumulation of unfolded or misfolded proteins leads to ER stress and the release 

of BIP from these sensors.  IRE1 detachment from BIP allows its dimerization, 

autophoshorylation and activates its endoribouclease activity, which results in the splicing of 

Xbp1 mRNA.  Xbp1 protein synthesized from the spliced mRNA moves to the nucleus and 

activates the expression of its target genes such as homocysteine-induced ER protein (HERP). 

IRE1 phosphorylation also leads to c-Jun N-terminal kinase (JNK) phosphorylation and 

prevention of the anti-apoptotic function of Bcl-2 (B-cell lymphoma 2) and activation of the 

proapoptotic protein, Bcl-2 homology 3 (BH3) (46). Similarly activated PERK is dimerised and 

autophosphorylated leading to the phosphorylation of eIF2 which in turn leads to 

translationtional attenuation of most mRNA. An exception is the mRNA for ATF4, which 

activates several downstream genes such as C/EBP homologous protein (CHOP). Activated 

ATF6 moves to the Golgi where it is cleaved, releasing its basic leucine zipper and 

transcriptional activation domain. This domain is transported to the nucleus to induce its target 

genes such as BIP.  
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Figure 1.2. Xbp1 splicing. Unspliced mRNA for Xbp1 is translated into Xbp1 unspliced protein 

which has a basic leucine-zipper (B-Lzip) domain but no transcription activation domain. 

Activated IRE1 splices out a segment of the mRNA downstream from the coding sequences for 

the B-Lzip domain. This changes the codon-reading frame of the mRNA so that spliced Xbp1 

mRNA codes for a protein (Xbp1s), which retains the B-Lzip domain but now also possesses a 

transcription activation domain (AD).  
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1.1.5. PERK  

In ER stress, the release of BIP from PERK allows PERK dimerization and activation by 

auto phosphorylation. The activated dimer phosphorylates the  subunit of eukaryotic translation 

initiation factor 2 (eIF2) and attenuates the protein synthesis. This prevents the activation of 

eIF2 by inhibiting exchange of guanosine diphosphate (GDP) for guanosine triphosphate (GTP) 

in the eIF2-GDP-eIF2 complex. Since eIF2-GTP-Met tRNA is required to bring the initiator 

methionyl-tRNA  (Met-tRNA) to the 40s ribosome, the absence of free eIF2 inhibits the 40S 

and 60S ribosomal subunits from forming the 80S initiation complex for translation and 

consequently this event leads to reduction in the rate of translation (reviewed in 9, 23), figure 1.3. 

Due to the presence of two upstream open reading frames (uORF) within the 5’ 

untranslated region of the mRNA, translation of selective mRNAs such as ATF4 is promoted by 

phosphorylated eIF2 (79). The 5' proximal upstream uORF is a positive-acting element that aids 

ribosome scanning and re-initiation at downstream coding regions in the ATF4 mRNA. When 

eIF2-GTP is abundant in nonstressed cells, ribosomes scanning downstream of uORF1 reinitiate 

at the next coding region, uORF2, and an inhibitory element that blocks ATF4 expression. 

During stress conditions, phosphorylation of eIF2 and consequently reduction in the level of 

eIF2-GTP increases the time required for the scanning ribosomes to become competent to 

reinitiate translation. This delayed reinitiation allows for ribosomes to scan through the inhibitory 

uORF2 and instead reinitiate at the ATF4-coding region (79, 83), figure 1.4. 
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Figure 1.3.  eIF2 and protein synthesis. eIF2 is composed of the three subunits ,  and . The 

GTP-bound eIF2 delivers the methionyl-charged initiator transfer RNA to the 40S ribosomal 

subunit as a ternary complex. At the end of initiation, the GTP on eIF2 is hydrolyzed, producing 

inactive eIF2-GDP. Active eIF2 is recycled by the guanine nucleotide exchange factor, eIF2. 

Phosphorylation of the subunit of eIF2 leads to sequestration of eIF2, accumulation of eIF2-

GDP, and inhibition of protein synthesis by lack of delivery of the first amino acid (9, 23).  
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Figure 1.4. ATF4. Model for ATF4 translational control by its leader sequences. The ATF4 

mRNA is illustrated as a straight line with two upstream Open Reading Frames (uORFs) 1 and 2 

in the 5’ leader, which are presented as boxes. The shading of the small ribosomal subunit 

indicates its association with eIF2-GTP bound Met-tRNAi
Met

. The 5’ proximal uORF1 is a 

positive-acting element that facilitates the ribosme scanning and reinitiation at downstream 

coding regions in the ATF4 mRNA. When eIF2-GTP is abundant in nonstressed cells, ribosomes 

scanning downstream of uORF1 reinitiate at the next coding region, uORF2, an inhibitory 

element that blocks ATF4 expression. During stress conditions, phosphorylation of eIF2 and the 

accompanying reduction in the levels of eIF2-GTP increase the time required for the scanning 

ribosomes to become competent to reinitiate translation. This delayed reinitiation allows for 

ribosomes to scan through the inhibitory uORF2 and instead reinitiate at the ATF4-coding region 

(79). 
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Translation of transcription factor ATF4 and its translocation into nucleus induces the 

expression of genes that function in amino acid metabolism, antioxidant response, and regulation 

of apoptosis including C/EBP homologous protein (CHOP), growth arrest and DNA damage 

(GADD)34 and ER oxidoreduction1 like protein (EROL1). After recovery from the UPR, 

GADD34 targets protein phosphatase 1 (PP1) to dephosphorylate eIF2 and increase protein 

translation (reviewed in 29, 38, 68).   

1.1.6. Activating transcription factor 6 (ATF6) 

 This UPR sensor is formed by ATF6 and its homologs. In non-stressed condition BIP 

binds to the luminal C terminus of ATF6 and masks its two Golgi localization signals preventing 

ATF6 activation by regulated intramembrane proteolysis (70). There are two forms of ATF6, 

ATF6 (90 kDa) and ATF6 (110 kDa, also known as CREB-RP). ATF6 is synthesized as an 

inactive precursor that associates with ER as a transmembrane protein. The effector portion of 

ATF6 contains the DNA binding and transcriptional activation region, which is located at the N 

terminus, in the cytoplasm. 

Activation of UPR leads to the transport of ATF6 to the Golgi, where regulated 

intramembrane proteolysis by site 1 and 2 proteases (S1P) and (S2P) releases its cytoplasmic 

domain containing the basic leucine zipper and activation domain (87). Activated ATF6 migrates 

to the nucleus and induces transcription of its target genes for ER chaperones such as Glucose 

Regulatory Protein 78 (GRP78), Glucose Regulatory Protein 94 (GRP94), calreticulin and ERAD 

components. ATF6 recognizes ER responsive elements (ERSE) in the promoters of these genes 

(reviewed in 3, 23, 38) figure 1.5. Transcriptional factors that are related to ATF6 include LZIP 

(also known as Luman or cyclic AMP-responsive element binding protein 3 (CREB3), OASIS 

(also known as CREB3- like1 and Tisp40 (transcript induced in spermiogenesis (reviewed in 3, 

23, 67, 68). 

1.1.7. Viruses and UPR 

Viruses often induce host cells to produce large amount of viral proteins, many of which 

undergo glycosylation and other modifications in the ER, causing stress to the ER and 

consequently UPR activation. Some consequences of the UPR such as expression of chaperones 

and regulation of the metabolism may be useful to the viral replication. However, protein 
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synthesis attenuation and apoptosis may not be conducive to maximal viral replication. Due to 

the dependency of viruses on the host protein synthesis machinery, many viruses have evolved 

different mechanisms to selectively activate portion of the UPR that alleviate ER stress but 

counter the attenuation of the protein synthesis brought about by the activation of PERK. 

Studies (33, 85) have shown that human cytomegalovirus (HCMV) infection induces the 

UPR but modifies the effects of the three UPR (PERK, ATF6 and IRE1) pathways in order to 

eliminate its harmful effects. Isler showed that even though HCMV significantly activated PERK 

during infection, it maintained translation by limiting eIF2  phosphorylation. This might be 

possible through an increase in the amount of total eIF2 in infected cells (24). Although eIF2 

phosphorylation was limited in HCMV infected cells, translation of transcription factor ATF4, 

which is normally dependent on eIF2 phosphorylation, did occur. This could be explained by 

the fact that the translation of ATF4 occurs at very low levels of phosphorylated eIF2 (11, 12).  

Expression of ATF4 activated the genes that are involved in maintaining cellular 

metabolism and redox, increasing chaperones and foldase capacity. An example of the genes 

product is Growth Arrest and DNA Damage Inducible protein (GADD34), which benefits the 

infection by dephosphorylating phospho eIF2. GADD34 interacts with protein phosphatase 1 to 

dephosphorylate eIF2 and consequently maintain protein synthesis (4). Also it has been shown 

that HCMV protein pUL38 modulates the UPR through inducing ATF4 expression, inhibiting 

persistent JNK phosphorylation and suppressing ER stress-induced cell death (85). 

Although HCMV infection inhibited ATF6 activation, it activated ATF6 target genes such 

as BIP & GRP94 in a gene specific manner independent of ATF6 activation (33). Activation of 

these genes benefits the virus by aiding in protein folding and preventing protein aggregation. 

HCMV also activated the IRE1 pathway, induced splicing of Xbp1 mRNA but transcriptional 

activation of Xbp1 target gene EDEM was not detected. This suggests that either the levels of 

spliced Xbp1 mRNA in HCMV infected cells were too low to produce sufficient Xbp1 protein or 

the transcriptional activity of Xbp1 was inhibited by the virus (33).  

Hepatitis C virus (HCV) is intimately associated with ER. HCV envelope protein 

biogenesis, RNA replication and virus assembly occur in ER-derived membranes. In addition, the 

UPR induces autophagy required for viral RNA maturation and prevention of interferon- 

activation through HCV derived pathogen-associated molecular pattern 
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Figure 1.5.  ATF6. ATF6 is held in the ER by interactions with the chaperone GRP78 (BIP). ER 

stress caused by accumulation of unfolded proteins in the ER, results in release of BIP, exposing 

a Golgi localization sequence (GLS) on ATF6 that targets it to the Golgi in COPII vesicles. 

There, a sequential cleavages by site 1 and 2 protease (S1P and S2P) frees the basic leucine 

zipper and transactivation domain (TA) of ATF6 to translocate to the nucleus, where it binds the 

ER stress response element (ERSE) and activates genes including GRP78 (87). 
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(PAMP, 38). HCV proteins activate the UPR. Expression of envelope proteins E1 and E2 leads to 

Xbp1 mRNA splicing and expression of transcription factor C/EBP homologous protein 

(CHOP)(5) and HCV non-structural protein NS4B induces Xbp1 mRNA splicing and ATF6 

activation (92) by perturbing calcium homeostasis in the ER (49). 

Tardif et al. (75) showed that HCV replication induced and regulated the UPR. In HCV 

infected cells, ATF6 was converted to its transcriptionally active form, which induced its target 

gene GRP78, a major target of the UPR. Another characteristic of the UPR is translational 

inhibition. However, cells with HCV replicon showed higher viral protein synthesis and lower 

level of eIF2 phosphorylation, which is evidence of increased translation initiation.  

In addition, Pavio et al. (63) illustrated that the HCV envelope protein E2  aids virus to 

escape the negative translational effects of ER stress. Although E2 protein at low expression level 

induced ER stress, at high expression levels, and in vitro, it bound and inhibited PERK kinase 

activity, preventing eIF2 phosphorylation, thus allowing translation to proceed. 

In contrast to many viruses, Coxsackievirus B3 (CVB3) takes advantage of the apoptotic 

aspect of UPR activation in order to release viral progeny (6, 71).  CVB3 infection activates all 

three arms of the UPR and induces apoptosis through the downregulation of p58 and 

induction/activation of two stress induced transcription factors; C/EBP homology protein 

(CHOP), and Sterol Regulatory Element-Binding Protein (SREBP1) (91).  

In addition, hepatitis B virus regulatory x protein (HBx) has been demonstrated to be an 

inducer of UPR and the activator of the ATF6 and IRE1-Xbp1 pathways. In Hep3B cells with 

transient or stable expression of HBx, GRP78, spliced Xbp1 and cleaved ATF6 proteins were 

detected, suggesting that the ATF6 and IRE1-XBP1 pathways were activated (47).  

The study done by Faveau et al. demonstrated the role of the human coronavirus OC43 S 

glycoprotein in differential induction of the UPR and consequently in the viral neuroinvasive 

properties. They used coronavirus OC43 variant harboring a persistence-associated mutation in 

the S glycoprotein and showed that the mutant virus induced stronger UPR activation and 

translation attenuation in infected human neurons, comparing with the wild type virus. Although 

both mutant and wild type viruses activated the IRE1 / Xbp1 pathway, they did not activate 

ATF6 and ATF4 pathways (15).  
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Arenaviruses also have been shown to selectively induce the UPR. Acute infection with 

lymphocytic choriomeningitis virus (LCMV) a member of Arenaviruses resulted in activation of 

ATF6 pathway and upregulation of its target genes such as BIP, GRP78 and GADD34 whereas 

PERK and IRE1 pathway were neither activated nor blocked. LCMV infection not only activated 

the ATF6 pathway but it also affected the sensitivity of ATF6 regulated branch of UPR to further 

stress such as thapsigargin treatment. The Viral glycoprotein precursor protein (GPC) is 

responsible for activating the ATF6 branch of UPR in LCMV infection (62). 

Ambrose et al. (1) showed that West Nile virus strain Kunjin (WNV KUN) differentially 

induced ATF6 and IRE1 activation and this activation of UPR coincided with the peak of viral 

RNA and protein production. While IRE1 and ATF6 activation resulted in high level of Xbp1 

splicing and BIP transcription, no activation in PERK/eIF2 was observed. WNV KUN 

hydrophobic nonstructural proteins NS4A and NS4B have been identified as the potent inducers 

of UPR (1) 

1.1.8. HSV and UPR 

 During the HSV-1 productive phase, viral protein synthesis may overload the ER’s folding 

capacity and induce UPR. However, HSV-1 has evolved different strategies to counter the protein 

synthesis attenuation aspect of the UPR. Although HSV-1 induces PERK activation, the viral 

protein 134.5 activates growth arrest and DNA damage gene 34 (GADD34) that targets and 

interacts with phosphatase to dephosphorylate eIF2α to enable continued protein synthesis (7, 26, 

60).  

 Mulvey et al., have shown that not only do PERK and IRE1 remain inactive in HSV-1 

infected cells, PERK selectively resists activation by ER stress. In infected cells, HSV 

glycoprotein B (gB) specifically binds to the luminal domain of PERK and inhibits the activation 

of its kinase (60). By selectively preventing PERK activation, HSV-1 gains the additional 

advantage of not inducing the synthesis of CHOP (PERK target gene) and its subsequent 

induction of apoptosis, which may be detrimental for virus life cycle (94).  
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1.2. Herpes simplex Virus-1 (HSV-1) 

1.2.1. The Herpesviridae family 

 Herpesviridae is a family of large, icosahedral, enveloped, double-stranded DNA viruses 

that replicate in nucleus of their host cells. Members of Herpesviridae can infect a wide variety of 

vertebrate hosts. This family is characterized by the unique pattern of gene expression and their 

ability to establish life long latent infection. Eight herpesviruses out of more than 200 that have 

been identified in nature have humans as their primary host: herpes simplex virus 1 (HSV-1), 

herpes simplex virus 2 (HSV-2), human cytomegalovirus (HCMV), varicella-zoster virus (VZV) 

and Epstein-Barr virus (EBV), and Human herpesviruses 6, 7, and 8 (HHV-6, HHV-7, and HHV-

8, (reviewed in 66). 

 The Herpesviridae family is subdivided into subfamilies Alphaherpesvirinae, 

Betaherpesvirinae, and Gammaherpesvirinae based on biological properties, DNA sequence 

similarity, host range, growth rate and cell types in which they establish latency (66).  

 Alphaherpesvirinae includes herpes simplex virus (HSV- 1 & 2), which cause oral and 

genital herpetic lesions and varicella-zoster virus (VZV), the cause of chickenpox and shingles. 

The members of this subfamily have a variable host range, relatively rapid and destructive 

reproductive cycle and establish latent infection in sensory neurons.  

 Betaherpesvirinae includes human cytomegalovirus (HCMV), and Human herpesviruses 6, 

7, and 8 (HHV-6, HHV-7, and HHV-8). They generally grow slowly and lead the infected cells 

to become enlarged (cytomegalia), establish latency in kidney, lymphoreticular cells and 

secretory glands cells.  

 Finally the subfamily Gammaherpesvirinae contains Lymphocryptovirus Epstein Bar virus 

(EBV) and Rhadinovirus human herpes virus (HHV-8) which often infect and establish latency in 

lymphoid cells (reviewed in 66).   

1.2.2. HSV-1 lytic and latent infection 

 The life cycle of HSV involves both lytic (productive) and latent (non-productive) phases. 

The initial lytic phase of HSV-1 virus begins with the first exposure of host epithelial cells to 

HSV-1, followed by viral replication in these cells and in the sensory neurons innervating the 

skin. In the lytic phase, virus replication stimulates the host response causing a lesion (cold sore), 
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which heals in a few days. The symptoms of lytic phase disappear, but infection persists in a 

latent state in sensory neurons. Periodic reactivations can occur when the host is affected by a 

variety of stimuli such as fever, sunburn, inflammation and physiological or psychological 

stresses. Following reactivation, the virus replicates in the neurons and travels back along the 

axons to the original site of virus entry and infection causing a productive lesion and clinical 

symptoms (reviewed in 66). 

1.2.3. HSV virus structure 

 The HSV virion is an average of 186 nm to 225 nm diameter including spikes. It consists of 

four parts: (a) core containing the viral DNA, (b) icosahedral capsid surrounding the core, (C) the 

unstructured proteinaceous layer between the capsid and the envelope called the tegument, and 

(d) an outer lipid bilayer envelope with spikes on its surface (reviewed in 66).  

1.2.3.1. Core 

 The core contains the double strand DNA genome composed of 153 kilo base pairs with a 

G+C content of 68% for HSV-1 and 69% for HSV-2 (40).  

1.2.3.2. Tegument 

 The tegument is an unstructured protein matrix located between the envelope and the 

capsid. It is composing of at least 20 viral proteins such as host shut-off protein (VHS) with the 

capacity to degrade the cellular and viral mRNA, VP22 which plays a role in spreading the virus 

from cell to cell and the virion transactivator factor, VP16 (reviewed in 66) .   

1.2.3.3. Capsid 

 The capsid is composed of 162 capsomers arranged in a T=16 icosahedral symmetry. The 

outer shell of capsid consists of four viral proteins, VP5, VP26, VP23 and VP19. VP5, the major 

capsid protein, present in both penton and hexon capsomers. VP26 is present in hexon. One VP19 

molecule and two VP23 molecules make up the triplexes that link adjacent capsomers (93). The 

capsid also contains VP24, the protease and UL16 which are involved in DNA encapsidation 

(reviewed in 66). 

1.2.3.4. Envelope 

 The envelope of HSV is derived from a host cytoplasmic membrane. It contains a lipid 

bilayer with eleven transmembrane viral proteins embedded in it, such as glycoproteins gB, gC, 
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gD, gE, gG, gI, gH, gL, gM and two nonglycosylated intrinsic membrane proteins Us9 and UL20 

(reviewed in 66).  

1.2.4. Viral genes regulation during lytic infection 

1.2.4.1. IE, E, L genes 

During lytic infection, more than 80 HSV genes are expressed in a highly regulated 

cascade.  Immediate early (IE) genes are expressed very soon after infection. The six proteins are 

designated ICP0, ICP4, ICP22, ICP27, ICP47, and US1. ICP0 and ICP4 are transcriptional 

activators. ICP0 activates transcription of both viral and cellular genes. The next set of HSV 

genes to be expressed, are called early genes (E). They are expressed approximately 4 to 8 hours 

post infection and for their expression they require the presence of functional ICP4 protein. Early 

genes code for proteins that are required for viral replication, include thymidine kinase (tk) and 

DNA polymerase. Late genes (L) include genes coding for US11, gC (UL44), gB (UL27), VP16 

and VHS. They are the last genes to be expressed. Their expression reaches peak levels after viral 

DNA synthesis has started (reviewed in 66).  

1.2.4.2. Initiation of the lytic cycle by VP16, Host Cell Factor and Oct-1 

 IE genes transcription is initiated by the assembly of a multi-protein complex consist of 

virion protein 16 (VP16) and two cellular proteins: Oct-1 and Host Cell Factor (HCF). Oct-1 is a 

transcription factor belonging to the Pit-Oct-Unc (POU) family (27).  HCF is a chromatin- 

associated protein that may be involved in many cellular functions such as cell cycle progression. 

It was initially discovered through its role as a co-factor required by VP16 to initiate HSV IE 

genes expression (42).  VP16 is an essential structural component of the virus that is synthesized 

at the L phase of HSV lytic infection and then integrated into the virus tegument. Following lytic 

infection, VP16 is released into the cell and associates with HCF.  HCF promotes the nuclear 

translocation of VP16 (44) and is also a co-activator of VP16 (54). VP16/HCF heterodimer 

recognizes the POU domain of Oct-1 bound to TAATGARAT (where R is a purine) motifs 

present in multiple copies in the promoters of all HSV IE genes and induce their transcription and 

finally their expression. Viral IE proteins later regulate the expression of E and L genes 

(reviewed in 66). For active IE genes transcription, VP16 recruits histone acetyltransferases and 

remodeling enzymes to remove histone from the promoters of these genes (28, 80). 
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1.2.5. Latent infection   

1.2.5.1. Latency establishment and maintenance 

 

 HSV-1 infects the ends of sensory neurons innervating the epithelial site of primary 

infection. The capsid is transported to the nucleus of the sensory neurons (trigeminal ganglion in 

HSV-1) where it undergoes the lytic cycle and the death of the infected neurons or it establishes a 

latent infection in about 3% of the neurons (reviewed in 66).  

In contrast to lytic infection where the viral genome retains a linear conformation, during 

latency the HSV genome is circular and assembled into a nucleosomal structure.  Most of 

evidences suggest that in contrast to the lytic phase, during latency, expression of all lytic genes 

are silenced and the only viral gene expression detected is LAT (reviewed in 65, 66). LAT 

promoter is insulated from hyperacetylated lytic cycle genes (2).  

While no protein expression has been associated with LAT, observations show that it 

contributes to latency in many ways. One potential role of LAT is to prevent infected neurons 

from committing apoptosis. Prevention of apoptosis has been related to two regions of transcript 

that are capable of interfering with the caspase-9 pathway (35, 39). In addition, transfection of a 

plasmid expressing LAT protects cells from caspase 3 induced apoptosis (34, 48).  

 Recently, Kather et al. have shown that HSV-1 antiapoptotic LAT is associated with the 

downregulation of cellular FLICE (FADD-like IL-1β-converting enzyme)-inhibitory protein (c-

FLIP) a potent inhibitor of caspase-8-mediated apoptosis (36).  

 It is believed that LAT enhances latency by repression of the viral IE genes such as ICP0, 

ICP4 and ICP27 (13, 41). Infection of neuronal cell clones that stably express LAT results in 

great reduction in the level of IE genes transcripts (19, 64). Recent studies have implicated micro 

RNAs (miRNAs) in this phenomenon (74, 77). This is thought to be through silencing of the IE 

genes. The last 750 bases of LAT are complementary to ICP0 gene (14). 

 LAT encodes a function that increases the amount of dimethyl lysine 9 form of histone H3 

or heterochromatin and reduces the amount of dimethyl lysine 4 form of histone H3, a part of 

active chromatin, on viral lytic-gene promoters. Thus LAT may manipulate the cellular histone 

modification machinery to repress its lytic-gene expression, thus converting portions of viral 

DNA into a non-productive form known as heterochromatin (80).  
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Several studies support the idea that latency is the consequence of failed initiation of IE 

genes expression. This may be the result of the virus failure to assemble the VP16-HCF-Oct-1 

complex, which is required for activation of IE genes promoters.  Some explanations for this 

include: absence or inability of VP16 to reach neuronal nucleus during the axonal transport (43, 

65), low level of Oct-1 (78), cytoplasmic sequestering of HCF in sensory neurons (43) and the 

presence of other POU family in sensory neurons, such as Oct-2 that can compete with Oct-1 for 

binding to TAATGARAT sequence in the IE genes promoters (50, 51). 

There is also immunological evidence that structural proteins are expressed at intermittent 

low-levels in some latently infected neurons and stimulate the immune system to prevent 

reactivation (10). 

1.2.5.2. HSV-1 reactivation from latency  

 Reactivation of latent HSV in human occurs following physical trauma, physical or 

emotional stress, exposure to UV light, hypothermia and hormonal imbalances (reviewed in 66). 

While the conditions surrounding the causes of reactivation and the responsible stimuli have been 

studied thoroughly, the molecular mechanisms underlying HSV-1 reactivation from latency are 

poorly defined. During reactivation infectious virions are produced in a small number (0.05%) of 

latently infected neurons, which transport virus back to the site of primary infection through 

innervating axons. Although the neurons that become involved in lytic viral replication do not 

survive, the large reservoir of latently infected neurons allows this cycle to occur repeatedly (58).  

 While during lytic infection in tissue culture cells, temporal pattern of IE, E and L genes 

expression has been well described, the pattern of viral gene expression during reactivation in 

neuronal cells has not been characterized.  

  At present, it is believed that the VP16 transactivating function is not required for the exit 

from latency. Therefore, one critical question is raised: How does the latent viral genome initiate 

the transcription of IE genes in the absence of VP16? 

 The observation made by Tal-Singer et al. suggests that the viral gene expression may be 

regulated differently during reactivation (73). Early viral transcripts were detected before 

immediate-early transcripts. This means cellular stimulus causing reactivation does not act 

specifically on the IE class of viral genes but rather acts on a broader class of viral genes (73). 

 Another recent study emphasizes on the role of VP16 in both the lytic infection and 

reactivation (76). The authors argue that in neurons, VP16 is expressed with different kinetics 
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than in non-neuronal cell types. They present a model whereby de novo synthesis of VP16 is 

required to induce reactivation within the neurons. Following stress, the VP16 promoter is 

activated in latently infected neurons in the absence of other viral proteins.  

 Cellular stresses result in changes to the neuronal transcription pattern which exclusively 

affect the VP16 promoter, allowing the expression of VP16 protein in reactivated neurons. Once 

enough VP16 is produced, IE gene expression can be stimulated by produced VP16 and temporal 

cascade of genes expression initiated (56). 

1.2.5.3. Neuronal model of HSV-1 infection 

 Although animals such as mice and rabbits have been used as in vivo models for HSV-1 

studies for a long time, cell culture models provide the ability to easily manipulate infected cells 

and observe the virus without the host immunological interactions. Cell cultures are very useful 

for studying the molecular details of HSV-1 life cycle in different lytic and latency phases. 

Primary neuronal cell cultures of neonatal rat dorsal root ganglia (DRG) and neuronal cell lines 

such as rat pheochromocytoma (PC12) (8), human neuroblastoma (IMR32) (90) are used to study 

HSV-1 neuronal cell interactions .  

 A very useful in vitro cell model is PC12, which differentiates into cells with similar 

sympathetic neurons. Even though PC12 cells have been used extensively in HSV studies 

specially for NGF treatment (22), their disadvantage is that they are rat cells and are not human 

neurons. To have a better understanding of HSV-1 infection in a similar condition to in vivo 

human HSV infection, in my project, I used human neurons, ONS- 76 cells as a model for 

neuronal cells for HSV-1 infection. This cell line has been derived from human medulloblastoma 

cells a highly malignant primary brain tumor that originates in the cerebellum or posterior fossa 

(86). 



 

 20 

 

1.3. Hypothesis 

I hypothesize that HSV-1 infection in epithelial and neuronal cells modulates the UPR in 

a selective manner so that functions of UPR that are beneficial for viral replication are activated 

while those that may suppress replication are not. 

1.3.1 Main objective 

To test the hypothesis that during HSV-1 infection in epithelial (Vero) and neuronal 

(ONS-76) cells the Unfolded Protein Response (UPR) is selectively activated. 

1.3.2. Specific objectives: 

1.3.2.1. To establish the time course of various parameters of viral replication in Vero 

(epithelial) and ONS-76 (neuronal) cells. 

a) Time course of infectious virus production  

b)  Time course of viral DNA replication  

c) Time course of transcription of representative viral Immediate Early (IE), Early (E), and 

Late (L) genes  

d) Time course of synthesis of representative IE, E, and L proteins  

e) To determine if the expression of VP16 (L protein) requires the expression of new protein 

synthesis in ONS-76 cells  

1.3.2.2. To evaluate the efficiency of the primers designed to quantify the transcription of 

genes representative the three arms of UPR (IRE1, PERK, ATF6) 

To monitor Xbp1 (spliced), homocysteine-induced ER protein (HERP)(29), CHOP (91) 

and GRP78/BIP (88) transcripts in Vero and ONS-76 cells treated with thapsigargin  

1.3.2.3. To determine if expression of the genes representing of the three main pathways of 

UPR are affected during infection with HSV-1 

a) To monitor Xbp1 (spliced), HERP, CHOP and GRP78/BIP transcripts in Vero and ONS-

76 cells infected with HSV-1 

b) To examine the level of eIF2 phosphorylation protein in infected cells by Western blot 
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1.3.2.4. To study if HSV-1 can selectively inactivate components of the UPR 

To examine the effect of HSV-1 infection on activated UPR in Vero and ONS-76 cells  

1.3.2.5. To determine if ICP0 or VP16 viral genes are required to shut off the UPR  

The goal of the this study was to find out whether and how HSV-1 regulates the UPR 

during viral infection to prevent the UPR detrimental affects and promote its protein synthesis. 

By correlating differences in the various parameters of viral replication with components 

of the UPR in permissive (Vero) and semi permissive (ONS-76) cell I hope to identify the viral 

factors that contribute to the UPR regulation.  
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CHAPTER 2: Material and methods 

2.1. Cell culture 

 

 All chemicals and media were ordered from Invitrogen (Carlsbad, CA, U.S.A.) unless 

otherwise stated. Cells were grown in monolayers in 75 cm
2 

tissue culture flasks. African green 

monkey kidney (Vero) cells were maintained in Dulbecco’s modified Eagle’s medium (D-MEM) 

with 10% newborn calf serum and 100 units of penicillin-  streptomycin per ml. The human 

medulloblastoma cell line, ONS-76 was obtained from Michael Taylor (University of Toronto, 

Canada) and grown in D-MEM medium with 10% fetal bovine serum (FBS) and 100 units of 

penicillin-streptomycin per ml. For all experiments, cells were plated at a density of 2 X 10
5 

cells 

per well in 6 well culture plates (BD Falcon, Mississauga, ON, Canada) and incubated in a 5% 

CO2 humidified atmosphere at 37C. Cells were plated 24 h prior to viral infection, transfection 

or other treatments. 

2.2. Virus  

 

 For HSV-1 infection, strain KOS was used.  HSV-1 KOS viral stocks were prepared in 

Vero cells and virus titers determined by standard plaque assay on Vero cell monolayers. 

Infections were carried out at a multiplicity of infection (MOI) of 5 plaque forming units (pfu) 

per cell in D-MEM without serum. After incubation for 1 hour, with gentle rocking every 15 

minutes, the inoculum was replaced with D-MEM plus 5% serum and the cells were maintained 

at 37C for indicated times. Mock infection was carried out by adding media without viral 

inoculum to the cells.  

2.3. Single-Step Growth Curve  

 

 Single step growth (21) experiments were performed to determine the virus growth rate in 

Vero and ONS-76 cells. Both Vero and ONS-76 cells were plated at 2 X 10
5 

cells per well in 6 

well plates. After 24 hours the cells were infected with HSV-1 at a MOI of 5 pfu per cell.  After 

one-hour incubation, the cells were washed once with phosphate –buffered saline (PBS) and then 

twice with low pH glycine buffer (18) to inactivate or remove any virus that had not penetrated. 
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Then the cells were scraped into the medium at 1, 4, 8 and 12 hours post infection and subjected 

to three freeze-thaw cycles. Virus titer in each time point was determined by plaque assay on 

Vero cells.  

2.4. Plaque assay 

 

 The quantification of infectious viral particles was achieved
 
by a standard plaque assay. 

Serial dilutions of virus were added to
 
Vero cells in six well plates. After a 1 hour adsorption 

period, the inoculum was
 
replaced with the mixture of complete medium containing serum and 

2% low melt agarose, and incubated for an additional 2
 
days. The

 
plates were then stained with 

media containing 0.5% neutral red and the numbers of plaques were
 
counted after 24 hours. 

Titers were calculated as PFU per ml of virus
 
suspension. 

2.5. DNA purification and analysis 

 

To determine the number of viral genomes per unit mass, the following calculations were 

made based on the facts that the number of base pair (bp) in one genome of HSV-1 is 1.5 X 10
5 

and a base pair of double-strand DNA has a molecular mass of 650. Therefore, molecular weight 

(1 mole) of HSV-1 genome was calculated by multiplying 650 to 1.5 X 10
5
,
 
which is equal to 975 

X 10
5
 gram. The number of molecules of HSV-1 per gram was calculated by dividing 6.02 x 10

23 

by 975 X 10
5
,
 
which is equal to 6 X 10

15
 molecules of the HSV genome per gram. qRT PCR  was 

performed on serial dilutions of HSV-1 DNA by using primers flanking a 327 bp segment of the 

HSV-1 thymidine kinase (TK) gene.  Genome equivalents and its log 10 for each diluted HSV-1 

DNA were calculated. Using the log genome equivalents vs Ct values a standard curve was 

generated. To calculate the DNA concentration in each sample, the Ct value of the sample was 

used in the equation of the standard curve. Finally the genome equivalent for each sample was 

calculated by taking the antilog of the DNA concentration.  

2.6. RNA purification and Real time PCR (qRT PCR) analysis 

 

 Total RNA was extracted from cells in 6 well cell culture plate using RNeasy plus mini kit 

(Qiagen) as suggested by manufacturer. Quantification of RNA was performed using Thermo 
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Scientific Nanodrop 2000C. Two g of total RNA was used for cDNA synthesis using Quantitect 

Reverse transcription kit (Qiagen). To detect and quantitate transcripts, Briliant II SYBER Green 

QPCR Master Mix (Agilent technology, Mississauga) was used. Samples were amplified in an 

Mx 3005P QPCR thermocycler (Stratagene). The thermocycling condition consisted of initial 

activation step for 10 minutes, 40 cycles of amplification using a plateau of 95°C/30 seconds for 

denaturation, followed by a plateau of 55°C/1 minute for annealing, and a plateau of 72°C/30 

seconds for extension. Amplification data were collected at the end of each annealing plateau. 

Segment 3 contains the dissociation curve. The default profile dissociation curve begins with a 1-

minute incubation at 95°C to melt the DNA and then a 30-second incubation at 55°C. 

 Gene expression levels relative to house keeping gene GAPDH were determined according 

to the 2
 _CT

 method (52) as follow: Ct values calculated by deducting the GAPDH Ct value 

from the Ct value of test sample , Ct value calculated by deducting of Ct value of  test 

samples from Ct value of control. Fold change was determined by calculating the 2
 _CT 

for 

each sample. Since uninfected cells have no viral RNA their Ct values in qRT PCR are read about 34 

Ct. For the comparison purpose, results then were calculated based on the maximum percentage; the 

highest level of fold change for each transcript was considered as a 100 percent and the fold change 

for the rest of time points were multiplied to 100 and divided to this maximum level of fold change. 

All primer sets for transcript amplification were purchased from Integrated DNA technologies 

(Coralville, Iowa, U.S.A.) except TK (Sigma-Aldrich, Oakville, On, Canada). Primers were used at 

1.9 M concentration. The sequences of the primers were as it seen in table 1. 
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Primer name Direction Sequence 

ICP0 

R 5’-TTGTTCAGGTAAGGCGACAG-3’ 

F 5’-CTCCTCTGCCTCTTCCTCCT-3’ 

VP16 

R 5’-AGGGCATCGGTAAACATCTG-3’ 

F 5’-GGACGAGCTCCACTTAGACG-3’ 

TK 

R 5’-CCAGTAAGTCATCGGCTCGG-3’ 

F 5’-CCATCAACACGCGTCTGCGTT-3’ 

VP5 
R 5’-CCACTTTCAGGAAGGACTGC-3’ 

F 5’-CTTCTGCGAGACGAGCTTTT-3’ 

GAPDH 

R 5’-GGGCCATCCACAGTCTTCTGGG3’ 

F 5’TGCCTCCTGCACCACCAACTGC-3’ 

Xbp1 (spliced) 

without intron 

R 5’-TAAGGAACTGGGTCCTTCTGG-3’ 

F 5’-TCTGCTGAGTCCGCAGCAGG-3’ 

HERP 

R 5’-CTTTGGAAGCAAGTCCTTGA-3’ 

F 5’-CCGAGCCTGAGCCCGTCACG-3’ 

CHOP 

R 5’-TGCCACTTTCCTCTCGTTCT-3’ 

F 5’-TGGAAGCCTGGTATGAGGAC-3’ 

BIP 
R 5’-GGTAGAACGGAACAGGTCCA-3’ 

F 5’-GGCTTGGATAAGAGGGAAGG-3’ 

Table 2.1.  List of primers and their sequences 
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2.7. Western blot analysis  

 

 At different time points post HSV-1 infection, as specified in the figure legends, the 

medium was completely removed from the cell monolayers. The cells were lysed and harvested 

with 150 l sample buffer. Samples were boiled for 3 minutes and sonicated for 3 seconds. 

Proteins in cell lysates were separated by sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis (SDS-PAGE). Proteins were transferred to Amersham Hybond-LFP membrane 

(GE. Healthcare, Baied’Urfe, QC, Canada) which were blocked either with 5% bovine serum 

albumin or 5% nonfat milk (for phospho eIF2) and then incubated for 1 hour with primary 

monoclonal antibody against VP16 (LP1) obtained from Peter O’Hare, (Marie Curie Research 

Institute, Surrey, United Kingdom), ICP0 (mouse monoclonal antibody Santa Cruz 

biotechnology, Santa Cruz, CA. U.S.A.)), TK (goat polyclonal antibody, Santa Cruz 

biotechnology), VP5 (mouse monoclonal antibody, Santa Cruz biotechnology), GAPDH  (mouse 

monoclonal antibody, Chemicon, Billerica, MA, U.S.A.), eIF2 (mouse monoclonal antibody, 

Santa Cruz biotechnology) and phospho eIF2 (rabbit monoclonal antibody, Cell Signaling 

technology, Pickering, ON, Canada).  The membranes were then rinsed in either phosphate-

buffered saline (PBS) or Tris buffered saline (TBS) for phospho eIF2 and incubated with either 

mouse Alexa 448 (Invitrogen), or rabbit CY5 (GE Health care). All membranes were scanned by 

Typhoon 3 laser fluorescence and chemiluminescence scanner with ImageQuant software.  
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 2.8. Cell Viability  

 

 Cell viability was assessed with the trypan blue exclusion method. Vero and ONS cells 

were seeded at density of 2 x 10
5
 per well in six well plates. After 24 hours cells were treated for 

4 hours either with 1l DMSO (control) or 100 nM thapsigargin and then harvested using trypsin 

EDTA. Cells were centrifuged and resuspended in media. Cell suspension was mixed with 0.4% 

trypan blue dye and then visually examined and counted to determine whether cells took up or 

excluded dye.  

2.9. Plasmids  

 

 The expression vector pRG50 that encodes VP16 was provided by
 
Peter O'Hare (Marie 

Curie Research Institute, Surrey, United Kingdom), plasmid CI-110, which encodes ICP0, was a 

gift
 
from Roger Everett  (MRC Virology Unit, University of Glasgow ,United Kingdom) and 

pcDNA3 was purchased from Invitrogen. One day prior to transfection, 2x 10
5
 per well of Vero 

cells were seeded into each of 6 well plate. Transfections were performed using Lipofectamine 

2000 (Invitrogen), according to the manufacturer’s instruction. Cells were transfected with the 

mixture of 8l of Lipofectamin in 250 Opti-MEM (Invitrogen) and 500ng DNA (plasmid 

expressing either VP16, ICP0 or pcDNA) in 250l Opti-MEM (total volume of 500l per well). 

 Next day the medium was replaced with fresh media. Forty eight hours after transfection, 

the cells were treated with either 100nM thapsigargin (Sigma) (ER stressor) or DMSO (solvent 

control) for 4 hours and harvested with lysing buffer of RNeasy plus mini kit. 

2.10. Immunofluorescence 

 

To determine the transfection efficiency, the cells transfected with plasmids pRG50, CI-

110 or pcDNA3 were examined by immunofluorescent staining. Vero cells were grown on 

circular 18-mm diameter micro coverslips in six well plates one day prior to transfection. At 48 

hours after transfection, the coverslips were rinsed once with PBS and then fixed with cold 

methanol. The cells incubated for 20 minutes at room temperature in blocking solution (PBS + 
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10% NCS), washed with PBS and incubated with either primary mouse VP16 or ICP0 antibody 

at dilution of 1:200 and the cell nuclei were stained with promidium iodide (Sigma). Finally, the 

coverslips were incubated with secondary antibody conjugated to fluorochrome mouse Alexa 488 

(Invitrogen) antibody for 20 minutes and then washed with PBS. The coverslips were quickly 

mounted onto glass slides and subsequently analyzed with Zeiss Axiovert microscope fitted with 

UV optics and CCD camera. Images were captured and analyzed using Northern Eclipse software 

(Mississagua, Ontario, Canada). 
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Chapter 3: Results 

3.1. Kinetics of various parameters of HSV-1 viral infection in Vero and ONS-76 cells 

 In this study, Vero and ONS cells were chosen for the following reasons. First, these cells 

provide examples of permissive epithelial cells (Vero) and human neuronal cells (ONS-76) for 

HSV-1 infection. Second, HSV-1 leads to lytic infection in epithelial cells whereas in some 

neuronal cells it can establish latency. The sequence of HSV-1 gene expression in epithelial cells 

has been well determined. However no published studies have described the pattern of HSV 

genes expression in cells of human neuronal origin. Since in subsequent experiments I examined 

the UPR in these two cell types to have a better idea about the events following HSV-1 infection 

and to study the similarities and differences in the pattern of genes expression in these cells, I 

established a time course of different parameters of viral infection such as virus growth rate, viral 

DNA replication, viral IE, E and L transcription and protein synthesis in both Vero and ONS-76 

cells. These cells were infected with HSV-1 and the time course of these events was monitored. 

3.1.1 Kinetics of DNA synthesis and infectious virus multiplication in Vero and ONS-76 

cells 

 The viral DNA content of infected cells is depicted in Figure 3.1.1. a and figure 3.1.1. b. 

Between 7 to 9 hours post infection, viral DNA concentrations were increased in both cell lines.  

The viral DNA content in Vero cells increased gradually and reached maximum of 3.5 x10
6
 

genome equivalents per culture at 24h post infection. Nine hours after infection, ONS-76 cells 

contained 1.5x10
6 

genome equivalents of viral DNA per culture. The DNA content of these cells 

subsequently dropped to almost 3x10
5
 genome equivalents per culture.  

The amount of infectious HSV-1 produced by Vero and ONS-76 cells is shown in Figure 

3.1.1 c. Infectious virus could not be detected in either Vero or ONS-76 cells in the first 4h after 

infection, but after 4h the rate of infectious virions increased and in Vero cells it reached to 

3.2x10
7 

pfu per culture at 12h. In contrast, the rate at which infectious virus increased was more 

modest in ONS-76 cells with 2.8x10
6 

pfu per culture at 12 h. 
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        a  

 

 

 

Figure 3.1.1. Time course of DNA synthesis and infectious virus production in HSV-1 infected 

Vero and ONS-76 cells. (a) A standard curve was created using log genome equivalents of log ten (‘x’ 

axis) vs Ct values of serially diluted HSV-1 DNA, (‘y’ axis) (Described in Material and Method 

Section). (b) Vero and ONS-76 cells were cultured at density of 2 X 10 
5 

per well.
  
After 24 hours the 

cells were infected with HSV-1 at a MOI of 5 pfu/cell and harvested for DNA. DNA was purified from 

samples and qRT PCR with primers designed to amplify the TK gene were used for analyzing their 

viral DNA content. Ct values were used in the equation of the HSV-1 DNA standard curve (Material 

and Method). (c) A Single step growth experiment was performed to measure the infectious virus 

content in Vero and ONS-76 cells over 12 h after infection. Vero and ONS-76 cells were infected with 

HSV-1 virus at a MOI of 5 pfu per cell. Cells were scraped into the medium at 1, 4, 8 and 12 hours after 

infection and subjected to three freeze-thaw cycles. Virus titer at each time point was determined by 

plaque assay on Vero cells. On ‘y’ axis is PFU/10
6 

virus per culture and on ‘x’ axis is the number of 

hours after infection. Data labels on each time point are in pfu/10
6
 of virus per culture.  
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3.1.2. Kinetics of viral RNA expression in HSV-1 infected ONS-76 and Vero cells 

 

 The HSV-1 ICP0, TK, VP16 and VP5 genes were chosen as representatives for the IE, E 

and L classes of viral genes for monitoring the viral genes expression over 24 hours. Vero and 

ONS-76 cells were infected with HSV-1 at a MOI of 5 pfu per cell. Cells were harvested at 1, 3, 

5, 7, 9, 12, 15 and 24 hours post infection and the relative transcripts expression levels for each of 

the various HSV-1 genes were measured by qRT-PCR. Since the level of the RNA for these 

genes in the two cell-types were different, the results are expressed (Fig 3.1.2) as a percentage of 

the maximum increase for each cell line.  

As seen in the figure 3.1.2, the kinetics of ICP0 (IE) expression in both cells were similar. 

ICP0 RNA started to increase at about 4 hours post infection and reached maximum levels 

(100%) at 9 hours post infection. In contrast, the kinetics of accumulation of RNA for TK, VP16 

and VP5 were different in the two cell types (figure 3.1.2). While in ONS-76 cells, the expression 

of these transcripts reached to a maximum at 9 and 7 hours post infection, in Vero cells the 

transcripts reached a maximum at 24 hours post infection. Although VP16 is considered as an L 

gene and its maximum expression is expected to be detected in the later hours of infection, 

surprisingly in ONS-76, VP16 expression reached a maximum level at 7 hours post infection. 

This was similar to the kinetics for ICP0, an IE gene.  
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     Figure 3.1.2. ICP0, TK, VP16 and VP5 genes expression in HSV-1 infected Vero and ONS-76 cells. 
Vero and ONS-76 cells were infected with HSV-1 at MOI of 5 pfu per cell. RNA was extracted from the 

samples harvested at 1, 3, 5, 7, 9, 12, 15 and 18 hours after infection. qRT PCR was used to examine the 

expression of ICP0, TK, VP16 and VP5 genes. Results are shown in the maximum percentage of fold 

changes in infected cells relative to mock-infected cells. 

  
Cell type Gene name Fold change for the maximum percentage 

Vero 

ICP0 0.02 x 10
6
 

TK 4.5 x 10
6
 

VP16 184 x 10
6
  

VP5 1.9 x 10
6
 

ONS-76 

ICP0 0.02 x 10
6
  

TK 0.35 x 10
6
 

VP16 17 x 10
6
 

VP5 0.18 x 10
6
 

 

     Table 3.1. Fold change value of the maximum percentage for each gene transcript in figure 3.1.2. 
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After infection HSV-1 degrades host mRNA (16, 32)and also causes a decrease in the 

rates of transcription of host cellular genes (72). Since I used qRT PCR for analyzing the viral 

transcription and cellular housekeeping gene GAPDH was used to normalize, Ct values of 

GAPDH were monitored during 24 hours after HSV-1 infection using a fixed amount of input 

RNA. The level of GAPDH Ct values in both cells exhibited relatively little change in the first 12 

hours after infection, about 2 cycles for Vero cells and less than 1 cycle for ONS-76 cells. The 

major changes were observed in the late hours after infection (about 24 hours after infection). I 

concluded this to mean that GAPDH Ct value during first 12 hours post infection, at which time 

most of the gene expression program for lytic infections has been completed, does not affect the 

final results (figure 3.1.3). 
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     Figure 3.1.3. Effect of HSV-1 infection on GAPDH expression. Vero and ONS-76 cells were 

infected with HSV-1 at MOI of 5 pfu per cell. RNA was extracted from the harvested samples at 

1, 3, 5, 7, 9, 12, 15 and 18 hours after infection. qRT PCR was used to evaluate the expression of 

GAPDH. Results are shown in Ct values. 
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It is known that, in contrast to E and L genes, the transcription of HSV-1 IE genes does 

not require de novo protein synthesis (reviewed in 66), and is not inhibited by protein synthesis 

inhibitor such as cyclohexamide (30). To determine if VP16 gene expression in ONS-76 cells 

followed the pattern of IE genes or L gene expression, both Vero and ONS-76 cells were infected 

with HSV-1 in the presence of cycloheximide and were harvested 7 hours after infection for 

ICP0, ICP27 (control for IE genes) and VP16 RNA.  

Results showed that while synthesis of ICP0 was not affected by cyclohexamide, VP16 

RNA was not synthesized in the presence of cycloheximide (figure 3.1.4), suggesting that the 

protein synthesis of early genes are required for VP16 expression and VP16 was regulated as an 

L or late gene in both ONS-76 and Vero cells.  

 

 

 

 

 

 

 

 

 

 



 

 36 

 

 

Figure 3.1.4. Cyclohexamide inhibits the expression of VP16 in both ONS-76 and Vero cells. 

Vero and ONS-76 cells were infected with HSV-1 and incubated in the presence of 12.5 g/ml 

cylohexamide. Seven hours after infection cells were harvested for RNA and samples were 

evaluated for ICP0, ICP27 (IE transcript control) and VP16 expression with qRT PCR.  
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3.1.3.  Viral protein synthesis in Vero and ONS-76 cells 

Synthesis of HSV-1 ICP0, TK, VP16 and VP5 proteins in both cell lines was also 

examined 24 hours following infection with HSV-1. Vero and ONS-76 cells were infected with 

HSV at a MOI of 5 pfu per cell. Cells were harvested at 1, 3, 5, 7, 9, 12, 15 and 24 hours after 

infection and the cell lysates were subjected to Western blot analysis. While ICP0 and VP16 were 

detected in both cell lines, no TK or VP5 proteins were detected in ONS-76 cells (Fig 3.1.5). In 

the 65kDa area two close bands were detected and it was not clear which band was belonging to 

VP16. To identify the VP16 band, ONS-76 cells were transfected with plasmid pRG50 that 

expresses VP16 (positive control). Western blot of the transfected cells confirmed that the faster 

migrating band in ONS-76 cells was VP16 band while the slower migrating band was a 

nonspecific band, figure 3.1.5. The VP16 band in ONS-76 cells appeared earlier (5 hpi) than in 

Vero cells (9 hpi). 

 

 

 

 

 

 

 

 



 

 38 

 

 

Figure 3.1.5. Kinetics of HSV-1 Protein synthesis in Vero and ONS-76 cells. Vero and ONS-

76 cells were mock-infected or infected with HSV-1 and the cells were harvested at different time 

points after infection (1, 3, 5, 7, 9, 12, 15, 24 hours after infection). Cell lysates were subjected to 

western blot analysis using antibodies specific for ICP0, TK, VP16, VP5 and GAPDH. Although 

ICPO and VP16 were detected in both cell lines, TK and VP5 were not detected in ONS-76 cells 

Two bands were detected in the 65kDa area (VP16 expected area) in ONS-76 cells and it was not 

clear which band was the VP16. Transfected ONS-76 cells with plasmid pRG50 (VP16 

expressing plasmid) revealed that the VP16 band is the lower band in ONS-76 cells. GAPDH was 

used as a loading control in both cell types. 
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3.2. UPR 

3.2.1. Viability of cells following thapsigargin treatment 

To study the effect of HSV-1 on the UPR, I activated the response with a calcium 

ionophore, thapsigargin. Thapsigargin is an ER stress inducer, which inactivates the ER Ca 

2+
ATPase resulting in depletion of Ca

2+
 from the ER lumen. To determine if this drug had an 

effect on the viability of cells cultures during the course of the experiment, Vero or ONS-76 cells, 

they were treated with either 100 nM thapsigargin or an equivalent volume of the drug solvent, 

DMSO. Cell viability was determined by a trypan blue dye exclusion assay 4 and 8 hours after 

treatment. Treated and untreated control cultures were dissociated with trypsin, mixed with 

trypan blue, and total and trypan blue staining cells counted. Thapsigargin demonstrated no 

discernible toxicity during 8 hours of treatment, figure 3.2.1. 
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Figure 3.2.1. Thapsigargin and DMSO had no discernible cytotoxicity effect on Vero cells. 
Thapsigargin and DMSO treated cells were examined by trypan blue dye exclusion assay (The 

experimental procedure used is described in Material and Method Section). 
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3.2.2. Evaluate the efficiency of the primers designed to quantify the transcription of genes 

representative the three arms of UPR (IRE1, PERK, ATF6) 

One approach for examining the UPR is to quantify the transcription of the genes 

representative of the three arms of UPR (IRE1, PERK and ATF6) by qRT-PCR. To do this, I 

designed sets of primers for transcripts of spliced XbpI, HERP, CHOP and BIP. Thapsigargin 

was used for experimental induction of UPR. Vero and ONS-76 cells were treated with 

thapsigargin for 4 hours and harvested for their RNA expression. All four primers detected the 

transcripts for UPR genes and these genes expression were increased in thapsigargin-treated Vero 

and ONS-76 cells, figure 3.2.2.  
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Figure 3.2.2 Expression of UPR- regulated genes in Vero and ONS cells in response to 

thapsigargin. Vero and ONS-76 cells were treated with 100nM thapsigargin for four hours. Cells 

were harvested and evaluated for their UPR transcripts expression with qRT-PCR. All four genes 

transcripts demonstrated an increase in expression in response to thapsigargin treatment. Error 

bars represent standard deviation. 
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3.2.3. HSV-1 induces the UPR   

Many viruses have been observed to selectively regulate the UPR during replication, in 

particular, they induce arms of UPR which lead to expression of chaperones while preventing 

PERK and its suppression of global protein synthesis (see literature review). To investigate the 

regulation of the three arms of the UPR (IRE1, PERK and ATF6) during HSV-1 infection, Xbp-

1, and its target gene HERP as well as CHOP and BIP the downstream target genes of PERK and 

ATF6 respectively were examined. RNA and protein samples of infected cells were collected at 

different time points post infection and analyzed for transcriptional and translation regulation of 

UPR components and their target genes by qRT-PCR and Western blotting. As can be observed 

in figure 3.2.3. a & b, the mRNA levels of Xbp-1 spliced and its downstream target gene, HERP 

were elevated in the HSV-1 infected cells in both Vero and ONS-76 cells. Xbp-1 mRNA splicing 

is associated with activation of the IRE1 pathway of UPR (reviewed in 23, 29). These results 

indicate that HSV-1 infection activates the IRE1 pathway in both cells leading to the splicing of 

Xbp-1 mRNA.  While the transcript for CHOP, the gene down-stream from PERK was 

upregulated in ONS-76 cells, it was down regulated in Vero cells. BIP the ATF6 target gene only 

showed 3.45 fold change at 1 hour after infection only in ONS-76 cells but surprisingly showed 

no upregulation in either Vero or ONS-76 cells at 4 and 8 hours after infection. Altogether the 

results confirm that HSV-1 selectively activates the UPR pathways.  
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Figure 3.2.3. HSV-1 selectively activates the three arms of the UPR. Vero and ONS-76 were 

mock-infected or infected with HSV-1, cells harvested at different time points following infection 

and analyzed for UPR components and the transcripts of their target genes spliced Xbp-1, HERP, 

CHOP and BIP by qRT-PCR. (a & b) the mRNA levels for spliced Xbp-1 and its downstream 

target gene, HERP were elevated in the HSV-1 infected Vero and ONS-76 cells. (c) Transcripts 

for CHOP, the PERK downstream target were upregulated in ONS-76 cells, but down regulated 

in Vero cells. (d) BIP, the ATF6 target gene,not only showed no upregulation in either Vero or 

ONS-76 cells at 4 and 8 hours after infection but also showed down regulation in Vero cells at 8 

hours. 
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3.2.4. HSV-1 infection does not inhibit eIF2 phosphorylation in Vero cells 

 The protein kinase PERK facilitates the translational control arm of the UPR by 

phosphorylation of eIF2, a translation initiation factor that combines with GTP to escort 

initiator methionine-tRNA(i)(Met) to the ribosomal machinery during the initiation of protein 

synthesis. Phosphorylation of the alpha subunit of eIF2 on serine-51 inhibits global translation 

initiation, which reduces the influx of nascent polypeptides into the overloaded ER. eIF2 

phosphorylation also facilitates the preferential translation of stress-related mRNAs, such as 

ATF4 which in turn activates the transcription of UPR genes. To investigate PERK-mediated 

signaling during HSV-1 infection further, I also analyzed the activation of eIF2, which is 

phosphorylated by PERK following activation. Surprisingly, Western blot detected 38 kDa band 

suggesting eIF2 phosphorylation (p-eIF2) at 3 hours after infection and continued to 22 hours 

in HSV-1 infected Vero cells. In contrast, no eIF2 phosphorylation was detected in ONS cells. 

Total eIF2 were detected in at the same density in all samples in both cells. 300nM thapsigargin 

treated cells was used as a positive control, figure 3.2.4.     
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Figure 3.2.4. HSV-1 infection does not inhibit eIF2 phosphorylation in Vero cells but 

inhibits it in ONS-76 cells. Vero and ONS-76 cells were mock-infected or infected with HSV-1 

at an MOI of 5 pfu per cell. At different time points post infection cells were harvested and 

lysates were prepared. Samples were then electrophoretically separated on 10 and 12% (p- 

eIF2) polyacrylamide gels and transferred to nitrocellulose membranes. The membranes were 

sequentially probed with antibodies against p- eIF2, total eIF2 and GAPDH (loading control). 

300nM thapsigargin treated cells was used as positive control.     

 



 

 47 

3.2.5. HSV-1 can selectively inactivate components of the UPR 

After my observation on HSV-1 selective activation of the UPR and down regulation of 

CHOP and BIP (PERK and ATF6 target genes) in Vero cells, I examined if HSV-1 could 

selectively inactivate the activated components of the UPR. For this experiment, thapsigargin was 

used as a UPR inducer and DMSO as solvent control in Vero and ONS-76 cells, figure 3.2.5,a. 

Consistent with the previous experiment, induction of the UPR by thapsigargin treatment resulted 

in an increase in transcripts for spliced Xbp1, CHOP, HERP and BIP, figure 3.2.5, c. Next, I 

infected Vero and ONS-76 with HSV-1 after 4 hours treatment with thapsigargin. I harvested the 

cells 4 hours after infection for RNA transcripts, figure 3.2.5, b. HSV-1 infection caused a 

decrease in the expression of the UPR components. Expression of spliced Xbp1 and its target 

gene HERP in Vero cells dropped from 16.49 and 27.42 fold change to 7.98 and 2.86 fold 

change. Similarly, in ONS-76 cells, HSV-1 infection resulted in dramatic decrease in spliced 

Xbp1 and HERP expression and their fold change dropped from 52 to 1.37 and 0.92. HSV-1 

infection caused a decrease in expression of CHOP and BIP and their fold change plunged to 

below zero in both cells, figure 3.2.5, d. 
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Figure 3.2.5. HSV-1 can selectively inactivate components of the UPR. (a and b) Experimental design. (a) 

Design for results in fig 3.2.5.c. Vero and ONS-76 cells were treated either with ER stressor, thapsigargin or 

DMSO (solvent control), after four hours media was replaced with fresh media without thapsigargin or 

DMSO, cells were harvested 4 hours later. (b) Design for results in fig 3.2.5.d. Media of thapsigargin treated 

cells after four hours were removed and cells were mock- infected or infected with HSV-1 and cells were 

harvested four hours after infection (c). Activation of UPR components by thapsigargin treatment for four 

hours. Expression of Xbp-1 S, HERP, CHOP and BIP were evaluated by qRT PCR. (d) Suppression of 

activated UPR components by HSV-1, Four hours after HSV-1 infection of thapsigargin treated cells, cells 

were harvested. qRT PCR was used to analyze the RNA expression of the samples. 
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3.2.6. Transient expression of ICP0 or VP16 does not increase Xbp1 spliced, CHOP and 

BIP expression 

Previous experiments showed that not only could HSV-1 virus selectively activate the 

UPR but that it could also selectively inactivate activated components of the UPR. HSV-1 could 

specifically downregulate the CHOP and BIP in both cells. I was therefore interested in 

identifying the viral protein responsible for regulating the UPR.  Since my experiments showed 

that HSV influences the UPR component early in infection, I examined the role of the IE gene 

ICP0 and VP16, transactivating tegument protein, which is enter the cells as component of virion. 

Vero cells were transfected with plasmids CI-110, pRG50 that encode ICP0 and VP16 

respectively or pcDNA3 (negative control) DNAs. Transfected cells were treated with either 

100nM thapsigargin (ER stressor) or DMSO (solvent control) and then were harvested for RNA 

isolation. To evaluate the efficiency of transfection, Vero cells grown on cover slips, were 

transfected with the same plasmid DNAs and then were examined for fluorescence using 

antibody against ICP0 and VP16. Fluorescent staining showed about 7% of cells were positive 

for expression of ICP0 and VP16. When compared with the cells transfected with the control 

plasmid pcDNA3, in cells transfected to express ICP0 or VP16 there was no changes in UPR 

components (Xbp1 spliced, CHOP and BIP) activation, figure 3.2.6.  
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Figure 3.2.6. ICP0 and VP16 transient expression did not activate UPR components, Xbp-1 

S, CHOP and BIP. Vero cells in six well tissue culture plate or on coverslips were transfected 

with 500ng DNA of CI-110 or pRG50 (plasmids expressing ICP0 and VP16) or pcDNA3 (empty 

plasmid as negative control). (a & b) immunofluorescent staining (explained in materials and 

methods) was used to evaluate the transfection efficiency and the expression of ICP0 and VP16. 

Trasfected cells in six well plates were treated with either 100nM thapsigargin (ER stressor) or 

DMSO (solvent control) for 4 hours and harvested with lysing buffer of RNeasy plus mini kit. 

Expression of Xbp-1 S, CHOP and BIP were evaluated by qRT PCR.  

 



 

 51 

Chapter 4:  Discussion   

 

 Viruses often induce host cells to produce large amount of viral proteins, many of which 

undergo glycosylation and other modifications in the ER, causing stress to the ER and 

consequently UPR activation. As a consequence of ER stress and induction of the UPR, protein 

synthesis is attenuated and under severe ER stress conditions the cell undergoes apoptosis; 

neither condition would be beneficial to the viral infection. However, other aspects of the UPR, 

such as the synthesis of chaperones, may be beneficial to the viral infection. Due to dependency 

of viruses on the host protein synthesis machinery, many viruses have evolved different 

mechanisms to selectively activate portion of the UPR that alleviate ER stress but counter the 

attenuation of the protein synthesis brought about by the activation of PERK.  

 In the present study, I tested the hypothesis that HSV-1 would selectively activate the IRE1 

arm of the UPR, which leads to the synthesis of chaperones while suppressing PERK, which 

leads to the cessation of protein synthesis and ATF4-mediated apoptosis. I found that in Vero 

cells, in which infection with HSV-1 leads to a productive infection, the IRE1 induced transcripts 

for spliced Xbp1 and HERP were up-regulated while CHOP and Bip, regulated by PERK and 

ATF6, respectively, were down-regulated. In neuronal ONS-76 cells, while Bip transcripts were 

suppressed PERK transcripts were not. I also showed that HSV-1 could actively suppress both 

PERK and ATF6 activation induced by the drug thapsigargin. 

 Since viral events following HSV-1 infection of ONS-76 cells had never been described I 

compared the kinetics of various parameters of HSV-1 infection such as viral DNA synthesis, 

infectious virus production and, the mRNA transcription and protein synthesis of IE, E, and L 

genes during 24 hours after infection in Vero and human neuronal cells (ONS-76).  In contrast to 

Vero cells, which are permissive for HSV-1 infection, ONS-76 cell seemed to be semi permissive 

to HSV-1 infection with limited viral DNA synthesis and infectious virus production.  While in 

Vero cells the maximum level of viral DNA was 3.5 x10
6 

genome equivalent per culture at 24h 

post infection, in ONS-76 the maximum level of viral DNA was 1.5x10
6 

genome equivalent at 9 

hours and it dropped afterward to almost 3x10
5
 genome equivalent of DNA by 24 hpi, figure 

3.1.1, b. The pattern of DNA synthesis in both cell types is consistent with the literature that 
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DNA replication occurs following expression of E genes, which is almost 5 to 7 hours post 

infection (reviewed in 66) 

The pattern of infectious virus production in two cells was similar to the DNA synthesis. 

Infectious virus could not be detected in either Vero and ONS-76 cells in the first 4h after 

infection, but after 4h the rate of infectious viral replication increased and reached a peak of 

about 3.2x10
7 

pfu per culture at 12h in Vero cells. In contrast, the rate of increase in ONS-76 

cells was slower and more modest with 2.8x10
6 

pfu per cell at 12 h. The higher level of viral 

replication and DNA synthesis in epithelial Vero cells was indicative of the permissive nature of 

Vero cells for the virus replication, and the limitation of DNA synthesis and viral replication in 

neuronal ONS-76 cells suggests that ONS-76 is semi permissive to HSV- 1 infection.  

The kinetics of transcript and protein accumulation of representative viral genes for each 

temporal class (IE, E and L) in HSV-1 infected ONS-76 and Vero cells were also monitored. In 

Vero cells, the expression of viral genes at both the RNA (Figure 3.1.2) and protein (Figure 

3.1.5) levels was consistent with the published literature (reviewed in 66, 82). Accumulation of 

ICP0 (IE) RNA and protein preceded TK (E), VP16 (L) and VP5 (L) expression. In contrast, in 

ONS-76 cells the transcripts from all temporal classes reached maximum levels at the time of IE 

expression in Vero cells. Furthermore, while TK and VP5 proteins were undetectable, VP16 

protein could be detected as early as 5 hours after infection (9 hpi in Vero cells). Early expression 

of VP16 in ONS-76 cells might be related to the possible requirement for early VP16 expression 

during reactivation from latency in neurons (74).  

Newly synthesized VP16, presumably induced by cellular transcription factors, has been 

shown to initiate reactivation from latency (76). I examined whether the expression of VP16 

required viral IE gene products, as it does in permissive epithelial cells or whether the expression 

of VP16 induced by cellular factors independent of viral regulatory proteins. Although VP16 

gene expression reached maximal levels at early hours of infection in ONS-76 cells, 

cyclohexamide treatment in HSV-infected cells prevented VP16 expression in ONS-76 cells, 

indicating that VP16 gene expression required prior protein synthesis in infected cells. This 

implies that either, like epithelial cells, VP16 expression required viral IE proteins, or it was 

dependent on cellular proteins made after infection.  

Following HSV-1 infection, the transcript levels of spliced Xbp-1 and its downstream 

target gene, HERP were elevated in Vero and ONS-76 cells. Xbp-1 mRNA splicing is associated 
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with activation of IRE1 pathway of UPR (reviewed in 23, 29). These results indicate that HSV-1 

infection activates the IRE1 pathway in both cells leading to the splicing of Xbp-1 RNA. Spliced 

Xbp-1 activates the expression of the UPR related genes involved in protein folding, protein 

entry to the ER, as well as genes encoding proteins involved in UPR mediated protein 

degradation, such as EDEM (ER degradation-enhancing -mannosidase-like protein) and HERP, 

which lead to degradation of the unfolded proteins and reduction of the stress on the ER and 

consequently a more desirable environment for HSV-1 replication and virus survival. Lack of 

correlation among the levels of Xbp-1 spliced and HERP could be related to the other 

mechanisms involved in regulating HERP gene expression. 

While CHOP, the PERK downstream gene transcript, was upregulated in ONS-76 cells, it 

was down regulated in Vero cells. CHOP is an apoptosis regulator and causes downregulation of 

the anti-apoptotic mitochondrial protein Bcl-2 (reviewed in 17) and finally death of infected cells, 

which is not beneficial to the virus. By inhibiting PERK activation, the virus might promote the 

survival of infected cells and more efficient viral replication in Vero cells. CHOP upregulation in 

ONS-76 cells might be due to the neuronal origin of these cells. Similar observations were made 

in West Nile virus infected neuroblastoma cells where induction of the proapoptotic protein 

CHOP leads to apoptosis and neuronal damage in neuroblastoma cells (59).  

 Another aspect of PERK activation is eIF2 phosphorylation, which causes protein 

synthesis attenuation. For this reason viruses such as HCMV (33), HCV (75) and adenovirus (37) 

have evolved mechanisms to prevent the accumulation of  phosphorylated eIF2 and promote 

their protein synthesis. Surprisingly, I detected eIF2 phosphorylation (p-eIF2 38 kDa band) in 

Vero cells at 3 hours after infection and this continued up to 22 hours post infection. In contrast, 

no eIF2 phosphorylation was detected in ONS cells. Lack of eIF2 phosphorylation fits with 

the CHOP upregulation, which was observed in HSV-1, infected ONS-76 cells. Numerous genes 

have been identified as down stream targets of CHOP, one of which is GADD34 (81). GADD34 

has been shown to recruit PP1 to dephosphorylate eIF2 (61). 

eIF2α is also phosphorylated by protein kinase R (PKR) which is activated by double-

stranded RNA (dsRNA), ER stress, or amino acid deprivation, which often occurs during virus 

infection (25). Some viruses have evolved mechanisms to circumvent the resulting attenuation of 

translation, for instance a study by Wylie et al. has shown that HSV-2 antagonizes eIF2 

phosphorylation
 
through the action of the PKR antagonist ICP34.5, which redirects protein 
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phosphatase
 
1 (PP1) to dephosphorylate eIF2 during infection (84). The difference between my 

results in Vero cells and those in the literature may be related to the differences in HSV-1 virus 

and the cells used in the experiments. 

Surprisingly, BIP, the ATF6 target gene showed no upregulation in either Vero or ONS-

76 cells at 4 and 8 hours after infection. Since ATF6 pathway has an important role in increasing 

the ER chaperone capacity, quality control and ERAD, I expected to see an increase and not a 

decrease in its expression following HSV-1. This unexpected downregulation of BIP may be 

explained by the study which was done by Mao et al. (57); they demonstrated that the effect of 

HSV-1 on BIP expression is dependent  on the strain of virus used. Cells infected with strain 

KOS showed no increase in BIP expression.  

Altogether these results confirm that HSV-1 selectively activates the UPR pathways.  

I investigated the affect of HSV-1 infection on the UPR activated in cells by thapsigargin. 

HSV-1 infection inactivated UPR components in Vero and ONS-76 cells, figure 3.2.5,a. 

Consistent with the previous experiment, HSV-1 infection resulted in a decrease in the expression 

of spliced Xbp1 transcripts and its target gene HERP in Vero cells and ONS-76 cells. Expression 

of CHOP and BIP in both cells were downregulated, figure 3.2.5, d. 

Since my experiments showed that HSV influences the UPR early in infection, I 

examined the role of the IE gene, ICP0 and VP16 (a transactivating tegument protein) which is 

transported to infected cells as a component of virion. Comparing with pcDNA3, transient 

expression of ICP0 and VP16 in transfected Vero cells had almost no effect on UPR components 

(Xbp1 spliced, CHOP and BIP activation, figure 3.2.6. This suggests that these viral genes may 

not have a prominent role in regulating the UPR arms. An alternative explanation may be that, 

relatively few cells were transfected leading to the masking of the effects of the proteins by 

untransfected cells. Immunofluorescent analysis of the transfected cells indicated that only 

approximately 7% of cells expressed the viral proteins.  

The goal of this study was to examine whether HSV-1 modulates the three arms of the 

UPR in epithelial (Vero) and neuronal (ONS-76) cells, the two cell types that represent the main 

sites for HSV productive replication and latency respectively. However, my results with ONS-76 

cells should be interpreted with some caution. While these cells are believed to be neuronal in 

origin they may be very different from sensory neurons, the actual site of HSV latency. In 

contrast to differentiated sensory neurons ONS-76 cells were derived from undifferentiated 
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cerebellar neurons and grow actively. Another goal of this thesis was to determine the role of 

viral factors such as ICP0 and VP16 in UPR during HSV-1 infection. In my effort to determine if 

ICP0 and VP16 were responsible for suppressing aspects of the UPR I examined cells transfected 

with plasmids expressing the proteins. I found that neither plasmid had an effect on the genes 

representing the three arms of the UPR. This may be due to inefficient transfection of the cells by 

the plasmids. Therefore, to determine if the proteins were responsible for regulating the UPR I 

would compare the UPR in cells infected with wild-type HSV-1 and either ICP0 or VP16 viral 

mutants. The mutant V422 contains a deletion in the activation domain of VP16 but has a normal 

gene for ICP0 while mutant N212 has a defective gene for ICP0 but has normal VP16. Neither 

protein is required for inducing viral gene expression in u2os cells. Using viral mutants would 

allow me to infect all cells in a culture. The inability of either mutant to suppress components of 

the UPR in u2os cells would identify the protein as being responsible for the ability of HSV-1 to 

regulate the UPR. 
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