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ABSTRACTS 

 

Coronary Artery Bypass Grafting (CABG) is an effective and invasive cardiac 

surgery to salvage blocked coronary artery. Cardiopulmonary bypass (CPB) is usually 

applied to support circulation during temporary cardiac arrest. Studies have demonstrated 

that cardiac injury, inflammation, and oxidative stress could be induced during CABG 

with CPB. We conducted two studies to investigate the release of cardiac biochemical 

markers and inflammatory response as well as to compare the effect of different coating 

biomaterial of CPB on the induction of inflammation and oxidative stress during CPB. 

We investigated the release patterns and the serum levels of cardiac markers as well as 

inflammatory markers in patients undergoing elective CABG at different time points after 

initiation of CPB. In this study, we demonstrated that cardiac markers such as creatine 

kinase isoenzyme MB (CK-MB), and cardiac troponin I (cTnI) and inflammatory 

markers such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and high 

sensitivity C-reactive protein (hsCRP) were highly elevated after CPB. Moreover, we 

confirmed that cTnI is still a better biochemical marker for cardiac injury than others 

following CABG with CPB. Other nonspecific but highly sensitive markers such as 

lactate dehydrogenase (LDH), lactate, TNF-α, IL-6, and hsCRP could be potential 

surrogate markers for evaluation of cardiac injury following CPB.  

Based on these findings, we conducted a further investigation to demonstrate our 

hypothesis that different biocompatible materials used in CPB may affect the 

inflammation and oxidative stress differently. Biocompatible materials are thinly coated 

on CPB tubes to provide similar environment like endothelial cells during cardiac surgery. 

There are several biocompatible materials available in the market. Each of them has 

unique characteristics. Inflammatory response is one of the body’s fundamental defense 

mechanisms against foreign invaders. However, inappropriate or excessive response can 

lead to harmful, potentially life-threatening consequences due to severe inflammatory 

tissue destruction. CPB-induced inflammatory response can be one of the factors, which 

can affect surgical outcomes. Depending on the presence of different biocompatible 

materials in CPB circuits, the degree of immunoreactions can be varied. 
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In this study, we analyzed hsCRP, an acute phase protein, and tau protein, a 

marker of neurocognitive deficiency. Furthermore we analyzed inflammatory cytokines 

including TNF-α, IL-6, IL-10, and interferon-gamma (IFN-γ) to evaluate the levels of 

inflammation. Serum levels of oxidized nitric oxide as a marker of oxidative stress were 

also assessed. We demonstrated that different biocompatible material has different 

impacts on inflammation and oxidative stress. In the aspect of anti-inflammation, 

heparin-coated biocompatible material is better than others whereas surface-modifying 

additives biocompatible material is worse than others. Overall, different coating 

biomaterial of CPB results in various inflammatory response. In terms of oxidative stress, 

we did not observe significant difference between different biomaterial-coated CPB.  
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1. REVIEW OF LITERATURE 

Coronary Artery Bypass Graft (CABG) surgery is an invasive but effective 

measure to salvage human beings with coronary artery disease. In most of the cases, the 

patient heart theoretically has to be stopped during cardiac surgery to provide better 

access and handling for surgeons. Patient’s blood has to be bypassed through heart-lung 

machine that is substituted for a patient’s heart. Therefore, Cardiopulmonary bypass 

(CPB) is usually applied to support circulation during temporary cardiac arrest. CPB, 

heart-lung machine, becomes the most required equipment for the heart surgery.  

During the coronary artery bypass grafting surgery (CABG), arteries or veins 

from elsewhere in the patient's body are grafted to the coronary arteries to bypass and 

improve the blood supply to the coronary circulation. In this procedure, CPB provides 

better access to the patient heart for the surgeon because it acts as a patient heart and lung 

during surgical operation. However, even though CABG and CPB are inevitably needed 

to salvage blocked coronary artery, cardiac injury occurs through CABG with CPB. 

There are many studies, which show that cardiac injury, inflammation, and oxidative 

stress could be induced during CABG with CPB.  

CPB (Figure 1), as it was called heart-lung machine, is one of the most important 

technical innovations in healthcare history. Even though it was invented and has been 

developing for over 50 years with the strong support from scientific and engineering 

research, we are still facing the unavoidable systemic responses to CPB such as 

inflammatory reaction and complement activation. Furthermore, after one of popular 

natural anticoagulants, heparin, was discovered and commercially produced, these two 

innovations provided better treatment of cardiovascular disease for patients (Edmunds et 

al. 2004). After commercial production of heparin was introduced, study of the blood-

heparin interaction received much attention from researchers to reduce the unwanted 

outcomes after surgery. Therefore, a couple of alternatives, so called biocompatible 

materials, for the heparin were developed and optimized for clinical use. Nowadays there 

are several biocompatible materials available and used in CPB circuits, and their effects 

have not been fully assessed and compared.  
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Basically blood cells are destined to meet unfamiliar environment while they are 

circulating through CPB. No matter how similar biocompatible materials we develop, 

normally blood cells only touch endothelial cells, a monolayer cell line of the entire 

cardiovascular system, and have not met and experienced those artificial materials before. 

When blood cells meet any other foreign surface such as CPB, both thrombotic and an 

inflammatory response are triggered (Edmunds et al. 2004). The thrombotic (clotting) 

response is attenuated by the use of heparin, but heparin does not completely prevent 

thrombosis, complement activation, or inflammation which is occurred mainly by 

neutrophils and monocytes (Paparella et al. 2004). This response produces a wide range 

of cytokines, cell-signaling proteins, and vasoactive substances that circulate and disrupt 

interstitial fluid balance and homeostasis. Both thrombotic and inflammatory responses 

produce thousands of micro-embolic particles consisting of fibrin fragments, plates, and 

others. Microparticles obstruct arterioles in some cases, and finally can damage organs 

and tissues (Rubens et al. 2004, Paparella et al. 2004, Landis 2007).  

Most patients are recovered from the surgery after using of CPB, but a few show 

subtle neurocognitive deficiency or worsened kidney function (Paparella et al. 2004). 

Compared to the control group that does not use any biocompatible material in CPB 

circuit, other groups coating biocompatible materials in CPB circuit show there a fewer 

patients suffering from neurocognitive deficiency (Ramlawi et al. 2006a). Our research 

group has been conducting the research to evaluate the neurocognitive defect of different 

biocompatible materials. Our data has proved that there are some differences between 

different biocompatible materials in terms of inflammatory response and neurocognitive 

deficiency in patients undergoing CABG with CPB.  

Many factors affect the intensity of the thrombotic and inflammatory responses. 

The intensity varies depending on the biomaterials used. The problem is that every 

biocompatible material, which is resistant to thrombotic response triggers clotting and 

even inflammation (Landis 2007). Basically, we can suppress the thrombotic and 

inflammatory responses for short periods by using biocompatible materials and 

manipulating the biochemical and hematological characteristics of blood. However, 

because of the delicate balance between coagulation and fibrinolysis pathways in human 
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body, we have to run risks of bleeding or infectious complications. Complete suppression 

of thrombin generation by new and better anticoagulants and the administration of 

specific inhibitors of complement, neutrophil and monocyte activation could prevent or 

reduce complications caused by contact between blood and the biocompatible material 

surface (Paparella et al. 2004, Landis 2007).  

Much effort has been made to improve the biocompatible materials used in CPB 

circuits and several kinds of commercial biomaterials are available in market. Preliminary 

evaluation of each product was conducted by each manufacturer. However, a 

comprehensive evaluation and comparison for the currently available 5 different 

biocompatible materials has not been done. A simple diagram of typical cardiopulmonary 

bypass circuit is provided in Figure 1. Depending on the surgical circumstances, much 

device is attached to CPB.  

 

Figure 1. A typical cardiopulmonary bypass circuit (DiNardo et al. Anesthesia 2008). 
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1. 1. Heart attack and cardiac surgery 

A heart attack that is also knows as a myocardial infarction (MI) is the death of 

heart muscle, which results from ischemia (lack of blood flow), the sudden blockage of a 

coronary artery by a blood clot (Kumar et al. 2005). Coronary arteries are blood vessels 

that supply the heart muscle with blood and oxygen. The predominant underlying cause 

of coronary heart disease is atherosclerosis, which can result in myocardial infarction. 

Clinical interventions, which are used to re-supply blood to ischemic myocardium (heart 

muscle), include thrombolysis (remove the thrombus, blood clot), coronary angioplasty, 

and coronary bypass surgery (Verma et al. 2002). Among those clinical interventions, 

coronary bypass surgery has been widely used. Coronary artery bypass grafting surgery, 

so called CABG, is a surgical procedure performed to resume blood supply and reduce 

the risk of death from coronary artery disease. Arteries or veins from elsewhere in the 

patient's body are grafted to the coronary arteries to bypass atherosclerotic narrowings 

and improve the blood supply to the coronary circulation supplying the myocardium 

(Kumar et al. 2005). However, reperfusion of the ischemic heart can induce myocardial 

injury. This injury becomes worsened during open-heart surgery when the myocardium is 

exposed more stressful conditions (Verma et al. 2004). Myocardial reperfusion injury 

activates neutrophils, triggering an inflammatory response which results in generation of 

reactive oxygen species (ROS), cytokine release, and complement activation that make 

cardiac injury more exacerbated (Franke et al. 2005).  

 

1.2. Cardiac injury and cardiac markers during CPB 

Cardiac markers are the intracellular macromolecules that leak out of fatally 

injured myocardial cells through damaged cell membranes which can be detected in the 

blood. These molecules include myoglobin, cardiac troponins I and T (cTnI, cTnT), 

creatine kinase (CK), lactate dehydrogenase, and many others (Kumar et al. 2005). Some 

of the markers have become sensitive indicators of myocardial damage. From a 

biochemical perspective, the diagnosis of myocardial injury is established when blood 

levels of sensitive and specific biomarkers, such as cardiac troponin and the MB fraction 
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of creatine kinase (CK-MB), are increased in the clinical setting of acute ischemia 

(Kumar et al. 2005). The preferred biomarkers for myocardial damage are cardiac-

specific proteins, particularly cTnI and cTnT. Troponins are the proteins that regulate 

calcium-mediated contraction of cardiac and skeletal muscle. These markers have nearly 

complete tissue specificity and high sensitivity. cTnI and cTnT are not normally 

detectable in the circulation, but after acute MI, levels of both cardiac troponins rise at 4 

to 6 hours and peak at 48 hours. Troponin levels remain elevated for 7 to 10 days after 

the acute event (Kumar et al. 2005, McCance et al. 2006). 

Creatine kinase (CK) is an enzyme that is highly concentrated in brain, 

myocardium, and skeletal muscle and is composed of two dimmers, designated “M” and 

“B”. Total CK activity is sensitive but not specific, as CK is elevated in other conditions 

such as skeletal muscle injury. The isoenzyme CK-MM is derived predominantly from 

skeletal muscle and heart; CK-BB from brain, lung and many other tissues; and CK-MB 

principally from myocardium, although variable amounts of the MB form are also present 

in skeletal muscle. Formerly the “gold standard”, cardiac creatine kinase (CK-MB) 

remains the best alternative to troponin measurement. CK-MB activity begins to rise 

within 4 to 6 hours of onset of MI. peaks at about 24 hours, and returns to normal within 

approximately 72 hours (Kumar et al. 2005, McCance et al. 2006). Although the 

diagnostic sensitivities of cardiac troponin and CK-MB measurements are similar in the 

early stages of MI, cardiac troponins possess higher specificity than CK-MB. Elevated 

troponin levels remain for approximately 10 days after acute MI. The peak of either 

troponin or CK-MB is accelerated in patients who have had reperfusion, owing to 

washing out of the enzyme from the necrotic tissue (Kumar et al. 2005). In addition to 

CK-MB and cTn, C-reactive protein (CRP) may serve as a marker to predict the risk of 

myocardial infarct in patients with atherosclerosis. Using highly sensitive methods, serum 

CRP, levels of more than 3 mg/L are associated with the highest risk of cardiovascular 

disease, while levels of 1 to 3 mg/L are associated with moderate risk (Ridker et al. 2003, 

Levy et al. 2003, Denesh et al. 2004, Franke et al. 2005, Deblier et al. 2006). 

Furthermore, specific cardiac enzymes, creatine kinase isoenzymes MB (CK-MB), 

and cardiac troponins I (cTnI) and T (cTnT) are generally elevated in the serum of 
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patients who have undergone cardiac surgery. Their postoperative values are frequently 

above the levels normally used to define MI (Taggart 2000). The release of cTn in the 

setting of open heart surgery not only reflects MI but may also result from myocardial 

cell injury attributable to incomplete cardioprotection, reperfusion injury, unavoidable 

surgical trauma, and direct current defibrillation. The association between increased 

postoperative cTn concentrations and increased postoperative mortality and morbidity 

has been well established in recent trials (Greenson et al. 2001, Fellahi et al. 2003). 

These data indicate that cTn concentration can serve as a valuable marker for the 

diagnosis of postoperative MI or myocardial injury in CABG patients (Jacquet et al. 

1998). Although cTn has been recommended as the gold standard for the diagnosis of 

acute MI, it is still considered to be a necrotic marker for myocardial injury and is not a 

preferred marker for the diagnosis of reperfusion injury or re-infarction. Yet there are 

limited data available to assess the use of cTn as a marker of myocardial ischemia after 

open heart surgery (Etievent et al. 1995, Vermes et al. 2000). The significance of cardiac 

enzyme levels in the postoperative phase is considered uncertain as several factors (poor 

myocardial protection, early graft failure, intracoronary embolization, incomplete 

revascularization, and surgical trauma) may contribute to their release (Paparella et al. 

2005). Injury or trauma during CABG triggers an acute phase reaction (Teoh et al. 1995). 

Inflammatory sensitive plasma protein such as alpha 1-antitrypsin (AAT), ceruloplasmin, 

and high sensitivity C-reactive protein (hsCRP) have been demonstrated to be elevated in 

acute coronary syndrome (ACS) (Engstrom et al. 2002, Engstrom et al. 2004, Lind et al. 

2004).  

 

1.3. Inflammatory response with CPB 

Inflammation is one of healing process in our body. Unlike adaptive immunity, 

inflammatory response does not need much specificity. Instead it needs quick response to 

remove the invaders or healing the injury. Therefore, inflammation process could be in 

the innate immunity category (McCance et al. 2006). CPB is a technique that temporarily 

takes over the function of the heart and lungs during surgery, maintaining the circulation 

of blood and the oxygen content of the body (Gravlee et al. 2000). The CPB pump itself 
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is often referred to as a heart-lung machine. During the cardiac surgery with CPB, the 

inflammatory response is very important to our body for healing, not harming. However, 

this inflammatory response may trigger a significant systemic inflammatory response 

when using CPB during open-heart surgery (Gravlee et al. 2000, Rubens et al. 2004) 

(Figure 2). The CPB-induced inflammatory response could further generate myocardial 

injury and induce myocardial dysfunction because cardiac surgery without CPB appears 

to be associated with reduced myocardial injury (Suleiman et al. 2007).  

It has been proposed that surgery without CPB would significantly reduce the 

stress response associated with open-heart surgery (Akila et al. 2007). Now it is widely 

accepted that beating heart surgery that is performed without CPB attenuates cytokine 

and stress responses (Yamaguchi et al. 2005, Hoel et al. 2007). However, since the 

inflammatory response is only reduced and not eliminated, it is likely to continue to 

influence cardiac function and clinical outcome (Quaniers et al. 2006). The main source 

is surgical trauma, which will continue to trigger a stress response which is mediated by 

the release of various cytokines and hormones. Therefore, not employing CPB does not 

necessarily mean the absence of inflammatory response (Quaniers et al. 2006).  

A more effective way of counteracting the inflammatory response and oxidative 

stress may be the omission of CPB. This idea provides the reintroduction of off-pump 

coronary artery bypass grafting (OPCAB) which does not use CPB during surgery, but it 

was rapidly off staged by on-pump CABG soon after the invention of the CPB owing to 

the attraction of operating on a still heart in a bloodless field (Raja et al. 2007). Moreover, 

even though OPCAG reduces inflammation and oxidative stress, but cannot prevent those 

responses (Akila et al. 2007). The main cause of inflammatory and oxidative stress in 

OPCAB is surgical trauma (Prondzinsky et al. 2005, Berg et al. 2006). Figure 2 shows an 

overview of the inflammatory response when using CPB during cardiac surgery.  
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Figure 2. An overview of the inflammatory response to CPB (Kozik et al. 2006). 

 

1.3.1. Cellular components of blood involved in inflammation during CPB 

 

1.3.1.1. Erythrocytes 

Erythrocytes (Red blood cells) are mainly damaged during CPB by shear stress 

(Gravlee et al. 2000). Erythrocytes deformability is reduced by CPB because of 

mechanical damage to erythrocytes. This has the effect of inducing changes to ionic 

pumps at the cell surface, which leads to abnormal accumulation of intracellular cations 

(Gravlee et al. 2000). Another damaging factor to erythrocytes is membrane attack 

complex (MAC), which is produced by activation of complement (Gravlee et al. 2000). 

Therefore, the life span of erythrocytes is reduced. After erythrocytes are dead, the 

hemoglobin is released into blood stream. This free hemoglobin may damage tissue 

function by increasing plasma pressure and viscosity. Also cytotoxic free radicals are 

released from auto-oxidation of hemoglobin because hemoglobin could be a sink of nitric 
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oxide. So the anemia could be seen frequently after cardiac surgery (Gravlee et al. 2000, 

Pacher et al. 2007)  

 

1.3.1.2. Neutrophils 

The cellular immune system is crucial to the inflammatory response during and 

following cardiac surgery (Laffey et al. 2002, Rinder et al. 2006, Warren et al. 2007). 

Leukocyte counts decrease in response to hemodilution during CPB and increase slightly 

after operation (Gravlee et al. 2000). Only a few neutrophils attach to synthetic surface. 

Nevertheless, neutrophils are strongly activated during CPB mainly by C5a which is 

produced by the complement activation. Other agonists include IL-1β, TNF-α, IL-8, C5b-

9, heparin, histamine, hypochlorous acid, and products of arachidonate metabolism such 

as thromboxane A2 (Menasche et al. 2003, Warren et al. 2007). Neutrophil activation 

releases potent proteolytic and cytotoxic substances such as lysozyme, myeloperoxidase, 

elastase, collagenase, integrins, histaminases, heparanase, complement activator, and 

membrane-associated NADPH (nicotinamide adenine dinucleotide) phosphate oxidase 

from specific granules (Birregaard et al. 1997, Warren et al. 2007). Activated neutrophils 

also produce cytotoxic reactive oxygen and nitrogen intermediates such as superoxide 

anion, hydrogen peroxide, hydroxyl radicals, hypocholorous acid and peroxynitrite 

(Babior 2000, Warren et al. 2007). Finally neutrophils produce arachidonate metabolites, 

prostaglandins, leukotriences, and plate-activating factor. All of these vasoactive and 

cytotoxic substances are produced and released into the extracellular environment 

(Asimakopoulos et al. 2002, Menasche et al. 2003, Chen et al. 2004, Gorbet et al. 2004, 

Warren et al. 2007).  

 

1.3.1.3. Platelets 

The platelet numbers are counted during cardiac surgery because the platelet 

count could accounts for possibility of severe bleeding during and after surgery (Gravlee 

et al. 2000). The number of platelets decreased right after CPB but increased slightly later 
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on (Gravlee et al. 2000, Hundelshausen et al. 2007). The platelets are used for 

coagulation process to protect our body from bleeding during cardiac surgery. The 

platelets are activated during CPB by a variety of agonists such as thrombin, platelet 

activating factor (PAF), serotonin, and thromboxane A2 (Blockmans et al. 1995). 

Internally generated thromboxane A2 is known as a strong activator of platelets. Also 

platelets have several proteaseactivated receptors to most of these agonists, which has an 

important role in adhesion and thrombus formation (Menasche et al. 2003, Landis et al. 

2007). Platelets contribute to the inflammatory response by synthesis and release of 

serotonin from dense granules, IL-1β and IL-8 from alpha granules (Blockmans et al. 

1995, Hundelshausen et al. 2007). These platelet-secreted cytokines may be involved in 

the inflammatory response to CPB because the platelets are strongly activated in both 

wound and perfusion circuit (Menasche et al. 2003). Circulating neutrophils and 

monocytes constitutively express P-selectin glycoprotein ligand-1 (PSGL-1), which 

interacts with aggregated platelets via P-selectin expressed on activated platelets (Yang et 

al. 1999, Hundelshausen et al. 2007). Platelets aggregate using platelet GPIIb/IIIa 

receptors attached to symmetrical fibrinogen molecules to form bridges between platelets. 

During CPB, platelets aggregate with each other and to monocytes and neutrophils to 

trigger and accelerate the inflammatory response (Landis et al. 2001, Gorbet et al. 2004, 

Colman et al. 2006, Edmunds et al. 2006, Hundelshausen et al. 2007).  

 

1.3.1.4. Endothelial cells 

Basically, the endothelial activation is a process of healing mechanisms in our 

body. Through this mechanism, our body tries to remove the stressful factors and get 

back to normal physiological condition (Schmid et al. 2006). The vascular endothelium is 

involved in a variety of physiological and pathological processes and also it is involved in 

many of the biological events, which affect the perioperative course of the cardiac 

surgery (Chen et al. 2004, Schmid et al. 2006). Therefore, few biocompatible materials 

use the mimicry of vascular endothelium to reduce the inflammatory response by 

providing real microenvironments of vascular endothelium to blood cells. The 

endothelium controls vascular tone and permeability, regulates coagulation and 
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thrombosis, and direct accessing of leukocytes into inflammatory area through the 

expression of surface proteins and secretion of soluble mediators (Laffey et al. 2002, 

Schmid et al. 2006). The inflammatory response to CPB is characterized by activation of 

endothelial cells and endothelium dysfunction. Endothelial cells are activated during CPB 

by a variety of agonists such as thrombin, C5a and cytokines IL-1β and TNF-α 

(Menasche et al. 2003, Schmid et al. 2006). Also shear stress produced by the pumps in 

CPB can trigger endothelium activation (Gravlee et al. 2000). IL-1β and TNF-α induce 

the early expression of P-selectin and the later synthesis and expression of E-selectin, 

which are involved in the initial stages of neutrophil and monocyte adhesion to 

endothelium (Menasche et al. 2003, Schmid et al. 2006). These two cytokines also 

induce expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell 

adhesion molecule-1 (VCAM-1), which firmly bind neutrophils and monocytes to the 

endothelial cells and initiate leukocyte trafficking to the extravascular space (Eikomo et 

al. 2004, Rankin 2004, Schmid et al. 2006). Moreover, IL-1β and TNF-α induce 

endothelial cell production of the chemotactic proteins such as IL-8 and monocyte 

chemoattractant protein-1 (MCP-1), and induce production of prostacyclin (PGI2) by the 

cyclooxygenase pathway and nitric oxide by nitric oxide synthase (NOS). These two 

vasodilators reduce shear stress and increase vascular permeability and enhance 

leukocyte adhesion and transmigration (Vane et al. 1990, Menasche et al. 2003, Hooper 

2004, Schmid et al. 2006). In addition to NO and PGI2, endothelial cells produce the 

vasoconstrictor endothelin-1 (ET-1) and inactivate other vasoactive mediators such as 

histamine and bradykinin (Vane et al. 1990). Furthermore, IL-1β and TNF-α stimulate 

endothelial cell production of pro-inflammatory cytokines such as IL-1, IL-6, IL-8, MCP-

1, and PAF (Hooper 2004, Edmunds et al. 2006, Schmid et al. 2006).  
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1.3.2. Humoral components of blood involved in inflammation during CPB 

 

1.3.2.1. Complement 

Complement was discovered many years ago as a heat-labile component of 

normal plasma initiating the opsonization of bacteria by antibodies and allows antibodies 

to kill some bacteria (Janeway et al. 2001). This activity was said to ‘complement’ the 

antibacterial activity of antibody. However, complement can also be activated early in 

infection in the absence of antibodies. Therefore, nowadays, it is accepted that 

complement first evolved as part of the innate immune system, where it still plays an 

important role (Janeway et al. 2001). The complement system consists of more than 30 

plasma proteins that interact to produce powerful vasoactive anaphylatoxins (C3a, C4a, 

and C5a), opsonin (C3b), and the terminal complement complex (TCC), C5b-9, which 

acts as a membrane attack complex (MAC) (Walport 2001). C5a and C5b-9 play major 

roles in promoting neutrophil-endothelial cell interactions through upregulating specific 

adhesion molecules. C5b-9 may also activate platelets and promote platelet-monocyte 

aggregates (Walport 2001). These complement proteins contribute to neutrophil loss from 

blood circulation by adhesion to surface-bound platelets and more importantly 

endothelial cells. The interaction between complement proteins and neutrophils 

contributes to postoperative organ damage after CPB (Walport 2001, Colman et al. 2006, 

Edmunds et al. 2006, Edmunds et al. 2008).  

Complement is activated by three pathways, but only the classical and alternative 

pathways are involved in CPB, although a role for the manose-lectin pathway has not 

been excluded (Levy et al. 2003). Direct contact between heparinized blood and the 

synthetic surfaces of the CPB activates the contact plasma proteins and the classical 

complement pathway (Goor et al. 2004, Gorbet et al. 2004, McCance et al. 2006, Nilsson 

et al. 2007). Then the generation of C3b activates the alternative pathway. During CPB 

complement is largely activated by the alternative pathways (Goor et al. 2004, Gorbet et 

al. 2004, Nilsson et al. 2007). There are three phases for complement activation during 

CPB and cardiac surgery: during blood contact with non-endothelial cell surfaces; after 

protamine administration and formation of the protamine-heparin complex; and after 
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reperfusion of the ischemic heart. CPB and myocardial reperfusion activates complement 

by both classical and alternative pathways and the protamine-heparin complex activates 

complement by the classical pathway. Other agonists activating the classical pathway 

during CPB include endotoxin, apoptotic cells, and C-reactive protein (Menasche et al. 

2003, Colman et al. 2006, Edmunds et al. 2006, Edmunds et al. 2008).  

 

1.3.2.2. Coagulation 

The coagulation system is a group of plasma proteins finally forming a fibrinous 

mesh at an injured or inflamed site (McCance et al. 2006). Generally, the coagulation 

system is known as the function of stopping bleeding at injured site. However the 

coagulation system also prevents the spread of infection to adjacent tissues, keeps foreign 

bodies at the site of inflammatory cell activity, provides a framework for future healing. 

The main substance in this fibrinous mesh is an insoluble protein such as fibrin that is the 

end product of the coagulation pathways (Gorbet et al. 2004, Nilsson et al. 2007). 

Furthermore, the coagulation pathways can be activated by many substances which are 

released during tissue destruction and infection, including collagen, proteinases, 

kallikrein, plasmin and bacterial products, endotoxins (Gorbet et al. 2004, Colman et al. 

2006, Edmunds et al. 2006, Nilsson et al. 2007, Edmunds et al. 2008).  

Like complement cascade, the coagulation system is a cascade reaction and can 

be activated through different pathways: extrinsic pathway and intrinsic pathway. 

Intrinsic pathway is commonly considered that high molecular weight kininogen 

(HMWK), prekallikrein and Factor XII require contact with negatively charged surfaces 

(Landis et al. 2007). However, since the occurrence of negatively charged surfaces in 

vivo is limited, the importance of the intrinsic pathway to normal blood coagulation 

remains speculative. Collagen present in the subendothelium after vessel injury could be 

the surface required for this reaction (Gorbet et al. 2004). On the other hand, the extrinsic 

pathway is initiated by tissue factor (TF) (Somer et al. 2002b), which is expressed on 

damaged cell surfaces at the site of vascular injury. Plasma Factor VII (FVII) binds to 

this TF on the cell membranes and activates another inactive precursor factor. The 
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extrinsic pathway and intrinsic pathway are not independent of each other, and also this 

coagulation pathway interacts with complement pathway through generated thrombin 

(Gorbet et al. 2004, Colman et al. 2006, Edmunds et al. 2006, Nilsson et al. 2007).  

 

1.3.3. Release of cytokines during CPB 

Cytokines are soluble proteins and polypeptides that act as paracrine messengers 

of the immune system and are produced by a large variety of cell types. These cells 

include activated monocytes, tissue macrophages, lymphocytes, and endothelial cells 

(Laffey et al. 2002). Individual cytokines may exert either pro-inflammatory or anti-

inflammatory effects. Cytokines are essential for immunologic and physiologic 

homeostasis, and they are produced in response to a variety of physiological and 

pathological stimuli (Miller et al. 1997). IL-1β and TNF-α are early response cytokines 

that are promptly produced at the site of infection or injury by resident macrophages 

(Asimakopoulos et al. 2001). These cytokines then stimulate surrounding stromal and 

parenchymal cells to produce more IL-1β and TNF-α and chemokines, particularly IL-8 

and MCP-1, which are powerful chemoattractants for neutrophils and macrophages, 

respectively (Janeway et al. 2001). Together with IL-6, the cytokine that regulates 

production of acute phase proteins such as C-reactive protein and α2-macroglobulin by 

the liver. The five cytokines (IL-1β, TNF-α, IL-6, IL-8, and MCP-1) are the major pro-

inflammatory mediators which are involved in the acute inflammatory response to CPB 

(Holmes et al. 2002, Levy et al. 2003, Maharaj et al. 2004, Deblier et al. 2006, Landis et 

al. 2007). The major anti-inflammatory cytokine involved during CPB is IL-10. IL-10 

inhibits synthesis of pro-inflammatory cytokines and induces production of IL-1 receptor 

antagonist IL-1ra, which downgrades the response to IL-1 (Holmes et al. 2002, Levy et al. 

2003, Maharaj et al. 2004, Deblier et al. 2006, Landis et al. 2007). Pro-inflammatory 

cytokines increase during and after cardiac surgery using CPB with peak concentrations 

usually 12 to 24 hours after CPB ends (Menasche et al. 2003). Generally, the levels of 

cytokines in serum during CPB differ greatly in timing, within and between studies. 

Many factors  can affect the production  of cytokine during CPB, for instance, the 

differences in the duration of CPB, perfusion temperatures, perfusion equipment, and 
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aortic cross-clamp times, differences in methods of myocardial protection, priming 

solution, anesthesia, and intravascular drugs (Menasche et al. 2003). The 

ischemic/reperfused heart is a major source of inflammatory cytokines and reactive 

oxidants (Schulze et al. 2000). In addition to inflammatory cytokines, IFN-α is thought to 

possess neuroregulatory functions including behavior, temperature regulation, and control 

of feeding patterns (Wang et al. 2000). There is no article dealing with the serum levels 

of interferon (IFN) during CPB. It is more popular in the field of neuroscience. 

Administration of IFN-α to humans results in an array of central nervous system (CNS) 

side effects. Recipients of IFN-α therapy typically report reduced alertness, and after 

several weeks of treatment, a syndrome of subjective memory loss has been identified 

(Valentine et al. 1999). In 2002 Wilson et al. proposed that the mechanisms of IFN-α-

induced neurotoxicity may include cytokine, neurotransmitter, or neuroendocrine effects 

or a combination of thereof. Also they proposed that some of these CNS effects may 

occur via induction of IL-1, IFN-γ, and TNF-α, all of which are known to produce potent 

CNS effects  

 

1.3.4. Oxidative stress during CPB 

Oxidative stress means the loss of the balance between oxidants and antioxidants. 

It occurs in cells when the cell’s natural antioxidant defense is overwhelmed by the 

generation of reactive oxygen species (ROS). Oxygen derived free radicals such as 

superoxide anion (O2
•) and hydroxyl radical (•OH) and related non-radical such as 

hydrogen peroxide (H2O2) compounds are referred to as ROS. In our human body, ROS 

are generated mainly by phagocytic cells such as monocytes, macropahages, neutrophils 

and eosinophils through NADPH oxidase (Berg et al. 2006, Deblier et al. 2006). These 

ROS are very important to remove the foreign invaders in our body. During the cardiac 

surgery with CPB, the artificial surface in CPB stimulates blood cells such as neutrophils 

and monocytes to produce ROS and other inflammatory agents. Under normal 

physiological condition, these ROS can be neutralized by antioxidants such as SOD and 

catalase (Berg et al. 2006, Deblier et al. 2006). Moreover, whether the CPB is used or not 
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during cardiac surgery, surgical trauma itself causes oxidative stress by endothelial 

dysfunction and blood cell activation (Prondzinsky et al. 2005, Berg et al. 2006).  

In this study, we analyzed nitric oxide as a maker of oxidative stress during CPB 

in the patients undergoing cardiac surgery. Nitric oxide is one of gaseous transmitters 

together with carbon monoxide and hydrogen sulfide. In the cardiovascular system, nitric 

oxide is known as one of strong muscle cell relaxants through decreasing the intracellular 

calcium concentration. Even though nitric oxide is very important and beneficial gas to 

human body, the higher level of nitric oxide damages our body through inflammatory 

response (Hayashi et al. 2001, Ricciardolo et al. 2004, Deblier et al. 2006, Pacher et al. 

2007). Usually, nitric oxide is very easy to penetrate the cell membrane and highly 

reactive free radical gas. In the absence of other nitric oxide scavenger, the major 

breakdown product of nitric oxide in aqueous solutions is NOx including nitrite (NO2) 

and nitrate (NO3) (Ricciardolo et al. 2004, Pacher et al. 2007). However, in the 

inflammatory condition where there is higher level of free radicals such as superoxide 

anion (O2
•) that is produced by phagocytic cells NADPH oxidase, nitric oxide formed 

peroxynitrite (ONOO•) that is one of radicals (Ricciardolo et al. 2004, Pacher et al. 2007). 

This peroxynitrite may decompose to form nitrite (NO2) and hydroxyl radical (•OH) from 

peroxynitrous acid (ONOOH) or produce nitrate (NO3) (Ricciardolo et al. 2004, Willcox 

et al. 2004, Pacher et al. 2007). Therefore, high level of NOx is an indication of increased 

oxidative stress.  

 

1.3.5. Other important factors associated with inflammation during CPB 

CPB depends on two basic requirements: adequate blood volume to maintain 

appropriate blood flow and adequate gas flow to maintain appropriate gas exchange 

(Gravlee el al. 2000). Blood flow affects the growth of thrombi and the deposition of 

fibrin. Since patient’s heart does not strongly beat during cardiac surgery, the pumps are 

needed to suction blood from patient’s heart and supply blood to the body. Blood flow 

determines the rates of transport of cells and proteins to the artificial surface, but it also 

changes the level of receptor expression on platelets and leukocytes (Gorbet et al. 2004). 
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As platelets are an important part of the thrombus, the effect of shear stress by blood flow 

on platelets has been studied extensively. Higher shear stress results in higher platelet 

deposition and lower fibrin deposition, while at lower shear the inverse (Turitto et al. 

1980, Hanson et al. 1998). Moreover, this shear stress activates blood cells such as 

neutrophils and monocytes as well as endothelial cells leading to inflammatory response 

(DiNardo et al. 2008).  

Another important factor is air leading to microemboli. Gaseous and particle 

microemboli are a major cause for neuropsychological dysfunction after CPB procedure 

in pediatric and adult cardiac patients and a correlation between the number of 

intravascular microemboli detected during CPB and the incidence of postoperative brain 

injury, patient mortality and morbidity have been demonstrated (Borger et al. 2001, 

Stump 2005, Whitaker et al. 2006). Even though the air occurs through surgical 

procedure and anesthetic procedure, most of the air leading to emboli originates from the 

pump in CPB (Gravlee el al. 2000). In the very recent study with porcine model 

conducted by Bierbach and colleagues, it was demonstrated that emboli formation rather 

than inflammatory mediators are responsible for increased cerebral water content after 

conventional myocardial revascularization. In this study they demonstrated most of the 

emboli were generated after initiation of CPB, and determined and compared the cerebral 

water content (cerebral edema) and inflammatory mediators such as TNF-α, IL-6, and IL-

8 between on-pump CABG and off-pump CABG (Bierbach et al. 2008)  

 

1. 4. Development of biocompatible materials used in CPB  

One of the most attractive areas in biomaterial research is the study of blood-

biomaterial interactions (Figure 3). However, depending on the presence or absence of 

biocompatible materials in CPB circuits, there are very unique and clear distinctions 

between groups in terms of the level of inflammation. Therefore, in spite of much 

research and investigation for decades, we still do not fully understand the 

pathophysiological aspects of these interactions. In other words, the limitations, which 

are related to blood reactions at the biomaterial interface such as cell activation, 
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inflammation and thrombosis still exist and remain uncontrollable. We have seen and 

faced unwanted effects from using either biomaterials or biomaterials and 

cardiopulmonary bypass at the same time even though we may perfectly mimic the 

microenvironmental conditions in blood stream into the biomaterial coatings.  

CPB, acts as heart-lung machine during cardiac surgery, provides fresh oxygen 

and removes the carbon dioxide from the patient’s blood during operation time (Gravlee 

et al. 2000). In the earliest CPB device, both in vitro and in vivo circuits were prepared 

with stainless steel and glass. Polymers were first introduced for creating disposable 

circuits so that cleaning and re-sterilizing was not necessary. The biocompatibility was 

not much considered at that time (Rubens et al. 2002). To connect between patient’s heart 

and CPB machine, we need a long and flexible tube that is made of polyvinyl chloride 

(PVC). To make this tube flexible, it needs adding plasticizer, di-2-ethyl-hexyl-phthalate 

(DEHP), but the problem is that this plasticizer causes strong inflammatory response. 

Gourlay demonstrated the expression level of CD11b on neutrophils decreased when they 

removed DEHP from the surface of the PVC. Also, this finding is consistent with 

previous studies. (Tsuji et al. 1984, Lakshmi et al. 1998, Gourlay 2001). 

Now there are several kinds of biocompatible coating circuits available in market. 

Each biocompatible material has its unique design and effects during CPB (Gourlay et al. 

2001, Rubens 2002, Gunaydin et al. 2004, Belway et al. 2006, Jordan et al. 2007). The 

most popular one with much research is the heparin coated. Basically, heparin is a co-

factor which is involved in coagulation pathway. Heparin binds to anti-thrombin III and 

protects thrombin from being activated. Like intact endothelial cell surface, heparin-

coated circuit has much negative charge on biomaterial surface, which is believed to 

inhibit thrombosis (Gourlay et al. 2001, Rubens 2002, Belway et al. 2006, Jordan et al. 

2007). Even though there are three primary ways in which heparin may be bound to 

polymer surface, nowadays the heparin-immobilized technique becomes popular. In this 

technique, heparin is immobilized permanently upon the biomaterial surface (Rubens 

2002). Since Larm et al., first described the preparation of covalently bound surface 

heparin in 1983, heparin-coated circuit has been developed so far. Polyethylene oxide 

(PEO) was utilized as a spacer group as its hydrophilicity and its dynamic motion would 
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further inhibit platelet interactions with this surface (Rubens 2002, Belway et al. 2006, 

Jordan et al. 2007). In this technology group, Trillium™ (Medtronics, Minneapolis, MN) 

and Bioline™ (Jostra, Germany) are the examples. Another approach is a surface-

modifying additive (SMA). Based on this technology, biomaterial has both polar and 

non-polar micro-domains on its surface (Gunaydin et al. 2004). Basically this coating 

material inhibits protein contact activation, and X coating™ (Terumo, Tokyo, Japan) is 

one of commercial product in this group. The concept of this biocompatible material 

involves creating localized alternating hydrophobic and hydrophilic microdomains on the 

blood-contacting surface. Surfaces are coated with poly (2-methoxyehtylacrylate), which 

has hydrophobic polyethylene backbone, and its residue has mild hydrophilicity with no 

chemical functional groups such as –OH or –NH2. Therefore, the outer side of the PMEA 

molecule becomes inactive chemically, and the artificial surface could not interact with 

blood cells easily. Also a competitive interaction whereby one microdomain inhibits the 

effect of the other is created (Rubens 2002, Belway et al. 2006, Jordan et al. 2007). 

Another novel approach that has been introduced recently for CPB is the designing 

biomaterials that mimic the non-thrombogenic nature of cardiovascular endothelium. The 

chosen substrate biomaterial is coated with a derivative of phosphorylcholine, which is 

the major lipid head group component presenting on the outer surface of biological cell 

membrane (Rubens 2002). In this group, we evaluated Memsys™ (Sorin Biomedica) in 

our study. Several studies have been conducted to evaluate each product feature in 

hemostasis but comprehensive comparison of these biomaterials is lacking (Tsai et al. 

1994, Spijker et al. 1997, Gu et al. 1998, Rubens et al. 1999a, Rubens et al. 1999b, 

Wimmer et al. 1999, Somer et al. 2000, Hsu et al. 2001, Heyer et al. 2002, Somer et al. 

2002a, Feyrer  et al. 2003, Palatianos et al. 2003, Ikuta et al. 2004, Ueyama et al. 2004, 

Vroege et al. 2004, Vroege et al. 2005, Kutay et al. 2006, Kutay et al. 2006, Pappalardo 

et al. 2006). 
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Figure 3. Overview of blood-material interactions (Gorbet et al. 2004).  

 

2. OBJECTIVES  

 

2.1. Release of cardiac markers during CABG with CPB 

Determination of cardiac markers can assess cardiac injury induced by CPB 

during CABG. However, the markers and their release patterns are not well defined. 

There is little information on the release patterns and serum levels of cardiac biochemical, 

inflammatory, and oxidative stress markers during and after CABG with CPB. This study 

was aimed to assess the release and timing of cardiac biochemical and inflammatory 

markers in patients undergoing elective CABG with CPB.  
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2.2. Comparison of biocompatible materials used in CPB during CABG 

Immune responses and inflammation can be induced by CPB machine which is 

coated with different biocompatible materials. However, there has been no study 

conducted to compare the effects of different biocompatibilities on initiation of 

inflammation at different time points. The aim of this study is to compare the impact of 

different biocompatible material coating circuit used in CPB on inflammatory response 

and oxidative stress in patients undergoing cardiac surgery 

 

3. MATERIALS AND METHODS 

 

3. 1. SUBJECTS 

 

3.1.1 Patients population 

 

3.1.1.1. Release of cardiac markers during CABG with CPB 

This is a prospective cohort study that was approved by Research Ethics Boards 

of the University of Saskatchewan and Saskatoon Health Region. Patients scheduled to 

undergo elective CABG surgery with CPB at Royal University Hospital were recruited 

between February and June 2006. Written informed consents were obtained from all 

study participants. Exclusion criteria were: onset of acute MI within 2 weeks; non-

elective cardiac surgery; CABG associated with any other cardiac surgical procedures 

such as valve repair or replacement, congestive heart failure (ejection fraction < 30%), 

and off-pump/beating heart CABG. Patients with a chronic inflammatory disease on 

steroid therapy or those were hemodynamically unstable were also excluded from this 

study. Hemodynamic instability was defined as the need to use intra-aortic balloon pump 

to keep the systolic blood pressure to at least 90 mmHg in the presence of symptoms of 
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low cardiac output. Patients with an intra-aortic balloon pump were not included in this 

study. Forty patients undergoing elective CABG were included in this study. Under the 

current experimental conditions and determinations, the sample size of 40 subjects was 

sufficient to detect a significant difference of 0.9 at a two-sided significance level of 0.05 

and at a power of 0.8. 

 

3.1.1.2. Comparison of biocompatible materials used in CPB during CABG 

One hundred and seventy six subjects who were scheduled to undergo elective 

CABG with CPB in the Department of Cardiac Surgery at the Royal University Hospital 

were recruited for the study from August 2007 to April 2008. All subjects were classified 

into six different groups according to the types of biocompatible materials used in CPB: 

Trillium, Phosphocholine, Bioline, Hyaluronan, PMEA (Polymethoxyethyl acrylate), and 

the control group. The number of subjects assigned into each biocompatible group is as 

follows: 33 for Trillium coating, 31 for Bioline coating, 32 for Phosphocholine coating, 

32 for PMEA coating, 10 for Hyaluroan coating, and 38 for the control without CPB 

coating. For Tau protein measurement, all 176 subjects were included. For inflammation 

assessment, 78 of the 176 subjects were selected for this study. Patients were randomly 

selected and grouped. The exact number of each group used for this thesis, 16 for 

Trillium coating, 16 for Bioline coating, 16 for Phosphocholine coating, 16 for PMEA 

coating and 14 for the control group. We did collect 234 serum samples from above 

mentioned 78 patients. We excluded Hyaluroan coating group in this study because of 

severe problem such as severe decrease of platelet counts when using this coating. This 

study was approved by Biomedical Research Ethics Board (Bio-REB) of the University 

of Saskatchewan. Written informed consents were obtained from all subjects undergoing 

cardiac surgery. All subjects selected are greater than 50 years of age with the usual 

morbidities associated with cardiac disease (increased cholesterol, hypertension, smoking, 

diabetes, previous myocardial infarctions). Subjects who are being admitted as emergent 

or who suffer from a chronic inflammatory disease (rheumatoid arthritis, systemic lupus 

arythrematosus, Chrohn’s disease, Wegener’s granulomatosis, sarcoidosis, osteoarthritis, 

chronic obstructive pulmonary disease, ulcerative colitis, psoriasis and multiple sclerosis) 

were excluded from this study. Also, subjects who have suffered a stroke or who have a 
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narrowing of the carotid arteries which might decreases blood flow to the brain were 

excluded.  

 

3.1.2. Surgical technique 

The operations were performed by two cardiac surgeons. Under anesthesia, CPB 

was instituted with an ascending aortic cannula and a two-stage right-atrial cannula. 

Internal mammary artery and saphenous vein grafts were used in all patients. Distal and 

proximal graft anastomeses were performed using a single cross-clamp technique. 

Myocardial protection was achieved using antegrade and/or retrograde cold blood 

cardioplegia. Mild systemic hypothermia with a core temperature of 33°C was 

maintained during CPB.  

 

3.1.3. Samples collection 

 

3.1.3.1. Release of cardiac markers during CABG with CPB 

Blood samples were collected from each patient before the induction (T0), 1 hour 

after starting of CPB (T1), 6 hours after starting of CPB (T2), 12 hours after starting of 

CPB (T3), and 24 hours after starting of CPB (T4). Blood samples were collected into 

tubes containing no anticoagulant and serum was prepared. For lactate measurement, 

blood samples were collected into sodium fluoride/potassium oxalate tube and 

immediately cooled to 4°C. After preparation, specimens were frozen and stored at -80°C 

if not immediately analyzed.  

 

3.1.3.2. Comparison of biocompatible materials used in CPB during CABG 

Blood is drawn from each patient at three different time points: before CPB (T1), 

6 hours after surgery (T2), and 72 hours after surgery (T3). The first two samples of 

blood were drawn from an existing intravenous (IV) site and the third blood sample was 
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drawn from either an indwelling IV site or a vein. All blood samples were collected into 

tubes containing no anticoagulant and then serum was prepared after centrifugation. All 

serum samples were transferred into small cryogenic vials, and frozen, and then stored at 

-80 °C if not analyzed immediately.  

 

3.2. METHODS 

 

3.2.1 Biochemical analyses 

 

3.2.1.1. Release of cardiac markers during CABG with CPB 

Cardiac biochemical markers including total CK, CK-MB, lactate, and LDH were 

run on Beckman Synchron LX20 (Beckman, Palo Alto, CA). The upper limit of normal 

(ULN) for CK was 200 U/L, CK-MB 15 U/L, lactate 2.4 mmol/L, and LDH 200 U/L, 

respectively. Serum cTnI was measured using microparticle enzyme immunoassay 

(MEIA) technology on Abbott AxSYM (Abbott Laboratories, Abbott Park, IL) (ULN < 

0.4 µg/L). Serum CK-MB mass was determined by MEIA on Abbott AxSYM (Abbott 

Laboratories, Abbott Park, IL) and the ULN was set at 6 µg/L. Serum hsCRP levels were 

determined using a near infrared particle immunoassay on Beckman Synchron LX20 

(Beckman, Palo Alto, CA). The ULN for hsCRP was 7.0 mg/L. To evaluate the 

inflammatory response, serum concentrations of the proinflammatory cytokines TNF-α 

and IL-6 were measured by enzyme-linked immunosorbent assay (ELISA) using 

commercial ELISA kits (R&D Systems, Minneapolis, MN). The ULN for Both TNF-α 

and IL-6 was 5.0 ng/L. The AAT and ceruloplasmin were quantitated by nephelometry 

on Array (Beckman, Palo Alto, CA). The ULN for AAT and ceruloplasmin were 2.00 g/L 

and 630 mg/L, respectively. During CPB, moderate hemodilution with hematocrit level 

maintained between 20% and 25%. The results were not corrected for hemodilution, 

since we intended to document in vivo levels as organ function and the occurrence of 

post-operative complications appear to depend first and foremost on actual effective 
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concentrations. The UNL (upper limit of normal) unit of different analytes was used to 

compare the release patterns upon time on the same graph. Also the data of TNF-α and 

IL-6 were expressed as nanogram per liter (ng/L), not default unit such as picogram per 

milliliter (pg/ml), to show with hsCRP on the same graph.  

 

3.2.1.2. Comparison of biocompatible materials used in CPB during CABG 

Serum hsCRP levels were determined using a near infrared particle immunoassay 

on Beckman Synchron LX20 (Beckman, Palo Alto, CA). Tau protein was assayed by 

ELISA (BioSource International, Camarillo, CA). Serum samples were assayed for TNF-

α, IL-6, IL-10, IFN-γ (R & D systems, Minneapolis, MN) and Nitric oxide (Cayman 

Chemical Company, Ann Arbor, MI) in duplicate using a commercially available ELISA 

kits. All tests were performed by following the each ELISA kit’s manual and got the 

results by using 4-parameter-algorithm method when getting an internal standard curve 

fit. The data of oxidized nitric oxide was obtained with linear regression curve fit, not 4-

parameter-algorthm method. The analytical detection limits of those items are 12 pg/ml 

for tau, 1.6 pg/ml for TNF-α, 0.7 pg/ml for IL-6, 3.9 pg/ml for IL-10, 8.0 pg/ml for IFN-γ, 

and 2.5 umol/l for nitric oxide.  

 

3.2.2. Statistical analysis 

In the study of evaluating the release of cardiac markers during CABG with CPB, 

results are expressed as mean ± SEM or as folds over each individual analyte ULN 

(Upper limit of normal). Data were analyzed using analysis of variance (ANOVA) and 

the difference between the means of the two time points was compared using Student’s t 

test. Another study, comparison of biocompatible materials used in CPB during CABG, 

results are expressed as mean ± SD (standard deviation). Then data were analyzed using 

analysis of variance (ANOVA) and the difference between the means of the three time 

points was compared using Student’s t test. We compared p values between 

biocompatible material groups at the same time points in addition to the different time 

points of each group. In both studies, statistical significance was considered when p value 

was less than 0.05.  
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4. RESULTS AND DISCUSSION 

 

4.1. Patient characteristics 

 

4.1.1. Release of cardiac markers during CABG with CPB 

A total of 40 patients underwent elective CABG with the use of CPB were 

included in this study. The patients ranged in age from 30-75 (60 ± 8) years with body 

mass index 26.8 ± 3.4 kg/m2. Of these, 33 were male and 7 were female. Ten (25%) 

patients had diabetes mellitus, 32 (80%) with hypertension history, and 34 (85%) on 

statins therapy. Fasting plasma glucose levels were 6.5 ± 0.7 mol/L. None of the patients 

in this study group had renal failure or chronic obstructive pulmonary disease. The 

number of diseased vessels ranged from 1-5 with 1-4 grafts completed at the time of 

surgery. Complete revascularization was achieved in all patients. Duration of CPB and 

aortic cross-clamping was 90 ± 20 and 80 ± 20 minutes, respectively. Eight patients 

required defibrillation after removal of the aortic cross-clamp. One patient required re-

exploration for bleeding after operation. There was no death or major complication in 

these patients. The length of stay in intensive care unit and hospital was 18 hours and 4 

days, respectively. All baseline levels of cardiac markers such as cTnI, CK, CK-MB were 

within the normal reference intervals. None of them had suffered an acute MI prior to 

CABG with CPB.  

 

4.1.2. Comparison of biocompatible materials used in CPB during CABG 

There were 176 patients enrolled in this prospective study. Six groups were 

formed. Serum hsCRP and tau protein were analyzed from 176 patients’ samples while 

only 78 patients in five groups excluding hyaluronan group were included for analyses of 

TNF-α, IL-6, IL-10, IFN-γ, and oxidized nitric oxide. There were no statistically 

significant differences between the groups with respect to age, gender, body mass index, 

and operative data such as total bypass time and amounts of heparin and protamine dose. 

Furthermore, the risk factors such as previous myocardial infarction, hypertension, 
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hypercholesterolemia, diabetes mellitus, smoking as well as medication history were 

analyzed by chi-square test. Trillum and Bioline groups showed significant differences in 

hypercholesterolemia and Phosphocholine group showed a significant difference in 

diabetes mellitus compared to the control group (p < 0.05 Table 1).  

Table 1. Patients' demographic and operative data (mean ± standard deviation) 

 

Variable 

 

Control       

(14) 

Trillium     

(16) 

Bioline        

(16) 

Phosphocholine     

(16) 

PMEA        

(16) 

Age (years) 63.6 ± 8.8 63.4 ± 9.4 67.9 ± 9.7 63.4 ± 11.0 64.7 ± 10.5 

Male/female (number) 8/6 12/4 11/5 12/4 11/5 

Body mass index (BMI) 30.3 ± 4.4 30.9 ± 5.0 30.5 ± 6.2 30.4 ± 3.9 31.1 ± 3.7 

Previous MI  7/14 (50.0%) 8/16 (50.0%) 9/16 (56.3%) 9/16 (56.3%) 8/16 (50.0%) 

Hypertension 10/14 (71.4%) 14/16 (87.5%) 14/16 (87.5%) 11/16 (68.8%) 11/16 (68.8%) 

Hypercholesterolemia 6/14 (42.9%) 13/16 (81.3%)* 14/16 (87.5%)* 9/16 (56.3%) 11/16 (68.8%) 

Diabetes mellitus 3/14 (21.4%) 6/16 (37.5%) 6/16 (37.5%) 12/16 (75.0%)* 1/16 (6.3%) 

Smoking 3/14 (21.4%) 5/16 (31.3%) 4/16 (25.0%) 3/16 (18.8%) 2/16 (12.5%) 

Acetyl salicylic acid 9/14 (64.3%) 9/16 (56.3%) 13/16 (81.3%) 13/16 (81.3%) 9/16 (56.3%) 

Clopidogrel 2/14 (14.3%) 1/16 (6.3%) 0/16 (0.0%) 3/16 (18.8%) 1/16 (6.3%) 

Total bypass time (min) 110.7 ± 25.6 117.1 ± 39.5 117.9 ± 31.1 104.2 ± 29.3 109.6 ± 36.7 

Aortic cross clamp time (min) 86.9 ± 18.0 94.4 ± 33.1 94.3 ± 24.9 80.6 ± 27.0 85.7 ± 25.2 

Ejection fraction (%) 56.9 ± 11.2 54.3 ± 13.1 58.9 ± 8.4 59.9 ± 8.2 57.1 ± 12.4 

Total heparin dose (IU) 42786 ± 9705 46000 ± 12044 44625 ± 10308 45125 ± 12559 43375 ± 8115 

Total protamine dose (mg) 364 ± 58 370 ± 103 370 ± 99 360 ± 96 363 ± 80 
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4.2. Serum levels of cardiac biochemical, inflammatory, and oxidative stress  

         markers during CABG with CPB 

 Serum levels of cardiac biochemical markers as well as inflammatory markers during 

CABG with CPB were provided in Table 2. All data is expressed as mean ± SEM with 

different time points: T0 (Before induction), T1 (1 hour after CPB), T2 (6 hours after 

CPB), T3 (12 hours after CPB), and T4 (24 hours after CPB). Single asterisk (*) stands 

for p value is less than 0.05 and double asterisks (**) stands for p value is less than 0.01 

versus their corresponding baseline values.  

 

Table 2. Serum levels of cardiac biochemical, inflammatory, and oxidative stress markers  

               after CABG 
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4.2.1. Serum levels of CK, CK-MB, CK-MB mass, and cTnI after CPB 

Serum levels of CK, CK-MB, CK-MB mass, and cTnI increased significantly 

after CPB (Figure 4 and Table 2). Serum CK levels started to increase significantly 6 

hours after initiation of CPB (p < 0.01) and continued to increase until 24 hours after 

CPB (p < 0.01). Serum CK-MB levels increased 1 hour after CPB (p < 0.05) and reached 

the peak 6 hours after CPB (p < 0.01). Serum CK-MB remained elevated until 24 hours 

after CPB (p < 0.05). Serum CK-MB mass was released in a pattern similar to CK-MB. 

Serum CK-MB mass significantly increased 1 hour after CPB (p < 0.05) and reached the 

maximum 6 hours after CPB (p < 0.01). Serum cTnI levels were significantly increased 1 

hour after CPB (p < 0.05) and reached the maximum 12 hours after CPB. Serum cTnI 

levels remained elevated until 24 hours after CPB (p < 0.01). Serum cTnI had the highest 

magnitude of increase compared to other cardiac markers. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Serum levels of CK, CK-MB, CK-MB mass, and cTnI after CPB. 
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4.2.2. Serum levels of lactate and LDH after CPB 

Serum levels of lactate and LDH increased significantly after CPB (Figure 5 and 

Table 2). Serum lactate levels increased significantly 6 hours after CPB (p < 0.01) and 

the elevated levels of lactate remained for over 24 hours after CPB (p < 0.05). Serum 

LDH levels significantly increased 6 hours after CPB (p < 0.01) and reached the 

maximum 12 hours after CPB. Thereafter, the serum levels of LDH gradually declined 

but remained significantly elevated until 24 hours after CPB.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Serum levels of lactate and LDH after CPB. 
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4.2.3. Serum levels of TNF-α, IL-6, and hsCRP after CPB 

Serum levels of TNF-α and IL-6 significantly increased 1 hour and reached the 

peak 6 hours after initiation of CPB (p < 0.01). The release of these markers then 

gradually decreased but remained elevated until 24 hours after initiation of CPB (Figure 6 

and Table 2). Serum levels of hsCRP started to increase at 12 hours after initiation of 

CPB (p < 0.01) and continued to increase 24 hours after CPB (Figure 6 and Table 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Serum levels of TNF-α, IL-6, and hsCRP after CPB. 
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4.2.4. Serum levels of AAT and ceruloplasmin after CPB 

Serum AAT levels decreased 1 hour after CPB and remained at lower levels until 

6 hours after CPB (Figure 7 and Table 2). At 12 hours after CPB, the levels of AAT 

increased comparably to the baseline level and reached significantly higher level than the 

baseline level 24 hours after CPB (p < 0.05). Serum ceruloplasmin levels decreased after 

CPB and reached the baseline level 24 hours after CPB (Figure 7 and Table 2). 

 

 

 

 

 

 

 

 

 

 

Figure 7. Serum levels of AAT and ceruloplasmin after CPB.  
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4.3. Comparison of biocompatible materials used in CPB during CABG 

 

4.3.1. Serum Tau protein presence during CABG with CPB coated with different  

            biomaterials 

Total tau results were expressed as a dichotomous variable such as presence or 

absence of the protein in serum. So the tau protein result is defined as positive if the tau 

protein level is over the cut-off (25 pg/mL). As shown in Table 3, the percentage of the 

presence of tau protein increased after during CPB and then generally decreased 72 hours 

after CPB. Furthermore, after 6 hours after surgery (T2), tau protein was less detected in 

the heparin-coated groups such as Trillium and Bioline compared to other biocompatible 

groups employing new and recent technology such as Phosphocholine, and PMEA groups. 

In contrast, the control group without using biocompatible material in CPB circuit 

showed lowest presence of tau protein in both T2 and T3 stages except T1. Statistical 

analysis of tau protein presence for each group and at the different time points could not 

be applied because tau protein analysis was not quantitative but qualitative.  
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Table 3. Serum Tau protein presence during CABG with CPB coated with different  
                 biomaterials 

Group Time points No. of total patients No. of positive Percentage* 

Control 

T1 38 5 13% 

T2 38 8 21% 

T3 38 6 16% 

Trillium 

T1 33 4 12% 

T2 33 8 24% 

T3 33 5 15% 

Bioline 

T1 31 3 10% 

T2 31 9 29% 

T3 31 6 19% 

Phosphocholine 

T1 32 8 25% 

T2 32 12 38% 

T3 32 7 22% 

PMEA 

T1 32 9 28% 

T2 32 15 47% 

T3 32 11 34% 
 
Abbreviations: T1 (Before CPB), T2 (6 hrs post OP), and T3 (72 hrs post OP). * The percentage means the 
ratio of positive reaction, presence of tau protein, out of total patients in each group at different time points. 
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4.3.2. Serum TNF-α levels during CABG with CPB coated with different  

             biomaterials 

Serum levels of TNF-α gradually increased after initiating CPB and continued to 

increase 72 hours after cardiac surgery in all groups. Depending on the biocompatible 

material and the time after initiation of CPB, the increment of serum TNF-α levels was 

different (Figure 8). As shown in Table 4, the levels of TNF-α in Trillium group were 

significantly increased at different time points (p < 0.05). Serum levels of TNF-α in 

Bioline and Phosphocholine groups significantly increased only 72 hrs after CPB (p < 

0.05). However, there was no statistical significance in comparison of p values of TNF-α 

between groups at different time points.  

 

Table 4. Comparison of TNF-α levels in patients underwent CABG with CPB coated  

                with different biocompatible materials at different time points 

 
TNF-α 
 

T1 (Before CPB) T2 (6 hrs post OP) T3 (72 hrs post OP) 

Control 1.82 ± 4.18 2.40 ± 4.57 2.85 ± 3.55 

Trillium 1.30 ± 2.97 4.04 ± 7.28* 4.48 ± 5.51† 

Bioline 2.05 ± 2.49 2.11 ± 3.10 7.10 ± 7.85†§ 

Phosphocholine 1.45 ± 2.93 1.65 ± 2.42 3.37 ± 1.99†§ 

PMEA 2.34 ± 2.36 3.37 ± 6.98 6.12 ± 8.96 

expressed as mean ± SD; t-Test (tails:two-tailed distribution, type:paired). 
* significant difference between T2 and T1 (p < 0.05). 
† significant difference between T3 and T1 (p < 0.05). 
§ significant difference between T3 and T2 (p < 0.05). 
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Figure 8. Serum TNF-α levels during CABG with CPB coated with different  
                biomaterials. 
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4.3.3. Serum IL-6 levels during CABG with CPB coated with different  

             biomaterials 

Serum levels of IL-6 increased after initiation of CPB and gradually decreased but 

remained elevated after termination of CPB by 72 hours after cardiac surgery. The serum 

levels of IL-6 before the initiation of CPB did not differ significantly among four 

different biocompatible groups as well as the control group (Figure 9). All groups showed 

statistical increases in IL-6 levels at T2 (6 hrs post OP) and T3 (72 hrs post OP) in 

comparison of T1 (Before CPB) (p < 0.01 with exception of p < 0.05 in Trillium group at 

T3 vs. T2) (Table 5). However, there was no statistical significance in comparison of p 

values of IL-6 between groups at different time points.  

 

Table 5. Comparison of IL-6 levels in patients underwent CABG with CPB coated with  

               different biocompatible materials at different time points 

 
IL-6 
 

T1 (Before CPB) T2 (6 hrs post OP) T3 (72hrs post OP) 

Control 1.82 ± 2.46 187.48 ± 133.91** 55.61 ± 32.57††§§ 

Trillium 3.59 ± 7.00 226.97 ± 165.83** 102.87 ± 131.68††§ 

Bioline 4.40 ± 6.80 164.94 ± 84.81** 58.34 ± 28.93††§§ 

Phosphocholine 3.59 ± 4.75 168.39 ± 100.49** 60.77 ± 69.03††§§ 

PMEA 16.37 ± 55.27 206.26 ± 150.66** 61.14 ± 68.77§§ 

expressed as mean ± SD; t-Test (tails:two-tailed distribution, type:paired). 
** significant difference between T2 and T1 (p < 0.01). 
†† significant difference between T3 and T1 (p < 0.01). 
§§ significant difference between T3 and T2 (p < 0.01). 
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Figure 9. Serum IL-6 levels during CABG with CPB coated with different  

                     biomaterials. 
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4.3.4. Serum IL-10 levels during CABG with CPB coated with different  

             biomaterials 

Serum levels of IL-10 increased after initiation of CPB and gradually decreased 

but remained elevated after termination of CPB by 72 hours after cardiac surgery. The 

serum levels of IL-10 before the initiation of CPB did not differ significantly among four 

different biocompatible groups as well as the control group (Figure 10). All groups 

showed statistical increases in IL-10 levels between T2 (6 hrs post OP) and T1 (Before 

CPB) (PMEA: p < 0.05, others: p < 0.01). Serum levels of IL-10 at T3 (72 hrs post OP) 

decreased compared with those at T2 (6 hrs post OP) (p < 0.01) but continued to be 

highly elevated compared to that of T1 (p < 0.01) with exception of PMEA group (Table 

6). Both Trillium and Bioline groups showed significant increases of IL-10 levels when 

compared to the control group at time point T3 (72 hrs post OP) (p < 0.05).   

 

Table 6. Comparison of IL-10 levels in patients underwent CABG with CPB coated with  

               different biocompatible materials at different time points 

 
IL-10 
 

T1 (Before CPB) T2 (6 hrs post OP) T3 (72 hrs post OP) 

Control 11.48 ± 4.14 87.24 ± 67.10** 25.49 ± 8.22††§§ 

Trillium 13.00 ± 4.01 97.98 ± 75.10** 37.30 ± 18.66††§§ 

Bioline 9.15 ± 6.35 61.37 ± 32.72** 25.69 ± 7.77††§§ 

Phosphocholine 10.91 ± 21.56 101.83 ± 75.70** 26.00 ± 13.84††§§ 

PMEA 10.70 ± 6.11 110.12 ± 147.58* 48.41 ± 84.88§§ 

expressed as mean ± SD; t-Test (tails:two-tailed distribution, type:paired). 
* significant difference between T2 and T1 (p < 0.05). 
** significant difference between T2 and T1 (p < 0.01). 
†† significant difference between T3 and T1 (p < 0.01). 
§§ significant difference between T3 and T2 (p < 0.01). 
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Figure 10. Serum IL-10 levels during CABG with CPB coated with different  

                      biomaterials. 
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4.3.5. Serum IFN-γ levels during CABG with CPB coated with different  

             biomaterials  

No statistical differences were found in the level of serum IFN-γ in patients 

undergoing cardiac surgery with CPB. Moreover, there was no statistical difference 

between biocompatible groups as well as within same group at different time points. 

There was no patient in Bioline group who showed serum IFN-γ, and only one or two 

patients out of 14 or 16 patients showed low levels of serum IFN-γ in other groups.  

 

 

Figure 11. Serum IFN-γ levels during CABG with CPB coated with different  

                      biomaterials. 
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4.3.6. Serum Nitric oxide levels during CABG with CPB coated with different  

            biomaterials 

Serum levels of oxidized nitric oxide (nitrite + nitrate) before the initiation of 

CPB did differ among four different biocompatible groups as well as the control group. 

With exception of PMEA group, all other groups showed the decrease of the serum levels 

of oxidized nitric oxide to different degree in a timely dependent matter (Figure 12). 

Interestingly, as shown in Table 7, Phosphocholine group showed a significant decrease 

between T2 (6 hrs post OP) and T1 (Before CPB) (p < 0.05) while PMEA group showed 

a statistical increase in the same time points (p < 0.05). Both Bioline and Phosphocholine 

groups showed statistical decreases in the levels of serum nitrite and nitrate compared 

with the control group at T2 (6 hrs post OP) (p < 0.05).   

 

Table 7. Comparison of nitric oxide levels in patients underwent CABG with CPB coated  

               with different biocompatible materials at different time points 

 
NOx 
 

T1 (Before CPB) T2 (6 hrs post OP) T3 (72 hrs post OP) 

Control 39.00 ± 12.95 38.69 ± 16.11 33.36 ± 12.99 

Trillium 33.05 ± 14.64 33.22 ± 17.75 25.34 ± 12.02† 

Bioline 27.16 ± 4.65 25.05 ± 3.00 18.97 ± 9.05 

Phosphocholine 33.05 ± 9.53 26.05 ± 6.32* 25.41 ± 12.63 

PMEA 30.33 ± 15.55 36.95 ± 23.28* 24.11 ± 8.16§ 

expressed as mean ± SD; t-Test (tails:two-tailed distribution, type:paired). 
* significant difference between T2 and T1 (p < 0.05). 
† significant difference between T3 and T1 (p < 0.05). 
§ significant difference between T3 and T2 (p < 0.05). 
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Figure 12. Serum Nitric oxide levels during CABG with CPB coated with different  

                    biomaterials. 
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4.3.7. Serum hsCRP levels during CABG with CPB coated with different  

             biomaterials  

Serum hsCRP levels were significantly increased in all groups between T2 (6 hrs 

post OP) and T1 (Before CPB) (p < 0.01) except PMEA group (Figure 13). Furthermore, 

serum hsCRP levels increased to a higher degree at T3 (72 hrs post OP) compared to T1 

and T2 (6 hrs post OP) (p < 0.01) in all groups. When comparing the hsCRP levels 

between groups at different time points, only Trillium group had a statistical significance 

at 6 hrs after surgery (T2) compared with the control group (p < 0.05).  

 

Table 8. Comparison of hsCRP levels in patients underwent CABG with CPB coated  

                with different biocompatible materials at different time points 

 
hsCRP 
 

T1 (Before CPB) T2 (6 hrs post OP) T3 (72 hrs post OP) 

Control 4.2 ± 6.4 9.5 ± 5.2** 192.8 ± 84.1††§§ 

Trillium 5.2 ± 6.2 17.9 ± 12.4** 211.9 ± 50.4††§§ 

Bioline 5.4 ± 14.5  17.4 ± 20.6** 206.0 ± 57.5††§§ 

Phosphocholine 5.8 ± 12.2 10.3 ± 9.5** 172.7 ± 63.1††§§ 

PMEA 2.6 ± 4.7 16.8 ± 27.8 181.3 ± 89.3††§§ 

expressed as mean ± SD; t-Test (tails:two-tailed distribution, type:paired). 
** significant difference between T2 and T1 (p < 0.01). 
†† significant difference between T3 and T1 (p < 0.01). 
§§ significant difference between T3 and T2 (p < 0.01). 
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Figure 13. Serum hsCRP levels during CABG with CPB coated with different  

                      biomaterials. 
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4.4. DISCUSSION 

 

4.4.1. Release of cardiac markers during CABG with CPB 

Measurements of serum levels of CK and CK-MB have long been used for 

diagnosis of MI. However, elevated levels of CK and CK-MB are also seen in skeletal 

muscular disorders and in other conditions such as renal failure. This lack of absolute 

cardiac specificity in complex clinical situations has led to the development of more 

specific assays. In our study, we observed that serum lactate and LDH levels significantly 

increased 6 hours after initiation of CPB and remained elevated till 24 hours after 

initiation of CPB, indicating that lactate and LDH are potentially useful markers for 

cardiac injury during CABG. Nevertheless, like CK and CK-MB, the release of lactate 

and LDH could also occur in many other parts of the body, including the kidneys, red 

blood cells, brain, stomach, and skeletal muscle. Because of poor specificity, 

measurement of CK or LDH has largely been replaced by cTn (Morrow et al. 2007).  

Substantial evidence demonstrates that cTn predicts myocardial damage and 

mortality after CABG and suggests that a single postoperative cTn measurement can be 

used to estimate myocardial damage after CABG (Bimmel et al. 2003, Fellahi et al. 2003, 

Kathiresan et al. 2004, Onorati et al. 2005, Salamonsen et al. 2005). Other studies have 

shown that while cTnI is a valuable marker for immediate myocardial damage after 

coronary bypass operations, it does not predict midterm outcome (Kovacevic et al. 2004, 

Noora et al. 2005, Paparella et al. 2005). One study has observed no correlation between 

the necrotic cardiac markers (cTn and CK-MB) and myocardial function (Karu et al. 

2005). Data also suggest that in those patients who have not had an acute MI but have 

suffered cardiac trauma such as that associated with open heart surgery, cTn can predict 

myocardial damage (Carrier et al. 2000, Horvath et al. 2000). A recent study has shown 

that an earlier and greater cTnI release potentially predicts the cardiac reperfusion injury 

associated with CABG (Costa et al. 2001). The release of cTn can be attributed to 

iatrogenic stressors (Taggart 2000), myocardial stunning (Abu et al. 2002), and elevated 

preload, independently of cardiac ischemia (Khan et al. 2004). We observed a significant 

release of cTnI as early as 1 hour after the initiation of CPB and this release reached the 
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maximum in 12 hours. Serum cTnI has the highest magnitude of increase compared to 

other cardiac markers. Considering the high sensitivity, high specificity, and strong 

predictive value of cTnI for myocardial injury, cTnI could be a strong predictor for 

assessment of myocardial injury after CABG with CPB. Protective measures such as 

aprotinin, a serine protease inhibitor, can thus be administered accordingly, as 

demonstrated in a recent study (Karaca et al. 2006). 

Due to the combination of local trauma, mechanical stimulation from 

extracorporeal circulation, and pulmonary and myocardial reperfusion, cardiac surgery 

results in substantial inflammatory responses, leading possibly to postoperative 

complications. Proinflammatory cytokines, such as TNF-α, IL-6, and IL-8 play a key role 

in the inflammatory cascade after CPB (Celik et al. 2004, Colagrande et al. 2006, Franke  

et al. 2005). Sharma et al. demonstrated the release of proinflammatory mediators during 

myocardial ischemia/reperfusion in CABG surgery (Sharma et al. 2003). As reported by 

us and others, serum levels of cytokines and CRP are highly elevated during CABG 

(Colagrande et al. 2006, Paparella et al. 2005) and are correlated to the degree of 

myocardial damage and clinical outcomes (Levy et al. 2003, Quaniers et al. 2006). In this 

study, we observed a significant release of serum TNF-α and IL-6 just 1 hour after 

initiation of CPB, reaching maximum levels at 6 hours after initiation of CPB. The 

release of serum hsCRP was delayed compared with that of TNF-α and IL-6. It reached 

statistical significance 12 hours after initiation of CPB. The magnitude of hsCRP release 

at 24 hours after CPB is comparable to that of cTnI though the peak release is delayed. 

Our findings indicate that the release of these inflammatory markers could potentially be 

clinically useful as a monitor for myocardial injury during CABG with CPB. 

Inflammation sensitive plasma proteins such as AAT and ceruloplasmin have been shown 

to be increased in MI (Engstrom et al. 2002, Engstrom et al. 2004, Lind et al. 2004) but 

have never been studied in CABG with CPB. We show that serum levels of AAT were 

decreased in the beginning of CPB and then increase slowly and reach statistical 

significance 24 hours after initiation of CPB. This finding indicates that inflammation 

sensitive plasma proteins may also be useful markers for evaluation of cardiac injury 

during CABG. However, further studies are needed to establish the correlation between 



48 
 

serum levels of these markers and the extent of myocardial injury. The role of these 

markers needs to be evaluated in the mid- or long-term prognosis. 

 

4.4.2. Comparison of biocompatible materials used in CPB during CABG 

Following our initial study on the release of inflammatory markers, we extended 

further research to compare the impact of different biocompatible materials used in CPB 

on initiation of inflammation. Contrary to expectation, the initial control group without 

biocompatible coating circuit showed less pro-inflammatory cytokine release compared 

to some biocompatible material groups. Eventually, we found that there had been a 

mistake made when setting up the control group CPB circuit. In the control group, the 

oxygenator that is a part of the CPB was already coated with Trillium biocompatible 

material, which compromised our data for the control group. We found our mistake when 

we already finished collecting control samples, so we did collect new control samples 

again. There was no significant difference both in tau protein presence and in hsCRP 

levels between previously collected control samples and newly collected control samples. 

In 2005 Baufreton et al. proposed that the increase of complement activation and 

inflammation due to the contact between blood and the artificial surfaces of heart-lung 

machine (CPB) has been linked to neurocognitive dysfunction (NCD) after cardiac 

surgery. Another research conducted by Ramlawi et al. 2006a examined the association 

between biochemical markers of brain injury and the inflammatory response in relation to 

neurocognitive deficiency after CPB. They evaluated three potential brain injury markers 

such as S100β, neuron-specific enolase (NSE), and tau protein, and insisted NSE and tau 

protein are better markers than S100β to evaluate brain injury. But total tau results were 

used as a dichotomous variable reflecting presence or absence of the protein in serum. 

That was because the exact pharmacokinetics of tau protein are not yet known, so 

drawing correlations and conclusions on the basis of the quantitative levels would not 

have been justified (Ramlawi et al. 2006a). In another article, conducted by the same 

research group, they demonstrated that CRP and inflammatory cytokines are associated 

with NCD (Ramlawi et al. 2006b). CRP, a marker of inflammation, is considered a 

potential marker for risk assessment of coronary heart disease (Ridker et al. 2003, 

Danesh et al. 2004). We show in our study that hsCRP levels were significantly elevated 
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after initiation of CPB in all group regardless of the biomaterials used in CPB circuits. 

This indicates that inflammation is inevitable and may also be caused by factors other 

than CPB itself. Therapeutic measures should be applied to prevent cardiac dysfunction 

caused by CPB-induced inflammation.  

Generally cells release the cytokine for only a few hours after appropriate 

stimulation. So, individual cytokine cannot provide exact inflammation status in our body 

during CPBs. Also each patient shows different non-specific innate immune responses at 

different levels against the same stimulation such as CPB. Thus, comparing the difference 

of inflammatory response in patients undergoing cardiac surgery with CPB with only 

using some cytokine levels is almost impossible. However, if we consider tau protein 

results, we could draw a conclusion even though it is still hard to insist, because except 

Hyaluronan group tau results were gained from at least over 31 patients in each group 

and tau results could account for neurocognitive deficiency that is one of the side effects 

of cardiac surgery and when using CPB this unwanted effect is more common. Also 

neurocognitive deficiency is caused by complicated mechanisms of whole inflammatory 

response through coagulation cascade, complement activation, and neutrophil and 

monocyte activation and endothelial activation during cardiac surgery with or without 

CPB (Baufreton et al. 2005, Ramlawi et al. 2006a, Ramlawi et al. 2006b).  

In our study, we have demonstrated positive tau protein in patients with CPB. 

However, tau protein was less detected in the heparin-coated groups such as Trillium and 

Bioline compared to other biocompatible groups employing new and recent technology 

such as Phosphocholine, PMEA, and Hyaluronan groups. A larger study needs to be done 

to assess mid and long term prediction of tau on neurocognitive deficiency.  

In addition, our study has shown that the serum levels of TNF-α and IL-6 as pro-

inflammatory cytokines were increased after initiation of CPB but remained elevated by 

72 hours after termination of CPB. The serum levels of IL-10, which is classified as an 

anti-inflammatory cytokine, showed similar release pattern like pro-inflammatory 

cytokines. It seems that this is a natural defense mechanism in our body when exposure to 

harmful situation such as CPB and cardiac surgery. Serum levels of TNF-α, IL-6, and 10 

did not differ significantly among four different biocompatible groups as well as the 
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control group before the initiation of CPB. In addition to pro-inflammatory and anti-

inflammatory cytokine analysis, we examined the serum levels of IFN-γ to evaluate 

whether IFN-γ is involved in neurotoxicity by inflammation as Wilson et al. 2002 

proposed. However, IFN-γ did not show the statistical significance in any biocompatible 

groups as well as the control group.  

There was no technical concern when analyzing cytokines with serum samples, 

but when gathering and analyzing data, especially TNF-α, we had to double check the 

overall process of analysis. Cells nearly always produce cytokine for only a few hours 

after appropriate stimulation. The problem of cytokine detection at the protein level is 

their short half-life. The biological half-life of cytokines is very short, generally not 

exceeding a few minutes in plasma except IL-12 whose half-life is several hours. 

Cytokines do not only occur in free and native form but also bind to numerous carrier 

proteins and can undergo rapid proteolytic cleavage. Also, a wide variety of cells secret 

soluble cytokine receptors after activation. These generally have neutralizing properties 

(Asadullah et al. 2002). On the other hand, they may prolong activity by inhibiting 

cytokine elimination. Cytokines can also bind to other plasma proteins. Such proteins 

cover certain epitopes on the cytokine surface that may or may not still be recognized, 

depending on the epitope specificity and affinity of the cytokine-complex antibodies used 

in the ELISA (Asadullah et al. 2002). Therefore, the interpretation of cytokine 

concentrations in body fluids such as plasma poses a problem when the cytokine level is 

low. However, nowadays thanks to the science development, the new generation of 

ELISAs is actually very sensitive and has high specificity, so can detect cytokines by 

picomolar level. Thus most cytokines are detectable even in the plasma of healthy 

volunteers. It has been well established that individual cytokines can have multiple and 

overlapping functions and in many cases, depending on cell types and concentration, 

these functions may appear to be contradictory. The information which is carried by 

individual cytokines can be modified by other cytokines and proteins present within the 

network at any given moment in space and time (Hooper 2004).  

To examine the antioxidant effects of biocompatible materials, we analyzed the 

serum levels of oxidative stress during cardiac surgery with CPB which was coated with 
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or without biocompatible materials. The nitric oxide was decreased even in the control 

group which did not use coated circuit in CPB as time passed by, but there was no 

statistical significance. Nitric oxide level was decreased significantly at T2 in 

Phosphocholine group. However PMEA group showed the increase of nitric oxide 

production after initiation of CPB. Whether the anti or pro-oxidant effects can be 

attributed to the biomaterials coated on the CPB circuits needs to be confirmed by further 

study. In addition, cardiac surgery itself may cause more production of oxidative stress 

rather than use of CPB. Basically nitric oxide cannot be rigidly classified as a pro-

inflammatory or anti-inflammatory molecule (Cirino et al. 2006). This is because NO has 

been shown that its production was either increased or decreased during inflammation. 

Nitric oxide has three different iso-enzymes for production, and these enzymes have 

different characteristics. During the cardiac surgery, generally either eNOS or iNOS, or 

both eNOS and iNOS could be involved. The eNOS is constitutively expressed in 

endothelial cells and synthesizes NO in response to an increase in calcium or some cases 

to calcium independent stimuli such as shear stress. However, iNOS is the inducible that 

is generally not constitutive and is typically synthesized in response to inflammatory 

mediators (Cirino et al. 2006, Pacher et al. 2007). There are numerous studies on the 

biological function of nitric oxide. However, there were few articles dealing with nitric 

oxide biology in patient undergoing cardiac surgery with CPB. Moreover, most of those 

articles showed data with animal model such as rats, not real human samples. In spite of 

rat animal study, Hayashi et al. 2001, Hayashi et al. 2004 demonstrated that cardiac 

surgery with CPB increased nitric oxide production while the nitric oxide levels in 

cardiac surgery without CPB did not change from before the initiation of CPB to at the 

termination of CPB, and to 3 hours after termination of CPB. In contrast to their findings, 

our study showed there was no statistically significant effect in nitric oxide production 

during CPB except PMEA coating group. When considering the development of the 

components of CPB machine such as oxygenator as well as membrane, pumps, and 

coating circuit, the data difference between previous research and our research could be 

acceptable. Also the sensitivity and specificity of ELISA kits used for analysis has been 

improved even though most of the ELISA kits for assessment of oxidized nitric oxide 

(nitrite and nitrate) adopted Griess method.  
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More importantly, there are more studies which support our data. Berg et al in 

2006 demonstrated the levels of oxidative stress during cardiac surgery with CPB to 

examine the importance of surgical trauma compared to CPB use. There were 20 patients 

undergoing cardiac surgery with CPB and collected blood samples 14 times from each 

patient at 14 different time points such as from the beginning of the surgery to 2 days 

after surgery. Then they examined the serum levels of 8-iso-prostaglandin F2α (8-iso-

PGF2α) which is accepted as a highly reliable biomarker of oxidative stress (Morrow et al. 

1990, Basu 1998, Basu et al. 2005). According to their data, oxidative stress sharply 

increased right after initiation of cardiac surgery, remained increased levels by CPB on, 

gradually decreased during CPB and reached to the baseline when the terminating CPB 

(Berg et al. 2006).  

Furthermore, we examined the serum levels of hsCRP, one of acute phase 

proteins. The hsCRP was slightly increased after initiation of CPB and significantly 

increased after termination of CPB by 72 hours post operation although there was no 

statistical significance between biocompatible groups in serum levels of hsCRP. This 

observation fits in with the previous works (Ridker et al. 2003, Levy et al. 2003, Denesh 

et al. 2004, Franke et al. 2005, Deblier et al. 2006). Also, this hsCRP data showed almost 

same pattern with previous our study, release of cardiac markers during CABG with CPB. 

Studies have demonstrated that the IL-6 is involved in the production of C-reactive 

protein in liver during inflammatory process. In other words, when the serum levels of 

IL-6 were decreased after termination of CPB, the serum levels of hsCRP sharply were 

increased by 72 hours after cardiac surgery.  

Generally, during the cardiac surgery with CPB, our body has to meet and cope 

with non-endothelial environments such as synthetic peptide in CPB. Operative trauma is 

combined with systemic activation of the various blood components and ischemic injury 

to organs, especially the lung, brain, and kidneys. Overlaying all of these concerns is the 

possibility of thrombotic occlusion to the grafted vessels (Landis 2007). A central 

challenge for the surgeon is to control bleeding, which is exacerbated by the 

hyperfibrinolytic state and loss of platelet function because of thrombin activation in the 

bypass circuit. Antifibrinolytic agents such as aprotinin have been successfully used to 
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prevent bleeding during cardiac surgery. The issue of platelet preservation during CPB is 

especially important in antiplatelet agents such as aspirin, which surgeons want to 

maintain patients on for as long as possible before surgery (Landis 2007). In this study, 

we asked and got information about previous medication history of acetyl salicylic acid 

(ASA) and clopidogrel (Plavix), recommended for patients with coronary heart disease as 

anti-coagulants from patients (Table 1), and found out the patient history whether he/she 

has been taking medication ASA before cardiac surgery could be a benefit to the patient 

when he/she got cardiac surgery with CPB. That is because the PMEA group taking less 

ASA medication compared to other groups showed higher level of inflammation and 

oxidative stress. The more interesting evidence supporting this could be the heparin, 

which was administered to patients during cardiac surgery. All patients including the 

control group received heparin as an anti-coagulant during surgery and then this heparin 

was neutralized by protamine. Therefore, thanks to the heparin, even the control group 

which did not use coated biocompatible material in CPB showed the middle range of 

inflammation. The study conducted by Karlsson et al. supports our interpretation. With 

healthy human males, they demonstrated that intravenous injection of heparin leads to a 

prompt increase in plasma extracellular superoxide dismutase (SOD) activity. Also they 

confirmed that heparin induced no release of extracellular superoxide dismutase from 

blood cells, nor does it activate extracellular superoxide dismutase in plasma. Therefore it 

indicated that the source of the released enzyme is the endothelial cell surfaces (Karlsson 

et al. 1987).  

Moreover, as Prondzinsky and colleagues proposed in 2005, surgical trauma of 

conventional surgical procedures is a more potent activator of the inflammatory response 

after cardiac surgery rather than CPB. But it is true that CPB accounts for inflammatory 

response, because the inflammatory response decreases when we do not use CPB during 

cardiac surgery. The main concern of surgical trauma affecting the outcomes of cardiac 

surgery with or without CPB is that coagulation cascade could be initiated from surgical 

trauma where the tissue factor (TF) is expressed on damaged cells at the site of vascular 

injury. Furthermore, because of endothelial injury, endothelial cells cannot normally 

produce tissue factor pathway inhibitor (TFPI) and thrombomodulin which are very 
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important and strong inhibitors of coagulation pathway (Gorbet et al. 2004). Thus 

extrinsic coagulation cannot be controlled.  

The limitation of our present study is that our data shows higher standard 

deviations in serum cytokine levels, even though we could explain the reason for this 

based on the fact that the immune reactions are so widely different from individuals to 

individuals. For instance, the serum levels of TNF- α in both Bioline and PMEA groups 

at T3 (72 hrs post OP) showed higher standard deviations: Bioline is 7.10 ± 7.85 and 

PMEA is 6.12 ± 8.96. Considering the overall low levels of serum TNF-α in the 

beginning of inflammatory response, these data with high standard deviation is not good. 

Especially, 2 out of 16 patients in Bioline group contributed to the data with higher 

standard deviations at 72 hours post operation. Moreover, the serum levels of IL-6 in 

Trillium group at T3 (72 hrs post OP) showed extremely high standard deviations like 

102.87 ± 131.68 and the levels of IL-6 in all of the groups showed high standard 

deviations at the termination of CPB (Table 5). As shown in Table 6, the serum levels of 

IL-10 also showed similar trend in PMEA group at both T2 (6 hours post OP/110.12 ± 

147.58) and T3 (72 hrs post OP/48.41 ± 84.88). Taken together, either on the termination 

of CPB or 72 hours after operation time points, the serum levels of cytokines in some 

biocompatible groups showed high levels of standard deviations. It means that each 

patient has different levels of defense mechanism against stressful situations such as 

cardiac surgery. Especially, when we see the cytokine data at time point T3 (72 hrs post 

OP), we can estimate that each patient has different levels of healing processes after 

cardiac surgery, so their serum levels of cytokines which account for inflammation could 

be different with each other. Specimen preparation and stability may also contribute to 

the variation of the results. Sample size can be another factor to make the standard 

deviation of the measurement wide. However, our data is still valuable as this is the first 

study to compare the effects of different biocompatible materials used in CPB with 

different time points on inflammation and oxidation stress.  

In the future, since there are many factors affecting inflammatory response and 

oxidative stress during CPB, we need to add more analytical parameters to evaluate the 

difference of effects on inflammation and oxidative stress of biocompatible materials. 
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Moreover, we need to increase patient population to get reasonable data which has lower 

standard deviation. We already analyzed cytokines such as TNF-α, IL-6, IL-10 and IFN- 

γ and one of oxidative stress marker, NO. Since the membrane attack complex (MAC) 

mainly causes cell damage, first of all, we need to analyze the activity of TCC (terminal 

complement complex). Also, the activity of neutrophils could be another useful marker 

when evaluating inflammation. There are several kinds of analytical items to examine the 

neutophil activity such as myeloperoxidase, elastase, or CD 11b. Especially, 

myeoloperoxidase (MPO) could be useful when we evaluate oxidative stress because 

myeloperoxidase is involved in producing hypochlorous acid (HOCl) and hydroxyl 

radical (•OH) from hydrogen peroxide (H2O2), oxygen (O2) and chloride ion (Cl-). 

Another marker of neutrophil activity is the level of activation of cell surface marker, 

CD11b. The expression level of CD11b on neutrophils is strongly related to the level of 

inflammation. Finally the other prospective marker to evaluate the effects of 

biocompatible materials could be a soluble VCAM-1 or ICAM-1. The activation of 

VCAM-1 and ICAM-1 during CPB and even cardiac surgery without using CPB is 

connected to the activation of neutrophils and activation of phagocytic cells and other 

inflammatory agents such as cytokines and chemokines. Through analyzing soluble 

endothelial cell adhesion molecules, we can evaluate the level of endothelial activation 

leading to endothelial dysfunction which is related to the inflammation procedure. Also 

the levels of endothelial dysfunction could be fit well with surgical trauma during cardiac 

surgery as well as CPB. If we successfully analyze those all markers in serum and re-

analyze data which we already gained, then we could compare the effects of 

biocompatible materials on patients undergoing cardiac surgery with CPB.   
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5. SUMMARY AND CONCLUSIONS 

Systemic production and release of an array of cardiac biochemical and 

inflammatory markers was found in patients undergoing CABG, which could indicate the 

pathophysiological changes of myocardial function after CPB. The release patterns and 

the serum levels of cardiac markers as well as inflammatory markers in patients 

undergoing elective CABG with CPB were established. Our data indicate that cTnI is still 

a better biochemical marker for cardiac injury than others following CABG with CPB. 

Also we found that other nonspecific but highly sensitive markers such as LDH, lactate, 

TNF-α, IL-6, and hsCRP could be potential surrogate markers for evaluation of cardiac 

injury following CPB. Monitoring these markers may provide useful information to 

clinicians for patient management and prognosis after CABG with CPB.  

In the comparison of different biocompatible materials in the aspects of anti-

inflammation, our data suggests that heparin-coated biocompatible materials are better 

than others which employed recent technologies such as surface-modifying additives and 

mimicry of cell membrane. Moreover, in terms of oxidative stress, biocompatible 

materials do not show anti-oxidant effects during CPB, but it seems that administered 

heparin could act as an ant-oxidant during cardiac surgery with CPB coated with or 

without biocompatible material. To date there is no clear evidence whether biocompatible 

materials reliably reduce thrombin formation and the associated consumption of platelets 

and fibrinogen or attenuate complement activation and initiation of systemic 

inflammation. In our study, we were not able to demonstrate some of the beneficial 

features such as anti-inflammatory function of the biocompatible materials claimed by 

the manufacturers or reported by other studies. Hence, a larger study is needed to 

evaluate the protective effects and efficacy of those biocompatible materials used in CPB.  
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