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ABSTRACT 
 
The main themes of the present thesis was the regulation of ovarian antral follicle growth, 
the manipulation of follicular dynamics and ovulation rate, as well as the characterization 
of the ovine corpus luteum (CL). Two treatments with ovine follicle stimulating hormone 
(oFSH) were used to assess the responsiveness of small antral follicles during different 
times in a follicular wave. Follicular dynamics were monitored by transrectal 
ultrasonography and serum FSH concentrations were measured. Two experiments were 
performed on anestrous Western White Face (WWF) ewes to independently examine 
whether or not the ovulations during treatment with a medroxyprogesterone acetate 
(MAP)-containing sponge and prostaglandin F2α (PGF2α), were due to the direct effects of 
PGF2α on the ovary or the effects of a rapid decline in progesterone at PGF2α-induced 
luteolysis. Non prolific Suffolk ewes were used to assess the effectiveness of treatment 
with medroxyprogesterone acetate (MAP)-containing sponge and prostaglandin F2α 
(PGF2α) to increase lambing rate. Re-introduction of rams to pre-isolated, mid-anestrous, 
WWF ewes was used to look at the effect of increased pulsatile secretion of LH on 
ovarian antral follicular dynamics at different stages of follicular wave development. We 
also used ovarian transrectal ultrasonography and computer assisted image analysis as 
non-invasive techniques to investigate whether or not there were correlations between 
ultrasound image attributes of the ovine CL and changing progesterone concentrations 
over time, in prolific and non prolific ewes. The results of the present studies showed 
that, in the ewe, small antral follicles can respond to the injection of FSH to yield a 
follicular wave more frequently than seen in a normal cycle and in the presence of a large 
growing antral follicle. Non induced waves can emerge during the growth phase of a 
wave induced by injection of oFSH. These results bring into question the presence of 
functional follicular dominance in the ewe. Ovulations occurred after PGF2α injection but 
during continuous treatment with MAP, but those ewes experiencing a decline in serum 
progesterone concentrations in the presence of MAP did not ovulate any follicles. We 
concluded that ovulations occurring after PGF2α injection, in the presence of a MAP 
sponge could be due to a direct effect of PGF2α at the ovarian level rather than a sudden 
decline in circulating progesterone concentrations. Treatment of Suffolk ewes with MAP-
containing sponges and injection of PGF2α did not increase lambing rate, perhaps due to 
asynchrony of ovulations. Re-introduction of rams to previously isolated ewes resulted in 
a subtle increase in LH pulse frequency on the day of ram introduction in ewes in the 
static phase of a follicular wave. However, there were no consistent changes in follicular 
dynamics or estradiol secretion in response to this increase in LH pulse frequency. We 
concluded that changes in LH pulse frequency do not dramatically change ovarian antral 
follicular dynamics in the anestrous ewe. Both total luteal area and mean spot pixel 
values for the CL were correlated with the pattern of serum concentrations of 
progesterone from day 3 to day 15 after ovulation in WWF ewes and from day 3 to day 
14 in Finn ewes. There were no significant correlations between progesterone 
concentrations and spot pixel heterogeneity for either WWF or Finn ewes. We concluded 
that pixel heterogeneity is a poor indicator of progesterone secretory ability of the CL 
when compared to mean pixel values. However, luteal area and mean spot pixel values 
are better but not strong indicators of the functional status of the CL in cyclic ewes.  
 

 ii



ACKNOWLEDGEMENTS 
 
I would like to thank Dr Norman Rawlings for his supervision, guidance and patient 
support during my MSc program and research work in the Department of Veterinary 
Biomedical Sciences. I would also like to extend my thanks to the members of my 
advisory committee Drs. B. Singh and J. Singh for their guidance in the completion of my 
graduate program. 
 
I wish to thank Dr. R. Duggavathi for his support and endless help throughout my 
graduate program. Those hours in the barn teaching me to scan sheep ovaries and all of 
the statistical advice was invaluable. I thank Ms. S.J. Cook for excellent technical 
assistance; Drs. E.T. Bagu, D.M.W. Barrett and P.M. Bartlewski for their help during my 
research; The Animal Care staff for care and management of the sheep and the Faculty 
and staff of the Department of Veterinary Biomedical Sciences for their support 
throughout my program. I am grateful to the University of Saskatchewan and Dr. 
Rawlings for financial support and to the Natural Sciences and Engineering Research 
Council of Canada for funding the research. 
 
Thank you to my family in England. Although you are so far away, knowing that you 
would always be there for me is great support. Thank you to the Baker’s for welcoming 
me with open arms and making Canada a home away from home. Finally, I thank Lee for 
his patience and love. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 iii



 
 
 
 
 

 
 
 
 
 

Dedicated to … 
 
 

 
 

Lee 
 
 
 

 
 
 
 

Your loving support helps more than you know 
 
 
 
 
 
 
 

 
 
 

 iv



TABLE OF CONENTS 
 
PERMISSION TO USE…………………………………………………………………....i 
 
ABSTRACT………………………………………………………………………………ii 
 
ACKNOWLEDGEMENTS………………………………………………………………iii 
 
TABLE OF CONENTS…………………………………………………………………...v 
 
LIST OF FIGURES………………………………………………………………………ix 
 
LIST OF TABLES………………………………………………………………………xii 
 
LIST OF ABBREVIATIONS…………………………………………………………..xiii 
 
Chapter 1: REVIEW OF LITERATURE……………………………………………..1 

1.1 Introduction………………………………………………………………..1 
1.2 The ovine estrous cycle……………………………………………………2 
1.3 Hormonal profiles during the ovine estrous cycle………………………...5 
 1.3.1 Secretion of gonadotropins………………………………………..5 
1.4. Regulation of LH secretion………………………………………………..8 
 1.4.1. Hypothalamic regulation…………………………………………..8 
 1.4.2. Gonadal regulation………………………………………………...9 
1.5. Regulation of FSH secretion………………………………………………9 
 1.5.1. Hypothalamic regulation…………………………………………..9 
 1.5.2. Gonadal regulation……………………………………………….10 
1.6. Secretion and regulation of secretion of estradiol………………………..10 
1.7. Secretion and regulation of secretion of progesterone…………………...13 
1.8. Follicular growth and development……………………………………...15 
 1.8.1. Folliculogenesis………………………………………………….15 
 1.8.2. The early stage of follicular development……………………….16 
 1.8.3. Antral follicular waves in sheep…………………………………16 
1.9. Regulation of antral follicular growth and development………………...21 
 1.9.1. Gonadotropic hormones………………………………………….21 
 1.9.2. Gondadal steroids as regulators of follicular growth…………….22 
1.10. Ovulation in the ewe……………………………………………………..22 
1.11. Corpus luteum formation and development……………………………...26 
1.12. Endocrine regulation of luteolysis……………………………………….27 
1.13. Transrectal ultrasonography……………………………………………...28 
 1.13.1. Image analysis……………………………………………………29 
1.14. The “Ram Effect”……………………………………………………..…30 
1.15. General objectives………………………………………………………..33 

 
Chapter 2: HYPOTHESES…………………………………………………………..37 
 

 v



Chapter 3: AN INVESTIGATION INTO THE RESPONSIVENESS OF SMALL  
  ANTRAL FOLLICLES (≥1 MM BUT ≤3 MM IN DIAMETER) TO  
  FSH STIMULATION DURING A FOLLICULAR WAVE IN THE  
  EWE……………………………………………………………………...38 

3.1. Abstract…………………………………………………………………..38 
3.2. Introduction………………………………………………………………39 
3.3. Materials and Methods…………………………………………………...41 
 3.3.1. Animals…………………………………………………………..41 
 3.3.2. Experimental procedures…………………………………….......41 
 3.3.3. Ultrasonography………………………………………………....42 
 3.3.4. Blood sampling…………………………………………………..42 
 3.3.5. Hormone assays and data analyses………………………………43 
 3.3.6. Follicular data analyses…………………………………………..43 
 3.3.7. Statistical analyses……………………………………………….44 
3.4. Results……………………………………………………………………45 
 3.4.1. Administration of exogenous oFSH……………………………...45 
 3.4.2. Follicular wave emergence………………………………………48 
 3.4.3. Characterisrics of the largest follicle of the follicular wave……..48 
 3.4.4. Maximum follicle diameter and estradiol concentrations……….50 
 3.4.5. Follicle growth rate and number of follicles in a wave………….50 
 3.4.6. Numbers of small follicles……………………………………….50 
3.5. Discussion………………………………………………………………..53 

 
Chapter 4: DOES INJECTION OF PROSTAGLANDIN F2α (PGF2α) CAUSE  
  OVULATION IN ANESTROUS WESTERN WHITE FACE EWES?....57 

4.1. Abstract…………………………………………………………………..57 
4.2. Introduction………………………………………………………………58 
4.3. Materials and Methods…………………………………………………...60 
 4.3.1. Animals…………………………………………………………..60 
 4.3.2. Experimental procedures………………………………………...61 
 4.3.3. Blood sampling…………………………………………………..62 
 4.3.4. Hormone analyses………………………………………………..62 
 4.3.5. Follicular data analyses…………………………………………..64 
 4.3.6. Statistical analyses……………………………………………….65 
4.4. Results……………………………………………………………………65 
 4.4.1. Experiment 1……………………………………………………..65 
 4.4.2. Experiment 2……………………………………………………..71 
4.5. Discussion………………………………………………………………..74 

 
Chapter 5: THE EFFECT OF A 6 DAY TREATMENT WITH  
  MEDROXYPROGESTERONE ACETATE (MAP) AFTER  
  PROSTAGLANDIN F2α (PGF2α)-INDUCED LUTEOLYSIS AT MID- 
  CYCLE ON LAMBING RATE, BIRTH WEIGHT AND SEX RATIOS  
  IN SUFFOLK EWES……………………………………………………78 

5.1.  Abstract…………………………………………………………………..78 
5.2.  Introduction………………………………………………………………79 

 vi



5.3.  Materials and Methods…………………………………………………..80 
 5.3.1.  Animals…………………………………………………………..80 
 5.3.2. Experimental procedures………………………………………...80 
 5.3.3. Statistical analyses……………………………………………….81 
5.4.  Results …………………………………………………………………...81 
 5.4.1. Pregnancy rate ……………………………………………………81 
 5.4.2. Lambing rate……………………………………………………..82 
 5.4.3. Lamb birth weight and sex ratios………………………………...82 
5.5.  Discussion………………………………………………………………..84 

 
Chapter 6: EFFECT OF RAM INTRODUCTION ON OVARIAN ANTRAL  
  FOLLICULAR DYNAMICS AND LH SECRETION IN ANESTROUS  
  EWES AT DIFFERENT STAGES OF FOLLICULAR WAVE  
  DEVELOPEMNT………………………………………………………..86 

6.1.  Abstract…………………………………………………………………..86 
6.2.  Introduction………………………………………………………………87 
6.3.  Materials and Methods…………………………………………………...89 
 6.3.1. Animals…………………………………………………………..89 
 6.3.2. Experimental procedures and ultrasonography………………….89 
 6.3.3. Blood sampling…………………………………………………..90 
 6.3.4. Hormone analyses………………………………………………..91 
 6.3.5. Follicular data analyses…………………………………………..92 
 6.3.6. Statistical analyses……………………………………………….92 
6.4.  Results……………………………………………………………………93 
 6.4.1. General results…………………………………………………...93 
 6.4.2. Serum LH concentration…………………………………………93 
 6.4.3. Serum FSH concentration………………………………………..93 
 6.4.4. Numbers of follicles in different size classes……………………96 
 6.4.5. Maximum follicle diameter and estradiol concentration………...98 
 6.4.6. Inter-wave interval after ram introduction………………………98 
6.5.  Discussion………………………………………………………………100 

 
Chapter 7: COMPUTER ASSISTED IMAGE ANALYSIS OF CORPORA LUTEA  
  IN RELATION TO PERIPHERAL CONCENTRATIONS OF  
  PROGESTERONE: A COMPARISON BETWEEN BREEDS OF SHEEP  
  WITH DIFFERENT OVULATION RATES…………………………..104 
 7.1. Abstract…………………………………………………………………104 
 7.2. Introduction……………………………………………………………..105 
 7.3. Materials and Methods………………………………………………….107 
  7.3.1. Animals…………………………………………………………107 
  7.3.2. Ultrasonography………………………………………………...108 
  7.3.3. Blood sampling…………………………………………………108 
  7.3.4. Hormone analyses………………………………………………109 
  7.3.5. Image acquisition and processing………………………………109 
  7.3.6. Statistical analyses……………………………………………...110 
 7.4. Results…………………………………………………………………..113 

 vii



  7.4.1. Spot versus area analysis………………………………………113 
  7.4.2. Progesterone concentration and total luteal area………………113 
  7.4.3. Mean spot pixel values…………………………………………117 
  7.4.4. Mean spot pixel heterogeneity…………………………………117 
 7.5. Discussion………………………………………………………………118 
 
Chapter 8: GENERAL DISCUSSION AND FUTURE DIRECTIONS…………...122 

8.1. General discussion……………………………………………………...122 
8.2. Future directions………………………………………………………..127 

 
REFERENCES…………………………………………………………………………129 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 viii



LIST OF FIGURES 
 
Figure 1.1. Schematic representation of serum profiles of LH and FSH (top panel), 

and estradiol-17β and progesterone (bottom panel) throughout an estrous 
cycle in the ewe (x-axis: d0 = day of ovulation, y-axis: relative 
concentrations of hormones). Except for high concentrations during 
preovulatory surge, serum LH concentrations remain basal throughout 
the luteal phase of the cycle. Pulses of LH secretion are detectable in 
frequently collected blood samples. FSH secretion remains almost non-
pulsatile and periodic peaks in FSH secretion occur once every 4-5 days 
throughout the estrous cycle. Periodic peaks in estradiol secretion also 
occur, but they tend to coincide with nadirs in serum FSH 
concentrations. Serum progesterone concentrations increase from day 0 
to day 11 and then reach a nadir by day 15 after ovulation. Based on data 
from Pant et al 1977; Rawlings and Cook 1993; Bartlewski et al 1999a; 
Evans 2003b and reproduced by permission of Duggavathi 
2004…......................................................................................................... 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

7

Figure 1.2. A schematic representation of ovarian antral follicular waves in sheep 
during an estrous cycle. Three follicular waves (defined as 1 or more 2-3 
mm follicles emerging and growing together to reach an ovulatory 
diameter of ≥5 mm, before regression (dark colored spheres) or 
ovulation) are shown here. * indicates preovulatory FSH surge that is 
coincidental with preovulatory LH surge (not shown). Also shown are 
the periodic peaks in serum FSH concentrations that precede each 
follicular wave emergence. Based on data from Ginther et al 1995; 
Bartlewski et al 1999a; and reproduced by permission of Duggavathi 
2004............................................................................................................. 
 

 
 
 
 
 
 
 
 
 
20 

Figure 1.3. The structural organization of a mature ovarian follicle and above a 
close-up view of the components of the follicular wall. At the apex of a 
mature follicle, where a stigma forms and the follicle ruptures, there are 
five different layers of cells. The outermost layer is the surface 
epithelium, a single-cell layer of cuboidal epithelial cells. The second 
layer is the tunica albuginea, consisting of fibroblasts and collagen, that 
forms a tenacious sheath around the entire ovary. The third layer is the 
theca externa, the follicle’s own capsule of collagenous connective 
tissue, which delineates its boundary. The fourth layer consists of the 
secretory cells of the theca interna, just inside the theca externa. The fifth 
and innermost layer is the stratum granulosum, from which extend the 
cumulus mass and its oocyte. Reproduced from Espey and Lipner 
(1994)…………………………………………………………………….. 
 

 
 
 
 
 
 
 
 
 
 
 
 

24

Figure 3.1. Mean circulating serum concentrations of FSH (ng/ml) from -0.5 days to 
8 days after ovulation, in ewes given oFSH (○; n=6) or vehicle (●; n=5) 
1.5 days and 3 days after ovulation. An arrow denotes a peak in FSH 

 
 
 

 ix



concentration identified by the cycle detection program for oFSH-treated 
(↓) or vehicle (↑). Day 0 = Day of ovulation. Data presented as mean ± 
SEM. * denotes a significant induced peak in serum concentrations of 
FSH (P<0.05)……………………………………………………………... 
 

 
 
 

47

Figure 3.2. Mean daily number of small follicles (≥1 mm to ≤3 mm in diameter) in 
ewes given oFSH (○; n=6) or vehicle (●; n=5) on day 1.5 and day 3 after 
ovulation. Dashed lines represent significant differences between points 
in the number of small follicles. Day 0 = Day of ovulation. Data 
presented as ± SEM………………………………………………………. 
 

 
 
 
 

52

Figure 4.1. Mean (± SEM) number of large follicles (follicles ≥5 mm in diameter) 
from 24 hours before to 36 hours after ovulations in ewes (n=4) given 
PGF2α injection on the first day of a 6 day treatment with intra vaginal 
sponges releasing medroxyprogesterone acetate (Hours from time of 
ovulation). (*P<0.001). Ovulations occurred 1.20 ± 0.37 days after PGF2α 
treatment………………………………………………………………….. 
 

 
 
 
 
 
67 

Figure 4.2. Mean (± SEM) serum concentrations of LH (circles) and FSH (triangles) 
in ewes for the period from 2 days before to 6 days after the day of 
injection of PGF2α (filled symbols; n=6) or saline (open symbols; n=6) 
and start of a 6 day treatment with intra vaginal sponges releasing 
medroxyprogesterone acetate. There was a significant day effect for both 
LH (P<0.05) and FSH (P<0.001)………………………………………… 
 

 
 
 
 
 

70

Figure 4.3. Mean serum concentrations of progesterone (mean ± SEM) in 6 ewes 
given silastic rubber implant releasing progesterone (filled symbols) and 
5 ewes given blank implants (open symbols), on day 0; implants were 
removed on day 5. Intra vaginal sponges releasing medroxyprogesterone 
acetate were inserted 6 hours before implant removal and left in place for 
6 days. The shaded area is the profile of serum progesterone 
concentrations in cyclic ewes. Differences between groups (P<0.05). The 
dashed line on the graph denotes a significant decline in serum 
progesterone concentrations in the treatment ewes from Day 4 to Day 5 
(P<0.001)…………………………………………………………………. 
 

 
 
 
 
 
 
 
 
 

72

Figure 4.4. Mean (± SEM) serum concentrations of LH (circles) and FSH (triangles) 
in ewes for the period from 2 days before insertion of silastic rubber 
implants releasing progesterone (open symbols; n=6) or empty silastic 
rubber implants (filled symbols; n=5), to 6 days after intra vaginal 
sponges releasing medroxyprogesterone acetate were inserted (day 4)….. 
 

 
 
 
 

73

Figure 6.1. Number of ovarian follicles in different size classes (A) 1-2 mm, (B) 2 
mm, (C) 3 mm, (D) 4 mm, and (E) ≥ 5 mm in diameter per ewe from the 
day of ram introduction (Day 0) to 2 days after ram introduction for ewes 
in the static phase (●; n=5), or growth phase of a follicular wave (○; n=5) 

 x



and control ewes (▼; n=5). Data are presented as mean ± SEM. + with 
dashed line represents significant (P<0.05) difference between groups. 
Letters denote significant (P<0.05) day effects within a group …………. 
  

97

Figure 6.2. Mean serum estradiol concentrations (pg/ml) in ewes in the static phase 
of a follicular wave (●; n=5), ewes in the growth phase of a follicular 
wave (○; n=5) and control ewes (▼; n=5) with samples taken every 4 
hours from the time of ram introduction (Hour 0) to 28 hours after ram 
introduction. Blood samples were analyzed daily. Data are presented as 
mean ± SEM……………………………………………………………… 
 

99

Figure 7.1. (A) Sample region for computer-assisted image analysis of an ultrasound 
image of a day 7 (Day 0 =day of ovulation) ovine ovarian corpus luteum. 
(B) Area analysis of the CL measures the pixel value and pixel 
heterogeneity of the total area of the CL excluding the fluid-filled 
cavities. (C) Spot analysis of the CL measures the pixel value and pixel 
heterogeneity of the CL by placing a measuring circle at four different 
locations over the CL to cover approximately 70% of the area of the CL.. 
 

112

Figure 7.2. Total luteal area (○; mm2), mean spot pixel values (■) and spot pixel 
heterogeneity (■) of the CL and serum progesterone concentrations (●; 
ng/ml) from day 3 of the cycle (Day 0 = Day of ovulation) to day 15 in 
Western White Face ewes (n=8). Significantly different values (P<0.05) 
are represented by different letters……………………………………….. 
 

114

Figure 7.3. Total luteal area (○; mm2), mean spot pixel values (■) and spot pixel 
heterogeneity (■) of the CL and serum progesterone concentrations (●; 
ng/ml) from day 3 of the cycle (Day 0 = Day of ovulation) to day 14 in 
Finn sheep (n=7). Significantly different values (P<0.05) are represented 
by different letters………………………………………………………... 
 

115

Figure 7.4. Selected ultrasound images of Western White Face ewe ovaries showing 
corpora lutea in various stages of development (A-F). The borders of 
luteal structures are indicated by arrows. (A) Day 3, (B) Day 5, (C) Day 
7, (D) Day 9 (E) Day 12 and (F) Day 15 of the ovine estrus cycle………. 116

 
 
 
 
 
 
 
 
 
 
 

 xi



LIST OF TABLES 
 
Table 3.1. Mean day of peak serum FSH concentrations (ng/ml; detected using 

the cycle detection program) and mean day on which wave emergence 
was detected, in ewes given oFSH (n=6) or vehicle (n=5) 1.5 days and 
3 days after ovulation………………………………………………….. 
 

 
 
 
46

Table 3.2. The length of the growing, static, and regression phases (days), 
maximum follicular diameter (mm) and growth rate of the largest 
follicle of a wave. Serum estradiol concentrations (pg/ml) at 
maximum follicular diameter within each wave, and the number of 
follicles in a wave. All parameters were measured for waves 1 and 2 
in control ewes (n=5) given vehicle, and waves 1, A, B, and 2 in ewes 
given oFSH (n=6) 1.5 days and 3 days after 
ovulation………………………………………... 
 

 
 
 
 
 
 
49 

Table 5.1. Mean (± S.E.M) lambing rate, lamb birth weight (kg) and sex ratios 
(% of males born per ewe) for treated ewes that lambed (primiparous, 
n=13 and multiparous, n=13) and control ewes (primiparous, n=15 
and multiparous, n=15)………………………………………………... 
 

 
 
 
83

Table 6.1. Serum LH, FSH, and estradiol characteristics on the day of ram 
introduction (0), and the first (1), and second day after ram 
introduction (2) for ewes in the static phase of a follicular wave (n=5), 
ewes in the growth phase of a follicular wave (n=5) and control ewes. 
Blood samples were collected every 12 minutes for 6 hours from ram 
introduction (Day 0) and each day for 2 days after ram introduction. 
For circulating serum estradiol concentration, day 0 is the first 8 
samples from samples taken every 4-hours……………………………. 
 

94

Table 6.2. FSH peak amplitude (the peak at the time of ram introduction or the 
first peak after ram introduction), FSH inter-peak interval (the first 
inter-peak interval after ram introduction), and length of the inter-
wave interval after ram introduction for ewes in the static phase of a 
follicular wave (n=5), ewes in the growth phase of a follicular wave 
(n=5) and control ewes………………………………………………… 
 

95

 
 
 
 
 
 
 
 
 

 xii



 
LIST OF ABBREVIATIONS 

CL   Corpus luteum 

FSH   Follicle stimulating hormone 

GnRH   Gonadotropin releasing hormone 

kg   Kilogram 

LH   Luteinizing hormone 

MAP   Medroxyprogesterone acetate 

MHz   Mega hertz 

μg   Microgram 

mm   Millimeter 

oFSH   ovine FSH 

PGF2α   Prostaglandin F2α 

 

 xiii



Chapter 1:  REVIEW OF LITERATURE 
 
1.1.  Introduction 

It is thought that sheep were one of the first mammals to be domesticated by humans 

because of their potential contribution to providing food and fibre to a growing 

population. Our knowledge of reproductive physiology and endocrinology in the ewe has 

advanced greatly over the previous twenty to thirty years due to the combination of 

immunoassays, real-time ultrasonography and molecular procedures. This greater 

understanding of ovarian follicular dynamics and regulation of the growth of ovulatory 

follicles will enable the development of techniques to improve reproductive efficiency in 

a commercial setting. The ability to manipulate the seasonality and ovulation rate (i.e. 

potential reproductive rate) will also lead to improved reproductive efficiency of an 

agriculturally important species. 

 

The experimental work described in this thesis was undertaken to investigate aspects of 

the responsiveness of small antral follicles to hormonal stimulation. Further studies 

examined ovulation rate, subsequent luteolysis and luteal function in ewes receiving 

hormonal treatment, as well as the influence of ram introduction on the secretion of 

hormones and follicular dynamics. Characteristics of corpora lutea were related to 

progesterone secretion in different breeds of sheep. The techniques used to aid in these 

investigations were transrectal ultrasonography, radioimmunassay, and computer assisted 

ultrasound image analysis. The literature reviewed in this thesis focuses on the above and 

associated subject matter in the ewe, but where particularly useful information was 
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lacking for sheep, pertinent references to the literature for other domestic species, and 

laboratory animals have been given. 

 

1.2.  The ovine estrous cycle 

Sheep, originating from temperate climates, are seasonally, polyestrous animals (Gordon, 

1997) i.e. they display estrous cycles that occur only during certain seasons of the year. 

The estrous cycle of the ewe ranges in length from 14 to 18 days, with an average cycle 

length of 17.5 days (Marshall, 1904), which is highly repeatable (McKinzie and Terrill, 

1937; Asdell, 1946; Hafez, 1952). There are some differences in cycle lengths among 

different breeds of sheep (Merinos and Rambouillet cycles tend to be longer than those 

recorded for other breeds; Asdell, 1946) and with age (reproductive performance 

increases up to the age of 3 or 4 years and then gradually declines; McKinzie FF and 

Terrill, 1937; Hafez, 1952), but these differences are relatively small (≤1 day). The ewe is 

a spontaneous ovulator (Robertson 1977) and repeated estrous cycles provide the female 

with repeated opportunities to copulate and become pregnant. O’Shea et al (1986) 

reported that abnormally long cycles in ewes may be associated with the prolonged 

lifespan of corpora lutea. However, short ovarian cycles were observed in ewes during 

the post-partum period (Bartlewski et al 2000). These cycles were associated with 

insufficient luteinisation and short-lived CL (Hunter 1991). 

 

There is also an annual cycle of ovarian activity that is superimposed on the normal 

estrous cycle. In most breeds of sheep (Marshall, 1937; McKinzie and Terrill, 1937; 

Asdell, 1946; Hafez, 1952; Robinson, 1959), normal estrous cycles occur in the fall and 
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winter (breeding season), but ovarian cycles cease in the spring and summer (anestrus; 

Bartlewski et al 1998). This ensures that lambs are born in the spring, when 

environmental conditions are favourable for their survival (Gordon, 1997). There is 

considerable variation in seasonal reproductive patterns between different breeds 

(Goodman, 1994). The length of the breeding season seems to depend on the location of 

the breed of ewe (Hafez, 1952; Robinson, 1959). Breeds with marked anestrous periods 

(e.g. Scottish Blackface) reproduce under much harsher environmental conditions than 

those with a limited anestrous season (e.g. Merino) (Marshall, 1937; Hafez, 1952; 

Robinson, 1959). For breeds of sheep in regions of high latitude (temperate regions) the 

breeding season begins in late summer and continues until late winter (Legan and Karsch 

1979; Karsch et al 1979). Whereas breeds located closer to the equator (tropical regions) 

do not show distinct seasonality and some are even able to continue to reproduce 

throughout the year (Robinson 1959, 1980). Even though some breeds have marked 

anestrous periods, antral follicular wave development is still maintained throughout the 

anestrous period (Hutchinson and Robertson 1966; Smeaton and Robertson 1971; 

Bartlewski et al 1998). The annual variation in day length remains unchanged from year 

to year (Goodman 1994). This explains why photoperiod is one of many environmental 

variables capable of influencing seasonal breeding in the ewe (Legan and Karsch, 1980). 

Sheep are short-day breeders because they become fertile (i.e. estrous cycles commence) 

as day length decreases in the autumn months (Robinson, 1959 and Karsch et al 1984).  

 

The estrous cycle can be divided into two distinct phases; the follicular phase and the 

luteal phase (Senger, 2003). These two phases can then be further sub-divided. The 
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follicular phase of the estrous cycle includes pro-estrus and estrus (Arthur et al 1989). 

Pro-estrus is characterised by declining serum concentrations of progesterone as a 

consequence of luteal regression (Arthur et al 1989; Senger 2003). There is also an 

increase in serum estradiol concentrations due to the emergence and growth of the 

ovulatory follicle (Goodman 1994; Senger 2003). The estrus period immediately follows 

pro-estrus (Bindon et al 1979; Quirke et al 1979; Goodman 1994). Estradiol is the 

dominant hormone during this period and is the cause of major behavioural changes and 

the period of sexual receptivity and mating, in the ewe (Robertson 1969). Estrus lasts 

between 24 to 48 hours, depending on the breed (Land 1970; Land 1973). Ovulation in 

sheep occurs 24 to 30 hours after the onset of estrus behaviour (McKinzie and Terrill 

1937; Robertson 1969). The luteal phase of the cycle includes metestrus and diestrus. The 

first period is metestrus, during which ovulation and the formation of a corpus luteum 

(CL) occur (Keyes et al 1983). A structure called the corpus hemorrhagicum forms prior 

to the CL and is due to the rupture of blood vessels in the follicle wall (Senger 2003). 

Once the CL is fully functional and secretes high levels of progesterone, this period is 

referred to as diestrus and is the longest stage of the estrous cycle (Senger 2003). Cyclic 

activity in the ewe is mainly regulated by the hypothalamic-pituitary-ovarian axis 

(Goodman 1994). 

 
 
1.3.  Hormonal profiles during the ovine estrous cycle 

Within the brain, the hypothalamus and pituitary are involved in the secretion of 

gonadotropin releasing hormone (GnRH), whereas the pituitary gland has the role of 

releasing follicle stimulating hormone (FSH), luteinising hormone (LH), prolactin and 
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oxytocin. Ovarian follicles secrete estrogens and inhibins and post-ovulation, the corpus 

luteum (CL) releases progesterone. Finally, the uterine endometrium releases 

prostaglandin F2α (PGF2α). 

 

1.3.1. Secretion of gonadotropins  

There are two functionally distinct modes of LH secretion in the ewe (Geschwind and 

Dewey 1968; Dyer 1985; Arthur 1989), and each control different aspects of ovarian 

function. The preovulatory LH surge (Fig. 1.1 Top panel) which reaches a peak of 39.28 

± 4.21 ng/ml (Rawlings and Cook 1993) 14 hours before ovulation (Arthur et al 1989) 

induces ovulation and formation of the corpus luteum (Goodman 1994). This 

gonadotropin surge is primarily induced and sustained by decreased progesterone and 

increased estradiol secretion during the final stage of the estrous cycle (Scaramuzzi et al 

1970; Kaynard et al 1988; Moenter et al 1990). Tonic or pulsatile LH secretion (Fig. 1.1 

Top panel) occurs throughout the ewes’ cycle (Rawlings and Cook 1993) and is 

important for ovarian steroidogenesis (Goodman 1994). Rhythmic LH pulses are 

generated in response to GnRH release from the hypothalamus and reach a peak 

amplitude of 0.33 ng/ml (Bartlewski et al 2000). GnRH controls both the synthesis and 

release of pituitary gonadotropins through binding to specific receptors in the plasma 

membrane of the gonadotrophs (Stojilkovic et al 1994). Intensive blood sampling has 

revealed low-amplitude pulses of LH occurring 1 to 6 times an hour (Goodman et al 

1981). Investigations by Baird (1978) demonstrated an increase in tonic LH secretion 

during the pro-estrus period resulting from an increased LH pulse frequency, from one 

pulse every 3 to 4 hours during the mid-luteal phase to a maximum of one pulse every 20 
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to 30 minutes just before the LH surge. During the preovulatory surge release of LH, 

pulse frequency and amplitude of LH increases (Baird 1978; Goodman et al 1981) as 

does basal serum concentrations of LH (Rawlings and Cook 1993). 

 

The preovulatory surge release of LH is accompanied by an FSH surge with a peak 

magnitude of 4.36 ± 0.39 ng/ml (Rawlings and Cook 1993) (Fig. 1.1 Top panel; Wheaton 

et al 1984; Baird et al 1991). A second FSH surge occurs within 20 to 36 hours after the 

preovulatory gonadotropin surge and has lower amplitude (3.00 ± 0.53 ng/ml; Bartlewski 

et al 1999) but is longer in duration (20 to 24 hours) as compared to the preovulatory 

surge (11 to 12 hours) (Fig. 1.1 Top panel; Pant et al 1977; Bister and Paquay 1983; 

Wheaton et al 1984; Findlay et al 1990). FSH secretion during the ovine estrous cycle is 

non-pulsatile, when measured from the jugular vein (Bister and Paquay 1983; Wheaton et 

al 1984; Wallace and McNeilly 1986), however there is a day-to-day variation in serum 

FSH concentrations (Baird et al 1981; Cahill et al 1981). The combination of ultrasound 

examination and blood sampling has confirmed that peaks in serum FSH concentrations 

every 5 days are associated with follicular wave emergence (Ginther et al 1995; 

Bartlewski et al 1998; Souza et al 1997; Evans et al 2000). 
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Figure 1.1. Schematic representation of serum profiles of LH and FSH (top panel), and 
estradiol-17β and progesterone (bottom panel) throughout an estrous cycle in the ewe (x-
axis: d0 = day of ovulation, y-axis: relative concentrations of hormones). Except for high 
concentrations during preovulatory surge, serum LH concentrations remain basal 
throughout the luteal phase of the cycle. Pulses of LH secretion are detectable in 
frequently collected blood samples. FSH secretion remains almost non-pulsatile and 
periodic peaks in FSH secretion occur once every 4-5 days throughout the estrous cycle. 
Periodic peaks in estradiol secretion also occur, but they tend to coincide with nadirs in 
serum FSH concentrations. Serum progesterone concentrations increase from day 0 to 
day 11 and then reach a nadir by day 15 after ovulation. Based on data from Pant et al 
1977; Rawlings and Cook 1993; Bartlewski et al 1999a; Evans 2003b and reproduced by 
permission of Duggavathi 2004. 
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1.4.  Regulation of LH secretion 

1.4.1. Hypothalamic regulation 

GnRH regulates the synthesis and release of pituitary gonadotropins through its specific 

membrane-bound receptors on the gonadotrophs (Stojilkovic et al 1994; Iwashita and 

Catt 1985; Clarke 1987). LH secretion has been used as an indirect measurement of 

GnRH release (Goodman 1994); it was assumed that the pulsatile nature of LH release 

monitored in the peripheral circulation reflected the existence of pulsed GnRH secretion. 

Techniques developed by Levine et al (1982), Clarke and Cummins (1982) and Moenter 

et al (1991) allowed the direct measurement of GnRH concentrations by either perfusion 

of the median eminence or by sampling portal blood in ewes. These techniques provided 

evidence for the episodic release of GnRH and the close temporal relationship between 

GnRH and LH pulses. Although each pulse of GnRH is followed by an LH pulse, there 

are some small elevations in GnRH concentrations that fail to induce LH pulses (Clarke 

and Cummins 1982; Levine et al 1982). It has been suggested that these small GnRH 

pulses maintain LH synthesis, leading to accumulation of releasable LH in the pituitary 

(Clarke and Cummins 1982). The relationship between GnRH and LH is maintained 

during both the follicular and luteal phase in the breeding season (Baird 1978; Moenter et 

al 1991) as well as throughout the non-breeding season (Scaramuzzi and Baird 1977; 

Clarke 1988; Barrell et al 1992). However, during anestrous the pulse frequency and 

amplitude of GnRH/LH pulses are significantly lower compared to the breeding season. 
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1.4.2. Gonadal regulation  

LH secretion is regulated either directly or indirectly by the gonadal steroids, estradiol 

and progesterone. Numerous authors have shown that estradiol regulates LH pulse 

amplitude while progesterone regulates LH pulse frequency (Bjersind et al 1972; Karsch 

et al 1979; Goodman and Karsch 1980; Rawlings et al 1984; Wheaton et al 1984). It is 

widely acknowledged that a decrease in progesterone and an increase in estradiol 

secretion during the preovulatory period of the estrous cycle gives rise to, and maintains 

the preovulatory LH surge (Scaramuzzi et al 1970; Bolt et al 1971; Karsch et al 1980; 

Rawlings et al 1984; Jeffcoate et al 1984b; Kaynard et al 1988; Moenter et al 1990; 

Joseph et al 1992). During the luteal phase of the ovine estrous cycle, progesterone has an 

inhibitory effect on pulsatile release of LH (Karsch et al 1979; Rawlings et al 1984; 

Wheaton et al 1984). Estradiol is also involved in the inhibition of LH secretion, but 

mainly at the level of the hypothalamus (Goodman and Karsch 1980; Goodman and 

Karsch 1981; Goodman et al 1981; Martin et al 1988). During the follicular phase of the 

estrous cycle in the absence of progesterone, estradiol plays an important role of 

providing positive feedback, which enhances GnRH secretion in the hypothalamus 

(Moenter et al 1990; Herman and Adams 1990).  

 

1.5.  Regulation of FSH secretion 

1.5.1. Hypothalamic regulation 

During the greater portion of the luteal phase and throughout anestrus, FSH secretion, 

unlike that of LH, is non-pulsatile (Wallace and McNeilly 1986) suggesting that FSH and 

LH secretion are differentially regulated by GnRH (Clarke et al 1986). Van Cleeff et al 
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(1995) reported that during the luteal phase in the ewe, FSH release was episodic, with 

each FSH pulse produced by a GnRH pulse, but the release pattern of FSH monitored in 

peripheral circulation was uncoupled from GnRH stimulus. More recent studies 

(Padmanabhan and McNeilly 2001; Padmanabhan et al 2002; Padmanabhan et al 2003) 

provided evidence of a hypothalamic-independent regulation of FSH secretion. 

 

1.5.2. Gonadal regulation 

Estradiol is one of the main regulators of FSH secretion (Baird et al 1991) and changes in 

peripheral concentrations of FSH relate primarily to ovarian follicular activity, reflecting 

the output of estradiol (McNeilly 1995). Estradiol has the capability to exert both positive 

and negative feedback effects on FSH secretion (Karsch et al 1993). Ovarian inhibin is a 

strong regulator of FSH secretion. More specifically, there has been found to be an 

inverse relationship between circulating concentrations of inhibin A and FSH in sheep 

(Knight et al 1998). The role of progesterone in FSH regulation is unclear. Some authors 

(Dluzen and Ramirez 1987) have shown that, in estrogen-primed rats, an infusion of 

progesterone had no effect on FSH secretion, whereas others (Tsonis et al 1986) have 

shown that progesterone suppresses the release of FSH from dispersed sheep pituitary 

cells. 

 

1.6. Secretion and regulation of secretion of estradiol 

The main source of estradiol are the largest (≥5 mm in diameter), non-atretic follicles 

(Bjersing et al 1972; Evans et al 2000). Studies involving the ultrasonographic 

monitoring of ovarian follicular development and blood sampling have shown 3 to 4 
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peaks (peak amplitude of 4.6 ± 0.6 pg/ml; Bartlewski et al 1999) in serum estradiol 

concentrations per cycle and those peaks coincide with the attainment of the largest 

diameter of a follicle in each follicular wave (Fig. 1.1. Bottom panel; Souza et al 1998; 

Bister et al 1999; Bartlewski et al 1999). Increased estradiol secretion during the 

follicular phase of the estrous cycle is a reflection of increased maturation of the 

preovulatory follicles and is associated with an increase in LH receptor content in both 

granulosa and theca cells (Carson et al 1979; Armstrong et al 1981; England et al 1981; 

Webb and England 1982). The secretion of estradiol results from LH binding to its 

receptor on the follicular theca cells which stimulates androgen synthesis, and from FSH 

inducing aromatization of this substrate to estradiol in the granulosa cells (Carson et al 

1979; Armstrong et al 1981; Fortune and Quirke 1988). There is an increase in estradiol 

secretion within 5 minutes of a pulse of LH, and concentrations remain elevated for 

around 2 hours (Baird 1978; Martin 1984). In both cyclic (Baird et al 1976) and anestrous 

ewes (Scaramuzzi and Baird 1977), each pulse of LH is followed by a rise in the 

secretion of estradiol-17β. Progesterone concentrations in the follicular fluid increase at 

the time of the preovulatory LH surge, while estradiol concentrations decline to a 

minimal value, within 16 to 24 hours of the LH surge (Baird 1978; England et al 1981; 

Campbell et al 1990). Once serum concentrations of LH exceed 5 ng/ml, the largest 

ovarian follicles are no longer able to respond to LH by producing estradiol (Baird 1978). 

In further studies a decline in estradiol concentrations on the day of ovulation was seen 

coinciding with the secondary peak of FSH secretion (Bister and Paquay 1983; Findlay et 

al 1990; Baird et al 1991). 
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In sheep, estradiol plays an important role in regulating the secretory activity of the 

hypothalamus (Clarke 1987). Estradiol can exert both a positive and a negative feedback 

effect on the secretory activity of the hypothalamus and pituitary gland. During the 

follicular phase of the estrous cycle in ewes, the hypothalamus is the main site for the 

positive feedback effects of estradiol (Herman and Adams 1990; Moenter et al 1990). 

Estradiol also enhances the response of the anterior pituitary to GnRH (Clarke and 

Cummins 1984; Crowder and Nett 1984; Phillips et al 1990). Physical disconnection of 

the pituitary from hypothalamic GnRH (Clarke et al 1983; Clarke and Cummins 1984; 

Girmus and Wise 1992) completely blocks pituitary response to estradiol. Therefore, full 

expression of the estradiol-dependent positive feedback effects on gonadotropin secretion 

requires continued input from the hypothalamus (Clarke et al 1989). However, estradiol 

enhances the negative feedback effects of progesterone on pulsatile LH secretion, during 

the luteal phase of the estrous cycle of the ewe, and acts primarily at the level of the 

hypothalamus (Goodman and Karsch 1980; Goodman et al 1981a,b; Martin et al 1983). 

In ovariectomized ewes, Kasa-Vubu et al (1992) found that progesterone blocks the 

estradiol-induced LH surge by preventing the increase in GnRH pulse frequency and 

amplitude, but Koligian and Stormshak (1977) suggest that perhaps this occurs by 

decreasing the sensitivity of pituitary gonadotrophs to estradiol. The inhibitory effect of 

progesterone is all the more pronounced in seasonally anestrous ewes (Karsch et al 

1987). 
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1.7.  Secretion and regulation of secretion of progesterone 

The corpus luteum is a transient endocrine gland, which secretes progesterone, and is 

formed from follicular cells following ovulation (Juengel and Niswender 1999). 

Progesterone concentrations follow closely the structural changes of the corpora lutea 

(Arthur et al 1989). Following ovulation, serum progesterone concentrations increase 

from day 0 to day 11 and then reach a nadir by day 15 after ovulation (Edgar and 

Ronaldson 1958; Bartlewski et al 1999b). The pattern of progesterone secretion in the 

ewe is episodic, and an average of 8 pulses of progesterone per 24 hours is observed 

throughout the luteal phase (Alecozay et al 1988). It has been demonstrated by several 

authors (Quirke et al 1979; Cahill et al 1981) that prolific ewes have higher serum 

concentrations of progesterone compared to non-prolific breeds, however, contrary to this 

data, in a more recent study (Bartlewski et al 1999b) it was shown that prolific ewes have 

lower serum progesterone concentrations compared to non-prolific ewes. Further to these 

observations, other authors have observed that low serum concentrations of progesterone 

result in the prolonging of the lifespan of large antral follicles in a follicular wave 

(Johnson et al 1996; Flynn et al 1999; Vinoles et al 1999) and a subsequent increase in 

ovulation rate in non-prolific ewes (Bartlewski et al 2003).  

 

The mechanisms involved in the synthesis and secretion of progesterone are complex in 

nature. Niswender and Nett (1988) reviewed, in detail, the steriodogenic pathways 

involved in progesterone synthesis and secretion. In brief, cholesterol bound to low 

density lipoprotein (LDL) produced by the liver is the primary substrate for progesterone 

synthesis. The steroidogenic luteal cells contain LDL receptors that are involved in the 
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transport of lipoprotein from outside to inside the cell, where cholesterol is liberated. For 

the biosynthesis of progesterone, cholesterol is transported to the mitochondria. LH is the 

single most important endocrine factor involved in the regulation of synthesis and 

secretion of progesterone in the corpus luteum (Schomberg et al 1967; Niswender et al 

1976). Several authors have shown that, LH administration consistently increases 

progesterone secretion (Cook et al 1969; McCracken et al 1971; Baird and Collett 1973) 

and maintains luteal function in hypophysectomised ewes (Kaltenbach et al 1968). 

Elevations in LH also prolong the luteal life span in normal ewes (Karsch et al 1970), 

whereas injections of LH antisera cause premature luteal regression (Fuller and Hansel 

1970). However, other reviewers (Goodman 1994) have suggested that this may well be a 

pharmacological effect. Endogenous LH pulses have no obvious effect on progesterone 

secretion in late luteal phase ewes (Baird 1978; Campbell et al 1990). These in vivo 

observations are consistent with in vitro data demonstrating that most progesterone 

secretion derives from large luteal cells that are unresponsive to LH (Goodman 1994). 

However, it has been suggested that these luteal cells normally function at maximal 

capacity so that they cannot respond further to an LH stimulus (Niswender et al 1985; 

Wiltbank et al 1991).  

 

1.8.  Follicular growth and development 

1.8.1.  Folliculogenesis 

Populations of primordial (resting pool; primary oocytes surrounded by a squamous layer 

of pre-granulosa cells; Greenwald and Terranova 1988) and primary (growing pool; 

single layer of granulosa cells surrounding the oocyte) ovarian follicles constitute the 
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reserve pool of follicles formed just before or soon after birth (40,000 to 3000,000 

primordial follicles in ewe lambs; Driancourt et al 1991). There is a continual migration 

of (3 to 4 ovarian follicles per day) primordial follicles from the non-growing pool of 

follicles into the growing pool of primary follicles (van Wezel and Rodgers 1996; 

Turnbull et al 1977). When follicles leave the resting pool, they become secondary or 

preantral follicles with two or three layers of granulosa cells (Driancourt et al 1991). At 

this stage the granulosa cells become cuboidal and begin to express markers of cell 

proliferation (Wandji et al 1997; Fortune 2003). The next stage is early antral or tertiary 

follicular development followed by the formation of a complete antrum (i.e. the Graafian 

follicle; Driancourt et al 1991). The period of follicular growth from the primordial to the 

preovulatory stage in ewes exceeds 6 months (Cahill and Mauleon 1980). Growth from 

the primordial to the early preantral stage (0.2 mm in diameter) takes an average of 130 

days (Cahill and Mauleon 1980; Cahill et al 1981). It takes an additional 24 to 35 days to 

reach 0.5 mm in diameter, 5 days to reach 2.2 mm in size (Turnbull et al 1977) and about 

4 days to reach a preovulatory size of 4.5 to 5 mm in diameter (Turnbull et al 1977; 

McNeilly 1984). 

 

1.8.2. The early stage of follicular development 

The growth of follicles from the primordial to the preantral stage is termed early 

follicular development (Cahill and Mauleon 1980). The control of early follicular 

development is not fully understood, but is thought to be independent of gonadotropic 

hormones (McNatty et al 1981). Tisdall et al (1995) provided evidence, in sheep, 

suggesting FSH receptors are present on granulosa cells as early as the primary follicular 
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stage, although several other authors (reviewed by Fortune 2003) have demonstrated a 

varying ability of FSH to stimulate preantral follicle development. Wu et al (2000), from 

in vitro experiments in mice, indicated that LH is needed for development of smaller 

preantral follicles to the antral follicle stage; however, in general, there is a poor 

understanding of the potential effects of LH on the growth of preantral follicles (Fortune 

2003). Nevertheless, follicles become responsive to gonadotropins towards the end of this 

early stage of folliculogenesis, and this is a prerequisite to subsequent antral follicular 

growth and maturation (Campbell et al 1995). 

 

1.8.3. Antral follicular waves in sheep 

There are two stages of ovarian antral follicular development in both sheep and cattle 

(Mihm and Bleach 2003). The first is a ‘slow growth phase’ which, as discussed earlier, 

is believed to be independent of gonadotropins (Cahill 1981; Lussier et al 1987). The 

second is a ‘fast growth phase’ that requires gonadotropin support, and is usually 

described as a follicular wave (Sunderland et al 1994). In sheep, a follicular wave is 

defined as a follicle or group of follicles that grows from 2 or 3 mm in diameter to an 

ostensibly ovulatory size of ≥5 mm in diameter, with emergence restricted to a 24 hour 

period (Duggavathi et al 2003). Of the mammalian species studied, ovarian follicular 

dynamics has been most closely studied in cattle (Adams and Ginther 1995), therefore 

follicular dynamics in sheep will be compared to that of cattle in the following section. It 

is the antral follicular wave stage that will be focused on next; however, in order to aid in 

the interpretation of this information a few terms must first be defined. 
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In domestic ruminants, the growth phase is defined as the time taken by the individual 

antral follicle to grow from emergence (e.g. 2 or 3 mm in diameter in sheep as recorded 

by transrectal ultrasonography), to its maximum size. The time taken by this follicle to 

regress to the minimal recordable size is termed the regression phase, and the time period 

between the end of the growing phase and the onset of regression is defined as the static 

phase (Goodman and Hodgen 1983; Schrick et al 1993; Ravindra et al 1994). Follicle 

recruitment refers to the synchronised growth of a group of ovarian antral follicles that 

eventually gain the ability to fully respond to endocrine (gonadotropic) stimuli. Selection 

is the process by which only limited numbers of these follicles are rescued from atresia 

and continue to grow to an ovulatory size. Dominance is a characteristic of a large 

selected ovarian antral follicle (dominant follicle) of a wave or cohort of follicles, that 

permits its survival and further development in an endocrine environment suppressive to 

other co-existing follicles (subordinate follicles). Follicle emergence or follicular wave 

emergence is the beginning of the growth of a group of follicles from the minimum 

recordable size, which subsequently ovulate or undergo atresia (Ginther et al 1996). 

 

The development and application of transrectal ultrasonography brought about a large 

increase in the understanding of follicular waves in both cyclic and anestrous ewes 

(Schrick et al 1993; Ravindra et al 1994; Ginther et al 1995; Souza et al 1998; Leyva et 

al 1998b; Bartlewski et al 1999a; Gibbons et al 1999; Vinoles et al 1999; Evans et al 

2000). The wave-like pattern of antral follicular emergence and growth occurs more 

frequently in sheep (every 4 to 5 days; Ginther et al 1995; Bartlewski et al 1998; Evans et 

al 2000) than in cattle (every 7 to 10 days; Savio et al 1988; Sirois and Fortune 1988; 
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Pierson and Ginther 1988; Knopf et al 1989), and each wave is preceded by a transient 

increase in serum FSH concentrations (Adams et al 1992; Ginther et al 1995; Bartlewski 

et al 1998; Souza et al 1998; Bister et al 1999; Bartlewski et al 1999a; Bartlewski et al 

1999c; Evans et al 2000; Evans et al 2001; Duggavathi et al 2003a; Duggavathi et al 

2004). In the ewe, a follicular wave consists of 1 to 4 follicles growing from 2 to 3 mm in 

diameter to a maximum size of 4 to 12 mm in diameter before regression or ovulation 

(Noel et al 1993; Ravindra et al 1994; Ginther et al 1995; Bartlewski et al 1999a; Evans 

et al 2000; Vinoles et al 2001). The number of follicular waves per cycle can vary 

between breeds of sheep, but range from 2 to 4 waves per cycle (Noel et al 1993; 

Ravindra et al 1994; Ginther et al 1995). In cattle, there is a significant increase in the 

number of small antral follicles at the time of follicular wave emergence (6 to 9 follicles 

in the 4 to 6 mm diameter range; Gong et al 1993; Ginther et al 1996), and then a gradual 

reduction in the number of small follicles during the growth of the dominant follicle 

(Ginther et al 1996). In a recent study in sheep, Duggavathi et al (2003) surmised that, 

unlike in cattle, there is no increase in the numbers of small antral follicles (2-3 mm in 

diameter) at follicular wave emergence. In cattle, one of the follicles of the wave 

becomes dominant, and the others become atretic (subordinate; Ginther et al 1989b); this 

stage has been given the term deviation (reviewed by Ginther et al 1996). In sheep, 

ovulatory follicles originate from the final follicular wave of the cycle, like in cattle 

(Ginther et al 1995; Bartlewski et al 1999a). However, in some prolific breeds of sheep 

(Finnish Landrace and Rambouille x Booroola ewes) about 50% of all ovulatory sized 

follicles from the penultimate wave ovulate along with the ovulatory follicles from the 

final wave of the cycle (Bartlewski et al 1999a; Gibbons et al 1999). The ovulatory 
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follicles (8 to 20 mm in diameter) in cattle originate only from the last follicular wave of 

the interovulatory interval (Ginther et al 1996). Therefore, selection, deviation and 

dominance are not obvious in sheep. 
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Figure 1.2. A schematic representation of ovarian antral follicular waves in sheep during 
an estrous cycle. Three follicular waves (defined as 1 or more 2-3 mm follicles emerging 
and growing together to reach an ovulatory diameter of  ≥5 mm, before regression (dark 
colored spheres) or ovulation) are shown here. * indicates preovulatory FSH surge that is 
coincidental with preovulatory LH surge (not shown). Also shown are the periodic peaks 
in serum FSH concentrations that precede each follicular wave emergence. Based on data 
from Ginther et al 1995; Bartlewski et al 1999a; and reproduced by permission of 
Duggavathi 2004. 
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1.9.  Regulation of antral follicular growth and development 

  

t influence on ovarian antral follicular emergence and 

et al 1992; Adams et al 1993). 

1.9.1. Gonadotropic hormones 

Gonadotropins have the greates

growth (Baird and McNeilly 1981; Ireland 1987; Picton et al 1990). In sheep, LH 

receptors are initially found localised in the theca cells of large preantral follicles 

(Fortune and Armstrong 1977; Logan et al 2002). However, when follicles reach around 

4 mm in diameter, LH receptors can also be found in the granulosa cells (Carson et al 

1979; Webb and England 1982; Logan et al 2002). Both FSH and estradiol have been 

found to stimulate the synthesis of LH receptors by the granulosa cells (Uilenbroek and 

Richards 1979; England et al 1981). However, FSH receptors are found to be present, on 

the granulosa cells, as early as the primary follicle stage (Tisdall et al 1995). As follicles 

continue growth to 2 mm in diameter, FSH receptor numbers increase in sheep (Carson et 

al 1979). These observations suggest that early antral follicles are predominantly 

dependent on FSH whereas the terminal phase of folliculogenesis is under the control of 

LH (Baird and McNeilly 1981; Campbell et al 1995). Further to these investigations, it 

was discovered that, FSH alone, but not LH alone, could stimulate the growth of follicles 

to a preovulatory size in long-term GnRH agonist treated ewes (Picton et al 1990). There 

is unequivocal evidence that a transient peak in serum FSH concentrations precedes 

emergence of each follicular wave in both cyclic (Ginther et al 1995; Souza et al 1998; 

Bartlewski et al 1999a; Bartlewski et al 2000a; Evans et al 2001; Duggavathi et al 2004) 

and anestrous ewes (Bartlewski et al 1998; Evans et al 2001), as well as in cattle (Adams 
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1.9.2.  Gonadal steroids as regulators of follicular growth 

ichards (1994) suggested that estrogens, acting endocrinologically, may enhance the 

hysectomised rats. From the 

here are notable variations in ovulation rate among different breeds of sheep (Lahlou-

ancourt et al 1986a,b; Campbell et al 1995) and among 

R

response of ovarian follicles to gonadotropins in hypop

results of other studies in rodents (Findlay et al 2000; Richards 2001; Britt and Findlay 

2003) it was concluded that estradiol is required for early folliculogenesis. It is also 

thought that the combination of FSH and estradiol enhances the formation of LH 

receptors in granulosa cells of mature ovarian follicles (Richards et al 2002). There is 

contradictory evidence for the role of the CL in follicle growth. Dailey et al (1982) 

deduced that the CL acts locally to increase the numbers of all follicles visible on the 

ovarian surface. However, more recently, Bartlewski et al (2001) suggested that the 

presence of the CL locally inhibits the numbers of antral follicles not growing beyond 3 

mm in diameter in ewes. Bartlewski et al (2001) also concluded that there was no 

inhibitory effect of the CL on the numbers of follicles growing beyond 3 mm in diameter. 

 

1.10.  Ovulation in the ewe 

T

Kassi and Mariana 1984; Dri

different strains of sheep within breeds (Scaramuzzi and Radford 1983; Driancourt et al 

1986a,b, 1988). The mean ovulation rate of non-prolific breeds of sheep is 1 to 3 follicles 

whereas the mean ovulation rate of prolific sheep is roughly 3 (Bartlewski et al 1999). 
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Ovulation, in the ewe, is a distinct biological phenomenon that requires the rupture of 

 1932, Hartman gave the first major review of the literature on ovulation, but it wasn’t 

healthy tissue at the surface of the ovary (for structural anatomy of the follicular wall see 

fig. 1.3.; Espey and Lipner 1994). This is achieved through finely orchestrated 

biochemical changes regulated by multiple pathways and modulated by an even larger 

number of factors and processes (Tsafriri and Chun 1996).  

 

In

until 30 years later that Asdell (1962) summarised the principle theories. The general 

assumption at that time was that mammalian follicles rupture as a consequence of 

increasing follicular pressure (Heape 1905). It was also thought that contraction of 

smooth muscle tissue in the ovarian stroma promoted the increase in pressure (Thomson 

1919). As it gradually became apparent that neither the smooth-muscle theory nor the 

pressure theory adequately explained the mechanical events leading to ovulation, more 

attention was given to the possibility that the morphologic changes that occur at the apex 

of an ovulatory follicle might be the result of enzymic degradation of the thecal 

connective tissue (Schochet 1916; McKenzie and Terrill 1937). However, Espey (1994) 

hypothesised that mammalian ovulation is comparable to an inflammatory reaction. This 

hypothesis is supported by evidence from Cajander (1976) who demonstrated that any 

potent nonsteroidal anti-inflammatory agent (such as indomethacin) will inhibit ovulation 

if the drug is administered during the first 80% of the ovulatory process. 
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Figure 1.3. The structural organization of a mature ovarian follicle and above a close-up 
view of the components of the follicle wall. At the apex of a mature follicle, where a 
stigma forms and the follicle ruptures, there are five different layers of cells. The 
outermost layer is the surface epithelium, a single-cell layer of cuboidal epithelial cells. 
The second layer is the tunica albuginea, consisting of fibroblasts and collagen, that 
forms a tenacious sheath around the entire ovary. The third layer is the theca externa, the 
follicle’s own capsule of collagenous connective tissue, which delineates its boundary. 
The fourth layer consists of the secretory cells of the theca interna, just inside the theca 
externa. The fifth and innermost layer is the stratum granulosum, from which extend the 
cumulus mass and its oocyte. Reproduced from Espey and Lipner (1994). 
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As a follicle grows and develops within the ovary it produces increasing amounts of 

estradiol which promotes the expression of LH and/or FSH receptors on the plasma 

membranes of follicular cells (Espey 1999). A review of the literature suggests that 

ovulation can only occur in mature ovarian follicles that have acquired adequate 

concentrations of LH and/or FSH receptors (Richards and Hedin 1976; McFarland et al 

1989; Leung and Steele 1992). At this stage of the estrous cycle, increasing 

concentrations of circulating estradiol induce a sudden increase in GnRH secretion, in 

turn causing a surge in LH and FSH secretion form the pituitary gland (Espey 1999). The 

preovulatory LH surge is important because it sets in motion a cascade of biochemical 

events that lead to ovulation and functional and structural changes in the granulosa and 

theca cells of the ovulatory follicle (reviewed by Niswender et al 1986; Alila and Dowd 

1991; Espey 1999). The most important structural changes leading to ovulation are those 

of the connective tissue of the tunica albuginea and theca externa (Tsafriri and Chun 

1996). As the time of rupture nears, the apex of a mature follicle protrudes above the 

surface of the ovary and eventually forms a stigma (Espey 1999). As ovulation 

approaches, there is degradation of the collagenous connective tissue in the follicle wall 

(Espey 1967) and an intrafollicular pressure of about 20 mm Hg (Espey 1999). These 

changes in the connective tissue are accompanied by increased permeability of the blood 

vessels, resulting in leakage of blood cells and edema of follicular tissue (Parr 1975; 

Abisogun et al 1988). Once the egg-bearing cumulus mass is expelled from the ovary, 

ovulation is complete (Espey 1999). 
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1.11.  Corpus luteum formation and development 

The corpus luteum is a transient endocrine organ formed from cells of the follicle 

following ovulation (Juengel et al 1999). In cattle it has been demonstrated that the 

granulosa and theca cells, of the follicular wall, give rise to large and small luteal cells, 

respectively (Alila and Hansel 1984; Niswender et al 1985; Meidan et al 1990). 

However, research has shown that small luteal cells may differentiate into large luteal 

cells when LH is administered to ewes (Farin et al 1988) and cows (Niswender et al 

1985). The transition of follicular tissue into luteal tissue is a dynamic process that 

includes differentiation, migration, and proliferation of cells (reviewed by Juengel et al 

1999).  

 

In ewes, the greatest number of active LH receptors is located on the small luteal cells 

(Harrison et al 1987). Luteal cells require LH receptors in order to respond to 

gonadotropic stimuli. However, the large luteal cells are unresponsive to LH stimulation 

(Hoyer and Niswender 1986), suggesting that large luteal cells are not dependent on LH 

for the production of progesterone (Alila and Dowd 1991). The increase in total luteal 

mass during the early and mid-luteal phase of the cycle is due to both small and large 

luteal cells. Between days 4 and 12 there is an increase in size of large luteal cells; 

however, the number of cells remains constant until the onset of luteolysis (O’Shea et al 

1986; Farin et al 1989). On the other hand, there is an increase in the number of small 

luteal cells from days 4 to 8 but no change in the actual size of the small luteal cells 

(O’Shea et al 1986; Farin et al 1989). The capillary endothelial cells and luteal fibroblasts 

increase in number between days 4 and 12, and between days 8 and 16 of the cycle (Farin 
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et al 1989). Many of the proliferating cells contribute to the extensive capillary network 

of the corpus luteum (Juengel et al 1999). Once established, the capillary network 

supports blood flow to the corpus luteum at a rate that exceeds that in other tissues 

(Juengel et al 1999). 

 

1.12.  Endocrine regulation of luteolysis  

The luteolytic factor in ruminants is prostaglandin F2α (PGF2α) and is released from the 

endometrial glands of the uterus (reviewed by Knickerbocker et al 1988). PGF2α travels 

to the ovary by way of the uterine venous and lymphatic vessels and ovarian artery 

(Koziorowski et al 1989). In the ewe, small luteal cells are insensitive to PGF2α, while 

large luteal cells contain PGF2α receptors (Fitz et al 1982). Functional luteolysis (a 

decline in the capacity to release progesterone) can be induced by PGF2α through 

interference with the transfer of cholesterol through membranes of the mitochondria and 

by way of large luteal cell receptors (Spencer 1998). However, the CL of the ewe is only 

responsive to PGF2α between days 4 and 14 of the estrous cycle (Day 0 = oestrous; 

Chamley et al 1972). 

 

Ovarian estradiol, progesterone, and oxytocin are regulators of PGF2α secretion, in the 

ewe. Exposing the uterus to high levels of progesterone for a specific period of time 

prepares the endometrium for PGF2α synthesis (Silvia et al 1991). Zelinski et al (1982) 

reported high concentrations of endometrial receptors for progesterone at estrus but then 

a gradual decline during the luteal phase of the cycle. The exposure to luteal phase 

progesterone allows the build up of prostaglandin endoperoxidase and arachidonic acid, 
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which are required for PGF2α production (Knickerbocker et al 1988; Silvia et al 1991). 

Towards the end of the luteal phase, the formation of endometrial receptors for oxytocin 

and estradiol increases and is stimulated by follicular estradiol (Roberts et al 1975, 1976; 

Koligan and Stormshak 1977; Spencer 1988; Juengel and Niswender 1999). Early 

exposure to progesterone greatly amplifies the effect of estradiol on the recruitment of 

oxytocin receptors and estradiol amplifies the secretion of PGF2α (Ford et al 1975; 

McCracken et al 1984; Fogwell et al 1985; Homanics and Silvia 1988; Vallet et al 1990). 

It is interesting to note that an increase in pulsatile PGF2α secretion and an elevation in 

the number of oxytocin receptors are related to the decrease in circulating progesterone 

concentrations (Sheldrick and Flint 1985). Leavitt et al (1985) found that the increase in 

endometrial oxytocin receptors can be detected as early as 6 hours after the withdrawal of 

progesterone in the ewe. 

 

1.13.  Transrectal ultrasonography 

Real-time B-mode ultrasonographic imaging of the reproductive tract was developed over 

several decades. However, significant advancements since the 1970’s have seen the 

application of this technique in humans (Kambe et al, 1977), and the 1980’s in farm 

animal species (Ginther 1983; Pierson and Ginther 1986; Adams et al. 1989). Transrectal 

ultrasonography of the ovine ovary was first reported comprehensively by Schrick et al in 

1993, and is a non-invasive technique for the collection of real-time data whilst at the 

same time allowing repeated observations from the same individual; making it possible to 

study the dynamic interactions within the ovarian follicular population over time (Pierson 

and Ginther 1988). Schrick et al (1993) argued against the existence of a “wave” like 
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pattern of follicular development in sheep. However, numerous authors (Bartlewski et al 

1999a ; Evans et al 2000) have put forward convincing evidence that supports the theory 

of “wave” like follicular development in sheep, similar to that seen in cattle (Pierson and 

Ginther 1984; Ginther et al 1996). With the advent of high-resolution ultrasound 

equipment it is now possible to identify and quantify all antral follicles ≥1 mm in 

diameter in the ovine ovary. This technology has enabled authors (Duggavathi et al 

2003a) to surmise that there is no increase in the numbers of small follicles at follicle 

wave emergence in cyclic ewes, in contrast to cattle (Gong et al 1993; Fortune 1994; 

Ginther et al 1996). Early detection of the CL after ovulation allows assessment of the 

developing structure and the correlation of its ultrasound (size) characteristics to 

functional attributes such as circulating progesterone concentrations (Kastelic et al 1990, 

heifer; Bartlewski et al 1999b, ewe; Checura et al 2002, mare). 

 

1.13.1. Image analysis 

Computer-assisted image analysis is a useful extension to ultrasonography. 

Ultrasonography is based on the abilities of different tissues to reflect high frequency 

sound waves (Pierson and Adams 1995). A piezoelectric transducer is used to emit 

acoustic pressure waves and transmit them into the adjacent tissues (Ginther 1995). A 

proportion of the wave is reflected by the tissue interfaces, received by the transducer and 

displayed as a grey-scale image (Powis and Powis 1984; Zagzebski 1996). Grey-scale 

images are composed of thousands of picture elements, known as pixels (Ginther 1995). 

A single tissue reflector is represented by a single pixel and is designated one of 256 

shades of grey (ranging from black to white) in an 8-bit grey-scale image (Singh et al 
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2003). Subjective scoring (Townson and Ginther 1989) has been used to quantify changes 

in image attributes; however, the accuracy and repeatability of this procedure is under 

question (Tom et al 1998a) because the human eye can only distinguish between 18 and 

20 shades of grey (Baxes 1994). Therefore, computer algorithms have been designed 

specifically for a more objective analysis of ultrasound images, and providing a 

quantitative approach to echotextural analysis (SYNERGYNE Version 2.8©, Sasaktoon, 

Saskatchewan, Canada). The application of this technology has enabled investigators to 

obtain vast quantities of information on the topic of the echotexture dynamics of antral 

follicles (Tom et al 1998b) and CL (Duggavathi et al 2003b) and has allowed correlation 

with endocrine variables (Kastelic et al 1990; Bartlewski et al 1999b). 

 

1.14.  The ‘Ram Effect’ 

The seasonality of breeding activity in sheep represents an important constraint in the 

breeding program of commercial flocks (Rosa and Bryant 2002). From the farmer’s point 

of view, the economic return from his or her sheep will depend primarily on their 

reproductive efficiency (Gordon 1997), and low lamb output per ewe is a major factor 

limiting the energetic efficiency of sheep meat production (Blaxter, 1964). Increasing the 

frequency of lambing under some sheep farming conditions may be a means of achieving 

greater reproductive efficiency, levelling out the flow of lambs to the market and utilising 

buildings, capital and labour more effectively (Hulet, 1977). There are several techniques 

available to manipulate reproduction during the anoestrous season (Martin 1995; Gordon 

1997); however, these can be expensive, require sufficient labour to implement, and may 

increase waiting time for sending animals to slaughter (Rosa and Bryant 2002). 
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If seasonally anestrous ewes are preconditioned by a period of isolation from rams (at 

least one month), they respond to the re-introduction of the male by displaying a 

reasonably well synchronised estrus about one estrous cycle after ram exposure 

(Underwood et al., 1944; Edgar and Bilkey, 1963; Fulkerson et al., 1981; Knight et al., 

1981; Gordon, 1997). This occurrence is known as the “ram effect,” and can be used in 

commercial sheep flocks (Gordon, 1997). The “ram effect” has been observed in a wide 

variety of breeds (Martin and Scaramuzzi 1983), but there is considerable variation in the 

percentage of ewes responding (Martin 1984). Some of this variation appears to reflect 

the “depth” of anestrus (Martin 1984). Breeds with limited anestrous periods respond 

more readily to rams (Schinckel 1954; Martin et al 1983; Nugent et al 1988) than do 

breeds with more prolonged anestrus (Chesworth and Tait 1974; Nugent et al 1988). 

Ewes are also generally more responsive in late or early anestrus than they are in the 

middle of the anovulatory period (Edgar and Bilkey 1963; Cushwa et al 1992).  

 

The “ram effect” was first documented by Underwood et al (1944); however, it was 

Watson and Radford (1960) who first investigated pheromones as the stimuli for inducing 

the “ram effect.” Behavioural stimuli are also thought to be involved (Signoret et al 1982; 

Pearce and Oldham 1988); however, tactile and auditory cues are not required (Watson 

and Radford 1960). The pheromones mediating this effect are produced by the 

sudoriferous glands in the skin (Knight and Lynch 1980) and their production is 

controlled by androgens (Goodman 1994). This effect of androgens may account for the 

observations that rams with higher reproductive activity are more effective in inducing 

ovulation in anestrous ewes (Signoret et al 1982; Iglesias et al 1991). 

 31



There are reported to be two different responses that are caused by the ram effect: an 

increased ovulation rate (Cognie et al., 1980; Oldham, 1980) and advancing the breeding 

season (Coop and Clark, 1968; Gordon, 1997). Introducing ewes to the rams towards the 

end of the non-breeding season will often induce a proportion of anestrous ewes to 

ovulate within 2-3 days (Knight et al., 1978; Oldham et al., 1979); however, behavioural 

signs of estrous are not shown until about three weeks later. Chesworth and Tait (1974) 

documented increases in LH concentrations within one hour of exposing Greyface ewes 

to the ram just prior to the breeding season. Other studies revealed that LH pulse 

frequency increases markedly within minutes of ram introduction (Martin et al., 1980). In 

addition to this, ewes stimulated by the ram effect experience a preovulatory LH surge, 

similar to that of spontaneously ovulating sheep and have been observed to ovulate about 

40h after exposure to the male (Oldham et al., 1979). The increased pulse frequency of 

LH is the critical step in the ram effect; it leads up to the preovulatory LH surge and 

subsequent ovulation (Rosa and Bryant 2002). Rosa and Bryant (2002) proposed that LH 

secretion increases because (1) the presence of rams attenuates the negative feedback 

effect of the steroids, reversing the effect of photoperiod, or (2) that a direct mechanism 

independent of the negative feedback of steroids exists. In contrast to LH, the secretion of 

FSH has been reported either to remain unchanged (Martin et al 1980) or to decrease and 

remain low in ewes with ram exposure (Atkinson and Williamson 1985). 
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1.15.  General objectives 

With this background information, the following were the general objectives of the 

research work described in this thesis. 

 

1) The number of small antral follicles in the sheep ovary (≥1 mm but ≤3 mm in 

diameter) remains constant throughout the estrous cycle except for the 

periovulatory period, even though there are 3 or 4 periods of wave emergence. 

Each wave is preceded by a peak in FSH secretion. In cattle, as each follicular 

wave emerges there is an increase in number of small follicles in the ovary, the 

growth of the dominant follicle of the wave is associated with a decrease in the 

number of small follicles and an inhibition of follicular wave emergence. The 

objective of the first study of this thesis was to investigate whether small follicles, 

in the ewes’ ovaries, were able to respond to a physiological peak in FSH 

secretion at different times in a follicular wave, and in the presence of a large (≥4 

mm in diameter) follicle, with the induction of a follicular wave. In other words, 

are small follicles receptive to FSH stimulation at any phase of the estrous cycle. 

In addition, it was of interest to see if the next expected endogenously derived 

follicular wave could emerge in the presence of an induced wave. In other words 

does follicular dominance occur in the ewe? 

 

2) Prolific breeds of sheep have lower circulating concentrations of progesterone 

during the luteal phase than non prolific breeds of sheep. Experimental studies 

have shown that creating low serum concentrations of progesterone in the ewe 
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resulted in the prolonging of the lifespan of large antral follicles in a follicular 

wave (Johnson et al 1996; Vinoles et al, 1999). Prolonging follicle lifespan was 

also achieved by treating ewes with medroxyprogesterone acetate (MAP) 

releasing intravaginal sponges. Bartlewski et al (2003) investigated the effects on 

follicular development and ovulation rate of treating non-prolific Western White 

Face (WWF) ewes, for 6 days with a medroxyprogesterone acetate (MAP) 

releasing intravaginal sponge, starting on day 8 after ovulation and coupled with a 

single administration of prostaglandin F2α (PGF2α) given on day 8. One to 6 days 

after PGF2α administration, during the period sponges were in place, several large 

antral follicles ovulated; these ovulations were not preceded by a preovulatory 

LH/FSH surge, and none of these ovulations were followed by the formation of 

corpora lutea (CL), only transient corpora hemorrhagica (CH). Prostaglandin 

treated animals experienced the expected drop in serum progesterone 

concentrations after treatment and progesterone concentrations remained low 

throughout the MAP treatment period. Thus, the objectives of the second study of 

this thesis were to determine whether the ovulations that occurred after PGF2α 

treatment in the presence of an intravaginal sponge releasing a progestagen, in 

cyclic ewes, could be due to a direct effect of PGF2α on the ovary or due to the 

sharp decline in serum progesterone concentrations caused by the luteolytic dose 

of PGF2α.  

 

 

 

 34



3) The findings of the previously mentioned study by Bartlewski et al (2003), 

included an increase in ovulation rate of approximately 50% at the end of the 

treatment, when compared to control ewes or the pre-treatment cycle of treated 

ewes. This was attributed to the ovulation of follicles from the penultimate 

follicular wave before ovulation, and their addition to ovulatory follicles from the 

final wave before ovulation. The objective of the third study of this thesis was to 

see if this treatment would have commercial viability, through an increase in 

lambing rate, without any negative effects on lamb weights or sex ratios. 

 

4) If seasonally anestrous ewes are preconditioned by a period of isolation from rams 

(at least one month), they respond to the re-introduction of the male with 

increased LH secretion and a well synchronized oestrus, about 17 days after ram 

exposure. The response is variable and depends on breed and stage of anestrus, 

being more limited during mid-anoestrous in ewes with a distinct seasonality. 

There has been limited investigation on the effect of ram introduction on ovarian 

follicular wave dynamics using ovarian ultrasonography combined with extensive 

hormone measurements. It was hoped that if ram introduction was done in mid 

anestrous in distinctly seasonal ewes that only subtle increases in LH secretory 

pulse frequency would be seen, allowing us to examine the role of such a change 

on ovarian follicular dynamics. It has been previously reported by Bartlewski et al 

(2000) that LH secretory patterns change throughout the estrous cycle, and that 

increases in LH pulse amplitude are associated with the end of the growth phase 

of the largest follicle of a wave, in cyclic ewes. Thus, the objective of the fourth 
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study of this thesis was to investigate the effect of ram introduction on ovarian 

follicular dynamics and LH secretion in anestrous ewes at different stages of 

follicle wave development. 

 

5) In an article by Bartlewski et al (1999b) it was demonstrated that CL volume 

(taken from ultrasonographic images) was correlated with progesterone 

concentrations during the formation and demise of the CL in Western White Face 

ewes (non-prolific breed). However, during the period after formation and before 

demise of the CL, CL volumes did not correlate with circulating progesterone 

concentrations in Western White Face ewes. Conversely, circulating progesterone 

concentrations and CL volume were correlated throughout the luteal phase in 

prolific Finn sheep. Therefore, the objectives of the final study of this thesis were 

to investigate whether or not there were any correlations between mean pixel 

value and heterogeneity of ultrasonographic images of CL and changing serum 

progesterone concentrations over time, in prolific (Finn Sheep) and non-prolific 

(Western White Face Sheep) ewes. 
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Chapter 2:  HYPOTHESES 

 
1. Small antral follicles (≥1 mm but ≤3 mm in diameter) in the ewe are able to 

respond to a physiological peak in serum concentrations of FSH, leading to 

follicular wave emergence, in the presence of a large (≥4 mm in diameter) follicle 

and at different phases of the first wave of the cycle, without disrupting the 

emergence of the second follicular wave of the cycle. 

 

2. Ovulations, in non prolific ewes, after PGF2α treatment and in the presence of a 

progestagen releasing intravaginal sponge are due to a direct effect of PGF2α on 

the ovary.  

 

3. Treatment of non prolific ewes for 6 days with a progestagen releasing 

intravaginal sponge, starting on day 8 after ovulation and coupled with a single 

injection of PGF2α given on day 8, will increase lambing rate without any negative 

effects on lamb weight or sex ratios. 

 

4. Re-introduction of rams to anestrous ewes, after a period of isolation, will induce 

an increase in LH pulse frequency in the ewe, which will not affect ovarian 

follicular dynamics, regardless of the stage of the follicular wave. 

 

5. Ultrasound image attributes of CL, in the ewe, are correlated to serum 

progesterone concentrations during the luteal phase of prolific and non prolific 

breeds of sheep. 
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Chapter 3: AN INVESTIGATION INTO THE RESPONSIVENESS OF SMALL 
ANTRAL FOLLICLES (≥1 MM BUT ≤3 MM IN DIAMETER) TO FSH 

STIMULATION DURING A FOLLICULAR WAVE IN THE EWE  
 

Davies KL, Duggavathi R and Rawlings NC. 
 
3.1. Abstract 

In the ewe 1 to 3 ovarian antral follicles (≥1 mm but ≤3 mm in diameter) emerge or 

continue growth in a wave-like pattern every 4 to 5 days. Waves are preceded by a peak 

in FSH secretion. To see if small follicles were able to respond to FSH at different times 

in a follicular wave, cyclic ewes (n=7) were given ovine FSH (oFSH; two s.c. injections 

of 0.5 μg/kg, 8 h apart) at 36 h and 72 h after ovulation, in the period between the 

endogenous peaks preceding waves 1 and 2 of the cycle. Five control ewes received 

vehicle only. Blood samples were collected every 12 hours, prior to each ovarian 

ultrasonographic scanning session. Peaks in exogenous serum FSH concentration were 

seen on days 2.1±0.1 and 3.6±0.1 after ovulation and induced follicular waves on days 

2.0 and 3.5 after ovulation. There were no differences in maximum follicle diameter and 

peak estradiol concentration amongst follicular waves (P>0.05). The induced follicular 

waves had significantly shorter growth phases, and tended (P=0.08) to have faster growth 

rates, than follicles in waves 1 and 2. Induced waves did not delay the emergence of the 

next expected follicular wave of the cycle (Wave 2). We concluded that, in the ewe, small 

antral follicles can respond to FSH administration to yield a follicular wave more 

frequently than seen in a normal cycle and in the presence of a large growing antral 

follicle. Non induced waves can emerge during the growth phase of an induced wave. 

The results from the present study therefore bring into question the presence of functional 

dominance in the ewe. 
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3.2. Introduction 

In cattle, there are 2 or 3 waves of ovarian antral follicular growth during an estrous cycle 

(Pierson and Ginther 1988; Sirois and Fortune 1988). Wave emergence occurs at 7 to 10 

day intervals (Savio et al 1988; Knopf et al 1989) and the emergence of each wave is 

preceded by a peak in serum FSH concentrations (Adams et al 1992). The emergence of a 

follicular wave, in cattle, is characterized by an increase in the number of small antral 

follicles (between 6 and 9 follicles, 4 to 6 mm in diameter; Ginther et al 1996). Within 

the next few days one of these follicles attains dominance, and the others become atretic 

(subordinate; Ginther et al 1989). It was suggested that during this period it is the 

dominant follicle that suppresses the growth of the subordinate follicles and prevents the 

emergence of a new follicular wave (Armstrong and Webb 1997). Mechanisms for this 

dominance included the early acquisition of LH receptors by the dominant follicle 

allowing it to become LH dependent, in parallel with the suppression of FSH secretion by 

secretory products of the dominant follicle, removing the FSH support of subordinate 

follicles (indirect dominance; Armstrong and Webb 1997; Austin et al 2002; Ginther et al 

2003). In addition, treatment of cattle with physiological or supraphysiological 

concentrations of FSH, in the presence of a growing dominant follicle, failed to show the 

emergence of a new follicular wave, supporting the concept of direct follicle to follicle 

dominance (Guilbault et al 1991; Adams et al 1993). 

 

In sheep, antral follicular growth occurs in a wavelike pattern, with waves emerging 

every 4 to 5 days (Ginther et al 1995; Bartlewski et al 1999a; Evans et al 2000) There are 

3 to 4 waves of antral follicle growth per cycle (Noel et al 1993; Ginther et al 1995; 
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Bartlewski et al 1999a) and each wave is preceded by a transient peak in serum FSH 

concentrations (Ginther et al 1995; Souza et al 1998). In sheep, a follicular wave is 

regarded as a follicle or group of follicles that emerges or grows from 2 or 3 mm in 

diameter to an ovulatory size of ≥5 mm in diameter, with emergence restricted to a 24 h 

period (Duggavathi et al 2003a). In contrast to cattle, the use of high-resolution 

transrectal ultrasonography in sheep revealed that the number of small antral follicles (1-

3 mm in diameter) did not increase at wave emergence except for the periovulatory 

period (Duggavathi et al 2003a). Again, in contrast to cattle, in a previous study in our 

laboratory with sheep (Duggavathi et al 2004), follicular wave emergence was induced 

by treatment with physiological concentrations of ovine FSH (oFSH), in the presence of a 

large growing follicle, bringing the existence of direct follicle to follicle dominance into 

question in the ewe. The objective of the present study was to investigate whether small 

antral follicles, in the ewe, are able to respond to a physiological peak in FSH secretion at 

different times in a follicular wave, with the induction of follicular wave emergence. In 

addition, we were interested to see if the next expected endogenously stimulated 

follicular wave would emerge in the presence of an induced wave, bringing the concept 

of indirect follicular dominance into question in the ewe. 

 

3.3. Materials and Methods 

3.3.1. Animals 

Twelve adult, clinically healthy, cyclic Western White Face ewes were used for this 

experiment (mean body weight of 76.3 ± 3.9 kg). Ewes were housed outside in sheltered 

pens and were fed maintenance rations of hay with water and cobalt iodized salt available 
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ad libitum. Experimental procedures were performed according to the standards of the 

Canadian Council on Animal Care. 

 

3.3.2. Experimental Procedures 

Seven ewes were injected with ovine FSH (oFSH; 0.5 μg/kg) at 36 h after ovulation. The 

oFSH used was NIDDK-oFSH-18. Each 1 mg of oFSH had a biological potency of FSH 

equivalent to 65.6 x NIH-oFSH-S1 or 1640 IU and a biological potency of LH equivalent 

to 0.1 x NIH-oLH-S1 or 106 IU. The oFSH was prepared in saline with 0.05% BSA (w/v; 

Sigma, St. Louis, MO) and 50% polyvinylpyrrolidone (w/v; Sigma). A second injection 

of oFSH, at the same dose, was given 8 h after the first injection. Five control ewes 

received two injections of vehicle only. This treatment regimen, of two injections 8 h 

apart, was repeated at 72 h after ovulation. This treatment regimen was designed to create 

two physiological peaks in serum FSH concentrations equally spaced between the 

endogenous peaks that preceded the first and second follicular waves of the cycle. The 

induced peaks were designed to occur early and late in the growth phase of the first 

follicular wave of the cycle. 

 

3.3.3. Ultrasonography 

Transrectal ultrasonography of ovaries was performed using a high-resolution, real-time 

B-mode echo camera (Aloka SSD-900; Aloka Co. Ltd., Tokyo, Japan) connected to a 7.5 

MHz transducer. The number, diameter and relative position of all follicles ≥1 mm in 

diameter and copora lutea (CL), were sketched onto ovarian charts, and all ovarian 

images were recorded on high-grade video tapes (Fuji S-VHS, ST-120 N; Fujifilm, 
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Tokyo, Japan), using a compatible VCR (Panasonic, Omnivision Super VHS 2002, 

Model number PV-VS4821-K), for retrospective analysis of ovarian data. Ewes were 

scanned twice daily (0800 and 2000 h), starting from the time of estrus (assigned by the 

day ewes were marked by a crayon harnessed ram). Scanning continued until the 

identification of the emergence of the second wave of the cycle (non induced). 

Subsequently, ewes were scanned once a day until the emergence of the third non 

induced wave of the cycle.  

 

3.3.4. Blood Sampling 

Blood samples (10 ml) were collected prior to each scanning session, by jugular 

venipuncture, using vacutainers (Becton Dickinson, Rutherford, NJ, USA). Blood 

samples were allowed to clot for 18-24 h at room temperature, and serum was harvested 

and stored at -20oC until assayed. 

 

3.3.5. Hormone Assays and Data Analyses 

All serum samples were analyzed for circulating concentrations of FSH and estradiol by 

validated radioimmunoassays (Currie and Rawlings, 1987; Joseph et al, 1992). The range 

of the standard curves was from 0.1-16.0 ng/ml and 1.0-50.0 pg/ml for FSH and estradiol, 

respectively. The sensitivities of assays (defined as the lowest concentration of hormone 

capable of significantly displacing labeled hormone from the antibody; unpaired t-test, 

P<0.05) were as follows: FSH, 0.1ng/ml and estradiol, 1pg/ml. All FSH samples were 

analyzed in one assay. The intra-assay coefficient of variation (CV) was 8.4%, for a 

reference serum with mean FSH concentration of 1.01 ng/ml. The intra- and inter-assay 
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CV’s were 11% or 10%, and 12% or 11%, for reference sera with mean estradiol 

concentrations of 3.3 pg/ml or 43.1 pg/ml, respectively. Peaks in serum concentrations of 

FSH, in samples taken twice daily, were determined using the cycle-detection computer 

program (Clifton and Steiner, 1983). Serum concentrations of FSH and estradiol were 

normalized to the day of ovulation, and analyzed for the period from 0.5 days before to 8 

days after ovulation.  

 

3.3.6. Follicular Data Analyses  

A follicular wave was regarded as a follicle or group of follicles that emerged or grew 

from 2 or 3 mm in diameter to an ovulatory size of ≥5 mm in diameter (Bartlewski et al, 

1999a), with emergence restricted to a 24 h period (Duggavathi et al, 2003a). Treatments 

were given during the growth phase of the first wave of the cycle (wave 1). The first 

follicular wave induced by treatment was designated as wave A and the second follicular 

wave induced by treatment was designated as wave B. The follicular wave emerging after 

the second induced wave (oFSH treated ewes) or 4-5 days after the emergence of wave 1 

(control ewes), was wave 2 of the cycle; the third wave of the cycle was also observed. 

The lengths of the growing, static, and regression phases of the largest follicle of the 

wave are presented. The day of follicular wave emergence was determined in relation to 

the day of ovulation. The maximum diameter of the follicle in a wave, the growth rate of 

the largest follicle in the wave and the number of follicles in a wave are also presented. 

The inter-wave intervals presented were defined as the interval between the time of wave 

emergence (i.e., time at which the largest follicle[s] of a wave was 2 or 3 mm in 

diameter) for two consecutive follicular waves (Duggavathi et al, 2004). Preliminary 
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analyses for numbers of 1-2 mm, 2 mm, and 3 mm follicles showed similar patterns. 

These follicles were therefore grouped as a single size-class (≥1 mm, but ≤3 mm in 

diameter) for subsequent analyses and presentation. Daily patterns are presented from day 

0 to day 8 after ovulation, normalized to the day of ovulation. 

 

3.3.7. Statistical Analyses 

Due to missing follicular data, one ewe from the oFSH-treated group was removed from 

analysis. Statistical differences were assessed by two-way repeated-measures Analysis of 

Variance (ANOVA), one-way repeated-measures ANOVA (SigmaStat® Statistical 

Software, for Windows Version 2.03, 1997, SPSS Inc., Chicago, IL, USA). The mean 

length of the regression phase for waves B and 2 were not determined because not all 

ewes had a regressing follicle on the last day of the experiment. Multiple comparisons 

were made by the method of Fisher’s least significant difference (LSD). All values are 

presented as means ± S.E.M. 

 

3.4. Results 

3.4.1. Administration of exogenous oFSH 

Analysis of serum FSH concentrations, by the cycle-detection program, identified two 

peaks in serum concentrations of FSH in both oFSH-treated and control ewes and these 

peaks preceded the emergence of waves 1 and 2 of the cycle (Table 3.1). Two additional 

peaks (preceding waves A and B) were identified at 2.10 ± 0.10 and 3.58 ± 0.08 days 

after ovulation respectively, in oFSH-treated ewes only (Table 3.1). ANOVA showed 

significant group and time effects, and a group x time interaction (P<0.05) for mean 
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serum FSH concentrations (Figure 3.1). Fishers LSD confirmed the serum FSH peaks 

identified by the cycle detection program for FSH peaks A and B (Figure 1). 
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Table 3.1. Mean day of peak in serum FSH concentrations (ng/ml; detected using the 
cycle detection program) and mean day on which wave emergence was detected, in ewes 
given oFSH (n=6) or vehicle (n=5) 1.5 days and 3 days after ovulation.  
 

Parameter Group Peak 1 Peak A Peak B Peak 2 
Day of FSH-peak oFSH-treated 0.50 ± 0.13 2.10 ± 0.10 3.58 ± 0.08 5.42 ± 0.20 
 Control 0.10 ± 0.25 No Peak A No Peak B 4.80 ± 0.47 
  Wave 1 Wave A Wave B Wave 2 
Day of wave emergence oFSH-treated 0.33 ± 0.11 2.00 ± 0.00 3.50 ± 0.00 5.33 ± 0.11 
 Control 0.30  ± 0.26 No Wave A No Wave B 5.10 ± 0.19 
Day 0 = Day of ovulation. Data presented as mean ± SEM. 
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Figure 3.1. Mean circulating serum concentrations of FSH (ng/ml) from -0.5 days to 8 
days after ovulation, in ewes given oFSH (○; n=6) or vehicle (●; n=5) 1.5 days and 3 
days after ovulation. An arrow denotes a peak in FSH concentration identified by the 
cycle detection program for oFSH-treated (↓) or vehicle (↑). Day 0 = Day of ovulation. 
Data presented as mean ± SEM. * denotes a significant induced peak in serum 
concentrations of FSH (P<0.05).  
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3.4.2. Follicular wave emergence 

The mean days of wave emergence for waves 1 and 2 of the cycle did not differ between 

oFSH-treated and control ewes (Table 3.1). Two additional waves (waves A and B) 

emerged after oFSH treatment in oFSH-treated ewes (Table 3.1). The interval (days) 

between the emergence of waves 1 and 2 did not differ (P>0.05) between oFSH-treated 

and control ewes (4.42 ± 0.33 and 4.90 ± 0.36, respectively). The interval (days) between 

the emergence of waves 2 and 3 did not differ (P>0.05) between oFSH-treated and 

control ewes (3.75 ± 0.33 and 4.00 ± 0.36, respectively).   

 

3.4.3. Characteristics of the largest follicle of the follicular wave 

Within the oFSH-treated ewes, the length of the growth phase did not differ amongst 

waves 1 and 2 (Table 3.2). However, the largest follicle of wave 1 had a significantly 

longer growth phase than both waves A and B; the largest follicle of wave 2 had a growth 

phase significantly longer than the growth phase of wave A (Table 3.2). There was no 

significant effect (P>0.05) of wave, or group, or a wave x group interaction for the 

lengths of the static phases (Table 3.2). 
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Table 3.2. The length of the growing, static, and regression phases (days), maximum follicle diameter (mm) and growth rate of the 
largest of a wave. Serum estradiol concentrations (pg/ml) at maximum follicle diameter within each wave, and the number of follicles 
in a wave. All parameters were measured for waves 1 and 2 in control ewes (n=5) given vehicle, and waves 1, A, B, and 2 in ewes 
given oFSH (n=6) 1.5 days and 3 days after ovulation.  
 
 
Parameter Group n Wave 1 Wave A Wave B Wave 2 
Growth phase (days) oFSH-treated 6 3.1 ± 0.3a 1.4 ± 0.2b 1.9 ± 0.3bc 2.7 ± 0.3ac

 Control 5 2.7 ± 0.4 No Wave No Wave 2.6 ± 0.2 
Static phase (days) oFSH-treated 6 3.4 ± 0.4 4.4 ± 1.2 3.0 ± 0.7 2.0 ± 0.5 
 Control 5 3.6 ± 0.6 No Wave No Wave 2.5 ± 0.4 
Regression phase (days) oFSH-treated 6 1.9 ± 0.4 3.1 ± 0.4 Not determined Not determined 
 Control 5 2.7 ± 0.2 No Wave No Wave Not determined 
Maximum diameter (mm) oFSH-treated 6 6.3 ± 0.3 5.7 ± 0.5 5.8 ± 0.4 5.8 ± 0.2y

 Control 5 7.0 ± 0.3 No Wave No Wave 6.6 ± 0.2x

Estradiol concentration (pg/ml) oFSH-treated 6 3.9 ± 0.5y 4.3 ± 0.6 3.1 ± 1.2 4.2 ± 1.5 
 Control 5 6.4 ± 0.6x No Wave No Wave 5.1 ± 1.1 
Growth rate (mm/day) oFSH-treated 6 1.4 ± 0.1ey 2.5 ± 0.3d 2.2 ± 0.6d 1.4 ± 0.1e

 Control 5 2.0 ± 0.2x No Wave No Wave 1.9 ± 0.3 
Number of follicles in a wave oFSH-treated 6 1.0 ± 0.2 1.2 ± 0.2 1.3 ± 0.2 1.2 ± 0.2y

 Control 5 1.6 ± 0.4 No Wave No Wave 1.8 ± 0.2x

Data presented as mean ± S.E.M.  
a.b,c denotes a significant difference (P<0.05) between waves within a group.  
d,e denotes a tendency for significant differences (P=0.08) between waves within a group.  
x,y denotes a significant difference (P<0.05) between groups within a wave. 
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3.4.4. Maximum follicle diameter and estradiol concentrations 

There were no significant differences (P>0.05) amongst waves in maximum follicle 

diameter and peak estradiol concentrations at maximum follicle diameter within oFSH-

treated ewes (waves 1, 2, A, and B of the cycle) and control ewes (waves 1 and 2 of the 

cycle; Table 3.2). Within wave 2, control ewes had a greater maximum follicle diameter 

than the oFSH-treated ewes (P<0.05; Table 3.2). Within wave 1, the control ewes had a 

higher serum estradiol concentration at maximum follicle diameter than the oFSH-treated 

ewes (P<0.05; Table 3.2). 

 

3.4.5. Follicle growth rate and number of follicles in a wave 

Follicle growth rate did not differ (P>0.05) between waves within the control group 

(Table 3.2). However, the growth rate of follicles in wave 1 was greater (P<0.05) for the 

control ewes than the oFSH-treated ewes (Table 3.2). Follicle growth rate within the 

oFSH-treated ewes tended (P=0.08) to be greater for follicles in waves A and B as 

compared to those follicles in waves 1 and 2 (Table 3.2). Within wave 2, oFSH-treated 

ewes had a significantly lower number of follicles in the wave as compared to ewes in the 

control group. 

 

3.4.6. Numbers of small follicles 

There was no significant effect of group or a group x time interaction for mean numbers 

of small follicles (≥1 mm but ≤3 mm in diameter) analyzed for the period from the day of 

ovulation (Day 0) to eight days after ovulation. However, there were an increased number 

of small follicles around the time of ovulation. Numbers of small follicles declined 
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(P<0.05) by day 2 in oFSH-treated ewes and by day 7 in the control ewes (Figure 3.2). 

The numbers of small follicles from 0 to 8 days after ovulation ranged from 9 to 16 in 

oFSH-treated ewes and from 9 to 13 in control ewes. 
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Figure 3.2. Mean daily number of small follicles (≥1 mm to ≤3 mm in diameter) in ewes 
given oFSH (○; n=6) or vehicle (●; n=5) on day 1.5 and day 3 after ovulation. Dashed 
lines represent significant differences between points in the number of small follicles. 
Day 0 = Day of ovulation. Data presented as ± SEM.  
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3.5. Discussion 

In the present study, injections of oFSH resulted in peaks in serum concentrations of FSH 

on days 2.1 ± 0.1 and 3.6 ± 0.1 after ovulation, creating a series of 4 peaks fairly equally 

spaced (2 endogenous peaks surrounding 2 induced peaks). Injections of oFSH in turn 

induced follicular wave emergence with similar time relationships. The induced follicular 

waves did not delay the emergence of the next expected endogenous follicular wave of 

the cycle (wave 2). The induced waves emerged in the presence of a large (≥4 mm in 

diameter) growing follicle and the second non induced wave of the cycle (Wave 2) 

emerged during the growth phase of the second induced follicle wave (Wave B). 

Therefore, it appeared that follicular waves could be induced in the presence of Wave 1 

of the cycle and that induced waves did not have any inhibitory effect on the growth of 

Wave 1 or the emergence of Wave 2 of the cycle, even though Wave 2 emerged while 

induced-Wave B was growing. These findings bring direct and indirect dominance in 

sheep into question. 

 

The findings of the present study contradict those of similar studies performed in cattle. 

Adams et al (1993) reported an inability of injection of recombinant bovine FSH (rbFSH) 

to stimulate wave emergence in the cow during the growth phase (dominance) of the first 

wave of the cycle suggesting a direct follicle to follicle dominance. The same authors 

speculated that follicular dominance in cattle does not involve suppression of FSH 

(indirect dominance) secretion as postulated by other authors (Ginther et al 2003). 

Several recent studies involving sheep also bring into question the presence of follicular 

dominance in the ewe. Some of the relevant findings include those of Driancourt et al 

 53



(1991) who found that eCG-induced growth of follicles in the ewe was not suppressed by 

the presence of a large follicle. In addition to this, Bartlewski et al (1999a) found that 

Finnish Landrace ewes frequently ovulate follicles from the penultimate wave of the 

estrous cycle along with follicles from the final wave of the cycle. There are also 

numerous reports of follicular wave emergence occurring in the presence of a growing 

ovulatory-size follicle when ewes were treated with exogenous progesterone (Johnson et 

al 1996; Leyva et al 1998; Flynn et al 2000). Considering all of this information together, 

it appears that there may be distinct differences between cattle and sheep in terms of their 

mechanisms of regulation of ovarian follicular wave patterns.  

 

In cattle, follicle wave emergence is accompanied by an increase in the number of small 

antral follicles (Ginther et al 1996). However, in the present study in sheep, there was 

only an increase in the number of small follicles around the time of ovulation. This is in 

agreement with a recent study involving sheep, where it was found that the number of 

small antral follicles remained constant throughout the estrous cycle, except for the 

periovulatory period (Duggavathi et al 2003a). 

 

Maximum follicle diameter and serum estradiol concentrations at maximum follicle 

diameter did not differ (P>0.05) between oFSH-induced and non induced follicular 

waves, suggesting that induced follicles were functionally normal. However, the induced 

follicular waves in oFSH-treated ewes had significantly shorter growth phases, and 

tended (P=0.08) to have faster growth rates, than follicles in waves 1 and 2. It could be 

argued that the differences in growth profiles between the oFSH-induced and non-
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induced follicular waves may be related to the characteristics of the FSH peak created 

with exogenous oFSH. In the present study, distinct FSH peaks were created in ewes 

given FSH but because 4 FSH peaks occurred within about 6 days the complete profiles 

of each peak could not be described. However, in a previous study (Duggavathi et al 

2004), when a single FSH peak was induced between endogenous FSH peaks, using the 

same regimen of injections of oFSH employed in the present study, it was found that the 

amplitude of the induced FSH peak was similar to the amplitude of endogenous FSH 

peaks but the induced peak was of shorter duration than non induced endogenous peaks. 

However, as in the present study, induced follicles appeared functionally normal and 

growth rate and the length of the growth phase did not differ from non induced follicular 

waves. The higher frequency of follicular wave induction in the present study, early in 

the cycle, may have increased pulsatile LH secretion (not measured) by giving more 

peaks of serum concentrations of estradiol. Such an effect could have been subsequently 

suppressed by rising serum concentrations of progesterone by the time of emergence of 

Wave 2 of the cycle. These intriguing findings await further study. 

 

In conclusion, injection of oFSH increased serum FSH concentrations and induced 

follicular wave emergence from the pool of small follicles, in the presence of a large (≥4 

mm in diameter) follicle (wave 1 of the cycle), without disrupting the emergence of the 

second follicular wave of the cycle. In the ewe, small follicles can respond to FSH peaks 

to yield a follicular wave more frequently than seen in a normal cycle and in the presence 

of a growing follicle; and non induced waves can emerge during the growth phase of an 
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induced wave. The results from the present study therefore bring into question the 

presence of functional dominance in the ewe. 
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Chapter 4: DOES INJECTION OF PROSTAGLANDIN F2α (PGF2α) CAUSE 
OVULATION IN ANESTROUS WESTERN WHITE FACE EWES? 

 
Davies KL, Bartlewski PM, Epp T, Duggavathi R, Barrettt DMW, Bagu ET, Cook SJ and 

Rawlings NC. 
 
4.1. Abstract 

In a previous study in our laboratory, treatment of non-prolific Western White Face 

(WWF) ewes with PGF2α and medroxyprogesterone acetate (MAP)-containing 

intravaginal sponges on ~Day 8 of a cycle (Day 0=first ovulation of the interovulatory 

interval), resulted in ovulations during the subsequent 6 days when MAP sponges were in 

place. Two experiments were performed on WWF ewes during anestrous to allow us to 

independently examine if such ovulations were due to the direct effects of PGF2α on the 

ovary or the effects of rapid decline in progesterone at PGF2α-induced luteolysis. 

Experiment 1: Ewes fitted with MAP sponges for 6 days (n=12), were injected with 

PGF2α (n=6; 15 mg i.m.), or saline (n=6) on the day of sponge insertion. Experiment 2: 

Ewes received progesterone-releasing subcutaneous implants (n=6) or empty implants 

(n=5) for 5 days. Six hours prior to implant removal, all ewes received a MAP sponge, 

which remained in place for 6 days. Ewes from both experiments underwent ovarian 

ultrasonography and blood sampling once daily for 6 days before and twice daily for 6 

days after sponge insertion. Additional blood samples were collected every 4 hours 

during sponge treatment. Experiment 1: Four of six (67%) PGF2α-treated ewes ovulated 

~1.5 d after PGF2α injection; these ovulations were not preceded by estrus or a 

preovulatory surge release of LH, and did not result in corpora lutea (CL). The growth 

phase was longer (P<0.05) and the growth rate slower (P<0.05) in ovulating as compared 

to non ovulating follicles in PGF2α-treated ewes. Experiment 2: In ewes given 
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progesterone implants, serum progesterone concentrations reached a peak (1.72 ng/ml; 

P<0.001) on the day of implant removal and fell to basal concentrations (<0.17 ng/ml; 

P<0.001) within 24 hours of implant removal. No ovulations occurred in either the 

treated or the control ewes. We concluded that ovulations occurring after PGF2α injection, 

in the presence of a MAP sponge could be due to a direct effect of PGF2α at the ovarian 

level rather than a sudden decline in circulating progesterone concentrations.  

 

4.2.  Introduction 

During the estrous cycle, ewes have three to four waves of antral follicle growth (Noel et 

al, 1993; Schrick et al 1993; Ginther et al 1995; Bartlewski et al 1999a; Gibbons et al 

1999; Evans et al 2000; Duggavathi et al 2003a). Each wave consists of 1 to 3 antral 

follicles that grow from a pool of follicles 1-3 mm in diameter and reach a maximum 

diameter of about 5 to 6 mm before regression or ovulation (Ginther et al, 1995; Souza et 

al 1997; Bartlewski et al 1999a; Evans et al 2000; Vinoles et al 2001). Each wave is 

preceded by a transient increase in serum FSH concentrations (Ginther et al, 1995; 

Bartlewski et al 1999a, 2000; Duggavathi et al 2005). In non-prolific breeds of sheep 

such as the Western White Face (WWF), an antral follicle(s) from the final wave of the 

cycle will ovulate rather than regress (Bartlewski et al, 1999a). However, in prolific 

Finnish Landrace ewes, follicles also ovulate from the penultimate wave of the cycle. 

These follicles from the penultimate wave have a prolonged lifespan, allowing them to 

ovulate with follicles from the final wave (Bartlewski et al, 1999a). In prolific breeds of 

sheep, such as the Finnish Landrace, mean serum progesterone concentrations during the 
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luteal phase of the cycle were lower than in the non prolific WWF sheep (Bartlewski et 

al, 1999b).  

 

In other experimental studies, creation of lower than normal luteal phase concentrations 

of progesterone in cyclic ewes resulted in the prolonged lifespan of large antral follicles 

in a follicular wave (Johnson et al 1996; Vinoles et al, 1999). Similar effects were 

observed when luteolysis was induced with PGF2α on Day 6 and intravaginal sponges 

containing MAP inserted, from Days 5 to 19 after ovulation (Flynn et al 1999), or when 

MAP-impregnated sponges were inserted on Day 12 after ovulation and ovaries were 

exposed to MAP in the absence of functional CL (Leyva et al 1998). It was suggested 

that MAP treatment applied in the absence of endogenous progesterone effectively 

mimicked a low progesterone regimen in sheep (Bartlewski et al 2003). The potential for 

short-term treatment with MAP intravaginal sponges to increase ovulation rate in non-

prolific breeds of sheep by mimicking the low progesterone environment seen in prolific 

Finn sheep, was further studied by Bartlewski et al (2003). 

 

Bartlewski et al (2003) investigated the effects on follicular wave development and 

ovulation rate of treating non-prolific WWF ewes, for 6 days with a MAP-releasing 

intravaginal sponge, starting on day 8 after ovulation and coupled with a single 

administration of PGF2α on the day of sponge insertion. This treatment resulted in the 

extension of the lifespan of large antral follicles and an increased ovulation rate after the 

treatment. However, surprisingly, one to 6 days after PGF2α administration, during the 

period sponges were in place, several large antral follicles ovulated; these ovulations 
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were not preceded by a preovulatory LH/FSH surge, and none of these ovulations were 

followed by the formation of CL, only transient corpora hemorrhagica (CH; Bartlewski et 

al 2003). Prostaglandin treated animals experienced the expected drop in serum 

progesterone concentrations after treatment and progesterone concentrations remained 

low throughout the MAP treatment period.  

 

The objectives of the present study were to determine whether the ovulations that occured 

after PGF2α treatment in the presence of an intravaginal sponge releasing a progestagen, 

in cyclic ewes, could be due to a direct effect of PGF2α on the ovary or due to the sharp 

decline in serum progesterone concentrations caused by the luteolytic dose of PGF2α. To 

study this we used seasonally anovular anestrous ewes. This allowed us to look at the 

effects of PGF2α in the absence of a decline in serum progesterone concentrations and to 

use progesterone releasing implants to create an increase and precipitate drop in serum 

concentrations of progesterone independent of luteolysis induced by PGF2α. 

 

4.3.  Materials and Methods 

4.3.1. Animals 

Experiment 1: Twelve adult, clinically healthy anestrous (May-June) Western White Face 

ewes were used in this experiment, with a mean body weight of 72 ± 4 kg. Experiment 2: 

Eleven (May-June) Western White Face ewes were used for this experiment, with a mean 

body weight of 76 ± 3 kg. All ewes were housed outdoors in sheltered pens and were fed 

maintenance rations of alfalfa hay daily. Ewes were kept with vasectomized crayon-
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harnessed rams. Experimental procedures were performed according to the standards of 

the Canadian Council on Animal Care. 

 

4.3.2.  Experimental Procedure 

Transrectal ultrasonography of ovaries was performed using real-time, high-resolution, 

B-mode ultrasound scanning equipment (Aloka SSD-900, Aloka Co. Ltd., Tokyo, Japan) 

and a stiffened 7.5 MHz transducer. Experiment 1: All ewes underwent daily transrectal 

ultrasonography for 6 days prior to the start of the treatment. On day 7, all ewes were 

treated with progestagen-releasing intravaginal sponges (Medroxyprogesterone acetate 

(MAP), 60mg; Veramix®, Upjohn, ON, Canada), sponges were left in place for 6 days. 

Six ewes were treated with a single injection of Prostaglandin F2α (PGF2α), (15mg i.m.; 

Lutaylase, Upjohn, Orangeville, ON, Canada) on the day of MAP sponge insertion; ewes 

in the control group (n=6) were treated with 3ml of sterile saline. From the day of sponge 

insertion onwards all ewes were scanned twice daily until the end of treatment with MAP 

sponges. Experiment 2: All ewes underwent daily transrectal ultrasonography for 6 days 

prior to the start of the treatment. On the seventh day after the start of scanning, six ewes 

(treatment group) received subcutaneous progesterone-releasing silastic rubber implants 

(22cm x 0.48cm; Rawlings et al, 1984; Elastomer from Factor II, Lakeside, Arizona, 

USA; Progesterone from Sigma-Aldrich, Oakville, Ontario, Canada). Implants were 

placed in the axillary region under local anaesthetic (Rawlings et al 1984). The five ewes 

in the control group (n=5) received empty silastic rubber implants (containing no 

progesterone). Implants remained in place for 5 d and all ewes underwent once daily 

scanning during the period when implants were in place. All ewes had a MAP 
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intravaginal sponge inserted 6 hours prior to the removal of the silastic implants. MAP 

sponges remained in place for 6 days, during which time ewes underwent twice daily 

transrectal ultrasonography. The treatments of experiment 2 were aimed to mimic 

intravaginal sponge treatment at Day 8 after ovulation in cyclic ewes and the precipitous 

drop in serum concentrations of progesterone that PGF2α treatment would induce at that 

stage of the cycle (Bartlewski et al 2003). 

 

4.3.3.  Blood Sampling 

Experiment 1: Blood samples were collected (10ml) by jugular venipuncture using 

vacutainers (Becton Dickinson, Rutherford, NJ, USA) prior to each scanning session for 

the first 6 days of the experiment; in addition, ewes were bled every 4 hours (4 ml) during 

MAP sponge treatment, via indwelling jugular catheters (vinyl tubing, 1.00 mm inside 

diameter × 1.50 mm outside diameter; SV70, Critchley Electrical Products Pty Ltd., 

Auburn, NSW, Australia). Blood samples were allowed to clot for 18 to 24 hours at room 

temperature, and serum was harvested and stored at -20oC until assayed. Experiment 2: 

All ewes were bled before each scanning session, in addition, ewes were also bled every 

4 hours during MAP sponge treatment.  

 

4.3.4. Hormone Analyses 

Circulating concentrations of LH (Rawlings et al, 1998) and FSH (Joseph et al, 1992) 

were determined by previously validated radioimmunoassay. All serum samples were 

analyzed for concentrations of LH and FSH in a single assay. The range of standards was 

from 0.1 to 8 ng/ml for LH (NIAMMD-oLH-24) and 0.1 to 16 ng/ml for FSH 
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(NIAMMD-oFSH-RP-1). The sensitivities of the assays (lowest concentration of 

hormone capable of significantly displacing labelled hormone from the antibody) were 

both 0.1 ng/ml. The intra-assay coefficient of variation (CV) was 12.6% for a reference 

serum with mean LH concentration of 0.16 ng/ml. For reference sera with mean FSH 

concentrations of 0.57 or 1.35 ng/ml, intra-assay CVs were 9.4 and 13.7%, respectively.  

 

Circulating concentrations of progesterone (Ravindra et al, 1994) and estradiol (Joseph et 

al, 1992) were determined by previously validated radioimmunoassays. Two samples per 

day were analyzed for concentrations of estradiol and one sample per day for 

progesterone concentrations. The range of standards was from 1.0 to 50 pg/ml for 

estradiol with a sensitivity of 1 pg/ml, and 0.1 to 10.0 ng/ml for progesterone with a 

sensitivity of 0.03 ng/ml. Experiment 1: Intra- and inter-assay CV’s for the progesterone 

assay were 11.2 and 15.2% or 4.2 and 6.8% for reference sera with mean concentrations 

of 0.45 or 0.92 ng/ml respectively. Intra- and inter-assay CV’s for the estradiol assay 

were 16.6 and 17.80% or 11.2 and 16.30% for reference sera with mean concentrations of 

5.0 or 15.9 pg/ml, respectively. Experiment 2: Intra- and inter-assay CV’s for the 

progesterone assay were 9.2 and 12.4% for a reference serum with mean concentration of 

0.62 ng/ml, respectively. Intra- and inter-assay CV’s for the estradiol assay were 10.9 and 

8.0% or 12.4 and 11.4% for reference sera with mean concentrations of 8.8 or 23.5 pg/ml, 

respectively. 
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4.3.5.  Follicular Data Analyses 

Follicular data (follicles ≥2 mm in diameter) were combined for both ovaries of each 

ewe. A follicular wave was defined as 1 or more antral follicles that grew from 2 mm to 

≥5 mm in diameter; the day the follicles were first detected at 2 mm was the day of wave 

emergence (Duggavathi et al, 2003a). Experiment 1: The following characteristics of 

follicles and follicular waves were determined for each ewe in which ovulation was 

detected during the period of MAP treatment (1) the number of follicles ovulating; (2) the 

time from PGF2α injection to ovulation; (3) the interval from emergence to ovulation; (4) 

the number of large follicles (follicles ≥5 mm in diameter) from 24 hours before to 36 

hours after ovulation (n=4); (5) the mean diameter of the ovulating follicles at 12 h before 

ovulation; (6) the time from attainment of maximum follicular diameter to ovulation; (7) 

the duration of corpus hemorrhagicum (CH) detection. The following follicular 

characteristics were determined for all ewes (1) the number of follicular waves emerging 

during MAP sponge treatment; (2) the maximum follicle diameter of follicles that 

reached their maximum diameter during MAP sponge treatment; (3) the length of the 

growth phase of follicles that reached their maximum diameter during MAP sponge 

treatment; (4) the growth rate of follicles that reached their maximum diameter during 

MAP sponge treatment. The day of ovulation of a follicle, as detected by 

ultrasonography, was the disappearance of a follicle ≥5 mm in diameter from one 

scanning session to the next, and the demonstration of a corpus hemorrhagicum (CH: 

Duggavathi et al 2003b). Experiment 2: The following characteristics of follicles and 

follicular waves were determined for each ewe; (1) the number of follicular waves 

emerging during MAP sponge treatment; (2) the numbers of large follicles (≥5 mm in 
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diameter) present in both ovaries each day were determined per ewe from 2 days before 

until 10 days after implant insertion. 

 

4.3.6 Statistical Analyses 

One-way repeated measures analysis of variance (ANOVA; SigmaStat® for Windows 

Version 2.03, 1997, SPSS Inc., Chicago, IL, USA) was employed for comparisons of 

emerging follicular waves and individual antral follicles attaining ≥5 mm in diameter in 

experiment 1. Two-way repeated measures ANOVA was employed to analyse: (1) the 

changes in number of large follicles (follicles ≥5 mm in diameter) from 2 days before 

implant insertion to 6 days after MAP sponge insertion in treated and control ewes 

(Experiment 2) (2) mean serum hormone concentrations (LH, FSH, progesterone and 

estradiol) from 2 days before prostaglandin injection and insertion of MAP sponge to 6 

days afterwards (Experiment 1) and from 2 days before implant insertion to 6 days after 

MAP sponge insertion (Experiment 2).  The numbers of follicular waves emerging during 

MAP sponge treatment (Experiment 2) were compared between treated and control ewes 

using a t-test. Statistical significance was defined as P<0.05. Data are presented as mean 

± S.E.M. 

 

4.4. Results 

4.4.1.  Experiment 1 

Occurrence of ovulation 

There were no ovulations in the control ewes, during the period MAP sponges were in 

place. However, one control ewe ovulated two follicles before the day of saline injection 
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and MAP sponge insertion and formed two corpora lutea. At a mean of 1.2 ± 0.4 days 

after treatment with PGF2α and insertion of progestogen sponges (Day 0), 4 of 6 (67%) 

treated ewes ovulated, resulting in a total of 5 ovulations. There were three ewes which 

ovulated once (On day 0, pm; day 1, am; day 2, am), and one ewe which ovulated twice 

(On day 1, am; day 2, pm). All of these ovulations occurred during the period of MAP 

sponge treatment; no mature corpora lutea resulted. 

 

Ovulating Follicles 

For those follicles ovulating after PGF2α injection and during MAP treatment, the interval 

from emergence of the follicular wave to ovulation was 6.6 ± 0.7 days. The mean follicle 

diameter before ovulation was 5.4 ± 0.2 mm. The time from attainment of maximum 

follicle diameter to ovulation was 2.4 ± 0.9 days. The duration of corpus hemorrhagicum 

detection was 3.2 ± 0.6 days. In the ewes that ovulated, after treatment, there was a 

significant decline in the number of large follicles from 12 hours before to the time of 

ovulation (Figure 4.1; P<0.001).  

 

Follicle Comparisons 

The number of follicle waves emerging during MAP sponge treatment did not differ 

between treatment and control groups (1.5 ± 0.2 waves and 1.8 ± 0.2 waves, respectively; 

P>0.05). The maximum follicle diameter (mm) of follicles that reached their maximum 

diameter during MAP sponge treatment did not differ between the treated and control 

ewes for non ovulating follicles (5.3 ± 0.2 mm and 5.2 ± 0.1 mm, respectively; P>0.05) 

or between ovulating and non ovulating follicles within the treatment group (5.6 ± 0.2  
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Figure 4.1. Mean (± SEM) number of large follicles (follicles ≥5 mm in diameter) from 
24 hours before to 36 hours after ovulations in ewes (n=4) given PGF2α injection on the 
first day of a 6 day treatment with intra vaginal sponges releasing medroxyprogesterone 
acetate (Hours from time of ovulation). (*P<0.001). Ovulations occurred 1.2 ± 0.4 days 
after PGF2α treatment. 
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mm and 5.3 ± 0.2 mm, respectively; P>0.05). The length of the growth phase (days) of 

follicles reaching maximum diameter during MAP sponge treatment did not differ 

between treated and control ewes for non ovulating follicles (2.3 ± 0.5 days and 2.6 ± 0.4 

days, respectively; P>0.05) but was longer for ovulating than non ovulating follicles 

within the treatment group (4.8 ± 0.6 days and 2.3 ± 0.5 days, respectively; P<0.05). The 

growth rate (mm/day) of follicles reaching maximum diameter during MAP sponge 

treatment did not differ between treatment and control groups for non ovulating follicles 

(2.8 ± 0.4 mm/day and 2.6 ± 0.5 mm/day, respectively; P>0.05) but was lower for 

ovulating than non ovulating follicles within the treatment group (1.3 ± 0.2 mm/day and 

2.8 ± 0.4 mm/day, respectively; P<0.05). 

 

Mean Serum LH and FSH Concentrations 

There was a significant day effect for both mean serum concentrations of LH and FSH. 

The day effect for mean serum FSH concentrations was due to the natural fluctuations in 

serum FSH concentrations associated with follicle wave emergence. The day effect for 

mean serum LH concentrations was due to an immediate decline on day 0 (Day 0 = day 

of PGF2α injection). There was no evidence of a surge in secretion of LH prior to any of 

the ovulations occurring after PGF2α injection and during the period of MAP sponge 

treatment (see Figure 4.2). 

 

Mean Serum Progesterone and Estradiol Concentrations 

The overall mean circulating progesterone concentration for this experiment was 0.1 ± 

0.0 ng/ml and there was no significant difference in progesterone concentrations between 

 68



treatment and control groups and no significant day effect. Mean circulating estradiol 

concentrations were 2.3 ± 0.1 pg/ml and did not differ between the two groups; there was 

no significant day effect. 

 

4.4.2.  Experiment 2 

Occurrence of ovulation 

There were no ovulations observed in either the treatment or control ewes.  

 

Mean Serum Progesterone Concentrations 

Serum Progesterone concentrations in control ewes remained basal and did not change 

throughout the experiment. After implant insertion (day 0), serum progesterone 

concentration significantly increased reaching a peak of 1.72 ng/ml, on the day of implant 

removal (day 5).  Progesterone concentrations then declined (P<0.05) to basal 

concentrations within 24 hours of implant removal (see Figure 4.3). 

 

Follicle Characteristics 

The daily number of large follicles present in each ewe did not differ significantly 

between the treatment and control groups from 2 days before to 10 days after implant 

insertion. There was also no statistically significant difference between treatment and 

control ewes for the number of follicular waves emerging during MAP sponge insertion 

(1.3 ± 0.2 and 1.6 ± 0.2; P>0.05, respectively).  
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Figure 4.2. Mean (± SEM) serum concentrations of LH (circles) and FSH (triangles) in 
ewes for the period from 2 days before to 6 days after the day of injection of PGF2α 
(filled symbols; n=6) or saline (open symbols; n=6) and start of a 6 day treatment with 
intra vaginal sponges releasing medroxyprogesterone acetate. There was a significant day 
effect for both LH (P<0.05) and FSH (P<0.001). 
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Mean Serum Estradiol, LH and FSH Concentrations 

There was no significant difference between treatment and control ewes for serum 

concentrations of estradiol (mean serum concentration of estradiol were 5.4 ± 0.4 pg/ml), 

LH or FSH (Figure 4.4) from 2 days before until 11 days after implant insertion. 
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Figure 4.3. Mean serum concentrations of progesterone (mean ± SEM) in 6 ewes given 
silastic rubber implant releasing progesterone (filled symbols) and 5 ewes given blank 
implants (open symbols), on day 0; implants were removed on day 5. Intra vaginal 
sponges releasing medroxyprogesterone acetate were inserted 6 hours before implant 
removal and left in place for 6 days. The shaded area is the profile of serum progesterone 
concentrations in cyclic ewes. Differences between groups (P<0.05). The dashed line on 
the graph denotes a significant decline in serum progesterone concentrations in the 
treatment ewes from Day 4 to Day 5 (P<0.001). 
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Figure 4.4. Mean (± SEM) serum concentrations of LH (circles) and FSH (triangles) in 
ewes for the period from 2 days before insertion of silastic rubber implants releasing 
progesterone (open symbols; n=6) or empty silastic rubber implants (filled symbols; 
n=5), to 6 days after intra vaginal sponges releasing medroxyprogesterone acetate were 
inserted (day 4).  
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4.5.  Discussion 

In the present study, six anestrous Western White Face ewes were given an injection of 

PGF2α and had an intravaginal MAP sponge inserted. Within approximately 1.5 d of 

injection of PGF2α, four of the six treated ewes ovulated, with one of the ewes ovulating 

twice. Signs of estrus or a preovulatory LH/FSH surge did not precede these ovulations, 

and none of these ovulations were followed by the formation of CL, only transient CH. 

However, when six anestrous Western White Face ewes were fitted with progesterone-

releasing implants which were subsequently removed five days later, creating a rapid 

decline in circulating serum concentrations of progesterone, no ovulations were seen. 

These findings are in agreement with an earlier study by Bartlewski et al (2003) in which 

treatment of cyclic ewes for 6 days with a MAP releasing intravaginal sponge, starting on 

~Day 8 after ovulation and coupled with a single administration of PGF2α given on the 

day of sponge insertion, resulted in the ovulation of several large follicles; most 

ovulations occurred between 1 to 3 days after PGF2α. As in our present study, a 

preovulatory surge of gonadotropins did not precede these ovulations, and none of these 

ovulations were followed by the formation of CL. There was an immediate decline in 

serum LH concentrations following injection of PGF2α and intravaginal MAP sponge 

insertion (experiment 1). It is uncertain why this occurred; however, mean serum LH 

concentrations remain within normal basal levels. By separating any direct effects of 

treatment with PGF2α from the sudden decline in circulating serum progesterone 

concentrations at luteolysis, it appeared that ovulations that occurred during the period of 

MAP sponge insertion in PGF2α-treated anestrous ewes were due to a direct effect of 

 74



PGF2α at the ovarian level rather than a sudden decline in circulating progesterone 

concentrations.  

 

Ovarian PGF2α is involved in the ovulatory process. Increases in follicular tissue 

concentrations of PGF2α occur within 4 hours of the preovulatory surge in luteinising 

hormone (Murdoch et al 1993; Silvia 1999). PGF2α is implicated in the reduction of 

follicular blood flow, via vasoconstriction, particularly at the rupture point, during the 

later portion of the ovulatory process (O’Grady et al 1972; Ford et al 1977; Silvia 1999). 

It has also been suggested that prostaglandins activate proteolytic enzymes that contribute 

to the breakdown of the follicular wall, particularly collagenase (LeMaire and Marsh 

1975; Espey 1980; Silvia 1999). In the present study, injection of PGF2α may have begun 

the ovulatory process through the mechanisms previously described. Several authors have 

likened the effects of PGF2α on ovulation as being similar to an acute inflammatory 

reaction (Armstrong and Grinwich 1972; O’Grady et al 1972; Tsafiri et al 1972; Espey et 

al 1982). Administration of indomethacin (a potent nonsteroidal anti-inflammatory agent; 

Espey et al 1982; Espey et al 1988) either before or after the initiation of the ovulatory 

process, consistently inhibits prostaglandin synthesis and follicular rupture (O’Grady et 

al 1972; Armstrong and Grinwich 1972; Espey et al 1982). Therefore, in the present 

study, administration of PGF2α may have led to direct effects on the ovary, including the 

disruption of the cellular matrix of the follicular wall through several different 

mechanisms. It was interesting that follicles induced to ovulate in the present study were 

older follicles with a slower growth rate compared to non ovulating follicles. Such 

follicles could have been exposed to PGF2α for a longer period and hence more 
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susceptible to disruption by PGF2α. It is intriguing to speculate that ovulation at the end 

of a normal estrous cycle could be initiated by the luteolytic release of endometrial PGF2α 

and then further induced or synchronised by the preovulatory LH surge through 

mechanisms involving local ovarian follicular secretions of PGF2α (Murdoch et al 1993; 

Silvia 1999). Presumably the normal rapid metabolism of PGF2α and the strictly 

controlled timing of release of PGF2α from the uterus (Knickerbocker et al 1988) would 

prevent the untimely ovulation of follicles during the luteal phase of the ovine estrous 

cycle. 

 

Administration of PGF2α to cyclic ewes in which 4 to 14 day old CL are present, results 

in regression of the CL and a decline in serum progesterone concentrations (Chamley et 

al 1972; Sheldrick and Flint 1985). A decline in serum progesterone concentrations leads 

to a preovulatory surge in LH and the cascade of events that result in ovulation of a 

follicle (Niswender et al 1986; Alila and Dowd 1991). In the second experiment of the 

present study, removal of progesterone-releasing implants created a decline in circulating 

serum progesterone concentrations, without administration of exogenous PGF2α. This 

decline in circulating progesterone concentrations appeared to have no affect on 

circulating serum concentrations of LH or FSH and no ovulations occurred in these 

animals. These results further support a notion that a direct action of PGF2α within the 

follicle, rather than changes in gonadotropin concentrations, were responsible for the 

ovulations seen in the present study. 
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The failure of normal luteogenesis of ovulated follicles, in the present study, may be 

attributed to several different factors. Gordon (1997c) reported that the average time from PGF2α administration to 

ovulation, in cyclic ewes, is 70 hours. However, in the present study, the average time 

from PGF2α administration to ovulation averaged 29 hours. Therefore, the failure of 

normal luteal formation could be attributed to the inadequate developmental competence 

of the preovulatory follicle as reported by other others (Legan et al 1977; Bartlewski et al 

2003). These follicles failed to stimulate the preovulatory mode of LH secretion, which is 

essential for normal luteogenesis of ovulated follicles (Niswender et al 1986). 

 

In summary, a PGF2α/MAP treatment of anestrous ewes resulted in ovulation of follicles 

during the period of MAP sponge insertion, but these ovulations were not preceded by a 

preovulatory LH or FSH surge (Experiment 1). However, creating a rapid decline in 

circulating progesterone concentrations, in MAP treated ewes, resulted in no ovulations 

(Experiment 2). Therefore, ovulations occurring after PGF2α injection in anestrous ewes, 

and in the presence of a MAP sponge were likely due to a direct effect of PGF2α at the 

ovarian level rather than a sudden decline in circulating progesterone concentrations.  
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Chapter 5: THE EFFECT OF A 6 DAY TREATMENT WITH 
MEDROXYPROGESTERONE ACETATE (MAP), AFTER PROSTAGLANDIN 
F2α (PGF2α)-INDUCED LUTEOLYSIS AT MID-CYCLE ON LAMBING RATE, 

BIRTH WEIGHT AND SEX RATIOS IN SUFFOLK EWES 
 

Davies KL, Duggavathi R, Barrett DMW and Rawlings NC. 
 
5.1. Abstract 

Increasing the ovulation rate of non-prolific breeds of sheep, may enable producers to 

overcome one of the major limiting factors to efficient sheep meat and wool production, 

that is, low lamb output per ewe. In a previous study in our laboratory, treatment of 

Western White Face ewes with PGF2α on day 8 of a cycle and insertion of 

medroxyprogesterone acetate (MAP) sponges for 6 days from day 8 of the cycle, resulted 

in an approximately 50% increase in ovulation rate at the end of the treatment. We 

hypothesized that the MAP sponge and PGF2α treatment would give an increased lambing 

rate and that the treatment would have no negative effects on lamb weights or sex ratios, 

and therefore have commercial viability. Twenty eight adult and thirty eight primiparous 

Suffolk ewes were synchronized with a 14 day progestagen treatment (MAP sponge) and 

then randomized assigned for age to either the treatment group (n=33) or control group 

(n=33). Eleven days after sponge withdrawal, ewes in the treatment group were fitted 

with MAP sponges for 6 days and injected with PGF2α on the day of sponge insertion. 

The control ewes received an injection of saline at the time of PGF2α injection. After 

sponge removal the treated and control ewes were mixed and assigned to one of 4 groups 

and rams were introduced to the ewes. There were no overall differences in lambing rate, 

lamb birth weights or sex ratios between the treatment and control groups (P>0.05). 

Within the treatment group there was a significantly higher number of lambs born to 

multiparous ewes than to primiparous ewes (P<0.05). We concluded, that the inability to 
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increase lambing rate in Suffolk ewes was not due to the inability to increase ovulation 

rate or the ovulation of aged follicles but was rather more a lack of insemination of ewes 

at the appropriate time with respect to ovulation. 

 

5.2. Introduction 

During the estrous cycle, ewes have three to four waves of antral follicular growth (Noel 

et al, 1993), each preceded by a transient increase in serum FSH concentrations (Ginther 

et al, 1995). In non-prolific breeds of sheep such as the Western White Face and Suffolk, 

a follicle(s) will only ovulate from the final wave of the cycle (Bartlewski et al, 1999a). 

On the other hand, in prolific breeds of sheep such as the Finn, follicles can ovulate from 

the penultimate as well as the final wave of the cycle (Bartlewski et al, 1999a). By 

increasing the ovulation rate of non-prolific breeds of sheep, producers may be able to 

overcome one of the major limiting factors to efficient sheep meat and wool production, 

that is, low lamb output per ewe (Blaxter, 1964; Gordon 1997b). In a previous study in 

our laboratory (Bartlewski et al, 2003) Western White Face ewes were treated for 6 days 

with medroxyprogesterone acetate (MAP) sponges, starting on day 8 after ovulation. The 

sponge treatment was coupled with a single injection of prostaglandin F2α (PGF2α) on the 

day of MAP sponge insertion. The findings of this study included an approximately 50% 

increase in ovulation rate at the end of the treatment, when compared to control ewes or 

the pre-treatment cycle of treated ewes. This was attributed to the ovulation of follicles 

from the penultimate follicular wave before ovulation, and their addition to ovulatory 

follicles from the final follicular wave before ovulation. In cattle, there is evidence for 

(Austin et al 1999) and against (Ahmad et al 1997), compromised oocyte quality in 
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follicles with an extended lifespan, leading to low fertility. However, this does not appear 

to be the case in sheep (Evans et al 2001b). We hypothesized that the 6 day MAP sponge 

treatment, coupled with PGF2α treatment, would give an increased lambing rate and that 

the treatment would have no negative effects on lamb weights or sex ratios. The purpose 

of the present study was to see if this treatment would lead to an increased lambing rate 

and therefore have commercial viability. 

 

5.3. Materials and Methods 

5.3.1. Animals 

Twenty eight adult and thirty eight primiparous (bred at 7 months of age and lambed at 1 

year of age), clinically healthy cyclic Suffolk ewes, from the Department of Animal and 

Poultry Science sheep flock at the University of Saskatchewan, were used for this 

experiment. Ewes were housed outside in sheltered pens and were fed rations of hay, ad 

libitum, and 1lb of whole grain barley daily. Experimental procedures were performed 

according to the standards of the Canadian Council on Animal Care. 

 

5.3.2. Experimental Procedures 

All ewes (n=66 Suffolk ewes) were synchronized by treating with a progestagen-

releasing intravaginal sponge (Medroxyprogesterone acetate (MAP), 60mg; Veramix® , 

Upjohn, ON, Canada) for 14 days. Ewes were then assigned to either the treatment group 

(n=33) or the control group (n=33). Eleven days after sponge withdrawal (approximately 

day 8 of the cycle), the ewes in the treatment group, had an intravaginal MAP sponge 

inserted and left in place for 6 days. These ewes were also injected with PGF2α on the day 
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of MAP sponge insertion. The control ewes were not resynchronized and only received 

an injection of saline at the time of PGF2α injection to the treatment ewes. After the 

removal of the second MAP sponge from the treatment ewes, the treated and control 

ewes were mixed and assigned to one of 4 groups and rams were introduced to the ewes 

at an average ewe to ram ratio of 6.5:1. At lambing, numbers of lambs born, the weight, 

and the gender of each lamb and the date of birth were recorded. There were 7 

primiparous ewes in the treatment group and 3 primiparous ewes in the control group 

which did not lamb. All analysis (except for pregnancy rate) was performed after the 

removal of the data from these animals. 

 

5.3.3. Statistical Analyses 

Two way ANOVA (SigmaStat® for Windows Version 2.03, 1997, SPSS Inc., Chicago, 

IL, USA) was employed to compare data within and between groups (both treatment 

versus control as well as multiparous versus primiparous) for pregnancy rate, lambing 

rate (i.e. the number of live lambs born per ewe), birth weight and sex ratios.  

 

5.4. Results 

5.4.1. Pregnancy Rate 

There was no overall difference in pregnancy rate between the treatment (1.3 ± 0.1 

lambs/ewe) and control (1.5 ± 0.1 lambs/ewe) groups (P>0.05).  
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5.4.2. Lambing Rate 

Within the treatment group there was a significantly higher number of lambs born to 

multiparous ewes than to primiparous ewes (P<0.05; Table 5.1.). There were no 

differences between multiparous and primiparous ewes within the control group (P>0.05; 

Table 5.1.). There was no overall difference in lambing rate between the treatment and 

control groups (P>0.05).  

 

5.4.3. Lamb Birth Weights and Sex Ratios  

There were no significant differences (P>0.05) found between or within groups for lamb 

birth weights or for the percentage of male lambs born per ewe (Table 5.1.). 
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Table 5.1. Mean (± S.E.M) lambing rate, lamb birth weight (kg) and sex ratios (% of 
males born per ewe) for treated ewes that lambed (primiparous, n=13 and multiparous, 
n=13) and control ewes (primiparous, n=15 and multiparous, n=15).  
 
 

 
Treatment Group Control Group 

Factor 

 
Primiparous 

(n=13) 
Multiparous 

(n=13) 
Primiparous 

(n=15) 
Multiparous 

(n=15) 
Lambing Rate 
 

1.15 ± 0.16a 1.92 ± 0.16b 1.40 ± 0.15 1.80 ± 0.15 

Birth Weight 
(kg) 

4.67 ± 0.24 4.64 ± 0.19 4.68 ± 0.20 4.97 ± 0.18 

Sex Ratio  
(% of males 
born per ewe) 

53.85 ± 11.80 50.00 ± 11.80 43.33 ± 10.00 54.40 ± 10.00 

a,b denotes significant difference (P<0.05) within treatment group.  
Between groups there were no significant differences (P>0.05) for any of the factors 
studied. 
 

 

 

 

 

 

 

 

 

 

 

 

 83



5.5. Discussion 

The results from this preliminary trial suggest that short-term treatment of Suffolk ewes 

with MAP sponges, coupled with an injection of PGF2α does not increase lambing rate. 

The treatment neither affected birth weights nor the sex ratio of lambs born, as compared 

to control animals. The findings of a previous by Bartlewski et al (2003) included an 

approximately 50% increase in ovulation at the end of the treatment and therefore we 

expected to see this increase in ovulation rate reflected in an increase in lambing rate 

when this protocol was applied to ewes that were bred after treatment. 

 

Transrectal ovarian ultrasonography was not performed on these experimental animals 

and therefore it is difficult to ascertain with certainty that the treatment actually increased 

ovulation rate in the ewes. However, Barltewski et al (2003) reported an increase in 

ovulation rate, as detected by transrectal ovarian ultrasonography, due to the ovulation of 

follicles from the penultimate follicular wave before ovulation as well as follicles from 

earlier waves. Reports in cattle have shown varying oocyte quality from follicles with an 

extended lifespan and this resulted in low fertility (Austin et al 1999; Ahmad et al 1997). 

This does not appear to be the case in sheep (Evans et al 2001b). Evans et al (2001b) 

reported that the ovulation of aged follicles produced oocytes that were equally capable 

of being fertilized and develop into good quality embryos and full-term lambs as 

compared to follicles of shorter duration. Therefore, other factors may have lead to the 

lack of increase in lambing rate in the treated group of ewes when compared to the 

control ewes. 
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Bartlewski et al (2003) demonstrated that the treatment protocol with MAP sponges and 

PGF2α lead to asynchronous ovulation and estrus behavior. In the ewe, ovulation 

normally occurs just before the end of estrus, which lasts on average 36 hours (Quirke et 

al 1979; Goodman 1994). However, in the study by Bartlewski et al (2003) treated ewes 

ovulated follicles over a range of time periods from 48 hours before to 48 hours after the 

onset of estrus behavior. After ovulation an oocyte will remain viable for 10 to 25 hours; 

however, abnormal development and lowered viability increases with the age of the 

oocyte (Jainudeen et al 2000; Pineda 2003). In the present study rams were introduced to 

ewes after the 6 day treatment with a MAP sponge. Therefore follicles ovulating out of 

synchrony with the period of estrus would have provided oocytes of varying viability at 

mating; with some oocytes ovulated too late.  

 

A closer look at the ewes within the treatment group showed that lambing rate was lower 

in primiparous ewes compared to multiparous ewes. This suggests that the treatment may 

have in fact reduced the lambing rate of primiparous ewes, compared to multiparous 

ewes. However, a lower lambing rate in primiparous compared to multiparous ewes was 

expected as there is a gradual increase in the performance of sheep, as judged by lambing 

rate and ovulation rate, up to the age of 3 or 4 years (Marshall and Potts 1924; McKenzie 

and Terrill 1937). In conclusion, the inability of a short term MAP sponge and PGF2α 

treatment to increase lambing rate in Suffolk ewes was probably not due to the inability 

to increase ovulation rate or the ovulation of aged follicles but was rather more a lack of 

insemination of ewes at the appropriate time with respect to ovulation. 
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Chapter 6: EFFECT OF RAM INTRODUCTION ON OVARIAN ANTRAL 
FOLLICULAR DYNAMICS AND LH SECRETION IN ANESTROUS EWES AT 

DIFFERENT STAGES OF FOLLICULAR WAVE DEVELOPMENT 
 

Davies KL, Patullo K, Duggavathi R, Barrett DMW, Ewen K, Bagu ET, Cook SJ and 
Rawlings NC. 

 

6.1. Abstract 

Ram introduction at mid anestrous and to ewes with a distinct anestrous, would be 

expected to cause an increase in pulsatile LH secretion. The objective of the present study 

was to use ram introduction to look at the affect of increased pulsatile secretion of LH on 

ovarian antral follicular dynamics at different stages of follicular wave development in 

mid anestrous in Western White Face ewes. Twenty Western White Face ewes were 

isolated from the flock five weeks prior to the start of the experiment. Ten ewes were 

selected and re-introduced to rams; five ewes had follicle(s) in the growth phase of a 

follicular wave and the other five had follicle(s) in the static phase of a follicular wave at 

ram introduction. A further five ewes remained separated from the flock (control group). 

For 3 days after ram introduction, all ewes underwent twice daily transrectal ovarian 

ultrasonography; subsequently, scanning was then done daily for a further 10 days. Blood 

samples were collected prior to each ultrasound examination, every 4 hours for 72 hours 

from ram introduction and every 12 minutes for 6 hours from ram introduction and daily 

for two days from the day of ram introduction. Following ram introduction no ewes were 

marked by rams or ovulated. However, there was a significant increase in LH pulse 

frequency on the day of ram introduction in ewes in the static phase of a follicular wave 

as compared to the ewes in the control group. There were no consistent changes in 

follicular dynamics or estradiol secretion. We concluded that changes in LH pulse 
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frequency do not dramatically change ovarian antral follicular dynamics in the anestrous 

ewe. 

 

6.2.  Introduction 

If seasonally anestrous ewes are preconditioned by a period of isolation from rams (at 

least one month), they respond to the re-introduction of the male by displaying a 

reasonably well synchronized estrus at a length of time equivalent to one estrous cycle 

after ram exposure (Underwood et al 1944; Edgar and Bilkey, 1963; Fulkerson et al 

1981; Knight et al 1981; Gordon, 1997b). Introducing ewes to rams towards the end of 

the non-breeding season will also often induce ovulation in a proportion of ewes within 

2-3 days (Coop and Clarke 1968; Knight et al 1978; Oldham et al 1979); however, these 

ovulations are not associated with estrus. Chesworth and Tait (1974) documented 

increases in serum LH concentrations within one hour of exposing Greyface ewes to the 

ram just prior to the breeding season. Other studies revealed that LH pulse frequency 

increased markedly within minutes of ram introduction (Martin et al 1980). In addition to 

this, ewes stimulated by the ram experience a preovulatory LH surge similar to that of 

spontaneously ovulating sheep (Oldham et al 1979).  

 

There is considerable variation between breeds in the percentage of ewes responding to 

ram introduction (Martin 1984). Breeds with short periods of anestrous respond more 

readily to rams (Schinckel 1954; Martin et al 1983; Nugent et al 1988) than do breeds 

with more prolonged anestrous (Nugent et al 1988; Chesworth and Tait 1974). Ewes are 

 87



also generally more responsive in late or early anestrous than they are in the middle of the 

anovulatory period (Cushwa et al 1992; Edgar and Bilkey 1963).  

 

Using ultrasonography it was shown that during both the breeding season and anestrous, 

ovarian antral follicles grow in a wavelike pattern in the ewe (Bartlewski et al 1998; 

Bartlewski et al 1999a). Ovarian antral follicles grow or emerge from a pool of follicles 

1-3 mm in diameter and reach a diameter of 5-7 mm; follicular waves emerge every 4 to 

5 days (Souza et al 1996; Bartlewski et al 1998; Bartlewski et al 1999a; Duggavathi et al 

2003a). The emergence of each wave of follicle growth is preceded by a transient peak in 

serum FSH concentrations (Bartlewski et al 1998; Bartlewski et al 1999a; Evans et al 

2001a; Duggavathi et al 2003a). Prior to the availability of ultrasonography to study 

antral follicular dynamics it was concluded that the development of ovulatory sized 

follicles was largely dependent on FSH with perhaps a role for LH in final growth and 

maturation (Picton et al 1990; Campbell et al 1995). Although the pulsatile secretoy 

pattern of LH changes during the estrous cycle in the ewe has been characterized, its 

relationship to various phases of a follicular wave and its requirement for the genesis, 

function and regression of waves are unclear (Karsch et al 1979; Bartlewski et al 2000a; 

Duggavathi et al 2005a). In heifers, several authors have speculated a role for LH in 

antral follicle deviation (Ginther et al 2001a; Ginther et al 2001b; Sartori et al 2001).  

 

We hypothesized that if ram introduction was done in mid anestrous, in distinctly 

seasonal ewes, that only a subtle increase in LH secretory pulse frequency would be seen, 

allowing us to examine the role of such a change on ovarian follicular waves. Thus, the 
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objective of the present study was to investigate the effect of ram induced changes in LH 

secretion, in anestrous ewes, on ovarian follicular dynamics at different stages of the 

follicular wave. Using the anestrous ewe allowed us to remove the confounding affect of 

cyclicity and the development and regression of the corpus luteum, on LH secretion and 

follicular dynamics.  

 

6.3. Materials and Methods 

6.3.1. Animals 

Twenty clinically healthy, nulliparous, anestrous (May – June) Western White Face 

(WWF) ewes and three mature, vasectomised rams (2 Suffolk, 1 Katahdan; age 5-8 yrs 

old) were used in this experiment; mean body weights were 87 ± 3 kg and 94 ± 7 kg, 

respectively. All ewes and rams were housed outside in sheltered paddocks and were fed 

daily maintenance rations of hay, with water and cobalt iodized salt bar available ad 

libitum. Experimental procedures were performed according to the standards of the 

Canadian Council on Animal Care. 

 

6.3.2.  Experimental Procedures and Ultrasonography 

Ewes were isolated from any form of contact (sight, smell and sound) with rams and the 

rest of the flock for 5 weeks prior to the start of the experiment. All ewes underwent daily 

transrectal ultrasonography of the ovaries for 7 days using a real-time, high-resolution, B-

mode echo camera (Aloka SSD-900, Aloka Co. Ltd., Tokyo, Japan) and a stiffened 7.5 

MHz transducer, in order to establish the status of follicular wave development. 

Subsequently, ultrasonography was done twice daily until 3 days after ram introduction 
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and then daily for a further 10 days. The numbers of follicles 1-2 mm in diameter were 

counted and the number, diameter and relative position of all follicles ≥ 2 mm in diameter 

were sketched onto ovarian charts. All ovarian images were recorded on high-grade video 

tapes (Fuji S-VHS, ST-120 N; Fujifilm, Tokyo, Japan), using a compatible VCR 

(Panasonic, Omnivision Super VHS 2002, model number PV-VS4821-K, Matsushia 

Kotobuki Electronics, Cibiung Bekasi, Indonesia), for retrospective analysis of ovarian 

data. Ten ewes were introduced to 3 crayon-harnessed, mature rams. These ewes were 

split into two groups. Five ewes had follicle(s) in the growing phase of a follicular wave; 

this was based on the status of the previous wave and the emergence of follicles 3-4 mm 

in diameter (growing group). The other 5 ewes had follicle(s) in the static phase; this was 

based on the existence of follicles ≥ 5 mm in diameter but no longer growing (static 

group). A further 5 ewes remained separated from the rest of the flock and rams (control 

group). The control group of ewes consisted of 4 ewes in the static phase of a follicular 

wave and 1 ewe in the growth phase of a follicular wave.  

 

6.3.3. Blood Sampling 

Blood samples were collected (10 ml) by jugular venipuncture using vacutainers (Becton 

Dickinson, Rutherford, NJ, USA) prior to each ultrasound examination, except during the 

period below. All ewes underwent intensive blood sampling (every 12 minutes for 6 

hours, starting at 8 am; 4 ml per sample), via indwelling jugular catheters (vinyl tubing, 

1.00 mm inside diameter x 1.50 mm outside diameter; SV70, Critchley Electrical 

Products Pty Ltd., Auburn, NSW, Australia), from the time of ram introduction and daily 

for two days after the day of ram introduction, in order to characterize circulating 

 90



concentrations of LH and FSH. In addition, ewes were bled every 4 hours for a period of 

72 h after ram introduction (4 ml per sample). Blood samples were allowed to clot for 18 

to 24 h at room temperature, and serum was harvested and stored at -20 oC until assayed. 

 

6.3.4. Hormone Analyses 

Circulating concentrations of LH (Rawlings et al 1998), FSH (Joseph et al 1992), and 

estradiol (Joseph et al 1992) were determined by validated radioimmunoassays. 

Circulating concentrations of FSH and estradiol were analyzed in a blood sample 

collected at the same time each day. Samples from intensive bleeds and those collected 

every 4 hours, were analyzed for circulating concentrations of FSH and LH. Samples 

collected every 4 hours for 32 hours after ram introduction were also analyzed for 

circulating concentrations of estradiol. The range of standards was from 0.10 to 9.0 

ng/ml, 0.12 to 12.0 ng/ml, and 1.0 to 50 pg/ml, for the LH, FSH, and estradiol assays, 

respectively. The sensitivities of assays (defined as the lowest concentration of hormone 

capable of significantly displacing labeled hormone from the antibody; unpaired t-test, 

P<0.05) were as follows: LH, 0.1 ng/ml, FSH, 0.1ng/ml, and estradiol 1 pg/ml. The intra- 

and inter-assay coefficients of variation (CV’s) were 2.37% and 10.26% or 6.92% and 

7.07% respectively for reference sera with mean LH concentrations of 0.08ng/ml or 3.42 

ng/ml respectively. The intra- and inter-assay CV’s were 4.33% and 8.76% or 6.92% and 

10.43% respectively for reference sera with mean FSH concentrations of 0.27 ng/ml or 

1.22 ng/ml respectively. The intra- and inter-assay CV’s were 14.8% and 16.5% or 9.5% 

and 12.1% respectively for reference sera with mean estradiol concentrations of 3.6 pg/ml 

or 63.6 pg/ml respectively.  
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LH and FSH data from intensive bleeds were analyzed using the PULSAR program 

(Gitzen and Ramirez, 1998) to identify basal and mean hormone concentrations as well as 

pulse frequency and amplitude. The basal serum concentrations (“smoothed series”) were 

generated after the removal of short-term variations in hormone concentrations, including 

possible pulses. In blood samples collected daily, peaks in FSH concentration were 

detected using the cycle detector computer program (Clifton and Steiner, 1983).  

 

6.3.5. Follicular Data Analyses 

The temporal pattern of the numbers of follicles from different size classes (1-2 mm, 2 

mm, 3 mm, 4 mm, and ≥ 5 mm in diameter) were analyzed from the day of ram 

introduction to 2 days after ram introduction. The maximum follicle diameter from the 

first and second waves after ram introduction were analyzed, as was the length of the first 

inter-wave interval after ram introduction. 

 

6.3.6.  Statistical Analyses 

Data were assessed by one-way Analysis of Variance (ANOVA) or two-way repeated-

measures ANOVA (SigmaStat® Statistical Software, for Windows Version 2.03, 1997, 

SPSS Inc., Chicago, IL, USA). Multiple comparisons were made by the method of 

Fisher’s least significant difference (LSD). All results were normalized to the day of ram 

introduction (Day 0 = Day of ram introduction). All data are presented as mean ± S.E.M.  
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6.4.  Results 

6.4.1.  General Results 

None of the ewes were marked by rams following ram introduction and no ewes 

ovulated, as determined by ultrasound examinations. 

 

6.4.2.  Serum LH concentrations 

Based on the intensive bleeds, on the day of ram introduction (Day 0) ewes in the growth 

phase of a follicular wave had significantly (P<0.05) higher mean serum LH 

concentrations as compared to the control ewes (Table 6.1). Ewes in the static phase of a 

follicular wave had higher basal LH concentrations (P<0.05) on day one after ram 

introduction than on day 2 after ram introduction. There were no significant (P>0.05) 

changes in LH pulse amplitude within the groups of ewes over the two days after ram 

introduction. For ewes in the static phase of a follicular wave LH pulse frequency was 

highest on the day of ram introduction and had significantly (P<0.05) declined the second 

day after ram introduction.  On day 0, LH pulse frequency was greater for ewes in the 

static phase of a follicular wave, compared to the control ewes; pulse frequency was 

intermediate for ewes in the growing phase of a follicular wave. 

 

6.4.3.  Serum FSH concentrations 

Based on the intensive bleeds, mean and basal concentrations of FSH after ram 

introduction did not differ (P>0.05) between or within groups (Table 6.1). Based on 

blood samples collected daily, FSH inter-peak interval and the FSH peak amplitude after 

ram introduction did not differ (P>0.05) between or within groups (Table 6.2). 
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Table 6.1. Serum LH, FSH, and estradiol characteristics on the day of ram introduction 
(0), and the first (1), and second day after ram introduction (2) for ewes in the static 
phase of a follicular wave (n=5), ewes in the growth phase of a follicular wave (n=5) and 
control ewes. Blood samples were collected every 12 minutes for 6 hours from ram 
introduction and each day for 2 days after ram introduction. For circulating serum 
estradiol concentration, day 0 is the first 8 samples from samples taken every 4-hours.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Group 
Parameter Static Growing Control 
Mean LH (ng/ml) 

0 0.34 ± 0.09ab 0.50 ± 0.09a 0.22 ± 0.09b

1 0.24 ± 0.09 0.42 ± 0.09 0.23 ± 0.10 
2 0.25 ±0.09 0.31 ± 0.09 0.15 ± 0.10 

Basal LH (ng/ml) 
0 0.12 ± 0.01xy 0.12 ± 0.01 0.11 ± 0.01 
1 0.14 ± 0.01x 0.12 ± 0.01 0.12 ± 0.01 
2 0.10 ± 0.01y 0.14 ± 0.01 0.10 ± 0.01 

LH pulse amplitude 
0 0.98 ± 0.84 2.99 ± 0.84 1.01 ± 0.94 
1 0.81 ± 0.84 2.44 ± 0.84 0.56 ± 0.94 
2 1.46 ± 0.84 2.52 ± 0.84 0.49 ± 0.94 

Number of LH pulses per 6 hours 
0 2.00 ± 0.21ax 1.40 ± 0.21ab 1.00 ± 0.21b

1 1.40 ± 0.21xy 1.20 ± 0.21 1.00 ± 0.21 
2 0.80 ± 0.21y 1.00 ± 0.21 0.60 ± 0.21 

Mean FSH (ng/ml) 
0 2.06 ± 0.24 1.31 ± 0.24 1.76 ± 0.27 
1 1.99 ± 0.24 1.07 ± 0.24 1.42 ± 0.27 
2 1.64 ± 0.24 1.14 ± 0.24 1.20 ± 0.27 

Basal FSH (ng/ml) 
0 1.89 ± 0.24 1.28 ± 0.24 1.79 ± 0.27 
1 2.01 ± 0.24 1.04 ± 0.24 1.45 ± 0.27 
2 1.63 ± 0.24 1.11 ± 0.24 1.20 ± 0.27 

Mean estradiol (pg/ml) 
0 2.5 ± 0.6 1.9 ± 0.6 2.1 ± 0.6 
1 2.7 ± 0.8 2.7 ± 0.8 1.5 ± 0.8 
2 3.5 ± 0.8 2.0 ± 0.8 2.4 ± 0.8 

a,b denote values that are significantly different (P<0.05) amongst groups within days.  
x,y,z  denote values that are significantly different (P<0.05) within groups amongst days. 
Data are presented as mean ± SEM.  
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Table 6.2. FSH peak amplitude (the peak at the time of ram introduction or the first peak 
after ram introduction), FSH inter-peak interval (the first inter-peak interval after ram 
introduction), and length of the inter-wave interval after ram introduction for ewes in the 
static phase of a follicular wave (n=5), ewes in the growth phase of a follicular wave 
(n=5) and control ewes.  
 

 

 

 

Group 
Parameter Static Growing Control 
FSH peak amplitude 1.25 ± 0.44 0.81 ± 0.31 1.45 ± 0.35 

FSH inter-peak interval (days) 4.1 ± 1.1 3.6 ± 0.7 3.7 ± 0.7 
Inter-wave interval (days) 4.8 ± 1.3 5.0 ± 0.7 4.7 ± 1.0 
Data are presented as mean ± SEM. 
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6.4.4. Number of follicles in different size classes 

There were no significant differences between groups (ewes in the static or growth phase 

of a follicular wave and control ewes) or with time, in the number of follicles 1-2 mm 

(Figure 6.1; panel A) and 3 mm in diameter (Figure 6.1; panel C). On the day of ram 

introduction (Day 0), ewes in the growth phase of a follicular wave had significantly 

(P<0.05) greater numbers of follicles 2 mm in diameter than ewes in the static phase of a 

follicular wave (Figure 6.1; panel B). Both ewes in the static phase of a follicular wave 

and control ewes showed an increase in the number of follicles 2 mm in diameter from 

day 0 to 1 day after ram introduction after which the number of follicles 2 mm in 

diameter in the control group declined (Figure 6.1; panel B). On day 1 after ram 

introduction, control ewes had significantly greater numbers of follicles 2 mm in 

diameter than ewes in the static phase of a follicular wave (Figure 6.1; panel B). Ewes in 

the growth phase of a follicular wave had significantly (P<0.05) greater numbers of 

follicles 2 mm in diameter than both ewes in the static phase of a follicular wave and 

control ewes on day 2 after ram introduction (Figure 6.1; panel B). However, ewes in the 

static phase of a follicular wave had significantly greater (P<0.05) numbers of follicles 4 

mm in diameter than ewes in the growth phase of a follicular wave on day 2 after ram 

introduction (Figure 6.1; panel D). Ewes in the growth phase of a follicular wave had 

significantly greater numbers of follicles ≥5 mm in diameter than ewes in the static phase 

of a follicular wave on day 2 after ram introduction (Figure 6.1; panel E). The number of 

follicles ≥5 mm in diameter increased on day 1 and then declined on day 2 after ram 

introduction in ewes in the static phase of a follicular wave, compared to the control ewes 

(Figure 6.1; panel E). 
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Figure 6.1. Number of ovarian follicles in different size classes (A) 1-2 mm, (B) 2 mm, 
(C) 3 mm, (D) 4 mm, and (E) ≥ 5 mm in diameter per ewe from the day of ram 
introduction (Day 0) to 2 days after ram introduction for ewes in the static phase (●; 
n=5), or growth phase of a follicular wave (○; n=5) and control ewes (▼; n=5). Data are 
presented as mean ± SEM. + with dashed line represents significant (P<0.05) difference 
between groups. Letters denote significant (P<0.05) day effects within a group. 

 97



 
 
6.4.5.  Maximum follicle diameter and estradiol concentrations 

There were no differences (P>0.05) between or within groups (ewes in the static phase or 

growth phase of a follicular wave and control ewes) for maximum follicle diameter (mm) 

for wave 1 (5.6 ± 0.2, 5.2 ± 0.2, and 5.4 ± 0.2; respectively) or wave 2 (5.6 ± 0.2, 5.6 ± 

0.2, and 5.0 ± 0.2; respectively) after ram introduction. Mean serum estradiol 

concentrations (Table 6.1 and Figure 6.2) after ram introduction did not differ (P>0.05) 

between or within groups.  

 

6.4.6.  Inter-wave interval after ram introduction 

There were no differences (P<0.05) between groups for the length of the first inter-wave 

interval after ram introduction (i.e. between the first and second wave after ram 

introduction; Table 6.2). 
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Figure 6.2. Mean serum estradiol concentrations (pg/ml) in ewes in the static phase of a 
follicular wave (●; n=5), ewes in the growth phase of a follicular wave (○; n=5) and 
control ewes (▼; n=5) with samples taken every 4 hours from the time of ram 
introduction (Hour 0) to 28 hours after ram introduction. Blood samples were analyzed 
daily. Data are presented as mean ± SEM. 
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6.5.  Discussion 

Introduction of rams to previously isolated anestrous, non prolific Western White Face 

ewes resulted in subtle changes in LH secretion, based on frequent blood sampling. Most 

notably was the increase in LH pulse frequency on the day of ram introduction in the 

ewes in the static phase of a follicular wave as compared to the control ewes and the 

intermediate values in ewes in the growth phase of a follicular wave. This increase in LH 

pulse frequency was analogous to the change seen from anestrous to the luteal phase of a 

cycle (Karsch et al 1979). Ram introduction had no significant effect on FSH secretory 

characteristics. Following ram introduction no ewes were marked by rams and no 

evidence of ovulations was seen during ultrasonographic examinations. The rather subtle 

effect of ram introduction in this study was probably due to the fact the ewes employed in 

the present study were in deep anestrous (Martin 1984), and of a breed with a significant 

period of anestrous (Martin et al 1986).  

 

Previous studies have shown that re-introduction of ram’s can lead to the induction of a 

preovulatory LH surge and ovulation of follicle(s) (Chesworth and Tait 1974; Knight et 

al 1978; Oldham et al 1979; Martin et al 1980), but this did not occur in the present 

study. In the present study we did not see consistent trends in the temporal pattern of 

follicle numbers in any size class (figure 6.1) with the exception of an increase in the 

number of follicles 2 mm in diameter from day 0 to day 1 after ram introduction in 

control ewes and ewes in the static phase of a follicular and an increase in follicles ≥5 

mm in diameter in ewes in the static phase from day 0.5 to 1.0. Due to the fact that the 
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control group of ewes consisted of 4 ewes in the static phase of a follicular wave and only 

1 ewe in the growth phase of a follicular wave we speculated that the increase in the 

number of follicles 2 mm in diameter was not a treatment effect but rather a reflection of 

the ewes’ status with regard to the stage of the follicular wave. The increase in the 

number of follicles 2 mm in diameter, after ram introduction, represented follicles 

entering the growth phase of the next follicular wave. The transient rise in the number of 

follicles ≥5 mm in diameter in ewes in the static phase of a follicular wave was probably 

due to the fact that three out of the five ewes experienced emergence of follicles of the 

next follicular wave that grew to be ≥5 mm in diameter on days 1 and 1.5 after ram 

introduction. 

 

In cattle, there is selection of a dominant follicle which occurs at the point of follicle 

deviation (Ginther et al 1996). At the point of deviation there is a distinct change in the 

growth rates of follicles in a wave (Ginther et al 2003). At deviation the largest follicle of 

the wave continues to grow while the subordinate follicles of the wave show a decline in 

growth rate (Ginther et al 1997). It has been suggested that LH is involved in the 

deviation mechanism (Ginther et al 1996). Reports have shown that suppression of 

pulsatile LH secretion leads to the restriction of growth of follicles beyond 7-9 mm 

(Gong et al 1995) and conversely the lifespan of a dominant follicle could be extended by 

increasing LH pulse frequency (Fortune et al 1991; Savio et al 1993). These findings are 

supportive of a role for LH secretion in the maintenance and growth of dominant 

follicles, in cattle. Prior to the availability of ultrasonography, to study antral follicle 

dynamics, it was concluded that the development of ovulatory sized follicles in the wave 
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was largely dependent on FSH with perhaps a role for LH in final growth and maturation 

(Picton et al 1990; Campbell et al 1995). However, there have been conflicting reports 

for the role of LH secretion in follicular development in the ewe (McNeilly et al 1991). 

Karsch et al (1979) reported that LH secretory pulse frequency is higher during the 

follicular phase as compared with the luteal phase of the ovine estrous cycle. In a study 

using ultrasonography in the luteal phase of a cycle, there was no change in LH 

pulsatility associated with the emergence or growth of the largest follicle of a wave, but 

there was a significant increase in LH concentrations associated with the decline in serum 

progesterone concentrations at the end of the luteal phase (Duggavathi et al 2005a). It 

was shown that increases in LH pulse amplitude were associated with the end of the 

growth phase of the largest follicle of the first wave of the cycle (Bartlewski et al 2000a); 

however, serum progesterone concentrations increased over this period of time and this in 

itself causes a decrease in LH pulse frequency and increase in amplitude. In the ovine 

estrous cycle LH secretory patterns may be influenced by and coupled more to the 

formation and regression of the corpus luteum than follicular wave dynamics. In the 

present study although ram introduction caused changes in LH pulse frequency of the 

order of change seen from anestrous to the luteal phase of a cycle in sheep this appeared 

to have no significant impact on follicular dynamics or estradiol secretion. This and the 

observation discussed above led us to suggest that the role of LH in antral follicular 

growth and maturation in the ewe is permissive or secondary to FSH. 

 

In summary, ram introduction to anestrous ewes produced subtle but significant changes 

in pulsatile LH secretion within the physiological range seen in cyclic ewes (Rawlings 
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and Cook 1993; Bartlewski et al 2000a). However, this did not have marked effects on 

antral follicular wave dynamics in the anestrous ewe. We concluded that changes in LH 

pulse frequency within a physiological range did not influence antral follicular dynamics 

in the growth or static phase of a follicular wave in anestrous ewes. We suggest that 

changes in LH pulse frequency are not critical for the normal pattern of antral follicular 

waves in sheep.  
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Chapter 7: COMPUTER ASSISTED IMAGE ANALYSIS OF CORPORA 
LUTEA IN RELATION TO PERIPHERAL CONCENTRATIONS OF 

PROGESTERONE: A COMPARISON BETWEEN BREEDS OF SHEEP WITH 
DIFFERENT OVULATION RATES 

 
Davies KL, Bartlewski PM, Pierson RA, and Rawlings NC. 

 

7.1. Abstract 

Transrectal ovarian ultrasonography is a non-invasive technique that permits the real-time 

serial visualization of ovarian structures. Previous studies have reported correlations 

between serum progesterone concentrations and physical characteristics of the corpus 

luteum (CL) in different species. The aim of the present study was to investigate whether 

or not there were correlations between ultrasound image attributes of the CL and 

changing progesterone concentrations over time, in prolific and non prolific ewes. 

Ultrasonographic images of CL were taken, once daily, from 12 Western White Face 

ewes and 7 Finn ewes for the duration of one luteal phase. Blood samples were collected 

daily prior to each scanning session and assayed to determine mean serum concentrations 

of progesterone. Analysis of ultrasound images was performed using a series of custom-

developed computer algorithms optimized for ultrasonography on a computer graphics 

workstation. Both total luteal area and mean pixel values were correlated with the pattern 

of serum concentrations of progesterone from day 3 to day 15 after ovulation in Western 

White Face ewes and from day 3 to day 14 in Finn ewes. There was no significant 

correlation between progesterone concentrations and spot pixel heterogeneity for either 

Western White Face ewes’ or Finn ewes.’ We concluded that pixel heterogeneity is a 

poor indicator of progesterone secretory ability of the CL when compared to mean pixel 
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values. However, luteal area and mean spot pixel values are better but not strong 

indicators of the functional status of the CL in cyclic ewes. 

 

6.2. Introduction 

Real-time transrectal ultrasonography of the reproductive tract, for use in different farm 

animal species, has been developed over several decades (Pierson and Ginther, 1986; 

Adams et al 1989; Kot and Ginther, 1999). Ultrasonographic imaging is based on the 

ability of different tissues to reflect high frequency sound waves differentially, and 

reflection varies with tissue density (Pierson and Adams, 1995; Singh et al 1997). A 

portion of the waves are reflected by tissue interfaces, while other parts of the waves are 

propagated (Zagzebski, 1996). Images are displayed as 2 dimensional maps of grey-scale 

based upon location and strength of the echoes returning from the tissue interfaces 

(Zagzebski, 1996). Grey-scale images are composed of thousands of picture elements, 

known as pixels (Zagzebski, 1996). A single tissue reflector is represented by a single 

pixel and is designated one of 256 shades of grey (ranging from black (0) to white (255)) 

(Zagzebski, 1996).  

 

Transrectal ovarian ultrasonography in the ewe allows for repeated, non-invasive 

collection of real-time data on the status of reproductive organs from the same individual. 

This technology allows the study of dynamic changes within the ovarian follicular 

population and luteal structures during the estrous cycle (Pierson and Ginther, 1988). 

Subjective scoring has been used to quantify changes in image attributes such as the pixel 

values in a specific tissue over time (Pierson and Ginther, 1985); however, the accuracy 
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and repeatability of this procedure is questionable (Tom et al 1998a) because the human 

eye can only distinguish between 18 and 20 shades of grey (Baxes, 1994). Therefore, 

computer algorithms have been designed specifically for a more objective analysis of 

ultrasound image characteristics. Due to the repeatability of the application of this 

technique, computerized ultrasound measurements from a particular tissue can be 

evaluated and compared with time. 

 

Progesterone secretion during the ovine estrous cycle has been well described (Edgar and 

Ronaldson 1958; Stabenfeldt et al 1969; Bartlewski et al 1999b). Several authors (Quirke 

et al 1979; Cahill et al 1981) have demonstrated that there are differences in the overall 

mean circulating concentrations of progesterone amongst prolific and non prolific breeds 

of sheep. A recent study by Bartlewski et al (1999b) showed that prolific Finnish 

Landrace ewes have lower circulating concentrations of progesterone as compared to non 

prolific Western White Face (Columbia x Rambouillet) ewes. Changing progesterone 

concentrations measured in the circulation reflect physical changes in the CL (Arthur et 

al 1989). Singh et al (1997) reported correlations between ultrasound image attributes of 

the CL and circulating concentrations of progesterone in heifers. And Baerwald et al 

(2005) concluded that numerical pixel values reflect the morphological and 

endocrinological changes in the CL during an inter-ovulatory interval in women. 

However, such detailed studies have not been performed in ewes.  

 

In 1999b, Bartlewski et al reported correlations between daily total luteal volumes 

(assessed by ultrasonography) and daily circulating concentrations of progesterone in 
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prolific Finnish Landrace sheep. In the same study, these correlations were only seen 

during luteal growth and regression in non prolific Western White Face ewes. Therefore, 

the aim of this study was to investigate whether or not there are correlations between 

ultrasound image attributes of the CL and changing progesterone concentrations over 

time, in prolific and non prolific ewes. The progesterone data and the ultrasonographic 

images of CL collected by Bartlewski et al (1999b) were used in the present study. It was 

hoped that computer assisted image analysis of the CL could be used as a non invasive 

and immediate indicator of the progesterone secretory ability of the ovine CL, as has 

been suggested for other species (Singh et al 1997). 

 

7.3. Materials and Methods 

7.3.1.  Animals 

Twelve cross-bred Western White Face (approximately 5 yr of age and an average body 

weight of 90 ± 7 kg) and 7 pure-bred Finn (3 to 4 yr of age and an average body weight 

of 57 ± 4 kg), ewes were used during the mid-breeding season (October to December) 

(Bartlewski et al 1999b). The average number of lambs born per ewe for the Western 

White Face is 1.5 ± 0.2 (Rawlings et al 1987). The Finn sheep in this study had lambed 

twice, with an average number of offspring per ewe of 2.4 ± 0.4. Ewes were housed in 

sheltered dry lots. Maintenance rations of alfalfa pellets were fed once a day and water, 

hay and cobalt iodized salt licks were available ad libitum. Estrus was detected with 3 

crayon-harnessed rams and an electronic estrus detector (Firma Draminski, Olsztyn, 

Poland). The instrument measures changes in vaginal mucous impedance near the cervix 

uteri and was validated for the present application in sheep (Szczepanski et al 1994; 
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Bartlewski et al 1999b). A decline in electrical resistance of the vaginal tissue below 40 

ohms typically occurs at the onset of behavioral estrus and persists for 24 to 48 h 

(Szczepanski et al 1994; Bartlewski et al 1999b). 

 

7.3.2.  Ultrasonography 

Transrectal ovarian ultrasonography was performed daily using a B-mode, real time echo 

camera (Aloka SSD 500, Overseas Monitor Corp. Ltd., Richmond, BC, Canada) 

equipped with a 7.5MHz linear-array transducer and images were recorded on high grade 

videotape (Fuji S-VHS, ST-120N; Fujifilm, Tokyo, Japan), using a compatible VCR 

(Panasonic, Super VHS, AG 1970; Matsushita Electric of Canada Ltd, Mississauga, 

Ontario) (Bartlewski et al 1999b). Ultrasound examinations began either on the day on 

which each ewe was marked by rams or when a decline in vaginal impedance readings 

below 40 ohms was first recorded. Daily examinations were continued until ovulation at 

the next estrus. The day of ovulation was regarded as the day on which a large ovarian 

antral follicle(s) that had been detected ultrasonographically and followed for several 

days, was no longer seen (Ravindra et al 1994). From both ovaries, the number, diameter 

and relative position of all ovarian antral follicles ≥3 mm in diameter were recorded. 

Similarly, the size (outer diameter and diameters of inner cavities) and position of CL 

were also recorded. 

 

7.3.3.  Blood Sampling 

Blood samples (10ml) were collected every day prior to scanning by jugular 

venipuncture, using vacutainers (Becton Dickson, Rutherford, NJ, USA) (Bartlewski et al 
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1999b). Blood samples were allowed to coagulate for 18 to 24 hours at room temperature. 

After removal of blood clots and centrifugation, serum was harvested and stored at -20oC.  

 

7.3.4.  Hormone Analysis 

Serum samples were analyzed by radioimmunoassay for concentrations of progesterone 

(Rawlings et al 1987; Bartlewski et al 1999b). The sensitivity of the assay defined as the 

lowest concentration of unlabelled progesterone that significantly displaced labeled 

progesterone from the antibody (unpaired t-test, P<0.05), was 30 pg/ml. The range of 

standards was from 10 pg/ml to 10 ng/ml. Intra- and inter-assay coefficients of variation 

(CV’s) for ovine reference sera with mean progesterone concentrations of 0.49 or 1.56 

ng/ml were 11.9 and 4.2% or 14.8 and 11.2%, respectively. 

 

7.3.5.  Image acquisition and processing 

Images of the ovary from the day of first visualization until luteal structures could no 

longer be detected were digitized using a real-time B-mode echo camera at a resolution of 

640 x 480 pixels. Analysis of ultrasound images was performed using a series of custom-

developed computer algorithms optimized for ultrasonography on a computer graphics 

workstation (SYNERGYNE Version 2.8©, Saskatoon, Saskatchewan). Numerical pixel 

value and pixel heterogeneity within the CL were calculated for the whole cross-sectional 

area of each CL (area pixel values and area pixel heterogeneity). The area encompassing 

the CL was outlined in order to calculate the total luteal area, mean area pixel value and 

the mean area pixel heterogeneity within the CL. Fluid-filled cavities, when detected 

within a CL, were outlined and the data subtracted from the CL so that only luteal tissue 
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was evaluated. Four computer generated spots were then randomly placed over the area 

of the image representing the CL but avoiding fluid-filled areas of the CL. Numerical 

pixel value (spot pixel value) and pixel heterogeneity (spot pixel heterogeneity) were 

calculated within each spot and then averaged over the 4 spots. Spot size was selected so 

that approximately 70% of the area of the CL was included in the analysis. There were no 

differences in the data analyzed among the four spots; therefore, data were combined. 

The mean pixel value was the mean of the grey-scale values of all the pixels within the 

outlined area of the CL (area pixel value) or within the area of the four measuring spots 

(spot pixel value). Pixel heterogeneity was the standard deviation of grey-scale values of 

all the pixels falling within the outlined area of the CL (area pixel heterogeneity) or 

within the area of the four measuring spots (spot pixel heterogeneity) (Figure 7.1). Data 

were combined for each animal; values analyzed were on a per ewe basis. 

 

7.3.6.  Statistical analysis 

Data from 4 of the Western White Face ewes were discarded; two ewes had abnormally 

long interovulatory intervals (each 23 d) and luteinized unovulated follicles were detected 

in the other two animals. Total luteal area, serum progesterone concentrations, mean spot 

pixel values and spot pixel heterogeneity were analyzed by one way repeated measures 

Analysis of Variance (SigmaStat® Statistical Software, for Windows Version 2.03, 1997, 

SPSS Inc., Chicago, IL, USA) from 3 to 15 days after ovulation and 3 to 14 days after 

ovulation in Western White Face and Finn sheep, respectively. Days 3 to 15 and 3 to 14 

were chosen because these were the days on which complete image data for each CL was 

available for each animal (i.e. CL images could be seen within the limits of the resolution 
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imposed by the Aloka SSD 500). Correlations between mean spot pixel values and mean 

area pixel values, and between mean spot pixel heterogeneity and mean area pixel 

heterogeneity for both Western White Face and Finn sheep were analyzed using 

Pearson’s Correlation (SigmaStat® Statistical Software, for Windows Version 2.03, 1997, 

SPSS Inc., Chicago, IL, USA). Correlations were also examined between serum 

progesterone concentrations and total luteal area, mean spot pixel value or mean spot 

pixel heterogeneity, for both Western White Face ewes’ and Finn ewes’. All values are 

presented as means ± S.E.M. 
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Figure 7.1. (A) Sample region for computer-assisted image analysis of an ultrasound 
image of a day 7 (Day 0 =day of ovulation) ovine ovarian corpus luteum. (B) Area 
analysis of the CL measures the pixel value and pixel heterogeneity of the total area of 
the CL excluding the fluid-filled cavities. (C) Spot analysis of the CL measures the pixel 
value and pixel heterogeneity of the CL by placing a measuring circle at four different 
locations over the CL to cover approximately 70% of the area of the CL. 
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7.4.  Results 

7.4.1. Spot versus area analysis 

Mean spot pixel values and mean area pixel values were correlated for both Western 

White Face ewes and Finn ewes (r2=0.92 and r2=0.89, respectively; P<0.001). However, 

mean spot heterogeneity and mean area heterogeneity, were not as highly correlated for 

either Western White Face ewes or Finn ewes (r2=0.28 and r2=0.36, respectively; 

P<0.001). We opted to use spot analysis to represent the data as this technique is faster 

and easier to implement than area analysis and would be a more suitable technique to use 

in a practical setting.  

 

7.4.2. Progesterone concentrations and total luteal area 

The serum progesterone concentrations determined by Bartlewski et al (1999b) were 

used to correlate with the ultrasound image attributes of CL in the present study. Mean 

daily progesterone concentrations in 8 Western White Face ewes showed a significant 

increase from day 3 to day 5 after ovulation, did not change significantly from day 5 to 

day 13 after ovulation and then decreased (P<0.05) from day 13 to day 15 (Figure 7.2; 

top panel). In Western White Face ewes, total luteal area showed a significant increase 

from day 3 to day 7 after ovulation, did not change significantly from day 7 to day 13 

after ovulation and then declined (P<0.05) from day 13 to day 14 after ovulation (Figure 

7.2; top panel). There was a correlation between progesterone concentrations and total 

luteal area (r2=0.590, P<0.001) from day 3 to day 15 after ovulation.  
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Figure 7.2. Total luteal area (○; mm2), mean spot pixel values (■) and spot pixel 
heterogeneity (■) of the CL and serum progesterone concentrations (●; ng/ml) from day 3 
of the cycle (Day 0 = Day of ovulation) to day 15 in Western White Face ewes (n=8). 
Significantly different values (P<0.05) are represented by different letters. 
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Figure 7.3. Total luteal area (○; mm2), mean spot pixel values (■) and spot pixel 
heterogeneity (■) of the CL and serum progesterone concentrations (●; ng/ml) from day 3 
of the cycle (Day 0 = Day of ovulation) to day 14 in Finn sheep (n=7). Significantly 
different values (P<0.05) are represented by different letters. 
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Figure 7.4. Selected ultrasound images of Western White Face ewe ovaries showing 
corpora lutea in various stages of development (A-F). The borders of luteal structures are 
indicated by arrows. (A) Day 3, (B) Day 5, (C) Day 7, (D) Day 9 (E) Day 12 and (F) Day 
15 of the ovine estrus cycle. 
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Progesterone concentrations in Finn ewes increased significantly from day 3 to day 11 

after ovulation. From day 11 to day 14 after ovulation there was a significant decline in 

progesterone concentrations (Figure 7.3; top panel). Total luteal area increased from day 

3 to day 9 after ovulation (P<0.05), after which there was a significant decline from day 9 

until day 14. There was a significant correlation between progesterone concentrations and 

total luteal area (r2=0.365; P<0.05) from day 3 to day 14 after ovulation.  

 

7.4.3.  Mean spot pixel values  

Mean spot pixel values of CL for Western White Face ewes’ showed a significant 

increase from day 3 to day 4 after ovulation and then did not change significantly from 

day 4 until day 13, after which there was a significant decline (Figure 7.2; centre panel 

and figure 7.4). There was a correlation between progesterone concentrations and spot 

pixel values (r2=0.483, P<0.001) from day 3 to day 15 after ovulation.  

 

Mean spot pixel values of CL for Finn ewes’ showed an increase (P<0.05) from day 4 to 

day 10 after ovulation and then a decline (P<0.05) from day 10 to day 14 (P<0.05; Figure 

7.3; centre panel and figure 7.4). There was a correlation between progesterone 

concentrations and spot pixel values (r2=0.267, P<0.05) from day 3 to day 14 after 

ovulation.  

 

7.4.4.  Mean spot pixel heterogeneity 

Mean spot pixel heterogeneity of CL did not differ significantly throughout the luteal 

phase for both Western White Face and Finn ewes (Figures 7.2 and 7.3; bottom panel and 
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figure 7.4). There was no significant correlation between circulating progesterone 

concentrations and spot pixel heterogeneity (r2=0.133; P>0.05) for Western White Face 

ewes’ from day 3 to day 15 after ovulation. There was no significant correlation between 

progesterone concentrations and spot pixel heterogeneity (r2=-0.037; P>0.05) for Finn 

ewes’ from day 3 to day 14 after ovulation.  

 

7.5.  Discussion 

As noted previously (Bartlewski et al 1999b), peak serum progesterone concentrations 

were greater in Western White Face ewes than in Finn ewes. Interestingly, despite the 

differences in serum progesterone concentrations, the pattern of luteal area did not differ 

between breeds and resembled that reported previously for luteal tissue volumes 

(Bartlewski et al 1999b). In the present study both total luteal area and mean spot pixel 

values were correlated with the pattern of serum progesterone concentrations in both 

Western White Face and Finn ewes for the entire period when CL were detected with 

ultrasonography (Figure 7.4). The relationship between daily serum progesterone 

concentrations and total luteal volume in Western White Face and Finn ewes was 

reported previously (Bartlewski et al 1999b). In the study by Bartlewski et al (1999b) a 

mathematical formula was used to calculate total luteal volume of the CL based on 

measurements of the diameter of the CL from ultrasonographic images. Bartlewski et al 

(1999b) found that in Finn sheep, the relationship between daily serum progesterone 

concentrations and total luteal volume was maintained throughout the entire period that 

the CL could be observed. However, in the same study there was no correlation between 

the total luteal volume and circulating concentrations of progesterone during mid-cycle in 
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Western White Face ewes; correlations were noted only during luteal growth and 

regression. In the present study, the correlations between luteal area or spot pixel values 

and serum progesterone concentrations were greater for the Western White Face ewes 

than the Finn ewes (r2=0.590 or r2=0.365 and r2=0.483 or r2=0.267, respectively). This 

would appear to partly reflect a greater variability in pixel values at day 3 of the cycle in 

Finn compared to Western White Face ewes. Interestingly, although the profiles and peak 

values of serum progesterone concentrations varied between breeds the temporal patterns 

of luteal area and pixel values were similar. This would bring into question the ability of 

the latter parameter to predict functionality of the CL in the ewe. Clearly pixel analysis 

for the CL gave a clear pattern during the luteal phase reflecting tissue organization, 

growth and regression but obviously this analysis did not reflect the subtle differences in 

functionality between breeds. In cattle, Singh et al (1997) reported that pixel values of 

ultrasound images of corpora lutea were correlated with plasma progesterone 

concentrations; however, these images were collected in a water bath using CL dissected 

from ovariectomized heifers at specific time points, not on a daily basis.  

 

In sheep, cattle and women there is a rise in mean pixel values from 2 to 3 days after 

ovulation. The rise in pixel values may represent the gradual reorganization of tissue cells 

and multiplication of luteal cells; thereby forming a structure with increased density and 

therefore a higher echogenicity. Following the rise in pixel values there is a plateau, 

where pixel values remain constant and therefore, presumably there is little tissue 

restructuring occurring. During the period of CL regression there is a decline in pixel 

values which is attributed to tissue reorganization from increased vascularization of luteal 
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tissue and the resulting decrease in tissue density (Baerwald et al 2005), which in turn 

leads to a decrease in echogenicity. In cattle (Tom et al 1998a) and women (Baerwald et 

al 2005), during the first 2 days after ovulation there is a sharp decrease in pixel values 

which represents the sudden increase in vascularity as blood vessels permeate the corpus 

hemorrhagicum. The last few days of the cycle in cattle (Tom et al 1998a) and women 

(Baerwald et al 2005) are characterized by a sharp increase in pixel values and coincides 

with the regression of the CL. The increase in pixel values represents the restriction of 

blood vessels and restructurization of the tissue forming the corpus albicans. In the 

present study it was not possible to record images of CL from the first 2 to 3 nor the last 2 

to 3 days after ovulation due to the difficulty of scanning small ruminants and limitations 

of resolution. Putting the very early and late points mentioned above aside our present 

data parallels the observations for the luteal phase in women and cattle. 

 

In contrast to sheep, cattle and women the mare has a very different pattern of changing 

pixel values for its CL during its estrous cycle. In the mare, on the day of ovulation, pixel 

values are brightest due to the collapse of the follicular wall and the presence of relatively 

low vascular perfusion (Pierson and Ginther 1985). After ovulation mean pixel value 

decreases and is maintained at lower values during the period of maximum progesterone 

production which corresponds to increased blood flow (Pierson and Ginther 1985). 

Finally, during luteal regression pixel values begin to increase which is representative of 

decreased blood flow, increased tissue density and fibrin infiltration (Pierson and Ginther 

1985). At this time it is unclear as to why the pattern of pixel values in sheep, cattle and 

women differ from those of the mare. 
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In both breeds of sheep in the present study there was a greater correlation between luteal 

area and serum progesterone concentrations than between pixel values and serum 

progesterone concentrations. However, none of the correlations between progesterone 

and luteal area or pixel values were great enough to consider them to be of predictive 

value. Mean spot pixel heterogeneity did not differ significantly throughout the time 

period analyzed for both Western White Face and Finn ewes. There was a lack of 

correlation between serum progesterone concentrations and pixel heterogeneity in both 

breeds of sheep studied in the present experiment. It has been suggested that pixel 

heterogeneity is a product of the presence of echoic luteal cells of various types, blood 

clots, and extruded non-echoic serum in the clot, creating hyper- and hypo-echoic areas 

in the luteal tissue (Duggavathi et al 2003b). Therefore, the pixel heterogeneity of CL 

may be more of a reflection of structural rather than functional characteristics of the CL, 

which may explain the lack of correlation between pixel heterogeneity and circulating 

serum progesterone concentrations, in the present study. 

 

In summary, circulating progesterone concentrations during the luteal phase of the ewe 

were correlated to luteal area and mean pixel values but not to pixel heterogeneity of 

ultrasound images of the CL. None of the correlations between progesterone and luteal 

area or pixel values were great enough to consider them to be of predictive value. The 

differences between breeds in serum progesterone concentrations but not for luteal area 

and pixel values led us to conclude that these parameters were not good predictors of 

functionality. 
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Chapter 8: GENERAL DISCUSSION AND FUTURE DIRECTIONS 

8.1. General Discussion 

The results of the experiments described in this thesis have answered questions and 

expanded our knowledge on follicular dynamics and CL function in the ewe. The 

application of some of the findings described in this thesis in a commercial setting have 

the potential to increase productivity and efficiency and therefore be of benefit to the 

sheep industry as whole. In the ewe, one to three antral follicles emerge and grow from a 

pool of small follicles (≥1 mm but ≤3 mm in diameter) every 4 to 5 days (Ginther et al 

1995; Bartlewski et al 1999a), each wave is preceded by a peak in serum concentrations 

of FSH (Ginther et al 1995; Souza et al 1998) and follicles in a wave grow to ≥5 mm in 

diameter (Duggavathi et al 2003a). In cattle, there is a dominant follicle of a wave that 

suppresses the growth of other follicles (subordinate follicles) and prevents the 

emergence of a new follicular wave (Armstrong and Webb 1997). The emergence of a 

follicular wave in cattle is characterized by an increase in the number of small antral 

follicles (4 to 6 mm in diameter; Ginther et al 1989). However, in the ewe, the number of 

small antral follicles (≥1 mm but ≤3 mm in diameter) remains constant throughout the 

ovine estrous cycle, except for the periovulatory period (Duggavathi et al 2003a). In the 

present study (chapter 3) injections of oFSH at 36 hours and 72 hours after ovulation, in 

the ewe, resulted in peaks in serum concentrations of FSH which in turn induced 

follicular wave emergence in the presence of a large (≥4 mm in diameter) growing 

follicle. The fact that we were able to create follicle wave emergence in the presence of a 

large growing follicle and that the induced waves did not disrupt the emergence of the 

second endogenous wave of the cycle, brings into question the presence of both direct 
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and indirect dominance in the ewe. In addition to the findings of the present study, other 

authors have found that prolific Finnish Landrace ewes ovulate follicles from the 

penultimate along with follicles from the final wave of the cycle (Bartlewski et al 1999a). 

Further to these findings it has been demonstrated in the present study (chapter 6) that 

there may be other differences between cattle and sheep with regard to the control of 

follicular wave dynamics, in particular, LH pulse frequency.  

 

In order to assess the affect of LH pulse frequency on follicular dynamics in the ewe the 

“ram effect” was employed. Isolation of seasonally anestrous ewes from rams for at least 

one month and then re-introduction of rams leads to synchronized estrus (Underwood et 

al 1944; Edgar and Bilkey 1963) and will often induced ovulation in a proportion of ewes 

within 2 to 3 days (Coop and Clarke 1968; Knight et al 1978). It is known that LH pulse 

frequency increases markedly within minutes of ram introduction (Martin et al 1980) and 

ewes stimulated by the ram experience a preovulatory LH surge similar to that of 

spontaneously ovulating sheep (Oldham et al 1979). In heifers, there is speculated to be a 

role for LH in antral follicle deviation (Ginther et al 2001a; Sartori et al 2001), however, 

the relationship between LH and follicular development in the ewe is unclear (Karsch et 

al 1979; Bartlewski et al 2000; Duggavathi et al 2005). In the present study (chapter 6), 

introduction of rams to previously isolated anestrous, non-prolific Western White Face 

ewes resulted in a subtle increase in LH pulse frequency. However, these changes in LH 

secretion were not reflected by consistent trends in the temporal pattern of follicular 

dynamics. Considering the results of the present study (chapter 6) and findings from other 

authors (Picton et al 1990; McNeilly et al 1991) we suggest that changes in LH pulse 
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frequency are not critical for the normal pattern of antral follicular waves in sheep. In 

cattle, selection of a dominant follicle occurs at the point of follicle deviation (Ginther et 

al 1996). It has been suggested that LH, in particular LH pulse frequency, has a role to 

play in the deviation mechanism of that species (Fortune et al 1991; Gong et al 1995; 

Ginther et al 1996). This further emphasizes the subtle differences between species with 

regard to the mechanisms controlling follicular wave dynamics. 

 

In a previous study in our laboratory (Bartlewski et al 2003), treatment of non prolific 

Western White Face ewes with PGF2α and MAP-containing intravaginal sponges on 

~Day 8 of a cycle (Day 0 = first ovulation of the interovulatory interval), resulted in 

ovulations during the subsequent 6 days when MAP sponges were in place. Ovulations 

occurring during the MAP sponge period were not preceded by a preovulatory LH/FSH 

surge, and none of these ovulations were followed by the formation of CL, only transient 

corpora hemorrhagica (CH: Bartlewski et al 2003). Performing two experiments in 

anestrous ewes enabled us to investigate whether these ovulations were caused by a sharp 

decline in serum progesterone concentrations or due to a direct affect of PGF2α on the 

ovary without the confounding presence of a CL (chapter 4). The combination of 

PGF2α/MAP treatment resulted in ovulations of follicles during the period of MAP 

sponge insertion, but these ovulations were not preceded by a preovualtory LH or FSH 

surge (Experiment 1). However, creating a rapid decline in circulating progesterone 

concentrations, in MAP treated ewes, resulted in no ovulations (Experiment 2). 

Therefore, ovulations occurring after PGF2α injection in anoestrous ewes, and in the 

presence of a MAP sponge were likely due to a direct effect of PGF2α at the ovarian level 
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rather than a sudden decline in circulating progesterone concentrations. In non prolific 

breeds of sheep such as the Western White Face and Suffolk, a follicle(s) will only 

ovulate from the final wave of the cycle (Bartlewski et al 1999a). Whereas prolific 

breeds, such as the Finn, can ovulate follicles from the penultimate as well as the final 

wave of the cycle (Bartlewski et al 1999a). By increasing the ovulation rate of non 

prolific breeds of sheep, producers may be able to overcome one of the major limiting 

factors to efficient sheep meat and wool production, that is, low lamb output per ewe 

(Blaxter 1964; Gordon 1997b). When Bartlewski et al (2003) treated non prolific 

Western White Face ewes for 6 days with a MAP-containing intravaginal sponge, 

coupled with an injection of PGF2α, on day 8 after ovulation, it resulted in an 

approximately 50% increase in ovulation rate at the end of the treatment, as compared to 

control ewes. Therefore applying the treatment given in the study by Barltewski et al 

(2003) to non prolific Suffolk ewes prior to mating may influence the outcome of 

lambing rate. However, in the present study (chapter 5) there was no affect of the 

treatment protocol on lambing rate, birth weights nor sex ratios. We concluded that the 

short-term MAP sponge and PGF2α treatment lead to the untimely ovulation of follicles 

with respect to breeding. In order to further investigate the differences between prolific 

and non prolific breeds of sheep an assessment of the ultrasound image attributes of CL 

was performed (chapter 7) in two different breeds of sheep. 

 

With transrectal ovarian ultrasonography researchers have the ability to collect real-time 

serial images of ovarian structures, such as the CL (Pierson and Ginther 1986). In the 

ewe, changing progesterone concentrations measured in the circulation reflect physical 
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changes in the CL (Arthur et al 1989). Previous studies have reported correlations 

between serum progesterone concentrations and ultrasound image attributes of the CL in 

different species (Tom et al 1998; Baerwald et al 2005). However, such detailed studies 

have not been performed in ewes. In the present study (chapter 7) both total luteal area 

and mean spot pixel values were correlated with the pattern of serum progesterone 

concentrations in both non prolific Western White Face and prolific Finn ewes for the 

entire period when CL were detected with ultrasonography. However, none of the 

correlations between progesterone and luteal area or pixel values were great enough to 

consider them to be of predictive value. Interestingly, despite the differences in serum 

progesterone concentrations between the Western White Face and Finn ewes, the pattern 

of luteal area did not differ between breeds. The differences between breeds in 

progesterone concentration but not for luteal area and pixel values led us to conclude that 

these parameters were not good predictors of functionality. 

 

In conclusion, it appears from the present studies (chapters 3 to 7) that there are 

differences between species as well as within breeds of sheep with regard to follicular 

dynamics and regulation of follicular growth. Furthering our understanding of the 

regulation of follicular dynamics and ovulation rate in the ewe, through the use of 

techniques such as radioimmunassays, ultrasound image analysis or the manipulation of 

treatment protocols would be of benefit to producers and the sheep industry as a whole.  
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8.2. Future directions 

1. Injections of oFSH during an inter-wave interval in the ewe, increase the number 

of follicular waves emerging during the cycle as compared to a “normal” cycle 

(chapter 3). Other authors have demonstrated that prolific Finn ewes ovulate 

follicles from the penultimate wave of the cycle along with follicles from the final 

wave of the cycle (Barltewski et al (1999a). In the present study (chapter 3) this 

treatment was applied to the first wave of the cycle. It would be worth 

investigating the effects of administering the same treatment in the penultimate or 

final wave of the cycle as an effective method to increase ovulation rate in non 

prolific breeds of sheep. 

 

2. Administration of the PGF2α/MAP treatment to cyclic ewes in this thesis did not 

result in the expected increased lambing rate. In order to check that ovulations 

actually occurred in these animals at the expected time, ultrasonography of the 

ovaries could be performed. In addition, the aspiration of ovulated oocytes during 

treatment and then subsequent in vitro fertilization and maturation would enable 

us to examine if the treatment results in oocytes capable of producing a viable 

embryo. 

 

3. In order to assess the effect of LH pulse frequency on follicular dynamics in the 

ewe, it may be prudent to repeat the present study (chapter 6) with ewes that have 

a less distinct breeding season and rams that are novel to the ewes. Also the 

isolation of ewes and re-introduction of rams closer to the transition from one 
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season to the other may result in more dramatic effects on LH pulse frequency 

and a more rigorous test of its effects on follicle dynamics. 

 

4. Ultrasound image attributes of the ovine CL in the present study (chapter 7) were 

collected from 3 days to 14 or 15 days after ovulation. We were unable to collect 

observations of CL throughout the entire ovine estrous cycle due to the difficulty 

of scanning small ruminants and the limitations of resolution. Future studies may 

benefit from the use of higher resolution ultrasonographic equipment (Aloka 900-

SSD, Aloka Co. Ltd., Tokyo, Japan) with which it is possible to detect follicle 

rupture and CL differentiation as early as 12 to 24 hours after ovulation in sheep 

(Duggavathi et al 2003b). With the collection of images of CL throughout the 

entire ovine estrous cycle it would be possible to compare the pixel characteristics 

of “normal” CL to those of the abnormal structures seen in chapter 4, of this 

thesis, when a PGF2α/MAP treatment was administered. 
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