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Abstract

A common problem encountered in mobile hydraulics is the desire to automate

motion control functions in a restricted-cost and restricted-sensor environment. In

this thesis a solution to this problem is presented. A velocity control scheme based

on a novel single component pressure compensated flow controller was developed

and evaluated.

The development of the controller involved solving several distinct technical chal-

lenges. First, a model reference control scheme was developed to provide control

of the valve spool displacement for a particular electrohydraulic proportional valve.

The control scheme had the effect of desensitizing the transient behaviour of the

valve dynamics to changes in operating condition. Next, the pressure/flow relation-

ship of the same valve was examined. A general approach for the mathematical

characterization of this relationship was developed. This method was based on a

modification of the so-called turbulent orifice equation. The general approach in-

cluded a self-tuning algorithm. Next, the modified turbulent orifice equation was

applied in conjunction with the model reference valve controller to create a single

component pressure compensated flow control device. This required an inverse solu-

tion to the modified orifice equation. Finally, the kinematics of a specific single link

hydraulically actuated mechanism were solved. Integration of the kinematic solution

with the flow control device allowed for predictive velocity control of the single link

mechanism.
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Chapter 1

Introduction and Thesis Research

Goals

1.1 Electrohydraulic Control of Mobile Hydraulic

Applications

The mobile hydraulic equipment industry strives to deliver more features at low cost

and with maximum reliability. A major marketing coup in this industry is to deliver

features found in more expensive machines in a lower cost model. As an example,

consider the John Deere (JD) model 410G front-end loader shown in the photograph

in Figure 1.1 and the simplified functional schematic of the same in Figure 1.2.

This implement, and equipment of similar physical configuration (cranes, logging

equipment, backhoes, etc.), are referred to collectively hereafter as mobile equipment.

For the implement shown in Figures 1.1 and 1.2 it is necessary that the operator

have control of the boom and bucket angles, θA and θB, respectively, through visual

feedback. To facilitate this, it is also necessary that the rate of change of these

variables, θ̇A and θ̇B, be proportional to an input signal supplied by the operator and

that their magnitudes remain invariable in the face of changing operating conditions

(load, temperature, and spatial displacement). This requirement is necessary to
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Figure 1.1: Front-end loader implement mounted on a JD 410G.

Figure 1.2: Boom arm function for a front-end loader.

produce consistent “feel” for the operator thereby reducing fatigue and improving

smoothness of operation.

Currently, these performance requirements are achieved using mechanical feedback.

Invariance of the boom and bucket velocities in the face of changing operating con-

ditions is achieved through a combination of linkage design and manually operated,

pressure compensated flow control to the actuator. The present system works quite
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well with an operator in the loop but the manually operated valves offer little op-

portunity for function automation.

To understand the problems generated by attempting to introduce automatic func-

tions in the current system, consider the task of load levelling. Load levelling is a

function in which the bucket angle, θB, is automatically reduced so as to keep the

load level for large values of boom angle, θA. The purpose of this is to prevent the

bucket from tipping material onto the hood of the tractor. This is currently accom-

plished on the JD 410G through a mechanical feedback mechanism which interacts

directly with the manually operated valve. The external portion of the feedback

system is shown in Figure 1.3.

Figure 1.3: Load levelling system on a JD 410G.

In this mechanism a feedback linkage (A) is connected to a cam at B and the bucket

linkage at a point hidden behind the boom arm in Figure 1.3 at a position approx-

imated by C. As the boom angle increases (θA in Figure 1.1) the cam rotates on

its mounting pin. At some fixed angle the cam engages a cable system, the initial

portion of which is indicated by D in Figure 1.3. This cable system is attached

through a spring to the manually operated control “stick” located in the cab of the
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tractor through which it actuates a control valve in order to decrease the angle of

the bucket.

During a typical load levelling operation, several key functions are performed. The

angular velocity of the boom arms is maintained relative to an operator input by a

pressure compensated flow control valve. The relative angular positions of the boom

and bucket are sensed by the mechanical feedback system. The angle of the bucket

is adjusted by the feedback linkage acting on the bucket tilt manual valve.

This system illustrates the mechanical complexity required for a single automated

feature through use of direct mechanical feedback. Ideally, other functions such as

“return to dig”, task memory, and function planning for minimum energy use would

also be available to the consumer. As illustrated by the load levelling example, this

is not practical in the current configuration. Although this loader was not used

directly in this study, the challenges associated with control of the loader provided

the motivation for this project and provided a reference to which the research work

could be continuously related.

If it were made practical to automate motion of a system similar to the boom and

bucket on the JD410G, then features of more expensive machines could be readily

incorporated in lower cost models. To do this requires two very important require-

ments:

1. The ability to control the flow rate of oil to the hydraulic actuator (and hence

the actuator velocity) in the presence of changing loads.

2. Knowledge of the position of the components.

Motion control using an electrohydraulic valve would be an ideal solution to meeting

these requirements providing that the additional costs could be kept small and the

reliability high. This would require the implementation of electrohydraulic valves

and feedback elements relating to the spatial variables and the development of an

appropriate control algorithm to achieve the desired function.
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To determine the state of research in this area, a detailed literature review on these

topics was conducted and the results of this review are presented in the next section.

1.2 Literature Review

The survey of the literature began with an examination of the reported research spe-

cific to the automation of mobile equipment similar to that considered in this thesis.

The review was made progressively more specific, addressing the research challenges

which applied directly to the proposed application. This literature survey was used

to compile techniques which were deemed to be useful and to highlight deficiencies

in the current body of research as addressed in the research goals presented later in

this chapter.

In the remainder of this section, publications from the following general categories

are discussed:

1. The velocity and position control of hydraulically actuated mobile equipment

(loaders, backhoes, and logging equipment) using electrohydraulic valves.

2. Electrohydraulic control of linkages in non-mobile applications.

3. Modelling and control of electrohydraulic spool valves.

4. Mathematical representations of orifice pressure/flow relationships for spool

valves.

1.2.1 Motion Control of Mobile Hydraulically Actuated

Systems

There are many examples of the application of electrohydraulic control to mobile

hydraulic equipment. One of the most thorough studies was performed by Cobo et

al. [1]. They presented a kinematic model of a loader linkage, a dynamic model
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for the hydraulic system on a particular loader, and experimental evaluation of the

dynamic response of a loader employing their real-time control algorithm.

The hydraulic system on their implement was supplied by a fixed displacement

pump and employed open center control valves without pressure compensation. This

meant that the angular velocity of the boom arms was a function of the load, valve

displacement, and pump flow rate. The authors maintained proportional velocity

control with a variable gain PI controller and a “dynamic valve transform” to account

for the variation in valve flow due to load changes and engine speed. Their system

is illustrated in Figure 1.4.

Figure 1.4: Block diagram of the control system investigated by Cobo et al..

The dynamic valve transform was a look-up table generated from experimental data

and was used to linearize the steady state characteristics of the valve and actuator

for a given operating condition. The valve spool position was operated in the open

loop with velocity feedback control in an outer loop. This system required the direct

measurement of the velocity of the boom arms. Two of the authors, Cobo and

Ingram, performed the work while employed with Caterpillar, Inc. and as a result

provided some industry driven guidelines for the performance requirements of mobile

equipment.

A second, more straightforward approach was employed by Chen et al. [2]. Their

work was based on the supposition that the manually-operated, hydraulically-

piloted, proportional control valves currently installed on a particular loader worked

quite well for constant velocity control. Their approach was to simply replace the

manually-operated pilot stages with electrohydraulic two-way valves. The system
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could then be operated remotely by activating the two-way valves using a radio

transmitter/receiver. Their system incorporated no feedback control as the system

would be operated with visual operator feedback only. This approach was an exam-

ple of an “add-on” solution. The introduction of the two-way components without

replacement of the existing control valve would increase the manufacturing cost,

increase the number of components and reduce the reliability.

A study that proved most relevant to the research described in this thesis was that

published by Sepehri et al. [3]. This work involved the electrohydraulic control of

an excavator and took into account the special considerations encountered in many

mobile hydraulic applications. Specifically, the authors addressed velocity control

in the presence of variable load and supply pressures. The pressure compensation

technique employed calculated the optimum valve spool displacement to achieve

a desired flow rate by solving the turbulent orifice equation (“dynamic inversion

model”) using measurements of the differential pressure across the valve. As with

Cobo et al. [1], measurement of the angular velocity was required to achieve closed

loop control. Their system is shown in Figure 1.5.

Figure 1.5: Block diagram of the control system introduced by Sepehri et al. [3].

While this technique proved relatively successful, results indicated limited repeata-

bility for changing load conditions. A possible explanation for this was error in the

dynamic inversion model, specifically in the simplified valve coefficient modifier used

in the turbulent orifice equation. In the opinion of the author of this thesis, this

method could be improved with a more accurate approach to modelling the pres-

sure/flow relationship for the valve orifice. Also, the valve in their system was driven

by a commercially supplied electronics package. In their paper the design of the con-

7



troller was not stated, however, if this electronics package used a linear controller

for valve displacement (most often the case), some operating condition performance

dependencies would inevitably exist. Furthermore, this system was operated in the

closed loop with respect to position and velocity. Although not clear in their paper,

it was assumed by the author of this thesis that the pressure compensation was de-

signed to linearize the behaviour of the valve rather than produce predictive velocity

control as the open loop performance, and hence the accuracy of the turbulent orifice

equation linearizing function, was not examined in detail.

All three of the aforementioned research works relied on a combination of lineariz-

ing equations in the feedforward path and closed loop velocity feedback control.

The matter of velocity feedback is a technical hurdle in the introduction of elec-

trohydraulic motion control to mainstream equipment manufacture due to working

conditions which are not conducive to instrumentation. The promising experimental

results achieved using linearizing feedforward elements suggested that this type of

approach would be appropriate for the system studied for this thesis.

1.2.2 Motion Control of Non-mobile Hydraulically Actu-

ated Systems

Algorithm development and its full integration on a piece of mobile equipment can

be a daunting task due to cost, instrumentation, and safety issues. It is more com-

mon to perform the research and development in a stationary environment where

operating conditions can be more closely monitored. This section summarizes lit-

erature pertaining to the control of hydraulically actuated linkages in non-mobile

applications.

Gholamreza and Donath [4] recognized that a hydraulically actuated system con-

tains a host of nonlinear elements, thereby making a linear controller ineffective.

Furthermore, the authors showed that linearization of the dynamic equations over a

small operating range and the design of an appropriate controller for each condition
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had limitations in the face of changes to time-variable parameters. Their solution

involved the development of a so-called “linearizing feedback controller”. A block

diagram of this type of controller is shown in Figure 1.6.

Figure 1.6: Block diagram of the linearizing feedback control strategy investigated

by Gholamreza and Donath [4].

The premise was that the linearizing feedback controller prefiltered the operator

command signal in such a way as to negate nonlinearities in the parameter variations,

geometric relationships, and pressure/flow relations. It was noted by these authors

that if the actuator dynamics in this system were much faster than the load dynamics

then the derivatives of the angular position, θ̇ and θ̈, were not necessary for effective

control. The portion of the linearizing controller associated with the valve orifice

was modelled with the turbulent orifice equation using approximations for coefficients

with inherent assumptions based on geometry and flow regime. A limitation of this

method was that when the system was operated in the open loop the accuracy was

entirely dependent on the accuracy of the linearizing feedback functions within the

controller. The authors ultimately compensated for errors in these functions by

using another linear controller with velocity feedback in series with the linearizing

feedback controller to achieve velocity control. In this configuration the dynamics of

the system were dependent on the error between the linearizing model and the actual

system as well as the dynamics of the linear controller. Other, more complicated

control schemes were suggested, but not tested. The technique was not meant to be

used as a predictive method in the absence of feedback, but as an augmentation to

a conventional linear full state feedback system.
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The approach of Gholamreza and Donath [4] is very similar to that employed by

Sepehri et al. [3] which was discussed earlier in this section. Performance in both

cases was evaluated with full state feedback so the effectiveness of their linearizing

feedforward function was not explicitly evaluated. In particular, the conclusion of

Gholamreza and Donath [4], that the higher derivatives of position play a negligi-

ble role in the development of a linearizing controller for a large inertial load, was

especially valuable to the development of the control strategy in this thesis.

A study of particular interest was that performed by Pietola and Vilenius [5] in which

the performance of a model reference control approach (MRC) was compared to that

of a proportional controller and a nonlinear proportional-integral-derivative (PID)

based controller when applied to the same electrohydraulic system. They found that

the MRC provided the most consistent performance in terms of rise time regardless

of load. A disadvantage of this approach, however, was that a large amount of detail

was required for the reference model. Extensive system identification was performed

for their approach to achieve better results than a linear feedback control system.

The requirement of an accurate real-time model is especially detrimental to opera-

tions where inertia or friction can be time variant. This is a useful approach when

the parameters are well understood which is the case for control of the displacement

of a valve spool.

The limitations of the approach taken by Pietola and Vilenius [5] arise from the

fact that the dynamics of the system are governed by physical quantities which are

unknown, uncertain, or time-variant. This type of problem can potentially be solved

through the development of an adaptive robust controller. This was the approach

taken by Bu and Yao [6],[7] which allowed for mathematical proof of the tracking

convergence. Experimental results showed that, under certain operating conditions,

using their inertial compensating algorithm resulted in less error for a given trajec-

tory than that which occurred using a linear motion control algorithm. In [7] the

authors recognized the role of variable flow gain and introduced a simplified pres-

sure and displacement dependant flow relationship to compensate for this variability

when developing their nonlinear model. A disadvantage of the approach reported
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in both papers was that synthesizing the control law and calculating the parameter

update algorithm were computationally intense. In terms of controller performance,

their experimental data did not address the behaviour of their controller in a fast

trajectory under high load, a case where the adapted parameters would dominate.

As a final note, although their system was designed to compensate for variable iner-

tia, this did not represent the addition or removal of a load during a system cycle.

Rather, the system was only meant to compensate for the variation in the equiv-

alent load seen by the hydraulic actuator due to changing gravitational loading of

the system over the system stroke. The result was a smooth nonlinearity which

was relatively “slow” in the dynamic sense. Stability issues regarding the system

behaviour when subject to “fast” operating condition changes were not addressed.

An adaptive control approach was also studied by Guenther et al. [8]. Their work

included theoretical and experimental developments, and proof of the stability of

their approach using Lyapunov methods. The limitation of their approach, as with

most adaptive control strategies, was the dependence on continuous noise-free state

feedback.

Motion control of electrohydraulically controlled linkages, in the sense of trajectory

tracking, was investigated by Tafazoli et al. [9]. The goal of their study was to

reduce disturbance caused by nonlinear friction in the actuators controlled by linear

feedback techniques. They designed a nonlinear friction observer which was then

used in a nonlinear controller. The method was very useful for decreasing tracking

error and “smoothing” response. This method required continuous state feedback

in order to compensate for the friction disturbance.

In the first part of the two part study conducted by Edge and de Almeida [10],

the control of a system in a dynamically coupled environment was examined. They

examined a multiple degree-of-freedom system where more than one actuator was

operated from the same supply. Their approach incorporated an adaptive model

reference controller as an internal velocity control loop. Variable structure system

theory was used to develop the adaptation laws. In the second part of the study,
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experimental results employing the developed controller were presented. Some gen-

eral guidelines on appropriate pole placement for model reference controllers were

determined and presented. They also included the development of a dynamic model

for electrohydraulic spool valves of a type similar to that used in the research de-

scribed in this thesis; however, their control system response suffered from variable

performance with varying load especially with respect to rise time. The authors

claimed that their algorithm should compensate for varying load; therefore, it would

be reasonable to assume that the change in response was due to variable valve pres-

sure/flow characteristics. A very useful result from this paper was the theoretical

justification for the concept of designing a well controlled velocity inner loop with a

simple proportional position control outer loop.

An example of using differential pressure measurements across a valve orifice to

achieve pressure compensated flow control in an electrohydraulic system was sug-

gested by Wang et al. [11]. This work was of particular interest as their system

was designed to be used on an excavator whose geometry and operating conditions

were similar to those of the JD 410G described earlier in this chapter. No informa-

tion was presented with respect to the function used to relate the flow rate through

the valve to the differential pressure measurements across it. Experimental results

showed that this approach had the capability of producing smooth performance in

the presence of large inertial loads. Flow control was achieved by using two separate

valves for the meter-in and meter-out operations. The switching between meter-in

and meter-out was controlled by software. The same functionality could be achieved

with a single four-way valve performing both the meter-in and meter-out operations.

A more conventional approach was taken by Cheng [12]. For a wood panel pressing

operation, the author required the physical robustness offered by a proportional valve

as opposed to that of a servovalve. Velocity control in the presence of changing load

was also a requirement. The approach employed a proportional flow control valve

which had an integrated hydrostat for pressure compensation. The valve suggested

by Cheng increases cost and reduces reliability relative to a non-compensated valve.

It was shown by Dobchuk et al. [13] that a single orifice whose area is controlled
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through use of pressure transducer feedback can perform the same task with soft-

ware compensation without the need for mechanical compensation in the form of an

integrated hydrostat.

The most economical approach to electrohydraulic control encountered in the lit-

erature was suggested by Hu and Zhang [14]. They used an array of proportional

two-way solenoid valves to achieve position control under several mock system sce-

narios (open-center or closed-center). While an interesting possibility, the authors

only explored position control with a potentiometer in the loop. They did not in-

vestigate pressure compensation issues.

Inherent to all the work discussed in this section was some type of kinematic analysis

of the linkage to be controlled. The difficulty is that all of these systems contained

an actuator which is a translational element and the desired output was a rotation

of the linkage. It was therefore necessary to solve the governing geometry so that

the two may be related. Hermani and Daneshmend [15] presented a simple yet

thorough investigation of the kinematics governing a system which was very similar

to that analyzed by the author of this thesis. This paper was used as a model for

the development of the kinematic equations presented in this thesis.

Most of the recent work performed on hydraulically actuated linkages has focused

on developing some type of adaptive controller. These controllers are meant to com-

pensate in real-time for nonlinear elements such as friction and smooth time-variant

load changes. These methods rely on continuous noise-free feedback and are gen-

erally computationally intense making them non-ideal for application to low cost

mobile equipment. The exception was the work of Gholamreza and Donath [4] who

employed a linearizing feedforward element to compensate for nonlinear valve be-

haviour. This approach does not require the real-time solution of system parameters

for synthesis of a control law. The method was similar to several approaches dis-

cussed in the previous section, all of which produced encouraging results. All of

these approaches, however, relied on closed loop velocity feedback to compensate

for errors in the linearizing feedforward elements. Dependence on velocity feedback
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could be reduced if sufficient analysis was performed on these linearizing functions

to ensure their accuracy. The two main components of the linearizing functions are

the valve dynamics and the valve orifice pressure/flow relationship. These two topics

are discussed in the following sections.

1.2.3 Modelling and Control of Electrohydraulic Spool

Valves

The linear motion control techniques (PID or its derivatives) and adaptive control

techniques discussed in the previous section share a common drawback: they all

strongly depend on full state feedback. In order to remove this dependence in a

system employing a linear feedforward compensator, the linearizing function must

be sufficiently accurate to ensure that the system can operate in the absence of

feedback for extended durations. This requirement demands the accurate and fast

control of the spool motion of the hydraulic valve as well. Material available on the

dynamic modelling and control of electrohydraulic valves is extensive. Rather than

a comprehensive review of the literature (which would be impractically large) this

section highlights works which either:

1. Contain methods or results of particular significance to this thesis.

2. Reflect analysis of commercially available valve controllers.

Lai and Chen [16] developed a method for a self tuning pressure compensating flow

controller using a reference model as a predictor of the flow rate. The authors based

their adaptive update algorithm on feedback from a flow meter in the loop. Their

method was prone to instability and the introduction of a flow meter limited the

reliability and system simplicity for mobile applications.

Gholamreza and Donath [4] showed the importance of accurate determination of

physical parameters in the modelling of a valve if that model is to be used to investi-

14



gate dynamic performance. The effect of variations in parameters on the frequency

characteristics of the valve were tested using simulation and verified experimentally.

Zavarehi et al. [17] also produced a detailed mathematical model of a spool type

valve. The valve used in their study had a solenoid actuated spool primary. The

governing equations of motion for the main stage included nonlinear friction and

flow force terms. The pilot spool and solenoid were carefully modelled as these

were deemed vital to capturing the dynamic characteristics of the valve. Simulation

and experimental frequency and step response results were used to validate the

model. Their results showed a dependence of the main stage spool response on

temperature. This was directly correlated to increased viscosity and a resulting

decreased activation pressure from the main stage. This implied that a simple linear

controller in the valve spool displacement control loop would not produce repeatable

motion control in the presence of variable temperature. The work of Zavarehi et al.

[17] highlighted the importance of accurate modelling of the primary stage of a

two-stage valve to the overall accuracy of a full valve model.

The research performed by Henri et al. [18] provided a thorough investigation of

a primary stage similar in configuration to that on the valve used in the research

presented in this thesis. Although their work was based on a pneumatic valve,

the underlying principles are equally applicable to hydraulic valves. Their analysis

included parameter determination, mathematical modelling and experimental verifi-

cation of the dynamic performance of a primary stage. Furthermore, methods were

introduced for using feed forward control to overcome system nonlinearities, which

tend to be exaggerated in pneumatic systems. This paper also contained an excellent

summary of the relative contribution of subsystem (primary stage, main stage, and

actuator) poles to the overall system dynamics.

A commercially available solution for controlling flow in the presence of variable

pressure was introduced by Prasetiawan et al. [19]. They used a valve which is sold

under the tradename “valvistor”. This is essentially a two stage pressure compen-

sated poppet style flow control valve. They investigated the performance limitations
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of the valve in simulation. The simulation study required the development of a

pressure/flow model which was built on the turbulent orifice equation. The limita-

tion of a commercial solution such as this in a design sense is the dependence on a

particular valve with resulting loss in flexibility of system design, performance and

manufacture.

It has been shown in the literature that fast, accurate control of an electrohydraulic

valve is critical to overall dynamic performance of a system. Despite this, an ap-

proach to control of a valve spool position is not available which remains portable

from manufacturer to manufacturer without extensive analysis of the particular valve

and still provides repeatable performance independent of operating condition. De-

velopment of such an approach would be a valuable contribution to the field of

electrohydraulic motion control.

1.2.4 Orifice Pressure/Flow Relationships for Spool Valves

It was evident from experimental results presented in some of the application oriented

works already discussed in this chapter, that along with valve dynamics, a limiting

factor on obtaining flow control using differential pressure measurements was the

pressure/flow relationship used to determine the valve spool position for a given

operating condition. In most cases the relationship used was the turbulent orifice

equation.

It has been shown by Viall and Zhang [20] that the turbulent orifice equation em-

ploying fixed discharge coefficients may be insufficient. In an experimental method,

which shared many traits with that presented by Dobchuk et al. [13], Viall and

Zhang [20] showed the variability in the discharge coefficient that can occur with

changing geometry and flow regime (laminar or turbulent).

The same conclusion was arrived at by Merritt [21] who developed a Reynolds num-

ber dependent discharge coefficient for the turbulent orifice equation. A detailed

analysis of the equations governing these types of flows was also conducted by Wu
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et al. [22]. They developed a correction factor which, when applied to the turbulent

orifice equation, allowed this equation to be extended into the laminar region.

The literature review showed that the characterization of the pressure/flow relation-

ship for an orifice is developed in one of three ways, each of which has its disadvan-

tages. The first method is to apply the turbulent orifice equation without concern

for applicability. The second method is to lump the flow characteristics as a non-

linear gain. In the third method, the relationships are developed through detailed

and extensive analysis based on careful measurements of orifice geometry. It was

concluded by the author of this thesis that development of a straightforward em-

pirical approach to characterizing the pressure/flow relationship for an orifice in a

mathematically and numerically compact fashion would be a significant contribution

to this field of research.

1.3 Outline of Research Scope

As indicated in the previous sections, Cobo et al. [1], Sepehri et al. [3], and Gho-

lamreza and Donath [4], have had success using a linearizing feedforward controller

as part of an electrohydraulic velocity control system. Each of these studies, how-

ever, took into account the fact that the linearizing elements used had some degree

of error and in each case a linear controller employing velocity feedback was also

used to compensate for this error. The requirement for this type of feedback must

be removed before the linearizing feedforward approach can be applied to mobile

equipment as a harsh working environment does not allow for the addition of exter-

nal transducers. It is clear as well that some form of feedback would be required

to compensate for drift, but a system which could operate under open loop veloc-

ity control for extended durations would increase the options for practical indirect

instrumentation.

The literature review also indicated that a proportional valve is an appropriate choice

for the electrohydraulic velocity control of mobile equipment; however, control of

17



the valve spool position is critical to the overall system performance. A generic

description of the pressure/flow characteristics of the orifice is also desirable such

that valves of different configuration could be used interchangeably without a priori

knowledge of the valve orifice geometry.

Given the above considerations, the approach which was selected for the study re-

ported in this thesis is summarized in Figure 1.7. The parameter to be controlled

was the angular velocity, θ̇d, of a hydraulically actuated arm. Since the relation-

ship between the arm angular velocity and the flow rate to the hydraulic actuator

could be determined analytically, the desired angular arm velocity may be trans-

formed into a desired actuator flow rate, Qd. This desired flow rate, combined with

load pressure measurements were “mapped” to a desired valve spool position, xvd.

An appropriate closed loop valve spool position controller with the electrohydraulic

valve in the loop achieved the desired spool position. The resulting valve spool po-

sition created an orifice area which was subject to the load and supply pressures,

P1,2 and Ps, respectively, resulting in the flow rate, Q, through the valve. The flow

rate resulted in an actuator linear velocity that was translated, through the arm

kinematics, to an output arm angular velocity. Collectively, the components created

a novel linearizing feedforward velocity control system.

Figure 1.7: Block diagram of a predictive velocity control system.

Critical to the implementation of this velocity control system are:

A. A kinematic relationship between θ̇d and Qd.

B. An accurate relationship between the desired flow rate, the valve spool position,
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the supply and load pressure, and the various nonlinear and operating point

dependent valve coefficients.

C. A robust controller for the nonlinear proportional valve system to ensure ac-

curate control of the spool position.

As mentioned earlier in the literature review, the feasibility of new control schemes

such as that proposed in this thesis, must be established in a controlled environment.

Thus, in order to evaluate the performance of the proposed velocity control system,

the experimental verification was performed on a laboratory robot shown in Figure

1.8. The robot had similar geometry to that of the JD 410G as can be seen by com-

parison of Figure 1.8 and Figure 1.1 with the added advantage of tighter control of

the operating conditions. The apparatus allowed the load and supply pressure con-

ditions to be tailored to mimic different operational scenarios and provided greater

flexibility for instrumentation.

Figure 1.8: The laboratory robot used for development and evaluation.

It was decided that the first stage of the research project was to develop a unique

single component pressure compensating flow regulator using a proportional valve.
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The development of such a flow regulator would be a major contribution to the

advancement of velocity control of such systems as previously discussed and would

be one of the original contributions of this study. In the second stage of this research

project, the flow regulator was to be coupled to a hydraulically actuated single

link mechanism for the purpose of developing a novel open loop linearizing velocity

control system.

The next section outlines the specific research goals and steps required to develop a

working prototype of the system and to evaluate its performance.

1.4 Research Goals

The objective of this research project was to develop and evaluate a control scheme

for the open loop predictive velocity control of a hydraulically actuated single link

mechanism. The overall strategy is shown in Figure 1.7. Practical considerations

coupled with a review of the literature related to the research project necessitated

that the proposed project be divided into the following specific goals representing

areas of particular academic interest.

1. Compile a review of literature relevant to the various aspects of the research

project.

2. Determine the dynamic characteristics of a two-stage proportional valve with

the intent of using this information to develop an accurate and repeatable

closed loop valve spool position control scheme.

3. Design a methodology to determine a mathematical relationship which de-

scribes the pressure/flow characteristics of a spool valve.

4. Utilize the new equation and the spool position controller to realize a novel

single component pressure compensated flow controller and to implement it on

a laboratory robot.
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5. Develop the kinematics of a single link hydraulically actuated mechanism in

order that the developed flow controller may be implemented as an open loop

velocity controller.

6. Develop a linearizing feedforward controller and evaluate its performance lim-

itations when used to achieve open loop velocity control of the hydraulically

actuated mechanism.

1.5 Organization of this Thesis

The remainder of this thesis is organized into six chapters.

Presented in Chapter 2 is material pertaining to Research Goal #2. Several sys-

tem identification techniques were employed to determine a model for the dynamic

behaviour of a particular proportional valve. A model reference spool position con-

troller based on the system identification was designed and tested.

Chapter 3 contains a description of the work performed in order to achieve Research

Goals # 3 and 4. Experimental procedures and apparatus were developed to generate

representative pressure/flow/displacement data for the valve. A new empirical form

of the the turbulent orifice equation was developed from these data. An optimization

routine was employed to reduce the error in the empirical coefficients. The optimized

pressure/flow relationship, called the “valve map”, was used to predict the flow rate

in an environment with variable operating conditions.

The work done to achieve Research Goal #5 is addressed in Chapter 4. It contains

the development of the kinematics of the single link mechanism necessary to use

the newly developed flow control strategy for the angular velocity control of the

mechanism. A mathematical model of the mechanism is presented.

In Chapter 5 the analysis associated with Research Goal #6 is presented. It is

a summary of experimental results indicating the performance limitations of the

linearizing feedforward velocity control system. The effect of compounding error in
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velocity tracking on the prediction of the angular displacement of the robotic arm

is also discussed.

Chapter 6 consists of the concluding remarks. It includes a summary of how the

Research Goals were achieved and highlights the author’s original contributions.

Conclusions on the performance of the system are given and the feasibility of using

this control approach on mobile equipment is discussed. Finally, comments are made

regarding areas which appear promising for future work.
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Chapter 2

Physical Description, Operating

Characteristics, and Control of a

Two-Stage Proportional Valve

Before a motion control system for a hydraulically actuated single link mechanism

can be discussed, it is imperative to understand the physical construction and dy-

namic behaviour of the component which will be acting as the electrohydraulic in-

terface. In the introduction to this thesis the desire to incorporate electrohydraulic

control in a cost effective manner was discussed. For this reason the type of valve

chosen to be the hydraulic control element in the experimental system discussed in

this thesis was a two-stage proportional valve. Among its desirable characteristics

are the following:

1. Relatively low cost (compared to servo-valves),

2. Simplicity (no internal mechanical or hydraulic feedback),

3. Relatively low input power requirements,

4. Good bandwidth (>20 Hz),

5. Good linearity (± 5%).
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These valves are designed to create a valve spool displacement proportional to the

magnitude of an input signal. Control of the valve spool position is often optimized

to provide the fastest stable transient response in order to obtain the greatest band-

width. Linear controllers of this type tend to be sensitive to disturbance inputs

generated by the operating conditions of the valve. This variable response is detri-

mental to a linearizing control strategy where the goal is make the dynamic response

of the overall system independent of operating condition. The material discussed

in the remainder of this chapter examines the dynamic characteristics of a particu-

lar spool valve and uses this information to develop a general valve spool position

control system which can be readily adapted to any spool valve. The controller

was designed to produce acceptable dynamic response and insensitivity to variable

operating conditions such as supply pressure and temperature.

This chapter is organized into four sections. Section 2.1 presents an overview of

the physical configuration and function of a two-stage proportional valve and its

components. Experimental and simulation analysis leading toward the development

and verification of a mathematical model of the valve are presented in Section 2.2.

Section 2.3 contains the development of a valve spool displacement control system

based on the valve model. Experimental results of the control system are also pre-

sented. Section 2.4 is a discussion of the results and conclusions based on material

in this chapter.

2.1 Physical Configuration of a Two-Stage Pro-

portional Valve

Control of any electrohydraulic system is made difficult by the inherent complex-

ity of the individual components which make up that system. An electrohydraulic

spool valve is no exception. In order to develop a general strategy for valve spool

displacement control, a specific valve is examined in detail so that the phenomena

affecting spool valve dynamic behaviour can be identified and quantified. Based on
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such an analysis, an appropriate general compensator design for spool valves can be

developed. The first step in developing an understanding of the dynamic behaviour

is to identify the function of each of the major components within the valve used in

this study.

The valve is shown schematically in Figure 2.1. The valve is supplied with oil at

a supply pressure, Ps. The supply pressure is regulated in the primary stage to a

fixed value, Pps, which is used by the primary stage to create a differential pressure

(P1−P2) which drives the main stage. The main stage meters flow to and from the

rod side and blank side of the hydraulic actuator (not shown), with the return oil

directed to the reservoir at atmospheric pressure, Pt.

Figure 2.1: Symbolic representation of the components of a two-stage valve.

This valve is termed a “proportional valve” which is a colloquialism for a broad class

of electrohydraulic valves with a variety of configurations. The physical configuration

of the specific valve used in this research requires the addition of the following

descriptors:

1. Spool Type

2. Directional
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3. Proportional

4. Two-Stage

5. Electrohydraulic.

The implication of these descriptors with respect to the valve configuration will now

be addressed.

2.1.1 Spool Type

The term “spool valve” refers to the shape of the mechanical component which

creates the orifice inside the main stage of the valve. The main stage of the valve is

that part of the valve which interacts with the overall hydraulic system through a

port plate. The location of the valve spool is indicated in Figure 2.2.

Figure 2.2: Cutaway view of the main stage to show location of valve spool.

It is the purpose of the valve spool to create a metering orifice in the valve. The

orifice is created by the clearance between the valve lands (wide parts) and the valve

body. This is illustrated by the close-in view of a single land and its position relative

to a port machined in the valve body shown in Figure 2.3.
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It can be seen in Figure 2.3 that as the spool moves laterally relative to the valve body

the area of the annular orifice changes. The mathematical relationship between the

orifice size and the lateral spool motion is discussed later in this thesis. The spool

is free to slide within the valve body. It is contained at either end by a “return

spring”, so named because these springs return the spool to the neutral position in

the absence of a control signal.

Figure 2.3: Illustration of the metering orifice created by the radial clearance between

the spool and the valve body.

The lateral motion of the spool (left or right in Figure 2.2) determines the directional

control of the hydraulic system in which the valve is installed.

2.1.2 Directional Control Valve

In Figure 2.3 it is illustrated how the clearance between a single spool land and

the valve body creates a metering orifice. A directional control spool valve has

multiple lands capable of creating multiple metering orifices. The multiple orifices

are arranged to allow for the directional control as illustrated in Figure 2.4

How the spool is moved in the positive or negative direction (orientation is arbitrary

and interchangeable) is the subject of the next section.
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Figure 2.4: Directional control with a spool valve arrangement.

2.1.3 Proportional Valve

Displacement of the valve spool is achieved by applying control forces to the ends

of the valve spool which is referred to in this thesis as a differential activation force.

The magnitude of the force required to achieve a desired displacement varies with

operating condition. Friction, flow forces, and the spring reaction forces must all be

overcome before a desired displacement can be achieved.

The term “proportional valve” is applied to valves which achieve a linearly propor-

tional relationship between an input signal and the valve spool displacement. This

proportionality is easier to achieve if disturbance forces such as flow forces or friction

are negligibly small relative to the return spring forces. In this case, the displace-

ment of the spool in the steady state is governed by the reaction force of the return
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springs which increases linearly with the displacement. The various forces acting on

the valve spool and their relative amplitudes are discussed in detail in Appendix A

and addressed briefly in the next section.

If the force required to displace the valve spool increases linearly with its displace-

ment, then any device capable of linearly transforming a user input to a differential

activation force will result in a “proportional valve”. This device may be a man-

ually operated lever, a proportional solenoid, or in the case of the valve used in

this research, a separate hydraulic system which is termed a “primary stage”. The

configuration of the primary stage is the subject of the next section.

2.1.4 Two-Stage Valve

Employing a primary stage on a hydraulic valve addresses two issues relating to

the valve dynamics. The first is the need for large amplitude activation forces to

overcome dynamic disturbance forces. The following phenomena lead to the necessity

of large amplitude activation forces in the dynamic sense:

a) Flow forces.

b) Forces arising from accelerating the spool.

The flow forces behave as a nonlinear spring whose spring rate varies with operating

condition [21]. Details of the characteristics of flow forces may be found in Appendix

A. To combat this, valve manufacturers routinely make the return springs relatively

stiff [21]. The prevailing assumption is that the force disturbance introduced by the

flow forces will not be dominant when compared to the activation force required

to move the spool against the spring. The direct result is that large activation

forces are required to work against the return springs which often increases the force

requirements out of the range of proportional solenoids for high flow valves.

Large forces arising from the acceleration of the spool are based on the desirability

to maintain high bandwidth. The required bandwidth to control hydraulic systems
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can exceed 20 Hz [21]. Maintaining this bandwidth is complicated by practical

considerations introduced by the physical construction of the valve. That is, in

order to achieve physical robustness and appropriate geometry to accommodate large

flows, the valve spool is typically quite massive (∼0.3 kg). As a result, the force

required to accelerate the spool to achieve reasonable bandwidth is large.

In addition to the need for large amplitude activation forces, a second issue that a

two-stage system addresses is force coupling between the driving element (primary

stage) and the driven element (main stage). From a control standpoint, it is de-

sirable to impart a force control signal on the spool. If a primary stage device is

directly coupled to the main stage, any disturbance force on the main stage will be

fed back as a disturbance input to the force control system of the primary for which

compensation must be made. In the case of the valve used in this thesis, the solution

was to use a force transmission element that was “uni-directional”. An analogy to

this situation is two components attached by a string. Disturbance forces in com-

pression are not allowed because the the string only transmits force in tension. The

device used to implement this uni-directional force transmission was the hydraulic

jet primary stage.

The hydraulic jet primary stage employs two fluid jets aimed at two corresponding

receiving ports. One such “supply jet/receiving port” pair is illustrated in Figure

2.5.

The linear momentum carried by the fluid passing through the jet becomes a force

transmission mechanism. The system is similar to a jet interacting with a fixed

surface as discussed by White [24]. In that solution the force applied by an impinging

jet for an angle of impingement of 90◦ is equal to the linear momentum flux of the

jet. If the solid surface in the solution of White [24] is replaced by a receiving port,

as illustrated in Figure 2.5, then the result is a static pressure at the entrance to the

receiving port when mixing effects are neglected.

The hydraulic jet concept illustrated in Figure 2.5 can be employed as a variable

force transmission element by the introduction of a diverter to the fluid jet. Since the
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Figure 2.5: Supply jet/receiving port pair.

reactionary force (or static pressure since the receiving port is of constant area) at the

receiving port is a function only of the momentum carried by the fluid jet, diverting

a portion of the jet will reduce the static pressure by a proportional amount. By

adding two jets and two receiving ports, with a single diverter, it is possible to obtain

a pressure differential between the two receiving ports that shares a relationship to

the diverter displacement. This arrangement is illustrated by the picture of the

primary stage port plate shown in Figure 2.6. The notation is the same as that used

in Figure 2.1. The pressures, P1 and P2, are then ported to either end of the main

stage valve spool to produce a differential activation pressure. Diverted jet flow is

allowed to leak to tank pressure, Pt.

If the relationship happens to be linear then the hydraulic jet primary stage is a

linear device in the sense that output (pressure) is directly proportional to the input

(diverter displacement). The means by which the diverter is actuated is the subject

of the next section.
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Figure 2.6: (Left) Primary stage with diverter location. (Right) Impingement sce-

nario with diverter shifted fully to the right.

2.1.5 Electrohydraulic Valve

In order to accommodate a hydraulic valve in an electronic control system, the

valve must have an electrohydraulic interface. In the valve used in this project

that interface is a torque motor that operates the diverter discussed in the previous

section. The torque motor assembly is illustrated in Figure 2.7.

The torque motor is a simple electromagnet with a ferrous cantilever as a core. This

combination is referred to hereafter as the electromagnetic actuator or “EMA”. As

the cantilever rotates about the axis shown in Figure 2.7, the result is a linear

translation (tan(θ) = θ for small angles) at the cantilever tip, xps. The cantilever

mount acts as a spring, and if linear spring properties are assumed, then the tip

displacement is proportional to the torque applied by the electromagnet. The torque

is linearly related to the strength of the magnetic field created by the magnet and

the magnetic field is in turn linearly related to the current through the magnet

winding. If the resistance of the coil is constant then it follows that the current is

proportional to an applied voltage. The tip displacement is then proportional to

the applied voltage and the primary stage satisfies the description of a linear force

transmission device.
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Figure 2.7: Primary stage diverter, electromagnetic torque motor, and rotary spring.
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In the next section the operating characteristics of this spool type, directional, pro-

portional, two-stage, electrohydraulic valve will be discussed.

2.2 Operating Characteristics of the Two-Stage

Proportional Valve

In the previous section, the physical configuration of an electrohydraulic spool valve

was introduced. The function of the components was qualitatively described, and no

numerical analysis of their behaviour under operating conditions was presented. This

section presents the theoretical background and experimental results which define

the operating characteristics of the particular valve used in this research (Parker

Model # EHD31VJ1C111 GT) including the:

1. Static behaviour of the primary stage,

2. Dynamic behaviour of the primary stage,

3. Dynamic behaviour of the main stage.

These operating characteristics were used to identify a mathematical model for the

valve. This model was necessary for the development of an appropriate controller

for the valve. In particular, nonlinearities in the dynamics of the valve were identi-

fied and quantified. For the system identification a physical model based approach

was taken. In this approach, the physical relationships of the system components

were examined, modelled, and then compared to the experimental data to ensure

the accuracy of both the model structure and the model parameters. This differs

from a “black box” system identification where the input/output relationship of a

complex system is analyzed without regard for the underlying physical structure of

the system. While the method of physical modelling can be more time consuming,

it offers insight into potential control problems and limitations in the final system

integration. When developing a physical model of a complex system, it is useful to
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examine and characterize individual components and then to assemble a model from

these parts. This was the approach used in this research as the primary and main

stages were examined separately.

2.2.1 The Static Behaviour of the Primary Stage

The primary stage is intended to be an ideal electrohydraulic interface, accepting an

electrical input signal and producing a corresponding hydraulic force on the main

stage valve spool. Three experimental procedures were performed to determine the

static operating characteristics of the primary stage and to verify the theoretical

analysis of the force transfer mechanism of the primary stage. The characteristics

of interest were:

a) Force vs. deflector displacement (Static),

b) Voltage vs. deflector displacement (Static) and,

c) Voltage vs. differential activation pressure.

2.2.1.1 Force vs. Deflector Displacement (Static)

As outlined in Section 2.1.4, the primary stage contains a diverter whose purpose is

to deflect a portion of the jet from impinging on a receiving port. Thus, a physical

relationship of great importance is how the deflector moves laterally for a given input.

The torque motor that actuates the diverter is an electrical system whose properties

are analyzed in the next section. In this section, only the mechanical properties of

the diverter are discussed. To facilitate the analysis of these properties, the diverter

was removed from the primary stage and placed in an apparatus capable of the

simultaneous measurement of force and displacement. This arrangement is shown

schematically in Figure 2.8.

The probe on the test apparatus was built to ensure a point load on the diverter top

end. A force was applied to the top end of the diverter and the force and resulting
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Figure 2.8: Rotary spring test apparatus.

displacement were recorded. During this procedure the velocity of the probe was kept

to 0.1 mm
s

so as not to excite any system dynamics; hence, the test was considered

“static”. In addition the displacement of the probe was limited to ± 1 mm so that

the displacement could be considered to be solely in the vertical plane. The results,

compiled over three tests, are shown in Figure 2.9. To obtain measurements in the

negative direction, the orientation of the rotary spring was reversed. The tip end

displacement was calculated using the ratio of the relative distances from the tip

and top ends to the axis of rotation.

Figure 2.9: Primary stage rotary spring displacement.
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The experimental data in Figure 2.9 indicated a linear relationship between the

applied force and the cantilever lateral displacement. The offset that exists at zero

force was a characteristic of the testing procedure and apparatus control software.

Each test was started with the probe manually positioned some small distance from

the point of contact with the diverter. Thus, a force threshold was required by the

test apparatus control software in order to determine the point of contact and the

start of a testing cycle. This threshold was set at the minimum value allowed by

the control software at 0.1 N . Thus, displacement was recorded prior to contact,

however, the recorded force was zero until the threshold was reached. The bias was

removed in the post processing of the data and a linear regression was performed to

determine the force/displacement relationship described by:

F

xps

= Kp

[
N

m

]
, (2.1)

where the value of the spring constant, Kp, was 2534 N
m

with an R2 of 0.9918 in

the positive direction and 2658 N
m

with an R2 of 0.9888 in the negative direction.

The identical value was expected in both directions, however, it is conceivable that

the operating history of the valve has resulted in a directionally dependent spring

rate. The difference in the two was under 5% indicating a mean of the two was an

acceptable assumption for the bi-directional spring constant.

2.2.1.2 Voltage vs. Deflector Displacement (Static)

With the mechanical components of the primary stage tested for linearity and the

value of the spring constant determined, the electrical coil was added to the diverter

and the static behaviour of the combined mechanism was examined. Of primary

interest were the DC gain of the combined mechanism (EMA) and the linearity of

the displacement output relative to a voltage input.

Three separate tests were used to verify these relationships. All three involved the

input of a fixed voltage using a calibrated voltage source. The difference in the tests

was the method used to measure the tip displacement. Initially, calipers were used as
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a measuring device, but were found to have an intrusive effect on the measurements

which led to uncertainty in the measurements of up to 0.1 mm. This problem arose

as the measurements relied on an operator determining the point of contact between

the caliper and the diverter tip. To minimize this effect, a micrometer was then

employed in a similar fashion. This instrument reduced the uncertainty in the point

of contact by half, but the error was still unacceptably large. Finally, a magnification

projection table was used. This method was non-intrusive with the only sources of

error being slight fuzziness of focus due to the components being out of plane with

the light table. The width of the “fuzzy” region was measured and considered to be

the margin of measurement error. The results of the three different measurement

techniques are presented in Figure 2.10 with the estimated uncertainty indicated

with error bars.

Figure 2.10: Diverter tip displacement versus voltage.

A linear regression was performed on the light table measurements shown in Figure

2.10 and a slope of 0.0578 mm
V

was determined with an R2 value of 0.9802. Since

the cantilever spring was found to exhibit linear behaviour (Figure 2.9), and the

relation between the voltage and the displacement (Figure 2.10) was also linear, it

was concluded that the EMA could be modelled as a fixed voltage-to-force gain,
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KEMA, for steady state conditions. The slopes of the regression curves for the data

presented in Figure 2.9 and Figure 2.10 were used to determine an EMA gain, KEMA,

of 0.15 N
V

.

It was noted, however, that the force generated by the EMA was related to the

current passed through the coil rather than the voltage. The resistance of a copper

coil would vary with temperature, so a test was performed to determine the extent of

the change over the operating range of the valve. The results of that test are plotted

in Figure 2.11 with maximum resolution for temperature and resistance indicated

with error bars.

Figure 2.11: Primary stage actuator coil resistance as a function of coil temperature.

The resistance stated by the manufacturer was 60 Ω with no correction for temper-

ature. A linear regression on the data in Figure 2.11 indicated that the temperature

affected the resistance at a rate of approximately 0.2 Ω
◦C

causing an increase of ap-

proximately 7 Ω or ∼12% in the range from 20◦C to 60◦C. While not insignificant,

it was decided that it was simpler to compensate for the change in the resistance

using the closed loop valve spool displacement control system developed later in this

chapter than developing a temperature compensated current driver. In practice, fol-
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lowing a brief warm up period, the temperature of the valve tended to be regulated

by the oil temperature. Furthermore, as the oil temperature for the tests carried out

over the course of the research did not exceed 36◦C in the laboratory, the resulting

variation in the coil resistance was less than 5%.

The following general observations were drawn from the static deflector displacement

tests.

1. The diverter spring had a linear applied force-to-displacement characteristic.

2. The force applied by the electromagnetic actuator was linearly related to an

applied voltage as long as the resistance of the coil could be assumed constant.

3. The resistance of the coil showed a ∼5% variance over the range of operating

temperatures expected in the valve.

4. The voltage-to-displacement characteristic was linear with the exception of a

temperature variance of ∼5% (linear elements in series).

2.2.1.3 Theoretical Analysis of the Diverted Jet Primary Stage

The results presented in Subsections 2.2.1.1 and 2.2.1.2 verified that a linear pro-

portional relationship existed between the applied voltage signal and the tip dis-

placement of the diverter for a wide range of operating conditions. This subsection

presents a theoretical development of the fluid momentum transfer across the gap

in the primary stage and shows how the diverter is instrumental in turning this

momentum transfer into a linear force transfer mechanism by creating a differential

activation pressure at the ends of the valve spool.

For the momentum analysis the supply jet/receiving port arrangement shown in

Figure 2.5 was examined for the case of a constant primary stage supply pressure,

Pps. The supply jet was considered to be a long edged orifice venting to the tank

pressure, Pt, which for this analysis was assumed to be 0.69 MPa (100 psi). The first

step in the analysis was to determine the flow regime through the supply jet. This
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was done by calculating the Reynolds number based on an equivalent orifice throat

diameter, Red, as the actual jet orifice was rectangular. The Reynolds number based

on throat diameter is described by White [24] as,

Red =
Vtd

ν
, (2.2)

where:

d = Equivalent throat diameter [m] ,

ν = Kinematic viscosity of the oil

[
m2

s

]
,

and the fluid velocity, Vt, is a function of the volumetric flow rate:

Vt =
Q

At

, (2.3)

where:

At = Throat area
[
m2
]
,

Q = Volumetric flow rate

[
m3

s

]
.

Equations 2.2 and 2.3 present a circular argument in that the determination of the

Reynolds number requires knowledge of the flow rate which is dependent on the flow

regime. The flow regime, of course, is the property characterized by the Reynolds

number. As a starting point, the flow was assumed laminar and evaluated using the

correlation given by Merritt [21]:

Q =
2δ2DhAt

µ
(Pps − Pt) , (2.4)

where:

Dh = Hydraulic diameter [m] ,

δ = Laminar flow coefficient [dimensionless] ,

µ = Absolute viscosity
[
Ns

m2

]
.
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The laminar flow coefficient depends upon the geometry of the orifice exit and was

estimated to be 0.16 based on information given by Merritt [21]. By combining

Equations 2.2, 2.3, and 2.4 and applying the physical properties of the oil used, Esso

NUTO H68 [25], the Reynolds number was found to vary from 500 to 9150 depending

on the temperature (viscosity) for a primary stage supply pressure of 2.76 MPa

(400 psi). These results were compared to the transition Reynolds number of 15 as

determined by Merritt [21]. Thus, the flow was assumed to be turbulent allowing

the well known turbulent orifice equation for the flow (applying the notation used

in White [24])to be used:

Q = αAt

√
2

ρ

√
Pps − Pt, (2.5)

where:

ρ = Density of the oil

[
kg

m3

]
,

α = Discharge coefficient [dimensionless] .

Given the orifice geometry, the discharge coefficient was assumed to be unity in ac-

cordance with the ISO recommended correlation listed in White [24]. The volumetric

flow rate for a jet could be determined and, from this, the mass flow rate, ṁ, can be

found:

ṁ = ρQ. (2.6)

When a control volume was placed around the jet, the momentum flux along the

principal axis of the jet, Ṁ , reduced to,

Ṁ = ṁVt. (2.7)

In one dimension, the conservation of momentum principle states that for a jet

impinging on the static fluid in the receiving port, a force, Faxis, is imparted equal

to the linear momentum flux of the fluid along the axis of the jet,

Faxis = Ṁ = ṁVt. (2.8)
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When the jet is unobstructed, this force is applied across the entire receiving port

area, Ap, creating an approximately uniform static pressure, Pj, across the port,

Pj =
Faxis

Ap

. (2.9)

The function of the diverter is to obstruct a portion of the jet, and thus only a

fraction of the jet and its total momentum flux reaches the receiving port. This is

illustrated in Figure 2.12.

Figure 2.12: A partially diverted jet.

The fraction of the jet passing the diverter is represented by the variable, n, and

thus, the force applied on the receiving port by a partially diverted jet is,

Faxis = nṁVt. (2.10)

The portion of the receiving port upon which this force is acting, however, is also

reduced by the same fraction, n. The magnitude of the jet pressure remains unaf-

fected by diverter displacement but the pressure profile across the receiving port is
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no longer uniform. Substituting Equations 2.3, 2.5 and 2.6 into Equation 2.10 and

dividing by the reduced receiving port area, nAp, the pressure exerted by the jet on

the unobstructed portion of the receiving port can be determined:

Pj = 2nα2 At

Ap

(Pps − Pt) . (2.11)

Mixing effects will average the pressure seen at the receiving port in the downstream

chamber shown in Figure 2.6. Thus, the average of the pressure profile at the

receiving port was considered to be a valid approximation of the activation pressure

for a given port, (P1 or P2),

P1,2 = (1− n) Pt + 2nα2 At

Ap

(Pps − Pt) . (2.12)

As mentioned earlier in this analysis, the discharge coefficient for the sending jet

approaches unity and since properties were assumed uniform for a jet cross section,

the ratio At

Ap
, was also assumed unity. Under these conditions, Equation 2.12 reduced

to,

P1,2 = (1− 3n) Pt + 2nPps, (2.13)

which describes the pressure seen at one receiving port given an opening ratio of,

n. The quantity of interest was the difference in the pressure of the two receiving

ports which was introduced earlier as the differential activation pressure, ∆P . An

expression for this was found by relating the opening ratios of the two jets, n1 and

n2, in terms of the common factor, n. The physical dimension of the diverter was

such that, when one port was completely obstructed, a 16% obstruction remained

on the other port. This was accounted for by the following relationship:

n1 = n, (2.14)

and,

n2 = 0.84− n, (2.15)

44



The expressions in Equations 2.14 and 2.15 are valid for the range 0 < n < 0.84.

Substituting the relationships in Equations 2.14 and 2.15 into Equation 2.13 and

subtracting the results yielded an expression for the differential activation pressure.

∆P = P1 − P2 = (2.52− 6n) Pt + (−1.68 + 4n) Pps. (2.16)

The important observation in this analysis was that according to Equation 2.16, the

differential activation pressure is a linear function of the receiving port opening ratio

if the jet supply pressure and tank pressure are constant. It was shown in Section

2.2.1.2 that the diverter tip displacement is a linear function of voltage. It can be

shown that for the tip deflections experienced over the operating range of the valve,

linear tip displacement translates to linear blockage of the receiving port within 1%.

Blockage of the receiving port results in a proportional diversion of the mass flow

rate. Thus, the primary stage has been shown analytically to behave as a linear

force transfer device within a set operating region. The next section presents an

experimental verification of this.

2.2.1.4 Experimental Verification of the Force Transfer Mechanism

In order to verify the theoretical evaluation of the hydraulic jet force transfer mecha-

nism an experimental apparatus was developed. The primary stage activation pres-

sures could not be measured directly as they were routed internal to the valve body

with no external ports. This made it necessary to remove the primary stage and to

attach a port plate which allowed for insertion of pressure transducers into the pilot

lines. A schematic of the test system is shown in Figure 2.13.

The test apparatus was designed such that the supply pressure could be externally

controlled. It is noted that the supply pressure, Ps, is not equivalent to the jet

supply pressure, Pps, introduced earlier in this section. Rather, the primary stage

has an internal relief valve which endeavours to keep Pps constant regardless of the

value of Ps. Examination of the internal relief valve revealed it to be of a single stage

configuration which cannot maintain a constant pressure control for varying supply
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Figure 2.13: Schematic of the primary stage test system.

pressures. The effect of varying the supply pressure on the primary stage activation

pressures is addressed later in this chapter.

Prior to beginning the tests described in this section, the system oil was forced to

return to the tank over a relief valve until the reservoir temperature was sufficiently

high to activate the oil cooling system. This ensured moderated oil temperatures

over the duration of the tests and consistent oil properties for tests conducted non-

consecutively. The set point of the oil cooling system was 38◦C.

To measure the differential activation pressure as a function of input voltage and

to verify the theoretical analysis of the force transfer mechanism, a “static step”

procedure was employed. Following the warm-up period, the static step test involved

applying a voltage to the primary stage which was increased from 0 to 2.5 V in 0.5

V increments every 5 seconds. Using this procedure it was found that the activation

pressure did not overshoot and a sufficient number of data points were collected at

each “steady-state step” such that a reasonable average value could be determined.

A set of typical results is shown in Figure 2.14.

The null input results (input signal is zero) in Figure 2.14 provided an opportunity

to indirectly determine the jet supply pressure, Pps. With the diverter in the neutral

position and the tank pressure constant at ∼0.72 MPa (105 psi), the pressure at

both receiving ports was almost double the tank pressure. This indicated that the

diverter did not completely cover the receiving ports in the neutral position and
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Figure 2.14: Typical pressure responses for a “static step” test.

the remaining open areas were equal. Additional measurements revealed that only

42.5% of each receiving port area was unobstructed when the input was zero, or,

n1,2 = .425. By equation 2.13 a primary supply pressure of, Pps = 1.95 MPa (283

psi) was calculated.

A second observation was drawn from the magnitude of the activation pressures at

the final step shown in Figure 2.14. Data recorded during this test indicated that

the input voltage at this step had a magnitude of 2.3 V when the system bias and

gain were taken into account. From data summarized in Figure 2.10 it was deduced

that the diverter deflection at this point was 0.16 mm. This corresponded to a value

of n = 0.78. When this opening area ratio was applied to Equation 2.16 using the

primary supply pressure calculated from the null position, a differential pressure of

0.8 MPa (116 psi) was calculated. Comparison to the data shown in Figure 2.10

showed agreement within 2% which was considered sufficiently accurate given that

mixing effects due to the jets traversing an oil filled gap before impinging on the

receiving port were neglected.

It was concluded that within reasonable error a linear uni-directional force ampli-
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fier/transfer mechanism is an appropriate model for the primary stage EMA, di-

verter, and jet/receiving port arrangement.

2.2.1.5 Experimental Determination of the Primary Stage Gain

The diverted jet primary stage was shown in the previous section to be a linear force

transfer device subject to several assumptions. The most important of these was

that the jet supply pressure, Pps, remained independent of the supply pressure, Ps.

In this section, this assumption is examined experimentally. The results are used to

develop a primary stage gain which relates the differential activation pressure to the

input in the presence of changing supply pressures.

“Static step” tests were performed at various supply pressures using the procedure

discussed in the previous section. The differential pressure, ∆P , was calculated for

each step and plotted against the input voltage giving the results in Figure 2.15.

Two tests were performed at a supply pressure of 3.45 MPa, two at 5.17 MPa,

and two at 6.89 MPa. The supply pressure was set manually using a dial gauge for

reference.
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Figure 2.15: The differential activation pressure for several “static step” tests at

varying supply pressures.

The data presented in Figure 2.15 showed a relationship between the supply pres-

sure, Ps, and the slope of the differential pressure curve. It also gave an indication

of the accuracy and repeatability of the differential pressure measurements. The

spread in the ∆P -axis was taken as a reasonable approximation of error which was

approximately 0.034 MPa (5 psi).

The 3.45 MPa, 5.17 MPa and 6.89 MPa runs plotted in Figure 2.15 were averaged

and curve fitted with a linear regression. The supply pressure for these tests, which

was recorded with a pressure transducer, was also averaged to provide a more accu-

rate value for the supply pressure. The maximum data spread was considered as the

measurement error and plotted as error bars in Figure 2.16. The regressions were

not forced through null as some initial displacement in the diverter may have been

present due to magnetic hysteresis in the EMA.

The slopes of the linear regression curves shown in Figure 2.16 were made positive

for the purposes of maintaining a sign convention and plotted against the measured

supply pressure for each run with the results shown in Figure 2.17.
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Figure 2.16: Averaged differential activation pressure for several supply pressures at

varying voltages.

Figure 2.17: Slope of the differential pressure curve as a function of supply pressure.

The data in Figures 2.16 and 2.17 were used to determine a static gain for the

primary stage based on the supply pressure. With the bias removed at V = 0, the
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static gain was represented as follows:

∆P

V
= 1.58× 10−2Ps + 0.123.

[
MPa

V

]
. (2.17)

To ensure that the primary stage was bi-directional, and to test the system for hys-

teresis, a ramp test was also performed. In this test, the supply and tank pressures

were held constant and the input voltage was varied linearly with time; first increas-

ing to 5 V then decreasing to 0 V . The procedure was repeated with the voltage

decreasing to -5 V then increasing to 0 V . Typical responses at a supply pressure of

5.17 MPa (750 psi) are shown in Figure 2.18.

Figure 2.18: The differential activation pressure for a increasing/decreasing ramp

input.

A “snap-through” phenomenon was present in the negative tests but not the positive.

It was determined in later testing to be caused by contact between the diverter and

the housing as a result of a plastic deformation of the primary stage. This was not

particularly bothersome as it occurred outside the operating voltage range imparted

by current limitation on the coil as set out by the manufacturer. Beyond this, the

activation pressure showed excellent linearity for the operating range ±3 V . The
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hysteresis was smaller than expected (<2%) which added weight to the argument

for use of these valves in an automated hydraulic control application.

From the preceding discussion, the following conclusions were drawn regarding the

static relationship between the control signal input voltage and the differential pres-

sure produced by the primary stage:

1. The differential pressure could be assumed to vary linearly with the input

voltage between -3 V and 3 V .

2. The slope of the linear relationship was affected directly by Ps.

3. The relationship:

∆P

V
= 1.58× 10−2Ps + 0.123.

[
MPa

V

]
, (2.18)

was sufficient to approximate the differential pressure.

4. The activating force was linear throughout the operating range of the valve.

2.2.2 Dynamic Behaviour of the Primary Stage

It was shown in a previous section that steady state behaviour of the primary stage

was linear within a specified input voltage range. The only exception of note was

the dependence of the activation pressure on the supply pressure. It is the purpose

of this section to present the analysis, both theoretical and experimental, which was

employed to evaluate the linearity of the primary stage in a dynamic sense. That

is, a linear Laplace domain model for the primary stage was sought which would

agree well with the experimental results. This model would capture the transient

behaviour of the primary stage which worked towards the goal of developing an

overall dynamic model of the valve which could be used in design of an appropriate

valve spool displacement controller.

This section is organized into two sub-sections. The first of these presents experi-

mental step response results, an analysis of which was used to determine bulk system
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parameters. The second section introduces the simulation of the primary stage and

shows comparisons of experimental and simulated results.

2.2.2.1 Voltage vs Differential Activation Pressure
(

∆P
V

)
Step Responses

Determination of the equations governing the dynamics of the primary stage and

identification of the relevant parameters was made difficult by the physical con-

struction of the valve. In particular, for the primary stage, the following presented

challenges in making an estimate of the model structure:

1. The rotational inertia of the diverter was difficult to determine due to its non-

homogeneous geometry and material properties.

2. The damping condition inside the diverter housing was not known and ex-

tremely difficult to determine.

3. The effect, if any, of axial forces arising from interaction with the jets was

unknown.

For these reasons, it was decided that a brief departure from the physical modelling

methodology was appropriate. Because of the number of parameters that could not

be readily measured or estimated, it was more practical to apply an empirical transfer

function estimation technique. To achieve this, differential activation pressure step

responses were measured over a range of operating conditions and the results were

examined for linearity and compared to the output of a transfer function of similar

apparent order. Several responses to step inputs are plotted in Figure 2.19. These

results are for tests carried out with a fixed supply pressure of ∼4.48 MPa (650 psi)

with the temperature regulated by an oil cooler with a set point of 38◦C.

Several points of interest arise from the data in Figure 2.19. The first of these is

regarding the DC gain. The steady-state amplitude achieved after the transients

have subsided should agree with the values determined in the “static step” tests

described in the previous section. Solving for the steady-state pressure as described
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Figure 2.19: Differential activation pressure step responses to increasing input volt-

ages.

by Equation 2.18 showed excellent agreement with the experimental data as will be

shown later with simulation results. It should also be noted that the actual length

of the data run was 0.1 s rather than the 0.06 s indicated in Figure 2.19. The the

data set was truncated to emphasize the transient region. The run was sufficiently

long to perform time averaging on the steady-state results to remove a 60 Hz noise

signal barely evident in Figure 2.19.

Another observation was made regarding the apparent shape of the transient portion

of the step response. The system was heavily overdamped as no overshoot occurred

in the differential pressure. Thus, it was reasonable to assume that the system was

of first order. Concern over the validity of the first order approximation was not

based on the ability of the first order model to match step responses, but rather

the associated phase shift which would become important for stability purposes

should the system be operated beyond the lowest cutoff frequency. This concern

was addressed by determining the estimated time constant that would be associated

with a system exhibiting a step response similar to those shown in Figure 2.19. The
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time constant was determined graphically to be ∼ 0.005 s using both 99% and 63%

magnitude criteria. This corresponded to a pole at -200 rad
s

. Given that this was

the dominant pole it is inconceivable that the valve would be operated beyond this

cutoff frequency.

It was concluded, therefore, that the valve behaves as if it were linear and that

the dynamic performance of the primary stage could be approximated by the linear

transfer function,

Gp (s) =
∆P

V
=

Kp

τps + 1
. (2.19)

2.2.2.2 Verification of Model Responses

In the analyses in the preceding sections, the emphasis was on distilling physical pa-

rameter values from experimental data. The focus in this section is on substituting

the physical parameters into a simulation performed using the Matlab/Simulink r©

package in order to verify the dynamic behaviour of the system as described by

Equation 2.19. The simulated results were compared to measured data from the

experimental system to determine the model accuracy. The block diagram represen-

tation of the primary stage is shown in Figure 2.20.

Figure 2.20: Block diagram representation of the primary stage.

The 0.5V, 1.5V, and 3V step responses were chosen for comparison as these input

voltages represented the operating range expected in normal operation. The input

voltage and supply pressure values recorded during the tests shown in Figure 2.19

were used as the inputs to the first order model shown in Figure 2.20. The results

of the system tests and simulated tests are shown in Figure 2.21.
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Figure 2.21: Experimental and simulated step responses for the primary stage.

Since two measured quantities were used as inputs to the model (supply pressure

and voltage) there were both systematic errors due to model inaccuracy as well as

measurement error due to resolution of the instrumentation present in the simulated

results. For the purposes of comparison, a measurement error of ±1.38× 10−2 MPa

(±2 psi) was determined and plotted with the model error results in Figure 2.22.

It is evident from the data presented in Figure 2.22 that the model and experimental

results were in agreement approaching the minimum measurement error. This was

deemed verification of the primary stage dynamic model.

2.2.3 Dynamic Behaviour of the Main Stage

As was explained earlier,a priori knowledge of the configuration and operation of

the valve was not available, and this made identification of the characteristics of the

primary stage difficult. This was not the case with the main stage. The main stage

consisted of a mass/spring/damper arrangement which is a well known system of

second order. Further, a system identification analysis had already been performed

by Rosa [26] with the main stage spool mass and the spring constants determined
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Figure 2.22: Error in differential pressure between simulated and measured step

responses for the primary stage.

with acceptable accuracy. The parameter that remained to be determined was the

valve spool damping which will be addressed in the next section.

2.2.3.1 Physical Model

Using data available from Rosa [26], it was possible to develop a physical model

directly. It was assumed that the spool motion could be described by the linear

second-order differential equation:

m
d2xv

dt2
+ β

dxv

dt
+ keffxv = f (t) . (2.20)

where:

m = mass of the spool [kg] ,

β = damping coefficient
[
Ns

m

]
,

keff = effective spring constant as outlined in Equation 2.26, and,

xv = axial displacement of the spool [m] .
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Parameter values obtained by Rosa [26] were:

m = 0.2174 [kg] ,

β = 162
[
Ns

m

]
, and,

keff = 3720
[
N

m

]
.

The flow reaction forces were not considered as they were determined to be negligi-

bly small at steady state (see Appendix A). It is to be noted that the parameters in

Equation 2.20 represented the “bulk” or “average” properties of the system. They

were not specified as time variant or operating condition dependent. The operating

condition and time have no effect on the mass, which was measured directly. Sim-

ilarly, the spring constant was directly measured, and the operating environment

had little effect on this value. The parameter of concern was the damping coefficient

which was a lumped parameter characterizing several phenomena including friction

on the spool and internal hydraulic losses. The effect of the operating condition

on this parameter is discussed in detail later in this section. As a starting point

for analysis, the Laplace transform of the differential equation in Equation 2.20 was

performed:

Xv

F
=

1

ms2 + βs + keff

. (2.21)

The remainder of this section examines the validity of the linear model with respect

to experimental data.

2.2.3.2 Main Stage Dynamic Step Responses

Obtaining and interpreting the main stage step responses was slightly more involved

than for the primary stage. The reason for this was that the input signal must

pass through the primary stage that was shown in the previous section to contain

dynamics of its own. A preliminary analysis was performed to ensure that the main

stage dynamics could be distinguished from those of the primary stage.
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The first step in the preliminary analysis was to establish the location of the domi-

nant poles of each system in the s-plane. It was already determined that the primary

stage was to be modelled as a first order system as it had a single dominant pole at

s = −200 rad
s

. By substituting the parameter values found by Rosa [26] in Equation

2.21 two real roots at s1 = −23.7 rad
s

and s2 = −721.5 rad
s

were found. This indicated

a heavily overdamped system.

A “rule of thumb” as described by Phillips and Harbour [27], is that a pole is

considered to be dominant in the transient response if it is smaller than another

by a factor of 5 to 10. By this criterion it was clear that the slowest pole of the

main stage would be dominant and that the primary stage would have little effect

on the transient behaviour of the main stage. This was assumed to be the case in

the analysis of the main stage dynamic response.

A second consideration in the preliminary analysis was the amplitude of the input

signal. In the testing of the primary stage, the limiting factor on the input voltage

amplitude was the current in the EMA. Subsequent testing of the primary stage

showed saturation in the differential activation pressure due to the geometric con-

straints which further limited the input amplitude to 3V in the open loop. The main

stage was tested to determine if any similar constraints limited the allowable input

voltage range.

Saturation was found to occur in the displacement of the spool at approximately

xmax = 4 mm in the positive and negative directions. This saturation was found

to occur when the force applied by the primary stage exceeded that applied by the

return springs at maximum displacement. As a first step to analyzing this problem,

it was recalled that the primary stage transfer function developed earlier in this

chapter was given by,

∆P

V
=

Kp

τs + 1
=

(1.28× 10−2Ps + 0.123) 200

s + 200

[
MPa

V

]
. (2.22)

For determination of force, differential pressure in units of Pascals was more ap-

propriate. Therefore, given the supply pressure, Ps, also in Pascals, Equation 2.22
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became,

∆P

V
=

Kp

τs + 1
=

(1.28× 10−2Ps + 1.23× 105) 200

s + 200

[
Pa

V

]
. (2.23)

The input to the main stage as indicated by Equation 2.20 was not pressure, but

force. The differential activation force was the product of differential activation

pressure and the area on the ends of the spool,

∆F

V
=

(3.67× 10−6Ps + 35.2) 200

s + 200

[
N

V

]
. (2.24)

At steady state, the magnitude of the force in Equation 2.24 reduced to,

∆Fss =
(
3.67× 10−6Ps + 35.2

)
V [N ] . (2.25)

Equation 2.25 was then compared to the steady-state forces acting on the main

stage of the spool at the null flow condition. The steady-state forces were those

arising from the return springs, Fks, as a result of the spool being displaced from

equilibrium,

Fks = keffxv. (2.26)

When Fks in Equation 2.26 was substituted for ∆Fss in Equation 2.25 and the

physical values for the spring constant and a supply pressure 4.48 MPa (650 psi)

were included, the following relationship for spool displacement in the steady-state

was found:

xv

V
= 1.39× 10−2

[
m

V

]
. (2.27)

Substituting the saturation value, xmax, into Equation 2.27, determined the limiting

input voltage to be ∼ 0.3 V for the open loop testing. Results were unrepeatable

at this input value due to effects discussed in the next section so a slightly higher

input amplitude was used in testing.
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To quantify the effect of temperature on system performance to a step input, output

responses to a fixed amplitude step were recorded at varying temperatures. A ther-

mocouple was placed on a metal pipe as near the valve as possible so as to determine

the fluid temperature internal to the valve. The amplitude of the step input voltage

was chosen to be 0.5 V with the results of several step responses plotted in Figure

2.23.

Figure 2.23: Main stage spool displacement step responses for fixed input amplitude

and varying temperature at a supply pressure of 4.48 MPa.

It is evident from Figure 2.23 that there was no system response for temperatures

less than 28◦C. Also, the spool displacement amplitude increased with temperature

for a constant input voltage for step responses above 28◦C. These observations had

two implications from the standpoint of modelling the main stage dynamics.

a) The open loop gain changed with temperature.

b) The open loop gain must reach a threshold value before the system will re-

spond.

The temperature “dead-zone” behaviour exhibited by the system was consistent with
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stiction behaviour. In a stiction dominated system, the displacement remains locked

at a fixed value until some input force threshold is exceeded. At this point, the static

friction is overcome and the system will begin to move under the influence of viscous

and coulomb friction. The implication of this with respect to the results shown in

Figure 2.23 is that the input force acting on the spool increased with temperature

and that below 280C there was insufficient force to overcome stiction.

An increasing activation force with temperature was also the explanation for the

apparent change in the open loop gain illustrated by the increasing output amplitude

of the various tests when compared at 50 s in Figure 2.23. This drift in the steady-

state amplitude was evidence of an increasing differential activation pressure. This

meant that the gain of the primary, which was assumed constant in an earlier section,

was in fact temperature dependent.

The changing value of the differential activation pressure from the primary stage

and the consequent activation force on the main stage was not identified in the

previous section on primary stage modelling due to the nature of the experimental

apparatus and the procedure used in the primary stage study. In the previous

section a temperature control system and warm up procedure were employed to

ensure consistency in measurement when determining the primary stage dynamics.

In the tests performed on the main stage, a different hydraulic supply was used

which did not have temperature compensation capability and thus the temperature

effects in the open loop became obvious and dramatic.

It was shown in Section 2.2.1.3 that the flow through the jets was turbulent for a

wide range of temperatures (viscosities) and, as such, the temperature should have

little effect on the flow rate and resulting jet velocity and momentum flux. However,

mixing and other fluid phenomena were assumed negligible in that analysis. It has

been shown by Comparin et al [28] that a variable Reynolds number can effect

the manner in which a jet diffracts around the diverter. Reilly and Moynihan [29]

also showed that higher viscosities present at lower temperatures can increase the

mixing of the jet and thus produce a widened velocity profile. These effects lead to
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a lower average velocity impinging on the fixed width receiving port. Both of these

factors also lead to a reduction in the effective gain of the primary stage at lower

temperature. The effect of temperature is a factor which was taken into account in

the design of the valve spool position controller discussed in a later section.

For the purpose of completeness in modelling, the effect of temperature on the

activation force of the primary stage was lumped into a gain scaling factor, KT . This

factor was developed by comparing the output amplitude of the simulated system to

the measured values plotted in Figure 2.23. The scaling factor was a second order

polynomial function whose output was in the range 0 → 1 and took the following

form:

KT = −0.055T 2 + 3.466T − 54.091. (2.28)

Aside from temperature dependence, another characteristic of the main stage per-

formance which was evaluated from the results in Figure 2.23 was the settling time

exhibited by the system. It was clear from the responses in Figure 2.23 that the

system was heavily overdamped which, employing a second order linear model, re-

sulted in two real poles. The slower of these poles could be approximated by the

time constant exhibited by the system. The experimental data were used to evaluate

the data generated by Rosa [26] in which the dominant open-loop pole was located

at s = −2.72 rad
s

. That pole corresponded to a time constant, τR = 0.37 s and a

settling time of TsR = 1.83 s using the 99% criterion when the system was assumed

to be of first order. As shown in Figure 2.23, the system clearly had not settled

within 2 s. The true settling time was found to be approximately 25 s rather than

the 2 s determined by the physical model.

The large difference between the predicted settling time and that exhibited by the

system indicated that the dominant pole was not at s = −2.72 rad
s

as calculated

from Rosa’s data. Rather, the data indicated a time constant of τm = 5 s, corre-

sponding to a pole at s = −0.2 rad
s

. As the spring constants and spool mass were

directly measured quantities, the large time constant was determined to be due to
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a larger damping coefficient. There is an upper limit on the effect viscous friction

on the spool can have on the damping leading to the investigation of other potential

sources of damping in this system. Thus, the configuration of the pilot lines which

connected the main stage to the primary were examined. Rather than treating the

pilot lines as lossless signal transmission lines, the effect of the hydraulic resistance,

QR, created by the receiving port was taken into account. A schematic of this

system interpretation is shown in Figure 2.24.

Figure 2.24: Schematic of the spool with restricting orifices.

In this model the differential activation pressure was redefined as the difference in

spool end pressures, P1m and P2m,

∆P = P1m − P2m. (2.29)

The direction of motion and thus flow was completely arbitrary so the following

notations were chosen to address directionality:

P1m = P1 + QR, (2.30)

and,

P2m = P2 −QR. (2.31)

The effects of compressibility were ignored and, as such, the flow through the re-

stricting orifices, Q, was a function of the spool velocity only,

Q = Apẋv. (2.32)
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Equations 2.29, 2.30, 2.31, and 2.32 were combined to yield a new description for

the differential activation pressure including the effects of the restricting orifices:

∆P = P1 − P2 + 2RApẋv. (2.33)

The product of the differential activation pressure and the spool area were taken to

be the input force in Equation 2.20 which was rewritten as:

m
d2xv

dt2
+
(
β + 2RA2

p

) dxv

dt
+ kxv = Ap (P1 − P2) . (2.34)

It was clear by inspection of Equation 2.34 that the restriction created by the pri-

mary stage receiving ports added directly to the damping of the system and it was

concluded to account for the discrepancy between the calculated and experimentally

determined time constants (slowest dominant pole). Preliminary calculations indi-

cated that the hydraulic resistance created by the pilot lines would be of the same

order as that required to generate the experimentally determined transfer function

(Appendix B). It was clear that the experimental system would have to be assumed

correct and the model made to fit the acquired data. The valve spool displace-

ment was therefore modelled with a second order transfer function with a damping

coefficient which reflected the experimentally determined poles:

Xv

∆F
=

1

0.2174s2 + 18165s + 3720
. (2.35)

Verification of this model required the combination of the primary and secondary

stage models. This is the subject of the next section.

2.2.4 Model of the Dynamics of the Two-Stage Valve

In the previous sections physical models of the primary and main stages of the

two-stage proportional valve were developed. Experimental results were used to

determine the required parameters used in these models. The combination of the

two models (representing the two stages) and the testing of their validity is described
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in this section. The complete valve model was obtained by combining Equations 2.19

and 2.35 with the result,

Xv

V
=

KpKT

(s + 200)(0.2174s2 + 18165s + 3720)
. (2.36)

Equation 2.36 was simulated using Matlab/Simulink r©as shown in Figure 2.25. The

results of step responses for 0.5 V input at final temperatures of 28.6◦C, 29.4◦C, and

30.2◦C with a gradient of 0.004
◦C
s

are shown in Figure 2.26.

2.3 Spool Position Control

The purpose of the in depth system identification undertaken with regard to the

valve was to determine its dynamic behaviour such that a controller could be de-

signed which would ensure repeatable and accurate position of a valve spool. The

control of the spool position was integral to the flow control strategy applied by the

author. In fact, since the flow control technique was an open loop technique, aside

from the mapping of the pressure/flow relationship discussed in the next chapter,

spool displacement error was the largest source of error in the implementation. The

goal of maintaining portability of the velocity control method (allowing for simple

realization of the approach with different hardware) also played a critical role in the

design of the controller.

Figure 2.25: Block diagram of the two-stage proportional valve dynamics.
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Figure 2.26: Measured and simulated spool displacement step responses for an input

of 0.5 V at final temperatures of 28.6◦C, 29.4◦C, and 30.2◦C.

The first step in development of the valve controller was to outline the performance

criteria. In operation, it was desirable that the valve be essentially transparent with

respect to the overall dynamics. This was considered to be the case when the valve

dynamics were an order of magnitude faster than the overall system dynamics. This

would imply a dominant closed loop pole no less than -2 rad
s

.

A further criterion for the valve controller was the need for “smooth” operation.

Large acceleration terms can be introduced in hydraulic systems when a large load

that is being held against gravity is suddenly “dropped” through the rapid opening

of a valve on the holding side of a cylinder and the simultaneous application of

pressure to the opposite side. In these cases it is often advantageous to slow the

response of the valve.

The criterion requiring smooth performance is related to another requirement: re-

peatability. As introduced in the first chapter of this thesis, the flow control method

employed by the author was a predictive method; therefore, it was necessary that

the behaviour of the system be, at all times, predictable. The variable open loop
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primary stage gain identified in the previous sections would have resulted in variable

closed loop poles in the displacement transfer function. This would have resulted

in a variable transient behaviour unless these factors were compensated for using

feedback. As it was never the intent to directly feed back temperature or pressure

information to the valve position controller, a different approach was taken. The

development of a spool position controller which satisfied these opposing goals is the

subject of the next section.

2.3.0.1 Development of the Model Reference Spool Position Control

Loop

The system identification performed on the valve indicated that the valve exhibited

linear behaviour with two notable exceptions:

a) A temperature dependent primary stage gain.

b) A pressure dependent primary stage gain.

These items are “soft” nonlinearities. Their effects on the system were not discon-

tinuous and filtered to some degree by the mechanical behaviour of the valve spool,

given that both were internal to the valve.

The first step in the investigation was to linearize the dynamic equations for the

valve. This was done by developing a “fastest” and a “slowest” dynamic case for

corresponding fixed operating conditions. In the fastest case, the supply pressure

and temperature would be high, thereby maximizing the internal gain dependent on

these factors. The slowest case is under the opposite conditions. Operating ranges

were chosen somewhat arbitrarily, but they reflected the realities of the working

environment in the laboratory. High and low supply pressures were chosen to be

10.3×106 Pa and 3.4×106 Pa respectively. Temperatures were chosen to vary from

36◦C to 29◦C which were the maxximum and minimum values under which testing
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was performed. Application of these values to the complete valve model resulted in

two transfer functions,

Ghigh =
15730

0.2174s3 + 1.821× 104s2 + 3.637× 106s + 7.44× 105
, (2.37)

and,

Glow =
3003

0.2174s3 + 1.821× 104s2 + 3.637× 106s + 7.44× 105
. (2.38)

The short comings of a conventional linear controller in the presence of variable gain

were illustrated by placing these two transfer functions in a feedback control loop

with the addition of a proportional controller as shown in Figure 2.27.

Figure 2.27: Valve spool displacement simulation control loop with proportional

feedback control.

In this configuration, in order to achieve the dominant closed loop pole s > −2 rad
s

for the loop including Glow, a proportional gain, P , of 6000 was required. The step

responses for the two transfer functions subject to this same controller are shown in

Figure 2.28.

The variation in the rise time of the two responses was troublesome, especially with

respect to the lower gain case. The settling time for the step response was on the

order of one second, but the gain could not be increased without making the fast

closed loop transfer function underdamped. Introducing an adaptive proportional

gain was briefly considered, but this would have required direct feedback of the

temperature and the supply pressure.

Developing a model reference controller of the type employed by Pietola and Vilenius

[5] was considered a better option. A variation on this type of controller, called an
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Figure 2.28: Results of a simulated step response for a fast and slow linearized valve

transfer function.

explicit model reference controller, is described by Landau [23] and was used as a

model for the controller design discussed here.

The reference model was chosen to reflect the dynamics of the actual valve and, as

such, a proportional control system of the type shown in Figure 2.27 was employed.

An open loop gain of 6000 was mid-range between those in Equation 2.37 and 2.38

and was chosen as a compromise between stability and response time. The propor-

tional gain was set at 10000 which met quantitative requirements for the dominant

closed loop pole location (s = −18.4 rad
s

) and settling time (Ts = 0.218 s).

It was determined during initial testing that the model reference transfer function

contained a pole which exceeded the maximum sample rate of the the hardware and

software used to implement the system. For this reason, an order reduction was

performed on the system. The simplest method was to eliminate the fastest pole

and adjust the closed loop gain. The new transfer function took the following form:

Greduced =
3003

s2 + 200.36s + 3341.52
. (2.39)
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To ensure that this order reduction would not affect the dynamics of the system, the

reduced and original transfer functions were compared in both the frequency and

the time domains using a Bode plot and a step response respectively. The results

are shown in Figure 2.29.

Figure 2.29: Responses of the reduced order and original valve reference models.

There was no difference in the frequency responses up to 1000 rad
s

which was outside

the operating range of the system. The step responses showed virtually no variation.

The reduced order model was used to construct a model reference controller (MRC)

as shown in the block diagram in Figure 2.30.

Figure 2.30: Block diagram of the model reference controller.
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In this configuration the proportional gain in the valve spool control loop could

be increased significantly and the stability of the system not compromised. Step

responses for six cases are presented in Figures 2.31, 2.32, and 2.33. The cases con-

sidered were small, medium and large valve displacements at low, medium and high

supply pressures. At “small” valve displacements, there was sufficient flow through

the valve at nominal load to produce motion that was only just visually discernable.

“Large” valve displacements were considered those displacements at which the flow

rate through the valve approached the maximum pump flow at nominal load pres-

sure. This corresponded to a range between 0.001 and 0.002 m (1 to 2 mm). Low

pressure was the smallest steady value attainable with the relief valve in place on

the test system or 3.45 MPa (500 psi). The high pressure value was set at 6.89

MPa (1000 psi) for safety reasons.

Figure 2.31: Valve spool displacement step responses at Ps = 3.45 MPa.

First and foremost these results showed an improvement in the previously observed

discrepancy in the rise time for the high and the low supply pressure cases (these

correspond to the step responses shown in Figure 2.28 of the simulated high and low

gain transfer functions). The low pressure cases were performed immediately follow-

ing start up to ensure the oil was as cold as possible (room temperature of 21◦C).
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Figure 2.32: Valve spool displacement step responses at Ps = 5.17 MPa.

Figure 2.33: Valve spool displacement step responses at Ps = 6.89 MPa.

The combination of low supply pressure and temperature produced a minimum open

loop gain in the valve. Despite this small open loop gain, the variation in rise time

between this test and the highest gain case was still less than 0.1 s. At very low
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open loop gains, amplifier saturation could be playing a role in limiting achievable

rise time.

The high supply pressure of 6.89 MPa is in the range more likely to be encountered

in a mobile hydraulic application. The controller provides excellent performance

under this operating condition. There was no overshoot despite a greater than 5

fold increase in open loop gain.

It should be noted that the explicit reference model was based on proportional control

of the valve. Since the valve may be modelled as a second order type 0 system, zero

steady state error is not assured by this configuration. With the gains employed,

the steady state output was limited to ∼ 98 % of the input. This can be seen in the

step response results. This error could be removed by including an integrator in the

model control loop.

It was also noted that the controller as developed, allowed a large gain in the hard-

ware control loop. This provided a solution to the stiction problem, which was most

prevalent at the null position. It was mentioned earlier in this section that the valve

contained some deadzone. This influenced the choice of the operating range for the

step displacements presented. This was considered to be a pressure/flow relationship

issue and is addressed in the next chapter.

Finally, it is to be noted that although this controller was developed for a specific

valve, the approach is valid for any valve whose dominant closed loop pole is equal

or greater than that of the valve used in this research. Through appropriate choice

of feedback gains, any valve which satisfies this criterion could be used in the same

fashion [23], thereby maintaining portability of the approach.
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2.4 Concluding Comments on the Dynamic Char-

acteristics of the Valve

Through a system identification and modelling procedure, it was shown in this chap-

ter that the electrohydraulic valve used in this study had several operating condition

dependent behaviours. This trait is not uncommon amongst electrohydraulic spool

valves. Fortunately, it was found that the dynamics of the valve could be made re-

peatable and approximately linear by the introduction of a model reference controller

based on the system identification performed on the valve. This was consistent with

Research Goal #2 outlined in the Introduction of this Thesis. Furthermore, the ap-

proach that was developed could be applied in a straightforward fashion to any valve

whose dynamics are at least as “fast” as those of the valve used in this research.

The underlying purpose behind achieving repeatable and accurate position control

of the valve spool is that it is a requirement for the development of the predictive

flow control strategy which is the subject of Chapter 3.
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Chapter 3

Flow Estimation in a Spool Type

Valve

It was stated in the introduction to Chapter 2 that a proportional valve is usually

designed to produce a valve spool displacement that is proportional to the input

signal. In this research, substantial effort was expended to ensure that this was

the case for the valve used. In particular it was of critical importance to control

accurately the displacement of the valve spool so that a relationship between valve

spool displacement and the flow characteristics of the valve could be determined.

Obtaining velocity or position control in any hydraulic system is a matter of control-

ling the amount of oil which arrives at the actuator. This is commonly referred to

as “flow control”. Flow control with a valve is achieved by introducing a restriction

in the hydraulic line of appropriate dimension such that the desired flow rate is ob-

tained. This is commonly done with two orifices in series which together create the

required equivalent restriction. In this arrangement, one orifice remains fixed and

the other varies in response to changing operating conditions. A typical series orifice

configuration (referred to as a pressure compensated flow control valve) is shown in

Figure 3.1.

The underlying principle is that if a constant pressure drop is maintained across

the fixed orifice, A1, the flow rate will depend only on the open area of this orifice.
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Figure 3.1: A series orifice pressure compensated flow device.

Therefore, the variable orifice, A2, responding to hydraulic feedback, varies its area

to ensure this is the case.

An alternative approach to flow control is presented in this thesis. The series orifice

arrangement is replaced with a single orifice (in this case the proportional valve)

and electronic pressure feedback is used to adjust the area of the orifice to achieve

the desired flow rate. To maintain the generality and portability of this approach,

it was assumed that the restrictive orifice could have any geometry. In application

of this method the geometry is not necessarily known to the user.

The remainder of this chapter considers the theoretical development and experimen-

tal work performed in the development of the single orifice flow controller. First, a

new method by which the flow characteristics of a valve of unknown configuration

can be determined and expressed in a mathematically compact fashion is introduced.

Next, the method by which the mathematical description of the flow characteristics

was applied to, and optimized for, the specific valve examined in Chapter 2 is dis-

cussed. Finally, an experimental examination of the specific mathematical expression

(or “valve map”) which resulted is discussed with conclusions on its performance.
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3.1 Describing Equations for the Flow Through a

Spool Valve

The flow of oil through a spool valve is governed by two factors:

1. The shape of the opening created between the valve spool and the valve body

(valve geometry) and,

2. The relationship between pressure and flow given the orifice shape (flow

regime).

The effect of these factors on the flow and their mathematical representation in

hydraulic analysis are discussed in the remainder of this section.

3.1.1 Valve Geometry

The actual geometry of a spool valve orifice can vary considerably from

manufacturer-to-manufacturer. In general, the shape of the orifice in a spool valve is

annular as was indicated in Figure 2.3. The area of the orifice is determined by the

clearance between the valve spool and the valve body. Some manufacturers modify

the edges of the spool in order to obtain desirable effects in terms of valve wear, dy-

namic range (a larger orifice opening for a smaller spool displacement), or reduced

flow forces.

In typical spool valve analysis [21], the orifice area is written as a function of valve

spool linear displacement:

Ao = w · xs, (3.1)

where:

w = orifice gradient

[
m2

m

]
,

xs = linear displacement of the valve spool [m] .
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The bevelling of the valve spool that is evident in Figure 2.3 was designed to created

a constant value for the orifice gradient, w, but this is not the rule. In many cases

it may not be possible to determine the orifice gradient for a given valve without

extensive testing or disassembly. The need for detailed knowledge of the orifice

configuration was addressed in this study by eliminating the need for an explicit

description of the valve orifice in the expression for the flow through the valve as

will be discussed in Section 3.2.

3.1.2 Laminar and Turbulent Pressure/Flow Relationships

In a traditional hydraulic valve analysis, having ascertained the orifice geometry, the

flow through a valve is assumed to be either laminar or turbulent, depending on the

Reynolds number [24]. The definition of a flow in the laminar regime is one which is

dominated by fluid viscous effects. The turbulent regime describes flows where the

inertial effects dominate the characteristics. The Reynolds number is the ratio of

the inertial effects (based on the density and fluid velocity) and the viscous effects

(based on absolute viscosity and geometry).

If a fluid flow is assumed to be fully turbulent, then it can be described by the “tur-

bulent flow equation” which is derived from an analysis based on the conservation

of momentum subject to several constraints. The development and experimental

confirmation of this relationship is well known and well represented in many texts

[21], [24] and therefore presented without proof in this thesis:

Q = CdAo

√
2

ρ

√
P1 − P2, (3.2)

where:

P1 − P2 = differential pressure across the orifice [Pa] .

Q = volumetric flow rate

[
m3

s

]
Cd = orifice discharge coefficient [unitless]
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Ao = orifice area
[
m2
]

ρ = fluid density.

[
kg

m3

]

Similarly, if the flow is fully laminar then the relationship between the pressure and

the flow, is described by:

Q = ClamAo (P1 − P2) , (3.3)

where:

Clam = generic geometry dependant laminar discharge coefficient

[
m2s

kg

]
.

Equations 3.2 and 3.3, show respectively, that turbulent flow depends on the square

root of the pressure difference while laminar flow directly depends on the pressure

difference. It has been suggested by Merritt [21], and more recently by Wu and

Burton [22], that the turbulent orifice equation can be mapped to the laminar regime

by appropriate shaping of the discharge coefficient. Unfortunately, both studies

require a priori knowledge of the geometry of the orifice.

The dependence of a traditional analysis on the understanding of the geometry of

the valve can not be overstated. The underlying implication is that a flow con-

trol strategy using this type of analysis to predict the flow rate based on pressure

cannot be undertaken without detailed specifications (manufacturing drawings) or

disassembly of the valve itself.

As discussed in Chapter 1, an important goal of the research described in this thesis

was to develop a straightforward test procedure and a new empirical mathematical

expression which would describe the pressure/flow relationship over the entire op-

erating range of the valve without regard for geometry or flow regime. It was also

desirable for this new expression to be continuous to avoid complications associated

with switching in a piecewise solution. In the remainder of this chapter a new empir-

ical method of adapting the turbulent orifice equation to describe the pressure/flow

characteristics of the valve is presented.
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3.2 “Mapping” the Flow Characteristics of a

Spool Valve

3.2.1 Single Equation Description of Laminar and Turbulent

Flow Regimes

As the turbulent orifice equation is widely used and understood, a modified version

of this equation was used to describe the flow through the valve. This was justified in

that the turbulent orifice equation, as presented in Equation 3.2, requires modifica-

tion in application to achieve accuracy [21]. The reason for this is that the discharge

coefficient, Cd, can be assumed constant only under a very limited set of constraints

which include assumptions about the area of the vena contracta of the orifice and

the value of the Reynolds number. Unfortunately, these constraints do not allow for

a changing orifice geometry with valve displacement which is impossible to predict

if the geometry is unknown from the outset.

Rather than attempting to calculate the flow rate through the valve by estimating

a discharge coefficient and an orifice gradient, an experimental apparatus was de-

signed, instrumented and calibrated to measure the flow rate for varying valve spool

displacement and differential pressures. The test apparatus is shown schematically

in Figure 3.2.

A typical test run consisted of the following steps;

1. The system was warmed up using the procedure discussed earlier in this thesis.

2. At a fixed operating point (Ps = constant and Temperature = 38◦C), the

valve spool was moved to a fixed position, xv
1.

1The LVDT neutral position xv = 0 was determined by increasing the input voltage to the valve

until a flow rate was just discernable above the noise of the flow meter. As discussed later in this

chapter, the limitations on the resolution of the flow meter led to the introduction of a bias in xv.

This had no effect on this procedure and is corrected later in this section.
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Figure 3.2: Experimental apparatus used to determine the relationship between

pressure, flow rate and displacement in the proportional valve.

3. With the spool at position, xv, the load pressure, PL, was increased incremen-

tally.

4. At each increment of load pressure, the flow rate, Q, was recorded for a mini-

mum duration of 10 s.

5. The valve spool was moved to a new position and steps 2 and 3 were repeated.

Time averaged results for each operating condition are presented in Figure 3.3.

The results of flow rate as a function of valve displacement and differential pressure

over the operating range of the valve were used as a reference data set to determine

an empirical function describing the same behaviour. Because this function “maps”

differential pressure and valve spool displacement to flow rate, the result is referred

to as a “valve map”.

At first glance the pressure/flow curves appeared to have a square root profile which

would have indicated that the turbulent orifice equation would provide an accurate

prediction of the true pressure/flow relationship. However, Figure 3.4 illustrates

the short comings of the turbulent orifice equation in predicting flow rate. Flow
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Figure 3.3: Flow rate through a proportional valve for changing valve opening and

pressure drop at 38 ◦C. (Note: Flow meter resolution placed a lower limit on the

flow rates which could be measured.)

rates were calculated using Equation 3.2 and the same valve displacements and

pressures as the data points in Figure 3.3. The orifice gradient used was determined

experimentally by Rosa [26] for the same valve. Both measured flow rates and the

turbulent orifice equation calculations are plotted for comparison in Figure 3.4.

It was concluded that the turbulent orifice equation was relatively effective at pre-

dicting the flow rate at large valve openings. The accuracy degraded as the valve

opening was reduced. The combination of unknown valve geometry and unknown

flow regime made the turbulent orifice equation invalid in the small displacement

range.

The initial approach to extending the range of the turbulent orifice equation to

accommodate low flow rates was to modify the discharge coefficient in terms of

the Reynolds number as suggested by Merritt [21]. This was abandoned as the

unknown geometry of the valve would have made for a large number of unverifiable

assumptions. Furthermore, the experimental data showed that there was no obvious
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Figure 3.4: Experimental value of flow rate through a proportional valve and the

calculations according to the turbulent orifice equation for the valve openings in

Figure 3.3.

division between the two regimes; rather, the flow appeared to be fully turbulent at

high differential pressures but did not appear to be fully laminar (a straight line in

the pressure flow curve) at low differential pressures. Instead, in the valve mapping

technique adopted in this study, the experimental data set plotted in Figure 3.3 was

fitted to the relationship,

Q = Kxv

√
∆P , (3.4)

where K = f{xv, ∆P}. A mathematically simple relationship was sought which

related the value of the flow coefficient, K, to the instantaneous operating condi-

tions xv and ∆P . Therefore, a new empirical analysis technique was employed to

determine this coefficient.
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3.2.2 Modification of the Turbulent Orifice Equation

Two concerns governed the approach to finding a solution for the modified flow co-

efficient, K: portability and computational simplicity. In terms of portability, it was

paramount to keep the mathematical relationship K = f{xv, ∆P} as general as pos-

sible so that any proportional valve could be used with a minimum of experimental

data collection of pressure, flow rate and valve spool displacement.

In terms of computational simplicity, it was envisioned that the valve map should be

implementable on a stand-alone micro-controller which might be of limited memory

or limited computational power. The issue of limited memory excluded a look-

up table of P , Q, and xv as storage of a large amount of data would be required

to capture the entire operating range of the valve. The issue of computational

speed meant that a simple continuous mathematical relationship with a minimum

of logic and a minimum number of variable parameters was desired. A continuous

differentiable relationship was also desirable in the case of future implementation of

a self-tuning algorithm, for example.

As a first step, the flow coefficient was determined by applying Equation 3.4 to the

data presented in Figure 3.3. The result was a family of curves such as that presented

in Figure 3.5.

It is apparent from these curves that the flow coefficient depends both on the valve

spool displacement, xv, and the differential pressure, ∆P . Qualitatively, the results

were consistent with the flow equations in that the flow coefficient should tend to

a constant value for fully turbulent flow and vary approximately with the square of

the pressure for laminar flows.

More specifically, the solution for the flow coefficient formed linear curves, the slope

and intercept of which varied with the valve spool displacement. The result of this

was a flow coefficient of the form:

K (xv, ∆P ) = m (xv) ∆P + b (xv) , (3.5)
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Figure 3.5: Calculated flow coefficient based on experimental values of flow.

To determine the mathematical dependence of the slope and the intercept on the

displacement, these two terms were plotted as dependent variables against the valve

displacement and fitted with an appropriate curve (in both cases exponential) as

shown in Figures 3.6 and 3.7.

The results of the best fit curves gave a slope described mathematically by,

m(xv) = 4× 10−11e−10762xv + 2.14× 10−11, (3.6)

and, likewise, the intercept,

b(xv) = 0.0023e−8500xv + 0.00061. (3.7)

Equations 3.4, 3.5, 3.6, and 3.7 were combined to give the “modified turbulent orifice

equation” and could be written in terms of generic coefficients as:

Q =
[(

C1 + C2e
C3xv

)
∆P + C4 + C5e

C6xv

]
xv

√
∆P . (3.8)

When Equation 3.8 was applied to the operating conditions presented in Figure 3.3

with the coefficients in Equations 3.6 and 3.7 the results shown in Figure 3.8 were

obtained.
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Figure 3.6: Calculated and curve fit slopes of the flow coefficient, K, for various

spool displacements.

Figure 3.7: Calculated and curve fit intercept of the flow coefficient, K, for various

spool displacements.

By comparing the data presented in Figure 3.8 with the data shown in Figure 3.4 it
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Figure 3.8: Calculated flow rate based on the “modified turbulent orifice equation”.

became immediately apparent that the modified orifice equation not only predicted

the flow rate for large valve openings (Reynolds numbers) with reasonable accuracy,

but that it also provided a good prediction of the flow rate at small valve openings.

The accuracy was quantified by the sum of the absolute error between the measured

flow rates and those estimated by both the modified and un-modified turbulent orifice

equations for the measured differential pressures at each spool position. These results

are shown graphically in Figure 3.9.

Of particular importance is the fact that the improvement in the flow rate prediction

was achieved with a function that is continuous and differentiable. Furthermore, the

data set required was relatively small and was simple to obtain, thus indicating

promise of possible adaptation for an online measurement strategy.

The accuracy of the map was limited by the error in the coefficients generated by

the series of curve fits. Recall that the data in Figure 3.2 were first reduced to a set

of lines by a linear regression (K values). The slope and intercept of these lines were

then determined with a second algorithm which fitted the K values to exponential

functions. The error in the first regression due to measurement error and outliers
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Figure 3.9: Error comparison of the modified and un-modified turbulent orifice equa-

tion approximations.

compounded when the slopes and intercepts were then used for the second curve

fit. Furthermore, as the technique purposely removed the need for knowledge of the

geometry of the valve, the coefficients that were found had no physical counterparts

and, as such, could not be analyzed for error sensitivity in any practical sense.

The introduction of these errors did not invalidate the approach as the coefficients

produced reasonable flow estimation accuracy and the form of the valve map equation

had been verified. It was decided, therefore, that an optimization routine would be

employed to refine the coefficients and to determine if an improvement on the curve

fitting technique was achievable with an equation of this form. The development and

implementation of the optimization routine to the novel valve mapping procedure is

the subject of the next section.

3.2.3 Development of the Valve Map Optimization Routine

Mathematically representing the pressure/flow/displacement relationship for a valve

over its entire operating range without a priori knowledge of its geometry was a
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technical challenge as parameters lost their physical significance. This problem was

compounded by the desire to show that the function developed in the previous section

(Equation 3.5) had the ability to match other orifice configurations.

As an analytical solution for function coefficients was impossible for different flow

cases, an optimization routine was developed to generate the best parameter set for

the functions in Equations 3.8. This section describes the mathematical details of

the optimization routine used and presents relevant results.

The optimization routine employed was the Downhill Simplex routine. This routine

was a modification of that suggested by Nelder and Mead [30]. This routine is a self-

contained method for finding minima in nonlinear problems without requiring the

calculation of a gradient. Algorithms of this type were shown to be quite effective

when applied to hydraulic systems by Andersson [31].

The advantage of this routine is the reduced number of calculations required as a

result of not calculating a gradient in parameter space [31]. The disadvantage is

that the routine does not converge as quickly as other methods might. However,

these were not deemed crucial to the application as good starting values were al-

ways available for the routine and the optimization reached a minima in very few

steps as shown later in this section. Furthermore, the compactness of the code

relative to other methods (50 lines for the Downhill Simplex and over 300 for the

Davidson-Fletcher-Powell ) was deemed a significant advantage in a microcontroller

application.

In the optimization process, the Downhill Simplex Method manipulates the vertices

of a “simplex” to move “down-hill” toward the minima. The simplex is the geometric

construct created by m+1 parameter sets in coefficient space, where m is the number

of parameters in each set. The method approaches the minima based on calculating

the instantaneous error of a given data set rather than solving, either explicitly or

approximately, for the derivatives of the function to indicate the direction of the

minima.

The optimization in this case was a best fit of the flow rate as estimated by the
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modified turbulent orifice equation (Equation 3.8) to a measured set of flow rates

such as those shown in Figure 3.3. The fitness of a parameter set was evaluated

by finding the minimum summed squared error, L, over a set of flows measured at

known pressures and spool displacements. Comparing the measured flow to that

estimated by Equation 3.8, the function to be minimized was written as,

L =
np∑

n=1

{
Qn −

[(
C1 + C2e

C3xn

)
∆Pn +

(
C4 + C5e

C6xn

)]
xn

√
∆Pn

}2

(3.9)

where:

n = current data point,

np = total number of data points in the data set.

In order to gain a better understanding of the Downhill Simplex Method and evaluate

its suitability to minimize Equation 3.9, a function of similar form, but in two-space

(C1, C2), was considered first:

L =
np∑

n=1

{
Qn −

[(
C1 + eC2xn

)]
xn

√
∆Pn

}2

(3.10)

In two-space it is possible to plot the error, L, on the vertical axis if a known

optimum solution exists. An error surface was therefore generated using Equation

3.10 assuming a global minimum at the coefficients C1 = 0.8 and C2 = −1000 , or,

Sopt =

 C1

C2

 =

 0.8

−1000

 ,

for an arbitrary data set of displacements and pressures. It was then possible to

picture how the algorithm moves the simplex through the error space subject to the

same displacement and pressure data. A plot of the error space with the location of

the global minimum is shown in Figure 3.10.

The principle of the Downhill Simplex Method is that given m + 1 vertices, a vertex

with a smaller error should lie in the direction opposite the vertex exhibiting the
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Figure 3.10: Error surface for the contracted function with global minimum indi-

cated.

largest error. Thus, the first step in applying the method is to choose a non-optimal

starting set of coefficients (a starting vertex):

S0 =

 C10

C20

 =

 1

3000

 .

It should be noted that, although this vertex can be chosen arbitrarily, it is useful

to consider the length scale of the parameters to avoid lengthy convergence times.

As an example, a starting value several magnitudes smaller than the actual value is

unadvisable. The starting vertex was then used to generate m additional vertices

according to the following mutation routine:

Sn =
[
λnλ

T
n + I

]
S0, (3.11)

where λn was chosen to be:

λ1 =


√

0.1

0

 and λ2 =

 0
√

0.1


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to achieve a mutation of 10% for one parameter in each of the two new data sets.

The three resulting vertices were plotted on the error surface as shown in Figure

3.11. It is interesting to note that, in two-space, the simplex reduced to a triangle.

Figure 3.11: Error surface with the initial simplex indicated.

Inspection of the vertex positions relative to the minimum shows that the worst

vertex is S2. Thus, the algorithm found the centroid of the face of the simplex

opposite of this worst point.

Save =
S0 + S1

m
(3.12)

A new set of parameters was then projected along a line from the worst point through

the centroid to a new point some factor, k, on the other side of the face, Save.

Snew = Save + k(Save − Sworst) (3.13)

The results of this first iteration are shown in Figure 3.12

The algorithm continued this procedure until it reached a point where the new

projected vertex was not an improvement over the worst vertex. At this point the

algorithm evaluated two options. First, it tested for an improvement inside the
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Figure 3.12: Error surface with the initial simplex and first iteration step, Snew,

indicated.

simplex by making k in Equation 3.13 equal to −0.5. If that failed the algorithm

concluded that the minimum lay near the best vertex and contracted around it.

Sm−new =
Sm + Sbest

2
(3.14)

The code for the algorithm can be found in Appendix C. The values of the new

coefficient vectors are plotted in Figure 3.13 for the first 30 iterations.

Within 30 iterations the algorithm had located the global minimum within 2% for

C1 and 8% for C2. By 50 iterations this was reduced to 0% for C1 and 0.01%

for C2. The error was reduced to zero within 60 iterations within the accuracy of

MATLAB double precision (16 decimals places). The ability of the routine to locate

a minimum in a nonlinear equation of similar form to the modified turbulent orifice

equation was verification that the routine was an appropriate choice for tuning the

unknown coefficients in Equation 3.8.
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Figure 3.13: Coefficient values for the first 30 steps of the Downhill Simplex Al-

gorithm when applied to the example problem. (Left) Full error space. (Right)

Exploded view of the area of interest

Unlike the verification tests carried out on the contracted form of the valve map

equation, absolute values for the coefficient vector, Sopt, for the six-space map were

unknown. Thus, a starting point was chosen by examining the length scale of the

values determined using the method described in the previous section. Unit values of

the same order of magnitude and sign were chosen as starting values. The resulting

initialization vector was,

S0 =



1

1

−10000

1

1

−10000


.

The Downhill Simplex optimization routine was then employed. Flow rate estimates

using the modified turbulent equation with the optimized parameters are shown in

Figure 3.14.

Comparisons of errors between the measured and predicted results for the unmod-
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Figure 3.14: Flow rate estimation results using the optimized valve map.

ified turbulent orifice equation, the curve fit modified turbulent equation, and the

optimized modified turbulent equation are shown in Figure 3.15.

Figure 3.15: Comparison of the error in flow estimation using the unmodified turbu-

lent, the modified turbulent, and the optimized modified turbulent orifice equations.
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The results obtained with the optimized modified turbulent equation showed im-

provement in flow rate estimation over the entire operation range of the valve. Sub-

tle changes in the parameter vector during optimization greatly improved the overall

accuracy:

Scurvefit =



2.14× 10−11

4× 10−11

−10762

.00061

.0023

−8500


=⇒ Soptimized =



2.0661× 10−11

6.7309× 10−11

−11598

6.313× 10−4

.003

−12785



The optimization discussed thus far concentrated on a range of flows from zero to

6× 10−4 m3

s
(10 gpm) to meet the flow requirements for the JD 410G loader which

was the initial application for this body of research. It was mentioned in Chapter

1, however, that testing and evaluation would be performed first on a robot in

the laboratory to provide a more controlled environment. While the robot used had

similar geometry to the loader, it was actuated by hydraulic cylinders of significantly

smaller diameter. This meant that the maximum acceptable flow rate, as dictated by

safe robotic arm velocities, was reduced by more than a half. These small flow rates

challenged the sensitivity of the flow meter used in the generation of the original

flow rate data set used for the parameter estimation. Therefore, the challenge was

to evaluate the flow characteristics of the valve in situ in the extreme low flow range.

Detailed flow measurements were performed on the same model of valve in a separate

study by Ahlers [32]. These results indicated that abrupt changes in the character-

istics occur at low flow rates. The results of the measurements by Ahlers [32] are

shown in Figure 3.16. For comparison, the data already presented in Figure 3.3 were

reformatted to reflect the units used by Ahlers and are also plotted in Figure 3.16.

Note that the valve spool displacement has been adjusted by 1.3 mm to reflect the

near-zero flow region evident in Ahlers’s map that was beneath the resolution of the

flow meter used in the original analysis.
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Figure 3.16: (Left) Detailed map of a similar valve generated by Florian Ahlers.

Reprinted with permission. (Right) Original flow rate measurements with adjusted

units.

Flow rates below 20 L
min

(0.0003 m3

s
) represent the working range required by the

robotic arm circuit. This region is below the range of the initial tests and enters

a region where the pressure/flow/displacement relationship exhibits some complex

behaviour as seen in Figure 3.16 (Left). This change in operating range was taken as

an opportunity to show the flexibility of the valve mapping approach and the ability

of the modified turbulent orifice equation to estimate a diverse range of flow profiles.

A low flow data set was obtained by replacing the flow meter and downstream relief

valve in Figure 3.2 with the hydraulic actuator of the laboratory robot which was

equipped with an LVDT for displacement measurement. The output of the LVDT

was numerically differentiated and multiplied by the piston area to give a measure

of the flow rate. The testing procedure was as follows:

1. The system was forced to dump oil over the relief valve until the temperature

measured at the pump outlet stabilized (approximately 36◦C).

2. The valve spool displacement was set at 2.0×10−4 m and the supply pressure

was set to 3.44 MPa (500 psi).

3. The differential pressure, flow rate, and valve spool displacement were recorded

for the full range of motion of the robot or 30s, whichever occurred first.

98



4. This procedure was repeated at the same valve spool position with the sup-

ply pressure increased by 0.69 MPa (100 psi) for each additional run to a

maximum supply pressure of 6.9 MPa (1000 psi).

5. The spool displacement was increased by 2.0×10−4 m and the process was

repeated. The maximum spool displacement considered was 2.6×10−3 m.

The measured flow rates were time averaged in the steady state portion of each run

and compiled into a valve map representing the low flow characteristics of the valve

and are presented in Figure 3.17.

Figure 3.17: Flow rate measurements in the low flow region for variable differential

pressure and valve spool displacements.

It was noted that an abrupt change in the flow rate occured between 1.2 mm and 1.4

mm. This is consistent with the measurements made by Ahlers. Furthermore, for

spool displacements less than 1.4 mm the flow rates were so small that the resulting

motion of the robotic arm was not visually discernable. Also, the motion of the

robotic arm for these small valve openings, and hence the measurement of flow rate,

was highly influenced by phenomena in the robotic arm such as friction and leakage

and the tests in this spool displacement range were not repeatable. For these reasons,

99



the flow rates for spool displacements less than 1.4 mm were not considered in the

remaining analysis.

The Downhill Simplex optimization routine was applied to the objective function

given in Equation 3.9 for the low flow data set excluding values below the limit of

repeatability. The measured results and estimates from the optimized equation are

presented in Figure 3.18.

Figure 3.18: Flow rate estimates found using the modified turbulent orifice equation

with range specific optimized parameters.

The estimated flow results in Figure 3.18 were obtained using Equation 3.8 with the

following optimized coefficients:

Ssmallflow =



1.838× 10−14

1.346× 10−12

27003

5.911× 10−8

6.9249× 10−6

22366


The most intriguing difference in the large flow and small flow parameter sets is the
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change in sign of the coefficients S(3) and S(6). This is indicative of a discharge

coefficient which increased with valve spool displacement as opposed to decreased.

This behaviour is consistent with a Reynolds based correction to the discharge co-

efficient of the turbulent orifice equation put forward by Merritt [21] for extending

that equation into the laminar range.

The results achieved in the large and small flow analysis verified that the method

for valve mapping introduced in this section is applicable to a wide range of flow

characteristics. This was an especially important result as one of the goals of this

research was to develop a method which could be easily applied to any given valve

whose characteristics may differ from those of the valve used in this study.

3.3 Evaluation of the Accuracy of the Modified

Turbulent Orifice Equation

The purpose of developing an accurate valve map strategy was to incorporate this

information in an open loop system capable of predicting the velocity of a hydrauli-

cally actuated link without direct feedback of either flow rate or velocity. The link

between attainable accuracy in velocity control and accuracy of flow estimation was

emphasized in the first chapter of this thesis. In this section, the evaluation of the

accuracy of the developed modified orifice equation valve map is described.

This evaluation of the accuracy of the flow map was performed in two stages. First

recorded data for the flow rate under the conditions of fixed spool displacement and

variable pressure were compared to flow rate estimates under the same conditions.

This allowed for the determination of a “zone of confidence” which set limits on

the allowable range of flows, valve spool displacements, and pressures in which the

valve map could be considered an accurate predictor. Next, the valve map was

used in conjunction with the model reference controller developed in Chapter 2 to

create a pressure compensated flow estimator. The performance of this estimator in

estimating flow in real-time was evaluated.

101



3.3.1 Evaluation for Fixed Spool Displacement

The optimization procedure described in the previous section produced a set of pa-

rameters for the modified turbulent orifice equation which produced qualitatively

good performance. The purpose of the analysis presented in this section is to quan-

tify that performance. This was done by determining the operating conditions of the

pressure and flow in the domain and range shown in Figure 3.18 in which the pa-

rameter set and the modified turbulent orifice equation produced estimates within a

fixed criteria. This set of operating conditions was termed the “zone of confidence”.

The evaluation discussed in this section employed the same recorded values that were

time averaged to create the data points in Figure 3.17. The differential pressure and

spool displacement time series were used as input values to the modified turbulent

orifice equation to generate flow rate estimates. These estimates were then compared

to the recorded flow rates at the same operating conditions. Typical results are shown

in Figure 3.19.

Figure 3.19: Measured and estimated flow rate results for xv = 1.6 mm and Ps =

6.89 MPa.

The example shown in Figure 3.19 was chosen for inclusion as it illustrates several
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criteria used to determine the valve map zone of confidence. The first step in the

analysis was to determine the Percent Root Squared Relative Error (%RSRE) which

is defined as:

%RSRE = 100 ∗

√
(Measured− Estimated)2

Measured2 . (3.15)

The %RSRE for the series presented in Figure 3.19 is shown in Figure 3.20.

Figure 3.20: Root squared relative error (%RSRE) between measured and estimated

flow rate results for xv = 1.6mm and Ps = 6.9MPa.

The results shown in Figure 3.20 confirm a trend which is apparent in Figure 3.19

which is that there are two distinct operating points in this time series following the

initial transient phase. These operating points corresponded to a change in the load

pressure, and hence the differential pressure, as the robotic arm moved through its

trajectory. This is more clearly demonstrated by plotting the same %RSRE against

the differential pressure rather than time as shown in Figure 3.21.

Two peaks appear in these results corresponding to two distinct differential pressure

operating conditions. At the lower operating condition, the %RSRE is less than

10%, but it exceeds this value for the higher condition. A %RSRE of 10% was
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Figure 3.21: Root squared relative error (%RSRE) between measured and estimated

flow rate results for xv = 1.6mm and Ps = 6.9MPa plotted against differential

pressure.

chosen to be the maximum acceptable value for the flow estimation error based

on what value constitutes a perceivable error to the system operator. Thus, the

conclusion in this case was that the modified turbulent orifice equation was valid for

spool displacements in the neighbourhood of xv = 1.6 mm for differential pressures

between ∆P = 3.5 MPa → 4 MPa. The range of operating conditions covered

by this time series is indicated by the rectangular area #1 in Figure 3.22. This

procedure was repeated for nine other operating ranges (#2-#10) also indicated

in Figure 3.22. The time series and %RSRE plots for these ranges are given in

Appendix D.

Examination of the ten operating conditions and application of the 10% root squared

relative error criteria allowed the zone of confidence boundary to be determined and

this is shown on Figure 3.23. To reiterate, this zone of confidence illustrates the

region of flow rates and pressure differentials in which the modified turbulent orifice

equation, employing the parameter set determined by the low flow optimization, will
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Figure 3.22: Operating ranges encompassed by the tests which were evaluated to

determine the zone of confidence.

predict the flow rate within 10% root squared relative error.

Figure 3.23: Ranges evaluated to determine the zone of confidence.
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3.3.2 Evaluation for Dynamically Varying Spool Displace-

ment

In the previous section, the experimental procedure involved setting the spool dis-

placement at a constant value and varying the differential pressure with the flow

rate being measured. To evaluate the effectiveness of the modified turbulent orifice

equation when subject to dynamically varying spool displacements, a second test

apparatus and procedure was developed. In this case, the hydraulic actuator of the

robotic arm was made to track a velocity input which varied sinusoidally while be-

ing subject to variable differential pressure. The spool position was made to adjust

accordingly by a feedback control system.

The feedback control system involved incorporating the valve in a closed loop PID

position control loop. A position control system as opposed to a velocity control

system was chosen to avoid drift. The velocity was obtained by numerically differ-

entiating the position measurements. A sinusoidal displacement input with a peak-

to-peak amplitude of 18 cm was used to ensure that the actuator, and consequently

the robotic arm, moved through the greater part of its trajectory. The frequency of

the sinusoidal input was varied to provide a range of maximum velocities, and hence

flow rates, within the determined zone of confidence. The feedback control system is

shown in the block diagram in Figure 3.24. An example of the desired input velocity

and the measured actuator velocity is presented in Figure 3.25.
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Figure 3.24: Block diagram of the flow estimator.

Figure 3.25: Sinusoidal tracking using a linear PID controller and actuator position

feedback.

It was evident from data such as those presented in Figure 3.25 that the linear

controller was not able to produce accurate tracking control, particularly about the

null flow rate. This was not unexpected given the nonlinear nature of the valve

and load. This tracking problem is one of the reasons for developing a nonlinear

predictive feedforward strategy as will be discussed in the final chapter of this thesis.

The accuracy of the PID tracking was not the issue, however. It was of interest to
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determine if the valve map could predict the flow regardless of the trajectory.

Nine tests were run under changing operating conditions which were chosen to reflect

the entire domain and range encompassed by the zone of confidence. Covering the

full velocity range of the zone of confidence required three input frequencies of 0.1,

0.16, and 0.2 Hz and spanning the pressure range required supply pressures of 4.13,

5.52, and 6.89 MPa. The same warm up procedure discussed earlier in this chapter

was used before the start of testing. Presented in Figure 3.26, as an example, are the

measured and estimated results for a half wave of a sinusoidal input with a frequency

of 0.16 Hz and a supply pressure of 4.14 MPa (600 psi).

Figure 3.26: Measured and estimated flow results for an input frequency of 0.16 Hz

and a supply pressure of 4.14 MPa.

It can be seen in Figure 3.26 that some discrepancy exists between the measured

flow rate and that predicted by the valve map. The most obvious difference is

that the measured value lags the predicted value. This is a result of a transmission

delay through the hydraulic lines as the flow estimate is determined at the valve

and the measured flow is determined from the cylinder motion. For the purposes

of evaluating the accuracy of the modified turbulent orifice equation the delay was
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removed by post processing the measured flow rate data. The corrected results with

the delay removed are shown in Figure 3.27.

Figure 3.27: Measured and estimated flow results for an input frequency of 0.16 Hz

and a supply pressure of 4.14 MPa with time delay removed.

The instantaneous error is shown in Figure 3.28 and quantifies what is visually

apparent in Figure 3.27; namely, that at this operating point the valve map estimates

are centred about the measured data with pressure transients causing fluctuations

and resulting spikes in the error.

The %RSRE was used as the standard measure of flow prediction performance.

Recall that a %RSRE of 10% for values within the zone of confidence was considered

acceptable estimation performance. A plot of the %RSRE in this region is shown in

Figure 3.29.

In the region of interest, T1 to T2, the mean %RSRE was 8.7% with a standard

deviation of 6.1%. The results were deemed acceptable as the supply pressure used

in this run was marginal to operate given the inertia of the robotic arm which lead

to large transient values which were difficult to track. This problem diminishes with

higher supply pressures as can be seen by comparing the time series (Figure 3.26)
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Figure 3.28: Instantaneous error between measured and estimated flow results for

an input frequency of 0.16 Hz and a supply pressure of 4.14 MPa with time delay

removed.

Figure 3.29: The root squared relative error (%RSRE) between measured and esti-

mated flow results for an input frequency of 0.16 Hz and a supply pressure of 4.14

MPa with time delay removed.
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and %RSRE (Figure 3.29) for the case just discussed (Ps=4.14 MPa, f = 0.16Hz)

with the time series and %RSRE for the same input frequency at a significantly

higher supply pressure (Ps=6.89 MPa) as shown in Figures 3.30 and 3.31.

Figure 3.30: Measured and estimated flow results for an input frequency of 0.16Hz

and a supply pressure of 6.89 MPa.

As mentioned earlier, nine test cases covering the entire zone of confidence were

examined and in every case the mean %RSRE for flow rates within the zone of

confidence were less than 10%. This was confirmation that the modified turbulent

orifice equation provided an accurate real-time estimate of the flow rates for this

valve over the prescribed range of operating conditions.

3.4 Concluding Comments on Flow Estimation

With a Spool Type Valve

In the introduction to this thesis a velocity control solution for a hydraulically actu-

ated mechanism based on flow control was proposed. Due to practical constraints, it

was decided to develop a single component predictive flow controller. This chapter
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Figure 3.31: The root squared relative error (%RSRE) between measured and esti-

mated flow results for an input frequency of 0.16 Hz and a supply pressure of 6.89

MPa.

outlined the first step in this process, which was to develop a means of characteriz-

ing the flow rate through a valve and representing those characteristics in a compact

mathematical fashion.

In the course of this, a new empirically determined and optimized form of the turbu-

lent orifice equation was developed. This equation and the experimental approach

used to determine its coefficients proved quite versatile as it was used effectively

to estimate the flow through a valve which was operating at the low end of its in-

tended operating range with an acceptable accuracy. The material in this chapter

was consistent with Research Goal #3 as discussed in Chapter 1.

The next step in developing the predictive velocity controller was to examine the

mechanism to be controlled. The kinematics of the mechanism relate the angular

velocity of the arm to the linear velocity of the actuator. The linear velocity is

related to the flow rate, the control of which will depend on the material developed

in this chapter. The kinematics of the robot are the subject of the next chapter.
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Chapter 4

Kinematics of the Robot

The operating characteristics of the specific proportional valve used in this study

were discussed in Chapter 2. Material presented in Chapter 3 demonstrated the fea-

sibility of using a modified turbulent orifice equation to achieve flow rate estimation

with a valve of this type. In this chapter the question of what output a human oper-

ator in the control loop wishes to control is addressed. The necessary mathematical

relationships between flow rate to the actuator and desired output from the view

of the operator are developed. To facilitate this discussion, the application toward

which this research was originally oriented will be considered.

As discussed in Chapter 1 this project was based on the “vision” of automating

some functions of a front-end loader while still allowing an operator in the loop to

provide visual feedback of the angular velocity of the boom arms during manual

operation. From the point of view of the operator, it is desirable to obtain one-to-

one correspondence between an input signal and the angular velocity of the linkage.

As discussed in the introductory chapter, in order to establish the feasibility of

the flow prediction approach under controlled conditions, a laboratory robot which

functioned in a similar fashion to the loader boom arms was used in this study. This

laboratory robot is shown schematically in Figure 4.1.

Consider Figure 4.1. The robot has revolute joints at A, B, and C with the A and

C joints fixed in translation. The arm rotates due to flow entering the hydraulic
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Figure 4.1: Schematic representation of the laboratory robot.

actuator which extends at E. The required mathematical relationship to introduce

one-to-one correspondence between operator input and boom angular velocity was

that which related the angular velocity of the arm about joint C, and the linear

velocity of the hydraulic actuator. It can also been seen from Figure 4.1 that the

actuator represents a variable length linkage that can be described in terms of a

fixed length (representing a bottomed out cylinder) and a piston extension length.

A notation, θ, was chosen for the angular displacement of the arm about joint C.

For the purposes of calibration, the horizontal arm position was chosen as θ = 0.

Rotation above the horizontal was considered positive. The range of motion of the

robot was thus defined to be in the domain −18.5◦ ≤ θ ≤ 28.75◦. Consequently, the

angular velocity of the robot, θ̇, was positive in the upward direction.

The remainder of this chapter contains the development of the kinematic equations

which describe the relative motion of the linkage components and the experimental

verification thereof.

4.1 Displacement Analysis

For the kinematic analysis, the nomenclature illustrated in Figure 4.2 was adopted.

A vector representation of the mechanism is shown in Figure 4.3.
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Figure 4.2: Linkage dimensions of consequence for the development of the describing

kinematics.

Figure 4.3: Vector representation of the robot linkages.

Since the two vectors, ~rDB and ~rCD, were of fixed length and were rigidly connected

at point D, they were combined. The reference angle, θ, was adjusted to reflect the

orientation of the combined vector and this adjusted value was termed, θ∗. This is

shown graphically in Figure 4.4.

The mathematical expressions determined for this combination were:

~rBD + ~rDC = ~rBC , (4.1)

and,

θ = θ∗ + atan
| ~rBD|
| ~rDC |

. (4.2)
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Figure 4.4: Vector representation of the robot linkages with ~rDB and ~rCD combined.

Note: the quantity, θ∗, is negative in this case.

Thus, the length of the actuator relative to the angle of the boom was deduced from

the following vector sum:

0 = ~rAB + ~rBC + ~rCA. (4.3)

Application of the coordinate system indicated in Figure 4.4 allowed Equation 4.3

to be written in terms of the two reference angles, α and θ∗,

0 = lAB (̂icosα + ĵsinα) + lBC(−îcosθ∗ − ĵsinθ∗) + lCA(−ĵ). (4.4)

The terms, î and ĵ, were collected, yielding two equations,

î : 0 = lABcosα− lBCcosθ∗, (4.5)

and,

ĵ : 0 = lABsinα− lBCsinθ∗ − lCA. (4.6)

The unknown quantity, α, was found in terms of the other two unknowns, lAB and

θ∗, by first collecting terms containing α on the left hand side,

lABcosα = lBCcosθ∗, (4.7)
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and,

lABsinα = lBCsinθ∗ + lAC . (4.8)

Equation 4.8 was divided by Equation 4.7, which yielded,

tanα =
lBCsinθ∗ + lAC

lBCcosθ∗
, (4.9)

or,

α = atan

(
lBCsinθ∗ + lAC

lBCcosθ∗

)
. (4.10)

The length of the actuator, lAB, as a function of the angular displacement of the

boom, θ∗, was then found through substitution of Equation 4.10 into Equation 4.7:

lAB =
lBCcosθ∗

cos
[
atan

(
lBCsinθ∗+lAC

lBCcosθ∗

)] . (4.11)

This relationship was verified by instrumenting the laboratory robot. An RVDT

was placed on the boom pivot pin and an LVDT was placed on the actuator. The

actuator displacement as calculated from the angular displacement by Equation

4.11 was compared to the displacement measured by the LVDT. Typical results are

presented in Figure 4.5.

The results were coincidental as expected. A velocity analysis was then performed

based on this position analysis.

4.2 Velocity Analysis

A velocity analysis was performed in order that the angular velocity of the robot

arm could be related to the velocity of the hydraulic actuator. As a starting point
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Figure 4.5: Verification of the kinematic position analysis.

the velocity of joint B in Figure 4.2 was considered. Considering the relative velocity

of B with respect to C ~vB is given as,

~vB = θ̇lBC(−îsinθ∗ + ĵcosθ∗). (4.12)

Also, the velocity of B with respect to A was,

~vB = α̇lAB(−îsinα + ĵcosα) + l̇AB (̂icosα + ĵsinα). (4.13)

The terms, î and ĵ, were collected yielding two equations,

î : −θ̇lBCsinθ∗ = −α̇lABsinα + l̇ABcosα, (4.14)

and,

ĵ : θ̇lBCcosθ∗ = α̇lABcosα + l̇ABsinα. (4.15)

The link length containing the actuator, lAB, can be calculated from Equation 4.11

and the link length, lBC , was constant. The user input was an angular velocity of the
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arm, θ̇, and the desired output was the actuator linear velocity, l̇AB. The unknown

variable, α̇, was isolated from Equation 4.14,

α̇ =
l̇ABcosα + θ̇lBCsinθ∗

lABsinα
. (4.16)

Substitution of Equation 4.16 into Equation 4.15 and subsequent simplification de-

termined the following expression for the actuator linear velocity,

l̇AB = θ̇lBCsin(α− θ∗). (4.17)

To eliminate the unknown variable, α, the angles which were referenced to the î-

axis (α and θ∗) were converted to interior angles of the triangle ABC through the

following two relationships,

α∗ =
π

2
− α, (4.18)

and

θ∗∗ =
π

2
+ θ∗. (4.19)

The law of sines was then applied to the triangle, ABC, for the purpose of isolating

α∗. The expression relating this variable to the robotic arm angular displacement

was determined,

α∗ = sin−1

(
lBC

lAB

sinθ∗∗
)

. (4.20)

Substitution of Equations 4.18, 4.19 and 4.20 into Equation 4.17 yielded the final

expression relating the actuator linear velocity to the robotic arm angular velocity.

l̇AB = θ̇lBCsin

[
π

2
− sin−1

(
lBC

lABsin(π
2

+ θ∗)

)
− θ∗

]
. (4.21)
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The validity of Equation 4.21 was tested experimentally. An LVDT attached to the

actuator was used to record piston extension, lAB. This value was numerically differ-

entiated to obtain the “measured” actuator velocity data, l̇AB. An RVDT was used

to measure the angular displacement data, θ∗. This value was numerically differenti-

ated to generate the robotic arm angular velocity, θ̇. The recorded values were used

in Equation 4.21 to calculate the actuator velocity as determined by the angular

velocity. The input was a random amplitude in valve displacement introduced by an

operator. A comparison of measured and computed actuator velocities is presented

in Figure 4.6.

Figure 4.6: Verification of the kinematic velocity analysis.

Again, there was very good agreement between these velocities, which verified the

velocity analysis.
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4.3 Concluding Comments on the Kinematics of

the Robot

The developments in this chapter represent completion of Research Goal #5 pre-

sented in the introductory chapter to this thesis. Completion of this goal repre-

sents the final component needed in the development of a predictive velocity control

scheme. Operator input of desired angular velocity may be transformed to an actu-

ator velocity. The actuator velocity implies a required flow rate. A means has been

devised to predict the flow rate through a valve for given operating conditions. A

control scheme has also been developed to control one of the valve operating condi-

tions, (valve spool displacement) independent of others (supply and load pressure).

The only remaining step is to combine the components to function as a predictive

controller which is the subject of the next chapter.
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Chapter 5

Velocity Control of the Robot

with a Linearizing Feedforward

Controller

5.1 Assembling the Linearizing Feedforward Con-

troller

The work presented thus far in this thesis represents the development of individ-

ual components which collectively create an open loop velocity control system for a

hydraulically actuated linkage. In this chapter, the task of assembling these compo-

nents into a functioning controller is addressed. For reference it is useful to consider

the predictive flow controller as proposed in Chapter 1. A block diagram of that

system with annotations indicating areas to be discussed is shown in Figure 5.1.

In the next section, the task of transforming an operator input signal to desired

flow rate is examined (A in Figure 5.1). This required application of the kinematic

equations developed in Chapter 4. In the third section, the issue of converting the

desired flow rate signal to a valve command signal is examined (B in Figure 5.1).

This involved finding the inverse solution for the modified turbulent orifice equation
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Figure 5.1: Block diagram of the proposed predictive velocity control system.

developed in Chapter 3. In the fourth section interfacing the control algorithm with

the physical hydraulic system is addressed (C in Figure 5.1). This relies on the model

reference controller for the valve which was developed in Chapter 2. The results of

an experimental investigation of the performance of the new controller is described

in the fifth section. A brief summary of the material presented is given in the final

section.

5.2 User Input to Desired Flow Signal

As discussed earlier in Chapter 1, the operator of a single link rotary mechanism, be

it a front-end loader, a backhoe, a crane or a piece of logging equipment, is primarily

concerned with the angular velocity of this link and not the velocity of the hydraulic

actuator or the flow rate to it. The mathematics to link these system states were

solved in Chapter 4 but a few logistical issues remained with the implementation of

the hardware in the control loop.

The primary issue involved the use of Equation 4.21. This equation represents the

relationship between the actuator velocity, l̇AB, and the angular velocity of the boom

arm, θ̇. Unfortunately, the relationship also relies on the instantaneous geometry of

the boom, (the angular displacement of the boom arm and the actuator displacement

are interchangeable according to Equation 4.11) that is,

l̇AB = f(θ̇, lAB). (5.1)
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This is problematic as the premise of this research project was that applications

requiring a predictive velocity control strategy would be “sensor poor”. That is,

measurement of the states, including the actuator or angular displacement, would

be unavailable. Thus, it was important to determine how these values would be

estimated and provided as feedback to the kinematic equations.

If the accuracy of the velocity control system approached 0% error, obtaining an es-

timate of the angular displacement could be achieved by numerically integrating the

desired angular velocity. However, the feasibility of using this approach could not be

evaluated until the accuracy of the predictive velocity control system in the absence

of velocity tracking error was determined. For this reason, in this evaluation, the ac-

tuator position and boom angle were presumed known and real-time measurements

from the installed RVDT were used as feedback to the kinematic equations.

A second minor issue to be resolved was that of obtaining a desired flow rate from

the calculated desired actuator velocity. Leakage across the piston was assumed neg-

ligible. If significant leakage was present, this factor would have been compensated

for in the valve mapping procedure as flow rate data was not measured directly,

but rather inferred from measurements of actuator velocity. Thus, in the absence

of leakage, generating a desired flow rate only required the multiplication by the

actuator piston area.

5.3 Desired Flow to Valve Control Signal

This section presents the culmination of the most significant contributions of the

author in this study. It is shown how the modified turbulent orifice equation de-

veloped in Chapter 3 was used to produce a valve control signal with the intent of

introducing predictive velocity control.

The modified turbulent orifice equation developed in Chapter 3 was verified through

its use as a flow predictor; however, the proposed feedforward linearizing controller
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required the use of the inverse valve map. The the two approaches are illustrated

in Figure 5.2.

Figure 5.2: (Left) Valve map as a flow predictor. (Right) Inverse valve map gener-

ating a control signal.

The desired output of the inverse valve map was a solution for the required valve

spool displacement, xvd, which was of the form,

xvd =
Qd

K
√

∆P
. (5.2)

This was not directly achievable as the modified turbulent orifice equation contains

the dependent term,

K = f(xvd, ∆P ), (5.3)

therefore, a method was required to simultaneously solve,

Kxvd =
Qd√
∆P

. (5.4)

No straightforward closed form solution to Equation 5.4 was possible. A solution

for the required valve spool displacement could be determined through any number

of nonlinear root finding techniques. None of the techniques investigated was well

suited to implementation in the real-time environment used to implement the control

strategy and perform the evaluation of its performance. A series solution was also

attempted; however, to achieve 1% accuracy, an 8th order polynomial was required.

Rather, the method chosen exploited the capabilities of the MATLAB r© software
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package to solve differential equations. The function representing K in the modified

turbulent orifice equation was placed in a feedback loop of a first order system

shown in block diagram form in Figure 5.3. The input was the right hand argument

in Equation 5.4.

Figure 5.3: Block diagram of the first order solver.

The closed loop transfer function for xvd with respect to Qd√
∆P

was found to be,

xvd

Qd√
∆P

=
Ks

s + KKs

= G(s), (5.5)

which, at lims→0 G(s), reduced to,

xvd

Qd√
∆P

=
1

K
. (5.6)

Reordering Equation 5.6 showed that this system tends to the desired valve spool

displacement given a differential pressure and a desired flow,

xvd =
Qd

K
√

∆P
, (5.7)

within a settling time determined by the time constant, 1
KKs

. The closed loop

transfer function for this system given in Equation 5.5 is of first order. Thus, the

system is stable for all inputs provided that K remains positive, which is true for

positive valve spool displacements.

Two additional design considerations affecting the suitability of the first order solver

were addressed. First, an appropriate value of Ks was chosen such that the transfer
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function remained numerically stable when solved as a sampled data system. Second,

the convergence of the solution, as dictated by the root of the characteristic equation

of the closed loop system, was evaluated to ensure a solution was found sufficiently

fast so as to not interfere with the dynamics of the system.

The risk of numerical instability dictated the maximum allowable gain, Ks, and

hence, the minimum time to convergence. The greatest risk of numerical instability

occurs in the first two time steps of the numerical integration routine when the

operating conditions, Ps and Qd, create a large value for the feedback, Kxvd. In

this scenario, it is possible for the error signal to become large negative resulting

in a negative solution for xvd. The nonlinear feedback equation, K, is not valid

in the negative domain and the solver is unstable. Consider the first time step for

xvd(0) = 0. The error signal in this case was:

Qd√
∆P

− 0 =
Qd√
∆P

. (5.8)

A rectangular numerical integration algorithm provided a solution for the valve spool

displacement in its first step,

xvd = 0 +
Qd√
∆P

Ks∆T. (5.9)

The largest correction in xvd occurs when the ratio of the flow to the differential

pressure is maximized. For the zone of confidence developed in Chapter 3, this

occurs at Qd = 0.0003 m3

s
and ∆P = 0.5 MPa. The time step in the real-time

control implementation was fixed at ∆T = 0.001 s, therefore, Equation 5.9 reduced

to,

xvd = 4.2426× 10−7Ks. (5.10)

As a starting point the maximum allowed correction in xvd was taken to be 0.5 mm

which resulted in a the value Ks = 1.18× 106. This value was tested in simulation

using the system shown in Figure 5.3 and was found to produce a stable system
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response. Trial and error using the same inputs showed that stability was maintained

with Ks as high as 2.0× 106.

The numerical stability analysis placed an upper limit on the gain, Ks, for the

scenario when the feedback gain was largest. It was also necessary to evaluate the

system performance at operating conditions which resulted in low values of K. This

is the case when the ratio of flow to differential pressure is minimized within the zone

of confidence, or Qd = 0.00008 m3

s
and ∆P = 3.5 MPa. It should be noted that the

time constant for this system is nonlinear as τ = 1
KKs

and K = f(x), and therefore,

a single value does not exist. Rather, the critical parameter in this examination was

the time to convergence which was taken as the point that the error signal amplitude

reaches 95% of its initial value. The time to convergence was expected to be slower

in the low K case relative to the high K case. The results for both the high K and

low K cases are shown in Figure 5.4.

Figure 5.4: Comparison of convergence for high and low K solutions.

The time to convergence for the low K case was found to be 0.012 s which, when

the linear time constant relationship in which 3τ=95% of steady state was used as

an approximation, indicated a time constant in the neighbourhood of 0.004 s. This
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corresponded to a pole at approximately 250 rad
s

(40 Hz) for the low gain case. This

was sufficiently fast not to interfere with the valve controller which was designed

with the dominant closed loop pole at s = −18.4.

The first order solver was tested in simulation. Variable differential pressure and

valve spool displacements were generated using sine wave generators available in

Simulink r© . The differential pressure was varied from 2.5 MPa to 1.5 MPa at a

frequency of 0.16 Hz. The valve spool displacement was composed of superimposed

low and high frequency components and this signal is plotted in Figure 5.6. The dif-

ferential pressure and spool displacement signals were used as inputs to the modified

turbulent orifice equation (Valve Map) where the set of coefficients in that equation

were those presented in Chapter 3, Ssmallflow. The result from the modified tur-

bulent orifice equation was a flow rate. This flow rate and the variable differential

pressure signal were then applied to the inverse valve map which employed the first

order solver and used the same set of coefficients, Ssmallflow. The simulation block

diagram is shown in Figure 5.5.

Figure 5.5: System for verification of the first order solver.

The flow rate as calculated by the modified turbulent orifice equation is plotted on

one axis in Figure 5.6 with the input spool displacement and that calculated by the

first order solver plotted on the other.

It was noted that the input and solved values for the valve spool displacement were
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Figure 5.6: First order solver solution. (Note: the xv - Input and xv - First Order

Solver series are superimposed)

virtually coincident. The only discrepancy, which is not evident in Figure 5.6, was

a phase lag of less than 0.002 s. This was considered sufficiently small so as not to

be detrimental to the controller performance.

One further consideration was the bi-directional nature of this system. Thus far,

developments of the modified turbulent orifice equation and first order solver have

assumed that valve spool displacements were always positive. In order to accommo-

date both up and down actions on the robotic arm, however, the system must be

configured as meter-in/meter-out.

In meter-in/meter-out configuration, the valve spool moves in both the positive and

negative directions about the null point as discussed in Chapter 2. The sign of the

spool direction determines whether supply oil from the pump is directed to the blank

side of the actuator (meter-in) or if blank side oil is allowed to return to tank (meter-

out). Therefore, switching logic must be introduced to account for the direction of

the flow, the direction of the valve spool displacement, and the differential pressure

acting across the orifice. The necessary switching to achieve a fully bi-directional

valve map is illustrated in Figure 5.7.
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Figure 5.7: Logic switching for the bi-directional valve map.

It was noted that the tank pressure was effectively zero, therefore, the differential

pressure in the meter-out operation was the blank side actuator pressure. As well,

since all measurements upon which the valve map was based were taken in the

positive direction, a positive deadzone was inherent to the valve map as discussed

earlier. A small correction was needed to compensate in the negative direction,

therefore, a bias was added to the meter-out valve displacement.

Through application of the first order solver and the logic switching to account

for directionality, a desired flow rate could be transformed into a desired valve spool

displacement signal. Implementation of the real-time controller developed in Chapter

2 to achieve the required valve spool displacement is the subject of the next section.

5.4 Interface With the Hydraulic System

The switching discussed in the previous section (Figure 5.7) produced a bi-polar

desired valve spool displacement signal. This became the input to the MRC valve

spool displacement controller developed in Chapter 2. The MRC controller pro-

duced a control signal that was input to a voltage following operational amplifier

circuit. This ensured electrical isolation between the data acquisition equipment

and the valve and supplied sufficient current to drive the valve EMA. The complete
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block diagram representation of the new linearizing feedforward velocity controller

is presented in Figure 5.8.

Figure 5.8: The novel linearizing feedforward velocity controller.

5.5 Selected Results of the Linearizing Feedfor-

ward Controller

The range of tests which could have been run on the controller is voluminous. The

tests conducted in this study support the research goal of this project which was to

evaluate the feasibility of introducing predictive velocity control on a hydraulically

actuated linkage. Evaluation of the controller performance was examined under the

following operating conditions:

1. Fixed supply pressure and constant amplitude velocity.

2. Fixed supply pressure and variable amplitude velocity.

3. Variable supply pressure and constant amplitude velocity.

5.5.1 Fixed Supply Pressure - Constant Amplitude Velocity

The goal of the first test was to examine the constant velocity characteristics of

the controller subject to a range of supply pressures. These tests do not a imply

fixed load pressure as the nonlinear geometry of the robot generated a variable

gravitational load as the arm moved through its trajectory. This is analogous to the
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problem of variable inertia investigated by Bu and Yao [6] [7] in which those authors

used an adaptive controller with full state feedback on a physically similar device.

Twenty four cases encompassing three positive and three negative desired angular

velocities at four different supply pressures were examined. The angular velocities

were chosen to cover the full range of flow rates within the zone of confidence dis-

cussed in Chapter 3. The values used were ±0.1, ±0.2, and ±0.3 rad
s

(±5.7, ±11.5,

and ±17.2
◦

s
). The robot was operated over its full range of motion for each of the

cases. The supply pressures used were also chosen to be representative of the zone

of confidence and covered a range from 4.14 MPa to 6.21 MPa.

The testing procedure included a warm up stage as discussed earlier in this thesis.

Following the warm up procedure, the arm of the robot was manually moved to

the bottom of its trajectory for positive angular velocity tests or to the top for the

negative tests. A fixed angular velocity was input to the system shown in Figure

5.8.

The desired and measured velocities for all tests are presented in Figures 5.9 through

5.12. Two points regarding the presentation of results in these figures must be noted.

First, the test runs were started and stopped manually, leading to variation in the

test durations. Second, for the purposes of visual comparison of the angular velocity

tracking for test at different velocities, the time scale of the tests has been normalized

by the length of time required for the robot to move from its lower limit to its upper

limit at the desired angular velocity, Ttraj. This corresponds to Ttraj = 8.25 s for

the ±0.1 rad
s

tests, Ttraj = 4.125 s for the ±0.2 rad
s

tests, and Ttraj = 2.75 s for the

±0.3 rad
s

tests. This convention is used throughout this discussion and is noted as

“Normalized Time” when applied.

The %RSRE for all tests was calculated. For example, the %RSRE as a function of

time is shown for the tests performed with a supply pressure of 4.14 MPa in Figure

5.13.

To obtain a measure of performance, the mean of the %RSRE series (such as those

in Figure 5.13) were calculated excluding the transient region. The results for all
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Figure 5.9: Velocity tracking results with a supply pressure of 4.14 MPa. Ttraj =

8.25, 4.125, and 2.75 s for θ̇d = ±0.1, ±0.2, and ±0.3 rad
s

, respectively.

Figure 5.10: Velocity tracking results with a supply pressure of 4.83 MPa. Ttraj =

8.25, 4.125, and 2.75 s for θ̇d = ±0.1, ±0.2, and ±0.3 rad
s

, respectively.

tests are summarized in Figure 5.14.
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Figure 5.11: Velocity tracking results with a supply pressure of 5.52 MPa. Ttraj =

8.25, 4.125, and 2.75 s for θ̇d = ±0.1, ±0.2, and ±0.3 rad
s

, respectively.

Figure 5.12: Velocity tracking results with a supply pressure of 6.21 MPa. Ttraj =

8.25, 4.125, and 2.75 s for θ̇d = ±0.1, ±0.2, and ±0.3 rad
s

, respectively.

These results indicate that the velocity was being controlled within 10% of the

desired value for operating conditions that are well within the zone of confidence.
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Figure 5.13: Root squared relative error (%RSRE) for tests conducted with Ps=4.14

MPa. (Note: The results of the -0.1, -0.2, and -0.3 rad
s

tests are shown negative for

clarity.)

Figure 5.14: A qualitative presentation of the velocity tracking accuracy as shown

by the mean root squared relative error (%RSRE) for all constant velocity tests.

136



Performance of the controller degraded for values that were on the periphery of

this zone particularly the tests performed with a supply pressure of 4.14 MPa and

desired velocities of ±0.1 rad
s

. Examination of the flow rate data for these cases

indicated that the differential pressure or required flow rate drifted outside the zone

of confidence as the arm moved through its trajectory. This is best illustrated by

examining a plot of the flow rate against differential pressure for the case of Ps = 4.14

MPa and θ̇d = 0.2 rad
s

shown in Figure 5.15.

Figure 5.15: Flow rate as a function of differential pressure for Ps=4.14 MPa and

θ̇d = 0.2 rad
s

.

During this test, at higher differential pressures (>0.75 MPa) the modified turbulent

orifice equation estimated the required flow rate within acceptable error. However,

as the arm moved through its trajectory the differential pressure dropped outside the

zone of confidence and the estimation was correspondingly poor. This was common

among the tests performed at this supply pressure. Similarly, the required flow rate,

as dictated by the kinematics, dropped outside the zone of confidence for portions

of the tests performed at low velocities.

It was determined that the linearizing feedforward controller was capable of main-
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taining steady state control of angular velocity within 10% error for operating con-

ditions within the zone of confidence. It was of further interest to determine the

repeatability of the control technique subject to a cyclic duty cycle. This is the

subject of the next section.

5.5.2 Fixed Supply Pressure - Variable Amplitude Velocity

The second test to be discussed was a variation on the tests presented in the previ-

ous section. Rather than a fixed desired velocity, the input was a sinusoidal desired

velocity. The purpose of this test was to evaluate the effect of compounding error

on repeated motion. This test case proved quite interesting as transient behaviours

were found to play a significant role in the potential accuracy for implementing pre-

dictive position control of the robot for repeated motions. Sinusoidal velocity plots

were developed by supplying a velocity input signal to the linearizing feedforward

controller. The velocity signal was generated by numerically differentiating a desired

position signal. This was done so that the range of motion could be determined ex-

plicitly to ensure that the robot did not exceed the actuator stroke during the test.

The amplitude of the position signal was 0.15 rad (8.6 ◦) and the frequency was

varied to adjust the velocity range of the test. A supply pressure of 5.17 MPa was

chosen as the best results for the steady state velocity tests were obtained in this

range. This value was held constant for all tests. The results for frequencies of 0.1,

0.2, and 0.3 Hz are shown in Figures 5.16 to 5.18.

It was noted that the robot exhibits static friction lockup (stiction) characteristics in

the neighbourhood of velocity direction changes. This was due in part to the friction

characteristics in the actuator but was also affected by the flow estimation which was

outside the zone of confidence near null. If this phenomenon is to be minimized, the

low flow characteristics of the valve must be captured in more detail. Alternatively,

a “kicker” circuit such as that proposed by [33] may be useful in improved accuracy

for zero-crossing motions.

Qualitatively, the results for these tests were excellent as the controller delivered
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Figure 5.16: Sinusoidal velocity tracking with the LFFC. Ps = 5.17 MPa and f = 0.1

Hz.

Figure 5.17: Sinusoidal velocity tracking with the LFFC. Ps = 5.17 MPa and f = 0.2

Hz.

smooth performance and compensated for the variable load pressure that arose from

changes in gravitational loading as the arm cycled through its range of motion. The
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Figure 5.18: Sinusoidal velocity tracking with the LFFC. Ps = 5.17 MPa and f = 0.3

Hz.

least accurate performance was measured at 0.1 Hz which was not surprising as the

resulting desired flow rate at this frequency was below the lower limit of the zone

of confidence. The calculated %RSRE values for the data presented in Figures 5.16

to 5.18 are shown in Figures 5.19 to 5.21. For the purposes of presentation, the

values in the near null region were set to zero as small desired flows, which were

substantially outside the zone of confidence, resulted in large relative errors for very

small absolute error.

The mean %RSRE (not including zeroed values or the initial transient) for the

three cases shown were 13.93%, 3.67%, and 8.40% , respectively. The low velocity

results shown in Figure 5.16 highlight the need for improvement in the pressure/flow

mathematical relationship for small valve spool displacements. The high velocity

results, such as those in Figure 5.18 show the potential for this technique. In fact,

when operated for a 30 s run for a sinusoidal input, the cumulative errors in angular

position only amounted to 1◦ as shown by the difference between the desired and

measured position values at 30 s in Figure 5.22.
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Figure 5.19: Root squared relative error (%RSRE) for sinusoidal velocity tracking

with Ps = 5.17 MPa and f = 0.1 Hz.

Figure 5.20: Root squared relative error (%RSRE) for sinusoidal velocity tracking

with Ps = 5.17 MPa and f = 0.2 Hz.

The error in the vertical displacement of the tip of the robotic arm was determined

from the angular displacement error for the data presented in Figure 5.22. This
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Figure 5.21: Root squared relative error (%RSRE) for sinusoidal velocity tracking

with Ps = 5.17 MPa and f = 0.3 Hz.

Figure 5.22: Sinusoidal position tracking with Ps = 5.17 MPa and f = 0.3 Hz.

value was of interest as vertical position is a critical parameter for an operator of

offhighway equipment. It is shown in Figure 5.23 that this value did not exceed 6

cm for the duration of the 30 s test. This was comparable to the position tracking

error experienced by Guenther et al. [8] using their “variable structure - adaptive
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cascade control” algorithm which operated with full state feedback.

Figure 5.23: Robotic arm tip vertical displacement error with Ps = 5.17 MPa and

f = 0.3 Hz.

The constant supply pressure results presented in this section indicate that this

method holds promise for controlling the velocity of a hydraulic link with variable

load unsupervised (in the sense that there is no direct feedback) for durations up to

and possibly beyond 30 s with only a few percent degradation in position tracking.

5.5.3 Variable Supply Pressure - Constant Amplitude Ve-

locity

One of the constraints for this project, discussed in Chapter 1, was that any veloc-

ity control solution must not only accommodate variable load, but also compensate

for variable supply pressure. Variable supply pressures arise in load sensing systems

often employed in mobile hydraulic equipment. The ability of the system to compen-

sate for supply pressure was examined for the static supply pressure case earlier in

this chapter. In this section, the ability of the controller to maintain a fixed desired

velocity in the presence of a dynamically variable supply pressure is examined. If the
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supply pressure is considered a random non-controllable input to the system then

this analysis may be considered a measure of the disturbance rejection capabilities

of the linear feedforward controller approach.

The experimental procedure for this set of tests was similar to that used in Section

5.5.1 with the exception that the supply pressure was varied manually over the

course of the test by opening and closing the relief valve on the supply pressure

line. Because of time restraints imposed by the range of motion of the robot and

the need to manually adjust the pressure, only 0.1 rad
s

and 0.2 rad
s

velocity cases

were examined. The desired and measured angular velocities for these two cases are

shown in Figure 5.24 with the corresponding supply pressures given in Figure 5.25.

Figure 5.24: Constant angular velocity tracking subject to variable supply pressure.

Ttraj = 8.25 and 4.125 s for θ̇d = 0.1 and 0.2 rad
s

, respectively.

Initially, the velocity tracking results were regarded as poor. Rather than the 10%

tracking accuracy seen in the static tests, the error was now as high as 50% at some

points during both tests. It was determined that the modified turbulent orifice equa-

tion was not in error and to blame for these poor results. Rather, the relatively fast

variation in pressure highlighted the shortcomings of the reference model used in
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Figure 5.25: Supply pressure for the tests in Figure 5.24. Ttraj = 8.25 and 4.125 s

for θ̇d = 0.1 and 0.2 rad
s

, respectively.

the model reference valve spool position controller. The valve was not following the

desired flow rate as calculated by the modified turbulent orifice equation sufficiently

fast to completely negate the effects of the variable supply pressure. This is illus-

trated in Figure 5.26 which shows the error in the angular velocity tracking on the

same plot as the valve spool displacement tracking error for the 0.2 rad
s

case.

The solution to this problem lies not in the valve map, but in the design of the valve

spool position controller developed in Chapter 2. The model reference controller

design was made as general as possible to provide consistent control over a wide

range of temperature and supply pressure operating conditions. As a result, the

controller was not optimized for response time and, hence, disturbance rejection.

An in-depth analysis of the controller capabilities and optimization for a specific

operating point may provide improved performance. In support of this, the 0.2 rad
s

test was repeated using a modified reference model transfer function in which the

dominant closed loop pole was pushed closer to the imaginary axis,

Gref =
7840

s2 + 200.36s + 8000
. (5.11)

145



Figure 5.26: Comparison of the angular velocity error and valve spool displacement

error for the 0.2 rad
s

results in Figure 5.24.

The improvement in the response is evident in the angular velocity error tracking

shown in Figure 5.27.

Figure 5.27: Comparison of the angular velocity tracking error with a modified

reference model transfer function.
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A complete analysis for stability and optimization for response was deemed to be

outside the scope of this research. However, because of the approach to the design

of the controller, it would be possible to test a new reference model in simulation

for faster performance and verify the improvement using the test performed in this

section. It was noted that in its original configuration, the algorithm was stable and

also able to attenuate the disturbance caused by fluctuations in supply pressure.

5.6 Concluding Comments on Flow Control with

the Novel Linearizing Feedforward Controller

(LFFC)

Several important contributions were introduced in this chapter. The first of these

is that an inverse solution for a nonlinear pressure/flow/displacement relationship

can be solved in a stable manner in a real-time application through implementation

of a first order solver. Finding an inverse solution for this relationship allowed for

the creation of a single component pressure compensated flow control device. This

is an important step as it alleviates the requirement for using the modified turbulent

orifice equation as a flow rate “observer” whose flow rate estimate must be compared

to a desired value in order to calculate a valve control signal.

Second, it was shown that mapping a single orifice can provide accurate directional

flow when applied to a gravitationally loaded system in a meter-in/meter-out con-

figuration in conjunction with differential pressure measurements.

Third, it was found that the LFFC could provide acceptable velocity tracking results

in regions where the pressure/flow characteristics were known to be accurately cap-

tured. The velocity tracking was within 10% of the desired velocity for the majority

of the test cases. The LFFC was also found to have some disturbance rejection capa-

bility with respect to changes in supply pressure. This function was compromised by

an insufficiently fast valve response. The system was also found to be insensitive to
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the magnitude of the supply and load pressures, provided that differential pressure

remained within the region in which accuracy in flow estimation was determined to

exist.

Finally, it was determined that the LFFC has the potential to control position un-

supervised (in the sense that there is no direct position feedback) for durations up

to 30 s. It may be possible to extend the range of operating conditions and/or the

duration for which this is true with a valve which is more closely matched to the

intended application.

The material presented in this chapter satisfied Research Goals #4 and #6 intro-

duced in Chapter 1. The inverse solution of the valve map allowed for the creation

of a single component pressure compensated flow control device. Integration of this

component and the hydraulically actuated link created a predictive velocity control

system. The limitations of this system were evaluated.
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Chapter 6

Conclusions and Suggestions for

Future Work

6.1 Discussion and Review of Research Sub-goals

The “vision” for this research project arose from discussion with industry represen-

tatives indicating that automation of repetitive operations for lower cost off-highway

equipment using electrohydraulic valves was desirable. These same discussions out-

lined some of the practical constraints on implementing such a system. The most

prominent of these constraints were the cost of components and the working envi-

ronment which limits the possibilities for feedback instrumentation.

This research vision led to the development of the first goal which was to conduct

a comprehensive review of published material in the areas off-highway equipment

automation and electrohydraulic motion control. Through the process of completing

this goal the scope of the research was defined and the originality of the research

was verified.

The literature review showed that an approach for controlling the velocity of a

hydraulically actuated mechanism without “closing the loop” using direct displace-

ment, velocity, or flow rate measurements had not been adequately addressed. Sev-
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eral works had been published on the use of inexpensive proportional valves for

velocity control; however, they retained the requirement of an external loop using

displacement feedback.

It was determined that the “linearizing feedforward” approach employed in a num-

ber of these publications showed promise, however, the relationships governing the

input/output characteristics of each component would need to be known with suit-

able precision if an approach of this type was to be feasible. Thus, the general

configuration of the system was decided upon which achieved Research Goal #1.

The remaining research goals addressed specific unknowns in its implementation

and evaluation.

It was determined that a proportional valve would be used as the hydraulic control

device to limit cost. This raised two challenges. The first was that the position of the

valve must be controlled. The second was that the spool position is not necessarily

proportional to the flow through the valve for all operating conditions.

With regard to the first challenge, the controller design of a particular valve is usu-

ally proprietary and the design of the primary stage and spool configuration varies

with manufacturer. Therefore, the first step was to develop a controller for the

valve spool which provided repeatable and predictable performance while maintain-

ing portability for a range of valves. Extensive system identification was performed

on a particular valve and the information gathered was used to develop a linear

model of the valve which provided acceptable performance. This model was then

used as the basis for a model reference controller which could be applied to any

valve with sufficiently fast dynamics. This arrangement allowed for repeatable per-

formance (within 2%) regardless of operating condition. This was considered to have

achieved Research Goal #2.

Addressing the second challenge, experimental measurements for the pressure/flow

characteristics of the valve allowed for the development of a novel modified turbulent

orifice equation capable of “mapping” pressure and flow to valve displacement for

a generic orifice. Being based on empirical measurements, the use of the modified
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turbulent orifice equation eliminated the requirement for a priori knowledge of the

valve geometry. However, it was necessary to develop a method by which the coef-

ficients of the valve map could be altered to “fit” the equation to a given situation.

This was done by implementing a nonlinear Downhill Simplex Method optimization

routine.

The optimization routine was found to accurately fit the coefficients to the data

within a small number of iterations. This allows for possible on-line adaptive updat-

ing that was not considered in this thesis. The development of the simplex routine

combined with the modified turbulent orifice equation created a straightforward

method of determining the pressure/flow relationship for a given valve which was

considered to achieve Research Goal #3.

A first order solving routine was developed to find the inverse solution for the modi-

fied turbulent orifice equation. The use of this equation enabled the determination of

the required valve spool displacement given a desired flow rate and an instantaneous

differential pressure across the valve. The inverse modified turbulent orifice equa-

tion was combined with the valve spool model reference controller to create a single

component pressure compensated flow controller. This accomplishment achieved

Research Goal #4.

The kinematics of the robot were also solved. The analysis was verified experimen-

tally, thereby achieving Research Goal #5.

Finally, the kinematics, model reference valve spool controller, and the modified tur-

bulent orifice equation were combined to create the open loop linearizing feedforward

velocity controller. The performance of the LFFC was evaluated. This controller

was found to track a desired velocity within 10% for a range of velocities under

variable load and supply conditions. It was also determined that, in ranges where

the valve map was particularly accurate, the algorithm could maintain positional

accuracy within a few percent for repeated motions over durations up to 30 seconds.

This satisfied Research Goal #6.
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6.2 Original Contributions

The original contributions of this research are summarized as follows.

The first contribution was the development and implementation of an empirical

method for determining pressure/flow relationships for a generic valve. This included

several key aspects. First, the general form of an equation capable of describing flows

with variable flow regimes and orifice gradients which are nonlinear was developed.

Second, this equation was coupled with a nonlinear optimization routine to tune the

parameters based solely on system measurements. This approach is novel in that it

is applicable to a wide range of valve spool configurations and requires no knowledge

of the geometry of the orifice. It also has the advantage of describing a wide flow

range with a single continuous differentiable equation which lends itself to online

optimization to account for changes in valve characteristics with time.

The second contribution was the integration of a model reference controller and a

feedforward linearizing function to create a single component flow control device.

The inverse solution to the modified turbulent orifice equation using the first order

solver made this approach simpler to implement in a real-time environment by using

an ordinary differential equation solution rather than relying on variable step size

root finding techniques. Furthermore, this approach may be implemented in any sys-

tem using traditional velocity or position feedback to improve system repeatability

and, potentially, performance.

The third contribution of this work was the integration of the flow controller with

the kinematic equations to create a predictive velocity control system capable of

operating in a load sensing environment in the presence of variable loading. This

approach uses implicit feedback through the differential pressure measurements to

account for both variations in load, changes in geometry and changes in supply

pressure brought about by interaction with the load sensing system.
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6.3 Conclusions

The research presented in this thesis was performed to answer the question of whether

or not it is feasible to use a novel linearizing feedforward controller for the velocity

control of a single link hydraulically actuated mechanism in the absence of direct

feedback.

While the linearizing feedforward controller produced excellent velocity tracking

characteristics for specific operating conditions, the performance was less than ac-

ceptable for others. Thus, it was concluded that this method is a feasible approach

to velocity control only if:

1. The operating system on which it is to be applied has a very narrow range of

operating conditions.

2. The system contains no nonlinear geometric transformations, or, a method by

which the instantaneous position of the link can be measured for use by the

velocity kinematic equations.

3. The pressure/flow characteristics of the valve over the operating range conform

to the mathematical relationship described by the modified turbulent orifice

equation with greater accuracy.

That having been said, it was also concluded that the linearizing feedforward ap-

proach has the potential for excellent response, disturbance rejection and repeata-

bility when used as a single component pressure compensated flow control device.

6.4 Suggestions for Future Work

Several avenues for future study were revealed by the research contained in this

thesis. Those avenues are discussed here.
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The first avenue involves the control of the proportional valve. The method de-

veloped in this thesis overcame the nonlinearities inherent to the primary stage to

provide repeatable control over a wide range of operating conditions. Improvements

could be made to this method to reduce the steady state error brought about by the

exclusion of an integrator in the reference model. The transient performance of the

controller could also be improved to enhance the disturbance rejection characteristics

of the overall system.

A second avenue for further study involves the valve mapping function. This function

proved flexible in its ability to model a range of flows with one inflection. For more

complex flows, however, there is insufficient mathematical capability to capture the

pressure/flow/displacement characteristics. In many cases, it would be useful to have

a more general function which would include more detail in the low flow regions.

A third avenue involves the optimization routine. As developed, optimization of

the parameters used in the map occurs off-line. This does not need to be the case.

Development and integration of an online parameter optimization routine would

allow for real-time compensation for valve wear, component leakage, or temperature.

A fourth avenue is the integration of deadzone compensation to the motion of the

spool. This would increase the potential positional accuracy of the control system.

A fifth avenue for study is the development of an indirect displacement measurement

technique that could be utilized to compensate for drift present in any velocity

control system. A technique which used the propagation time of reflected pressure

pulses was investigated early in this research project. The method showed promise

but it was determined to be outside the scope of this project and was not fully

developed.

Finally, integration and in situ testing on a piece of mobile equipment should be

conducted. As part of this study, performance comparison with full state feedback

techniques should be performed.
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Appendix A

Analysis of Forces on a Valve

Spool

In the design process of a position control system it is necessary to understand

the forces which the controller must overcome. In the analysis presented in this

appendix the forces acting on a valve spool were examined. Of particular interest

was the magnitude of the flow force relative to the other spool forces and whether

they were negligible when considering the valve spool dynamic behaviour. This is

a desirable situation as the flow forces depend on the geometry of the valve spool

and the operating condition and significantly increases the complexity in modelling

system dynamics.

A diagram of the lateral forces acting on the spool is shown in Figure A.1.

The spring force, Fks, is a net reaction force from the return springs which attempt

to keep the spool in its neural position. The flow force, Fff , arises due to acceleration

of fluid past the valve land. The force, Fβ, results from viscous friction between the

spool and the valve body. The control force, Fc, must compensate for these and the

body forces which arise when the spool position is altered. Thus, the equation of

motion for the spool can be written as,

mẍv + Fβ + Fks + Fff = Fc, (A.1)
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Figure A.1: Lateral forces acting on the valve spool in equilibrium.

where, xv, is the valve spool displacement. The static forces, Fks and Fβ, are dis-

cussed first. The valve spool was held in place by a spring at either end. These

springs opposed each other and acted to return the valve spool to its neutral posi-

tion, xv = 0, in the absence of a control signal.

Fks1 − Fks2 = Fks. (A.2)

Typically, the return springs are designed such that they operate in a linear manner

over the range of motion of the spool and are matched in terms of their spring rates.

To ensure the springs stayed in contact with the spool over the entire range of motion

of the spool they were pre-compressed by some amount, xprecompression, thus,

Fks1 = k(xprecompression − xv), (A.3)

and,

Fks2 = k(xprecompression + xv). (A.4)

Combining Equations A.2, A.3 and A.4, yielded the following expression for the

spring force:

Fks = 2kxv = keffxv. (A.5)
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The spring constant, keff , is known from an analysis by Rosa [26] to be 3720 N .

The maximum spool displacement is also known to be xvmax = 4 mm. Thus, it can

be stated that the spring force varies linearly with spool displacement in the range

-14.88 N < Fks < 14.88 N .

The issue of flow forces is discussed next. Fluid flowing from a region of high pressure

to a region of low pressure will accelerate. This acceleration results in a localized

pressure gradient measured at the valve land near the metering orifice. A graphical

representation of this can be found in Merritt [21]. This region of low pressure

creates a force imbalance on the spool, which according to Newton’s law, must be

equal to the mass of the accelerated fluid multiplied by its acceleration. This term

was shown by Merritt to be:

Fj =

mass︷︸︸︷
ρV

acceleration︷ ︸︸ ︷
Q2

A2V
, (A.6)

where:

ρ = fluid density,

Q = volumetric flow rate, and

A2 = area of the vena contracta.

This may be simplified to,

Fj =
ρQ2

A2

. (A.7)

This force is applied along the long axis of the jet. If the angle between the lateral

axis and the long axis of the jet is termed, θ, then the lateral component of this force

(which is referred to as simply “the flow force”) is,

Fjaxial = Fff = cos(θ)
ρQ2

A2

. (A.8)
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From Equation A.8 it can be seen that the flow force is maximized when Q2

A2
is max-

imized for constant fluid density and jet angle. Since the turbulent orifice equation

states that Q is a linear function of A2, it can be said that the maximum flow forces

occurred at the maximum flow rate. For the range of flow rates involved in this study

this was 0.0003 m3

s
. The minimum spool displacement with which this flow rate was

obtained in the differential pressure range examined in this study was xv = 1.8 mm.

If the valve spool is assumed to be sharp edged, then the area of the vena contracta

can be roughly approximated by,

A2 = CcA = Cc

orifice area︷ ︸︸ ︷
2πrxv , (A.9)

where A is the opening area between the valve spool and the valve land, r is the

radius of the spool, and Cc is the contraction coefficient for the vena contracta.

The contraction coefficient was assumed to be 0.611 [21] and the spool radius was

measured to be 9 mm. Thus, the maximum flow force from Equation A.8 is approx-

imately 0.6 N for a jet angle of 63◦ [21] and a fluid density of 912 kg
m3 . Comparing

this flow force to the spring force indicated that the flow force was of negligible

amplitude.

The dynamic forces are discussed next. These forces dictate the characteristics of

the spool motion. Dynamic flow forces were not considered. The mass of the spool

was found to be 0.2174 kg and the coefficient of viscous friction was found by Rosa

[26] to be 162 Ns
m

. The relative value of the forces generated from acceleration and

viscous friction when a step input in force was applied to the valve spool was studied

in simulation. The simulation block diagram as realized in MATLAB/Simulink r© is

shown in Figure A.2.

A step input in force was applied to the system in Figure A.2 with the resulting step

response and component forces shown in Figure A.3.

It is clear from Figure A.3 that the viscous friction dominates the system. In fact, it

was found that the value found by Rosa and used in this analysis was less than the
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Figure A.2: Simulation used to evaluate dynamic forces.

Figure A.3: (Left) Position response to step input in force of 15 N . (Right) Inertial,

viscous, and spring forces.

actual value found experimentally. The reasons for this are discussed in Appendix

B.

A.1 Concluding Comments

The steady state flow force for the range of flow rates used in this research are

comparatively small relative to the spring force. Therefore, in the analysis of the

dynamic characteristics of the valve, it could be neglected. Also, it was found that the

viscous forces dominate the system dynamics and the determination of the correct

value for the damping coefficient is imperative to the accurate modelling of the valve

spool motion.

163



Appendix B

Analysis of Hydraulic Resistance

in Pilot Lines

The analysis in this appendix was performed to determine if the pilot lines on the

main stage could be the cause of a damping coefficient that was experimentally

measured and found to be substantially higher than reported by Rosa [26]. It was

postulated that Rosa had accounted for viscous damping of the spool only in his

analysis and did not include the effect of pilot lines. Figure B.1 shows the valve

spool with the restrictive pilot lines.

Figure B.1: Schematic of the spool with restricting orifices.

The equation of motion was determined for a system by modelling the pilot lines as
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hydraulic restrictions.

mẍv +
(
β + 2RA2

p

)
ẋv + kxv = Ap (P1 − P2) . (B.1)

The damping coefficient was redefined as:

β∗ = β + 2RA2
p. (B.2)

By combining Equations B.1 and B.2 and performing a Laplace transform on the

result, the following was obtained:

X

P1 − P2

=
Ap

ms2 + β∗s + k
. (B.3)

Given that the system appeared heavily overdamped when experimental step re-

sponses were examined, a time constant determined from those step responses was a

good approximation of the dominant pole. Thus, the combined damping coefficient

can be determined from the characteristic equation given in Equation B.3,

s1,2 =
−β∗ ±

√
β∗2 − 4mk

2m
. (B.4)

Using the experimentally determined values of τ = 5 s, m = 0.2174 kg, and k = 3720

N
m

, Equation B.4 reduced to,

−0.08696 = −β∗ ±
√

β∗2 − 3235 (B.5)

Only the positive case produced a non-imaginary solution with the result β∗ = 18600.

Then, the hydraulic resistance component of damping coefficient was determined by

subtracting from β∗, the viscous friction found by Rosa,

2RA2
p = 18600− 162 = 18438. (B.6)

The piston area was calculated to be 2.54×10−4 m2 and thus, from Equation B.6 the

restriction was determined to be R = 14.2×1010 Pa s
m3 . The laminar flow relationship

through an orifice was described by Merritt as,

Q =
2δ2DhAo

µ
∆P, (B.7)

165



or,

Rm =
µ

2δ2DhAo

. (B.8)

where:

δ = geometry dependant discharge coefficient,

Dh = hydraulic diameter,

Ao = orifice diameter, and

µ = absolute viscosity.

The restricting orifice was assumed to be the primary stage receiving port which is

square with sides 0.5 mm long. This gave values of Dh = 0.5 mm and Ao = .25

mm2. The viscosity for the oil used was µ = 0.15 Ns
m2 [25]. Substituting these values

into Equation B.8 reduced that equation to:

Rm =
6× 108

δ2
. (B.9)

Merritt is vague on the appropriate value of δ for a given orifice geometry. A value

of δ = 0.157 for a sharp edged slit orifice is listed. From Equation B.9 the hydraulic

resistance was calculated to be Rm = 6 × 1010 at δ = 0.1 and Rm = 24 × 1010 at

δ = 0.05.

B.1 Concluding Comments

The values determined theoretically for the hydraulic resistance bracketed those

determined from experimental measurements and indicated that hydraulic resistance

in the pilot lines was responsible for the increase in the damping coefficient.
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Appendix C

Listing of the Optimization Code

This section contains a listing of the MATLAB r© used to implement the simplex

optimization routine.
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Appendix D

Times Series and %RSRE for

Static Flow Tests

This appendix is a compelation of the time series and %RSRE for the tests used to

establish the zone of confidence.

Figure D.1: (Left) Measured and estimated flow rates in zone #1. (Right) %RSRE

of the flow rate.
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Figure D.2: (Left) Measured and estimated flow rates in zone #2. (Right) %RSRE

of the flow rate.

Figure D.3: (Left) Measured and estimated flow rates in zone #3. (Right) %RSRE

of the flow rate.

Figure D.4: (Left) Measured and estimated flow rates in zone #4. (Right) %RSRE

of the flow rate.
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Figure D.5: (Left) Measured and estimated flow rates in zone #5. (Right) %RSRE

of the flow rate.

Figure D.6: (Left) Measured and estimated flow rates in zone #6. (Right) %RSRE

of the flow rate.

Figure D.7: (Left) Measured and estimated flow rates in zone #7. (Right) %RSRE

of the flow rate.
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Figure D.8: (Left) Measured and estimated flow rates in zone #8. (Right) %RSRE

of the flow rate.

Figure D.9: (Left) Measured and estimated flow rates in zone #9. (Right) %RSRE

of the flow rate.
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