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Abstract

Networked control systems (NCSs) are a kind of distributed control systems in which the data

between control components are exchanged via communication networks. Because of the attractive

advantages of NCSs such as reduced system wiring, low weight, and ease of system diagnosis

and maintenance, the research on NCSs has received much attention in recent years. The first

part (Chapter 2 – Chapter 4) of the thesis is devoted to designing new controllers for NCSs by

incorporating the network-induced delays. The thesis also conducts research on filtering of multirate

systems and identification of Hammerstein systems in the second part (Chapter 5 – Chapter 6).

Network-induced delays exist in both sensor-to-controller (S-C) and controller-to-actuator (C-

A) links. A novel two-mode-dependent control scheme is proposed, in which the to-be-designed

controller depends on both S-C and C-A delays. The resulting closed-loop system is a special

jump linear system. Then, the conditions for stochastic stability are obtained in terms of a set

of linear matrix inequalities (LMIs) with nonconvex constraints, which can be efficiently solved by

a sequential LMI optimization algorithm. Further, the control synthesis problem for the NCSs is

considered. The definitions of H2 and H∞ norms for the special system are first proposed. Also,

the plant uncertainties are considered in the design. Finally, the robust mixed H2/H∞ control

problem is solved under the framework of LMIs.

To compensate for both S-C and C-A delays modeled by Markov chains, the generalized pre-

dictive control method is modified to choose certain predicted future control signal as the current

control effort on the actuator node, whenever the control signal is delayed. Further, stability criteria

in terms of LMIs are provided to check the system stability. The proposed method is also tested

on an experimental hydraulic position control system.

Multirate systems exist in many practical applications where different sampling rates co-exist

in the same system. The l2 − l∞ filtering problem for multirate systems is considered in the thesis.

By using the lifting technique, the system is first transformed to a linear time-invariant one, and

then the filter design is formulated as an optimization problem which can be solved by using LMI

techniques.

Hammerstein model consists of a static nonlinear block followed in series by a linear dynamic

system, which can find many applications in different areas. New switching sequences to handle

the two-segment nonlinearities are proposed in this thesis. This leads to less parameters to be

estimated and thus reduces the computational cost. Further, a stochastic gradient algorithm based

on the idea of replacing the unmeasurable terms with their estimates is developed to identify the

Hammerstein model with two-segment nonlinearities.

Finally, several open problems are listed as the future research directions.
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Chapter 1

Introduction

1.1 Networked Control Systems

Networked control systems (NCSs) are a kind of distributed control systems in which the data

between the controller node and plant node are exchanged via communication networks as shown

in Figure 1.1. Different from the traditional point-to-point control systems, the defining feature of

NCSs is the integration of networks into closed-loop control systems.

Figure 1.1: General NCS architecture.

The use of networks to connect the spatially distributed system components brings many ad-

vantages, such as reduced system wiring, low weight and space, ease of system diagnosis and

maintenance, and increased system agility. Consequently, NCSs have found application in a wide

range of areas, e.g., mobile sensor networks [68,88], vehicle control [100], aircrafts [95,113], distant

learning [91], and telerehabilitation [11, 26, 96, 129], to name a few. Murray et al. identify “con-

trol in distributed, asynchronous, networked environments” as one of the key future directions for

control [83].

However, the insertion of networks also introduces problems and presents new challenges. Tra-
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ditional control theory is mainly based on the perfect data transmission, which means the system

components are connected through “ideal links”. However, according to the communication theory,

the network is an “imperfect channel”. The network characteristics make the NCSs distinct from

the traditional control systems and also make the analysis, modeling, and control of NCSs more

complex and challenging [54, 82]. These network characteristics include:

(1) Time delay. The network-induced delay [82] is the total time between the data being avail-

able at the source node (e.g., sampled from the environment or computed at the controller)

and it being available at the destination node. The time delay is unavoidable under current

technologies of shared digital networks and wireless connections. It depends on highly vari-

able network conditions such as congestion and channel quality. The time delay in a network

is generally time-varying. It is well-known from the control theory that the time delay can

greatly degrade the performance of control systems and even cause instability. Hence, the

time delay is one of the key elements determining the performance of an NCS [82].

(2) Packet dropout. Packet dropout is another source that degrades the control performance.

Typically, packet dropouts arise from transmission errors in physical network links (which is

far more common in wireless than in wired networks) or from buffer overflows due to conges-

tion [54]. Long transmission delays sometimes result in packet re-ordering, which essentially

amounts to a packet dropout if the receiver discards “outdated” arrivals. In some reliable

transmission protocols, such as the transmission control protocol (TCP), when error in data

transmission happens, data will be retransmitted until correct data are received. This guar-

antees the eventual delivery of packets. However, the re-transmission of old data is generally

not very useful for NCSs. Therefore, packet dropout is an important issue that needs to be

considered in NCS design.

(3) Bandwidth limitation. The bandwidth of an industrial network is given in terms of the

number of bits that can be transmitted per second [82]. The effective bandwidth of a control

network will depend not only on the physical bandwidth but also on the efficiency of encoding

the data into packets (how much overhead is needed in terms of addressing and padding),

how efficiently the network operates in terms of (long or short) interframe times, and whether

network time is wasted due to message collisions. This imposes significant constraints on the

operation of NCSs.

(4) Sampling and quantization. In order to transmit a continuous-time signal over a network,

the signal must be sampled, encoded to a digital format, transmitted over the network, and

finally the data must be decoded at the receiver side. In this process, the sampling and

quantization are involved. Since the length of each data packet is finite, there must be

errors between the real and quantization values. Note that, since a large portion of standard
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industrial networks implement a large number of bits available to represent data, the error

between the quantized value and the actual value is negligible. However, the inevitable

quantization errors still have negative impact on the system performance. To study the effect

of different quantization schemes on the performance of NCS can provide some guidelines on

the NCS design.

The research on NCSs is interdisciplinary and lies primarily in the intersection of three research

areas: Control systems, communication theories, and computer science [6]. The research of NCSs

can greatly benefit from the advancement of communication theory and computer science. The

main difficulty to merge the results of the three areas is the differences in emphasis in research

so far. Let us take the “time delay” issue for example. In communication research, the time

delay in the signal transmission is not a big issue because the accuracy is of the first importance.

In contrast, for control systems, time delay is much more important than accuracy because time

delay can greatly degrade the system performance and a feedback control system is robust to such

inaccuracy to some extent. In computer science research, time delay is not the major issue since

general computer systems are interacting with other computer systems or a human operator and

not directly with the physical systems.

From the viewpoint of control systems, the time delay and packet dropout are sources that

degrade the system performance. Meanwhile, the time delay in NCSs is different from the traditional

constant time delay due to the hybrid, time-varying, and distributed property of NCSs. Hence, the

analysis, modeling, and control of NCSs are much more complex than those of traditional control

systems. Much work has been done in areas of NCSs so far. According to different aspects on

the analysis and design of NCSs, the existing work can be generally divided into the following

four categories: Stability analysis, state estimation, control synthesis, and control/communication

co-design.

(1) Stability analysis for NCSs. Stability is of the principal importance in the system analysis

and design. Many results have appeared in the literature to analyze the closed-loop stability

in the presence of one or several NCS characteristics. In general, these approaches can be

classified into two types: deterministic and stochastic [100]. Deterministic approaches assume

that the network-induced delays are time-varying but bounded, and use the Lyapunov theory

to determine the maximum delays [14,85,86,125–127,144], maximum rate of data loss [34,148],

or minimum bit rate [70,116,118] that can be tolerated to guarantee the stability. Stochastic

approaches explicitly consider the NCS characteristics in the system, and prove a version

of stability such as mean square stability [80, 133, 136] or stochastic stability [130, 147]. In

[125–127], Walsh et al. propose the try-once-discard scheduling algorithm, then design the

controller, and finally determine the maximum allowable transfer interval to maintain the

exponential stability. In [148], the stability of NCSs with time delays is analyzed using
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stability regions and a hybrid system technique; this method can determine whether the NCS

is stable at a certain rate of data loss, and search for the highest rate of data loss for the

NCS to preserve the stability. In [34], the author considers the packet dropout as a source

of model uncertainty and the largest probability of packet dropout tolerable by the closed-

loop system is obtained by solving the controller design problem via robust control synthesis

approach. In [70,116,118], the authors consider the interaction between stability and bit rate

constraints of the channels, and find the minimum bit rate for NCSs to be stable. In [80], the

stability of model-based NCSs is considered where the time delays are varying either within a

time interval or driven by a stochastic process with identically independent distribution and

Markov chains; for stochastically modeled time delays, sufficient conditions for almost sure

stability and mean square stability are presented. In [133], the time delays are modeled as

Markov chains and further the closed-loop system is transformed to be a Markovian jump

linear system (MJLS) [23, 62]; the well-established stability results for MJLSs are applied to

solved the mean square stability problem for this system. In [147], the state feedback delay

dependent controller is designed for NCSs with time delays governed by Markov chains and

the sufficient and necessary condition to guarantee the stochastic stability is derived.

(2) Estimation and filtering for NCSs. In the networked environment, the data transmission

suffers from time-varying delays and lossy measurements. This presents the challenges for

estimation in NCSs. In [111], a jump linear estimator is designed to cope with the measure-

ment loss process governed by Markov chains in NCSs; this method has less computational

burden compared with the time-varying Kalman estimator. In [97], the authors consider the

H2 filtering problem for NCSs with packet dropouts; the generalized H2 norm is defined con-

sidering both stochastic and deterministic inputs and the method shows better performance

than classic H2 filtering. In [115], a modified Kalman filter for NCSs is designed based on

the send-on-delta method in which sensor data are transmitted only if their values change

more than the specified δ value. In [89], the state estimation problem of a distributed NCS

under lossy communication channels is considered. In [57], the stability of Kalman filter for

NCSs with Markovian packet losses is studied; the authors give sufficient conditions for the

stability of the peak covariance process in the general vector case and obtain a sufficient and

necessary condition for the scalar case.

(3) Control synthesis for NCSs. Ample papers have been found to address the control

synthesis of NCSs. So far the control synthesis results have employed linear quadratic

Gaussian (LQG) method [52, 87], observer-based control to compensate for delays [87, 148],

model predictive control (MPC) approach [73, 74, 117, 131], and robust H2 and H∞ control

method [40, 41, 60, 100, 139, 143]. In [87], the time delays in NCSs are modeled as constant

delays, random delays, and random delays modeled by Markov chains, respectively; the LQG
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optimal controller design method is then proposed. In [52], the authors consider the optimal

LQG control over packet-dropping links and by using the septation principle, the problem

is decomposed into a standard linear quadratic regulator (LQR) state feedback controller

design, together with an optimal encoder-decoder design for propagating and using the infor-

mation across the unreliable links. In [73, 74], a novel observer-based predictive controller is

provided. The system design is considered with only the controller-to-actuator (C-A) time de-

lays in [74] and with both sensor-to-controller (S-C) and controller-to-actuator delays in [73];

the stability analysis is addressed in both papers via a switched system approach. In [117],

the authors extend the generalized predictive control (GPC) to compensate for the delays,

and propose an adaptive predictive control with variable prediction horizons; however, no

stability is considered. In [60], the author proposes a periodic communication scheme, based

on which, the H∞ control problem is solved via a switched system approach for NCSs with

limited communication and packet loss. In [100], Seiler et al. consider the Bernoulli packet

dropout only in the S-C link and solved the H∞ control problem for this specific NCSs based

on the Bounded Real Lemma in [99]. In [139], the random delays are modeled as a linear

function of the stochastic variable satisfying Bernoulli random binary distribution, and an

observer-based controller is designed to guarantee the H∞ performance. In [143], the authors

consider the design of robust H∞ controllers for uncertain NCSs with the effects of both

the network-induced delay and data dropout. In [41], a new time delay model is proposed,

which contains multiple successive delay components in the state; this results from the obser-

vation that sometimes in practical situations, signals transmitted from one point to another

may experience several network segments; further, a sampled-data networked control system

considering network induced delays, data packet dropouts, and measurement quantization is

modeled as a nonlinear time delay system and the problem of network-based H∞ control is

solved accordingly. In [40], the sampled-data output tracking problem for NCSs is considered;

the network-induced delays are assumed to have both an upper bound and a lower bound and

the design method guarantees that the output of the closed-loop networked control system

tracks the output of a given reference model well in the H∞ sense.

(4) Control/communication co-design. The control and communication co-design is a new

research area first appearing in [10]. In the co-design approach, network issues such as time de-

lay, packet dropout, and bandwidth limitation will be considered simultaneously with control

system issues such as stability and control performance. Generally, the network scheduling in

NCSs is to assign a transmission schedule to each transmission entity (sensor, controller, actu-

ator) based on a scheduling algorithm (a set of rules that, at any time, determine the order in

which messages are transmitted). In the past, control system design and network scheduling

design have normally been separated. This separation has allowed the control community to

5



focus on its own problem domain without worrying about how scheduling is being done; it

has released the scheduling community from the need to understand what impact scheduling

has on the stability and performance of the plant under control. How to seamlessly integrate

the control and communications into the NCS design is promising yet challenging. Several

papers have been devoted to the control/communication co-design [9, 16, 132,145]. In [16], a

control server model is proposed, which is especially suitable for co-design of real-time con-

trol systems; in this model, the task utilization factor links the scheduling design and the

controller design. In [132], the authors give a survey on control/scheduling co-design from a

perspective of integrating control and computing. In [145], the communication and control

co-design for NCSs is considered; the authors propose a method for exponentially stabiliz-

ing an NCS by first identifying a pair of communication sequences that preserve reachability

and observability, and then designing an observer-based feedback controller based on these

sequences.

Although a wide variety of recent papers on NCSs have been reviewed, there are still some works

which have not been included because of the multidisciplinary property and fast development of

research in the area. Before wrapping up this NCS literature review section, the following table is

provided to classify the reviewed papers into different categories.

Table 1.1: Classification of some important work on NCSs

Stability Estimation Control Performance Co-design

Time Delay
[14, 80, 85, 86, 127]

[133,144,147,148]
[98] [73, 74, 87, 117]

[9, 10, 16,

132,145]
Packet Dropouts [34, 130,148] [57, 89, 97, 111] [34, 52, 60, 100,143]

Quantization [81] [39] [40]

Scheduling [85, 86, 127] [115] [151]

1.2 Filtering for Multirate Systems

When several sampling and updating rates co-exist in a system, the system is called a multirate

system. Multirate systems are common in chemical [51, 77], mechanical [63, 140], aeronautic [37],

and communication [108] applications. In [21], the authors state several reasons to use a multirate

sampling scheme in traditional digital control systems, which are summarized as follows.

(1) In complex and multivariable control systems, it is unrealistic, or sometime impossible to

sample all physical signals uniformly at one single rate. In this situation, multirate sampling

is a must.
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(2) In general, better performance can be achieved if one can sample and hold faster. But

faster A/D and D/A conversions usually mean higher cost in implementation. Hence, better

trade-off between performance and implementation cost can be obtained using A/D and D/A

converters at different rates.

(3) Generally, multirate controllers are time-varying. Multirate control systems can achieve what

single-rate systems cannot; for example, gain margin improvement, simultaneous stabilization,

and decentralized control [21].

(4) Although multirate controllers are normally more complex than single-rate ones, they are

periodic in a certain sense and hence can be implemented on microprocessor like the single-

rate controllers.

In a networked environment, there are new motivations to employ the multirate sampling scheme.

(5) An NCS may have many sensors, plant, and controller distributed in different places. This

increases the difficulty to use the single-rate sampling method.

(6) In NCSs, faster sampling means more data to be transmitted through the shared network.

This may result in longer time delay and higher rate of packet dropout, and thus degrade the

system performance. In this case, an alternative can be the multirate sampling scheme.

The study of multirate systems has attracted much attention since the late 1950’s. In the

literature, a majority of papers consider the control problems of multirate systems, e.g., the LQG

design, robust H2 and H∞ control, adaptive control, model predictive control, sliding mode control,

and sampled-data control [7,21,35,61,79]. On the other hand, the filtering of multirate system has

received relatively less attention [2, 18, 67, 101,102].

The problem of filtering and estimation deals with recovering some desired state variables (or

a linear combination of states) of a dynamic system from available measurements. For single-rate

systems, the filtering problem has been extensively studied, see, e.g., [42, 46, 50, 93, 135] and the

references therein. One of the most famous filtering technique is the celebrated Kalman filter,

which minimizes the error variance in the state estimation when the power spectral density of

the process and the measurement noise is known [109]. The Kalman filtering techniques have

found a wide variety of applications in aerospace guidance, navigation, and control problems [109].

However, in some applications, the power spectral density information is not precisely known. In

this case, the Kalman filter is not applicable. Filters based on alternative performance criteria

have been developed and attracted much attention in the past several decades. One of these is the

H2 filtering which minimizes the H2 norm of the transfer function from the process noise to the

estimation error [43,92]. Another is the H∞ filtering which minimizes the H∞ norm of the transfer

function from the process noise to the estimation error [43, 50, 93, 138]. The objective of l2 − l∞
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filtering is to design stable filters minimizing the peak value of the estimation error for all possible

energy bounded disturbance, therefore it is also called energy-to-peak filtering. The l2− l∞ filtering

design problems for single-rate systems have been studied in [42, 50, 154].

The extension of Kalman, H2, and H∞ filtering to multirate system has been studied [2,18,67,

101, 102]. In [2], the optimal and suboptimal multirate filtering algorithms using two decomposed

Kalman filters are presented. In [18], the multirate Kalman synthesis filtering approach is presented

for the optimal signal reconstruction problems. In [67], the authors consider the multirate optimal

state estimation problems; two cases are investigated: faster output sampling and faster input

sampling. Recently, Sheng et al. extend the H2 and H∞ design methods to multirate systems [101,

102]. In [102], the ratio of sampling rates between faster state and slower output is assumed to

be an integer and the observer has the standard form. In [101], a more general case is considered

where the ratio of sampling time of output and state is m/n with m and n being coprime integers.

However, the l2− l∞ filtering for multirate systems has not been fully investigated in the literature,

which is part of the research in this thesis.

1.3 Identification of Hammerstein Systems

The Hammerstein model consists of a static nonlinear block followed in series by a linear dynamic

system shown in Figure 1.2, where u(t) is the input, ū(t) is the output of the nonlinear part,

x(t) is the noise-free output, v(t) is the disturbance signal, and y(t) is the output. The Hammer-

Figure 1.2: Hammerstein model.

stein system has many engineering applications, e.g., power systems [1], chemical processing [36],

communication systems [38], biomedical engineering [114], and hydraulic systems [155], to name a

few. Therefore, the identification of Hammerstein systems has been active in the area of system

identification [4, 29, 33, 49, 58]. The difficulty for identification of Hammerstein system is that the

output of nonlinearity ū(t) and the noise-free output x(t) are usually unknown. Recently, iterative

and recursive identification algorithms for Hammerstein systems based on the idea of replacing

unmeasurable noise terms in information vectors by their estimates have been presented and the

convergence properties are also addressed [28, 29, 32]. In [106], the authors develop a stochastic

gradient based identification algorithm by replacing the unknown variable with its estimate.
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Many nonlinear characteristics can be approximated by polynomials over a restricted range in

industrial applications. A large portion of existing literatures in Hammerstein modeling assume that

the nonlinear function is analytic and can be represented by a single polynomial form. However, the

single polynomial approximation may be inappropriate for the whole operating range of nonlinear

systems. The two-segment nonlinearity, commonly existing in many physical systems, possesses

significantly different characteristics for positive and negative inputs. Two-segment nonlinearity is

more complex than the single polynomial nonlinearity. In the existing work, the method to handle

the two-segment nonlinearity is to introduce the appropriate switching sequences to transform

the two-segment nonlinearity into the single polynomial form. This approach has been used in

parameter identification and adaptive control [66, 120]. However, this type of switching sequence

may result in some redundance of parameters in the identification, especially when the degrees of

the polynomials for positive and negative parts differ a lot. The method to handle the identification

problem of Hammerstein systems with two-segment nonlinearities can be further improved, which

is part of the research in this thesis.

1.4 Motivation and Objectives

The motivation and objectives of this thesis are listed in the following:

• In the literature, most controllers for NCSs are either one-mode-dependent (the controller

only depends on S-C delays) or mode-independent (the controller does not depend on either

S-C or C-A delays). Only few papers consider the two-mode-dependent controller design

(the controller depends on both S-C and C-A delays) [56,147]. However, in the general NCSs

shown in Figure 1.3, the important fact that the C-A delay information cannot be immediately

obtained at the controller node in practice is ignored in [56, 147]. Furthermore, once the full

state information is not available, the state feedback controllers in [56,147] are not applicable.

Motivated by above observations, one objective of this thesis is to design an output feedback

two-mode-dependent controller, which moves a further step towards applications. Both the

stabilization and control synthesis problems are considered.

• How to compensate for the network-induced delay is a challenging issue for NCS design. A

natural idea is to employ a predicted signal (if available) to replace the delayed one. MPC,

a widely applied advanced control scheme in industry, does have the prediction feature. At

each time step, the MPC not only creates the current control signal but also a sequence of

future control signals. This sequence of future control actions can be used to compensate for

the time delay in NCSs. To design a modified generalized predictive control method for NCSs

with random time delays in both S-C and C-A links is another objective of this thesis.
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Figure 1.3: General diagram of a networked control system.

• The l2− l∞ filtering minimizes the energy to peak gain from the external input to the filtering

error. The extension of l2 − l∞ filtering to multirate systems is still open and need further

investigation. This thesis aims to design the l2 − l∞ filters for multirate systems.

• The existing switching sequences [120] to handle two-segment nonlinearities result in redun-

dance in the identification of Hammerstein models. This thesis aims to propose a method to

reduce the number of parameters to be estimated, and further to extend the identification

method in [106] to identify the Hammerstein model with two-segment nonlinearity.

1.5 Organization of the Thesis

In Chapter 2, the the output feedback stabilization problem of NCSs is investigated. The S-C and

C-A random network-induced delays are modeled as Markov chains. The focus is on the design of

a two-mode-dependent controller that depends on not only the current S-C delay but also the most

recent received C-A delay at the controller node. The resulting closed-loop system is transformed

to a special discrete-time jump linear system. Further, the sufficient and necessary conditions for

the stochastic stability are established, which can be solved by the iterative linear matrix inequality

(LMI) approach.

In Chapter 3, the controller design problem in Chapter 2 is further studied to include the

control performance in the design. Meanwhile, the uncertainties of the plant is assumed to be

norm-bounded. The definitions of the H2 and H∞ norms for this special system are proposed. An

optimization formulation for the robust mixed H2/H∞ control problem is developed, which can be

solved using LMIs.

Chapter 4 is concerned with the design of the NCSs using the modified generalized predictive

control (M-GPC) method. Both S-C and C-A network-induced time delays are modeled by two
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Markov chains. The M-GPC uses the available output and previously predicted control information

at the controller node to obtain the future control sequences. Different from the conventional

generalized predictive control in which only the first element in control sequences is used, the M-

GPC employs the whole control sequences to compensate for the S-C and C-A network-induced

time delays. The closed-loop system is further formulated as a special jump linear system. The

sufficient and necessary conditions to guarantee the stochastic stability are derived. Simulation

studies and experimental tests for an experimental hydraulic position control system (HPCS) are

given to verify the effectiveness of the proposed method.

In Chapter 5, the l2− l∞ filtering problem for multirate sampled-data systems where the output

sampling rate is slower than the input updating rate is investigated based on the lifted model. The

filtering problem is formulated to a set of LMIs with a nonconvex constraint, which is numeri-

cally solved by the product reduction algorithm. Compared with the slow single-rate filtering, the

proposed method shows great improvement in performance.

In Chapter 6, a stochastic gradient identification algorithm for Hammerstein output-error sys-

tems with two-segment polynomial nonlinearities is provided. To reduce the number of parameters

to be estimated, new switching sequences are proposed to handle the two-segment nonlinearities.

Convergence analysis of the proposed algorithm is carried out under the stochastic framework. A

varying forgetting factor scheme is further proposed to make a tradeoff between the convergence

rate and estimation accuracy.

The last chapter summarizes the work in this thesis, and outlines some possible future research

directions.
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Chapter 2

Output Feedback Stabilization of Networked Con-

trol Systems with Random Delays Modeled by

Markov Chains

2.1 Introduction

Networked control systems (NCSs) are a type of distributed control systems, where the information

of control system components (reference input, plant output, control input, etc.) is exchanged

via communication networks. Due to the introduction of networks, NCSs have many attractive

advantages, such as reduced system wiring, low weight and space, ease of system diagnosis and

maintenance, and increased system agility, which motivated the research in NCSs. On the other

hand, the introduction of networks also presents some challenges such as time delays and packet

dropouts due to the sharing and competition of the transmission medium which bring difficulties

for analysis and design for NCSs. The study of NCSs has been an active research area in the past

several years, see [55, 69, 78, 87, 119,127,128,148], to name a few.

One of the challenges is the network-induced time delays, which can degrade the performance

of systems or even cause instability. Various methodologies have been proposed for modeling,

stability analysis, and controller design for NCSs in the presence of network-induced time delays

and/or packet dropouts. Generally, existing results can be classified into two main categories: (1) To

design a controller first, and then determine the network conditions such as the maximum allowable

transfer interval to still guarantee the stability and maintain certain performance [14,144,148]; (2)

to explicitly incorporate the network-induced delays using certain models, e.g., Markov process,

into the controller design [56,87,100,130,133,136,139,147]. The method developed in this chapter

belongs to the latter.

The Markov chain is a discrete-time stochastic process with the Markov property, which can

be effectively used to model the network-induced delays in NCSs. In [87], the time delays of NCSs

are modeled as Markov chains, validated by experiments, and further an LQG optimal controller

design method is proposed. Xiao et al. [133] propose two types of controller design methods for
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NCSs modeled as finite-dimensional, discrete-time jump linear systems: One is the state feedback

controller that only depends on the delays from sensor to controller (S-C delays), and is called

the one-mode-dependent controller; the other is the static output feedback controller that does not

depend on either the S-C delays or the C-A delays (delays from controller to actuator), and called

the mode-independent one. In [100], H∞ control for NCSs is investigated under the framework of

Markovian jump linear systems (MJLSs) [23,62,103,104] based on the Bounded Real Lemma in [99];

but only the S-C delays, modeled as Markov chains, are considered. In [136], a mode-independent

state feedback controller is designed for NCSs subject to Markovian packet loss process. In [130],

the Markov chain is employed to model the packet loss and a one-mode-dependent state feedback

controller is developed; the authors introduce buffers to the NCS, and avoid making the controller

dependent on the C-A delays.

In all the aforementioned references, the developed controllers are either mode-independent

or one-mode-dependent, and the design problem can thus be readily converted into the standard

MJLS problem [23, 62, 103, 104]. To reduce the conservativeness of the stabilization conditions

of an NCS, it is desirable to incorporate not only the S-C delay but also the C-A delay into the

design. However, involving the C-A delay is complicated and challenging because the controller and

actuator nodes are distributively located. Smart sensor technology [55], by adding a cost-effective

embedded processor to the actuator node (Figure 2.1), can process and calculate the C-A delay

in real-time at the actuator node, and send this information to the controller node via the S-C

communication medium, also being subject to the S-C delay as measured signals transmitted from

the sensor to the controller node. Zhang et al. [147] propose a promising two-mode-dependent

state feedback control scheme to stabilize NCSs with the S-C and C-A delays modeled as two

Markov chains. In [147], it is assumed that at each sampling time, the current S-C delay (τk) and

previous C-A delay (dk−1) are obtained by the time-stamping technique. However, practically the

previous C-A delay (dk−1) is not always available because the information about C-A delays needs

to be transmitted through the S-C communication link before reaching the controller, as shown in a

general setup of NCSs – see Figure 2.1. In addition, when the full state information is not available,

the state feedback controller in [147] cannot be directly applied. To the best of author’s knowledge,

involving two network-induced delay modes to design the controller that simultaneously depends

on both τk and dk−τk−1 has not been fully investigated, which is the focus of this chapter. It is

worth noting that by incorporating both τk and dk−τk−1 into the controller design, the resulting

closed-loop system cannot be transformed to a standard MJLS, and thus the well-developed results

on MJLS [23,62, 103,104] cannot be directly applied in this chapter.

The rest of this chapter is organized in the following way. In Section 2.2, the available delay

information at the controller node is analyzed and the formulation of the output feedback controller

design problem is provided. In Section 2.3, the sufficient and necessary conditions to guarantee the
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stochastic stability are presented first and the equivalent linear matrix inequality (LMI) conditions

with constraints are derived which can be solved by the product reduction algorithm (PRA). A

design example is given to illustrate the effectiveness of the proposed method in Section 2.4. The

conclusion remarks are addressed in Section 2.5.

2.2 Problem Formulation

Consider the NCS setup in Figure 2.1. The discrete-time linear time-invariant plant model is

x(k + 1) = Ax(k) + Bu(k), (2.1a)

y(k) = Cx(k), (2.1b)

where x(k) ∈ R
n, u(k) ∈ R

m, y(k) ∈ R
p, and A, B, and C are known real matrices with appropriate

dimensions. Bounded random delays exist in the links from sensor to controller and controller to

actuator as shown in Figure 2.1. Here, τ ≥ τk ≥ 0 represents the S-C delay and d ≥ dk ≥ 0 stands

for the C-A delay. The output feedback controller is to be designed.

Figure 2.1: Diagram of a networked control system.

One way to model the delays τk and dk is to use the finite state Markov chain as in [87,133,147].

The main advantages of the Markov model are: 1) The dependencies between delays are taken into

account as in real networks the current time delays are usually related with the previous delays [87];

and 2) the packet dropout can be included naturally [133]. In this chapter, τk and dk are modeled

as two homogeneous Markov chains that take values in M = {0, 1, ..., τ} and N = {0, 1, ..., d}, and

their transition probability matrices are Λ = [λij ] and Π = [πrs], respectively. That means τk and

dk jump from mode i to j and from mode r to s, respectively, with probabilities λij and πrs, which

are defined by

λij = Pr(τk+1 = j|τk = i), πrs = Pr(dk+1 = s|dk = r)
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with the constraints λij , πrs ≥ 0 and

τ∑

j=0

λij = 1,
d∑

s=0

πrs = 1

for all i, j ∈ M and r, s ∈ N .

In NCSs, the delay information is important for controller design. It is noticed that at time

instant k and at the controller node, τk can be obtained by comparing the current time and the time-

stamp of the sensor information received. Similarly, at the actuator node, the embedded processor

can compare the current time with the timestamp of the control signal received to calculate the

C-A delay information dk−1 at current time k; however, this information cannot be received by

the controller immediately, because it needs to be transmitted through the network from sensor to

controller. So if the time delay τk exists, the value of dk−τk−1 at time instant k would be known at

the controller node. Specially, if τk = 0, dk−1 is available at the controller node. Consequently, it

is desirable to design the output feedback controller that simultaneously depends on both τk and

dk−τk−1. The dynamic output feedback control law is given by

z(k + 1) = F (τk, dk−τk−1)z(k) + G(τk, dk−τk−1)y(k − τk), (2.2a)

u(k) = Hz(k) + Jy(k − τk), (2.2b)

where z(k) ∈ R
n is the state vector of the output feedback controller; and F (τk, dk−τk−1), G(τk, dk−τk−1),

H , and J are appropriately dimensioned matrices to be designed. It is worth noting that the con-

troller (2.2) is two-mode-dependent.

Furthermore, the closed-loop system combining (2.1) and (2.2) can be expressed as

x(k + 1) = Ax(k) + BHz(k − dk) + BJCx(k − τk − dk), (2.3a)

z(k + 1) = F (τk, dk−τk−1)z(k) + G(τk, dk−τk−1)Cx(k − τk). (2.3b)

At sampling time k, if augmenting the state variable as

X(k) = [x(k)T x(k − 1)T · · · x(k − τ − d)T z(k)T z(k − 1)T · · · z(k − d)T]T ,

the closed-loop system can be rewritten in a concise form

X(k+1) =
[

Ã + Ĩ1F (τk, dk−τk−1)Ĩ1
T

+ B̃HẼ1(dk) + B̃JẼ2(τk, dk) + Ĩ1G(τk, dk−τk−1)Ẽ3(τk)
]

X(k),

(2.4)
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where

Ã =























A 0 · · · 0 0 0 · · · 0

I 0 · · · 0 0 0 · · · 0

...
. . . · · · 0 0 0 · · · 0

0 0 · · · I 0 0 · · · 0

0 0 · · · 0 0 0 · · · 0

0 0 · · · 0 0 I · · · 0
... 0 · · · 0 0 0

. . . 0

0 0 · · · 0 0 0 · · · 0







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














∈ R
(τ+2d+2)n×(τ+2d+2)n, B̃ =























B

0

...

0

0

0
...

0























∈ R
(τ+2d+2)n×m,

Ĩ1 =
[

0 · · · 0 I · · · 0
]
T

︸ ︷︷ ︸

(1+τ+d+1)th block being identity

∈ R
(τ+2d+2)n×n,

Ẽ1(dk) =
[

0 · · · 0 I · · · 0
]

︸ ︷︷ ︸

(1+τ+d+1+dk)th block being identity

∈ R
n×(τ+2d+2)n,

Ẽ2(τk, dk) = CE2(τk, dk),

Ẽ3(τk) = CE3(τk),

E2(τk, dk) =
[

0 · · · 0 I · · · 0
]

︸ ︷︷ ︸

(1+τk+dk)th block being identity

∈ R
n×(τ+2d+2)n,

E3(τk) =
[

0 · · · 0 I · · · 0
]

︸ ︷︷ ︸

(1+τk)th block being identity

∈ R
n×(τ+2d+2)n.

Remark 2.1. By applying the proposed two-mode-dependent controller (2.2), the resulting closed-

loop system (2.4) cannot be transformed to a standard MJLS, because the closed-loop system

depends on τk, dk, and dk−τk−1, and dk−τk−1 is related with both τk and dk. This makes the

analysis and design more difficult and has not been investigated in literature.

The objective of this chapter is to design the output feedback controller to guarantee the stochas-

tic stability of NCS in (2.4). For stochastic stability, the definition in [147] is adopted here. In the

following, E(·) stands for the mathematical expectation operator.

Definition 2.1. The system in (2.4) is stochastically stable if for every finite X0 = X(0), initial

mode τ0 = τ(0) ∈ M, and d−τ0−1 = d(−τ0 − 1) ∈ N , there exists a finite W > 0 such that the

following holds:

E

{
∞∑

k=0

‖X(k)‖2|X0,τ0,d−τ0−1

}

< X0
TWX0. (2.5)
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2.3 Main Results

In this section, the sufficient and necessary conditions for output feedback stabilization of sys-

tem (2.4) are first given, and then the equivalent conditions in terms of LMIs with nonconvex

constraints are derived.

As dk−τk−1 is to be incorporated into the controller design, a natural question is: What is the

transition probability matrix for the multi-step delay mode jump? This is of great importance

for the derivation of sufficient and necessary conditions for output feedback controllers later. To

answer this, Proposition 2.1 is given as follows.

Proposition 2.1. If the transition probability matrix from dk−1 to dk is Π, then the transition

probability matrix from dk−τk+1
to dk is Πτk+1 , which is still a transition probability matrix of

Markov chain. Specially, when τk+1 = 0, the transition probability matrix is Πτk+1 = Π0 = I.

Proof. The transition probability matrix from dk−τk+1
to dk is

Πτk+1
=

d
X

jτk+1
=0

· · ·

d
X

j3=0

d
X

j2=0

2

6

6

6

6

6

6

4

π0j2πj2j3 · · · πjτk+1
0 π0j2πj2j3 · · ·πjτk+1

1 · · · π0j2πj2j3 · · · πjτk+1
d

π1j2πj2j3 · · · πjτk+1
0 π1j2πj2j3 · · ·πjτk+1

1 · · · π1j2πj2j3 · · · πjτk+1
d

...
...

. . .
...

πdj2πj2j3 · · ·πjτk+1
0 πdj2πj2j3 · · ·πjτk+1

1 · · · πdj2πj2j3 · · ·πjτk+1
d

3

7

7

7

7

7

7

5

= Πτk+1 .

A special case is that when τk+1 = 0, then Πτk+1
= Πτk+1 = I. This completes the proof.

The sufficient and necessary conditions to guarantee the stochastic stability of system in (2.4)

can be derived with Definition 2.1, which are shown in Theorem 2.1. For the ease of presentation,

when the system is in mode i ∈ M and r ∈ N (i.e., τk = i, dk−τk−1 = r), F (τk, dk−τk−1) and

G(τk, dk−τk−1) are denoted as F (i, r) and G(i, r), respectively.

Theorem 2.1. Under the proposed output feedback control law (2.2), the resulting closed-loop

system in (2.4) is stochastically stable if and only if there exists symmetric P (i, r) > 0 such that

the following matrix inequality:

L(i, r) =

τ∑

j=0

d∑

s1=0

d∑

s2=0

λijΠ
1+i−j
rs2

Πj
s2s1

[

Ã + Ĩ1F (i, r)Ĩ1
T

+ B̃HẼ1(s1) + B̃JẼ2(i, s1) + Ĩ1G(i, r)Ẽ3(i)
]T

×P (j, s2)
[

Ã + Ĩ1F (i, r)Ĩ1
T

+ B̃HẼ1(s1) + B̃JẼ2(i, s1) + Ĩ1G(i, r)Ẽ3(i)
]

− P (i, r) < 0. (2.6)

holds for all i ∈ M and r ∈ N .

Proof. Sufficiency: For the closed-loop system (2.4), construct the Lyapunov function

V (X(k), k) = X(k)TP (τk, dk−τk−1)X(k).

17



Then

E{∆(V (X(k), k)}

= E{X(k + 1)TP (τk+1, dk+1−τk+1−1)X(k + 1)|Xk,τk=i,dk−τk−1=r} − X(k)TP (τk, dk−τk−1)X(k).(2.7)

Define τk+1 = j, dk = s1, dk−τk+1
= s2. To evaluate the first term in (2.7), the probability transition

matrices for τk → τk+1, dk−i−1 → dk−j , and dk−j → dk are needed to apply, respectively. According

to (2.4) and Proposition 2.1, these three probability transition matrices are

τk → τk+1 : Λ, dk−i−1 → dk−j : Π1+i−j , dk−j → dk : Πj . (2.8)

Then, (2.7) can be evaluated as

E{∆(V (X(k), k)}

= X(k)T
(

τ
X

j=0

d
X

s1=0

d
X

s2=0

λijΠ
1+i−j
rs2

Πj
s2s1

h

Ã + Ĩ1F (i, r)Ĩ1
T

+ B̃HẼ1(s1) + B̃JẼ2(i, s1) + Ĩ1G(i, r)Ẽ3(i)
i

T

×P (j, s2)
h

Ã + Ĩ1F (i, r)Ĩ1
T

+ B̃HẼ1(s1) + B̃JẼ2(i, s1) + Ĩ1G(i, r)Ẽ3(i)
i

− P (i, r)
o

X(k).

Thus, if L(i, r) < 0, then

E{∆(V (X(k), k)} = X(k)TL(i, r)X(k) ≤ −λmin(−L(i, r))X(k)TX(k) ≤ −β‖X(k)‖2, (2.9)

where β = inf{λmin(−L(i, r))} > 0. From (2.9), it can be obtained that for any T ≥ 1

E {V (X(T + 1), T + 1)} − E{V (X0, 0)} ≤ −βE

{
T∑

t=0

‖X(t)‖2

}

.

Furthermore,

E

{
T∑

t=0

‖X(t)‖2

}

≤
1

β
(E{V (X0, 0} − E{V (X(T + 1), T + 1)}) ≤

1

β
E{V (X0, 0)} =

1

β
X(0)TP (τ0, d−τ0−1)X(0).

From Definition 2.1, the closed-loop system (2.4) is stochastically stable.

Necessity: If the closed-loop system (2.4) is stochastically stable, or equivalently

E

{
∞∑

t=0

‖X(k)‖2|X0,τ0,d−τ0−1

}

≤ XT

0 WX0. (2.10)

Define the following function:

X(t)TP̃ (T − t, τt, dt−τt−1)X(t) , E

{
T∑

k=t

X(k)TQ(τk, dk−τk−1)X(k)|Xt,τt,dt−τt−1

}

with Q(τk, dk−τk−1) > 0. Assuming that X(k) 6= 0, since Q(τk, dk−τk−1) > 0, as T increases,

X(t)TP̃ (T − t, τt, dt−τt−1)X(t) is monotonically increasing. From (2.10), it can be obtained that
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X(t)TP̃ (T − t, τt, dt−τt−1)X(t) is upper bounded; thus, the limit exists and can be expressed as

X(t)TP (i, r)X(t) , lim
T→∞

X(t)TP̃ (T − t, τt = i, dt−τt−1 = r)X(t)

, lim
T→∞

E

{
T∑

k=t

X(k)TQ(τk, dk−τk−1)X(k)|Xt,τt=i,dt−τt−1=r

}

. (2.11)

Since this is valid for any X(t), then

P (i, r) = lim
T→∞

P̃ (T − t, τt = i, dt−τt−1 = r). (2.12)

From (2.11), P (i, r) > 0 is obtained since Q(τk, dk−τk−1) > 0. Consider

E
{

X(t)TP̃ (T − t, τt, dt−τt−1)X(t) − X(t + 1)TP̃ (T − t − 1, τt+1, dt−τt+1
)X(t + 1)|Xt,τt=i,dt−τt−1=r

}

= X(t)TQ(i, r)X(t). (2.13)

By using Proposition 2.1, the second term in (2.13) can be evaluated as

E
n

X(t + 1)TP̃ (T − t − 1, τt+1, dt−τt+1
)X(t + 1)|Xt,τt=i,dt−τt−1=r

o

= X(t)T
(

d
X

s1=0

d
X

s2=0

τ
X

j=0

λijΠ
1+i−j
rs2

Πj
s2s1

h

Ã + Ĩ1F (i, r)Ĩ1
T

+ B̃HẼ1(s1) + B̃JẼ2(i, s1) + Ĩ1G(i, r)Ẽ3(i)
iT

× P̃ (T − t − 1, j, s2)
h

Ã + Ĩ1F (i, r)Ĩ1
T

+ B̃HẼ1(s1) + B̃JẼ2(i, s1) + Ĩ1G(i, r)Ẽ3(i)
io

X(t). (2.14)

Substituting (2.14) into (2.13) gives rise to

X(t)T






P̃ (T − t, τt, dt−τt−1) −

τ∑

j=0

d∑

s1=0

d∑

s2=0

λijΠ
1+i−j
rs2

Πj
s2s1

[

Ã + Ĩ1F (i, r)Ĩ1
T

+ B̃HẼ1(s1)

+B̃JẼ2(i, s1) + Ĩ1G(i, r)Ẽ3(i)
]T

P̃ (T − t − 1, j, s2)
[

Ã + Ĩ1F (i, r)Ĩ1
T

+ B̃HẼ1(s1) + B̃JẼ2(i, s1)

+Ĩ1G(i, r)Ẽ3(i)
]}

× X(t) = X(t)TQ(i, r)X(t). (2.15)

Letting T → ∞ and noticing (2.12), (2.6) can be obtained. This completes the proof.

Theorem 2.1 gives sufficient and necessary conditions on the existence of the output feedback

controller. However, the conditions in (2.6) are nonlinear in the controller matrices and hence not

easily solved. To handle this, the equivalent LMI conditions to (2.6) with nonconvex constraints

are given in the following theorem.

Theorem 2.2. There exists a controller (2.2) such that the closed-loop system (2.4) is stochastically

stable if and only if there exist matrices F (i, r), G(i, r), H , J , and symmetric matrices X̄(j, s2) > 0,

P (i, r) > 0, satisfying:




−P (i, r) V (i, r)T

V (i, r) −X(i, r)



 < 0, (2.16a)

X̄(j, s2)P (j, s2) = I (2.16b)
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for all i, j ∈ M and r, s2 ∈ N , with

V (i, r) =
[

V0(i, r); V1(i, r); · · · ; Vτ (i, r)
]

,

Vj(i, r) =
[

Vj,0(i, r); Vj,1(i, r); · · · ; Vj,d(i, r)
]

,

Vj,s2
(i, r) =

[

(λijΠ
1+i−j
rs2

Πj
s20)

1
2 [Ã + Ĩ1F (i, r)Ĩ1

T

+ B̃HẼ1(0) + B̃JẼ2(i, 0) + Ĩ1G(i, r)Ẽ3(i)];

(λijΠ
1+i−j
rs2

Πj
s21)

1
2 [Ã + Ĩ1F (i, r)Ĩ1

T

+ B̃HẼ1(1) + B̃JẼ2(i, 1) + Ĩ1G(i, r)Ẽ3(i)];

...

(λijΠ
1+i−j
rs2

Πj
s2d)

1
2 [Ã + Ĩ1F (i, r)Ĩ1

T

+ B̃HẼ1(d) + B̃JẼ2(i, d) + Ĩ1G(i, r)Ẽ3(i)]
]

,

X(i, r) = diag
{

X0(i, r) X1(i, r) · · · Xτ (i, r)
}

,

Xj(i, r) = diag
{

Xj,0(i, r) Xj,1(i, r) · · · Xj,d(i, r)
}

,

Xj,s2
(i, r) = diag







X̄(j, s2) X̄(j, s2) · · · X̄(j, s2)
︸ ︷︷ ︸

d+1







.

Proof. By applying the Schur complement [8] and letting X̄(j, s2) = P (j, s2)
−1, the proof can be

readily obtained.

The conditions in Theorem 2.2 are a set of LMIs with some nonconvex constraints. This can be

solved by several existing iterative LMI algorithms. It is shown in [24] that PRA is the best and

seldom fails to find a global optimum. Thus, PRA is employed and detailed procedures to solve

the conditions (2.16) can be referred to [146].

Remark 2.2. The two-mode-dependent controller (2.2) makes full use of the delay information

by involving both the S-C and C-A delays. Moreover, it includes the one-mode-dependent and

mode-independent controllers as special cases. When F (τk, dk−τk−1) = F1(τk), G(τk, dk−τk−1) =

G1(τk), ∀ dk−τk−1 ∈ N , the controller (2.2) is reduced to be one-mode-dependent. When

F (τk, dk−τk−1) = F0, G(τk, dk−τk−1) = G0, ∀ τk ∈ M and dk−τk−1 ∈ N , the controller (2.2)

becomes a mode-independent one. Theorems 2.1 and 2.2 can also handle one-mode-dependent and

mode-independent controller design problems as special cases.

2.4 Numerical Example

To illustrate the effectiveness of the results in Section 2.3, the proposed method is applied to a cart

and inverted pendulum system [133, 147] shown in Figure 2.2, where x is the position of the cart,

θ is the angular position of the pendulum, and u is the input force. The state variables are chosen

as xd = [ x ẋ θ θ̇ ]T. The output is y = [ x θ ]T. It is assumed that no friction exists in

surfaces and the parameters here are: m1 = 1 kg, m2 = 0.5 kg, L = 1 m. The output feedback
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Figure 2.2: Cart and inverted pendulum system.

controller is designed for the following linearized discrete-time model with sampling time Ts = 0.1s:

xd(k + 1) = Adxd(k) + Bdu(k)

y(k) = Cdxd(k),

where

Ad =











1.0000 0.1000 −0.0166 −0.0005

0 1.0000 −0.3374 −0.0166

0 0 1.0996 0.1033

0 0 2.0247 1.0996











, Bd =











0.0045

0.0896

−0.0068

−0.1377











, Cd =




1 0 0 0

0 0 1 0



 .

The eigenvalues of Ad are 1, 1, 1.5569, and 0.6423. Hence, the discrete-time system is unstable.

The random delays involved in this NCS are assumed to be τk ∈ {0, 1, 2} and dk ∈ {0, 1}, and

their transition probability matrices are given by

Λ =








0.5 0.5 0

0.3 0.6 0.1

0.3 0.6 0.1








, Π =




0.2 0.8

0.5 0.5



 .

Figures 2.3 and 2.4 show part of the simulation run of the S-C delays τk and C-A delays dk governed

by their corresponding transition probability matrices, respectively.

Based on Proposition 2.1, the transition probability matrix for the delay mode jumping from

dk−2 to dk is Π2. By using Theorem 2.2, the output feedback controller is designed with the
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Figure 2.3: S-C random delays τk.
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Figure 2.4: C-A random delays dk.

following matrices – F (τk, dk−τk−1), G(τk, dk−τk−1), H , and J :

F (0, 0) =











0.1550 0.0060 −0.2786 −0.1208

−0.4991 0.7354 −0.1394 0.1630

0.7808 0.5714 −0.5284 0.7196

1.3487 0.8204 −0.4543 0.7047











, G(0, 0) =











0.1382 −2.2709

0.0114 −0.4115

0.0014 4.7681

0.0205 2.8083











,

F (0, 1) =











0.2442 0.0667 −0.4153 −0.0819

−0.3164 0.7816 0.0057 0.0097

0.7720 0.5720 −0.6462 0.8203

0.9528 0.6863 −0.6673 1.0157











, G(0, 1) =











0.1419 −1.8205

0.0064 −0.4091

−0.0039 5.0957

0.0223 2.6799











,

F (1, 0) =











0.2196 0.2297 −0.3241 −0.2781

−0.4005 0.8396 0.0009 −0.0530

1.1818 −0.0338 0.0570 1.0902

1.1678 0.3228 −0.1786 1.0731











, G(1, 0) =











0.1880 −2.4980

0.0326 −0.8274

−0.2235 6.4868

−0.0955 3.1831











,

F (1, 1) =











0.1463 0.2323 −0.0950 −0.4695

−0.3553 0.8349 0.0933 −0.0928

0.9486 −0.0424 −0.8425 1.7401

1.0299 0.3265 −0.9091 1.5751











, G(1, 1) =











0.2052 −3.3634

0.0251 −0.8857

−0.2175 8.1977

−0.0915 4.6597











,

F (2, 0) =











0.7736 0.3207 −0.4226 −0.1325

−0.1310 0.8791 0.0370 −0.0406

−0.1927 −0.2776 0.7051 0.3771

0.1745 0.2119 0.0517 0.6999











, G(2, 0) =











0.1275 −0.5579

0.0017 −0.1489

−0.0506 0.7241

0.0363 −0.4882











,

F (2, 1) =











0.5887 0.3064 −0.6016 0.0070

−0.1113 0.9407 0.1343 −0.1566

−0.1551 −0.4189 0.5039 0.6367

0.4481 0.1047 0.1353 0.7477











, G(2, 1) =











0.1411 −0.5840

0.0152 −0.5207

−0.0909 1.7924

−0.0197 0.4485











,

H =
[

−1.0629 −3.2705 3.8788 2.6564
]

, J =
[

−0.8939 18.1636
]

.
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Figure 2.5: The response of x.
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Figure 2.6: The response of ẋ.
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Figure 2.7: The response of θ.
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Figure 2.8: The response of θ̇.

The initial values of the discrete-time model and the output feedback controller are xd(−3) =

xd(−2) = xd(−1) = [0 0 0 0]T, xd(0) = [0 0 0.1 0]T, and z(−2) = z(−1) = z(0) = [0 0 0 0]T.

Figures 2.5–2.8 show the responses of four states, respectively. It is observed that the closed-loop

system is stochastically stable.

2.5 Conclusion

In this chapter, an output feedback controller design method is proposed for NCSs with random

network-induced delays. The S-C and C-A delays, modeled by two Markov chains, are simultane-

ously incorporated into the controller design in a general and practical way. Then the resulting

closed-loop system is a special discrete-time jump linear system. The sufficient and necessary condi-

tions of stochastic stability are derived in the form of a set of LMIs with some nonconvex constraints.

The product reduction algorithm is employed to obtain the two-mode-dependent output feedback

controller. Finally it is worth mentioning that the proposed two-mode-dependent controller could

be extended to consider the control performance and system uncertainties, which will be solved in

next chapter.
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Chapter 3

Robust Mixed H2/H∞ Control of Networked Con-

trol Systems with Time Delays modeled by Markov

Chains

3.1 Introduction

With the advancement of network techniques, the combination of network into control systems

has attracted much attention recently. Networked control systems (NCSs) is a type of distributed

systems, in which the information of system components is exchanged via the communication

network. Compared with the traditional control system, the main advantages of NCSs include

low cost, easy diagnosis, and high reliability. Hence, NCSs have been finding many industrial

applications in automobiles, manufacturing plants, and aircrafts, see, e.g., [87, 100, 119] and the

references therein. The insertion of communication network also brings some problems, such as

time delays, packet dropouts, and quantization errors. It is well-known that the time delays and

packet dropouts can degrade the system performance or even cause instability in control systems.

Hence, how to handle the time delays and packet dropouts has attracted much attention. Also, the

network-induced time delays are different from and more complex than the traditional constant time

delays because of the time-varying property of network. Various methodologies have been proposed

in the literature for the controller design considering the network characteristics. The controller

design methods in the existing literature can be roughly classified into the three categories based

on the ways they deal with time delay information.

In the first category, the controller design only deals with the sensor-to-controller (S-C) delays

while another important type of delays, controller-to-actuator (C-A) delays, have not been consid-

ered. In [133], a mode-dependent state feedback controller is designed for NCSs with S-C delays;

The authors first formulate the closed-loop system to be a discrete-time jump linear system and

then solve the stabilization problem by using the stability result of Markovian jump linear systems

(MJLSs). In [100], a sufficient and necessary condition for H∞ control is proposed for NCSs where

the controller co-locates with the plant under the framework of MJLSs based on the Bounded Real
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Lemma in [99]; the design method is further applied to a vehicle following problem.

In the second category, both S-C and C-A time delays are considered in the controller design,

but the controller is constant and does not depend on either S-C or C-A delays. Hence, the S-C

and C-A delays can be lumped together and considered as one type of time delay. In [133], the

time delays in S-C and C-A links are modeled by Markov chains and the mode-independent output

feedback controller is designed to stabilize the NCSs. In [76], the suboptimal H2 control of NCSs

with both bounded S-C and C-A time delays is solved via the switched system approach. In [143],

an H∞ analysis method for NCSs is proposed by employing the lower bound of the network-induced

delay and designing the mode-independent controller. In [136], the authors consider the arbitrary

packet loss process and Markovian packet loss process with time delays in both S-C and C-A

links; a mode-independent state feedback controller design method is developed to guarantee the

asymptotical stability and mean square stability. In [149], the packet dropouts in both S-C and

the C-A communication networks are considered and the network-induced delays are assumed to

be shorter than one sampling period; the mode-independent output feedback controller is designed

via a switched system approach and the relation between the packet dropout rate and the stability

of the closed-loop NCS is explicitly established. The H∞ output tracking in NCSs is considered

in [40] where the S-C and C-A delays are assumed to have both an upper bound and a lower bound;

a new model based on the updating instants of the holder is formulated and further state feedback

controllers are designed to guarantee the H∞ tracking performance using the LMI-based procedure.

In the third category, both S-C and C-A time delays are considered in the controller design and

the controller depends on S-C and/or C-A delays. In [130], the Markov chain is used to model the

packet loss and a mode-dependent state feedback controller design method is provided; the authors

introduce a new classification with buffers to simplify the modeling of NCSs and avoid incorporating

the C-A delay in the controller. A state feedback controller that simultaneously depends on S-C and

C-A delays is designed for NCSs with delays modeled by Markov chains in [147]; the sufficient and

necessary condition to guarantee the stochastic stability is derived. In [56], the Markov processes

are used to model the random network-induced S-C and C-A delays, and a mode-dependent state

feedback controller is proposed to stabilize this class of systems based on Lyapunov-Razumikhin

method. In the aforementioned references, only the stabilization problem is investigated in the

mode-dependent controller design and no control performance is considered. Hence, to solve the

control synthesis for the mode-dependent controller design is the focus of this chapter.

In the presence of disturbances and uncertainties, robust control theory provides a powerful

tool for controller analysis and synthesis. It is well-known that H2 control and H∞ control are two

main streams of robust control theory [153]. The time domain interpretation of H2 norm is the

l2 norm of the output driven by unit impulse and root-mean-square value of the output driven by

unit intensity white noise. H∞ norm is a measure of robust stability that represents the worst-
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case energy attenuation for any energy-bounded disturbance. Thus, a combination of H2 and H∞

control, called mixed H2/H∞ control is to minimize the H2 norm of the system subject to the H∞

norm constraint. Hence, the mixed H2/H∞ provides the flexibility to tune the controller to achieve

balanced performance between the H2 cost (l2 norm of impulse response) and H∞ cost (robust

stability with respect to disturbance and uncertainty).

The remainder of this chapter is organized as follows. Section 3.2 describes the systems and

states the objectives of this work. In Section 3.3, some preliminaries are presented. Section 3.4 solves

the mixed H2/H∞ control problem. Several illustrative design examples are given in Section 3.5.

Finally, the concluding remarks are addressed in Section 3.6.

The notation in this chapter is fairly standard. The superscripts “T” and “-1” stand for matrix

transposition and matrix inverse, respectively. R
n denotes the n-dimensional Euclidean space and

the notation P > 0(≥ 0) means that P is real symmetric and positive definite (semidefinite).

diag{· · ·} stands for a block-diagonal matrix and tr{·} means the trace of a matrix. ‖ · ‖2 refers to

the Euclidean norm for vectors and induced 2-norm for matrices. E(·) stands for the mathematical

expectation operator.

3.2 Problem Formulation

Consider the NCS setup in Figure 2.1. The discrete-time linear time-invariant plant model is

x(k + 1) = (A + ∆A)x(k) + (B + ∆B)u(k) + Jω(k), (3.1a)

y(k) = Cx(k), (3.1b)

where x(k) ∈ R
n, u(k) ∈ R

m, y(k) ∈ R
p, ω(k) ∈ R

l is the disturbance and A, B, C, J , ∆A, and

∆B are known real matrices with appropriate dimensions. Bounded random delays exist in the

links from sensor to controller and controller to actuator as shown in Figure 2.1. Here, τ ≥ τk ≥ 0

represents the S-C delay and d ≥ dk ≥ 0 stands for the C-A delay. The output feedback controller

is to be designed.

In this chapter, τk and dk are modeled as two homogeneous Markov chains [133,147] that take

values in M = {0, 1, ..., τ} and N = {0, 1, ..., d}, and their transition probability matrices are

Λ = [λij ] and Π = [πrs], respectively, meaning that τk and dk jump from mode i to j and from

mode r to s, respectively, with probabilities λij and πrs, which are defined by

λij = Pr(τk+1 = j|τk = i),

πrs = Pr(dk+1 = s|dk = r)

with the constraints λij , πrs ≥ 0 and

τ∑

j=0

λij = 1,
d∑

s=0

πrs = 1
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for all i, j ∈ M and r, s ∈ N . The parameter uncertainties ∆A and ∆B are of the following form

(norm-bounded uncertainty):

[

∆A ∆B
]

= G1∆u

[

U1 U2

]

(3.2)

with ∆T

u∆u ≤ 1.

It is noticed that when the controller is designed at current time k, the S-C delay τk can be

obtained using the time-stamping technique [55] and the embedded processor can calculate the

previous C-A time delay dk−1. Furthermore, by considering the random delays in the S-C link,

dk−τk−1 can be obtained at current time k for sure in the controller node.

The dynamic output controller is designed based on the available information (τk, dk−τk−1) and

thus has the following form:

z(k + 1) = F (τk, dk−τk−1)z(k) + G(τk, dk−τk−1)y(k), (3.3a)

u(k) = Hz(k) + Ty(k), (3.3b)

where z(k) ∈ R
n is the state vector of the output feedback controller; and F (τk, dk−τk−1), G(τk, dk−τk−1),

H , and T are appropriately dimensioned matrices to be designed.

The closed-loop system combining (3.1) and (3.3) can be expressed as

x(k + 1) = (A + ∆A)x(k) + (B + ∆B)Hz(k − dk) + (B + ∆B)TCx(k − τk − dk) + Jω(k),

z(k + 1) = F (τk, dk−τk−1)z(k) + G(τk, dk−τk−1)Cx(k − τk),

y(k) = Cx(k).

At sampling time k, if augmenting the state variable as

X(k) = [x(k)T x(k − 1)T · · · x(k − τ − d)T z(k)T z(k − 1)T · · · z(k − d)T]T,

the closed-loop system can be rewritten in the following form

X(k + 1) =
[

Ã + Ĩ1F (τk, dk−τk−1)Ĩ1
T

+ B̃HẼ1(dk) + B̃T Ẽ2(τk, dk)

+Ĩ1G(τk, dk−τk−1)Ẽ3(τk)
]

X(k) + J̃ω(k), (3.4a)

y(k) = C̃X(k), (3.4b)
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where

Ã =























A + ∆A 0 · · · 0 0 0 · · · 0

I 0 · · · 0 0 0 · · · 0
...

. . . · · · 0 0 0 · · · 0

0 0 · · · 0 0 0 · · · 0

0 0 · · · 0 0 0 · · · 0

0 0 · · · 0 0 I · · · 0
... 0 · · · 0 0 0

. . . 0

0 0 · · · 0 0 0 · · · 0























∈ R
(τ+2d+2)n×(τ+2d+2)n,

B̃ =























B + ∆B

0

...

0

0

0
...

0























∈ R
(τ+2d+2)n×m, J̃ =























J

0

...

0

0

0
...

0























∈ R
(τ+2d+2)n×l,

C̃ =
[

C 0 0 · · · 0
]T

∈ R
p×(τ+2d+2)n,

Ĩ1 =
[

0 · · · 0 I · · · 0
]T

︸ ︷︷ ︸

(2+τ+d)th block being identity

∈ R
(τ+2d+2)n×n,

Ẽ1(dk) =
[

0 · · · 0 I · · · 0
]

︸ ︷︷ ︸

(2+τ+d+dk)th block being identity

∈ R
n×(τ+2d+2)n,

Ẽ2(τk, dk) = CE2(τk, dk),

Ẽ3(τk) = CE3(τk),

E2(τk, dk) =
[

0 · · · 0 I · · · 0
]

︸ ︷︷ ︸

(1+τk+dk)th block being identity

∈ R
n×(τ+2d+2)n,

E3(τk) =
[

0 · · · 0 I · · · 0
]

︸ ︷︷ ︸

(1+τk)th block being identity

∈ R
n×(τ+2d+2)n.

Equation (3.4) is a discrete-time jump linear system. In the following, when the system is in mode

i ∈ M and r ∈ N (i.e., τk = i, dk−τk−1 = r), F (τk, dk−τk−1) and G(τk, dk−τk−1) will be denoted

as F (i, r) and G(i, r) respectively, for simplicity.
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It is also worth noting that system (3.4) is with norm-bounded uncertainties shown as follows.
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i
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∆uU2. (3.5b)

Now define
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, then, ∆AAug = I2G1∆uU1I
T

2 ;
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= G̃1∆uU2.

Then, (3.5) can be rewritten as

Ã = AAug + ∆AAug = AAug + G̃1∆uU1I
T

2 ; (3.6a)

B̃ = BAug + ∆BAug = BAug + G̃1∆uU2. (3.6b)

It is clear that the uncertainties in augmented system (3.4) is norm-bounded.

The objective (mixed H2/H∞ control) of this chapter is to design output feedback controller (3.3)

to guarantee that

• The closed-loop system (3.4) is stochastically stable;

• The 2-norm of the system is minimized while the ∞-norm of the system is lower than the

prescribed level.

3.3 Preliminaries

Definition 3.1 ( [147]). System (3.4) with ω(k) = 0 for all k > 0 is said to be stochastically stable

if for every finite X0 = X(0), initial mode τ0 = τ(0) ∈ M, and d−τ0−1 = d(−τ0 − 1) ∈ N , there

exists a finite W > 0 such that the following holds:

E

{
∞∑

k=0

‖X(k)‖2|X0, τ0, d−τ0−1

}

< X0
TWX0. (3.7)

Definition 3.2 ( [23]). System (3.4) is said to be mean square stable if

lim
k→∞

E
[
‖X(k)‖2

]
= 0 (3.8)

holds for any initial conditions.

Obviously, stochastic stability implies mean square stability.

The follow theorem provides the sufficient and necessary condition for stochastic stability of

system (3.4).
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Theorem 3.1. Under the proposed output feedback control law (3.3), the resulting closed-loop

system in (3.4) is stochastically stable if and only if there exists symmetric P (i, r) > 0 such that

the following matrix inequality:

τ∑

j=0

d∑

s1=0

d∑

s2=0

λijΠ
1+i−j
rs2

Πj
s2s1

[

Ã + Ĩ1F (i, r)Ĩ1
T

+ B̃HẼ1(s1) + B̃T Ẽ2(i, s1) + Ĩ1G(i, r)Ẽ3(i)
]T

×P (j, s2)
[

Ã + Ĩ1F (i, r)Ĩ1
T

+ B̃HẼ1(s1) + B̃T Ẽ2(i, s1) + Ĩ1G(i, r)Ẽ3(i)
]

− P (i, r) < 0. (3.9)

holds for all i ∈ M and r ∈ N .

Proof. This theorem can be proved by following the similar way in the proof of Theorem 2.1 in

Section 2.3.

Remark 3.1. An interesting property obtained from Theorem 3.1 is monotonically decreasing

behavior of the following Lyapunov equation:

Γ(P)=

τ∑

j=0

d∑

s1=0

d∑

s2=0

λijΠ
1+i−j
rs2

Πj
s2s1

[

Ã + Ĩ1F (i, r)Ĩ1
T

+ B̃HẼ1(s1) + B̃T Ẽ2(i, s1) + Ĩ1G(i, r)Ẽ3(i)
]T

×P(j, s2)
[

Ã + Ĩ1F (i, r)Ĩ1
T

+ B̃HẼ1(s1) + B̃T Ẽ2(i, s1) + Ĩ1G(i, r)Ẽ3(i)
]

− P(i, r), (3.10)

where P contains P(i, r), ∀i ∈ M, r ∈ N and P(i, r) is the solution of Theorem 3.1. Suppose that

both P1(i, r) and P2(i, r) satisfy (3.9), if P1(i, r) > P2(i, r), then we have Γ(P1) < Γ(P2). Also if

we have Γ(P1) < Γ(P2), we can obtain that P1(i, r) > P2(i, r).

3.4 Robust Mixed H2/H∞ Control

The control performance is very important in the controller design. In this section, the definitions

of H2 and H∞ norms for the special systems are first introduced. Then, the robust mixed H2/H∞

control problem is solved under the framework of LMI. Before presenting the main results of this

section, a lemma will be introduced, which plays an important role in the following derivation.

Lemma 3.1 ( [134]). Let Z, F , ∆, G be matrices with appropriate dimensions. Suppose Z is

symmetric and ∆T∆ ≤ I, then

Z + F∆G + GT∆TFT < 0, (3.11)

if and only if there exists scalar ε > 0 satisfying

Z + εFFT +
1

ε
GTG < 0. (3.12)

Lemma 3.1 will be used to handle norm-bounded uncertainties. Moreover, Proposition 2.1 in

Section 2.3 will be utilized to deal with the multi-step jumps of delay modes.
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Consider system (3.4) with initial conditions shown as follows:

X(k + 1) = Â(τk, dk−τk−1, dk)X(k) + J̃ω(k), (3.13a)

y(k) = C̃X(k), (3.13b)

X(0) = 0, τ(0) = τ0, d(−τ0 − 1) = d−τ0−1, (3.13c)

where

Â(τk, dk−τk−1, dk) = Ã+Ĩ1F (τk, dk−τk−1)Ĩ1
T

+B̃HẼ1(dk)+B̃T Ẽ2(τk, dk)+Ĩ1G(τk, dk−τk−1)Ẽ3(τk).

(3.14)

The initial distribution for (τ0, d−τ0−1) is given by α = (α(i,r)), where i ∈ M, r ∈ N and
∑

i∈M, r∈N α(i,r) = 1.

3.4.1 Definitions of H2 and H
∞

norms

For a stable discrete-time LTI system, the classical H2 norm has the following interpretation: The

l2 norm of the output equals the H2 norm of the system if the input is the unit impulse [20]. A

definition of H2 norm for MJLSs is given in [22]. As the closed-loop system under consideration is

formulated as a special discrete-time jump linear system, the definitions of the classical norm and

MJLS norm are not suitable and need to be modified to reflect the special dynamics. Following

the general definition of the H2 norms of the LTI system and MJLS, the following H2 norm for the

special system (3.13) is defined, which can be used as a performance index.

Definition 3.3. The H2 norm of system (3.13) is defined as

‖Hyω‖
2
2 =

l∑

s=1

τ∑

i=0

d∑

r=0

α(i,r)‖E(ys,i,r)‖
2
2, (3.15)

where ys,i,r is the output sequence of system (3.13) when

(1) the input sequence is given by ω = (ω(0), ω(1), · · ·), ω(0) = es, ω(k) = 0, k > 0, es ∈ R
l the

unitary vector formed by one at the sth position and zero elsewhere;

(2) τ(0) = i;

(3) d(−τ0 − 1) = r.

Remark 3.2. When τ = 0, d = 0, the above definition of H2 norm is reduced to the classical H2

norm. Hence, the definition can be view as a generalization of the H2 norm from LTI systems to

the special jump linear system. Moreover, when d = 0, the Definition 3.3 is reduced to the H2

norm for MJLSs [22].

The definition of classical H∞ norm for LTI systems can be interpreted as a measure of robust

stability that represents the worst-case energy attenuation for any energy-bounded disturbance.

Following this, the H∞ norm for the special system is defined as follows.
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Definition 3.4. Let X(0) = 0 and define the H∞ norm as

‖Hyω‖∞ = sup
τ(0)∈M

sup
d(−τ0−1)∈N

sup
ω∈l2(0,∞)

‖y‖2

‖ω‖2
. (3.16)

The following theorem establishes the relation between the H2 norm and the state-space model

of the jump linear system.

Theorem 3.2.

‖Hyω‖
2
2 =

τ∑

i=0

d∑

r=0

τ∑

j=0

d∑

s1=0

α(i,r)λijΠ
1+i−j
rs1

tr
{

J̃TS(j, s1)J̃
}

, (3.17)

where S(i, r) > 0 is the observability gramian obtained from the following discrete-time Lyapunov

equation

S(i, r) =
τ∑

j=0

d∑

s1=0

d∑

s2=0

λijΠ
1+i−j
rs2

Πj
s2s1

[

Â(i, r, s1)
]T

× S(j, s2)
[

Â(i, r, s1)
]

+ C̃TC̃. (3.18)

Proof. Suppose that y(k) is an impulse response of system (3.13). Then, for k ≥ 1 and considering

(3.18), the following equation can be obtained.

E [y(k)Ty(k)] (3.19)

= E
[

X(k)TC̃TC̃X(k)
]

= E






X(k)T



S(i, r) −
τ∑

j=0

d∑

s1=0

d∑

s2=0

λijΠ
1+i−j
rs2

Πj
s2s1

Â(i, r, s1)
TS(j, s2)Â(i, r, s1)



X(k)







= E {X(k)TS(i, r)X(k)}

−E







τ∑

j=0

d∑

s1=0

d∑

s2=0

λijΠ
1+i−j
rs2

Πj
s2s1

X(k)TÂ(i, r, s1)
TS(j, s2)Â(i, r, s1)X(k)






. (3.20)

Here, i = τk, r = dk−τk−1. Note that the second term in (3.20) is the mathematical expectation

of X(k + 1)TS(τk+1, dk−τk+1
)X(k + 1) based on the information of previous step: X(k), τk, and

dk−τk−1. Define τk+1 = j, dk = s1, dk−τk+1
= s2. The probability transition matrices for τk → τk+1,

dk−i−1 → dk−j , and dk−j → dk are needed to evaluate the second term in (3.20). According to

(3.13) and Lemma 2.1, these three probability transition matrices are

τk → τk+1 : Λ, dk−i−1 → dk−j : Π1+i−j , dk−j → dk : Πj . (3.21)

Then,

E
[
X(k + 1)TS(τk+1, dk−τk+1

)X(k + 1)
]

=

τ∑

j=0

d∑

s1=0

d∑

s2=0

λijΠ
1+i−j
rs2

Πj
s2s1

X(k)TÂ(i, r, s1)
TS(j, s2)Â(i, r, s1)X(k).

Further, (3.19) can be rewritten as

E [y(k)Ty(k)] = E [X(k)TS(τk, dk−τk−1)X(k)] − E
[
X(k + 1)TS(τk+1, dk−τk+1

)X(k + 1)
]
. (3.22)
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Notice that S(i, r) in (3.18) satisfies the inequalities (3.9). Hence, the system (3.13) is stochastically

stable. Further, it is mean square stable. Recalling that E(‖X(k)‖)2 → 0 as k → ∞, and taking

the sum of (3.22) from 1 to ∞ , the following can be obtained:

‖E(ys,i,j)‖
2
2 =

∞∑

k=1

‖E [ys,i,j(k)]‖2 |τ0,d−τ0−1

= E
{
X(1)TS(τ1, d−τ1

)X(1)|τ0,d−τ0−1

}

= E
{

eT

s J̃TS(τ1, d−τ1
)J̃es

}

=

τ∑

j=0

d∑

s1=0

λijΠ
1+i−j
rs1

{

eT

s J̃TS(j, s2)J̃es

}

.

Thus,

‖Hyω‖
2
2 =

l∑

s=1

τ∑

i=0

d∑

r=0

α(i,r)‖E(ys,i,j)‖
2
2 =

τ∑

i=0

d∑

r=0

τ∑

j=0

d∑

s1=0

α(i,r)λijΠ
1+i−j
rs1

tr
{

J̃TS(j, s2)J̃
}

.

This completes the proof.

3.4.2 Mixed H2/H∞ control

In this section, the robust mixed H2/H∞ control problem for system (3.13) is solved in term of

LMIs with nonconvex constraints. The following theorem provides the sufficient condition for mixed

H2/H∞ control.

Theorem 3.3 (Mixed H2/H∞ Control). If

τ∑

j=0

d∑

s1=0

d∑

s2=0

λijΠ
1+i−j
rs2

Πj
s2s1

Â(i, r, s1)
TP (j, s2)Â(i, r, s1) + C̃TC̃ +

1

γ2
P (i, r)J̃ J̃TP (i, r) < P (i, r),

(3.23)

then system (3.13) is stochastically stable, ‖Hyω‖∞ < γ,

and ‖Hyω‖2
2 ≤

∑τ
i=0

∑d
r=0

∑τ
j=0

∑d
s1=0 α(i,r)λijΠ

1+i−j
rs1

tr
{

J̃TP (j, s1)J̃
}

.

Proof. It is easy to obtain that inequality (3.23) implies the inequality (3.9). Hence, system (3.13)

is stochastically stable.

E
{
X(k + 1)TP (τk+1, dk−τk+1

)X(k + 1)
}

= E
{

X(k)TÂ(τk, dk−τk−1, dk)TP (τk+1, dk−τk+1
)Â(τk, dk−τk−1, dk)X(k)

}

+E
{

ω(k)TJ̃TP (τk+1, dk−τk+1
)Â(τk, dk−τk−1, dk)X(k)

}

+E
{

X(k)TÂ(τk, dk−τk−1, dk)TP (τk+1, dk−τk+1
)J̃ω(k)

}

+E
{

ω(k)TJ̃TP (τk+1, dk−τk+1
)J̃ω(k)

}

< E

{

X(k)T

[

P (τk, dk−τk−1) − C̃TC̃ −
1

γ2
P (i, r)J̃ J̃TP (i, r)

]

X(k)

}

34



+E
{

ω(k)TJ̃TP (τk+1, dk−τk+1
)Â(τk, dk−τk−1, dk)X(k)

}

+E
{

X(k)TÂ(τk, dk−τk−1, dk)TP (τk+1, dk−τk+1
)J̃ω(k)

}

+E
{

ω(k)TJ̃TP (τk+1, dk−τk+1
)J̃ω(k)

}

. (3.24)

So that

‖P (τk+1, dk−τk+1
)

1
2 x(k + 1)‖2

2 − ‖P (τk, dk−τk−1)
1
2 x(k)‖2

2 + ‖y(k)‖2
2

< −
1

γ2
‖J̃TP (τk, dk−τk−1)x(k)‖2

2

+E
{

ω(k)TJ̃TP (τk+1, dk−τk+1
)Â(τk, dk−τk−1, dk)X(k)

}

+E
{

X(k)TÂ(τk, dk−τk−1, dk)TP (τk+1, dk−τk+1
)J̃ω(k)

}

+E
{

ω(k)TJ̃TP (τk+1, dk−τk+1
)J̃ω(k)

}

= −
1

γ2
‖J̃TP (τk, dk−τk−1)x(k)‖2

2 +
1

γ2
‖J̃TP (τk+1, dk−τk+1

)x(k + 1)‖2
2

−
1

γ2
‖J̃TP (τk+1, dk−τk+1

)x(k + 1)‖2
2

+2E
{

ω(k)TJ̃TP (τk+1, dk−τk+1
)
{

Â(τk, dk−τk−1, dk)X(k) + J̃ω(k)
}}

(3.25)

−E
{

ω(k)TJ̃TP (τk+1, dk−τk+1
)J̃ω(k)

}

.

Thus,

‖P (τk+1, dk−τk+1
)

1
2 x(k + 1)‖2

2 − ‖P (τk, dk−τk−1)
1
2 x(k)‖2

2 + ‖y(k)‖2
2

−
1

γ2
‖J̃TP (τk+1, dk−τk+1

)x(k + 1)‖2
2 +

1

γ2
‖J̃TP (τk, dk−τk−1)x(k)‖2

2

< −
1

γ2
‖J̃TP (τk+1, dk−τk+1

)x(k + 1)‖2
2 + 2E

{

ω(k)TJ̃TP (τk+1, dk−τk+1
)x(k + 1)

}

− γ2‖ω(k)‖2
2

+E
{

ω(k)T

[

γ2I − J̃TP (τk+1, dk−τk+1
)J̃

]

ω(k)
}

= −

∥
∥
∥
∥

1

γ
J̃P (τk+1, dk−τk+1

)x(k + 1) − γω(k)

∥
∥
∥
∥

2

2

+ E
{

ω(k)T

[

γ2I − J̃TP (τk+1, dk−τk+1
)J̃

]

ω(k)
}

≤ E
{

ω(k)T

[

γ2I − J̃TP (τk+1, dk−τk+1
)J̃

]

ω(k)
}

Taking the sum from k = 0 to ∞, and recalling that X(0) = 0, ‖X(k)‖2 → 0 as k → ∞, the

following can be obtained:

‖y‖2
2 ≤

∞∑

k=0

E
{

ω(k)T

[

γ2I − J̃TP (τk+1, dk−τk+1
)J̃

]

ω(k)
}

= γ2(1 − v)‖ω‖2
2 ≤ γ2‖ω‖2

2,

where v ∈
(

0, 1
γ2

∑τ
i=0

∑d
j=0 tr(J̃TP (i, r)J̃)

)

. Thus, ‖y‖2

‖ω‖2
< γ.

Moreover, considering the Theorem 3.2 and the monotonically decreasing property of (3.10),

and comparing (3.18) and (3.23), P (i, r) > S(i, r) can be obtained. Then, it is straightforward that

‖Hyω‖
2
2 =

τ∑

i=0

d∑

r=0

τ∑

j=0

d∑

s1=0

α(i,r)λijΠ
1+i−j
rs1

tr
{

J̃TS(j, s1)J̃
}
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≤
τ∑

i=0

d∑

r=0

τ∑

j=0

d∑

s1=0

α(i,r)λijΠ
1+i−j
rs1

tr
{

J̃TP (j, s1)J̃
}

.

This completes the proof.

The condition (3.23) is difficult to check because it is nonlinear. So, it is further transformed to

an equivalent condition of a set of LMIs with nonconvex constraints shown in the following theorem.

Theorem 3.4. Under the proposed output feedback control law (3.3), the system (3.13) is stochas-

tically stable, ‖Hyω‖∞ < γ, ‖Hyω‖2
2 ≤

∑τ
i=0

∑d
r=0

∑τ
j=0

∑d
s1=0 α(i,r)λijΠ

1+i−j
rs1

tr
{

J̃TP (j, s1)J̃
}

if

there exist matrices F (i, r), G(i, r), H , T , and symmetric matrices X̄(j, s2) > 0, P (i, r) > 0,

satisfying:








−P (i, r) + C̃TC̃ V (i, r)T 1
γ P (i, r)J̃

V (i, r) −X(i, r) 0

1
γ J̃TP (i, r) 0 −I








< 0, (3.26a)

X̄(j, s2)P (j, s2) = I, (3.26b)

for all i, j ∈ M and r, s2 ∈ N , with

V (i, r) =
[

V0(i, r); V1(i, r); · · · Vτ (i, r);
]

,

Vj(i, r) =
[

Vj,0(i, r); Vj,1(i, r); · · · Vj,d(i, r);
]

,

Vj,s2
(i, r) =

[

(λijΠ
1+i−j
rs2

Πj
s20)

1
2 [Ã + Ĩ1F (i, r)Ĩ1

T

+ B̃HẼ1(0) + B̃T Ẽ2(i, 0) + Ĩ1G(i, r)Ẽ3(i)];

(λijΠ
1+i−j
rs2

Πj
s21)

1
2 [Ã + Ĩ1F (i, r)Ĩ1

T

+ B̃HẼ1(1) + B̃T Ẽ2(i, 1) + Ĩ1G(i, r)Ẽ3(i)];

...

(λijΠ
1+i−j
rs2

Πj
s2d)

1
2 [Ã + Ĩ1F (i, r)Ĩ1

T

+ B̃HẼ1(d) + B̃T Ẽ2(i, d) + Ĩ1G(i, r)Ẽ3(i)]
]

,

X(i, r) = diag{X0(i, r) X1(i, r) · · · Xτ (i, r)},

Xj(i, r) = diag{Xj,0(i, r) Xj,1(i, r) · · · Xj,d(i, r)},

Xj,s2
(i, r) = diag







X̄(j, s2) X̄(j, s2) · · · X̄(j, s2)
︸ ︷︷ ︸

d+1







. (3.27)

Proof. The theorem can be proved by using the Schur complement [8] and letting X̄(j, s2) =

P (j, s2)
−1.

Theorem 3.4 provides the condition with LMIs and nonconvex constraints for the mixed H2/H∞

control problem. This can be efficiently used for the nominal systems without uncertainties. How-

ever, the condition in Theorem 3.4 is not easily solved for the systems with norm-bounded uncer-

tainties. To deal with the uncertainties, it is converted to be an equivalent condition with the help

of Lemma 3.1 shown in the following theorem.
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Theorem 3.5. Under the proposed output feedback control law (3.3), the system (3.13) is stochas-

tically stable and ‖Hyω‖∞ < γ, ‖Hyω‖2
2 ≤

∑τ
i=0

∑d
r=0

∑τ
j=0

∑d
s1=0 α(i,r)λijΠ

1+i−j
rs1

tr
{

J̃TP (j, s1)J̃
}

if there exist matrices F (i, r), G(i, r), H , T and symmetric matrices X̄(j, s2) > 0, P (i, r) > 0 and

a series of scalars ε1(i, r) > 0, ε2(i, r) > 0, · · ·, ε(τ+1)(d+1)(d+1)(i, r) > 0 satisfying:










−P (i, r) + C̃TC̃ V c(i, r)T 1
γ P (i, r)J̃ ∆V (i, r)T

V c(i, r) −X(i, r) + Ĝ(i, r) 0

1
γ J̃TP (i, r) 0 −I 0

∆V (i, r) 0 0 −ε̂(i, r)I











< 0, (3.28a)

X̄(j, s2)P (j, s2) = I, (3.28b)

with the matrices defined in (3.27) and

Ĝ(i, r) = diag{ε1(i, r)G̃1G̃
T

1 ε2(i, r)G̃1G̃
T

1 · · · ε(τ+1)(d+1)(d+1)(i, r)G̃1G̃
T

1 },

ε̂(i, r) = diag{ε1(i, r) ε2(i, r) · · · ε(τ+1)(d+1)(d+1)(i, r)},

V c(i, r) =
h

V c0(i, r); V c1(i, r); · · · ; V cτ (i, r);
i

,

V cj(i, r) =
h

V cj,0(i, r); V cj,1(i, r); · · · ; V cj,d(i, r; )
i

,

V cj,s2
(i, r) =

h

(λijΠ
1+i−j
rs2

Πj
s20)

1
2 [AAug + Ĩ1F (i, r)Ĩ1

T

+ BAugHẼ1(0) + BAugT Ẽ2(i, 0) + Ĩ1G(i, r)Ẽ3(i)];

(λijΠ
1+i−j
rs2

Πj
s21)

1
2 [AAug + Ĩ1F (i, r)Ĩ1

T

+ BAugHẼ1(1) + BAugT Ẽ2(i, 1) + Ĩ1G(i, r)Ẽ3(i)];

...

(λijΠ
1+i−j
rs2

Πj
s2d)

1
2 [AAug + Ĩ1F (i, r)Ĩ1

T

+ BAugHẼ1(d) + BAugT Ẽ2(i, d) + Ĩ1G(i, r)Ẽ3(i)]
i

,

∆V (i, r) =
h

∆V0(i, r); ∆V1(i, r); · · · ; ∆Vτ (i, r);
i

,

∆Vj(i, r) =
h

∆Vj,0(i, r); ∆Vj,1(i, r); · · · ; ∆Vj,d(i, r);
i

,

∆Vj,s2
(i, r) =

h

(λijΠ
1+i−j
rs2

Πj
s20)

1
2 [G̃1∆uU1I

T

2 + G̃1∆uU2HẼ1(0) + G̃1∆uU2T Ẽ2(i, 0)];

(λijΠ
1+i−j
rs2

Πj
s21)

1
2 [G̃1∆uU1I

T

2 + G̃1∆uU2HẼ1(1) + G̃1∆uU2T Ẽ2(i, 1)];

...;

(λijΠ
1+i−j
rs2

Πj
s2d)

1
2 [G̃1∆uU1I

T

2 + G̃1∆uU2HẼ1(d) + G̃1∆uU2T Ẽ2(i, d)]
i

,

∆V u(i, r) =
h

∆V u0(i, r); ∆V u1(i, r); · · · ; ∆V uτ (i, r);
i

,

∆V uj(i, r) =
h

∆V uj,0(i, r); ∆V uj,1(i, r); · · · ; ∆V uj,d(i, r);
i

,

∆V uj,s2
(i, r) =

h

(λijΠ
1+i−j
rs2

Πj
s20)

1
2 [U1I

T

2 + U2HẼ1(0) + U2T Ẽ2(i, 0)];

(λijΠ
1+i−j
rs2

Πj
s21)

1
2 [U1I

T

2 + U2HẼ1(1) + U2T Ẽ2(i, 1)];

...

(λijΠ
1+i−j
rs2

Πj
s2d)

1
2 [U1I

T

2 + U2HẼ1(d) + U2T Ẽ2(i, d)]
i

.

Proof. By applying Lemma 3.1 and Schur complement to inequality (3.26), inequalities (3.28) can

be readily obtained.

The conditions (3.28) contain a set of LMIs (3.28a) and nonconvex constraints (3.28b). This
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can be efficiently solved by the PRA algorithm [24]. Detailed procedure about how to apply PRA

to this problem can be referred to [146].

Now, the robust mixed H2/H∞ control method is presented: Let γ be a certain given value,

minimize
∑τ

i=0

∑d
r=0

∑τ
j=0

∑d
s1=0 α(i,r)λijΠ

1+i−j
rs1

tr
{

J̃TP (j, s1)J̃
}

, subject to (3.28). If the focus

is on the H∞ norm, the problem is robust H∞ control: Let γ be a variable, minimize γ subject to

(3.28).

3.5 Numerical Examples

Consider an inverted pendulum system shown in Figure 3.1, where θ is the angular position of

the pendulum, and u is the input torque. The state variables are chosen as [ θT θ̇T ]T. The

output is y = [ θ ]. The parameters here are: m = 0.1 kg, L = 1 m. The output feedback

controller is designed using the discrete-time model. Hence, the linearized nominal discrete-time

system (sampling time Ts = 0.05s) is

x(k + 1) = Adx(k) + Bdu(k) + Jdω(k), (3.29a)

y(k) = Cdx(k), (3.29b)

where

Ad =




1.0123 0.0502

0.4920 1.0123



 , Bd =




0.0125

0.5020



 , Jd =




0.100

0.100



 , Cd =
[

1 0
]

. (3.30)

The eigenvalues of Ad are 0.7312 and 1.3676. Hence, the discrete-time system is unstable. The

norm-bounded uncertainty matrices are

G1 =




0.01

0.5



 , U1 =
[

0.2 0.1
]

, U2 = 0.1. (3.31)

The random delays involved in this NCS are assumed to be τk ∈ {0, 1, 2} and dk ∈ {0, 1}, and

their transition probability matrices are given by

Λ =








0.5 0.5 0

0.3 0.6 0.1

0.3 0.6 0.1








, Π =




0.2 0.8

0.5 0.5



 .

According to Proposition 2.1 in Section 2.3, the transition probability matrix for the delay mode

jumping from dk−2 to dk is Π2.

The initial distribution for (τ0, d−τ0−1) is equal for every (α(i,r)), where i ∈ M, r ∈ N , which

means α(i,r) = 1
6 in the following examples. To illustrate the performance of the design methods,
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Figure 3.1: An inverted pendulum system.

let us select a set of input signals as follows:

ω(k) =







1, for 1 ≤ k ≤ 10, (3.32a)

−1, for 21 ≤ k ≤ 30, (3.32b)

0, otherwise. (3.32c)

3.5.1 Mixed H2/H∞ control

Example 1: In this example, the mixed H2/H∞ control for the nominal system without uncertain-

ties is considered. The system matrices are shown in (3.30). γ is set to be 2. By using Theorem 3.4,

the minimum value of ‖Hyω‖2 can be obtained as ‖Hyω‖2 = 0.31 and the corresponding controller

is

F (0, 0) =




0.6381 −0.2795

1.5862 0.1193



 , G(0, 0) =




−0.2839

−0.2885



 ,

F (0, 1) =




0.4230 −0.1787

0.9434 0.4008



 , G(0, 1) =




−0.2702

−0.2701



 ,

F (1, 0) =




0.4791 −0.3242

0.8619 0.4258



 , G(1, 0) =




−0.3429

−0.2565



 ,

F (1, 1) =




0.5538 −0.3507

1.0446 0.3477



 , G(1, 1) =




−0.3406

−0.2605



 ,

F (2, 0) =




1.0795 −0.3557

0.6227 0.3569



 , G(2, 0) =




−0.1968

−0.3263



 ,

F (2, 1) =




0.9886 −0.3332

0.6021 0.4222



 , G(2, 1) =




−0.2016

−0.2880



 ,

H =
[

11.1873 −9.7076
]

, T =
[

−6.4574
]

.
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The responses of θ and θ̇ are shown in Figures 3.2 and 3.3, respectively. By calculation, the
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−0.4

−0.2
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0.2

0.4
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k

θ

Figure 3.2: Mixed H2/H∞ control: The response of θ.
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Figure 3.3: Mixed H2/H∞ control: The response of θ̇.

following can be obtained: ‖ω‖2 = 4.4721, ‖y‖2 = 2.1914, which yields

‖y‖2

‖ω‖2
= 0.4900 < γ = 2.

The impulse response can also be calculated according to Definition 3.3 and the result is
√
√
√
√

l∑

s=1

τ∑

i=0

d∑

r=0

α(i,r)‖ys,i,r‖2
2 = 0.2402 < 0.31.

The above simulation results show the effectiveness of the mixed H2/H∞ control.

Example 2: In this example, the robust mixed H2/H∞ control for the inverted pendulum

system will be considered. The system matrices are shown in (3.30) and the norm-bounded uncer-

tainty is shown in (3.31). γ is set to be 2. By using Theorem 3.5, the minimum value of ‖Hyω‖2
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can be obtained as ‖Hyω‖2 = 0.43 and the corresponding controller is

F (0, 0) =




0.5054 −0.2679

1.3869 0.1546



 , G(0, 0) =




−0.3254

−0.2921



 ,

F (0, 1) =




0.4119 −0.2106

0.9760 0.3572



 , G(0, 1) =




−0.3099

−0.2635



 ,

F (1, 0) =




0.5402 −0.4101

0.8231 0.3720



 , G(1, 0) =




−0.4086

−0.2843



 ,

F (1, 1) =




0.5504 −0.4296

0.9382 0.3121



 , G(1, 1) =




−0.4195

−0.2945



 ,

F (2, 0) =




1.0342 −0.3214

0.6951 0.3028



 , G(2, 0) =




−0.1968

−0.3476



 ,

F (2, 1) =




0.9891 −0.3273

0.6734 0.3640



 , G(2, 1) =




−0.2149

−0.3093



 ,

H =
[

10.6207 −9.6592
]

, T =
[

−6.5343
]

.
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Figure 3.4: Robust mixed H2/H∞ control: The response of θ.

In the simulation, it is assumed ∆u = sin(t), and it can be seen that ∆T

u∆u ≤ 1. The responses

of θ and θ̇ are shown in Figures 3.4 and 3.5. By calculation, the following can be obtained:

‖ω‖2 = 4.4721, ‖y‖2 = 3.6761, which yields

‖y‖2

‖ω‖2
= 0.8220 < γ = 2.
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Figure 3.5: Robust mixed H2/H∞ control: The response of θ̇.

The impulse response can also be calculated according to Definition 3.3 and the result is
√
√
√
√

l∑

s=1

τ∑

i=0

d∑

r=0

α(i,r)‖ys,i,r‖2
2 = 0.2613 < 0.43.

From the above simulation results, it is observed that the system is stabilized and control perfor-

mance is satisfied in the presence of parameter uncertainties.

3.5.2 H
∞

control

Example 3: In this example, the H∞ control for the nominal system without uncertainties is

considered. The system matrices are shown in (3.30). The minimal value of γ obtained is 0.85.

The corresponding controller matrices are

F (0, 0) =




0.4972 −0.3050

1.2544 0.1776



 , G(0, 0) =




−0.3675

−0.3192



 ,

F (0, 1) =




0.4405 −0.2485

0.9726 0.3875



 , G(0, 1) =




−0.3468

−0.2649



 ,

F (1, 0) =




0.5433 −0.5043

0.8023 0.3694



 , G(1, 0) =




−0.4987

−0.3174



 ,

F (1, 1) =




0.5514 −0.5177

0.8758 0.3074



 , G(1, 1) =




−0.5052

−0.3364



 ,

F (2, 0) =




1.1625 −0.3722

0.7598 0.2785



 , G(2, 0) =




−0.2011

−0.3740



 ,

F (2, 1) =




1.1377 −0.3831

0.7387 0.3313



 , G(2, 1) =




−0.2197

−0.3408



 ,
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H =
[

10.5759 −9.5935
]

, T =
[

−6.5916
]

.

Figures 3.6 and 3.7 depict the responses of θ and θ̇, respectively. By calculation, ‖ω‖2 = 4.4721

and ‖y‖2 = 1.9040 can be obtained, which yield

‖y‖2

‖ω‖2
= 0.4257 < 0.85,

showing the effectiveness of the H∞ control.
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Figure 3.6: H∞ control: The response of θ.
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Figure 3.7: H∞ control: The response of θ̇.

Example 4: In this example, the robust H∞ control for the inverted pendulum system is

considered. The system matrices are shown in (3.30) and the norm-bounded uncertainty is shown

in (3.31). The minimal value of γ obtained is 1.16. The corresponding controller matrices are

F (0, 0) =




0.4675 −0.2801

1.4334 0.1386



 , G(0, 0) =




−0.3539

−0.3408



 ,
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F (0, 1) =




0.4170 −0.2416

1.1179 0.2991



 , G(0, 1) =




−0.3391

−0.3104



 ,

F (1, 0) =




0.5662 −0.5119

0.8448 0.2272



 , G(1, 0) =




−0.5055

−0.4361



 ,

F (1, 1) =




0.5731 −0.5225

0.9123 0.1806



 , G(1, 1) =




−0.5115

−0.4518



 ,

F (2, 0) =




1.1922 −0.4205

0.9357 0.1575



 , G(2, 0) =




−0.2640

−0.4489



 ,

F (2, 1) =




1.1872 −0.4391

0.9108 0.2002



 , G(2, 1) =




−0.2818

−0.4225



 ,

H =
[

11.4773 −10.7035
]

, T =
[

−7.7051
]

.

Figures 3.8 and 3.9 depict the responses of θ and θ̇, respectively. By calculation, ‖ω‖2 = 4.4721

and ‖y‖2 = 2.2181 can be obtained, which yield

‖y‖2

‖ω‖2
= 0.4960 < 1.16.

From the simulation results, it can be observed that the proposed robust H∞ control method can

achieve the control performance in the presence of norm-bounded uncertainties in the plant.
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Figure 3.8: Robust H∞ control: The response of θ.

3.6 Conclusion

In this chapter, the controller design problem in Chapter 2 is further studied. The H2 and H∞

norms for this special system are defined. The robust mixed H2/H∞ control problem is solved
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Figure 3.9: Robust H∞ control: The response of θ̇.

under the framework of LMIs. The condition is a set of LMIs with nonconvex constraints, which

are efficiently solved by PRA. Design examples are given to illustrate the effectiveness of proposed

methods.
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Chapter 4

Modified Generalized Predictive Control for

Networked Systems with Application to A Hy-

draulic Position Control System

4.1 Introduction

The study of control systems in which the data between the controller side and plant side are

exchanged via a communication network has recently received much attention. This type of system

falls into the class of networked control system (NCS) [52, 119, 127, 148]. The use of networks

has several attractive advantages such as reduced equipment wiring, low installation cost, ease

of maintenance, easy installation, and flexible reconfiguration. There are, nevertheless, several

problems such as network-induced time delays, packet dropouts, and quantization errors, which

can greatly degrade the closed-loop system performance or even deteriorate the stability. These

network-induced problems present new challenges to the control design. Among all the challenges,

study on the network-induce delay has attracted much attention [87, 133,147].

In an NCS illustrated in Figure 4.1, there are two types of time delays: Sensor-to-controller

(S-C) and controller-to-actuator (C-A) delays. The S-C delays exist in the S-C link and can be

obtained by using the time-stamping technique [55]. Hence, the S-C delay information is available

at the controller node. The other type of time delay is the C-A delay existing in the C-A links.

Different from the S-C delay, the current C-A delay cannot be known at the controller node when

the control actions are generated by the controller. In fact, the control signal that has been sent

out and transmitted to the actuator node has to suffer from the unknown C-A delays. Therefore,

it is more challenging yet demanding to compensate for the C-A delays to improve the control

system performance. Generally, to handle the network-induced delay problem for NCS design,

two questions are to be addressed: (1) How to model the network-induced delays? (2) How to

incorporate the delay information into the controller design? In the literature, the network-induced

delays in NCSs have been modeled as constant delays [87], random but bounded delays [40], and

random delays governed by a Markov process [87, 130, 133, 147]. The advantages of modeling
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network-induced delays as Markov chains lie in that it takes the dependency of the delays into

account and the packet dropouts can be included naturally [133]. In [87], the LQG control is

applied to the NCS by modeling the time delays as Markov chains. But the time delay is assumed

to be less than one sampling period. In [133], the authors design both delay-independent and

delay-dependent controllers for NCSs with S-C and C-A delays modeled by Markov chains under

the framework of jump linear systems. In [100], the H∞ control problem of NCSs with time delays

modeled by Markov chains is solved using the bounded real lemma, but only the S-C time delays

are considered. In [56,142,147], the delay-dependent state feedback controller design problems are

considered; the controllers depend on both C-A and S-C time delays modeled by Markov processes.

How to compensate for the C-A network-induced delay is a challenging issue. A natural idea

is to employ a predicted signal (if available) to replace the delayed one whenever the C-A delay

exists. Model predictive control (MPC) does have the prediction feature: At each time step, it not

only generates the current control signal, but also a sequence of future control signals, under certain

optimal settings. MPC has been one of the most popular advanced control methods in industry [13].

Recently, MPC strategies have been used in the NCS design [47, 72–74, 90, 131, 141, 152]. In [141],

the authors employ the dynamic matrix control (DMC) method with a variable sampling time to

compensate for the time delays; however, no stability analysis is provided. In [131], a state feedback

controller is designed using the MPC approach; both S-C and C-A delays are modeled as Markov

chains and the stochastic delay-dependent stability conditions are presented. In [72], Liu et al.

propose a modified generalized predictive control (GPC) method to compensate for the time delays

and data packet dropouts. In [117], the authors extend the GPC to compensate for the delays

and propose an adaptive predictive control method with variable prediction horizons; but, the

stability is not addressed. In [65], model-based estimation algorithms are developed to compensate

for time delays and packet losses, but no stability analysis is given. Novel observer-based predictive

controllers are proposed by incorporating only the C-A delays in [74], and both S-C and C-A delays

in [73], respectively; the stability analysis is addressed via a switched system approach [73, 74].

Further, a recursive predictive control scheme is proposed and the sufficient condition to guarantee

the stability is analyzed via a switched system approach in [17].

Hydraulic systems are very important for the industrial application of NCSs, e.g., remote robot

position control, aircraft flight control, and so on. Many control synthesis methods have been

applied to hydraulic systems such as sliding mode control [53], neural network control [12], adaptive

control [155], and H2 control [71]. However, very few papers have addressed the networked control

design for hydraulic systems. In [64], the authors present an approach for analyzing the performance

of dropout compensation strategies in the H2 and H∞ senses for NCSs with data losses under the

framework of Markovian jump linear systems (MJLSs), which is tested on an experimental hydraulic

servo system.
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To the best of the author’s knowledge, the modified GPC (M-GPC) approach for NCSs has not

been fully investigated, especially for NCSs with S-C and C-A delays modeled as Markov chains,

which is the focus of this chapter. On the other hand, application oriented research for NCSs has

received relatively less attention in the literature, which is another important motivation for this

work.

The contributions of this chapter are as follows.

1) Unlike [17, 72–74] in which the S-C and C-A delays are assumed to be constant or random,

both S-C and C-A delays are modeled as Markov chains, and further the modified GPC is

employed to compensate for both types of network-induced delays.

2) The closed-loop system is further formulated to be a special jump linear system, and the

sufficient and necessary conditions to guarantee the stochastic stability are provided in terms

of easily checked linear matrix inequalities (LMIs).

3) To move a step further towards practical applications, the developed NCS design scheme is

applied to an experimental hydraulic position control system (HPCS).

The remainder of this chapter is organized as follows. Section 4.2 describes the networked

system and the M-GPC algorithm; the compensated schemes for both S-C and C-A delays are also

given in detail. In Section 4.3, the sufficient and necessary conditions to guarantee the stochastic

stability are presented. Section 4.4 details the controller design, experiments, and results analysis

for an experimental HPCS. Finally, the concluding remarks are addressed in Section 4.5.

4.2 Modified Generalized Predictive Control for NCSs

Consider a single-input single-output discrete-time plant described as follows:

A(z−1)y(k) = z−dB(z−1)u(k − 1), (4.1)

where d ≥ 0 is the dead time of the system and

A(z−1) = 1 + a1z
−1 + · · · + ana

z−na ,

B(z−1) = b0 + b1z
−1 + · · · + bnb

z−nb .

Bounded random delays exist in the links from sensor to controller and controller to actuator as

shown in Figure 4.1. Here, τ̄ ≥ τk ≥ 0 represents the S-C delay and d̄ ≥ dk ≥ 0 stands for the C-A

delay. In this chapter, τk and dk are modeled as two homogeneous Markov chains that take values

in M = {0, 1, ..., τ̄} and N = {0, 1, ..., d̄}, and their transition probability matrices are Λ = [λij ]

and Π = [πrs], respectively, meaning that τk and dk jump from mode i to j and from mode r to s,
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Figure 4.1: Diagram of the networked control system

respectively, with probabilities λij and πrs, which are defined by

λij = Pr(τk+1 = j|τk = i)

πrs = Pr(dk+1 = s|dk = r)

with the constraints λij , πrs ≥ 0 and

τ∑

j=0

λij = 1,
d∑

s=0

πrs = 1,

for all i, j ∈ M and r, s ∈ N .

Remark 4.1. Modeling the network-induced delays as Markov chains is reasonable and widely

used [87, 130, 133, 147]. This type of model takes the dependency of the delays into account, and

thus appropriately characterizes the real scenario of that the current time delays are usually related

with the previous delays in a network environment. In addition, another advantage of this type of

model is that the packet dropouts can be included naturally [133].

The conventional GPC algorithm consists of applying a control sequence that minimizes the

following objective function [13]:

J(N1, N2, Nu) =

N2∑

j=N1

δ(j) [ŷ(k + j|k) − ω(k + j)]
2

+

Nu∑

j=1

ρ(j) [∆u(k + j − 1)]
2
, (4.2)

where ŷ(k + j|k) is j step ahead prediction of the system output based on data up to k; N1 and N2

are the minimum and maximum prediction horizons, respectively; Nu is the control horizon; δ(j)

and ρ(j) are weighting sequences and ω(k + j) is the future reference trajectory; ∆ = 1− z−1. The
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control constraint here is

∆u(k + j − 1) = 0, j > Nu. (4.3)

The future control predictions can be obtained based on the past output y(k) up to time k and

the past control signal u(k) up to time k− 1. For more details of calculating the prediction control

signals using the conventional GPC, the readers are refereed to [13].

In an NCS shown in Figure 4.1, due to the network-induced delays, the output signal y(k)

and control signal u(k) at the plant node may not be received by the controller node immediately.

Meanwhile, the current control signal might not reach the plant node in time. Hence, the conven-

tional GPC cannot be directly applied to NCSs, which will be shown soon in the design examples.

To compensate for the network-induced delays in a network environment, the GPC scheme needs

to be modified. During the network transmission, a sequence of signals can be packed up and

transmitted together. To start with, some assumptions on the data transmission are made in the

following:

A 1: A sequence of output signals with length of na:
[

y(k)T y(k − 1)T · · · y(k − na + 1)T

]T

are packed and sent to the controller node together.

A 2: A sequence of prediction control signals with length of Nu:
[

u(k|k)T u(k + 1|k)T · · · u(k + Nu − 1|k)T

]T

are packed and sent to the plant node

together.

In the following, the compensation schemes for the S-C and C-A network-induced delays will

be presented in detail.

4.2.1 Compensation for S-C delays

Considering the time delays in the S-C link, at current time k, the measurement information received

by the controller is delayed by τk. Hence, the received output signal is
[

y(k − τk)T y(k − τk − 1)T · · · y(k − τk − na + 1)T

]T

. Meanwhile, the control signal at the

plant node up to time instance k − 1 may not be available. To handle this, the previous prediction

control signal at the controller node
[

u(k − 1|k − 1)T u(k − 2|k − 2)T · · ·
]T

can be employed

instead. These two information vectors will be used to obtain the prediction of y(t + j).

In order to minimize the cost function (4.2) and take the S-C delays τk into account, the

prediction of y(k + j) will be obtained by considering the following delay-dependent Diophantine

equation:

1 = Ej(z
−1)Ã(z−1) + z−j−τkFj(z

−1) with Ã(z−1) = ∆A(z−1). (4.4)

The polynomials Ej and Fj are uniquely defined with degrees j +τk−1 and na, respectively. Then,

the future prediction of y(k + j) is

ŷ(k + j) = Gj(z
−1)∆u(k + j − d − 1) + Fj(z

−1)y(k − τk), (4.5)
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for d + 1 ≤ j ≤ N2, where

Gj(z
−1) = Ej(z

−1)B(z−1) = g0 + g1z
−1 + · · · + gj+τk−1+nb

z1−j−τk−nb .

Equation (4.5) can be rewritten as

ŷ(k + j) = Ḡj(z
−1)∆u(k + j − d− 1|k) + zj−d−1

[
Gj(z

−1) − Ḡj(z
−1)

]
∆u(k|k) + Fj(z

−1)y(k − τk),

(4.6)

where

Ḡj(z
−1) = g0 + g1z

−1 + · · · + gj−d−1z
d+1−j.

Note that the last two terms in (4.6) only depend on the past data and the first term is related

with future control actions. Further, the following equation is obtained:

y(k) = Γu(k) + G(z−1)∆u(k − 1|k − 1) + F (z−1)y(k − τk), (4.7)

where

y(k) =











ŷ(k + d + 1|k)

ŷ(k + d + 2|k)
...

ŷ(k + N2|k)











, u(k) =











∆u(k|k)

∆u(k + 1|k)
...

∆u(k + Nu − 1|k)











,

Γ =

















g0 0 · · · 0

g1 g0 · · · 0

...
...

. . .
...

gNu−1 · · · · · · g0

...
... · · ·

...

gN2−1 gN2−2 · · · gN2−Nu

















,

G(z−1) =











(
Gd+1(z

−1) − Ḡd+1(z
−1)

)
z

(
Gd+2(z

−1) − Ḡd+2(z
−1)

)
z2

...
(
GN2

(z−1) − ḠN2
(z−1)

)
zN2−d











, F (z−1) =











Fd+1(z
−1)

Fd+2(z
−1)

...

FN2
(z−1)











.

The objective function (4.2) can be rewritten as

J(N1, N2, Nu)

=

N2∑

j=N1

δ(j) [ŷ(k + j|k) − ω(k + j)]
2

+

Nu∑

j=1

ρ(j) [∆u(k + j − 1|k)]
2
,

=
[
Γu(k) + G(z−1)∆u(k − 1|k − 1) + F (z−1)y(k − τk) − �(k)

]T

Q

×
[
Γu(k) + G(z−1)∆u(k − 1|k − 1) + F (z−1)y(k − τk) − �(k)

]
+ u(k)TRu(k), (4.8)
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where

Q = diag
{

δ(N1) δ(N1 + 1) · · · δ(N2)
}

;

R = diag
{

ρ(1) ρ(2) · · · ρ(Nu)
}

;�(k) =
[

ω(k + N1)
T ω(k + N1 + 1)T · · · ω(k + N2)

T

]T

.

Here, N1 = d + 1 and Nu ≥ d̄ + 1.

By making the gradient of J to be zero, the optimal control increment signal can be obtained

as

u(k) = (ΓTQΓ + R)−1ΓTQ
[�(k) − G(z−1)∆u(k − 1|k − 1) − F (z−1)y(k − τk)

]
. (4.9)

Further, the control signal can be determined by

2

6

6

6

6

6

6

4

u(k|k)

u(k + 1|k)

...

u(k + Nu − 1|k)

3

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

4

1

1

...

1

3

7

7

7

7

7

7

5

u(k−1|k−1)+

2

6

6

6

6

6

6

4

H1

H2

...

HNu

3

7

7

7

7

7

7

5

ˆ�(k) − G(z−1)∆u(k − 1|k − 1) − F (z−1)y(k − τk)
˜

,

(4.10)

where

H =











H1

H2

...

HNu











=











1 0 · · · 0

1 1 · · · 0
...

...
. . .

...

1 1 · · · 1











×
[
(ΓTQΓ + R)−1ΓTQ

]
. (4.11)

Remark 4.2. The S-C time delays τk can be obtained by using the time-stamping technique [55].

The effect of S-C time delays τk has been considered in (4.4) in the compensation scheme. It is

worth noting that the matrices and vectors G(z−1) and F (z−1) are functions of τk, which will be

used in the stability analysis. Also, G(z−1), F (z−1), and Γ can be calculated offline.

4.2.2 Compensation for C-A delays

The C-A time delays are even harder to handle because the C-A time delays dk cannot be known

when the control action is made. Due to the inherent predictive feature of GPC, the future control

sequences can be made full use of to compensate for the effect of dk.

Different from the conventional GPC in which only the current control signal u(k|k) is used, the

M-GPC uses the whole control signal sequences, which are packed and sent to the actuator/plant

node together. Considering the time delay dk from controller to actuator, the control signal received
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at the actuator/plant node at current time k is

















u(k − dk|k − dk)

u(k − dk + 1|k − dk)
...

u(k|k − dk)

...

u(k − dk + Nu − 1|k − dk)

















. (4.12)

Nu ≥ d̄ + 1 has been pre-set. Therefore, even though the control signal u(k|k) may not be received

at time k at the actuator/plant node, the previous prediction control signal for time k, u(k|k−dk) in

the control package (4.12), is always already available at the actuator/plant node. Then, u(k|k−dk)

will be chosen to be implemented on the plant.

Remark 4.3. A similar modified GPC method for NCSs was reported in [72], but the S-C time

delay is assumed to be fixed. In this chapter, the S-C delays are random and governed by Markov

chains, which are more general in NCSs and also can include the fixed delays as special cases.

However, the random S-C delays make the algorithm and the following stability analysis much

more complex and challenging.

4.3 Stability Analysis

Stability analysis is of great importance for the designed control system. In this section, the

closed-loop system is first formulated as a special jump linear system. Then, the sufficient and

necessary conditions for stochastic stability are derived, which can be efficiently checked using the

LMI toolbox.

4.3.1 Closed-loop system

Without losing the generality, the reference input ω(k) is assumed to be zero. Let G0 and F0 be

the coefficient matrices of polynomial vectors G(z−1)∆ and F (z−1) in (4.10), respectively; ng and

nf be the highest order of polynomials in vectors G(z−1)∆ and F (z−1). Note that G0 and F0 vary

with τk. Hence, they are denoted as G0(τk) and F0(τk), respectively.

Then, (4.10) can be rewritten in the following form

Ū(k) = G1(τk)Ũ(k − 1) + F1(τk)Ỹ (k − τk), (4.13)

where

Ū(k) =
[

u(k|k)T u(k + 1|k)T · · · u(k + Nu − 1|k)T

]T

,
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Ũ(k − 1) =
[

u(k − 1|k − 1)T u(k − 2|k − 2)T · · · u(k − ng − 1|k − ng − 1)T

]T

,

Ỹ (k − τk) =
[

y(k − τk)T y(k − τk − 1)T · · · y(k − τk − nf )T

]T

,

G1(τk) =
[[

1 1 · · · 1
]T

0Nu×ng

]

− HG0(τk),

F1(τk) = −HF0(τk).

Then, the control prediction sequence received at the actuator/plant node is

Ū(k − dk) = G1(τk−dk
)Ũ(k − dk − 1) + F1(τk−dk

)Ỹ (k − dk − τk−dk
)

=
[

0Nu×dk
G1(τk−dk

) 0Nu×(d̄−dk)

]

Û(k − 1)

+
[

0Nu×(τk−dk
+dk) F1(τk−dk

) 0Nu×(d̄+τ̄−dk−τk−dk
)

]

Y (k), (4.14)

where

Û(k) =
[

u(k|k)T u(k − 1|k − 1)T · · · u(k − ng − d̄|k − ng − d̄)T

]T

,

Y (k) =
[

y(k)T y(k − 1)T · · · y(k − τ̄ − d̄ − nf )T

]T

.

Further, the control input of the plant is the (1 + dk)th element in vector Ū(k − dk), which is

u(k) = u(k|k − dk)

=
[

01×dk
1 01×(Nu−dk−1)

]

Ū(k − dk)

=
[

01×dk
1 01×(Nu−dk−1)

]{[

0Nu×dk
G1(τk−dk

) 0Nu×(d̄−dk)

]

Û(k − 1)

+
[

0Nu×(τk−dk
+dk) F1(τk−dk

) 0Nu×(d̄+τ̄−dk−τk−dk
)

]

Y (k)
}

,

= c(τk, dk, τk−dk
)Û(k − 1) + d(τk, dk, τk−dk

)Y (k), (4.15)

where

c(τk, dk, τk−dk
) =

[

01×dk
1 01×(Nu−dk−1)

] [

0Nu×dk
G1(τk−dk

) 0Nu×(d̄−dk)

]

,

d(τk, dk, τk−dk
) =

[

01×dk
1 01×(Nu−dk−1)

] [

0Nu×(τk−dk
+dk) F1(τk−dk

) 0Nu×(d̄+τ̄−dk−τk−dk
)

]

.

Thus, based on (4.15), the control vector on the plant side can be expressed by

U(k) = EU(k − 1) + C(τk, dk, τk−dk
)Û(k − 1) + D(τk, dk, τk−dk

)Y (k), (4.16)

where

U(k) =
[

u(k)T u(k − 1)T · · · u(k − nb − d)T

]T

,

C(τk, dk, τk−dk
) =




c(τk, dk, τk−dk

)

0(nb+d)×(ng+d̄+1)



 ,

D(τk, dk, τk−dk
) =




d(τk, dk, τk−dk

)

0(nb+d)×(τ̄+d̄+nf+1)



 ,

E =




01×(nb+d) 01×1

I(nb+d)×(nb+d) 0(nb+d)×1



 .
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It is clear from (4.1) that the output vector of the plant can be described by

Y (k) = A1Y (k − 1) + B1U(k − 1), (4.17)

where

A1 =





[

−a1 −a2 · · · −ana

]

01×(τ̄+d̄+nf +1−na)

I(τ̄+d̄+nf )×(τ̄+d̄+nf ) 0(τ̄+d̄+nf )×1



 ,

B1 =





[

01×d b0 b1 · · · bnb

]

0(τ̄+d̄+nf )×(nb+d+1)



 .

In addition, since u(k|k) is the first row of Ū(k) in (4.13), it can be calculated by

u(k|k) =
[

1 0 · · · 0
]

Nu×1
G1(τk)Ũ(k − 1) +

[

1 0 · · · 0
]

Nu×1
F1(τk)Ỹ (k − τk). (4.18)

Let

[

ḡ0(τk) ḡ1(τk) · · · ḡng
(τk)

]

=
[

1 0 · · · 0
]

Nu×1
G1(τk), (4.19)

[

f̄0(τk) f̄1(τk) · · · f̄nf
(τk)

]

=
[

1 0 · · · 0
]

Nu×1
F1(τk). (4.20)

Using (4.18), the vector Û(k) can be constructed by

Û(k) = G2(τk)Û(k − 1) + F2(τk)Y (k), (4.21)

where

G2(τk) =





[

ḡ0(τk) ḡ1(τk) · · · ḡng
(τk) 01×d̄

]

[

I(ng+d̄)×(ng+d̄) 0(ng+d̄)×1

]



 ,

F2(τk) =





[

01×τk
f̄0(τk) f̄1(τk) · · · f̄nf

(τk) 01×(d̄+τ̄−τk)

]

[

0(ng+d̄)×(τ̄+d̄+nf+1)

]



 .

Further, combining (4.16), (4.17), and (4.21) yields the following closed-loop system

X(k) = Ac(τk, dk, τk−dk
)X(k − 1), (4.22)

where

X(k) =








Y (k)

U(k)

Û(k)








,

Ac(τk, dk, τk−dk
) =








A1 B1 0

D(τk, dk, τk−dk
)A1 E + D(τk, dk, τk−dk

)B1 C(τk, dk, τk−dk
)

F2(τk)A1 F2(τk)B1 G2(τk)








.
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Remark 4.4. The closed-loop system (4.22) is a special jump linear system. Due to the random

time delay in S-C link, the state matrix Ac varies with τk, dk, τk−dk
, which is different from and

more complex than the closed-loop system in [72]. Meanwhile, the closed-loop system (4.22) is not

the standard Markovian jump linear system (MJLS) [23, 62, 104], because it depends not only on

τk, dk, but also τk−dk
. Hence, the existing results of stability analysis on MJLSs cannot be directly

applied to this system.

4.3.2 Stochastic stability

For stochastic stability, the definition in [142,147] is adopted here.

Definition 4.1. ( [142,147]) The system in (4.22) is stochastically stable if for every finite X−1 =

X(−1), initial mode τ−d0
= τ(−d0) ∈ M, and d0 = d(0) ∈ N , there exists a finite W > 0 such

that the following holds:

E

{
∞∑

k=0

‖Xk‖
2|X−1, τ−d0

, d0

}

< X−1
TWX−1. (4.23)

Before presenting the main theorem about stochastic stability, the following proposition is given,

which results from the existence of τk−dk
in the closed-loop system (4.22) and is of great importance

for the derivation of the sufficient and necessary conditions for the stochastic stability.

Proposition 4.1. If the transition probability matrix from τk−1 to τk is Λ, then the transition

probability matrix from τk−n to τk is Λn, which is also a transition probability matrix of Markov

chain. Specially, when n = 0, the transition probability matrix is Λ0 = I.

Proof. This proposition can be proved by following the same way in the proof of Proposition 2.1

in Section 2.3.

The sufficient and necessary conditions to guarantee the stochastic stability of system (4.22)

are shown in Theorem 4.1. In the following, when the system is in mode i ∈ M and r ∈ N (i.e.,

τk−dk
= i, dk = r), P (τk−dk

, dk) will be denoted as P (i, r) for simplicity.

Theorem 4.1. The closed-loop system (4.22) is stochastically stable if and only if there exists

symmetric P (i, r) > 0 such that the following linear matrix inequality:

L(i, r) =

0

@

d̄
X

j=1

τ̄
X

s1=0

τ̄
X

s2=0

πrjΛ
1+r−j
is2

Λj−1
s2s1

+
τ̄

X

s1=0

τ̄
X

s2=0

πr0Λ
r
is1

Λs1s2

1

A Ac(s1, r, i)
T
P (s2, j)Ac(s1, r, i)

−P (i, r)

< 0 (4.24)

holds for all i ∈ M and r ∈ N .
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Proof. Sufficiency: For the closed-loop system (4.22), construct the Lyapunov function candidate

V (X(k − 1), k) = X(k − 1)TP (τk−dk
, dk)X(k − 1). (4.25)

Then

E{∆(V (X(k − 1), k)}

= E{X(k)TP (τk+1−dk+1
, dk+1)X(k)|Xk−1,τk−dk

=i,dk=r} − X(k − 1)TP (τk−dk
, dk)X(k − 1).(4.26)

For simplicity of expression, define dk+1 = j, τk = s1, τk+1−dk+1
= s2. To evaluate the first

term in (4.26), the mathematic expectation of X(k)TP (τk+1−dk+1
, dk+1)X(k) are needed to be

calculated based on the available previous step information Xk−1, τk−dk
= i, dk = r. To achieve

this, the following state jumps of the Markov chains are involved:

or
dk → dk+1, τk−dk

→ τk+1−dk+1
, τk+1−dk+1

→ τk, if dk+1 = j ≥ 1.

dk → dk+1, τk−dk
→ τk, τk → τk+1−dk+1

, if dk+1 = j < 1.
(4.27)

According to (4.22) and Proposition 4.1, the following three probability transition matrices are

or
dk → dk+1 : Π, τk−dk

→ τk+1−dk+1
: Λ1+r−j, τk+1−dk+1

→ τk : Λj−1.

dk → dk+1 : Π, τk−dk
→ τk : Λr, τk → τk+1−dk+1

: Λ1−j.
(4.28)

Then, (4.26) can be evaluated as

E{∆(V (X(k − 1), k)}

= X(k − 1)T







d̄∑

j=1

τ̄∑

s1=0

τ̄∑

s2=0

πrjΛ
1+r−j
is2

Λj−1
s2s1

[Ac(s1, r, i)]
T

P (s2, j) [Ac(s1, r, i)]+

τ̄∑

s1=0

τ̄∑

s2=0

πr0Λ
r
is1

Λs1s2
[Ac(s1, r, i)]

T P (s2, j) [Ac(s1, r, i)] − P (i, r)

}

X(k − 1).

Thus, if L(i, r) < 0, then

E{∆(V (X(k − 1), k)} = X(k − 1)TL(i, r)X(k − 1)

≤ −λmin(−L(i, r))X(k − 1)TX(k − 1) ≤ −β‖X(k − 1)‖2, (4.29)

where β = inf{λmin(−L(i, r))} > 0. From (4.29), it can be obtained that for any T ≥ 1

E {V (X(T ), T + 1)} − E{V (X−1, 0)} ≤ −βE

{
T∑

t=0

‖X(t)‖2

}

.

Furthermore,

E

{
T∑

t=0

‖X(t)‖2

}

≤
1

β
(E{V (X−1, 0)} − E{V (X(T ), T + 1)})

≤
1

β
E{V (X−1, 0)} =

1

β
X(−1)TP (τ−d0

, d0)X(−1).
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From Definition 4.1 and taking T → ∞, the closed-loop system (4.22) is stochastically stable.

Necessity: If the closed-loop system (4.22) is stochastically stable, or equivalently

E

{
∞∑

t=0

‖Xt‖
2|X0,τ−d0

,d0

}

≤ XT

−1WX−1. (4.30)

Define the following function:

X(t−1)TP̃ (T−t, τt−dt
, dt)X(t−1) , E

{
T∑

k=t

X(k − 1)TQ(τk−dk
, dk)X(k − 1)|Xt−1,τt−dt

,dt

}

(4.31)

with Q(τk−dk
, dk) > 0. Assuming that X(k) 6= 0, since Q(τk−dk

, dk) > 0, as T increases, X(t −

1)TP̃ (T − t, τt−dt
, dt)X(t − 1) is monotonically increasing. From (4.30), it can be obtained that

X(t− 1)TP̃ (T − t, τt−dt
, dt)X(t − 1) is upper bounded; thus, the limit exists and can be expressed

as

X(t − 1)TP (i, r)X(t − 1) , lim
T→∞

X(t − 1)TP̃ (T − t, τt−dt = i, dt = r)X(t − 1)

, lim
T→∞

E

(

T
X

k=t

X(k − 1)TQ(τk−dk
, dk)X(k − 1)|Xt−1 ,τt−dt

=i,dt=r

)

.(4.32)

Since this is valid for any X(t), then

P (i, r) = lim
T→∞

P̃ (T − t, τt−dt
= i, dt = r). (4.33)

From (4.32), it can be seen that P (i, r) > 0 since Q(τk−dk
, dk) > 0. Consider

E
n

X(t − 1)TP̃ (T − t, τt−dt , dt)X(t − 1) − X(t)TP̃ (T − t − 1, τt+1−dt+1
, dt+1)X(t)|Xt−1,τt−dt

=i,dt=r

o

= X(t − 1)TQ(i, r)X(t − 1). (4.34)

Notice that

E
{

X(t)TP̃ (T − t − 1, τt+1−dt+1
, dt+1)X(t)|Xt−1,τt−dt

=i,dt=r

}

= X(t − 1)T











d̄∑

j=1

τ̄∑

s1=0

τ̄∑

s2=0

πrjΛ
1+r−j
is2

Λj−1
s2s1

+

τ̄∑

s1=0

τ̄∑

s2=0

πr0Λ
r
is1

Λs1s2



 Ac(s1, r, i)
T

× P̃ (T − t − 1, s2, j)Ac(s1, r, i)
}

X(t − 1).

This, together with (4.34), implies that for any X(t)

X(t − 1)T

8

<

:

P̃ (T − t, τt−dt , dt) −

0

@

d̄
X

j=1

τ̄
X

s1=0

τ̄
X

s2=0

πrjΛ
1+r−j
is2

Λj−1
s2s1

+

τ̄
X

s1=0

τ̄
X

s2=0

πr0Λ
r
is1

Λs1s2

1

A Ac(s1, r, i)
T

× P̃ (T − t − 1, s2, j)Ac(s1, r, i)
o

× X(t − 1) = X(t − 1)TQ(i, r)X(t − 1).

Letting T → ∞ and noticing (4.33), (4.24) can be obtained. This completes the proof.

The condition in (4.24) is sufficient and necessary, which is comprised of a set of LMIs. This

can be efficiently verified using the LMI toolbox in Matlab.
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Remark 4.5. When there is no delays in the system, e.g., τ̄ = 0 and d̄ = 0, the M-GPC reduces

to the conventional GPC. Moreover, the constant time delays can be considered as special cases of

time delays governed by Markov chains. Hence, the proposed algorithm and stability analysis can

include the conventional GPC and M-GPC with constant time delays as special cases.

4.4 Experimental Test on A Networked Hydraulic Position

Control System

In this section, the M-GPC algorithm is tested in an experimental HPCS shown in Figure 4.2. In a

network environment, the control computer and the HPCS are connected via network medium, as

illustrated in Figure 4.3. The design objective is to design a controller that can remotely control

the HPCS over network to achieve the step tracking.

Figure 4.2: Hydraulic position control system.

4.4.1 Controller design and simulation studies

The identified continuous-time transfer function for the HPCS is [71]

G(s) =
Y (s)

U(s)
=

422000

s3 + 141s2 + 12100s
. (4.35)

The output y is the cylinder position and the input u is the voltage.

Its discrete-time model with the sampling time ts = 0.03s can be obtained as

G(z−1) =
0.5946z−1 + 0.6178z−2 + 0.05628z−3

1 − 0.802z−1 − 0.1834z−2 − 0.01455z−3
. (4.36)
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Figure 4.3: Networked hydraulic position control system.

From the discrete-time transfer function, d = 0 can be obtained.

Simulation 1: Conventional GPC for local tracking control of HPCS. First, the local

tracking control performance of GPC is examined in the simulation. Apply the conventional GPC

to the HPCS. The input ω(k) is 5u(t), where u(t) is the step signal. The parameters of GPC are

chosen as N1 = 1, N2 = 12, Nu = 10, Q = I12×12, and R = 50 × I10×10. The simulation result is

shown in Figure 4.4.

Simulation 2: Conventional GPC for networked HPCS tracking control. Next, the

networked HPCS shown in Figure 4.3 is considered. In a network environment, both S-C and C-A

delays exist. The random delays involved are assumed to be τk ∈ {0, 1, 2, 3} and dk ∈ {0, 1, 2, 3},

and their transition probability matrices are given by

Λ =











0.2 0.8 0 0

0.1 0.4 0.5 0

0.1 0.2 0.5 0.2

0.1 0.2 0.5 0.2











, Π =











0.2 0.8 0 0

0.1 0.4 0.5 0

0.1 0.2 0.5 0.2

0.1 0.2 0.5 0.2











. (4.37)

The time delays τk and dk are shown in Figures 4.5 and 4.6, respectively. Directly applying the

designed conventional GPC (as used in the first example) to the networked HPCS, the tracking

performance is shown in Figure 4.7. It is observed that the system becomes unstable due to the

networked-induced delays. Obviously, the stability cannot be guaranteed, let alone the tracking per-
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Figure 4.4: Simulation 1: Tracking performance of conventional GPC applied to
the local HPCS.

formance. Therefore, the conventional GPC cannot be directly applied in a network environment.
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Figure 4.5: S-C delays τk governed by (4.37).

Simulation 3: M-GPC for networked HPCS tracking control. To verify the effectiveness

of the proposed compensation schemes for S-C and C-A delays, the developed M-GPC is applied

to the networked HPCS with identical pre-set parameters and the same network conditions as

in Simulation 2. According to Theorem 4.1, theoretically the stochastic stability is guaranteed

through checking the feasibility of a set of LMIs. This fact can also be observed and verified from

the tracking performance shown in Figure 4.8. From the Figure 4.8, the system is stable and

exhibits acceptable tracking performance.
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Figure 4.6: C-A delays dk governed by (4.37).

4.4.2 Experimental tests

After the simulation studies for the controller design, the hardware-in-the-loop (HIL) test is con-

ducted: The developed M-GPC is applied to an experimental HPCS shown in Figure 4.3. The

network-induced delays are simulated and modeled as Markov chains in the control computer using

the same parameters as in the simulation studies.

Figure 4.9 shows the experimental response of the system using conventional GPC for a local

control setup without delays. Figure 4.10 shows the experimental response of directly applying the

conventional GPC in the NCS with time delays governed by (4.37). It is clear that the system

becomes unstable. By applying the M-GPC method, the results are shown in Figure 4.11. It

is observed that the system is stable. The output can track the desired input and the M-GPC

guarantees the stability. Note that the difference between the experimental and simulation results

is mainly due to the modeling error and disturbance in the experiments. Through the experimental

tests, it is clearly observed that the proposed M-GPC is effective in compensating for both S-C and

C-A delays.

4.5 Conclusion

This chapter investigates the predictive controller design problem for NCSs with time delays. Both

the S-C and C-A time delays are random and modeled by Markov chains. The M-GPC method is

proposed to compensate for the time delays in both links. The closed-loop system is formulated

to be a special jump linear system. The sufficient and necessary condition for stochastic stability

is provided in terms of LMIs, which can be conveniently checked. The proposed design method

is further tested on an experimental networked HPCS. The experimental results indicate that the
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Figure 4.7: Simulation 2: Tracking performance of conventional GPC applied to
the networked HPCS with delays governed by (4.37).

proposed theoretical tools can be useful in real NCSs. Important issues such as robust G-MPC de-

sign against model uncertainties, disturbance attenuation, and tracking performance improvement

need further study.
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Figure 4.8: Simulation 3: Tracking performance of the M-GPC applied to the
networked HPCS with delays governed by (4.37).
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Figure 4.9: Experimental result: Tracking performance of conventional GPC ap-
plied to the local HPCS.
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Figure 4.10: Experimental result: Tracking performance of conventional GPC
applied to the networked HPCS with delays governed by (4.37).
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Figure 4.11: Experimental result: Tracking performance of M-GPC applied to
the networked HPCS with delays governed by (4.37).
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Chapter 5

l2 − l∞ Filtering for Multirate Systems

5.1 Introduction

Multirate systems are common in chemical [51], mechanical [84], aeronautic [37], and communi-

cation [105, 107, 108] applications. In some complex systems, it is unrealistic and uneconomical,

or sometimes impossible to sample all the physical signals uniformly at one single rate. Multirate

systems arise when the components of the same system have several different sampling rates. A

special and simple case of multirate systems is the dual-rate system where the input and states

are updated at a fast rate and the output is sampled at a slow rate. In such dual-rate systems,

a challenge for filtering is how to obtain fast-rate information, e.g., fast-rate states, from the slow

sampled output measurements.

The filtering problem is to estimate the states or a linear combination of the states of a system

based on the available measurements. The well-known Kalman filter provides a recursive algorithm

to minimize the variance of the state estimation error when the power spectral densities of the

process and the measurement noise are known [109, 112]. When the a priori information is not

precisely known, the celebrated Kalman filter is not applicable. In such cases, filters based on

alternative performance criteria have been developed and attracted much attention in the past

several decades. One of these is the H2 filtering which minimizes the H2 norm of the transfer

function from the process noise to the estimation error, see, e.g., [43,44] and the references therein.

Another is the H∞ filtering which minimizes the H∞ norm of the transfer function from the process

noise to the estimation error [25,43,94,137]. Recently, Sheng et al. extended the H2 and H∞ design

methods to multirate systems [101,102]. On the other hand, the l2 − l∞ filtering design problems

have received relatively less attention. The objective of l2 − l∞ filtering is to design stable filters

minimizing the peak value of the estimation error for all possible energy bounded disturbance,

therefore it is also called energy-to-peak filtering. The l2 − l∞ filtering design problems for single-

rate systems have been studied, see, e.g., [42,50] and the references therein. For multirate systems,

however, the l2− l∞ filtering problem has not been fully investigated in the literature, which is still

open and remains unsolved.

In this chapter, the approach to solve multirate filtering problems in the l2 − l∞ setting is
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proposed. Similar to the H2 and/or H∞ filtering [101, 102], while using the LMI machinery to

solve l2 − l∞ filtering problems, there is an unavoidable nonconvex constraint which is due to the

particular structure of the designed filters. This technical difficulty can be handled by the product

reduction algorithm (PRA) [24].

The rest of this chapter is organized as follows. In Section 5.2, multirate systems and lifted

systems are introduced, and then the objective of multirate filtering problems in the l2− l∞ setting

is stated. Furthermore, using the lifting technique, the proposed design is reformulated as a linear

time-invariant l2−l∞ filtering problem. The main results involving LMI conditions with a nonconvex

constraint are shown in Section 5.3. Also, the procedure to compute solutions by the PRA is

presented. In Section 5.4, illustrative examples are provided. Finally, some concluding remarks are

addressed in Section 5.5.

For simplicity, this chapter focuses on single-input single-output (SISO) multirate systems. The

extension to multi-input multi-output multirate systems can be made following a similar line. The

notation used throughout this chapter is fairly standard. The superscript T stands for the matrix

transposition and the notation P > 0 means that P is symmetric and positive definite. In addition,

diag{.} is used for a block-diagonal matrix. For a discrete-time vector-valued signal f(k), the l2

norm is ‖f‖2 = {
∑∞

0 f(k)Tf(k)}1/2 and the l∞ norm is ‖f‖∞ = supk{f(k)Tf(k)}1/2.

5.2 Preliminaries and Problem Formulation

In this section, some preliminary knowledge about multirate systems will be given first, and then

the objective of the l2− l∞ filtering design problem for multirate systems will be stated, and further

the multirate filtering design problem will be converted to the filtering of a linear time-invariant

(LTI) single rate system using the lifting technique [20, 102]. It is also worth noting that although

the chapter deals with a special kind of dual-rate system for simplicity, more general treatment can

be achieved by following the similar line.

Consider the multirate (specially dual-rate) sampled-data system in Figure 5.1. The input ω

is updated at the fast period h, and the output y is sampled at the slow period nh, with n (the

down-sampling ratio) being a positive integer; Ph is a discrete-time model with discretization period

h; Sn is the discrete-time downsampler defined by

y = Snv ⇐⇒ y[k] = v[kn], k = 0, 1, 2, ....

In Figure 5.1, the high-frequency dots stand for the fast-rate signal while the slow-frequency

dots represent the slow-rate signal. The dual-rate system is time-varying. By applying the lifting

technique [20], the lifted model P = SnPhL−1
n can be obtained. Here, Ln and L−1

n are the lifting

and inverse lifting operators. For an integer n > 0, define the discrete lifting operator Ln via
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Figure 5.1: SISO dual-rate discrete-time system with lifting and inverse lifting
operators.

v = Lnv,

{

v(0), v(1), · · ·
}

7→














v(0)
...

v(n − 1)








,








v(n)
...

v(2n − 1)








, · · ·







.

The definition of inverse lifting operator is the reversion of the lifting operation. The input of the

lifted model is the lifted signal ω and its output is still y. Hence, P can be regarded as a single-rate

multi-input single-output system with underlying period nh; furthermore, it is time-invariant.

5.2.1 Design objectives

Assume the discrete-time model Ph is known

x[k + 1] = Ax[k] + Bω[k], (5.1a)

v[k] = Cx[k] + Dω[k], (5.1b)

z[k] = Fx[k]. (5.1c)

Here, x[k] is the state vector, ω[k] is the exogenous input, v[k] is the fast-rate output, and z[k] is the

linear combination of the states to be estimated. The matrices A, B, C, and D are of appropriate

dimensions.

Then, the lifted model P can be obtained as follows [20]:

x[k + 1] = A x[k] + B ω[k], (5.2a)

y[k] = C x[k] + D ω[k]. (5.2b)

Here,

A = An, B = [An−1B An−2B · · · B], C = C, D = [D 0 · · · 0],

and x[k] = x[kn], y[k] = v[kn], ω = Lnω = [ω[kn] ω[kn + 1] · · · ω[kn + n − 1]]T. Note that the

lifting operator is norm-preserving [20]. For the case of l2 norm, ‖ω‖2 = ‖ω‖2.

The filtering error dynamics are illustrated in Figure 5.2, where S1 is the sampler with sampling

period h. The filter to be designed is time-varying: It will generate the state estimation x̂ and the

corresponding ẑ every fast period h based on the measured y, which is only available at the slow

period nh. During the kth frame period [knh, (k+1)nh], at every intersample time instant knh+ih,
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Figure 5.2: Filtering error dynamics for time-varying dual-rate systems.

the filter will use the most recent measured output y[knh] to estimate the state x̂[knh + ih], (i =

1, . . . , n) and the corresponding ẑ[knh + ih].

The observer has the following form:

x̂[k + 1] = Ax̂[k] + K(y[k] − Cx̂[k]),

where K is the filter gain to be designed based on some system performance criterion. Considering

that the dual-rate system is periodically time-varying, the similar structure is adopted and the gain

K is periodically time-varying. That means at the intersample estimation time instant knh + ih,

K = L(i), i = 1, 2, . . . , n. How to design this series of gains in the l2 − l∞ settings is the focus

of this chapter. To summarize, the objective of the multirate filtering design problem is:

Given γ > 0, find a series of filter gains L(i) (i = 1, . . . , n), so that

1. The filter error system is asymptotically stable;

2. The l2 − l∞ gain of the error system satisfies ‖e‖∞

‖ω‖2
< γ (γ-suboptimal l2 − l∞ filtering).

5.2.2 Lifted error system

Applying the lifting technique [20], the design problem will be converted into an LTI equivalent one

following the similar line in [101,102]. Define ỹ[kn] = v[kn]−Cx̂[kn], the to-be-designed multirate

filtering during the nth frame period can be written as follows:

x̂[kn + i + 1] = Ai+1x̂[kn] + [AiL(1) + · · · + L(i + 1)]ỹ[kn], (5.3a)

ẑ[kn + i] = F x̂[kn + i], (5.3b)

where i = 0, 1, . . . , n − 1.

Let e[kn] = z[kn] − ẑ[kn] and xe[kn] = x[kn] − x̂[kn], it is straightforward to obtain

e[kn + i] = F [Ai − MLC] xe[kn] − F [N − MLD] ω[k], (5.4)

where

M = [

i blocks
︷ ︸︸ ︷

Ai−1 · · · I

n−i blocks
︷ ︸︸ ︷

0 · · · 0 ],
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N = [

i blocks
︷ ︸︸ ︷

Ai−1B · · · B

n−i blocks
︷ ︸︸ ︷

0 · · · 0 ],

L =
[

L(1)T L(2)T · · · L(n)T

]T

.

Now, define the state estimation error xe[k] = xe[kn], and lift filtering errors in the kth frame

period as

e[k] =
[

e[kn]T e[kn + 1]T · · · e[kn + n − 1]T
]T

.

The model for the lifted error dynamics is then

xe[k + 1] = Ã xe[k] + B̃ ω[k], (5.5a)

e[k] = C̃ xe[k] + D̃ ω[k], (5.5b)

where

Ã = A0 − AfLCf ,

B̃ = B0 − AfLDf ,

C̃ = C0 − BfLCf ,

D̃ = D0 − BfLDf ,

with A0 = A, B0 = B, C0 =














F

FA

...

FAn−2

FAn−1














, D0 =














0 0 · · · · · · 0

FB 0 · · · · · · 0

FAB FB 0 · · · 0

...
. . .

. . .
. . . 0

FAn−2B
. . .

. . . FB 0














,

and Af =
[

An−1 An−2 · · · I
]

, Bf =














0 0 · · · · · · 0

F 0 · · · · · · 0

FA F 0 · · · 0
...

. . .
. . .

. . . 0

FAn−2 . . .
. . . F 0














, Cf = C, Df = D.

Notice that the lifted error dynamics with input ω and output e in (5.5) are time-invariant [20].

Therefore, the original multirate filtering problems can be converted to the l2 − l∞ filter design for

a single-rate LTI system.

5.3 l2 − l∞ Multirate Filtering Design

In this section, the multirate filtering design problem is solved in the framework of LMI machinery

under the l2− l∞ setting. The following lemma provides the relationship of the l2− l∞ performance

between the original and the lifted error system.

70



Lemma 5.1. The γ-suboptimal l2 − l∞ filtering problem is equivalent to finding a vector L so

that the lifted filter error system is asymptotically stable and the l2 − l∞ gain from ω to e in (5.5)

satisfies ‖e‖∞

‖ω‖2
< γ.

Proof. The result can be obtained by considering the norm preserving property of the lifting oper-

ator:

‖ω‖2 = ‖ω‖2,

‖e‖∞ = ‖e‖∞.

Therefore,
‖e‖∞
‖ω‖2

=
‖e‖∞
‖ω‖2

.

This proves Lemma 5.1.

The following lemma gives the traditional l2 − l∞ performance condition.

Lemma 5.2. [50] Suppose (Ã, B̃, C̃, D̃) is arbitrary but fixed and let γ > 0 be given. Then the

filtering error system is stable with an l2 − l∞ disturbance attenuation level γ if and only if there

exists a matrix P > 0 satisfying

C̃P C̃T + D̃D̃T < γ2I, (5.6a)

ÃP ÃT − P + B̃B̃T < 0. (5.6b)

Inequalities (5.6) contain the multiplication of two variables. Hence, they cannot be easily

solved by the LMI solvers because they are nonlinear. In order to handle this difficulty, a new

performance condition is derived, which is equivalent to Lemma 5.2.

Theorem 5.1. Given γ > 0, the multirate γ-suboptimal l2 − l∞ filtering problem has a solution

(L) if and only if there exists a matrix P > 0 satisfying







γ2I C̃P D̃

P C̃T P 0

D̃T 0 I








> 0, (5.7a)








P ÃP B̃

P ÃT P 0

B̃T 0 I








> 0. (5.7b)

Proof. Inequality (5.6a) can be rewritten as

(γ2I − D̃D̃T) − (C̃P )(P−1)(PC̃T) > 0.

Using Schur complement [8], the inequality above is equivalent to



γ2I − D̃D̃T C̃P

P C̃T P



 > 0. (5.8)
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Furthermore, (5.8) can be written as




γ2I C̃P

P C̃T P



 −




D̃

0



 (I)
[

D̃T 0
]

> 0.

Using Schur complement [8] again, the inequality (5.7a) can be obtained. By following the similar

procedure, the inequality (5.7b) can be derived from inequality (5.6b). This proves Theorem 5.1.

Notice that (Ã, B̃, C̃, D̃) are all affine in the unknown vector L, the two inequalities (5.7a) and

(5.7b) are thus nonlinear and cannot be easily solved by the LMI solvers. But it can be converted

to the LMI problems with a nonconvex constraint, as stated in the following theorem.

Theorem 5.2. Given γ > 0, the multirate γ-suboptimal l2 − l∞ filtering problem has a solution

(L) if and only if there exist matrices P > 0 and W > 0 satisfying








γ2I C̃ D̃

C̃T W 0

D̃T 0 I








> 0, (5.9a)








P Ã B̃

ÃT W 0

B̃T 0 I








> 0, (5.9b)

with the new variable W and constraint PW = I.

Proof. Inequalities (5.9a) and (5.9b) can be derived from (5.7a) and (5.7b) by performing the

congruence transformation with diag{I, P−1, I}, respectively.

All inequalities in Theorem 5.2 now appear in linear forms, with the constraint PW = I.

However, this condition is nonconvex. This is due to the filter structure chosen in this work. This

nonconvex constraint cannot be eliminated by using the linearizing change of variables in [42, 43].

This problem can be solved by some LMI-based algorithms, such as, alternating projections method,

min-max algorithm, XY-centering algorithm, and PRA. In [24], the above mentioned algorithms

are compared, and numerical experiments show that the PRA is the best since it is simple and very

efficient in numerical implementation, and seldom fails to find a global optimum.

The PRA is based on the fact that for any matrices X > 0, Y > 0 and X, Y ∈ Rn×n, if the

LMI



X I

I Y



 ≥ 0

is feasible, then trace(XY ) ≥ n, and trace(XY ) = n if and only if XY = I. Hence, a feasible

solution of Theorem 5.2 can be obtained from the solution of the following nonconvex optimization
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problem:

minimize trace(PW ) subject to




P I

I W



 ≥ 0 and inequalities (5.9a) and (5.9b). (5.10)

It can be seen that if the optimal solution of (5.10) satisfies trace(PW ) = n, then the filter

design problem is solved; otherwise, the problem is infeasible. Hence, the filter design problem is

converted to finding a global solution of the minimization problem. This, however, still a difficult

problem since the objective function is nonconvex. The PRA can find the global solutions of this

kind iteratively to most of the time [24].

Based on the PRA, the multirate l2 − l∞ filter design problems can be solved by the following

procedure. Given certain fixed γ, then use PRA to solve P , W , and L iteratively as follows:

(1) Start from P0 and W0 satisfying




P I

I W



 ≥ 0 and inequalities (5.9).

(2) Define the linear objective function fk(P, W ) := trace(WkP + PkW ).

(3) Solve for (Pk+1, Wk+1) the convex optimization

minimize fk subject to




P I

I W



 ≥ 0 and inequalities (5.9).

(4) If fk converges, then exit; otherwise, then repeat the procedure from step 2).

From the steps (2) and (3), the problem is converted to a linear convex optimization problem, which

is easy to solved by the LMI toolbox softwares. As the objective is to find the minimum value of

γ, if P , W , and L are feasible by using the above PRA, try a smaller γ and repeat the steps (1) –

(4). This way the suboptimal γ and the corresponding gain L will be obtained.

5.4 Numerical Examples

In this section, filtering design examples about the state estimator design (F = I) for dual-rate

systems are given to illustrate the effectiveness of the proposed method.

Example 1: Consider a system [102] where the output can only be sampled at a fixed period

T = 1 s, but the state estimation is required every h = 0.25 s. Assume Ph in Figures 5.1 with

A =




1.0168 0.2059

−1.8117 0.3991



 , B =




0.0317

0.0111



 ,

C =
[

−0.8 0.6
]

, D = 1.5.

Using the LMI machinery, a slow single-rate (SSR) l2−l∞ state filtering is first designed to estimate

the states every period T in accordance with the output availability. The performance of the SSR
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l2 − l∞ state filtering is shown in Figures 5.3 and 5.4 for states x1 and x2, respectively, where the

solid lines represent the real states and the dash lines stand for the SSR l2 − l∞ estimation.
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Figure 5.3: State estimation (x1).

0 5 10 15 20 25 30
−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

time(s)

x
2

 

 
real state
MR l2 − l∞ estimation
SSR l2 − l∞ estimation

Figure 5.4: State estimation (x2).

From the figures, it is clear that the SSR l2 − l∞ design cannot provide satisfactory estimation

performance because the period T is too large to capture the system information at the intersample

instants. To consider the intersample estimation, the multirate l2 − l∞ design in Section 5.3 is

applied. Here, n = T/h = 4, and a series of 4 gain vectors L(i), i = 1, 2, 3, 4, are designed.

Starting from certain large value of γ and trying smaller values step by step, it is finally found

that the minimum value of γ to guarantee the feasibility of the optimization problem is 0.2458,
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by using the PRA. Hence, the smallest l2 − l∞ level is γ = 0.2458 and the corresponding L can

be obtained accordingly. The simulation time is 30s; the initial values are x1(0) = x2(0) = 0.1,

and the exogenous input ω is a random signal with zero mean and variance 0.04. The response of

x1 and x2 are shown in Figures 5.3 and 5.4 for comparison, where the dotted lines represent the

multirate l2 − l∞ state estimation. The l2 − l∞ gain of this simulation is calculated as

‖e‖∞
‖ω‖2

= 0.0569 < 0.2458.

From the figures and calculation, it is observed that the l2 − l∞ multirate filter designed gives

much better state estimation than the SSR design at the intersample instants based on the most

recent available output, although the current output may not be available. It also provides very

good state estimation compared with the real states.

Example 2: Analysis and comparisons with H2 and H∞ filters.

The famous Kalman filter has a minimum mean squared error type performance for linear system

with the noise input of a known power spectral density. However, it does not work well for the

uncertainty and nonstochastic input situations. The H2 filter has a minimum error energy type

performance for linear systems. The H∞ filter places a boundary on the energy gain from the input

to the filter error. The objective of H∞ filtering is to minimize the energy of the estimation error

for the worst possible bounded energy disturbance. The l2 − l∞ filter guarantees a boundary on

the energy-to-peak gain from the input to the filter error. The objective of l2 − l∞ filtering is to

minimize the peak value of the estimation error for the worst possible input (or disturbance) with

bounded energy. The different performance criteria are shown in the following table.

Table 5.1: Filter performance criteria

Filter Performance Mathematic Description

Kalman Mean Squared Error min(E‖e‖2
2)

H2 Least Squared Error min(‖e‖2
2)

H∞ Maximal Energy Gain ‖Geω‖2
∞ < γ2 or sup ‖e‖2

‖ω‖2
< γ

l2 − l∞ Maximal Energy-to-peak Gain sup ‖e‖∞

‖ω‖2
< γ

Hence, if the design objective is focused on the energy of the filter error, the H2 filter method

should be employed. If the concern is on the energy gain from input to filter error, the H∞ design

scheme should be used. If the design objective is focused on energy-to-peak gain, the l2 − l∞ is a

better choice.

In the following, the results of the l2 − l∞ filtering method with H2 filter and H∞ filter [102]

are first compared in terms of ‖e‖2 and ‖e∞‖ with the same input. The simulation time is 50s;

the initial values are x1(0) = x2(0) = 0.1, and the exogenous input ω is a random signal with zero

mean and variance 0.04. The comparison is listed in Table 5.2. It is shown that ‖e‖∞ of the l2− l∞

75



filter is smaller than both the H2 filter and the H∞ filter; however, the ‖e‖2 of the l2 − l∞ filter is

a bit larger in this example.

Table 5.2: Performance comparison (‖e‖2 and ‖e‖∞) for three filters with same
inputs

Filter ‖e‖2 ‖e‖∞

H2 Filter [102] 0.15256 0.024975

H∞ Filter [102] 0.15260 0.024872

l2 − l∞ Filter 0.15300 0.024525

Further, the ∞-norm of the filtering error signal (‖e‖∞) is compared for three types of filters

with two different inputs: Unit impulse and white noise with the power of 1. The simulation time

is 5000s. The results are shown in Table 5.3. It is observed that for both input signals used in the

experiment, the l2 − l∞ filter results in smaller ‖e‖∞ than both H2 filter and H∞ filter do.

Table 5.3: Performance comparison (‖e‖∞) for three filters with different inputs

Filter Impulse input White noise input

H2 Filter [102] 0.019713 1.3005

H∞ Filter [102] 0.018316 1.2991

l2 − l∞ Filter 0.012941 1.2845

5.5 Conclusion

In this chapter, the l2 − l∞ filter design problems for a special kind of multirate systems are

considered where the output sampling period is an integer multiple of the input updating period.

With the design of a periodically time-varying filter, a good estimation of the state at the fast rate

can be obtained by using the slow output information. The proposed l2− l∞ multirate filter design

problems are solved based on the lifting and LMI techniques. The nonconvex constraint is handled

by the PRA. Several design examples are given to demonstrate the effectiveness of the method.
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Chapter 6

Identification of Hammerstein Output-Error Sys-

tems with Two-Segment Nonlinearities Based on

New Switching Sequences

6.1 Introduction

Industrial processes usually contain complex nonlinearities, which can be represented by some non-

linear mathematical models, e.g., Hammerstein and Weiner systems. The Hammerstein model

consists of a static nonlinear block followed in series by a linear dynamic system. The identification

of Hammerstein systems has been an active research area in the past years as it can find many

engineering applications, e.g., biomedical engineering [114], power systems [1], chemical process-

ing [36, 110] and communication systems [59], to name a few. Bai proposes an optimal two-stage

method for Hammerstein-Wiener systems based on the recursive least square and singular value de-

composition [3]; further, an iterative identification method is studied for Hammerstein systems with

piecewise-linear nonlinearities in [75]. An identification method for MIMO Hammerstein models

based on least square support vector machines is studied in [45]. In [150], a nonparametric approach

is employed, and recursive algorithms are proposed for Hammerstein systems where the linear part

is an ARX subsystem and the nonlinear function is not parameterized and no assumption is made

on the structure of it. To analyze the convergence property of identification algorithms for Ham-

merstein systems is important. In [5], a detailed study on the convergence of the iterative algorithm

is carried out and various convergence properties of the iterative algorithm are derived. Recently,

iterative and recursive identification algorithms for Hammerstein systems based on the idea of re-

placing unmeasurable noise terms in information vectors by their estimates have been presented

and the convergence properties are also addressed [27, 29–31].

Many nonlinear characteristics can be approximated by polynomials over a restricted range in

industrial applications. A large portion of existing literatures in Hammerstein modeling assume

that the nonlinear function is analytic and might be represented by a single polynomial form.

However, the single polynomial approximation may be inappropriate for the whole operating range
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of nonlinear systems. The two-segment nonlinearity representation (shown in Figure 6.1) can find

many applications in practice, and usually different characteristics are exhibited for the positive and

negative inputs. One approach to deal with this is to introduce appropriate switching sequences

to transform the two-segment nonlinearities into the single nonlinearity form, which has been used

in parameter identification and adaptive control [66, 120]. Vörös proposes an iterative algorithm

using the so-called key term separation principle [120], and extends it to systems with multi-segment

nonlinearities, deadzones and time-varying piecewise-linear characteristics [121–124]. However, this

type of switching sequence may result in some redundance of parameters to be estimated.

In this chapter, new switching sequences are proposed, which can result in less parameters to

be estimated for identification of Hammerstein models with two-segment nonlinearities. This leads

to the development of an identification model parametrization using the proposed new switching

sequences. Furthermore, stochastic gradient algorithms based on the idea of replacing unmeasurable

terms in the information vectors by their estimates are applied to the identification model, and the

convergence analysis of the proposed algorithm is carried out. A varying forgetting factor (VFF)

scheme is further proposed to make a tradeoff between the convergence rate and estimation accuracy.

The remainder of this chapter is organized as follows. In Section 6.2, the characteristics of two-

segment nonlinearities are studied and new switching sequences are proposed. The identification

model is derived in Section 6.3 by applying the proposed switching sequences. Section 6.4 describes

the stochastic gradient algorithms and carries out the convergence analysis. Section 6.5 provides

several illustrative numerical examples to show the effectiveness of the proposed algorithms. As an

application example, the method is applied to the distillation columns in Section 6.6. Finally, the

conclusion is addressed in Section 6.7.

In this chapter, the following notations are used.

λmax(X) (λmin(X)): Maximum (Minimum) eigenvalue of X ;

|X | = det(X): Determinant of a square matrix X ;

‖X‖2 = tr(XXT): Trace of XXT;

f(t) = O (g(t)): ∃ δ0 ∈ R+ and t0 ∈ Z+, |f(t)| ≤ δ0g(t) for t ≥ t0;

f(t) = o (g(t)): f(t)/g(t) → 0 for t → ∞.

6.2 Two-Segment Nonlinearity and New Switching Sequences

In literature, the nonlinear characteristics are usually approximated by proper polynomials. To

achieve better accuracy, the higher order polynomials may be utilized. However, the identification

of higher order polynomials is more difficult in general. Hence, a compromise can be adopted

between the lower order and precision in using polynomials to approximate the nonlinearity. On
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the other hand, the single polynomial is not accurate enough for the whole operating range of

nonlinear systems if the characteristics differ significantly for different ranges. Thus, it is not

advisable to use single polynomials. A solution for the aforementioned problems is to use the

two-segment nonlinearity description [120].

Figure 6.1: The Hammerstein output-error system with two-segment nonlineari-
ties.

The nonlinearity ū(t) in Figure 6.1 can be approximated by two different polynomials for positive

and negative inputs u(t), and expressed as

ū(t) =

{
f [u(t)], for u(t) ≥ 0, (6.1a)

g[u(t)], for u(t) < 0. (6.1b)

Different from the switching sequence in [66, 120], the new switching sequences h1(t) and h2(t)

are proposed in this chapter:

h1(t) = h1[u(t)] =







1, for u(t) ≥ 0

0, for u(t) < 0
, (6.2a)

h2(t) = h2[u(t)] =







0, for u(t) ≥ 0

1, for u(t) < 0
. (6.2b)

Then, the relation between the inputs u(t) and outputs ū(t) can be written as:

ū(t) = f [u(t)]h1(t) + g[u(t)]h2(t). (6.3)

Assume that the nonlinear parts f(·) and g(·) can be approximated by polynomials of known orders

in the input, or, more generally, a nonlinear function of two different known basis (f1, f2, · · · , fp)

and (g1, g2, · · · , gq):

f [u(t)] =

p
∑

i=1

cifi[u(t)], (6.4a)

g[u(t)] =

q
∑

j=1

djgj [u(t)]. (6.4b)

Then, (6.3) can be rewritten as:

ū(t) =

p
∑

i=1

cifi[u(t)]h1(t) +

q
∑

j=1

djgj [u(t)]h2(t). (6.5)
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Table 6.1: Numbers of Parameters to Be Estimated in (6.5)

The proposed switching sequences (6.2) The switching sequence (6.6) in [120]

p + q 2 × max{p, q}

Remark 6.1. The nonlinearity described in (6.1) could also be approximated by a single polynomial

γ[u(t)] =

R∑

k=1

γkuk(t).

However, as mentioned above, to achieve the same level of accuracy, the orders p, q of f(·), g(·)

may be lower than the order R of polynomial γ(·). This will reduce computational cost [120].

Remark 6.2. In [120], Vörös proposes a switching sequence

h(t) = h[u(t)] =







0, for u(t) ≥ 0,

1, for u(t) < 0.
(6.6)

Compared with the switching sequence in [120], by using the proposed switching sequences in this

chapter, less parameters in the identification of Hammerstein models are needed especially when the

orders p and q differ a lot, and thus the computational cost for the same two-segment nonlinearities

will be reduced. As shown in Table 6.1, numbers of parameters to be estimated are compared

for these two types of switching sequences. Another advantage of the new sequences lies in that

the base functions for representing f(·) and g(·) can be chosen separately, whereas they must be

identical in [120].

6.3 Hammerstein Model with Two-segment Nonlinearities

Consider the Hammerstein output-error (OE) system shown in Figure 6.1 where the true output

x(t) (namely, the noise-free output) and the inner variable ū(t) (namely, the output of the nonlinear

block) are unmeasurable, u(t) is the system input, y(t) is the measurement of x(t), v(t) is an additive

noise with zero mean. The nonlinear part of the system is given by (6.1). The Hammerstein output-

error model in Figure 6.1 is then expressed as

x(t) =
B(z)

A(z)
ū(t), (6.7a)

y(t) = x(t) + v(t). (6.7b)

Here, A(z) and B(z) are polynomials in the shift operator z−1[z−1y(t) = y(t − 1)] with

A(z) = 1 + a1z
−1 + a2z

−2 + · · · + anz−n,

B(z) = b1z
−1 + b2z

−2 + b3z
−3 + · · · + bnz−n.
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Notice that for the Hammerstein model shown in Figure 6.1, f(u), g(u) and G(z) := B(z)
A(z) are

not unique. Any pair (α[f(u), g(u)], G(z)/α) for some nonzero and finite constant α would pro-

duce identical input and output measurements. In other words, any identification scheme cannot

distinguish between (f(u), G(z)) and (α[f(u), g(u)], G(z)/α). Therefore, to get a unique parame-

terization, without loss of generality, one of the gains of f(u), g(u) and G(z) has to be fixed. There

are several ways to normalize the gains [3, 15]. Here, the assumption in [29] is adopted: The first

coefficient of the function f(·) equals 1; i.e., c1 = 1.

Equation (6.7a) can be rewritten as a recursive form

x(t) = −
n∑

i=1

aix(t − i) +

n∑

i=1

biū(t − i)

= −
n∑

i=1

aix(t − i) +

n∑

i=1

bi





p
∑

j=1

cjfj(t − i)h1(t − i) +

q
∑

j=1

djgj(t − i)h2(t − i)



 . (6.8)

6.4 Identification Algorithm

6.4.1 Algorithm description

The purpose of parameter identification is to identify all the unknown parameters in the Hammer-

stein model merely based on the inputs u(t) and outputs y(t). The difficulty of identification is

that the inner variables – x(t) and ū(t) are unmeasurable. The presented idea to handle this diffi-

culty is to replace the unmeasurable terms x(t) by their estimates based on the obtained parameter

estimates. Define the information vector ϕ0(t) (also called data vector) and parameter vector θ as

ϕ0(t) = [−x(t − 1), · · · ,−x(t − n),ψT

f (t),ψT

g (t)]T ∈ R
(p+q+1)n,

θ = [aT, c1b
T, c2b

T, · · · , cpb
T, d1b

T, d2b
T, · · · , dqb

T]T ∈ R
(p+q+1)n,

a = [a1, a2, · · · , an]T ∈ R
n,

b = [b1, b2, · · · , bn]T ∈ R
n,

c = [c2, c3, · · · , cp]
T ∈ R

p−1,

d = [d1, d2, · · · , dq]
T ∈ R

q,

ψf (t) = [ψT

f1(t),ψ
T

f2(t), · · · ,ψ
T

fp(t)]
T ∈ R

pn,

ψg(t) = [ψT

g1(t),ψ
T

g2(t), · · · ,ψ
T

gq(t)]
T ∈ R

qn,

ψfj(t) = [fj(u(t − 1))h1(t − 1), · · · , fj(u(t − n))h1(t − n)]T ∈ R
n, j = 1, 2, · · · , p,

ψgj(t) = [gj(u(t − 1))h2(t − 1), · · · , gj(u(t − n))h2(t − n)]T ∈ R
n, j = 1, 2, · · · , q.

Then the identification model of the system is obtained:

x(t) = ϕT

0 (t)θ, (6.9a)
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y(t) = ϕT

0 (t)θ + v(t). (6.9b)

The standard stochastic gradient algorithm

θ̂(t) = θ̂(t − 1) +
ϕ0(t)

r(t)
[y(t) −ϕT

0 (t)θ̂(t − 1)], (6.10)

r(t) = r(t − 1) + ‖ϕ0(t)‖
2, r(0) = 1. (6.11)

cannot be used directly to estimate the parameter vector θ in (6.9) because the information vector

ϕ0(t) contains the unmeasured inner variable x(t−i), i = 1, 2, · · · , n. In order to solve this difficulty,

the approach here is based on the hierarchical identification principle [28,30]. Let θ̂(t) and x̂(t− i)

be the estimates of θ and x(t− i), respectively. ϕ(t) denote the information vector ϕ0(t) obtained

by replacing x(t − i) with x̂(t − i), i.e.,

ϕ(t) = [−x̂(t − 1),−x̂(t − 2), · · · ,−x̂(t − n),ψT

f (t),ψT

g (t)]T. (6.12)

Replacing ϕ0(t) and θ in (6.9) with ϕ(t) and θ̂(t), respectively, the estimate x̂(t) can be computed

by

x̂(t) = ϕT(t)θ̂(t). (6.13)

Replacing the information vector ϕ0(t) in (6.10) and (6.11) with ϕ(t), a recursive pseudo-linear

stochastic gradient algorithm can be obtained:

θ̂(t) = θ̂(t − 1) +
ϕ(t)

r(t)
[y(t) −ϕT(t)θ̂(t − 1)], (6.14a)

r(t) = r(t − 1) + ‖ϕ(t)‖2, r(0) = 1, (6.14b)

x̂(t) = ϕT(t)θ̂(t), (6.14c)

ϕ(t) = [−x̂(t − 1), · · · ,−x̂(t − n),ψT

f (t),ψT

g (t)]T. (6.14d)

To initialize the algorithm, θ̂(0) = θ̂0 is taken as some small real vector, e.g., θ̂(0) = 10−61n with

1n being an n-dimensional vector whose elements are all 1.

6.4.2 Convergence analysis

The convergence theorem can be proved by formulating a martingale process and using the mar-

tingale convergence theorem [19,48].

It is assumed that {v(t),Ft} is a martingale difference sequence defined on a probability space

{Ω,F , P}, where {Ft} is the σ algebra sequence generated by {v(t)}. The noise sequence {v(t)}

satisfies the following assumptions:

(A1) E[v(t)|Ft−1] = 0, a.s.;

(A2) E[v2(t)|Ft−1] = σ2
v(t) ≤ σ̄2

v < ∞, a.s..
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Theorem 6.1. For system in (6.9) and the stochastic gradient algorithm in (6.14), the parameter

estimation vector θ̂(t) consistently converges to the true parameter vector θ if (A1), (A2) and the

following assumption (A3) hold and A(z) is strictly positive real.

(A3) lim sup
t→∞

r0(t)

λmin[R0(t)]
< ∞, a.s.,

where

R(t) :=

t∑

i=1

ϕ(i)ϕT(i),

R0(t) :=

t∑

i=1

ϕ0(i)ϕ
T

0 (i),

r0(t) := tr[R0(t)].

Proof. This theorem can be proved by following the similar way in [28–30,33].

Remark 6.3. Under the stochastic framework, the convergence analysis of least squares identi-

fication algorithms and gradient based algorithms has been discussed for ARMAX systems [19],

Hammerstein ARMAX systems [29], dual rate systems [27, 30], to name a few. In Theorem 6.1,

following the similar line, the results have been extended to the convergence properties of the

stochastic gradient algorithm for Hammerstein OE systems with two-segment nonlinearities.

6.4.3 A varying forgetting factor scheme

The recursive stochastic gradient algorithm has low computational cost, but its convergence rate is

relatively slow. In order to improve the performance of the algorithm, a forgetting factor 0 < λ < 1

can be applied to obtain the recursive stochastic gradient algorithm with a forgetting factor:

θ̂(t) = θ̂(t − 1) +
ϕ(t)

r(t)
[y(t) −ϕT(t)θ̂(t − 1)], (6.15a)

r(t) = λ r(t − 1) + ‖ϕ(t)‖2, r(0) = 1, (6.15b)

x̂(t) = ϕT(t)θ̂(t), (6.15c)

ϕ(t) = [−x̂(t − 1), · · · ,−x̂(t − n),ψT

f (t),ψT

g (t)]T. (6.15d)

To make a tradeoff between the convergence rate and estimation accuracy, a varying forgetting

factor (VFF) scheme is proposed: A smaller forgetting factor is specified at the initial period

of estimation process, and then let the forgetting factor gradually increase with t, so that more

accurate parameter estimates could be obtained.

Note c1 = 1, the estimates â = [â1, â2, · · · , ân]T and b̂ = [b̂1, b̂2, · · · , b̂n]T of a and b can be read

from the first and second n entries of θ̂, respectively. The estimates of cj may be calculated as

ĉj =
θ̂jn+i

b̂i

, j = 2, 3, · · · , p; i = 1, 2, · · · , n.
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Also, the estimate of dj can be obtained, i.e.,

d̂j =
θ̂(p+j)n+i

b̂i

, j = 1, 2, · · · , q; i = 1, 2, · · · , n.

Since such n estimates of ĉj and d̂j are not needed, one way is to take their average as their

estimates, i.e.,

ĉj =
1

n

n∑

i=1

θ̂jn+i

b̂i

, j = 2, 3, · · · , p.

d̂j =
1

n

n∑

i=1

θ̂(p+j)n+i

b̂i

, j = 1, 2, · · · , q.

6.5 Numerical Examples

Several examples are given to illustrate the effectiveness of the proposed algorithms and show the

faster convergence rate.

Example 1: Consider a system described by

y(t) =
B(z)

A(z)
ū(t) + v(t),

A(z) = 1 + a1z
−1 + a2z

−2 = 1 − 0.20z−1 + 0.35z−2,

B(z) = b1z
−1 + b2z

−2 = z−1 + 0.50z−2,

ū(t) =







f [u(t)] = u(t) − 0.3u2(t) − 0.1u3(t), t ≥ 0

g[u(t)] = −1.1u(t), t < 0.

θs = [a1, a2, b1, b2, c2, c3, d1]
T,

δ = ‖θ̂(t) − θ‖/‖θ‖

δs = ‖θ̂s(t) − θs‖/‖θs‖,

where θ̂s(t) is the estimate of θs, δ and δs are the parameter estimate errors of θ and θs, respectively.

In the simulation, {u(t)} is taken as a persistent excitation signal sequence with zero mean and

unit variance σ2
u = 1.002, and {v(t)} as a white noise sequence with the power of σ2

v = 0.052. The

initial values of parameters are 1.

The parameter estimates θ and θs and their errors with different forgetting factors λ = 0.3 and

λ = 0.5 are shown in Tables 6.2–6.5. The parameter errors δ and δs vs. t are shown in Figures

6.2 and 6.3. From the Tables 6.2–6.5 and Figures 6.2 and 6.3, it is observed that that increasing

the data length generally leads to smaller parameter estimation errors. This confirms the proposed

theorem.

Example 2: Comparisons. Here, the proposed algorithm is compared with that using the

switching sequence in [66, 120]. If using the switching sequence (6.6) proposed in [120], a similar

recursive stochastic algorithm for the same Hammerstein OE model can be derived, which contains
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Figure 6.2: The parameter estimation errors δ vs. t.
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Figure 6.3: The parameter estimation errors δs vs. t.

more parameters to be estimated. Now, the identification algorithms using the existing switching

sequence (6.6) and the new switching sequences in this work are compared. To estimate the same

parameters in the same Hammerstein OE model, the parameter vector and estimation error are

θs = [a1, a2, b1, b2, c2, c3, d1]
T,

δs = ‖θ̂s(t) − θs‖/‖θs‖.

To start the algorithm, the initial values of the parameter are 1. The forgetting vectors are both 0.5.

{u(t)} is both taken as a persistent excitation signal sequence with zero mean and unit variance

σ2
u = 1.002, and {v(t)} as a white noise sequence with the power of σ2

v = 0.052. The trend of

parameter estimation errors is shown in Figure 6.4. From this figure, it is clearly observed that the

identification algorithm proposed in this chapter has faster convergence rate.
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Table 6.2: The estimates of θ (λ = 0.30)
t θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 δ (%)

1000 -0.1313 0.3263 0.7377 0.4165 0.1296 0.0862 -0.2739 -0.1487 -1.0891 -0.5750 34.458
2000 -0.1979 0.3502 0.8453 0.4383 -0.0062 0.0248 -0.2513 -0.1141 -1.0873 -0.5552 23.733
3000 -0.2176 0.3623 0.8816 0.4763 -0.0815 -0.0159 -0.1846 -0.1330 -1.1142 -0.5334 17.675
4000 -0.1560 0.4018 0.9208 0.4321 -0.1517 -0.0483 -0.1447 -0.1008 -1.0679 -0.4985 13.562
5000 -0.1641 0.3088 0.9691 0.5077 -0.1626 -0.0326 -0.1447 -0.0958 -1.0741 -0.5884 11.861
6000 -0.1708 0.3876 0.9082 0.4774 -0.2083 -0.0835 -0.1416 -0.0651 -1.0943 -0.5596 9.2531
7000 -0.1931 0.3574 0.9826 0.4786 -0.2129 -0.0963 -0.1264 -0.0700 -1.1204 -0.5566 6.5003
8000 -0.1893 0.3456 0.9433 0.4850 -0.2551 -0.1111 -0.1386 -0.0518 -1.0544 -0.5474 5.9188
9000 -0.1812 0.3432 0.9580 0.4942 -0.2313 -0.1405 -0.1153 -0.0430 -1.0712 -0.6083 6.1432
10000 -0.2020 0.3565 0.9729 0.5109 -0.2391 -0.1457 -0.1252 -0.0590 -1.1120 -0.5511 4.2427
15000 -0.1949 0.3559 0.9983 0.5110 -0.2655 -0.1454 -0.1002 -0.0742 -1.0980 -0.5549 2.5670
20000 -0.1885 0.3489 0.9854 0.4901 -0.2903 -0.1630 -0.0983 -0.0447 -1.1337 -0.5417 2.5260
True
values

-0.2000 0.3500 1.0000 0.5000 -0.3000 -0.1500 -0.1000 -0.0500 -1.1000 -0.5500

Table 6.3: The estimates of (ai, bi, ci, di) (λ = 0.30)

t a1 a2 b1 b2 c2 c3 d1 δs (%)

1000 -0.13125 0.32632 0.73768 0.41653 0.19128 -0.36412 -1.4284 42.857
2000 -0.19785 0.35015 0.84530 0.43826 0.02458 -0.27879 -1.2765 26.848
3000 -0.21761 0.36233 0.88158 0.47634 -0.06290 -0.24425 -1.1918 19.213
4000 -0.15596 0.40178 0.92079 0.43212 -0.13822 -0.19512 -1.1567 14.076
5000 -0.16406 0.30878 0.96913 0.50768 -0.11597 -0.16901 -1.1337 12.679
6000 -0.17078 0.38757 0.90817 0.47742 -0.20217 -0.14613 -1.1885 10.626
7000 -0.19305 0.35739 0.98257 0.47859 -0.20900 -0.13742 -1.1517 6.9670
8000 -0.18926 0.34563 0.94329 0.48504 -0.24971 -0.12683 -1.1232 5.1991
9000 -0.18123 0.34324 0.95796 0.49418 -0.26290 -0.10370 -1.1746 5.7973
10000 -0.20200 0.35653 0.97293 0.51087 -0.26542 -0.12206 -1.1109 3.1485
15000 -0.19492 0.35593 0.99833 0.51100 -0.27521 -0.12281 -1.0929 2.2435
20000 -0.18854 0.34894 0.98535 0.49012 -0.31363 -0.09544 -1.1279 2.2931

True
values

-0.20000 0.35000 1.00000 0.50000 -0.30000 -0.10000 -1.1000

6.6 Identification of Distillation Columns

Most physical devices have nonlinear characteristics outside a limited linear range. In [36], the

Hammerstein model was applied to the distillation columns. Distillation is one of the most impor-

tant processes in the chemical industries, and its modeling and control have been a challenge for

engineers. The dynamics of the distillation columns become more nonlinear and more difficult to

control with the increase of demanded purities. There are several approaches to model the distil-

lation column in the literature, e.g., linearization of the equations describing the behavior of the

columns.

The purpose of the distillation column [110] in Figure 6.5 is to separate the Feed F , a mixture

of a light and a heavy component, into a distillation product D, which contains most of the light

component, and a bottom product B, which contains most of the heavy component. The driving

force for this separation is the difference in volatility between the light and heavy component. The

distillation column mentioned above has five controlled variables:

• vapor holdup (p)
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Table 6.4: The estimates of θ (λ = 0.50)
t θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 δ (%)

1000 -0.1317 0.3340 0.6959 0.4337 0.1762 0.1058 -0.2726 -0.1625 -1.0870 -0.5959 37.925
2000 -0.1975 0.3407 0.7879 0.4257 0.0747 0.0410 -0.2675 -0.1207 -1.0765 -0.5629 29.269
3000 -0.2162 0.3586 0.8165 0.4558 0.0062 0.0074 -0.2192 -0.1349 -1.1141 -0.5445 24.032
4000 -0.1795 0.3528 0.8506 0.4360 -0.0440 -0.0175 -0.1945 -0.1086 -1.0931 -0.5333 20.050
5000 -0.1766 0.3190 0.8976 0.4817 -0.0540 -0.0176 -0.1747 -0.0974 -1.0805 -0.5689 18.011
6000 -0.1843 0.3675 0.8678 0.4573 -0.1147 -0.0583 -0.1723 -0.0742 -1.1009 -0.5664 15.008
7000 -0.1869 0.3473 0.9205 0.4793 -0.1439 -0.0762 -0.1445 -0.0813 -1.1118 -0.5551 11.434
8000 -0.1886 0.3472 0.9028 0.4696 -0.1921 -0.0886 -0.1478 -0.0612 -1.0656 -0.5494 9.8403
9000 -0.1880 0.3421 0.9314 0.4725 -0.1892 -0.1040 -0.1344 -0.0521 -1.0746 -0.5971 8.8923
10000 -0.1957 0.3442 0.9377 0.4907 -0.2022 -0.1076 -0.1361 -0.0729 -1.1124 -0.5539 7.5508
15000 -0.2025 0.3577 0.9804 0.5060 -0.2535 -0.1317 -0.1028 -0.0804 -1.0932 -0.5518 3.6073
20000 -0.1954 0.3477 0.9780 0.4875 -0.2795 -0.1482 -0.1060 -0.0570 -1.1258 -0.5420 2.4978
True
values

-0.2000 0.3500 1.0000 0.5000 -0.3000 -0.1500 -0.1000 -0.0500 -1.1000 -0.5500

Table 6.5: The estimates of (ai, bi, ci, di) (λ = 0.50)

t a1 a2 b1 b2 c2 c3 d1 δs (%)

1000 -0.13168 0.33398 0.69588 0.43371 0.24850 -0.38317 -1.4680 47.654
2000 -0.19754 0.34067 0.78790 0.42572 0.09562 -0.31149 -1.3443 33.826
3000 -0.21622 0.35864 0.81645 0.45582 0.01188 -0.28223 -1.2795 27.015
4000 -0.17954 0.35283 0.85059 0.43595 -0.04596 -0.23883 -1.2542 22.222
5000 -0.17655 0.31903 0.89760 0.48171 -0.04832 -0.19845 -1.1924 18.572
6000 -0.18425 0.36753 0.86776 0.45733 -0.12983 -0.18044 -1.2536 17.022
7000 -0.18686 0.34729 0.92048 0.47927 -0.15762 -0.16329 -1.1831 11.831
8000 -0.18861 0.34723 0.90279 0.46960 -0.20068 -0.14703 -1.1751 10.182
9000 -0.18798 0.34209 0.93139 0.47251 -0.21164 -0.12728 -1.2087 9.7796
10000 -0.19572 0.34417 0.93765 0.49067 -0.21744 -0.14684 -1.1576 7.7510
15000 -0.20252 0.35768 0.98035 0.50604 -0.25943 -0.13188 -1.1028 3.4057
20000 -0.19538 0.34771 0.97804 0.48745 -0.29491 -0.11263 -1.1314 2.5991

True
values

-0.20000 0.35000 1.00000 0.50000 -0.30000 -0.10000 -1.1000

• liquid holdup in the accumulator (MD)

• liquid holdup in the column base (MB)

• top composition (yD)

• bottom composition (xB)

and five manipulated inputs:

• distillate flow (D)

• bottom flow (B)

• reflux (L)

• boilup (V )

• overhead vapor (VT ).

This distillation column is a multi-input-multi-output system. Different control configurations can

be obtained by choosing different inputs. For simplicity, a simple and feasible Hammerstein model
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Figure 6.4: The comparison of parameter estimation errors δs vs. t.

was obtained with the input as the reflux flow L, and the output as the top composition yD in [36]

stated as follows:

yD(t) = B(z)
A(z) ū(t) + v(t),

A(z) = 1 + a1z
−1 = 1 − 0.796z−1,

B(z) = b1z
−1 = 0.206z−1,

ū(t) = f(L(t)) = c1L(t) + c2L
2(t) + c3L

3(t)

= L(t) − 7.059L2(t) − 7.356L3(t),

θs = [a1, b1, c2, c3]
T.

(6.16)

It is worth noticing that the above Hammerstein model is with single-segment nonlinearity,

which is a special case of the Hammerstein model with two-segment nonlinearities. The algorithm

proposed in this chapter can be readily applied to this special case. {L(t)} is taken as a persistent

excitation signal sequence with zero mean and unit variance σ2
u = 1.002, and {v(t)} as a white

noise sequence with zero mean and constant variance σ2
v = 0.012. The recursive stochastic gradient

algorithm is applied to estimate the parameters of this system. The parameter estimates θ =

[θ1, θ2, · · · , θ4]
T and θs = [a1, b1, c2, c3] and their errors are shown in Tables 6.6 and 6.7, and two

different parameter estimation error measures δ and δs versus t are shown in Figure 6.6. Here,

δ = ‖θ̂(t) − θ‖/‖θ‖, δs = ‖θ̂s(t) − θs‖/‖θs‖, θ̂s(t) is the estimate of θs.

In this example, the VFF scheme is designed as: When t < 500, take λ = 0.30; when t ≥ 500,

take λ = 0.80. The parameter estimates are shown in Tables 6.8 and 6.9 and their estimation

errors are shown in Figure 6.7. From the tables and figures, it is observed that the error curves in

Figure 6.7 with the VFF scheme are smoother than the ones in Figure 6.6 with the fixed forgetting

factor, and the VFF scheme has better convergence rate as well as acceptable stationarity in the

estimation error.
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Figure 6.5: Two-product distillation column.

6.7 Conclusion

New switching sequences are proposed for the identification of two-segment Hammerstein output-

error models. A recursive stochastic gradient algorithm based on replacing unavailable inner vari-

ables with their estimates is applied, and the convergence analysis is carried out. Simulation

results show the effectiveness of the proposed algorithms. The proposed method is also applied to

the distillation columns. It is worth mentioning that new switching sequences and the proposed

algorithm can also be extended to systems with multisegment piecewise nonlinearities, deadzones,

and time-varying piecewise-linear nonlinearities.

Table 6.6: The estimates of θ (fixed forgetting factor: λ = 0.30)

t θ1 θ2 θ3 θ4 δ (%)

100 -0.8017 0.3791 -1.3807 -1.6215 9.5747
200 -0.8178 0.2723 -1.4244 -1.5463 3.6328
300 -0.7967 0.2408 -1.4531 -1.5234 1.5849
400 -0.7959 0.2276 -1.4488 -1.5255 1.0855
500 -0.7933 0.2121 -1.4534 -1.5152 0.2998
600 -0.7948 0.2056 -1.4570 -1.5146 0.1400
700 -0.7991 0.2091 -1.4603 -1.5126 0.3558
800 -0.7961 0.2003 -1.4576 -1.5157 0.2980
900 -0.7963 0.2156 -1.4526 -1.5186 0.4575
1000 -0.7980 0.2133 -1.4507 -1.5199 0.4201

True
values

-0.7960 0.2060 -1.4542 -1.5153
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Table 6.7: The estimates of (ai, bi, ci) (fixed forgetting factor: λ = 0.30)

t a1 b1 c2 c3 δs (%)

100 -0.8017 0.3791 -3.6426 -4.2777 44.9929
200 -0.8178 0.2723 -5.2314 -5.6794 24.2576
300 -0.7967 0.2408 -6.0345 -6.3267 14.2026
400 -0.7959 0.2276 -6.3653 -6.7023 9.3222
500 -0.7933 0.2121 -6.8508 -7.1422 2.9186
600 -0.7948 0.2056 -7.087 -7.3675 0.2958
700 -0.7991 0.2091 -6.9851 -7.2351 1.3856
800 -0.7961 0.2003 -7.2784 -7.5686 2.9877
900 -0.7963 0.2156 -6.7361 -7.0425 4.4015
1000 -0.7980 0.2133 -6.8019 -7.1263 3.3713

True
values

-0.7960 0.2060 -7.0590 -7.3560

Table 6.8: The estimates of θ (VFF Scheme: λ = 0.30, t ≤ 500; λ = 0.80, t >
500)

t θ1 θ2 θ3 θ4 δ (%)

100 -0.8017 0.3791 -1.3807 -1.6215 9.5747
200 -0.8178 0.2723 -1.4244 -1.5463 3.6328
300 -0.7967 0.2408 -1.4531 -1.5234 1.5849
400 -0.7959 0.2276 -1.4488 -1.5255 1.0855
500 -0.7933 0.2121 -1.4534 -1.5152 0.2998
600 -0.7960 0.2105 -1.4543 -1.5167 0.2081
700 -0.7958 0.2100 -1.4547 -1.5164 0.1872
800 -0.7937 0.2092 -1.4546 -1.5164 0.1823
900 -0.7961 0.2096 -1.4564 -1.5167 0.1976
1000 -0.7960 0.2094 -1.4552 -1.5168 0.1714

True
values

-0.7960 0.2060 -1.4542 -1.5153

Table 6.9: The estimates of (ai, bi, ci) (VFF Scheme: λ = 0.30, t ≤ 500; λ =
0.80, t > 500)

t a1 b1 c2 c3 δs (%)

100 -0.8017 0.3791 -3.6426 -4.2777 44.9929
200 -0.8178 0.2723 -5.2314 -5.6794 24.2576
300 -0.7967 0.2408 -6.0345 -6.3267 14.2026
400 -0.7959 0.2276 -6.3653 -6.7023 9.3222
500 -0.7933 0.2121 -6.8508 -7.1422 2.9186
600 -0.7960 0.2105 -6.9087 -7.2053 2.0812
700 -0.7958 0.2100 -6.9257 -7.2196 1.8646
800 -0.7937 0.2092 -6.9520 -7.2472 1.4926
900 -0.7961 0.2096 -6.9474 -7.2351 1.6090
1000 -0.7960 0.2094 -6.9492 -7.2436 1.5369

True
values

-0.7960 0.2060 -7.0590 -7.3560

90



0 100 200 300 400 500 600 700 800 900 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

t

 

 

δs

δ

Figure 6.6: The parameter estimation errors (fixed forgetting factor scheme: λ =
0.30) – δ vs. t and δs vs. t.
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Chapter 7

Conclusion and Future Work

This thesis has investigated the controller design for networked control systems (NCSs), l2 −

l∞ filtering for multirate systems, and identification of Hammerstein systems with two-segment

nonlinearities. This chapter summarizes the results reported in the thesis, and proposes some

possible future research directions.

7.1 Conclusion

The two-mode-dependent controller design problem for NCSs with time delays modeled by Markov

chains has been studied. The work in this thesis is the first to incorporate the available informa-

tion of both the sensor-to-controller and controller-to-actuator delays into the controller design.

Compared with the existing mode-independent and one-mode-dependent controller, the two-mode-

dependent controller can reduce the conservativeness as it can include them as special cases. Due

to the introduction of the previous controller-to-actuator delay (dk−τk−1) in the controller, the

closed-loop system was a special jump linear system. A proposition was further developed to char-

acterize the stochastic properties of the multi-step jump of the delay. The sufficient and necessary

conditions to guarantee the stochastic stability were obtained and further transformed to be a set of

LMIs with nonconvex constraints, which can be efficiently solved by product reduction algorithm.

The control synthesis problem of the system was further considered. The H2 and H∞ norms were

defined for the special system and the robust mixed H2/H∞ control problem has been solved where

the uncertainties of the plant were assumed to be norm-bounded.

The classical generalized predictive control (GPC) has been modified for the NCS design, and

further a modified-GPC (M-GPC) method is proposed. The future control signals created by M-

GPC are employed to compensate for the S-C and C-A delays. This method can be applied to

NCSs with random delays and delays modeled by Markov chains. For the case with time delays

modeled by Markov chains, the sufficient and necessary conditions to check the stochastic stability

were provided. This method has been tested on an experimental hydraulic position control system.

Different from Kalman and H∞ filtering, the l2−l∞ filtering provides an alternative performance

index which minimizes the energy-to-peak gain from the external input to the error. The l2 −∞
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filtering for multirate systems has been developed by using lifting and LMI techniques. The filtering

design problem is finally formulated to be a series of LMIs with nonconvex constraints, which can

be solved by the PRA.

Finally, the identification of Hammerstein systems with two-segment nonlinearities was investi-

gated. A simple and efficient switching method was proposed to reduce the number of parameters

to be estimated. Further, a stochastic gradient identification method was developed based on the

idea of replacing the unmeasurable terms by their estimates. This method was verified through

examples.

7.2 Future Work

Based upon the work presented in this thesis, some future research topics are proposed.

1. So far, most works on NCSs were developed either in the continuous-time domain or the

discrete-time domain. However, in practical systems, an NCS is a sampled-data system. The

model of the plant is continues-time and the controller to be designed is discrete-time. In this

thesis, the controller for NCSs in the discrete-time domain has been developed. Two open

problems are: (1) The intersample behaviors of the system are not considered; (2) the time

delay is assumed to be integral multiple of the sampling time. Hence, to design a controller

for NCSs modeled as sampled-data systems is worth further research.

2. Predictive control methodology is a promising approach to compensate for network-induced

delays for NCSs. In existing works, the stochastic information of time delays, e.g., the prob-

ability transition matrix of Markov chains was not incorporated in the optimization process.

To make full use of this information, powerful stochastic modeling and control tools can be

used to predict the time delay likelihood in the near future. Base on such predictions, tools

like stochastic predictive control can be used to plan the best likely control actions based on

appropriate forecasts.

3. In the area of filtering design for multirate systems, the model of the plant is always assumed

to be precisely known, because it is hard to explicitly deal with uncertainties during the lifting

operation procedure. However, in real systems, the model uncertainty is unavoidable. Hence,

it is desirable to develop the robust filtering schemes for multirate systems with polytopic or

norm-bounded uncertainties.
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