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ABSTRACT 

 The cytotoxic effects of exposure to low concentrations of the herbicide, 2,4-

dichlorophenoxyacetic acid (2,4-D) that are typically found in groundwater were 

investigated, in vitro.  Most 2,4-D toxicology studies use high concentrations of the 

herbicide that are above those typically found in groundwater and measure overt 

biological endpoints.  In contrast, this thesis examines the effects of low concentrations 

of 2,4-D and measures more subtle and sensitive endpoints such as gene expression and 

the generation of reactive oxygen species.  This work derives from recent cDNA 

microarray analysis conducted in our laboratory that revealed significant alterations in 

the expression of 238 genes in cells exposed to nanomolar (nM) concentrations of a 

commercial formulation of 2,4-D.  These findings are extended in this thesis to include 

the in vitro cytotoxic effects of low concentrations of both technical and commercial 

2,4-D on two cell lines.  Cells derived from liver (HepG2) and kidney (HEK293) 

respectively, were chosen, since liver and kidney are known to metabolize 2,4-D in vivo.  

Cell viability was measured using the Resazurin assay, reactive oxygen species (ROS) 

were measured with 2’,7’-dichlorofluorescin diacetate (2’,7’-DCFH-DA), and real time–

polymerase chain reaction (RT-PCR) was used to assess changes in mRNA expression 

while protein expression was examined by Western blot.    

 Cell viability studies revealed that low environmental concentrations (0.1 to 100 

nM) of 2,4-D induced small, but statistically significant decreases in cell viability.  No 

concentration or time-dependent decreases in cell viability were observed in cells 

exposed to either forms of low environmental 2,4-D concentrations.  HEK293 cells were 

more susceptible than HepG2 cells to the toxic effects of both forms of 2,4-D, having 

statistically significant lower viability at all exposure concentrations and durations.  

Both forms of 2,4-D reduced cell viability in both cell lines, suggesting that cytotoxicity 

was induced directly by 2,4-D, and not by the ‘inert ingredients’ in the commercial 

formulation. 

  The ROS assays illustrated that 2,4-D induced statistically significant ROS 

production in HepG2 and HEK293 cell cultures at concentrations greater than 10 µM 

and 100 nM respectively.  This was both a concentration and time-dependent effect in 
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both cell lines.  Although HEK293 cells were more susceptible to 2,4-D, they had 50 to 

70% less ROS production than HepG2 cells, at all exposure concentrations and times.   

 The RT-PCR and Western blot analyses showed that exposure of HepG2 and 

HEK293 cells to low 2,4-D concentrations induced (< 2 fold) alterations in mRNA and 

protein levels of FTL, FTH1 and PCNA however these changes did not consistently vary 

with concentration. 

 Taken together, cell viability, ROS and gene expression studies show that low 

environmental 2,4-D concentrations induced subtle in vitro cytotoxic effects.  However 

we have no evidence that these subtle changes pose a serious health threat to exposed 

humans.  
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1. INTRODUCTION 

 In 1944 (PAN Database, 2004), 2,4-dichlorophenoxyacetic acid (2,4-D), a 

chlorophenoxy herbicide (Li et al., 2003) was introduced into the commercial market.  

The herbicide is extensively used in the control of woody plants (Li et al., 2003), 

broadleaf (Environment Canada, 1991) and aquatic weeds (Environment Canada, 1991).  

It has been described as the most widely used herbicide in the world (Holland et al., 

2002; Kwan and Chu, 2004; WSDOT, 2006).   

         The herbicide typically does not accumulate in the environment (air, water or 

soil), as it is readily degraded by biological, chemical and physical processes (WHO, 

1984).  However, alterations in biological, chemical and physical factors may result in 

the increased persistence of the herbicide in the environment.  For instance, anaerobic 

conditions favours the persistence of 2,4-D in aquatic environments (WHO, 2003), such 

as groundwater.  The persistence of 2,4-D in the environment questions the potential 

adverse human health effects that may occur following exposure to the chemical for 

acute or chronic durations of time.  This is especially true with respect to its persistence 

in groundwater; since groundwater may be a significant and possibly the sole source of 

water for humans residing in rural areas.     

         Approximately one quarter of Canadians depend on groundwater, of which two-

thirds of these are rural habitants (Environment Canada, 2004a).  Groundwater is a vital 

resource (Environment Canada, 2004b) for rural residents (Rudolph et al., 1998), for all 

of their daily water needs, such as drinking (Environment Canada, 2004b).  

Unfortunately, groundwater contamination with chemicals, such as 2,4-D, has become 

an increasing problem in Canada (Environment Canada, 2004c).  The herbicide, 2,4-D, 

has been one of the most frequently detected herbicides in groundwater (Grover et al., 

1997).   

         Since, chemical contamination of groundwater may pose a human health threat,  

regulatory agencies such as the Canadian Federal-Provincial-Territorial Committee on 

Drinking Water (CDW), United States Environmental Protection Agency (US EPA) and 
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World Health Organization (WHO) have established guideline levels for contaminants 

in drinking water to protect exposed individuals.  Thus, it is important to determine the 

levels of contaminants, such as 2,4-D, that may be found in groundwater and address the 

potential adverse human health effects that may be associated with exposure to these 

contaminants.  The herbicide is usually found in groundwater at concentrations (<100 

nM (<22 µg/L)) that are below established drinking water guidelines.  However, the 

potential adverse human health effects associated with acute and chronic exposure to 

low environmental 2,4-D concentrations has not yet been evaluated.          

         Results from previous in vivo and in vitro toxicological studies that have tested 

high doses (1 to 600 mg/kg) or concentrations (1 µM to 45 mM) of the herbicide, 

suggest that the chemical may induce a plethora of adverse human health effects.  These 

adverse human health effects include; neurotoxicity (Bortolozzi et al., 1999, 2004; 

Garcia, 2001, 2004; Rosso et al., 2000), immunotoxicity (de la Rosa, 2003; Lee et al., 

2001), genotoxicity  (Amer and Aly, 2001; Holland et al., 2002; Madrigal-Bujaidar et 

al., 2001; González et al., 2005; Zeljezic and Garaj-Vrhovac, 2004; Venkov et al., 

2000), carcinogenesis (Ge et al., 2002; Holland et al., 2002; Ozaki et al., 2001), 

reproductive toxicity (Amer and Aly, 2001; Madrigal-Bujaidar et al., 2001), 

developmental toxicity (Alpöz et al., 2001; Bortolozzi et al., 2004; Charles et al., 2001; 

Lee et al., 2001) cytotoxicity (Bharadwaj et al., 2005; De Moliner et al., 2002; 

Duchnowicz and Koter, 2003; Kaioumova et al., 2001a; Palmeira et al., 1995; Tuschl 

and Schwab, 2003, 2004, 2005; Venkov et al., 2000) to organ toxicity, including 

hepatotoxicity (Bharadwaj et al., 2005; Charles et al., 1996a; Paulino et al., 1996; 

Tuschl and Schwab, 2003, 2004, 2005) and nephrotoxicity (Ozaki et al., 2001).   

         In contrast to 2,4-D toxicology, the cell and molecular mechanism(s) of 2,4-D 

toxicity has not been extensively studied.  The results from some existing in vivo and in 

vitro studies suggest that the mechanisms of 2,4-D toxicity may include apoptosis (de 

Moliner et al., 2002;  Kaioumova et al., 2001a, 2001b; Tuschl and Schwab, 2003, 2004; 

2005; Zychlinski and Zolnierowicz, 1990),  alteration of cell physiology (uncoupling of 

oxidative phosphorylation, depression of transmembrane potential) (Kaioumova et al., 

2001b; Palmeira et al., 1994; Tuschl and Schwab, 2003), formation of a reactive 
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metabolite (Li et al., 2003) and ROS mediated oxidative stress (Bukowska, 2003; 

Duchnowicz and Koter, 2003; Palmeira et al., 1995; Teixeira et al., 2004).  

         Thus, although the above findings are intriguing and provide evidence of its 

toxicology and mechanisms of toxicity, the findings were primarily derived from 

classical toxicological studies that tested high doses and concentrations that do not 

reflect 2,4-D concentrations that are typically found in the environment.  Furthermore, 

previous studies concentrated on overt biological endpoints, and have not considered 

subtle cell and molecular changes, such as alterations in gene expression patterns, which 

are more often sensitive, than currently employed biological endpoints (Aardema et al., 

2002).      

         Recently, in our laboratory, it was illustrated that exposure to low nanomolar 

(nM) environmentally relevant concentrations of a commercial formulation of 2,4-D 

(containing the dimethylamine salt of 2,4-D; 2,4-D DMA) for 24 hrs resulted in 

decreased human hepatocellular carcinoma (HepG2) cell viability (Bharadwaj et al., 

2005).  Additionally, cDNA microarray analyses illustrated significant alterations in 238 

genes.  These genes included those associated with DNA repair and cancer  genes 

(proliferating cell nuclear antigen (PCNA)), immune response genes (interleukin 1 

receptor-like 1), cell cycle control genes (CDC-like kinase 1) and stress response genes 

(ferritin light polypeptide (FTL), ferritin heavy polypeptide 1 (FTH1)).  The expression 

levels of FTL, FTH1 and PCNA genes were consistently up-regulated (approximately 2 

fold) over the range of 2,4-D concentrations.  The up-regulation of FTL, FTH1 and 

PCNA genes has been suggested to play a protective role in response to oxidative stress 

(Balajee et al., 1999; Balla et al., 1992; Epsztejn et al., 1999; Holmes et al., 2002; Lin 

and Girotti, 1997; Orino et al., 2001; Regan et al., 2002; Savio et al., 1998).  Therefore, 

based on previous cDNA microarray analysis and in vivo and in vitro studies, it is 

possible that ROS mediated oxidative stress may be one potential mechanism of 2,4-D 

toxicity. 
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      1.1 Hypotheses 

            Based on previous in vivo and in vitro studies, in this thesis it was hypothesized                      

               that: 

(I) Exposure to environmental 2,4-D concentrations will result in cytotoxicity in 

exposed human cell cultures. 

(II) Reactive oxygen species are produced in human cell cultures exposed to 

environmental 2,4-D concentrations. 

(III) Exposure to environmental 2,4-D concentrations will induce up-regulation of 

FTL, FTH1 and PCNA gene expression detectable at the level of mRNA and 

protein accumulation. 

 

      1.2 Objectives 

            The main objectives of this study were to determine: 

(I) If environmentally realistic concentrations of 2,4-D will induce                        

cytotoxicity in exposed human cell cultures 

 

            To achieve this objective, human HepG2 and embryonic renal (HEK293) cell 

cultures were exposed to increasing concentrations of a technical grade or commercial 

formulation of 2,4-D.  Technical and commercial 2,4-D form were utilized to determine 

if cytotoxic effects are enhanced by the presence of ‘inert ingredients’ in the commercial 

formulation or a result of the active ingredient; 2,4-D.  To determine if there were 

concentration-dependent cytotoxic effects, cell cultures were exposed to 0.1nM to 1mM.  

Cells were exposed for 6, 24, 48 and 72 hrs to determine if more pronounced toxic 

effects would be produced with longer durations of exposure.  Cytotoxicity was 

determined as a measurement of cell viability, using the dye, Resazurin (Sigma-Aldrich 

Canada Ltd.).  

 

(II) If ROS are produced in human cell cultures exposed to environmental             

2,4-D concentrations  
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            To achieve this objective, HepG2 and HEK293 cell cultures were exposed to 

increasing concentrations of commercial 2,4-D for 2 to 6 hrs.  Production of ROS was 

measured fluorometrically, using 2’,7’-dichlorofluorescin diacetate (2’,7’- DCFH-DA) 

(Sigma-Aldrich Canada Ltd.).  

  

(III) If environmentally realistic 2,4-D concentrations induce up-regulation of 

FTL, FTH1 and PCNA gene expression detectable at the level of mRNA 

accumulation in exposed human cell cultures 

 

            To achieve this objective, HepG2 and HEK293 cell cultures were exposed to      

increasing concentrations of commercial 2,4-D for 24 hrs.  The RNA extracted from cell 

cultures was used in first-strand cDNA synthesis.  Synthesized cDNA was used as the 

template in real time – polymerase chain reaction (RT-PCR) assays to measure FTL, 

FTH1 and PCNA mRNA accumulation levels.    

 

(IV) If environmentally realistic concentrations of 2,4-D induce up-regulation of 

FTL, FTH1 and PCNA gene expression detectable at the level of protein 

accumulation 

 

            To achieve this objective, HepG2 and HEK293 cell cultures were exposed to      

increasing concentrations of commercial 2,4-D for 24 hrs.  Protein extracted from cell 

cultures was subjected to sodium dodecyl sulfate – polyacrylamide gel electrophoresis 

(SDS-PAGE) and FTL, FTH1 and PCNA protein expression was detected using 

conventional western blot analysis and quantified densitometrically.  
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2. LITERATURE REVIEW 

 The main objective of the research completed in this thesis was to assess the 

adverse human health effects that may be caused by exposure to low concentrations of 

2,4-D that are typically found in groundwater.  Therefore, in order to understand the 

significance and rationale for conducting this current study, a review of 2,4-D 

(development and use, mechanism of action, environmental fate, relationship with 

groundwater, 2,4-D toxicology, mechanism of toxicity) is presented in the following 

paragraphs.  A review of ferritin and PCNA gene (structure, function, relationship 

between gene expression and oxidative stress) is also presented that will allow for an 

understanding of why, in this thesis; (1) it was hypothesized that, 2,4-D exposure will 

induce intracellular ROS production, and (2) increases in the expression of ferritin and 

PCNA mRNA and protein in response to 2,4-D exposure may suggest ROS mediated 

oxidative stress as a mechanism of 2,4-D toxicity.  Finally, a brief review of ROS is 

presented.  The review of ROS is intended for the reader to attain some degree of 

understanding of ROS, its formation, sources, and association with oxidative stress.  The 

review also includes information on the intricate relationship between iron, ROS and 

oxidative stress that will enable for an understanding of why the particular up-regulation 

of intracellular ferritin mRNA or protein expression in the present study may suggest 

chemical insult via the mechanism of ROS mediated oxidative stress.  Thus, taken all 

together the following literature review allows for a better appreciation, and 

understanding of why this current study was conducted.           

 

      2.1 2,4-Dichlorophenoxyacetic acid  

            2.1.1 2,4-D: development and use 

 The herbicide, 2,4-D, a chlorophenoxy compound (Li et al., 2002; PAN Pesticide 

Database, 2004) was introduced as the first phenoxy herbicide, or hormone weed killer 

(Ware, 1978).  Additional members of the chlorophenoxy family of herbicides include; 

2-(2,4-dichlorophenoxy) propionic acid (dichloroprop, 2,4-DP), 4-(2,4-

 6



dichlorophenoxy) butyric acid (2,4-DB), 2-(2,4,5-trichlorophenoxy) propionic acid 

(fenoprop, silvex, 2,4,5-TP), α-(4-chloro-2-methylphenoxy) propionic acid (mecoprop, 

MCPP), 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) and 4-chloro-2-methyl-

phenoxyacetic acid (MCPA) (WHO, 1984).  The herbicide, 2,4-D was synthesized in 

1942 and introduced into the commercial market over 60 years ago (WSDOT, 2006).  It 

is currently used in the control of: (1) broadleaf weeds (Environment Canada, 1991; 

Stevens and Sumner, 1991; US EPA, 2005; Li et al., 2003) that are found in cereal crops 

(Kaioumova et al., 2001; WHO, 1984) (i.e wheat and corn (US EPA, 2005), pastures, 

lawns (Kaioumova et al., 2001; WHO, 1984) and recreational areas (i.e parks and golf 

courses (Kaioumova et al., 2001; Kwan and Chu, 2004; WHO, 1984)), (2) aquatic 

weeds (WHO, 1991; Zeljezic and Garaj-Vrhovac, 2004) and (3) woody plants (Li et al., 

2003; US EPA, 2005) that are found along roadsides, railways and utilities right of way 

(US EPA, 2005).  The herbicide is the third most widely used herbicide in the USA and 

Canada (WSDOT, 2006).  For instance, as much as 20 million kilograms of 2,4-D are 

annually applied to the Canadian prairies (Grover et al., 1997).  This suggests that there 

may be a high risk of human exposure to the chemical from the environment.   

The application rate of 2,4-D is dependent upon a combination of (1) the 

physical and chemical formulation of the herbicide and (2) the target.  For example, 

amine salts of 2,4-D are applied at a rate of 0.2 to 2.0 kg active ingredient per hectare to 

control broad-leaved weeds in cereal crops, pastures, lawns, golf courses and parks 

(WHO, 1989).  Ester formulations of 2,4-D are applied at a higher rate of up to 6.0 kg 

active ingredient per hectare to suppress weeds, brush and deciduous trees along rights-

of-way, conifer plantations and conifer reafforestation areas (WHO, 1989).  Granular 

forms of 2,4-D may be applied at rates ranging from 1 to 122 kg active ingredient per 

hectare to aquatic weeds (WHO, 1989). 

The herbicide is commercially available to the public and is considered a general 

use pesticide (GUP) (Beyond pesticides, 2004; EXTOXNET, 1996).  Thus, a license is 

not required to use or purchase this herbicide (Beyond pesticides, 2004).  It is 

commercially prepared as esters and amine salts (EXTOXNET, 1996; PMRA, 2005; 

WHO, 1984).  The herbicide is available to consumers (i.e. farmers and homeowners) 

for purchase under commercial trade names such as agent white, bladex-B, red devil dry 
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weed killer, weedar (EXTOXNET, 1996; US EPA, 2005), weedone (EXTOXNET, 

1996; Stevens and Summer, 1991), savage, planotox, aqua-kleen, barrage, malerbane, 

lawn-keep, salvo, weedtrine-II and plantguard (EXTOXNET, 1996).  Commercial 

formulations of 2,4-D are found as  emulsions, aqueous solutions and dry compounds 

(EXTOXNET, 1996). 

  

            2.1.2 Mechanism of action of 2,4-D as a herbicide 

The parent compound of 2,4-D is an acid (Charles et al., 1996; PMRA, 2005).  

The parent 2,4-D acid has an empirical formula of C8H6Cl2O3 and a molecular weight of 

221.04 (PMRA, 2005; Stevens and Sumner, 1991).  Physically, the acid is a white 

powder with a slight phenolic odor (Stevens and Sumner, 1991).  It is the parent acid 

that is the active ingredient in 2,4-D commercial formulations (PMRA, 2005).  An active 

ingredient in herbicide products is one that induces the desired effect (i.e. plant 

regulation, defoliation) (US EPA, 2006) on the plant.  The parent acid binds to target 

sites on plants, while the amine or ester portion of the chemical allows for absorption of 

the herbicide into plants (PMRA, 2005).  The commercial forms of 2,4-D differ in their 

ability to facilitate absorption into the plant (PMRA, 2005).  For instance, the more 

hydrophobic form (i.e. ester form) of 2,4-D allows for easier penetration of the herbicide 

into the waxy cuticle of the leaves of plants, while the more hydrophilic form (i.e. amine 

form) allows for easier uptake of the herbicide from the roots of plants  (PMRA, 2005).   

The herbicide functions as a systemic herbicide (EXTOXNET, 1996), and is thus 

translocated throughout the plant (Ware, 1978).  It is a chlorinated form (WHO, 1984) or 

structural analogue of the natural plant hormone, auxin indole-3-yl-acetic acid (Venkov 

et al., 2000).  Auxin indole-3-yl-acetic acid plays an integral role in the division, 

differentiation and elongation of plant cells (Venkov et al., 2000).  Thus, since it is a 

synthetic ‘auxin-like’ (Reuber, 1983) herbicide, the primary mode of action of 2,4-D is 

to alter plant metabolism (Li et al., 2003).  The alteration of plant metabolism results in 

over stimulation of plant growth and ultimately plant death (Chu et al., 2004; Holland et 

al., 2002). 
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            2.1.3 Environmental fate of 2,4-D in water  

The herbicide is considered a biodegradable compound (Industry Task Force II 

on 2,4-D Research Data, 1999) as it is readily degraded by biological, chemical and 

physical processes (WHO, 1984).  Thus, 2,4-D is believed to be non-persistent or non-

accumulative in the environment (atmosphere, soil and aquatic (i.e. surface and 

groundwater)) (WHO, 1984).  However, the chemical has been found to have a half-life 

of approximately 800 to 1900 days in experimental groundwater environments 

(reviewed by Cox. (1999)); suggesting that 2,4-D may be quite persistent in 

groundwater.   

The rate of 2,4-D degradation in water is dependent upon several factors (i.e. 

(water type, temperature, nutrient levels, sunlight and oxygen content) (reviewed by 

Environment Canada, 1991).  For instance 2,4-D is more persistent in groundwater, than 

surface water, possibly due to increased photolysis of 2,4-D residues in surface waters 

(i.e. lakes, ponds, streams (Cox, 1999)).    Extreme low or high water temperatures 

(Rushings et al., 2007) and low nutrient concentrations (Government of Ontario, 2003) 

also favor 2,4-D persistence in water.  These conditions inhibit the growth of 

microorganisms, and microorganisms are responsible for the biodegradation of 2,4-D in 

water (WHO, 2003).  Oxygen content also plays a crucial determinant factor in the rate 

of 2,4-D degradation in water.  Under aerobic conditions, the half-life of 2,4-D in water 

can be equal to or greater than 7 days (reviewed by Environment Canada, 1991).  In 

contrast, under anaerobic conditions, the half-life of 2,4-D in water may be greater than 

80 to 120 days (reviewed by Environment Canada, 1991).  Thus, depending upon 

biological, chemical and physical factors (mentioned above), 2,4-D may be fairly 

persistent in aquatic environments, such as groundwater.  This is a grave health concern 

for humans who may be acutely or chronically exposed to the chemical via consumption 

of groundwater.       

 

            2.1.4 2,4-D and groundwater 

Groundwater, described as one of nature’s hidden treasures (Environment 

Canada, 2004b) is the world’s largest reservoir of fresh water (Environment Agency, 

2007).  It is located below the earth’s water table (Environment Agency, 2007; 

 9



Environment Canada, 2004; U.S. Geological Survey, 2005) and is contained in bodies of 

rocks below the earth’s surface, known as aquifers (Environment Agency, 2007).  This 

body of water can be accessed; (1) anthropogenically (i.e. by digging wells (U.S. 

Geological Survey, 2005) and dugouts (Grover et al., 1997)) or (2) naturally (i.e. 

springs, swamps, lakes and rivers (U.S. Geological Survey, 2005).   

Groundwater serves as an essential and vital source of water (Environment 

Canada, 2004b) to some individuals (Rudolph et al., 1998) for all of their daily water 

needs (i.e. drinking, washing, cooking, farming (Environment Canada, 2004b)).  Rural 

Canadians account for the largest percentage of Canadians that depend on groundwater.  

Approximately 9 million Canadians depend on groundwater, and 6 million of these are 

rural habitants (Environment Canada, 2004a).  The natural filtering of groundwater 

through aquifers typically renders it free of disease-causing microorganisms 

(Environment Canada, 2004d).  However, human use of contaminants (industrial 

chemicals, pesticides) in close proximity to groundwater sources, such as wells, may 

pollute (via run-offs, spray-drifts, spills, leaks) these sources (Environment Canada, 

2004c, 2004e).  Pollution of groundwater renders it unsuitable for use and increases the 

risk of occurrence of adverse health effects in humans that consume the contaminated 

water.  Unfortunately, due to the increased used of toxic chemicals in industries and 

agriculture; groundwater contamination has become an increasing problem in Canada 

(Environment Canada, 2004c).  Even more worrisome, is the fact that, the overall extent 

of the problem of groundwater contamination is currently unknown and some 

contamination even goes unnoticed until populations fall ill following consumption of 

the contaminated water (Environment Canada, 2004c).  Contamination of groundwater 

can occur from either point or non-point sources (Environment Canada, 2004c, 2004e).  

Accidental spills, leaks from septic systems, livestock wastes and effluents from mining 

processes serve as point sources of groundwater (Environment Canada, 2004c, 2004e).  

In contrast, non-point, or distributive sources of groundwater include run-offs of 

fertilizers and pesticides (i.e 2.4-D) from agricultural land, and contaminants from the 

rain, snow and dry atmosphere (Environment Canada, 2004c, 2004e).   

Previously mentioned, 2,4-D has been one of the most frequently detected 

herbicide in groundwater (Grover et al., 1997).  The ability of 2,4-D to contaminate 

 10



groundwater is most likely associated with its leaching from soil environments 

(reviewed by Cox et al., 1999).  The herbicide has an increased potential to leach into 

groundwater from soils that are coarse-grained, sandy with low organic content, and 

basic (US EPA, 2005).  However, in general, little run-off from the soil into 

groundwater environments occurs with 2,4-D acid or its amine salts (US EPA, 2005).  

The US EPA has classified 2,4-D as a marginal leacher (reviewed by Environment 

Canada, 1991) from soil.  The leaching potential of chemicals from soil is a result of its 

adsorption and persistence properties (Gan, 2002).  The leaching rating of pesticides are 

assigned based on the groundwater ubiquity score (GUS), which is calculated using the 

adsorption coefficient (Koc) and dissipation half-life (DT½) of the pesticide in soil (Gan, 

2002).  A non-leacher is a pesticide that has a GUS <1.8 and a marginal leacher is a 

pesticide that has a GUS between 1.8 and 2.8 (Gan, 2002).   

Groundwater is a significant source of water for rural habitants (Environment 

Canada, 2004b).  Therefore, it is important to acknowledge the concentrations of 

contaminants, such as pesticides, found in groundwater and address the adverse human 

health effects that may occur from exposure to these contaminants.  In groundwater, 2,4-

D is usually detected at concentrations that are below established drinking water 

guidelines.  For instance, in a groundwater monitoring study (total of 21 rural 

Saskatchewan farm dugouts sampled between the fall of 1987 and the spring of 1989), 

2,4-D residues were detected in 75% of the total dugouts that were sampled (Grover et 

al., 1997).  Concentrations of 2,4-D were below (median and maximum 2,4-D residue 

concentrations were determined as 0.07 and 2.67 µg/L, respectively (Grover et al., 

1997)) established guideline values for the herbicide in drinking water (see below for 

established guideline values for 2,4-D in drinking water).  However, there have been 

some studies that have found 2,4-D in well water samples at concentrations that were 

alarmingly approaching and exceeding established drinking water guideline values for 

the widely used herbicide.  For example, in an investigation of pesticide contamination 

in 359 rural wells in Ontario over a duration of 5 years (1979 and 1984), the authors 

found that 71% of the wells were contaminated with pesticides and 2,4-D was involved 

in 30% of those well contaminations at concentrations ranging from 0.1 to 60 µg/L 

(Frank et al., 1987).  In a survey conducted in 6 Canadian provinces from 1971 to 1986, 
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2,4-D residue was found at a concentration of approximately 29 µg/L in 52 out of 805 

samples of raw and treated drinking water (reviewed by Environment Canada, 1991; 

WHO, 2003).  A concentration that was approaching the international WHO drinking 

water guideline for 2,4-D (see below).     

The herbicide has been suggested to induce a plethora of adverse human health 

effects (see sections 2.1.6.1 to 2.1.6.9), thus regulatory guideline levels for 2,4-D in 

drinking water have been established by both national and international agencies to help 

protect the health of humans who may be exposed to the chemical via drinking water.  

There are vast variations between individual regulatory guidelines established for 2,4-D 

in drinking water.  Regulatory guidelines for water contaminants, such as 2,4-D are 

established by agencies based on the best available scientific research conducted on the 

potential adverse human health effects that may be associated with consumption of high 

concentrations of the chemical over a chronic period of time (Health Canada, 2006).  

Currently, the highest guideline level for 2,4-D in drinking water has been established by 

Canada.  The Canadian CDW has established an interim maximum acceptable 

concentration (IMAC) for 2,4-D in drinking water of 100 µg/L (Environment Canada, 

1991).  Other agencies have established guideline levels that are well below that of 

Canada.  For example, the US EPA has established a maximum contaminant level 

(MCL) for 2,4-D in drinking water of 70 µg/L (US EPA, 2005).  In contrast, WHO has 

established an international drinking water guideline of 30 µg/L (WHO, 2003), while the 

European council of agriculture ministers has established a maximum admissible 

concentration (MAC) for all pesticides in drinking water of 0.1 µg/L (Harrison et al., 

2000).    

 

            2.1.5 Exposure to and fate of 2,4-D in humans 

 Humans may be exposed to 2,4-D via several routes.  These include the 

respiratory, dermal, eyes and oral routes (PAN Pesticide Database, 2004).  The oral 

route is the most significant route of exposure to 2,4-D from groundwater.  Although 

water represents a significant source, it is not the sole source of 2,4-D exposure.  Soil 

(contaminated during herbicidal application (WHO, 2003)) and air (contaminated 

through spray drifts and volatilization of the herbicide (reviewed by Cox et al., 1999)) 

 12



are also sources of 2,4-D exposure to humans.  Consumption of foods (i.e. alfalfa, apple, 

apricot, cranberry, flax, maple, pear, peach and plum (PMRA, 2005)) contaminated with 

2,4-D also exposes humans to the herbicide.  Other sources of 2,4-D exposure may 

include occupational and bystander exposure.  Personnel occupationally responsible for 

handling and applying 2,4-D may unintentionally be exposed to high concentrations of 

the herbicide (PMRA, 2005; WHO, 1984) via all routes.  For instance the herbicide has 

been found at concentration of up to 453.6 µg/L in the urine of backpack sprayers of 2,4-

D (Garry et al., 2001).  Homeowners who apply 2,4-D to their lawns may be also be 

unintentionally exposed to the chemical (PMRA, 2005) via all routes of exposure.  

Finally, bystanders, such as persons (adults, children) who enter an area (residential 

lawns, parks, golf-course) where 2,4-D has been applied may also be exposed to the 

herbicide through similar routes (PMRA, 2005).   

 In humans, once orally ingested, as would occur with consumption of 

groundwater, the esters and amine forms of 2,4-D rapidly undergo hydrolysis to yield 

the parent 2,4-D acid (BC Ministry of Forests, 2003; Garabrant and Philbert, 2002).  The  

parent 2,4-D acid has been described to be well absorbed from the gastrointestinal tract 

following oral ingestion (Sauerhoff et al., 1977).  However, at human physiological pH 

(pH 7.4), the parent acid exists predominantly in the ionized form (Garabrant and 

Philbert, 2002).  Thus, ionization of the 2,4-D acid molecule at human physiological pH 

limits the diffusion across cell membranes (Garabrant and Philbert, 2002), suggesting 

that in humans, the probability of 2,4-D to enter, accumulate and induce adverse effects 

in cells and/or tissues is low.   

 Excretion of 2,4-D occurs mainly in the urine via first-order rate kinetics, with an 

average half-life of approximately 17 hrs (Sauerhoff et al., 1977).  The majority of 

absorbed 2,4-D (82.3%) is excreted in the urine mainly unchanged.  A small portion 

(12.8%) is excreted as an unidentified 2,4-D conjugate (Sauerhoff et al., 1977).  Thus, 

due to its pharmacokinetic properties, accumulation of 2,4-D in human organs and 

tissues is considered highly unlikely (Garabrant and Philbert, 2002).  However, several 

studies have illustrated that 2,4-D may accumulate at high concentrations in humans 

through multiple exposure sources (i.e via consumption of groundwater, occupational 

and bystander).  For instance, in a study conducted in rural Saskatchewan, during spring 
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application (June-July 1996) of the herbicide, 2,4-D was detected at a maximum 

concentration of  230 µg/L in the plasma of rural residents (Semchuk et al., 2004).  In 

these cases, the residents may have been unintentionally exposed to 2,4-D via multiple 

routes (i.e. oral, dermal, respiratory, eyes) and sources (groundwater consumption for 

drinking, washing, and cooking, bystander, air and food).  The accumulation of high 

concentrations of 2,4-D in humans have also been observed in persons working with the  

herbicide (Arbuckle et al., 1999; Garry et al., 2001; Holland et al., 2002).  Results from 

a study performed in Ontario also reported high 2,4-D concentrations of up to 106.9 

µg/L in the semen of farmers (Arbuckle et al., 1999) occupationally exposed to the 

herbicide.  High concentrations of 2,4-D have also been detected at maximum levels of 

240 µg/L (Holland et al., 2002) and 453.6 µg/L (Garry et al., 2001) in the urine of 

backpack sprayers who were occupationally exposed to the herbicide.  The results of 

these studies are worrisome, since the entrance and accumulation of toxicants (i.e. 2,4-

D) into cells may induce toxicity in cells and tissues (Gregus and Klaassen, 2001).  A 

review of studies that have examined the adverse human health effects of 2,4-D will now 

be presented.     

 

            2.1.6 Toxicological evidence of the adverse human health effects induced by                

                      2,4-D exposure   

The toxicology of 2,4-D has been well studied and its current literature is 

overwhelming.  In the following review of 2,4-D toxicology, several studies that have 

used in vivo and in vitro experimental models to assess the adverse human health effects 

(i.e. cytotoxicity, organ toxicity, genotoxicity, carcinogenesis, neurotoxicity, 

immunotoxicity, developmental toxicity and reproductive toxicity) that may occur 

following 2,4-D exposure will be discussed.  The purpose of this comprehensive review, 

is to illustrate that although 2,4-D toxicology has been well studied, the majority of 

previous studies failed to assess the adverse human health effects of low concentrations 

(<100 nM) of the herbicide; concentrations that are typically found in the environment 

and hence to which humans may more likely be exposed to from the environment over 

acute, subacute, subchronic and chronic durations of time.  
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However, before commencing the review, the following paragraphs consist of a 

dissection of some information that will allow for better interpretation of the studies 

reviewed.  Firstly, in most in vivo studies reviewed, doses of 2,4-D have reported in 

mg/kg units.  Additionally, some in vitro studies that were reviewed expressed 2,4-D 

concentrations in µg/L units.  Therefore, in order to attain an understanding of the 

difference between the low 2,4-D concentrations that was used in this present study and 

the high concentrations that were used in those particular in vivo and in vitro studies, 

below is a presentation of the conversion of the 2,4-D concentration range used in the 

current study to the equivalent dose (mg/kg) or concentrations (µg/L) units.  The 

conversion from molar concentration to dose assumed that adult male rats were exposed 

to a single dose of commercial 2,4-D (containing 2,4-D DMA) from their drinking 

water.  The average weight of an adult male rat is 250-550 g and drinks an average of 

10-12 mL of water per 100 g per day (Grant, 2000)  Thus, the conversion assumed that 

the average weight of a rat was equal to 250 g and drank an average of 25 mL of water 

per day.  Therefore, 0.1 nM to 1 mM of commercial 2,4-D in the present study is 

equivalent to 2.2 x 10-6 to 22 mg/kg of 2,4-D acid.  The concentration range of 0.1 nM to 

1 mM of commercial 2,4-D in the present study is equivalent to 0.022 to 2.2 x 105 µg/L 

of 2,4-D acid.      

  Secondly, different forms (i.e. acid, amine or ester forms) of 2,4-D are used in 

2,4-D toxicological studies.  However, from the review of toxicity data, the toxic effects 

induced by this herbicide are through the actions of the parent 2,4-D acid, regardless of 

the 2,4-D form used in experimental studies.  It was reported that, in humans, the esters 

and amine forms of 2,4-D undergo hydrolysis to yield the parent 2,4-D acid (BC 

Ministry of Forests, 2003).  Additionally, in experimental studies performed in animals, 

similar toxicity has been produced by 2,4-D acid, 2,4-D DMA and 2,4-D ester (Charles 

et al., 2001).  It has been suggested that those observations confirm previous suggestions 

of the rapid metabolic conversion of 2,4-D salts to 2,4-D acid in vivo (Charles et al., 

2001).  Similarity between 2,4-D acid and commercial formulations containing 2,4-D 

DMA have also been observed (González et al., 2005).  The authors observed that the 

two compounds exerted similar genotoxic effects.  Therefore, based on its metabolism, 

any adverse human health effects associated with 2,4-D acid or commercial forms is 
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most likely due to the parent 2,4-D acid.  In the current review, studies that have 

employed technical 2,4-D acid or commercial forms containing 2,4-D DMA were 

discussed, since a commercial form of 2,4-D containing 2,4-D DMA was used in the 

present study. 

 

                     2.1.6.1 Cytotoxic effects of 2,4-D 

Cytotoxic effects are defined as the adverse effects that result from the disruption 

of structures and processes that are essential for cell survival, proliferation and function 

by exposure to chemical agents (Tuschl and Schwab, 2004).  Several investigators have 

assessed the cytotoxic effects of 2,4-D.  A review of the in vivo, followed by the in vitro 

studies is presented below.    

The cytotoxic effects of 2,4-D have been assessed using an in vivo model (rats) 

(Kaioumova et al., 2001a).  Rats were orally gavaged with single high doses of 2.8, 

22.8, 228 mg/kg of 2,4-D DMA.  Thymus, spleen and blood were obtained 4, 8, 12 or 24 

hrs after 2,4-D treatment.  The DNA laddering pattern (produced by DNA gel 

electrophoresis) demonstrated that exposure to 2,4-D induced dose- and time-dependent 

cell death in the thymus, spleen and blood.  The results suggest that 2,4-D may induce 

cytotoxic effects in various organs in humans.  However, the study examined 2,4-D 

doses (2.8 to 228 mg/kg) that reflects concentrations of the herbicide that are more than  

100 fold higher than that typically found in the  environment.  Thus, the results of the 

study failed to elucidate the adverse human health effects of low 2,4-D concentrations 

that are routinely found in the environment.  A review of the in vitro 2,4-D cytotoxicity 

studies that have been conducted will now commence.     

Various in vitro models (HepG2, human cerebellar granule, human 

lymphoblastoid, human histocytic lymphoma and chronic myeloid leukemic, human 

erythrocytes, rat hepatocytes, mouse lymphoma cells) have been utilized to assess the 

cytotoxic effects of 2,4-D.  Similar to this thesis, the cytotoxic effects of low 2,4-D 

concentrations were assessed using HepG2 cells (Bharadwaj et al., 2005).  The 

researchers were the first to examine the cytotoxic effects of low concentrations (0.1 to 

100 nM) of the herbicide (commercial 2,4-D (containing 2,4-D DMA)).  Cell viability 

was determined using the neutral red uptake assay.  Results illustrated that acute 
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exposure (24 hrs) to low 2,4-D concentrations (0.1 to 100 nM) induces cytotoxicity, 

reflected by non concentration-dependent cell death (10 to 15% decreases in cell 

viability).  The results suggest that low 2,4-D concentrations may induce cytotoxic 

effects in humans.   

 In contrast to the above study and this current study, the cytotoxicity of high 

concentrations (>100 nM) of 2,4-D has been evaluated by several other in vitro studies 

(De Moliner et al., 2002; Duchnowicz and Koter, 2003; Palmeira et al., 1995; Tuschl 

and Schwab, 2003, 2004, 2005;  Venkov et al., 2000).  Similar to this present research, 

Tuschl and Schwab used HepG2 cells to investigate 2,4-D cytotoxicity (Tuschl and 

Schwab, 2003, 2004, 2005).  The authors used flow cytometry and the annexin-V assay 

to determine cell death.  Cells were exposed for 24 and 48 hrs to 2,4-D acid 

concentrations (4, 8 and 16 mM) that were more than 1000 fold higher than that 

typically found in the environment (Tuschl and Schwab, 2003).  Exposure resulted in a 

concentration-dependent prolongation of the GI phase of the cell cycle and an increase 

in cell death (Tuschl and Schwab, 2003).  Effects were exacerbated following exposure 

to 16 mM.  At 16 mM, more than 50% of cells were dead and a total disruption of the 

cell cycle was observed after 48 hrs of exposure (Tuschl and Schwab, 2003).  Similar  

results were obtained in later studies, where HepG2 cells were exposed to 4, 8 and 16 

mM of 2,4-D acid for 24 hrs (Tuschl and Schwab, 2004; 2005).   

The cytotoxicity of high 2,4-D concentrations (>100 nM) that are 1000 fold or 

higher than that found in the environment, has also been evaluated using other in vitro 

cell models (De Moliner et al., 2002; Duchnowicz and Koter, 2003; Palmeira et al., 

1995; Tuschl and Schwab, 2004, 2005;  Venkov et al., 2000).  For instance, results from 

flow cytometry and the 3-(4,5-dimethylthazol-2-yl)-2,5 diphenyltetrazolium bromide 

(MTT) assays illustrated that exposure to 1 and 2 mM of 2,4-D acid for 12, 20 or 24 hrs 

induced non concentration- and time-dependent decreases in human cerebellar granule 

cell viability.  In cytotoxicity studies performed by Tuschl and Schwab, comparative 

effects were observed in human lymphocytes isolated from whole blood (Tuschl and 

Schwab, 2005), human lymphoblastoid (AHH-1) and mouse lymphoma (YAC-1) cells 

(Tuschl and Schwab, 2004, 2005).   
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In vitro studies were also performed using high concentrations (>100 nM) of 2,4-

D to assess cytotoxicity in human histocytic lymphoma (U937) and chronic myeloid 

leukemic (LAMA-84) cells (Venkov et al., 2000).  Results from MTT assays 

demonstrated that exposure to 0.16 mM of 2,4-D acid for 48 hrs induced a 40% decrease 

in cell viability in U937 and LAMA-84 cells.   Complete cell death was observed in cells 

exposed to 1.6 mM of 2,4-D for 48 hrs.   

The cytotoxic effects of high concentrations of 2,4-D have also been investigated 

using human erythrocytes cultures (Duchnowicz and Koter, 2003) and primary rat 

hepatocytes (Palmeira et al., 1995).  Spin probe analysis revealed that exposure to 1 mM 

of 2,4-D acid for 1 hr induced hemolysis of human erythrocytes (Duchnowicz and Koter, 

2003).  Results from trypan blue exclusion assay demonstrated that 0 to 200 min 

exposure to 2,4-D acid concentrations (1, 5 and 10 mM) induced concentration- and 

time-dependent decreases in the viability of rat hepatocytes (Palmeira et al., 1995).     

Thus, taken all together, the above review illustrates that; although the 

cytotoxicity of 2,4-D has been investigated by several researchers who used various 

models (in vivo (rats) and in vitro (HepG2, human cerebellar granule, human 

lymphoblastoid, human histocytic lymphoma and chronic myeloid leukemic, human 

erythrocytes, rat hepatocytes and mouse lymphoma cells)), assays (annexin-V, flow 

cytometry, MTT, neutral red uptake, spin probe, trypan blue exclusion and TUNEL 

assays), durations of exposure (12 to 72 hrs) and forms (technical 2,4-D acid or 

commercial 2,4-D (containing 2,4-D DMA)), most studies used overt concentrations 

(>100 nM) and did not examine the cytotoxic effects of low 2,4-D concentrations (<100 

nM).  This is an alarming finding that warrants attention, since humans are typically 

exposed to low concentrations of 2,4-D in the environment.  The research conducted in 

this thesis assesses the cytotoxicity of low 2,4-D concentrations.   

 

                     2.1.6.2 Hepatotoxic effects of 2,4-D  

The hepatotoxic effects of 2,4-D have been assessed by several investigators.   

However, many researchers failed to examine the hepatotoxic effects that may be 

associated with exposure to low environmental concentrations of 2,4-D.  A review of 

some in vivo, followed by the in vitro studies is presented below.    
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In an in vivo study, rats were exposed (via drinking water) to doses (600 mg/kg 

for 1 day) or concentrations (200,000 µg/L for 30 and 180 days) of commercial 2,4-D 

(containing 2,4-D DMA) (Paulino et al., 1996) that are more than 1000 fold higher than 

would be typically encountered by humans in the environment.  Spectrophotometric 

analyses demonstrated that acute exposure to such a high dose of 2,4-D induced 

disruption of hepatic function, indicated by elevated levels of several hepatic enzymes 

markers (i.e. aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate 

dehydrogenase (LDH) and alkaline phosphatase (AP)) that are routinely used for 

determination of hepatic dysfunction.  Interestingly, subchronic and chronic exposure to 

2,4-D induced lesser degrees of the above effects.  This may have been an adaptive 

response to longer exposure to the herbicide.  Subchronic exposure induced an increase 

in AST levels, while chronic exposure induced increases in AST, AP and LDH levels.  

A greater degree of hepatic dysfunction may have been observed following chronic, 

compared to subchronic exposure due to saturation of repair and/or detoxification 

mechanisms following chronic, compared to sub-chronic exposure to the herbicide.  

Sub-chronic exposure refers to exposure to a chemical for no longer than 3 months 

(Eaton and Klaassen, 2001).  Chronic exposure refers to exposure to a chemical for more 

than 3 months (Eaton and Klaassen, 2001).  

The adverse hepatic effects of high concentrations of 2,4-D has also been 

documented by Charles and colleagues.  In a subchronic experimental study, rats were 

exposed to doses of 2,4-D (1, 15, 100 and 300 mg/kg/day of 2,4-D acid or 2,4-D DMA 

from their feed for 3 months (Charles et al., 2001)) that were equal to one half or less 

than that used by Paulino and co-workers.  Histopathology revealed that the highest 

dose, a dose that humans are not likely to be exposed to from the environment, of 2,4-D 

induced centrilobular hepatocellular hypertrophy.  Thus, the above in vivo studies have 

examined and illustrated the adverse hepatic effects of high 2,4-D doses (1 to 600 

mg/kg) or concentrations (200,000 µg/L).  However, humans are not likely to be 

exposed to such high doses or concentrations of 2,4-D from the environment.  A review 

of the in vitro studies will now be presented.  

In vitro studies have assessed the hepatotoxic effects of 2,4-D concentrations (2 

to 16 mM) that are more than 1000 fold or higher than that encountered by humans in  
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the environment.  The in vitro cytotoxic effects that were reported by Tuschl and 

Schwab (see section 2.1.6.1) were observed in HepG2 cells (Tuschl and Schwab, 2003; 

2004; 2005), cells that are derived from human liver (ATCC, 2004).  Therefore, the 

results also suggest that high 2,4-D concentrations (≥2 mM) may induce hepatotoxic 

effects (i.e. cell death) in humans.  The results from the cytotoxicity study (see section 

2.1.6.1) that was conducted by Palmeira et al. (1995) and illustrated that 2,4-D induced 

death of rat hepatocytes, also suggest the same; that is,  high 2,4-D concentrations (≥ 

1mM) may induce hepatotoxic effects (i.e. cell death) in humans.  In addition to the 

studies performed by Tuschl and Schwab, the results from the in vitro study conducted 

by Bharadwaj and colleagues also suggest 2,4-D may induce hepatotoxic effects, since 

the study was also conducted using HepG2 cells (Bharadwaj et al., 2005).  In contrast to 

the studies conducted by Tuschl and Schwab, and similar to this thesis, the authors 

tested low environmental 2,4-D concentrations that humans are more likely to be 

exposed to from the environment.  The study illustrated that low 2,4-D concentrations 

induced cell death and gene alteration.  Genes whose expression levels were altered 

included those involved in stress response (FTL, FTH1, PCNA), for example.  An 

intriguing finding that, for the very first time showed that low 2,4-D concentrations may 

induce adverse human health effects.   

Taken altogether, the majority of previous in vivo and in vitro studies failed to 

assess the hepatotoxic effects of low environmental concentrations of 2,4-D.  Studies 

examined 2,4-D doses (1 to 600 mg/kg) and concentrations (2 to 16 mM) that reflects 

2,4-D concentrations that are more than 100 fold higher than that found in the 

environment, and hence to which humans are not typically exposed to.  Thus, the results 

of such studies may not accurately predict the adverse human hepatic effects of exposure 

low environmental 2,4-D concentrations over acute or chronic durations of time. 

 

                     2.1.6.3 Nephrotoxic effects of 2,4-D  

 The nephrotoxic effects of 2,4-D have been evaluated by some researchers, using 

in vivo models.  In the first study reviewed, histopathological examination revealed that 

subchronic (3 months) exposure (via oral ingestion from feed) to a 2,4-D acid 

concentration (2,500,000µg/L (≈11 mM)), that is more than 1000 fold higher than 
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concentrations of the herbicide typically encountered by humans from the environment, 

induced structural changes (i.e. decreased cytoplasm and cytoplasmic granules, reduced 

mitochondria organelles and increased nuclear density of cells) in the proximal 

convoluted tubule segment of the nephron (Ozaki et al., 2001).  The nephron is the 

functional unit of the kidney (Silverthorn, 1998).  The nephrotoxic potential of high 

doses of 2,4-D was also investigated by Charles and co-workers in an earlier study.  

Histopathological studies revealed that there was loss of the brush border in proximal 

tubular cells and vacuolization of all tubular cells in rats subchronically exposed to 300 

mg/kg/day 2,4-D acid or 2,4-D DMA from their feed for 3 months (Charles et al., 1996).   

Thus, taken together, the above studies have investigated the nephrotoxic effects 

of high 2,4-D doses (300 mg/kg) and concentrations (≈11 mM) that reflects 

concentrations that are more than 1000 fold higher than that typically found in the 

environment.  Therefore, although the results from the above studies provide useful 

information for elucidating the adverse effects that may occur in the kidney of humans 

exposed to high concentrations of 2,4-D, the results are not likely to predict the 

nephrotoxic effects that may occur following typical, everyday exposure to low 

concentrations (<100 nM) of the herbicide that are usually found in the environment.  

          

                     2.1.6.4 Genotoxic effects of 2,4-D  

 The genotoxic effects of 2,4-D have been assessed using both in vivo and in vitro 

experimental model systems.  A review of the in vivo studies, followed by the in vitro 

studies is presented below.  Several researchers have assessed the genotoxic effects of 

2,4-D, in vivo, using high doses (1.7 to 200 mg/kg) of the chemical (Amer et al., 2001; 

Madrigal-Bujaidar et al., 2001; Venkov et al., 2000) that reflects concentrations that are 

more than 100 fold higher than that found in the environment.  Chromosomal 

aberrations (i.e. gaps, fragments, breaks, translocations and poly-ploid metaphases) have 

been reported to occur in the bone marrow and spermatocytes of rats exposed (oral 

gavage) to 3.3 mg/kg of 2,4-D acid for 3 and 5 consecutive days (Amer et al., 2001).  

Comparative effects were also observed in rats that orally ingested 33 mg/kg of 2,4-D 

acid for 1 day.  Significant chromosomal aberrations, including sister chromatid 

exchanges have also been observed in bone marrow cells that were isolated from mice 
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exposed (intraperitoneal injection) to 3.5 mg/kg of 2,4-D acid for 12 hrs (Venkov et al., 

2000).  Chromosomal aberrations induced by 2,4-D exposure have also been reported by 

researchers who used doses of the herbicide that were more than 100 fold higher than 

that used by the previously described studies (Madrigal-Bujaidar et al., 2001).  Rats 

were orally exposed to single doses 100 and 200 mg/kg of 2,4-D acid.  Dose-dependent 

increases in sister chromatid exchanges in isolated bone marrow and spermatogonial 

cells were observed.   

Thus, the results from the in vivo studies suggest that 2,4-D doses that are equal 

to or greater than 3.3 mg/kg may induce genotoxic effects (i.e. chromosomal 

aberrations) in humans.  However, humans are not likely to be exposed to such high 

doses, since 2,4-D concentrations in the environment are typically less than 100 nM.  A 

review of the in vitro genotoxic studies will now commence.   

The genotoxic effects of 2,4-D concentrations (1 µM to 45 mM) that are more 

than 10 fold or higher than that encountered by humans in the environment have been 

assessed, in vitro (González et al., 2005; Holland et al., 2002; Zeljezic and Garaj-

Vrhovac, 2004).  Concentration-dependent increases in the number of chromatid and 

chromosome breaks, micronuclei and nuclear buds was observed in human lymphocytes 

cultures exposed to concentrations (400 and 4000µg/L (≈ 2 to 20 µM of 2,4-D acid)) of 

commercial 2,4-D (containing 2,4-D acid) that are more than 10 fold higher than that 

found in the environment (Zeljezic and Garaj-Vrhovac, 2004).  Concentration-dependent 

genotoxic effects (i.e. micronucleus proliferation, frequency) of high 2,4-D 

concentrations (1 µM to 1 mM) have also been observed in human whole blood or 

isolated lymphocyte cultures exposed to technical 2,4-D acid or commercial 2,4-D for 

48 hrs (Holland et al., 2002).  Using Chinese hamster ovary cell cultures, the genotoxic 

effects of high 2,4-D concentrations have also been evaluated (González et al., 2005).  

Concentration-dependent increases in the frequency of DNA-strand breaks were 

observed in cell cultures exposed to 2000 to 10,000 µg/L (≈ 9 to 45 µM of 2,4-D acid) of 

either 2,4-D acid or commercial 2,4-D (containing 2,4-D DMA) for 1.5 hrs.  

Concentration- and time-dependent increases in sister chromatid exchange were 

observed in cell cultures exposed to a similar range of 2,4-D concentrations for 24 and 

36 hrs.   
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Thus, from the above review of 2,4-D genotoxicity studies, it can be concluded 

that although the genotoxic effects of 2,4-D have been assessed using various 

experimental models (in vivo (rats and mice) and in vitro (human whole blood, human 

isolated lymphocytes and Chinese hamster ovary cell cultures)), endpoints 

(chromosomal aberrations, micronucleus proliferation) and durations of exposure (1.5 

hrs to 5 days), the studies did not assess the human genotoxic effects that may associated 

with exposure to low environmental concentrations (<100 nM) of 2,4-D.  the above in 

vivo and in vitro studies used 2,4-D doses (1.7 to 200 mg/kg) and concentrations (1 µM 

to 45 mM), respectively, that reflects concentrations of the herbicide that are more than 

10 fold higher than that typically found in the environment, and hence to which humans 

are not likely exposed to over acute or chronic periods of time.   

 

                     2.1.6.5 Carcinogenic effects of 2,4-D  

Several in vivo studies have assessed the carcinogenic effects of 2,4-D by using 

high concentrations (>1 µM) of the herbicide (Amer et al., 2001; Ge et al., 2002; 

Holland et al., 2002; Madrigal-Bujaidar et al., 2001; Ozaki et al., 2001; Venkov et al., 

2000).  Results from these studies suggest that overt 2,4-D concentrations (<1 µM) may 

induce carcinogenesis in humans.  For instance, 2,4-D has been reported to induce 

significant increases in replicative indices of lymphocyte cultures isolated from whole 

blood obtained from twelve spray applicators (mean urine level of 2,4-D acid was 240 

µg/L (≈ 1 µM)) exposed solely to the herbicide for 3 months (Holland et al., 2002).  In 

another in vivo study, southern blot analysis demonstrated that exposure to high 2,4-D 

doses (daily oral dose of 1.7 x 106 µg/L (≈ 8mM) of 2,4-D acid through feed for a period 

of 6 days) induced DNA hypomethylation of the proto-oncogene, c-myc, in hepatocytes 

of mice (Ge et al., 2002).  An inverse relationship exists between DNA methylation and 

transcription of genes (Ge et al., 2002), therefore, hypomethylation of the proto-

oncogene, c-myc suggests possible increased transcription of the gene, with subsequent 

translation.  The alteration of the regulation of proto-oncogenes is one mechanism 

involved in the activation of proto-oncogenes to oncogenes (Kumar et al., 1997).  

Oncogenes are genes that are involved in the process of carcinogenesis by inducing 

uncontrolled cell proliferation (King and Stansfield, 1997; Kumar et al., 1997).  

 23



Furthermore, the dysregulation of the myc gene is known to be involved in Burkitt’s 

lymphoma (a B-cell tumor) (Kumar et al., 1997).   

The carcinogenic potential of high 2,4-D concentrations have also been 

illustrated in an in vivo subchronic toxicity study, where rats were orally exposed to high 

concentrations of 2,4-D acid (1.7 x 104, 8.5 x 104, 2.5 x 105, 1.2 x 106, 2.5 x 106 µg/L (≈ 

80 µM, 380 µM, 1 mM, 6 mM and 11 mM)) through their feed for a period of 3 months 

(Ozaki et al., 2001).  Results from histopathological studies demonstrated that exposure 

to 2,4-D induced a concentration-dependent increase in hyperplasia of cells of the outer 

medulla.  Pathological hyperplasia is suspected to lead to cancerous proliferation 

(Mitchell and Cotran, 1997).   

In addition to the above studies and since genetic damage is known to play an 

integral role in carcinogenesis (Kumar et al., 1997), the results from the previously 

reviewed in vivo genotoxicity studies (Amer et al., 2001; Madrigal-Bujaidar et al., 2001; 

Venkov et al., 2000) (see section 2.1.6.4) also suggest that 2,4-D may induce 

carcinogenesis in human bone marrow, germ cells and lymphocytes.  However, these 

studies tested high 2,4-D doses (≥3.3 mg/kg) that do not reflect environmental 2,4-D 

concentrations that humans are exposed to.  Thus, all of the above studies have failed to 

address the carcinogenic potential of low 2,4-D concentrations in humans.   

The results from previously reviewed in vitro studies (González et al., 2005; 

Holland et al., 2002; Zeljezic and Garaj-Vrhovac, 2004) (see section 2.1.6.4) that also 

tested high 2,4-D concentrations (1 µM to 45 mM) and illustrated that exposure to the 

herbicide may induce genotoxicity in humans, also suggest that 2,4-D may induce 

carcinogenesis in human lymphocytes and germ cells at those high concentrations.  

However, humans are not typically exposed to such high environmental concentrations 

of 2,4-D.  Thus taken all together, previous in vivo and in vitro studies have tested the 

carcinogenic potential of 2,4-D using doses (≥3.3 mg/kg) or concentrations (1 µM to 45 

mM) that do not reflect concentrations of the herbicide that are typically found in the 

environment, and hence to which humans may not be exposed to.  Thus, the results from 

these studies may not accurately predict the carcinogenic potential of low environmental 

concentrations of the herbicide in humans.    
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                     2.1.6.6 Neurotoxic effects of 2,4-D  

The neurotoxicity of 2,4-D has also been evaluated.  However, similar to all of 

the above reviewed studies, researchers failed to assess the neurotoxic effects of low 

environmental concentrations of the herbicide.  Pregnant rats were chronically exposed, 

in vivo, to high dietary 2,4-D acid (70 mg/kg/day) from gestation day (GD) 16 to 

postpartum day (PD) 23 (Bortolozzi et al., 2004).  Following weaning (PD 23), offspring 

were divided into 2 groups, where one group was fed 2,4-D treated diets, and the other 

was fed 2,4-D free diets until PD 90.  The results of rapid filtration assays illustrated that 

2,4-D disrupted the dopamine (DA) neurotransmitter system of the brain, reflected by 

increased density of DA D2-type receptors in the prefrontal cortex, striatum and 

cerebellum areas of the brain.  These effects were irreversible in rats that were exposed 

to 2,4-D until PD 90.  The results from the study are intriguing and illustrate that high 

doses of the widely used herbicide may induce irreversible neurotoxic effects.  However, 

doses as high as those are not reflective of true environmental levels of 2,4-D, and hence 

to which humans are exposed, thus the results may not reflect the neurotoxic potential of 

2,4-D concentrations that are typically found in the environment. 

The neurotoxic effects of only high environmental 2,4-D concentrations (1 and 

2mM) have been evaluated, in vitro (Rosso et al., 2000)   Immunofluorescence and 

microtubule polymerization assays illustrated that exposure to 2,4-D acid for 24 hrs 

induced a concentration-dependent inhibition of neurite extension and reduced 

microtubule assembly in human cerebellar granule cell cultures, respectively.   

Thus, taken all together, results from the above in vivo and in vitro 2,4-D studies, 

suggest that high doses (70 mg/kg/day) or concentrations (1 and 2 mM) of 2,4-D may  

induce neurotoxic effects (disruption of neurotransmitter systems, inhibition of neurite 

extension and microtubule assembly) in humans.  However, doses or concentrations as 

high as those reflects concentrations that are at least 1000 fold higher than that typically 

encountered by humans in the environment, therefore, the results from the above studies 

does not elucidate the neurotoxic potential of true environmental concentrations of 2,4-

D.   
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                     2.1.6.7 Immunotoxic effects of 2,4-D  

The immunotoxicity of 2,4-D has been assessed.  Rats were exposed (via 

intraperitoneal injection) to single doses of 50, 100, 150 or 200 mg/kg of commercial 

2,4-D (containing 2,4-D DMA) (de la Rosa et al., 2003).  Flow cytometry analyses 

revealed decreases in pre-B and IgM+ cell population in the bone marrow of rats exposed 

to 200 mg/kg for 7 days.   In another study, the immune responses in the offspring of 

rats whose dams were exposed on GD 6 to GD 16 to dietary doses (8.5, 37 and 370 

mg/kg/day of 2,4-D acid) of commercial 2,4-D (containing 2,4-D DMA) in their 

drinking water were evaluated (Lee et al., 2001).  Flow cytometric analyses 

demonstrated that exposure to the highest dose of 2,4-D resulted in a decrease in T-

lymphocyte mitogen responses and an increase in B cell population.  The T cytotoxic or 

suppressor cell counts were also suppressed in the highest dose groups.  Results suggest 

that high 2,4-D doses may be immunotoxic to humans.  However, doses used in the 

above in vivo studies are unreflective of 2,4-D concentrations that are typically found in 

the environment.  Thus, the studies may not accurately predict the immunotoxic effects 

in humans of low 2,4-D concentrations.   

The immunotoxic effects of 2,4-D were assessed in vitro, using concentrations of 

the herbicide that were more than 10 fold higher than that typically encountered by 

humans in the environment.  Exposure (2, 4, 6 and 24 hrs) to 2,4-D concentrations (0.1 

to 5 mM) induced concentration- and time-dependent increases in the death of human 

peripheral blood lymphocytes and Jurkat T cells (Kaioumova et al., 2001b).  Results 

suggest that high 2,4-D concentrations may be immunotoxic to humans.  However, 

humans do not encounter such high 2,4-D concentrations in the environment.  Thus, 

results from the above studies suggest that high 2,4-D doses (>8.5 mg/kg) or 

concentrations (0.1 to 5 mM) may induce immuntoxicity in humans, however, doses or 

concentrations as high as those do not reflect concentrations of the herbicide that are 

typically found in the environment, and hence, to which humans are exposed to.  Thus, 

the results from the above studies may not accurately predict the adverse immune effects 

of low 2,4-D concentrations that are routinely encountered by humans in the 

environment. 
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                     2.1.6.8 Adverse reproductive effects of 2,4-D  

The adverse human reproductive effects that may be induced by 2,4-D exposure 

have been evaluated.  Via microscopic examination, a dose-dependent increase in the 

percentage of sperm head abnormalities (i.e. amorphous sperm head, sperm head 

without hook, triangular and banana shaped sperm head, small, big and double sperm 

heads) were observed in mice exposed daily to high doses of 33 and 82.5 mg/kg of 2,4-

D acid for 3 and 5 days (Amer et al., 2001).  The potential adverse reproductive effects 

of 2,4-D were also illustrated from the work conducted by a group of investigators that  

orally dosed mice with single doses of 50, 100 and 200 mg/kg of 2,4-D acid (Madrigal-

Bujaidar et al., 2001).  Scoring of the frequency of sister chromatid exchanges revealed 

that exposure to 100 and 200 mg/kg of 2,4-D acid induced a dose-dependent induction 

of sister chromatid exchanges in mice spermatogonial cells.  Thus, while the above in 

vivo studies illustrate that 2,4-D may induce adverse reproductive effects (germ cell 

abnormalities) in humans, the studies tested doses of 2,4-D that reflect concentrations of 

the herbicide that were more than 1000 fold higher than that encountered by humans in 

the environment.  The results of the study may not accurately predict the adverse 

reproductive effects of low 2,4-D concentrations in the environment.   

In vitro, the adverse reproductive effects of high concentrations (≈ 9 to 45 µM) 

(González et al., 2005) of the herbicide that are not typically found in the environment 

have been assessed.  Exposure of Chinese hamster ovary cells to 2,4-D concentrations (≈ 

9 to 45 µM) induced concentration-dependent increases in the frequency of DNA-strand 

breaks and sister chromatid exchanges in human female reproductive organs (González 

et al., 2005).   

Therefore, similar to the previous toxicity studies reviewed, the adverse 

reproductive effects of only high doses (≥33 mg/kg) or concentrations (≈ 9 to 45 µM) of 

2,4-D have been tested in in vivo and in vitro studies, respectively.  Those doses and 

concentrations are more than 10 fold higher than that typically encountered by humans 

in the environment.  Thus, while the results are intriguing, they are not likely to predict 

the adverse human reproductive effects that may be induced following exposure to 2,4-D 

in the environment.   
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                     2.1.6.9 Adverse developmental effects of 2,4-D  

The adverse developmental effects on various systems or organs that may be 

induced following 2,4-D exposure has been assessed in in vivo studies.  Below is a 

review of some such studies.  Using a high dose (370 mg/kg) of the herbicide, it was 

illustrated that the herbicide alters the development of the immune system in offsprings 

of rats (Lee et al., 2001) (see section 2.1.6.7 for details of study).  Decreases in T-

lymphocyte mitogen responses and increases B cell population were observed.  The 

developmental effects in the central nervous system (CNS) induced by 2,4-D exposure 

have also been tested.  The adverse CNS effects that were observed in offsprings 

(exposed to 70 mg/kg/day of 2,4-D acid) of rats in the neurotoxicity study conducted by 

Bortolozzi et al. (2004) (see section 2.1.6.6 for details of study) also illustrates the 

adverse developmental effects on the CNS of high doses of the chemical.  Adverse 

developmental effects on the CNS of offsprings of rats have also been reported by 

Duffard et al. (1996).  In the study, lactational exposure to 2,4-D (dams were 

intraperitoneally injected with 100 mg/kg of 2,4-D acid from PD 15 to 25 (period of 

rapid myelination) induced myelin deficit (assessed via histopathology) in the brain of 

rat offspring (Duffard et al., 1996). 

In addition to the immune system and CNS, 2,4-D has also been shown to induce 

adverse effects on tooth development.  Pregnant rats were exposed daily to 

concentrations (25,000, 50,000 and 100,000 µg/L (0.11, 0.23 and 0.45 mM) of 

commercial 2,4-D (containing 2,4-D DMA) (Alpöz et al., 2001) that are more than 1000 

fold higher than that typically found in the environment.  Rats were exposed to the 

herbicide in their food for 15 days prior to pregnancy and throughout pregnancy.  

Following birth, the offspring continued to be exposed to 2,4-D through lactation for 30 

days.  Histological examination revealed that exposure to 2,4-D induced dose-dependent 

increases in abnormal dentin formation.  Exposure to 50,000 and 100,000 µg/L resulted 

in decreased enamel thickness.   

Thus, results from the above studies suggest that high 2,4-D doses (≥70 mg/kg) 

or concentrations (≥25,000 µg/L) may induce adverse developmental effects on various 

organs or systems (CNS, immune system, and tooth) in humans.  However, doses and 

concentrations as high as those, reflect 2,4-D concentrations that are more than 1000 
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fold higher than that typically encountered by humans in the environment.  The results 

of the studies may not accurately predict the adverse development effects that may occur 

in humans exposed to 2,4-D from the environment. 

  

In summary, a review of the above studies illustrates that although the toxicity of 

2,4-D has been extensively investigated, the majority of in vivo and in vitro studies 

tested overt, unrealistic doses (1 to 600 mg/kg) or concentrations (1 µM to 45 mM) of 

the herbicide, that reflects concentrations that are 10 fold or higher than that encountered 

by humans in the environment.  Ideally, in vivo studies should have employed 2,4-D 

doses within the range of 2.2 x 10-6 to 2.2 x 10-3 mg/kg, while in vitro studies should 

have tested 2,4-D concentrations within the range of 0.1 to 100 nM, or 0.022 to 22 µg/L.  

Testing of these doses or concentrations would have been reflective of 2,4-D 

concentrations (0.1 to 100 nM) that are typically encountered by humans in the 

environment, and thus, would have aided in elucidating the adverse human health effects 

that are associated with acute or chronic environmental exposure to low concentrations 

of the herbicide.  This thesis addresses the adverse human health effects that may be 

associated with exposure to low concentrations of the herbicide.   

  

            2.1.7 2,4-D and gene expression 

 The majority of the above studies that were conducted to investigate the toxicity 

of 2,4-D share two factors common with classical toxicology studies; that is the use of 

(1) high 2,4-D concentrations (>1 mM) and (2) overt endpoints (i.e. cell death, 

pathological aberrations).  Toxicogenomics is an emerging technique in toxicology 

research (Aardema and MacGregor, 2002).  It is the study of alteration of gene 

expression patterns (Aardema and MacGregor, 2002).  The alteration of gene expression 

pattern is considered to be a more sensitive endpoint than currently employed 

pathological endpoints (Aardema and MacGregor, 2002).  Thus, due to its sensitivity, 

the alteration of gene expression pattern may be a better endpoint for assessing the 

toxicity of low concentrations of toxicants, such as 2,4-D, as low concentrations of 

toxicants may induce more subtle effects than high concentrations.  Toxicogenomics is a 

relatively novel tool that has only begun to gain merit in 2,4-D toxicology research 
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within the last few years.   Below is a review of some existing in vivo (yeast cells, rats) 

and in vitro (HepG2) experimental studies that have employed toxicogenomics (cDNA 

microarray analysis, 2-dimensional gel electrophoresis, RT-PCR) to assess 2,4-D 

toxicity.   

Most recently, cDNA microarray analysis was employed to study the acute 

effects of 2,4-D (0.3 mM of 2,4-D acid for 15 min) on early transcriptional responses in 

yeast (Teixeira et al., 2006).  Acute exposure to 2,4-D resulted in alterations in the  

expression patterns of 820 genes.  Significant increases (at least 2 fold) in the mRNA 

expression levels of antioxidant oxidative stress response (glutathione), chaperones and 

heat shock protein (heat shock protein (Hsp) 12 and 104) genes were observed.  

 Toxicogenomics was also employed to evaluate the transcriptional responses to 

high 2,4-D exposure in rats (Badawi et al., 1999).  Rats were exposed to a single oral 

dose of 375 mg/kg of 2,4-D acid for 72 hrs.  The analysis (via RT-PCR) of the liver, 

kidney and mammary glands illustrated that 2,4-D induced the up-regulation mRNA 

expression of several cytochrome P450 biotransformation enzymes (i.e. CYP1A1, 

CYP1A2 and CYP1B1) that are involved in estrogen metabolism (Badawi et al., 1999). 

The authors explained that the increased estrogen metabolism may suggest 2,4-D – 

induced carcinogenesis.   

In addition to the transcriptional responses, the translational responses to 2,4-D 

exposure have also been investigated, in vivo (Teixeira et al., 2005).  Using 2-

dimentional gel electrophoresis, it was illustrated that exposure (1.5 hrs) to 0.3 mM of 

2,4-D induced alteration in the expression patterns of 26 proteins in yeast.  Proteins, 

whose expression were significantly up-regulated (at least 2-fold) included those 

associated with stress response (i.e. Hsp12), mRNA and protein degradation (i.e. mRNA 

decapping enzyme). 

Thus, the above in vivo studies illustrates that 2,4-D induces alterations in gene 

expression at the level of mRNA and protein accumulation.  More importantly, and as 

illustrated in the studies conducted by Teixeira and colleagues, is the finding that 

alteration of gene expression, at the level of mRNA and protein accumulation can be 

detected following very acute (15 min or 1.5 hrs) exposure to a moderate concentration 

(0.3 mM) of 2,4-D.  This illustrates the sensitivity of the endpoint, in contrast to more 
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over biological endpoints (i.e. cell death) that are typically used to assess 2,4-D toxicity.  

However, similar to the majority of previous studies, the above studies failed to examine 

the adverse effects of low 2,4-D concentrations (0.1 to 100 nM).  Our laboratory was the 

first to take advantage of toxicogenomics to asses the adverse human health effects of 

low environmental 2,4-D concentrations (Bharadwaj et al., 2005).  The hypotheses of 

this present study were partially derived from results reported from that study, where 

acute exposure (24 hrs) to 0.1 nM to 1 mM of commercial 2,4-D (containing 2,4-D 

DMA) induced alteration in the gene expression pattern of 238 genes, including FTL, 

FTH1 and PCNA.  Results suggest; (1) low concentrations of 2,4-D may be cytotoxic, 

reflected by alteration in gene expression patterns, at the level of mRNA accumulation 

and (2) in contrast to overt biological endpoints (i.e. cell death), gene expression may be 

a more sensitive, and hence a better endpoint for assessing the adverse effects of low 

concentrations of toxicants    

Thus, taken all together, the above studies that employed toxicogenomics to 

assess the toxicity of 2,4-D, illustrate that the herbicide induces alteration in gene 

expression at the transcriptional and translational levels.  Furthermore, the study 

conducted by Bharadwaj et al. (2005) illustrates that the alteration of gene expression 

pattern is a sensitive endpoint for determination of the toxic effects of low 

concentrations of toxicants (i.e. 2,4-D).  Additionally, all of the above studies illustrate 

that the alteration of gene expression patterns induced by chemical (i.e. 2,4-D) exposure 

may also serve to highlight cell and molecular pathways involved in toxicity.  For 

instance, the up-regulation of FTL, FTH1 and PCNA mRNA expression (expressions are 

suggested to be up-regulated in response to oxidative stress) in HepG2 cells observed by 

Bharadwaj and co-workers suggest that ROS mediated oxidative stress may be a 

mechanism of 2,4-D toxicity.  Therefore, in this thesis, studying the alteration in gene 

expression, serves as a useful tool for assessing the human toxicity that may be 

associated with low concentrations of 2,4-D and highlighting underlying mechanism(s) 

of its toxicity. 
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            2.1.8 Suggested mechanisms of 2,4-D toxicity 

 Within the last several years, toxicology researchers have been diverging away 

from simple cause and effect toxicity studies and have begun to investigate the 

mechanism(s) of chemical toxicity.  Several investigators have attempted to elucidate 

the mechanisms of 2,4-D toxicity.  However, to this date, the mechanisms of 2,4-D 

toxicity have not yet been completely elucidated.  Below is a review of some existing in 

vivo and in vitro studies that provides evidence that suggests that 2,4-D toxicity may be 

induced by various mechanisms (i.e. apoptosis, necrosis, uncoupling of oxidative 

phosphorylation, depression of transmembrane potential, formation of a reactive 

metabolite, ROS and associated oxidative stress).   

 

                     2.1.8.1 Role of apoptosis in 2,4-D toxicity 

 Programmed cell death, or apoptosis, may play a role in 2,4-D toxicity.  

Apoptosis is characterized by defined cellular events including; disruption of plasma 

membrane, DNA fragmentation, chromatin condensation, change in cell volume and 

formation of apoptotic bodies (De Moliner et al., 2002).   

Results from an in vivo study suggests that apoptosis may be a mechanism of 

2,4-D toxicity (Kaioumova et al., 2001a).  In this study, dose- and time-dependent 

apoptosis (assessed by DNA laddering pattern visualized by DNA gel electrophoresis) 

was evident in the thymocytes of rats exposed (via oral gavage) to single doses of 2.8, 

22.8, 228 mg/kg of commercial 2,4-D (containing 2,4-D DMA) for 4, 8, 12 and 24 hrs.   

The results from several in vitro studies that have utilized various cell models 

(human HepG2, blood lymphocytes, Jurkat T, cerebellar granule cells) also provide 

evidence to suggest that apoptosis may be a mechanism of 2,4-D toxicity.  Apoptotic 

activity was assessed using various assays (annexin-V, DNA gel electrophoresis, flow 

cytometry, nicoletti, and terminal transferase dUTP nick and labeling (TUNEL))   

Results from annexin-V assay revealed that exposure to 4, 8 and 16 mM of 2,4-D acid 

for 24 and 48 hrs induces HepG2 cell death by apoptosis (Tuschl and Schwab, 2003).  

Comparative results were also observed in later studies, when the authors exposed 

HepG2 cells to 4, 8 and 16 mM of 2,4-D acid for 24 hrs (Tuschl and Schwab, 2004) or 1 

to 28 days (Tuschl and Schwab, 2005), respectively.  In later studies that were 
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performed by the same researchers, results of apoptotic activity were supported by the 

results from another assay, flow cytometry (Tuschl and Schwab, 2004; 2005).    

In contrast to Tuschl and Schwab, Kaioumova and colleagues used human 

peripheral blood lymphocytes and Jurkat T cells to assess apoptotic activity following 

2,4-D exposure (Kaioumova et al., 2001b).  Concentration- and time-dependent 

apoptosis was observed in cells exposed to 0.1 to 5 mM of commercial 2,4-D 

(containing 2,4-D  DMA) for 2, 4, 6 and 24 hrs.  Similar to Tuschl and Schwab, 

apoptotic activity was determined by the annexin-V assay.  Furthermore, the authors 

also supported experimental results by performing additional assays (DNA gel 

electrophoresis and nicoletti assay) for assessing apoptotic activity.   

Finally, in vitro experimental evidence suggesting that apoptosis may be a 

mechanism of 2,4-D toxicity was presented by De Moliner et al. (2002).  In contrast to 

Tuschl and Schwab and Kaioumova and colleagues, the authors assessed 2,4-D – 

induced apoptotic activity in human cerebellar granule cell cultures.  Results obtained 

from the TUNEL assay revealed that there was a non concentration-dependent increase 

in apoptotic activity in cells exposed to 1 or 2 mM for 24 hrs.     

Thus, results from above studies that have used various experimental models (in 

vivo (rats) and in vitro (human HepG2, blood lymphocytes, Jurkat T, cerebellar granule 

cells)), assay (annexin-V, DNA gel electrophoresis, flow cytometry, nicoletti, and 

TUNEL), doses (2.8 to 228 mg/kg), concentrations (0.1 to 16 mM), durations of 

exposure (4 hrs to 28 days)  and 2,4-D forms (2,4-D acid or 2,4-D DMA) suggest that 

apoptosis may be a mechanism of 2,4-D toxicity. 

 

                     2.1.8.2 Role of necrosis in 2,4-D toxicity  

 Necrosis, or unprogrammed cell death is characterized by cellular swelling, 

organelle disruption, random and diffused DNA fragmentation and inflammation 

(Mitchell and Cotran, 1997) and has been suggested to be a mechanism of 2,4-D 

toxicity.   

Results from a TUNEL assay showed that exposure to 2 mM of 2,4-D acid for 24 

hrs induced necrotic activity in 72% of human cerebellar granule cells (De Moliner et 

al., 2002).  Necrotic activity induced by 2,4-D exposure was also documented in a later 
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study, where, via the annexin-V assay, it was revealed that exposure to 4, 8 and 16 mM 

of 2,4-D acid for 24 and 48 hrs induced necrosis in HepG2 cell (Tuschl and Schwab, 

2003).   

Thus, results from the above studies that have used various in vitro models 

(human HepG2 and cerebellar granule cells), assay (annexin-V and TUNEL), 

concentrations (2 to 16 mM), durations of exposure (24 and 48 hrs) and a similar 2,4-D 

form (2,4-D acid) suggest that necrosis may be a mechanism of 2,4-D toxicity. 

 

                     2.1.8.3 Alteration of cell physiology in 2,4-D toxicity 

 It is anticipated that 2,4-D toxicity will induce alterations in the physiological 

environment of the cell.  It has been suggested that 2,4-D may alter cell physiology by 

affecting mitochondrial oxidative phosphorylation and transmembrane potential.   

Two in vitro studies provide evidence that suggest that uncoupling of oxidative 

phosphorylation may play a role in 2,4-D toxicity.  Both studies used rat hepatocytes as 

their cell model and assessed mitochondrial oxidative phosphorylation via 

polarographically.  Mitochondria isolated from rat hepatocytes were exposed to 0.1 to 

4.0 mM of 2,4-D acid (Zychlinski and Zolnierowicz, 1990).  Exposure to 1.5 to 4 mM 

induced a concentration-dependent increase in the uncoupling of mitochondrial 

oxidative phosphorylation.  Evidence suggesting that uncoupling of oxidative 

phosphorylation may be a mechanism of 2,4-D toxicity was also provided Palmeira and 

co-workers (Palmeira et al., 1994).  Mitochondria that was isolated from rat hepatocytes 

was exposed to 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 and 0.8 mM of 2,4-D acid.  Similar to 

Zychlinski and Zolnierowicz, Palmeira et al. (1994) reported a concentration-dependent 

increase in the uncoupling of mitochondrial oxidative phosphorylation following 2,4-D 

exposure.  

Thus, the above in vitro studies that used rat hepatocytes, 2,4-D acid, various 

concentrations of 2,4-D (0.1 to 4 mM) and assessed mitochondrial oxidative 

phosphorylation via polarographically, provide experimental evidence that suggest that 

the uncoupling of mitochondrial oxidative phosphorylation may be a mechanism of 2,4-

D toxicity. 
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Three in vitro studies have provided evidence that suggest that 2,4-D reduces 

transmembrane potential using primary rat hepatocytes (Palmeira et al., 1994), human 

HepG2 (Tuchl and Schwab, 2003) and Jurkat-T (Kaioumova et al., 2001b) cells as their 

cell models.  Transmembrane potential was assessed by calculation of membrane 

distribution of tetraphenylphosphonium and 5,5’,6’,6’-tetrachloro-1,1’,3,3-

tetraethybenimidazolycarbocyanine iodide (JC-1).  Results (obtained from calculation of 

membrane distribution of tetraphenylphosphonium) from one study revealed that 

mitochondrial membrane potential was reduced in primary rat hepatocytes exposed to 

0.1, 0.2, 0.3, 0.4, 0.5, 0.6 and 0.8 mM of 2,4-D acid (Palmeira et al., 1994).  A 

concentration-dependent effect was observed at concentrations greater than 0.1mM 2,4-

D acid.  Results obtained from the JC-1 fluorescent assays also provide evidence to 

support the hypothesis that 2,4-D represses mitochondrial membrane potential 

(Kaioumova et al., 2001b; Tuschl and Schwab, 2003).  A concentration-dependent 

depression of mitochondrial membrane potential in HepG2 cells exposed to 4, 8 and 16 

mM of 2,4-D acid for 6 hrs has been reported (Tuchl and Schwab, 2003).  A time-

dependent reduction in mitochondrial transmembrane potential has been observed 

following exposure of Jurkat-T cells to 1mM of a commercial formulation of 2,4-D 

(containing 2,4-D DMA) for 2, 4, 6 and 24 hrs (Kaioumova et al., 2001b). 

Thus, the above in vitro studies that used rat hepatocytes, human HepG2 and 

Jurkat-T cells, different 2,4-D forms (2,4-D acid or DMA), various concentrations (0.1 

to 1 mM) and assessed mitochondrial transmembrane potential via 

tetraphenylphosphonium or JC-1 probe detection, provide experimental evidence that 

suggest that reduction of mitochondrial transmembrane potential may be a mechanism of 

2,4-D toxicity.  Therefore, taken all together, results from the all of the above in vitro 

studies, suggest that uncoupling of mitochondrial oxidative phosphorylation and 

reduction of mitochondrial transmembrane potential may be mechanisms by which 2,4-

D alters cell physiology during toxicity. 

 

                     2.1.8.4 Formation of a reactive metabolite in 2,4-D toxicity 

The metabolism of 2,4-D in humans is an area of great controversy.  Some 

researchers have argued that in humans, 2,4-D is not metabolized to any reactive 
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metabolites and is essentially eliminated unchanged (Gregus et al., 1999; Sauerhauff et 

al., 1977; Van Ravenzwaay et al., 2003).  In contrast some researchers have illustrated 

that 2,4-D may form non-toxic conjugates in humans (Griffin et al., 1997; Sauerhauff et 

al., 1977).  This suggests that in humans, 2,4-D may be metabolized to toxic reactive 

metabolites and that conjugation with endogenous compounds, such as glutathione 

(GSH), facilitates detoxification of such metabolites in humans.  However, experimental 

evidence suggesting that 2,4-D may be metabolized in humans to toxic reactive 

metabolite(s) is scarce and limited to the results obtained an in vitro chemical synthesis 

study (Li et al., 2003).  Results from this study illustrate that 2,4-D may be metabolized 

to form an acyl-CoA thioester, 2,4-dichlorophenoxyacetyl-S-acyl-CoA (2,4-D-CoA).  In 

vitro chemical stability studies revealed that the reactive metabolite is stable at human 

physiologic pH (pH 7.4) and temperature (37°C).  In vitro reaction studies illustrated 

that 2,4-D-CoA  formed adducts with nucleophilic groups on human serum albumin 

(HSA).  Furthermore, it was illustrated in vitro, that 2,4-D-CoA binds covalently to  

hepatic proteins in freshly prepared rat hepatocytes.  Results from high performance 

liquid chromatography assays revealed that synthetic 2,4-D-CoA was also able to 

transacylate the cysteine sulfhydryl group of GSH to form 2,4-D-S-acyl-glutathione 

(2,4-D-SG).  The results suggest that the novel metabolite may be an electrophilic 

reactive metabolite that may be detoxified via transacylation with GSH or induce 

toxicity via covalent binding to nucleophilic groups on biomolecules, such as proteins, 

to result in possible toxic effects, in vivo.  Covalent binding to target molecule(s) is one 

mechanism of action of a toxicant (Gregus and Klaassen, 2001).  

 

                     2.1.8.5 Role of ROS and oxidative stress in 2,4-D toxicity 

Several investigators who have used both in vivo and in vitro experimental 

models have provided evidence that suggest that ROS mediated oxidative stress may 

play a role in 2,4-D toxicity.  The in vivo, followed by the in vitro studies will be 

reviewed.   

Using electron paramagnetic resonance spectroscopy, it was illustrated that 2,4-D 

induces ROS production in yeast cells (Teixeira et al., 2004).  A concentration-

dependent increase in the accumulation of the hydroxyl radical (OH.), a ROS, was 
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observed in yeast cells that were exposed to 0.45, 0.55 and 0.65 mM of 2,4-D acid for 15 

min.  Results suggest that 2,4-D may directly induce ROS production, in vivo.  The ROS 

subsequently induces toxicity by the mechanism of oxidative stress. 

Several in vitro studies (human erythrocytes, primary rat hepatocytes) have tried 

to determine if ROS mediated oxidative stress may be mechanisms of 2,4-D toxicity.  

However, these studies failed to directly measure ROS production, in vitro.  Instead 

ROS mediated oxidative stress was assessed by measuring the activity of antioxidant 

enzymes, levels of glutathione (GSH) and presence of lipid peroxidation.  Antioxidant 

enzymes (superoxide dismutase (SOD), glutathione peroxidase (GSH-Px)) and GSH are 

involved in the detoxification of ROS (Gregus and Klaassen, 2001; Kehrer, 1993; Kohen 

and Nyska, 2002).  Lipid peroxidation results from ROS – induced oxidative stress 

(Kohen and Nyska, 2002).   

    The effects of 2,4-D on the activity of several antioxidant enzymes and GSH  

have been investigated (Bukowska, 2003).  Human erythrocytes were exposed to 0.045, 

0.22, 0.45, 1.12 mM of 2,4-D acid for 1 hr.  Spectrophotometric analyses revealed that 

there was a significant concentration-dependent decrease in SOD activity in erythrocytes 

exposed to 0.22 to 1.12 mM of 2,4-D.  Analyses also revealed that there was a 

significant concentration-dependent increases or decreases in GSH-Px activity and GSH 

levels, respectively, in erythrocytes exposed to 0.45 and 1.12 mM of 2,4-D.    Similar 

effects of 2,4-D exposure on GSH levels were also observed in an earlier study 

(Palmeira et al., 1995).  Fluorescent measurements revealed concentration-and time-

dependent decreases in GSH levels in primary rat hepatocytes exposed to 1, 5 and 10 

mM of 2,4-D acid for 0 to 200 min.  Results suggest that 2,4-D exposure may induce 

ROS production in a concentration-dependent manner, and that increasing ROS 

concentration may exhaust GSH supplies, in vitro. 

Lipid peroxidation is also a valuable endpoint for determining if exposure to a 

chemical induces oxidative stress.  The effect of 2,4-D exposure on lipid peroxidation 

has been investigated (Duchnowicz and Koter, 2003). Human erythrocytes were exposed 

to 1 mM of 2,4-D acid for 1 hr.  Results from the thiobarbituric acid reactive substance 

(TBARS) assay revealed significant increases in malondialdehyde (MDA) levels.  MDA 

is an end product of lipid peroxidation (Palmeira et al., 1995).  Similar effects were also 
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observed in primary rat hepatocyte cell cultures (Palmeira et al., 1995).  A 

concentration- and time-dependent increase in MDA levels were observed in 

hepatocytes that were exposed to 1, 5 and 10 mM of 2,4-D acid for 0 to 200 min.    

Thus, results from both in vivo (yeast) and in vitro (human erythrocytes, primary 

rat hepatocytes) studies that have used the same 2,4-D acid form, various endpoints 

(ROS production, activity of antioxidant enzymes, levels of GSH and presence of lipid 

peroxidation), concentrations (0.045 to 10 mM) and durations of exposure (15 to 200 

min) suggest that ROS and associated oxidative stress may be mechanisms of 2,4-D 

toxicity.  However, with the exception of the study performed by Teixeira and 

colleagues, a flaw of all other studies is that the studies failed to illustrate that 2,4-D 

directly induces ROS production in in vitro experimental models.  Thus, to the best of 

our knowledge, this thesis is the first to examine if 2,4-D directly induces ROS 

production in human cell cultures (HepG2 and HEK293 cells), in vitro. 

 

Reviewed above, the results from several studies that used in vivo (yeast cells) or 

in vitro (human HepG2, erythrocytes, Jurkat-T cells, primary rat hepatocytes) 

experimental models suggest that apoptosis, necrosis, alterations of cell physiology, 

reactive metabolites, ROS and oxidative stress may be mechanisms of 2,4-D toxicity.  

However, as previously mentioned, the mechanism(s) of 2,4-D toxicity is a relatively 

novel research area that is still evolving.  Thus, one objective of the current study was to 

determine a possible mechanism of 2,4-D cytotoxicity, by investigating ROS production, 

in vitro.  The production of ROS was investigated in this thesis based on previous cDNA 

microarray analyses that illustrated increased expression of FTL, FTH1 and PCNA 

mRNA in response to 2,4-D exposure (Bharadwaj et al., 2005) and previous in vivo and 

in vitro studies that provides evidence that suggest that FTL, FTH1 and PCNA mRNA 

and protein expression is increased in response to ROS mediated oxidative stress 

(Balajee et al., 1999; Balla et al., 1992; Epsztejn et al., 1999; Holmes et al., 2002; Lin 

and Girotti, 1997; Orino et al., 2001; Regan et al., 2002; Savio et al., 1998).  A review 

of such studies is presented in the following sections.   
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      2.2 Ferritin 

            2.2.1 Ferritin: structure and function 

       Ferritin is a stable ubiquitous (Corsi et al., 2002; Ponka et al., 1998; Rogers and 

Munro, 1987; Rogers et al., 1990), multimeric (Cairo et al., 1995) iron-storage protein 

(Crichton et al., 2002; Hagen et al., 2002; Harrison and Arosio, 1996; Kwak et al., 1995; 

Ponka et al., 1998; Rogers and Munro, 1987; Rogers et al., 1990; Sánchez et al., 2005; 

Vidal et al., 2004).  The protein is found in a wide range of species that includes 

vertebrates, invertebrates, plants, fungi and bacteria (Leibold and Guo, 1992).  The 

maintenance of cellular iron homeostasis is a principal role of ferritin (Harrison and 

Arosio, 1996; Kwak et al., 1995).  Approximately 25% of the total body iron stores are 

contained in ferritin (Leibold and Guo, 1992) and its putative insoluble (Arosio and 

Levi, 2002) derivative product, hemosiderin (Arosio and Levi, 2002; Leibold and Guo, 

1992).  Hemosiderin is an aggregate of iron and protein found in lysosomes (Leibold and 

Guo, 1992).  Ferritin’s molecular structure is highly conserved in all organisms 

(Harrison and Arosio, 1996) and is mainly a cytosolic protein (Arosio and Levi, 2002; 

Corsi et al., 2002).  However, in vertebrates, a minor portion of ferritin is also present in 

serum and secretory fluids (Arosio and Levi, 2002).  Recently, a novel type of ferritin 

has been found in human mitochondria (Levi et al., 2001).  This novel ferritin is referred 

to as mitochondrial ferritin (MtF) (Drysdale et al., 2002; Levi et al., 2001; Levi and 

Arosio, 2004).  According to researchers, MtF is structurally similar to cytosolic 

ferritins, and also bears ferroxidase activity, suggesting that MtF may also be involved in 

iron detoxification in the mitochondria (Levi et al., 2001) (see below for review of 

ferritin ferroxidase activity and association between ferritin and iron detoxification).  

However, in contrast to cytosolic ferritins, MtF are homopolymers (Levi et al., 2001).   

Mammalian ferritin is a hollow sphere (Chaincone et al., 2004) which is made up 

of 24 subunits, consisting of FTL and FTH1 polypeptides (Cairo et al., 1995; Hagen et 

al., 2002; Harrison and Arosio, 1996; Kwak et al., 1995; Leibold and Guo, 1992; Lo and 

Hurta, 2000; Rogers and Munro, 1987; Rogers et al., 1990; Thompson et al., 2003; 

Vidal et al., 2004).  Among mammals, the FTL subunits are 82-88% identical, while the 

FTH1 subunits are 95% identical (reviewed by Leibold and Guo, 1992).  Ferritin is able 

to sequester 4500 iron atoms per ferritin molecule (Harrison and Arosio, 1996; Sánchez 
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et al., 2005), as insoluble (Harrison and Arosio, 1996) ferric oxy-hydroxide (Chiancone 

et al., 2004; Harrison and Arosio, 1996; Ponka et al., 1998).  However, under normal 

cellular conditions, ferritin is only 20% saturated with iron (Reif, 1992). 

There are approximately 25 iso-ferritins of varying FTL and FTH1 subunit ratios 

(i.e. H24L 0, H23 L1, H22L2, to H0L24) within the ferritin molecule (Harrison and Arosio, 

1996).  The ratio of the FTL (MW: 19kDa (Leibold and Guo, 1992; Rogers and Munro, 

1987; Rogers et al., 1990; Thompson et al., 2003;) and FTH1 (Molecular Weight (MW): 

21kDa (Leibold and Guo, 1992; Rogers and Munro, 1987; Rogers et al., 1990; 

Thompson et al., 2003) subunits within the ferritin molecule vary depending on the 

tissue in which it is expressed (Kwak et al., 1995; Thompson et al., 2003).  For example, 

the brain and heart consist of H-rich ferritins that have a lower FTL to FTH1 subunit 

ratio within ferritin molecules (Harrison and Arosio, 1996).  H-rich ferritins in these 

organs normally consist of less iron/molecule (i.e. 1000 iron atoms per ferritin molecule 

(Harrison and Arosio, 1996)).  In contrast, in iron-storing organs such as the liver and 

spleen there is a higher FTL to FTH1 subunit ratio within ferritin molecules (Harrison 

and Arosio, 1996).  For instance, liver ferritins (FTH1 to FTL subunit ratios of H2-3L22-

21) have a relatively high iron content of 1500 iron atoms per ferritin molecule (Harrison 

and Arosio, 1996).  The existence of variations of FTL and FTH1 subunit ratios allow 

for ferritins to have different and independent iron-storage and oxidizing capacity 

(Arosio and Levi, 2002).  For instance, the presence of a higher FTL to FTH1 subunit 

ratio allows for increased iron-storage capability of liver ferritins (Arosio and Levi, 

2002). 

The FTH1 subunit, which is largely responsible for the biological activity of 

mammalian ferritin (Corsi et al., 2002), bears the molecule’s ferroxidase enymatic 

activity (Corsi et al., 2002; Hagen et al., 2002; Kwak et al., 1995).  Ferroxidase allows 

for the catalytic oxidation of the soluble (Corsi et al., 2002) toxic form (Fe2+) of iron 

(Corsi et al., 2002; Hagen et al., 2002; Harrison and Arosio, 1996; Kwak et al., 1995; 

Thompson et al., 2003;) into the non-toxic ferric form (Fe3+) (Ponka et al., 1998).  The 

ferric form (Fe3+) of iron is subsequently stored as an insoluble (Harrison and Arosio, 

1996) ferric oxy-hydroxide molecule (Chiancone et al., 2004; Harrison and Arosio, 

1996; Ponka et al., 1998).  In contrast, the FTL subunit confers protein stability (Hagen 
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et al., 2002; Kwak et al., 1995) and nucleation of the iron core (Corsi et al.,2002; Ponka 

et al., 1998). 

 

            2.2.2 Regulation of ferritin gene expression 

 Gene expression of FTL and FTH1 is primarily and tightly regulated at the 

translational level (Arosio and Levi, 2002; Cairo et al., 1995; Corsi et al., 2002; 

Crichton et al., 2002; Leibold and Guo, 1992).  Gene expression is regulated in response 

to alterations in intracellular iron availability (Crichton et al., 2002) through specific 

interactions between the cytosolic iron regulatory proteins (IRPs) (Crichton et al., 2002) 

and the iron responsive element (IRE) (Arosio and Levi, 2002) situated in the 5’-

untranslated region (UTR) of the FTL and FTH1 mRNA (Cairo et al., 1995; Harrison 

and Arosio, 1996; Ponka et al., 1998).   

In mammals, two IRPs have been identified, IRP-1 and IRP-2 (Crichton et al., 

2002).  The proteins, IRP-1 and IRP-2 have been described to act as intracellular iron 

sensors (reviewed by Papanikolaou and Pantapoulos, 2005).  Similar homology exists 

between IRP-1 and the mitochondrial enzyme, aconitase (Ponka et al., 1998).  In 

mammals, aconitase is an enzyme that contains a [4Fe-4S] cluster and is involved in the 

citric acid cycle (Ponka et al., 1998).  A 61% amino acid sequence similarity exists 

between IRP-1 and IRP-2 (Ponka et al., 1998).  However, in contrast to IRP-1, IRP-2 

lacks aconitase activity, and therefore only possesses RNA-binding capabilities (Ponka 

et al., 1998).  The IRP-2 protein binds to IREs with similar affinity as IRP-1, but iron 

regulation by IRP-2 is mediated by specific proteolysis (Ponka et al., 1998).  The IREs 

are structural motifs that are located in the 5’-UTR of the FTL and FTH1 mRNA (Cairo 

et al., 1995; Harrison and Arosio, 1996; Papanikolaou and Pantapoulos, 2005; Ponka et 

al., 1998).  These responsive elements are approximately 30 nucleotides in length and 

fold and form a loop and a stem (reviewed by Papanikolaou and Pantapoulos, 2005).  

The IREs are able to recognize and hence provide a binding site for the IRPs (Leibold 

and Guo, 1992; Papanikolaou and Pantapoulos, 2005). 

In mammalian cells, iron homeostasis is maintained by balancing the uptake of 

iron with its intracellular storage and utilization (Crichton et al., 2002).  This balance is 

achieved primarily at the level of protein synthesis (Crichton et al., 2002). Ferritin and 
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transferrin are the major proteins involved in maintaining iron homeostasis (Leibold and 

Guo, 1992).  Transferrin functions to transport iron between its sites of absorption, 

storage and use (Ponka et al., 1998).  In the presence of increased intracellular iron 

concentration, IRP-1 possesses aconitase activity and binds the IRE with low affinity, 

resulting in increased translation of FTL and FTH1 mRNA (Crichton et al., 2002; Ponka 

et al., 1998).  The absence of the association between IRP-1 and the IRE (located in the 

3’-untranslated region) of the transferrin receptor mRNA results in degradation of 

transferrin receptor mRNA (reviewed by Ponka et al., 1998).  Following intracellular 

expansion of the labile iron pool, IRP-2 is degraded (reviewed by Crichton et al., 2002; 

Ponka et al., 1998).  In contrast, during periods of decreased intracellular iron 

concentration, IRP-1 does not possess aconitase activity (Crichton et al., 2002; Ponka et 

al., 1998).  Therefore, IRP-1 binds the IRE with high affinity, with subsequent decreased 

translation of FTL and FTH1 mRNA and increased translation of transferrin receptor 

mRNA (Ponka et al., 1998).    

The increased expression of FTL and FTH1 gene at the translational level 

effectively reduces the bioavailability of excess intracellular iron (Arosio and Levi, 

2002).  Transition metals, such as iron, are extremely important in the generation of 

ROS (Kehrer, 1993), due to its active participation in the Fenton and Haber-Weiss 

chemistry (Biemond et al., 1988; Chiancone et al., 2004; Harrison and Arosio, 1996; 

McCord, 1998; Papanikolaou and Pantopoulos, 2005).  The ROS are known mediators 

of oxidative stress (reviewed by Valko et al., 2007).  Thus, increased iron sequestration 

as a result of the up-regulation of iron-storage proteins, such as ferritin, may provide 

protection to cells and tissues from oxidative stress. 

It has now been suggested that during oxidative stress conditions, ferritin gene 

expression may in fact be regulated secondary to iron release by heme oxygenase-1 

(HO-1) protein (Gonzales et al., 2002; Vile and Tyrell, 1993; Vile et al., 1994).  The 

HO-1 protein is responsible for the catabolization of heme into carbon monoxide, 

biliverdin (rapidly converted to bilirubin) and free iron (Otterbein et al., 2003; Unno et 

al., 2007).  It has been illustrated in vitro, that oxidative stress conditions (ultraviolet A 

(UVA) rays or H2O2) induces the immediate release of heme from microsomal 

hemeproteins (i.e. cytochrome P450) in primary human skin fibroblasts (FEK4) (Kvam 
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et al., 1999).  In the presence of ROS, heme may be released from hemeproteins as a 

result of ROS – induced protein oxidation and degradation.  Proteins are biological 

targets for ROS – induced oxidation, damage and degradation (Davies, 1987; Davies et 

al., 1987a; 1987b; 1987c).  Therefore, during oxidative stress conditions, the chain of 

events responsible for induction of ferritin gene expression may be as follows; (1) 

increased release of heme from hemeproteins, (2) increased gene expression of HO-1, 

(3) increased catabolization of heme to carbon monoxide, biliverdin and free iron and 

(4) increased ferritin gene expression.  Thus, increased expression of the ferritin protein 

ultimately provides protection during oxidative stress conditions, by limiting the 

availability of free iron to the Fenton and Haber-Weiss reactions and thereby reducing 

further generation of ROS.  A review of some studies that presents evidence that suggest 

that the up-regulation of ferritin gene expression may be a cytoprotective mechanism 

against oxidative stress is presented below.  

 

            2.2.3 Ferritin and oxidative stress 

 The sequestration of free iron by ferritin, which subsequently reduces iron 

availability to the iron-catalyzed Fenton and Haber-Weiss reactions, is regarded as a 

protective mechanism against cellular oxidative stress (Balla et al., 1992).  Several 

studies conducted on various in vitro models (i.e. mouse cortical astrocytes, porcine 

aortic endothelial, murine erythroleukemia, immortalized human HeLa and HepG2 cells) 

provides evidence that suggest that the increased sequestration of labile iron as a result 

of the up-regulation of ferritin expression is a protective response to oxidative stress 

(Balla et al., 1992; Cairo et al., 1995; Epsztejn et al., 1999; Orino et al., 2001; Regan et 

al., 2002).   

In vitro studies conducted on mice cortical astrocytes illustrates that ferritin 

expression increases in response to oxidative stress (Regan et al., 2002).  Ferritin protein 

expression was increased following exposure to 5 µM of hemoglobin (Hb) or 3 µM of 

hemin.  Both Hb and hemin are direct sources of iron.  Western blot analyses revealed 

that exposure to 5 µM of hemoglobin for 2, 4 and 8 hrs induced a time-dependent 

increase in ferritin protein synthesis in astrocytes.  Results suggest that an up-regulation 

of ferritin protein expression may be a protective response to increased intracellular iron.  
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The sequestration of free iron by ferritin protects against oxidative stress by reducing 

iron availability to the Fenton and Haber-Weiss reactions and thus, further generation of 

ROS production.  In the same study, results from cytotoxicity assay (measurement of 

lactate dehydrogenase (LDH) activity) revealed that pre-treatment of astrocytes with 1, 2 

or 4 mg/L of apoferritin (ferritin that lacks iron (Harrison and Arosio, 1996)) provided 

concentration-dependent protection against cell death following exposure to a toxic 

concentration (30 µM) of hemin.  Furthermore, astrocytes pre-treated with 30 µM of Hb 

or 3 µM of hemin for 24 hrs were protected from hemin-induced oxidative injury in a 

concentration-dependent manner.  The results suggest that pre-treatment with 

apoferritin, Hb or hemin induced ferritin protein expression, which resulted in 

sequestration of free iron and reduced ROS production and associated oxidative stress 

upon hemin challenge.   

Enhanced ferritin protein synthesis in response to increased intracellular iron 

concentration and possible increased ROS production and potential oxidative stress has 

also been observed by Balla and co-workers.  Ferritin immunoassay illustrated that 

exposure to 1.0, 2.5, 5.0 and 10 µM of hemin induced a concentration-dependent 

increase in ferritin protein synthesis in porcine aortic endothelial cells.  Pre-treatment of 

cells with 5 µM of hemin or 100 µM of hydrogen peroxide (H2O2) resulted in a 

concentration-dependent reduction of ferritin synthesis in cells exposed to 1.0, 2.5, 5.0 

and 10 µM of hemin (Balla et al., 1992).  Results suggest that treatment or pre-treatment 

of cells with mediators (i.e. hemin or H2O2) of ROS production induces ferritin protein 

expression as a protective mechanism, since increased ferritin protein expression 

subsequently limits free iron availability of Fenton and Haber-Weiss chemistry and 

reduces further ROS production and oxidative damage. 

Further evidence to suggest that the increased expression of ferritin may be a 

protective response to increased ROS production and oxidative stress has also been 

presented by several other research groups (Cairo et al., 1995;  Epsztejn et al., 1999; 

Orino et al., 2001).   These studies showed that increased ferritin expression was 

associated with decreased ROS production.  For instance, Orino and colleagues exposed 

HeLa cells to 125 or 250 µM of H2O2 for 8 hrs (Orino et al., 2001).  Western blot 

analyses illustrated that exposure to H2O2 resulted in an increase in both FTL and FTH1 
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mRNA and protein expression.  Additionally in H2O2 challenged cells, over expression 

of FTL and FTH1 cDNA in transfected cells reduced the accumulation of intracellular 

ROS (assessed using 2,7’-DCFH-DA).  The results illustrates that the up-regulation of 

ferritin may be in fact a protective response to ROS – induced oxidative stress.  Similar 

increases in FTL and FTH1 mRNA and protein expression were also observed in the 

liver of mice exposed to the pro-oxidant, phorone for 3 or 6 hrs (Cairo et al., 1995).  

Decreased ROS production (assessed using 2’,7’-carboxy-dichlorofluorescein) following 

iron loads and oxidant challenges in murine erythroleukemia cell cultures transfected 

with FTH1 protein subunit have also been reported (Epsztejn et al., 1999). 

Thus, all of the above studies present evidence that suggest that increased ferritin 

mRNA or protein expression may be a protective response against iron-mediated 

increases in ROS production and associated oxidative stress.  Therefore, the up-

regulation of FTL and FTH1 mRNA expression that was observed in HepG2 cells 

exposed to 0.1 nM to 1 mM 2,4-D for 24 hrs (Bharadwaj et al., 2005) may have been a 

protective response to 2,4-D induced ROS production and associated oxidative stress.  

Thus, taken all together, the above studies presents evidence that provides the necessary 

rationale in this thesis for investigating ROS production in HepG2 and HEK293 cells 

exposed to 2,4-D and also allows for the suggestion that increased expression of FTL 

and FTH1 mRNA and protein expression highlights ROS mediated oxidative stress as a 

mechanism of 2,4-D toxicity.   

 

      2.3 Proliferating cell nuclear antigen 

            2.3.1 PCNA: structure and function 

Originally referred to as cyclin (Mathews et al., 1984; Moris and Mathews, 

1989), PCNA is a homotrimeric ring-shaped protein (Brand et al., 1994; Prosperi, 2006; 

Schurtenberger et al., 1998; Wyman and Botchan, 1995).  It is an acidic nuclear protein 

(Mathews et al., 1984) that plays an integral role in nucleic acid metabolism (Kelman, 

1997), including DNA replication, repair and cell cycle regulation (Kelman, 1997; 

Schurtenberger et al., 1998).   

The homotrimeric PNCA structure is composed of three identical monomers 

(Maga and Hübscher, 2003) with a molecular weight of 28.7kDa (Brand et al., 1994).  
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However, when the protein is resolved by SDS-PAGE, it migrates with an apparent 

molecular weight of 36kDa (Brand et al., 1994).  The proliferating antigen, which was 

first identified in the sera of some patients with systemic lupus erythematosus (SLE) is a 

member of the DNA sliding clamp family (Kelman and O’Donnell, 1995; Maga and 

Hübscher, 2003; Warbick, 2000; Wyman and Botchan, 1995).  The DNA sliding clamps 

are defined as ring-shaped proteins that indirectly bind to DNA by encircling and 

forming a topological link with the double helix molecule (Hingorani and O’Donnell, 

2000).  Additional members of the DNA sliding clamp family include; Escherichia Coli 

(E.coli) DNA polymerase III β subunit (Kelman and O’Donnell, 1995) and 

bacteriophage T4 gene45 protein (Wyman and Botchan, 1995).  The DNA sliding clamp 

members are highly evolutionary conserved (Warbick, 2000).  Thus, PCNA homologues 

are found in eukaryotes, archaea, bacteriophages and some viruses (Warbick, 2000), as 

well as in the cells of humans, mouse, hamster and bird  (Almendral et al., 1987).   

 

            2.3.2 Regulation of PCNA gene expression   

       The expression of this highly conserved protein is regulated at the transcriptional 

level (Almendral et al., 1987).  The expression level of PCNA protein is greatly 

increased in the S phase of the cell cycle (Bravo and Celis, 1980; Celis and Celis, 1985) 

and is synthesized during the proliferation of normal cells, transformed cells and tumors 

(Almendral et al., 1987; Bravo and Macdonald-Bravo, 1985).  In contrast, the expression 

level of the proliferating antigen is reduced in non-dividing cells (Almendral et al., 

1987; Bravo and Macdonald-Bravo, 1985). 

             

            2.3.3 PCNA and oxidative stress 

       Due to its key role in DNA replication, PCNA has become a novel tool, as a cell 

proliferation marker in toxicology studies aimed at determining the cell and molecular 

mechanisms of toxicity and/or carcinogenicity of compounds of interest (Dietrich, 

1993).  However, some in vivo (rats) and in vitro (human fibroblast cells) experimental 

studies have utilized PCNA protein expression as a potential marker of oxidative DNA 

damage (Balajee et al., 1999; Holmes et al., 2002; Savio et al., 1998).   
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An in vivo study was conducted that was aimed at determining if oxidative stress 

plays a role in peroxisome proliferation-induced carcinogenicity in isolated rat 

hepatocytes (Holmes et al., 2002).  The authors used three proteins as markers of 

oxidative stress; DNA polymerase beta (Polβ), apurinic/apyrimidinic endonuclease (Ref-

1) and PCNA.  The proteins; Polβ, Ref-1 and PCNA are all involved in the repair of 

oxidative DNA damage (reviewed by Holmes et al., 2002).    Rats were exposed to WY 

14,643, a peroxisome proliferator.  Peroxisome proliferators (i.e 2,4-D) are a structurally 

diverse group of compounds (Ge et al., 2002) that may induce hypertrophy of tissue 

peroxisomes and pronounced increases in the tissue levels of many peroxisomal 

enzymes (reviewed by Holmes et al., 2002).  A concentration-dependent increase in 

Polβ and Ref-1 expression was observed in the liver of rats exposed to 5,000 or 50,000 

µg/L of WY 14,634 for 6 days.  Western blot analyses illustrated that PCNA protein 

expression was up-regulated 5 fold in rats exposed to 500,000 µg/L of WY 14,634 for 

34 days.  The results suggest that in addition to increased cell proliferation, increased 

PCNA protein expression may have been a protective response against oxidative DNA 

damage, since PCNA is known to be involved in DNA repair.    

Results from two in vitro studies that were conducted a few years earlier also 

suggest that increased PCNA protein expression indicate chemical insult via the 

mechanism of oxidative stress.  Immunofluorescent and western blot studies analyses 

provide experimental evidence that suggest that increased PCNA protein expression may 

be a response to oxidative DNA-damage (Balajee et al., 1999).  Human fibroblast cell 

cultures were exposed to ultraviolet C (UVC) or H2O2.  Both UV and H2O2 are known to 

induce a variety of oxidative DNA lesions (Balajee et al., 1999).  Exposure to 2.5 mM of 

H2O2 for 15 min induced a 4- to 5-fold increase in PCNA-DNA complex, while 

exposure to 10 J/m2 UV for 30 min induced a 9-fold increase in PCNA-DNA complex 

formation in the nucleus.  Results suggest that up-regulation of PCNA protein 

expression may be a protective response to oxidative DNA damage, where, PCNA 

protein may play a role in one or more repair pathways of induced oxidative DNA 

lesions.   

An additional immunofluorescent study also produced results that suggest that 

PCNA protein expression is up-regulated in response to oxidative DNA damage (Savio 
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et al., 1998).  Compared to Balajee and co-workers, in the study, human fibroblasts cells 

were exposed to 10 fold or less H2O2 (0 to 200 µM) for a longer duration of time (1 hr).  

Exposure induced a rapid concentration-dependent increase in the nuclear binding of 

PCNA in cells.  Results suggest that up-regulation of PCNA may be in response to 

oxidative DNA damage induced by the known DNA oxidizing agent, H2O2.   

The results from the above studies suggest that increased PCNA protein 

expression may be a protective response against ROS – induced oxidative DNA damage.  

Therefore, the up-regulation of PCNA mRNA expression that was observed in HepG2 

cells exposed to 0.1 nM to 1 mM of 2,4-D for 24 hrs (Bharadwaj et al., 2005) may have 

been a protective response to 2,4-D – induced intracellular ROS production and 

associated oxidative DNA damage in cells.  Thus, taken all together, the above studies 

present evidence that provides the necessary rationale in this thesis for investigating 

ROS production in HepG2 and HEK293 cells exposed to 2,4-D and also allows for the 

suggestion that increased expression of PCNA mRNA and protein expression indicates 

ROS mediated oxidative stress as a mechanism of 2,4-D toxicity.   

 

      2.4 Reactive oxygen species  

            2.4.1 Introduction to ROS 

  Reactive oxygen species, commonly referred to as ROS and oxygen free radicals 

(OFR) are chemically unstable, independent (Kehrer, 1993) species that contain one or 

more unpaired electrons (Halliwell, 1987; Kehrer, 1993) in their outer orbital (Gregus 

and Klaassen, 2001).  Some examples of ROS include the superoxide anion (O2
.-) and 

the noxious hydroxyl radical (OH.) (Gregus and Klaassen, 2001).  These reactive species 

are produced from both endogenous and exogenous sources (reviewed by Kohen and 

Nyska, 2002).  In humans, endogenous sources of ROS may include white blood cells 

(neutrophils, eosinophils, basophils), enzymes directly producing ROS (nitric oxide 

synthase), enzymes indirectly producing ROS (xanthine oxidase), mitochondrial 

metabolism and diseases (i.e. ischemic processes) (reviewed by Kohen and Nyska, 

2002).  Food, UV radiation, pollutants, xenobiotics and toxins are some examples of 

exogenous sources of ROS (reviewed Kohen and Nyska, 2002).   
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            2.4.2 Relationship between iron, ROS and oxidative stress 

            The production of ROS may be mediated by various metals including iron, 

copper and chromium (reviewed by Valko et al., 2006).  For the purposes of this thesis, 

in order to allow for a better understanding of the relationship between ferritin, iron, 

ROS and oxidative stress; only the association between iron and ROS will be reviewed.  

Intracellularly, an increase in iron levels may lead to an increase in ROS production via 

Haber-Weiss chemistry (Biemond et al., 1988; Chiancone et al., 2004; Harrison and 

Arosio, 1996; McCord, 1998; Papanikolaou and Pantopoulos, 2005).  In the Haber-

Weiss reaction, the reaction between O2
.- and H2O2, described as a ‘lethal mixture’ 

(Harrison and Arosio, 1996),  results in the formation of the very reactive OH. species 

(Halliwell, 1987; Thomas et al., 1985).   

 

        Fe2+ + H2O2 → Fe3+ + OH- + OH.        (Fenton Reaction)               (2.1) 

                             Fe3++ O2
.- → Fe2+ + O2                                                                                            (2.2) 

     

                   H2O2 + O2
.- → OH- + OH. + O2            (Haber-Weiss Reaction)      (2.3)   

  

Once produced, in order to achieve a more stable electron status, ROS readily 

combine with the unpaired electrons of other molecules (Kehrer, 1993), such as 

biological molecules (i.e. DNA, lipids and proteins) (reviewed Kohen and Nyska, 2002) 

leading to tissue damage (Kehrer, 1993).  The damage of biological molecules by ROS 

results in a condition referred to as oxidative stress (reviewed by Valko et al., 2007).  

Oxidative stress is defined as a disturbance in the balance between prooxidants and 

antioxidants, in which there is the increased presence of prooxidants, in contrast to 

antioxidants (reviewed by Kehrer, 1993).   

Cells have developed a tremendous antioxidant defense system against ROS 

damage, which include Vitamin C, E, superoxide dismutase, catalase, GSH conjugation 

system and several others that aid in the detoxification of ROS (reviewed by Kehrer, 

1993; Kohen and Nyska, 2002).  Recently, the increase in transcription of cytoprotective 

genes (ferritin) in response to oxidative stress has also been described as an antioxidant 

response (Tsuji et al., 2000).  Previously reviewed, the up-regulation of ferritin mRNA 
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and subsequent protein expression limits the availability of free iron to the Fenton 

reaction, thus protecting the cells and tissues from the damaging effects of further 

generation of noxious ROS production and associated oxidative stress.  Thus, in this 

present study, increases in ferritin mRNA or protein expression in HepG2 and HEK293 

cells may be an antioxidant response to 2,4-D induced ROS production and associated 

oxidative stress.  
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3. METHODS 

      3.1 Experimental design 

  In vitro studies were conducted using human cell cultures exposed once to 

increasing concentrations of a technical grade or commercial formulation of 2,4-D.  All 

exposure experiments consisted of untreated control and treated 2,4-D cell cultures.  Cell 

viability was determined following 6, 24, 48 and 72 hrs of incubation with 0 to 10 mM 

of technical or commercial 2,4-D.  An oxidant (H2O2) (Halliwell, 1987 and Zhou et al., 

2004) was used as a positive control in ROS studies.  The measurement of ROS 

production was performed following 1.3 hrs of incubation with 0 to 400 µM of H2O2, or 

2 to 6 hrs of incubation with 0 to 1 mM of commercial 2,4-D.  Following 24 hrs of 

exposure to 0 to 1 mM of commercial 2,4-D,  RNA and protein were extracted for RT-

PCR and western blot assays, respectively. 

  

      3.2 Culturing, subculturing and counting of cells 
 Two human cell lines (American Type Culture Collection (ATCC)) were used in 

this study; human hepatocellular carcinoma (HepG2) and human embryonic kidney 

(HEK293) cells.  The HepG2 cells are epithelial carcinoma cells derived from the liver 

(ATCC, 2004).  The HEK293 are epithelial cells derived from the kidney and 

transformed with human adenovirus 5 DNA (ATCC, 2004; Thomas and Smart, 2005).   

 Cell cultures were maintained according to ATCC recommendations.  Frozen 

stocks of HepG2 and HEK293 cells were stored at a density of 1 x 107 cells/mL in a 

solution of fetal bovine serum (FBS) (Sigma-Aldrich Canada Ltd) (90% (v/v)) and 

dimethylsulfoxide (DMSO) (EM Science) (10% (v/v)).  One mL cell suspensions were 

stored in 2 mL cryovials (VWR Scientific) in a cryo biological storage tank 

(Thermolyne) containing liquid nitrogen.  Frozen cells were thawed as needed for 

conducting experimental procedures.  Cells were thawed by placing the sealed cryovial 

in a styrofoam container containing warm water for approximately 1 min.  Thawed cells 
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were placed in a sterile 50 mL centrifuge tube (VWR Scientific) with approximately 10 

mL of complete growth media (Dulbecco’s minimum essential medium (DMEM) 

containing 2 mM L-Glutamine, 4 mM nonessential amino acids and 126 mM Earle’s 

salts (Invitrogen Corporation) supplemented with 1.5 g/L sodium bicarbonate, 1 mM 

sodium pyruvate, 10,000 U/mL penicillin – 10,000 µg/mL streptomycin (Invitrogen 

Corporation) and 10% (v/v) FBS.  Cell suspensions were then centrifuged at 1000 x g 

for 10 min at room temperature using a Fisher Scientific IEC PR-6000 centrifuge to 

ensure removal of all DMSO from cells.  Following centrifugation, media was removed 

by gentle aspiration using a pipette and discarded.  Cells were then re-suspended by 

gentle pipetting in 15mL of complete growth media and placed in 75 cm2 Falcon culture 

flasks (VWR Scientific).  Total volume in 75 cm2 Falcon culture flasks was 15 mL.  

Unless otherwise stated, cell cultures were always maintained in a sterile air 

environment, at 37ºC, 95% O2, 5% CO2.  Media on HepG2 and HEK293 cell cultures 

was renewed 2-3 times per week.  In order to maintain similar culturing conditions for 

HepG2 and HEK293 cells, in contrast to ATCC recommendations to culture HEK293 

cells in media supplemented with 10% (v/v) Heat-inactivated horse serum, in this 

present study HEK293 cells were grown in media supplemented with 10% (v/v) FBS.   

 Cells were subcultured when they reached approximately 80-85% cell 

confluency (attained approximately 3-4 days for HepG2 and HEK293), as determined by 

microscopic examination using an Olympus compound microscope at 4X magnification, 

cell cultures were subcultivated.   Cells were subcultured in 75 cm2 Falcon culture 

flasks.  Media was removed by gentle aspiration and discarded.  5 mL of 0.25% (w/v) 

trypsin-EDTA solution (Invitrogen Corporation) was added to the flasks and cell 

cultures were incubated for 5-10 min, followed by the addition of 10 mL of complete 

growth media to the flask.  Cell suspensions were placed in 50 mL centrifuge tubes and 

centrifuged at 1000 x g for 10 min at room temperature to ensure removal of all trypsin-

EDTA solution from cells.  After centrifugation, supernatants were discarded and the 

cells were re-suspended in complete growth media by gentle pipetting.  In order to 

ensure that cells were passaged into the culture flasks at equal cell density; cells were 

counted (described below), before being plated in the culture flasks.  
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 Cells were dispersed from culture flasks using trypsin-EDTA as described above.  

Following the removal of trypsin-EDTA solution, cells were re-suspended in complete 

growth media by gentle pipeting.  For cell counting, 1:1 mixtures of cell suspension (40 

µL) and 0.4% (w/v) trypan blue stain (40 µL) (Invitrogen Corporation) were made.  Cell 

mixtures were pipetted to ensure complete suspension of cells.  20 µL aliquots of cell 

mixtures were added to a Bright Line® hemacytometer.  Cells were counted using an 

Ernest Leitz Wetzlar compound microscope at 10X magnification.  The Bright Line® 

hemacytometer consists of a total of 9 grids.  Cell numbers were calculated using an 

average of the cell numbers counted in 5 out of 9 grids on the hemacytometer.  HepG2 

and HEK293 cells were subcultured at a ratio of 1:2 and 1:4, respectively.  HepG2 and 

HEK293 cells were used at passage numbers 15 and 6, respectively for cell viability, 

ROS (positive control only), RNA and protein studies.  HepG2 and HEK293 cells were 

used at passages 19 and 9, respectively for ROS assay following treatment with 2,4-D.   

 

      3.3 Preparation of chemical solutions for cell treatments 

            3.3.1 2,4-D 

 Two forms of 2,4-D were used in this study; (1) a technical grade of 2,4-D; 2,4-

D dimethylamine (2,4-D DMA) concentrate; purity 67.1% (a gift from Nufarm 

Agriculture Inc.) and (2) a commercial formulation of 2,4-D; C.I.L. Dandelion Killer 

(containing 2,4-D DMA)(Nu-Gro Corporation).  The 2,4-D treatment concentrations 

used in the study were; 0.1 nM (2,4-D DMA: 0.026 µg/L; 2,4-D acid: 0.022 µg/L), 1 

nM (2,4-D DMA: 0.26 µg/L; 2,4-D acid: 0.22 µg/L),  10 nM (2,4-D DMA: 2.60 µg/L; 

2,4-D acid: 2.20 µg/L), 100 nM (2,4-D DMA: 26 µg/L; 2,4-D acid: 22 µg/L), 1 µM 

(2,4-D DMA: 260 µg/L; 2,4-D acid: 220 µg/L), 10 µM (2,4-D DMA: 2.6 x 103 µg/L; 

2,4-D acid: 2.2 x 103 µg/L), 100 µM (2,4-D DMA: 2.6 x 104 µg/L; 2,4-D acid: 2.2 x 104 

µg/L) and 1 mM (2,4-D DMA: 2.6 x 105 µg/L; 2,4-D acid: 2.2 x 105 µg/L).  Additional 

2,4-D treatment concentrations of  5 mM (2,4-D DMA: 1.3 x 106 µg/L; 2,4-D acid: 1.1 x 

106 µg/L) and 10 mM (2,4-D DMA: 2.6 x 106 µg/L; 2,4-D acid: 2.2 x 106 µg/L) were 

used only in cell viability studies.  Using initial stock (1M) solutions of either technical 

or commercial 2,4-D, serial dilutions were performed to obtain solutions of 2,4-D that 

contained 10X desired 2,4-D treatment concentrations.  The 2,4-D solutions were 
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prepared in complete growth media for cell viability, mRNA and protein studies.  The 

2,4-D solutions were prepared in sterile water for the ROS assay.  The solutions of 2,4-D 

were prepared less than 24 hrs before use, sterile filtered using Acrodisc® 0.2 µM 

syringe filters (Pall German Laboratory) and stored at 4ºC, protected from light.  

 

            3.3.2 H2O2  

 The H2O2 treatment concentrations used in this study were 100 µM, 200 µM, 

300 µM and 400 µM.  Stock solutions of H2O2 were made in sterile water to contain 

10X desired H2O2 treatment concentrations.  The H2O2 treatments were prepared less 

than 30 min before use and stored at 4ºC, protected from light. 

  

      3.4 Plating and treatment of cells prior to performing assays  

            3.4.1 Plating and treatment of cells prior to performing cell viability assay

 The HepG2 and HEK293 cells were passaged and counted as previously 

described (see section 3.2) and plated into NUNC™ black 96-multiwell plates (VWR 

Scientific).  The HepG2 cells were plated at a density of 30,000 cells/well.  In contrast, 

since HEK293 cells were larger, these cells were plated at a density of either 30,000 or 

15,000cells/well for 6 and 24 hrs or 48 and 72 hrs cell viability studies, respectively.  

Cells were incubated.  Cell cultures were treated with 2,4-D following 48 hrs after the 

initial plating to allow cultures to attain at least 55-60% cell confluency.  Media was 

removed from cells and 200 µL (untreated control cell cultures) or 180 µL (treated cell 

cultures) aliquots of fresh complete growth media was  added, followed by the addition 

of 20 µL media containing either technical or commercial 2,4-D.  Total well volume was 

200 µL for untreated control and treated cell cultures.  Gentle pipetting using a 

multichannel pipette was used to ensure the thorough mixing of 2,4-D treatments with 

complete growth media, without displacing cells.   
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            3.4.2 Plating and treatment of cells prior to performing ROS assay 

                     3.4.2.1 Plating and treatment of cells with H2O2 prior to performing    

                       ROS assay 

 Cells were passaged and counted as described above (see section 3.2) and plated 

into NUNC™ black 96-multiwell plates at a density of 30,000 cells/well; a density 

similar to that previously used by Wu et al (1997).  Cells were incubated.  At 

approximately, 55-60% cell confluency, media was removed and discarded from cells 

using a multichannel pipette and cells were washed twice with 200 µL aliquots of 1X 

Dulbecco’s phosphate buffered saline (DPBS) (Ca2+, Mg2+ and phenol red-free) 

(Invitrogen Corporation).  Two hundred µL (untreated control cell cultures) or 180 µL 

(treated cultures) aliquots of D-PBS was added to cells, followed by the addition of 20 

µL of H2O2 stock treatments.  Total well volume was 200 µL for untreated control and 

treated cell cultures.  Gentle pipetting using a multichannel pipette was used to ensure 

the thorough mixing of H2O2 treatments with D-PBS, without displacing cells.  Cells 

were incubated.   

    

                     3.4.2.2 Plating and treatment of cells with 2,4-D prior to performing    

                                 ROS assay 

 HepG2 and HEK293 cell cultures were passaged, counted and maintained as 

described above (see section 3.2) prior to 2,4-D treatments.  Two hundred µL (untreated 

control cell cultures) or 180 µL (treated cultures) aliquots of D-PBS was added to cells 

in each well, followed by the addition of 20 µL of commercial 2,4-D stock treatments.    

Total well volume was 200 µL for untreated control and treated cell cultures.  Gentle 

pipetting using a multichannel pipette was used to ensure the thorough mixing of 2,4-D 

treatments with D-PBS, without displacing cells.  Cells were incubated.   

 

                     3.4.2.3 Plating of cells and treatment with 2,4-D prior to RNA and          

         protein extraction for RT-PCR and western blot assays 

 HepG2 and HEK293 cells were passaged and counted as described above (see 

section 3.2) and plated into 9 individual NUNC™ 100 x 20 mm culture dishes (VWR 

Scientific) at a density of 1 x 107 cells/culture dish for either RNA or protein studies.  At 
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approximately 80-85% cell confluency (attained approximately 4-5 days for HepG2 and 

3 days for HEK293 cells), media from cells were removed and discarded and cells were 

replenished with 10 mL (untreated control cell cultures) or 9 mL (all cell cultures, 

excluding untreated control cell cultures) of fresh complete growth media, followed by 1 

mL of 2,4-D treatment stock solutions.  Final volume in cell culture dishes was 10 mL 

for untreated control and treated cell cultures.  Culture dishes were then gently swirled 

clockwise for 30 sec to ensure thorough mixture of 2,4-D treatments with complete 

growth media, without displacing cell cultures.  Plated cells were incubated for 24 hrs 

prior to RNA and protein extraction.  

 

      3.5 Assays 

            3.5.1 Cell viability 

 Cell viability was determined fluorometrically using an in vitro toxicology assay 

kit, containing the dye, Resazurin (Sigma-Aldrich Canada Ltd).  The basis of the assay is 

the reduction of Resazurin.  Cell viability is determined as a function of metabolic 

activity.  Viable cells have the ability to reduce the oxidized (blue) form of Resazurin to 

a fluorescent (red) intermediate, therefore indicating the magnitude of the toxic effect of 

test compounds (Sigma-Aldrich Canada Ltd.)  

 Cell viability assays were performed as outlined by the manufacturer’s protocol 

(Sigma-Aldrich Canada Ltd protocol references: Dutka et al., 1983; King, 1984; Liu, 

1981; Strotmann et al., 1993) with minor modifications.  Cell cultures were incubated 

with 20 µL of the Resazurin dye (final concentration 10% (v/v)) in the last 2.5 hrs prior 

to the end of the respective incubation period (6, 24, 48, and 72 hrs).  Total well volume 

was 220 µL for untreated control and treated cell cultures.  Following incubation, 

fluorescence was measured using a Dynex Technologies Fluorolite 1000 fluorometer 

reader, at excitation and emission wavelengths of 546 nm and 590 nm, respectively.  

Cell viability assays were performed in replicates of 6 for untreated control and treated 

cell cultures. 
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            3.5.2 ROS  

 The production of ROS was determined according to Seth et al. (2004), Wan et 

al. (2003) and Wu et al. (1997) with minor modifications.  The production of ROS in 

cells was determined fluorometrically using 2’,7’-DCFH-DA (Sigma-Aldrich Canada 

Ltd).  The compound, 2’,7’-DCFH-DA is a non-ionic, non-polar molecule that is 

permeable to the cell membrane (Bass et al., 1983).  Subsequent to its entry into the cell, 

the molecule is enzymatically hydrolyzed by intracellular esterases to the non-permeable 

molecule, 2’,7’-dichlorofluorescin (DCFH), where in the presence ROS, DCFH is 

rapidly oxidized to the highly fluorescent molecule, 2’,7’-dichlorofluorescein (DCF) 

(Bass et al., 1983).  The fluorescent signal is directly proportional to ROS production 

(Osseni et al., 1999, 2000).  

 

                     3.5.2.1 Determination of ROS production in cells exposed to H2O2 

 In order to avoid photo-oxidation of 2’7’-DCFH-DA, all procedures of this assay 

were performed in the dark.  All 2’7’-DCFH-DA solutions were prepared immediately 

before use and any unused portions were discarded.  Initially, a 5 mM stock solution of 

2’,7’-DCFH-DA was prepared in 95% ethanol (Wu et al., 1997)  and  stored at 4ºC (Seth 

et al., 2004), protected from light, until needed.  The 5 mM 2’,7’-DCFH-DA stock 

solution was diluted to 1 mM in D-PBS, immediately before use.  At the end of the H2O2 

incubation period (20 min), cell cultures were incubated with 50 µL of 1 mM 2’,7’-

DCFH-DA  (final concentration 2’,7’-DCFH-DA  200 µM; final concentration ethanol 

3.8% (v/v)) (Wu et al., 1997) for an additional 1 hr (Seth et al., 2004).  Total well 

volume was 250 µL for untreated control and treated cell cultures.  Fluorescence was 

subsequently measured using a Fluorolite 1000 fluorometer reader (Dynex 

Technologies), at excitation and emission wavelengths of 485 nm and 535 nm, 

respectively.  ROS assays were performed in replicates of 6 for untreated control and 

treated cell cultures.   

 

                     3.5.2.2 Determination of ROS production in cells exposed to 2,4-D 

 Following 1 hr incubation with 2,4-D, HepG2 and HEK293 cells were incubated 

with 50 µL of 1mM 2’,7’-DCFH-DA as described above and fluorescence measured 
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(see section 3.4.2a).   Fluorescence was measured every hour for a total of 5 hrs.  Cell 

cultures were incubated in the intervals between fluorescent measurements.  ROS assays 

were performed in replicates of 8 for untreated control and treated cell cultures.  

 

            3.5.3 mRNA analysis 

                     3.5.3.1 RNA extraction and purification  

  Following 2,4-D incubation, media was removed and discarded, and cells were 

gently washed twice with sterile 1X phosphate buffered saline (PBS) (pH 7.4) (137 mM 

NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 2 mM KH2PO4) (Sambrook and Russell, 2001).  

Trizol reagent (Invitrogen Corporation) was used to extract RNA from HepG2 and 

HEK293 cells.  RNA extraction was performed as outlined by the manufacturer’s 

protocol (Invitrogen Corporation protocol reference: Chomczymski and Sacchi, 1987) 

with minor modifications.  To avoid RNA degradation by Ribonuclease (RNase) 

enzymes (Ambion, 2007), all reagents that were used in RNA extraction process were 

prepared using RNase-free water supplemented with autoclaved 0.1% (v/v) diethyl 

pyrocarbonate (DEPC) (Sigma-Aldrich Canada Ltd), an RNase enzyme inhibitor 

(Leonard et al., 1970; Solymosy et al., 1968).  Cells were directly lysed by addition of 1 

mL Trizol reagent to each culture dish.  Samples were incubated for 5 min at room 

temperature.  Samples from each plate were transferred to individual sterile 15 mL 

centrifuge tubes, mixed with 200 µL of chloroform, shaken vigorously 15 sec and 

incubated for 3 min at room temperature.  Samples were then centrifuged using a 

Beckman Coulter™ centrifuge at 11,500 x g for 15 min at 2 to 8ºC.  Following 

centrifugation, the aqueous phases containing RNA were transferred to new sterile 15 

mL centrifuge tubes, mixed with 500 µL of isopropyl alcohol and incubated for 10 min 

at room temperature to allow RNA precipitation.  Samples were centrifuged at 11,500 x 

g for 10 min at 4ºC.  The RNA pellets were washed with 1 mL of 75% ethanol (v/v) 

(prepared in RNase-free water) by gently mixing, followed by centrifugation at 7,500 x 

g for 5 min at 2 to 8ºC.  The ethanol was removed and the RNA pellets were allowed to 

air dry for 10 min.  The RNA pellets were dissolved in 3 mL of a solution containing 

tris-ethylene diamine tetraacetic Acid (TE) (pH 8.0) (10 mM Tris-HCL), 1 mM EDTA 

(Sambrook and Russell, 2001)) 300 µL 3 M NaAc (pH 5.2) and 7.5 mL 100% ethanol), 
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equally aliquotted into sterile 1.5 mL microcentrifuge tubes and stored at -80ºC.  The 

RNA was quantified by measuring the absorbance at 260 nm using a Bio-Rad 

SmartSpec™ Plus Spectrophotometer. 

 Contaminating genomic DNA was removed from quantified RNA samples to 

eliminate false positive results in RT-PCR (Ambion, Inc., 2006) by DNase I enzymatic 

digestion using DNase I (Fermentas Canada Inc.) as outlined in the manufacturer’s 

protocol (Fermentas Canada Inc. protocol references: Anderson, 1981; Kienzl et al., 

1996; Kunitz, 1950; Sambrook and Russell, 2001; Wiame et al., 2000).  Five µg pellets 

of RNA were obtained by centrifugation of stored RNA precipitates in sterile, RNase-

free 1.5 mL microcentrifuge tubes using a Fisher Scientific accuSpin™ Micro R at 

16,060 x g for 15 min at 4ºC were air dried for 10 min and dissolved in 45 µL of RNase-

free water.  Samples were mixed with 5 µL of 10X reaction buffer (100 mM Tris-HCL 

(pH 7.5 at 25ºC), 25 mM MgCl2, 1 mM CaCl2) (Fermentas Canada Inc.) and 5 µL of 

DNase I (1 U/µL) (Fermentas Canada Inc.) and incubated for 30 min at 37ºC.  Total 

reaction volume was 55 µL.  Reactions were mixed with 5 µL of 25 mM EDTA and 

incubated for 10 min at 65ºC.   

 Samples were subsequently purified using an RNeasy® Mini Kit (Qiagen Inc.) 

according to the manufacturer’s protocol.  The kit was supplied with RNeasy® lysis RLT 

(containing guanidine thiocyanate) and wash RPE (supplied as a concentrate) buffer, 

mini spin columns (containing silica-gel membrane) and 2 mL collection tubes.  The 

RNA sample volumes were adjusted to 100 µL with RNase-free water.  350 µL of buffer 

RLT was added to the samples and mixed thoroughly by pipetting.  Two hundred and 

fifty µL of 100% ethanol was added to the samples and mixed thoroughly by pipetting.  

Samples (total volume 700 µL) were applied to mini spin columns, placed in 2 mL 

collection tubes and centrifuged for 16,060 x g for 1 min at 4ºC.  Mini spin columns 

were transferred to new 2 mL collection tubes and spun twice with 500 µL of buffer 

RPE at 16,060 x g for 15 sec.  Fifty µL of RNase-free water was then added to columns, 

and purified RNA was eluted by centrifugation at 16,060 x g for 1 min.  Purified RNA 

samples were used for cDNA synthesis. 
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                     3.5.3.2 cDNA synthesis 

 First strand cDNA synthesis was performed using RevertAid™ M-MuLV 

Reverse Transcriptase (M-MuLV RT, Fermentas Canada Inc.) as outlined in the 

manufacturer’s protocol (Fermentas Canada Inc. protocol references: Gerard and 

D’Alessio, 1993; Sambrook and Russell, 2001; Verma, 1981).  A negative (–) Reverse 

Transcriptase control (-RT control, consisting of all cDNA synthesis reagents with the 

exception of M-MuLV RT) was included in the cDNA synthesis procedure.  First strand 

cDNA synthesis was performed according to the following stepwise reactions; (1) 0.5 

µL (0.5 µg) of oligonucloetide (dT)18 (GE Healthcare) was added to 5 µg of purified 

RNA samples (dissolved in 50 µL of RNase-free water) and reaction mixtures (total 

reaction volume of each sample  55.5 µL) were incubated at 70ºC for 5 min and placed  

on ice for 5 min, (2) 20 µL of 5X reaction buffer (250 mM Tris-HCL(pH 8.3 at 25ºC), 

250 mM KCL, 20 mM MgCl2, 50 mM DL-Dithiothreitol (DTT)) (Fermentas Canada 

Inc.), 20 µL of 5 mM 4 deoxyribonucleoside triphosphate (dNTP) mix (5 mM dATP, 5 

mM dCTP, 5 mM dGTP, 5 mM dTTP) (Fermentas Canada Inc.), 0.5 µL (20 U) of 

RiboLock™ ribonuclease inhibitor (Fermentas Canada Inc.), 9 µL (–RT control) or 8 µL 

(all samples, excluding –RT control) of RNase-free water was added to the reaction 

mixtures (total reaction volumes were 100 µL (-RT control) or 99 µL (all samples, 

excluding –RT control).  Reaction mixtures were incubated at 37ºC for 5 min, (3) 0 µL 

(–RT control) or 1 µL (all samples, excluding –RT control) of M-MuLV RT (200 U/µL) 

was added and the reaction mixtures (total reaction volume of all samples, including –

RT control was 100 µL) were incubated at 42ºC for 60 min and (4) cDNA synthesis 

reactions were stopped by incubation of the mixtures at 70ºC for 10 min and chilled on 

ice for 10 min.   

  To remove any contaminating RNA from Single-Stranded (SS) cDNA samples, 

samples were treated with an RNase A/T1 enzyme mix (Fermentas Canada Inc.) as 

outlined by the manufacturer’s protocol (Fermentas Canada Inc. protocol reference: 

Ausbel, 1994).  Two µL of RNase A/T1 enzyme mix (2 mg/mL RNase A, 5000 U/mL 

RNase T1) was added to cDNA samples and incubated at 37ºC for 30 min (total reaction 

volume was 102 µL).  
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  cDNA samples were subsequently purified by phenol/chloroform extraction 

(Sambrook and Russell, 2001) with minor modifications.  One hundred µL of phenol 

(pH 8.0) /chloroform (1:1) was added to cDNA samples (total reaction volume of each 

samples was 202 µL) and mixed thoroughly by vortexing.  cDNA samples were 

centrifuged at 16,060 x g for 5 min at 4ºC.  Aqueous phases were transferred to sterile, 

1.5 mL centrifuge tubes, and samples were extracted again with phenol/chloroform (1:1) 

as described above.  Samples were next extracted with 100 µL of chloroform/isoamyl 

alcohol mixture (19:1) and centrifuged as above.  Aqueous phases were transferred to 

sterile, 1.5 mL centrifuge tubes and mixed with one-third volume of 7.5 M NH4Ac and 

2.5 volumes of 100% ethanol (total volume of each sample was 385 µL).  Samples were 

then allowed to precipitate at -20ºC for 1 hr, and then centrifuged at 16,060 x g for 15 

min at 4ºC.  The cDNA pellets were air dried at room temperature for 10 min, dissolved 

in 100 µL of sterile water, and stored at -20ºC.  The cDNA was quantified by measuring 

the absorbance at 260nm using a Bio-Rad SmartSpec™ Plus Spectrophotometer. 

       

                     3.5.3.3 Design of primers for use in RT-PCR 

 Primers used for RT-PCR were designed empirically according to Bio-Rad 

Laboratories Real-Time PCR application guide in order to optimize RT-PCR conditions 

(Bio-Rad Laboratories, 2005).  Primers were designed to; (1) avoid GC (Guanidine and 

Cytosine) repeats in excess of 3 consecutive base pairs (bp), (2) contain an overall GC 

content of 50-60%, (3) have a melting temperature (Tm) between 50ºC-65ºC and (4) 

contain terminal G or C nucleotides.  Additionally, primers were designed to result in 

amplification of cDNA sequences (amplicons) between 75-200bp. 

 Designed primers were synthesized by Invitrogen Corporation.  One mM stock 

solutions of all primers were made in TE (pH 8.0) (10 mM Tris-HCL, 1 mM EDTA) 

(Sambrook and Russell, 2001) and stored at -20ºC.  Ten µM forward or reverse primer 

working solutions were made immediately before use by dilution in sterile water. 
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Ferritin light polypeptide (FTL): 

Ferritin light polypeptide forward primer (FTL-F) and ferritin light polypeptide reverse 

primer (FTL-R) were designed using a human ferritin light polypeptide cDNA sequence 

(National Center for Biotechnology Information (NCBI) accession number: BC018990). 

FTL-F primer: 5’cga tga tgt ggc tct gga ag3’ 

FTL-R primer: 5’gga cat caa gaa gcc agc tg3’   

% GC in FTL-F: 55% 

% GC in FTL-R: 55% 

Tm of FTL-F: 62ºC 

Tm of FTL-R: 62ºC 

Amplicon length: 140 bp 

 

Ferritin heavy polypeptide 1 (FTH1): 

Ferritin heavy polypeptide forward primer (FTH1-F) and ferritin heavy polypeptide 1 

reverse primer (FTH1-R) were designed using a human ferritin heavy polypeptide 1 

cDNA sequence (NCBI accession number: BC000857). 

FTH1-F primer: 5’cta cgc ctc cta cgt ttc cc3’ 

FTH1-R primer: 5’ggt tct gca gct tca tca g3’   

% GC in FTH1-F: 55% 

% GC in FTH1-R: 53% 

Tm of FTH1-F: 62ºC 

Tm of FTH1-R: 58ºC 

Amplicon length: 140 bp 

 

Proliferating cell nuclear antigen (PCNA): 

Proliferating cell nuclear antigen forward primer (PCNA-F) and proliferating cell 

nuclear antigen reverse primer (PCNA-R) were designed using a human proliferating 

cell nuclear antigen cDNA sequence (NCBI accession number: BC062439). 

PCNA-F primer: 5’gcc tgc tgg gat att agc tc3’ 

PCNA-R primer: 5’ca tac tgg tga ggt tca cgc3’   

% GC in PCNA-F: 55% 
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% GC in PCNA-R: 53% 

Tm of PCNA-F: 62ºC 

Tm of PCNA-R: 62ºC 

Amplicon length: 150 bp 

 

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH): 

GAPDH gene (reference gene) was used as the internal control in RT-PCR assays. 

Glyceraldehyde-3-phosphate dehydrogenase forward primer (GAPDH-F) and 

glyceraldehyde-3-phosphate dehydrogenase reverse primer (GAPDH-R) were designed 

using a human glyceraldehyde-3-phosphate dehydrogenase cDNA sequence (NCBI 

accession number:NM_002046). 

GAPDH-F primer: 5’cca ggg ctg ctt tta act ctg3’ 

GAPDH-R primer: 5’cg ttc tca gcc ttg acg gtg3’   

% GC in GAPDH-F: 52% 

% GC in GAPDH-R: 60% 

Tm of GAPDH-F: 64ºC 

Tm of GAPDH-R: 64ºC 

Amplicon length: 138 bp 

  

                     3.5.3.4 RT-PCR assays 

 The RT-PCR assays were performed using a 2X iQTM SYBR® Green Supermix 

solution (Bio-Rad Laboratories) according to the manufacturer’s protocol.  The RT-PCR 

assays were performed in white 48-multiwell PCR plates (Bio-Rad Laboratories).  

Assays for the target genes (FTL, FTH1, PCNA) and reference gene (GAPDH) included 

reaction mixtures for (1) –RT control, (2) untreated control samples, (3) 2,4-D treated 

samples, (4) cDNA blank (containing all RT-PCR components, excluding primers), (5) 

SYBR Green I blank (containing all RT-PCR components, excluding cDNA template 

and primers) and (6) primer blank (containing all RT-PCR components, excluding 

cDNA template).    

  Master mixtures for RT-PCR assays (containing all reaction components, 

excluding cDNA templates) of target genes were obtained by the addition 775 µL of iQ® 
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SYBR Green Supermix (final concentrations of all components indicated below), 542.5 

µL of sterile water, 38.75 µL (final concentration indicated below) of forward primer 

and 38.75 µL (final concentration indicated below) of reverse primer followed by the 

thorough vortexing of mixtures.  Forty five µL of the master mixture was added to the 

respective wells (each well contained 25 µL (1X) iQTM SYBR® Green Supermix (50 

mM KCl, 20 mM Tris-HCl (pH 8.4), 0.2 mM dNTP, iTaq DNA polymerase (1.25 U), 3 

mM MgCl2, SYBR Green I, 10 nM fluoroscein, and stabilizers, 125 nM forward primer, 

125 nM reverse primer, 17.5 µL of sterile water).  Five µL (25 ng) of cDNA template 

was added to the wells (final reaction volume in each well was 50 µL) and mixed using 

a multichannel pipette.  Master mixtures for RT-PCR assays of the reference gene were 

prepared as described above for the target genes.     

 Reaction mixtures for cDNA blank, SYBR Green I blank, and primer blank were 

prepared individually.  The cDNA blank (total reaction volume 50 µL) consisted of 25 

µL (1X) of iQ® SYBR Green Supermix, 5 µL (25 ng) of control cDNA template and 20 

µL of sterile water.  The SYBR Green I blank (total reaction volume 50 µL) consisted of 

25 µL (1X) of iQ® SYBR Green Supermix and 25 µL of sterile water.  Primer blank 

(total reaction volume 50 µL) consisted of 25 µL (1X) of iQ® SYBR Green Supermix, 

1.25 µL (125 nM) of forward primer, 1.25 µL (125 nM) of reverse primer and 22.5 µL 

of sterile water.  

 The RT-PCR assays were performed using a Bio-Rad MiniOpticon™ System.  

The PCR cycle protocol used in each reaction was: hot start at 95ºC for 3 min, 

denaturation at 95ºC for 45 sec, annealing at 56ºC for 45 sec, and extension at 72ºC for 2 

min, plate read (reading of fluorescence), for 30 cycles, followed by production of a 

melting curve between 55-90ºC, where fluorescence was read at every 0.2ºC temperature 

increments held for 2 sec.   

 Target mRNA expression levels in each sample was calculated relative to the 

expression level in control cell cultures, normalized to the expression level of the 

reference gene, GAPDH, using the Pfaffl method (Pfaffl, (2001)).  The Pfaffl method is 

a formula that is used to calculate relative gene expression when the efficiencies of 

reactions being compared are not the same (Bio-Rad Laboratories).  

The Pfaffl method: 
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Ratio = [(Etarget)∆C
T, target (calibrator-test)] / [(Eref)∆C

T, ref (calibrator-test)] 

Etarget:  Efficiency of the reaction in amplification of the target cDNA sequence 

Eref:  Efficiency of the reaction in amplification of the internal control cDNA 

 sequence 

CT:  the cycle at which a sample’s fluorescence trace crosses the threshold line 

∆ CT:  difference between 2 CT values 

Calibrator:  control sample 

Test:  test sample 

 RT-PCR assays were performed in replicates of 3 for one set of exposure 

experiments for untreated control and treated cell cultures. 

             

            3.5.4 Protein analysis 
                     3.5.4.1 Protein extraction 

 Following 2,4-D incubation, cells were harvested as outlined by Sambrook and 

Russell. (2001) with minor modifications.  Media was removed and discarded and cells 

were gently washed twice with sterile PBS solution.  Cell culture dishes were placed on 

ice, and cells were directly lyzed by addition of 1mL of lysis buffer (10 mM Hepes (pH 

7.9), 400 mM NaCl, 1.5 mM MgCl2, 5% glycerol, 0.1 mM EDTA, 2 mM DTT, 10 

µg/mL Aprotinin, 10 µg/mL Leupeptin and 0.5 mM phenylmethanesulfonyl fluoride 

(PMSF)).  Cells from each culture dish were collected using rubber policemen and cell 

homogenates were transferred to individual sterile 1.5 mL microcentrifuge tubes.  

Samples were sonicated on ice for approximately 30 sec at a power level of 7 

(amplitude: 247 microns) using a Sonifier® Cell Disruptor.  Following sonication, 

samples were then centrifuged at 16,060 x g for 15 min at 4ºC and supernatants were 

transferred to sterile 1.5 mL microcentrifuge tubes and stored at -80ºC.  Protein was 

quantified using the Bradford assay (Bradford, 1976).  Absorbance was measured at 

595nm using a Bio-Rad SmartSpec™ Plus Spectrophotometer. 

   

                     3.5.4.2 Western blot analysis 

 Denaturing SDS-PAGE and subsequent protein transfer to nitrocellulose 

membrane was performed using Bio-Rad’s Mini-Protean 3 cells and Trans-Blot® SD 
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Semi-Dry Transfer cell apparatus according to Sambrook and Russell, 2001 with minor 

modifications.  Protein aliquots (10-30 µg as indicated in figure legends) were mixed 

with one-fifth volume of 5X Laemmli buffer (0.0625 M Tris (pH 6.8), 2% (w/v) SDS, 

10% (v/v) glycerol, 5% (v/v) β-mercaptoethanol and 0.001% (w/v) Bromophenol Blue) 

(Laemmli, 1970) and denatured at 95 to 100ºC for 10 min, then chilled on ice for 1 min.  

Samples were centrifuged at 16,060 x g for 1 min at 4ºC and chilled on ice, then loaded 

onto SDS-polyacrylamide gels (15% (w/v) acrylamide for ferritin and 12% (w/v) 

acrylamide for PCNA detection).  Detection of GAPDH and Hsp72 were performed 

after ferritin or PCNA antibodies were stripped off transferred blots as described below.  

5 uL of PageRuler™ prestained protein ladder (Fermentas Canada Inc.) was included in 

the outer left lane of all gels.  Gels for ferritin or PCNA were initially electrophoresed at 

90V for 30 min, in order to allow proteins to stack, followed by electrophoresis at 120V 

for 3 hrs and 2 hrs, in order to allow for ferritin and PCNA protein resolution, 

respectively.    

 In preparation for the transfer of proteins to 0.45 µM nitrocellulose membranes 

(Bio-Rad Laboratories), pieces of blotting paper (Ahlstrom) and nitrocellulose 

membrane (cut to gel area, approximately 55 cm2) were soaked for 30 min in transfer 

buffer (25 mM Tris, 192 mM glycine, 20% (v/v) methanol) (Towbin et al., 1979).  

Following the electrophoresis of proteins, the gels were assembled for transfer as 

follows; gels were stacked on 2 layers of blotting paper, 1 layer of 0.45 µM pure 

nitrocellulose membrane and covered with 2 additional layers of blotting paper.  A glass 

rod was gently, but firmly rolled over the gel stacks to ensure complete removal of 

trapped air bubbles.  Proteins were transferred using a Bio-Rad Trans-Blot® SD Semi-

Dry Transfer Cell at 20V for 1 hr. 

 Following transfer to nitrocellulose membranes, membranes were blocked with 

10-15 mL of blocking solution.  The blocking solution was prepared according to 

Towbin et al. (1979) with minor modifications; 5% (w/v) Nestle Carnation skim milk in 

TBST (20 mM Tris-HCL (pH 7.5), 500 mM NaCl, 0.1% (v/v) Tween 20) at 4ºC 

overnight.  All primary and secondary antibody incubations were performed in 5% milk 

as described above. 
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 For detection of FTL and FTH1, membranes were incubated with primary anti-

ferritin antibody (rabbit polyclonal to Ferritin, catalog number: ab7332; Novus 

Biologicals) (1:10,000) at 4ºC overnight.  For the detection of PCNA, membranes were 

incubated with primary anti-PCNA antibody (mouse monoclonal to PCNA, catalog 

number: SC-56, Santa Cruz Biotechnologies, Inc.) (1:1,000) at 4ºC overnight.  For the 

detection of Hsp72, the membranes were incubated with a primary anti-Hsp70 (Hsp72) 

antibody (rabbit polyclonal to Hsp70 (Hsp72), catalog number: SPA-812, Stessgen 

Bioreagents) (1:10,000) at 4ºC overnight.  For the detection of GAPDH, membranes 

were incubated with primary anti-GAPDH antibody (mouse monoclonal to GAPDH, 

catalog number: MAB374, Chemicon International Inc.) (1:5,000) at 4ºC overnight.  

Primary antibodies were removed and membranes were washed 3 times (1 x 5min; 1 x 

15min; 1 x 5min) in 5% milk and incubated with the respective secondary antibodies.  

 Ferritin and Hsp72 were detected using goat anti-rabbit-secondary antibody-

Horseradish Peroxidase Conjugate (catalog number: 170-6516, Bio-Rad Laboratories 

Ltd.) (1:4,000) and (1:5000) at room temperature for 1.5 hrs, respectively.  PCNA and 

GAPDH were detected using donkey anti-mouse-secondary antibody-Horse Radish 

Peroxidase (catalog number: SA1-100, Affinity Bioreagents) (1:5000) at room 

temperature for 1.5 hrs.  Secondary antibodies were removed and membranes were 

washed 3 times (1 x 5 min; 1 x 15 min; 1 x 5 min) in 5% skim milk, followed by 2 

washes (2 x 5 min) in TBST and 1 wash (1 x 5 min) in TBS (20 mM Tris-HCL (pH 7.5), 

500 mM NaCl).  

 The washed membranes were incubated with Western Lightning™  

Chemiluminescence Reagent PLUS (Perkin Elmer LAS, Inc.) according to the 

manufacturer’s protocol.  Reagent was prepared immediately prior to 

chemiluminescence in sterile 15 mL centrifuge tubes by mixing 5 mL of enhanced 

luminol and 5 mL oxidizing reagent followed by gentle shaking.  The mixture was 

applied onto membranes, incubated in the mixture for 1 min, then blotting paper was 

used to remove excess chemiluminescence reagent from membranes.  All blots were 

exposed to KODAK BioMax MS Film and developed using a Summit Quality Control 

Processor X-ray film developer.   
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 For re-blotting, (performed before detection of GAPDH and Hsp72) membranes 

were washed at room temperature for 5 min in TBS and stripped using Re-Blot Plus 

strong antibody stripping solution (supplied as a 10X stripping solution, Chemicon 

International Inc.) according to the manufacturer’s protocol.  The membranes were 

incubated by gentle agitation at room temperature for 20 to 25 min with 10 mL of 1X 

Re-Blot Plus Strong Antibody Stripping solution (1:10 dilution in sterile water).   

Membranes were incubated with 10-15 mL of 5% skim milk blocking solution at 4ºC 

overnight.  The blocked membranes were then used for detection of GAPDH and Hsp72.   

 Western analyses were performed in replicates of 3 for one set of exposure 

experiments for untreated control and 2,4-D treated cell cultures. 

 

                     3.5.4.3 Densitometry 

 Protein expression was quantified using densitometry.  Briefly, exposed films 

were scanned using an Epson perfection 4990 photo scanner.  Scanned images were 

cropped using Adobe® Photoshop® CS2.  Densitometry was performed using National 

Institute of Health (NIH) Image J.  Protein expression was quantified by measuring the 

mean density of the entire target and GAPDH protein expression band for untreated 

control and treated samples.  Mean background density value was subtracted from all 

untreated control and treated sample protein mean density values.  Target protein 

expression level in each sample was calculated relative to the expression level in control 

cell cultures, normalized to the expression level of the reference gene, GAPDH. 

 

      3.6 Statistical analysis 

 Statistical analyses were performed using SPSS® 14.0 for windows. 

 To determine if treatments induced statistically significant effects, compared to 

untreated control cell cultures, analyses were performed using one-way analysis of 

variance (ANOVA), followed by a two-sided Dunnett’s post-hoc test.  Results were 

considered significant if P<0.05.  To determine if treatments induced statistically 

significant effects between exposure time points or between treatment groups within the 

same cell line, analyses were performed using one-way ANOVA, followed by a Tukey 

honestly significant difference (Tukey HSD) post-hoc test.  Results were considered 
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significant if P<0.05.  To determine if there were statistically significant differences in 

the treatment effects between (1) different 2,4-D forms within the same cell line, or (2) 2 

cell lines, analyses were performed using unpaired student t-tests.  Results were 

considered significant if P<0.05. 

 

      3.7 Figure production 
 All figures were produced using Microsoft Office® Excel and Power Point 

software. 
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4. RESULTS 

      4.1 Introduction 

 In the present study, two human cell lines; HepG2 and HEK293 cells were used 

to evaluate the toxicity of 2,4-D.  HepG2 cells were chosen for use in this study because 

they have been employed in a vast array of in vitro toxicology studies and retain both 

Phase I and II hepatic biotransformation enzymes (Merch-Sundermann et al., 2004), 

allowing for a more realistic metabolism of 2,4-D in vitro.  The use of HepG2 cells also 

helped to verify results of cDNA microarray analyses performed on HepG2 cells by 

Bharadwaj et al. (2005).   

 In humans, 82.3% of 2,4-D is excreted in the kidney mainly unchanged 

(Sauerhoff et al., 1977).  The HEK293 cells (renal cells), were chosen as an additional in 

vitro cell model to assess the cell specificity of 2,4-D – induced cytotoxicity.   

 Cell cultures were exposed to either a technical grade or a commercial 

formulation of 2,4-D to determine if cytotoxic effects are enhanced by the presence of 

‘inert ingredients’ in the 2,4-D commercial formulation or are a result of the active 

ingredient; 2,4-D.  Cells were exposed for 6 to 72 hrs depending on the assay used to 

evaluate toxicity.  A commercial formulation containing 2,4-D DMA was used because 

2,4-D amine and ester commercial formulations make up approximately 90-95% of 

global 2,4-D use (reviewed by Charles et al., 2001) and amine formulations are more 

hydrophilic (Charles et al., 2001; PMRA, 2005) and less volatile (WHO, 1984) than 

ester formulations.     

 The HepG2 and HEK293 cell cultures were exposed to concentrations of 2,4-D 

ranging from 0.1 nM to 10 mM.  This particular range of 2,4-D concentrations was 

chosen because, it included; (1) environmentally realistic concentrations of 2,4-D that 

have been found in Canadian groundwater [i.e. 0.07 µg/L, 2.67 µg/L (Grover et al., 

1997) and 29 µg/L (reviewed by Environment Canada, 1991; WHO, 2003)], (2) 

Canada’s established IMAC guideline for 2,4-D in drinking water [100 µg/L 

(Environment Canada, 1991)] and (3) toxic concentrations of 2,4-D (1 to 10 mM). 
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4.2 The effects of 2,4-D on cell viability 
 Cell viability assays were performed to determine if exposure to 2,4-D at 

environmental concentrations would induce toxic effects in human cell cultures.  Cell 

viability was determined fluorometrically using an in vitro toxicology assay kit, 

containing the dye, Resazurin.  The present cell viability assay provides a rapid and 

efficient method for determination of the magnitude of cytotoxicity induced by test 

compounds/chemicals.   

 Cells were exposed to 2,4-D for 6 to 72 hrs to determine if toxicity was more 

pronounced with longer durations of exposure.  The concentrations; 5 and 10mM were 

expected to induce more pronounced cytotoxicity, compared to low concentrations (0.1 

nM to 1 mM), and thus was used as a positive control to determine the efficacy of the 

Resazurin assay for assessing 2,4-D – induced cytotoxicity.  Cell viability was 

calculated as a percent (%) of the fluorescence of untreated control cell cultures, using 

the formula: 

 

% cell viability =  (mean treated sample fluorescence)     x    100% 

                              (mean control fluorescence)                                                           (4.1) 

 

 Cell viability results were presented as the mean % cell viability ± standard error 

of the mean (SEM). 

 

 

            4.2.1 The effects of 2,4-D on HepG2 cell viability 
 As seen in figures 1 (A) to (D), exposure to technical 2,4-D decreased viability in 

exposed cells.  A decrease in cell viability was observed at all durations of exposure (6 

to 72 hrs).  However, effects appeared to be limited (mean decreases in viability < 20%) 

at lower environmental concentrations (0.1 to 100 nM) and more pronounced (mean 

decreases in viability > 40%) at higher concentrations (5 and 10 mM).  A statistical 

significant (P<0.0.5) decrease (6%) in viability was initially manifested at 0.1 nM 

following 48 hrs of exposure.    Exposure to concentrations of 1 nM to 100 µM induced 

significant decreases in viability following 6, 24 and 48 hrs of exposure.  Increasing  
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Figure 1: The effects of technical 2,4-D on viability of exposed HepG2 cells.    Cells 
were exposed to 0 to 10mM of 2,4-D for (A) 6, (B) 24, (C) 48 and (D) 72 hrs in 
complete growth media.  Cell viability was determined using the fluorometric Resazurin 
assay.  Fluorescence from a blank sample (complete growth media and Resazurin) was 
subtracted from all samples (untreated control and treated cell cultures).  Cell viability is 
expressed as a percent (%) of the fluorescence of untreated control cell cultures.  Results 
are presented as the mean ± standard error of the mean (SEM) from 6 independent 
experiments.  Statistical analysis was performed using one-way analysis of variance 
(ANOVA), followed by two-sided Dunnett’s post-hoc test.  Statistically significant 
(P<0.05) differences from fluorescence of untreated control cell cultures are denoted by 
the symbol *.  Significant differences from fluorescence of untreated control cell 
cultures were observed in HepG2 cells exposed to the following concentrations and 
respective durations of exposure: (A) 1nM: P = 0.006; 100nM: P = 0.016; 1µM: P = 
0.041; 10mM: P = 0.0001.  (B) 1µM: P = 0.015; 10mM: P = 0.0001.  (C) 0.1nM: P = 
0.032; 1nM: P = 0.0001; 10nM: P = 0.002; 100nM: P = 0.0001; 1µM: P = 0.0001; 
10µM: P = 0.001; 100µM: P = 0.009, 5mM: P = 0.0001; 10mM: P = 0.0001.  (D)  1µM: 
P = 0.031; 10µM: P = 0.035; 1mM: P = 0.001; 5mM: P = 0.0001; 10mM: P = 0.0001. 
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concentrations (over the range of concentrations of 0.1 nM to 100 µM) and durations of 

exposure did not alter the magnitude of observed decreases in cell viability.  A 

statistically significant (P<0.05) increase (14%) in cell viability was observed following 

exposure to 1 mM for 72 hrs.  Exposure to 5 or 10 mM induced statistically significant 

(P<0.05) decreases in cell viability at all durations of exposure (6 to 72 hrs).  Exposure 

to 5 mM induced significant decreases of 27 and 78% in cell viability following 48 and 

72 hrs of exposure, respectively.  Significant decreases (57, 46, 92 and 100%) in 

viability were observed following exposure to 10 mM for 6 to 72 hrs of exposure, 

respectively.   

 The results of figure 1 were compiled into one graph for comparison of the 

effects of exposure to 0.1 nM to 1 mM of technical grade 2,4-D for 6 to 72 hrs.  As seen 

in figure 2, in contrast to 5 and 10 mM, exposure to 0.1 nM to 100 µM for 6, 24, 48 and 

72 hrs induced limited cytotoxic effects, reflected by small decreases in cell viability.  

Similar effects in cell viability were observed over the concentration range of 0.1 nM to 

100 µM.  More pronounced decreases in cell viability were not observed with longer 

durations of exposure.  Exposure to 1 mM for similar durations of treatments increased 

cell viability.   

 Figure 3 illustrates the effect on viability of HepG2 cell cultures exposed to 

increasing concentrations of commercial 2,4-D for (A) 6, (B) 24, (C) 48 and (D) 72 hrs.  

Decreases in cell viability were observed at all durations of exposure.  Effects appeared 

to be small (mean decreases in viability < 20%) at lower environmental concentrations 

(0.1 to 100 nM) and increased (mean decreases in viability > 40%) at higher 

concentrations (5 and 10 mM).  A statistical significant (P<0.0.5) decrease (11%) in 

viability was initially manifested at 0.1 nM of 2,4-D following 6 hrs of exposure.  

Exposure to 1 nM to 100 µM induced significant decreases in viability following 6, 24 

and 48 hrs of exposure.  Declines in cell viability were not exacerbated with exposure to 

increasing concentrations over this range of concentrations or with increasing times of 

exposure.  Increases (7, 6 and 20%) in cell viability were observed following exposure 

to 1 mM for 24 to 72 hrs, respectively. The effects were statistically significant 

(P<0.05). 
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Figure 2: Comparison of the effects of technical 2,4-D on viability of HepG2 cells 
exposed for 6, 24, 48 and 72 hrs.  Cells were exposed to 0 to 10mM of 2,4-D for 6, 24, 
48 and 72 hrs in complete growth media.  Cell viability was determined using the 
fluorometric Resazurin assay.  Fluorescence from a blank sample (complete growth 
media and Resazurin) was subtracted from all samples (untreated control and treated cell 
cultures).  Cell viability is expressed as a percent (%) of the fluorescence of untreated 
control cell cultures.  Results are presented as the mean from 6 independent experiments.  
Statistical analysis was performed using one-way analysis of variance (ANOVA), 
followed by a Tukey’s honestly significant difference (HSD) test.  Statistically 
significant (P<0.05) differences between exposure periods are denoted by the symbols a, 
b and c for the following comparisons: a 6 hrs vs. 24 hrs; b24 hrs vs. 48 hrs; c 48 hrs vs. 
72 hrs.  Significant differences between exposure periods were observed in HepG2 cells 
exposed to the following concentrations: 0.1nM: a P = 0.0001; c P = 0.001.  1nM: a P = 
0.0001.  10nM: a P = 0.0001. 100M: a P = 0.0001.  1µM: a P = 0.0001.  10µM: a P = 
0.0001.  100µM: a P = 0.0001.  1mM: a P = 0.0001; c P = 0.001.  5mM: a P = 0.0001; b P 
= 0.001; c P = 0.0001.  10mM: b P = 0.0001. 
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Figure 3: The effects of commercial 2,4-D on viability of exposed HepG2 cells.    
Cells were exposed to 0 to 10mM of 2,4-D for (A) 6, (B) 24, (C) 48 and (D) 72 hrs in 
complete growth media.  Cell viability was determined using the fluorometric Resazurin 
assay.  Fluorescence from a blank sample (complete growth media and Resazurin) was 
subtracted from all samples (untreated control and treated cell cultures).  Cell viability is 
expressed as a percent (%) of the fluorescence of untreated control cell cultures.  Results 
are presented as the mean ± standard error of the mean (SEM) from 6 independent 
experiments.  Statistical analysis was performed using one-way analysis of variance 
(ANOVA), followed by two-sided Dunnett’s post-hoc test.  Statistically significant 
(P<0.05) differences from fluorescence of untreated control cell cultures are denoted by 
the symbol *.  Significant differences from fluorescence of untreated control cell 
cultures were observed in HepG2 cells exposed to the following concentrations and 
respective durations of exposure: (A) 0.1nM: P = 0.037; 1nM: P = 0.003; 10nM: P = 
0.017; 100nM: P = 0.031; 1µM: P = 0.0001; 10µM: P = 0.021; 100µM: P = 0.043; 
5mM: P = 0.0001; 10mM: P = 0.0001.   (B) 1nM: P = 0.003; 10nM: P = 0.033; 100nM: 
P = 0.050; 10µM: P = 0.0001; 100µM: P = 0.047; 1mM: P = 0.0001; 5mM: P = 0.0001; 
10mM: P = 0.0001.  (C) 1nM: P = 0.006; 10nM: P = 0.0001; 100nM: P = 0.0001; 1mM: 
P = 0.028; 5mM: P = 0.0001; 10mM: P = 0.0001.  (D) 1mM: P = 0.0001; 5mM: P = 
0.0001; 10mM: P = 0.0001. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 77



 

 

B
 

24
 h

rs

*

*

*
*

*
*

*

*

-2
002040608010
0

12
0

14
0

16
0

Control

1.00E-04

1.00E-03

1.00E-02

1.00E-02

1.00E+00

1.00E+01

1.00E+02

1.00E+03

5.00E+03

1.00E+04

[2
,4

-D
]/u

M

Cell viability (% of control)

D
 

72
 h

rs

*
*

*

-2
002040608010
0

12
0

14
0

16
0

Control

1.00E-04

1.00E-03

1.00E-02

1.00E-02

1.00E+00

1.00E+01

1.00E+02

1.00E+03

5.00E+03

1.00E+04

[2
,4

-D
]/u

M

Cell viability (% of control)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A
 

6 
hr

s

*
*

*
*

*

*
*

*

*

-6
0

-4
0

-2
002040608010
0

12
0

14
0

16
0

Control

1.00E-04

1.00E-03

1.00E-02

1.00E-02

1.00E+00

1.00E+01

1.00E+02

1.00E+03

5.00E+03

1.00E+04

[2
,4

-D
]/u

M

Cell viability (% of control)

C
 4

8 
hr

s

*

*

*
*

*
*

*

-2
002040608010
0

12
0

14
0

16
0

Control

1.00E-04

1.00E-03

1.00E-02

1.00E-02

1.00E+00

1.00E+01

1.00E+02

1.00E+03

5.00E+03

1.00E+04

[2
,4

-D
]/u

M

Cell viability (% of control)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 78



Statistically significant (P<0.05) decreases in cell viability were observed following 

exposure to 5 or 10 mM.  Exposure to 5 mM induced significant decreases of 18, 24, 65 

and 96% in cell viability following 6 to 72 hrs of exposure, respectively.  Exposure to 10 

mM for 48 and 72 hrs was lethal to all cells; inducing a 100% decrease in cell viability.   

 The results of figure 3 were compiled into one graph for comparison of the 

effects of exposure to 0.1 nM to 1 mM of commercial 2,4-D for 6 to 72 hrs.  As seen in 

figure 4, in contrast to 5 and 10 mM, exposure to 0.1 nM to 100 µM for all durations of 

exposure induced limited cytotoxic effects, reflected by small decreases in cell viability.  

A similar decline in cell viability was observed in cells treated over the concentrations 

range of 0.1 nM to 100 µM.  More pronounced decreases in cell viability were not 

observed with longer durations of exposure.  Exposure to 1 mM for 24, 48 and 72 hrs 

increased cell viability.   

 

            4.2.2 Comparison of the effects of technical or commercial 2,4-D on HepG2

           cell viability 
 Figure 5 illustrates that exposure to either form of 2,4-D appears to elicit similar 

effects on HepG2 cell viability for all durations of exposure (6 to 72 hrs).  Decreases in 

viability were observed following exposure to 0.1 nM to 100 µM of either technical or 

commercial 2,4-D for 6 to 72 hrs.  More pronounced decreases in viability were not 

observed with increasing concentrations or times to either forms of 2,4-D.  Mean 

decreases in viability were observed following exposure to 0.1 nM to 100 µM for 6 

(technical: 9%, commercial formulation: 12%); 24 (technical: 8%, commercial 

formulation: 5%); 48 (technical: 9% and commercial formulation: 7%) and 72 hrs 

(technical: 7%, commercial formulation: 2%), respectively.  In contrast to technical 2,4-

D, exposure to commercial 2,4-D induced a statistically significant (P<0.05) decrease in 

viability at the lowest concentration (0.1 nM) at an earlier time point (technical grade: 48 

hrs; commercial formulation: 6hrs).   Increases in cell viability were observed upon 

exposure to 1 mM of either technical or commercial 2,4-D for 24 to 72 hrs.  However, 

statistically significant (P<0.05) differences between the effects were only observed 

following exposure to 1 mM at 24 and 48 hrs.   
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Figure 4: Comparison of the effects of commercial 2,4-D on viability of HepG2 cells 
exposed for 6, 24, 48 and 72 hrs.  Cells were exposed to 0 to 10mM of 2,4-D for 6, 24, 
48 and 72 hrs in complete growth media.  Cell viability was determined using the 
fluorometric Resazurin assay.  Fluorescence from a blank sample (complete growth 
media and Resazurin) was subtracted from all samples (untreated control and treated cell 
cultures).  Cell viability is expressed as a percent (%) of the fluorescence of untreated 
control cell cultures.  Results are presented as the mean from 6 independent experiments.  
Statistical analysis was performed using one-way analysis of variance (ANOVA), 
followed by a Tukey’s honestly significant difference (HSD) test.  Statistically 
significant (P<0.05) differences between exposure periods are denoted by the symbols a, 
b and c for the following comparisons: a 6 hrs vs. 24 hrs;  b24 hrs vs. 48 hrs; c 48 hrs vs. 
72 hrs.  Significant differences between exposure periods were observed in HepG2 cells 
exposed to the following concentrations: 0.1nM: a P = 0.0001; b P = 0.0001; c P = 0.005.  
1nM: a P = 0.0001; b P = 0.0001; c P = 0.0001.  10nM: a P = 0.0001; b P = 0.0001; c P = 
0.0001.  100nM: a P = 0.0001; b P = 0.0001; c P = 0.0001.  1µM: a P = 0.0001; b P = 
0.0001.  10µM: a P = 0.0001; b P = 0.0001; c P = 0.0001.  100µM: a P = 0.0001; b P = 
0.0001; c P = 0.0001.  1mM: a P = 0.0001; b P = 0.0001; c P = 0.027.  5mM: a P = 
0.0001; b P = 0.0001; c P = 0.0001.  10mM: a P = 0.0001. 
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Figure 5: Comparison of the effects of technical or commercial 2,4-D on viability of 
exposed HepG2 cells.  Cells were exposed to 0 to 10mM of technical grade or 
commercial 2,4-D for (A) 6, (B) 24, (C) 48 and (D) 72 hrs in complete growth media.  
Cell viability was determined using the fluorometric Resazurin assay.  Fluorescence 
from a blank sample (complete growth media and Resazurin) was subtracted from all 
samples (untreated control and treated cell cultures).  Cell viability is expressed as a 
percent (%) of the fluorescence of untreated control cell cultures.  Results are presented 
as the mean from 6 independent experiments.  Statistical analysis was performed using 
unpaired student t-tests.  Statistically significant (P<0.05) differences between 2,4-D 
forms are denoted by the symbol *.  Significant differences between 2,4-D forms were 
observed in HepG2 cells exposed to the following concentrations: (A) 1nM: P = 0.002; 
10nM: P = 0.005; 100nM: P = 0.0001; 10µM:  P = 0.011; 100µM: P = 0.023; 5mM: P = 
0.0001.  (B) 0.1nM: P = 0.0001; 1nM: P = 0.0001; 10nM: P = 0.0001; 100nM: P = 
0.0001; 1µM: P = 0.013; 10µM: P = 0.0001; 100µM: P = 0.0001; 1mM: P = 0.001; 
5mM: P = 0.0001; 10mM: P = 0.0001.  (C)  0.1nM: P = 0.0001; 1nM: P = 0.0001; 
10nM: P = 0.0001; 100nM: P = 0.0001; 1µM: P = 0.0001; 10µM: P = 0.0001; 100µM: 
P = 0.0001; 1mM: P = 0.0001; 5mM: P = 0.0001; 10mM: P = 0.0001.  (D) 5mM: P = 
0.003. 
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As seen from figures 5 (A) to (D) exposure to 5 and 10 mM of either technical or 

commercial 2,4-D for durations of 6 to 72 hrs induced similar viability effects.  A 

pronounced decline in viability was observed with increasing concentrations and 

durations of exposure to 5 and 10 mM of either forms of 2,4-D.      

 Thus, the similar pattern of cell viability effects induced by either forms of 2,4-D 

suggests that toxicity was directly induced by 2,4-D and that the presence of ‘inert 

ingredients’ in the commercial formulation did not enhance the toxicity of 2,4-D to a 

great degree. 

 

            4.2.3 The effects of 2,4-D on HEK293 cell viability                                       

 As seen in figures 6 (A) to (D), a 6 to 72 hr exposure to technical 2,4-D 

decreased cell viability.  The effects appeared to be limited (mean decreases in viability 

< 20%) at lower environmental concentrations (0.1 to 100 nM) and exacerbated (mean 

decreases in viability > 40%) at higher concentrations.  A mean decrease of 

approximately 30% in cell viability was observed over the concentration range of 0.1 to 

100 nM following 6 hrs of exposure.  A significant decrease (16%) in viability was 

initially manifested at 0.1 nM following 48 hrs of exposure.  Similar reductions in cell 

viability were observed over the concentration range of 0.1 nM to 1 mM and durations 

of exposure.     

 Statistically significant (P<0.05) decreases in viability were observed following 

exposure to 5 or 10 mM for 6 to 72 hrs.  Decreases in cell viability were more 

pronounced upon exposure to 10 mM (55, 93 and 100%), compared to 5 mM (37, 71 and 

97%) for 24, 48 and 72 hrs, respectively.    

  The results of figure 6 were compiled into one graph for comparison of the 

effects of exposure to 0.1 nM to 1 mM of technical grade 2,4-D for 6 to 72 hrs.  As seen 

in figure 7, in contrast to 24, 48 and 72 hrs (mean decreases in cell viability: 5, 16 and 

19%, respectively), more pronounced decreases in viability were observed in cells 

exposed to 0.1 nM to 1 mM for 6 hrs (mean decrease in viability: 32%).  More 

pronounced decreases in cell viability were not observed with longer durations of 

exposure to concentrations of 0.1 nM to 1 mM.   
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Figure 6: The effects of technical 2,4-D on viability of exposed HEK293 cells.    
Cells were exposed to 0 to 10mM of 2,4-D for (A) 6, (B) 24, (C) 48 and (D) 72 hrs in 
complete growth media.  Cell viability was determined using the fluorometric Resazurin 
assay.  Fluorescence from a blank sample (complete growth media and Resazurin) was 
subtracted from all samples (untreated control and treated cell cultures).  Cell viability is 
expressed as a percent (%) of the fluorescence of untreated control cell cultures.  Results 
are presented as the mean ± standard error of the mean (SEM) from 6 independent 
experiments.  Statistical analysis was performed using one-way analysis of variance 
(ANOVA), followed by two-sided Dunnett’s post-hoc test.  Statistically significant 
(P<0.05) differences from fluorescence of untreated cell cultures are denoted by the 
symbol *.  Significant differences from fluorescence of untreated control cell cultures 
were observed in HEK293 cells exposed to the following concentrations and respective 
durations of exposure: (A) 1nM: P = 0.0001; 10nM: P = 0.0001; 100nM: P = 0.0001; 
1µM: P = 0.0001; 10µM: P = 0.0001; 100µM: P = 0.0001; 1mM: P = 0.0001; 5mM: P = 
0.0001; 10mM: P = 0.0001.  (B) 5mM: P = 0.0001; 10mM: P = 0.0001.  (C) 0.1nM: P = 
0.004; 1nM: P = 0.041; 10nM: P = 0.017; 100nM: P = 0.001; 10µM: P = 0.001; 100µM: 
P = 0.019; 1mM: P = 0.0001; 5mM: P = 0.0001; 10mM: P = 0.0001.  (D) 1mM: P = 
0.010; 5mM: P = 0.0001; 10mM: P = 0.0001. 
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Figure 7: Comparison of the effects of technical 2,4-D on viability of HEK293 cells 
exposed for 6, 24, 48 and 72 hrs.  Cells were exposed to 0 to 10mM of 2,4-D for 6, 24, 
48 and 72 hrs in complete growth media.  Cell viability was determined using the 
fluorometric Resazurin assay.  Fluorescence from a blank sample (complete growth 
media and Resazurin) was subtracted from all samples (untreated control and treated cell 
cultures).  Cell viability is expressed as a percent (%) of the fluorescence of untreated 
control cell cultures.  Results are presented as the mean from 6 independent experiments.  
Statistical analysis was performed using one-way analysis of variance (ANOVA), 
followed by a Tukey’s honestly significant difference (HSD) test.  Statistically 
significant (P<0.05) differences between exposure periods are denoted by the symbols a, 
b and c for the following comparisons: a 6 hrs vs. 24 hrs; b24 hrs vs. 48 hrs; c 48 hrs vs. 
72 hrs.  Significant differences between exposure periods were observed in HEK293 
cells exposed to the following concentrations: 1nM: a P = 0.002.  10nM: a P = 0.018.  
100nM: a P = 0.014; c P = 0.006.  1µM: a P = 0.0001.  10µM: a P = 0.0001.  100µM: a P 
= 0.0001.  1mM: a P = 0.0001; c P = 0.020.  5mM: a P = 0.002; b P = 0.0001; c P = 
0.0001.  10mM: b P = 0.0001. 
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Figure 8 illustrates the effect on viability of HEK293 cell cultures exposed to increasing 

concentrations of commercial 2,4-D for (A) 6, (B) 24, (C) 48 and (D) 72 hrs.  As seen in 

the figure, exposure to 2,4-D at all durations of exposure decreased cell viability.  The 

viability effects appeared to be limited (mean decreases in viability < 20%) at lower 

environmental concentrations (0.1 to 100 nM) and exacerbated (mean decreases in 

viability > 40%) at higher concentrations (5 and 10 mM).  A statistically significant 

(P<0.05) decrease (8%) in cell viability was initially manifested following exposure to 1 

nM for 24 hrs.  Similar decreases in cell viability were observed over the concentration 

range of 0.1 nM to 1 mM and at all durations of exposure. Statistically significant 

(P<0.05) decreases in viability were observed following exposure to 5 and 10 mM for 6 

to 72 hrs.  Decreases in cell viability were more pronounced upon exposure to 10 mM 

(70, 99, 100 and 100%), compared to 5 mM (26, 48, 74 and 97%), respectively.    

 The results of figure 8 were compiled into one graph for comparison of the 

effects of exposure to 0.1 nM to 1 mM of commercial 2,4-D for 6 to 72 hrs.  As seen in 

figure 9, in contrast to 24, 48 and 72 hrs (mean decreases in cell viability: 11, 10 and 

10%, respectively), more pronounced decreases in viability were observed in cells 

exposed to 0.1 nM to 1 mM for 6 hrs (mean decrease in viability: 18%).  More 

pronounced decreases in cell viability were not observed with longer durations of 

exposure to concentrations of commercial 2,4-D within the range of 0.1 nM to 1 mM.   

  

            4.2.4 Comparison of the effects of technical or commercial 2,4-D on HEK293

           cell viability 

 Figure 10 illustrates that exposure to either technical grade or commercial 2,4-D 

elicited similar effects on HEK293 cell viability for all durations of exposure tested.  

However, in contrast to technical grade 2,4-D, exposure to commercial 2,4-D induced a 

statistically significant (P<0.05) decrease in viability at the lowest concentration and at 

the earliest time point (technical grade: 0.1 nM at 48 hrs; commercial formulation: 1 nM 

at 24 hrs).  More pronounced decreases in cell viability were not observed with 

increasing concentrations or times to either forms of 2,4-D.  For example, mean 

decreases in viability observed upon exposure to either 0.1 nM to 1mM of technical or 

commercial 2,4-D for 6, 24, 48 and 72 hrs were:  technical grade: 33%, commercial  
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Figure 8: The effects of commercial 2,4-D on viability of exposed HEK293  cells.    
Cells were exposed to 0 to 10mM of 2,4-D for (A) 6, (B) 24, (C) 48 and (D) 72 hrs in 
complete growth media.  Cell viability was determined using the fluorometric Resazurin 
assay.  Fluorescence from a blank sample (complete growth media and Resazurin) was 
subtracted from all samples (untreated control and treated cell cultures).  Cell viability is 
expressed as a percent (%) of the fluorescence of untreated control cell cultures.  Results 
are presented as the mean ± standard error of the mean (SEM) from 6 independent 
experiments.  Statistical analysis was performed using one-way analysis of variance 
(ANOVA), followed by two-sided Dunnett’s post-hoc test.  Statistically significant 
(P<0.05) differences from fluorescence of untreated control cell cultures are denoted by 
the symbol *.  Significant differences from fluorescence of untreated control cell 
cultures were observed in HEK293 cells exposed to the following concentrations and 
respective durations of exposure: (A) 100nM: P = 0.0001; 1µM: P = 0.0001; 10µM: P = 
0.0001; 5mM: P = 0.0001; 10mM: P = 0.0001.  (B) 1nM: P = 0.017; 10nM: P = 0.010; 
100nM: P = 0.0001; 1µM:  P = 0.0001; 10µM: P = 0.038; 100µM: P = 0.028; 1mM: P = 
0.0001; 5mM: P = 0.0001; 10mM: P = 0.0001.  (C) 100µM: P = 0.014; 1mM: P = 
0.0001; 5mM: P = 0.0001; 10mM: P = 0.0001.  (D) 5mM: P = 0.0001; 10mM: P = 
0.0001. 
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Figure 9: Comparison of the effects of commercial 2,4-D on viability of HEK293 
cells exposed for 6, 24, 48 and 72 hrs.  Cells were exposed to 0 to 10mM of 2,4-D for 
6, 24, 48 and 72 hrs in complete growth media.  Cell viability was determined using the 
fluorometric Resazurin assay.  Fluorescence from a blank sample (complete growth 
media and Resazurin) was subtracted from all samples (untreated control and treated cell 
cultures).  Cell viability is expressed as a percent (%) of the fluorescence of untreated 
control cell cultures.  Results are presented as the mean from 6 independent experiments.  
Statistical analysis was performed using one-way analysis of variance (ANOVA), 
followed by a Tukey’s honestly significant difference (HSD) test.  Statistically 
significant (P<0.05) differences between exposure periods are denoted by the symbols a, 
b and c for the following comparisons: a 6 hrs vs. 24 hrs; b24 hrs vs. 48 hrs; c 48 hrs vs. 
72 hrs.  Significant differences between exposure periods were observed in HEK293 
cells exposed to the following concentrations: 1nM: a P = 0.0001; b P = 0.001.  10nM: a 
P = 0.001; b P = 0.0001.  100nM: a P = 0.021; c P = 0.019.  1µM: a P = 0.006.  10µM: a P 
= 0.0001; b P = 0.003; c P = 0.0001.  100µM: a P = 0.006; c P = 0.0001.  1mM: c P = 
0.001.  5mM: b P = 0.0001; c P = 0.0001.  10mM: a P = 0.0001. 
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Figure 10: Comparison of the effects of technical grade or commercial 2,4-D on 
viability of exposed HEK293 cells.  Cells were exposed to 0 to 10mM of technical 
grade or commercial 2,4-D for (A) 6, (B) 24, (C) 48 and (D) 72 hrs in complete growth 
media.  Cell viability was determined using the fluorometric Resazurin assay.  
Fluorescence from a blank sample (complete growth media and Resazurin) was 
subtracted from all samples (untreated control and treated cell cultures).  Cell viability is 
expressed as a percent (%) of the fluorescence of untreated control cell cultures.  Results 
are presented as the mean from 6 independent experiments.  Statistical analysis was 
performed using unpaired student t-tests.  Statistically significant (P<0.05) differences 
between 2,4-D forms are denoted by the symbol *.  Significant differences between 2,4-
D forms were observed in HEK293 cells exposed to the following concentrations: (A) 
0.1nM: P = 0.007; 10nM: P = 0.0001; 1mM: P = 0.011; 5mM: P = 0.016; 10mM: P = 
0.0001.  (B) 0.1nM: P = 0.002; 100nM: P = 0.049; 1mM: P = 0.001; 10mM: P = 0.001.  
(C) 0.1nM: P = 0.009; 1nM: P = 0.017; 10nM: P = 0.0001; 100nM: P = 0.0001; 10µM: 
P = 0.001; 5mM: P = 0.001; 10mM: P = 0.018.  (D) 10µM: P = 0.004; 100µM: P = 
0.002; 1mM: P = 0.043. 
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formulation: 18% (6hrs); technical grade: 5%, commercial formulation: 11% (24hrs); 

technical grade:16%, commercial formulation: 10% (48hrs) and technical grade: 19%, 

commercial formulation: 10% (72hrs), respectively.   Thus, in contrast to 24, 48 and 72  

hrs, exposure to either technical grade or commercial 2,4-D for 6 hrs appeared to induce 

greater magnitudes of cytotoxic effects, reflected by more pronounced decreases in 

viability.   

    A more pronounced decrease in cell viability was observed following exposure 

to 10 mM (mean decrease in cell viability; technical: 72%, commercial: 93%), compared 

to 5 mM (mean decrease in cell viability; technical: 64%, commercial: 63%) of either 

forms of 2,4-D for 6 to 72 hrs.  Statistically significant (P<0.05) differences between the 

viability effects were observed following exposure to 5 and 10 mM for 6 and 48 hrs; 10 

mM for 24 hrs and 5 mM for 72 hrs.   

 The effects on cell viability induced by either form of 2,4-D, suggests that 

toxicity was directly induced by 2,4-D and that the presence of ‘inert ingredients’ in the 

commercial formulation did not enhance the toxicity of 2,4-D to a great degree. 

 

            4.2.5 Comparison of the effects of technical 2,4-D on HepG2 and HEK293 

           cell viability 

 As seen from figure 11 (A) to (D), 2,4-D elicited similar effects on viability in 

both HepG2 and HEK293 cells at all durations of exposure (6 to 72 hrs).  Significant 

decreases in both HepG2 and HEK293 cell viability were observed at the lowest 

concentrations (0.1 nM) following 48 hrs of exposure.  However, in contrast to HepG2 

cells, HEK293 cells appeared to be more susceptible to exposures of 0.1 nM to 100 µM 

for 6, 48 and 72 hrs, reflected by the more pronounced decreases in cell viability.  For 

example exposure to 0.1 nM to 100 µM for 6 to 72 hrs induced greater magnitudes of 

decreases in HEK293 (33, 16 and 19%), compared to HepG2 (9, 9 and 7%) cell 

viability, respectively.  An additional difference observed between the two cell types 

was the increase in cell viability observed in HepG2 cells exposed to 1 mM for 6 to 72 

hrs.  This was not observed in HEK293 cells similarly exposed to the same 

concentration and duration.  
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Figure 11: Comparison of the effects of technical 2,4-D on viability of exposed 
HepG2 and HEK293 cells.  Cells were exposed to 0 to 10mM of technical grade 2,4-D 
for (A) 6, (B) 24, (C) 48 and (D) 72 hrs in complete growth media.  The HepG2 and 
HEK293 cells were not simultaneously exposed to 2,4-D.  Cell viability was determined 
using the fluorometric Resazurin assay.  Fluorescence from a blank sample (complete 
growth media and Resazurin) was subtracted from all samples (untreated control and 
treated cell cultures).  Cell viability is expressed as a percent (%) of the fluorescence of 
untreated control cell cultures.  Results are presented as the mean from 6 independent 
experiments.   Statistical analysis was performed using unpaired student t-tests.  
Statistically significant (P<0.05) differences between HepG2 and HEK293 cells are 
denoted by the symbol *.  Significant differences between HepG2 and HEK293 cells 
were observed upon exposure to 0.1nM to 10mM at all durations of exposure, as 
follows: (A) 0.1nM: P = 0.0001; 1nM: P = 0.0001; 10nM: P = 0.0001; 100nM: P = 
0.0001; 1µM: P = 0.0001; 10µM: P = 0.0001; 100µM: P = 0.0001; 1mM: P = 0.0001; 
5mM: P = 0.0001; 10mM: P = 0.0001.  (B) 0.1nM: P = 0.0001; 1nM: P = 0.0001; 
10nM: P = 0.0001; 100nM: P = 0.0001; 1µM: P = 0.0001; 10µM: P = 0.0001; 100µM: 
P = 0.0001; 1mM: P = 0.0001; 5mM: P = 0.0001; 10mM: P = 0.002.  (C) 0.1nM: P = 
0.0001; 1nM: P = 0.0001; 10nM: P = 0.0001; 100nM: P = 0.0001; 1µM: P = 0.0001; 
10µM: P = 0.0001; 100µM: P = 0.0001; 1mM: P = 0.0001; 5mM: P = 0.0001; 10mM: P 
= 0.009.  (D) 0.1nM: P = 0.0001; 1nM: P = 0.0001; 10nM: P = 0.0001; 100nM: P = 
0.006; 1µM: P = 0.0001; 10µM: P = 0.0001; 100µM: P = 0.0001; 1mM: P = 0.0001; 
5mM: P = 0.001; 10mM: P = 0.001.  
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In both HepG2 and HEK293 cells, decreases in viability were more exacerbated 

following 24 to 72 hrs of exposure to 10 mM (HepG2: 46, 92 and 100%; HEK293: 55, 

93 and 100%), compared to 5 mM (HepG2: 2, 27 and 78%; HEK293: 37, 71 and 97%).   

            

            4.2.6 Comparison of the effects of commercial 2,4-D on HepG2 and HEK293 

           cell viability 
 As seen from figure 12 (A) to (D), similar effects on viability were observed in 

HepG2 and HEK293 cells following exposure to commercial 2,4-D for 6 to 72 hrs.  

However, in contrast to HEK293, a significant decrease in HepG2 cell viability was 

initially observed at the lowest concentration and the earliest duration of exposure 

(HepG2: 0.1 nM at 6 hrs; HEK293: 1 nM at 24 hrs).  More pronounced decreases in cell 

viability were observed in HEK293 (11, 10 and 10%) exposed to 0.1 nM to 100 µM for 

24 to 72 hrs of exposure compared to HepG2 (5, 7 and 2%) cells, respectively.    

 In both HepG2 and HEK293 cells, decreases in viability were more exacerbated 

following 6 to 72 hrs of exposure to 10mM (HepG2: 54, 99, 100 and 100%; HEK293: 

70, 99, 97 and 100%), compared to 5mM (HepG2: 18, 24, 65 and 96%; HEK293: 26, 48, 

74 and 97%).   

 

 Therefore, in summary, cell viability results illustrated that: (1) exposure to 0.1 

nM to 1 mM of either technical or commercial 2,4-D induced similar effects on cell 

viability in exposed HepG2 and HEK293 cells; suggesting that 2,4-D – induced 

cytotoxicity may be induced directly by 2,4-D, and the presence of ‘inert ingredients’ in 

the commercial formulation has limited ability to act synergistically with 2,4-D and 

enhance the magnitude of toxicity to a great degree, (2) similar magnitudes of decreases 

in HepG2 and HEK293 cell viability were observed over the concentration range of 0.1 

nM to 100 µM of either forms of 2,4-D, (3) more pronounced decreases in HepG2 and 

HEK293 cell viability were not observed with longer durations of exposure  to either 

forms of 2,4-D and (4) compared to HepG2, HEK293 cells appeared to be more 

susceptible to the toxic effects induced by exposure to 0.1 nM to 1 mM of either forms 

of 2,4-D; reflected by more pronounced  decreases in viability.  Thus, based on the  
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Figure 12: Comparison of the effects of commercial 2,4-D on viability of exposed 
HepG2 and HEK293 cells.  Cells were exposed to 0 to 10mM of commercial 2,4-D for 
(A) 6, (B) 24, (C) 48 and (D) 72 hrs in complete growth media.  The HepG2 and 
HEK293 cells were not simultaneously exposed to 2,4-D.  Cell viability was determined 
using the fluorometric Resazurin assay.  Fluorescence from a blank sample (complete 
growth media and Resazurin) was subtracted from all samples (untreated control and 
treated).  Cell viability is expressed as a percent (%) of the fluorescence of untreated 
control cell cultures.  Results are presented as the mean from 6 independent experiments.    
Statistical analysis was performed using unpaired student t-tests.  Statistically significant 
(P<0.05) differences between HepG2 and HEK293 cells are denoted by the symbol *.  
Significant differences between HepG2 and HEK293 cells were observed upon exposure 
to 0.1nM to 10mM at all durations of exposure, as follows: (A) 0.1nM: P = 0.0001; 
1nM: P = 0.0001; 10nM: P = 0.0001; 100nM: P = 0.0001; 1µM: P = 0.0001; 10µM: P = 
0.0001; 100µM: 1mM: P =0.0001; 5mM: P = 0.0001; 10mM: P = 0.0001.  (B) 0.1nM: P 
= 0.0001; 1nM: P = 0.0001; 10nM: P = 0.0001; 100nM: P = 0.0001; 1µM: P = 0.0001; 
10µM: P = 0.0001; 100µM: P = 0.0001; 1mM: P = 0.0001; 5mM: P = 0.0001.  (C) 
0.1nM: P = 0.0001; 1nM: P = 0.0001; 10nM: P = 0.0001; 100nM: P = 0.0001; 1µM: P 
= 0.0001; 10µM: P = 0.0001; 100µM: P = 0.0001; 1mM: P = 0.0001; 5mM: P = 0.0001; 
10mM: P = 0.005.  (D)  0.1nM: P = 0.001; 1nM: P = 0.0001; 10nM: P = 0.0001; 
100nM: P = 0.004; 1µM: P = 0.0001; 10µM: P = 0.0001; 100µM: P = 0.0001; 1mM: P 
= 0.0001; 5mM: P = 0.009; 10mM: P = 0.017. 
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results obtained from cell viability assays, all subsequent studies were performed using 

HepG2 and HEK293 cell cultures exposed to commercial 2,4-D for 24 hrs. 

 

      4.3 ROS production in cells 

 The ROS assays were performed using 2’,7’-DCFH-DA to determine if 

environmental concentrations of 2,4-D induce ROS production in exposed human cell 

cultures.  The HepG2 and HEK293 cells were exposed to H2O2 to assess the efficacy of 

the ROS assay.  The compound, 2’,7’-DCFH-DA, is considered to be superior for 

detection of intracellular ROS production (Hempel et al., 1999).  Additionally, 2’,7’-

DCFH-DA provides a rapid and efficient in vitro method for determination of 

intracellular ROS production, in contrast to other conventional assays (i.e. thiobarbituric 

acid assay, which measures the accumulation of the lipid peroxidation end product, 

malondialdehyde (MDA) (reviewed by Cathcart et al., 1983)).  It is also considered to be 

highly sensitive, as it is able to detect picomoles (pM) of hydroperoxides (Cathcart et al., 

1983).   

 The fluorescent signal was directly proportional to ROS production.  Therefore, 

results were presented as the mean fluorescent signal unit (FSU) ± standard error of the 

mean (SEM).  Fluorescence was measured every hour for a total of 5 hrs to determine if 

more pronounced ROS production would be observed with longer durations of exposure 

to 2,4-D.   

 

            4.3.1 The effects of H2O2 on ROS production in HepG2 and HEK293 cells 

 As illustrated in figures 13 and 14, ROS production is increased in HepG2 and 

HEK293 cells following exposure to H2O2.  Statistically significant (P<0.05) increases 

in ROS production were observed at concentrations equal to and greater than 200 µM in 

HepG2 cells.  Concentration-dependent increases in ROS production were observed in 

HepG2 cells. The observed increases in ROS production between successive 

concentrations (100 to 400 µM) of H2O2 were statistically significant (P<0.05) in 

HepG2 cells.  Statistically significant (P<0.05) increases in ROS production were 

observed in HEK293 cells exposed to concentrations greater and equal to 100 µM.   
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Figure 13:  Reactive oxygen species (ROS) production in HepG2 cells exposed to 
hydrogen peroxide (H2O2).  Cells were exposed to 0 to 400µM of H2O2 for 20 min in 
phosphate buffered saline (PBS) solution.  The production of ROS was determined using 
2’,7’-dichlorofluorescin diacetate (2’,7’-DCFH-DA).  Fluorescence from a blank sample 
(PBS and 2’,7’-DCFH-DA) was subtracted from all samples (untreated control and 
treated cell cultures).  Results are expressed as the mean 2’,7’-dichlorofluorescein (DCF) 
fluorescence ± standard error of the mean (SEM) from 6 independent experiments.  
Statistical analysis was performed using one-way analysis of variance (ANOVA), 
followed by two-sided Dunnett’s post-hoc test.  Statistically significant (P<0.05) 
differences from fluorescence of untreated control cell cultures are denoted by the 
symbol *.  Significant differences from from fluorescence of untreated control cell 
cultures were observed in HepG2 cells exposed to the following concentrations: 200µM: 
P = 0.0001.  300µM: P = 0.0001.  400µM: P = 0.0001.  Statistical analysis was 
performed using one-way ANOVA, followed by a Tukey’s honestly significant 
difference (HSD) test.  Statistically significant (P<0.05) differences in the increases in 
ROS production between successive increasing exposure concentrations are denoted by 
the symbols a, b and c for the following comparisons: a 100µM vs. 200µM; b 200µM vs. 
300µM; c 300µM vs. 400µM.  Significant differences in the increases in ROS 
production between successive increasing concentrations were observed in HepG2 cells 
as follows: 200µM: a P = 0.009.  300µM: b P = 0.0001.  400µM: c P = 0.0001. 
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Figure 14:  Reactive oxygen species (ROS) production in HEK293 cells exposed to 
hydrogen peroxide (H2O2).  Cells were exposed to 0 to 400µM of H2O2 for 20 min in 
phosphate buffered saline (PBS) solution.  The production of ROS was determined using 
2’,7’-dichlorofluorescin diacetate (2’,7’-DCFH-DA).  Fluorescence from a blank sample 
(PBS and 2’,7’-DCFH-DA) was subtracted from all samples (untreated control and 
treated cell cultures).  Results are expressed as the mean 2’,7’-dichlorofluorescein (DCF) 
fluorescence ± standard error of the mean (SEM) from 6 independent experiments.  
Statistical analysis was performed using one-way analysis of variance (ANOVA), 
followed by two-sided Dunnett’s post-hoc test.  Statistically significant (P<0.05) 
differences from fluorescence of untreated control cell cultures are denoted by the 
symbol *.  Significant differences from fluorescence of untreated control cell cultures 
were observed in HEK293 cells exposed to the following concentrations: 100µM: P = 
0.0001. 200µM: P = 0.0001.  300µM: P = 0.0001.  400µM: P = 0.0001.  Statistical 
analysis was performed using one-way ANOVA, followed by a Tukey’s honestly 
significant difference (HSD) test.  There were statistically insignificant (P < 0.05) 
differences in the increases in ROS production between successive increasing exposure 
concentrations in HEK293 cells.   
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Increases in ROS production in HEK293 cells observed at concentrations equal to and 

greater than 200 µM were similar in magnitude to that observed at 100 µM.  

 

            4.3.2 The effects of increasing exposure time to PBS solution on                       

             ROS production in untreated HepG2 and HEK293 control cells 

 The ROS assays were performed in PBS solution.  Figure 15 illustrates that in 

both HepG2 and HEK293 cells; ROS production increased with longer durations of 

exposure to PBS solution.  The ROS production observed between 2 and 3 hrs, 3 and 4 

hrs, 4 and 5 hrs, and 5 and 6 hrs in both HepG2 and HEK293 cells were statistically 

significant (P<0.05).  At all exposure time points (2 to 6 hrs), ROS production in 

HEK293 cells was 50 to 70% statistically significant (P<0.05) less than that produced in 

HepG2 cells at all durations of exposure.   

 

            4.3.3 The effects of commercial 2,4-D on ROS production in cells 

                     4.3.3.1 The effects of commercial 2,4-D on ROS production in HepG2     

                                  cells 

 Figure 16 illustrates that exposure to high concentrations of 2,4-D (100 µM and 

1 mM) induce ROS production in HepG2 cells.  Statistically significant (P<0.05) 

increases in ROS production were observed following exposure to 100µM and 1mM at 

all durations of exposure.  Approximately twice the amount of ROS was produced in 

cells exposed to 1 mM, compared to 100 µM.  The differences in ROS produced 

between 100 µM and 1 mM at all duration of exposure were statistically significant 

(P<0.05).  The ROS production increased significantly (P<0.05) in cells exposed to 100 

µM or 1 mM with successive exposure times (100 µM (2 to 3 hrs, 3 to 4hrs, 4 to 5hrs) 

and 1 mM (2 to 3 hrs, 3 to 4 hrs, 4 to 5 hrs, 5 to 6 hrs).   

 

                     4.3.3.2 The effects of commercial 2,4-D on ROS production in HEK293 

                                  cells 

Figure 17 illustrates that exposure to 2,4-D induces ROS production in exposed 

HEK293 cells.  Statistically significant (P<0.05) increases in ROS production were only 

observed following exposure to concentrations equal to and greater than 1 µM for all  
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Figure 15:  The effects of phosphate buffered saline (PBS) solution on reactive 
oxygen species (ROS) production in untreated HepG2 and HEK293 control cells.   
Cells were exposed to PBS for 1 hr.  The HepG2 and HEK293 cells were not 
simultaneously exposed to PBS.  The production of ROS was determined using 2’,7’-
dichlorofluorescin diacetate (2’,7’-DCFH-DA).  Fluorescence from a blank sample (PBS 
and 2’,7’-DCFH-DA) was subtracted from all samples (untreated control and treated cell 
cultures).  Results are expressed as the mean 2’,7’-dichlorofluorescein (DCF) 
fluorescence ± standard error of the mean (SEM) from 8 independent experiments.  
Statistical analysis was performed using one-way analysis of variance (ANOVA), 
followed by a Tukey’s honestly significant difference (HSD) test.  Statistically 
significant (P<0.05) differences between exposure periods are denoted by the symbols a, 
b, c and d for the following comparisons: a 2 hrs vs. 3 hrs;  b 3 hrs vs. 4 hrs; c 4 hrs vs. 5 
hrs; d 5 hrs vs. 6 hrs.  Significant differences between exposure periods were observed in 
HepG2 and HEK293 cells, as follows: HepG2 cell cultures: a P = 0.0001; b P = 0.0001; c 
P = 0.0001; d P = 0.0001.  HEK293 cell cultures:  a P = 0.0001; b P = 0.0001; c P = 
0.0001; d P = 0.0001.  Statistical analysis was performed using unpaired student t-tests.  
Statistically significant (P<0.05) differences between HepG2 and HEK293 cells are 
denoted by the symbol **.  Significant differences between HepG2 and HEK293 cells 
were observed at all durations of exposure, as follows: 2 hrs: ** P = 0.0001; 3 hrs: ** P 
= 0.0001; 4 hrs: ** P = 0.0001; 5 hrs: ** P = 0.0001; 6 hrs: ** P = 0.0001. 
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Figure 16:  Reactive oxygen species (ROS) production in HepG2 cells exposed to 
commercial 2,4-D.  Cell were exposed to 0 to 1mM of 2,4-D in phosphate buffered 
saline (PBS) solution for 1 hr.  The production of ROS was determined using 2’,7’-
dichlorofluorescin diacetate (2’,7’-DCFH-DA).  Fluorescence from a blank sample (PBS 
and 2’,7’-DCFH-DA) was subtracted from all samples (untreated control and treated cell 
cultures).  Results are expressed as the mean 2’,7’-dichlorofluorescein (DCF) 
fluorescence ± standard error of the mean (SEM) from 8 independent experiments.  
Statistical analysis was performed using one-way analysis of variance (ANOVA), 
followed by two-sided Dunnett’s post-hoc test.  Statistically significant (P<0.05) 
differences from fluorescence of untreated control cell cultures are denoted by the 
symbol *.  Significant differences from fluorescence of untreated control cell cultures 
were observed in HepG2 cells exposed to the following concentrations: 100µM: 2 hrs: P 
= 0.002; 3 hrs: P = 0.0001; 4 hrs: P = 0.002; 5 hrs: P = 0.0001.  1mM: 2 hrs: P = 0.0001; 
3 hrs: P = 0.0001; 4 hrs: P = 0.002; 5 hrs: P = 0.0001; 6 hrs: P = 0.0001.  Statistically 
significant (P<0.05) differences in the increases in ROS production between successive 
increasing exposure concentrations (10µM to 1mM) are denoted by the symbols ^ and 
** for the following comparisons: ^ 10µM vs. 100µM; ** 100µM vs. 1mM.  Statistical 
analysis was performed using one-way ANOVA, followed by a Tukey’s honestly 
significant difference (HSD) test.  Significant differences in ROS production between 
successive increasing concentrations were observed in HepG2 cells, as follows: 2 hrs: ^ 
P = 0.014, ** P = 0.0001; 3 hrs: ^ P = 0.0001. ** P = 0.0001; ^ P = 0.002, ** P = 
0.0001; ^ P = 0.0001, ** P = 0.0001; 6 hrs: ** P = 0.0001.  Statistically significant 
(P<0.05) differences in the increases in ROS production between successive increasing 
exposure periods following exposure to 100µM and 1mM are denoted by the symbols a, 
b, c and d for the following comparisons: a 2 hrs vs. 3 hrs; b 3 hrs vs. 4 hrs; c 4 hrs vs. 5 
hrs; d 5 hrs vs. 6 hrs.  Statistical analysis was performed using one-way ANOVA, 
followed by a Tukey’s HSD test.  Significant differences in ROS production between 
successive increasing exposure periods were observed in HepG2 cells exposed to 
100µM and 1mM as follows: 100µM: a P = 0.0001;   b P = 0.0001; c P = 0.0001.  1mM: a 
P = 0.0001; b P = 0.0001; c P = 0.0001; d P = 0.0001. 
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Figure 17:  Reactive oxygen species (ROS) production in HEK293 cells exposed to 
commercial 2,4-D.  Cell were exposed to 0 to 1mM of 2,4-D in phosphate buffered 
saline (PBS) solution for 1 hr.  The production of ROS was determined using 2’,7’-
dichlorofluorescin diacetate (2’,7’-DCFH-DA).  Fluorescence from a blank sample (PBS 
and 2’,7’-DCFH-DA) was subtracted from all samples (untreated control and treated cell 
cultures).  Results are expressed as the mean 2’,7’-dichlorofluorescein (DCF) 
fluorescence ± standard error of the mean (SEM) from 8 independent experiments.  
Statistical analysis was performed using one-way analysis of variance (ANOVA), 
followed by two-sided Dunnett’s post-hoc test.  Statistically significant (P<0.05) 
differences from fluorescence of untreated control cell cultures are denoted by the 
symbol *.  Significant differences from fluorescence of untreated control cell cultures 
were observed in HEK293 cells exposed to the following concentrations: 1µM: 2 hrs: P 
= 0.005; 3 hrs: P = 0.0001; 4 hrs: P = 0.0001; 5 hrs: P = 0.002; 6 hrs: P = 0.007.  10µM: 
2 hrs: P = 0.0001; 3 hrs: P = 0.0001; 4 hrs: P = 0.0001; 5 hrs: P = 0.0001; 6 hrs: P = 
0.0001.  100µM: 2 hrs: P = 0.0001; 3 hrs: P = 0.0001; 4 hrs: P = 0.0001; 5 hrs; P = 
0.0001; 6 hrs: P = 0.0001.  1mM: 2 hrs: P = 0.0001; 3 hrs: P = 0.0001; 4 hrs: P = 
0.0001; 5 hrs: P = 0.0001; 6 hrs: P = 0.0001.  Statistically significant (P<0.05) 
differences in the increases in ROS production between successive increasing exposure 
concentrations (1µM to 1mM) are denoted by the symbols ^ and ** for the following 
comparisons: ^ 10µM vs. 100µM; ** 100µM vs. 1mM.  Statistical analysis was 
performed using one-way ANOVA, followed by a Tukey’s honestly significant 
difference (HSD) test.  Significant differences in ROS production between successive 
increasing concentrations were observed in HEK293 cells as follows: 2 hrs: ^ P = 0.026, 
** P = 0.0001; 3 hrs: ^ P = 0.005, ** P = 0.0001; 4 hrs: ^ P = 0.001, ** P = 0.0001; 5 
hrs: ^ P = 0.005, ** P = 0.0001; 6 hrs: ^ P = 0.007, ** P = 0.0001.  Statistically 
significant (P<0.05) differences in the increases in ROS production between successive 
increasing exposure periods following exposure to 1µM to 1mM are denoted by the 
symbols a, b, c and d for the following comparisons.  a 2 hrs vs. 3 hrs;  b 3 hrs vs. 4 hrs; c 
4 hrs vs. 5 hrs; d 5 hrs vs. 6 hrs.  Statistical analysis was performed using one-way 
ANOVA, followed by a Tukey’s HSD test.  Significant differences in  ROS production 
between successive increasing exposure periods were observed in HEK293 cells 
exposed to 1µM to 1mM, as follows: 1µM: a P = 0.012, b P = 0.005, c P = 0.001, d P = 
0.022;  10µM: a P = 0.0001, b P = 0.0001, c P = 0.0001; d P = 0.0001;   100µM: a P = 
0.0001, b P = 0.0001, c P = 0.0001, d P = 0.0001; 1mM: a P = 0.0001, b P = 0.0001, c P = 
0.006 hrs: d P = 0.0001.   
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durations of exposure.  Furthermore, although ROS production appeared to increase with 

increasing concentrations of 2,4-D (1 µM to 1 mM); significant (P<0.05) differences in  

ROS production were only observed between 10 and 100 µM, and 100 µM and 1 mM.  

Exposure to 1 µM to 1 mM induced more pronounced increases in ROS production with 

longer durations of exposure.  The effects were statistically significant (P<0.05).   

                      

                     4.3.3.3 Comparison of the effects of commercial 2,4-D on ROS       

                                  production in HepG2 and HEK293 cells 

 Figure 18 illustrates that at all concentrations (0 to 1 mM) and times (2 to 6 hrs), 

50 to 70% statistically significant (P<0.05) less ROS was produced in HEK293, 

compared to HepG2 cells.   

 

      4.4 The effects of commercial 2,4-D on mRNA expression in cells 

 The RT-PCR assays were performed to determine if exposure to environmental 

concentrations of 2,4-D would induce up-regulation of FTL, FTH1 and PCNA gene 

expression at the level of mRNA accumulation.  In contrast to conventional Northern 

Blot assays, RT-PCR assays provide a rapid, efficient and sensitive method for 

determination of mRNA accumulation levels.   

 Target mRNA expression levels in each sample was calculated relative to the 

expression in control cell cultures, normalized to the expression of the reference gene, 

GAPDH. 

 

            4.4.1 The effects of commercial 2,4-D on FTL mRNA expression in cells        

                     4.4.1.1 The effects of commercial 2,4-D on FTL mRNA expression 

                        in HepG2 cells 

Figure 19 illustrates that exposure to 2,4-D induces alterations (< 2 fold) in FTL 

mRNA expression.  A consistent pattern in mRNA expression was not observed over the 

concentrations tested.  The FTL mRNA expression was repressed in cells exposed to 

concentrations less than 10 µM.  The greatest degree of repression (0.19 fold) of mRNA 

expression was observed in cells exposed to 100 nM.  Induction of FTL mRNA 

expression was observed in cells exposed to concentrations equal to and greater than  
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Figure 18:  Comparison of reactive oxygen species (ROS) production in HepG2 and 
HEK293 cells exposed to commercial 2,4-D.  Cells were exposed to 0 to 1mM of 2,4-
D in phosphate buffered saline (PBS) solution for 1 hr.  The HepG2 and HEK293 cells 
were not simultaneously exposed to 2,4-D.  The production of ROS in HepG2 and 
HEK293 cells was determined using 2’,7’-dichlorofluorescin diacetate (2’,7’-DCFH-
DA).  Fluorescence from a blank sample (PBS and 2’,7’-DCFH-DA) was subtracted 
from all samples (untreated control and treated cell cultures).  Results are expressed as 
the mean 2’,7’-dichlorofluorescein (DCF) fluorescence ± standard error of the mean 
(SEM) from 8 independent experiments.  Statistically significant (P<0.05) differences 
between HepG2 and HEK293 cells are denoted by the symbol *.  Significant differences 
between HepG2 and HEK293 cells were observed upon exposure to 0 to 1mM at all 
durations of exposure, as follows: control: 2 hrs: P = 0.0001, 3 hrs: P = 0.0001, 4 hrs: P 
= 0.0001, 5 hrs: P = 0.0001, 6 hrs: P = 0.0001; 0.1nM: 2 hrs: P = 0.0001, 3 hrs: P = 
0.0001, 4 hrs: P = 0.0001, 5 hrs: P = 0.0001, 6 hrs: P = 0.0001; 1nM: 2hrs: P = 0.0001, 
3hrs: P = 0.0001, 4hrs: P = 0.0001, 5hrs; P = 0.0001, 6hrs: P = 0.0001; 10nM: 2hrs: P = 
0.0001, 3hrs: P = 0.0001, 4hrs: P = 0.0001, 5hrs: P = 0.0001, 6hrs: P = 0.0001; 100nM: 
2 hrs: P = 0.0001, 3 hrs: P = 0.0001, 4 hrs: P = 0.0001, 5 hrs: P = 0.0001, 6 hrs: P = 
0.0001; 1µM: 2 hrs: P = 0.0001, 3 hrs: P = 0.0001, 4 hrs: P = 0.0001, 5 hrs: P = 0.0001, 
6 hrs: P = 0.0001; 10µM: 2 hrs: P = 0.0001, 3 hrs: P = 0.0001, 4 hrs: P = 0.0001, 5 hrs; 
P = 0.0001, 6 hrs: P = 0.0001; 100µM: 2 hrs: P = 0.0001, 3 hrs: P = 0.0001, 4 hrs: P = 
0.0001, 5 hrs: P = 0.0001, 6 hrs: P = 0.0001; 1mM: 2 hrs: P = 0.0001, 3 hrs: P = 0.0001, 
4 hrs: P = 0.0001, 5 hrs: P = 0.0001, 6 hrs: P = 0.0001. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 115



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*

*

*

*

*

10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

85
0

90
0

95
0

10
00

10
50

11
00

11
50

12
00

12
50

13
00

13
50

14
00

14
50

15
00

15
50

16
00

16
50

17
00

17
50

18
00

18
50

19
00

19
50

20
00

20
50

21
00

21
50

22
00

22
50

23
00

mean DCF Fluorescence
(Fluorescent Signal Units)

050

2
3

4
5

6

Ti
m

e 
(h

rs)

Co
nt

ro
l-

He
pG

2
1.0

0E
-0

4u
M

-
He

pG
2

1.0
0E

-0
3u

M
-

He
pG

2
1.0

0E
-0

2u
M

-
He

pG
2

1.0
0E

-0
1u

M
-

He
pG

2
1.0

0E
+0

0u
M

-
He

pG
2

1.0
0E

+0
1u

M
-

He
pG

2
1.0

0E
+0

2u
M

-
He

pG
2

1.0
0E

+0
3u

M
-

He
pG

2
Co

nt
ro

l-
HE

K2
93

1.0
0E

-0
4u

M
-

HE
K2

93
1.0

0E
-0

3u
M

-
HE

K2
93

1.0
0E

-0
2u

M
-

HE
K2

93
1.0

0E
-0

1u
M

-
HE

K2
93

1.0
0E

+0
0u

M
-

HE
K2

93
1.0

0E
+0

1u
M

-
HE

K2
93

1.0
0E

+0
2u

M
-

HE
K2

93
1.0

0E
+0

3u
M

-
HE

K2
93

 116



Figure 19: The effects of commercial 2,4-D on ferritin light polypeptide (FTL) 
mRNA expression in exposed HepG2 cells.  Cells were exposed to 0 to 1mM of 2,4-D 
in complete growth media for 24 hrs.  Cells were harvested and RNA extracted.  Single-
stranded (SS) cDNA was produced using first strand synthesis; subsequently real time 
polymerase chain reaction assay was performed.  Target mRNA expression levels are 
presented as the mean of triplicate assays from one independent experiment; and are 
expressed relative to the expression level in control cell cultures, normalized to the 
expression level of the reference gene, glyceraldehyde-6-phosphate dehydrogenase 
(GAPDH). 
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10 µM.  The highest magnitude of induction (1.06 fold) of FTL mRNA expression was 

observed in cells exposed to 100 µM or 1 mM.       

 

                     4.4.1.2 The effects of commercial 2,4-D on FTL mRNA expression 

                        in HEK293 cells 

Figure 20 illustrates that exposure to 2,4-D induces alterations in FTL mRNA 

expression.  A consistent pattern in mRNA expression was not observed over the 

concentrations tested.  The FTL mRNA expression was repressed in cells exposed to 1 

nM, 100 nM and 10 µM.  The highest degree of repression (0.22 fold) of mRNA 

expression was observed in cells exposed to 1 nM.  Induction of FTL mRNA expression 

was observed in cells exposed to 0.1 nM, 10 nM, 1 µM, 100 µM and 1 mM.  The highest 

degree of induction (4.33 fold) of mRNA expression was observed in cells exposed to 1 

mM.     

 

                     4.4.1.3 Comparison of the effects of commercial 2,4-D on FTL mRNA  

                                  expression in HepG2 and HEK293 cells 

Figure 21 illustrates that 2,4-D induces different effects on FTL mRNA 

expression in HepG2 and HEK293 cells.  A consistent pattern in mRNA expression in 

HepG2 or HEK293 cells was not observed over the concentrations tested.  With the 

exception of HEK293 cells exposed to 1 mM, 2,4-D induced less than 2 fold alterations 

in FTL mRNA expression in both HepG2 and HEK293 cells.   

 

            4.4.2 The effects of commercial 2,4-D on FTH1 mRNA expression in cells      

                     4.4.2.1 The effects of commercial 2,4-D on FTH1 mRNA expression 

             in HepG2 cells 

Figure 22 illustrates that 2,4-D induces less than 2 fold alterations (increases and 

decreases) in FTH1 mRNA expression at concentrations above 0.1 nM.  FTH1 mRNA 

expression was repressed (0.11 fold) in cells exposed to 1 nM.  FTH1 mRNA expression 

was induced by 1.28 fold (average) in cells exposed to concentrations equal to and 

greater than 10 nM.  A 1.58 fold increase induction of mRNA expression was observed 

in cells exposed to 100 µM.     
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Figure 20: The effects of commercial 2,4-D on ferritin light polypeptide (FTL) 
mRNA expression in exposed HEK293 cells.  Cells were exposed to 0 to 1mM of 2,4-
D in complete growth media for 24 hrs.  Cells were harvested and RNA extracted.  
Single-stranded (SS) cDNA was produced using first strand synthesis; subsequently real 
time polymerase chain reaction assay was performed.  Target mRNA expression levels 
are presented as the mean of triplicate assays from one independent experiment; and are 
expressed relative to the expression level in control cell cultures, normalized to the 
expression level of the reference gene, glyceraldehyde-6-phosphate dehydrogenase 
(GAPDH). 
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Figure 21: Comparison of the effects of commercial 2,4-D on ferritin light 
polypeptide (FTL) mRNA expression in exposed HepG2 and HEK293 cells.  Cells 
were exposed to 0 to 1mM of 2,4-D in complete growth media for 24 hrs.  The HepG2 
and HEK293 cells were not simultaneously exposed to 2,4-D.  Cells were harvested and 
RNA extracted.  Single-stranded (SS) cDNA was produced using first strand synthesis; 
subsequently real time polymerase chain reaction assay was performed.  Target mRNA 
expression levels are presented as the mean of triplicate assays from one independent 
experiment; and are expressed relative to the expression level in control cell cultures, 
normalized to the expression level of the reference gene, glyceraldehyde-6-phosphate 
dehydrogenase (GAPDH). 
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Figure 22: The effects of commercial 2,4-D on ferritin heavy  polypeptide (FTH1) 
mRNA expression in exposed HepG2 cells.  Cells were exposed to 0 to 1mM of 2,4-D 
in complete growth media for 24 hrs.  Cells were harvested and RNA extracted.  Single-
stranded (SS) cDNA was produced using first strand synthesis; subsequently real time 
polymerase chain reaction assay was performed.  Target mRNA expression levels are 
presented as the mean of triplicate assays from one independent experiment; and are 
expressed relative to the expression level in control cell cultures, normalized to the 
expression level of the reference gene, glyceraldehyde-6-phosphate dehydrogenase 
(GAPDH). 
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                     4.4.2.2 The effects of commercial 2,4-D on FTH1 mRNA expression 

                        in HEK293 cells 

 Figure 23 illustrates that exposure to 2,4-D induces alterations (< 2 fold) FTH1 

mRNA expression.  A consistent pattern in mRNA expression was not observed over the 

concentrations tested.  The FTH1 mRNA expression was repressed in cells exposed to 

concentrations less than 1 mM.  The greatest degree of repression (0.55 fold) of mRNA 

expression was observed in cells exposed to 10 µM.  Exposure to 1 mM induced (1.89 

fold) FTH1 mRNA expression.     

 

                     4.4.2.3 Comparison of the effects of commercial 2,4-D on FTH1 mRNA

            expression in HepG2 and HEK293 cells 

 Figure 24 illustrates that 2,4-D induces different effects on FTH1 mRNA 

expression in HepG2 and HEK293 cells.  The magnitudes of alterations in mRNA 

expression in HepG2 and HEK293 cells were less than 2 fold.  A consistent pattern in 

changes in mRNA expression in HepG2 or HEK293 cells was not observed over the 

concentrations tested.   

   

            4.4.3 The effects of commercial 2,4-D on PCNA mRNA expression in cells 

                     4.4.3.1 The effects of commercial 2,4-D on PCNA mRNA expression

             in HepG2 cells 

 Figure 25 illustrates that exposure to 2,4-D alters (< 2 fold) PCNA mRNA 

expression.  A consistent pattern in mRNA expression was not observed over the 

concentrations tested.  The PCNA mRNA expression was induced in cells exposed to 

0.1 nM to 100 µM.  The highest degree of induction (1.79 fold) in mRNA expression 

was observed in cells exposed to 100 µM.  Exposure to 1 mM repressed (0.47 fold) 

PCNA mRNA expression.      

 

                     4.4.3.2 The effects of commercial 2,4-D on PCNA mRNA expression 

                    in HEK293 cells 

 Figure 26 illustrates that exposure to 2,4-D induces changes (< 2 fold) in PCNA 

mRNA expression.  A consistent pattern in mRNA expression was not observed over the  
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Figure 23: The effects of commercial 2,4-D on ferritin heavy  polypeptide (FTH1) 
mRNA expression in exposed HEK293 cells.  Cells were exposed to 0 to 1mM of 2,4-
D in complete growth media for 24 hrs.  Cells were harvested and RNA extracted.  
Single-stranded (SS) cDNA was produced using first strand synthesis; subsequently real 
time polymerase chain reaction assay was performed.  Target mRNA expression levels 
are presented as the mean of triplicate assays from one independent experiment; and are 
expressed relative to the expression level in control cell cultures, normalized to the 
expression level of the reference gene, glyceraldehyde-6-phosphate dehydrogenase 
(GAPDH). 
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Figure 24: Comparison of the effects of commercial 2,4-D on ferritin heavy 
polypeptide (FTH1) mRNA expression in exposed HepG2 and HEK293 cells.    
Cells were exposed to 0 to 1mM of 2,4-D in complete growth media for 24 hrs.  The 
HepG2 and HEK293 cells were not simultaneously exposed to 2,4-D.  Cells were 
harvested and RNA extracted.  Single-stranded (SS) cDNA was produced using first 
strand synthesis; subsequently real time polymerase chain reaction assay was performed.  
Target mRNA expression levels are presented as the mean of triplicate assays from one 
independent experiment; and are expressed relative to the expression level in control cell 
cultures, normalized to the expression level of the reference gene, glyceraldehyde-6-
phosphate dehydrogenase (GAPDH). 
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Figure 25: The effects of commercial 2,4-D on proliferating cell nuclear antigen 
(PCNA) mRNA expression in exposed HepG2 cells.  Cells were exposed to 0 to 1mM 
of 2,4-D in complete growth media for 24 hrs.  Cells were harvested and RNA extracted.  
Single-stranded (SS) cDNA was produced using first strand synthesis; subsequently real 
time polymerase chain reaction assay was performed.  Target mRNA expression levels 
are presented as the mean of triplicate assays from one independent experiment; and are 
expressed relative to the expression level in control cell cultures, normalized to the 
expression level of the reference gene, glyceraldehyde-6-phosphate dehydrogenase 
(GAPDH). 
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Figure 26: The effects of commercial 2,4-D on proliferating cell nuclear antigen 
(PCNA) mRNA expression in exposed HEK293 cells.  Cells were exposed to 0 to 
1mM of 2,4-D in complete growth media for 24 hrs.  Cells were harvested and RNA 
extracted.  Single-stranded (SS) cDNA was produced using first strand synthesis; 
subsequently real time polymerase chain reaction assay was performed.  Target mRNA 
expression levels are presented as the mean of triplicate assays from one independent 
experiment; and are expressed relative to the expression level in control cell cultures, 
normalized to the expression level of the reference gene, glyceraldehyde-6-phosphate 
dehydrogenase (GAPDH). 
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concentrations tested.  The PCNA mRNA expression was induced (1.04 fold) in cells 

exposed to 0.1 nM.  Repression of PCNA mRNA expression was observed in cells 

exposed to 1 nM to 1 mM.  The highest degree of repression (0.40 fold decrease) of 

PCNA mRNA expression was observed in cells exposed to 10 µM. 

  

                     4.4.3.3 Comparison of the effects of commercial 2,4-D on PCNA mRNA

            expression in HepG2 and HEK293 cells 

 Figure 27 illustrates that 2,4-D induces different effects on PCNA mRNA 

expression in HepG2 and HEK293 cells.  The magnitudes of alterations in mRNA 

expression in HepG2 and HEK293 cells were less than 2 fold.  A consistent pattern in 

mRNA expression in HepG2 or HEK293 cells was not observed over the concentrations 

tested.   

  

      4.5 The effects of commercial 2,4-D on protein expression in cells 

 Western blot assays were performed to determine if exposure to environmental 

concentrations of 2,4-D would induce up-regulation of FTL, FTH1 and PCNA gene 

expression at the level of protein accumulation.  The expression of Hsp72, which is 

involved in cellular stress response (reviewed by Aufricht, 2005), was used as an 

additional marker of the potential induction of intracellular oxidative stress following 

2,4-D exposure.  Western blot assays are the conventional method used for detection of 

protein expression levels in cell and molecular research.   

 Horse spleen ferritin was used as a positive control in western blot assays to 

assess the efficacy of the anti-ferritin antibody.  The anti-ferritin antibody used in this 

study was anticipated to recognize both FTL and FTH1 polypeptide subunits.  However, 

only one subunit band was detected; either the FTL or FTH1 subunit.  Thus, the protein 

band that was detected was referred to as ferritin.   

 Target protein expression level in each sample was calculated relative to the 

expression level in control cell cultures, normalized to the expression level of the 

reference gene, GAPDH. 
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Figure 27: Comparison of the effects of commercial 2,4-D on proliferating cell 
nuclear antigen (PCNA) mRNA expression in exposed HepG2 and HEK293 cells.   
Cells were exposed to 0 to 1mM of 2,4-D in complete growth media for 24 hrs.  The 
HepG2 and HEK293 cells were not simultaneously exposed to 2,4-D.  Cells were 
harvested and RNA extracted.  Single-stranded (SS) cDNA was produced using first 
strand synthesis; subsequently real time polymerase chain reaction assay was performed.  
Target mRNA expression levels are presented as the mean of triplicate assays from one 
independent experiment; and are expressed relative to the expression level in control cell 
cultures, normalized to the expression level of the reference gene, glyceraldehyde-6-
phosphate dehydrogenase (GAPDH).   
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            4.5.1 The effects of commercial 2,4-D on ferritin protein expression in cells  

                     4.5.1.1 The effects of commercial 2,4-D on ferritin protein expression 

                  in HepG2 cells 

Figure 28 (A) and (B) illustrates that exposure to 2,4-D induces ferritin protein 

expression in HepG2 cell cultures.  The effect was not concentration-dependent.  The 

highest degree of induction (2.09 fold) of ferritin protein expression was observed in 

cells exposed to 10 µM.    

 

                     4.5.1.2 The effects of commercial 2,4-D on ferritin protein expression   

             in HEK293 cells 

Figure 29 (A) and (B) illustrates that exposure to 2,4-D alters (< 2 fold) ferritin 

protein expression.  A consistent pattern in protein expression was not observed.  

Ferritin protein expression was repressed in cells exposed to 0.1 to 10 nM, 1 µM to 1 

mM.  The greatest degree of repression (0.86 fold) of protein expression was observed in 

cells exposed to 1 mM.  Exposure to 100 nM induced a 1.13 fold increase in ferritin 

protein expression. 

 

                     4.5.1.3 Comparison of the effects of commercial 2,4-D on ferritin  

            protein expression in HepG2 and HEK293 cells 

 Figure 30 illustrates that 2,4-D elicits different effects on ferritin protein 

expression in HepG2 and HEK293 cell cultures.  Induction of ferritin protein expression 

was observed in HepG2 cells over the concentrations tested.  In contrast, inconsistent 

changes in protein expression were observed in HEK293 cells exposed to 0.1 nM to 1 

mM.  Exposure to 2,4-D induced less than 2 fold alterations in protein expression in 

HEK293, compared to HepG2 cells.   

 

            4.5.2 The effects of commercial 2,4-D on PCNA protein expression in cells 

                     4.5.2.1 The effects of commercial 2,4-D on PCNA protein expression                        

             in HepG2 cells 

Figure 31 (A) and (B) illustrates that exposure to 2,4-D alters (< 2 fold) PCNA 

protein expression.  A consistent pattern in protein expression was not observed over the  
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Figure 28: The effects of commercial 2,4-D on ferritin protein expression in 
exposed HepG2 cells.  Cells were exposed to 0 to 1mM of 2,4-D for 24 hrs.  Cells were 
harvested and protein lysates obtained.  Thirty µg of total proteins was separated by 
sodium dodecyl sulfate – polyacrylamide gel electrophoresis (SDS-PAGE).  Ferritin 
protein expression was detected using anti-ferritin antibody (rabbit polyclonal to ferritin, 
catalog number: ab7332; Novus Biologicals).  The ferritin protein band detected may 
have been either FTL (19kDa) or FTH1 (21kDa).  Equal loading was ensured through 
detection of glyceraldehyde-6-phosphate dehydrogenase (GAPDH) protein expression 
using anti-GAPDH antibody (mouse monoclonal to GAPDH, catalog number: MAB374, 
Chemicon International Inc.).  A representative western blot (A) of 3 replicates from one 
independent experiment is shown.  Results of densitometric analysis (B) are presented as 
the mean of triplicate assays from one independent experiment.  Target protein 
expression levels are presented as the mean of triplicate assays from one independent 
experiment; and are expressed relative to the expression level in control cell cultures, 
normalized to the expression level of the reference gene, GAPDH.   
.   
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Figure 29: The effects of commercial 2,4-D on ferritin protein expression in 
exposed HEK293 cells.  Cells were exposed to 0 to 1mM of 2,4-D for 24 hrs.  Cells 
were harvested and protein lysates obtained.  Thirty µg of total proteins was separated 
by sodium dodecyl sulfate – polyacrylamide gel electrophoresis (SDS-PAGE).  Ferritin 
protein expression was detected using anti-ferritin antibody (rabbit polyclonal to ferritin, 
catalog number: ab7332; Novus Biologicals).  The ferritin protein band detected may 
have been either FTL (19kDa) or FTH1 (21kDa).  Equal loading was ensured through 
detection of glyceraldehyde-6-phosphate dehydrogenase (GAPDH) protein expression 
using anti-GAPDH antibody (mouse monoclonal to GAPDH, catalog number: MAB374, 
Chemicon International Inc.).  A representative western blot (A) of 3 replicates from one 
independent experiment is shown.  Results of densitometric analysis (B) are presented as 
the mean of triplicate assays from one independent experiment.  Target protein 
expression levels are presented as the mean of triplicate assays from one independent 
experiment; and are expressed relative to the expression level in control cell cultures, 
normalized to the expression level of the reference gene, GAPDH. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 141



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Control

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E+02

1.00E+03

[2
.4

-D
]/µ

M
H

or
se

Sp
le

en
Fe

rri
tin

BA
Fe

rri
tin

G
AP

D
H

,  
 

36
kD

a
   

   

0.
00

0.
20

0.
40

0.
60

0.
80

1.
00

1.
20

Control

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E+02

1.00E+03

[2
,4

-D
]/u

M

Ferritin Protein Expression
(relative to control)

 

 

 

 142



Figure 30: Comparison of the effects of commercial 2,4-D on ferritin protein 
expression in exposed HepG2 and HEK293 cells.  Cells were exposed to 0 to 1mM of 
2,4-D for 24 hrs.  The HepG2 and HEK293 cells were not simultaneously exposed to 
2,4-D.  Cells were harvested and protein lysates obtained.  Thirty µg of total proteins 
was separated by sodium dodecyl sulfate – polyacrylamide gel electrophoresis (SDS-
PAGE).  Ferritin protein expression was detected using anti-ferritin antibody (rabbit 
polyclonal to ferritin, catalog number: ab7332; Novus Biologicals).  The ferritin protein 
band detected may have been either FTL (19kDa) or FTH1 (21kDa).  Equal loading was 
ensured through detection of glyceraldehyde-6-phosphate dehydrogenase (GAPDH) 
protein expression using anti-GAPDH antibody (mouse monoclonal to GAPDH, catalog 
number: MAB374, Chemicon International Inc.).  Results of densitometric analysis are 
presented as the mean of triplicate assays from one independent experiment.  Target 
protein expression levels are presented as the mean of triplicate assays from one 
independent experiment; and are expressed relative to the expression level in control cell 
cultures, normalized to the expression level of the reference gene, GAPDH. 
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Figure 31: The effects of commercial 2,4-D on proliferating cell nuclear antigen 
(PCNA) protein expression in exposed HepG2 cells.  Cells were exposed to 0 to 1mM 
of 2,4-D for 24 hrs.  Cells were harvested and protein lysates obtained.  Ten µg of total 
proteins was separated by sodium dodecyl sulfate – polyacrylamide gel electrophoresis 
(SDS-PAGE).  The protein expression of PCNA was detected using anti-PCNA 
antibody (mouse monoclonal to PCNA, catalog number: SC-56, Santa Cruz 
Biotechnologies, Inc.).  Equal loading was ensured through detection of glyceraldehyde-
6-phosphate dehydrogenase (GAPDH) protein expression using anti-GAPDH antibody 
(mouse monoclonal to GAPDH, catalog number: MAB374, Chemicon International 
Inc.).  A representative western blot (A) of 3 replicates from one independent 
experiment is shown.  Results of densitometric analysis (B) are presented as the mean of 
triplicate assays from one independent experiment.  Target protein expression levels are 
presented as the mean of triplicate assays from one independent experiment; and are 
expressed relative to the expression level in control cell cultures, normalized to the 
expression level of the reference gene, GAPDH. 
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concentrations tested.  The PCNA protein expression was repressed in cells exposed to 

0.1 to 100 nM, 1 µM, 100 µM and 1 mM.  Exposure to 1mM induced the greatest degree 

of repression (0.35 fold) of PCNA protein expression.  Exposure to 10 µM induced (1.05 

fold) protein expression. 

 

                     4.5.2.2 The effects of commercial 2,4-D on PCNA protein expression in  

            HEK293 cells 

Figure 32 (A) and (B) illustrates that exposure to 2,4-D induces (< 2 fold) PCNA 

protein expression.  Exposure to 1 mM induced the greatest degree of induction (1.90 

fold) of PCNA protein expression. 

 

                     4.5.2.3 Comparison of the effects of commercial 2,4-D on PCNA 

                       protein expression in HepG2 and HEK293 cells 

Figure 33 illustrates that exposure to 2,4-D elicits different effects on PCNA 

protein expression in HepG2 and HEK293 cell cultures.  The magnitudes of alterations 

in protein expression were less than 2 fold in HepG2 and HEK293 cells.  Induction of 

PCNA protein expression was observed in HEK293 cells over the concentrations tested.  

In contrast, inconsistent changes in protein expression were observed in HepG2 cells 

exposed to 0.1 nM to 1 mM.   

 

            4.5.3 The effects of commercial 2,4-D on Hsp72 protein expression in cells              

                     4.5.3.1 The effects of commercial 2,4-D on Hsp72 protein expression 

             in HepG2 cells 

Figure 34 (A) and (B) illustrates exposure to 2,4-D induces (< 2 fold) Hsp72 

protein expression.  Exposure to 1 mM induced the greatest degree of induction (1.45 

fold) of Hsp72 protein expression. 
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Figure 32: The effects of commercial 2,4-D on proliferating cell nuclear antigen 
(PCNA) protein expression in exposed HEK293 cells.  Cells were exposed to 0 to 
1mM of 2,4-D for 24 hrs.  Cells were harvested and protein lysates obtained.  Ten µg of 
total proteins was separated by sodium dodecyl sulfate – polyacrylamide gel 
electrophoresis (SDS-PAGE).  The protein expression of PCNA was detected using anti-
PCNA antibody (mouse monoclonal to PCNA, catalog number: SC-56, Santa Cruz 
Biotechnologies, Inc.).  Equal loading was ensured through detection of glyceraldehyde-
6-phosphate dehydrogenase (GAPDH) protein expression using anti-GAPDH antibody 
(mouse monoclonal to GAPDH, catalog number: MAB374, Chemicon International 
Inc.).  A representative western blot (A) of 3 replicates from one independent 
experiment is shown.  Results of densitometric analysis (B) are presented as the mean of 
triplicate assays from one independent experiment.  Target protein expression levels are 
presented as the mean of triplicate assays from one independent experiment; and are 
expressed relative to the expression level in control cell cultures, normalized to the 
expression level of the reference gene, GAPDH. 
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Figure 33: Comparison of the effects of commercial 2,4-D on proliferating cell 
nuclear antigen (PCNA) protein expression in exposed HepG2 and HEK293 cells.  
Cells were exposed to 0 to 1mM of 2,4-D for 24 hrs.  The HepG2 and HEK293 cells 
were not simultaneously exposed to 2,4-D.  Cells were harvested and protein lysates 
obtained.  Ten µg of total proteins was separated by sodium dodecyl sulfate – 
polyacrylamide gel electrophoresis (SDS-PAGE).  The protein expression of PCNA was 
detected using anti-PCNA antibody (mouse monoclonal to PCNA, catalog number: SC-
56, Santa Cruz Biotechnologies, Inc.).  Equal loading was ensured through detection of 
glyceraldehyde-6-phosphate dehydrogenase (GAPDH) protein expression using anti-
GAPDH antibody (mouse monoclonal to GAPDH, catalog number: MAB374, 
Chemicon International Inc.).  Results of densitometric analysis are presented as the 
mean of triplicate assays from one independent experiment.  Target protein expression 
levels are presented as the mean of triplicate assays from one independent experiment; 
and are expressed relative to the expression level in control cell cultures, normalized to 
the expression level of the reference gene, GAPDH. 
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Figure 34: The effects of commercial 2,4-D on the inducible form of heat shock 
protein (Hsp72) protein expression in exposed HepG2 cells.  Cells were exposed to 0 
to 1mM of 2,4-D for 24 hrs.  Cells were harvested and protein lysates obtained.  Thirty 
µg of total proteins was separated by sodium dodecyl sulfate – polyacrylamide gel 
electrophoresis (SDS-PAGE).  The protein expression of Hsp72 was detected using anti-
Hsp72 antibody (rabbit polyclonal to Hsp70 (Hsp72), catalog number: SPA-812, 
Stressgen Bioreagents).  Equal loading was ensured through detection of 
glyceraldehyde-6-phosphate dehydrogenase (GAPDH) protein expression using anti-
GAPDH antibody (mouse monoclonal to GAPDH, catalog number: MAB374, 
Chemicon International Inc.).  A representative western blot (A) of 3 replicates from one 
independent experiment is shown.  Results of densitometric analysis (B) are presented as 
the mean of triplicate assays from one independent experiment.  Target protein 
expression levels are presented as the mean of triplicate assays from one independent 
experiment; and are expressed relative to the expression level in control cell cultures, 
normalized to the expression level of the reference gene, GAPDH. 
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                     4.5.3.2 The effects of commercial 2,4-D on Hsp72 protein expression

             in HEK293 cells 

Figure 35 (A) and (B) illustrates that 2,4-D alters (< 2 fold) Hsp72 protein 

expression.  A consistent pattern in protein expression was not observed over the 

concentrations tested.  The protein expression of Hsp72 was repressed in cells exposed 

to 0.1, 10 and 100 nM.  The greatest magnitude of repression (0.06 fold) of protein 

expression was observed in cells exposed to 0.1 nM.  Induction of Hsp72 protein 

expression was observed in cells exposed to 1 nM, 1 µM to 1 mM.  The greatest 

magnitude of induction (1.09 fold) of protein expression was observed in cells exposed 

to 1 mM.         

   

                     4.5.3.3 Comparison of the effects of commercial 2,4-D on Hsp72     

                       protein expression in HepG2 and HEK293 cells 

Figure 36 illustrates that 2,4-D elicits different effects on Hsp72 protein 

expression in HepG2 and HEK293 cell cultures.  The magnitudes of alterations in 

protein expression were less than 2 fold in HepG2 and HEK293 cells.  Induction of 

Hsp72 protein expression was observed in HepG2 cells over the concentrations tested.  

In contrast, inconsistent changes in protein expression were observed in HEK293 cells 

exposed to 0.1 nM to 1 mM.   
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Figure 35: The effects of commercial 2,4-D on the inducible form of heat shock 
protein (Hsp72) protein expression in exposed HEK293 cells.  Cells were exposed to 
0 to 1mM of 2,4-D for 24 hrs.  Cells were harvested and protein lysates obtained.  Thirty 
µg of total proteins was separated by sodium dodecyl sulfate – polyacrylamide gel 
electrophoresis (SDS-PAGE).  The protein expression of Hsp72 was detected using anti-
Hsp72 antibody (rabbit polyclonal to Hsp70 (Hsp72), catalog number: SPA-812, 
Stessgen Bioreagents).  Equal loading was ensured through detection of glyceraldehyde-
6-phosphate dehydrogenase (GAPDH) protein expression using anti-GAPDH antibody 
(mouse monoclonal to GAPDH, catalog number: MAB374, Chemicon International 
Inc.).  A representative western blot (A) of 3 replicates from one independent 
experiment is shown.  Results of densitometric analysis (B) are presented as the mean of 
triplicate assays from one independent experiment.  Target protein expression levels are 
presented as the mean of triplicate assays from one independent experiment; and are 
expressed relative to the expression level in control cell cultures, normalized to the 
expression level of the reference gene, GAPDH. 
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Figure 36: Comparison of the effects of commercial 2,4-D on the inducible form of 
heat shock protein (Hsp72) protein expression in exposed HepG2 and HEK293 
cells.  Cells were exposed to 0 to 1mM of 2,4-D for 24 hrs.  The HepG2 and HEK293 
cells were not simultaneously exposed to 2,4-D.  Cells were harvested and protein 
lysates obtained.  Thirty µg of total proteins was separated by sodium dodecyl sulfate – 
polyacrylamide gel electrophoresis (SDS-PAGE).  The protein expression of Hsp72 was 
detected using anti-Hsp72 antibody (rabbit polyclonal to Hsp70 (Hsp72), catalog 
number: SPA-812, Stressgen Bioreagents).  Equal loading was ensured through 
detection of glyceraldehyde-6-phosphate dehydrogenase (GAPDH) protein expression 
using anti-GAPDH antibody (mouse monoclonal to GAPDH, catalog number: MAB374, 
Chemicon International Inc.).  Results of densitometric analysis are presented as the 
mean of triplicate assays from one independent experiment.  Target protein expression 
levels are presented as the mean of triplicate assays from one independent experiment; 
and are expressed relative to the expression level in control cell cultures, normalized to 
the expression level of the reference gene, GAPDH. 
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5. DISCUSSION 

 The cytotoxic effects of low environmental concentrations (0.1 to 100 nM) of 

2,4-D were investigated in the present study.  The major findings from the present 

investigation were low environmental concentrations of 2,4-D (1) induce limited 

cytotoxic effects, reflected by small decreases in HepG2 and HEK293 cell viability that 

are independent of the duration of exposure, (2) induce cell specific viability effects (3) 

do not induce significant ROS production in exposed cells and (4) induce inconsistent 

patterns of alterations (< 2 fold increases and decreases) in FTL, FTH1 and PCNA gene 

expression, at the levels of mRNA and protein accumulation.   

 Cell viability studies revealed that low environmental concentrations (0.1 to 100 

nM) induce limited, but statistically significant (P<0.05) cytotoxic effects in HepG2 

(Figs. 1 and 3 (A to C)) and HEK293 cells (Figs. 6 and 8 (A to C)), as reflected by small 

decreases (mean decreases in cell viability < 20%) in cell viability.  Cytotoxic effects 

were exacerbated (mean decreases in viability > 40%) at higher concentrations (5 and 10 

mM).  Decreases in viability were not concentration-dependent and did not change 

significantly when durations of exposure were increased in cells exposed to the 

concentration range of 0.1 to 100 nM.  Statistically significant (P<0.05) increases in cell 

viability were observed in HepG2 cells exposed to 1mM of technical 2,4-D for 72 hrs 

(Fig. 1(D)) and commercial 2,4-D for 24 to 72 hrs (Fig. 3 (B) to (C)).  Both forms of 

2,4-D (i.e. technical or commercial) induced similar cell viability effects within 

individual cell types (i.e HepG2 or HEK293 cells) suggesting that toxicity was induced 

directly by 2,4-D and ‘inert ingredients’ in the commercial formulation had limited 

ability to act synergistically with 2,4-D and enhance toxic effects in exposed cells.  An 

inert ingredient is a substance other than an active ingredient that is added to a herbicide 

formulation and plays a role in its effectiveness (i.e. better absorption, longer shelf-life) 

(US EPA, 2006).    

 Compared to HepG2, HEK293 cells appeared to be more susceptible to the toxic 

effects of either form of 2,4-D, reflected by a more pronounced reduction in cell 
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viability (Figs. 11 and 12 (A to D)).  At all exposure times, mean decreases in HEK293 

cell viability were 4 to 26% greater in magnitude, as compared to HepG2 cell viability 

over the range of 2,4-D concentrations used (0.1 nM to 10 mM).  The differences 

between HepG2 and HEK293 cell viability effects at all concentrations and durations of 

treatment were statistically significant (P<0.05).    

 Results from ROS studies revealed that low environmental concentrations of 2,4-

D do not induce significant ROS production in exposed cells.  Statistically significant 

(P<0.05) ROS production was observed at concentrations greater than 10 µM and 100 

nM in HepG2 (Fig. 16) and HEK293 (Fig. 17) cells, respectively.  ROS production was 

concentration-dependent in HepG2 and HEK293 cells.  ROS production increased with 

longer durations of exposure.  Figure 18 illustrates that ROS production was consistently 

50 to 70% less in HEK293, compared to HepG2 cells, at all concentrations and times.   

 Preliminary results from the present study reveal that exposure to low 

environmental concentrations of 2,4-D induce alterations (> 2 fold increases and 

decreases) in FTL (Figs. 19 and 20), FTH1 (Figs. 22 and 23) and PCNA (Figs. 25 and 

26) mRNA expression in exposed HepG2 and HEK293 cells.  A concentration-

dependent increase or decrease in mRNA accumulation was not observed in cells 

exposed to the range of environmentally realistic concentrations of 2,4-D.   

 Preliminary studies of ferritin and PCNA protein expression reveal that exposure 

to low environmental concentrations of 2,4-D induce alterations (< 2 fold increases and 

decreases) in ferritin (Figs. 28 and 29) and PCNA (Figs. 31 and 32) protein expression in 

HepG2 and HEK293 cells.  A concentration-dependent increase or decrease in protein 

accumulation was not observed in cells exposed to the range of environmentally realistic 

concentrations of 2,4-D.   

  The present study is the first to report that low environmental concentrations of 

2,4-D decrease HepG2 and HEK293 cell viability.  Previous in vivo and in vitro 2,4-D 

toxicological studies have utilized high concentrations of 2,4-D (see section 2.1.6.1 to 

2.1.6.9) and have not directly tested concentrations found in the environment.  

Bharadwaj et al. (2005) assessed the cytotoxic effects of 2,4-D in HepG2 cells using the 

same low concentrations and commercial form of 2,4-D that was used in the present 

study.  However it was illustrated that exposure to low concentrations of 2,4-D for 24 
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hrs did not induce statistically significant decreases in HepG2 cell viability.  Compared 

to the present study, the decreases in cell viability that were observed by Bharadwaj et 

al. (2005) were approximately 20% greater in magnitude.  The differences in the 

reported significance of results in the studies performed by Bharadwaj et al. (2005) and 

the present investigation may have been due to the different statistical multiple 

comparison tests that were used to determine significant differences in treatment effects 

between control and treated groups in the two studies.  Bharadwaj et al. (2005) used 

ANOVA followed by a student Neuman-Keul’s post-hoc test and the present study used 

ANOVA followed by a two-sided Dunnett’s t-test.  In contrast to a student Neuman-

Keul’s post-hoc test, Dunnett’s t-test is a t-statistic test that is considered to be less 

conservative indicator for the detection of differences between control and treated 

groups (Lane, 1997).  The power of a statistical test is the probability that the test will 

reject the null hypothesis (High, 2000).   

 Decreases in HepG2 and HEK293 cell viability were not dependent on duration 

of exposure to 0.1 to 100 nM.  In humans, 2,4-D has an average t½ of 17.7 hrs (Sauerhoff 

et al., 1977).  Sauerhoff et al. (1977) reported that following oral exposure, 

approximately 82.3% of 2,4-D was eliminated unchanged and 12.8% was  excreted as an 

unidentified conjugate in urine.  Therefore, it is possible that in the present study, more 

pronounced decreases in HepG2 and HEK293 cell viability were not observed following 

longer durations of exposure due to the rapid intracellular metabolism of 2,4-D to non-

toxic 2,4-D conjugates and elimination from cells that may have occurred, in vitro, prior 

to the exposure time points of 24, 48 and 72 hrs.   

 The significant increases in HepG2 cell viability observed following exposure to 

1mM of either form of 2,4-D was a unique observation in the present study that has not 

been observed in previous studies investigating the effects of 2,4-D on cell viability, in 

vitro.  For instance, using the neutral red assay, Bharadwaj et al. (2005) illustrated that 

24 hrs of exposure to 1 mM of commercial 2,4-D (the same commercial form used in the 

present study) induced a significant decrease (70%) in HepG2 cell viability.  Kaioumova 

et al. (2001b) reported that approximately 45 and 55% of Jurkat T cells underwent 

apoptosis following exposure to 1 mM of 2,4-D DMA for 24 hrs, as determined by the 

nicoletti and annexin-V assays, respectively.  The significant increases in HepG2 cell 
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viability observed following exposure to 1 mM of 2,4-D may be due to the reasons 

outlined below.  

 The Resazurin assay is a relatively non-toxic (O’Brien et al., 2000) reductase-

based assay that is easy to use and inexpensive (McMillian et al., 2002).  The Resazurin 

assay is the most sensitive assay, compared to other assays (i.e. MTT, neutral red assay) 

for determination of cytotoxicity (Davoren et al., 2007), in vitro.  The basis of this 

fluorometric assay is the enzymatic reduction of Resazurin (blue and non-fluorescent) to 

resorufin (pink and highly-fluorescent) (O’Brien et al., 2000).  Compared to dead or 

dying cells, viable cells are able to reduce Resazurin to resofurin (McWilliams et al., 

2002; Miret et al., 2006; O’Brien et al., 2000).   Thus, fluorescence is more pronounced 

in viable cells, compared to dead or dying cells.  However, O’Brien et al. (2000) 

explained that viable cells may further reduce resorufin (pink and highly-fluorescent) to 

hydroresorufin (colourless and non-fluorescent).  According to O’Brien et al. (2000), if 

viable cells further reduce resorufin to hydroresorufin then fluorescence will be more 

pronounced in dead or dying cells, compared to viable cells.  Thus, in the present study, 

if viable cells reduced resorufin to hydroresorufin, then fluorescence may have been 

more pronounced in dead or dying cells, compared to viable cells.  Therefore, in the 

present study, the increases in fluorescence that were observed in cells exposed to the 

toxic concentrations of 1 mM of 2,4-D may have been a reflection of decreased cell 

viability and not increased cell viability, relative to untreated control cell cultures as 

interpreted.  Compared to untreated control cell cultures, more pronounced fluorescence 

was not observed at concentrations below 1 mM.  However, in the present study, the 

theory that viable cells may have further reduced resorufin to hydroresorufin is 

challenged by the less pronounced fluorescence that was observed following exposure to 

toxic concentrations of 5 and 10 mM, compared to 1 mM of either form of 2,4-D for all 

durations of exposure.  In the present study, if viable cells were able to further reduce 

resorufin to hydroresorufin, then, theoretically, increased cell death at toxic 

concentrations of 5 and 10 mM should have been represented by more pronounced 

fluorescence, compared to concentrations equal to and lower than 1 mM.   

An increase in HepG2 cell proliferation could be the second reason for the 

increased fluorescence observed at 1 mM.  An increase in cell proliferation may have 
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been induced by exposure to 1 mM.  O’Brien et al. (2000) illustrated that there was a 

good correlation between HepG2 cell number and Resazurin reduction.  According to 

the authors, increased fluorescence indicates increased reduction of Resazurin to 

resofurin, which in turn reflects an increased cell number.  2,4-D is considered to be a 

peroxisome proliferator (Ge et al., 2002) and has been shown to induce proliferation of 

rat hepatic peroxisomes (Vainio et al., 1983) and human peripheral blood lymphocytes 

(Figgs et al., 2000; Holland et al., 2002).  Significant proliferation of lymphocytes was 

observed at a 2,4-D exposure concentration of 5 µM (Holland et al., 2002).  Thus, in the 

present study, 1 mM may have induced proliferation of HepG2 cells, which would have 

resulted in increased fluorescence due to increased reduction of Resazurin to resorufin.  

However, Bharadwaj et al. (2005) illustrated that exposure to 1mM of commercial 2,4-D 

(the same commercial form of 2,4-D used in the present study) induced a 50% decrease 

in HepG2 cell proliferation.  Furthermore, the decreased fluorescence observed 

following exposure to 5 and 10 mM, compared to 1 mM for 6 to 72 hrs is in 

disagreement with the theory that increased Resazurin reduction to resofurin reflects 

increased cell proliferation.  The reason(s) for the apparent increase in cell viability in 

HepG2 cells exposed to 1 mM of 2,4-D presently remains unclear, as the increases in 

fluorescence in cells at this exposure concentration, relative to untreated control cell 

cultures may be due to the biochemical characteristic (i.e. further reduction of resorufin 

to hydroresorufin by viable cells) of the assay or increased cell proliferation.   

  Figures 11 and 12 (A to D) illustrate that compared to HepG2, HEK293 cells 

appeared to be more susceptible to the toxic effects of either form of 2,4-D, reflected by 

more pronounced decreases in cell viability.  The first reason that may account for the 

more pronounced decreases observed in HEK293 may be due to differences in the 

biotransformation system of HepG2 and HEK293 cells.  Eaton and Klaassen. (2001) 

explained that one of the main reasons why chemicals exert different degrees of toxicity 

between organs is due to the differences in the biotransforming ability of various organs.  

The biotransforming ability ultimately determines the differences in the accumulation of 

the ultimate toxicant in organs (Eaton and Klaassen, 2001).  Xenobiotic 

biotransformation is the principal mechanism that is responsible for maintaining 

homeostasis during exposure to xenobiotics (Parkinson, 2001).  In humans, xenobiotics 
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undergo biotransformation, which generally changes the physical properties of a 

chemical to favor increased hydrophilicity and subsequent excretion in the urine or feces 

(Parkinson, 2001).  Almost all tissues in the human body are able to carry out 

biotransformation reactions (Riddick, 1998).  The liver is described as the most 

important organ of biotransformation (Riddick, 1998).   

 There are two phases of biotransformation (phase I and II) (Parkinson, 2001; 

Riddick, 1998).  Phase I reactions induce small increases the hydrophilicity of a 

xenobiotic (Parkinson, 2001), by introducing or exposing a functional group via 

oxidation, reduction or hydrolysis (Riddick, 1998).  The reactions increase, maintain or 

decrease the activity of the compound (Riddick, 1998).  Phase II reactions consists of 

synthetic or conjugation processes (Parkinson, 2001).  In phase II reactions, an 

endogenous compound (i.e. glutathione, glycine, taurine) combines with the functional 

group (originally present in the xenobiotic or introduced or unmasked in the phase I 

reaction (Parkinson, 2001)) of the xenobiotic (Parkinson, 2001).  Xenobiotics may 

undergo Phase I and II reactions sequentially; however there are exceptions to that order 

(Parkinson, 2001; Riddick, 1998).  Some xenobiotics may only undergo either a phase I 

or II reaction followed by elimination from the body (Riddick, 1998).  Some xenobiotics 

are eliminated unchanged, without prior biotransformation. 

 The chemical, 2,4-D acid, having a partition coefficient (Kow) of 2.81 (reviewed 

by EXTOXNET, 1996) is a hydrophobic compound and theoretically should be 

biotransformed in humans, to enhance its hydrophilicity and subsequent elimination.  

There is controversy regarding whether or not 2,4-D is biotransformed in humans.  

Gregus et al. (1999) and Van Ravenzwaay et al. (2003) explained that 2,4-D does not 

require biotransformation prior to its elimination in humans and following oral exposure, 

82.3% of 2,4-D is eliminated unchanged in the urine of humans (Sauerhauff et al., 

1977).  Also, it has been reported that 12.8% of 2,4-D is  excreted in the urine as an 

unidentified conjugate (Sauerhauff et al., 1977).  It has been illustrated that dietary 

exposure to 2,4-D acid induces the activity of epoxide hydrolases (phase II 

biotransformation enzymes) in the livers of mice (Lundgren et al., 1987).  Taurine and 

glycine conjugates of 2,4-D have been identified in the bile of rats and mice (Griffin et 

al., 1997) exposed to the chemical via intragastric injection.  In vitro studies performed 
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by Li et al. (2003) illustrated that 2,4-D may form a 2,4-D-CoA reactive metabolite.  Li 

et al. (2003) illustrated that synthetic 2,4-D CoA forms a glutathione conjugate or 

alternatively, it covalently binding to rat hepatic proteins, in vitro.  The results of current 

literature suggest that 2,4-D may undergo both phase I and II reactions, or only phase II 

reactions.  So how is this all relevant to the present study?   

 HepG2 and HEK293 cells are both metabolically active cells.  HepG2 cells have 

retained high levels of biotransforming enzymes (Mersch-Sundermann et al., 2004).  

Parknison. (2001) explained that biotransformation enzymes are present in large 

amounts in the liver, and to a lesser degree in other organs including the lung, eye, 

pancreas and kidney.  The promoter activity of several isoforms of the uridine 

diphosphate – glucuronsyltransferase (UGT) genes was recently found to be decreased 

in HEK293, compared to HepG2 cells (Gardner-Stephen and Mackenzie, 2007).  UGT is 

a biotransformation enzyme responsible for Phase II glucuronidation reactions 

(Parkinson, 2001; Riddick, 1998).  Therefore there are enormous differences between 

tissues in their ability to biotransform xenobiotics (Parkinson, 2001).  These differences 

may subsequently contribute to the different degrees or patterns of toxic effects induced 

by xenobiotics in different tissues/organs.  Thus, in the present study, the 

biotransformation enzyme(s) responsible for the detoxification of 2,4-D may have been 

absent or reduced in HEK293, compared to HepG2 cells.  The above may explain the 

enhanced susceptibility of HEK293 cells to 2,4-D toxicity, compared to HepG2 cells.   

The enhanced active transportation of 2,4-D into HEK293 cells may also  explain 

the more pronounced decreases that were observed in HEK293, relative to HepG2 cell 

viability.  In vivo and in vitro experimental studies performed by Charles et al. (2001) 

and González et al. (2005) suggest that in humans, various forms of 2,4-D (i..e 2,4-D 

DMA, 2,4-D ester) undergo rapid metabolic conversion to 2,4-D acid.  The 2,4-D acid is 

ionized at physiologic pH, and hence does not diffuse into cells (Garabrant and Philbert, 

2002).  The 2,4-D anion is actively transported into cells, including those of the liver and 

kidney by the organic anion transporter system (Pritchard et al., 1982).  This transport 

system may facilitate the rapid elimination of xenobiotics, and could favour the 

increased intracellular accumulation of foreign molecules (i.e 2,4-D) and subsequently 

increase toxic effects in cells that possess the transport system (Pritchard et al., 1982).  
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Results from experimental studies have identified several organic anion transporters that 

are specific to the kidney, and are responsible for the uptake of 2,4-D in rats and mice 

(Hasegwawa et al., 2003; Imaoka et al., 2004; Younghood and Sweet, 2004).  These 

organic anion transporters were not found to be expressed in other tissues, including the 

liver (Imaoka et al., 2004; Younghood and Sweet, 2004).  Therefore, in the present 

study, the increased toxicity observed in HEK293 cells may have been due in part to 

increased uptake and subsequent accumulation of 2,4-D in HEK293, compared to 

HepG2 cells.  

The mechanisms of 2,4-D toxicity have yet to be fully elucidated.  Results from 

previous experimental studies suggest that ROS and associated oxidative stress may be 

one potential mechanism involved in 2,4-D cytotoxicity.  Recently it has been shown 

that 2,4-D alters the activity of antioxidant enzymes and glutathione levels in human 

erythrocytes (Bukowska, 2003) (see section 2.1.7.5).  It has also been illustrated that 2,4-

D induces lipid peroxidation in isolated rat hepatocytes (Palmeira et al., 1995) and 

directly induced ROS (hydroxyl radicals) production and associated oxidative stress in 

yeast (Teixeira et al., 2004) (see section 2.1.7.5).  In this present study, the potential role 

of ROS in 2,4-D – induced cytotoxicity was investigated.  For the very first time, it was 

shown that high concentrations of 2,4-D directly induces significant intracellular ROS 

production in human cell cultures (HepG2 and HEK293).  Figure 18 illustrates that 

reduced amounts of ROS were produced in HEK293, compared to HepG2 cells, at all 

concentrations and durations of exposure tested.  The difference in ROS production that 

was observed between HepG2 and HEK293 cells may have been due to differences in 

the antioxidant defense systems between the two cells.  All eukaryotic aerobic cells have 

tremendous antioxidant systems, such as vitamins (C and E) and enzymes (SOD, 

catalase, GSH-Px) (reviewed by Kehrer, 1993; Kohen and Nyska, 2002) that are 

responsible for the detoxification of ROS.  However, there may be variations in 

antioxidant levels or responses between cell types.  Szymonik-Lesiuk et al. (2003) 

illustrated that there are variations in antioxidant levels and responses between rat 

tissues (brain, liver, kidney and heart) following exposure to carbon tetrachloride (an 

inducer of oxidative stress).  Thus, in the present study, antioxidant levels or responses 

 166



may have differed between HepG2 and HEK293 cells.  Therefore, greater amounts of 

ROS may have been detoxified in HEK293, compared to HepG2 cells.   

However, cell viability studies demonstrated that HEK293 cells were more 

susceptible to 2,4-D toxicity, compared to HepG2 cells.  So why did ROS studies 

indicate that less ROS was produced in HEK293, compared to HepG2 cells?  The 

answer may be due to the biochemical nature of the ROS assay.  In contrast to O2
.- and 

OH., H2O2 is considered to be the primary ROS responsible for the oxidation of the non-

fluorescent 2’,7’-DCFH molecule to the fluorescent 2’7’-DCF molecule (Bass et al., 

1983).  It has recently been shown that O2
.- oxidizes the 2’,7’-DCFH molecule, but to a 

lesser degree than H2O2 (Hempel et al., 1999).  Therefore, compared to HepG2, more 

O2
.- and OH. species may have been produced in HEK293 cells resulting in less 

oxidation of 2’,7’-DCFH to 2’,7-DCF and less fluorescence.  Nevertheless, the 

observation that 2,4-D directly induces ROS production in HepG2 and HEK293 cells is 

an intriguing one, that suggest a potential role for ROS and associated oxidative stress in 

2,4-D – induced cytotoxicity.   

 The results from RT-PCR assays revealed that 24 hrs of exposure to low 

environmental concentrations (0.1 to 100 nM) of commercial 2,4-D induces alterations 

(< 2 fold increases and decreases) in FTL and FTH1 mRNA expression in HepG2 and 

HEK293 cells.  A concentration-dependent increase or decrease in mRNA expression 

was not observed over the concentration range of 0.1 nM to 1 mM.  The regulation of 

mammalian ferritin gene expression is complex and poorly understood (Torti and Torti, 

2002).  Previously, studies have illustrated that ferritin expression was mainly regulated 

at the translational level in response to intracellular levels of iron (Arosio and Levi, 

2002; Leibold and Guo, 1992).  However, ferritin expression may also be regulated at 

the transcriptional level in response to increased iron levels (Tacchini et al., 1997; White 

and Munro, 1988).  Several studies illustrate that in addition to iron, several other 

regulatory factors (i.e. tumor necrosis factor (TNF), oxidative stress, and ROS (O2
.- and 

H2O2)) may also be directly involved in the regulation of ferritin gene expression at the 

transcriptional or translational levels (for review see Torti and Torti, 2002).  Several 

authors have suggested that increases in FTL and FTH1 mRNA and protein expression 

may be responsive to oxidative stress (Balla et al., 1992; Cairo et al., 1995; Epsztejn et 
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al., 1999; Lin and Girotti, 1997; Orino et al., 2001; Regan et al., 2002; Tsuji et al., 

2000).  Tsuji et al. (2000) explain that the increase in transcription of cytoprotective 

genes in response to oxidative challenge is termed the antioxidant response.  Currently, 

there is an absence of relevant and supportive scientific literature to explain the 

repression of FTL and FTH1 mRNA expression that was observed in HepG2 (FTL 

mRNA: 0.1 nM to 1 µM; FTH1 mRNA: 1 nM) and HEK293 (FTL mRNA: 1 nM, 100 

nM and 10 µM; FTH1 mRNA: 0.1 nM to 100 µM) cells.  However, in the present study, 

the observed increases in FTL and FTH1 mRNA expression may have been a 

cytoprotective response to ROS production and associated intracellular oxidative stress 

in HepG2 (FTL mRNA: concentrations > 1 µM, FTH1 mRNA: concentrations > 1 nM) 

and HEK293 (FTL mRNA: 0.1 nM, 1 µM, 100 µM and 1 mM; FTH1 mRNA: 1 mM) 

cells.  

The more pronounced magnitude of increases in FTL mRNA expression in 

HEK293 may be due to the action of O2
.- on ferritin protein. Biemond et al. (1984) 

illustrates that O2
.- derived from polymorphonuclear leukocytes mobilizes iron from 

human ferritin.  Subsequent studies (Thomas et al. (1985) and Agrawal et al. (2001)) 

illustrated that O2
.- induces the release of iron from ferritin protein, in vitro.  The release 

of iron being mediated by the reduction of Fe3+ to Fe2+ by O2
.- and subsequent release 

from the ferritin molecule (Agrawal et al., 2001).  Biemond et al. (1986) and Thomas 

and Aust. (1985) illustrated that O2
.- produced by xanthine oxidase releases iron from 

ferritin during the conversion of xanthine to uric acid.  Furthermore, Biemond et al. 

(1986) illustrated that, compared to H2O2 or OH., O2
.- is specifically responsible for 

release of iron from ferritin and the release was inhibited by superoxide dismutase, an 

enzyme that is specifically involved in the detoxification of O2
.- (Gregus and Klaassen, 

2001).  Therefore, in the present study, the possible increased presence of O2
.- in 

HEK293 cells may have served as a fuel for increased ROS production and associated 

oxidative stress via release of iron from ferritin.  The increased concentration of released 

iron may have been subsequently involved in the generation of noxious ROS via its 

participation in the Haber-Weiss reaction.  The effect may have induced more 

pronounced increase in FTL mRNA expression in HEK293, compared to HepG2 cells as 

an antioxidant response. 
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Results from western blot and densitometric analyses illustrated that low 

environmental concentrations of 2,4-D induces alterations (< 2 fold increases and 

decreases) in ferritin protein expression in HepG2 (Fig. 28 (A) and (B)) and HEK293 

(Fig. 29 (A) and (B)).  The induction of ferritin protein expression in HepG2 and 

HEK293 cells may have been a protective response to increased ROS production and 

possible oxidative stress conditions.  The induction of ferritin protein expression serves 

as a protective mechanism against oxidative stress via sequestration of excess free iron.  

Excess free iron participates in Haber-Weiss reaction to produce noxious ROS and 

associated oxidative stress conditions (Biemond et al., 1988; Chiancone et al., 2004; 

Harrison and Arosio, 1996; McCord, 1998; Papanikolaou and Pantopoulos, 2005).  

Ferritin expression is known to be regulated at the translational level in response to 

intracellular levels of iron (Arosio and Levi, 2002; Leibold and Guo, 1992).  Several 

studies have shown that ferritin protein expression may also be regulated at the 

translational level in response to increased intracellular ROS production and associated 

oxidative stress (Balla et al., 1992; Epsztejn et al., 1999; Lin and Girotti, 1997; Orino et 

al., 2001; Regan et al., 2002; Tacchini et al., 1997; Tsuji et al., 2000) (see section 2.2.3).  

In the present study, the increased expression of ferritin protein in exposed cells may 

have been a protective response to increased ROS production and possible oxidative 

stress conditions.   

The degradation of oxidized ferritin protein may have been a possible reason for 

the above observed repression of ferritin protein expression that was observed in 

HEK293 cells (0.1 nM to 10 nM, 1 µM to 1 mM).  The ROS can cause oxidative 

damage to proteins (for review see Kohen and Nyska, 2002).  Oxidized proteins are then 

targeted for proteolytic degradation (Davies et al., 2001).  Rudeck et al. (2000) have 

shown that exposure to oxidants including H2O2, induce ferritin protein degradation in 

human erythrocytes.  In the present study it was shown that 2,4-D exposure induced 

ROS production in both HepG2 and HEK293 cells.  The production of ROS may also 

have induced some oxidative damage to ferritin protein in HepG2 cells exposed to 

concentrations of 100 µM and 1 mM, as the magnitude of increases in ferritin protein 

expression in HepG2 cells decreased over the concentration range of 10 µM to 1 mM.     
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 Similar to FTL and FTH1, the induction of PCNA mRNA expression in HepG2 

(0.1 nM to 100 µM) and HEK293 (0.1 nM) cells may have been a response to oxidative 

DNA damage.  Repression of PCNA mRNA expression was also observed in HepG2 (1 

mM) and HEK293 (concentrations < 0.1 nM) cells.  However the reasons for the 

repression of PCNA mRNA expression in HepG2 and HEK293 cells in the present study 

remains unclear due to a lack of relevant and supportive scientific literature.  The 

protein, PCNA, an acidic nuclear protein (Mathews et al., 1984) plays an integral role in 

nucleic acid metabolism (Kelman, 1997), including DNA replication, repair and cell 

cycle regulation (Kelman, 1997; Schurtenberger et al., 1998).  Several in vivo and in 

vitro experimental studies utilized PCNA protein expression as a potential marker of 

oxidative DNA damage (Balajee et al., 1999; Holmes et al., 2002; Savio et al., 1998) 

(see section 2.3.3).   

Repression (< 2 fold) of PCNA protein expression was observed in HepG2 cells 

exposed to 0.1 nM to 1 µM, 100 µM and 1 mM.  Induction (< 2 fold) of PCNA protein 

expression was observed in HepG2 (10 µM) and HEK293 (0.1 nM to 1 mM) cells.  

Increased PCNA protein expression has been observed in response to oxidative stress 

(Balajee et al. (1999), Holmes et al. (2002) and Savio et al. (1998)) (see section 2.3.3).  

The authors suggest that due to its involvement in DNA repair, the induction of PCNA 

protein expression may be indicative of oxidative damaged DNA.  Therefore, in the 

present study it may have been possible that the increased ROS production in HEK293 

cells resulted in oxidative damage to DNA, which subsequently induced PCNA protein 

expression to aid in the repair of damaged DNA.  If this is true, then why did 2,4-D 

repress PCNA protein expression in HepG2,  compared to HEK293 cells?   In the 

present investigation, ROS studies illustrated that 2,4-D induced ROS production in both 

cell types, with more pronounced production in HepG2, compared to HEK293 cells.  A 

possible reason for the intracellular repression of PCNA protein expression may be due 

to the increased expression of the protein, p21.  As a protective mechanism during 

oxidative stress, there is activation of mechanisms that arrest the progression of the cell 

cycle at specific checkpoints (Russo et al., 1995).  The arrest in cell cycle progression 

allows time for the repair of damaged DNA (Russo et al., 1995).  The results from 

several in vitro studies have shown that oxidative stress induces G1 arrest in human lung 
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epithelial (Gehen et al., 2007; Rancourt et al., 2001) and human colon carcinoma cells 

(Helt et al., 2001).  Tuschl and Schwab. (2003) and (2004) reported that exposure to 4, 8 

and 16 mM of 2,4-D acid for 24 hrs induced G1 arrest in HepG2 cell cycle.  The 

activation of G1 arrest during oxidative stress is mediated through p53 tumor suppressor 

protein (Russo et al., 1995).  The p53 transcription factor subsequently binds to the 

promoter regions of several genes, with activation of gene transcription (Russo et al., 

1995).  Russo et al. (1995) explains that the gene, WAF1/CIP1 is amongst the genes 

whose transcription is activated by p53.  The WAF1/CIP1 gene encodes a 21kDa protein 

(p21) that is required for progression from G1 into S phase of the cell cycle (Russo et 

al., 1995).  The enhanced expression of p21 protein during oxidative stress inhibits 

PCNA-dependent DNA synthesis (Gehen et al., 2007).  Bendjennat et al. (2003) 

illustrated that p21 inhibited PCNA-dependent DNA synthesis by inhibiting PCNA 

loading onto DNA.  However, Gehen et al. (2007) illustrated that during oxidative stress 

conditions, in addition to inhibiting PCNA function, p21 directly controlled the 

abundance of PCNA protein.  Thus, in the present study, enhanced intracellular ROS 

production and associated oxidative stress may have induced more pronounced increases 

in p21 protein expression and reduction of PCNA protein abundance in HepG2, 

compared to HEK293 cells. 

Results from western blot and densitometric analyses from the present study 

illustrated that low environmental concentrations of 2,4-D induce alterations (< 2 fold) 

in Hsp72 protein expression in HepG2 (Fig. 34 (A) and (B)) and HEK293 (Fig. 35 (A) 

and (B)).  Induction of Hsp72 protein expression was observed in HEK293 exposed to 1 

nM.  Induction of Hsp72 protein expression in HepG2 and HEK293 cells may have been 

a protective response to increased ROS production and possible oxidative stress 

conditions.  Hsp72 belongs to the family of heat shock protein 70 (Hsp70) (for review 

see Morimoto et al., 1992; Pelham et al., 1986).  The protein family is involved in 

several intracellular processes, including signal transduction, cell cycle regulation, cell 

differentiation and programmed cell death (Mayer and Bukau, 2005).  There is a 

diversity of physiological and chemical conditions that induce Hsp biosynthesis.  The 

conditions that result in Hsp70 gene expression are classified into three categories; (1) 

environmental stress (i.e. heat shock, amino acid analogues, transition heavy metals), (2) 
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pathophysiological state (i.e. fever, inflammation, ischemia, viral and bacterial infection 

and (3) non-stressful conditions (i.e. normal cell growth and differentiation) (for review 

see Morimoto et al., 1992).  Morimoto et al. (1992) have explained that Hsp72 protein 

expression may be induced by oxidative stress.  

 In humans, Hsp72 gene expression is regulated at the transcriptional level in 

response to binding of the heat shock transcriptional factor 1 (HSF1) to the heat shock 

element (HSE) in the promoter region of the Hsp72 gene (Baler et al., 1992).  Briefly, 

under normal, non-stressed conditions HSF is maintained in a non-DNA binding form 

through interactions with Hsp70 proteins.   In contrast, in response to stress, the 

accumulation of misfolded or abnormal proteins competes with HSF for binding to 

Hsp70 proteins.  The released HSF undergoes oligomerization to its DNA binding form.  

The HSF subsequently binds to HSE, with increased transcriptional activity of the 

Hsp70 gene.  The return to normal un-stressed conditions results in the dissociation of 

HSF from DNA and the conversion of HSF to its non-DNA binding form (reviewed by 

Morimoto et al., 1992).   

 In the present study, exposure to 2,4-D elicited ROS production in HepG2 and 

HEK293 cells.  Several studies have reported that increased Hsp72 protein expression 

may be a protective response to oxidative stress (Ferrante et al., 2006; Gorman et al., 

1999; Oh et al., 2006; Ohkawara et al., 2006; Seo et al., 2005).  Ochratoxin (fungal 

metabolite) – induced lipid peroxidation induced Hsp72 protein expression in peritoneal 

macrophages of mice (Ferrante et al., 2006).  Increased Hsp72 protein expression 

inhibited morphological alterations, growth reduction and cell death in human colon 

cells (CaCo2) following exposure to the oxidant, H2O2 (Ohkawara et al., 2006).  

Additionally, Gorman et al. (1999), Oh et al. (2005) and Seo et al. (2005) have shown 

that ROS may be directly involved in the induction of Hsp72 protein expression.  

Gorman et al. (1999) illustrated that in the presence of either pyrrolidine 

dithiocarbamate, 1,10-phenanthroline or N-acetyl-L-cysteine (NAC) antioxidant 

molecules; Hsp72 protein expression was repressed in heat-shocked human myelocytic 

cells (HL-60).  Seo et al. (2005) exposed cultured rat glioma cells (C6 cells) to sodium 

salicylate (an anti-inflammatory agent).  The protein expression of Hsp72 was induced 

in cells, following recovery from sodium salicylate exposure.  Pre-treatment with NAC, 
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abolished Hsp72 protein expression, and inhibited HSF1 DNA binding.  Thus, 

suggesting that ROS played an integral role in the induction of Hsp72 protein expression 

(Seo et al., 2005).  Oh et al. (2005) illustrated that methyl jasmonate (a plant hormone) 

induced intracellular O2
.- and H2O2 and mitochondrial ROS production in human C6 

glioma cell cultures.  Increased intracellular and mitochondrial Hsp72 protein expression 

was observed following recovery from exposure to methyl jasmonate.  There was 

repression of Hsp72 protein expression and HSF1 DNA binding following pre-treatment 

with NAC (non-specific antioxidant), catalase (antioxidant specific for detoxification of 

H2O2), and sodium formate (antioxidant specific for detoxification of OH.).   

 In the present study, the magnitude of induction of Hsp72 protein expression was 

less pronounced in HEK293 cells, compared to HepG2 cells (Fig. 36).  The differences 

in the effects could be due to the probable constitutive expression of Hsp72 in HEK293 

cells, compared to HepG2 cells.  Western blot analyses of untreated HEK293 control 

cells illustrated that there appeared to be a high constitutive expression of Hsp72 in 

HEK293 (Fig. 35(A)).  Yaglom et al. (2007) explained that Hsp72 protein may be 

constitutively expressed in many tumor cell lines.  The HEK293 cells have been 

transformed with a human adenovirus, with elaboration of a virus-specific tumor antigen 

and are capable of inducing tumors in mice (Graham and Nairn, 1977).  Therefore, 

HEK293 cells appear to a tumor cell line which constitutively expresses Hsp72 protein.  

Baler et al. (1996) suggested that Hsp70 may act as a negative regulator of HSF1, and 

illustrated that over expression of Hsp72 inhibited induced Hsp72 gene expression in 

heat stressed monkey cells (COS).  The authors explained that over expression of Hsp72 

may have inhibited HSF1 activation.  Baler et al. (1996) postulated that the inhibition of 

HSF1 activation by over expression of Hsp72 protein may have been due to the 

stabilization of HSF1-Hsp72 complexes formed in the presence of excess Hsp72.  Thus, 

in the present study, the high constitutive expression of Hp72 protein expression in 

HEK293 cells may have resulted in the increased presence of stable HSF1-Hsp72 

protein complexes.  The effect may have inhibited large increases in Hsp72 protein 

expression in HEK293 cells at concentrations equal to and greater than 1µM.  The above 

may also explain the repression of Hsp72 protein expression in HEK293 cells exposed to 

lower 2,4-D concentrations.  The induction of Hsp72 protein expression at 
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concentrations equal to greater than 1 µM may have been due to the possibility that the 

inhibitory effect was partially removed following exposure to higher concentrations, due 

to more pronounced stressed conditions, presence of abnormal proteins and enhanced 

competition with HSF1 for binding Hsp72.  Released HSF1 would have subsequently 

undergone oligomerization and triggered transcription of Hsp72 gene to increase mRNA 

and protein accumulation levels. 

 The preceding paragraphs discussed the many interesting findings that were 

revealed in the present study.  However, as with all experimental research, several 

strengths and weakness could be identified in the present investigation.  In the study, a 

concentration range of 0 to 10 mM (cell viability analyses) or 0 to 1 mM (ROS, RT-PCR 

and western blot analyses) was used.  The concentrations that were used reflected low 

environmental and toxic concentrations of 2,4-D.  However, the main purpose of the 

present study was to assess the toxic effects of low environmental concentrations of 2,4-

D.  Thus, a smaller range of concentrations (i.e. 0, 0.1 nM, 1 nM, 10 nM, 100 nM and 1 

mM) could be assessed in future.  One purpose of the present study was to determine if 

more pronounced toxic effects would be observed with longer durations of exposure to 

low environmental concentrations of 2,4-D.  However, the present study was truly an 

acute toxicity study and thus the design was unable to efficiently assess the chronic 

effects of low concentrations of 2,4-D.  Acute toxicity effects refer to the immediate 

effects that are observed 0 to 7 days after a single exposure of a chemical (PAN 

Pesticides Database, 2000).  Humans who use groundwater as a source of drinking water 

are typically exposed to daily concentrations of 2,4-D from groundwater.  Thus, ideally, 

a repeated daily exposure sub-acute, sub-chronic or chronic toxicity study could be 

performed in future.  However, the use of cell models, such as HepG2 cells, limits the 

ability to perform sub-acute, sub-chronic or chronic toxicity studies, in vitro.  The 

metabolic capacity of immortalized cells is reduced as cells differentiate over long 

durations of times, thus compromising their accurate correlation with toxicity (Fabre et 

al., 2003).     

  In the present study, HepG2 cells were considered an ideal cell model to use for 

in vitro assessment of 2,4-D – induced toxicity.  However, Fabre et al. (2003) recently 

made a novel discovery that revealed that HepG2 cells actually contain lower levels of 
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phase I and II biotransformation enzymes, compared to primary hepatocytes or the new 

human hepatoma cell line, HBG BC2.  Thus, in future studies, HepG2 and other cell 

models (i.e HBG BC2) could be used to assess 2,4-D toxicity, in vitro.  Data from the 

present study revealed that more pronounced decreases in HepG2 and HEK293 cell 

viability were observed following 6 hrs, compared to 24 to 72 hrs of exposure to either 

form of 2,4-D.  Thus, alterations in gene expression could be assessed following 

exposure to 2,4-D for 6 hrs, in contrast to 24 hrs.  More pronounced alterations in FTL, 

FTH1 and PCNA gene expression, both at the level of mRNA and protein accumulation 

may be observed at 6 hrs, compared to 24 hrs of exposure. 

 The present study reported preliminary data for mRNA and protein expression.  

The results illustrate that 2,4-D induced inconsistent patterns (i.e. increases and 

decreases) in mRNA and protein expression.  Target mRNA and protein expression were 

expressed as the mean of triplicate assays from one experiment, however, there were 

variations between individual RT-PCR and western blot assays.  Thus, mRNA and 

protein analyses should have been performed on RNA and protein extracts obtained 

from at least 3 separate 2,4-D exposure experiments to determine reproducibility and 

significance of data.   

 As described above, several strengths and weakness were identified in the 

present study.  The identification of the above aids in the design of future studies that 

would expand on results obtained from cell viability, ROS, RT-PCR and western 

analyses in the present study.  In the present study, HepG2 and HEK293 cells were used 

as cell models to assess the cytotoxic effects of 2,4-D.  Their use allowed for the 

determination of the cell specificity of 2,4-D – induced toxicity.  However, in future 

studies, HepG2 cells would be used to evaluate the cytotoxic effects of 2,4-D, in vitro.  

HepG2 cells have been used in a vast array of in vitro toxicological studies.  

Additionally, compared to other immortalized human cells, HepG2 cells retain high 

levels of biotransforming enzymes (Mersch-Sundermann et al., 2004).  HepG2 cells 

have been described as the most desirable in vitro model capable of portraying a more 

realistic reflection of xenobiotic metabolism in humans (Mersch-Sundermann et al., 

2004).   
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 Performing in vitro toxicology studies using primary cell cultures of human 

hepatocytes would be the most favourable in vitro model.  Primary cell cultures of 

human hepatocytes obtained from organ donors have been used extensively in both 

academic and industrial laboratories for evaluating the hepatic metabolism of 

xenobiotics (LeCluyse, 2001).  Thus, they would be the ideal model for extrapolation of 

the cytotoxic effects of 2,4-D, in vitro to humans.  Additionally, Zhang et al. (2006) 

illustrated that there are marked differences between responses in HepG2 cells and 

primary human hepatocytes cell cultures in response to xenobiotic exposure.  The 

authors reported that exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) resulted 

in a more exacerbated adverse response in HepG2 cells, compared to primary human 

hepatocytes cell cultures.  Zhang et al. (2006) explained that the observation warrants 

the need for caution to be taken when extrapolating and interpreting the results obtained 

from cell based models.  However, although, the use of primary cell cultures of human 

hepatocytes would be ideal for conducting future in vitro toxicology studies, they are 

less convenient to obtain and work with, compared to HepG2 cells.  Other disadvantages 

of primary cell cultures include their ability to; (1) rapidly lose their xenobiotic 

metabolizing capacity (Riddick, 1998), (2) undergo limited number of cell divisions 

(Knasmüller et al., 1998; Mersch-Sundermann et al., 2004) and (3) contain different cell 

types (Mersch-Sundermann et al., 2004).  Toxicity can be cell specific and thus, 

cytotoxic effects can differ between cell types (Eaton and Klaassen, 2001) of the same 

organ. 

 Two forms of 2,4-D were used in the present study.  In future studies only the 

commercial form of 2,4-D should be employed, since this is the form that humans are 

more likely to be exposed to from the environment.  In future studies, cell viability 

results should be supported with other commonly used cell viability assays (i.e MTT, 

neutral red, or trypan blue exclusion assay).   

 In the present study, it was shown for the first time that 2,4-D induces ROS 

production in human cell cultures.  However, the present study did not illustrate that 

exposure to 2,4-D induces oxidative stress.  Previously discussed, ROS may mediate 

oxidative stress through lipid, protein or DNA oxidation (for review see Kohen and 

Nyska, 2002).  Therefore, in future studies, the induction of oxidative stress in cells 
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exposed to 2,4-D would be investigated.  Measurement of oxidative stress in the present 

thesis would have provided additional evidence for the association between oxidative 

stress and the induction of FTL, FTH1 and PCNA mRNA or protein expression.  The 

most commonly used techniques for determination of oxidative stress are those that 

measure the end-products of lipid peroxidation (Dotan et al., 2004).  Thus, in future 

studies, the traditional TBA assay would be performed.  The TBA assay measures 

malonialdehyde end-product of lipid peroxidation (Halliwell and Chirico, 1993) and has 

been employed in many toxicological studies.   

 Depending on the results of cell viability studies, in future, the alterations in 

PCNA gene expression patterns at the time point that induced the most pronounced 

decreases in cell viability would be assessed.  Balajee et al. (1999), Holmes et al. (2002), 

Savio et al. (1998) and Xu et al. (1999) provided evidence to suggest that up-regulation 

of PCNA mRNA or protein expression is a cytoprotective response to DNA damage.  

Thus, unlike FTL or FTH1, the choice of studying PCNA would help focus on one 

pathway involved in 2,4-D – induced cytotoxicity, which may involve ROS mediated 

oxidative DNA damage.  Three concentrations (no treatment (untreated control cell 

cultures), the concentration where there is the smallest degree of induction of mRNA 

expression and the concentration where there is the greatest degree of induction of 

mRNA expression) would be used to assess alterations in PCNA gene expression 

patterns in future studies.  The design would help to determine concentration-dependent 

effects.  If the results of RT-PCR and western blot analyses are consistent, then the 

underlying cell and molecular pathways that may be involved in the up-regulation of 

PCNA would be investigated.  To begin this investigation, nuclear transcription assays 

would be performed to determine if increased PCNA mRNA accumulation is due to 

increased transcriptional rate of the PCNA gene.  The determination of the 

mechanism(s) of 2,4-D – induced activation of PCNA gene transcription would then be 

of interest, and thus examination of the promoter region of the PCNA gene would 

follow.  Theoretical knowledge of the transcription factors that are involved in inducing 

PCNA gene transcription during DNA repair and the DNA sequences of the promoter 

region of the PCNA gene that these factors bind would then be obtained.  Next, one 

transcription factor and its DNA binding sequence would initially be chosen for further 
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investigation.  A plasmid construct containing the DNA sequence of interest would then 

be transfected into HepG2 cells.  Cells would be exposed to the respective 

concentrations of 2,4-D.  Following 2,4-D exposure, cells would be harvested and 

luciferase assays would be performed to determine gene induction.  This would be 

followed by performing electrophoretic mobility shift assay (EMSA) to determine 

specific DNA-protein interactions in the promoter sequence, of interest.  The above 

experimental design would enable for identification of a sequential molecular pathway 

involved in oxidative DNA damage during 2,4-D – induced cytotoxicity. 

  In addition to the above, in future studies, the comet assay would also be 

employed.  The comet assay is a sensitive and rapid method for the detection of DNA 

strand break (Fairbairn et al., 1995).  DNA strand break may be induced by ROS (for 

review see Kohen and Nyska, 2002).  The use of the comet assay will also provide 

additional evidence for 2,4-D – induced intracellular oxidative stress conditions.  

Compared to lipids, DNA are more significant targets of oxidative damage (Halliwell 

and Chirico, 1993).  Additionally, the authors explained that lipid peroxidation often 

tend to occur late in the injury process.  Thus, the TBA assay may not reflect the true 

extent of oxidative injury induced following exposure to 2,4-D.     

 The current study was performed using in vitro cell models.  Zhang et al. (2006) 

explained that caution must be taken when extrapolating and interpreting the results 

obtained from cell based models.    So what are the implications of the data obtained 

from the present study?  How do the findings of the present in vitro toxicology study 

relate to the real world, where humans may be exposed to environmental concentrations 

of 2,4-D?  Cell viability data suggest that low environmental concentrations of 2,4-D 

may induce limited cytotoxic effects.  The present data suggest that the effects may not 

be concentration-dependent and that more pronounced adverse cytotoxic effects are not 

likely to be observed following longer durations of exposure (up to 72 hrs) to low 

environmental concentrations of 2,4-D.  The observation that similar patterns of 

cytotoxicity were induced following exposure to low environmental concentrations of 

either technical or commercial 2,4-D, in vitro, suggests that  toxicity is induced directly 

by 2,4-D and that ‘inert ingredients’ in commercial preparations of 2,4-D have limited 

ability to synergistically act with 2,4-D to enhance toxicity.  2,4-D appeared to induce 
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cell specific effects; toxic effects were enhanced in HEK293, compared to HepG2 cells, 

in vitro.  Thus, the results suggest that in humans, 2,4-D may induce cell or tissue 

specific toxic effects.  The results also suggest that in humans, the kidney may be a more 

significant target organ of 2,4-D – induced toxicity, compared to the liver.  Kidney 

failure is a symptom of 2,4-D poisoning in humans (PAN Pesticide Database, 2004).  

 The inability of low environmental concentrations of 2,4-D to induce significant 

ROS production, in vitro implies that low concentrations of 2,4-D  encountered by 

humans in the environment may be insufficient to induce  significant amounts of cellular 

and/or tissue stress or damage.  Nevertheless, the results from ROS assays are intriguing 

and suggest a potential role for ROS and associated oxidative stress 2,4-D – induced 

toxicity.   

 Preliminary results from mRNA and protein studies suggest that low 

environmental concentrations of 2,4-D may induce subtle alterations at the cell and 

molecular levels.  The results also serve to highlight a potential mechanism of 2,4-D – 

induced toxicity, which may involve ROS and associated oxidative stress.  Thus, the 

results of the present study imply that low environmental concentrations of 2,4-D may 

only have minimal impact on the health of exposed humans.    

 Several interesting conclusions can be drawn from results of the present study.   

Firstly, it can be concluded that that low environmental concentrations (0.1 to 100nM) of 

2,4-D induces limited, but significant cytotoxic effects that does not become more 

pronounced with increasing concentrations or times.  However, it should be mentioned 

that although the present study illustrates the low environmental 2,4-D concentrations 

induces statistically significant cytotoxic effects; the effects may not be biologically 

significant.  Exposure to 2,4-D induced cell specific effects, that were reflected by the 

more pronounced decreases that were observed in HEK293, compared to HepG2 cell 

viability, in vitro.  Exposure to either technical or commercial 2,4-D induced similar 

cytotoxic effects.  Concluding that toxicity is induced directly by 2,4-D and that the 

presence of ‘inert ingredients’ in commercial 2,4-D had limited ability to act 

synergistically with 2,4-D and enhance the magnitude of cytotoxic effects.  Compared to 

higher concentrations, exposure to low environmental concentrations of 2,4-D does not 

induce significant intracellular ROS production.  The results also highlight a role for 
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ROS and associated oxidative stress in 2,4-D – induced cytotoxicity.  Preliminary results 

revealed that low environmental concentrations of 2,4-D are sufficient to induce subtle 

alterations (< 2 fold) in FTL, FTH1 and PCNA gene expression patterns at the levels of 

mRNA and protein accumulation; an interesting revelation in the present study that also 

serve to highlight underlying cell and molecular pathways of 2,4-D – induced 

cytotoxicity that involves ROS and associated oxidative stress.  The results also provide 

direction for future studies aimed at elucidating a molecular pathway involved in 2,4-D 

– induced cytotoxicity.  Thus, taken all together, the results reported in this thesis 

suggest that exposure to low environmental concentrations of the herbicide, 2,4-D in 

groundwater may have a minimal impact on the health of exposed humans. 
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