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ABSTRACT 

It was proposed that zinc 

reproductive outcome in the rat. 

guanidinoethyl sulfonate (GES), 

and taurine interact in vivo to influence 

The effect of taurine deficiency induced by 

a taurine transport antagonist, on fetal 

development was examined. Female Sprague-Dawley rats were mated 

overnight and assigned to 1 of 4 treatments through gestation. Animals received 

taurine-restricted diet and 0.5% 1.0% or 2.0% GES in drinking water. Control 

animals received taurine-adequate diet and no GES. Taurine deficiency 

produced a sharp decline in maternal and fetal liver taurine (~~0.05) but did not - 

result in intrauterine growth retardation or significant external, visceral or 

skeletal malformations. It was evident that reproductive outcome might be an 

inadequate endpoint to explore this interaction. Instead, development of eye 

structure and function was examined. Virgin female Sprague-Dawley rats were 

bred overnight and assigned to 1 of 4 treatments in a 2 x 2 factorial design with 

two levels of zinc (50 or 15 pglg through gestation; 50 or 7.5 pglg after 

parturition) and two levels of taurine (2 or 0 prnollg). GES (1 % wlv) was 

provided in drinking water to the animals receiving 0 pmollg taurine. A fifth 

group, fed control diet, was pairfed to the marginally zinc-deficient group. At 

postnatal day 23, male pups were weaned onto their respective diets. Analysis 

of plasma zinc, tibia1 zinc and liver taurine concentrations at 7%8W weeks 

showed an interaction in these tissues. Dark-adapted oscillatory potentials 

iii 



(OPs) and electroretinograms (ERG) were recorded. Two-way ANOVA revealed 

a significant interaction between zinc and taurine for OP, and OP, amplitudes. 
- 

ERG b-wave amplitude as a function of log stimulus intensity was plotted and an 

iterative curve fitting procedure used to determine the maximum response 

(Vmax), slope (n) and half-saturation constant (0). No interaction was noted. 

Zinc or taurine deficiency each independently depressed Vmax. Zinc deficiency 

depressed the amplitude of OP,; taurine depletion similarly affected the 

amplitude of OP,, OP, and OP,. Histological examination of the retinas from 

animals deficient in both zinc and taurine revealed photoreceptor degeneration 

and retinal dysplasia. These data provide evidence that zinc and taurine 

interact physiologically and influence retinal function. 
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Chapter 1 

INTRODUCTION 

BACKGROUND 

Although the importance of nutrition in pregnancy outcome is increasingly 

recognized, there is widespread belief that nutrient intake among women of 

childbearing age is inadequate. A review of data from the Second National 

Health and Nutrition Examination Survey (NHANES II), the USDA Continuing 

Suwey of Food Intakes of Individuals (CSFII) and the National Health Interview 

Survey (NHSIS) revealed that large segments of this population consume levels 

of major nutrients that are well below recommended levels (Block and Abrams 

1993). For example, only 10% achieve the recommended daily allowance 

(Commission on Life Sciences, National Research Council 1989) for iron or zinc 

placing them at risk for poor status of these nutrients. 

Developmental defects occur in approximately 3% of all infant births 

(Centres for Disease Control 1989). Despite intensive research efforts over the 



past two decades, causative factors can be identified in only 35060% of these 

cases (Schaffer 1993). It has been suggested that environmental factors such 
- 

as maternal nutritional status may be involved in the expression of these 

unknown teratogens (Bendich 1993). 

It is unlikely that poor maternal intake of a single nutrient is responsible 

for reproductive defects in the human population. Instead, it is more likely that 

the compromised status of an individual nutrient increases the risk to other 

potential teratogens or that there is a synergistic interaction between nutrients 

that results in poor pregnancy outcome (Keen 1992). The bases of the research 

reported herein suggests that zinc and taurine are nutrients that interact in this - 

way. 

1.2 RATIONALE 

Reports that the nutrients zinc and taurine interact have prompted interest 

in the physiological significance and mechanisms responsible for this 

phenomenon (Pasantes-Morales et al. l987a). The strongest evidence for an 

interaction comes from in vitro research on isolated frog rod outer segments. 

When these cells are exposed to ferrous sulfate they display extensive 

disruption of their structure, characterized by acute swelling and disc membrane 

disorganization. The addition of zinc or taurine individually to the culture 



medium is ineffective in protecting against this outer segment damage; however. 

zinc and taurine, added together, provide protection in a synergistic manner - 

(Pasantes-Morales and Cruz 1984). Whether zinc and taurine interact in vivo is 

not known. 

The mechanism by which these nutrients may interact is unclear. Zinc 

has been proposed to play a physiological role in plasma membranes by its 

effects on membrane protein conformation and protein-protein interactions 

(Bettger and O'Dell 1993). While the precise biochemical mechanisms have not 

been fully elucidated, it has been suggested that :he loss of zinc from specific 

proteins in the plasma membrane alters water and ion channels. Ultimately - 

intracellular ion and water concentration is changed (Bettger and O'Dell 1993). 

It is proposed that taurine, as an intracellular osmoregulator (Huxtable, 1992). 

can respond to these changes by regulating water and ion flow across cell 

membranes. 

1.3 HYPOTHESIS 

It is hypothesized that zinc and taurine will interact in their physiological 

functions in vivo. Marginal zinc deficiency imposed throughout gestation and 

postnatal life will result in membrane damage and subsequent osmotic stress in 

cells. These alterations will, in turn, influence pre- and postnatal development 



as examined by reproductive outcome, incidence of congenital malformations. 

and retinal electrophysiology and morphology. Taurine deficiency imposed upon 
# 

zinc deficiency will worsen these outcomes in a synergistic manner by further 

increasing the osmotic stress. 

1.4 OBJECTIVES 

1. To determine whether zinc and taurine interact in vivo by examining 

reproductive outcome, incidence of congenital malformation and retinal . 

electrophysiology and morphology in response to varying zinc and taurine 

status in the rat. 

2. To establish the effect of this interaction on zinc and taurine status in this 

model. 



Chapter 2 

REVIEW OF LITERATURE 

2.1 ZINC AND TAURINE IN HUMAN HEALTH 

2.1 .I Zinc 

Although zinc has been recognized as an essential nutrient in 

animals since the early 1930's (Todd et al. 1934), a role for this metal in 

human nutrition was not established until 30 years later. Prasad et al. 

(1 963) reported growth retardation, delayed secondary sexual maturation, 

poor appetite, mental lethargy and skin changes in immature males from 

Iran and Egypt. These clinical features were corrected by zinc 

supplementation. Geophagia, parasitic infestation and diets high in 

phytates with negligible animal protein were thought to have contributed 

to the severe zinc deficiency (Prasad 1991 ). 

In North America severe zinc deficiency was first recognized in 

hospitalized patients receiving parenteral nutrition (Arakawa et al. 1976). 



Prior to the 19701s, the protein source for these solutions contained zinc 

as a contaminant. When the protein was changed from hydrolysates to 
- 

crystalline amino acids, zinc deficiency symptoms developed. Secondary 

zinc deficiency has also been documented in patients with cystic fibrosis. 

liver disease, bums and alcoholism. In these states, the deficiency is 

thought to be the result of increased loss of zinc in urine and 

gastrointestinal secretions (Aggett and Harries 1979). Some patients with 

sickle cell anemia have also been reported to suffer from zinc deficiency 

(Prasad and Cossock 1982). Acrodermatitis enteropathica, a genetic 

defect resulting in impaired intestinal uptake and transfer of zinc (Barnes - 

and Moynahan 1973) results in severely compromised zinc status. 

The effects of a severe deficiency of zinc are dramatic; however. 

this occurrence in human populations under normal conditions is 

relatively rare. Marginal zinc deficiency can occur in large groups of 

people; it is estimated that four million people in the United States fall into 

this category (Walsh et al. 1994). The most vulnerable groups are those 

who are experiencing rapid growth, reproduction or new tissue synthesis 

(Aggett 1995) such as women in late pregnancy, infants and adolescents. 

Marginal zinc deficiency is characterized by neurosensory 

changes, slowing of physical growth, poor appetite and diminished taste 

acuity (Aggett and Comerford 1995). Behaviour is also affected (Golub et 

al. 1995a). This condition has been identified in apparently healthy 



infants and children in the United States (Hambidge et al. 1972; 

Walravens and Hambidge 1976; Walravens et al. 1983) and Canada 
- 

(Gibson et al. 1989; Smit-Vanderkooy and Gibson 1987). Other groups 

susceptible to marginal zinc deficiency include pregnant women 

(Solornons et al. 1986) and the elderly (Sandstead et al. 1982). Preterm 

infants may be particularly sensitive to zinc deficiency due to limited 

stores of this mineral. Estimates of zinc accretion during human 

pregnancy indicate that about two-thirds of the zinc in the fetus at term is 

transferred during the last 10-1 2 weeks of gestation (Widdowson et al. 

1 974). 

Marginal zinc deficiency is thought to be the result of inadequate 

intakes and/or poor availability of dietary zinc associated with excessive 

intakes of dietary fibre, polyphosphates, iron, copper, phytate and calcium 

(Solomons 1982). Zinc deficiency often accompanies protein/calorie 

malnutrition (Golub et al. 1995b). Breast milk zinc content is not 

particularly sensitive to maternal zinc intake (Lonnerdal 1986) but it can 

be deficient in generally malnourished populations (Lehti 1990). In the 

elderly, the presence of disease and the use of medications may also be 

contributing factors (Aggett and Harries 1979). 

It is important to note that the diagnosis of zinc deficiency is limited 

by the lack of a specific and sensitive biochemical index of zinc status. 

The most reliable method for diagnosing marginal zinc deficiency is a 



positive response to zinc supplementation (Gibson 1990). 

- 
2.1.2 Taurine 

Cats have a restricted ability to synthesize taurine from 

endogenous precursors and rely on diet to obtain this nutrient (Knopf et 

al. 1978). A reduction in taurine below 50% of the normal tissue 

concentration in this species results in retinal degeneration characterized 

first by a decrease in amplitude of the electroretinogram (ERG) (Berson et 

al 1976) followed by severe morphological alteration of the photoreceptor 

cells (Hayes et al. 1975b). Consequently, taurine is considered an 

essential nutrient for the cat. Whether taurine is essential for human 

health is less clear. 

Adult patients maintained parenterally on protein hydrolysates 

lacking taurine have reduced plasma (Kopple et al. 1990; Vinton et al. 

1986) and urine (Vinton et al. 1990) taurine concentrations. Though 

significant, these assessments of taurine status do not correlate with 

abnormal visual function as measured by ophthalmoscopic examination 

and electroretinography (Vinton et al. 1990). Conversely. children 

receiving long-term total parenteral nutrition have reduced plasma taurine 

concentrations accompanied by depressed ERG (Arment et al. 1986; 

Geggel et al. 1985). These abnormalities were corrected in some of the 

children when taurine was added to the infusate. Parenterally fed 



children may be more susceptible to the effects of taurine deficiency on 

retinal function due to limited taurine pools (Jarvenpaa et al. 1982); many 
v 

of the children studied began total parenteral nutrition shortly after birth 

and were never fed human milk. Human milk contains substantial 

amounts of taurine, especially during the first few days after birth 

(Sturman 1993). It is also possible that the developing retina has a 

greater requirement for taurine. 

The human neonate is dependent on exogenous taurine (Rigo and 

Senterre 1977). Infants fed taurine-free formula have decreased plasma 

and urine taurine levels. The addition of taurine to synthetic formula 

results in tissue taurine concentrations similar to those of infants fed 

human milk (Rassin et al. 1983). These low taurine levels, however. do 

not correlate with poorer growth rates (Jarvenpaa et al. 1982) or impaired 

bile acid kinetics (Watkins et al. 1983). Preterm infants may be more 

vulnerable to the effects of low taurine intake due to limited taurine stores 

(Gaull et al. 1977; Ghisolfi 1987) and poor renal taurine conservation 

(Zelikovic et al. 1990). For example, preterm infants fed taurine-free diets 

demonstrate similar growth rates but less mature auditory-evoked 

responses at 37 weeks postmenstrual age when compared with infants 

receiving taurine-supplemented formula (Tyson et al. 1989). 

Though taurine-free diets do not depress growth or elicit overt 

pathological changes in the human population, can taurine still be 



considered essential? Although somewhat controversial, taurine has 

been labelled a conditionally essential nutrient for human infants and 
- 

children. especially those born prematurely (Gauli 1 986; Sturman 1 988). 

A conditionally essential nutrient refers to a normally nonessential nutrient 

which, in some clinical circumstances must be supplied exogenously due 

to inadequate endogenous synthesis. The changes in ERG and auditory 

evoked potentials in children on total parenteral nutrition and preterm 

infants fed taurine-free formula emphasize the need to evaluate nutritional 

needs by methods other than the presence of clinical symptoms and 

depressed growth. 

2.2 ZINC AND TAURINE IN PRENATAL AND POSTNATAL 

DEVELOPMENT 

2.2.1 Zinc 

Adequate maternal zinc nutrition during pregnancy is essential for 

normal pre- and postnatal development in experimental animals. Severe 

maternal zinc deficiency in rats results in an increased number of fetal 

resorptions, malformations, intrauterine growth retardation and poor 

survival of offspring (Hurley 1981 ). It has been estimated that up to 90% 

of the implantation sites can be adversely affected (Hurley 1981; Rogers 



et al. 1985). Pups that do suwive generally weigh less than controls and 

have a variety of congenital defects including skeletal abnormalities (Da 

Cunha Ferreira et al. 1989) and internal soft tissue malformations 

affecting the brain, heart. lungs and urogenital systems (Hurley 1981 ; 

Hurley and Swenerton 1966; Keen and Hurley 1987). Virtually every 

developing organ system can be affected (Hurley and Mutch 1973). In 

addition to morphological abnormalities, biochemical and functional 

abnormalities in the young can also occur as a result of maternal zinc 

deficiency. These include defects in pancreatic function, lung metabolism 

and immune competence (Keen and Gershwin 1990; Keen and Hurley - 

1989) 

Marginal zinc deficiency has been found to cause intrauterine 

growth retardation, as well as delayed skeletal maturation, immune 

dysfunction and behaviour deficits in rat pups (Peters et al. 1986). 

Behavioural abnormalities (Golub et al. 1994; Sandstead et al. 1978). 

reduced birth weights and decreased muscle tone (Golub et a!. 1984; 

Haynes et al. 1985) in the offspring of marginally zinc-deficient rhesus 

monkeys have also been reported. Additionally, adult rats from 

marginally zincdeficient dams suffer from significant learning deficits and 

inferior working memory (Halas et al. 1986; Hughes and Horsburgh 1982). 

In contrast, there is little definitive information pertaining to zinc 

deficiency in human pregnancy. There is, however, some evidence that 



suggests the human is at risk for similar problems. Seven pregnancies in 

three women with acrodermatitis enteropathica who were not receiving 
- 

zinc therapy have been reported. Two mothers gave birth to babies with 

congenital malformations similar to those observed in pups of zinc- 

deficient rats; one had an anencephalic fetus, the other an 

achondroplastic dwarf. Two other babies were low birth weight 

(Hambidge et al. 1975; Verburg et al. 1974). After the introduction of zinc 

therapy for acroderrnatitis enteropathica patients. Brenton et al. (1 981 ) 

reported that pregnant women with this condition who are able to maintain 

normal plasma zinc levels via supplementation have normal deliveries - 

and births. 

Overt zinc deficiency, as seen in acrodermatitis enteropathica 

patients, is rare in human populations, but marginal zinc deficiency can 

occur. A number of studies have suggested a link between congenital 

malformations, intrauterine growth retardation and maternal zinc status 

(Swanson et al. 1987). Women with low serum zinc levels in the first 

trimester have an increased risk of pregnancy complications, including 

intrauterine growth retardation and increased incidence of congenital 

malformations (Jameson 1976; Neggers et al. 1990; Soltan and Jenkins 

1982). Leucocyte zinc content has been shown to be significantly lower 

in a group of 44 women delivering small-for-gestational-age infants than 

in women whose infants were of normal birth weight (Meadows et al. 



1981 ). Previously, Jameson (1 976) had reported that in a study of 31 6 

pregnancies, a high proportion (60%) of the women who gave birth to 
- 

infants with congenital defects had low serum zinc concentrations in the 

first trimester. Scholl et al. (1 993) examined the dietary intake of 81 8 

pregnant girls and women. They found low zinc intake was associated 

with a two-fold increase in the risk of low birth weight (<2,500 g). The risk 

of very preterm delivery ( ~ 3 3  weeks gestation) was increased threefold. 

In alcoholic mothers, plasma zinc concentrations are inversely 

related to the incidence of congenital malformations in their babies (Flynn 

et al. 1 981 ). Similarly, term serum zinc concentrations tend to be lower in 

mothers who deliver infants with neural tube defects (anencephaly and 

spina bifida) compared with controls (Buamah et al. 1984; Cavdar et al. 

1988). The research described above must be interpreted with caution. 

Serum zinc concentration is not a specific measure of zinc status (Gibson 

1990). The use of this indicator is further complicated by uncertainty 

regarding normal plasma zinc concentrations at different stages of 

gestation (Hambidge et al. 1983). 

If poor zinc status is associated with complications in human 

pregnancy, then zinc supplementation should be beneficial to women at 

risk. In a double-blind randomized trial of oral zinc supplementation in 

women at risk for delivering small-for-gestational-age babies, 100 rng of 

zinc citrate reduced the incidence of intrauterine growth retardation and 



decreased the number of inductions of labour and Caesarean section 

deliveries (Simmer et al. 1 991 ). More recently, in a randomized double- 

blind placebo-controlled trial of 580 African-American pregnant women 

with low plasma zinc levels, a 25 mg supplement of zinc, resulted in 

increased birth weights and increased head circumference (Goldenberg 

et al. 1995). 

Maternal zinc deficiency in experimental animals has severe 

consequences for the developing fetus. Assessing the importance of 

maternal zinc status as an etiological factor in intrauterine growth 

retardation or the development of congenital anomalies in the human 

fetus, however, is much less certain. Further research is required to 

establish a definitive link between marginal zinc status and poor 

reproductive outcome in the human population. 

2.2.2 Taurine 

Taurine or 2-aminoethane sulfonic acid (Figure 2.1 ) is present in 

mammalian tissues in high concentrations (Huxtable 1992). Taurine is an 

amino acid, but because the amino group is on the kcarbon and the acid 

group is sulfonic rather than carboxylic, it is not used as a structural unit 

in protein (Chapman and Greenwood 1988). Instead, it is found primarily 

as an intracellular free amino acid (Huxtable 1992). For decades, the 

only known role for taurine was in bile acid conjugation (Schersten 1970). 





There is now evidence for its importance in the function of the heart, 

brain, retina and in reproduction (Huxtable 1 992). 
- 
Taurine in mammalian tissues is obtained from both exogenous 

sources and endogenous synthesis (Huxtable 1986). Although several 

pathways exist, the preferred pathway for taurine biosynthesis is believed 

to involve oxidation of cysteine to 3-sulfinoalanine with subsequent 

oxidation and decarboxylation to taurine (Figure 2.2) (Sturman and Hayes 

1980). The rate limiting enzyme in the pathway is the vitamin B, 

dependent 3-sulfinoalanine decarboxylase (SAD), also known as cysteine 

sulfinic acid decarboxylase (Sturman and Hayes 1980). Taurine status is 

a balance between the amount of taurine added to the body pool 

(endogenous synthesis and exogenous sources) and the amount 

removed primarily via urinary excretion. 

There is considerable variation among species in their ability to 

synthesize and conserve taurine (Huxtable and Lippincott 1981). Cats 

have low SAD activity and limited renal adaptation; therefore, their tissues 

are readily depleted when fed diets free of taurine (Knopf et al. 1978). 

Conversely, both diet and endogenous synthesis contribute to the taurine 

requirements of humans and rats (Huxtable and Lippincott 1981 ; Huxtable 

and Lippincott 1982). As described previously, studies of term and 

preterm infants indicate that the human infant is also dependent on a 

supply of exogenous taurine (Gaull et al. 1977; Jarvenpaa et al. 1982; 
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Figure 2.2 

Taurine Biosynthesis Pathway 

The preferred pathway for taurine biosynthesis is believed to involve oxidation of cysteine to 3-sulfinoalanine 
with subsequent oxidation and decarboxylation to taurine. The rate limiting enzyme in the pathway is the 
Vitamin B, dependent 3-sulfinoalanine decarboxylase (SSAD).  



Rassin et al. 1983; Rigo and Senterre 1977). 

Because the rat has relatively high SAD activity and efficient renal 

adaptation. their pools are not easily depleted by dietary manipulation 

(Chesney et al. 1986; Huxtable and Lippincott 1981 ). Instead, 

guanidinoethyl sulfonate (GES). a taurine transport inhibitor, can be used 

to induce taurine deficiency in this species (Figure 2.1 ) (Huxtable et al. 

1979; Ejiri et al. 1987; Pasantes-Morales et al. 1983). 

Fetal and neonatal animals are at increased risk for taurine 

deficiency. They generally have lower SAD activity and less efficient 

renal adaptation to limited dietary taurine than adult animals (Kuo and 

Stipanuk 1984). These factors, along with the high concentrations of 

taurine in fetal and neonatal tissues (Jacobsen and Smith 1968; Sturman 

and Gaull 1975), suggest that the fetus is largely dependent on the 

mother for a source of taurine. In fact, 60-70% of the total taurine present 

in rats pups at birth is derived from the mother's taurine pool (Huxtable 

and Lippincott 1982; Stunan 1982). By weaning, 3 weeks after birth, the 

amount of taurine derived from the mother during gestation has dropped 

to about 5% of the total taurine in the pup. Approximately 10% has been 

derived from the mother's milk and the remainder has been 

biosynthesized by the pup (Huxtable 1981 ; Huxtable and Lippincott 1983). 

Fetal and neonatal outcome is compromised by decreased taurine 

supply. Taurine-deficient queens frequently abort or resorb their fetuses 



and have still born or live low-birth-weight kittens with decreased tissue 

taurine concentrations (Sturman and Messing 1991 ). A number of 
- 

neurological and morphological abnormalities occur; kittens born to 

taurine-deficient queens display abnormal hind leg development, thoracic 

kyphosis (Sturman et al 1985), hydrocephalus (Sturrnan and Messing 

1991 ) and failure of cells in the cerebellar external granule cell layer to 

migrate properly (Sturman et al 1985). These kittens have also been 

reported to exhibit retinal degeneration (Sturman et al. 1986; Sturman and 

Messing 1991 ) and abnormal visual cortex development (Palackal et al 

1986). The growth of kittens suckling taurine-deficient mothers is also 

impaired (Sturman 1993). 

When GES is administered to rats during pregnancy, the taurine 

concentrations of fetal tissues (Bonhaus et al. 1985; Ejiri et al. 1987) and 

placentas (Ejiri et al. 1987) are depressed. This model has been used to 

study the effects of taurine deficiency on fetal (Ejiri et al. 1987) and 

neonatal growth (Bonhaus et al. 1985; De la Rosa and Stipanuk 1984); 

however, it has not been carefully explored as a model to study the other 

developmental effects reported in the taurine-deficient cat. 

When GES was administered to female rats prior to mating and 

throughout pregnancy, no effect on litter size, birth weight or mortality of 

the pups during lactation was reported (Bonhaus et al. 1985; De la Rosa 

and Stipanuk 1984); incidence of congenital malformations was not 



assessed. Pre- and postnatal exposure to GES has been used to study 

the effect of taurine depletion on retinal structure and function. This 

research demonstrated that morphological changes to the photoreceptors 

of the GES-induced taurine-deficient rat are similar to those reported in 

taurine-deficient kittens (Bonhaus et al. 1985; Pasantes-Morales et al. 

1 983). 

2.3 ZINC AND TAURINE IN RETINAL MORPHOLOGY AND PHYSIOLOGY 

2.3.1 Retinal morphology and physiology 

The retina is a complex photosensory structure consisting of 10 

layers (Figure 2.3): (1 ) retinal pigment epithelium, (2) photoreceptor 

layer, (3) external limiting membrane, (4) outer nuclear layer 

(photoreceptor nuclei), (5) outer plexiform layer, (6) inner nuclear layer 

(nuclei of Muller, amacrine, horizontal and bipolar cells), (7) inner 

plexiform layer, (8) ganglion cell layer, (9) nerve fibre layer (axons of 

ganglion cells) and (1 0) internal limiting membrane (Muller cell 

processes). The primary function of this layered structure is to transform 

light stimuli into a form of neural information that can be interpreted by the 

brain (Pycock 1 985). 

Eye development begins as an outgrowth of the neural plate 



Figure 2.3 

Layers of the Retina and Adjacent Choroid 

Reprinted with permission from Severin, G.A. (1 995) Severin's Veterinary 
Ophthalmology Notes. Veterinary Ophthalmology Notes, Fort Collins, CO. 



(Forrester et al. 1996). By the end of the embryonic period the retina can 

be clearly differentiated into a thin outer layer which will form the retinal 

pigment epithelium and a much thicker inner neural retina. These two 

layers are separated by a narrow subretinal space (Forrester et al. 1996). 

In the albino rat, the retinal layers form in sequence, moving from the 

inner retinal border outward, always beginning posteriorly and then 

spreading peripherally. All adult layers are present by eight days after 

birth and each layer thins after reaching its maximal thickness (Braekevelt 

and Hollenberg 1 970). 

The vertebrate retina is inverted, meaning the photoreceptive rod 

and cone cells lie near the choroid and the optic nerve fibres near the 

vitreous (Pycock 1985). This places the photoreceptors in close proximity 

to the choroidal blood supply (Caldwell et al. 1982) but means that light 

must pass through all retinal layers, except the retinal pigment epithelium 

(RPE), before reaching the photoreceptors (Pycock 1985). 

The rod photoreceptor consists of two segments: a slender rod- 

like outer segment that contains rhodopsin, linked to a highly metabolic 

inner segment via a connecting cilium. The cone photoreceptor is similar 

in structure, one major difference being a conical outer segment that 

contains no rhodopsin (Pycock 1985; Stryer 1987). This difference allows 

rod photoreceptors to operate under more scotopic and cone 

photoreceptors under more photopic conditions. Consequently, the rat 



eye. which contains primarily rod photoreceptors, is well adapted for 

nocturnal vision (Belhorn 1991 ). 

Rod and cone photoreceptors are highly polarized cells that 

continually renew themselves throughout life. The outer segments 

contain a stack of light-sensitive double membranes, called discs, that are 

derived through constant growth of the plasma membrane, from 

components synthesized in the inner segment (Bok 1985). When older 

discs are shed, they are taken up by phagocytosis, internalized by the 

RPE and degraded by lysosomes. Products of this process, in particular 

retinoids, are shuttled back to the photoreceptors for the regeneration of 

rhodopsin (Bok 1985). 

The most important molecule associated with the disc membrane is 

rhodopsin (Bok 1985). Rhodopsin is made up of 11 -cis retinal. an organic 

molecule derived from vitamin A, and opsin, a protein with enzymatic 

capabilities (Stryer 1987). When a single photon of light is absorbed by 

the I 1 -cis retinal of rhodopsin, it triggers the enzymatic activity of opsin 

and sets into motion a biochemical cascade that results in a nerve 

impulse being transmitted to the central nervous system (Stryer 1987). 

Activation of rhodopsin is achieved by isomerization of 11 -cis 

retinal to all-trans retinol (Stryer 1987). When all-trans retinol is 

subsequently converted to all-trans retinal it no longer fits within the 

rhodopsin molecule and detaches. In the dark, the detached all-trans 



retinal undergoes re-isomerization within the RPE cell to 11 -cis retinal. 

which can reattach to the opsin molecule to regenerate rhodopsin 
- 

(Forrester et a1 1996). The conversion of the energy stored in a single 

photon of light to an electrical response is possible because of 

amplification of the cascade involved in closing the sodium channels of 

the photoreceptor (Forrester et al. 1996). 

In the dark state, a continuous electrical current maintains the 

photoreceptors with a relatively positive charge. When light is absorbed 

the sodium channels of the receptor membrane are blocked. Rhodopsin 

activation causes hyperpolarization of the rod membrane, closing of 

sodium channels and an increased efflux of sodium ions from the 

photoreceptor ( Forrester et al. 1996). The hyperpolarizing response is 

transmitted along the length of the photoreceptor to the bipolar and 

horizontal cells, and eventually to the optic nerve. Neurotransmitters are 

responsible for the relay of this response across the synapse between 

retinal cells (Forrester et al. 1996). 

Retinal neurons conduct their visual signals by electronic 

conduction which is a direct flow of electrical current not action potentials 

(Guyton and Hall 1996). The process allows graded conduction which 

means the hyperpolarizing output signal of the retina is directly related to 

the intensity of illumination (Guyton and Hall 1996). This electrical 

current can be measured by electroretinography. The resulting ERG 



waveform is comprised of an a-wave, produced when light strikes 

rhodopsin in the photoreceptor outer segments, and a b-wave generated 
- 

at a more proximal location, possibly in the Muller cells of the inner 

nuclear layer (Berson 1992). The a-wave is the first ERG component that 

can be detected in the neonatal rat; its amplitude plateaus by postnatal 

day 30. The b-wave appears later and reaches maximal amplitude by six 

weeks postnatal age (Grun 1982). 

Oscillatory potentials (OP) are an additional electrophysiological 

parameter that can be measured in the retina. These waveforms 

represent a series of rhythmic consecutive discharges of retinal neurons 

found superimposed on the b-wave of the ERG (Speros and Price 1981 ). 

It is thought that these oscillations are generated independently from the 

mechanism producing the primary components of the ERG, the a- and b- 

waves, at a more proximal location, possibly the amacrine cells of the 

inner nuclear layer (el Azazi and Wachtmeister 1990). In the neonatal 

rat, OP are detected after the a- and b-waves appear but achieve maximal 

amplitude at approximately the same postnatal age as the b-wave. The 

retina is not considered mature until approximately 6 weeks postnatal age 

(Braekevelt and Hollenberg 1970). 

2.3.2 Zinc and retinal function 

Ocular tissues contain substantial amounts of zinc (Eckhert 1983; 



Karcioglu 1982). In particular, zinc has been found concentrated in the 

retina associated with photoreceptors (Hirayama 1990; Wu et al. 1993). 
- 

the tapetum lucidum (Kohler 1981 ; Sturman et al. 1981 ) and retinal 

pigment epithelium (Ulshafer 1989; Ulshafer et al. 1990). In 

photoreceptors of Wistar rats fed zinc-adequate diets, histochemical 

localization by dithizone revealed the presence of zinc in outer segments. 

The photoreceptors from animals fed zinc-deficient diets displayed a 

weaker reaction suggesting a decreased zinc content (Hirayama 1 990). 

No reaction was obsewed in other ocular tissues. Neo-Timm staining of 

zinc in the retinas of larval tiger salamanders revealed the heaviest 

concentrations in the outer nuclear layer (Wu et al. 1993). Histochemical 

localization of zinc in the tapetum lucidum of the cat, shows it to be 

present on the periphery of the tapetal rods (Kohler 1981 ; Sturman et al. 

1981 ) situated between the tapetal rod and tapetal rod membrane (Wen 

et al. 1982). 

Pigmented ocular tissues such as the iris and RPE have been 

reported to contain especially high concentrations of zinc (Eckhert 1983). 

Isolated human and intact rat RPE cells have also been reported to 

contain metallothionein (Nishimura et al. 1991; Oliver et al. 1992; Tate et 

al. 1993), a protein thought to play a major role in intracellular zinc 

metabolism (Bremner 1993). Energy dispersive x-ray microanalysis of 

human (Ulshafer 1989; Ulshafer 1990) and porcine (Samuelson et a[. 



1993) RPE cells localize much of this zinc in melanin granules. The zinc 

content of RPE cells can be affected by exogenous zinc intake. Pigs 
- 

maintained on suboptimal zinc diets exhibited a trend of decreasing levels 

of zinc in the RPE when compared with zinc-adequate controls. These 

changes are most pronounced in the melanosomes (Samuelson et al. 

1993). Though melanin can not account for all zinc present in isolated 

RPE cells (Newsome and Rothman 1987), suggesting other possible sites 

of accumulation, it is thought to influence general zinc uptake and 

accumulation in this cell layer (Newsome et al. 1992). 

Feeding zinc-deficient diets has been shown to affect the amount 

of zinc localized in rat photoreceptors (Hirayama 1990) and porcine RPE 

cells (Sarnuelson et al. 1993). What effect does this apparent depression 

have on the structure and function of the human retina? Patients with 

alcohol-induced cirrhosis frequently have elevated dark adaptation 

thresholds that can be corrected by zinc supplementation (Morrison et al. 

1978; Russell et al., 1978). Karcioglu et al. (1 984) described depressed 

plasma zinc concentrations in patients with retinitis pigmentosa, a disease 

characterized by RPE changes and a reduced (ERG) response (Berson 

1992). Plasma zinc concentrations in patients receiving total parenteral 

nutrition have been shown to correlate positively with visual function 

(Vinton al. 1990). Photoreceptor loss and degeneration of the RPE have 

been reported in patients with AE (Cameron et al. 1986). 



Recent research has focused on the possible involvement of zinc 

In age-related macular degeneration (AMD), a condition known to affect 
- 

the sensory retina and RPE (Newsome et al. 1988). Patients with this 

degenerative eye disease have significantly lower plasma zinc 

concentrations when compared with age-matched controls (Wu et al. 

1994). In a heterogeneous group of patients with AMD, an oral 

supplement of 200 mg zinc sulphate provided daily for a two-year period 

was found to increase serum zinc and significantly reduce visual loss 

(Newsome et a[. 1988). In contrast, a follow-up study in a homogeneous 

group of patients with AMD showed no improvement in functional eye - 

tests in response to the same dose of zinc (Stur et al. 1996). Conclusions 

from these studies are limited based on the short-term nature of these 

trials. The Eye Diseases Case-Control Study Group (1988) was also 

unable to demonstrate a positive relationship between serum zinc levels 

and incidence of AMD; however, this finding may be of limited 

significance as serum zinc concentration is not a sensitive or specific 

indicator of zinc status (Gibson 1990). Interestingly, the concentration of 

zinc in retina but not plasma in Cynomolgus Monkeys, a primate with 

early onset AMD, was found to be significantly depressed when compared 

with unaffected controls (Nicolas et al. 1996). 

DeVirgiliis et al. (1 988) reported retinal abnormalities characterized 

by decreased ERG amplitudes and defective dark adaptation in 



thalassaemia patients treated with desferrioxamine (DeVirgiliis et al. 

1988). Depressed granulocyte zinc and alkaline phosphatase activity 
- 

accompanied by increased faecal zinc excretion was also observed. 

Dithizone administration produced densely staining inclusion bodies in 

the RF E of Sprague-Dawley rats (Leure-duPree 1981 ), possibly through 

the sequestration of zinc. Whether these observations are due solely to 

the poor availability of zinc is questionable as both compounds can 

chelate other minerals. 

It has been hypothesized that zinc is involved in the maintenance 

of normal plasma transport of vitamin A. Severe zinc deficiency in rats - 

results in a decreased concentration of vitamin A in plasma with a parallel 

reduction in retinol-binding protein, despite adequate liver vitamin A 

stores (Smith et al. 1974). When zinc concentrations in ocular tissues are 

reduced by feeding a zinc-deficient diet, retinal alcohol dehydrogenase is 

also significantly lowered (Huber et al. 1975). The authors speculated 

that this change in alcohol dehydrogenase activity could significantly 

reduce the conversion of retinal to retinol. 

Leure-DuPree and Bridges (1 982) fed Sprague-Dawley rats diets 

containing 0.7 ppm zinc. They reported decreased growth rate. 

dermatological changes and depressed tissue zinc concentrations when 

compared to zinc-adequate controls. As well, irregularly shaped 

osmiophilic inclusion bodies similar to those seen in the RPE of rats 



administered zinc chelators (Leure-duPree 1 981 ) and photoreceptor 

degeneration, were apparent. Based on the proportions of retinol and 

retinyl esters found in the zinc-deficient and control eyes, they speculated 

that the zinc-deficient rats were able to form retinol from the retinal that is 

released when rhodopsin is bleached. Rhodopsin regeneration in zinc- 

deficient and pair-fed rats has been reported to be almost half that found 

in ad libitum fed controls (Dorea et al. 1986), suggesting that depressed 

feed intake and not zinc deficiency, per se, depresses the synthesis of 

rhodopsin. 

The studies described above suggest that zinc may be important in 

retinal health. Unfortunately, these observations can not be ascribed 

solely to zinc status. Therefore, it is important to determine whether zinc 

deficiency, in the absence of possible secondary effects, can alter the 

structure and function of the retina. Feeding 0.5 pg Znlg diet (severe zinc 

deficiency) to Long Evans rats throughout gestation produced 

microphthalrnia in 38% of the fetuses examined at day 21 (Rogers et al. 

1984). Examination of fetuses from zincdeficient dams, at day 12 and 14 

of gestation revealed that invagination of the optic cup was often deficient 

and that closure of the choroid fissure did not occur, resulting in retinal 

folding visible at term (Rogers et al. 1987). No incidence of micro- 

phthalmia was observed in rats fed 4.5 (marginal zinc deficiency) or 100 

(control) pg Znlg diet (Rogers et al. 1984). When zinc deficiency was 



instituted at parturition. eye opening was delayed but no morphological 

differences were noted among photoreceptor cells at weaning (Sinning et 
- 

al. 1984). In this study, zinc deficiency appeared to have a minimal effect 

on the topography of developing photoreceptor cells; however, internal 

morphological alterations may have been present. 

When weanling male Sprague-Dawiey rats were maintained for 7 

weeks on a diet containing 0.7 pg Znlg diet (severe zinc deficiency), they 

showed markedly retarded growth, dermatologic signs characteristic of 

zinc deficiency and depressed serum and femur zinc concentrations. 

Electron microscopic examination of the retina revealed vesiculation and - 

degeneration of the photoreceptor outer segments and accumulation of 

osmiophilic inclusion bodies in the RPE. The osmiophilic inclusions are 

morphologically identical to those seen in the RPE of rats administered 

dithizone and 1,lO-phenanthroline, known zinc chelators (Leure-duPree 

1981). Retinal tissue was normal in pair-fed and weight-paired control 

rats (Leure-duPree and McClain 1982). 

The severe deficiency of zinc described above appears to have 

dramatic effects on the eye. This occurrence in human populations under 

normal conditions is relatively rare. Marginal zinc deficiency has been 

reported in large numbers of the population (Walsh et al. 1994) and has 

not been extensively explored in relation to eye structure and function. 

Cats fed diets containing less then 7 ppm zinc for 4 months, gained less 



weight and experienced depressed muscle zinc concentrations. These 

observations were accompanied by changes in retinal function measured 

by a reduction in the electroretinogram b-wave amplitude that was 

reversible upon zinc repletion (Jacobson et al. 1986). These results were 

not consistent in all animals studied. Samuelson et al. (1 991). in an 

attempt to model human zinc deficiency, fed pigs diets marginally 

deficient in zinc for a 12 month period. Histological examination of their 

retinas revealed a decrease in cone photoreceptors and an increase in 

phagosomes and residual bodies in the retinal pigment epithelium that 

appeared to progress over time. No measurements of tissue zinc levels 

were provided. 

These studies provide additional evidence that zinc plays an 

important role in retinal health. It appears that feeding diets deficient in 

zinc can affect the structure and function of the retina; however in most 

studies reported, zinc concentration was never measured in ocular 

tissues. That zinc plays an important role in the morphology and 

physiology of the retina is certain; what this exact role is has yet to be 

confirmed. 

2.3.3 Taurine and retinal function 

The retina contains a high concentration of taurine (24 pmollg wet 

weight). In fact in some animal species the taurine concentration in the 



retina is the highest of any other tissue (Cohen et al. 1973; Gupta et al. 

1981 ; Heinamaki 1986). In the rat retina. taurine is the most abundant 
- 

free amino acid comprising more than 5056 of the total amino acid pool 

(Heinamaki 1986; Macaione et al. 1974). Within the retina taurine 

appears to be unevenly distributed and is concentrated in the 

photoreceptor layer (Orr et al. 1976; Voaden et al. 1977; Fletcher and 

Kalloniatis 1996). 

A high degree of immunostaining, reflecting the presence of 

taurine, was observed in photoreceptor inner segments and synaptic 

terminals. Amacrine and bipolar cell bodies, including their synaptic 

processes in the inner plexiform layer, are also high in taurine content 

(Fletcher and Kalloniatis 1996). However, the pigment epithelium and 

distal parts of glial cells have much reduced immunostaining (Lake 1989; 

Lake and Verdone-Smith 1989). In the retina of the immature rat 

(postnatal day 14), taurine-like immunoreactivity was observed primarily 

in the photoreceptor layer (Lake 1994). However, in the mature rat retina 

(postnatal week 12), the cellular location of taurine-like immunoreactivity 

was found to be the opposite, present primarily in the inner segments of 

the photoreceptor cell layer but with only weak reactivity observed in the 

outer plexiform layer (Kuriyama et al. 1982; Fletcher and Kalloniatis 

1 996). 

The taurine content of the mammalian retina changes with age. 

33 



This is due to photoreceptor development being predominantly postnatal 

and the concentration of taurine increasing in parallel with the maturation 
- 

of these cells (Gupta et al. 1981 ; Heinamaki et al. 1986). For example. in 

the retina of the rat taurine levels increase dramatically until 

approximately day 30 of life (Macaione et al. 1974). The taurine levels 

then decrease between 3 and 6 months of age (Baskin et al. 1976; Baskin 

et al. 1977). Retinal maturity in primates, including man, occurs earlier 

than in the rat (Pycock 1985). 

Taurine appears to be important for the structure and function of 

the mammalian retina (Lombardini 1991 ). Most evidence for this role - 

comes from studies of taurine-deficient animal models. Hayes et al. 

(1 975a) reported that cats fed a semipurified diet containing casein 

developed retinal degeneration visible on ophthalmoscopic examination. 

It was later determined that this degeneration was due to taurine 

deficiency (Hayes et al. 1975b). Cats have a restricted ability to 

synthesize taurine from endogenous precursors and rely on diet to obtain 

this nutrient (Knopf et al. 1978). A reduction in taurine below 50% of the 

normal tissue concentration results in retinal degeneration characterized 

first by a decrease in amplitude of the electroretinographic response 

(Berson et al. 1976) followed by severe morphological alteration of the 

photoreceptor cells (Hayes et al. 1975b). The otherwise highly ordered 

structure of membranous discs in the outer segments becomes 



disarranged; the discs appear extremely disoriented, with twisting often 

extending through the entire length of the segment (Berson et al. 1976). 

As the pathology progresses, the entire photoreceptor cell population 

degenerates and eventually blindness occurs. Electron microscopy also 

reveals various degrees of disorganization in the tapetum lucidum 

(Sturman et al. 1981 ). 

Retinal pathology associated with depleted taurine has also been 

reported in the albino rat. Treatment of rats with GES leads to a 30-40% 

decrease in the taurine content in the retina (Lake 1981 ; Lake 1982; 

Quesada et al. 1984). Recently Lombardini et al. (1 996) reported an 80% 

decrease after extensive, long-term treatment with this analogue. As a 

consequence of this reduction in endogenous taurine, the characteristic 

pattern of retinal degeneration appears in rats. The properties are similar 

to those observed in cats, including reduced electroretinographic 

response (Cocker and Lake 1987; Hageman and Schmidt 1987; Lake 

1986; Lombardini et al. 1996; Rapp et al. 1987) and a structural 

degeneration of the photoreceptors (Lake and Malik 1987; Pasantes- 

Morales et al. 1983). 

Damage to the photoreceptors includes a reduction in the size of 

the layer, disarray of the discs and disc membranes, swollen inner 

segments and nuclei and accumulation of vesicular membrane-bound 

profiles within the basal region of the photoreceptors (Hageman and 



Schmidt 1987: Lake and Malik 1987; Pasantes-Morales et al. 1983: Rapp 

et al. 1988). The rat eye does not contain tapetal cells. Subsequent 
- 

research has shown that retinal taurine concentrations and ERG b-wave 

amplitudes are significantly increased when GES is discontinued and 

replaced with taurine in drinking water (Lombardini et al. 1996). The 

recovery implies that cell death or permanent function deficits were not 

obvious even after 16 weeks of GES treatment. 

While it is well documented that taurine depletion produces 

morphologic changes, such as photoreceptor cell loss in the retina of the 

albino rat, similar changes are not observed in the retina of the pigmented 

rat, although a reduction in ERG amplitude does occur (Rapp et al. 1987). 

Thus, it has been suggested that in the albino rat light may increase the 

degenerative changes induced by taurine depletion (Lake and Cocker 

1986; Lake and Malik 1987; Rapp et al. 1987). This theory has also been 

proposed to explain the unusual distribution of lesions in taurine 

deficiency retinopathy in the cat; however, unilateral tarsorrhaphy 

experiments exclude light damage as a major factor (Leon et al. 1 995). 

As has been described previously, fetal and neonatal animals may 

be at an increased risk of taurine deficiency. Kittens born to taurine- 

deficient mothers have abnormal visual cortex development, with 

neuroblasts failing to migrate properly (Palackal et al. 1986) 

photoreceptor outer segments that are reduced in length, and tapetal 



cells distinguished by accumulations of electron-dense droplets (Imaki et 

al. 1986). Dietary taurine deficiency imposed on developing kittens 

restricts the normal developmental increase in retinal taurine 

concentration (Stunan 1993) promoting this photoreceptor degeneration 

(Imaki et al. 1986). Treatment of rats with 1 Oh GES throughout gestation 

produces a degeneration of the photoreceptor layer of the retina in pups. 

similar to that observed in kittens (Bonhaus et al. 1985). Pups of nursing 

mothers treated with GES have retinal levels of taurine that are 50-70% of 

control values (Lake 1983). 

In the infant rhesus monkey, taurine deficiency produced by 

feeding a taurine-free infant formula also produces retinal abnormalities 

(Lombardini 1991 ). The outer segments of photoreceptors are swollen or 

vacuolated in the case of rods and shrunken and condensed in the case 

of cones. At the ultrastructure level, cone outer segments appear 

shortened or retracted. In addition, cone ERG are depressed and a loss 

of visual acuity is apparent (Imaki et al. 1987; Neuringer et al. 1987a; 

Neuringer et al. 1987b; Sturman et al. 1984). A decrease in plasma 

(Neuringer et al. 1987b; Sturman et al. 1984) and retinal taurine 

concentrations are also noted (Sturman et al. 1 988; Sturman et al. 1991 ). 

When maintained on this diet no significant difference in plasma and 

retinal taurine concentrations are apparent by 4 years of age; however, 

some photoreceptor damage persists suggesting that vulnerability to 



taurine deficiency may be related to retinal maturity (Imaki et al. 1996). 

Human infants and children fed totally by parenteral nutrition which 
- 

was lacking in taurine also developed low plasma taurine levels 

accompanied by reduced amplitudes in the ERG and morphologic 

changes observed by ophthalmoscopy (Ament et al. 1986; Geggel et al. 

1982; Geggel et al. 1985; Vinton et al. 1985). These abnormalities were 

corrected in some of the children when taurine was added to the infusate 

suggesting an exogenous requirement for taurine in this population. 

These studies are indicative that taurine plays an important role in 

retinal health. It appears that inadequate taurine intake can affect the 

morphology and physiology of both the adult and developing retina. 

However, the exact mechanism responsible for the function of taurine has 

yet to be elucidated. 

2.4 INTERACTION BETWEEN ZINC AND TAURINE 

2.4.1 Biochemical functions of zinc 

The biochemical basis for the physiological functions of zinc have 

been studied extensively (Vallee and Falchuk 1993). However, the 

clinical signs of altered zinc status are diverse and can not be adequately 

explained by the defect of a specific known function (Cousins 1996). For 



example. zinc is known to be an essential component of over 300 

enzymes (Vallee and Falchuk 1 993). In spite of this, there is no clear 
v 

evidence that the activity of any one limits physiological function during 

nutritional deprivation of zinc. Therefore, two additional hypotheses have 

been proposed to explain zinc deficiency pathology. One suggests that 

zinc exerts its critical role in gene expression (Hanas et al. 1983). The 

other proposes that zinc exerts its function at the level of the cell plasma 

membrane (Bettger and O'Dell 1981 ). Many nucleoproteins directly 

involved with replication and transcription of DNA are now known to 

contain functionally important zinc atoms (Berg and Shi 1996). However, 

there is little evidence that altered gene expression during dietary zinc 

deficiency significantly affects physiological outcome (Cousins 1996). 

There is mounting circumstantial evidence that zinc deficiency affects the 

structure and function of the plasma membrane (Bettger and O'Dell 

1993). Because zinc is able to form protein-stabilizing cross-links without 

introducing undesirable chemical reactivity (Berg and Shi 1996), it may 

have a direct effect on the conformation of individual proteins and on 

protein-protein interactions (Bettger and OJDell 1 993). 

Zinc is found in high concentrations in many cell membrane 

fractions (Valles 1990) including those from bovine rod outer segment 

proteins (Tam et al. 1976). Though the precise locations are unknown, it 

is probable that zinc is located on the outer surface, within the aqueous 



domain or channels and on the inner surface of the cell plasma 

membrane, bound to protein (Bettger and O'Dell 1993). The in vitro 

addition of zinc to plasma membranes provides evidence of these 

locations. Zinc has been shown to promote the binding of growth 

hormone to the cell surface prolactin receptor (Cunningham et al. 1990). 

to bind deep within the pores of a calcium channel in myotubes (Winegar 

and Lansman 1990) and to promote the binding of protein kinase C to 

receptor sequences on membrane skeletal proteins (Zalewski et al. 

1990). 

The physiological role of zinc in retinal membranes may involve 

similar mechanisms. It has been demonstrated that zinc stimulates the 

binding of a ~ i d o - [ a - ~ ~ ] ~ T P  to the rim protein, a 240 kDa spectrin-like 

protein and a 220 kDa glycoprotein, in rat rod outer segment preparations 

(Shuster et al. 1988). Zinc has also been shown to bind directly and 

specifically to purified disc membranes (Shuster et al. 1992). In both 

studies, the investigators suggested that zinc may elicit a conformational 

change in specific proteins. 

Research using zinc-deficient animal models contributes additional 

evidence that this metal is involved in the structure and function of 

biomembranes. Increases in fluidity of the lipid bilayer (Jay et al. 1987) 

and increased mobility of spin probes in protein (Kubow and Bettger 

1988) and sialic acid residues on the cell surface (Jay et al. 1987) have 



been reported in erythrocytes from zinc-deficient rats. Consequently. 

these cells have increased osmotic fragility (O'Dell et al. 1 987) and 
- 

sensitivity to haemolysis by sodium dodecyl sulfate (Paterson and Bettger 

1985). Electron microscopic examination of the retina of severely zinc- 

deficient rats revealed degeneration of the photoreceptor outer segments 

(Leure-duPree and McClain 1982). Similar changes were observed in the 

retinas of marginally zinc-deficient pigs (Samuelson et al. 1992). The 

fragility of the outer segments observed in these models may be the result 

of zinc loss from membrane proteins. 

2.4.2 Biochemical functions of taurine 

Taurine is an essential nutrient for cats. Dietary deficiency in this 

species affects the functioning of the visual, reproductive, immune and 

cardiovascular systems (Sturman 1993). Taurine is also considered 

essential for primates during development; changes in retinal physiology 

associated with low intake have been reported in children receiving 

taurine-free parenteral nutrition (Arment et al. 1986; Geggel et al. 1985) 

and in rhesus monkeys raised on taurine-free formula (Imaki et al. 1987; 

Neuringer et al. 1 987a). Treatment of rats with GES produces similar 

retinal changes (Cocker and Lake 1987; Rapp et al. 1987). Despite the 

mounting evidence that taurine plays an important role in retinal 

physiology, especially during development, the underlying mechanism is 



not known (Lombardini et al. 1996). 

A number of hypotheses have been proposed to explain the 
- 

biochemical basis for taurine in this tissue. One possible function is in 

membrane stabilization (Pasantes-Morales et al. 1987a). Taurine may 

directly affect the physical state of membrane lipids possibly through its 

role as an antioxidant (Huxtable 1992; Schaffer et al. 1995). Alternatively. 

taurine may elicit a conformational change in membrane proteins which 

may explain its role in membrane binding and transport of Ca2+ 

(Lombardini 1991 ; Huxtable 1992). A second possible function for taurine 

in the retina is as an inhibitory neurotransmitter (Lombardini 1992) or as a 

regulator of intracellular signal transduction (Lombardini 1991 ). It is now 

known that phosphoproteins along with necessary protein kinases andlor 

protein phosphatases are enriched in the nerve terminal and thus 

synaptic transmission may be modulated or regulated by phosphorylation 

processes (Lombardini and Props 1996; Schaffer et al. 1995). Taurine 

has also been reported to stimulate rod differentiation when added to 

retinal cultures, perhaps as a mediator of intercellular signalling among 

developing retinal cells (Altshuler et al. 1993). A third possible function 

for taurine in the retina is as an osmoregulator (Pasantes-Morales and 

Cruz 1984b). Osmoregulation is the primary function of taurine in 

invertebrates and fish; there is increasing evidence that this is also an 

important role for taurine in mammals (Huxtable 1992). 



Taurine meets the requirements for a biological osmoregulator 

almost ideally. It is transported by a system unique to amino acids, the 
- 

transport is Na' dependent and responsive to other osmotic substances 

(Salceda and Saldafia 1993). Extremely high intra- to extracellular 

concentration gradients can be maintained due to its lipophobic 

properties. Additionally, the use of taurine as an osmoregulator "spares" 

metabolically important amino acids for protein synthesis (Huxtable 1992). 

Osmotic regulation by organic osmolytes such as taurine typically 

contribute 10-20% to the total intracellular osmolarity (Huxtable 1992). It 

is thought that taurine fulfills this role by modification of the movement of 

other osmotically active substances. such as ions or water (Huxtable 

1992). 

Schulze and Neuhoff (1 983) reported that the loss of taurine from 

isolated retinas varies inversely with osmolarity. The greater the 

osmolarity the lower the efflux from this tissue. When primary cultures of 

human lens and RPE were exposed to hypertonic medium, the 

concentration of tau fine was increased by 21 8% and 147%, respectively 

suggesting that taurine may have an osmoregulatory role in these tissues 

(Yokoyama et al. 1993). Further evidence is derived from research on 

isolated frog rod outer segments. Exogenous taurine has been shown to 

provide protection in vitro when these cells are subjected to light-induced 

peroxidative damage (Pasantes-Morales and Cruz 1984b). The authors 



suggested that the protective effect of taurine may be due to an 

interaction with ion permeability andlor water accumulation in the 

membrane (Pasantes-Morales and Cruz 1984b). 

Though depressed ocular taurine results in osmotic disturbances, it 

is not clear if these effects occur due to a loss of osmoregulatory function 

or to some other mechanism. It is important to note that disturbed ion- 

water balance can occur secondary to the other mechanisms described 

above. For example, a loss of membrane integrity can ultimately have 

this same effect. 

2.4.3 Evidence for interaction 

Reports that the nutrients zinc and taurine interact have prompted 

interest in the physiological significance and mechanisms responsible for 

this phenomenon (Pasantes-Morales et al. 1987a). The strongest 

evidence for an interaction comes from in vitro research on isolated frog 

rod outer segments. When these cells are exposed to ferrous sulfate they 

display extensive disruption of their structure, characterized by acute 

swelling and disc membrane disorganization. The addition of zinc or 

taurine alone to the culture medium is ineffective in protecting against this 

outer segment damage; however, zinc and taurine, added together, 

provide protection in a synergistic manner (Pasantes-Morales and Cruz 

1984). Zinc and taurine do not prevent iron-induced lipid peroxidation but 



appear to protect the outer segments from the subsequent disturbance in 

osmoregulation. 
- 
Whether zinc and taurine interact in vivo is unknown. A 50% 

reduction of retinal taurine in the cat produces degeneration of the 

photoreceptors (Hayes et al. 1975b) and depression of electroretinogram 

(ERG) a- and b-wave amplitudes (Berson et al. 1976). The addition of 

200 pM zinc to the drinking water of these animals has been reported to 

partially prevent depression of the a-wave amplitude in some animals 

(Pasantes-Morales et al. 1987b) suggesting that zinc may influence 

taurine in the retina. 

The relationship between zinc and taurine has also been explored 

in other tissues. Taurine-deficient cats exhibit disruption and 

disorganization of the membrane surrounding the tapetal rods with a 

subsequent loss of localized zinc (Sturman et al. 1981 ). Cultured human 

lymphoblastoid cells are protected from retinol-induced injury in the 

presence of zinc and taurine; however, the protection afforded by the 

addition of these nutrients is not synergistic (Pasantes-Morales et al. 

1984). Urinary excretion of taurine (Anthony et al. 1971 ; Hsu and 

Anthony 1970) and plasma taurine concentrations (Griffith and Alexander 

1972) are increased in zinc-deficient weanling rats. Interest in zinc and 

taurine in the human neurological disorders of epilepsy (Barbeau and 

Donaldson 1974) and Friedreich's Ataxia (Shapcott et al. 1984) has also 



been reported. 

2.4.4 

It has 

- 
Mechanism for interaction 

The mechanism by which zinc and taurine may interact is unclear. 

been suggested that zinc-taurine complexes exist in living 

organisms (Sakurai and Takeshima 1983). Van Gelder (1 983) proposed 

that zinc-taurine complexes modulate calcium movement in the central 

nervous system. Whether this is of physiological significance is not 

known. Direct association between these nutrients, however, appears 

unlikely due to the reported low log stability constant of a zinc-taurine 

complex of 4.6 (Wright et al. 1986). It is also unlikely that taurine alters 

the cellular availability of zinc as it is unable to displace zinc from albumin 

(Harraki et al. 1994). An alternative hypothesis proposes that zinc and 

taurine interact with cell membranes to provide a stabilizing effect, 

possibly through regulation of cell permeability (Pasantes-Morales et al. 

1987a). This is thought to be a more viable theory and provides the basis 

for the work described herein. 

Zinc has been proposed to play a physiological role in plasma 

membranes by its effects on membrane protein conformation and protein- 

protein interactions (Bettger and O'Dell 1993). While the precise 

biochemical mechanisms have not been fully elucidated, it has been 

suggested that the loss of zinc from specific proteins in the plasma 



membrane alters water and ion channels. Ultimately intracellular ion and 

water concentration is changed (Bettger and O'Dell 1993). In its function 
- 

as an intracellular osmoregulator (Huxtable 1992), taurine may be able to 

respond to these changes by regulating water and ion flow across cell 

membranes. 



Chapter 3 

OVERVIEW OF EXPERIMENTAL 

SECTIONS OF THESIS 

The objective of this research was to explore the hypothesis that zinc and 

taurine interact in physiological functions in vivo. To carry out this work, a 

sensitive method was required to analyse taurine concentrations in biological 

tissues. Chapter 4 describes the modification and validation of an analytical 

method for the HPLC analysis of taurine in biological tissues that is rapid, 

sensitive and reliable. 

Initially, reproductive outcome and incidence of congenital malformations 

in the rat were to be used as physiologic measures of this interaction. These 

outcomes had been studied extensively in the zinc-deficient rat (Keen and 

Hurley 1989). While tissue taurine concentrations were known to be depressed 

when 1 % GES, a taurine transport antagonist, was supplemented orally in this 

species (Huxtable et al. 1979), the effect of this decrease on fetal development 

had not been carefully explored. Additionally, it was not known if other doses of 



this analogue would achieve similar outcomes. Therefore, a study was designed 

to assess pregnancy outcome in the rat in response to varying taurine status. 

The results of this investigation are presented in Chapter 5. 

Based on the results of this work it was evident that taurine deficiency in 

the rat, as assessed by evaluation of fetal weight and incidence of congenital 

malformations at day 20 of gestation, was not similar to what had previously 

been observed in the taurine-deficient cat (Sturman et al. 1985; S tunan and 

Messing 1991 ). Therefore, it was concluded that incidence of fetal 

malformations might be an inadequate indicator with which to explore the 

proposed interaction between zinc and taurine in vivo. 

Alternatively, the high concentration of zinc (Eckhert 1983) and taurine 

(Heinamaki et al. 1986) in ocular tissue and the purported importance of these 

nutrients in maintaining eye structure and function (Leure-duPree and McClain 

1982; Sturman et al. 1986), suggested that the eye may be a unique 

physiological system in which to study this interaction. Therefore, a pilot study 

was designed to assess whether pre- and postnatal development of eye 

structure and function would be a more sensitive endpoint for demonstrating an 

interaction between zinc and taurine in vivo. These experiments are presented 

in Chapter 6.  

Chapter 7 and Chapter 8 present the results of subsequent research on 

retinal morphology and function in which a pre- and postnatal rat model was 

used to study the physiological interaction between zinc and taurine. 



Chapter 4 

MODIFICATION AND VALIDATION OF AN ANALYTICAL METHOD 

FOR THE HPLC ANALYSIS OF TAURINE 

4.1 INTRODUCTION 

Several methods are available for the analysis of taurine in biological 

fluids and tissues. Colorimetric (Anzano et al. 1978) and fluorometric (Yoneda 

et al. 1977) assays have been developed; however, these methods usually 

require time-consuming pretreatment of the sample and are less sensitive. Use 

of gas chromatography for taurine analysis, a more sensitive technique, has 

been confounded by the difficulty in preparing a suitable volatile derivative of 

this compound (Kataoka et al. 1984). Other chromatographic procedures 

utilizing an amino acid analyser or high performance liquid chromatography 

(HPLC) have also been developed (Lippincott et al. 1988; Yokoyama 1991 ); 

however, many use gradient elution to resolve taurine from other compounds in 

biological samples and, as such, require long run times making them impractical 



for the measurement of a single amino acid. This chapter describes the 

modification of an analytical method for the HPLC analysis of taurine levels in 
# 

tissues, that is rapid, sensitive and reliable. 

Taurine was analysed by reverse-phase high performance liquid 

chromatography (HPLC) using precolumn derivatization with orthophthal- 

aldehyde (OPA) followed by electrochemical detection. This method is a 

modification of that reported by Donzanti and Yamamoto (1 988). This 

procedure, which had originally been used to quantitate taurine concentrations 

in discrete brain areas, was adapted to analyse taurine levels in whole brain, 

liver, plasma, urine and eye. The chromatographic conditions were retained. 

Modifications involved changes to the tissue extraction procedure that were 

necessary to clean the samples prior to injection in the HPLC system. These 

included the use of a precolumn and the filtering of each sample prior to 

derivatization. The objective of this study was to validate this analytical method 

for precision, selectivity, linearity, accuracy and stability (Buick et al. 1 990; 

Karnes et al. 1 991 ). 

4.2 MATERIALS AND METHODS 

4.2.1 Chromatography 

The HPLC system consisted of a Model 510 pump (Waters, 



Mississauga, ON), with an SSI model LP-21 pulse dampner (Ranin 

Instruments Co.. Wo burn. MA) installed between the pump and Rheodyne 
- 

7125 injector (Cotati, CA). A 20 pL sample loop was used for all 

analyses. Chromatographic separation was accomplished using a 3 pm 

C18 HR-80 reverse-phase analytical column (8 cm X 4.6 mm id.; ESA 

Inc.. Bedford MA) and a mobile phase of 0.1 mollL sodium phosphate 

dibasic (Na,HPO,), 0.13 mrnollL disodiurn ethylenediamine tetraacetate 

(Na,EDTA) and 28% methanol. The mobile phase was adjusted to pH 

6.00 using 85% orthophosphoric acid and pumped at a rate of 1.2 

mUmin. An uptight pre-column model C-135B (SPE Ltd., Concord. ON) - 

preceded the analytical column. A high sensitivity analytical cell (Model 

501 1 ; ESA Inc., Bedford, MA) completed the system. A Shimadzu Model 

C-R3A integrator (Fisher Scientific, Edmonton, AB) or personal computer 

running Millennium software (Waters, Mississauga, ON) was used to 

capture the data. A model 51 00A Coulometric electrochemical detector 

(ESA lnc., Bedford, MA) was used to monitor column effluent. The 

working electrode potentials for the coulometric-amperometric analytical 

cell were -0.4 V and +0.6 V, respectively. The guard cell potential was 

set at -0.7 V and the detector response time at 4 sec. To maintain 

baseline stability, mobile phase was recirculated for a minimum of 15 

hours prior to tissue taurine analysis and discarded after a maximum 5 

days of analysis. 



4.2.2 Tissue extraction 

All tissues were stored at -70°C prior to taurine analysis. Brain. 

eye, plasma or urine was homogenized in cold 0.5 mollL perchloric acid 

and liver homogenized in cold 1.0 mollL perchloric acid. Maternal brain 

was diluted 1 :20 prior to analysis. Similarly, fetal brain, fetal liver, 

maternal liver and pup eyes were diluted 1 :30; urine was diluted 150 and 

plasma 1 :2. The samples were then centrifuged at 12,000 x g and 5OC for 

30 minutes. The supernate was removed and filtered through 0.45 pm 

syringe filters. The resulting samples were stored at 4OC until analysis. 

Samples were analysed within 5 hours of extraction. 

4.2.3 Derivatization procedure 

The stock derivatization solution was prepared by dissolving 1 3.5 

mg of OPA in 0.5 mL of methanol, followed by 2.5 pL of BME and 4.5 mL 

of 0.1 0 mmollL sodium tetraborate (pH 9.3). This OPNBME stock 

solution was stable for 5 days if kept tightly sealed in a foil covered bottle 

at room temperature. The working derivatizing solution was prepared by 

diluting 1 rnL of the stock reagent with 3 mL of 0.1 0 mmollL sodium 

tetraborate on the day of analysis. 

Twenty pL of tissue supernate and 40 pL of working solution were 

mixed together and after exactly 60 seconds, 10 pL of the resulting 

mixture were injected into the HPLC system. 



4.2.4. Standard solutions 

Taurine stock solution (10 rnmol/L) was prepared by dissolving 
- 

0.1251 g taurine in distilled deionized water. Taurine standards were 

prepared by diluting the stock solution with 0.05 mmollL (brain, eye, 

plasma or urine) or 0.1 mmolIL (liver) HCIO,. Stock solutions were 

prepared monthly and standards prepared biweekly. 

4.2.5 Validation of method 

The analytical method was evaluated for selectivity, linearity, 

method and system precision, accuracy, stability and sensitivity (Buick et - 

al. 1990; Karnes et al. 1 991 ). 

4.3 RESULTS AND DISCUSSION 

4.3.1 Selectivity 

Tissues were analysed according to the HPLC assay procedure. 

Total analysis time was 20 minutes with taurine eluting at approximately 

13 minutes. Figure 4. l a shows a chromatogram of blank reagent which 

reveals no peaks. As shown in Figure 4.lb (liver) and 4.lc (eye), 

baseline separation of taurine was achieved with no chromatographic 

interferences. 



Figure 4.1 

HPLC Chromatograms 

A reagent blank (a), liver (b) and eye (c) tissues, from control 
animals, analysed for taurine. 



4.3.2 Linearity 

Linearity was evaluated using the integrated peak area response to 

5 standard solutions (Kames et al. 1991 ). Standards ranging from 0.01 to 

0.5 pglg taurine were used to encompass the range of taurine in tissue 

samples. A blank was included with each concentration curve. Standard 

concentration curves showed excellent detector linearity (Figure 4.2) with 

correlation coefficients between 0.9990-0.9999. Standard curves were 

generated daily. Correlation coefficients, slopes and intercepts from 1 0 

standard curves are presented in Table 4.1. 

4.3.3 System precision 

Within-day precision of the peak area response for the HPLC 

system was determined by injection of 5 consecutive samples of the same 

taurine standard. The acceptance criteria that these tests produce a 

percent coefficient of variation (% CV) of no more than 5% is met (Buick 

et al. 1990). Between-day precision was determined by injection of 

taurine standard on 5 consecutive days. The %CV was less then 5% for 

each concentration eva hated. 

4.3.4 Method precision 

Within-day precision of the peak area response for tissue was 

determined by injection of 5 consecutive samples of the same tissue 





Table 4.1 

Correlation Coefficients, Slopes and Y-Intercepts 
from Concentration Curves' 

Slope Y-Intercept ? 

'Concentration curves were created using a blank and 
0.01, 0.05, 0.2, 0.25 and 0.5 pglg taurine. 



(Table 4.2). The acceptance criteria that these tests produce a percent 

coefficient of variation of no more than 5% is met. This reference is more 

consekative then the 10% range considered acceptable for analysis of 

compounds in biological tissues (Buick et al. 1990). A % CV of less then 

5% was also chosen to ensure precision between duplicate tissue 

samples run for taurine analysis. Duplicates with a higher %CV were 

repeated. Between-day precision was determined by injection of samples 

on 5 consecutive days. The CV was less then 10% for each tissue 

evaluated. 

4.3.5 Accuracy 

Accuracy of the assay was determined by spiking the appropriate 

tissue with taurine. This method was chosen to eliminate any matrix 

effects. Five samples of a tissue were analysed for taurine content. Five 

samples of the same tissue were then spiked with an amount of taurine 

equivalent to the concentration measured in the original samples and re- 

analysed for taurine content. Taurine recovery from tissue ranged from 

95-1 01 % which meets the criteria for acceptable recovery. Tissue 

concentrations of taurine analysed in this study were comparable to those 

measured in previous research using other HPLC methods or amino acid 

analysers (Huxtable and Lippincott 1982; De La Rosa and Stipanuk 

1 984). 



Table 4.2 

Within-day Precision for Taurine 
Analysis of Brain Tissue1 

Injection Number Concentration 
(IJgfg) 

1 4.39 
2 4.60 
3 4.76 
4 4.60 
5 4.63 

'Brain tissue was forced through an 
18G needle using a 10 cc plastic 
syringe. Aliquots of the homogenised 
tissue were used for this analysis. 



4.3.6 Limit of detection and quantitation 

The limit of detection for this assay is 0.1 nglg. This concentration 

was determined by diluting and analysing a working standard solution 

until the taurine peak amplitude to noise ratio was 3. The limit of 

quantitation, 0.001 ~ 9 1 9 ,  was the lowest concentration of analyte that 

gave a % coefficient of variation of no more than 10% on a series of n=5 

samples. 

4.3.7 Analytical range 

Concentrations from 0.0001 to 2.0 pglg (n=5) were tested. 

Concentrations in the 0.001 - 2.0 pglg range had % coefficient of variation' 

below 5%. Tissue taurine concentrations, at the dilutions used in this 

assay, seldom measure above 0.5 pglg; therefore, concentrations greater 

then 2.0 pglg were not evaluated. 

4.3.8 Stability of derivatizing agent 

Using freshly made standards, data were generated to assess the 

stability of the derivatizing agent over a period 5 days. A standard curve 

was run on each day. The % coefficient of variation for each 

concentration (n=5) in this curve was calculated (Table 4.3). The % 

coefficient of variation was less then 5% for each concentration 

evaluated. 



Table 4.3 

Betweenday Precision for 
Taurine Standards1 

Concentration %Cv2 
W 9 )  

0.01 3.5 
0.05 1-7 
0.10 3.1 
0.25 3.2 
0.50 1.9 

1 Taurine standards were measured on 5 
consecutive days. Working derivatizing 
solution was prepared daily from the 
same stock derivatizing solution. 
*The %CV is calculated on n=5 injections. 



GES interference detection 

Samples of GES were analysed to determine whether this 

analogue would interfere with the measure of taurine in biological tissues 

and fluids. The HPLC method outlined in this chapter detects primary 

amines; therefore GES interference was not anticipated. When this 

compound was subjected to HPLC analysis of taurine no GES peak was 

observed. 

4.4 CONCLUSION 

The procedure described for the rapid determination of taurine in 

biological tissues and fluids has several advantages over other techniques 

available. The analysis time is shorter, gradient elution is not needed and 

samples do not require extensive clean-up prior to analysis. The modifications 

to this method allow for the determination of taurine in a range of biological 

tissues and fluids. This technique is sensitive in that it allows the measurement 

of taurine concentrations as low as 0.001 pglg. Additionally, the method is 

reliable in that it consistently produces a CV below 5% when the taurine content 

of biological tissues is measured in duplicate. Concentrations of taurine 

analysed with this HPLC method are comparable to those reported in the 

literature (De La Rosa and Stipanuk 1 984; Huxtable 1 982). 



Chapter 5 

TAURINE DEFICIENCY ALTERS TISSUE TAURINE CONCENTRATIONS 

AND PREGNANCY OUTCOME IN THE RAT' 

5.1 INTRODUCTION 

Taurine biosynthesis varies with species and age. Cats, which have a 

low activity of the rate-limiting enzyme sulfinoalanine decarboxylase (SAD), are 

readily depleted when fed taurine-free diets (Knopf et al. 1978). Conversely, the 

rat, which has high sulfinoalanine decarboxylase activity and efficient renal 

taurine conservation, can be maintained on taurine-free diets for long periods of 

time without showing depleted taurine pools (Huxtable and Lippincott 1982). 

Instead, guanidinoethyi sulfonate (GES), a structural analogue of taurine, has 

been used to depress tissue taurine concentration in this species (Huxtable 

'A version of this chapter has been published [Gottschall-Pass et al. 
(1 994) Effect of taurine deficiency on tissue taurine concentrations and 
pregnancy outcome in the rat. Can. J. Physiol. Pharmacol. 73: 1 130-1 1351. 
Reproduced with the permission of the NRC Research Press. 



1982). 

Fetal and neonatal animals may be at an increased risk of taurine 
- 

deficiency. Sulfinoalanine decarboxylase activity and renal taurine conservation 

are lower (Kuo and Stipanuk 1984), translating into an increased dependence on 

exogenous taurine. In fact, it has been estimated that 60-70% of the total 

taurine present in rat pups at birth is derived from the mother's taurine pool 

(Huxtable and Lippincott 1982; Sturman 1982). 

Taurine-deficient cats frequently abort or resorb their fetuses and have 

stillborn or live low-birth weight kittens with decreased tissue taurine levels 

(Sturman and Messing 1991 ). A number of neurological and morphologic 

abnormalities have been reported to occur; kittens born to taurine-deficient 

queens display abnormal hind leg development, thoracic kyphosis (Sturman et 

al. 1985). hydrocephalus (Sturman and Messing 1991 ) and failure of cells in the 

cerebellar external granule cell layer to migrate properly (Sturman et al. 1985). 

These kittens have also been reported to exhibit retinal degeneration (Sturman 

et al. 1986; Sturman and Messing 1991) and abnormal visual cortex 

development (Palackal et al. 1986). 

Although the GES-induced taurine-deficient rat model has been used to 

study fetal (Ejiri et al. 1987) and neonatal growth (Bonhaus et al. 1985; De la 

Rosa and Stipanuk 1984). it has not been carefully explored as a model to study 

the developmental effects reported in the taurine-deficient cat. In one study 

describing fetal outcome in GES-treated rats (Ejiri et al. 1987), no congenital 



malformations were reported. However, the analogue was not administered until 

day 11 of gestation although the susceptible period of organogenesis in the rat 

is from day 6-1 5 of gestation (Palmer 1978). Therefore, this study was designed 

to assess pregnancy outcome in the rat in response to varying taurine status 

instituted at day 0 of gestation. 

5.2 MATERIALS AND METHODS 

5.2.1 Animals and diet 

Virgin female Sprague-Dawley rats (weighing 225-270 g) were 

obtained from Charles River, St. Constant, Quebec and housed in a room 

controlled for temperature (20-22°C) and light (1 211 2hr light/dark cycle). 

Animals were cared for in accordance with the principles of the Guide to 

the Care and Use of Experimental Animals (Canadian Council on Animal 

Care 1984, 1993). All procedures used in this study were approved by 

the University Committee on Animal Care and Supply at the University of 

Saskatchewan. 

Animals were fed a taurine-supplemented control diet2 for at least 7 

days and bred overnight. On day 0 of gestation, as determined by the 

*Taufine was added at a level approximating rat chow, which contains 1.5-5.0 
pmol taurineig chow (Huxtable 1982). 



presence of sperm in vaginal smears, the females were placed 

individually in stainless steel cages and randomly assigned to 1 of 4 
- 

experimental groups. A modified AIN-based diet (American Institute of 

Nutrition Ad Hoc Committee on Standards for Nutritional Studies, 1977, 

1980) (Table 5.1 ) and distilled, deionized drinking water were provided, 

ad libitum, from day 0 to 20 of gestation. The basal diet, analysed by 

reverse-phase HPLC (Donzanti and Yamamoto 1988), contained <0.001 

pmol taurinejg diet. Control animals received the basal diet with 2 pmollg 

of added taurine and no GES in their drinking water. The 0.5, 1.0 and 

2.0% GES animals received the basal diet and 0.5, 1.0 or 2.0% (wlv) 

GES, respectively, in drinking water. GES was synthesized and purified 

by POS Pilot Plant Corporation (Saskatoon, SK) according to the method 

of Morrison et al. (1958). Reverse-phase HPLC confirmed that the 

analogue contained 0.003% (wlw) taurine. Feed intake was recorded 

daily and dam weight recorded weekly. 

5.2.2 Experimental protocol 

On day 20 of gestation, dams were anaesthetized with 

methoxflurane (Janssen Pharmaceutica, Mississauga, ON) and 

laparotomies were performed. Following hysterectomy, fetal position in 

the uterine horn, implantation sites, resorption sites and live and dead 

fetuses were recorded. Dams were killed by decapitation. Fetuses were 



1 able 5.1 

Composition of Basal Diet1 

INGREDIENTS AMOUNT 
(glkg diet) 

Spray-dried egg white 200.0 

Corn Oil 50.0 

Canola Oil 50.0 

Glucose hydrate 647.5 

Mineral premix2 40.0 

Vitamin premi? 10.0 

Choline bitartrate 2.5 

'AIN 76 diet. The basal diet contained c0.001 pmol 
taurinelg diet. The control diet was supplemented 
with 2 pmol taurinefg diet to approximate the taurine 
content of rat chow. 
'Mineral premix at 4.0% of the diet supplied the 
following concentration of minerals (in gkg diet): 
CaHP0,-2H20. 22.3; NaCI, 2.6; K citrate-H20, 7.7; 
K2S04, 1.8; MgO, 0.84; MnCO,, 0.1 1 ; Fe citrate, 
0.21 ; KIO,, 0.00036; Na,SeO,, 0.00026; 
CrK(SO,),-1 2H20, 0.01 9; CuC03, 0.01 2; 
ZnS0,7H20, 0.221. 
3Vitarnin premix at 1 % of the diet supplied the 
following concentration of vitamins (mglkg diet): 
thiamin HCI, 6; riboflavin, 6; pyridoxine HCI, 7; 
niacin, 30; Ca pantothenate, 16; folacin, 2; biotin, 
2.2; cyanowbalamin (0.1 % in mannitol), 25; retinyl 
acetate (beads) (500,000 IUlg), 8; dla-tocopheryl 
acetate (powder) (250 IUlg), 300; cholecalciferol 
(beads) (400,000 IUlg), 2.5; menadione. 0.5. 



removed from the uterus, extra-embryonic tissues were separated and 

fetal and placental weights recorded. All live fetuses were examined for 

external malformations (Taylor 1986). Following euthanasia, one-half 

were placed in Bouin's fluid (BDH Inc., Edmonton, AB) for decalcification 

and subsequent examination for visceral malformations by Wilson's razor 

blade technique (Wilson 1965); crown-rump lengths were measured after 

24 hours. The remainder were skinned. eviscerated and placed in 95% 

ethanol (Stanchem lnc., Winnipeg, MB) for subsequent clearing with 

potassium hydroxide (BDH, lnc., Edmonton, AB), staining with Alizarin red 

S (BDH Inc., Edmonton, AB) and examination for skeletal malformations - 

(Taylor 1986). Pooled fetal liver and brain samples as well as maternal 

liver and brain were retained for taurine analysis. Protein was analysed 

by a modification of the Lowry procedure (Markwell et al. 1978). All 

tissues were stored frozen at -70°C. 

5.2.3 Taurine analysis 

Tau rine was analysed by reverse-phase H P LC using precolumn 

derivatization with ortho-phthalaldehyde (Sigma Chemical Company, St. 

Louis, MO) and electrochemical detection and using a modification of the 

method of Donzanti and Yamamoto (1988). The protocol for this method 

and the validation procedures used are presented in Chapter 4. 



5.2.4 Statistical analyses 

Continuous variables, such as fetal weight and tissue taurine 
- 

concentrations, were analysed by one-way analysis of variance followed 

by Tukey's test. Discrete developmental data, such as the number of live 

fetuses or percent resorptions, were analysed by the Kruskal-Wallis test. 

A probability of less than 0.05 was considered significant. The litter was 

used as the statistical unit for analysis of crown-rump lengths, placental 

and fetal weights (Haseman and Hogan 1975). 

5.3 RESULTS 

Maternal feed intake and weight gain data are given in Table 5.2. 

Treatment with low dietary taurine and varying doses of GES had no effect on 

feed intake. Dams receiving 2% GES gained significantly less weight (P=0.022) 

than control animals; however, dams receiving the two lower doses (0.5 and 

1 .O% GES) had weight gains that were not statistically different than controls. 

Low dietary taurine and GES consumption during pregnancy depressed 

taurine concentrations in both maternal and fetal tissues (Table 5.3). Treatment 

with 0.5-2.0% GES significantly decreased liver taurine concentrations in the 

dams to approximately 15% of that of controls (P=0.0001); no differences were 

found among the three GES doses. Fetal liver showed a similar pattern with the 



Table 5.2 

Effect of Taurine Deficiency on Maternal Feed Intake and Weight Gain in the Rat 

Treatment Group1 
- --- -- ... - 

CONTROL 0.5% GES 1 .O% GES 2.0% GES 

Feed Intake (9120 days) 

Weight Gain (9120 days) 124.9k8.7" 1 04.0i5.5aab 1 08.0f 3.7a'b 96.3k5.6" 

'Results expressed as mean ASEM; n=8 for Control and 1 .O% GES, n=7 for 0.5 and 2.0% GES. Statistical analysis was 
one-way ANOVA followed by Tukey's test. Values in a row not sharing a common superscript are significantly different (P~0.05). 



Table 5.3 

Tissue Taurine Levels in Dams and Fetuses Exposed to Low Dietary Taurine 
and Varying Doses of Guanidinoethyl Sulfonate 

Treatment Group1 

CONTROL 0.5% GES 1 .OO/o GES 2.0% GES 

Maternal Tissue 
4 
h> Liver (~mollg ww) 12.3+.0.8a 2.07*0.23b 1 .76*0.2Ob 1.55~0.08~ 

Brain (pmollg ww) 4.27kO. 1 1 " 2.72k0.1 8b 2.37*0.11 b,c 1 .99i0.08c 

Fetal Tissue 

Liver ()lmollg ww)' 9.79k0.22" 5.45*0.11 4.75k0.1 5b 4.58k0.35b 

Brain (pmollg W W ) ~  16.7k0.2' 13 .6~0 .5~  1 2.6*0.3b.c 11.9k0.2" 

'Results expressed as meankSEM; n=8 for Control and 1.0% GES, n=7 for 0.5% and 2.0% GES. Statistical analysis was one-way 
ANOVA followed by Tukey's test. Values in a row not sharing a common superscript are significantly different (Pq0.05). 
'Fetal tissue was pooled for taurine analysis. 



taurine concentrations of treatment groups depressed to approximately 50% of 

that of control animals (P=0.0001). Brain taurine concentrations in the dam were 

significantly decreased in all taurine-deficient groups to approximately 55% of 

that of controls (p=0.0001). Fetal brain taurine was similarly depressed to 

approximately 75% of that of control animals (p=0.0001). The 0.5% and 2.0% 

GES treatment groups were statistically different from one another for both 

maternal and fetal brain taurine levels. Similar degrees of taurine depletion 

were found when data were expressed in nmol taurinelmg protein (Appendix A). 

Reproductive outcome data are given in Table 5.4. The decreased 

maternal weight gain seen in the group treated with low dietary taurine and 2% 

GES can be attributed to the significantly smaller litter weights found in this 

group (P=0.0422). There were no significant effects of maternal taurine 

deficiency on male or female fetal weights, placental weights or fetal crown-rump 

lengths. Although not statistically significant, animals receiving 2% GES 

demonstrated a trend towards fewer implantation sites and live fetuses per litter 

then any of the other experimental groups; this resulted in an apparent higher 

percent of resorptions and late deaths. This trend was associated with unilateral 

pregnancies in four of seven dams from this group. Bilateral pregnancies were 

found in all dams from each of the other experimental groups. 

Finally, gross assessment of fetuses revealed no significant external. 

visceral or skeletal malformations due to GES-induced taurine deficiency in any 

treatment group. 



Table 5.4 

Influence of Taurine Deficiency on Reproductive Parameters 

Treatment Group' 

CONTROL 0.5% GES 1.0% GES 2.0% GES 

LITTER WEIGHT (g)2 

FETAL WEIGHT ( Q ) ~  

Males 

Females 

PLACENTAL WEIGHT (g)2 

CROWN-RUMP LENGTH (mm)2 

1MPLANTATION SITES PER LITTER3 

LIVE FETUSES PER LITTER3 

RESORPTIONS & LATE DEATHS3 

Percent of Implantation Sites 

Number of Litters Affected 

UNILATERAL PREGNANCY4 

Number of Litters Affected 

'Results expressed as meankSEM; n=8 for Control and 1.0% GES, n=7 for 0.5 and 2.0% GES. 
'statistical analysis was one-way ANOVA followed by Tukey's test. Values in a row not sharing a common superscript are 
significantly different (Pc0.05). 'Statistical analysis was a Kruskal-Wallis lest. Values in a row not sharing a common 
superscript are significantly different (Pc0.05). 'Implantation sitesconfined to either left or right uterine horn. 



5.4 DISCUSSION 

- 
Treatment of pregnant rats with taurine-deficient diets and varying doses 

of GES produced a sharp decline in maternal liver and brain taurine 

concentration to 15 and 55% of that of control levels, respectively. Similar 

depressions (to 35 and 30% of that of controls) have been reported in dams 

administered 1 % GES for the final 10 days of gestation (Ejiri et al. 1987). 

In the fetus, taurine is supplied primarily by the mother via the placenta 

(Huxtable and Lippincott 1982; Stunan 1982). Therefore, when maternal 

taurine status is depressed during gestation, fetal tissue taurine concentrations 

can also be compromised. Evidence for GES-induced fetal taurine deficiency in 

this study was demonstrated by a depression of both brain and liver taurine in 

fetal tissues to 50 and 75% of that of control levels, respectively. One-day-old 

pups from dams fed 1 % GES two weeks prior to mating had similarly depressed 

liver and brain taurine concentrations, 60 and 65% of that of controls (Bonhaus 

et al. 1985). For both liver and brain, fetal taurine concentrations appear to be 

more highly conserved than maternal taurine concentrations. This trend is 

consistent with other studies that examined taurine concentrations of fetuses 

(Ejiri et al. 1987) and neonates (Bonhaus et al. 1985; De la Rosa and Stipanuk 

1984) from dams receiving 1 % GES for varying lengths of time prior to and 

during gestation. 

In this study, fetal brain taurine is most highly conserved, with 



approximately 75% being retained at day 20 of gestation. Turnover of taurine in 

fetal brain is slower than that in fetal !iver (Sturman et al. 1977; Sturman 1982). 
- 

which may account for this difference. Although the differences in maternal and 

fetal brain taurine concentrations between the 0.5 and 2.0% GES groups were 

statistically significant, physiologically the differences are small. In effect, very 

similar degrees of taurine depletion were achieved at all doses of the analogue. 

Much of the depression in maternal weight gain in the group treated with 

2% GES can be attributed to the smaller litter weights of these dams. This 

decrease in litter weight is due to smaller litter size and not to the intrauterine 

growth retardation reported in taurine-deficient cats (Sturman and Messing 

1991 ). Fetal weights were similar among all experimental groups for both male 
' 

and female fetuses. Maternal taurine deficiency did not influence placental 

weight or crown-rump lengths. In addition, no differences in organ to body 

weight ratios for fetal brain or liver were obsewed (Appendix 6). In a previous 

study, treatment of dams with 1 % GES in the drinking water from 2 weeks prior 

to mating and for the duration of gestation, produced no effect on the number of 

dams delivering litters, litter size or pup weight at birth (Bonhaus et al. 1985). 

Conversely, Ejiri et al. (1 987) reported that rats treated with 1 % GES from day 

11 of gestation produced fetuses with significantly depressed whole body, liver 

and brain weights at day 21 of gestation. Unfortunately, the fetus rather than the 

litter was used as the unit for statistical analysis in that study; therefore, 

significant differences between groups may have been found where none 



existed (Haseman and Hogan 1975). While no increase in intrauterine fetal 

death rate or malformations was noted (Ejiri et al. 1987), it is not clear how the 
- 

latter were assessed. The gross assessment of fetuses in the present study, 

using standard teratological techniques. revealed no significant external, 

visceral or skeletal malformations due to GES-induced taurine deficiency. 

Dams treated with 2% GES appear to have fewer implantation sites and 

live fetuses per litter than all other experimental groups. Although these animals 

appear to have a higher percent of resorptions and late deaths when expressed 

relative to the number of implantation sites, this is entirely attributable to fewer 

implantation sites and not to larger numbers of resorptions and late deaths. The 

decrease in litter size was specifically associated with confinement of 

implantation sites to either the left or right uterine horn in four of seven dams. 

While these trends are interesting, the necessity of utilizing nonparametric 

statistics for this type of data made it difficult to achieve statistical significance. 

The decrease in implantation sites and the presence of unilateral pregnancies in 

dams treated with 2% GES in this study are suggestive of increased 

reproductive loss possibly through preimplantation loss. Unfortunately, this 

possibility was not explored as corpora lutea were not counted. Preimplantation 

loss has also been implicated in the pregnancy failure seen in taurine-deficient 

cats (Dieter et a[. 1993). 

Although the role of taurine in mammalian embryonic development during 

the preimplantation stage is not clearly defined, this function has recently been 



explored. Cultured two-cell stage mouse embryos in media containing > 1 

mmol/L taurine (Dumoulin et al. 1992) and one- or two-cell pig embryos cultured 
- 

in media containing 7 mmollL taurine (Petters and Reed 1991 ) produce 

blastocysts significantly more often than embryos cultured in taurine-free media. 

In addition to this in vitro evidence, taurine has been found to comprise about 

60% of the total free amino acid content in mouse oviduct flushings (Dumoulin et 

al. 1992) and is present in highest concentrations (1 1.7 mmollL) in human 

uterine fluid during the luteal phase, during which implantation occurs (Casslen 

1 987). 

It can be hypothesized that treatment of rats with GES prior to 

implantation may depress uterine taurine concentration thereby affecting 

preimplantation development. Though increasing the dose of analogue above 

0.5% had little additional effect in depressing maternal liver and brain taurine 

concentrations in this study, uterine taurine levels were not measured. It is 

possible that treatment with 2% GES depressed uterine taurine concentrations 

to a greater extent than treatment with the two lower doses (0.5 or 1 .O% GES) 

and that this hypothetical change in uterine taurine levels translated into an 

increase in preimplantation loss. Treatment of rats with this dose of analogue 

could be further explored as a model for the reproductive loss seen in the cat. 

It can be concluded that the GES-induced taurine deficiency in the rat is 

not a good model for studying all developmental effects of taurine deficiency. 

No level of GES produced the intrauterine growth retardation or malformations 



(Sturrnan and Messing 1991 ; Sturman et al. 1986) previously described in 

kittens born to taurine-deficient cats. This may be attributable to greater 

depletion in cats fed taurine-free diets (Sturrnan and Messing 1 991 ) compared 

with the extent of depletion achieved with low dietary taurine and GES in the rat. 

However, pre- and postnatal exposure to GES in the rat is a useful model for 

studying the function of taurine in photoreceptors, as morphological changes in 

the retina are similar to those observed in taurine-deficient kittens (Bonhaus et 

al. 1985; Pasantes-Morales et al. 1983). In addition, the data from the current 

study suggest that treatment of rats with 2% GES could be further explored as a 

model for the reproductive loss seen in the cat. 



Chapter 6 

EXAMINATION OF THE INTERACTION BETWEEN ZINC 

AND TAURINE: A PILOT STUDY 

Based on the results presented in Chapter 5 it was evident that the effect of 

taurine deficiency on development in the rat, as assessed by evaluation of fetal 

weight and incidence of congenital malformations at day 20 of gestation, does 

not produce the degree of reproductive loss previously observed in the taurine- 

deficient cat (Sturman et al. 1985; Sturrnan and Messing 1991 ). Therefore, it 

was concluded that incidence of fetal malformations may be an inadequate 

indicator with which to explore the proposed interaction between zinc and 

taurine in vivo. 

Alternatively, the high concentration of zinc (Eckhert 1983) and taurine 

(Heinamaki et al. 1986) in ocular tissue and the purported importance of these 

nutrients in maintaining eye structure and function (Leure-duPree and McClain 



1982; Sturman et al. 1986). suggested that the eye might be a unique 

physiological system in which to study this interaction. As well, some 

developmental insults, which do not result in physical malformations, can induce 

significant and lasting functional defects postnatally (Tonkiss et al. 1993). 

Therefore, a pilot study was designed +o assess whether pre- and postnatal 

development of eye structure and function would be a more sensitive endpoint 

for demonstrating an interaction between zinc and taurine in vivo. This study 

would allow confirmation of the incidence of congenital malformations at day 20 

of gestation in marginal zinc, taurine and combined zinc and taurine 

deficiencies. In addition, the effectiveness of the protocol for inducing marginal 

zinc deficiency and obtaining ocular measurements in the rat could be explored. 

6.2 MATERIALS AND METHODS 

6.2.4 Animals and treatment 

Virgin female Sprague-Dawley rats (weighing 220-250 g) were 

obtained from Charles River, St. Constant, Quebec and housed in a room 

controlled for temperature (20-22OC) and light (1 2 1  2hr lightldark cycle). 

Animals were cared for in accordance with the principles of the Guide to 

the Care and Use of Experimental Animals (Canadian Council on Animal 

Care 1993). All procedures used in this study were approved by the 



University of Saskatchewan Committee on Animal Care and Supply. 

Animals were fed control diet for at least 7 days and bred 
- 

overnight. On day 0 of gestation, as determined by the presence of 

sperm in vaginal smears, the females were placed individually in stainless 

steel cages and randomly assigned to 1 of 4 treatments. Treatments 

consisted of 4 diets formulated with 2 levels of zinc (+Zn, 50 yg Znlg diet: 

Zn, 9 pg Znlg diet) and 2 levels of taurine (+Tau, 2 pmol taurinelg diet; 

-Tau, 0 pmol taurinelg diet) in the following combinations: +Znl+Tau 

(control), +Znl-Tau, -Znl+Tau or -Zn/-Tau. The above groups were 

provided with free access to modified AIN diets (Table 5.1 ) and distilled - 

deionized water. One percent (wlv) GES was added to the drinking water 

of the +Zn/-Tau and -Zn/-Tau groups. Feed intake was recorded daily 

and weight recorded weekly. 

GES was synthesized and purified (POS Pilot Plant Corporation. 

Saskatoon, SK) according to the method of Morrison et al. (1 958). 

Reverse-phase HPLC confirmed that a 1 % (wlv) solution of GES 

contained <0.001 pmollmL taurine; atomic absorption spectrophotometry 

revealed cO. 1 pglmL zinc. 

6.2.2 Biomicroscopy and indirect ophthalmoscopy 

Biomicroscopy and indirect ophthalmoscopy were completed on all 

dams prior to breeding. Animals with pre-existing eye disease were 



excluded from the study. Similar examinations were to be performed on 

pups (4ldam) at 3 and 6 weeks postnatal age. The veterinary 
- 

ophthalmologist who completed these examinations was blinded to the 

treatment groups. 

6.2.3 Prenatal outcome 

On day 20 of gestation, dams were anaesthetized with 

methoxyflurane (Janssen Pharrnaceutica, Mississauga, ON) and 

laparotomies performed (+Znl+Tau, n=2; +Znl-Tau, n=l ; -&/+Tau, n=3; 

-Zn/-Tau, n=l).  Following hysterectomy, fetal position in the uterine horn, 

implantation sites, resorption sites and live and dead fetuses were 

recorded. Dams were killed by decapitation. Fetuses were removed from 

the uterus, extra-embryonic tissues were separated and fetal and 

placental weights recorded. Fetuses were killed by decapitation and 

placed in Bouin's fluid (BDH lnc., Edmonton, AB) for decalcification and 

subsequent examination for visceral malformations by Wilson's razor 

blade technique (Wilson 1965). Fetal eyes were assessed for 

malformations by light microscopy. 

6.2.4 Postnatal outcome 

On day 20 of gestation, the remaining dams were transferred to 

stainless steel cages fixed with plastic mesh bottoms (+Zn/+Tau, n=3; 



+Znl-Tau, n=3; -Zni+Tau, n=3; -Znl-Tau, n=2). The following describes 

the remainder of the protocol which was not carried out due to the 

mortality described below. Litters were to be culled to 8 pups at postnatal 

day 4 and maintained on their respective diets. At postnatal weeks 3 and 

6, pups (Udam) were to undergo measures of ERG. Animals were then to 

be anaesthetized with methoxyflurane, blood taken by cardiac puncture 

and the animals killed by decapitation. Liver, plasma and tibia were to be 

collected for analysis of zinc concentrations; liver was to be retained for 

analysis of taurine levels. Eyes were to be fixed in Bouin's fluid for 

subsequent examination by light microscopy. 

6.2.5 Statistical analysis 

Feed intake and weight gain in dams were analyzed by two-factor 

ANOVA with zinc and taurine as the independent variables 

( SuperANOVA, Abacus Concepts, Berkeley, CA). A probability of less 

than 0.05 was considered significant. 

6.3 RESULTS 

6.3.1 Outcome for the dams 

Body weight and feed intake of all dams to day 20 of gestation are 

84 



presented in Table 6.1. No interaction was apparent for either parameter 

No effect of marginal zinc deficiency or taurine deficiency on weight gain 

or feed intake was noted. 

All dams in the -Znl+Tau and -Znl-Tau group had lesions on their 

paws at parturition, indicative of zinc deficiency (Clegg et al. 1989). 

These signs were not apparent in the zinc-adequate groups. In addition, 

those dams from the -Znl+Tau and -Znl-Tau groups which were allowed 

to deliver tended to have more difficult parturitions and to neglect their 

pups. As a result these pups died sooner then pups from the zinc- 

adequate group (see section on postnatal outcome). 

Ophthalmic examination of all dams, just prior to day 20 of 

gestation, revealed a high incidence of incipient cortical cataracts which 

were most obvious on the suture lines in the -Zn/+Tau (516) dams as 

compared to dams from the -Zn/-Tau (2/5), +Znl-Tau (015) and +Znl+Tau 

(1 15) groups. 

6.3.2 Prenatal outcome 

No evidence of significant congenital malformations were observed 

in any experimental group. Assessment of intrauterine growth retardation 

was not possible due to the small numbers and the need to use the litter 

as the statistical unit (Haseman and Hogan 1975). Fetal weights 

(meaniSD) are as follows: +Zn/+Tau 3.48N.16 g, n=2; +Zn/-Tau 4.49 g, 





n=l (based on n=l  dam with n=l fetus); -Znl+tau 3.40k0.24 g, n=3; -Zn/- 

Tau 2.8020.17 g, n=1. 

There were no obvious abnormalities in other determinants of 

pregnancy outcome except for the one +Zn/-Tau dam noted above which 

had only 1 fetus and no other visible implantation sites. 

Histological assessment of fetal eyes at day 20 of gestation did not 

reveal ocular malformations in any experimental group. 

6.3.3 Postnatal outcome 

It was not possible to assess postnatal development of eye 

structure and function as an endpoint for exploring the zinc and taurine 

interaction as 100% pup mortality in 10 out of the 11 dams allowed to 

deliver was observed. 

Ringtail was apparent in pups from all experimental groups 

suggestive of problems of low humidity in the animal housing unit (Dennis 

1 986). 

Five pups from one +Zn/-Tau dam survived and were followed 

postnatally until week 10. The only eye abnormality detected with the 

slitlamp biomicroscope was cortical cataracts. These were most obvious 

on the suture lines and were observed in all five animals. No retinal 

changes were apparent by indirect ophthalmoscope. 



6.4 DISCUSSION 

The high incidence of lesions at parturition, on the paws of dams fed 

marginally zinc-deficient diets, are characteristic of zinc deficiency (Clegg et al. 

1989). It was also found that dams from the -Zn/+Tau and -Znl-Tau groups 

tended to have more difficult parturitions and to neglect their pups. 

Consequently, these offspring died sooner then those from the zinc-adequate 

group. Based on the latter observation, the zinc content of the marginal zinc- 

deficient diet was reevaluated. To improve pup survival, the decision was made 

to increase the zinc content of the marginally zinc-deficient diet to 15 pg/g 

throughout gestation, to be reduced to 7.5 pg/g at parturition, for subsequent 

experiments (Herzfeld et al. 1985; Oteiza et al. 1990; Rogers et al. 1 985). Zinc 

status of pups in the pilot study was not assessed due to the high incidence of 

pup mortality. 

As predicted, no evidence of significant congenital malformations were 

apparent in any experimental group at day 20 of gestation. Light microscopic 

assessment of fetal eyes at this timepoint similarly revealed no ocular 

malformations in any group studied. Unfortunately, the pup mortality in the 

postnatal group prevented an evaluation of eye morphology and function at 3 

and 6 weeks postnatal age. 

Premature pup death was observed in all groups including the control 

group. We also observed ring tail in pups from all experimental groups. 



Subsequent experimentation has allowed confirmation that low humidity in the 

animal housing room was to blame. 

The high incidence of cataracts in the zinc-deficient dams and taurine- 

deficient pups is interesting; however, assessment of cataracts was not a main 

objective of this experiment. It is possible that the cataract formation observed 

was secondary to retinal damage; however, no retinal changes on 

ophthalmoscopic examination in the dams in any experimental group were 

found. The cataracts may also have been due to environmental stress (low 

humidity) andlor zinc- and taurine-deficiency per se. The intent of this study was 

to assess retinal structure and function in pups made zinc- and taurine-deficient 

throughout gestation and postnatal life. Unfortunately, the high incidence of - 

mortality made retinal assessment of pups impossible. 

In summary, this study confirmed the lack of congenital malformations at 

day 20 of gestation in both marginal zinc and taurine deficiencies. These results 

support the earlier claim that incidence of fetal malformations may be an 

inadequate indicator with which to explore the proposed interaction between zinc 

and taurine in vivo. The high incidence of pup mortality made it impossible to 

evaluate pre- and postnatal development of eye structure and function as a more 

sensitive endpoint for demonstrating this interaction. The effectiveness of the 

protocol for obtaining ocular measurements in the rat was similarly not 

assessed. To improve pup survival in future studies, the zinc content of the 

marginally zinc-deficient diet will be increased to 15 pglg throughout gestation. 



At parturition, this level will be reduced to 7.5 pglg to maintain a marginal model 

of zinc deficiency (Herzfeld et al. 1985; Oteiza et al. 1990; Rogers et al. 1985). 



Chapter 7 

ZINC INTERACTS WITH TAURINE IN THE 

DEVELOPING RAT RETINA: OSCILLATORY POTENTIALS AND 

LIGHT MICROSCOPIC CHANGES' 

7.1 INTRODUCTION 

Reports that the nutrients zinc and taurine interact have prompted interest 

in the physiological significance and possible mechanisms responsible for this 

phenomenon (Pasantes-Morales et al. l987b). Isolated frog rod outer segments 

exposed to ferrous sulfate display extensive disruption of their structure, 

characterized by acute swelling and disc membrane disorganization. The 

'Versions of this chapter have been published [Gottschall-Pass et al. (1 997) 
Oscillatory potentials and light microscopic changes demonstrate an interaction 
between zinc and taurine in the developing rat retina J. Nutr. 127: 1206-1 21 3 
and Paterson et al. (1 997) Effect of zinc and taurine status during prenatal and 
postnatal periods on oscillatory potentials in the mature rat retina. In: Trace 
Elements in Man and Animals-9. Proceedings of the Ninth International 
Symposium on Trace Elements in Man and Animals (Fischer, P.W.F. et al., Eds) 
pp. 89-90. NRC Press. Ottawa, Canada]. Reproduced with permission of the 
American Society for Nutritional Sciences and NRC Research Press. 



addition of zinc or taurine alone to the culture medium is ineffective in protecting 

against this outer segment damage; however, zinc and taurine, added together, 

provide protection in a synergistic manner (Pasantes-Morales and Cruz 1984). 

In vivo experimentation contributes further evidence for this interaction. Plasma 

taurine concentration is increased in severely zinc-deficient rats (Griffith and 

Alexander 1 972). Griffith and Alexander (1 972) found no alteration in the urinary 

excretion of taurine in zinc deficiency; other researchers have described an 

increase (Anthony et al. 1971, Hsu and Anthony 1970). Interest in the 

interaction between zinc and taurine in neurological disorders has also been 

reported (Barbeau and Donaldson 1974, Shapcott et al. 1984). 

The developing retina may be a sensitive tissue in which to explore the 

interaction between zinc and taurine. A 50% reduction in retinal taurine in the 

cat results in retinal degeneration characterized by a decrease in a- and b-wave 

amplitudes of the electroretinogram (Berson et al. 1976) and degeneration of the 

photoreceptor outer segments (Hayes et al. 1975). With prolonged taurine 

deficiency, blindness develops. The addition of 200 ~JM zinc to the drinking 

water of the taurine-deficient cat can provide partial protection to the a-wave 

amplitude of the electroretinogram (Pasantes-Morales et al. 1987a). During 

gestation and early postnatal life, taurine plays an important role in retinal 

development. Kittens born to taurine-deficient queens have shortened 

photoreceptors characterized by severely disorganized outer segments (Imaki et 

al. 1986). 



Rats made taurine-deficient using guanidinoethyl sulfonate (GES). a 

structural analogue of taurine, develop similar retinal changes as those 

observed in cats. These include reduced a- and b-wave amplitudes of the 

electroretinogram (Cocker and Lake 1987, Hageman and Schmidt 1987, Lake 

1986, Rapp et al. 1987) and degeneration of the photoreceptors (Lake and 

Malik 1 987, Pasantes-Morales et al. 1983). Treatment of rats with 1 % GES 

throughout gestation produces a degeneration of the photoreceptor layer of the 

retina in pups similar to that observed in kittens (Bonhaus et al. 1985). 

The influence of zinc on the retina is less clear. Examination of fetuses 

from severely zinc-deficient dams, at day 12 and 14 of gestation revealed that 

invagination of the optic cup was often deficient and that closure of the choroid 

fissure did not occur. This resulted in retinal folding at the choroid fissure that 

was visible at term (Rogers and Hurley 1987). When zinc deficiency was 

instituted at parturition, eye lid opening was delayed but no morphological 

alterations were noted among photoreceptor cells at weaning (Sinning et al. 

1 984). 

The influence of zinc and taurine on oscillatory potentials (OPs) has not 

been reported. Oscillatory potentials are a series of rhythmic consecutive 

discharges of retinal neurons found superimposed on the b-wave of the ERG 

(Speros and Price 1981). It is thought that these oscillations are generated 

independently from the mechanism producing the primary components of the 

ERG, the a- and b-waves, at a more proximal location, possibly the inner nuclear 



layer (el Azazi and Wachtmeister 1990). The objective of this research was to 

investigate whether the proposed interaction between zinc and taurine 

influences the development of retinal structure and function in rats as examined 

by light microscopy and oscillatory potentials. In addition, the effect of this 

interaction on zinc and taurine status of the animals was determined. 

7.2 MATERIALS AND METHODS 

7.2.1 Animals and treatment 

Virgin female Sprague-Dawley rats (weighing 220-250 g) were 

obtained from Charles River, St. Constant, Quebec and housed in a room 

controlled for temperature (20-22OC) and light (1 2-hr 1ight:dark cycle). 

Animals were cared for in accordance with the principles of the Guide to 

the Care and Use of Experimental Animals (Canadian Council on Animal 

Care 1993). All procedures used in this study were approved by the 

University of Saskatchewan Committee on Animal Care and Supply. 

Rats were fed control diet for at least 7 days and bred overnight. 

On day 0 of gestation, as determined by the presence of sperm in vaginal 

smears, the females were placed individually in stainless steel cages and 

randomly assigned to 1 of 5 treatments. Treatments consisted of 4 diets 

formulated with 2 levels of zinc (+Zn, 50 pg Znlg diet; -Zn, 15 pg Zn/g 



diet) and 2 levels of taurine (+Tau, 2 vmol taurinelg diet; -Tau. 0 pmol 

taurinelg diet) in the following combinations: +Znl+TauAL (control), +Zn/- 

Tau, -Zn/+Tau or -Zn/-Tau. The above groups were provided with free 

access to modified AIN-93G diets (Reeves et al. 1 993) and distilled 

deionized water. A fifth group (+Znl+TauPF) was fed control diet and 

individually pair-fed to their respective psirs in the -Znl+Tau group. The 

basal diet presented in Table 7.1 contains <0.001 pmollg taurine as 

determined by HPLC. One percent (wlv) GES was added to the drinking 

water of the +Zn/-Tau and -Znl-Tau groups. Zinc concentration of the 

-Znl+Tau and -Zn/-Tau diets was further reduced to 7.5 pglg at 

parturition. 

On day 20 of gestation, dams were transferred to stainless steel 

cages fixed with plastic mesh bottoms and provided with 30 x 50 crn of 

absorbent paper (VWR, Edmonton, AB) as nesting material. Litters were 

adjusted to 7-10 pups at postnatal day 4. Nesting material was removed 

within 7 days of birth. At postnatal day 23, male pups (lO/treatrnent) were 

weaned onto their respective diets. Feed intake was recorded daily and 

weight recorded weekly for the pups. 

GES was synthesized and purified (POS Pilot Plant Corporation, 

Saskatoon, SK) according to the method of Morrison et al. (1 958). 

Reverse-phase HPLC confirmed that a 1 % (wlv) solution of GES 

contained c0.001 pmollrnl taurine; atomic absorption spectrophotometry 



Table 7.1 

Composition of Basal Diet' 

INGREDIENTS AMOUNT 
(g/kg diet) 

Spray-dried egg white 

Soybean oil2 

Glucose hydrate 

Fiber (Solkafloc) 

Mineral premix3 

Vitamin premix4 

Choline bitartrate 

Tert-butyl hydroquinone 

'AIN 93G diet. To vary the zinc (zinc carbonate) andlor taurine 
concentrations in the diet, premixes of each were prepared in 
glucose. 
2Phy~loquinone at 0.91 mglkg diet added to soybean oil. 
3Mineral premix supplied the following concentration of minerals in 
glkg mix: calcium carbonate, anhydrous, 80; calcium phosphate, 
dibasic, 377; potassium sulfate, 46.6; potassium citrate, tripotassium, 
37; magnesium oxide, 24; ferric citrate, 6.06; manganous carbonate, 
0.63; cupric carbonate, 0.30; potassium iodate, 0.01 ; sodium 
selenate, anhydrous, 0.01 367; ammonium paramolybdate, 4 hydrate, 
0.00795; sodium meta-silicate, 9 hydrate, 1.45; chromium potassium 
sulfate, 12 hydrate, 0.275; lithium chloride, 0.0174; boric acid. 
0.081 5; sodium fluoride, 0.0635; nickel carbonate, 0.0318; 
ammonium vanadate 0.0066. 
'Vitamin premix supplied the following concentration of vitamins in 
g/kg mix: thiamin HCI, 0.6; riboflavin, 0.6; pyridoxine HCI, 0.7; 
nicotinic acid, 3: Ca pantothenate, 1.6: folic acid, 0.2; D-biotin, 0.22; 
cyanocobalamin (0.1 % in mannitol), 2.5; all trans-retinyl palmitate 
(250,000 IU/g), 1.6; all rac-a-tocopheryl acetate (250 IUig), 30; 
cholecalciferol (400,000 Wig), 0.25. 



revealed c0.1 pglml zinc. 

7.2.2 Biomicroscopy and indirect ophthalmoscopy 

Biomicroscopy and indirect ophthalmoscopy were completed on all 

dams and males prior to breeding. Rats with preexisting eye disease 

were excluded from the study. Similar examinations were performed on 

the pups at 4 and 7 weeks postnatal age. The veterinary ophthalmologist 

who completed these examinations was not aware of treatment group 

during the examination. 

7.2.3 Oscillatory potentials 

Oscillatory potentials were recorded on pups at 7%8% weeks of 

age after overnight dark adaptation. Recordings were made within 5 

hours of the usual onset of light. Rats were anaesthetized with an 

intramuscular injection of ketamine (30 mg/kg body wt; rogarfST8 lnc., 

London, ON) and xylazine (7-8 mglkg body wt; Chemagro Ltd., Etobicoke, 

ON). The right pupil was dilated with 1% tropicamide (Alcon Canada Inc., 

Mississauga, ON) and the cornea anaesthetized with proparacaine 

hydrochloride (Allergan Inc., Markham, ON). The eyelids were retracted 

with plastic clips. Oscillatory potentials were recorded differentially with a 

saline-soaked cotton wick electrode positioned on the cornea and fixed to 

a silver-silver chloride wire. A platinum needle reference electrode was 



inserted subcutaneously 2 mm caudal to the lateral canthus; a platinum 

needle ground electrode was positioned at the base of the tail. The rats 

were placed in a Cadwell PA40 Ganzfeld Full-Field Stimulator (Cadwell 

Laboratories, Inc., Kennewick. WA) at a premarked position to ensure 

consistent eye placement. All procedures were carried out under dim red 

light. 

The light intensity used was 45 jouleslcm2 measured at 

approximate rat eye level, with a Pasco High Sensitivity Photometer 

model # 0s-8020 (Pasco Scientific, Roseville, CA). Ten 1.2 millisecond 

pulses were presented at a rate of 3.6 flasheslminute. Oscillatory 

potential response was recorded using a low-cut filter setting of 30 Hz 

and a high-cut filter setting of 200 Hz. Data were averaged using a 

Cadwell 5200A (Cadwel l Laboratories, Inc.. Kennewick, WA) and stored 

on computer using the Cadwell 5200A SavelRecall Program (Cadwell 

Laboratories, Inc., Kennewick. WA). Amplitude and latency were 

determined for each oscillatory potential wavelet. OP, amplitude was 

measured from baseline; the amplitudes of OP,, OP,, OP,, and OP, were 

measured from the lowest preceding deflection. Oscillatory potential 

latencies were measured from stimulus onset to the peak of each wavelet. 

7.2.4 Zinc and taurine analysis 

Rats were anaesthetized with methoxyflurane (Janssen 



Pharrnaceutica. Mississauga. ON), blood was taken by cardiac puncture 

and the rats killed by decapitation. The left eyes from 8 rats per group 

were reserved for zinc analysis. Eyes from 4 independent rats per group 

(2 left and 2 right) were retained for taurine analysis. Plasma, liver and 

tibia were also taken for zinc analysis. Liver was stored for taurine 

analysis. Tissues were collected on ice and stored at -70°C for taurine 

analysis or -20°C for zinc analysis. Tissues were collected in 

polypropylene vials, all glassware was acid washed and the necessary 

precautions were taken to prevent trace element contamination from the 

environment. 

Liver and eye taurine concentrations were determined by HPLC 

using the method described in Chapter 4. Plasma zinc was determined 

by flame atomic absorption spectrophotornetry (FAAS) after diluting the 

sample (1 :4) with distilled, deionized water. Liver, tibia and eye zinc were 

determined by FAAS after wet ashing (Clegg et al. 1981 ). Two eyes were 

pooled for each analysis. All readings were conducted with the 

instrument in the absorbance mode. Zinc concentrations were calculated 

from the absorbance values by use of a linear regression equation, which 

was obtained with seven standard concentrations made in 0.1 rnol/L 

Ultrex grade HNO, (PDI Joldon, Aurora, ON). National Institute of 

Standards and Technology (Gaithenburg, MD) bovine serum or bovine 

liver was included in sample runs as a standard reference material. 



Recovery for these reference materials was 91.7% and 95.7-1 02.2%. 

respectively. 

7.2.5 Light microscopy 

The right eyes from 8 rats per treatment group were assigned for 

light microscopic examination. Eyes were enucleated via 

transconjunctival resection and the dorsal (1 2 o'clock position) was 

marked with ink immediately afler killing. Four of these eyes were 

immersed in Bouin's fluid for 24 hours, rinsed in 70% ethanol and stored 

in 70% ethanol until sectioning. Sectioning was completed after the globe 

was orientated and the eye hemisected vertically through the optic nerve. 

Hemisected culottes were embedded in paraffin and sectioned and 

stained routinely with haematoxylin and eosin (Render 1992). Four eyes 

from each treatment group were immersed in 2.5% cacodylate buffered 

glutaraldehyde and 1 mm sections of the retina, choroid and sclera were 

harvested 1 mm below the optic disk. These specimens were washed, 

dehydrated and embedded in epoxy. Semi-thin sections were cut on a 

diamond knife and stained with toluidine blue (Render 1992). 

7.2.6 Statistical analysis 

Data from the +Zn/+TauAL, +Zn/-Tau, -Zn/+Tau and -Zn/-Tau 

groups were analysed by two-factor ANOVA with zinc and taurine as the 



independent variables (SuperANOVA, Abacus Concepts, Berkeley, CA). 

Differences between groups were determined by least significant 

difference (Steel and Torrie 1980). To separate effects due to zinc 

deficiency from those resulting from the voluntary depression in food 

intake which usually accompanies zinc deficiency, data from +Znl+TauPF 

and -Znl+Tau animals were compared with paired 1-tests; data from 

+Zn/+TauAL and +Znl+TauPF animals were compared using unpaired t- 

tests (Statview 51 2+, Abacus Concepts, Berkeley. CA). A probability of 

less than 0.05 was considered significant. 

RESULTS 

7.3.1 Body weight and feed intake 

Body weight and feed intake data are presented in Table 7.2. 

Marginally zinc-deficient pups tended to weigh less at weaning 

(P=O.O717) and week 1 postweaning (P=0.0516); however, no effect of 

zinc was evident at later time points. Marginal zinc deficiency also failed 

to significantly affect feed intake over the course of the study. 

Taurine-deficient pups weighed significantly less at week 1 

(P=0.0053), week 2 (P=0.0030), week 3 (P=0.01 OO), and week 4 

(P=0.0292) postweaning. A similar trend was observed at the conclusion 



Table 7.2 

Effect of Zinc and Taurine on Body Weight and Feed Intake' 

Treatment Group 

+Znl+TauAL +Zn/-Tau -Zn/+Tau -Znl-Tau 2n effect Tau effect Zn x Tau effect 

Body Weight (g) 

Initial 

Day 7 

Day 14 

Day 21 

Day 28 

Final 

Feed Intake (g) 

Week 1 

Week 2 

Week 3 

Week 4 

Final 

'Results expressed as meanf SEM; n=10. Values with different superscripts differ significantly (PcO.05) . Stat istical analysis was by 2 
factor ANOVA with zinc and taurine as independent variables. When a significant effect due to an interaction was found, differences 
between groups were determined by least significant difference. I 



of the experiment (P=0.0860). In addition, taurine deficiency depressed 

feed intake at week 2 (P=0.0170), week 3 (P=O.O161) and week 4 

(P=0.0344); this difference was not apparent at the conclusion of the 

experiment. No interaction between zinc and taurine was detected at any 

time point. 

The +Znl+TauPF animals weighed significantly less than the 

+Zn/+TauAL animals at all time points measured (Px0.05; Appendix C); 

the +Zn/+TauPF animals had weights similar to those of the -Znl+Tau 

group. Mean (kSEM) body weight for the +Zn/+TauPF group at the 

conclusion of the study was 234.8kI 0.2 g (n=lO). In addition, the feed 

intake of the +Znl+TauPF animals was significantly less than that of the 

+Zn/+TauAL animals at week 1, 2, 3 and 4 postweaning (PeO.05; 

Appendix C); a similar trend (P=0.0762) was observed at the conclusion 

of the experiment. The feed intake of the +Znl+TauPF group was 

significantly less than that of the -Znl+Tau group at all time points 

measured. Mean (iSEM) total feed intake for the +Zn/+TauPF group at 

the conclusion of the study was 553.4k37.8 g (n=10). 

7.3.2 Tissue zinc concentrations 

Tissue zinc concentrations are presented in Table 7.3. A 

significant interaction between zinc and taurine was observed for plasma 

zinc concentrations (P=0.0029). Feeding rats marginally zinc-deficient 





diets significantly depressed plasma zinc concentrations (+Znl+TauAL vs 

-Zn/+Tau); this effect was reversed when the animals were also made 

taurine-deficient (-Zn/+Tau vs -Zn/-Tau). 

A significant interaction between zinc and taurine was observed for 

tibial zinc concentration (P=0.0001). Zinc deficiency significantly 

depressed tibial zinc concentrations (+Znl+TauAL vs -Zn/+Tau); however. 

this effect was less pronounced when the animals were also taurine- 

deficient (-Zn/+Tau vs -Znl-Tau). 

Marginal zinc deficiency (P=0.0006) and taurine deficiency 

(P=0.0082) both significantly depressed eye zinc concentrations; 

however, no statistical interaction between zinc and taurine was detected. 

No interaction between zinc and taurine was observed in liver zinc 

concentration. However, marginal zinc deficiency did significantly 

depress liver zinc concentrations (P=0.0001). 

Tissue concentrations of zinc in the +Zn/+TauPF group were 

similar to those of the +Zn/+TauAL group. Mean (SEM) zinc 

concentrations for tissues from the +Zn/+TauPF group are as follows: 

tibia (322.3i4.8 pg/g; n=10), plasma (1 -55k0.08 yglml; n=9), eye 

(1 9.5kl.6 pg/g; n=4) and liver (96.1 Q.9 yglg; n=10). 

7.3.3 Tissue taurine concentrations 

Tissue taurine concentrations are presented in Table 7.3. 



Although a statistically significant interaction between zinc and taurine 

was not demonstrated for liver taurine concentration (P=0.0546), a trend 

was present. When animals were fed taurine-deficient diets and GES, 

liver taurine concentrations were significantly depressed independent of 

zinc status (+Znl+TauAL vs +Zn/-Tau and -Znl-Tau). Zinc deficiency. 

however, significantly elevated the liver taurine levels of taurine-adequate 

animals (+Znl+TauAL vs -Znl+Tau). 

Taurine deficiency significantly depressed eye taurine 

concentrations (P=0.0001), but no interaction between zinc and taurine 

was observed (P=0.9867). 

Tissue concentrations of taurine in the +Znl+TauPF group were 

similar to those of the +Znl+TauAL group. Mean (iSEM) taurine 

concentrations for tissues from the +Zn/+TauPF groups are as follows: 

liver (6.98k0.81 y mollg; n=10) and eye (1 I .  1 kO.5 ymollg; n=4). 

7.3.4 Ophthalmoscopic assessment 

Examination by indirect ophthalmoscope at 7 weeks postnatal age 

revealed focal retinal folds ventral to the optic disc in 5 out of 10 rats 

(Figure 7.1 ) and multiple coalescing patches of choroidal atrophy in 2 out 

of 10 rats from the -Zn/-Tau group. Retinal folds were first noted at 4 

weeks in 4 out of 10 rats. No abnormalities were evident in animals from 

the +Znl+TauAL, &/+Tau, +Znl-Tau or +Znl+TauPF groups. 



Figure 7.1 

Fundus from a Rat Photographed 
Through a 20 Diopter Lens 

Presents a fundus from an animal deficient in zinc and taurine 
(-Znl-Tau). A focal retinal fold is visible (outlined by arrows). 



Biomicroscopic examination at 7 weeks identified the unilateral 

development of uveitis, a focal keratitis and an anterior cortical cataract in 

one animal from the +Znl+TauPF group and one animal from the 

+Zn/+TauAL group. These lesions were consistent with incidental trauma 

and the eyes were not included in electroretinographic or histologic 

assessments. 

7.3.5 Oscillatory potentials 

Oscillatory potentials from a control animal are shown in Figure 

7.2. Individual OP were variably affected by the treatments (Table 7.4). - 

Interactive effects between zinc and taurine were observed in OP, 

(P=0.0346) and OP, (P=0.0357) amplitudes; marginal zinc deficiency 

decreased the amplitude of the oscillatory potential, but only when 

animals were also taurine deficient (+Zn/+TauAL vs -Zn/-Tau). 

Feeding animals marginally zinc-deficient diets significantly 

depressed the amplitude (P=0.0145) and increased the latency 

(P=0.0236) of OP,. The latency of OP, was also significantly increased 

(P=0.0367). Mean (SEM) OP, amplitude of the -Znl+Tau group was not 

significantly different from that of the +Zn/+TauPF group when compared 

by paired t-test (90.6k8.6 pvolts vs 81 -9k7.4 pvolts; n=9; P=0.2632); 

mean (kSEM) OP, amplitude of the +Zn/+TauPF group was significantly 

less than that of the +Zn/+TauAL group when compared by unpaired t-test 
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Figure 7.2 

Oscillatory potentials recorded from a control rat (+Zn/+TauAL) 
after overnight dark adaptation. This tracing is an average of 10 
responses. Oscillatory potentials are labelled OP, to OP,. 



Table 7.4 

Oscillatory Potential Amplitudes and Latencies in Response to Varied 
Zinc and Taurine Status During Gestation and Postnatal Life1 

Treatment Group 

+Zn/+TauAL +Znl-Tau -Znl+Tau -Zn/-Tau Zn effect Tau effect Zn x Tau effect 

OP 1 
Amplitude (pvolts) 

Latency (msec) 

OP 2 
Amplitude (pvolts) 

2 
A Latency (msec) 
0 

OP 3 
Amplitude (pvolts) 

Latency (msec) 

OP 4 
Amplitude (vvolts) 

Latency (msec) 

OP 6 
Amplitude (pvolts) 

Latency (msec) 

'Results expressed as rneankSEM; n=9 for +Zn/+Tau and -Zn/-Tau, n=10 for +Zn/-Tau and -Znl+Tau. Values with different superscripts 
differ significantly (P<0.05), Statistical analysis was by 2 factor ANOVA with zinc and taurine as independent variables. When a 
significant effect due to an interaction was found, differences between groups were determined by least significant difference. 



(81 -9k7.4 pvolts vs 1 1 7~11.4  pvolts ; n=9; P=0.0204). Similarly, mean 

(-+SEM) OP, latency of the -Zn/+Tau group was not significantly different 

from that of the +Zn/+TauPF group (1 3.2k0.3 msec vs 14.1 k0.3 msec; 

n=9: P=0.1038); mean (kSEM) OP, latency of the +Znl+TauPF group was 

significantly greater than that of the +Zn/+TauAL group (1 4.150.3 msec vs 

12.9k0.3 msec; n=9; P=O.Ol67). 

The amplitudes of OP, (P=0.0252) and OP, (P=0.0006), in taurine- 

deficient animals were also significantly depressed; the amplitude of OP, 

demonstrated a similar depression (P=0.0639). However, no significant 

effects of taurine deficiency were seen on the latencies of the oscillatory - 

potentials. 

7.3.6 Light microscopy 

Light microscopy revealed degeneration of photoreceptor outer 

segments and confirmed choroidal atrophy and retinal dysplasia in the 

-Zn/-Tau group (Figure 7.3). Generalized loss of the outer segments of 

the photoreceptors was apparent (Figure 7.4a); in some areas only 

blunted inner segments remained and the retinal pigment epithelium 

appeared hyperplastic and hypertrophied. These abnormalities and 

atrophy of the choroid were most prominent in areas of retinal dysplasia. 

Examination of retinas from +Zn/-Tau animals revealed mild 

degeneration of the photoreceptors; the outer segments were shorter and 

Ill 



Figure 7.3 

Haematoxylin and Eosin Stained Retinal Sections 

Presents a retinal section from a rat deficient in both zinc and 
taurine (-Znl-Tau). This section was cut through the retinal fold 
shown in Figure 7.1 and confirms the presence of retinal dysplasia 
(arrows). Compare with figure 7.4a on the following page. Bar 
equals 10 p. 



Figure 7.4 

Toluidine Blue Stained Retinal Thin Sections 

Arrows mark external limiting membrane and retinal pigment epithelium-photoreceptor junction. (1) Retinal pigment epithelium, (2) 
photoreceptor layer, (3) outer nuclear layer, (4) outer plexiform layer, (5) inner nuclear layer. See page 21 for a description of the various 
retinal layers. Bar equal 30 um. a) Representative section from a control rat (+Znl+TauAL). b) Representative section from a rat 
deficient in taurine (+Zn/-Tau). Mild degeneration of the photoreceptors is apparent. Note the inner and outer segments are decreased in 
length (arrows). c) Representative section from a rat deficient in zinc and taurine (-Znl-Tau). Generalized loss of the outer segments of 
the photoreceptors is apparent. Note the inner and outer segments are reduced in length (arrows). 



contained numerous vesicles, disorientated discs and discontinuous cell 

membranes (Figure 7.4b). 

Retinas from -Zn/+Tau, +Znl+TauPF and +Znl+TauAL groups were 

similar and no abnormalities were noted (Figure 7 . 4 ~ ) .  

7.4 DISCUSSION 

The results of this study provide morphological and functional evidence 

that zinc interacts with taurine in the developing rat retina. Rat pups were 

exposed to variable zinc and taurine status throughout the period of retinal 

development which begins prenatally and extends until approximately 6 weeks of 

age (Braekevelt and Hollenberg 1970). Light microscopic examination at 7%8% 

weeks postnatal age demonstrated marked photoreceptor degeneration and 

confirmed retinal dysplasia, detected with the ophthalmoscope at 4 weeks, in 

animals deficient in both zinc and taurine. These findings provide strong 

evidence for an interaction as the photoreceptors from zinc-deficient rats 

appeared histologically normal and only mild photoreceptor degeneration was 

seen in the taurine-deficient group. Retinal folds have previously been reported 

in term fetuses of severely zinc-deficient Long-Evans rats (Rogers and Hurley 

1987). Spontaneous retinal dysplasia of unknown etiology has also been 

described in normal Sprague-Dawley rats (Hubert et al. 1994). However, no 



evidence of this condition was obsewed in control animals. 

Oscillatory potentials provide further evidence of an interaction between 

zinc and taurine; zinc deficiency depressed the amplitude of OP, and OP, only 

when the animals were also taurine-deficient. The presence of an interaction in 

only two of the five oscillatory potentials suggests that zinc and taurine may 

function synergistically in only specific areas of the inner retina. Each of the five 

oscillatory potentials is believed to originate independently from one another 

possibly in different areas of the inner nuclear layer (el Azazi and Wachtmeister 

1990). The reversibility of these changes is not known. Interaction was also 

evident in the depressing effects of taurine deficiency on whole eye zinc 

concentration. However, it is difficult to relate these changes to the 

morphological and functional changes in the retina; whole eye may not be 

representative of retinal concentrations because the levels of these nutrients in 

different eye tissues are variable (Eckhert 1983; Heinamaki et al. 1986). 

The retinal degeneration observed in combined zinc and taurine 

deficiency is particularly important given the marginal degree of zinc restriction 

employed in this study. This model was chosen to represent the degree of zinc 

deficiency that could occur in the human population. Although zinc deficiency 

was confirmed by significantly depressed plasma, tibia, liver and whole eye zinc 

concentrations, the animals showed no clinical signs. The small decrease in 

feed intake in zinc-deficient rats did not reach statistical significance although 

intake was consistently lower than that of control rats at all timepoints. Pups 



born to darns fed low zinc diets weighed less at weaning and week 1 

postweaning. No significant growth depression was apparent at later timepoints. 

suggesting that the effects of zinc deficiency may have been greater during the 

permatal period. 

The model of taurine deficiency used in this study is similar to that 

described previously (Bonhaus et al. 1985, Lake 1983, Pasantes-Morales 1983). 

Rats fed taurine-deficient diets and GES had depressed liver and whole eye 

taurine concentrations consistent with other reports (Bonhaus et al. 1985). 

Depressed retinal taurine has also been described using this model (Cocker and 

Lake 1989, Lake 1981, Rapp et al. 1987). Other investigators have reported 

limited data on food intake and weight gain. In the present study, taurine 

deficiency tended to depress food intake and weight gain in the postweaning 

period, whereas weight gain at weaning was similar to that of control rats. 

Previous research that found no intrauterine growth retardation in fetuses of rats 

made taurine-deficient throughout gestation (Chapter 5) and no differences in 

pup weights during lactation up to postnatal day 17 (Lake 1983) are consistent 

with this observation. 

The biochemical mechanisms responsible for the interaction of zinc with 

taurine are unknown. Zinc has been proposed to play a physiological role in 

plasma membranes by its effects on membrane protein conformation and 

protein-protein interactions (Bettger and O'Dell 1993). While the precise 

biochemical roles in the membrane have not been fully elucidated, it has been 



suggested that the loss of zinc from specific proteins in the plasma membrane 

alters water and ion channels. Ultimately intracellular ion and water 

concentration is changed (Bettger and O'Dell 1993). It was hypothesized that 

taurine, through its role as an intracellular osrnoregulator (Huxtable 1992), can 

respond by regulating water and ion flow across the photoreceptor and inner 

retinal membrane. The photoreceptor degeneration in combined zinc and 

taurine deficiency may represent a loss of membrane integrity in the outer retina 

exacerbated by the loss of an osmoregulatory mechanism. Depressed OPs may 

reflect decreased integrity of neuronal membranes and altered retinal conduction 

in the inner retinal regions. 

In addition to retinal pathology, evidence of focal choroidal atrophy in rats 

deficient in both zinc and taurine was also observed. This anomaly was initially 

detected on ophthalmoscopic assessment and confirmed by light microscopy. 

These data provide additional evidence of an interaction between zinc and 

taurine in another eye structure. Choroidal atrophy has been reported to occur 

spontaneously in normal Sprague-Dawley rats (Huber et al. 1994); the 

etiological significance is unknown. No evidence of this condition was found in 

any other experimental group. 

Plasma and tibial zinc concentrations provide evidence that zinc and 

taurine interact in other tissues. Zinc deficiency depressed plasma and tibial 

zinc; however, the effect was less pronounced when animals were also taurine- 

deficient suggesting that taurine influences the zinc status of the animal. Zinc 



apparently also influences taurine metabolism because liver taurine 

concentration was elevated by zinc deficiency. Other evidence for an interaction 

outside retinal tissue is the trend observed for body weight. Taurine deficiency 

decreased body weight but this effect was less pronounced when the animals 

were also deficient in zinc. This is an intriguing finding given the well described 

growth-depressing effect of zinc deficiency. 

The main treatment effects observed in this study also deserve 

consideration. Independent effects of taurine deficiency on specific oscillatory 

potentials were evident with reductions in the amplitudes of OP, and OP,. 

Although previous research has identified the importance of taurine in 

development of normal photoreceptor morphology and function (Bonhaus et al. 

1 985. lmaki et al. 1986), the results of this research suggest that taurine also 

functions in the inner retina. These findings support the work of Lake and Malik 

(1 987) who reported a reduction in inner retinal width on light microscopic 

examination in rats treated with GES for the last week of gestation and for 8 

weeks following parturition. The photoreceptor disruption in taurine-deficient 

animals that has been previously reported (Bonhaus et al. 1985, Lake and Malik 

1987, Pasantes-Morales et al. 1983) was also observed in this study. 

The main treatment effect of zinc on certain oscillatory potentials 

suggests additional independent biochemical functions for zinc in the retina. 

Marginal zinc deficiency independently depressed the amplitude and increased 

the latency of OP,, and increased the latency of OP,. Decreased photoreceptor 



zinc content has previously been observed by histochemical localization 

(Hirayama 1990) and morphological changes have been reported in the 

photoreceptors and retinal pigment epithelium of severely zinc-deficient rats 

( Leure-duPree and McClain 1982). Little information is available on the 

influence of marginal zinc deficiency, particularly in regions of the inner retina. 

While no morphological alterations were detected in marginally zinc-deficient 

rats, future studies using electron microscopy may detect ultrastructural damage 

that was not apparent on gross histological assessment. The similar depressing 

effect of pair-feeding on OP, suggests that the retinal damage is due to the small 

but not statistically significant depression in feed intake that accompanied the 

zinc deficiency. These findings are difficult to interpret, however, as feed intake 

of the pair-fed animals was not equal to but significantly less than that of the 

zinc-deficient group. This limitation was related to the inaccuracy of pair feeding 

and collection of feed spillage in a extremely marginal zinc deficiency model. 

The effects of zinc deficiency on retinal electrophysiology and morphology and 

the mechanism by which zinc exerts these effects deserves further investigation. 

In summary, morphological and physiological evidence has been obtained 

that zinc and taurine interact in the developing rat retina. This has been 

demonstrated by severe photoreceptor damage, retinal dysplasia and depressed 

oscillatory potentials in combined zinc and taurine deficiency. Evidence of an 

interaction in other tissues was noted in plasma zinc, tibia zinc and liver taurine 

concentrations. Choroidal atrophy was also apparent in the combined deficiency 



group. The mechanism responsible for this interaction deserves investigation. 

In addition, independent effects of zinc and taurine on oscillatory potentials were 

demonstrated. These have not been previously identified and they suggest 

additional independent functions for each of these nutrients in the inner retina. 



Chapter 8 

ELECTRORETINOGRAPHIC CHANGES 

IN RATS DEFICIENT IN ZINC AND TAURINE DURING 

PRENATAL AND POSTNATAL LIFE1 

8.1 INTRODUCTION 

A 50% reduction of retinal taurine in the cat produces degeneration of the 

photoreceptors (Hayes et al. 1975) and depression of electroretinogram (ERG) 

a- and b-wave amplitudes (Berson et al. 1976). With prolonged taurine 

deficiency, blindness develops. The addition of 200 pM zinc to the drinking 

water of the taurine-deficient cat has been reported to partially protect the a- 

wave amplitude of the ERG (Pasantes-Morales et al. 1987) suggesting that zinc 

'A version of this chapter has been published [Gottschall-Pass et al. 
(1 997) Intensity-response functions of the electroretinogram in rats deficient in 
zinc and taurine throughout gestation and into postnatal life. In: Trace Elements 
in Man and Animals - 9: Proceedings of the Ninth International Symposium on 
Trace Elements in Man and Animals (Fischer , P.W.F. et al., Eds) pp. 91 -92, 
NRC Press, Ottawa, Canada]. Reproduced with permission of the NRC 
Research Press. 



and taurine may interact in the retina. In in vitro studies, zinc and taurine have 

been shown to protect frog rod outer segments from ferrous sulfate-induced 

disruption in a synergistic manner (Pasantes-Morales and Cruz 1984). 

Rats made taurine-deficient with guanidinoethyl sulfonate (GES), a 

structural analogue of taurine, develop retinal changes similar to those observed 

in taurine-deficient cats. These include reduced a- and b-wave amplitudes of 

the ERG (Cocker and Lake 1987, Hageman and Schmidt 1987, Lake 1986, 

Rapp et al. 1987) with a reduction in Vmax (Cocker and Lake 1987). The latter 

represents the maximum amplitude attained when b-wave amplitudes are plotted 

as a function of log stimulus intensity. 

The role of zinc in the retina is less clear. Electron microscopic 

examination of the retinas from severely zinc-deficient rats shows degeneration 

of the photoreceptor outer segments and accumulation of osmiophilic inclusion 

bodies in the retinal pigment epithelium (Leure-duPree and McClain 1982). 

Photoreceptor loss and degeneration of the retinal pigment epithelium has also 

been described in patients with acrodermatitis enteropathica, an inborn error of 

zinc metabolism in which zinc absorption is impaired (Cameron and McClain 

1 986). 

Despite evidence of structural damage, retinal function has not been 

extensively studied, particularly in a marginal zinc deficiency state as might be 

observed in the human population. Cats fed diets containing less than 7 ppm 

zinc for 16-20 weeks showed a reduction in the b-wave amplitude of the dark- 



adapted ERG that was reversible upon zinc repletion. Unfortunately, the number 

of animals examined in this study was small (Jacobson et al. 1986). Karcioglu et 

al. (1 984) described depressed plasma zinc concentrations in retinitis 

pigmentosa patients who had no recordable ERG. It has also been reported that 

the elevated dark adaptation thresholds in patients with alcoholic cirrhosis and 

depressed serum zinc concentrations are improved with zinc supplementation 

(Morrison et al. 1978; Russell et al., 1978). 

The objective of this research was to investigate whether the interaction 

between zinc and taurine influences the electroretinogram of the rat. The 

developing retina should be particularly sensitive to this interaction as these 

nutrients are critical to norma! pre- and postnatal development (Lonnerdal 1988; 

Sturman 1988). It was hyplhesized that marginal zinc deficiency imposed 

throughout gestation and postnatal life wolild act synergistically to worsen the 

electrophysiological response that occurs in taurine deficiency. In addition, the 

independent effect of marginal zinc deficiency on the electrophysiology of the 

retina was studied. 

8.2 MATERIALS AND METHODS 

8.2.1 Animals and Treatment 

Data for this experiment were obtained from the animal model used 



in Chapter 7. Animals were cared for in accordance with the principles 

the Guide to the Care and Use of Experimental Animals (Canadian 

Council on Animal Care 1993). Ail procedures used in this study were 

approved by the University of Saskatchewan Committee on Animal Care 

and Supply. 

Animals were fed control diet for at least 7 days and bred 

overnight. On day 0 of gestation, as determined by the presence of 

sperm in vaginal smears, the females were placed individually in stainless 

steel cages and randomly assigned to 1 of 5 treatments. Treatments 

consisted of 4 diets formulated with 2 levels of zinc (+Zn, 50 pg Znlg diet: 

-Zn, 15 pg Znlg diet) and 2 levels of taurine (+Tau. 2 pmol taurinelg diet; 

-Tau, 0 pmol taurinelg diet) in the following combinations: +Znl+TauAL 

(control), +Zn/-Tau, -Zn/+Tau or -Zn/-Tau. Zinc content of the -Zn/+Tau 

and Znl-Tau diets was reduced to 7.5 pglg at parturition. The above 

groups were provided with free access to modified AIN-93G diets (Table 

7.1) and distilled deionized water. One percent (wlv) GES was added to 

the drinking water of the +Zn/-Tau and -Zn/-Tau groups. In order to 

separate the influence of lack of zinc from that due to the depression in 

food intake that accompanies zinc deficiency, a fifth group (+Zn/+TauPF) 

was fed control diet and pair-fed to the -Zn/+Tau group. 

On day 20 of gestation, dams were transferred to stainless steel 

cages fixed with plastic mesh bottoms and provided with 30 x 50 cm of 



absorbent paper (VWR, Edmonton, AB) as nesting material. Litters were 

adjusted to 7-1 0 pups at postnatal day 4. Nesting material was removed 

within 7 days of birth. At postnatal day 23, male pups (loltreatment) were 

weaned onto their respective diets. 

8.2.2 Electroretinograms 

The ERG were recorded on pups at 7%8% weeks of age after 

overnight dark adaptation. Recordings were made within 5 hours of the 

usual onset of light. All procedures were carried out under dim red light. 

Animals were anaesthetized with an intramuscular injection of ketamine 

(30 mglkg body wt; rogarlSTB lnc., London, ON) and xylazine (7-8 rnglkg 

body wt; Chernagro Ltd., Etobicoke, ON). The right pupil was dilated with 

1 % tropicamide (Alcon Canada Inc., Mississauga, ON) and the cornea 

anaesthetized with proparacaine hydrochloride (Allergan lnc., Markham, 

ON). The eyelids were retracted with plastic clips. Electroretinograms 

were recorded differentially with a saline-soaked cotton wick electrode 

positioned on the cornea and fixed to a silver-silver chloride wire. A 

platinum needle reference electrode was inserted subcutaneously 2 mm 

caudal to the lateral canthus; a platinum needle ground electrode was 

positioned at the base of the tail. The animals were placed in a Cadwell 

PA-1 0 Ganzfeld Full-Field Stimulator (Cadwell Laboratories, Inc., 

Kennewick, WA) at a premarked position to ensure consistent eye 



placement. 

Maximum light intensity used was 45 jouleslcm2 measured with a 

Pasco high sensitivity photometer model # 0s-8020 (Pasco Scientific. 

Roseville, CA). Light flashes were attenuated with neutral density filters 

over 8 log units (NDO - ND8). Ten 1.2 millisecond pulses were presented 

at each intensity at a rate of 3.6 flasheslminute, beginning with the 

dimmest stimuli. ERG response was recorded using a low-cut filter 

setting of 1 Hz and a high-cut filter setting of 3000 Hz. Data were 

averaged using a Cadwell 5200A (Cadwell Laboratories, Inc., Kennewick, 

WA) and stored on computer using the Cadwell 5200A SavelRecall 

Program (Cadwell Laboratories, Inc., Kennewick, WA). To avoid 

adaptation effects, subsequent ERG were performed after 5 minute 

intervals. 

The ERG a- and b-wave amplitudes and latencies were determined 

for each recording. Amplitude of the a-wave was measured from 

baseline; b-wave amplitude was measured from baseline or from the peak 

of the a-wave when present. Latencies were measured from stimulus 

onset to the peak of each wave. 

8.2.3 Intensity-Latency Analysis 

ERG b-wave latencies were analysed by finding the best linear fit 

to log relative intensity through linear regression analysis (SuperANOVA. 



Abacus Concepts, Berkely, CA). At illuminances below -2.8 log, implicit 

time is no longer a linear function of log intensity (Massof et al. 1984); 
- 

therefore, only the four highest light intensities were used in this analysis. 

Latency-intensity functions were not included in further analysis if the r 

value 10.8. 

8.2.4 Naka-Rushton Analysis. 

Electroretinograrn b-wave amplitudes as a function of log stimulus 

intensity were analysed by finding the parameters of the best fit modified 

Naka-Rushton function using nonlinear analysis (Winnonlin, Scientific 

Consulting Inc., Apex, NC): 

where V represents b-wave amplitude, V, is the nonzero baseline effect, 

Vmax is maximum b-wave amplitude, I is intensity, a is the intensity 

required to produce half maximal response and n is an exponent 

describing the slope of the function. The original Naka-Rushton equation 

forces the b-wave amplitude towards zero. We did not measure zero 

amplitude at low light intensity; the resulting poor curve fit overestimated 



Vmax. The addition of the non-zero baseline parameter V, to this function 

resulted in a fit that better defines the data generated and in particular the 
- 

parameter Vmax. This curve fitting procedure was applied to the data 

obtained from each animal. Best fit for each amplitude-intensity curve 

was determined by visual inspection, a correlation coefficient 20.95 and 

comparison of each parameter generated from the Naka-Rushton function 

to ensure that it fell within mean(GSD) for the group. If 2 or more of 

these conditions were not met, the animal was not included in further 

analysis. 

8.2.5 Statistical Analysis. 

Data from the +Zn/+TauAL, +Zn/-Tau, -Zn/+Tau and -Zn/-Tau 

groups were analysed by two-factor ANOVA with zinc and taurine as the 

independent variables (SuperANOVA, Abacus Concepts, Berkeley, CA). 

Differences between groups were determined by least significant 

difference. To separate effects due to zinc deficiency from those resulting 

from the voluntary depression in food intake which usually accompanies 

zinc deficiency, data from +Znl+TauPF and -Zn/+Tau animals were 

compared with paired t-tests; data from +Zn/+TauAL and +Znl+TauPF 

animals were compared using unpaired t-tests (Statview 512+, Abacus 

Concepts, Berkeley, CA). A probability of less than 0.05 was considered 

significant. 



8.3 RESULTS 

- 
8.3.1 Zinc and Taurine Status 

Data on food intake, weight gain and tissue zinc and taurine 

concentrations of the pups have been reported previously (Chapter 7). 

Zinc deficiency was confirmed on the basis of depressed plasma, liver, 

tibia and eye zinc concentration; taurine depletion was demonstrated by 

decreased liver and eye taurine. Marginal zinc deficiency failed to 

significantly affect food intake or body weight of the pups over the course 

of the study; tissue zinc concentrations in the +Znl+TauPF group were - 

similar to those of the +Zn/+TauAL group. 

8.3.2 Maximum Intensity. 

Electroretinograms from a control animal measured over varying 

light intensities are shown in Figure 8.1. Data on ERG a- and b-wave 

amplitudes and latencies in response to maximum light intensity are 

presented in Table 8.1. No interaction was found between zinc and 

taurine for ERG a-wave (P=0.6137) or b-wave (P=0.3838) amplitudes or 

for a-wave (P=0.6577) or b-wave (P=0.1716) latencies at maximal light 

intensity. In addition, no interaction was observed for these parameters at 

any other light intensity measured (Appendix D & E). 

Feeding animals marginally zincdeficient diets significantly 
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Figure 8.1 

Electroretinogram recorded from a control rat (+Zn/+TauAL) 
measured over varying light intensities (ND is neutral density filter). 
Each tracing is an average of 10 responses. 



Table 8.1 I 

Latency and Amplitude of ERG a- and b-wave Peaks to the Brightest Stimulus in Response to 
Varied Zinc and Taurine Status During Gestation and Postnatal Life1 

Treatment Group 

+Zn/+TauAL +Zn/-Tau -Zn/+Tau -Zn/-Tau Zn effect Tau effect Zn x Tau effect 

a-wave 
-A Amplitude (pvolts) 475.0k43.4 356.9i39.7 391.7k36.6 234.7k31.6 P=O.Ol I0 P=O.0010 P=0.6137 
2 

Latency (msec) 6.2k0.0 6.2kO.O 6.5k0.4 6.7k0.3 P=O. 1892 P=0.6577 P=0.6577 

b-wave 
Amplitude (pvolts) 889.6k77.1 668.8*0. 1 81 8.1 k71.3 479.2k56.9 P=0.0596 P=0.0002 P=0.3838 

Latency (msec) 38.4e.3 32.lk1 .I 34.2k2.0 34.2k2.0 P=0.2368 P=0.5995 P=0.17 16 

'Results expressed as mean*SEM; n=9. Statistical analysis was by 2 factor ANOVA with zinc and taurine as independent variables. 



depressed both the a-wave (P=0.0110) and b-wave (P=0.0596) 

amplitudes of the ERG in response to maximum light intensity. No effect 

of zinc deficiency on a-wave (P=O. 1892) or b-wave (P=0.2368) latencies, 

in response to maximal light intensity was noted. In addition, no effect of 

zinc restriction was observed for these parameters at other light 

intensities measured (Appendix D & E). 

Mean (SEM) a-wave amplitude of the -Znl+Tau group was not 

significantly different from that of the +Znl+TauPF group when compared 

by paired t-test (395.5k34.2 pvolts, n=7 vs 375.9k30.5 pvolts, n=7; 

P=0.4791); mean (kSEM) a-wave amplitude of the +Zn/+TauPF group 

was not significantly different from that of the +Zn/+TauAL group when 

compared by unpaired t-test (391.4f30.6 pvolts, n=8 vs 475.0k43.4 

pvolts, n=9; P=O. 1452). Similarly, mean b-wave amplitude of the 

-Znl+Tau group was not significantly different from that of the 

+Zn/+TauPF group (844.6k71.0 pvolts, n=7 vs 765.2S3.6 pvolts, n=7; 

P=0.2179); mean (fSEM) b-wave amplitude of the +Zn/+TauPF group 

was not significantly different from that of the +Zn/+TauAL group when 

compared by unpaired t-test (783.6i58.0 pvolts, n=8 vs 889.6H7.l 

pvolts, n=9; P=0.2992). Mean (iSEM) values for the +Zn/+TauPF group 

differ in the paired and unpaired t-tests. This is a result of differing 

sample size due to the need to use complete pairs for paired t-test 

analysis. Although no statistically significant differences were found 



among the three groups, there is a trend toward a depressing effect of 

pair-feeding on ERG a- and b-wave amplitudes. 

Electroretinogram a-wave (P=0.0010) and b-wave (P=0.0002) 

amplitudes in response to maximum light intensity were also significantly 

depressed in taurine-deficient animals. However, no significant effects of 

taurine deficiency were seen on the latencies of the a-wave (P=0.9318) or 

b-wave (P=0.5011). 

8.3.3 Latency-Intensity. 

No interaction or treatment effects were apparent for the slope 

when b-wave latencies were plotted as a function of log stimulus intensity 

(Appendix F). Mean (*SD) slopes for each group are as follows: 

+Zn/+TauAL (-8.21 i1.81; n=9); +Znl-Tau (-8.76k1.31; n=8); -Znl+Tau 

(-9.52k1.44; n=9); -Zn/-Tau (-8.40Q.49; n=8); +Znl+TauPF (9.23e.25; 

n=8). These data must be interpreted with caution as the Cadwell 5200A 

used to measure latency was not sensitive in detecting very small 

changes in this parameter. 

8.3.4 Amplitude-Intensity. 

Average b-wave amplitude plotted as a function of log stimulus 

intensity from 415 groups is presented in Figure 8.2. Data on ERG b- 

wave amplitude as a function of log stimulus intensity generated from the 
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Figure 8.2 

The Amplitude of the b-wave Plotted as a Function 
of log Stimulus Intensity from 415 Groups 





modified Naka-Rushton function are presented in Table 8.2. No 

interaction was found between zinc and taurine for Vmax (P=0.2854), a 

(P=0.2602) or n (P=0.2227). 

Feeding animals marginally zinc-deficient diets significantly 

depressed Vrnax (?=0.0498); o (P=0.5840) and n (P=0.1241) were not 

affected by the zinc restriction. Mean (GEM) Vmax of the -Zn/+Tau 

group was not significantly different from that of the +Znl+TauP F group 

when compared by paired t-test (974.2k96.9 pvolts, n=7 vs 852.8k66.8 

pvolts, n=7; P=0.2047); mean (iSEM) Vmax of the +Zn/+TauPF group 

was not significantly different from that of the +Zn/+TauAL group when 

compared by unpaired t-test (878.6f63.4 pvolts, n=8 vs IO48.8+98.5 

pvolts, n=9: P=0.1787). Although no statistically significant difference 

was found among the three groups, there was a trend toward a 

depressing effect of pair-feeding on Vmax. 

Vmax was also significantly depressed in taurine deficiency 

(P=0.0014). However, no significant effect of taurine deficiency was seen 

on a (P=0.3987) or n (P=0.8381). 

8.4 DISCUSSION 

The results of this study suggest that zinc and taurine do not interact 
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during the period of retinal development as assessed by electroretinographic 

measures in the mature rat retina. The ERG is comprised of an a-wave 

produced when light strikes rhodopsin in the photoreceptor outer segments and 

a b-wave generated at a more proximal location, possibly in the Muller cells of 

the inner nuclear layer (Berson 1992). Taurine deficiency depressed the 

amplitude of the a- and b-wave of the ERG as previously described (Cocker and 

Lake 1987. Hageman and Schmidt 1987, Lake 1986, Rapp et al. 1987). The 

decrease in Vmax has also been previously documented (Cocker and Lake 

1987). While zinc deficiency similarly reduced the amplitude of the a- and b- 

wave, the two nutrients did not act synergistically in their depressing effects on 

the ERG. 

In contrast to these results, it has been shown that deficiencies of zinc 

and taurine are synergistic in there depressing effects on specific oscillatory 

potentials (Chapter 7). Light microscopic evidence of marked photoreceptor 

degeneration found only in animals deficient in both zinc and taurine (Chapter 7 )  

support this type of nutrient-nutrient interaction. The electrophysiological data 

indirectly support the theory that oscillatory potentials are generated 

independently from the mechanism producing the ERG (el Azazi and 

Wachtmeister 1990). While oscillatory potentials and the ERG b-wave may both 

arise in the inner nuclear layer, they respond differently to combined zinc and 

taurine deficiencies. This may be the result of differing zinc and taurine 

concentrations in the various cell types of the inner nuclear layer. Future 



studies may resolve these discrepancies as the biochemical mechanism by 

which these nutrients interrelate is explored. 

The main treatment effect of zinc on the ERG suggests an independent 

biochemical function for zinc in the retina. Marginal zinc deficiency 

independently depressed the amplitude of the a- and b-wave of the ERG at 

maximum light intensity suggesting that zinc exerts an effect in both the inner 

and outer retina. Vmax also declined, suggesting a decrease in the area of 

functioning retina (Wu et al. 1983). It has been reported previously (Chapter 7) 

that marginal zinc deficiency significantly depresses the amplitude and 

increases the latency of the first oscillatory potential, providing additional 

evidence that zinc has a function in the inner retina. 

Morphological changes have been described in the photoreceptors and 

retinal pigment epithelium of severely zinc-deficient rats (Leure-duPree and 

McClain 1982). Samuelson et al. (1 992), in an attempt to model human zinc 

deficiency, fed pigs diets marginally deficient in zinc for a 12 month period. 

Histological examination of their retinas revealed a decrease in cone 

photoreceptors and an increase in phagosomes and residual bodies in the 

retinal pigment epithelium that appeared to progress over time. Despite the 

depression of the a-wave, light microscopic alterations in the photoreceptor 

outer segments of marginally zinc-deficient rats were not detected (Chapter 7). 

The a-wave is a cumulative response of the entire photoreceptor population; 

therefore, it is possible that photoreceptor damage was present in other 



unsectioned areas of the retina. It is also possible that the dampened ERG 

response is the result of ultrastructural damage not detectable on light 

microscopic examination. Future studies using electron microscopy should 

address this hypothesis. 

The ERG changes observed in marginal zinc deficiency are particularly 

interesting given the degree of zinc restriction employed in this study. Although 

zinc deficiency was confirmed by significantly depressed plasma, tibia, liver and 

whole eye zinc concentrations, the animals showed no clinical signs of zinc 

deficiency (Chapter 7). This model was chosen to represent the degree of zinc 

deficiency which can occur in the human population. Recent research has 

examined the involvement of zinc in human eye diseases such as age-related 

macular degeneration, a condition known to affect the sensory retina and retinal 

pigment epithelium (Newsome et al. 1988). In a heterogeneous group of 

patients with age-related macular degeneration, a daily zinc sulphate 

supplement of 200 mg provided for a two-year period in a double-blind, 

randomized, placebocontrolled design, increased serum zinc and significantly 

reduced visual loss (Newsome et al. 1988). In contrast, a followup study in a 

homogeneous group of patients with unilateral exudative age-related macular 

degeneration showed no improvement in functional eye tests in response to the 

same dose of zinc supplementation (Stur et al. 1996). Unfortunately, the sample 

size was insufficient to determine whether zinc had a protective effect against 

the development of exudative lesions in the second eye. Both of these studies 



are limited to conclusions based on short-term trials. The Eye Diseases Case- 

Control Study Group (1992) was also unable to demonstrate a positive 

relationship between serum zinc levels and incidence of age-related macular 

degeneration; however, this finding may be of limited significance as serum zinc 

concentration is not a sensitive or specific indicator of zinc status (Gibson 1990). 

Despite its high concentrations in the retina (Eckhert 1983), the 

biochemical functions of zinc in this tissue have not been completely defined. 

This information would be beneficial for designing future studies of the role of 

zinc in human eye diseases. Zinc has been proposed to exert a critical 

physiological role in the structure and function of biomembranes by its effects on 

membrane protein conformation and protein-protein interactions (Bettger and 

O'Dell 1993). In zinc deficiency, the loss of zinc from these proteins may result 

in a loss of membrane integrity that could affect electrophysiological 

measurements in both the inner and outer retina. Other investigators have 

suggested that zinc may exert its effect on the retina through its involvement in 

vitamin A metabolism, and the impaired dark adapation of zinc deficiency has 

been attributed to decreased rhodopsin formation. However, conflicting results 

have been obtained in severely zinc-deficient rats as to whether this is a 

consequence of a decreased rate of oxidation of retinol to retinal by zinc- 

dependent alcohol dehydrogenase (Dorea and Olson 1986, Huber and Gershoff 

1975, Smith 1980). The findings of this current research do not support a 

decrease in rhodopsin formation with the degree of zinc deficiency examined in 



this study. Marginal zinc deficiency did not alter the parameter a generated from 

the Naka-Rushton analysis. A change in a reflects a change in retinal sensitivity 

(Wu et al. 1983). If rhodopsin content of the photoreceptors was depressed, 

more light would be required to elicit the same retinal response and a would 

increase. Thus this work suggests that zinc has biochemical functions in the 

retina independent of vitamin A Kraft et al. (1987) fed rats diets deficient in zinc 

and vitamin A, and reported decreased retina sensitivity that improved to a 

similar degree whether the animals were repleted with vitamin A or both zinc and 

vitamin A. 

These data can not be used to draw conclusions as to whether depressed 

feed intake in zinc deficiency also contributes to the deleterious effects on the 

retina. Although the results did not reach statistical significance, pair feeding to 

the zinc-deficient group did tend to depress Vmax and the amplitude of the a- 

and b-waves at maximum light intensity. These findings are difficult to interpret. 

however, as feed intake of the pairfed animals was not equal to but significantly 

less than that of the zinc-deficient group. This limitation was related to the 

inaccuracy of pair feeding and collection of feed spillage in an extremely 

marginal zinc deficiency model. 

In summary, evidence was not obtained that zinc and taurine interact in 

their depressing effects on the electroretinogram. While taurine deficiency has 

been previously shown to depress the ERG, this investigation has shown that 

zinc also exerts a role in the development of the electrophysiological response in 



both the inner and outer rat retina. This has been demonstrated by significantly 

reduced ERG a- and b-wave amplitudes and Vmax in marginally zinc-deficient 

rats. The effects of zinc deficiency on retinal structure and function and the 

mechanism by which zinc exerts these effects deserve further investigation. 



Chapter 9 

GENERAL DISCUSSION AND 

FUTURE DIRECTIONS 

Zinc has been reported to interact with taurine in vitro (Pasantes-Morales 

et al. 1984a). The research described herein was undertaken to determine the 

physiological significance of this interaction in vivo. Studies in rats have 

provided clear evidence of the importance of zinc during pregnancy (Keen and 

Hurley 1987). Likewise, taurine is considered essential in the perinatal period 

(Arment et al. 1986; Ghisolfi 1987). Consequently, deficiencies of zinc or taurine 

during periods of development make this timepoint a particularly sensitive one in 

which to study the interaction of these nutrients. 

To examine the effects of a deficiency of zinc and taurine on 

development, an appropriate model was required. The teratogenicity of zinc 

deficiency in the rat is well established and results in a variety of congenital 

defects including skeletal abnormalities (Da Cunha Ferreira et al. 1989) and 

internal soft tissue malformations affecting the brain, heart, lungs and urogenital 

systems (Hurley 1981; Keen and Hurley 1987). However, the rat had not been 



carefully assessed as a model to study the fetal abnormalities associated with 

taurine deficiency. In the cat, these include neurological and morphological 

abnormalities, such as abnormal hind leg development, thoracic kyphosis and 

hydrocephalus (Sturman et al. 1985; Sturman and Messing 1991 ). 

Treatment of pregnant rats with low dietary taurine and varying doses of 

GES produced a sharp decline in both maternal and fetal tissue taurine 

concentrations. However, these depressions did not translate into 

developmental defects in the fetuses at day 20 of gestation. Instead, fetal 

weights were unchanged and gross assessment of fetuses revealed no 

significant external, visceral or skeletal malformations due to GES-induced 

taurine deficiency. A pilot study subsequently confined these results and 

established the absence of significant congenital malformations at gestational 

day 20 in combined zinc and taurine deficiencies. 

Consequently, it was concluded that GES-induced taurine deficiency in 

the rat is not a good model for studying all developmental effects. No level of 

GES produced the intrauterine growth retardation or malformations previously 

described in kittens born to taurine-deficient cats (Sturman and Messing 1991 ; 

Sturman et al. 1986). This may be attributable to greater depletion in cats fed 

taurine-free diets (Sturrnan and Messing 1991 ) compared with the extent of 

depletion achieved with low dietary taurine and GES in the rat. However, the 

results do suggest that treatment of rats with 2% GES could be further explored 

as a model for the reproductive loss seen in the cat. Preimplantation loss has 



been implicated in the pregnancy failure seen in taurine-deficient cats (Dieter et 

al. 1993). Treatment of rats with GES prior to implantation may depress uterine 

taurine concentration thereby affecting preimplantation development. 

Alternatively, the high concentration of zinc (Eckhert 1983) and taurine 

(Heinamaki et al. 1986) in ocular tissue and the purported importance of these 

nutrients in maintaining eye structure and function (Leure-duPree and McClain 

1982; Sturman et ai. 1986), suggested that the eye may be a unique 

physiological system in which to study this interaction. The use of GES as a 

taurine depietor has gained wide-spread acceptance in studying the role of 

taurine in the rat retina and both electrophysiological deficits and morphological 

changes. including degeneration of photoreceptors and shrinkage of the inner 

retinal layer, have been observed in these animals (Lake 1981 : 1983, 1986, 

1 989; Lake and Mali k 1 987; Pasantes-Morales et al. 1 983; Quesada et al. 

1984). These retinal changes are similar to what has been described in the cat 

which has a clear dietary requirement for taurine (Sturman 1993). Therefore, 

use of GES during pre- and postnatal development in the rat appeared to be a 

useful model for studying the interaction of zinc and taurine in the retina. 

When eye structure and function were assessed using this model, 

morphological and functional evidence that zinc interacts with taurine in the 

developing rat retina were observed. Light microscopic examination at 7%8% 

weeks postnatal age demonstrated marked photoreceptor degeneration and 

confirmed retinal dysplasia in animals deficient in both zinc and taurine. These 



findings provide strong evidence for an interaction as the photoreceptors from 

zinc-deficient rats appeared histologically normal and only mild photoreceptor 

degeneration was seen in the taurine-deficient group. Further evidence of a 

physiological interaction was observed when oscillatory potentials were 

measured; zinc deficiency depressed the amplitude of OP, and OP, only when 

the animals were also taurine-deficient. The presence of an interaction in two of 

the five oscillatory potentials suggests that zinc and taurine may function 

synergistically in only specific areas of the inner retina as each OP is thought to 

originate independently (el Azazi and Wachtmeister (I 990). 

It is well established that a reduction in retinal taurine concentrations in 

the rat results in severe morphological alteration of the photoreceptor cells 

(Hageman and Schmidt 1987; Lake and Malik 1987; Pasantes-Morales et al. 

1983; Rapp et al. 1988). Over time the RPE becomes affected. Conversely. 

the effects of a severe zinc deficiency in the rat (Leure-duPree and McClain 

1982) and marginal zinc deficiency in the pig (Sarnuelson et al. 1991 ) appear to 

originate in the RPE with an accumulation of osmiophilic inclusion bodies that 

progresses over time. Vesiculation and degeneration of the photoreceptor outer 

segments follows. It appears that zinc deficiency may exert its influence on the 

RPE whereas a deficiency of taurine preferentially affects the photoreceptors. It 

is possible that a combination of zinc and taurine deficiencies affect both the 

RPE and photoreceptors resulting in the synergistic relationship observed in the 

current study. 



In addition to retinal pathology, evidence of focal choroidal atrophy in rats 

deficient in both zinc and taurine was also observed. This anomaly was initially 

detected on ophthalmoscopic assessment and confirmed by light microscopy. 

Rogers et al. (1 987) had previously observed a lack of invagination of the optic 

cup and closure of the choroidal fissure that resulted in retinal folding, when 

fetuses from severely zinc-deficient dams were examined. In the present study. 

the added stress of taurine deficiency was required to produce this defect in 

marginally zinc-deficient rats. 

Zinc and taurine also interact in other tissues. Zinc deficiency depressed 

plasma and tibia1 zinc; however, the effect was less pronounced when animals 

were also taurine-deficient suggesting that taurine influences the zinc status of 

the animal. An interaction was also apparent for liver taurine. Animals fed no 

dietary taurine and GES had significantly depressed liver taurine regardless of 

zinc status; however, zinc deficiency elevated liver taurine in taurine-adequate 

animals. It is apparent that the nature of the interaction between zinc and 

taurine is not consistent across all tissues examined suggesting that more than 

one mechanism may be involved in the expression of this interaction. 

Previously, it had been suggested that zinc may influence the retinal 

changes observed in the taurine-deficient cat. A 50% reduction of retinal taurine 

in this species produces degeneration of the photoreceptors (Hayes et al. 

1975b) and depression of electroretinogram (ERG) a- and b-wave amplitudes 

(Berson et al. 1976). The addition of 200 pM zinc to the drinking water of these 



animals partially prevented the depression of the a-wave amplitude in some 

animals (Pasantes-Morales et al. 1987b). Whether feeding additional zinc to 

taurine-deficient rats can protect from the photoreceptor degeneration and 

subsequent electrophysiological alterations observed is not known. Future 

research is required to address this question. 

A relationship between zinc and taurine in the cat has also been 

suggested in other eye tissues. Taurine-deficient cats exhibit disruption and 

disorganization of the membrane surrounding the tapetal rods with a subsequent 

loss of localized zinc (Sturman et al. 1981 ). Whether the loss of zinc is due to 

an interaction or simply to photoreceptor degeneration has not been established. 

However, it is interesting to note that the tapetum arises from similar embryonic 

tissues as the choroid (Gelatt 1991 ). The evidence of focal choroidal atrophy in 

rats deficient in both zinc and taurine in the current study suggests that the zinc 

loss from the tapetum of taurine-deficient cats may be the result of an 

interaction. The cat should be explored as a model to study the combined 

effects of zinc and taurine on eye development. 

Independent effects of taurine deficiency on specific oscillatory potentials 

were evident with reductions in the amplitudes of OP,, OP, and OP,. While 

previous research has identified the importance of taurine in development of 

normal photoreceptor morphology and function (Bonhaus et al. 1985, lmaki et al. 

1986), these results confirm that taurine also functions in the inner retina. 

Previous research has shown that retinal taurine concentrations and ERG b- 



wave amplitudes are significantly increased when GES is discontinued and 

replaced with taurine in drinking water (Lornbardini et al. 1996). Similar 

improvements were observed when parenterally fed children were provided with 

taurine in their infusate (Ament et al. 1986; Geg@ et al. 1982; Vinton et al. 

1985). The effect of re-feeding taurine on OP amplitude in the GES-induced 

taurine-deficient rat needs to be addressed. 

The limitations of this research must be considered. Though zinc was 

observed to interact with taurine, other explanations are possible and have not 

been ruled out. First, it is well known that the tissues of animals treated with 

GES take up GES in place of taurine (Lake et al. 1987). Thus it is possible that - 

the presence of GES in the retina rather than the lack of taurine is responsible 

for the depressing effect of taurine deficiency on the amplitude of oscillatory 

potentials and the interactive effects of taurine with zinc. However, the 

similarities in retinal changes observed between the GES-induced taurine- 

deficient rat and the cat suggest that the lack of taurine and not the presence of 

GES is responsible for the results observed. Use of a cat model to test the 

interaction will confirm this hypothesis. 

The finding that zinc also independently affects ERG a- and b-wave 

amplitudes, Vmax and certain OP in the developing rat retina provides additional 

support for the importance of zinc in pre- and postnatal development. These 

data also suggest that zinc exerts an effect in both the inner and outer retina. 

Little information is available on the influence of marginal zinc deficiency in the 



developing eye, particularly in the retina. Microphthalmia in 113 of the fetuses of 

Long Evans rats has been observed when a severe zinc restriction was imposed 

throughout gestation (Rogers et al. 1984). When zinc deficiency was instituted 

at parturition, eye lid opening was delayed but no morphological differences 

were noted among photoreceptor cells at weaning (Sinning et al. 1984). Similar 

observations were made in the current study. Despite the depression of the a- 

wave amplitude, morphologic alterations in the photoreceptor outer segments of 

marginally zinc-deficient rats were not detected with the light microscope. Zinc 

deficiency appeared to have a minimal effect on the histology of the developing 

retina; however. ultrastructural alterations may have been present. Subsequent 

research using electron microscopy may detect differences not apparent on 

histological assessment. 

The results of this research are particularly interesting given the marginal 

nature of zinc restriction employed in this study. Although zinc deficiency was 

confirmed by significantly depressed plasma, tibia, liver and whole eye zinc 

concentrations, the animals showed no clinical signs of zinc deficiency. 

Developmental defects are known to occur in approximately 3% of all infant 

births (Centres for Disease Control 1989). Despite intensive research efforts 

over the past two decades, causative factors have been identified in only 35- 

60% of these cases (Schaffer 1993). Maternal dietary zinc intake is thought to 

be a significant factor in human pregnancy outcome (Simmer et al. 1991; Scholl 

et al. 1993). However, it is unlikely that poor maternal intake of a single nutrient 



is responsible for reproductive defects in the human population. Instead, it is 

more likely that the compromised status of an individual nutrient increases the 

risk to other potential teratogens or that there is a synergistic interaction 

between nutrients that results in abnormal development (Keen 1992). The 

interaction of zinc with taurine during development could be responsible for 

some of the physiological and morphological defects reported (Keen 1992). Zinc 

is known to interact with other nutrients. A marked increase in plasma copper 

and decrease in plasma zinc have been reported in pregnant women 

(Hambridge et al. 1983). Hambridge et al. (1 983) reported an inverse 

relationship between the level of daily iron supplement and the plasma zinc level 

in the first and third trimester of pregnancy. An interaction has also been 

observed between zinc and folate in pregnant women (Simmer et al. 1987) and 

between zinc and vitamin A in pregnant rats (Duncan and Hurley 1978; Peters et 

al. 1986). 

It has been suggested that zinc may exert its effect on the retina through 

its involvement in vitamin A metabolism. The impaired dark adaptation of zinc 

deficiency has been attributed to decreased rhodopsin formation. However, 

conflicting results have been obtained in severely zinc-deficient rats as to 

whether this is a consequence of a decreased rate of oxidation of retinol to 

retinal by zinc-dependent alcohol dehydrogenase (Dorea and Olson 1986, 

Huber and Gershoff 1975, Smith 1980). The findings presented here do not 

support a decrease in rhodopsin formation with the degree of zinc deficiency 



examined in this study. Marginal zinc deficiency did not alter the parameter a 

generated from the Naka-Rushton analysis. A change in o reflects a change in 

retinal sensitivity (Wu et al. 1983). If rhodopsin content of the photoreceptors 

was depressed, more light would be required to elicit the same retinal response 

and a would increase. Future research should examine retinal concentrations of 

rhodopsin, retinal alcohol dehydrogenase and vitamin A to substantiate this 

observation. 

The mechanism by which zinc and taurine interact is not known. Zinc has 

been proposed to play a physiological role in plasma membranes by its effects 

on membrane protein conformation and protein-protein interactions (Bettger and 

O'Dell 1993). While the precise biochemical mechanisms have not been fully 

elucidated, it has been suggested that the loss of zinc from specific proteins in 

the plasma membrane alters water and ion channels. Ultimately intracellular ion 

and water concentration is changed (Bettger and O'Dell 1993). It may be 

speculated that taurine as an intracellular osmoregulator (Huxtable 1992) can 

respond to these changes by regulating water and ion flow across cell 

membranes. Now that an interaction between zinc and taurine has been 

observed in vivo, the mechanism by which these nutrients interact needs to b e  

elucidated. Fragility studies (Szuts and Cone 1977) on the isolated 

p hotoreceptors of rats deficient in zinc and taurine may provide evidence in 

support of this hypothesis. For example, isolated rod outer segment membranes 

from these animals could be subjected to osmotic shock and observed for 



volume changes. Additional studies to identify specific membrane proteins or 

other membrane components whose structure and function are also modified by 

zinc andlor taurine are required. 



Chapter 10 

GENERAL CONCLUSIONS 

The research presented herein support the following conclusions: 

1. The effect of GES-induced taurine deficiency on development in the rat. 

as assessed by evaluation of fetal weight and incidence of congenital 

malformations at day 20 of gestation, does not produce the degree of 

reproductive loss previously observed in the taurine-deficient cat. 

2. Morphological and physiological evidence has been obtained that zinc 

and taurine interact in the developing rat retina. This has been 

demonstrated by severe photoreceptor degeneration, retinal dysplasia 

and depressed OP amplitudes in combined zinc and taurine deficiency. 

3. Plasma zinc, tibia1 zinc and liver taurine concentrations provide evidence 

that zinc and taurine interact in other tissues. Choroidal atrophy was also 

apparent only in the combined deficiency group, suggesting interactions 
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in the choroid of the eye. 

4. Zinc also exerts an independent role in the development of the 

electrophysiological response in both the inner and outer rat retina. This 

has been demonstrated by significantly reduced ERG a- and b-wave 

amplitudes, Vmax and OP, amplitude in marginally zinc-deficient rats. 

5. Taurine exerts an independent effect on the development of the 

electrophysiological response in the inner and outer rat retina. This has 

been demonstrated by significantly reduced OP and ERG a- and b-wave - 

amplitudes. 
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Appendix A 

Tissue Taurine Levels in Oams and Fetuses Exposed to Low Dietary Taurine 
and Varying Doses of Guanidinoethyl Sulfonate 

Treatment Group1 

- 

CONTROL 0.5% GES 1.0% GES 2.0% GES 

Maternal Tissue 

Liver (nmollrng pro) 74.8*4.3" I 2.6*1 .4b 

Brain (nmollmg pro) 45.5k1.6' 27.7*2.3b 

Fetal Tissue 

Liver (nmollmg pro)' 98.3k2.7' 56.1 k1 .8b 48.6&2.4b 44.0k2.gb 

Brain (nmollmg pro)2 350.5i8.9" 280.4*11 .gb 257.8&9.4bc 226.5k9.2" 

'Results expressed as mean kSEM; n=8 for Control and 1.0Y0 GES, n=7 for 0.5 and 2.0% GES. Statistical analysis was one- 
way ANOVA followed by Tukey's test. Values in a row not sharing a common superscript are significantly different (PcO.05). 
'Fetal tissue was pooled for taurine analysi:.. 



Appendix B 

Organ to Body Weight Ratios in Dams and Fetuses Exposed to Low Dietary Taurine 
and Varying Doses of Guanidinoethyl Sulfonate 

Treatment Group' 

CONTROL 0.5O/o GES 1.0% GES 2.0% GES 

Maternal Tissues 

LiverIBody Weight 36.0*1 .Oa 36.7k0.9" 

BrainlBody Weight 4.56~0.15" 4.86k0.14' 

Fetal Tissues 

LiverfBody Weight 85.4i1.9' 81.3*1.8" 

BrainIBodyWeight 46.4k1.9a 42.9k1 .Oa 

'Results expressed as mean ASEM; n=8 for Control and 1 .O% GES, n=7 for 0.5% and 2.0% GES. Statistical analysis was one- 
way ANOVA followed by Tukey's test. Values in a row not sharing a common superscript are significantly different (Pc0.05). 



Appendix C 

Comparison of Body Weight and Feed Intake Data from Zinc-deficient Rats 
with Control and Pairfed Animals 

Treatment Group1 

Body Weight (g) 

Weaning 

Week 1 

Week 2 

Week 3 

Week 4 

Final 

Feed Intake (g) 

Week 1 

Week 2 

Week 3 

Week 4 

Final 

'Results expressed as meaniSEM; n=10. 
2Significantly different than +Zn/+TauAL (Pc0.05) when compared by 
unpaired t-tests. 
3Significantly different than -2 nl+Tau (P<0.05) when compared by paired t- 
test. 



Appendix D 

Amplitudes of ERG a- and b- wave Peaks to Varying Stimulus in Response to 
Varied Zinc and Taurine Status During Gestation and Postnatal Life1 

Treatment Group 

- - - - -- 

+Zn/+TauAL +Znl-Tau -Zn/+Tau -Zn/-Tau Zn effect Tau effect Zn x Tau effect 

a-wave (pvolts) 

'Results expressed as mean*SEM; n=9. Statistical analysis was by 2 factor ANOVA with zinc and taurine as independent variables. 

I 



Appendix E 

Latencies of ERG a- and b- wave Peaks to Varying Stimulus in Response to 
Varied Zinc and Taurine Status During Gestation and Postnatal Life1 

Treatment Group 

+Zn/+TauAL +Zn/-Tau -Zn/+Tau -Zn/-Tau Zn effect Tau effect Zn x Tau effect 

a-wave (msec) 

ND 1 

ND 2 

NO 3 
A 

(30 
01 b-wave (msec) 

ND 1 

ND 2 

ND 3 

ND 4 

ND 6 

ND 8 

'Results expressed as rneankSEM; n=9. Statistical analysis was by 2 factor ANOVA with zinc and taurine as independent variables. 



Appendix F 

Intensity-latency Functions in Rats made Zinc- and Taurine-deficient 
Throughout Gestation and Postnatal Life 

Animal # P-value R-value 
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