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Abstract

OSIRIS, a Canadian built instrument on-board the Swedish-led remote sens-

ing satellite, Odin, consists in part of three single lens imagers that measure near

infrared light from atmospheric scattering and emission. A full calibration of the

imaging system is required to remove all instrument dependent effects that modify

the observations.

This work presents the characterization and calibration of the OSIRIS imaging

system in an attempt to produce observations that are instrument independent

measurements of the atmospheric brightness. The required product is the number

of photons per second emitted, or scattered, from the atmosphere that are within

the sampling wavelength range and incident on the detector area in the instrument

field of view.

A major portion of the present work involves understanding the dark current

production mechanisms and the development of a technique to characterize the

dark current and manufacturer imposed electronic offsets. It is demonstrated that

with a current set of dark calibration images, the developed algorithm effectively

removes the dark current and electronic offsets over a wide operating temperature

range. The relative calibration of pixels is presented in terms of the electronic

gain, or flat field response, and the angular look direction. It is apparent that a

change in the relative pixel gain occurred between pre-flight calibration and the

first in-flight images. However, it is shown that with a recalculation of the flat

field response using in-flight images, an acceptable gain calibration is obtained. The

angular look direction of the pixels is determined from the results of two separate

in-flight experiments. The characterization and removal of the stray light signal is

shown to be effective.

Finally, the absolute calibration of the instrument is presented. While several

issues remain to be addressed, the comparison with a simple atmospheric brightness

model provides a first order verification of the results.
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α A calibration constant relating the observational units to the phys-
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A/D Analog to digital conversion.
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interval in a particular direction. Preferred units for this thesis are

photons/s/cm2/nm/sterad.

CTIA The Capacitive Trans-Impedance Amplifier circuit configuration

used for the imager photodiodes.

DCP Dark Calibration Parameters.
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Chapter 1

Introduction

1.1 OSIRIS and the Atmospheric Airglow

The study of the scattering and emission of light by atoms and molecules in the at-

mosphere, referred to as the airglow, provides understanding of important physical

processes. As satellite technology becomes more reliable and less cost prohibitive,

remote sensing of the airglow from a satellite platform is becoming a feasible oppor-

tunity. The scientific yield from a satellite mission has vast potential; high resolution

global coverage is achievable in relatively short time with monitoring continuing over

the period of years. Previously studied and notable airglow emissions, which are the

focus of the OSIRIS imager mission, are the (a1∆g → X3Σ−
g ) infrared atmospheric

system of molecular oxygen and the OH Meinel vibrational-rotational band airglow.

1.2 The OSIRIS Imager

OSIRIS, Optical Spectrograph and InfraRed Imaging System, is a Canadian in-

strument onboard the Swedish-led remote sensing satellite, Odin. OSIRIS, as the

acronym suggests, is a combined UV-visible spectrograph and a near infrared imag-

ing system (IRIS). The IRIS consists of three single lens imagers, each measuring a

1



different wavelength region with a linear array of InGaAs photodiodes. The imager

measures light, emitted and scattered from molecules in the atmosphere, at wave-

lengths that are relevant to ozone and some other species that play an important

role in the chemistry and dynamics of the stratosphere and mesosphere.

The IRIS, like any real photodetection system, must be calibrated in order to

remove instrument dependent effects from the measurement and to convert the elec-

tronic output of the system to the units of physical brightness. This calibration

work is the focus of the thesis.

The stages of the characterization and calibration can be divided into two broad

categories due to the nature of the instrument: effects of the photodetection system

and effects of the optical system. As an introduction to the thesis work, a summary

of the issues involved with practical photodetectors and a simple optical system is

presented followed by a summary of the stages necessary in the calibration of the

OSIRIS imager.

1.3 Photodetection Systems

A photodetector is a radiation sensor; it is a device that measures the intensity of

a light signal. Most often the measurement is made through a conversion of the

incident light into an electrical signal.

The most basic type of photodetector is a thermal detector. These devices use a

material in which the temperature varies with the incident optical power. Thermal

detectors have a very limited sensitivity and often respond very slowly to changes

in incident radiation.

Ideally, a photodetector would be sufficiently sensitive so that the result of the

measurement would simply be a count of the number of incident photons. Realis-

tic detectors that approach this type of sensitivity are based on one of two main

principles: the “external” photoelectric effect or “internal” electron excitation.

For practical materials, the efficiency of external photoelectric effect devices is

2



greatly reduced for wavelengths above 700 nm due to the characteristic work func-

tion of the material. For wavelengths greater than those in the visible range, and

for visible light detection as well, internal electron excitation devices made of semi-

conductor material can be used for photodetection. Semiconductor detectors are of

two main classes: the photoconductor and the photodiode. A photoconductor is a

semiconductor that has a resistance that changes with varying illumination, whereas

a photodiode is a semiconductor diode that generates a current that is a function

of the illumination of the detector. Photodiodes are generally the detector of choice

in modern day applications, including the OSIRIS imaging array, because they are

small and have high speed response and good sensitivity.

1.4 Calibration of a Photodetector

An ideal photodiode produces a current that is directly proportional to the number

of incident photons within the optical passband. A real photodiode, however, gen-

erates a current that is not only proportional to the radiation power, but is also a

function of the temperature of the device. Consideration must also be given to the

wavelength response of the detector. A photodiode has a quantum efficiency that is

a characteristic of the material properties and describes the efficiency of conversion

of a photon to output current. The quantum efficiency is a function of the wave-

length of the incident photon; lower energy photons, still within the passband of

the measurement may be more or less efficiently converted to output current than

higher energy photons.

In general, the full calibration of a photodiode detection system involves the re-

moval of all instrument dependent effects from a measurement of a radiation source.

Generally, the calibration of a photo-detection system involves two stages:

• Dark current removal,

• Absolute calibration.
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The dark current removal refers to the correction for the output current that is

generated due to the temperature of the device that (hopefully) does not depend on

the incident radiation of the measured source. The absolute calibration is the con-

version of the measured output current of the photodiode to a physical brightness

of the radiation source. This must take into account the wavelength and temper-

ature dependencies of the quantum efficiency of the photodiode and effects due to

the read-out electronics that measure the photo-generated current. The result of

the calibration is an instrument independent measurement of the brightness of the

source.

1.5 Calibration of an Optical System

Optical systems for scientific measurement range from single lens systems to complex

interferometers and spectrometers with various calibration issues related to their spe-

cific function. In general, however, the characterization of even the simplest optical

system involves measurement of the angular field of view and the corresponding axis

of the line of sight relative to the instrument frame. Optical effects that can affect

the measurement of the incident signal include diffraction and scattering of out-of-

field light from external surfaces into the field of view. These effects depend on the

physical properties of the optical system, the viewing geometry and the illuminating

source.
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1.6 Calibration of the OSIRIS Imager

The OSIRIS imager is a photodetection instrument that contains both electrical

and optical components that can affect the measurement of the incident signal. The

main stages in the calibration of the imager are:

• Dark current removal,

• Relative gain calibration,

• Relative look direction registration,

• Stray light removal,

• Absolute calibration.

The dark current removal and the absolute calibration are very important as-

pects of the instrument calibration. Added to these are stages that result from the

optical system and multi-detector feature of the imager. The relative gain calibra-

tion attempts to correct for variations in the gain and quantum efficiency of each

individual photo-diode, or pixel. The relative look direction registration is a deter-

mination of the field of view and central line of sight of each pixel. The stray light

removal is a correction for effects of the optical system; these include baffle scatter

and diffraction. A good understanding and effective characterization of each of these

terms results in a calibration that yields an instrument independent measure of the

source brightness.

1.7 Outline

A background of the OSIRIS mission that includes an instrument description and

a survey of past measurements relevant to the atmospheric molecular emission that

are the focus of the imager observations are given in Chapter 2.
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Chapter 3 details the dark current characterization in terms of modern semi-

conductor physics and presents a technique developed especially for the removal of

dark current terms in a multi-detector system. Chapter 4 presents the relative cal-

ibration, including the gain and the look direction, of the detectors in the imager.

There is an emphasis on understanding the gain of the system in flight.

The stray light correction is presented in Chapter 5. Previous modelling of

the out of field scatter is summarized and a technique is detailed that allows for

the removal of the stray light by using in-flight measurements for characterization.

Chapter 6 contains a summary of the current work on the absolute calibration and

includes a comparison of flight data with a simple atmospheric model of scattered

sunlight. Finally, a summary of the results of the calibration together with recom-

mendations for future work is given in Chapter 7.

6



Chapter 2

Background: The OSIRIS Imager

2.1 Introduction

This chapter provides a background of physical properties of the molecular emis-

sions measured by the OSIRIS imager and a history of the discovery and previous

measurements of the emissions. It also provides a description of the imager instru-

ment and the satellite orbit and viewing geometry. Background details specific to

each stage in the calibration are included in the following chapters as each issue is

addressed.

2.2 The Oxygen InfraRed Atmospheric Band

The first observation of the excited state of molecular oxygen O2(a
1∆g), commonly

referred to as ‘singlet delta’, was made by Herzberg (1934) from detection of strong

atmospheric absorption of the solar spectrum at 1.27 µm. This transition is the

(0,0) band, referring to the vibrational states of the electronically excited singlet

delta state and ground state molecule, O2(X
3Σ−

g ), respectively.

Vallance Jones and Harrison (1958) unsuccessfully attempted to measure twi-

light emission of the (a1∆g → X3Σ−
g ) transition from the ground because of strong
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atmospheric absorption at low altitudes. They were, however, able to measure an

emission at 1.58 µm in the evening twilight from a transition of O2(a
1∆g) to the first

vibrational level of the ground state state molecule: the (0,1) band. This detection

was observed as an enhancement of the already documented spectral emission of

the Meinel system of OH. The observation of the emission in the evening twilight

and the failure to observe the emission in the morning confirmed the long lifetime

of the a1∆g state. Vallance Jones and Harrison believed that the emission was due

to a resonant-phosphorescent process with sunlight. In further study of the (0,1)

band, Vallance Jones and Gattinger (1963) report a strong seasonal variation in

the brightness of the 1.58 µm emission which is not satisfactorily explained by the

resonant-phosphorescent theory. They proposed the creation of the O2(a
1∆g) state

through photo-dissociation of ozone, O3, as shown in Equation 2.1. Confirmation

of the ozone dissociation hypothesis was made in 1966 through observations of the

emission brightness during solar eclipse (Gattinger and Vallance Jones, 1966).

O3 + hν → O2(a
1∆g) + O. (2.1)

The first successful observation of the (0,0) transition at 1.27 µm was made in

1962 from high altitude aircraft at 13 km (Noxon and Vallance Jones, 1962). A

series of balloon flights by Evans et al. (1967) measuring the 1.27 µm emission from

30 km further confirmed the ozone dissociation hypothesis.

A height profile of the midday 1.27 µm emission was obtained in 1968 with

rocket-borne instrumentation (Evans et al., 1968). The profile was in excellent

agreement with the theoretically obtained profile that assumed production of sin-

glet delta through ozone photo-dissociation. However, a second distinct layer of

emission, in excess of the prediction, was observed in the upper mesosphere. Similar

height profiles were obtained with later rocket experiments (Haslett et al., 1969;

Wood, 1972). Further study of the diurnal variation in the brightness of the singlet

delta lead to the discovery of additional production mechanisms including a pro-

posed dissociation of vibrationally excited OH producing O2(
1∆g) in the nighttime
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(Llewellyn and Solheim, 1978).

In the 1980’s, satellite technology was becoming globally popular as a means to

study the atmosphere. The Solar Mesospheric Explorer, SME, was launched in 1981

with the objective of studying ozone in the stratosphere and mesosphere. One of

the main instruments on board was a spectrometer that measured a band centered

at 1.27 µm (Barth et al., 1983). SME data supplied confirmation of the excess

emission in the mesosphere reported by Evans et al. (1968), and provided evidence

that supported the source of the emission as a secondary ozone peak (Thomas et

al., 1983). Variation in the mesospheric ozone concentration was also measured in

the 1980’s during a total solar eclipse (Bantle et al., 1983).

As the ability to measure the singlet delta emission increased, the need for a

greater understanding of the production and loss mechanisms became important.

Because the a1∆g state has a relatively long radiative lifetime, the interpretation of

observations is especially difficult during non-steady state periods such as twilight.

Complex models of the time dependent photo-chemistry were developed in order to

properly interpret the measurements (López-González, 1989; Mlynczak and Olander,

1995). An accepted model of the production chain for airglow at 1.27 µm that

includes interactions with ozone and molecular oxygen was developed by Mlynczak

et al. (1993).

Closely tied to the Infrared Atmospheric Band of oxygen is the vibrationally

excited Meinel hydroxyl (OH*) emission. Similarities in the nightglow height profile

between the O2(a
1∆g) emission and OH* emission measured by Evans et al. (1973)

show that both excited states may be created by a reaction between atomic oxygen

and HO2 (Wood, 1972). Llewellyn and Solheim (1978) suggested that a reaction

between atomic oxygen and OH* creates singlet delta and atomic hydrogen.

The dominant reaction in the creation of OH* is a reaction between ozone and

atomic hydrogen, as shown in Equation 2.2.

O3 + H→ OH* + O2. (2.2)
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Thus, the simultaneous measurement of ozone, through the O2(a
1∆g) emission, and

the direct measurement of OH*, through the Meinel emission, can be used to infer

the atomic hydrogen profile.

Measurement of both O2(a
1∆g) and OH* emissions is still continued as they

provide important information on the energy budget of the mesosphere. The meso-

sphere is a dynamic area of the atmosphere and little is known about the causes and

effects of energy deposition. The simultaneous measurement of mesospheric ozone,

molecular oxygen, hydrogen, and hydroxyl with high temporal and spatial resolution

can provide important information that will help in our understanding of this area

of the atmosphere.

2.3 The OSIRIS Instrument

OSIRIS, on the Odin satellite, is a combined optical spectrograph and infrared

imaging system (Murtagh et al., 2002). The IRIS, InfraRed Imaging System, is

itself composed of three separate co-aligned single lens imagers. Figure 2.1 is a

schematic of the entire OSIRIS instrument with the imager optical assembly clearly

visible on the left side.

The imagers have parallel bore-sights; each one consists of an identical baffling

system with a 23 mm diameter aperture, a ZnSe plano-convex lens, a narrow-band in-

terference filter, and a one-dimensional linear array of 128 thermo-electrically cooled

InGaAs photodetectors placed in the focal plane of the lens. A schematic of the

lens-detector system is shown in the simple conceptual drawing in Figure 2.2. Ap-

proximately 20 photodectors at the end of each array are covered with a mask in

order to provide a continuous measure of the dark signal in the array. These masked

pixels are critical for dark current removal. There is a shutter between the lenses

and the detectors for the collection of dark images. There are also two small infrared

sources in the region between the lenses and the detectors intended for calibration

purposes.
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Figure 2.1: A schematic of the OSIRIS instrument.
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Figure 2.2: Conceptual schematic of a single lens linear array imager.
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2.4 Satellite Platform Viewing Geometry

The Odin satellite carries both OSIRIS and a sub-millimetre radiometer, or SMR,

this latter is used for both aeronomy and astronomy as the satellite has a dual

mission: astronomy and aeronomy. The requirements of both missions impacted

the orbit selection and the operating modes of the satellite. Odin is currently in

a sun-synchronous dusk-dawn orbit with an inclination of 97o and at an altitude

of approximately 600 km; this provides both maximum solar power and thermal

protection. The inclined orbit, together with 18h00 local time ascending node, means

that each orbit tracks through both sunrise and sunset, except for two periods per

year when the orbit track follows the terminator.

In this orbit, each photodetector, or pixel, in the linear array of the imager has

a field of view of 1 km in the vertical by 2 km in the horizontal when mapped on to

the Earth’s limb. Therefore, each imager, or channel, which contains approximately

110 pixels that measure light, makes simultaneous measurements of 110 km of the

vertical atmospheric limb profile.

In astronomy mode, OSIRIS is switched off. In aeronomy mode, the optical axis

of the instrument has a field of view through the atmosphere at a certain tangent

height. For aeronomy, the satellite is in either “nod” mode or “stare mode”. In

stare mode, the tangent height of the optic axis is fixed such that all pixels have a

different tangent height. In nod mode, the entire satellite oscillates over 2 degrees

every 4 minutes such that the optic axis scans through approximately 100 km in

the limb. Figure 2.3 is a conceptual drawing of the sun-synchronous orbit showing

the different science modes and the solar condition. A sketch of the limb scattering

and emission geometry is also shown. Another picture of the earth, the orbit and

the atmosphere is shown to scale in Figure 2.4. The satellite track is shown in black

and the atmosphere in blue. The first 100 km of the atmosphere is represented by

the thickness of the blue line. The 2 degree field of view of the imager is shown for

several locations of the satellite, represented as red dots.
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Figure 2.3: (a) Conceptual sketch of the orbit showing the science modes of the

satellite. (b) Remote sensing limb scatter and emission geometry.
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Figure 2.4: Odin orbit geometry shown to scale.
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2.5 The Airglow and IRIS Filters

Each of the imager channels has an interference filter in the optical path and directly

attached to the photodetector array. Channels 2 and 3 primarily measure airglow

emission from the oxygen Infrared Atmospheric band at 1.27 µm with 10 nm wide

filters centered at 1.273 µm and 1.263 µm, respectively. Figure 2.5 shows a plot of the

calculated emission band spectrum of the O2(a
1∆g → X3Σ−

g ) transition overlayed on

the normalized filter shape for channel 3. In a similar fashion, the filter of channel

1, 40 nm wide, is centered at 1.530 µm, and measures the OH Meinel vibrational-

rotational 4-2 and 3-1 band airglow after sunset and scattered sunlight during the

daytime.
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Figure 2.5: Synthetic O2(a
1∆g) emission band spectrum and the measured channel

3 average filter shape.

14



2.6 Calibration Data

Before the launch of the satellite, the flight model of the OSIRIS instrument was

used to make a number of calibration measurements at different facilities. As well,

ongoing calibration measurements are being made at regular intervals in flight.

There were three main pre-flight calibration data sessions, each with a different

primary objective. The calibration data taken in Calgary, Canada, were extensive.

Many dark images were taken over a large wide of exposure times and tempera-

tures. In addition, a scanning monochromator was used to measure the wavelength

response and the relative gain response. In Linköping, Sweden, a less extensive set

of dark current measurements was made. The optical alignment and measurement

of the field of view were performed in Toulouse, France.

Ongoing in-flight calibration measurements include dark current monitoring us-

ing the imager shutter system to take dark images, and an attempt to monitor any

changes in the system gain by imaging the small calibration sources inside the baffle

and shutter system.

2.7 IR Imager Mission Summary

The primary objective of the IRIS portion of the OSIRIS instrument is the high

resolution measurement of the stratospheric and mesospheric emissions related to

the photolysis of ozone. The Oxygen InfraRed Atmospheric Band and the closely

related Meinel Hydroxyl Bands are simultaneously measured in a line of sight bright-

ness integral over 100 vertical kilometers at the tangent point with a resolution of

approximately 1 km. The data will be used to derive concentrations of species,

including ozone and hydrogen, on a global basis. The primary capability of the

imaging technique is that the observations can be used as inputs to a tomographic

inversion that can provide information on variations in horizontal structure with

unprecedented resolution (Degenstein et al., 2003). Together, the height profile of
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species concentrations and information about horizontal structure in high resolution

provide new insight into the dynamics and energy budget of the mesosphere.
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Chapter 3

Dark Current and Electronic

Offset

3.1 Introduction

In this chapter, the characterization of the dark current and the electronic offsets of

the detector array are presented. Each pixel in the array has a unique dark current

characteristic and an independent electronic offset relative to the other pixels. There

is also an image electronic offset, which varies randomly from image to image, that is

dependent on the readout electronics imposed by the manufacturer. Because of this

image dependent offset, a difference technique is used that allows the relative offset

of the pixels and the dark current to be characterized, as functions of temperature

and exposure time, so that the dark current can be removed from those images that

contain atmospheric signals.

3.2 Dark Current in a Linear Detector Array

Each photodiode in the InGaAs linear detector array produces a current that is

thermally generated. This signal is present even when there is no incident optical
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signal and is, therefore, called dark current. Because each pixel in the array has

slightly different operating characteristics due to imperfections in the manufacturing

process, the dark current of each pixel must be considered independently. For the

OSIRIS imager, with 3 channels each with 128 pixels, there are essentially 384

different detectors that must be individually considered. The common algorithm

for the calibration of instruments that generate dark current, such as CCD’s and

imagers, is to record and store a dark image that is subtracted from subsequent

images that contain optical signal. Several complications must be considered in the

case of this imager because of the random image electronic offset, and the range of

exposure times and operating temperatures.

3.2.1 Light Detection and Shot Noise

A photodiode detects light through the generation of a free electron-hole pair, an

electron in the conduction band and a hole in the valence band, by the absorption

of photons with energy that is greater than the bandgap energy of the material. If

the electron-hole pair is created within the depletion region of the diode, the charges

drift in a direction based on the electric field in the junction that is set up by the

diffusion of the majority carriers. The drifting charge generates a reverse current

that is proportional to the number of incident photons called the photocurrent, Iph,

as shown in Figure 3.1. The magnitude of the photocurrent depends on the drift

velocities of the charges in the material as they travel through the junction. It is

also a function of the number of electron-hole pairs generated, which depends on

both the quantum efficiency of the photon absorption process and the number of

incident photons. Since the field in the junction is not uniform over the junction

width and because the photons are absorbed over a distance in the material that

depends on the photon energy, or wavelength, modelling the exact time dependence

of the photocurrent on the optical power is not trivial.

The sensitivity of a photodetector is determined by the magnitude of the random
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Figure 3.1: Generation of reverse photocurrent through photon absorption.

fluctuations in the photogenerated current. Any signal level must be greater than

the random fluctuations in order for it to be distinguished from the noise. Since

photons are discrete, the absorption of the photons and the creation of the charge

that generates the photocurrent is a discrete process. This means that even for a

constant incident optical power, the random nature of the discrete charge arrival

causes current fluctuations about the average value. These random fluctuations,

governed by the Poisson probability distribution, are known as “shot noise”.

In a photodetector, electron-hole pairs are created through the photon absorption

process; however, a temperature dependent dark current is also generated. Since

this is also a discrete process the dark current, which has a “dc” value at a given

temperature, exhibits these random fluctuations so that there is shot noise associated

with dark current. Figure 3.2, based on Figure 5.19 from Kasap, 2001, is a simple

plot of typical dark and illuminated photocurrents over time. They were generated

for normally distributed values that vary about an average value for each type of

current. It should be noted that the random fluctuations about the illuminated
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Figure 3.2: Theoretically generated plots of shot noise in typical dark and illumi-
nated currents.

current dc value, which represents a sum of the dark current and the photocurrent,

do not necessarily correspond to the fluctuations about the dark current dc value.

3.2.2 The Capacitive Trans-Impedance Amplifier

Each pixel in the linear InGaAs array is composed of a photodiode in a sample-

and-hold Capacitive Trans-Impedance Amplifier (CTIA) configuration as shown by

the schematic in Figure 3.3. In the CTIA configuration, the p-type anode of the

photodiode, which shares a common n-type substrate with the other photodiodes

in the array, is connected to the inverting input of a differential operational ampli-

fier. The feedback loop consists of an integrating capacitor in parallel with a reset

transistor. When the photogenerated charge from the photodiode causes a slight

change in voltage at the inverting input of the op-amp, the output of the op-amp,

which has an open loop gain of several orders of magnitude, drops significantly. This

voltage drop is connected to the inverting input through the feedback capacitor and

causes the photogenerated charge to flow on to the feedback capacitor to oppose the

original voltage change at the input.
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Figure 3.3: The CTIA Photodiode Configuration.

The two sample and hold capacitors are used to sample the voltage of the inte-

grating capacitor at the start and end of the integration time by pulsing the reset

transistors. These start-time and end-time voltages are input to a second differen-

tial op-amp that amplifies the voltage difference that is proportional to the charge

collected from the photodiode during the integration time. This voltage difference

is input to a 14 bit A/D converter, read-out, and stored in memory.

3.2.3 Non-Ideal Zero Bias Operation of the Photodiode

In an ideal CTIA configuration, both of the inputs of the op-amp are held at the

same reference voltage such that the photodiode is not biased. Under zero-bias

conditions, the diffusion of majority carriers across the depletion region is balanced

by the carriers drifting in the opposite direction due to the internal electric field in

the junction set up by the exposed ions from the diffusion process. In the absence

of incident radiation, electron-hole pairs can be thermally generated by energetic
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vibrations of the crystal bonds promoting electrons from the valence band to the

conduction band (and holes from the conduction band to the valence band). When

an electron in the conduction band encounters a hole in the valence band, it falls

from the conduction band to occupy the lower electronic energy state of the hole,

the process is called recombination. The excess energy in the transition is lost as an

emitted photon or as heat in a lattice vibration. In steady state, under no applied

bias, the rate of thermal generation is equal to the rate of recombination. Therefore,

in the dark where there is no generation of photocurrent, the net current, at any

temperature, from the photodiode is zero.

For individual photodiodes, adjustments of the CTIA are available to create

the zero bias condition and ensure a minimum dark current. However, with linear

photodiode arrays, these adjustments are not possible and the voltage bias of each

pixel has a small magnitude that varies randomly and depends on the precision of

the photolithography construction. The result is that each diode in the array can

be operating under zero-bias, forward-bias, or reverse-bias conditions.

3.2.4 Forward Bias Operating Condition

Under a forward bias, as shown in Figure 3.4, the potential, V0, of the photodiode

junction (Figure 3.1) is lowered by the voltage of the external source of voltage V to

(V0 − V ). This decrease in the potential increases the probability that a hole in the

p-side will overcome the potential barrier and diffuse to the n-side. The same is true

for electrons that diffuse across the junction from the n-side. This diffusion results

in an excess of minority carriers in the neutral sides of the diode. Injected electrons

in the neutral p-region recombine with the many holes in this region, these holes

can be replenished by the positive terminal of the battery, connected to the p-side

under forward bias. The supply of injected electrons, diffusing to the p-side from

the n-side, can be maintained by the negative terminal of the battery connected to

the n-side. The result of the forward bias of the battery is a maintainable forward
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current due to the diffusion of minority carriers that is described by the well-known

Shockley equation,

Jdiff = C1n
2
i

[
exp

(
eV

kBT

)
− 1

]
, (3.1)

where V is the applied voltage, T is the temperature, kB is the Boltzman constant,

and C1 is a constant that depends on the material properties such as the hole and

electron diffusion lengths, and the donor and acceptor concentrations. The intrinsic

concentration, ni, in the semiconductor is given by,

ni =
√

NcNv exp
(
− Eg

2kBT

)
, (3.2)

where Eg is the bandgap, the energy difference between the conduction band and the

valence band, and Nc and Nv are the effective densities of states at the conduction

and valence band edges, respectively, and represent the number of available elec-

tronic states, or wavefunctions, at the corresponding band energy. These densities,

Equation 3.3, which depend on the effective carrier mass, m∗
e for electrons and m∗

h

for holes, are comparatively weak functions of temperature.

Nc = 2

[
2πm∗

ekBT

h2

] 3
2

; Nv = 2

[
2πm∗

hkBT

h2

] 3
2

. (3.3)

During the minority carrier diffusion, there is some recombination of electron-

hole pairs in the depletion region as well as in the neutral sides. This also results

in a sustainable external forward current, described in Equation 3.4, called the

recombination current,

Jrecom = C2ni

[
exp

(
eV

2kBT

)
− 1

]
, (3.4)

where C2 is a constant that depends on the width of the depletion region and on

the mean recombination time of the electrons and holes.

The total forward current, defined in the traditional direction of allowed current

flow through an ideal diode, and in this case generated in the dark, is a sum of the

diffusion current and the recombination current, or

Jdark = Jforward = Jdiff + Jrecom. (3.5)
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It is important to note that Jdiff is proportional to n2
i whereas Jrecom is proportional

to ni which means that the temperature dependence of each term is different, this

is shown in Equations 3.6 and 3.7,

Jdiff ∝ exp
(
− Eg

kBT

)
, (3.6)

Jrecom ∝ exp
(
− Eg

2kBT

)
. (3.7)

Under forward bias, the photocurrent is still a reverse current, so the forward

current due to diffusion and recombination, Jforward, subtracts from the photocurrent,

as shown in Figure 3.4, such that the total measured current, Jtotal is

Jtotal = Jph − Jdark = Jph − Jdiff − Jrecom. (3.8)

3.2.5 Reverse Bias Operating Condition

When a photodiode is in a reverse bias operating condition, as shown in Figure 3.5,

the voltage drop from the external source is mainly across the resistive junction of the

diode. The junction potential is raised by the external source, voltage V , from V0 to

(V0+V ). The forward current diffusion can no longer be maintained since the battery

cannot supply holes to the injected electrons in the p-side because of the reverse bias.

However, a small reverse diffusion current flows due to the concentration gradient in

the minority carriers from the edge of the depletion region, where the concentration

is zero, to the neutral bulk where the the concentration is small but non-zero. For

example, electrons diffuse from the bulk p-side to the edge of the depletion region

where they are accelerated by the electric field and drift toward the n-side. This is

a sustainable current since when the electron reaches the n-side, it can recombine

with a hole supplied by the positive terminal of the battery. This reverse diffusion is

called the reverse saturation current and is also described by the Shockley equation,

Equation 3.1, with a negative bias voltage, V = −Vr, such that

Jdiff = C1n
2
i

[
exp

(−eVr

kBT

)
− 1

]
. (3.9)
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It should be noted that when the reverse bias voltage is greater than the thermal

voltage, kBT/e = 25 mV, Jdiff no longer depends on the magnitude of the bias

voltage but is “saturated” at −C1n
2
i .

Electron-hole pairs that are thermally generated in the depletion region also

contribute to the reverse current since the internal electric field will separate the

charge and drift them toward the neutral regions. Electrons, which drift toward the

n-side, can recombine with a hole supplied by the positive terminal of the battery.

This reverse thermally generated current is given by

Jgen = C3ni, (3.10)

where C3 is a constant that depends on the width of the depletion region and on

the mean thermal generation time of the electron-hole pairs. Since the width of the

depletion region depends on the magnitude of the reverse bias, increasing the bias

also increases Jgen.

Again, it is important to note that the two terms that contribute to the dark

reverse current depend differently on ni and, therefore, have different temperature

dependence similar to that in Equations 3.6 and 3.7. Thus, under a reverse bias

configuration, the total current under illuminated conditions is a reverse current

that is the sum of the photocurrent and the dark current, which is composed of the

diffusion current and the thermally generated current,

Jtotal = Jph + Jdark = Jph + Jdiff + Jgen. (3.11)
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Figure 3.5: A reverse biased photodiode.
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3.3 D.C. Offset of a Linear Detector Array

The signal measured by each pixel in an image is essentially a measure of the voltage

difference sampled at the start and end of each exposure. However, because of the

random bias of each diode due to the non-ideal CTIA circuit, shown in Figure 3.3, the

dark current may be subtractive causing the voltage difference between the start and

end of the exposure from an image with greater dark current than photocurrent to

be negative. For this reason, a uniform D.C. offset voltage is electronically applied

to the entire detector array at the start of each integration. This image offset is

imposed by the manufacturer of the hardware and cannot be externally controlled

by user software. Also, each pixel begins the integration with an unique offset,

relative to the other pixels, that is small compared to the magnitude of the image

offset.

3.3.1 Image Offset and Relative Pixel Offset

Unfortunately, the uniform D.C. offset voltage applied to each image is not constant

from image to image. However, the relative bias that is unique to each pixel remains

constant. Therefore, a dark, cold, short exposure image, which contains a negligible

amount of dark current because of the low temperature and short exposure time,

consistently has the same shape due to the constant pixel bias, but has an average

value that varies randomly with the image offset. Figure 3.6 is a plot of a typical

dark, cold image from the OSIRIS imager channel 3. Note that the image is centered

near 2500 DN (Digital Number) which is about 15% of saturation of the 14-bit (zero-

based 16383 DN full well) A/D converter. The independent axis in this case is the

vertical axis showing pixel number. This convention is used here, and following, as

it follows the typical atmospheric science convention to plot height on the vertical

scale. Because OSIRIS is a vertical imager, a pixel number corresponds to a tangent

height in an atmospheric image.

The signal, S, measured in DN , generated by a pixel, k, for an image, n, exposed
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Figure 3.6: A typical dark, cold image.

in the dark, such as in the image in Figure 3.6, is

S(k, n) = Oi(n) + Op(k) + Sdark(k, T, t), (3.12)

where Oi(n) is the signal due to the image offset that varies randomly by a few

hundred DN from image to image, and is dependent on the image, n. Op(k) is

the signal from the offset that varies from pixel to pixel and is constant for all

images, and Sdark is the signal due to the dark current, unique to the pixel, k, and

increases in magnitude with increasing temperature, T , and exposure time, t. Sdark

is a negligible term in the image shown in Figure 3.6 since the exposure time, 20

ms, is very short and the temperature, -40◦C, is cold.

Figure 3.7 is a plot of the difference between the image shown in Figure 3.6 and

a successive dark image taken at the same temperature and with the same short

exposure time. The difference has a mean of 77 DN and a standard deviation

of 5 DN whereas each dark, cold image, defining the distribution of Op(k), has

a standard deviation of approximately 150 DN . The deviation of the difference
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Figure 3.7: The DN difference between two succesive dark, cold images.

between the two images is random and normally distributed about the mean and is

attributed to the shot noise of the detector. The non-zero mean of the difference

is due to the image offset term, Oi(n) in Equation 3.12. The signal in pixel, k, in

the successive image, n+1, has a form similar to equation 3.12 such that difference,

S(k, n + 1)− S(k, n) is

S(k, n + 1)− S(k, n) = Oi(n + 1)−Oi(n). (3.13)

There is no dependence on the pixel offset that is constant across images. The dark

current term also vanishes since it is only a function of the temperature and the

exposure time for a given pixel, both of which are the same in image n and n + 1.

Successive differences between images always have a standard deviation of 5 DN

across all the pixels, but have a mean that varies randomly by as much as 300 DN .

However, the common dark current removal algorithm assumes that the difference

between two dark images, with the same temperature and exposure time, is zero.

The identified mean value in the difference, attributed to the randomly fluctuating
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manufacturer imposed image offset, cannot simply be determined and removed when

light is incident on the detector. Therefore, a modified technique that accounts for

this random image offset in the presence of incident signal must be used.

3.3.2 Physical Origin of the Image and Pixel Offsets

The image and pixel offsets are features of the manufactured read-out electronics and

are not documented by the manufacturer. One possible source of the image offset is

that the S2 reset line in the CTIA circuit, Figure 3.3, is tied to a higher reference

voltage than the S1 reset line. This would cause a positive voltage difference between

S2 and S1 and lead to an image offset.

The constant relative pixel offset could be due to small non-uniformities in the

values of the integrating capacitors. Therefore, when the video lines are reset, the

charge stored on each of the sample-and-hold lines would vary from pixel to pixel,

but would be consistent from image to image.

3.4 The Removal Technique

The difference between the readout of two pixels in an image is a parameter that does

not depend on the variable image offset. For images with long exposure times or high

temperatures, where the dark current term is no longer negligible, this parameter

is an effective characterization of the dark current and inter-pixel offset and can be

used to calibrate images that contain an optical signal.

3.4.1 Referencing the Masked Pixels

In the manufacturing process for the linear array detectors, a mask was placed over

20 pixels at one end of each array. Thus, these 20 pixels always image in the dark and

provide a measure of the dark signal for images with optical signal. These masked

pixels are referred to as reference pixels, and pixels that measure the incident light
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are referred to as signal pixels. The DN measured by a reference pixel, r, in an

image, n, of an optical source is described with the same form as in Equation 3.12,

S(r, n) = Oi(n) + Op(r) + Sdark(r). (3.14)

The DN measured by a signal pixel, k, when imaging an optical source contains a

fourth term, Sph(k) (the illumination signal), as in Equation 3.15 where

S(k, n) = Oi(n) + Op(k) + Sdark(k) + Sph(k). (3.15)

For a dark, cold image with negligible dark current, the difference between a signal

pixel and a reference pixel depends only on the inter-pixel offset,

S(k, n)− S(r, n) = Op(k)−Op(r). (3.16)

For an image of a radiative source with non-negligible dark current terms, the dif-

ference between a signal pixel and a reference pixel is the difference of Equations

3.15 and 3.14,

S(k, n)− S(r, n) = Sph(k) + [Op(k)−Op(r)] + [Sdark(k)− Sdark(r)]. (3.17)

The difference in signals described by Equation 3.17 is essentially the signal due to

the incident light in pixel k plus two terms that depend on the difference between

the inter-pixel offsets and the dark current characteristics of pixels k and r. It is the

sum of these terms that can be characterized, as a function of exposure time and

temperature, and used to remove the offset and the dark current from images that

contain an optical signal.

3.4.2 The Dark Calibration Parameters

The calculation of the difference between a signal pixel and a reference pixel from

a dark image with significant dark current terms is exactly the characterization

term discussed above since Sph(k) is zero in a dark image. By choosing a single
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reference pixel under the mask, Equation 3.18 can be calculated for all pixels from

a dark image with a given exposure time and temperature. These values, which

are functions of temperature, T , and exposure time, t, are referred to as the dark

calibration parameters, DCP (k, r, T, t), and are unique depending on the choice of

signal pixel, k and reference pixel, r.

DCP (k, r, T, t) = [Op(k)−Op(r)] + [Sdark(k, T, t)− Sdark(r, T, t)]. (3.18)

Thus, when an image of an optical source is taken, at the same temperature and

with the same exposure time as a set of precalculated DCP , the signal due to the

incident photons can be determined by calculating the difference between a signal

pixel and a reference pixel in the current image, as in Equation 3.17, and subtracting

the DCP for the corresponding temperature and exposure time. The dependence on

t and T is dropped in the remaining explanation as it is assumed that all references

to the DCP are made for the corresponding exposure times and temperatures. The

remaining signal is the signal due to the incident photons only, or

Sph(k) = S(k, n)− S(r, n)−DCP (k, r). (3.19)

It should be noted that this technique also removes the image offset through the

difference between the signal and reference pixel, and removes the inter-pixel offset

that is contained within the DCP .

The determination of the signal due to the incident light in Equation 3.19 uses

a single masked pixel as the reference. In order to minimize the noise in the cal-

ibration, a set of DCP , and therefore the signal due to the incident light, can be

determined for each signal pixel and reference pixel pair. For N reference pixels, the

incident light signal can then be determined as the average of N different results,

each corresponding to a given reference pixel as

Sph(k) =

(N)S(k, n)−
N∑
r

S(r, n)−
N∑
r

DCP (k, r)

N
(3.20)
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which can be simplified to

Sph(k) = S(k, n)− 1

N

N∑
r

S(r, n)− 1

N

N∑
r

DCP (k, r). (3.21)

Calculating the DCP for many dark images and using an average value for these

parameters can further reduce the noise in the calibration process.

3.5 Calibration of Pre-Flight Dark Data

To this point, the removal technique has been discussed in terms of a given tempera-

ture and exposure time. However, in practice the imager is required to operate over

a wide range of temperatures and with many exposure times. Thus it is necessary

to construct a database of DCP that can be referenced for any given image tem-

perature and exposure time. However, it is impossible to construct such a database

that is complete in terms of having many dark images for all exposure times and

temperatures. Hence the general effectiveness of the removal technique and the tem-

perature and exposure time dependence of the parameters was investigated using

the pre-flight data, taken with the imager in Calgary during 1998, and in Linköping,

Sweden, during 2000.

3.5.1 Calgary, Canada, Data Sessions, 1998

The calibration sessions that were performed with the imager in Calgary contain a

large number of dark images with the instrument in a calibration facility that had

a wide range temperature control. The projected in-flight operating temperature

for the image detectors was approximately -20oC; however, as the operating tem-

perature was quite uncertain, and simply in order to fully investigate the imager

characteristics, the temperatures for the data sessions were varied from -60oC to

0oC. Six different exposure times that varied from 20 ms to 1 s were used. Gener-

ally, these data sessions provide an ideal set of measurements for the dark current

calibration tests.
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3.5.2 Linköping, Sweden, Data Sessions, 2000

The data sessions from Linköping, Sweden, have a much smaller temperature range,

near room temperature, and so are less useful for investigating the dark current

than the Calgary sessions. Also, only two exposure times were used: 2 µs and 70

ms. The two microsecond data are not useful for dark current calibration because

the short integration time does not allow a significant amount of dark current to

collect in an image. However, the removal technique can still be evaluated in terms

of its effectiveness in a worst case scenario of high temperature operation and in the

removal of the image and inter-pixel offsets that are still present in the 2 µs data.

3.5.3 Odd/Even Pixel Independence

The output video lines from the CTIA of each pixel, as shown in Figure 3.3, are

input to a second stage differential amplifier. However, the arrays are manufactured

so that all even numbered pixels are multiplexed to a single differential amplifier,

and all odd numbered pixels are multiplexed to a second differential amplifier. For

this reason the even pixels and the odd pixels of each array are treated separately

since the two amplifiers could have slightly different characteristics or could change

differently over time.

3.5.4 Temperature Dependence of DCP

A set of DCP was calculated from the Calgary data as the average of the DCP for

each even numbered signal pixel over five masked even numbered reference pixels for

all images with the same exposure time. A similar set was calculated for each odd

numbered signal pixel. In practice, only 10 masked pixels were used as reference

as it was noticed that pixels near the illuminated side of mask are not masked

effectively and light can “leak” in under the mask destroying the reference signal.

The DCP calculation was performed for a temperature bin size of 0.2oC, i.e. all

temperatures falling within the 0.2 degree bins are essentially considered to be of
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the same temperature. Figure 3.8 is a plot of the 1 second exposure DCP calculated

for an even numbered signal pixel in Channel 3 versus temperature.

The actual meaning of the DCP is difficult to interpret as it is the difference

between a dark signal and a dark reference pixel averaged over many different refer-

ence pixels. Because of the image offset that varies randomly from image to image,

it is impossible to isolate and plot the dark current characteristic of a single pixel.

However, the DCP as shown in Figure 3.8 still contains many interesting and in-

terpretable features.

The plot is clearly exponential in shape. The non-zero asymptote of the param-

eter at low temperature is due to the inter-pixel offset and is, in fact, the average

difference between the signal pixel and each of the reference pixels. As tempera-

ture increases, so the DCP increases, this indicates that the dominant source of

dark current is either a reverse current (additive to the photocurrent) in the signal

pixel, or a forward current (subtractive from the photocurrent) in a reference pixel.

Clearly, the nature of the parameters is such that the interpretation of the physical

situation, such as the direction and magnitude of the bias of each pixel, is quite

complicated.

Some understanding of the situation can be gained from an investigation of the

temperature dependence of the dark current. According to Equations 3.6 and 3.7,

the forward dark current is a combination of diffusion current and recombination

current that have different temperature dependencies. The reverse dark current is

also a combination of two currents that have different temperature dependencies,

the reverse diffusion current and the thermal generation current. In each case, the

diffusion current is proportional to exp
(

Eg

kBT

)
and the other term is proportional

to exp
(

Eg

2kBT

)
, recalling that the sign of the exponent depends on the bias of the

diode. Each set of DCP is essentially a sum of many of these terms each with

different coefficients that depend on the bias and the diode properties. Figure 3.9 is

a semi-log plot of the DCP shown in Figure 3.8, with the cold temperature offset

removed, versus the inverse temperature in Kelvin. The slope of the best fit line
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Figure 3.8: Temperature dependence of the DCP .
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Figure 3.9: Semi-log plot of DCP as a function of 1/T .
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corresponds to 0.38 eV , almost exactly half the bandgap of InGaAs which is 0.75 eV

(Kasap, 2001). A similar analysis for each pixel reveals the same Eg/2 dependence.

This means that the diffusion term is negligible for each diode. For the reverse bias

case, the dark current is dominated by the thermally generated carriers and, as in

the forward bias case, the dark current is dominated by the recombination current.

Although the dark current production mechanisms for each pixel are similar, the

DCP themselves are quite different in both magnitude and offset for each pixel. In

fact, opposite to that shown in Figure 3.8, some parameter sets are negative since

the difference between pixels could be negative for various reasons such as a forward

biased signal pixel and a reverse biased set of reference pixels. Negative DCP could

also result from a set of reference pixels that have a greater reverse bias than the

signal pixel. However, in every case the logarithm of the absolute magnitude of the

DCP , offset removed, is a linear function of 1/T with a slope that corresponds to

Eg/2.

3.5.5 Calibrated Dark Images

As previously mentioned, for each exposure time in the Calgary data sessions a set of

DCP was calculated as an average over many dark images with that exposure time,

for the entire available temperature range, with a bin size of 0.2 oC. The parameters

for each pixel were then linearly interpolated as a function of temperature for all bins

that did not contain any data. To test the calibration procedure, every fifth dark

image was omitted from the calculation of the parameters. These images were then

calibrated using the calculated DCP . The result of a successful ideal calibration of

a dark image is 0 DN beyond the instrument error for each pixel.

Figure 3.10 is a histogram of the results of the calibration of the 1 second dark

images. It appears to be Gaussian in shape with a mean, µ, of 0 DN and a standard

deviation, σ, of 6 DN . Thus, it appears that the errors in the technique are random

and are limited to a noise floor of 6 DN . This is a factor of 104 below saturation
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Figure 3.10: A histogram of calibrated channel 3, dark, 1 second exposure images
from Calgary data sessions (µ = 0 DN , σ = 6 DN).

and is believed to be due to the shot noise in the detectors and electronic readout

noise.

The same calibration procedure was followed for all applicable exposure times

taken during the Calgary data sessions, including 100 ms, 200 ms, 400 ms, and 1

s, and for all three imager channels. The results in each case were similar to those

for the channel 3, 1 s exposures. Figure 3.11 is a histogram of the calibrated DN

measured by all pixels in these dark images. This histogram is essentially the sum

of several distributions: one for each distinct channel and exposure time although

it is dominated by the longest exposure time data. Again, the error is random and

attributed to shot noise with µ = 0 DN and σ = 5 DN .

The results of this calibration are acceptable. However, it is a limited experiment

as the temperature of the images that were calibrated was very close to the tempera-

tures used for calculating the parameters. The linear interpolation of the parameters

was not robustly tested by attempting to calibrate images that fall in temperature
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Figure 3.11: A histogram of calibrated dark images from 3 channels and 4 exposure
times over a 60oC temperature range (µ = 0 DN , σ = 5 DN).

bins that are relatively far from the bins that contain the DCP calculated directly

from images. However, it is a realistic test in that the operating temperature range

of the satellite experiment does not depart significantly from the range where dark

calibration data is available. Also, during flight, there is much opportunity to collect

large amounts of dark calibration data for the actual operating range.

A similar analysis was performed for all of the data taken in Linköping. As

previously stated, these data are all taken at room temperature and are composed

only of 2 µs and 70 ms exposure times. At longer exposure times, the dark current

saturates the detector. In calculating the DCP for this data set, it was necessary

to increase the temperature resolution of the parameters since a small change in

temperature, at these high temperatures, corresponds to a large change in the dark

current. The bin size used was 0.01oC.

Figure 3.12 is a histogram of calibrated channel 3, 2 µs exposure time data.

Because the exposure time is so short almost no dark current could accumulate. Each
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Figure 3.12: A histogram of calibrated Linköping 2 µs dark images near room tem-

perature (µ = 0 DN , σ = 7 DN).

of these images is composed of almost entirely image and inter-pixel offset. However,

the same DCP calculation and removal algorithm was employed and the histogram

of the calibrated images is a Gaussian shape with µ = 0 DN and σ = 7 DN . This

again verifies the removal technique and agrees with the previous estimates of the

shot noise.

Figure 3.13 is a histogram of calibrated channel 3, 70 ms data. The histogram

is again a Gaussian, with a mean of 0 DN . However, the standard deviation is 16

DN . This is expected since the shot noise increases with temperature because more

thermally generated carriers are created in a given time. Thus, it is advantageous

to operate the detector at lower temperatures in order to limit the shot noise, even

though the dark current removal seems to be effective at high temperatures.
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Figure 3.13: A histogram of calibrated Linköping 70 ms dark images near room
temperature (µ = 0 DN , σ = 15 DN).

3.6 Other Removal Techniques

There are several other techniques, all based on the same difference principle, that

can be used to remove the dark current and the offsets. The basic difference between

the techniques is how the different exposure times and temperatures are handled.

A second removal technique that was implemented characterized the DCP for

a long exposure time, such as 1 second. The logarithm of the inverse temperature

dependence of the parameters was then least squares fit to a straight line. For

the calibration of an image, the parameter was multiplied by the exposure time

and interpolated. This method does work quite well and calibrations with results

similar to the actual removal technique employed are possible. The downfall of

this technique is that the inter-pixel offset must be removed from the DCP before

the semi-log regression. This requires that the offset be measured at very cold

temperatures with very small exposure times so that no dark current can accumulate.

As very cold temperatures are not available in space operation and there is no

41



continuous monitor of the inter-pixel offset, this technique is subject to a temporal

variation that cannot be corrected.

3.7 Calibration of In-Flight Dark Data

Direct application of the dark calibration parameters as measured in Calgary and

Linköping to in-flight data produces large systematic and random errors. This

means that there have been significant changes during the time since commissioning.

However, dark images with various exposure times are taken in space using the

shutter system. These images have been used to calculate a new set of in-flight dark

calibration parameters.

As the satellite begins a period of aeronomy data collection, the satellite is

rotated so that the optic axis of the instruments is pointed toward the limb of

the earth. This shift in position causes a change in the thermal equilibrium of the

satellite and the temperatures of the imager detectors drop. The typical temperature

change is from approximately -5oC to -20oC. The temperature remains near -20oC

for the remainder of the aeronomy data collection, varying by only a few degrees.

The cool down phase, which typically lasts for about 1 orbit, is an opportune time

to collect dark images and check the calibration. Figure 3.14 is a histogram of a

full orbit of 1500 dark images taken during a cool down phase and calibrated using

dark calibration parameters calculated from in-flight measurements. The mean is 0

DN and the standard deviation is 7 DN ; this is on the same order as the pre-flight

measurements and demonstrates that the removal technique is valid. With a flight

set of DCP , the dark current and electronic offset can be reliably removed from in-

flight data, within an error corresponding to the standard deviation of a histogram

of calibrated dark images.

Monitoring the DCP by calibrating successive cool down orbits has shown that

the parameters do not significantly change over the period of approximately one

month. However, over a period of six months an appreciable change can be de-
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Figure 3.14: A histogram of calibrated in flight dark images of using parameters
calculated from in flight measurements. (µ = 0 DN , σ = 7 DN).

tected. Therefore, in processing the flight data, a new set of calibration parameters

is calculated on a monthly basis. This approach provides a dark current removal

error that is effectively unchanging throughout the mission. The change in the dark

current removal parameters is demonstrated in Figure 3.15. The DCP for pixel

81 on channel 3, calculated from in-flight calibration data from November, 2001, is

shown as a function of temperature in red, the blue curve is the DCP calculated

for the same pixel from November, 2002. The systematic shift in the value of the

parameter set is on the order of one hundred DN . Overall, by recalculating the pa-

rameter sets on a monthly basis over the course of the mission, the dark calibration

technique performs satisfactorily and consistently on the in-flight data.
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Figure 3.15: DCP for pixel 81 calculated from in-flight calibration data from Novem-
ber, 2001, and from November, 2002. There are systematic changes of approximately
one hundred DN.
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Chapter 4

Relative Calibration of Pixels

4.1 Introduction

In this chapter, the relative calibration of the imager pixels is presented. The analysis

examines a technique that uses the pre-flight data taken in Calgary for gain calibra-

tion purposes, and investigates an apparent change in the imager gain characteristics

that occurred between that time and the first in-space image. A modification of this

technique has been developed in an attempt to obtain the gain calibration using

only in-flight data. In addition, the measured wavelength response of the imager,

on a pixel by pixel basis, is investigated to determine the extent, and origin, of the

different wavelength response of different pixels and its effect on the calibration of

atmospheric data. Finally, the determination of the relative look direction of each

pixel, in terms of angular offset, is presented.

4.2 A Flat Field Calibration

Generally, the gain calibration of an imaging device is referred to as a “flat field”

calibration. It is defined as the characterization of the relative response of different

pixels on the detector to a source with uniform brightness distribution within the
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field-of-view.

The flat field calibration addresses two distinct issues referred to as the detector

flat field and the optical flat field. The detector flat field calibration involves the

relative response of pixels on the detector for a uniform illumination of the detector

area. The optical flat field calibration is a characterization of the pre-detector optical

system of the instrument and is a measure of the relative number of photons incident

on different pixels when a source of uniform brightness distribution occupies the

entire instrument field of view.

4.2.1 Optical Flat Field

The optical system of the imager includes several baffles for stray light rejection and

an aperture stop that limits the light beam in a predictable way. Vignetting occurs

when the incident beam is limited in any way other than by the design of the aperture

stop. This effect often occurs at high off-axis angles within the instrument field of

view. The optical flat field calibration must characterize the effects of vignetting so

that they can be removed in the calibration.

A vignetting analysis was performed by Ivanov (2000) who traced beams of

parallel rays at various off-axis angles through a software model of the IRI system.

This procedure allows the calculation of the total illumination of the detector by

determining those surfaces of the system that limit the incident beam. It was found

that for small off-axis angles, the aperture stop is the limiting baffle. However

for high off-axis angles, near the edge of the detector that corresponds to high

pixel numbers (the optical axis, the pixel aligned with the bore sight of the other

instruments on Odin, is pixel 15), the entrance vein and the lens bracket limit the

incident beam and decrease the signal. Figure 4.1 is a plot of the modelled signal

incident on the detector, after transmission through the imager baffle system, for

incidence angles corresponding to the field of view of the detector. Also shown for

comparison on the same plot are uncalibrated images, one from each channel, of a
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Figure 4.1: Modelled and measured instrument response for a uniformly distributed
brightness source. Optical vignetting is evident at high off-axis angles. (Ivanov,
2000)

uniform brightness source taken during the Calgary pre-flight data sessions. The

experimental data are in good agreement with the modelled result. In this figure,

the off-axis angle is proportional to pixel number.

It is important to note that the detector flat field effects also modify the exper-

imental curves so direct comparison with the model of the optical flat field effects

is not valid. The experimental images in Figure 4.1 have been smoothed using a

running average to compensate for the detector flat effects in an attempt to remove

the variation between individual pixels. Ignoring the small variations over small

changes in the off-axis angle, the trend of decreasing signal for high off-axis angles

is obvious and of comparable shape and magnitude for each channel.
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4.2.2 Detector Flat Field

Due to small variations in the manufacturing processes, each pixel has a quantum

efficiency, an associated gain stage in the CTIA (Capacitive Trans-Impedance Am-

plifier) shown in Figure 3.3, and a filter response that varies slightly from each of

the other pixels. The calibration determines the response of each pixel for a uniform

illumination of the detector area so that any variation in the conversion process from

incident photons to DN , on a pixel to pixel basis, can be corrected.

Figure 4.2 is plot of Lambertian source images for all three channels. It uses

the same data as that shown in Figure 4.1; however, these data have been corrected

for dark current and electronic offsets only and no averaging or normalization has

been performed. The small scale structure, i.e. the relative differences between

neighboring pixels (those over a small range of incidence angles), is caused by the

different response of each pixel to a uniform brightness; the characterization and

removal of this structure is the detector flat field. It is important to remember that

the odd and even numbered pixels on each channel are multiplexed through separate

amplifiers in the second gain stage. The difference between the amplifiers is evident

in the images shown in Figure 4.2. This is especially true for channel 2, where the

odd pixels have a response that is systematically lower than the even pixels. This

odd/even effect is a major element of the detector flat field calibration.

Indistinguishable from the response of the photodetector and amplifier is the

transmission of the interference filter that is mounted directly on to the detector

area. Some of the difference in response between pixels could be due to the varying

response of the filter to slight changes in incidence angle. However, this effect should

vary smoothly over the detector area, like the optical flat field, and not cause a large

variation in the response of adjacent pixels. It is demonstrated in this thesis that

the assumption of a uniform filter transmission for all pixels on a given channel is

the current best effort.

48



0

25

50

75

100

125

0 5000 10000 15000
DN (Digital Number)

P
ix

el

Channel 3
Channel 2
Channel 1

Figure 4.2: Lambertian source images from each channel. The detector flat field
effect is evident in the small scale structure superimposed on the smoothly varying
optical flat field effect that increases the signal towards lower pixel number.

4.3 Pre-Flight

4.3.1 Filter Shape Measurements

The pre-flight calibration data from Calgary includes images that measure the shape

of the wavelength dependence for each channel. As it is impossible to isolate the

interference filter from the photodiode array, these measurements characterize both

the effect of the filter shape and the wavelength dependence of the diode quantum

efficiency.

A monochromator output was collected by an integrating sphere and then fo-

cused independently on each channel so that images could be recorded for several

wavelengths near the central wavelength. For example, with the monochromator in

the field of view of channel 2 exposures were made at wavelengths between 1243 nm

and 1283 nm in 2 nm increments. Because the optical power output of the source
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was very low, the exposure time was greatly increased to 300 seconds. However, the

long exposure times caused some pixels to underflow because of dark current. In

order to minimize this effect, the temperature of the detectors was lowered to −40oC

and held at a constant temperature for all exposures. As several dark images were

taken during the same session, the dark current and electronic offsets could be re-

moved from the monochromator images for each pixel in all three channels. Figure

4.3 is a plot of the normalized filter shapes for all pixels in channel 2. It is readily

apparent that the shape of the wavelength dependence varies between pixels in the

same channel.

Some variation of the filter shape between pixels is expected because the in-

terference filter, mounted directly in front of the detector array, is sensitive to the

incident angle and each pixel of the linear array is at a physically different location.

The variation of the filter shape due to the incident angular dependence should

have a smooth trend across the detector. Figure 4.4 is a plot of the integrated filter

shapes (area under the filter) for channels 2 and 3. On each channel, a smooth

trend is clearly visible across the detector although there is an overlying inter-pixel

structure. This is especially true in the channel 2 data; the inter-pixel structure

has an odd/even dependence with the even pixels having an integrated filter shape

that is systematically lower than the odd pixels. The actual normalization process

is sensitive to random structure near the peak of the filter shape that could affect

the integrated area. However, because the peak of each filter shape has been in-

dependently normalized to 1.0, any effects from the separate amplification of the

odd and even pixels are removed. The systematic difference visible in Figure 4.4

is possibly due to the physical offset of the odd and even pixel columns on the

focal plane surface of the detector chip. The remaining inter-pixel structure is at-

tributed to noise in the measurement and variations across the filter area and the

photodetector wavelength response. The integrated filter shapes for channel 1 have

characteristics similar to those shown in Figure 4.4, but are not included on this

plot because they are centered around 40 nm, which reflects the wider band-pass.
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Figure 4.3: Filter shapes for all pixels on channel 2. Each pixel is shown with
different coloured line. The shape for each pixel is independently normalized to a
peak value of 1.0.
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Figure 4.4: The integrated filter shapes (peak normalized to 1.0) for channels 2 and
3. A smooth trend and inter-pixel structure is visible on both channels.
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4.3.2 Temperature Dependence of the Gain

A Lambertian source has a uniform brightness that occupies the entire field of view

of the imager. A set of Lambertian source images from the Calgary pre-flight data

sessions were taken at detector temperatures between 0oC and −60oC, with various

exposure times. Hundreds of images were taken for each channel; however, the

source brightness was such that many of the images contain saturated signal. Only

those images that do not contain any saturated pixels were used in the analysis of

the temperature dependence of the electronic gain.

The dark current and electronic offsets were removed in the normal way (Chapter

3) and each image was normalized by exposure time. The temperature dependence

of the gain is shown in Figure 4.5, which plots the signal measured by pixel 64 (chan-

nel 2) as a function of temperature. The data are from 81 images, and four distinct

temperature ranges are visible by the four clusters of data. A temperature depen-

dence of increasing gain with decreasing temperature is clear. A similar analysis of

many pixels reveals that the strength (i.e. slope) of this dependence is different for

different pixels.

Figure 4.6 shows the slope of the best fit straight line for all pixels on channels

2 and 3. The odd and even pixels on each channel are plotted in separate colours in

order to show the independent behavior of each set. For channel 2, the temperature

dependence is systematically weaker for all odd pixels. However, for both the odd

and even sets, there is a distinct maximum in the strength of the dependence near

the middle of the array. For channel 3, a systematic difference in the shape of the

trend across the detector is different for the odd and even sets without a clear offset

of either the odd or even set. The maximum in slope for this channel occurs at a

different point on the array for each data set.

A difference in the gain characteristic of the odd and even set that is constant

across the array can be explained by a difference in the temperature dependence

of the gain of the two separate amplifiers for each channel. However, the variation

of the temperature dependence across the array that causes the maximum near the
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Figure 4.5: Temperature dependence of the gain: Lambertian source data from pixel
64 on channel 2 calibrated for dark current and offsets, and normalized to 1 second
exposure time.
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middle pixels is not a characteristic of the read-out electronics. It is believed that

this is due to a change in the in the filter as the temperature decreases. At lower

temperatures, the pixels near the edges of the array have physically fewer incident

photons than the pixels near the middle. This is expected as interference filters

typically have a temperature dependence that decreases the central wavelength and

the magnitude of the peak transmission as temperature decreases. This effect would

be compounded by pixels at non-normal incidence angles that already suffer from a

shifted central wavelength and decreased peak transmission.

4.3.3 Description of Technique

For each pixel, k, the imager provides an observation, Ok, of the differential bright-

ness of the incident optical signal, Bs(λ), integrated across the passband of the

channel filter, f(λ),

Ok = τk

∫
Bs(λ)f(λ)dλ. (4.1)

In Equation 4.1, τk is a constant, different for each pixel, that converts from

incident photons to Digital Number, and includes the characteristics of the optical

system, i.e. the detection area and the solid angle of the field of view. The units

of the observations, Ok, are DN, the units of the differential source brightness are
photons

cm2 s nm sterad
, and f(λ) is dimensionless. Appropriately, τk has units of DN

photons

cm2 s sterad

where the wavelength dependence has been absorbed in the integration.

The observations must always take on this integral form because the source

brightness, Bs(λ), the atmospheric emission, varies with time and location.

The goal of the imager is to make an instrument independent measurement of the

source brightness across the passband. The flat field calibration, coupled with the

absolute calibration, is the calculation of the set of τk’s. However, a decision must

be made about the nature of the calibrated data product. Equation 4.1 assumes

that the filter shape, f(λ), is the same for all pixels on a channel. If this is the case
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then the number of photons incident on each photodetector in the linear array is the

same for a uniform illumination of the aperture so that the calibrated image is flat.

However, as noted in Section 4.3.1, the shape of the filter, and the area under it,

changes across the array. Therefore, the number of photons incident on each pixel

after transmission though the filter is different. Thus, the channel filter, f(λ), in

Equation 4.1 should be replaced with a filter shape unique to each pixel, fk(λ),

Ok = τk

∫
Bs(λ)fk(λ)dλ. (4.2)

The consequence of the difference between Equations 4.1 and 4.2 is important.

With a filter shape that is different for each pixel, the image of a uniform illumination

across the aperture is no longer flat. If the differential source brightness, Bs(λ), is

constant over the wavelength range of the filter passband, it can be taken out of the

integral and Equation 4.2 becomes:

Ok = τkBs

∫
fk(λ)dλ. (4.3)

In this case, the image for uniform illumination has the same shape as the inte-

grated normalized filter shapes shown in Figure 4.4 but scaled by the intensity of

the incident signal. The disadvantage in this is that the interpretation of a single

image becomes difficult because the measurement from each pixel is only relative to

measurements from other pixels through the relation of their filter shapes. Images of

the atmospheric brightness height profile would not be smooth, but would contain

structure corresponding to the integrated filter shape. In a sense, the imager no

longer makes an instrument independent measure of the source brightness within

the field of view since each pixel is essentially treated as its own instrument. The al-

ternative is to assume an average filter shape for all pixels on a channel and attempt

to calibrate out the variation of filter shape between pixels. However, this has seri-

ous implications for the interpretation of the atmospheric emission data. Because a

molecular emission is a band spectrum that changes with emission temperature, the

“band capture fraction”, or percentage of the emission that is transmitted through
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the filter, changes as a function of the emission temperature, which is a function

of height in the atmosphere. As an illustrative example, as a pixel scans up in

tangent height it measures a smooth brightness profile as the brightness of the emis-

sion changes; some change in the brightness profile is also due to a change in the

band capture fraction as the emission temperature changes with tangent height.

The neighboring pixel also measures a smooth brightness profile through the scan

in tangent height; however, this profile has a slightly different shape because of the

change in band capture fraction with emission temperature is different. The unde-

sirable result is that when two successive images, with a different optic axis tangent

height, are aligned in tangent height, the profiles will have systematic differences.

The decision of the Odin/OSIRIS science team is that the Level One Data Product,

a term referring to the fully calibrated imager measurements, will assume an aver-

age filter shape for all pixels on a channel such that individual profiles maintain a

smooth shape. The normalized filter shapes measured in Calgary will be provided

as a service to users or the Level One data who wish to proceed in the scientific

interpretation of the atmospheric measurements.

If it is assumed that pixels in a channel have the same filter shape, Equation 4.1,

then a Lambertian source (LS), which has a uniform brightness across the entire

field of view, can be used to characterize the effects of both the optical flat field and

the detector flat field. The calculation of the τk’s is then straight forward since the

integral, I =
∫

B(λ)f(λ)dλ, is the same for all pixels. For simplicity, and because we

are not currently concerned with the absolute magnitude of the response but with

the relative response between pixels for a uniform brightness in the field of view, the

assumption is made that I = 1 photon
cm2 s ster

. Therefore, by rearranging Equation 4.1,

the set of τk’s can be calculated from the set of observations of the LS, Ok(LS), as

τk =
Ok(LS)

1 photon
cm2 s sterad

. (4.4)

After each τk has been calculated, the flat field calibration can be applied by

dividing each pixel’s observation of an unknown source by the respective τk (see

56



Equation 4.1).

∫
Bs(λ)f(λ)dλ =

Ok

τk

. (4.5)

It should be noted that in Equation 4.5, the final product of the calibration does

not provide any information about the wavelength dependence, or shape, of the

source brightness. All information is effectively lost by the integration of the signal

across the passband. The final product is simply the number of photons per second,

within the normalized passband of the channel, incident on the detector.

4.3.4 Application: Calgary Data Sessions

The temperature dependence of the Calgary LS data was least squares fitted as

illustrated by the trend line in Figure 4.5. The set of τk’s for each channel was

calculated according to Equation 4.4 for temperature bins of 1oC. The resulting

database was then applied to the LS data in a self-calibration. Figure 4.7 shows the

histogram of the results of the self-calibration. The plot contains all data from all

pixels for channel 2. The other channels have similar results. The histograms are

all centered at 1.000 and have a half width of less than 0.010, this corresponds to a

random error in the flat field of less than 1%. This uncertainty is acceptable as it is

consistent with the random instrument error and is stable across the detector.
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Figure 4.7: Histogram of Channel 2 Lambertian source data for all pixels after the
flat field calibration has been applied.

4.4 In-Flight

4.4.1 Application: Flight Data

The set of flat field parameters, τk’s, that were calculated from the Calgary LS

data with an average filter shape for each channel were applied to the first in-flight

images of the O2(a
1∆g) limb profile without apparent success. Figure 4.8 shows a

plot of a limb image of the O2(a
1∆g) emission profile measured in channel 3 after the

dark and flat field calibrations have been applied. A plot of the modelled emission

as measured in the limb through the channel filter is also shown. The systematic

offset of the odd and even numbered pixels in the measured image is clearly evident;

the even pixels measure a signal that is significantly lower than the adjacent odd

numbered pixels. The cause of the odd/even offset is not understood at this point;

it should have been corrected with the calibrations. It is difficult to determine if the

odd/even effect has occurred since the launch of the satellite, or if the effect could
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Figure 4.8: An typical imager channel 3 limb profile after dark calibration and flat
field with pre-flight parameters compared to a modelled O2(a

1∆g) limb image.

be understood with a better pre-flight calibration data set. Possible causes include

temperature gradients in the electronics, a shift in the detector or filter plane, or

temperature dependent filter shapes.

It is interesting to note that the calibration of data from channel 1, which mea-

sures an OH emission and Rayleigh scattered sunlight at 1.53 µm and has a much

wider filter, does not produce any noticeable odd/even effect. If the effect is due to

the filter then channel 1 would be much less sensitive to small changes.

4.4.2 A New Technique

In the best case scenario, the imager would be re-calibrated with a Lambertian

source to determine if a change in the calibration had indeed occured and, if so,

the cause of the observed odd/even effects. This is obviously not possible with an

in-flight satellite instrument. However, in the middle of the daytime, the peak of

the O2(a
1∆g) emission at 50 km altitude has a relatively constant brightness over a

period of hours. As OSIRIS scans through a range of tangent altitudes in the limb,

each pixel of the imager scans through the emission peak. A new set of τk’s can be
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determined by assuming that during a scan all pixels measure the same brightness

of the peak with the same filter shape. In a sense, this approximates the Lambertian

source conditions of the laboratory. Figure 4.9 is a plot of the average of several

measurements made by each pixel in channel 3 as it scans the peak of the daytime

O2(a
1∆g) emission. This figure also includes a plot of a pre-flight Lambertian source

image from the Calgary data sessions such as that shown in Figure 4.2. For direct

comparison, the brightness of the signals has been arbitrarily normalized in both

data series to the signal in pixel number 1. The shape of the signal from the odd

pixels of the detector appears to have remained very similar to the Lambertian

source image. However, the even pixels are affected by a systematic offset below

the odd pixels and have also changed their relative shape on the detector. This is

especially true in the trend towards low pixel number. A second interesting feature

of this comparison is that the small odd/even offset effect that is observable in the

pre-flight data (see Section 4.2.2) is opposite to the effect in the flight data in that it

is the odd pixels that measure a signal that is consistently below the even pixels. The

cause of the inconsistency in not known; the obvious possibilities are a confounding

effect of the two amplifiers that read out the odd and even pixels separately, and the

path difference through the interference filter between odd and even pixel columns

in the detector focal plane. Even though it cannot be explained at this time, an

attempt at a reliable calibration must still be made.

Using the emission peak brightness, a new set of τk’s was calculated in the

same manner as for the Lambertian source data. Figure 4.10 is a plot of the same

measured limb image shown in Figure 4.8 except that the flat field calibration is now

performed with the measured emission peak scan parameters. This result agrees

very well with the the modelled result shown in Figure 4.8. These emission peak

parameters provide equally acceptable results when applied to the flight data images

for both of the singlet delta channels.

The temperature dependence of the gain (Section 4.3.4) cannot be effectively

investigated with these flight parameters as the imager temperature on the spacecraft
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Figure 4.9: The average of several in-flight measurements of the emission peak by
each pixel (red) compared to the pre-flight Lambertian source data (blue).
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Figure 4.10: The measured limb image shown in Figure 4.8 after dark calibration
and flat field correction with peak scan parameters calculated from flight data.
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varies by only a few degrees during the satellite’s progression through changing

illumination conditions; of course, the best conditions for sampling the peak emission

for the construction of the new flat field parameters always occurs during the middle

of the daytime in the same part of the orbit and therefore at approximately the same

temperature. However, because the instrument temperature varies by only a few a

degrees, the temperature dependence of the gain is less critical.

4.4.3 Effect of Filter Shape Variation

The assumption a single filter for all pixels on a channel (Section 4.3.3) yields smooth

profiles like those shown in Figure 4.10. However, the interpretation of successive

images at different optic axis tangent heights is difficult as all pixels have a filter

shape that deviates from the mean filter assumed for the entire channel. The effect of

the variation of filter shape can be investigated through the temperature dependence

of the band emission using data calibrated with in-flight flat field parameters.

As the satellite nods while it travels along the orbit track, a single pixel scans

through a range of tangent heights in successive images. A neighboring pixel scans

through the same heights but offset in each image by 1 km. Each pixel measures a

smooth brightness profile as a function of tangent height; however, due to the slight

difference in filter shape, the band capture fraction for each pixel is not exactly the

same. This means that as the atmospheric temperature changes with height, the

band capture fraction changes differently for the two pixels.

Depending on the scientific mode of the satellite, the optic axis nods over a

different range of tangents heights. In the largest nod range mode, the optic axis

scans from 10 km to 100 km in approximately 2 minutes with 1 second exposures

taken every 2 seconds. This corresponds to a vertical resolution of about 1.3 km.

Figure 4.11 shows the O2(a
1∆g) emission height profile for a single scan as measured

by 5 different pixels. The pixels are all near the optic axis (pixel 15) end of the array

since pixels at the other end of the array do not measure the same height range.
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However, as shown in Figure 4.4, the integrated area of the filter corresponding to

these pixels varies by approximately 6%. Figure 4.12 shows the ratio of the profiles

measured by these pixels (4, 17, 35, 46) to the profile measured by pixel 16. For

all heights between 10 km and 75 km the deviation of the profiles is less than 2%.

Pixel 17 shows the least variation in height profile and no systematic structure with

height. The other pixels, especially 46 and 35, display a trend in the ratio that may

correspond to a change in band capture fraction with temperature that is different

than pixel 16 due to the variation in filter shape. However, since the overall variation

in measured signal is less than 2% and the area of the normalized filter shapes varies

by 6%, the effect of changing band capture fraction with height is small. It should

also be noted that there is a lack of distinction between even and odd pixels. Above

75 km, the ratios of the height profiles varies more drastically from unity. However,

as the atmosphere is much more dynamic and the signal is much smaller it is difficult

to determine how much of the difference in height profile between pixels is actually

due to the variation in filter shape, or rather a change in the atmosphere between

images, or simply lower signal to noise ratio.

4.5 Relative Look Direction

In September, 2000, the alignment and field of view of OSIRIS was measured at the

CESR facility in Toulouse, France. In a set of measurements designed to measure

the IRIS field of view, the CESR collimator beam was moved in a horizontal scan

across the detector at two different locations on the linear array. As the optics

needed to be uncovered for these experiments, the clean room conditions allowed

only two scans to be made. However, these two scans allow the calculation of the

angular vertical field of view of each pixel based on the relative motion of the two

scans of the collimator beam for the assumption that all pixels are symmetric. Lloyd

(2000) has calculated the vertical field of view as 1.186’ per pixel for all channels.

Given this information and the attitude solution for the satellite, which determines
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Figure 4.11: O2(a
1∆g) emission height profiles from a single satellite scan as mea-

sured by five different pixels on channel 3.
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Figure 4.12: The ratio of the height profile measured by each pixel in Figure 4.11
to the profile measured by pixel 16. The deviation of the profiles is less than 2% for
all pixels between 10 km and 75 km.
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the tangent height of the optic axis pixel, the tangent height of all pixels in an image

can be determined.

Using the derived angular field of view (FOV) successive images can plotted as

a function of tangent height and image number. Figure 4.13 is a plot of six scans

of atmospheric data comprising 500 images. The tangent altitude of the optic axis

scans between approximately 10 km and 70 km as shown in black. In this scan

mode, a 1 km bin centered at 60 km tangent height is always sampled by some pixel

on the array no matter what the tangent height of the optic axis. The brightness

measured for these six midday scans at 60 km, which should be relatively constant

during the middle of the day, is shown in red in Figure 4.13. The structure of the

scan is clearly evident and is the result of an incorrect vertical angular field of view.

Degenstein (2002) has investigated the vertical angular field of view using several

hundred in-flight scans of O2(a
1∆g) channel data. A large portion of the emission

height profile, including the peak of the emission, used for the calculation of the

in-flight flat field parameters is measured by all of the pixels on the array during a

scan of the optic axis. During this scan time, which lasts for only a few minutes, the

altitude of the peak remains constant. By varying the field of view and tracking the

location of the peak in all pixels, an angular spread between pixels which produces

the least variation in the location of the emission peak can be determined. Degen-

stein has calculated a vertical FOV of 1.203’ per pixel for channel 2 and 1.204’ per

pixel for channel 3. These vary by approximately 15% from the value determined

by Lloyd (2000). Channel 1 FOV cannot be determined with this method because

the OH emission is not stable over the course of even a few minutes.

In order to investigate further the field of view of the imager, an in-flight exper-

iment was made. The satellite was pointed off-track and several horizontal scans

were made so that the image of Jupiter crossed the detector at different pixel lo-

cations. The image of Jupiter has an angular size that is approximately the same

size as a single pixel. A method similar to that used to analyze the Toulouse data

was used to determine the vertical FOV from the Jupiter scans. (Lloyd, 2002). The
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results are:

Channel 1: 1.193’ per pixel

Channel 2: 1.205’ per pixel

Channel 3: 1.206’ per pixel

These values agree with the values calculated by Degenstein (2002) to within

1%. The brightness at 60 km calculated according to the Jupiter scan data is also

shown in Figure 4.13. As expected, the brightness is relatively constant with almost

no structure due to the nod of the optic axis. The relative calibration of the imager

pixels can be performed with confidence.
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Figure 4.13: Six scans of data. The tangent altitude of the optic axis is shown
in black. The limb emission measured at 60 km tangent height is shown for the
angular vertical field of view calculated from both the Toulouse measurements and
the Jupiter scans.

66



Chapter 5

Stray Light Removal

5.1 Introduction

This chapter presents an analysis of the stray light signal in the IR imager. A

summary of previous modelling work (Ivanov, 2000) is shown to provide an un-

derstanding of the mechanisms involved. The stray light signal in the atmospheric

images is investigated, and a technique for the characterization and removal of the

effects is developed and implemented.

5.2 Stray Light Model Analysis

In the model of an ideal imaging system, a parallel beam of light, at some angle to

the optic axis within the field of view of the system, is imaged on to the detector

area as a geometric point. All other incidence angles beyond the field of view are

rejected. However, in a real system, some non-zero signal from outside the field of

view illuminates the detector; in addition, the image of a parallel in-field beam is

spread over a finite area on the detector. These effects, which degrade the image

quality, are essentially due to two processes: the scattering of light from surfaces

that are not ideally smooth or have non-zero reflectivity, and the diffraction of off-
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axis light at the entrance aperture. Stray light from diffraction effects is common

in instruments that suffer from the geometry of measuring a source that is in close

proximity to a secondary source that is much brighter than the primary source. By

Huygen’s principle, off-axis light from the bright secondary source, that is beyond

the field of view of the instrument, forms sources of spherical secondary waves at

the aperture that can interfere constructively into the field of view. Figure 5.1 is a

simplified diagram of Huygen’s principle. The standard unit for the characterization

of these effects is the Normalized Detector Irradiance, or NDI. It is defined as the

ratio of the detector brightness averaged across the detector area to the brightness

of a parallel off-axis beam at the entrance aperture in a plane normal to the line of

sight to the source.

Using the ray tracing software model of the imager, Ivanov (2000) calculates

the NDI due to scattering of off-axis light in the optical system. As the amount of

processing time required for the calculation of diffraction due to multiple aperture

limiting surfaces is prohibitive, the effects of diffraction for a single imaging element

system can be represented by the Fraunhofer far-field approximation of diffraction at

a circular aperture. The mathematical formulation of Huygen’s principle for scalar

optical disturbance, Up, at observing point p, using the far-field approximation is

Up = C
∫

eikrdA, (5.1)

where A is area of the aperture, k = 2π/λ is the wave number, C is a complex

constant, and r is the distance from p to the aperture. Equation 5.1 assumes that

the angular spread of light both from source to aperture and from aperture to p is

small. The geometry used in the application of Equation 5.1 to a circular aperture

is shown in Figure 5.2. For an aperture radius, R, and an integration variable, y,

the area element is 2
√

R2 − y2 dy and the phase factor is ek(ro+y sin θ), where ro = r

for y = 0. Therefore, Equation 5.1 becomes

Up = Ceikro

∫ +R

−R
eiky sin θ 2

√
R2 − y2 dy. (5.2)
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Figure 5.1: Huygens principle: light from a bright secondary source not in the field
of view can be diffracted into the field of view through the constructive interference
of spherical secondary waves at the aperture.
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Figure 5.2: Fraunhofer diffraction geometry for a circular aperture.
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The result of this integral is the familiar Airy function that can be written

in terms of the first order Bessel function, J1(ρ), where ρ = kR sin θ. Since the

intensity, I, of the diffraction pattern is proportional to the square of Up, the ratio

of the intensity of the pattern to the intensity of the source at θ = 0, Io, is:

I

Io

=

[
2J1(ρ)

ρ

]2

. (5.3)

The fringes of the diffraction pattern have a half-angle period of approximately

θo = 1.22
λ

d
(5.4)

where d is the diameter of the aperture. This corresponds to an angular spread in

the fringes of approximately one tenth of a pixel. Therefore, the individual fringes

are not be visible in an image as a single pixel samples many fringes; however, a

shape due to the diffraction pattern is still superimposed on the image.

For large off-axis angles, θ � θo, J1(ρ) can be approximated and the Airy func-

tion averaged over the fringes. This gives the following equation for the NDI as a

function of off-axis angle in terms of the focal length of the lens, f , (Caldwell and

Gray, 1997),

NDI(θ) =
λd

4π2f 2θ3
, (5.5)

where the inverse cube dependence on θ approximates the envelope of the fringe

pattern.

Figure 5.3 is a plot from Ivanov (2000) of the diffraction/scattering modelling for

off-axis angles up to 45o. Clearly the diffraction term dominates the stray light for

all off-axis angles. The large spike in the stray light contribution for small off-axis

angles within the field of view is due to a lens bracket that is both an illuminated

object and a critical object. The bracket is only illuminated for angles between 0.5o

and 2.5o as it is shielded by the baffling for angles greater than 2.5o and by the

aperture stop for angles less than 0.5o. Residual scattering at higher off-axis angles

is mainly due to scattering from baffle tips that have a finite width, approximately
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Figure 5.3: Normalized Detector Irradiance (NDI) for off-axis angles of incidence
due to scattering and diffraction. (Ivanov, 2000)

50 microns. Overall, the maximum stray light due to scattering and diffraction

from any off-axis angle, even within the field of view, is less than 10−2 NDI. It is

important to note that this analysis does not provide any information about the

shape of the signal on the detector area, it only gives the total average illumination

of the detector area as a function of the off-axis angle to the source. Of course, the

total stray light signal in the imager will be the sum of these two effects and other

smaller terms.

5.3 Evidence of In-Flight Stray Light

The signal due to atmospheric emission and atmospheric scattering decreases with

increasing tangent height. For the O2(a
1∆g) channels the signal above 100 km

tangent height is nearly zero. Figure 5.4 is a plot of a typical midday O2(a
1∆g)

tangent height limb profile, similar to the calibrated profiles shown in Chapter 4;
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however, instead of plotting the brightness as a function of pixel number it is plotted

as a function of tangent height central to the sampling pixel’s field of view. The signal

evident above approximately 100 km is due to stray light as it does not originate

within the field of view of these pixels. Figure 5.5 is a two dimensional field plot of

all images in a single orbit, for the same O2(a
1∆g) channel, as a function of tangent

height. The colour scale indicates the brightness of the signal in arbitrary units.

The stray light signal above 100 km is evident throughout the daytime images. The

variation in magnitude is probably due to the brightness of the underlying Earth’s

surface. Whether it is due to scattering or diffraction is difficult, if not impossible,

to determine. The off-axis source brightness, i.e. the Earth’s surface, varies along

the satellite track and covers a large continuous range of off-axis angles. However,

even without a full understanding of the source and cause of the in-flight stray light

signal, a characterization of the effect can be attempted in order to remove the stray

light from the calibrated data product.

5.4 Characterization and Removal of Stray Light

In both modelling and measurement, the stray light signal on the detector area is

characteristic of the source brightness and the off-axis angle. All of the pixels that

measure at a tangent height above a minimum altitude where the atmospheric signal

is negligible provide a measure of the stray light signal. If the shape of the stray

light is known across the entire detector, these high altitude pixels can be used to

determine the magnitude of the stray light so that it can be removed from the entire

image. Thus, a requirement of the imager stray light removal algorithm is that there

are some pixels that measure the magnitude of the stray light in the absence of a

direct atmospheric signal.
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Figure 5.4: Typical midday O2(a
1∆g) tangent height limb profile after dark cali-

bration and relative gain correction. Stray light signal is evident at high tangent
altitudes where the signal due to atmospheric emission and atmospheric scattering
is essentially zero.
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Figure 5.5: Typical O2(a
1∆g) tangent height limb images for one orbit. The colour

scale indicates brightness. Solar illumination conditions vary throughout the orbit;
midday occurs near image 600 and midnight occurs near image 1900. Stray light is
evident above 100 km with varying magnitude throughout the daytime.
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5.4.1 Stare Mode and Nod Mode

By its design, the OSIRIS imager measures approximately 100 simultaneous lines

of sight over 100 km in the vertical. Therefore a single image contains all of the

information for a 100 km tangent height profile with 1 km resolution. However, the

other instruments on board Odin, such as the OSIRIS spectrograph, have a single

line of sight that is aligned with the optic axis of the imager. This means that

each exposure only measures at one tangent height (or integrated over the range

of tangent heights associated with the angular field of view of the single line of

sight). In order to retrieve information for many tangent heights, i.e. to reconstruct

a height profile, the satellite scans through a range of tangent heights while several

images are collected. This scanning operation is referred to as the “nod mode” and

operation at a constant tangent height (the preferred imager operation) is referred

to as the “stare mode”.

5.4.2 Characterization of the Stray Light Signal

As noted in Section 5.4, all pixels with a tangent height above a maximum atmo-

spheric signal altitude make a direct measurement of the stray light signal. The

shape of the signal on the detector area is a function of the off-axis angle of the

source and the magnitude of the signal is a function of the brightness of the source.

The nod mode of the satellite provides an opportunity to measure the shape of the

stray light on the detector area for a range of off-axis angles.

The optic axis of channel 1 is pixel 15 and pixels 16 through 127 have lines of

sight with tangent points higher in the atmosphere. Channel 1, centered at 1.53

µm, measures the nighttime OH Meinel band emission and in the daytime measures

Rayleigh scattered sunlight and a very weak OH emission. Stray light is not an issue

at nighttime because there is no secondary source, i.e. the Earth is not illuminated.

In the daytime, the 1.53 µm Rayleigh scattered signal and the weak OH emission

is negligible above 60 km so that all pixels above 60 km measure a signal that is
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dominated by stray light.

In nod mode, images are taken at many tangent heights that correspond to

various secondary source off-axis angles. As the brightness of the Earth’s surface,

the cloud cover, and other influencing factors change with time along the satellite

track, the same off-axis angle at two different times may correspond to a significantly

different secondary source brightness. By normalizing the magnitude of the stray

light, the shape of the signal can be characterized as a function of off-axis angle, or

practically and simply as a function of the optic axis tangent height.

Figure 5.6 is a plot of the shape of the stray light signal for channel 1 averaged

over several orbits of nod mode data (i.e. many thousand images) for the assumption

that all signal above 60 km in the daytime is due to stray light. Daytime is defined

in this scenario as a solar zenith angle of less than 93o. In order to normalize the

magnitude of each stray light image, a factor that indicates the brightness of the

off-axis is needed. The factor used to produce the characterization is the sum of the

signal in all pixels above the minimum atmospheric signal (MAS) tangent altitude,

i.e. the lowest tangent altitude that contains no atmospheric signal from emission

or scattering within the field of view.

As shown in Figure 5.6, the range of optic axis tangent heights covered was from

approximately 0 km to 100 km. For the line of sight of the optic axis closest to the

Earth, the smallest number of pixels (82 to 107) measure at tangent altitudes above

60 km (the MAS tangent altitude) and therefore measure a signal dominated by stray

light. It should be noted that pixels 108 through 127 are under the dark current

mask. When the optic axis is pointed at tangent altitudes above approximately 75

km, all pixels on the array are above 60 km and so measure only stray light. This

variation in the number of pixels that measure stray light as a function of altitude

causes the the triangular shaped area of “missing” data in the bottom left of the

plot. In practice, the stray light signal extends to lower looking pixels where the data

is “missing”, but it cannot be characterized through direct measurement because at

lower tangent altitudes, the signal contains light from atmospheric scattering and
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emission within the field of view as well as stray light.

In order to remove the stray light effectively from any given image, the shape

of the stray light across the entire detector must be known. Figure 5.7 shows the

result of an extrapolation of the shape of the stray light shown in Figure 5.6. The

triangular shaped area of missing data has been filled in by extrapolating the value

at the lowest known tangent height for a given pixel to lower tangent heights where

the shape cannot be measured.

To demonstrate the extrapolation process, Figures 5.8 and 5.9 are respectively

vertical and horizontal cross sections of the 2D field plot shown in Figure 5.7. Figure

5.8 is a plot of the stray light in pixel 64 as a function of the optic axis tangent height.

The data points associated with the blue curve are measured values while the red

curve is an extrapolation of the stray light signal at the lowest known tangent height

as a constant for lower unmeasurable tangent heights. Figure 5.9 shows the shape

of the stray light on the detector as a function of pixel number for an optic axis

tangent height of 50 km. Again, the blue curve represents the measured values and

the red curve is the extrapolation of the shape from the lowest measured tangent

height. The irregular nature of the shape of the scattered light both as a function

of off-axis angle (optic axis tangent height) and pixel number makes it difficult to

extrapolate the measurements down to tangent heights that include atmospheric

signal. However, by extending the lowest measured value of stray light down into

the lower looking pixels, the removal of the stray light can be performed smoothly

across the entire detector for an image that contains an atmospheric signal from

within the field of view.

The characterization technique described above for channel 1 was also applied to

several thousand images of in-flight data from the singlet delta channels (2 and 3)

with similar results. However, there is a distinct difference between the characteri-

zation for the OH channel and the O2(a
1∆g) channels as the MAS altitude for the

O2(a
1∆g) emission is much higher, near 105 km. This means that the extrapolated

area begins at higher tangent heights so that there are fewer pixels that measure
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Figure 5.6: Characterization of the shape of the stray light signal on the detector as
a function of optic axis tangent height and pixel number.
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Figure 5.7: Extrapolated characterization of the shape of the stray light signal on
the detector.
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Figure 5.8: The measured and extrapolated stray light for pixel 64 as a function of
optic axis tangent height, i.e a horizontal cross section of Figure 5.7.
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Figure 5.9: The measured and extrapolated normalized shape of the stray light on
the detector for optic axis tangent height of 50 km, i.e. a vertical cross section of
Figure 5.7.
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above the MAS for a given optic axis tangent altitude. A particular in-flight data

set was taken especially for the characterization of the stray light. This set includes

scans up to very high tangent altitudes so that the entire array measures above the

MAS altitude. Thus the shape of the stray light on the detectors can be measured

and extrapolated down to lower tangent heights. In a fortunate coincidence, the

optic axis of channels 2 and 3 are at pixel 20, 5 pixels higher than for channel 1.

This means the entire detector arrays on channels 2 and 3 measure approximately

5 km higher for the same optic axis tangent height. The analysis produces shape

characterizations that are similar to those shown in Figures 5.6 to 5.9 for chan-

nel 1; however, for processing reasons, the removal of the stray light occurs after

the dark calibration, and before the relative gain correction, so that the stray light

characterizations for channels 2 and 3 contain the odd/even effect.

5.4.3 The Removal Technique

The characterization of the shape of the scattered light extrapolated across the

detector as a function of the optic axis tangent height (Figure 5.7) can be used to

remove the stray light from an in-flight image. However, as the characterization

provides only information about the shape of the scattered light, the magnitude

of the stray light signal must be determined on an image by image basis. The

normalization procedure for the determination of the shape, outlined in Section

5.4.2, determines the average signal in all pixels above the MAS altitude and divides

all pixels measuring the stray light signal above the MAS altitude by that value. A

similar method can be applied to the shape characterization of an in-flight image.

The extrapolated shape of the stray light on the detector that corresponds to the

image optic axis tangent height is multiplied by the average of all pixels above the

MAS altitude for that image. The scaled shape is then subtracted from each pixel

in the image.

It is important to note that this method requires that there are some pixels
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that measure at a tangent height that is above the MAS altitude. Technically,

the removal could be performed with only a single pixel above the MAS altitude;

however, because it is an averaging technique, the random noise associated with a

measurement is decreased if more pixels are used.

5.5 Application to Flight Data

5.5.1 O2(a
1∆g) Channels

Figure 5.10 is a plot, similar to Figure 5.4, that shows a typical O2(a
1∆g) tangent

height limb profile from midday plotted in red. The stray light removal algorithm

has been applied to this profile using a characterization of the shape from above 105

km and magnitude normalization parameters from those pixels in this profile that

measure above 105 km. The corrected profile is shown in blue. The second plot in

this figure is a re-scaling of the same profile for tangent heights above 70 km where

the mesospheric molecular emission and the solar scattering signal are dominated

by the stray light. The features that are due to the O2(a
1∆g) emission such as the

secondary mesospheric peak and the decrease of the signal with increasing tangent

height are clearly evident; the increasing signal above 105 km due to stray light has

been removed. Figure 5.11 is a plot of the entire orbit of images shown Figure 5.5

after stray light removal. It is readily apparent that the stray light above 105 km is

no longer evident.

It is difficult to gauge qualitatively the effectiveness of the stray light removal.

The removal algorithm is based on the requirement of zero signal for high tangent

altitudes, i.e. those altitudes above the MAS altitude where the measured signal is

only due to stray light. Therefore, if the removal is effective, the signal above the

MAS will be zero, within the random noise of the system for all images. Figure 5.12

is a histogram of the residual signal in those pixels above the MAS altitude for all

images of the images shown in Figure 5.11. It appears Gaussian in shape, centered
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Figure 5.10: (a) The typical midday O2(a
1∆g) tangent height limb profile shown in

Figure 5.4 before and after the stray light removal. (b) A re-scale of the same image
shown in plot (a) to demonstrate the effect of the stray and the effectiveness of the
removal at high tangent altitudes.
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Figure 5.11: O2(a
1∆g) tangent height limb profile images for the same orbit shown

in Figure 5.5 after the stray light removal has been performed.
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Figure 5.12: A histogram of the calibrated signal measured by all pixels above the
MAS altitude in all images of the orbit shown in Figure 5.11 after the stray light
has been removed. Units of brightness are those arbitrary ones used in the previous
plots.

at 0, and has a standard deviation that is approximately 1% of the average stray

light signal seen in Figure 5.10.

As there is a tangent height requirement for the stray light removal algorithm

there is a trade-off in the benefits of the two aeronomy modes, stare and nod. The

stare mode (Section 5.4.1) is the favored mode of operation for the imager. However,

if the optic axis is measuring at a tangent height that precludes pixels above the

MAS altitude, the stray light cannot be removed because the magnitude of the

signal from outside the field of view cannot be determined. In the nod mode, if

the optic axis scans down to an altitude where no pixels measure above the MAS

altitude, a linear interpolation of the brightness of the stray light signal from those

points in the scan before and after the altitude range where the magnitude of the

stray light is unknown can be used. In this way, measurements of the lower part

of the atmosphere can be made with effective stray light removal as long as the
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nod scan does not remain at the lower altitudes for a length of time such that the

magnitude of the out of field signal changes significantly. Figure 5.13 is a plot of

the normalization factor for the shape of the stray light calculated for five scans of

nod mode data. The magnitude of the stray light signal closely follows the tangent

height of the optic axis; however, it changes in magnitude with every scan due to

the brightness variations of the out of field source. There is missing data when the

tangent height of the optic axis is so low that no pixels on the array measure at a

tangent height above the MAS altitude.

The segments of missing data in the calculation of the normalization factor in

Figure 5.13 are linearly interpolated so that the stray light removal can be made

for all images in the orbit, although several different methods were investigated to

determine the best fit for the missing data. One adopted method involves fitting

a straight line to each side of each scan and interpolating the fits into the area

of missing data below the intersection the two lines. This method, however, and

others like a spline, depend on the accuracy of the satellite attitude. In some cases,

the scanning attitude data for the satellite deviates so that the calculated tangent

altitudes vary from those expected. In these situations, complicated fitting methods

fail drastically, while a simpler solution, like the linear interpolation, provide a

reliable fit. Figures 5.14 and 5.15 show a typical nod mode orbit before and after

the scattered light has been removed. An interpolation of the normalization factor

has been used for those tangent heights where it is not measured. The removal yields

similar results to those shown for the stare mode orbit, i.e. there is no noticeable

failure nor effect present for those images that used the interpolated normalization

factor.
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Figure 5.13: The normalization factor for the shape of the stray light signal for five
scans of nod mode data. The missing data occurs when the tangent height of the
optic axis is so low that no pixels measure above the MAS altitude.

5.5.2 OH Channel

The application of the stray light removal algorithm to the channel 1 OH emission

and solar scattering data yields similar results to those shown for the other channels.

However, as the main OH emission occurs at nighttime the stray light removal is not

as critical an issue. During the daytime, channel 1 measures solar scattering, which

decreases exponentially with tangent height, and a very weak daytime OH emission.

Figures 5.16 and 5.17 show a typical channel 1 stare mode orbit, before and after the

stray light has been removed. The stray light signal is dominant in the daytime for

altitudes above 60 km. The nighttime emission, which is unaffected by stray light,

is clearly evident between 75 km and 90 km altitude. After the stray light algorithm

has been applied, the daytime signal decreases with increasing altitude as expected.

The weak daytime OH emission that has been observed in the data product will

require a special stray light removal algorithm. This procedure is currently being

developed.
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Figure 5.14: Typical O2(a
1∆g) channel nod mode orbit, corrected for tangent height.

Again, stray light signal is evident at higher altitudes. The triangular shaped areas
of white space indicate those tangent heights that were not sampled due to the nod.
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Figure 5.15: The nod mode orbit shown in Figure 5.14 after the stray light has been
removed.
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Figure 5.16: Typical OH channel stare mode orbit, corrected for tangent height.
Stray light signal is dominant in the daytime for altitudes above 60 km. The night-
time (images 1450-2700) emission is visible near 85 km.
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Figure 5.17: The stare mode orbit shown in Figure 5.16 after the stray light has
been removed. Remaining daytime signal decreases exponentially with increasing
altitude. The auto-colour scale may not be exactly the same as the one used in
Figure 5.16.
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Chapter 6

Absolute Calibration

6.1 Introduction

In this chapter, the preliminary absolute calibration of the imager is presented. The

technique is based on pre-flight measurements of a calibrated brightness source. The

calibrated in-flight measurements of scattered sunlight are then compared with the

results from a simple atmospheric model that predicts the absolute brightness seen

by the OSIRIS imager for the assumption of a single Rayleigh scatter approximation.

6.2 Absolute Calibration: Definition and Units

The absolute calibration of the imager involves the conversion of the digital number

reported by the read-out electronics of the A/D converter, after all instrument de-

pendant effects have been removed, to a physical brightness with appropriate units.

The brightness of a source, Bs, is typically reported in terms of the number of pho-

tons, in a given wavelength range, emitted per second on from unit area within unit

solid angle, or

[Bs] =
photons

s cm2 nm sterad
. (6.1)
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The brightness along a line of sight measured by the imager, Bo, is an integral of the

wavelength dependent source brightness across the wavelength range of the filter as

discussed in Chapter 4.

Bo =
∫

Bs(λ)f(λ)τ(λ)dλ. (6.2)

Thus the units of this brightness are

[Bo] =
photons

s cm2 sterad
. (6.3)

6.3 Pre-Flight Data

6.3.1 Calibrated Source Technique

If a source with a known brightness at all wavelengths is available, then absolute cal-

ibration of the imager is straight forward. Then if the arbitrary units of observation,

in this case, DN, scale linearly with incident brightness, a calibration constant, α,

which relates the physical units of brightness to the observation units, can be deter-

mined with a single measurement of the source. If the observations, Os, have been

relatively calibrated, i.e. on a pixel to pixel basis, then the measured brightness, Bo

is

Bo = α Os. (6.4)

Hence a single measurement of a calibrated source (see Equation 6.2), allows the

quantity α to be determined as

α =

∫
Bs(λ)f(λ)τ(λ)dλ

Os

. (6.5)

6.3.2 Calgary Data Sessions

In the Calgary pre-flight calibration, several images were taken of a calibrated 6

W low brightness source. The brightness of this lamp had been measured at NIST
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at discrete points wavelengths in terms of W
cm2 µm sterad

; the filter shape in the in-

strument was measured at a number of wavelengths. At each measured wavelength

in the filter shape the lamp brightness is determined from a linear interpolation

between adjacent known values. The product of the filter shape and the lamp

brightness is then determined on a point by point basis, in terms of photons
s cm2 ster

using

the photon-energy relationship,

E =
h c

λ

J

photon
. (6.6)

The filter shape – lamp brightness product is then integrated numerically to deter-

mine Bo. An average of several observations of the source with the imager, after dark

calibration and flat field have been applied, are used (Equation 6.5) to determine

the absolute calibration constant, α.

6.4 In-Flight Data

6.4.1 Single Rayleigh Scatter Model

A simple “reality check” of the measured absolute calibration has been made with

a standard Rayleigh scattering model for the atmospheric brightness. The model

considers only single Rayleigh scattered light for an atmospheric density profile that

is assumed to be representative of the atmospheric for any location. The limb look

vector and the satellite position, which together determine the path length though

the atmosphere, and the solar vector are the only variable parameters in the model.

No corrections are included for multiple scattering, albedo, or molecular emission

and absorption. For comparison with the imager measurements, the differential

brightness is modelled using the transmission of a standardized zero air mass solar

spectrum at several wavelengths across the filter shape. The product of the modelled

brightness and the filter transmission is then integrated with respect to wavelength

to yield results that can be compared with the calibrated imager observations.
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6.4.2 OH Channel

The OH channel, which has a 40 nm wide filter centered at 1.53 µm, makes mea-

surements that are dominated by scattered sunlight in the daytime and by the OH

Meinel band molecular emissions at night. It should be noted that this channel does

not suffer the problems with the relative gain calibration that are evident in the

singlet delta channels. The flat field parameters that were measured in Calgary are

directly applied to the in-flight data processing. There is no reason to believe that

the absolute gain has changed since the launch so that the absolute calibration con-

stant as determined from the pre-flight calibration (Section 6.3.1) is directly applied

to the in-flight data.

Figure 6.1 is a plot of the measured and modelled absolute brightness for channel

1. These data correspond to a constant tangent height, 30 km, and are plotted as a

function of solar zenith angle. Sunset at 30 km altitude corresponds to a solar zenith

angle of approximately 95.5◦. As only single Rayleigh scattering is considered, the

modelled brightness is essentially a constant value for all solar zenith angles less

than 95.5◦. Once the sun has gone below the horizon, the brightness decreases

exponentially as the path length through the sunlit atmosphere decreases. The

measured brightness compares very well with the modelled values for solar zenith

angles beyond sunset (greater than 95.5◦). For lower solar zenith angles, those

less than 95.5◦, where the atmosphere below 30 km is illuminated, the measured

brightness is systematically higher than the modelled result. This is attributed to

multiple scattering from the more dense atmosphere below. The continued increase

and further variation in the measured signal for smaller solar zenith angles, i.e.

less than 90◦ where the ground below the tangent point is illuminated, can be

attributed to the albedo of the earth as well as multiple scattering. The reflection

of the scattering sunlight from the surface of the earth varies with location along

the satellite track and so also varies with solar zenith angle.

For solar zenith angles greater than 95.5◦, the effects of multiple scattering and

albedo, which are not considered in the model, are minimized. In this region, the
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Figure 6.1: Modelled and measured brightness as a function of solar zenith angle at
a constant tangent height of 30 km.

modelled result is within 10% of the measurement. Similar results are found for

measurements from several different orbits and over a height range that provides

sufficient signal levels without dropping so low that it is dominated by multiple

scattering terms. Overall, this comparison provides a first order verification of the

absolute calibration of channel 1.

6.4.3 O2(a
1∆g) Channels

The other two channels of the imager suffer from the odd/even effect of relative gain

calibration that was discussed in detail in Chapter 4. Because of this effect, the

flat field parameters calculated from the pre-flight Calgary calibration sessions were

deemed invalid. It follows that if the these gain parameters cannot be used, then

the measurements of the absolute calibration source must also be questioned.

In addition, because the O2(a
1∆g) airglow emission is extremely bright, these

channels cannot be compared to the single Rayleigh scatter model in the same fash-
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ion as channel 1. The brightness of the airglow is comparable with the brightness

of the Rayleigh scattering below 30 km. Without a complicated tomographic re-

trieval, which can calculate actual volume emission rates from the limb line of sight

observations, the actual magnitude of the scattered sunlight is difficult to determine.

As a current best effort, the odd pixels in these two channels are assumed to

have remained constant while the even pixels are assumed to have suffered a relative

change in gain. The reason the odd pixels were chosen is because, as shown in Figure

4.9, the odd pixels seem to have remained constant in their response relative to each

other, whereas the even pixels have changed their relative response to a Lambertian

source. This being the case, after the in-flight flat field parameters, which correct

the odd/even effect, are applied, the absolute calibration constant determined in

Calgary for the odd pixels is applied to the entire detector.

The odd/even effect causes variation in gain on the order of 20 to 30%. This could

translate into a systematic error in the absolute calibration of at least this amount.

Once the measurements are further processed with the tomographic inversions and

the first ozone profiles calculated, a validation of the absolute calibration can be

made by comparison with other validated satellite ozone profiles from the OSIRIS

spectrograph, the Odin SMR, or instruments on other satellites.
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Chapter 7

Summary and Conclusions

7.1 Summary of the Present Work

In the present work, the identification of instrument dependent effects that modify

the measurement of the airglow brightness by OSIRIS imager has been presented.

An attempt has been made to understand fully the causes of each effect so that they

can be reliably characterized and removed.

An investigation of the dark current has shown that the main production mech-

anisms depend on the small bias of the photodiode amplifier configuration. Under

reverse bias the dark current is dominated by thermally generated carriers, and, un-

der forward bias by the recombination current. A technique for the characterization

and removal of the dark current in a linear array has been presented that is capable

of removing dark current, even when there is a randomly varying electronic image

offset. The technique relies on the difference between a signal pixel and a pixel

that is under the detector mask that is therefore always measuring a dark signal.

The effectiveness of the technique is limited by the shot noise in the detectors that

necessarily increases with temperature and exposure time. The dark current char-

acteristics of each pixel change slowly over the period of months. For the satellite

mission, new parameters are calculated every month based on in-flight dark images.
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The relative calibration of pixels in the array has considered two main effects:

the relative gain and the look direction. Considerable effort has been put into an

attempt to understand an apparent change in the gain of the odd and even sides

of imager channels 2 and 3 between pre-flight calibration and in-flight data. A

method that uses in-flight data to approximate a constant brightness source has

been developed to allow re-calculation of the flat field parameters. Application

of these parameters produces consistently smooth height profiles; however, it has

been necessary to assume an average filter shape for all pixels on a channel. It is

shown that this assumption may lead to systematic errors of a few percent in the

integrated brightness of the airglow due to changes in the band emission with height

and atmospheric temperature. The relative look direction has been investigated

through independent in-flight experiments (Degenstein, 2002; Lloyd, 2002). The

results of these experiments agree within a few percent and it has been shown that

tangent height brightness measurements of the steady-state midday emission peak

with different pixels produce no obvious differences that can be correlated with the

relative line of sight of each pixel.

There is significant out-of-field, or stray, light observed in the flight data. A

technique to characterize and extrapolate the shape of the stray light signal on the

detector has been developed by normalizing the stray light signal with the magnitude

of the signal above the MAS (Minimum Atmospheric Signal) altitude. The error in

the technique, as indicated by tangent heights that contain no atmospheric scattering

or emission, is random and relatively small compared with the magnitude of the stray

light signal.

The absolute calibration of channel 1 has been made directly with pre-flight

measurements of a calibrated brightness source. Comparison with a single Rayleigh

scatter model produces similar results in those regions where the effects of multiple

scatter and albedo terms are minimized. Absolute calibration for channels 2 and 3 is

complicated by the observed changes in the relative gain of the odd and even pixels.

However, with appropriate assumptions, the pre-flight calibration can be used. In
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these cases a comparison with the scattered sunlight model cannot be made because

of the atmospheric absorption and the airglow emission in these channels. It is

suggested that the absolute calibration must await a comparison of derived ozone

profiles with those from other instruments.

Software has been developed that can apply these corrections in an automated

data processing chain. Figure 7.1 is a flow chart of the software operation. The

main stages of the processing are shown as coloured circles in the central rectangle.

This flow chart was developed in the initial stages of the processing work. It has

been presented several times at meetings of the Canadian OSIRIS science team.

The colour of the processing stage signifies the present degree of confidence in the

correctness and completion of each stage. At the beginning of this work all four

circles were red. This signified an inability to process any stage. Currently, as

shown in the chart, the first three stages, dark current, stray light, and flat field are

shown in green and are processed in an automated fashion with a high degree of

confidence. The only remaining stage, the absolute calibration, is shown in yellow.

This means that processing is ongoing, although issues remain that still need to be

addressed.

The dramatic effects of the application of the processing stages are best shown

by the two images in Figure 7.2. Each of these images is a plot of the same full

orbit of 1.53 µm data. The first plot is uncalibrated data exactly as it comes down

from the satellite in terms of image number and pixel number. Sunrise occurs

near the beginning of the orbit and sunset at approximately image 1200. The

second plot shows the same data after the full calibration has been applied; in

this case it is plotted as a function of tangent height and image number. The

nighttime OH emission, completely undetectable in the raw data, is readily evident

after calibration. Also, in the middle of the daytime there is a region of enhanced

scattering near 80 km that is believed to be a Polar Mesospheric Cloud, or PMC.

Again, this feature cannot be discerned in the raw data product.
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Figure 7.1: Current state of the automated calibration processing chain for the
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Figure 7.2: One orbit of 1.53 µm nod mode data shown before and after the full
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raw data are impressive in the fully calibrated orbit. The nod structure visible in
the calibrated product is due to missing data.
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7.2 Recommendations for Future Work

The main work yet to be done with imager flight data is a thorough investigation

of the absolute calibration, especially for the singlet delta channels. However, this

work must be delayed until the inversions of the observations are completed with

confidence. At that point, the brightness of the altitude profiles can be compared

with previous measurements and ozone profiles can be derived and compared with

those from other instruments. Without a full knowledge of the apparent changes in

the relative gain of the pixels an independent absolute calibration of these channels

will be very difficult.
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“Behavior of the O2 Infrared Atmospheric (0-0) Band in the Middle Atmosphere
During Evening Twilight and at Night”, Planet. Space Sci., 37, 61, 1989.

Marsh, D., A. Smith, G. Brasseur, M. Kaufmann, and K. Grossmann: “The Ex-
istence of a Tertiary Ozone Maximum in the High-Latitude Middle Mesophere”,
Geophys. Res. Letters, 28, 4531, 2001.

Mlynczak, M.G., S. Solomon, and D.S. Zaras: “An Updated Model for O2(a
1∆g)

Concentrations in the Mesosphere and Lower Thermosphere and Implications for
Remote Sensing of Ozone at 1.27 µm”, J. Geophys. Res., 98, 18639, 1993.

Mlynczak, M.G., and D.S. Olander: “On the Utility of the Molecular Oxygen Day-
glow Emissions as Proxies for Middle Atmospheric Ozone”, Geophys. Res. Letters,
22, 1377, 1995.

100



Murtagh, D., U. Frisk, F. Merino, M. Ridal, A. Jonsson, J. Stegman, G. Witt, P.
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