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ABSTRACT 

This thesis contains the numerically investigations of the performance of a run-

around membrane energy exchanger (RAMEE) at different outdoor air conditions and 

the effects of non-uniform exchanger channels.  The RAMEE is a new type of building 

ventilation air energy recovery system that allows heat and moisture to be transferred 

between isolated supply and exhaust air streams.   Two liquid-to-air membrane energy 

exchangers (LAMEEs) are placed in the supply and exhaust air ducts and transfer heat 

and moisture between air and a circulating liquid desiccant that couples the two 

LAMEEs together.  The ability of the system to transfer heat and moisture between 

isolated supply and exhaust ducts makes it appropriate for numerous HVAC applications 

(e.g., hospitals and building energy retrofits).  

The performance of the RAMEE at different outdoor air conditions is shown to 

be highly variable due to the coupling of the heat and moisture transfer by the desiccant.  

This coupling allows the humidity ratio between the indoor and outdoor air to influence 

the heat transfer and the moisture transfer is influenced by the difference between the 

indoor and outdoor air temperatures.  The coupling produces some complex RAMEE 

performance characteristics at some outdoor air conditions where the effectiveness 

values (i.e., sensible, latent, and total) were shown to be less than 0% or greater than 

100%.  Effectiveness and operating correlations are developed to describe these 

complex behaviours because existing correlations do not account for the coupling 

effects.  The correlations can serve as design and operation tools for the RAMEE which 

do not require the use of an iterative computational numerical model. 
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Non-uniform exchanger channels are present in the RAMEE because of pressure 

differences between the air and solution channels which deform the membrane into the 

air channel.  The non-uniform channels are analytically shown to create maldistributed 

fluid flows and variable heat and mass transfer coefficients.  The combined effects of 

these two changes lead to a reduction in the RAMEE effectiveness, which increases as 

the size of the membrane deformation increases.  The reduction in total effectiveness for 

an exchanger where the membrane has a peak deflection of 10% of the nominal air 

channel thickness operating at a NTU of 12 was shown to be 12.5%.  These results of 

non-uniform exchanger channels agree with previously conducted experimental results. 
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Chapter 1  

INTRODUCTION 

1.1 Overview of Building Ventilation 

Energy has become an important issue in today’s society.  The combination of an 

expanding world economy and a limited hydrocarbon reserve has led to a steady 

increase in energy prices over the years.  Also, concerns about climate change and its 

causes have added another layer of complexity to energy issues.  A significant amount 

of research is being conducted into alternative energy sources and energy conservation 

in a wide range of fields.  Building science is one area of research where substantial 

gains can be achieved in energy conservation. 

Energy consumption in buildings accounts for up to 40% of all the energy 

consumed and this value is expected to increase in the near future (D&R International 

2009).  Up to 50% of this energy is consumed by the energy demands of building 

ventilation (D&R International 2009).  The purpose of ventilation is to provide fresh air 

into a building to reduce the level contaminates in the air that are produced by the 

occupants and the building materials.  The aim is to create a work space with high air 

quality and worker productivity (Fang et al. 2000, Kosonen and Tan 2004) and prevent 

symptoms associated with sick-building syndrome (Norback et al. 1990).  The 

recommended ventilation rate depends on the building’s use and, in the case of an office 

building, this rate is 8.5 L/s (18 cfm) per person (ANSI/ASHRAE Std. 62.1 2004).  This 

outdoor air is at a different temperature and humidity (moisture content) compared to the 
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indoor space and must be conditioned so it does not alter the indoor condition.  The 

energy required for this conditioning accounts for a large fraction of the energy used in 

buildings.  In addition to the supplied outdoor air, indoor air is exhausted from the 

building to prevent the building from becoming significantly pressurized.  This 

exhausted air is at or near the desired indoor conditions (ANSI/ASHRAE Std. 55 2004) 

and thus there is potential to transfer energy between the exhaust and outdoor ventilation 

air to precondition the ventilation air. 

1.2 Ventilation Energy Recovery Systems 

Ventilation energy recovery systems consist of air-to-air exchangers that use the 

exhaust air leaving a building to pre-condition the supply air entering it.  This allows 

some of the energy that was initially used to condition the exhaust air to be recovered.  

This significantly reduces the costs associated with conditioning the supply air because 

it reduces the amount of energy required to condition the supply air and sometimes 

allows smaller conditioning equipment to be used (Zhang and Niu, 2001, Zhou et al. 

2007, EPA 2010).  Energy recovery systems are capable of recovering heat (sensible 

energy) and sometimes moisture (latent energy) between air streams.  A system that 

transfers both heat and moisture is ideal because it has the potential to transfer up to four 

times more energy compared to a system that only transfers sensible energy (ASHRAE 

2000). 

The performance of energy recovery systems is usually expressed in terms of 

effectiveness.  Systems that only recover heat have a sensible effectiveness, while 

systems that recover both heat and moisture have sensible and latent effectiveness.  The 

sensible (latent) effectiveness is generally defined by the temperature (moisture) change 
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in an air stream divided by the temperature (moisture) difference between the air 

streams.  The effectiveness values of energy recovery systems are usually between 40-

80%, but can sometimes exceed 100% or be less than 0% in particular systems under 

some operating conditions (Simonson and Besant 1999a, ASHRAE 2004). 

A wide range of energy recovery systems exist, which provide cost effective 

solutions in a wide range of heating, ventilation, and air-conditioning (HVAC) designs.  

These systems can be categorized based on whether the system transfers moisture or not 

and whether the supply and exhaust air ducts have to be adjacent to each other.  

Examples of air-to-air energy exchangers for HVAC systems include energy wheels, flat 

plate exchangers, and run-around glycol loops.  

1.2.1 Flat Plate Exchangers 

Flat plate exchangers are a simple and effective energy recovery device for 

building ventilation air.  The exchanger consists of a stack of flat plates constructed 

from either metal, plastic, or vapour permeable membranes.  The plates are configured 

to create alternating supply and exhaust channels (Figure 1.1).  This arrangement creates 

a large transfer surface area in a small volume.  The supply and exhaust air streams 

usually flow in a cross-flow configuration, but some exchangers use a flow 

configuration that has cross and counter-flow components.  Flat plate exchangers 

operate with the supply and exhaust air ducts adjacent to each other.  They have no 

moving parts and only create a small pressure drop in the air stream (ASHRAE 2000).  

They also have the benefit of minimal cross leakage and tolerate moderate to large 

pressure differences between air streams. 
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Figure 1.1: Flat plate exchanger (reprinted with permission from Venmar (2010)) 

Flat plate exchangers are very efficient in heat recovery and can achieve sensible 

effectiveness values of 50% to 80% in typical applications (ASHRAE 2000).  Flat plate 

exchangers can also transfer moisture in addition to heat if they are constructed with 

vapour permeable membranes.  These systems can achieve latent effectiveness values of 

40% to 70% (Zhang et al. 2000) while maintaining the same sensible effectiveness as 

flat plate exchangers that only transfer heat.  Correlations for the sensible (Incropera and 

DeWitt 2002) and latent (Zhang and Niu 2002) effectivenesses exist and are based on 

the overall heat/moisture transfer resistance, surface area of the exchanger, and the air 

stream flow rates.  These correlations assume the heat and moisture transfers are 

independent of each other.  The effectiveness of the exchanger is reduced by air channel 

thickness variations and flow maldistribution in the exchanger headers (Zhang 2009). 

The flat plate exchanger’s simple design and high performance in heat and 

moisture recovery makes it an economical solution in many applications.  It is used in 

numerous commercial HVAC installations and is commonly used in residential 

ventilation units where the supply and exhaust air ducts are adjacent to each other. 

1.2.2 Energy Wheels 

Energy wheels are rotary air-to-air exchangers, which can transfer heat (heat 

wheel) or heat and moisture (enthalpy wheel).  They consist of a cylinder with an air 
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permeable matrix that rotates between adjacent supply and exhaust air ducts (Figure 

1.2).  The matrix consists of numerous channels that pass through the thickness of the 

wheel which provides a large surface area for heat and moisture transfer.  A variety of 

channel shapes exists, with a common one being corrugated pores.  A small motor 

rotates the wheel which cycles the individual channels between the supply and exhaust 

air streams allowing for energy transfer between them.  The wheel matrix is constructed 

from metal, plastic, or paper which is the heat transfer medium.  In enthalpy wheels, the 

matrix is coated with a desiccant that allows for the moisture transfer.  The energy wheel 

is able to operate with a minimal pressure drop, but cross leakage is more significant and 

can be up to 10% (ASHRAE 2000).   

 
Figure 1.2: Energy wheel (reprinted with permission from Venmar (2010)) 

Energy wheels are some of the highest performing ventilation energy recovery 

systems and can achieve sensible and latent (in enthalpy wheels) effectivenesses of 50% 

to 80% (ASHRAE 2000).  The higher effectivenesses are possible because the air 

streams move counter-flow to each other in the exchanger.  Correlations exist to 

describe the effectiveness in heat wheels (Kays and London 1998) and in enthalpy 

wheels (Simonson and Besant 1999a) based on the wheel properties, air flow rates, and 

wheel rotational speed.  These correlations show that in an enthalpy wheel, the sensible 

effectiveness is influenced by the moisture transfer, which is a unique characteristic of 
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enthalpy wheels.  The performance of energy wheels can be reduced by variations in the 

channel sizes (Shang and Besant 2005). 

Energy wheels generally provide the highest energy recovery amongst energy 

recovery systems (ASHRAE 2000).  They are usually the preferred option for large air 

volume applications with adjacent supply and exhaust air ducts where a small amount of 

cross contamination between the air streams is permissible.  They are commonly used in 

commercial applications. 

1.2.3 Run-Around Coil Loop 

A run-around coil loop consists of two finned tube liquid coils with one located 

in the supply and the other in exhaust air ducts (Figure 1.3).  A coupling fluid, usually a 

water-glycol mixture, circulates between the coils and forms a loop.  Energy is 

transferred between supply and exhaust air ducts that are located in different parts of the 

building.  However, the run-around loop only transfers heat and no moisture.  The run-

around loop is suitable for retrofits of buildings with non-adjacent supply and exhaust 

ducts that do not have an energy recovery system.  In buildings with non-adjacent 

supply and exhaust ducts it is often cost prohibitive to move the air ducts together and 

utilize a flat plate exchanger or energy wheel. The run-around coil loop eliminates cross 

leakage between the air streams and so is suitable in buildings where the exhaust air 

cannot contaminate the supply air, such as in hospitals and laboratories.  The system 

requires a pump to circulate the fluid and there is a moderate air pressure drop across the 

coils. 
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Figure 1.3: Run-around coil loop schematic. 

The sensible effectiveness of a run-around loop ranges between 45% and 65%, 

which is somewhat lower than other systems (ASHRAE 2000).  The system can be 

described by correlations that consider the size of the coils and the flow rates of the air 

streams and coupling fluid (London and Kays 1951).  The effectiveness of the system 

can be changed by controlling the flow rate of the coupling fluid and a maximum 

effectiveness occurs when the coupling fluid and air streams’ heat capacity rates are 

equal. 

1.2.4 Twin Tower Enthalpy Loop 

The twin tower enthalpy loop is a run-around system that is able to transfer heat 

and moisture between non-adjacent supply and exhaust air ducts (Figure 1.4).  The 

system uses a liquid desiccant as a coupling fluid which is sprayed into the air stream at 

each exchanger.  The flow arrangement between the desiccant and the air stream may be 

either cross or counter flow.  The collected solution from the bottom of each exchanger 

is then pumped to the top of the other exchanger to complete the loop.  The physical 

properties of the desiccant allow heat and moisture to be transferred between the air 
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streams.  It is an open liquid loop system because the air and the liquid desiccant come 

into direct contact with each other in each exchanger.  This allows the air stream to 

entrain desiccant in aerosol form.  Woven mesh screens, known as demister pads, are 

used to remove these microscopic droplets, but some desiccant passes through and drifts 

downstream.  These desiccant droplets corrode ducts and other HVAC equipment, such 

as fans and coils, which significantly increases maintenance costs.  The system operates 

with a small pressure drop and requires pumps to circulate the liquid desiccant between 

the exchangers. 

 
Figure 1.4: Twin-tower enthalpy loop schematic (Larson 2006) 

The twin-tower enthalpy loop transfers heat and moisture with sensible and 

latent effectivenesses of 40% to 60% (ASHRAE 2000).  The performance is not as high 

as a flat plate exchanger with vapour permeable membranes or an enthalpy wheel, but it 

is the only commercial system that transfers heat and moisture between non-adjacent 

ducts.  No analytical solutions or correlations exist to describe its performance and there 

is no literature on the effects of controlling the desiccant solution flow rate. 

Twin-tower enthalpy loops are commercially found in large air volume 

applications where humidity control is very important (Kathabar 2010).  The energy 

savings in these applications are large enough to off-set the higher maintenance costs.  

Food and pharmaceutical processing plants are examples of buildings where this system 

has been used. 
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1.2.5 Run-Around Membrane Energy Exchanger 

The run-around membrane energy exchanger (RAMEE) is another system that 

can transfer heat and moisture between non-adjacent air ducts.  It is still in the 

development stage and is not yet commercialized, but has achieved sensible and latent 

effectivenesses of 55% and 40% respectively (Erb et al. 2010).  The system is similar to 

the twin-tower enthalpy loop in that it transfers heat and moisture between two 

exchangers that are coupled together by a circulating liquid desiccant (Figure 1.5).  The 

exchangers consist of alternating air and solution channels that are separated by vapour 

permeable membranes.  The flow regimes used in these liquid-to-air membrane energy 

exchangers (LAMEE) are either cross flow, counter flow, or a combination of both.  The 

membrane in the exchanger does not transmit liquid and therefore prevents the liquid 

desiccant and the air from coming into direct contact.  This arrangement improves on the 

twin-tower enthalpy loop by preventing the desiccant from being aerosolized and 

corroding the downstream HVAC equipment.  The run-around nature of the system also 

minimizes the risk of cross-contamination between air streams because the supply and 

exhaust air ducts are isolated from each other.  Circulation pumps are used to move the 

desiccant solution between the exchangers. 

Supply
LAMEE

Exhaust
LAMEE

Pump

Desiccant

Building
Space

Outdoor
Supply Air

Indoor
Exhaust Air

 
Figure 1.5: Run-around membrane energy exchanger schematic. 

The RAMEE system is suitable for energy retrofits of older buildings with non-

adjacent supply and exhaust air ducts and buildings where the exhaust air must not 
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contaminate the supply air.  These are the same types of buildings where a run-around 

coil loop is appropriate, however the RAMEE system can transfer more energy than a 

run-around coil loop due to its moisture transfer capability. 

1.3 Past RAMEE Research 

The beginning of the RAMEE research dates back to 2002 when professors 

Besant and Simonson from the Department of Mechanical Engineering at the University 

of Saskatchewan partnered with Venmar CES Inc. and received a NSERC Collaborative 

Research and Development (CRD) grant which was renewed in 2008.  The purposes of 

these grants are to research and develop the RAMEE system aiming towards a 

commercial product for Venmar CES and to provide training for graduate students.  The 

development of the RAMEE and key findings are outlined in this section. 

1.3.1 Primary Numerical Code 

The first investigation on the RAMEE system was conducted through numerical 

simulations (Fan 2005, Fan et al. 2006).  The code utilized a cross-flow configuration 

and demonstrated total effectiveness values up to 70%.  Subsequent research revealed 

that the vapour permeability of the membrane used in the model was unrealistically high 

and that the narrow air and solution channels were impractical from a manufacturing 

point of view.  Nonetheless, this model provided a solid foundation for later research. 

1.3.2 RAMEE Prototype #1 

The first RAMEE prototype was built based on the finding of the primary 

numerical model.  It employed a cross-flow configuration and produced limited results 

because of unsatisfactory membrane deflections during operation.  Nevertheless, the 
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prototype demonstrated heat and moisture transfer between two air streams (Hemingson 

2005). 

1.3.3 Investigation of Membrane Properties 

The membrane limitations exhibited by the first prototype led to specific 

membrane investigations (Larson 2006).  Larson investigated the vapour permeability 

and liquid resistance of several membranes and selected suitable ones to be used in the 

RAMEE.  The deflection of the membrane was also addressed and methods of 

supporting it were proposed. 

1.3.4 RAMEE Prototype #2 

The second RAMEE prototype was constructed based on the findings of Larson 

(2006).  This prototype used a superior membrane compared to Prototype #1 and a wire 

screen support structure to minimize membrane deflections.  This prototype achieved a 

total effectiveness of 43%, which compared well with numerical simulations (Erb et al. 

2010).  However, the experimental results were different from  numerical results and 

were attributed to small membrane deflections that were still present, heat loss and gains 

with the environment, and the transient response of the system. 

1.3.5 Secondary Numerical Code 

Additional numerical simulations was conducted to address the findings from the 

previous prototypes and to improve the understanding of the RAMEE system.  A code to 

simulate the transient response of the system was created by Ahmadi (2008).  This code 

also considered the heat loss and gains between the system and the environment.  The 

simulations revealed the importance of the transient response and heat loss/gains which 

explained several of the observations from prototype #2 (Ahmadi et al. 2009a & 2009b). 
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Another code was created to study the effects of the solution flow-configuration 

(Vali 2009).  This code was for a steady-state system and had the ability to model cross, 

counter, and a combination of cross and counter flow configurations.  Investigations 

showed that the upper and lower effectiveness limits in the RAMEE system are achieved 

by counter and cross flow configurations, respectively, and that the combination of cross 

and counter flow configuration results in intermediate effectiveness values (Vali et al., 

2009).  Vali (2009) also investigated the RAMEE performance at summer and winter 

conditions (AHRI 2005) and showed different system performances at different 

conditions.  

1.3.6 RAMEE Prototypes #3 and #4 

The next generation of prototypes used the findings from the prior prototype 

(Erb et al. 2010) and numerical models (Ahmadi 2008, Vali 2009).  Two prototypes 

were made which utilized a flow configurations that had cross and counter-flow portions 

(unlike the cross-flow in Prototype #2) and used different membranes and fabrication 

techniques (Beriault 2010, Mahmud et al. 2010). 

Mahmud et al. (2010) fabricated a prototype that used Propore™ as its 

membrane.  Propore™ was first recommended as a suitable membrane by Larson (2006) 

and was used in the prototype of Erb et. al. (2010).  The maximum total effectiveness 

achieved by this prototype was 55% at an NTU of 12. 

Prototype #4 was constructed by Beriault (2010) and was similar to Prototype #3 

but it was constructed with improved techniques and utilized some different materials.  

Experimental results for non-standard outdoor air test conditions were obtained and 

were shown to be significantly different from standard test conditions. 
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1.4 Research Objectives 

The general objective of this study is to expand on the understanding of the 

RAMEE system, which involves investigating some of the trends and discrepancies 

observed in previous studies.  This study primarily focuses on the effects of outdoor air 

conditions and the effects of exchangers with non-uniform channels on the RAMEE 

performance.  This is achieved through numerical modeling of the RAMEE, which, 

where available, is compared to experimental results for validation.  The explicit 

objectives in this study are to: 

1. Determine the effects of operating conditions (outdoor temperature and humidity 

ratio and solution flow rate) on system performance; 

2. Develop correlations to describe the system performance at different outdoor air 

conditions and solution flow rates; 

3. Determine the effects of non-uniform exchanger channels on the RAMEE 

performance. 

1.5 Thesis Overview 

The thesis contains the analysis and conclusions for the above objectives.  

Numerical data form the core of this thesis and the numerical model used to generate the 

data is presented in Chapter 2.  The model was created by Vali (2009) and has 

undergone some modifications to more adequately describe the system.  The model is 

described in general with attention to the modifications and the required additions to 

investigate non-uniform exchanger channels. 

The effects of the outdoor air condition on the RAMEE performance (Objective 

1) are covered in Chapter 3.  This investigation focuses on the performance of the 
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system when it has maximum sensible, latent, and total energy transfers at a given 

outdoor air condition.  The relationships between the outdoor air condition and the 

solution flow rate that causes these maximums are shown.  Lastly, outdoor air conditions 

where heat and moisture are transferring in opposite directions to each other are 

described and compared to experimental results where applicable (Beriault 2010). 

From the understanding of the relationship between the outdoor air conditions, 

solution flow rates, and system performance, correlations are developed to predict the 

sensible and latent effectiveness (Objective 2).  This is contained in Chapter 4, which 

shows the development and validation of the correlations. 

The investigation into the effects of exchangers with non-uniform channels on 

the RAMEE performance (Objective 3) is covered in Chapter 5.  The results from the 

numerical analysis are compared to experimental results to estimate the actual impact of 

non-uniform channels on RAMEE performance. 

The results of this thesis are summarized in Chapter 6 and the conclusions found 

throughout are explicitly stated.  Recommendations for future investigation into the 

RAMEE are also made. 
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Chapter 2  

NUMERICAL MODEL  

2.1 Introduction 

This chapter introduces the numerical model that is used to investigate the 

RAMEE system and achieve the objectives of this thesis.  The model was created by 

Vali (2009) based on the model of Fan et al. (2006).  During this thesis research, several 

modifications have been made to the model to better represent the RAMEE.  This 

chapter contains a general description of the model and highlights the modifications 

made.  This chapter also introduces design and operating parameters that are used to 

describe the RAMEE system, its operations and performance, and the outdoor air 

conditions. 

2.2 RAMEE Numerical Model 

This thesis relies extensively on numerical data because it allows a large number 

of outdoor air conditions and other parameters to be investigated quickly.  The 

numerical model used was created by Vali (2009) and has been verified analytically for 

heat transfer (Vali et al. 2009) and validated with experimental results for heat and 

moisture transfer (Vali 2009).  The numerical uncertainties are less that 2.5% for the 

heat transfer model and between 1-17% (total effectiveness) for the heat and moisture 

transfer model.  The model has undergone slight modifications for this study to better 
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describe the system and allow the objectives of this study to be achieved.  A description 

of the model and its important terms are contained in the following sections. 

2.2.1 Assumptions 

The numerical model is created based on several assumptions.  These 

assumptions simplify the equations in the model and decrease its computational 

demands.  The following assumptions are made in the numerical model: 

RAMEE Assumptions 

1. The geometry of each exchanger and flow channel is identical. 

2. The mass flow rates of supply and exhaust air are equal. 

3. The inlet air properties for each exchanger are uniform and steady.  

4. Heat and moisture transfers between the system and the surroundings are 

negligible. 

LAMEE Assumptions 

5. The flow in each fluid channel is steady, laminar, and fully developed. 

6. The heat and moisture transfer analysis mostly uses bulk mean fluid properties. 

7. The heat and moisture transfers across the membrane are normal to its surface 

and the membrane properties are constant. 

8. Heat conduction and moisture diffusion in the fluids in the flow direction are 

negligible compared to the advection of energy and moisture. 

9. Phase change energy from the evaporation/condensation of water vapour at the 

liquid-membrane interface is all transferred from/to the liquid. 
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The first three assumptions for the RAMEE are for steady-state balanced 

operations at constant indoor and outdoor air conditions.  Under normal operation (and 

adequate insulation), the heat and mass transfer in the system is significantly greater 

than what would occur with the environment and this justifies assumption 4 for such 

conditions. 

The fluid flow in the LAMEEs is laminar with Reynolds numbers of ~1 for the 

liquid desiccant and 200-400 for the air flow.  The entrance length effects as determined 

by the total effectiveness difference is less than 0.5% (@NTU = 5) compared to when 

they are neglected.  Therefore, entrance length effects are neglected and fully developed 

flow is assumed. 

Using the bulk fluid properties in assumption 6 simplifies the analysis to one 

dimension.  The lateral gradients caused by the thermal and mass boundary layer 

resistances are accounted for in the overall transfer resistances.  Moisture transfer in the 

solution is a little more complex and the boundary layer resistance to mass transfer is 

accounted for using the liquid-membrane interface vapour pressure difference with the 

bulk mean air flow value (see Section 2.2.3).   

Heat and moisture transfer across the membrane is assumed to be normal to the 

membrane because it is very thin and its resistance is significantly greater than the 

convective coefficients of the fluids.  The membrane’s thermal and moisture transfer 

properties are independent of temperature and humidity (Larson et al. 2007). 

Axial conduction is considered insignificant for Peclet numbers greater than 20 

(Luo and Roetzel 1998).  Assumption 8 is possible because under normal operating 

conditions the heat and mass Peclet numbers are very large (500-20,000) for both fluids.   
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The moisture phase change occurs at the interface between the solution and 

membrane.  The solution absorbs/releases this phase change energy because the 

convective heat transfer coefficient of the solution (700 W/(m2·K)) is more than an order 

of magnitude higher than the combined heat transfer coefficient of the air and membrane 

(27 W/(m2·K)) 

2.2.2 Desiccant Solution 

The RAMEE system uses a liquid desiccant as the coupling fluid between the 

two LAMEEs in order to enable moisture transfer between the air streams.  The driving 

potential for moisture transfer between the air streams is the difference between their 

vapour concentrations or vapour pressures.  In this thesis, the humidity ratio is used to 

express vapour concentrations and is defined as the ratio of the mass of water vapour 

over the mass of dry air.  Therefore, in order for the liquid desiccant to transfer moisture 

between the two air streams, the equilibrium air humidity ratio of the desiccant (i.e., the 

humidity ratio of the air in equilibrium with the surface layer of the desiccant) has to fall 

between the humidity ratios of the two air streams.  In this thesis, the equilibrium air 

humidity ratio of the desiccant is referred to as the humidity ratio of the desiccant for 

brevity. 

Liquid desiccants are ideal coupling fluids because they are able to produce a 

wide range of humidity ratios depending on their type, concentration, and temperature.  

Figure 2.1 shows the equilibrium relationship between humidity ratio, temperature, and 

concentration for a desiccant solution of LiBr (Afshin 2010).  At a constant desiccant 

concentration, the humidity ratio increases exponentially as temperature increases.  

These trends are very similar to curves of constant relative humidity.  The liquid 
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desiccant also exhibits a saturation concentration curve at which concentration the 

solution can, at equilibrium, not contain anymore desiccant and will begin to crystallize 

on the closest available nucleation point or surface if more water is removed from the 

solution.  The relationship shown in Figure 2.1 applies to liquid desiccants other than 

LiBr except that the iso-concentration curves for given concentrations would correspond 

with different constant relative humidity curves and the saturation concentration value 

and position would differ.  These variations between the properties of different liquid 

desiccants and complications associated with crystallization in the desiccant, requires 

careful selection of the desiccant based on the requirements of the RAMEE.  The work 

by Afshin (2010) focused on selecting the optimal liquid desiccant for the RAMEE.  
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Figure 2.1: Equilibrium surface vapour pressure, concentration (C), temperature relationship of 

LiBr with lines of constant relative humidity (RH).  

The concentration of the liquid desiccant (C) is defined as the mass of salt 

divided by the mass of solution.  In this study, the solution mass fraction (X) is preferred 
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over the concentration, which is equal to mass of water divided by the mass of salt in the 

solution.  The mass fraction of desiccant is analogous to the humidity ratio of air. 

2.2.3 Liquid-to-Air Membrane Exchanger 

The LAMEE is the core element of the RAMEE system.  LAMEEs are flat plate 

exchangers with alternating solution and air channels of thickness δSol and δAir, 

respectively, which are separated by a membrane of thickness δMem (Figure 2.2).  The 

flow regime in the model can be either cross, counter, or a combination between cross 

and counter flows.  The counter flow regime is predominantly used in this study and so 

only governing equations pertaining to it will be shown (numerical simulations of the 

experimental prototypes use the combination between cross and counter flows).  The 

equations for the other flow regimes can be found in the work of Vali (2009). 
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Figure 2.2: LAMEE control volume with counter flow air and solution streams. 

Conservation of Moisture  

Moisture transfer is governed by the conservation of mass between the air and 

desiccant solution fluid streams.  Two equations, one for the air stream and the desiccant 

solution stream, describe the mass transfer.  These equations are: 
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and X is the mass fraction of the solution [kgWater/kgSalt], 

W is the humidity ratio of the air [kgWater/kgAir], 

'
mU is the modified overall mass transfer coefficient [kg/(m2·s)], 

J is the mass flux [kg/(m2·s)], 

hm is the convective mass transfer coefficient [kg/(m2·s)], 

km is the membrane water vapour permeability [kg/(m·s)],  

and subscripts:  

Air denotes air (bulk), 

Sol denotes solution (bulk), and 

Sol,mem denotes properties at membrane-solution interface. 

 

In order to determine TAir and WAir by solving equations (2.1) and (2.2), the bulk 

concentration of the solution has to be related to its equilibrium air humidity ratio at the 

membrane-solution interface, which is not known.  This is accomplished through 

equations (2.4-2.6) that are iteratively solved.  Cisternas and Lam (1991), [also 

presented in Afshin (2010)], developed a correlation that relates the equilibrium air 

humidity ratio with the temperature and concentration of the solution at the membrane-

solution interface, 

 ( )mem,Solmem,Solmem,Sol X,TW f= . (2.4) 
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The temperature and concentration of the desiccant at the membrane-solution interface 

are determined through heat and mass flux balances at this interface.  The moisture mass 

flux at the membrane-solution interface is expressed as: 
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and the heat flux at the membrane-solution interface is given by: 
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where "m&  is the mass flux of moisture [kg/(m2·s)],  

q” is the heat flux [W/m2], 

T is the temperature [°C],   

h is the convective heat transfer coefficient [W/(m2·K)], 

k is the membrane thermal conductivity [W/(m·K)], and 

hfg is the latent heat of vapourization [J/kg], 

and superscripts 

X denotes a convective mass transfer coefficient based on a difference in X, and 

W denotes a convective mass transfer coefficient based on a difference in W. 

 

Equations (2.5) and (2.6) are rearranged to solve for XSol,mem and TSol,mem 

respectively, which are then used in equation (2.4) to determine the WSol,mem.  Equations 

(2.4-2.6) are coupled and therefore they are iterated to determine the humidity ratio of 

the solution at the membrane-solution interface, which allows equations (2.1) and (2.2) 

to be solved when the bulk temperature and mass fraction of the desiccant are known.  
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The resistance to mass transfer in the solution is accounted for by equations (2.5) and 

(2.6), which was neglected in Vali’s model (2009), where WSol,mem was based on the 

bulk solution temperature and mass fraction. 

Conservation of Energy  

Heat transfer is governed by the conservation of energy between the air and 

desiccant solution fluid streams.  This heat transfer is described by one equation for the 

air and another for the desiccant solution.  These equations are also for a counter flow 

configuration and are: 
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and U is the overall heat transfer coefficient [W/(m2·K)], and 

Cp is the specific heat capacity [kJ/kg]. 

Air, Solution, and Membrane Properties 

The thermal conductivity and specific heat of the air and solution are required in 

the analysis (equations (2.1-2.9)).  These air properties are only mildly dependent on 

temperature and therefore constant values obtained from Incropera and DeWitt (2002 

are used).  The properties of the liquid desiccant are more complex and depend on the 

salt type, concentration, and temperature.  Empirical correlations contained in Zaytsez 

and Aseyev (1992) are used to determine the solution properties (also contained in 

Afshin 2010).  The convective heat transfer coefficients in the air and desiccant are 
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determined from the Nusselt number for constant heat flux in a laminar flow between 

parallel plates (Shah and London 1978).  The air and solution convective mass transfer 

coefficients are given by the Chilton-Colburn analogy (Incropera and DeWitt 2002). 

Unless otherwise specified, the membrane used in the numerical model is based 

on the properties of Propore™, which was used in the experimental prototypes of Erb 

(2010) and Mahmud et al. (2010).  The properties for Propore™ were determined by 

Larson (2006) and are presented in Table 2.1.  Also, the thicknesses for the air and 

solution channels are presented in Table 2.1.  These thicknesses are also based on the 

experimental prototype of Mahmud et al. (2010) and will be used in this study unless 

specified otherwise. 

Table 2.1: LAMEE channel thicknesses and membrane properties for Propore™. 
Property Value

Air 4.2 mm

Solution 2.7 mm

Thickness 0.2 mm

Thermal Conductivity 0.334 W/(m·K)

Water Vapour Permeability 1.66 x 10-6 kg/(m·s)

Membrane Properties

Channel Thicknesses

 

2.2.4 LAMEE Numerical Procedure 

Equations (2.1-2.9) enable temperature and moisture content (humidity 

ratio/mass fraction) distributions in the LAMEE air and solution channels to be 

determined.  The boundary conditions for the governing equations are the temperature 

and humidity ratio of the air inlet and the temperature and mass fraction of the solution 

inlet.  The air conditions at the LAMEE inlets are the outside conditions for the supply 

exchanger and the indoor conditions for the exhaust exchanger.  Various indoor and 

outdoor air conditions are used in this study and will be highlighted when they are 
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applied.  Commonly used conditions are the summer and winter AHRI standard test 

conditions (AHRI 2005) which are shown in Table 2.2. 

Table 2.2: AHRI test conditions. 

Indoor Outdoor Indoor Outdoor
T 24°C 35°C 21° 1.7°C

W 9.3 g/kg 17.5 g/kg 7.1 g/kg 3.5 g/kg

RH 50% 49% 46% 82%

Summer Winter

  

The governing equations (2.1, 2.2, 2.7, & 2.8) are discretized by an implicit 

finite difference method using an upwind scheme in order to determine the air and 

solution temperature and moisture content distributions in the exchangers.  Grids of over 

100 nodes in the discretized directions were used, which were shown to provide grid 

independent results (Vali 2009).  A Gauss-Seidel iteration technique is used to solve the 

discretized governing equations.  The convergence criteria is satisfied when the root-

mean-square difference between successive iterations for all the air and solution 

properties (i.e., T, W, and X) are less than 1x10-5.  The convergence criteria are very 

conservative in that the change in effectivenesses caused by increasing the criteria from 

1x10-4 to 1x10-5 is less than 1x10-3% at the AHRI summer condition.  The conservative 

criteria ensure satisfactory convergence for a variety of outdoor and indoor air 

conditions.  Once convergence occurs, the exchanger outlet conditions are determined 

based on the nodal air/solution values at the exchanger outlets adiabatically mixing. 

2.2.5 RAMEE Numerical Procedure 

The RAMEE numerical procedure combines the supply and exhaust LAMEEs 

together to determine the temperature and mass fraction of the solution at the LAMEE 

inlets during quasi-steady state operations.  This is achieved through an iterative process 

that begins by assuming an initial solution condition at the supply exchanger solution 
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inlet.  The LAMEE numerical procedure is used to determine the temperature and mass 

fraction of the solution at the supply exchanger outlet based on its boundary conditions.  

The solution condition at the supply exchanger outlet becomes the inlet conditions for 

the exhaust exchanger.  This assumes no heat or moisture is transferred in the piping 

system which is justified with adequately insulated piping.  The LAMEE numerical 

procedure is then used again to determine the solution conditions at the exhaust 

exchanger outlet, which is then used as the inlet solution condition for the supply 

exchanger.  This process is continued until convergence occurs, which for the RAMEE 

is defined as when the moisture and energy transfer between the supply and exhaust 

exchangers are within 5x10-4 of each other.  This is also a conservative criterion with the 

change in effectiveness being less 1x10-3% when the convergence criterion is increased 

from 1x10-4% to 1x10-5% at AHRI summer conditions. At this steady state, all the inlet 

and outlet conditions of the exchangers are known and do not change significantly with 

further iterations.  The results from the RAMEE analysis are for steady state conditions. 

2.2.6 Non-uniform Air and Solution Channel Thicknesses 

An objective of this study is to determine the effects of non-uniform air and 

solution channel thicknesses on the system performance.  This is accomplished by 

imposing a variable channel thickness into the model and considering the resulting flow 

maldistributions in the air and solution channels and the variable heat and moisture 

transfer resistances.  This condition is only applied to the case of a counter-flow 

exchanger in this thesis. 

The experimental prototypes (Erb 2010, Mahmud et al. 2010, and Beriault 2010) 

exhibited non-uniform air and solution channel thicknesses.  The variable channel 
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thickness is caused by the higher pressure in the solution channel causing the membrane 

to deflect into the air channel.  The deflected panel is constrained by support structures 

in the air channel, which results in the membrane bulging into complex two-dimensional 

patterns.  This pattern is simplified as a sinusoidal pattern, which is shown in Figure 2.3.  

In this arrangement, the average thickness of the solution channel increases and the 

average thickness of the air channel decreases.  The modeled sinusoidal bulges are 

continuous over the length of the exchanger and parallel to the fluid flows.  The bulges 

are also assumed to be identical in all the channels. 

½ δδδδAir
½ δδδδAir,Var

½ δδδδSol ½ δδδδSol,Var
Deflection

Air Channel (flow out of the page)

Solution Channel (flow into the page)

Membrane

z

y

 
Figure 2.3: Schematic of air and solution channel variations (Var). 

 

The non-uniform channels are divided into sections (j-indexed) in the y-direction 

that extend the length and thickness of the channel.  The pressure drop across the length 

of each section is the same, which allows the flow to become maldistributed due to the 

sections having variable thicknesses.  The maldistributed flow consists of higher flow 

rates in the wider sections and lower flow rates in the narrow sections.  The flow rates 
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through the variable thickness sections can be determined according to Poiseuille flow.  

This analysis neglects the fluid shear stresses between adjacent sections which results in 

a greater calculated flow maldistribution than in reality.  The analytical solution for 

Poiseuille flow in a uniform channel is: 

 
dx

dPD

48

1
V

2
h ⋅

µ
⋅= , (2.10) 

where V is the fluid velocity [m/s], 

 Dh is the hydraulic diameter of the parallel plates [m], 

 µ is the dynamic viscosity [kg/(s·m)], and 

 
dx

dP is the pressure gradient [Pa/m]. 

Using equation (2.10) and discretizing the channel width (y-direction in Figure 2.3), a 

relationship can be derived to describe the fraction of fluid flowing through a discrete 

channel width at a given thickness.  For the air and solution channels, the relationship is: 

 

∑
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where 

 

Tot

j

m

m

&

&  is the fraction of the total channel fluid mass flow rate in section j, and 

 j
hD is the hydraulic diameter of channel section j [m]. 

The channel thickness variation also influences the heat and moisture transfer 

rates by changing the convective heat and mass transfer coefficients in the air and 

solution.  The Nusselt number, which is constant for flow between parallel plates (Shah 
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and London 1978), relates the convective heat transfer coefficient to the hydraulic 

diameter of the channel (Incropera and DeWitt 2002).  Therefore if the channel width is 

discretized (as was previously done for the mass flow rate), the convective heat transfer 

coefficient can be described as: 

 
j
h

j

D

kNu
h

⋅= , (2.12) 

where  Nu is the Nusselt number, and 

 k is the conductivity of the fluid [W/(m·K)]. 

The convective mass transfer coefficient can be determined from the convective heat 

transfer coefficient with the Chilton-Colburn analogy (Incropera and DeWitt, 2002).  In 

discretized form, the convective mass transfer coefficient can be determined from: 

 

P

32
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hh

ρ
⋅=

−
, (2.13) 

where Le is the Lewis number of the fluid, 

 ρ is the fluid density [kg/m3], and 

 CP is the fluid specific heat capacity [J/(kg·K)]. 

The air and solution channel thickness variations in the LAMEE result in flow 

maldistributions and variable overall heat and mass transfer coefficients.  These two 

effects are accounted for by equations (2.11-2.13) and allow for the effects of the non-

uniform channel thicknesses on the system performance to be evaluated. 

2.3 Performance Indicators 

The performance of the RAMEE system is quantified in terms of the actual 

energy transfer and effectiveness at steady state.  The energy transfers of interest are the 

sensible, latent, and total energy, which describe the heat, moisture, and enthalpy 
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transferred between the air streams.  In this study, the transfers are described as the 

change in temperature (°C), humidity ratio (g/kg), and enthalpy (kJ/kg) of the supply air.  

Based on the heat exchanger steady-state definition of effectiveness, the effectiveness 

values are defined as the actual energy transfer rate divided by the maximum possible 

energy transfer for an exchanger with an infinite area (equations 2.14-2.16).  In a 

balanced system (i.e., equal supply and exhaust mass flow rates), these steady-state 

effectivenesses are defined as: 

 

In,E,AirIn,S,Air

In,E,AirOut,E,Air

In,E,AirIn,S,Air

Out,S,AirIn,S,Air
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−
−

=
−
−

=ε , (2.14) 
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where ε is the effectiveness, 

T is the temperature [°C], 

W is the humidity ratio [g/kg], 

H is the enthalpy [kJ/kg], 

and subscripts 

Sen denotes sensible, 

Lat denotes latent, 

Tot denotes total, 

Air denotes the air stream properties, 

S denotes the supply exchanger, 
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E denotes the exhaust exchanger, 

In denotes the exchanger inlet, and  

Out denotes the exchanger outlet. 

 

The actual energy transfers (and consequential effectiveness values) in the 

supply and exhaust exchanges are slightly different (less than 1% in most conditions) 

because the specific heat capacities of the air streams are slightly different and due to 

numerical errors and the convergence criteria.  As a result, the effectiveness values 

presented in this study are averaged between the supply and exhaust exchangers. 

2.4 Design and Operating Condition Parameters 

Several parameters are used to describe the design and operating conditions of 

the RAMEE.  The design parameter describes the size of the system, while the operating 

conditions describe the fluid flow rates in the system at particular outdoor air conditions. 

The RAMEE size (design parameter) is characterized by the number of thermal 

transfer units (NTU) and number of mass transfer units (NTUm) in each exchanger.  In 

this study, the supply and exhaust exchangers are the same size and have equal air mass 

flow rates.  Therefore these parameters are defined as: 

 

Air,pAir Cm
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= , (2.17) 
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where  

U is the overall convective heat transfer coefficient [W/(m2·K)], 

'
mU is the overall convective mass transfer coefficient [kg/(m2·s)], 
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A is the surface area of the membrane in the exchanger [m2], 

m&  is the mass flow rate of dry air through the exchanger [kg/s], and 

CP is the specific heat capacity [kJ/(kg·K)]. 

 

The operation of the system is characterized by the ratio of the solution heat 

capacity rate with the air heat capacity rate (Cr*).  This ratio (Cr*) is similar to the heat 

capacity ratio used in the literature for heat exchangers (Incropera and DeWitt 2002) 

except that the solution properties are always in the numerator.  Using Cr* to describe 

the RAMEE is convenient because, under practical operation, the air flow rate is kept 

constant and therefore the solution flow rate is directly related to Cr*.  The definition of 

Cr* is: 

 

Air,pAir

Sol,pSol

Cm

Cm
*Cr

&

&

= . (2.19) 

The operating condition factor, H*, is a dimensionless number that is the ratio of 

the latent to sensible energy differences between the air inlets of the exchanger 

(Simonson and Besant 1999b), which is expressed as: 
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∆
∆= . (2.20) 

Figure 2.4 shows the values of H* for different outdoor conditions when the indoor 

condition is at 24°C and 9.3 g/kg.  When the indoor and outdoor air humidity ratios are 

the same, H* = 0, and when the indoor and outdoor air temperatures are equal, H* = ±∞.  

Typical energy recovery applications have H* values that vary between -6 to +6. 
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Figure 2.4: Psychometric chart showing H* values for indoor condition of 24°C and 9.3 g/kg. 

The operating condition factor can also be used to determine the total 

effectiveness from the sensible and latent effectivenesses determined in equations 

(2.14-2.15).  The total effectiveness can be determined from (Simonson and Besant 

1999b): 

  
*H1

*H LatSen
Tot +

ε+ε
=ε . (2.21) 

Another parameter can be used in conjunction with H* to fully describe the 

conditions at the air inlets.  This parameter considers the enthalpy difference between 

the air inlets which is represented by ∆H and defined by: 

 
plysupexhaust HHH −=∆ . (2.22) 

Using both H* and ∆H allows the exact outdoor air condition relative to the indoor 

condition to be described. 
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2.5 Chapter 2 Summary 

This chapter presented the numerical model that is used in this thesis to 

investigate the RAMEE system.  The model was created by Vali (2009) and has 

undergone some modifications to more accurately represent the system and achieve the 

objectives of this study.  The assumptions used in the model were presented and justified 

and then the properties of the desiccant solution were described.  The governing 

equations that describe heat and moisture transfer in the LAMEE were then shown.  The 

numerical methods used to solve the governing equations and determine the steady-state 

performance of the LAMEE and RAMEE were explained.  The modification of the 

model for non-uniform air and solution channels to determine its effects on RAMEE 

performance was described.  Finally, the indicators used to determine the performance 

of the system were illustrated as well as key design and operating condition parameters 

which describe the size and operation of the system and the outdoor air conditions it is 

operating in. 
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Chapter 3  

EFFECTS OF OUTDOOR AIR CONDITIONS ON PEAK PERFORMAN CE 

3.1 Introduction 

Previous numerical investigations into the RAMEE (Fan et al. 2006, Ahmadi et 

al. 2009 a&b, Vali 2009, Erb et al. 2010) have shown different performances at standard 

summer and winter test conditions (AHRI 2005).  These differences are demonstrated in 

Figure 3.1, which shows the total effectiveness of a counter-flow RAMEE (NTU = 10 

and NTUm = 2.7) operating at summer and winter conditions.  The plots of total 

effectiveness as a function of Cr* for summer and winter conditions show similar trends 

in that as Cr* increases from zero, the effectiveness increases rapidly from zero to a 

maximum effectiveness and then slowly decreases to a plateau.  However, the maximum 

or peak effectiveness and the Cr* value at which the peak total effectiveness occurs are 

different for the summer and winter test conditions.  Sensible and latent effectivenesses 

versus Cr* plots (not shown here) demonstrate similar relationships with different peak 

effectiveness values and Cr* values at which the peak occurs. 
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Figure 3.1: RAMEE total effectiveness at summer and winter test conditions.  NTU = 10, 

NTUm = 2.7. 

This chapter presents the complex relationship between the system performance 

(i.e., effectivenesses and energy transfers) and the operating parameters, namely the 

solution flow rate (i.e., Cr*) and the outdoor air conditions (i.e., H* and ∆H).  This is 

achieved by simulating a range of outdoor conditions over a range of operating Cr*.  

The range of outdoor conditions represents the typical conditions that a given location 

would experience in a typical year (Figure 3.2 shows the range for Chicago, IL).  From 

these results, the relationships between outdoor air conditions and the peak total, 

sensible, and latent performances are shown and explained.  Additionally, the 

relationship between the Cr* values that cause these peak performances and the outdoor 

air condition are shown.  The performance of the RAMEE at negative H* conditions and 

its potential applications are discussed.  Lastly, the effects of NTU/NTUm and indoor 

conditions on the system are considered. 
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Figure 3.2: Hourly outdoor air conditions for a typical year in Chicago, IL. 

The results in this chapter apply to a counter-flow RAMEE system operating 

with a LiBr desiccant solution.  The exchangers in the system have an NTU of 10 and 

NTUm of 2.7, which corresponds to a maximum total effectiveness of about 65% 

(εSen = 76.5%, εLat = 59.9%, εTot = 65.7%) at summer test conditions (AHRI 2005).  The 

indoor air conditions are constant at 24°C and 9.3 g/kg.  The outdoor air conditions 

range between -15°C to 40° and 0 g/kg to 25 g/kg at 1°C and 1 g/kg increments with 

682 conditions simulated.  The effects of frosting in the RAMEE at the low temperature 

conditions are neglected in this analysis.  All other simulation conditions and factors are 

outlined in Chapter 2. 

3.2 Peak Total Performance 

The peak total performance is the maximum total energy transferred between the 

supply and exhaust air streams at a constant NTU.  The total energy is comprised of the 

sensible energy (heat) and the latent energy (moisture) which is described by the 

sensible and latent performances.  The peak total performance of the RAMEE is 
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important because in most situations, energy recovery systems operating at their peak 

total performance will allow the maximum amount of energy recovery in a year (Rasouli 

et al. 2010).  Knowing the relationship between peak total performance and outdoor air 

conditions allows for the annual energy savings of the RAMEE to be determined which 

is useful in cost-benefit analyses.   

The peak total performance for a specific outdoor condition occurs at a certain 

Cr*.  This Cr* is referred at as the optimal Cr* because at this point the system energy 

recovery is at a maximum.  Knowing the relationship between the optimal Cr* and the 

outdoor air conditions will allow the RAMEE to operate at peak total performance and 

therefore achieve maximum energy recovery. 

This section presents the relationships of the outdoor air conditions with the peak 

total performance and the optimal Cr*.  The causes of these relationships are also 

explained and discussed. 

3.2.1 Performance Contour Plots 

The results for the RAMEE performance as a function of the  outdoor conditions 

are presented as contour plots on the psychometric chart.  The values on the chart 

correspond to the performance of the system for the given outdoor air temperature and 

humidity ratio when the system is operating at the optimal Cr*.  Plots of effectiveness 

and energy transfer are used to describe the sensible, latent, and total performances.  

Using both of these indices aids in observing and describing the various trends that are 

present. 
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Sensible Performance  

The contour plots for the sensible performance (Figure 3.3) contain the sensible 

effectiveness and the temperature change in the supply air.  The sensible effectiveness 

contour lines (Figure 3.3A) are similar to lines of constant H* (see Figure 2.4) and the 

effectiveness increases as H* increases.  However unlike lines of constant H*, the 

sensible effectiveness contours have slight curvatures, which indicates that the sensible 

effectiveness still depends on another parameter (i.e., ∆H).  The sensible effectiveness 

also goes to infinity when H* goes to infinity (i.e., indoor and outdoor air temperatures 

are equal).  Several large ±H* conditions (-6 < H* > 6) produce effectiveness values that 

are less than 0% or greater than 100%.  The sensible effectiveness for more than half of 

the outdoor conditions considered in this chapter, range between 60-100%. 
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Figure 3.3: Sensible performance of the RAMEE operating at optimal Cr* for different outdoor air 
conditions.  A) Sensible effectiveness (%). B) Supply air temperature change (°C).  Dashed lines are 
lines of constant temperature change and circles correspond to AHRI outdoor summer and winter 

conditions and the indoor condition (24°C, 9.3 g/kg) at NTU = 10 and NTUm = 2.7. 

The temperature change plot (Figure 3.3B) consists of near vertical lines that 

curve down and to the right (i.e., toward lower humidity ratios and higher temperatures).  

The distance between the contours is relatively constant and their curvatures are greater 

at lower temperatures.  A constant sensible effectiveness energy recovery system (i.e., 

moisture transfer does not influence heat transfer) would have a temperature change 

contour plot with vertical lines with a constant distance between the contours.  The 
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contours in Figure 3.3B show the sensible effectiveness is mildly influenced by 

temperature (relatively constant distance between the contours) and strongly influenced 

by humidity ratio (contour curvatures). 

Latent Performance 

The latent performance contour plots (Figure 3.4) shows the latent effectiveness 

and the supply air humidity ratio change.  The latent effectiveness contour lines are 

similar to lines of constant H* (Figure 3.4A), except the effectiveness contour lines are 

slightly curved (like the sensible effectiveness contours).  The latent effectiveness values 

increase as the inverse of H* increases, which means that the highest latent effectiveness 

occurs when H* = 0+ and the lowest latent effectiveness occurs when H* = 0-.  The 

latent effectivenesses go to infinity when the outdoor and indoor humidity ratios are 

equal.  Several conditions where the outdoor humidity ratio is near the indoor humidity 

ratio (i.e., H*<±0.5) produce effectiveness values that are less than 0% or greater than 

100%.  The majority of the simulated outdoor conditions produce effectiveness values 

between 40-70%. 

The moisture change contour plot (Figure 3.4B) consists of nearly horizontal 

lines that curve up and to the left (i.e., towards higher humidity ratios and lower 

temperatures).  The distance between the contour lines is relatively constant and their 

curvatures are greater at lower humidity ratios.  A moisture change contour plot with 

equally spaced horizontal contours would represent an energy recovery system with 

constant latent effectiveness (i.e., one where heat transfer does not influence moisture 

transfer). 
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Figure 3.4: Latent performance of the RAMEE operating at optimal Cr* for different outdoor air 
conditions.  A) Latent effectiveness (%). B) Supply air moisture change (g/kg).  Dashed lines are 
lines of constant humidity ratio change and circles correspond to AHRI outdoor summer and 

winter conditions and the indoor condition, NTU = 10 and NTUm = 2.7. 

 

Total Performance 

The total energy performance of the system is harder to characterize than the 

sensible and latent performances because the total effectiveness is a function of the 

sensible effectiveness, the latent effectiveness and the outdoor air conditions (H*, see 

Equation (2.21)).  As a result of this, the total effectiveness of an energy recovery 
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system is variable for different outdoor air conditions even if the sensible and latent 

effectiveness are constant.  The exception to this occurs when the sensible and latent 

effectivenesses are also equal to each other and constant.  In this situation, the sensible, 

latent, and total effectivenesses are the same and constant for all outdoor air conditions.   

Effectiveness and supply air enthalpy change contour plots are presented in 

Figure 3.5.  The total effectiveness contour lines are similar to lines of constant H* and 

also have slight curvatures (Figure 3.5A).  The total effectiveness contour line values 

increase as H* decreases from -1 to -∞ and then from +∞ to -1.  As H* goes to -1 (i.e., 

the outdoor air enthalpy approaches the indoor air enthalpy), the total effectivenesses 

approaches ±infinity.  Several outdoor conditions near H* = -1 (-0.5 > H* > -1.2) have 

effectiveness values less than 0% or greater than 100%.  Over half of the conditions 

simulated have total effectiveness values between 55-75%.   
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Figure 3.5: Total performance of the RAMEE operating at optimal Cr* for different outdoor air 

conditions.  A) Total effectiveness (%). B) Supply air enthalpy change (kJ/kg).  Dotted lines 
represent enthalpy change for a constant effectiveness system (εSen=80%, εLat=61%).  Circles 

correspond to AHRI outdoor summer and winter conditions and the indoor condition. 

 

The actual total energy transfer (Figure 3.5B) consists of contours with slopes 

similar to lines of constant enthalpy, but they are slightly steeper (i.e., greater change in 

humidity ratio for a given temperature change).  The total energy contours are slightly 

curved, especially near the indoor air condition.  The total energy transfer is comparable 

to the total energy transfer of a constant effectiveness system with εSen = 80% and 
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εLat = 61%, which are slightly different from the RAMEE effectiveness values at AHRI 

summer conditions (εSen = 77% and εLat = 60%).  These constant effectiveness values are 

determined by minimizing the difference (based on root-mean-square) between the air 

enthalpy change in a constant effectiveness system and the RAMEE (variable 

effectiveness) for all the simulated outdoor air conditions.  Figure 3.5B shows the 

enthalpy change contour lines for the RAMEE system (solid lines) and a constant 

effectiveness system (εSen = 80%, εLat = 61%, dotted lines).  The slope of the contour 

lines and the distance between adjacent lines in both systems are very similar.  The only 

deviations between the contours of the two systems occur at –H* conditions (i.e., 

outdoor air conditions that are warmer and drier or colder and more humid than the 

indoor conditions) but these deviations are minimal.  These deviations occur because the 

sensible and latent effectiveness values show the greatest temperature dependency in 

these areas. 

The total performance of the system summarizes the sensible and latent 

performances.  The contour plots for the total performance show that the RAMEE 

behaves very similar to a system with constant sensible and latent effectiveness.  This 

indicates that the variations in the sensible and latent performances of the RAMEE 

roughly cancel each other out (i.e., as one effectiveness increases, the other decreases).  

Therefore the total energy recovery of the RAMEE can be determined based on a 

constant sensible and latent effectiveness system (εSen = 80%, εLat = 61%).  However this 

approach would inaccurately determine the sensible and latent performances of the 

RAMEE. 
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3.2.2 Heat and Moisture Transfer Driving Potentials 

The previous sectioned showed that the RAMEE effectivenesses strongly 

depends on H*.  The relationship between H* and the RAMEE performance can be 

understood by considering the driving potentials for heat and moisture transfer. 

Classically, the heat (moisture) transfer driving potential is the temperature 

(humidity ratio) difference between the outdoor and indoor air (referred to as primary 

driving potential in this study).  Therefore as the temperature (humidity ratio) difference 

between the indoor and outdoor air increases, the amount of heat (moisture) transferred 

between the air streams increases as well.  An energy recovery system that operates only 

with a primary driving potential would have constant effectivenesses at different outdoor 

conditions and the amount of heat (moisture) transferred would be dependent on the 

temperature (humidity ratio) difference between the indoor and outdoor air streams and 

independent of the humidity ratio (temperature) difference.  Heat wheels, run-around 

coil, and flat plate exchangers are examples of air-to-air energy recovery systems that 

operate only with a primary driving potential. 

However, Figure 3.3-Figure 3.5 show that the heat and moisture transfer in the 

RAMEE at different operating conditions is more complex than an energy recovery 

system that is only governed by a primary driving potential.  Therefore, a secondary 

driving potential is required to fully describe the RAMEE performance at different 

outdoor air conditions.  In the RAMEE, the secondary driving potential for heat 

(moisture) transfer is the humidity ratio (temperature) difference between the indoor and 

outdoor air.  Thus, heat (moisture) transfer in the RAMEE is primarily driven by the 

difference in temperature (humidity ratio) between the indoor and outdoor air and to a 

lesser, secondary, extent by the humidity ratio (temperature) difference.  Appendix A 
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elaborates on how the humidity ratio (temperature) difference between the indoor and 

outdoor air affects the heat (moisture) transfer in the RAMEE. 

The interplay between the primary and secondary driving potentials depends on 

their magnitudes compared to each other, which can be described by H*.  When H* is 

close to zero, the heat transfer primary driving potential (i.e., ∆T between the indoor and 

outdoor air) is very large compared to the secondary potential (i.e., ∆W between the 

indoor and outdoor air) and as a result the secondary driving potential has minimal 

influence.  However, at H* values close to infinity (i.e., ∆HLat
 >> ∆HSen), the secondary 

driving potential becomes predominant, which can result in sensible effectiveness values 

that are greater than 100% or less than 0% (Figure 3.3A).  An analogous description is 

applicable for the moisture transfer, except that the secondary driving potential is 

predominant at H* values close to zero (i.e., ∆HLat
 << ∆HSen), which leads to latent 

effectiveness values that are greater than 100% or less than 0% (Figure 3.4A). 

The effects of the secondary driving potentials are also revealed by considering 

the amount of heat (moisture) transferred to the air stream.  With regards to heat transfer 

(Figure 3.3B), at a constant outdoor temperature and therefore constant primary driving 

potential, the temperature change increases as H* increases.  In other words, the 

secondary potential increases as H* increases, which slightly increases the temperature 

change in the air.  A similar explanation can also be applied to the change in the air 

humidity ratio in Figure 3.4B.  

The major features of the sensible and latent contour plots are explained by 

considering the primary and secondary driving potentials for heat and moisture transfer 

and how the outdoor air conditions influence them.  Additional factors also influence the 
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contour plots (Figure 3.3, Figure 3.4) and they account for the minor features in the 

contour plots (e.g., curvatures of contour lines), which are briefly discussed in Chapter 

4. 

3.2.3 Optimal Cr* Contour Plots 

The relationship between effectiveness and Cr* (see Figure 3.1) shows that the 

total effectiveness has a maximum value at a specific Cr*.  see Figure 3.1 also shows 

that the value of this specific Cr* depends on the outdoor air conditions.  This specific 

Cr* is referred to as the optimal Cr* because the maximum amount of energy is 

transferred between the air streams when the RAMEE is operating at this Cr*.  

Therefore in order for the RAMEE to maximize energy transfer when the outdoor air 

conditions are variable, the relationship between the optimal Cr* and the outdoor air 

conditions must be known. 

The optimal Cr* contour plot in Figure 3.6 shows a complex relationship 

between the optimal Cr* values and the outdoor air conditions.  The optimal Cr* ranges 

between 1 and infinity for the outdoor conditions considered.  The majority of outdoor 

conditions have optimal Cr* values between 1.5 and 3.0.  A discontinuity in the plot 

occurs at H* = -1, which corresponds to the line of constant enthalpy that passes through 

the indoor air conditions.  This discontinuity has the optimal Cr* values approaching 1 

or infinity depending on the side of the discontinuity.  Hot and humid summer outdoor 

conditions typically have optimal Cr* values greater than 2.5 while cold and dry winter 

outdoor conditions have optimal Cr* values less than 2.0.  Therefore if it is desired to 

control the RAMEE on a seasonal basis, the winter operating Cr* would be around 2.0 

and the summer operating Cr* would be around 2.5.  The exact values of the summer 
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and winter operating Cr* values would depend on the climate and would be different for 

each location. 

The effects of the outdoor conditions on the RAMEE performance were 

discussed in Section 3.2.2.  However, the effects on the optimal Cr* appear to be more 

complex and are not properly described by the previous discussion.  A thorough 

discussion into the relationship between the optimal Cr* and the outdoor condition is 

beyond the scope of this study and is not done. 
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Figure 3.6: Optimal Cr* of the RAMEE system for different outdoor air conditions.  Circles 
correspond to AHRI outdoor summer and winter conditions.  NTU = 10 and NTUm = 2.7. 

3.3 Peak Sensible and Latent Performances 

The previous section (3.2) presented contour plots to describe the RAMEE when 

it is operating with its maximum total effectiveness.  However, when the RAMEE is 

operating at its maximum total effectiveness, the sensible and latent effectiveness are not 

necessarily at their maximum values for that given outdoor air condition.  Figure 3.7 

shows the sensible, latent and total effectiveness plots for the RAMEE operating at 
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AHRI summer conditions.  Under these conditions it can be seen that the sensible and 

latent effectiveness plots have similar trends as the total effectiveness plot.  Both the 

sensible and latent effectivenesses have maximum values, but the peak values do not 

occur when the RAMEE is operating at the optimal Cr*. 
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Figure 3.7: RAMEE system effectiveness values at AHRI summer test conditions. 

This section presents contour plots for cases when the RAMEE is operating at 

the Cr* values that cause maximum sensible and maximum latent effectiveness values.  

The operating Cr* values are referred to as peak sensible Cr* or peak latent Cr* if it 

causes the RAMEE to operate at peak sensible effectiveness or peak latent effectiveness, 

respectively. These contour plots are able to further describe the performance of the 

RAMEE under different outdoor air conditions.  The plots can be used to contrast the 

differences in performance between when the system is operating at either peak sensible 

or latent effectiveness conditions compared to peak total effectiveness conditions.  Also, 

the contour plots for peak sensible Cr* and peak latent Cr* are presented.   
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The plots and only a brief description are presented because the underlying 

explanation to their trends is outlined in Section 3.2.2.  Understanding the peak sensible 

and peak latent performances and how to achieve them is beneficial because in some 

conditions and/or control strategies it is desirable to maximize either the heat transfer 

(e.g., cold winter operations) or moisture transfer (e.g., humid hot summer conditions). 

3.3.1 Peak Sensible Performance 

The peak sensible effectiveness contour plots for the RAMEE when it is 

operating at the peak sensible Cr* are shown in Figure 3.8.  The sensible effectiveness 

has a minimum value of 64% and goes to infinity as the outdoor temperature approaches 

the indoor temperature of 24°C.  The minimum sensible effectiveness occurs at outdoor 

conditions near an H* of -1.  Several outdoor air conditions produce effectiveness values 

that are greater than 100%.  The supply air temperature change contour plot (Figure 

3.8B) compares the temperature change when the system is operating at peak sensible 

effectiveness (solid line) and peak total effectiveness (dashed line).  This comparison 

shows similar temperature changes at positive H* (+H*) conditions (hot and humid or 

cold and dry) with the change being slightly greater for peak sensible operations.  

However, at negative H* (–H*) conditions the performance is significantly different.  

These results indicate that the sensible effectiveness is near its maximum when the 

RAMEE is operating at optimal Cr* for +H* conditions, while at –H* conditions the 

sensible effectiveness achieved at the optimal Cr* is much lower than its maximum 

value.   
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Figure 3.8: Peak sensible performance of the RAMEE for different outdoor air conditions.  A) 
Sensible effectiveness (%). B) Supply air temperature change (°C).  Dashed lines represent the 

temperature change corresponding to peak total effectiveness conditions (Figure 3.3). 

The contour plot of the peak sensible Cr* (operating Cr* that results in peak 

sensible performance) is presented in Figure 3.9.  The peak sensible Cr* contour plot 

shows similar trends as the optimal Cr* contour plot (Figure 3.6).  The values are very 

similar at +H* conditions, but significantly different at –H* conditions.  This 

comparison agrees with the observation that the RAMEE is near its peak sensible 
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performance when it is operating at its optimal Cr* at +H* conditions.  Conversely at 

-H* conditions, the peak sensible Cr* and optimal Cr* are significantly different, which 

also agrees with the differences in the sensible performances. 
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Figure 3.9: Peak sensible Cr* in the RAMEE system for different outdoor air conditions. 

3.3.2 Peak Latent Performance 

The peak latent performance contour plots are shown in Figure 3.10.  These 

results correspond to when the RAMEE is operating at peak latent Cr*.  The minimum 

latent effectiveness occurs at H* conditions near -1 where it decreases to 43%.  The 

effectiveness values approach infinity as the outdoor humidity ratio nears the indoor 

humidity ratio (9.3 g/kg).  The changes in the supply air humidity ratio that occur when 

the system is operating at either maximum latent effectiveness or maximum total 

effectiveness (Figure 3.10B) are very similar at +H* and large –H* conditions, but very 

different at small –H* conditions.  At small –H* conditions, the humidity ratio change is 

significantly higher when the RAMEE is operating at peak latent effectiveness 

conditions compared to when it is operating at peak total effectiveness. 
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Figure 3.10: Peak latent performance of the RAMEE for different outdoor air conditions.  A) 

Sensible effectiveness (%). B) Supply air humidity ratio change (g/kg).  Dashed lines represent the 
humidity ratio change corresponding to peak total effectiveness conditions (Figure 3.3). 

The peak latent Cr* contour plot shown in Figure 3.11 shows the relationship 

between the outdoor air conditions and the operating Cr* value that results in the 

maximum latent performance in the RAMEE.  The peak latent Cr* contour plot is very 

similar to the optimal Cr* plot (Figure 3.6) and is only significantly different when H* is 
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between 0 and -1.  This corroborates why in Figure 3.10B the only discrepancy in the 

change in humidity ratio when the RAMEE is operating at either peak latent or peak 

total (optimal) performances occurs at low –H* conditions. 
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Figure 3.11: Peak latent Cr* in the RAMEE system for different outdoor air conditions. 

3.3.3 Peak Sensible and Latent Performance Comparison 

The evaluation and comparison of the peak sensible, latent, and total 

performances for different outdoor air conditions, and the operating Cr* values that they 

occur at, reveal some interesting characteristics of the RAMEE.   

At +H* conditions (outdoor air is hot and humid or cold and dry), the operating 

Cr* values that cause the peaks in sensible and latent effectivenesses are very similar to 

each other for a given outdoor condition.  At a given +H* condition, if the operating Cr* 

value is increased from zero, the peak sensible occurs first, followed by the peak total, 

and then the peak latent.  The difference between the Cr* values that cause the peak 

sensible and latent effectivenesses is less than 1 for +H* conditions.  For +H* 
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conditions, the optimal Cr* value is closer to the peak sensible Cr* at low H* 

conditions, while the optimal Cr* value is closer to the peak latent Cr* at higher H* 

conditions.  As a result of the small range in the peak Cr* values and the effectiveness-

Cr* plots being similar, the performances (sensible, latent, and total) of the RAMEE at 

each of these peaks are very similar. 

At –H* conditions (outdoor air is hot and dry or cool and humid), the peak Cr* 

values differ significantly from each other for a given condition.  The order of the peak 

Cr* values is not as consistent and depends on the -H* condition, with either the 

sensible peak Cr* or the latent peak Cr* occurring at the lower Cr* values.  Also, the 

difference between the operating Cr* that causes peak sensible and latent effectivenesses 

is much larger at –H* conditions and can be greater than 3 for some H* conditions.  

Therefore, at –H* conditions when the RAMEE is operating at one of the peak Cr* 

values (sensible, latent, or optimal), its effectiveness (sensible, latent, and total) is very 

different from when it is operating at another one of its peak Cr* values. 

3.4 Negative H* Conditions 

The analysis of the peak sensible, latent, and total performances of the RAMEE 

in the previous sections reveals some interesting characteristics of how the system 

operates under different outdoor air conditions.  The analysis shows that the operating 

Cr* values that cause the peak sensible, latent, and total effectivenesses are very similar 

at +H* conditions, but are very different at –H* conditions.  Therefore, the behaviour of 

the RAMEE during –H* conditions is considered in more detail in this section.  This 

investigation consists of describing the relationship between Cr* and effectiveness at 

different –H* conditions and discussing the practical implications of –H* operating 
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conditions.  Also, a comparison between numerical and experimental results for the 

RAMEE operating at –H* conditions is made to validate the model and support these 

observations. 

3.4.1 Cr* versus Effectiveness 

A typical Cr* versus effectiveness relationship of the RAMEE under +H* 

conditions was previously shown in Figure 3.7 (in this case, AHRI summer conditions 

where H* = +1.9), which showed the sensible, latent, and total effectiveness plots.  

These three plots are very comparable to each other and show the same key features in 

that they all exhibit peak effectiveness values, which occur at similar operating Cr* 

values, and their effectiveness values approach zero as Cr* approaches to zero. 

However at –H* conditions, the RAMEE displays a very different Cr*-

effectiveness relationship as shown in Figure 3.12 where the effectiveness is a function 

of Cr* is presented for three different –H* conditions.  The effectiveness values still 

demonstrate a peak, but this peak can be a maximum or minimum depending on the 

value of H*.  Some of these minimum values even have negative effectiveness values.  

Also, the operating Cr*s that cause each peak sensible, latent, or total effectivenesses are 

very different from each other for the same H* condition. 
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Figure 3.12: Effectiveness of the RAMEE as a function of Cr* at different –H* conditions. 
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The plots also display interesting trends at low operating Cr*. As the Cr* 

decreases to zero, the total effectiveness approaches zero (just like in +H* regions), but 

the latent and sensible effectiveness approach non-zero values, which in some 

conditions may be very large.  The effectiveness plots at near-zero operating Cr* display 

a trend from small to large –H* conditions (Figure 3.12).  This trend has the near-zero 

Cr* latent effectiveness decreasing and the near-zero Cr* sensible effectiveness 

increasing as |H*| increases.   

The performance characteristics of the RAMEE when it is operating at –H* 

conditions as shown in Figure 3.12 are also present to some extent at high and low +H* 

conditions (i.e., +H*<0.7 or +H*>6).  Figure 3.13 shows the effectiveness plots of the 

RAMEE operating at a low and high +H* conditions.  The trend of effectiveness with 

Cr* for these high and low +H* conditions are similar to the trends of effectiveness with 

Cr* for moderate +H* conditions when the Cr* values are greater than 1.5 (see Figure 

3.7), but the trends are significantly different at low operating Cr*.  For low +H* 

conditions (Figure 3.13A) with the RAMEE operating at a near-zero Cr* value, the 

latent effectiveness has a large negative value, while the sensible effectiveness maintains 

an intermediate positive effectiveness.  A similar trend occurs at high +H* conditions 

(Figure 3.13B), except it is the sensible effectiveness rather than the latent effectiveness 

that has a large negative value as Cr* goes to zero.  The absolute effectiveness values at 

near-zero Cr* values for high and low +H* conditions are less than the values for the 

-H* conditions.  Also, the magnitude of the near-zero Cr* effectiveness values at high 

and low +H* conditions decrease as the +H* becomes more moderate.  As the +H* 

condition becomes more moderate the effectiveness plots transition into the plots like 
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the one shown in Figure 3.7, which has sensible and latent effectiveness values of zero 

as Cr* approaches zero. 
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Figure 3.13: Effectiveness of the RAMEE as a function of Cr* at high and low +H* conditions. 

Another interesting characteristics of the RAMEE at –H* conditions (and some 

high and low +H* conditions) are the negative effectivenesses that occur at some Cr* 

values (Figure 3.12 and Figure 3.13).  The negative effectiveness values are significant 

because heat and/or moisture are being transferred in the direction that is opposite to the 
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primary driving potential established by the outdoor and indoor air streams.  This is 

possible because the secondary driving potentials are larger and in the opposite direction 

of the primary potentials. These negative effectiveness values can be advantageous in 

certain situations where it is beneficial for the supply air to be conditioned away from 

the exhaust air (i.e., the temperature difference between the supply and indoor air is 

greater than the difference between the indoor and outdoor air).. 

3.4.2 Experimental Validation of Performance at –H* Conditions 

The performance of the RAMEE at –H* conditions is very different from the 

standard test conditions (i.e., H* = 1.9) results reported by Fan et al. (2006) and  Vali 

(2009).  Therefore experimental results are used to validate the numerical results for -H* 

conditions. 

Experimental results were produced on Prototype #4, which was constructed and 

tested by Beriault (2010).  The prototype used a combination cross-counter flow 

configuration.  The key dimensions of the exchangers and the membrane properties are 

contained in Table 3.1.  These exchanger properties are different than the ones presented 

in Chapter 2 and were applied to the model simulations in this section.  The prototype 

was tested at a range of Cr* values (0.5 to 5) at a constant NTU and NTUm of 17 and 

4.5, respectively.  The inlet and outlet air conditions during the test were at 25.7±0.7°C, 

6.3±0.5 g/kg and 16.5±0.8°C, 8.8±0.5 g/kg, respectively, which results in an H* value of 

-0.68±0.05.  A full description of the RAMEE prototype #4, experimental set-up, and 

testing procedure is contained in the thesis of Beriault (2010). 
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Table 3.1: RAMEE Prototype #4 specifications 
Property Value

Length 1 220 mm

Width 305 mm

Entrance Length 64 mm

Air 5.4 mm

Solution 2.6 mm

Thickness 0.5 mm

Thermal Conductivity 0.334 W/(m·K)

Water Vapour Permeability 3.4 x 10-6 kg/(m·s)

Membrane Properties

Channel Thicknesses

Panel Dimensions

 

The experimental results consist of 9 measurements taken at constant NTU, 

NTUm, and H*, but different Cr* values.  The experimental sensible, latent, and total 

effectiveness values are presented as a function of Cr* in Figure 3.14, which also 

contains the results from the numerical simulation of the prototype.  The experimental 

results show a high degree of scatter at some points, but some general trends are present.  

The scatter can be attributed to flow maldistribution in the channels and heat gains and 

losses between the system and the environment.  Also, the experimental uncertainty due 

to temperature and humidity measurements is more significant because the differences 

between the humidity ratios and enthalpies of the two air streams are small (<3 g/kg and 

<3 kJ/kg).  
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Figure 3.14: Comparison between experimental (Beriault 2010) and numerical results for Prototype 

#4 operating at NTU=17, NTUm=4.5, and H*=-0.68.  Experimental and numerical results are 
represented by symbols and lines respectively.  Error bars are only shown on one side, but apply to 

both. 

Figure 3.14 shows reasonable agreement between the numerical and 

experimental results.  Both results show that the total effectiveness increases as Cr* 

increases from zero and reaches a maximum value of over 100% at Cr* ≈1.5.  As Cr* 

increases above Cr* ≈1.5, total effectiveness decreases.  The experimental sensible 

effectiveness values are relatively constant and have a maximum value of around 60%, 

which agrees with the numerical results.  The agreement between the experimental and 

numerical results for the latent effectiveness is not as good because the numerical data 

shows a local minimum at Cr* = 1.5, while the experimental data does not.  

Nevertheless, the differences between the experimental and numerical data for latent 

effectiveness are not large and within the bounds of the experimental uncertainty. 

The comparison in Figure 3.14 shows that the general trends in the effectiveness 

plots predicted by the numerical model are present in the experimental results, which 
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provides reasonable validation of the numerical model.  Therefore, the unique 

performance characteristics of the RAMEE at –H* conditions discussed in this section 

can confidently be used to investigate –H* conditions further. 

3.4.3 Performance at Near-Zero Cr* 

Investigations of the RAMEE performance at –H* conditions reveal some 

noteworthy characteristics at low operating Cr*.  These characteristics have the sensible 

and latent effectivenesses approaching non-zero values as Cr* decreases to zero.  Some 

of these effectiveness values are very large and often exceed 100% when the magnitude 

of -H* is high or low.  These characteristics also extend to high and low +H* conditions 

((i.e., +H*<0.7 or +H*>6)) except that either the sensible or latent effectivenesses has a 

very large negative value that often exceeds -100%.  In all of these cases, the sensible 

effectiveness divided by the latent effectiveness at near-zero operating Cr* values is 

equal to the negative value of the H* condition.  Therefore, at near-zero operating Cr*; 

εSen = εLat when H* = -1, εSen > εLat when H* < -1, and εSen < εLat when H* > -1.  Also, 

the total effectiveness decreases to zero as Cr* approaches zero.  The explanation of 

these characteristics is considered in this section. 

At near-zero Cr* values, the solution flow rate is very low.  As a result, the 

desiccant temperature and concentration (and thus humidity ratio) undergoes a large 

change as it travels through the exchangers.  For moderate +H* conditions (i.e., 

1<H*<6), the heat and moisture both transfer in the same direction which results in the 

desiccant quickly coming into equilibrium with the air stream temperature and humidity 

ratio.  Therefore, only a small amount of the transfer surface between the desiccant and 

air stream has any substantial temperature and humidity ratio difference across it, which 
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results in very little heat or moisture transfer between the air and the desiccant.  For 

-H*conditions (and some +H* conditions), the heat and moisture transfers are in the 

opposite directions and these enhance each other.   

The enhancement can be understood by considering the interactions between 

heat and moisture transfers with the desiccant.  When moisture is transferred to the air, 

the latent energy is provided by the desiccant, which lowers the desiccant temperature 

and subsequently cools the air.  When moisture is removed from the air, the latent 

energy is absorbed by the desiccant which increases the desiccant temperature and then 

warms the air.  At near-zero Cr* values, the total energy transferred is very low since the 

latent and sensible energies are transferred in the opposite direction.  This behaviour of 

non-zero latent and sensible effectivenesses at near-zero Cr* extends to high and low 

+H* conditions because the heat and moisture still transfer in the opposite directions at 

low Cr* even though the conditions of the indoor and outdoor air indicate they should 

transfer in the same direction.  Heat and moisture are able to transfer in the opposite 

direction at low and high +H* conditions when the RAMEE is operating at low Cr* 

because the temperature-humidity ratio of the desiccant (see Section 2.2.2) allows the 

temperature or humidity ratio of the desiccant to extend beyond the region of conditions 

between the indoor and outdoor air conditions.  As the +H* condition becomes less 

extreme (i.e., 1 < H* < 6), the temperature and humidity ratio of the desiccant are 

between the indoor and outdoor air conditions and this results in the heat and moisture 

transferring in the same direction. 

The operation of the LAMEEs at near-zero Cr* can be viewed as either an 

evaporative cooler or condensing heater.  One of the LAMEEs humidifies the air and the 
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latent energy used to evaporate the moisture indirectly cools the air, while the other 

LAMEE dehumidifies the air and indirectly uses the released latent energy to warm the 

air.  When the RAMEE is operating in this fashion only moisture and no energy is 

transferred between exchangers.  

The circulation of the solution (albeit at a very low rate) between the exchangers 

is also essential for the non-zero sensible and latent effectivenesses at near-zero Cr*.  

The transit of the desiccant through the exchanger is required for the temperature and 

humidity ratio differences between the desiccant and air streams to exist in the 

exchanger.  The circulation of the desiccant between the exchangers couples them 

together and keeps the desiccant temperature and humidity ratio in equilibrium with the 

indoor and outdoor air conditions.  However, if the solution stops circulating (i.e., 

Cr* = 0), the two exchangers become decoupled and the temperature and humidity ratio 

of the desiccant in each exchanger will change over time and eventually come into 

equilibrium with the condition of their respective air stream.  As this is happening, the 

heat and moisture transfer rates would decay and eventually reach zero once the 

desiccant in each exchanger reaches equilibrium with their respective air stream. 

3.4.4 Selective Heat or Moisture Transfer 

The unique performance of the RAMEE at –H* and high and low +H* 

conditions allows heat or moisture to be selectively transferred to some extent.  At these 

conditions, the difference between the indoor and outdoor temperature (high H* 

conditions) or humidity ratio (low H* conditions) is small.  The selective transfer is 

possible when the difference between the sensible and latent effectiveness values at a 

given Cr* is large.  A larger sensible effectiveness allows heat to be preferentially 
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transferred while a larger latent effectiveness preferentially transfers moisture.  These 

large differences in effectiveness values are most prevalent at high or low ±H* 

conditions (Figure 3.12A,C, & Figure 3.13) and are minimal at moderate ±H* 

conditions (Figure 3.7 & Figure 3.12B). 

The effectiveness plots for the RAMEE at high and low H* conditions are shown 

in Figure 3.15 for –H* conditions and Figure 3.16 for +H* conditions.  The plots 

demonstrate two regions of operating Cr* where the differences between the sensible 

and latent effectiveness values are greatest, which are denoted as Regions I & II in 

Figure 3.15 and Figure 3.16.  In Region I the latent effectiveness is greater than the 

sensible effectiveness and in Region II the sensible effectiveness is greater than the 

latent effectiveness.  Therefore, if it is beneficial for the building HVAC system to 

preferentially transfer moisture instead of heat, the RAMEE should be operated with a 

Cr* that resides in Region I.  Conversely, if heat transfer is preferred instead of moisture 

transfer, then the RAMEE should be operated with a Cr* in Region II.  Figure 3.15 and 

Figure 3.16 also reveal that the values of the operating Cr* for each region depend on 

H*.  The operating Cr* values in the regions are either near-zero or close to the optimal 

Cr* (Cr* = ~1-3).  For low –H* and high +H* conditions, Region I is near a Cr* of zero, 

while Region II is near the optimal Cr*.  For high –H* and low +H*, Region I is near 

the optimal Cr* and Region II is near a Cr* of zero. 
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Figure 3.15: RAMEE effectiveness as a function of Cr* at different -H* conditions.  Boxed regions 

denote greatest positive effectiveness differences between: I) latent and sensible, and II) sensible and 
latent. 
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Figure 3.16: RAMEE effectiveness as a function of Cr* at different +H* conditions.  Boxed regions 

denote greatest positive effectiveness differences between: I) latent and sensible, and II) sensible and 
latent. 

Applications for Selective Heat and Moisture Transfer 

Selectively transferring heat or moisture would provide practical benefits in 

building HVAC systems as well as in numerous industrial applications where specific 

air conditions are required.  The benefits to building ventilation can be understood by 

considering a typical HVAC system and the energy required to condition the ventilation 
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air.  Figure 3.17 shows a typical dedicated outdoor air HVAC system with a RAMEE 

and an auxiliary heating/cooling unit.  The conditions of the air streams as they travel 

through the HVAC system are indicated by numbers.  The outdoor air (state 1) is pre-

conditioned by the supply LAMEE (state 2) and then fully conditioned by the 

heating/cooling unit (state 3) after which the air is supplied to the building space.  The 

exhaust stream consists of the indoor air (state 4) that passes through the exhaust 

LAMEE (state 5) and then exhausted from the building.  The condition of the supply air 

(state 3) entering the space depends on whether the space is cooled by the air or a 

separate cooling system.  In the following discussion, the supply air is assumed to cool 

the space and therefore the desired supply air conditions are 13°C and 7 g/kg. 
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Figure 3.17: Schematic of a typical HVAC system equipped with a RAMEE. 

The amount of energy used to fully condition the air to the desired supply 

conditions is determined by the difference between the conditions of the air at the supply 

LAMEE outlet (state 2) and the desired supply air (state 3).  The RAMEE decreases the 

amount of conditioning energy required by pre-conditioning the supply air.  The 

conditioning energy is minimized when the condition of the air leaving the supply 

LAMEE is as close to the condition of the desired supply air as opposed to the condition 

of the exhaust air, which the RAMEE is interacting with.  Since the RAMEE is 

interacting with the exhaust air and not the desired supply air, at some outdoor air 

conditions the difference between the conditions of the air leaving in the supply LAMEE 
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and the desired supply air increases, which would increase the energy used to fully 

condition the air.  Therefore at some outdoor air conditions, controlling the RAMEE 

would minimize the conditioning energy.   

The ability of controlling the RAMEE to condition the air towards the desired 

supply air condition depends on the outdoor condition and how the RAMEE performs at 

that condition.  The outdoor conditions can be arranged into different zones based on 

how the RAMEE should be controlled (Figure 3.18).  The divisions between the zones 

shown here are generalizations and would be different for some HVAC applications and 

control strategies.  A more concise analysis of how an energy recovery system can be 

controlled in different outdoor conditions is presented by Rasouli (2010b).  The 

description of each zone and how the RAMEE would operate in each zone are given 

below. 
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Figure 3.18: Outdoor air conditions control zones. 

Zone 1: This zone contains outdoor air conditions that have a higher enthalpy 

than the indoor air.  The zone is subdivided into 1a (+H* conditions) and 
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1b (–H* conditions).  In Zone 1, the RAMEE would operate at its optimal 

Cr*, which allows for maximum energy transfer.  In Zone 1a, operating 

the RAMEE at optimal Cr* also selectively transfers heat or moisture 

depending on the outdoor air conditions. 

Zone 2: This zone encompasses –H* outdoor air conditions that have a lower 

enthalpy than the indoor air conditions.  Operating the RAMEE at near-

zero Cr* selectively transfers heat and moisture and allows the supply 

LAMEE to condition the air towards the desired supply air condition.  If 

the RAMEE was transferring maximum total energy, the conditions of 

the air at the supply LAMEE outlet become more different from the 

desired supply air conditions, thus requiring more energy to fully 

condition the air. 

Zone 3: The outdoor air conditions in this zone are +H* and have a temperature 

that is lower than the indoor air, but greater than the desired supply air 

(i.e., 13°C).  Normally during these conditions an economizer would be 

used which increases the ventilation rate of outdoor air allowing supply 

air with a temperature that is warmer than 13°C to cool the space.  

However, the RAMEE could operate at near-zero Cr* and utilize its 

selective heat or moisture transfer capabilities and condition the air 

towards the desired supply air condition without over conditioning it. 

Zone 4: This zone contains +H* conditions where the outdoor temperature is 

lower than 13°C and the outdoor humidity ratio is lower than the indoor 

air (i.e., 9.3 g/kg).  The RAMEE would operated at its optimal Cr* for 
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maximum total energy transfer.  In order to not over-condition the air at 

some of the warmer conditions (Zone 4b), the RAMEE could be partially 

bypassed and operated at part load or be operated by controlling Cr* and 

selectively transfer heat or moisture. 

The selective transfer of heat and moisture is required in some of the zones (1b, 

2, 3, & 4b) in order to maximize energy savings.  Examples of outdoor air conditions 

from these zones are presented to illustrate how the RAMEE could condition the air in 

these zones (Figure 3.19, Table 3.2).  In each of these cases, the RAMEE is operated at 

the Cr* that conditions the supply air as close as possible to the desired supply 

condition. 

0

5

10

15

20

10 15 20 25 30 35
Temperature (°C)

H
um

id
ity

 R
at

io
 (

g/
kg

)

3

1

2

4

Desired Supply  
Condition

Indoor 
Condition

6

5

 
Figure 3.19: Psychometric chart showing cases where selective heat and moisture transfer in the 

supply exchanger conditions the outdoor air towards the desired supply condition.  Black and grey 
dots denote supply LAMEE inlet and outlet respectively. Grey lines divide conditions into described 

zones. 
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Table 3.2: RAMEE operation for select outdoor air conditions. 

Zone T (°C) W (g/kg) Sensible Latent T (°C) W (g/kg)

1 1b 22.0 16.5 -9.0 I 2.0 -34 49 21.3 13.0

2 1b 34.0 7.3 -0.5 II 1.5 65 25 27.5 7.8

3 2 16.5 10.8 -0.5 I 0+ 50 100 20.3 9.3

4 2 26.0 2.0 -9.1 II 0+ 250 28 21.0 4.0

5 4b 10.0 7.8 0.3 I 0+ 25 -87 13.5 6.5

6 3 22.0 2.0 9.1 II 0+ -230 26 17.4 3.9

24.0 9.3Indoor

Case
Supply LAMEE 
Outlet Condition

Effectiveness (%)
H*

Outdoor Condition
Region

Cr* 
Value

 

Figure 3.19 shows some interesting features of the RAMEE performance at these 

extreme H* conditions.  Some of the cases demonstrate the RAMEE’s ability to cool the 

supply air below the indoor temperature (Cases 1, 4, & 6) or dehumidify the supply air 

below the indoor humidity ratio (Case 5).  Also, at most conditions (Cases 3, 4, 5, & 6), 

no energy is transferred between the supply and exhaust air (i.e., εTot ≈ 0) and the 

LAMEEs operate as either evaporative coolers or condensing heaters. 

These cases demonstrate the benefits of selective transfer at high and low ±H* 

conditions.  In all of the cases, with the exception of Case 3, the supply LAMEE 

conditions the air towards the desired supply condition, which decreases the amount of 

energy required to fully condition the supply air.  Case 3 is an exception in this 

discussion because the supply LAMEE does not condition the air towards the desired 

supply condition, but it does decrease the humidity ratio of the air and it would be 

beneficial if the humidity ratio is lowered to an acceptable level.  If the humidity ratio is 

decreased sufficiently, the supply air only has to be cooled (no dehumidification 

required) to fully condition it, which would significantly decrease the consumed energy.  

Cases 5 and 6 represent examples of where the selective transfer in the RAMEE can be 

used as an alternative to partially bypassing the RAMEE or using an economizer. 
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The benefits of minimizing the energy used to fully condition the supply air by 

selective heat and moisture transfer in the RAMEE are only based on a preliminary 

study.  The discussion does not consider the energy consumed controlling the solution 

flow rate for different conditions or the number of hours during a year that a location 

experiences the outdoor conditions where selective heat and moisture transfer is possible 

(which is usually very small).  A more in-depth analysis of the operation and benefits of 

the RAMEE at extreme H* conditions is beyond the scope of this study (see Rasouli 

2010 for a detailed analysis).  This discussion is intended as a general introduction to the 

benefits and potential applications for the RAMEE at these outdoor air conditions. 

3.5 Additional Factors Influencing System Performance 

The analysis in this chapter (not including the results for Prototype #4 in Section 

3.4.2, Figure 3.14) has focused on the effects of the outdoor air conditions on the system 

performance with NTU = 10, NTUm = 2.7, and constant indoor air conditions (AHRI 

summer conditions).  The effects of the exchanger size (NTU and NTUm) and the 

indoor air conditions are briefly considered here, but a detailed analysis is left for further 

investigation. 

3.5.1 NTU and NTUm 

The effects of changing NTU and NTUm independently and concurrently at 

AHRI summer air conditions are presented in Table 3.3.  The results show an increase in 

sensible effectiveness and a slight increase in latent effectiveness when NTU is 

increased and NTUm is kept constant.  When NTU is kept constant and NTUm is 

increased, the sensible effectiveness increases slightly while the latent effectiveness 

increases significantly.  When NTU and NTUm are increased concurrently, the sensible 
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and latent effectiveness both show significant increases.  The changes in effectiveness 

when NTU and NTUm are increased together from the base case are slightly greater 

than the sum of the increases that occur when NTU and NTUm are increased 

independently.  This result implies that a slight degree of synergy occurs in the RAMEE 

when NTU and NTUm are increased at the same time. 

Table 3.3: RAMEE system effectiveness at different NTU and NTUm values at AHRI summer 
conditions. 

 
Sensible Latent Total Sensible Latent Total

10.0 2.7 76.5 59.9 65.7

13.6 2.7 79.0 60.7 67.1 2.42 0.83 1.39
10.0 3.8 77.4 66.0 70.0 0.85 6.12 4.27
13.6 3.8 79.9 67.1 71.6 3.35 7.25 5.88

(%)

Difference From Base Case

(%)

System Effectiveness
NTUmNTU

 

The trends of sensible and latent effectiveness increasing with NTU and NTUm 

respectively follow the sensible analytical solutions (Incropera and DeWitt 2002) and 

latent empirical correlations (Zhang and Niu 2002) for single exchangers.  The other 

trends of sensible effectiveness increasing with NTUm and latent effectiveness 

increasing with NTU is further evidence of how the moisture transfer influences sensible 

performance and heat transfer influences latent performance.   

As a result of these findings and the literature (Incropera and DeWitt 2002, 

Zhang and Niu 2002), the RAMEE performance contour plots would change when NTU 

and NTUm are changed.  Increasing NTU would increase the values of the contour lines 

on the sensible performance plots significantly while only slightly changing the latent 

performance plots.  Increasing NTUm would significantly increase the latent 

performance contour plot line values, but only mildly increase the sensible contour plot 

values.  The magnitude of the change to the contour line values depends on the amount 
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NTU and NTUm are changed and the relative proportion of the change.  More detailed 

conclusions would require contour plots at multiple NTU and NTUm configurations to 

be created which is beyond the scope of this study.  However, the effects of NTU and 

NTUm are considered further in Chapter 4 during the development of the RAMEE 

correlations. 

3.5.2 Indoor Air Conditions 

The effects of the indoor air conditions on the system performance are 

considered by comparing the effectiveness at different indoor conditions (Table 3.4).  

The indoor conditions considered consist of the region bounded by AHRI summer and 

winter indoor conditions.  This region covers the range of indoor conditions that the 

system would normally encounter.  In order to account for the effects of heat and 

moisture transfer, the temperature and humidity ratio differences between the indoor and 

outdoor air are kept constant at 10°C and 7 g/kg for all the indoor conditions considered.  

This means that H* and ∆H are constant in all cases.  

Table 3.4: RAMEE system effectiveness at different indoor air conditions.  Outdoor air 
temperatures and humidities are 10°C and 7 g/kg higher than indoor conditions (H*=1.8). 

T W RH Sensible Latent Total
(°C) (g/kg) (%) Sensible Latent Total

24.0 9.3 50 76.2 59.9 65.8

21.0 9.3 60 76.2 60.0 65.9 0.0 0.1 0.1
24.0 7.1 39 79.0 58.6 66.1 2.9 -1.2 0.2
21.0 7.1 47 79.0 58.7 66.1 2.8 -1.3 0.2

(%)

Difference From AHRI Summer 
Indoor Conditions (%)

Indoor Air Condition System Effectiveness

 

Table 3.4 shows that the indoor air condition slightly affects the system 

performance.  Changing the indoor temperature has a minimal effect on the 

effectiveness values (≥0.1%), while changing the indoor humidity ratio has a moderate 

effect on both the sensible and latent effectiveness values (εSen = 2.9% and εLat = 1.3%).  
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However the variations in sensible and latent effectiveness offset each other and as a 

result, the total effectiveness only varies by 0.2% for the conditions considered. 

The RAMEE contour plots are based on an indoor air condition of 24°C and 

9.3 g/kg, and the above results show that the plots can be applied to other similar indoor 

air conditions as long as the humidity ratio difference between the two indoor conditions 

is less than 2 g/kg.  In order to apply the contour plots to different indoor conditions, the 

contours must be shifted by the temperature and humidity ratio differences between the 

new and original indoor air conditions that the contours are based on (i.e., 24°C and 

9.3 g/kg).  Shifting the plots allows the zero transfer contour lines to cross the new 

indoor air condition.  The shifted plots will have minimum errors (<0.2%) in the total 

effectiveness and slight to moderate (<3%%) errors in the latent and sensible energy 

effectivenesses if the new indoor condition is within 2°C and 0.2 g/kg of the original 

indoor condition of 24°C and 9.3 g/kg.  These errors increase with the difference 

between the new indoor condition and the original indoor air condition increases, 

especially as the difference in humidity ratios increase above 0.2 g/kg. 

The system performance is very sensitive to NTU and NTUm and slightly 

depends on the indoor air conditions.  The system performance contour plots only apply 

to a system with a NTU of 10 and NTUm of 2.7, but the trends would still apply to other 

values.  The indoor air conditions influence the sensible and latent performance of the 

system.  These effects offset each other and as a result the influence on total 

performance is negligible for a small range of indoor air conditions (±2°C and 

±0.2 g/kg) around 24°C and 9.3 g/kg. 
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3.6 Chapter 3 Summary 

In this chapter the relationships between the RAMEE performance and the 

outdoor air conditions were presented.  Previous investigations revealed the RAMEE 

operated differently under summer and winter standard test conditions, but the extent of 

this variation for other outdoor conditions was unknown.  Therefore additional 

conditions were simulated that represent the range of outdoor air conditions that would 

be encountered in a typical year for most climate locations.  The results showed the 

effects of the outdoor air conditions on the peak total, sensible, and latent 

effectivenesses and the operating Cr* that causes these peaks.  The underlying causes of 

the RAMEE performance at the different outdoor air conditions were also elucidated. 

The results for the peak total performance were presented as contour plots that 

showed the relationships between sensible, latent, and total performances and the 

outdoor air conditions.  These results showed that heat and moisture transfer in the 

RAMEE is governed by primary and secondary potentials.  For heat transfer, the 

primary and secondary potentials are the temperature and humidity ratio differences, 

respectively, between the outdoor and indoor air.  While for moisture transfer, the 

primary and secondary potentials are the difference between the indoor and outdoor 

humidity ratio and temperature.  The presence of secondary driving potentials for heat 

and moisture are unique to the RAMEE and result in it being able to achieve 

effectiveness values that are greater than 100% or less than 0% for some outdoor 

conditions.  The contour plot for the operating Cr* that causes the system to perform 

with the maximum total effectiveness was also shown.  Knowing this optimal Cr*, 
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allows the energy recovery in the RAMEE to be maximized at different outdoor 

conditions 

Additional contour plots were presented that show the peak sensible and latent 

performances and the Cr* values at which they occur.  These plots further described the 

relationship between the RAMEE performance and the outdoor air conditions and 

demonstrated the maximum heat and moisture transfer rates in the RAMEE. 

The unique performance of the RAMEE at –H* conditions was also investigated.  

These conditions were shown to cause very interesting results with sensible and latent 

effectivenesses greater than 100% or less than 0% for some conditions.  The results 

showed that at some Cr* values, the difference between the sensible and latent 

effectiveness values are considerable which allows heat or moisture to be selectively 

transferred over each other.  The investigation also showed that at low operating Cr* 

values, the individual LAMEEs function as either a evaporative cooler or a condensing 

heater and the RAMEE would transfer very little total energy between the air streams.  

The potential applications of the RAMEE at these conditions were proposed and the 

numerical model was validated at these conditions with experimental findings.  

Lastly, the effects of the exchanger size (NTU/NTUm) and the indoor conditions 

on the system performances and how they would modify the presented contour plots 

were considered. 
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Chapter 4  

RAMEE EFFECTIVENESS CORRELATIONS 

4.1 Introduction 

Chapter 3 showed that the effectiveness of the RAMEE is extremely variable and 

a function of design (i.e., NTU) and operating condition (i.e., Cr* and outdoor air 

conditions) parameters.  In this thesis, the RAMEE performance is determined through 

numerical simulations which use the design and operating condition parameters as 

inputs.  However, these simulations are computational intensive due to their iterative 

nature and are cumbersome to use, which makes them impractical for designing and 

operating HVAC systems that use a RAMEE for energy recovery. 

In practice, correlations are used to describe the performance of air-to-air energy 

recovery systems.  Numerous correlations exist in the literature that are used to describe 

heat exchangers (Incropera and DeWitt 2002), flat plate energy exchangers (Zhang and 

Niu 2002), heat wheels (Shah 1981) and energy wheels (Simonson and Besant 1999a).  

The correlations are simple explicit equations that determine the exchanger performance 

(often in terms of effectiveness) based on several input parameters.  This chapter 

develops a set of correlations to describe the RAMEE effectiveness for different design 

and operating condition parameters. 
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4.2 RAMEE Dependency on Design and Operating Condition Parameters 

In order to develop correlations for the RAMEE sensible and latent 

effectiveness, the individual relationship between effectiveness and design and each 

operating condition parameters must be determined.  Some of these relationships (i.e., 

outdoor air conditions) were briefly shown in Chapter 3, but are considered here in more 

detail.  The parameters considered in this study are NTU (design parameter), Cr* 

(operating condition parameter), and H* and ∆H (operating condition parameter / 

outdoor air condition).  The relationship between each parameter and the RAMEE 

effectiveness is demonstrated by varying one parameter while maintaining the remaining 

parameters constant.  The design parameter of NTUm is indirectly considered in the 

analysis because it is related to NTU by the properties of the LAMEE (see eqs. (2.17) & 

(2.18)).  Because of this coupling, NTU and NTUm are not considered independently 

and NTU/NTUm is constant at 3.6 for all the operating conditions considered. 
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4.2.1 Effects of NTU on Effectiveness 

The relationship between NTU (design parameter) and RAMEE effectivenesses 

is shown in Figure 4.1.  The figure shows the sensible and latent effectivenesses 

increasing as NTU increases with the greatest rate of change occurring at low NTU 

values and the effectiveness values leveling off at higher NTU values. 
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Figure 4.1: RAMEE effectiveness as a function of NTU (Cr* = 3, H* = 3, and ∆H = -43 kJ/kg). 
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4.2.2 Effects of Cr* on Effectiveness 

The relationship between Cr* and RAMEE effectiveness has been shown 

previously, but is reintroduced in Figure 4.2.  The figure shows the sensible and latent 

effectivenesses rapidly increasing from zero to maximum values and then slowly 

decreasing to plateaus as Cr* increases from zero to higher values.  This relationship is 

similar to a run-around heat (sensible) exchanger except that the peak effectivenesses 

occurs when Cr* is equal to 1 for a run-around heat exchanger (London and Kays 1951). 
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Figure 4.2: RAMEE effectiveness as a function of Cr* (NTU = 10, H* = 3, and ∆H = -43 kJ/kg). 

 

4.2.3 Effects of H* on Effectiveness 

In Chapter 3, the RAMEE effectiveness contour plots (Figure 3.3A - Figure 

3.5A) show that the contours resemble lines of constant H* (Figure 2.4).  Figure 4.3 

shows the relationship between the RAMEE effectiveness and H*.  In general, the 

sensible effectiveness is linearly related to H* and increases as H* increases, while the 

latent effectiveness is inversely related to H*.  However near H* = -1, the actual 
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relationship between effectiveness and performance (diamonds/circles in Figure 4.3) 

slightly deviates from the general relationship as shown by the lines in Figure 4.3. 
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Figure 4.3: RAMEE effectiveness as a function of H* (NTU = 10, Cr* = 3, and ∆H = -5 kJ/kg). 
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4.2.4 Effects of ∆H on Effectiveness 

The contours from the effectiveness contour plots (Figure 3.3A - Figure 3.5A) 

are slightly curved, which indicates that H* does not adequately describe the effects of 

the outdoor air conditions of the RAMEE performance.  Therefore, ∆H is used as 

another parameter to further describe the relationship between the outdoor air conditions 

and the RAMEE performance.  Figure 4.4 shows that effectivenesses are linearly related 

to ∆H with minor deviations (indicated by scatter of diamonds/squares around a linear 

trend line).  As ∆H increases (i.e., outdoor air enthalpy decreases, see eq.. (2.22)), the 

sensible effectiveness increases while the latent effectiveness decreases.  Over the range 

considered (-60 kJ/kg to +30 kJ/kg), the change of the effectivenesses is small (+5% for 

sensible and -5% for latent).  This shows that ∆H has a minor effect on effectiveness 

compared to NTU, Cr*, and H*. 
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Figure 4.4: RAMEE effectiveness as a function of ∆H  (NTU = 10, Cr* = 3, and H = -3). 
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4.3 Peak Total Performance 

Figure 4.1 - Figure 4.4 show the relationships between RAMEE effectiveness 

and the design and operating condition parameters.  Developing effectiveness 

correlations that consider all the parameters would be extremely difficult and produce 

very complex results.  However, correlations that describe the RAMEE when it is 

operating at peak total effectiveness only require the NTU, H*, and ∆H parameters.  

Therefore the peak total effectiveness correlations would be easier to develop because 

they do not depend on Cr*, which is the parameter with the most complex relationship 

with effectiveness. 

Developing correlations describing the peak total effectiveness of the RAMEE is 

desirable because of the controlled strategy introduced in Section 3.4.4 (and thoroughly 

discussed by Rasouli (2010b)) has the RAMEE operating at its peak total effectiveness 

for the given conditions.  These strategies call for the RAMEE to be operated at peak 

total effectiveness for most outdoor air conditions (predominantly +H*) in order to 

maximize energy recovery which in return minimizes the energy required by auxiliary 

equipment to fully condition the air in the building.  The control strategies for –H* 

conditions are more complex and sometimes require that Cr* be controlled to give an 

effectiveness that is different from the maximum total effectiveness.  These –H* 

conditions are left for future work.  Therefore, the correlations developed in this thesis 

are for only +H* conditions. 

In order to operate the RAMEE (i.e., control Cr*) at its peak effectiveness for a 

given condition, the optimal Cr* for that given condition must be known.  Therefore, a 

correlation to describe the optimal Cr* is required and should accompany the 
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effectiveness correlations.  This correlation is developed for the same range of 

conditions as the effectiveness correlations and therefore is only valid for +H* 

conditions.  

The development of correlations for the peak total effectiveness will allow the 

energy saving potential of the RAMEE to be easily determined for a range of conditions 

(i.e., NTU, +H*, and ∆H) without the need of the computational intensive numerical 

model.  Additionally, the optimal Cr* correlation would facilitate operating the RAMEE 

at its peak total performance under various conditions. 

4.3.1 Data Range and Correlation Development 

This section details the range of the input parameters and the methodology that 

are used to develop the correlations.  The outdoor air conditions are shown in Figure 4.5 

and consist of 51 +H* conditions with respect to standard indoor air conditions (24°C, 

9.3 g/kg, 50% RH).  The outdoor temperatures range between -6°C to 38°C while the 

humidity ratio ranges between 2 g/kg to 24 g/kg.  The NTU values range between 1 and 

14 at increments of 1 and are manipulated by changing the air mass flow rate.  NTUm is 

not considered directly but has the same proportionality to NTU for all conditions (i.e., 

NTU/NTUm = 3.6).  The relationship between NTU and NTUm is based on the 

LAMEE properties of Prototype #3 (Mahmud et al. 2010).  The simulated Cr* values 

range between 1 and 5 at 0.05 increments.  The range of Cr* is adequately sized to 

ensure that the optimal Cr* values for all the conditions considered falls within the 

range. 
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Figure 4.5: Simulated outdoor air conditions used to develop the effectiveness correlations. 

The correlations are developed from the simulated data set consisting of results 

from the various input parameters.  The data set has 714 points from the 51 outdoor air 

conditions and 14 NTU values considered.  The peak total effectiveness is taken as the 

maximum total effectiveness that occurs between the simulated range Cr* of 1 to 5.  The 

Cr* that causes the peak total effectiveness is taken as the optimal Cr* and the sensible 

and latent effectivenesses at the optimal Cr* are used in the data set.  Using Cr* 

increments of 0.05 ensure that the peak total effectiveness is very close to the actual 

peak value.   

The general forms of the correlations are based on the trends observed in Figure 

4.1, Figure 4.3, and Figure 4.4.  Linear relationships are used to relate H* and ∆H (H* 

∆H1) to sensible (latent) effectiveness.  Power and logarithmic relationships are used to 

describe the relationship between NTU and effectiveness and were selected by trial and 
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error since they provide a better fit than other basic functions (e.g., high order 

polynomial, exponential and power relationships).  The relationships for the individual 

parameters are incrementally combined (H*, ∆H, and then NTU) to form the 

correlations.  The coefficients for each correlation are determined by minimizing the 

root mean square difference between the simulated and correlated results for each data 

point, which is achieved by the solver function in Microsoft Excel®.  The coefficients 

are rounded to simplify the correlations. For the sensible effectiveness correlation, the 

temperature change in the supply LAMEE is used for the root mean square difference, 

while the humidity ratio change is used for the latent effectiveness correlation.  The 

temperature and humidity ratio changes are used as the results instead of the sensible 

and latent effectivenesses because the temperature and humidity ratio changes describe 

the actual energy recovery of the RAMEE and the subsequent energy savings.  This 

method results in some of the correlated effectivenesses having large errors compared to 

the simulated values, but the errors in the temperature/humidity ratio changes are small. 

4.3.2 Correlations 

 

Sensible Effectiveness 

The correlation for the sensible effectiveness when the RAMEE is operating at 

peak total effectiveness is given in equation (4.1).  The correlation shows that the 

sensible effectiveness increases linearly with H* and ∆H.  As NTU increases, the 

sensible effectiveness also increases but at a decaying rate of change.   

 

( ) ( ) 678.0HNTU4.0*H10x84NTU45*HNTU0093.0 53
Sen +∆⋅⋅+⋅++⋅−⋅⋅=ε −−

 (4.1) 
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The accuracy of the correlation is shown in Figure 4.1 which compares the 

correlated and simulated change in the supply air temperature (∆T).  The differences 

between the simulated and correlated temperature changes (δ∆T) has 95% of the 

considered points with δ∆T < 0.2°C, 75% of the points with δ∆T < 0.1°C, and a 

maximum difference of 0.31°C.  Based on the comparison and the small differences 

between the simulated and correlated supply air temperature changes, the sensible 

effectiveness correlation is able to successfully determine the sensible energy transfer in 

the RAMEE when it is operating at peak total effectiveness within the range of 

conditions considered. 
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Figure 4.6: Comparison between correlated and simulated supply air temperature change. 

 

Latent Effectiveness 

The correlation for latent effectiveness is shown in equation (4.2). The latent 

effectiveness decreases linearly as ∆H increases and decreases linearly as the inverse of 
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H* increases.  The latent effectiveness also increases with NTU, but at a decaying rate 

of change. 

 

( ) ( ) 671.0HNTU2*H10x310NTU67*HNTU01.0 1521
Lat +∆⋅⋅+⋅−+⋅−⋅⋅=ε −−−−

(4.2) 

 

The accuracy of the latent effectiveness correlation is shown in Figure 4.7, which 

displays the comparison between the correlated and simulated change in supply air 

humidity ratio.  The difference between the correlated and simulated supply air humidity 

ratio changes (δ∆W) has a maximum value of 0.12 g/kg with 91% of the points having 

δ∆W < 0.05 g/kg and 64% of the points having δ∆W < 0.025 g/kg.  These low 

differences between the correlated and simulated humidity ratios show the latent 

effectiveness correlation is able to accurately describe the latent performance of the 

RAMEE. 
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Figure 4.7: Comparison between correlated and simulated supply air humidity ratio change. 

 

Total Performance 

The total effectiveness of the RAMEE is determined from the sensible and latent 

effectiveness and H* according to equation (4.3) (Simonson, Besant 1999b). 

 

 
*H1

*H LatSen
Tot +

ε+ε
=ε  (4.3) 

 

The accuracy of the total effectiveness correlation is shown in Figure 4.8, which 

compares the change in the supply air enthalpy between the simulation and correlation.  

The differences between the correlated and simulated supply air enthalpy change (δ∆H) 

has a maximum value of 0.47 kJ/kg and 96% of the points have δ∆H < 0.25 kJ/kg and 

65% of δ∆H < 0.1 kJ/kg. 
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Figure 4.8: Comparison between correlated and simulated supply air enthalpy change. 

 

Optimal Cr* 

The correlation for optimal Cr* provides the Cr* value that has the RAMEE 

operating at its maximum total effectiveness for a given outdoor air condition and NTU, 

which is shown in equation (4.4). 

 

( )[ ] ( )[ ] 177.0023.05**10* 4.21.0 +∆⋅−++⋅+= − HHHNTULnCr Optimal  (4.4) 

 

The optimal Cr* as a function of the outdoor air conditions (H* and ∆H) and 

NTU is extremely complex, but the developed correlation is able to achieve a moderate 

degree of accuracy as can be seen in Figure 4.9.  The comparison between the simulated 

and correlated optimal Cr* has a maximum error (δCr*Optimal) of 0.30 and 85% of the 

points have δCr*Optimal < 0.1 and 59% of the points have δCr*Optimal < 0.05.  Using a Cr* 
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that is 0.3 off the optimal Cr* can results in the total effectiveness being off by 2%, 

which equates to temperature and humidity ratio change errors of 0.8°C and 0.03 g/kg. 
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Figure 4.9: Comparison between correlated and simulated optimal Cr*. 

4.4 Chapter 4 Summary 

In this chapter the effects of the system (i.e., NTU) and operating (i.e., Cr*, H*, 

∆H) parameters on the RAMEE performance were shown.  These relationships were 

quantitatively described and used to create a set of correlations that describe the 

RAMEE effectivenesses and optimal Cr*.  The developed correlations use NTU, H*, 

and ∆H as input parameters to determine the optimal Cr* and the sensible and latent 

effectivenesses of the RAMEE when it is operating at maximum total effectiveness.  

The correlations are able to determine the changes in the supply air temperature, 

humidity ratio, and enthalpy and the optimal Cr* with minimal error (0.31°C, 0.12 g/kg, 

and 0.47 kJ/kg, 0.30) and are valid for all +H* conditions between -6°C to 38°C and 0 to 

24 g/kg and NTU values from 1 to 14 with NTU/NTUm = 3.6. 
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Chapter 5  

EFFECTS OF NON-UNIFORM EXCHANGER CHANNELS 

5.1 Introduction 

Non-uniform exchanger channels in the LAMEE are an inherent design and 

construction challenge.  Since the membrane that separates the air and salt solution is 

very flexible, it readily deforms due to the pressure difference across each membrane 

between the two fluids.  Deformations in the membrane mean the flow channel 

thickness varies throughout each LAMEE, which causes non-uniform air and solution 

velocities in each LAMEE.  Varying channel thicknesses also cause a spatial variation in 

the heat and moisture transfer coefficients for each fluid.  The effects of the fluid flow 

maldistribution and variable heat and moisture transfer coefficients on the RAMEE 

performance (effectiveness) are investigated in this chapter.  The investigation presents 

two somewhat independent methods of estimating the change in effectiveness when 

simple geometric deflections are imposed in the flow channel, i.e., algebraic and 

numerical simulation methods.  As well, these numerical predictions are compared to 

some experimental results. 

5.2 Geometry of Deformed Channel 

The deformed air and solution channels used in this chapter are significantly 

different than the undeformed channels used to develop the model presented in previous 

chapters.  Figure 5.1 shows the expected geometric differences between the uniform and 
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non-uniform channels in each LAMEE.  Uniform flow channels were used in the 

numerical analysis in Chapters 3 and 4 where the membrane panels are parallel to each 

other.  The non-uniform flow channels, considered in this Chapter, have the membrane 

bulging into the air channel, which form a sinusoidal pattern as shown in Figure 5.1B.  

This sinusoidal pattern is used to approximate the dominant membrane deformation 

shape in each exchanger which is caused by the solution channel bulging into the air 

channel because of the pressure differential between the channels.  The membrane forms 

a sinusoidal shape because the membrane bulges between evenly spaced air channel 

support structures, which are used to prevent the air channel from collapsing on itself.  

This sinusoidal membrane shape is repeated over the height of the channel in the z 

direction with the number of cycles depending on the number of support structures and 

the sinusoidal shape runs the length of the channel in the x direction. 
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Figure 5.1: Schematics of uniform and non-uniform channels with z scale ≠ to y scale.  Fluid flows 

are into and out of page in the x direction. 

The magnitude of the membrane deflection is characterized by the size of the 

peak membrane deflection divided by the undeflected (nominal) air channel thickness.  

Therefore, a deflection of 50% would imply that the membranes would be in contact 

with each other at the center of the air channel.  Figure 5.2 shows the shape (over one 

cycle) of the membrane for deflections of 10% and 20% of the nominal air channel 

thickness in a LAMEE.  This figure represents the deflection position with a relative 

scale that has the peak membrane deflections occurring at relative positions of 0 and 1 

and the minimum deflection occurring at 0.5.  In this section and subsequent sections 

(i.e., 5.2 to 5.4), the LAMEE is modeled with nominal air and solution channel of 4 mm 

and 2 mm respectively.  Also, the effects of the support structure inside the air channel 

are not considered in this analysis and are left for future investigations. 
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Figure 5.2: Shape of one membrane deflection cycle. 

5.3 Effects of Non-Uniform Channels on RAMEE Parameters 

This section describes how the non-uniform channels affect key parameters that 

govern the RAMEE operations.  The parameters that are considered here are the local 

fluid flow rates in the channel (Cr*), the overall heat and moisture transfer coefficients 

(U and Um), and the NTU and NTUm values.  These parameters are normalized relative 

to these values in a RAMEE with uniform channels in each LAMEE.  Therefore, a 

parameter with a relative value of 1 is equal to the parameter for a RAMEE with 

uniform channels. 

5.3.1 Local Fluid Flow Rates 

The non-uniform channels create flow maldistributions in the air and solution 

channels, with variable local mass flow rates.  The local fluid mass flow rate is the flow 

through a channel section of variable thickness (δSol,Var, δAir,Var) and equal width (∆z).  

The resulting maldistributed mass flow rate is determined by eq. (2.11) which 

determines the mass flow distribution based on fully developed Poiseuille flow and that 
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the pressure drop along the length of the channel is the same across the face of the 

channel (i.e., independent of z).   

The normalized mass flow rates of the air and solution shown in Figure 5.3 and 

Figure 5.4 are normalized with respect to the flow in channels with uniform thicknesses.  

These figures show each fluid will have a higher mass flow rate in the wider sections of 

their channels (i.e., relative positions 0 and 1 for the air flow) and a lower flow rate in 

the narrower section of their channels (i.e., relative position 0.5 for the air) compared to 

the flow rate in a uniform channel.  The variations in mass flow rate increases as the 

magnitude of the peak membrane deflection increases.  The arrangement of the 

membrane bulges in the channels result in regions with high solution mass flow rates 

being adjacent to regions with low air mass flow rates and vice versa.  
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Figure 5.3: Normalized air mass flow rate distribution for one cycle of membrane deflection in the 

channel. 
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Figure 5.4: Normalized solution mass flow rate distribution for one cycle of membrane deflection in 

the channel. 

The local Cr* values combines the distribution of the local air and solution flow 

rates.  Figure 5.5 shows this Cr* distribution which has low values in the wide air 

channel sections (relative position 0.5) and large values in the narrow sections (relative 
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positions 0 and 1).  The local Cr* in a LAMEE with non-uniform channels is therefore 

very different from a uniform channel system. 
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Figure 5.5: Normalized local Cr* distribution for one cycle of membrane deflection in the channel. 

5.3.2 Overall Heat and Moisture Transfer Coefficients 

The channel thickness variations also influence the overall heat and moisture 

transfer coefficients between the bulk air and solution flows.  The overall heat and 

moisture transfer coefficients are determined from eq.. (2.3) and eq.. (2.9) and 

incorporate the heat and mass transfer coefficients imposed by the membrane and the air 

and solution boundary layers.  The coefficients are listed in Table 5.1 and are based on 

air and solution channels of 4 mm and 2 mm respectively and fluid conditions 

encountered during standard summer test condition.  The solution mass transfer 

coefficient is not incorporated in the overall coefficient but is accounted for in the 

governing equations (see Section 2.2.3).  The flows are assumed to be laminar and fully 

developed, which results in the air and solution convective transfer coefficients only 

being affected by the channel thicknesses in the non-uniform channel according to eq.. 
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(2.13) and independent of the fluid flow rates.  Therefore the convective coefficients 

increase as the channel thickness decreases and vice versa.   

Table 5.1: Heat and mass transfer coefficients for laminar and fully developed flow in a 4 mm air 
channel and 2 mm solution channel. 

hAir 27.1

k/δMem 1670

hSol 998

hm,Air 0.0335

km/δMem 0.0083
kg/(m2·s)

Heat Transfer Coefficients

Mass Transfer Coefficients

W/(m2·s)

 

Figure 5.6 and Figure 5.7 show the distributions of the normalized overall heat 

transfer (U) and the overall mass transfer (Um) coefficients in the non-uniform channels, 

respectively.  The variable overall coefficients are normalized to the coefficients for 

uniform channels. Both these overall coefficients are highest when the air channel is 

narrowest (relative positions 0 and 1), which is because the air convective coefficients 

are higher in the narrow section than the wide sections and the air convective 

coefficients make the greatest contributions to the overall coefficients.  The variation in 

the overall coefficients increases as the size of the peak deflection increases.  The 

change in the overall mass transfer coefficient is significantly smaller than the overall 

heat transfer coefficient (~20%), which is due to the membrane’s transfer coefficient to 

mass transfer having the greatest contribution to the overall mass transfer coefficient, 

which is independent of membrane deflection. 
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Figure 5.6: Normalized overall heat transfer coefficient (U) distribution for one cycle of membrane 

deflection in the channel. 
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Figure 5.7: Normalized overall mass transfer coefficient (Um) distribution for one cycle of 

membrane deflection in the channel. 

 

5.3.3 NTU and NTUm 

The effects of the flow maldistribution and variable overall heat and mass 

transfer coefficients are summarized by the local NTU and NTUm values as defined by 
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eqs. (2.17) and (2.18).  Figure 5.8 and Figure 5.9 show the normalized local NTU and 

NTUm distributions in the non-uniform channel.  Compared to the uniform channel, the 

local NTU values are depressed in the wide sections of the air channel (between relative 

positions 0.3 to 0.7) and enhanced in the narrow sections of the air channel.  For the 

peak membrane deflection of 20%, the relative NTU decreases by half in the widest part 

of the channel and increases 4 times in the narrowest part compared to a uniform 

channel.  The average NTU/NTUm values are greater than 1 and increases as the 

deflection size increases.  The relative NTUm has a similar distribution as NTU except 

that the magnitude of the variation is not as large. 
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Figure 5.8: Normalized local NTU distribution for one cycle of membrane deflection in the channel. 
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Figure 5.9: Normalized local NTUm distribution for one cycle of membrane deflection in the 

channel. 

The relative NTU and NTUm distributions are out of phase with the relative air 

mass flow rate distributions, which is shown by comparing Figure 5.8 and Figure 5.9 

with Figure 5.3.  This arrangement results in the bulk of the air flowing through the 

channel sections with the lower local NTU and NTUm values. 

5.4 Effects of Non-Uniform Channels on RAMEE Effectiveness 

Chapter 4 showed that NTU and Cr* significantly influence a RAMEE’s 

effectiveness, while Section 5.3 showed that the non-uniform channels create 

distributions in the local Cr* and NTU.  Therefore, a distribution in the local NTU and 

Cr* caused by non-uniform channels will change the RAMEE effectiveness.  This 

change is investigated in this section. 

5.4.1 Algebraic Analysis 

This section introduces a simple algebraic analysis to highlight the mechanisms 

that allow the variable Cr* and NTU values to influence the effectiveness.  This analysis 

considers an exchanger with nominal air and solution channels of 4 mm and 2 mm 
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respectively that have a peak membrane deflection of 20%.  Figure 5.10 shows one 

cycle of the membrane deflection in the air channel which is divided into 10 segments of 

equal widths.  
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Figure 5.10: Air channel with 20% peak membrane deflection showing one deflection cycle  

discretized into 10 segments. 

Table 5.2 contains the local values for the air mass flow rate, Cr*, NTU, and 

total effectiveness for each of the segments shown in Figure 5.10.  The local air mass 

flow rate (in each segment), Cr*, and NTU are determined from the methods described 

in Section 5.3, while the total effectiveness is determined from the method that is 

discussed below.  The air and solution flow rates are based on the fluid mass flow rates 

of a uniform channel RAMEE operating with a NTU of 6 and a Cr* of 2.6 (optimal Cr*) 

for the simulated AHRI summer condition.  The local values for the RAMEE with 

uniform channels, which are constant for each segment, are also contained in Table 5.2. 
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Table 5.2: Local parameters and total effectiveness in discretized segments for the RAMEE 
operating at a NTU 6 for RAMEE channels with or without a 20% deflection. 

Air Mass 
Flow Rate

NTU Cr* εεεεTot

(g/s)

1-6 0.344 6.0 2.6 53.2

6 0.133 24.4 12.6 56.9
5 0.160 19.2 9.2 59.2
4 0.247 11.0 4.1 63.1
3 0.393 6.0 1.5 47.8
2 0.547 3.9 0.7 23.2
1 0.614 3.4 0.5 16.4
2 0.547 3.9 0.7 23.2
3 0.393 6.0 1.5 47.8
4 0.247 11.0 4.1 63.1
5 0.160 19.2 9.2 59.2
6 0.133 24.4 12.6 56.9

37.9

Segment
Local Value

Flow Rate Weighted Average

Non-Uniform Channels With 20% Deflection

Uniform Channels

 

The results in Table 5.2 show the local air mass flow rates are higher in the wider 

segments (i.e., 1-3) and lower in the narrower segments compared to the local mass flow 

rates in the RAMEE with uniform channels.  The local NTU and Cr* values have an 

opposite trend and their values increase (compared to the uniform channel local values) 

when the local air mass flow rate decreases and decrease when the flow rate increases.  

These patterns result in the segments of the air channel with the higher mass flows rates 

having lower NTU and Cr* values than the segments with the lower mass flow rates. 

The local total effectiveness in each segment is determined from the local NTU 

and Cr* that are determined algebraically.  Figure 5.11 shows the contour plot of total 

effectiveness as a function of NTU and Cr*.  This contour plot is based on the steady 

state numerical simulations for a RAMEE with uniform air and solution channels of 

4 mm and 2 mm respectively operating at AHRI summer conditions.  The local total 

effectiveness values are determined by plotting the local NTU and Cr* values on the 
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contour plot (as indicated by the numbered circles on Figure 5.11) and interpolating the 

resulting effectivenesses.  These local total effectiveness values are displayed in Table 

5.2 and show that the segments with the higher air mass flow rates also have 

effectivenesses that are lower than the effectivenesses for a uniform channel exchanger.  

The consequence of this is that the average effectiveness of the channel, based on an air 

mass flow rate weighted average (to account for the maldistributed flow), is lower than 

the effectiveness for a RAMEE with uniform channels.  For the case considered here, 

the average total effectiveness for the RAMEE with non-uniform channels is 37.9%, 

which is significantly lower than the value of 53.2% for the uniform channel RAMEE 

operating at the same conditions. 
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Figure 5.11: Contour plot of total effectiveness as a function of NTU and Cr* for a RAMEE with air 

and solution channels of 4 mm and 2 mm with NTU/NTUm = 3.8 operating at AHRI summer 
conditions.  Dotted line indicates the maximum effectiveness for a given NTU and the corresponding 
optimal Cr*.  Circles and square correspond to the local NTU and Cr* for discretized segments of 

channels with or without 20% deflections respectively. 

The above analysis shows that the variable local NTU and Cr* values, that are 

caused by non-uniform channels, significantly decrease the total effectiveness of the 

RAMEE compared to a system with uniform channels.  The effectiveness decreases 

because a higher proportion of the air flows through the wider segments of the channel 

that have decreased local total effectivenesses caused by the decreased local NTU and 

Cr* values.   
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Unfortunately, an invalid assumption is made in the algebraic analysis of the 

effects of the non-uniform channel.  In the RAMEE, the solution at the exchanger outlet 

has temperature and concentration profiles that are related to the local effectiveness 

profile.  The solution is then mixed before it enters the other exchanger and as a result 

has a constant temperature and concentration at the exchanger inlet.  The algebraic 

analysis used up to this point in the chapter does not account for this mixing of the 

solution and assumes the solution temperature and concentration profiles at the 

exchanger outlet are the same at the inlet.  As a result, the local effectiveness values 

obtained from Figure 5.11 and the determined average effectiveness would be slightly 

different since mixing occurs.  Nevertheless, this analysis demonstrated the processes by 

which the non-uniform channels influence the RAMEE effectiveness.  The next section 

uses numerical simulations, which account for the mixing of the solution, to more 

accurately determine the effects of non-uniform channels on the RAMEE effectiveness. 

5.4.2 Numerical Analysis 

Section 5.4.1 used a simplified algebraic approach to demonstrate the 

mechanisms by which the non-uniform channels influence the RAMEE effectiveness.  

Numerical simulations of the RAMEE are now used to describe the effects of non-

uniform channels on the RAMEE effectiveness. 

A counter-flow LAMEE with air and solution channel thicknesses of 4 mm and 

2 mm, respectively, operating at AHRI summer conditions is simulated.  Peak 

membrane deflections ranging between 0% and 30% are considered in order to 

adequately describe the effects.  The total air mass flow rates are constant for all the 

deflections and correspond to the mass flow rates for a RAMEE with uniform channels 
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operating with NTU values of 6 and 12.  The ratio between NTU and NTUm (i.e., 

NTU/NTUm) is 3.8 for the simulations. 

Figure 5.12 and Figure 5.13 show the sensible, latent, and total effectivenesses 

that occur when the RAMEE is operating at its peak total effectiveness as a function of 

the peak membrane deflection for both NTU values.  The figures show the total 

effectiveness gradually decreasing in value as the deflection size increases to 5% and 

then beyond 5%, the effectiveness decreases rapidly as the deflection size increases to 

15%.  At deflections greater than 15%, the total effectiveness decreases with deflection 

size in a nearly linear manner, but not as rapidly as it did between deflections of 5% to 

15%.  The sensible and latent effectivenesses exhibit the same trend as the total 

effectiveness.  The decrease effectiveness for the two NTU cases is slightly higher when 

NTU equals 12 (based on percent change) and thus shows that the impact of non-

uniform channels increase slightly with NTU.   
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Figure 5.12: Effectiveness as a function of peak membrane deflection at NTU = 6. 
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Figure 5.13: Effectiveness as a function of peak membrane deflection at NTU = 12. 

Therefore, Figure 5.13 (i.e., a RAMEE operating at a NTU of 12) shows that if a 

counter-flow RAMEE with 4 mm and 2 mm air and solution channels operating with a 

NTU of 12 has a peak membrane deflection of 10% (which would have a maximum 

deflection of 0.4 mm), the sensible, latent, and total effectivenesses are reduced by 
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15.6%, 10.7%, and 12.5%, respectively, compared to the same system with no 

deflections. 

The effects of the non-uniform channels on the RAMEE performance is further 

demonstrated by plotting the total effectiveness as a function of Cr* for different values 

of peak membrane deflections, which is shown in Figure 5.14 and Figure 5.15.  The 

results reveal how the effectiveness decreases as the deflection size increases, which has 

the effectiveness decreasing at all Cr* values, but more significantly at lower Cr* 

values.  As a result, the characteristic effectiveness peak becomes less distinct and 

becomes absent at deflections greater than 10%.  Also, the operating Cr* that produces 

the maximum total effectiveness increases from the optimal Cr* to higher Cr* values as 

the deflection size increases.  These trends are observed for both NTU values (i.e., 6 and 

12) but they are more prominent at the higher NTU value. 
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Figure 5.14: Total effectiveness as a function of Cr* at different values of peak membrane 

deflections at NTU = 6. 
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Figure 5.15: Total effectiveness as a function of Cr* at different values of peak membrane 

deflections at NTU = 12. 

 

5.4.3 Comparison Between Algebraic and Numerical Methods 

Two methods are used to describe the effects of the non-uniform channels on the 

RAMEE effectiveness.  The algebraic method is simpler and determines the 

effectiveness without directly simulating a RAMEE with non-uniform channels, but it 

assumes the solution is not mixed when it travels between LAMEEs.  The numerical 

method is more complex and directly simulates the non-uniform channel.  Table 5.3 

compares the results from the two methods and shows that both predict that the peak 

total effectiveness decreases as the deflection size increases.  The results show that the 

simpler algebraic method is unable to exactly reproduce the results obtained by directly 

simulating the non-uniform channels.  The results also show that the mixing of the 

solution between LAMEEs has a significant effect on the RAMEE performance.  

Therefore, the effects of the non-uniform channels on the RAMEE effectiveness have to 
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be determined by directly simulating the non-uniform channels.  Nonetheless, using the 

algebraic method is reasonably accurate up to a peak deflection of 20%. 

Table 5.3: Comparison peak total effectiveness for different deflections determined by algebraic and 
numerical methods when NTU = 6. 

Deflection Difference

(%) Algebraic Numerical (%)

5 52.8 51.0 1.8

10 49.4 46.3 3.1

20 37.9 40.4 -2.4

30 26.7 37.0 -10.3

Peak Total 
Effectiveness  (%)

 

 

5.5 Effects of Non-Uniform Channels on Experimental Prototypes 

Comparisons between numerical and experimental results have demonstrated 

several discrepancies (Erb et. al 2010, Mahmud et. al 2010).  The numerical results often 

have higher effectiveness values than higher than the experimental results and the 

experimental results do not demonstrate a peak in effectiveness that is present in the 

numerical results.  Both of these discrepancies are present in the numerical and 

experimental results for Prototype #3 operating at a NTU of 12 as shown in Figure 5.16.  

This section numerically investigates if these discrepancies are due to the effects of non-

uniform channels.  The following analysis compares the experimental results of 

Prototype #3 (Mahmud et. al 2010) to numerical results with non-uniform channels with 

different peak membrane deflections. 
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Figure 5.16: Experimental and numerical results of Prototype #3 (Mahmud et. al. 2010) operating at 

NTU = 12 and AHRI summer conditions. 

Prototype #3 was built and tested by Mahmud et al. (2010) and utilizes a 

combination cross-counter flow configuration.  The key dimensions and properties of 

Prototype #3 are shown in Table 5.4.  Testing was conducted near AHRI summer 

conditions at NTU values of 4, 7, 8.5, and 12, with each NTU value tested at 4 Cr* 

values ranging between 1 and 5 for a total of 16 experimental data points.  The ratio 

between NTU and NTUm for Prototype #3 is ~3.6 for all the data points.   

Table 5.4: RAMEE Prototype #3 specifications. 
Property Value

Length 1 800 mm

Width 200 mm

Entrance Length 76 mm

Air 4.2 mm

Solution 2.7 mm

Thickness 0.2 mm

Thermal Conductivity 0.334 W/(m·K)

Water Vapour Permeability 1.66 x 10-6 kg/(m·s)

Panel Dimensions

Channel Thicknesses

Membrane Properties
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Numerical results for non-uniform channels with peak membrane deflections 

from 0% to 20% are simulated and are based on the specification of Prototype #3.  

These numerical results utilize a counter flow configuration while Prototype #3 uses a 

cross-counter flow configuration.  However, Figure 5.17 shows that the numerical 

results for a counter flow and cross-counter flow configured RAMEE based on the 

specification for Prototype #3 are very similar.  The differences between the two flow 

configurations are minimal and less than the differences between the counter flow 

RAMEE with uniform channels and non-uniform channels with peak membrane 

deflections of 5% (Figure 5.17).  Therefore, the counter-flow numerical results can be 

used to compare the cross-counter combination experimental results. 
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Figure 5.17: Numerical results based on Prototype #3 at NTU = 12 operating with either a counter 
flow or cross-counter combination flow configurations.  Counter flow configurations for uniform 

channels and for non-uniform channels with a peak membrane deflection of 5% are used. 

The total effectiveness numerical results with non-uniform channels are applied 

to the experimental results for Prototype #3 operating at NTU = 12, which is shown in 

Figure 5.18.  The experimental results are bounded between the numerical results for 
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membrane deflections of 10% and 20%.   The experimental results are very similar to 

the trend for the numerical results with a deflection of 10% in that their effectivenesses 

rapidly increase to a plateau as Cr* increases without achieving a peak value.  From 

these results, the size of the peak membrane deflection in Prototype #3 is interpolated to 

approximately 12%.  The size of the deflection also appears be relatively constant for 

the different Cr* results, which shows that the deflection size is not too dependent on the 

solution flow rate.  
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Figure 5.18: Prototype #3 experimental and numerical total effectiveness at NTU = 12.  Numerical 

results are for non-uniform channels with peak membrane deflections between 0% and 20%. 

 

The experimental and numerical results for the sensible and latent 

effectivenesses are shown in Figure 5.19 and Figure 5.20.  Both figures show the same 

general trends as the total effectiveness results, with the results mostly being bounded by 

the numerical results for membrane deflections of 10% and 20%. 
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Figure 5.19: Prototype #3 experimental and numerical sensible effectiveness at NTU = 12.  

Numerical results are for non-uniform channels with peak membrane deflections between 0% and 
20%. 
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Figure 5.20: Prototype #3 experimental (Mahmud et al. 2010) and numerical latent effectiveness at 

NTU = 12.  Numerical results are for non-uniform channels with peak membrane deflections 
between 0% and 20%. 

 

There are additional experimental results from Prototype #3 for different NTU 

values of 4, 7, and 8.5 and their total effectiveness results are shown in Figure 5.21 to 
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Figure 5.23.  The experimental results for the NTU values of 7 (Figure 5.22) and 8.5 

(Figure 5.23) are still bounded between the numerical results for deflections of 10% and 

20%, which was the case for when NTU is 12.  The results for NTU of 4 are outside 

these bounds and are between deflection of 5% and 10%.  These results show that the 

size of membrane deflection in Prototype #3 is relatively constant for different air flow 

rates (i.e., different NTU), except at low NTU (i.e., high air flow rate) where the 

deflection size is slightly decreased.  This is a general statement due to the limited 

number of data points. 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 2 3 4 5 6

Cr*

T
ot

al
 E

ffe
ct

iv
en

es
s 

0%

5%

10%

20%

Peak Membrane 
Deflection

 
Figure 5.21: Prototype #3 experimental (Mahmud et al. 2010) and numerical total effectiveness at 

NTU = 4.  Numerical results are for non-uniform channels with peak membrane deflections 
between 0% and 20%. 
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Figure 5.22: Prototype #3 experimental (Mahmud et al. 2010) and numerical total effectiveness at 

NTU = 7.  Numerical results are for non-uniform channels with peak membrane deflections 
between 0% and 20%. 
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Figure 5.23: Prototype #3 experimental (Mahmud et al. 2010) and numerical total effectiveness at 

NTU = 8.5.  Numerical results are for non-uniform channels with peak membrane deflections 
between 0% and 20%. 
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5.6 Limitations of Numerical Analysis of Non-Uniform Channel Thicknesses 

The numerical analysis of a RAMEE with non-uniform channel thicknesses is 

able to successfully reproduce the experimental results by simulating peak membrane 

deflection around 12%.  This shows that some of the discrepancy demonstrated by the 

previous RAMEE prototypes between the experimental and numerical results (uniform 

channels) can be attributed to the fluid flow maldistributions and variable overall heat 

and moisture transfer coefficients caused by non-uniform channels.  However, the actual 

size of these predicted deflections is very small and seems impractical.  In the case of 

Prototype #3, a 12% deflection represents a deflection of 0.5 mm.  It was proposed by 

Mahmud et al. (2010) that the size of the deflections in Prototype #3 could easily exceed 

1 mm. 

The differences between the predicted and proposed channel thicknesses can be 

attributed to many things.  The model assumed a simple channel deformation pattern 

which may not adequately describe the actual deflections.  The effects on heat transfer 

and fluid flow by the air channel support structures were not considered and thus 

neglected.  The fluid flows are also assumed to be laminar which is justified for non-

deformed channels, but the flow may be transitional or turbulent in the deformed 

channels.  A transitional/turbulent flow would increase the overall transfer coefficients 

and result in a smaller decrease in effectiveness for a given deflection compared to a 

laminar flow.  Therefore, a more complex model that addresses these limitations might 

predict that Prototype #3 operates with a membrane deflection of about 1 mm. 

Nevertheless, the numerical results with non-uniform channels show the same 

trend as the experimental results and demonstrate that the absence of the peak in total 
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effectiveness is due to the non-uniform channel.  Further investigation into the effects of 

non-uniform channels is recommended and is best studied with a computational fluid 

dynamics (CFD) model.  CFD will more accurately model the complex fluid flow 

pattern, especially if it is turbulent, in the exchanger and the heat and moisture transfer 

coefficients.  The fluid flow and heat and moisture transfer resistances results from the 

CFD analysis could then be implemented into the numerical model to properly address 

the effects of non-uniform channels on the RAMEE performance.  This analysis is 

beyond the scope of this study and is left for future study. 

5.7 Chapter 5 Summary 

The purpose of Chapter 5 was to consider the effects of exchangers with non-

uniform channels on the RAMEE performance.  It was shown that the direct effects of 

the non-uniform channels are that the fluid flow becomes maldistributed with more fluid 

flowing in the wider sections of the channel, and the overall heat and moisture transfer 

coefficients become variable.  These variable fluid flow rates and overall transfer 

coefficients were then shown to reduce the RAMEE effectiveness and that this reduction 

increases as the size of the deflection increases.  A characteristic of this decrease is that 

the peak in effectiveness is greatly reduced and eventually vanishes as the deflection 

size increases.  This understanding of these effects of non-uniform channel thicknesses 

were then applied to the experimental results from Prototype #3, which showed that the 

numerical results with non-uniform channels were very similar to experimental results.  

Further analysis of these results implied that Prototype #3 is operating with membrane 

deflections of around 12%. 
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Chapter 6 

SUMMARY, CONCLUSIONS, AND FUTURE WORK 

6.1 Summary 

Run-around membrane energy exchangers (RAMEE) allow heat and moisture 

transfer between isolated supply and exhaust ventilation air streams.  Liquid to air 

membrane energy exchangers (LAMEEs) are placed in the supply and exhaust ducts and 

transfer heat and moisture between the air and a liquid desiccant that is circulated 

between the supply and exhaust LAMEEs.  The ability of the RAMEE to transfer heat 

and moisture between isolated supply and exhaust ducts makes it suitable for several 

HVAC applications, such as hospitals and building energy retrofits. 

The objective of this thesis was to expand on the understanding of the RAMEE 

operation and performance, which focused on the effects of outdoor air conditions and 

the effects of non-uniform exchanger channels on the RAMEE performance.  This was 

achieved through numerical simulations and comparisons with experimental results 

where available.  The numerical model used in this thesis was developed and validated 

by Vali (2009) and was introduced in Chapter 2.  Slight modifications were made to the 

model to better describe the RAMEE and accomplish the objectives of the study.   

The effects of outdoor air conditions on RAMEE performance were investigated 

in Chapter 3.  Contour plots for the sensible, latent, and total performances at different 

outdoor air conditions were developed.  These plots have contours of effectiveness and 
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supply air temperature, humidity ratio or enthalpy change superimposed on a 

psychometric chart and the values are for the case when the RAMEE is operating with 

peak total effectiveness. The contour plots showed that the RAMEE effectivenesses are 

very dependent on the outdoor conditions and may be less than 0% or exceed 100% for 

certain conditions.  From these contour plots, the coupling of the heat and moisture 

transfers were discussed and elucidated.  This coupling results in higher heat transfer 

when the difference between the indoor and outdoor air humidity ratios increase and 

higher moisture transfer when the difference between the indoor and outdoor air 

temperatures increase.  A contour plot that describes the optimal Cr* for different 

outdoor conditions was also developed.  Additional contour plots were created that 

describe the RAMEE when it is operating with peak sensible and latent effectivenesses.  

All of these contour plots aid in describing the relationship between the RAMEE 

performance and the outdoor air conditions and would facility RAMEE implementation 

studies. 

Chapter 3 also contained a more detailed investigation into the performance of 

the RAMEE at outdoor air conditions that are cooler and moister or warmer and drier 

than the indoor air, which are referred to as -H* conditions.  In many  -H* conditions the 

RAMEE may be controlled (by controlling the solution flow rate) to selectively transfer 

either heat or moisture.  This unique relationship between effectiveness and solution 

flow rate at –H* conditions was experimentally validated.  This selective heat or 

moisture transfer was most pronounced at very low solution flow rates where the supply 

and exhaust LAMEEs are able to exchange sensible energy for latent energy and vice 

versa without exchanging a significant amount of energy between LAMEEs.  These 
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behaviours at –H* conditions and very low solution flow rates could have energy saving 

potentials in climatic locations where many hours in a year have –H* conditions or in 

industrial applications that require selective heat or moisture transfers in –H* conditions. 

The results in Chapter 3 on the relationships between the RAMEE performance 

and outdoor air conditions were used to develop correlations in Chapter 4.  The 

correlations use NTU (RAMEE design parameter) and H* and ∆H (enthalpy difference 

between indoor and outdoor air) as input parameters.  Sensible and latent effectiveness 

correlations for the case when the RAMEE is operating at its maximum total 

effectiveness were developed and are
 

( ) ( ) 678.0HNTU4.0*H10x84NTU45*HNTU0093.0 53
Sen +∆⋅⋅+⋅++⋅−⋅⋅=ε −−

,(6.1) 

( ) ( ) 671.0HNTU2*H10x310NTU67*HNTU01.0 1521
Lat +∆⋅⋅+⋅−+⋅−⋅⋅=ε −−−−

.(6.2) 

The total effectiveness is determined from these correlations by the relationship 

determined by Simonson and Besant (1999b), which is  

  
*H1

*H LatSen
Tot +

ε+ε
=ε . (6.3) 

Another correlation was determined to describe the Cr* (ratio of solution and air heat 

capacity rates) that results in the RAMEE operating at its maximum effectiveness.  This 

Cr* is referred to as the optimal Cr* and its correlation is 

 ( ) ( )[ ] 177.0H023.05*H*H10LnNTU*Cr 4.21.0
Optimal +∆⋅−++⋅+= − . (6.4) 

The correlations are valid for +H* outdoor conditions from -6°C to 38°C and 0 to 24 

g/kg and NTU values from 1 to 14.  The maximum differences between the simulated 

and correlated changes in the supply air temperature, humidity ratio, and enthalpy are 
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minimal at 0.3°C, 0.1 g/kg, and 0.5 kJ/kg respectively.  The maximum error between the 

simulated and correlated optimal Cr* is 0.3. 

The effects of non-uniform exchanger channels on RAMEE effectiveness were 

investigated in Chapter 5.  The channels were modeled with a sinusoidal pattern to 

represent the membrane deflection pattern observed in Prototypes #3.  The deflection 

magnitude is the deflection size divided by the undeflected air channel thickness.  The 

non-uniform channels create a maldistributed fluid flow and variable heat and moisture 

transfer coefficients.  The non-uniform exchanger channels analysis shows that the 

RAMEE effectiveness reduced and that the reduction in effectiveness increases as the 

size of the deflection increases.  For a RAMEE operating at a NTU of 12 with peak 

membrane deflections of 10%, the peak total effectiveness is reduced by 12.5% and the 

sensible and latent effectivenesses are reduced by 15.6% and 10.7% respectively.  The 

non-uniform channels cause a greater decrease in effectiveness at lower Cr* values and 

result in a diminished effectiveness peak that is absent at higher deflection sizes.  This 

decreased effectiveness and absent peak agrees with experimental findings from 

Prototype #3 and the numerical results imply that the prototype was operating with a 

peak membrane deflection of 12% 

6.2 Conclusions 

The investigations contained in this thesis produced the following conclusions.   

1. The sensible, latent, and total effectivenesses of the RAMEE are variable and 

strongly influenced by the outdoor air conditions.  The effectivenesses are strongly 

dependent on H* and mildly dependent on ∆H. 
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2. RAMEE effectivenesses can be less than 0% or exceed 100% for some outdoor 

conditions, which means that heat or moisture is transferred against or beyond its 

driving potentials at these conditions, which is a unique characteristic of the 

RAMEE. 

3. The RAMEE optimal Cr* is highly variable with outdoor air condition and ranges 

between 1.5 and 3.5.  Therefore, optimal RAMEE operations require controlling 

the solution flow rate based on the outdoor air conditions. 

4. The performance of the RAMEE at –H* conditions allows heat and moisture to be 

selectively transferred depending on the operating Cr*.  These performance 

characteristics at–H* conditions were validated experimentally. 

5. The RAMEE effectiveness is reduced from the combined effects of fluid flow 

maldistribution and variable overall heat and moisture coefficients caused by non-

uniform exchanger channels.  The reduction in effectiveness increases as the size of 

the membrane deflection increases.  The effectiveness peak decreases as the 

deflection size increases and becomes absent at higher deflections.  

6. Exchangers with non-uniform channels have a decreased effectiveness, which 

results in the peak in total effectiveness being absent.  These trends agree with the 

experimental findings from Prototype #3. 

6.3 Recommendations for Future Work 

The research in this thesis has shown the behaviour of the RAMEE at different 

outdoor air conditions and with non-uniform exchanger channels.  The findings from 

this research have identified additional topics that require further study. 
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1. Frosting in the exchanger at low temperature conditions was neglected in producing 

the RAMEE performance contour plots.  An investigation into the effects of 

frosting is required to determine if the RAMEE performance at these low 

temperature conditions shown in this study are accurate. 

2. The underlying cause of the relationship between optimal Cr* and outdoor air 

conditions is not understood.  Understanding this underlying cause would aid in 

operating the RAMEE during part-load conditions and controlling the transient 

response of the system. 

3. The developed sensible and latent effectiveness correlations should be modified to 

include Cr* and –H* conditions as an input parameters.  These modified 

effectiveness correlations would fully describe the RAMEE for all outdoor 

conditions and solution flow rates, which is required if the RAMEE is to be 

actively controlled during the year. 

4. The analysis of the effects of non-uniform exchanger channels assumed the flow 

was laminar and neglected the effects of the air channel support structures.  Both of 

these variables should be investigated further.  It was proposed in Chapter 5 that 

this study should be conducted with a computational fluid dynamics (CFD) model 

because it can accurately model the complex channel flow and include the air 

channel support structures. 
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APPENDIX A  

EFFECTS OF TEMPERATURE AND HUMIDITY RATIO ON RAMEE 
PERFORMANCE 

A.1  Introduction 

Section 3.2.2 introduced the primary and secondary potentials that drive heat and 

moisture transfer in the RAMEE.  The section proposes that heat (moisture) transfer in 

the RAMEE is primarily driven by the difference in temperature (humidity ratio) 

between the indoor and outdoor air and to a lesser secondary extent by the humidity 

ratio (temperature) difference.  In order to understand how these potentials drive heat 

and moisture transfer, the performances at a few select outdoor conditions are 

considered and compared with each other in this appendix.  These outdoor conditions 

are warmer and moister than the indoor conditions and thus have a positive operating 

condition factor (i.e., H*>0). 

Case 1 serves as the reference outdoor air condition and it is shown on the 

psychometric chart in Figure A.1.  Case 1 is compared to two other cases to demonstrate 

the effects of the outdoor air conditions (Numbered circles and diamonds are used to 

represent the air and solution conditions respectively while dashed lines connecting the 

inlet and outlet conditions of a fluid represent process lines. These lines do not represent 

the exact process the air or solution undergoes in the exchanger, which can be very 

complex and are also highly dependent on the outdoor air conditions.   
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Figure A.1: Case 1 inlet and outlet bulk property conditions of the air and desiccant in the supply 

and exhaust exchangers. 

Table A.1: Outdoor air condition and system effectiveness for the studied cases. 
 

T W Sensible Latent Total

(°C) (g/kg) (%) (%) (%)

1 2.9 38 20 75.7 60.2 65.5

2 2.4 38 14 70.9 67.9 69.5

3 3.3 27 20 121.2 54.7 61.5

System EffectivenessOutdoor Condition
Case Cr*

 

In Case 1, the air passing through the supply exchanger is cooled and 

dehumidified (process line 1-2), while the air passing through the exhaust exchanger is 

warmed and humidified (process line 3-4).  The desiccant in the supply exchanger gains 

heat and moisture (process line A-B), while in the exhaust exchanger it loses heat and 

moisture (process line B-A).  The two desiccant process lines have the same end points 

because it is assumed that no heat and mass transfer occurs in the desiccant as it is 

pumped between exchangers.  The concentration of the desiccant changes slightly (less 

than 0.5%) as it passes through the exchanger which is indicated by the constant 

concentration line in Figure A.1.  Also, the average temperature and humidity ratio of 
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the desiccant (based on inlet and outlet conditions) is almost equal to the average 

temperature and humidity ratio of the air between the indoor and outdoor air.   

The effectiveness of the system can be determined from the air properties at the inlet and 

outlet of each LAMEE in Figure A.1.  The primary driving potentials for transfer is the 

difference in the temperature, humidity ratio, and enthalpy between the outdoor and 

indoor air (points 1 & 3), which serve as the denominator for the sensible, latent, and 

total effectiveness calculations respectively.  The actual energy transferred (numerator in 

the effectiveness calculations) is determined from the difference in the temperature, 

humidity, and enthalpy between the air stream inlet and outlet in either the supply or 

exhaust exchangers (points 1 & 2 or 3 & 4).  The average of the supply and exhaust 

values are presented in this study. 

A.2  Effects of Humidity Ratio 

Case 2 represents an outdoor condition that is at the same air temperature but 

lower humidity ratio when compared to Case 1.  Comparing these two cases allows the 

effects of the humidity ratio to be determined.  Figure A.2 plots both Cases 1 and 2 on 

the psychometric chart with the inlet and outlet conditions in Case 2 denoted with the 

primed numbers.  The comparison between Case 2 and Case 1 reveals that decreasing 

the outdoor air humidity ratio: 

• decreases the amount the supply air outlet is cooled which decreases the 

sensible effectiveness, 

• decreases the temperature change the desiccant undergoes in the exchanger, 

• has no effect on the average desiccant temperature, and 

• decreases the latent transfer but increases the latent effectiveness. 
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These trends can also be seen in Figure 3.3. 
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Figure A.2: Comparison between the inlet and outlet bulk property conditions of the air and 

desiccant in the supply and exhaust exchangers at Case 1 and Case 2 (primed numbers). 

The above trends can be explained by considering the two effects that the 

moisture transfer has on the desiccant.  The first effect of moisture transfer is that it 

changes the concentration of the desiccant.  This concentration change is small and its 

effects are negligible.  The other effect of moisture transfer on the desiccant is that the 

desiccant provides/absorbs the latent energy used/released during the phase change.  The 

latent energy goes into or comes from the desiccant instead of the air because the 

convective heat transfer coefficient of the solution is more than an order of magnitude 

greater than the overall convective heat transfer coefficient of the air and membrane.  

The transfer of latent energy to/from the desiccant changes its temperature which alters 

the heat transfer potential between the air and desiccant solution.  As a result, the 

moisture transfer influences the heat transfer in the system. 

Applying the process described above to the comparison between Cases 1 & 2 

(Figure A.2) allows the difference in their sensible performances to be elucidated.  Case 
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1 has a higher moisture transfer potential (due to higher humidity ratio) than Case 2, 

which allows more moisture to be transferred into the desiccant solution in the supply 

exchanger.  This additional moisture transfer and consequent latent energy release, 

increases the desiccant temperature in the supply exchanger.  This warmer liquid 

desiccant exits the supply exchanger and enters the exhaust exchanger.  The reverse 

process occurs in the exhaust exchanger, which results in a cooler liquid desiccant 

exiting it and entering the supply exchanger.  In both exchangers, a greater heat transfer 

potential exists because the temperature difference between the desiccant and air at the 

inlets to the LAMEEs is larger in the case with the higher outdoor air humidity ratio 

(Case 1).  This greater heat transfer potential in Case 1 causes Case 1 to have a higher 

sensible effectiveness than Case 2 even though both cases have the same air inlet 

temperatures. 

A.3  Effects of Temperature 

Case 3 is now introduced, which has the same humidity ratio as, but lower 

temperature than Case 1.  Comparing these two cases can demonstrate the effects that 

the outdoor air temperature has on the system.  This comparison is plotted in Figure A.3 

and shows that decreasing the outdoor air temperature (Case 3 compared to Case 1): 

• decreases the amount the supply air is dehumidified, which decreases the 

latent effectiveness, 

• decreases the humidity ratio change the desiccant undergoes in the 

exchanger, 

• has no effect on the  average desiccant humidity ratio, and 

• decreases the sensible transfer, but increases the sensible effectiveness. 
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Figure A.3: Comparison between inlet and outlet bulk properties conditions of the air and desiccant 

in the supply and exhaust exchangers at Case 1 and Case 3 (double primed numbers). 

 
Considering the moisture properties of the desiccant solution and their 

temperature dependencies allows the above noted trends to be explained.  These 

properties (see Section 2.2.2) show that at a constant solution concentration, which can 

be assumed in the system, the humidity ratio of the air in equilibrium with the surface of 

the solution (referred to as the solution humidity ratio in this discussion) is exponentially 

related to the solution surface temperature.  Because of this, the temperature of the 

desiccant influences its humidity ratio.  Therefore the greater the temperature change of 

the desiccant as it flows through an exchanger, the greater the change in the humidity 

ratio of the solution.  Changing the humidity ratio of the desiccant, changes the moisture 

transfer potential between the air and the desiccant, which affects the latent 

performance.  And since heat transfer directly changes the desiccant temperature, which 

in turn changes the humidity ratio of the desiccant through the temperature-humidity 
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ratio relationship of the desiccant, the heat transfer in the RAMEE influences the latent 

performance. 

Using the relationships outlined above, the comparison between Cases 1 & 3 

(Figure A.3) can be explained thoroughly.  The higher outdoor air temperature in Case 1 

results in a higher heat transfer rate between the desiccant in the supply and exhaust 

exchangers.  This higher heat transfer rate increases the temperature change that the 

desiccant undergoes in each exchanger.  Based on the desiccant temperature-humidity 

ratio relationship, this greater heat transfer also increases the change in the humidity 

ratio of the desiccant in each exchanger (in addition to the small change due to the 

concentration change from moisture transfer).  Therefore, Case 1, with its higher 

outdoor air temperature, has a greater change in the humidity ratio of the desiccant 

between the inlet and outlet of each exchanger compared to Case 3.  This greater 

humidity ratio change increases the humidity ratio difference between the air and 

desiccant at the inlets of each exchanger, which increases the latent performance.  This 

is why Case 1 has a higher latent effectiveness even though both cases have the same 

outdoor air humidity ratio. 

A.4  Heat and Moisture Driving Potentials 

The nature of the RAMEE allows the outdoor air temperature and humidity ratio 

to influence moisture and heat transfer respectively.  The influence of the outdoor air 

conditions on heat and moisture transfer can be understood be considering them as 

primary and secondary driving potential.  The driving potentials for heat transfer are the 

temperature (primary) and humidity ratio (secondary) differences between the indoor 

and outdoor air.  Conversely, the driving potentials for moisture transfer are the 
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humidity ratio (primary) and temperature (secondary) differences between the air 

streams.  The influence of the outdoor air conditions on both the heat and moisture 

transfers in the RAMEE is a unique characteristic of the system that does not occur in 

other energy recovery systems. 


