
DIGITAL RESAMPLING AND TIMING

RECOVERY IN QAM SYSTEMS

A Thesis Submitted

to the College of Graduate Studies and Research

in Partial Fulfillment of the Requirements

for the Degree of Master of Science

in the Department of Electrical and Computer Engineering

University of Saskatchewan

by

Duong Xuan Quang

Saskatoon, Saskatchewan, Canada

c© Copyright Duong Xuan Quang, November, 2010. All rights reserved.



Permission to Use

In presenting this thesis in partial fulfillment of the requirements for a Postgraduate

degree from the University of Saskatchewan, it is agreed that the Libraries of this

University may make it freely available for inspection. Permission for copying of this

thesis in any manner, in whole or in part, for scholarly purposes may be granted by

the professors who supervised this thesis work or, in their absence, by the Head of

the Department of Electrical and Computer Engineering or the Dean of the College

of Graduate Studies and Research at the University of Saskatchewan. Any copying,

publication, or use of this thesis, or parts thereof, for financial gain without the

written permission of the author is strictly prohibited. Proper recognition shall be

given to the author and to the University of Saskatchewan in any scholarly use which

may be made of any material in this thesis.

Request for permission to copy or to make any other use of material in this thesis

in whole or in part should be addressed to:

Head of the Department of Electrical and Computer Engineering

57 Campus Drive

University of Saskatchewan

Saskatoon, Saskatchewan, Canada

S7N 5A9

i



Acknowledgments

First and foremost I would like to express my deepest gratitude to my supervisor,

Professor Ha H. Nguyen, for his invaluable guidance and tremendous support during

my studies at the University of Saskatchewan. It is an honor for me to be one of

his graduate students. He has spent so much effort teaching me many aspects of

technical knowledge as well as research methodology. I really appreciate his guidance

and advices for my every single study and research step but still allowing me the

huge freedom to work in my own schedule. This thesis would not have been possible

without his excellent support.

I would like to thank Professor Eric Salt for his amazing support and advices.

I enjoyed every moment taking his classes with so much practical knowledge and

lots of fun. I would never forget his help with a lecture note on resampling and his

invaluable advices for my thesis. I also would like to thank Dr. Eric Pelet for his

tremendous guidance and support during my research. He has offered me so much

of his invaluable time to explain for me critical technical concepts. He has also given

me advices on all important parts of my thesis.

I also wish to thank the Department of Electrical and Computer Engineering, Uni-

versity of Saskatchewan and Telecommunications Research Laboratories (TRLabs) for

the excellent resources they offered me during my studies and research.

I would not forget to gratefully acknowledge the financial support from NSERC

and the University of Saskatchewan graduate scholarship for my studies.

ii



Abstract

Digital resampling is a process that converts a digital signal from one sampling

rate to another. This process is performed by means of interpolating between the

input samples to produce output samples at an output sampling rate. The digital

interpolation process is accomplished with an interpolation filter.

The problem of resampling digital signals at an output sampling rate that is in-

commensurate with the input sampling rate is the first topic of this thesis. This

problem is often encountered in practice, for example in multiplexing video signals

from different sources for the purpose of distribution. There are basically two ap-

proaches to resample the signals. Both approaches are thoroughly described and

practical circuits for hardware implementation are provided. A comparison of the

two circuits shows that one circuit requires a division to compute the new sampling

times. This time scaling operation adds complexity to the implementation with no

performance advantage over the other circuit, and makes the “division free” circuit

the preferred one for resampling.

The second topic of this thesis is performance analysis of interpolation filters for

Quadrature Amplitude Modulation (QAM) signals in the context of timing recovery.

The performance criterion of interest is Modulation Error Ratio (MER), which is

considered to be a very useful indicator of the quality of modulated signals in QAM

systems. The methodology of digital resampling in hardware is employed to describe

timing recovery circuits and propose an approach to evaluate the performance of

interpolation filters. A MER performance analysis circuit is then devised. The circuit

is simulated with MATLAB/Simulink as well as implemented in Field Programmable

Gate Array (FPGA). Excellent agreement between results obtained from simulation

and hardware implementation proves the validity of the methodology and practical

application of the research works.
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1. Introduction

A digital communication system is built on a transmitter and a receiver. The

digital information is conveyed from the transmitter to the receiver over some trans-

mission medium. For example, the medium can be coaxial cable or a wireless chan-

nel. The transmitter generates continuous-time signals that carry the information by

modulating a sinusoidal carrier. There are several ways to modulate the carrier. The

modulation scheme widely used over cable is Quadrature Amplitude Modulation, as it

increases the spectral efficiency of transmission by utilizing both amplitude and phase

components of the carrier. Many popular communication standards adopted QAM

as their modulation scheme. Examples include Cable Television (CATV), Digital

Video Broadcasting (DVB), Data Over Cable Service Interface Specification (DOC-

SIS), Wireless Fidelity (Wi-Fi), Worldwide Interoperability for Microwave Access

(WiMAX).

Most of the research works on communication systems target the Application

Specific Integrated Circuit (ASIC). However, there is an alternative technology today,

which is the Field Programmable Gate Array (FPGA). FPGA has many advantages

over ASIC. Most importantly, FPGA is preferred over ASIC in terms of designing

flexibility as well as the development cost and time. In fact, FPGA has been widely

used as the hardware platform for communication systems.

In a QAM system, there is a critical need to change the sampling rate of signals

digitally. This process is referred to as digital resampling. The most common appli-

cation of digital resampling is to recover the transmitted sampling time in a QAM

receiver (timing recovery). Another example of application is to convert sampling
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rate asynchronously (sampling rate conversion) in the multiplexing of input signals

at different sampling rates to an output signal at a common output sampling rate.

Digital resampling in QAM systems, which can be efficiently implemented in FPGA

devices, is the research subject of this thesis.

1.1 Motivation

Fundamentals and implementation of digital interpolation in timing recovery are

discussed in [1] and [2] where it is shown that the hardware structure of polynomial

interpolation filters can be effectively implemented by the Farrow structure [3]. In [4],

a practical timing recovery circuit is described. However, those research works only

focused on digital resampling in the context of timing recovery. In [5], a digital syn-

chronizer circuit designed specifically for a digital modulator introduced in [6] is de-

scribed. In this thesis, operation and circuits for the general case of digital resampling

are described based on the concept of time base generation and synchronization [7]

and the theory of digital interpolation [1]. The objective is to thoroughly describe

and verify practical resampling circuits which are suitable for FPGA implementation.

The circuits can be used in timing recovery as well as general asynchronous sampling

rate conversion applications.

The heart of a digital resampling circuit is an interpolation filter. An interpolation

filter introduces errors, which can be evaluated with different methods. A traditional

method is to analyze the performance of each filter by considering the frequency

response of the interpolator [2]. The main drawback of such a method is that the

performance is evaluated as functions of fractional interval, i.e., a distance from an

output sample to a referenced input sample. But in practical applications, a fractional

interval is not fixed, but varies. In [8], the mean square error between the ideally

interpolated points and those obtained by the circuit under investigation is computed.

However, the method does not investigate interpolation error for a certain type of

signal/application. Another research work evaluates the effect of interpolation on the

Bit Error Rate (BER) performance [9]. The drawback is that BER does not fully

2



show the quality of received signals. In this research, with the understanding that

interpolation errors tie to a certain type of signal and application, the performance of

polynomial interpolation is specifically evaluated for QAM signal in timing recovery

application. The performance criterion of interest is Modulation Error Ratio (MER),

which is believed to be a very useful indicator of the quality of modulated signals in

QAM systems. In particular, the objective is to propose a model that can accurately

measure the MER performance of an interpolation filter for timing recovery.

1.2 Thesis Outline

In Chapter 2 of this thesis, the background of a QAM system is reviewed. Some

applications of digital resampling are described. Chapter 2 also discusses key opera-

tions of timing recovery in QAM receivers.

Chapter 3 reviews the theory of digital resampling. The methodology of time base

generation and synchronization to perform resampling in hardware are described.

From the described methodology, asynchronous sampling rate conversion circuits (re-

samplers) are discussed in detail. The circuits are simulated in MATLAB/Simulink

software for verification.

Another application of resampling is timing recovery in a QAM receiver and it

is presented in Chapter 4. Timing recovery circuits and hardware operations are

discussed in this chapter. Chapter 4 also proposes a model to evaluate MER per-

formance of interpolation filters. Based on the model, a performance analysis circuit

is devised and simulated in MATLAB/Simulink software for different interpolation

filters.

Hardware structures of the MER performance analysis circuit are described in

Chapter 5. The circuit is also designed using Verilog Hardware Description Lan-

guage and implemented in a FPGA device. The results obtained from FPGA imple-

mentation are also discussed and compared with the results obtained from software

simulation.

3



Chapter 6 gives some remarks and conclusions. Appendix A reviews the math-

ematical expressions and discusses frequency responses of the interpolations filters

evaluated in this thesis.
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2. Background

2.1 Digital Communication Systems

Information is always a critical part of people’s lives. Communications, the way

information is exchanged, can be made instantaneously by means of electronic devices.

A block diagram of an electronic communication system is shown in Figure 2.1. It

consists of a transmitter and a receiver. The digital information is conveyed from the

transmitter to the receiver over a medium (channel). The “synchronization” block is

needed in digital systems [10].

Transmitter Channel Receiver

Synchronization

Source

(user)

Sink

(user)

Figure 2.1 General block diagram of a communication system.

The exchange of information between a transmitter and a receiver over a medium

is accomplished via modulation and demodulation processes. Modulation is a process

that converts information into a signal that is suitable for transmission over the chan-

nel. For radio transmission, the modulation process uses a sinusoid signal (carrier)

at radio frequency ω0 to carry information as expressed in Equation (2.1) [11]:

A(t) cos(ω0t + θ(t)) = I(t) cos(ω0t)−Q(t) sin(ω0t). (2.1)

Here, A(t) and/or θ(t) are the information to be transmitted and represented as

baseband signals. In particular, I(t) = A(t) cos(θ(t)) is the in-phase component and

5



Q(t) = A(t) sin(θ(t)) is the quadrature component of the signal. As can be seen,

I(t) and Q(t) are expressed in cosine and sine functions and they are 90◦ out of

phase with each other. Information can be either in analog form or digital form.

Also, modulation can be either analog type or digital type. In analog modulation,

A(t) and/or θ(t) are analog signals taken from a continuum of possible waveforms.

Common examples are commercial AM (Amplitude Modulation) and FM (Frequency

Modulation) radio systems. In digital modulation, A(t) and/or θ(t) are digital signals

taken from a finite set of possible waveforms. Some examples of systems using digital

modulation are cellular telephone and digital video broadcast systems.

The modulated signal is transmitted through a channel. Common physical channel

mediums are wireline, freespace and optical fiber. Different types of medium introduce

different distortions on the modulated signal. The most significant distortion of a

wireline channel is the addition of Gaussian thermal noise, while a signal transmitting

through a wireless channel suffers from both fading and noise. Also, each type of

modulated signal suffers differently from the channel distortions.

The receiver demodulates the received signal to detect the information that was

transmitted. The receiver typically implements several techniques to overcome chan-

nel distortions. The difference between the information received and the information

transmitted measures the performance of a communication system.

The signal processing and hardware realization of a communication system can

also be either analog or digital type. For not to be confused with modulation and

signal types, the popular alternative terms to describe the signal processing/hardware

implementation method are continuous-time and discrete-time. Figure 2.2 shows

possible combinations of modulation types and signal processing/hardware realization

methods in a communication system.

Discrete-time signal processing/hardware realization can be applied to analog sig-

nals/modulation by sampling and quantization processes. Furthermore, the combi-

nation of continuous-time and discrete-time processing is widely used in communi-

6



Modulation type

Analog Digital
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u
s
 

ti
m
e

Figure 2.2 Different modulation types and hardware/signal processing methods.

cation systems. The trend is to use as much as possible the discrete-time process-

ing/hardware realization in the form of VLSI (Very Large Scale Integration) circuits

and programmable circuits.

Digital communication has been replacing analog communication for many rea-

sons. Digital communication offers new services, security, flexibility and power saving.

Moreover, digital hardware has become more reliable, powerful and affordable [11].

However, digital communication has to face the problems of synchronization and

bandwidth efficiency. This thesis work focuses on digital communication systems

realized with discrete-time signal processing/hardware.

The block diagram of a typical digital communication system is shown in Fig-

ure 2.3. The source is a bit stream. If the source is an analog signal, then an Analog-

to-Digital Converter is needed in the transmitter and a Digital-to-Analog Converter

is needed in the receiver.

In the transmitter, the source encoder removes redundancy existing in the source

information so that it can be efficiently represented in a bit stream. The encrypter

adds security to the source bit stream, hence protecting the information from un-

intended receiver. The channel encoder adds redundancy for the purpose of error

detection and correction, which is performed by the channel decoder at the receiver

7
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Figure 2.3 General block diagram of a digital communication system.

side. The modulator modulates the signal to generate a waveform which is suitable

for transmission over the channel. The timing synchronization block synchronizes

(aligns) the sampling times at the receiver and the sampling times at the transmitter.

2.1.1 Digital Modulation

In digital modulation, the signal to be transmitted is taken from a finite set of pos-

sible waveforms, which is defined as a signal set. Different digital modulation methods

use different signal sets. In Phase-Shift Keying (PSK), the signal set consists of a finite

set of waveforms that are different in phases. In Frequency-Shift Keying (FSK), the

finite signal set consists of waveforms at different frequencies. The Amplitude-Shift

Keying (ASK) uses a finite number of amplitudes to differentiate different signals

in the set. In M -ary Quadrature Amplitude Modulation (M -QAM), the signal set

consists of a finite number of waveforms that are different in amplitude and/or phase.

In general, a M -ary digital modulation scheme uses M waveforms to transmit

information over the channel. The signal set of M waveforms is defined as follows:

S = {s0(t), s1(t), . . . , sM−1(t)} . (2.2)

Each waveform is a linear combination of basis signals. The set of basis signals, B,
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consists of K ≤ M orthogonal signals defined over the interval T1 ≤ t ≤ T2:

B = {φ0(t), φ1(t), . . . , φK−1(t)} . (2.3)

The K orthonormal basis functions satisfy the orthogonal condition for every 0 ≤
i, j ≤ K − 1. That is

T2∫

T1

φi(t)φj(t)dt = δ(i− j) =





1, i = j

0, i 6= j
. (2.4)

The set of all waveforms that are linear combinations of basis signals in B is

defined as a signal space, or the span of B, Span{B}. The equivalent mathematical

expression is:

s(t) ∈ Span{B} ⇔ s(t) =
K−1∑

k=0

akφk(t), (2.5)

where ak, k = 0, 1, . . . , K are real constants. For linear modulation, S is a selected

subset of Span{B}. Each of M waveforms in S is a linear combination of K basis

signals in B as follows:





s0(t) = a0,0φ0(t) + a0,1φ1(t) + . . . + a0,K−1φK−1(t)

s1(t) = a1,0φ0(t) + a1,1φ1(t) + . . . + a1,K−1φK−1(t)
...

sM−1(t) = aM−1,0φ0(t) + aM−1,1φ1(t) + . . . + aM−1,K−1φK−1(t)

(2.6)

Equation (2.6) is a synthesis equation, which defines how to construct S from B.

Each waveform in S can be equivalently represented by a K − tuple of weighting

coefficients, ai,j, as follows:





s0 = (a0,0 a0,1 . . . a0,K−1)

s1 = (a1,0 a1,1 . . . a1,K−1)
...

sM−1 = (aM−1,0 aM−1,1 . . . aM−1,K−1)

(2.7)

Each K-tuple sm is a point in a K-dimensional space, Span{B}. The set of M points

sm in the signal space is called the constellation. Each point in the constellation
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represents a symbol which has a symbol duration T = T2 − T1. Each symbol can be

mapped from a (log2M)-bit pattern. The implication of symbol mapping is that, one

symbol now can be used to transmit log2M bits over the channel. Linear modulation

has been widely applied in communication systems since they offer good bit error

rate performance and bandwidth efficiency. The modulation scheme of interest in

this thesis is M -QAM, which has become a dominant modulation scheme for high-

speed applications. M -QAM uses a 2-dimensional (K = 2) basis signal set as follows:

B = {φI(t), φQ(t)} , (2.8)

where




φI(t) =
√

2p(t) cos(ω0t)

φQ(t) = −√2p(t) sin(ω0t)
(2.9)

The signal p(t) is an unit-energy pulse. One common example is p(t) =
√

1/Ts on

the interval T1 ≤ t ≤ T2. The carrier frequency ω0 is usually chosen so that there

is an integer number of sinusoid cycles in the interval T1 ≤ t ≤ T2. The actually

transmitted power can be set by scaling the basis signals with an amplitude V . The

orthogonality of φI(t) and φQ(t) is easily verified. Figure 2.4 shows the geometric

interpretation of 2-dimensional signal space, i.e., Span{φI(t), φQ(t)}.

( )
I
tφ

( )
Q
tφ

0

Figure 2.4 The 2-dimensional signal space.

The signal set S has M waveforms. Each of the waveforms is defined by a 2−tuple
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of weighting coefficients as follows:





s0 = (aI,0 aQ,0)

s1 = (aI,1 aQ,1)
...

sM−1 = (aI,M−1 aQ,M−1)

(2.10)

The constellation C = {s0, s1, . . . , sM−1} in a 2-dimensional signal space can have

different shapes. Figure 2.5 shows square constellations for M = 4 and M = 16.

Also shown are Gray code bit mappings of QAM symbols. In Gray code, (log2M)-bit

patterns mapped from one symbol and its closest symbols differ in only 1 bit. Note

that the amplitude levels of both the inphase and quadrature signal components are

equally spaced.
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Figure 2.5 Square M -QAM constellations and Gray symbol mappings for M = 4

and M = 16.

The hardware description for a QAM modulator will be discussed in Section 2.2.

As we will see, the orthogonality property of B simplifies the hardware structures of

the modulator and demodulator.

2.1.2 Digital Demodulation

At the receiver side, suppose that the received signal is

r(t) = s(t) + w(t), T1 ≤ t ≤ T2 (2.11)
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where w(t) represents additive white Gaussian noise. There are two major steps to

be performed in the receiver to decide the signal in S that was transmitted. The

first step is to convert r(t) to a set of numbers that can retain all the information in

the transmitted signal (also known as a set of sufficient statistics) [10]. This process

is referred to as the projection of r(t) onto the K-dimensional signal space. The

projection process is to obtain a K-tuple r = (r0 r1 . . . rK−1). From the orthogonality

of the basis signals in B, r(t) can be projected independently onto each basis signal.

The mathematical operation is to compute each coefficient of r as follows [11]:

rk =

T2∫

T1

r(t)φk(t)dt, k = 0, 1, ..., K − 1. (2.12)

Equation (2.12) is called the analysis equation, which defines the projection of r(t)

onto the signal space. Figure 2.6 demonstrates the geometric interpretation of the

projection of r(t) onto a 2-dimensional signal space to obtain a 2-tuple r = (rI rQ)

for M -QAM modulation.

( )
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tφ

( )
Q
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( )r t

( )r t
�

Q
r

I
r

0

Figure 2.6 A projection of the received signal to a 2-dimensional signal space.

The second step is to approximate the K-tuple r to a point in the constellation.

The natural approximation criterion is to minimize the bit error probability. The min-

imization problem is discussed in [10] where the signal space is divided into decision

regions to decide which signal in the signal set S was transmitted given the K-tuple r.

If all the symbols are equally likely (i.e., the probability of transmitting all symbols is

the same), the minimum bit error probability receiver becomes a minimum-distance

receiver. The symbol in the constellation that is closest to r in terms of the Euclidean
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distance is then decided as the transmitted symbol. In this way, the signal space is

divided into decision regions based on the geometry of the constellation.

Figure 2.7 shows an example of square 4-QAM constellation where the 2-dimensional

signal space is divided into 4 shaded quadrants, each quadrant is one decision region

for one symbol. If the projection of a received symbol falls within a specific quadrant,

the corresponding constellation symbol of the quadrant is decided as the transmitted

symbol. In this example, rI ≥ 0 and rQ ≥ 0 so r(t) is decided as s1(t). In terms of

bit mapping, symbol s1(t) carries the 2-bit pattern (01).

( )r t
�

Q
r

I
r

( )
I
tφ

( )
Q
tφ

00 01

1110

0( )s t 1( )s t

2( )s t
3( )s t

Figure 2.7 Decision regions in a 2-dimensional signal space for square 4-QAM con-

stellation.

There is always a chance of making errors in the receiver. Given a certain model

of the channel, performance of the distance minimization solution is evaluated in

terms of error probability as a function of SNR (Signal to Noise Ratio) and the

probability of transmitting each signal in the signal set S [10]. Performance of a

digital communication system can be measured by using different criteria. The most

common performance measures are the Bit Error Rate (BER) and Modulation Error

Ratio (MER) . These two criteria are discussed in the following section.
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2.1.3 Performance Criteria

Bit Error Rate (BER)

In a digital communication system, BER is the average ratio of the number of bits

that are wrongly detected in the receiver to the total number of transmitted bits.

BER = Number of bits wrongly detected/Number of bits sent. (2.13)

Thermal noise is the main factor that affects BER performance of information

transmission over an Additive White Gaussian Noise (AWGN) channel (see Equation

(2.1) for the channel model). In the presence of noise, BER is often expressed as

a function of the normalized carrier-to-noise ratio Eb/N0 where Eb is the energy per

information bit and N0 is the one-sided noise power spectral density. Figure 2.8 shows

the BER curves for square 4-QAM and 16-QAM constellations with Gray code over

an AWGN channel. The BERs were computed by simulating the minimum distance

receiver in MATLAB software. The plots show that, given a certain noise power

spectral density of the channel, the more power transmitted is, the better the BER

performance becomes. Also, with the same average power transmitted, 4-QAM offers

better BER performance than 16-QAM. The better BER performance of 4-QAM in

comparison with 16-QAM comes with the cost of a lower bit rate.

When expressed as a function of the normalized carrier-to-noise ratio, the BER

curve provides the system designer with an useful information about the performance

of the system and the required energy per bit to transmit given a certain noise power

spectral density of the channel.

Modulation Error Ratio (MER)

MER is used to measure how far projected received signals are from the nom-

inal values. Figure 2.9 shows the geometric interpretation of the error between

r̂(t) and its ideal signal s1(t). Technically, MER is affected by almost every dis-

tortion/imperfection in a communication system. MER is a good indicator of the

condition of the received signals and extremely helpful for troubleshooting. It can ex-
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Figure 2.8 BER curves for square 4-QAM and 16-QAM.

tract useful information from noise that affects QAM signals. Figure 2.9 also demon-

strates the effects of amplitude noise and phase noise in the received constellation.

While BER can be zero, MER can never be infinite. For example, all the received

signals which fall within the decision boundary of respective nominal symbols have

different MERs but introduce no errors in terms of BER. The more errors caused

by the system, the fuzzier the received constellation becomes. And the fuzzier the

received constellation becomes, the lower the MER is.

Mathematically, MER is the ratio of average symbol power to average error power.

Expressed in decibel:

MER = 10 log10

(
Psignal

Perror

)
. (2.14)

In a M -QAM system, MER over N symbols is calculated as follows:

MER = 10 log10




N∑
i=1

(ãI [i]
2 + ãQ[i]2)

N∑
i=1

[(aI [i]− ãI [i])2 + (aQ[i]− ãQ[i])2]


 , (2.15)

where aI [i] and aQ[i] are the I and Q components, respectively, of the ith symbol
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Figure 2.9 Errors measured by MER.

received, and ãI [i] and ãQ[i] are the ideal I and Q components of the ith symbol in

the constellation S.

2.2 Discrete-Time QAM Communication Systems

This section discusses the discrete-time realization of a QAM communication sys-

tem. The overall block diagram of such a system is depicted in Figure 2.10, which does

not show the source encoder/decoder, encrypter/decrypter, channel encoder/decoder

blocks and focuses on the modulation/demodulation and timing recovery parts.

QAM Transmitter

Let first consider the QAM transmitter. The information bits are converted into

QAM symbols by symbol mapping (Gray mapping). A QAM symbol is a 2-tuple and

is represented as (aI [i], aQ[i]), which is one of the M 2-tuples in the constellation C
(see Equation (2.10)). Here aI [i] represents the amplitude level of inphase carrier

while aQ[i] represents the amplitude level of quadrature carrier. For example, in 4-

QAM, aI [i] and aQ[i] can take on the values +1 or −1, so (aI [i], aQ[i]) can be one

of the following four possible tuples: (+1, +1), (+1,−1), (−1, +1), (−1,−1). For 2λ-

QAM, λ bits are mapped to a symbol at a time. This mapping can be implemented

by means of a lookup table. The sequences {aI [i]}, {aQ[i]} are up converted by U
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Figure 2.10 QAM system block diagram.

with zero stuffing and fed to the pulse-shaping filter. Each (aI [i], aQ[i]) is represented

with 2 pulses whose peaks are aI [i] and aQ[i].

The interval of time between pulses when expressed in seconds is referred to as the

symbol interval, which is T seconds and equal to U samples long. The pulse-shaping

filter’s outputs, I[n] and Q[n], are referred to as the inphase and quadrature signals.

Those signals are modulated with digital quadrature carriers of frequency f0. The

power scaling V for actually transmission of the modulated signals is not shown here.

The digital carrier frequency f0 has an unit of cycles/sample as it is equal to the analog

frequency (cycles/second) normalized by sampling frequency (samples/second). The

D/A clock U/T has an unit of samples/second, and then the analog signal sIF(t) is

at intermediate frequency (IF) of f0 × U/T (Hz).
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Cable Channel

The medium of interest in this thesis is coaxial cable. The intermediate frequency

signal sIF(t) is upconverted to a frequency band that is suitable for the actual trans-

mission over the cable channel1. The transmitted signal suffers from noise and dis-

tortions. In cable transmission signal distortions are relatively small and the noise is

often modeled as AWGN. This means that the channel can be modeled as a delay.

QAM Receiver

The front-end of a QAM receiver is also described in Figure 2.10. The RF (Radio

Frequency) received signal is first downconverted to an IF signal. The IF signal is then

sampled with a free-running oscillator at rate of 1/Tin samples/second. The signal

obtained, denoted by rIF(mTin), is downconverted to baseband by using the same

pair of quadrature carriers at frequency f0 followed by matched filtering to produce

the inphase and quadrature signals xI [m] and xQ[m]. The digital signals xI [m] and

xQ[m] are passed through a timing recovery loop before being downsampled by U to

recover the transmitted QAM data, i.e., bI [i] for the inphase branch and bQ[i] for the

quadrature branch. In the ideal case of perfect timing, no frequency/phase offset,

and no noise, bI [i] = aI [i] and bQ[i] = aQ[i].

The pulse-shaping filter and the matched filter are implemented to overcome the

effect of Inter-Symbol Interference (ISI). One common example to minimize ISI is to

shape the pulses aI [i] and aQ[i] by a RC (Raised Cosine) filter. To further minimize

the effect of AWGN, the RC filter is split evenly between the transmitter and the

receiver so the pulse-shaping filter and the matched filter are identical SRRC (Square

Root Raised Cosine) filter [10]. Upsampling is the key operation in several digital

processing techniques, such as interpolation and timing recovery.

Figure 2.11 shows one example for the inphase component of 4-QAM modulation.

In this example, U = 4 and the pulse-shaping filter in the transmitter and the matched

1For example, in the DOCSIS 3.0 Standard, the downstream frequency range is from 50MHz to

1002MHz and the upstream frequency range is from 5MHz to 85MHz.
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filter in the receiver are the same SRRC filter.
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Figure 2.11 Examples of inphase components in a 4-QAM system at different

points.

The SRRC filter is an industry-standard pulse shaping filter whose impulse re-

sponse is given by [12]:

h(t) =





1− β + 4β/π, t = 0

β√
2

[
(1 + 2

π
) sin( π

4β
) + (1− 2

π
) cos( π

4β
)
]
, t = ± T

4β

sin[πt
T

(1−β)]+4β t
T

cos[πt
T

(1+β)]
πt
T [1−(4π t

T
)2]

, otherwise,

(2.16)

where T is the input symbol rate and β is the roll-off factor. Figure 2.12 shows

samples of the impulse response of a SRRC filter with roll-off factor β = 0.25. In the

figure, the filter impulse response is sampled at t = K T
U
, which is U times the input

symbol rate. U is called the upsamping factor and K is an integer number. In this
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example U = 4. The filter coefficients are normalized such that ‖h‖2 = 1, where h is

a vector that holds the filter coefficients.
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Figure 2.12 Inpulse response of a SRRC filter with roll-off factor β = 0.25.

Returning to Figure 2.11, for the purpose of illustration, the inphase sample se-

quences shown in the figure after pulse shaping and matched filter do not take into

account the delays caused by the filters. The example demonstrates a perfect case, so

the received inphase sample sequence xI [m] is exactly the same as aI [i] at the symbol

times. Note that in the perfect case, the combined response of the pulse-shaping filter

and the matched filter is equivalent to the response of a RC filter. This also implies

that the two SRRC filter lengths are not truncated.

The bandwidth of the QAM signal after the matched filter in the perfect case,

denoted by B, is given as follows:

B = Bnyquist + ∆B, (2.17)

where Bnyquist = 1/(2T ) is the Nyquist bandwidth and ∆B = β/(2T ) is the excess

bandwidth of the filter. The signal bandwidth B has units of cycles per second. Let
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Fs denote the sampling frequency and Ts = T/U as the sampling period at both the

transmitter and the receiver, then

B =
1 + β

2T
=

1 + β

2UTs

=
Fs(1 + β)

2U
. (2.18)

If the sampling frequency Fs is normalized to 1 sample per second, then B becomes

a digital bandwidth which has an unit of cycles per sample. For example, with U = 4,

β = 0.25, the digital bandwidth B equals to 1.25/8 cycles per sample. Equation (2.18)

implies that the higher the sampling frequency, the smaller the digital bandwidth of

the signal. A small digital bandwidth has certain advantages when the signal is passed

through an interpolation filter (discussed in Appendix A).

In a practical receiver, the timing recovery circuit is needed to remove both the

sampling frequency offset and timing offset. The timing recovery process is performed

in a feedback loop as shown separately in Figure 2.13.
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Figure 2.13 Timing recovery loop in a QAM receiver.

The interpolator block is controlled by the Timing Error Detector (TED), which

is the block that estimates the timing offset. The Loop Processor block recovers the

rate M/T and removes the timing offset. Timing recovery is discussed in the next

section.
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2.3 Digital Timing Recovery

In an all-digital QAM receiver, the oscillator is free-running. The receiver’s oscil-

lator is said to be free-running when it is not controllable so that it is synchronized

to the oscillator in the transmitter. The sampling rate Fin is not an exact multiple

of the symbol rate in the transmitter, 1/T . Thus, there is a difference in frequencies

between the oscillators in the transmitter and the receiver. The difference is referred

to as sampling frequency offset. Also, after the frequency offset has been corrected,

the received samples may not be taken at the right time. The difference between

correct and current sampling times is defined as timing offset. More explicitly, tim-

ing offset equals to correct sampling times minus current sampling times. There is

another frequency difference which is the difference in frequency between the up and

down converter oscillators in the transmitter and receiver (not to be confused with

sampling clock oscillators). Even very small, this difference will cause a carrier fre-

quency offset, ∆f0. This frequency offset is modeled in the receiver by denoting the

frequency of the mixers by f0 + ∆f0

Timing offset is illustrated in Figure 2.14, which shows the inphase component of a

4-QAM signal produced by upconverting by 4 the random sequence aI [i] = ±1 before

being passed through a pulse shape filter in the transmitter and a matched filter in

the receiver. Again, both filters are SRRC filters with a roll-off factor β = 0.25.

Two sets of samples are shown, the samples taken at the right time are marked

with a circle, and the samples taken with a fixed timing offset of −T/16 are marked

with an asterisk. A fixed timing offset is equivalent to saying that the sampling rates

for the two sets of samples are the same. In this case, the sampling rate is 4/T , and

the symbol rate is 1/T , i.e., there are 4 samples per symbol interval. The presence of

timing offset degrades system performance, even with the absence of noise.

The carrier frequency offset, sampling frequency offset, and timing offset degrade

the performance of the system. Therefore they need to be removed in the receiver

by a synchronization circuit. In low-speed telephone-line modems, timing problem is
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Figure 2.14 Illustration of timing offset for a 4-QAM inphase signal.

solved by an adaptive equalizer which almost incidentally corrects the timing in the

progress of correcting for transmission dispersion [13]. But in high-speed communi-

cations applications, digital timing adjustment is much more challenging and needs

to be solved separately from the equalization process. The synchronization process is

discussed in [4] where large carrier frequency offsets are removed before the received

signal is passed to the timing recovery circuit. Synchronization to carrier phase at

the receiver occurs after timing recovery. At this point the receiver is synchronized

and the fine tuning of timing and carrier phase often continues during the symbol de-

tection stage. Timing recovery is one of the topics of interest in this thesis. The basic

operation of digital timing recovery circuit using feedback loop is similar to classical

analog phase locked loops [4]. The model of timing recovery is shown in Figure 2.15.

The timing recovery circuit implements a digital interpolator to interpolate be-

tween the received samples to produce the correct strobe (symbol) values. The strobes

are what we call the symbols we want to detect. For example, in our system we will use

four interpolants per one strobe (or QAM symbol). The correct strobe values should
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Figure 2.15 Model of digital timing recovery.

be the same as the values that would appear if the sampling had been synchronized

to the input symbols.

2.3.1 Timing Recovery Loop

The critical operations in timing recovery are the estimation of the timing offset

and interpolating to generate a sample at the right time (the decision time). Several

timing recovery circuits have been proposed in the literature to estimate timing offsets.

High accuracy in the estimation can be obtained by operating the feedback loop with

a small loop bandwidth. This implies that the interpolator introduces little error

in the interpolation. Several interpolators have been proposed with diverse levels of

complexity and performance.
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Symbol

Recovery

Figure 2.16 Timing recovery loop.

In an actual QAM receiver, the loop contains two interpolators and two timing

error detectors. One pair to processes the inphase signal and the other pair processes

the quadrature signal. For the purpose of illustration, we will consider the loop

with only one interpolator and one timing detector as illustrated in Figure 2.16.
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The synchronization process works as follows: the TED estimates the timing offset.

Its output is then filtered by the loop processor and then fed to the interpolation

controller. The controller uses timing error information to control the interpolator

to generate the right interpolants from received samples, x(mTin). The data filter

uses the interpolants to generate the right strobes that are used for data and timing

recovery.

The above mentioned interpolants refer to the output of the interpolator, y(kTout),

which is considered to be at rate Fout = 1/Tout. Basically, Fout is the rate that the

circuit recovers from the sampling rate Fin = 1/Tin. In a QAM system that uses 4

samples per symbol and Fsymbol is the symbol rate, then Fout = 4Fsymbol. The two

control signals that the controller send to the interpolator are enable signals and

fractional delays. The enable signal tells the interpolator what set of input samples

to use for generating a new interpolant and the fractional delay indicates the position

of the new interpolant relative to the received samples.

2.3.2 Gardner Timing Error Detector

The idea behind the Gardner algorithm is to find the zero-crossing point in the

output of the interpolating filter. If the current timing estimation is too early from

the correct timing, then the timing offset is positive, which indicates that the timing

should be advanced. And vice versa, if the current timing is too late, then the timing

offset is negative, which means that the timing should be slower. The important

point is that the Gardner TED does not require any extra information except the

current samples to work (i.e., it is non-data-aided TED). Also, Gardner showed that

for a fixed timing offset, the timing error is independent from any carrier phase

rotation [11]. These properties make the Gardner TED perfectly suited for high

speed QAM applications.

The algorithm was proposed by Gardner to detect timing error that uses only two

samples per symbol, and one of the two samples is used for symbol detection [1]. The

Gardner TED operates upon samples and generates one error sample e[l] (i.e., timing
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error) for each symbol. The index l refers to symbol number. The strobe values of the

lth symbol are denoted by yI[l] and yQ[l]. The pair of samples lying midway between

the (l − 1)th and the lth strobes are denoted as yI[l − 1/2] and yQ[l − 1/2].

The detector’s algorithm is based on the following formula:

e[l] = yI[l − 1/2](yI[l − 1]− yI[l]) + yQ[l − 1/2](yQ[l − 1]− yQ[l]) (2.19)

Timing error gives information about the current timing offset, which is denoted by

τe[l]. Let reconsider an example system that uses 4 samples per symbol (i.e., U = 4).

The input of the Gardner TED (see Figures 2.13 and 2.14) is denoted as y[k]. Then

one symbol (index l) is detected in every 4 consecutive samples (index k). Gardner

TED uses only 2 samples per symbol so the 2 other samples are not needed to compute

timing errors. Figure 2.17 shows the samples that are used by the Gardner TED. The

set of samples marked with an asterisk are late from their correct values (marked with

a circle). The timing error e[l] is negative which indicates that the current timing

offset τe[l] is negative and the samples marked with an asterisk should be slower.
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Figure 2.17 4-QAM inphase samples used by the Gardner TED.
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As we can see, even the samples at correct timing also produce non-zero timing

error. This is because of the randomness of the inphase 4-QAM signal. For alternative

symbols ±1 with 4 samples per symbol, timing error is exactly 0 for samples at correct

timing and at every computation, as midway samples are always equal to 0. The

Gardner TED still works for random symbols because the expected value of timing

error at correct timing is 0. This idea is illustrated by evaluating the input-output

characteristic of the detector, or S-curve. Timing error is now presented as a function

of timing offset. Note that this is different from Equation (2.19) where the timing

error is a function of time as it is digitally computed at every symbol time. The

derivation of S-curve for the Gardner TED is discussed in [11]. Figure 2.18 shows the

theoretical S-curve for PAM (Pulse Amplitude Modulation) using the SRRC pulse-

shaping filter with a roll-off factor β = 0.25. The curve shows expected timing error

for timing offsets varying in one symbol period range.
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Figure 2.18 Theoretical S-curve of the Garder TED for binary PAM.

The S-curve in Figure 2.18 illustrates that the expected timing error has the same

sign as timing offset and is exactly equal to 0 for correct timing (i.e., τe[l] = 0). Note
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that the Gardner TED requires the transition of signal from positive to negative

or vice versa. If there is no transition (no zero-crossing), no timing information is

available. The timing error is then used as the control information for the timing

recovery loop to find the correct timing.

2.4 Asynchronous Sampling Rate Conversion

In some applications like CATV systems, there are facilities that receive television

signals for processing and distribute over a cable television system. Such facilities

are called headends. At a headend the incoming signals are received and processed

for transmissions over the distribution network. The nature of the system calls for a

sampling rate conversion of the received signals. The reason is that the incoming QAM

signals are received at different sampling rates, and the processing which combines

the QAM signals for transmissions over the network requires that all signals be at the

same sampling rate.

The incoming QAM signals originate from different transmitters, and thus have

different data rates. The pulse shaping filter in the receiver, which normally has a

square-root raised cosine frequency response, is designed to run at an integer multiple

of the rate at which the data is received, i.e., the input data rate. The sampling rate

of the incoming signal, referred to in the sequel as the input sampling rate, is then an

integer multiple of the input data rates. The received signals must then be resampled

at a common sampling rate, i.e., the output sampling rate, so they can be combined

together and transmitted over the distribution network.

One example of a setup with sampling rate conversion is illustrated in Figure

2.19, which shows N incoming signals, denoted by x1[m1], x2[m2], . . . , xN [mN ], and

their respective input sampling clocks denoted by clkin 1, clkin 2, . . . , clkin N , with the

sampling rates Fin 1, Fin 2, . . . , Fin N . The sampling rate converter resamples the input

signals at the sampling rate Fout. The output signals y1[k], y2[k], . . . , yN [k] are then

combined to produce z[k], which is then passed to a DAC to produce z(t).
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Figure 2.19 Asynchronous sampling rate conversion.

One of the blocks of interest in this thesis is the sampling rate converter (referred

to as resampler). Resampling is performed by means of interpolating between the

received samples at an input sampling rate to produce output interpolants at an

output sampling rate. The key operation of resampling is to find the distance (referred

to as fractional interval) between an output interpolant and a referenced input sample

(referred to as basepoint index) at each interpolation. The method in this thesis is

to generate two time bases (or accumulators) from the input sampling clock and the

output sampling clock and then synchronize the two time bases by means of a phase

locked loop. There are naturally two approaches to synchronize the time bases. One

approach, referred to as resampling with input clock time base, is to use the output

clock time base as a reference to find the input clock time base. The other method,

referred to as resampling with output clock time base, is to use the input clock time

base as a reference to find the output clock time base. The detailed methods and

approaches will be discussed in Chapter 3.

2.5 Summary

This chapter has discussed fundamental concepts of digital communications that

serves as background of the thesis. The first part reviewed digital modulation, QAM,

and important performance criteria of QAM systems. The second part described the

block diagram of QAM systems and discussed the architecture of QAM transmitters

and receivers. The third part summarized basic ideas of timing recovery in QAM re-
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ceivers and the last part considered digital sampling rate conversion that is performed

in QAM headends.
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3. Asynchronous Sampling Rate Conversion

An asynchronous sampling rate converter, or resampler performs a rate conver-

sion from Fin = 1/Tin to Fout = 1/Tout, where Fin and Fout are incommensurate

with each other. In particular, resampling consists of taking a sequence of samples,

x[m] ≡ x(mTin), at sampling rate, Fin = 1/Tin, and generating a new sequence,

y[k] ≡ y(kTout) by means of interplation between the samples of x[m]. The samples

y[k] are also referred to as the interpolants. This is conceptually described by the

block diagram in Figure 3.1.

Digital

resampler

[ ]x m [ ]y k

in
F

out
F

in
clk

out
clk

Figure 3.1 Model of resampling.

This chapter introduces the important concepts of time base and time base syn-

chronization in hardware that will be used to devise the circuits for asynchronous

sampling rate converters. The methodology will also be used for timing recovery

circuits in Chapter 4. Though the approach is mainly presented for the operation

of asynchronous sampling rate converters, it can be applied to timing recovery with

some modifications.

3.1 Theory of Digital Interpolation

The mathematical model for digital interpolation given in [13] is reviewed by

considering a hybrid method of rate conversion in Figure 3.2.
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Figure 3.2 Block diagram of rate conversion with continuous-time filter.

In this thesis, we use the notations Fin = 1/Tin as the input rate and Fout = 1/Tout

as the output rate of an interpolator. It would be useful to stress that interpolation

is the operation that adjusts the sampling times of the signal and does not change

a local sampling clock or timing wave. To illustrate the concept of resampling, in

Figure 3.2, the input samples are converted to a sequence of analog impulses, which

is then filtered by a continuous-time, analog interpolating filter. The output of the

filter is

y(t) =
∞∑

m=−∞
x(mTin)hI(t−mTin), (3.1)

where m is the input sample index. Let k be the index of the output interpolants.

The interpolants y(kTout) are obtained by evaluating y(t) at time instants t = kTout,

i.e.,

y(kTout) =
∞∑

m=−∞
x(mTin)hI(kTout −mTin), k = 0, 1, ... (3.2)

Equation (3.2) suggests that the interpolants can be computed digitally from the

knowledge of:

• the time instants mTin and the input sequence x(mTin),

• the impulse response of the interpolating filter, hI(t),

• the time instants kTout.

The interpolants resulting from digital calculation are identical to the values from

analog calculation. To give insight into Equation (3.2), express the argument of

impulse response hI(·) as hI((kTout/Tin −m)Tin). Then let

i = int[kTout/Tin]︸ ︷︷ ︸
=mk

−m = mk −m, (3.3)
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which can be viewed as an integer index, while mk is known as the basepoint index [1].

Then decompose (kTout −mTin) = (i + µk)Tin where

µk = kTout/Tin −mk. (3.4)

is the fractional interval. This allows hI(kTout −mTin) to be expressed as hI((mk −
m)Tin + µkTin). It is clear that (mk −m)Tin coincides with an input sample time and

µk is an offset from that sample time.

Assume k > 0 so kTout/Tin is positive and 0 ≤ µk ≤ 1. Suppose, the filter index i

is in the range from I1 to I2. From the above definition, arguments in Equation (3.2)

become mTin = (mk − i)Tin, (kTout −mTin) = (i + µk)Tin. Moreover, m is now in the

range from mk − I2 to mk − I1. The set of I = I2 − I1 + 1 samples in the range from

mk− I2 to mk− I1 is defined as the kth basepoint set. The interpolants are computed

at time kTout = (mk + µk)Tin and the interpolation equation becomes

y(kTout) =
I2∑

i=I1

x((mk − i)Tin)hI((i + µk)Tin). (3.5)

The timing relations between samples and interpolants in Equation (3.5) are de-

picted in Figure 3.3 for the case I1 = −2 and I2 = 1. In this case, the computation

of y(kTout) requires 4 input samples with index m from mk − 1 to mk + 2.
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Figure 3.3 Sample time relations, I1 = −2 and I2 = 1.
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Interpolation Filters

An interpolation filter can be designed using many types of mathematical func-

tions, among which the most efficient one for hardware implementation is polyno-

mial [2]. The simplest polynomial interpolation is linear interpolator, which has the

degree of one and interpolates between two samples. With a linear interpolator, the

filter has two coefficients. Let set I1 = −1 and I2 = 0. Then I = 2 and the interpola-

tion filter can be described by Lagrange coefficients, which are polynomials of degree

1 in µk as follows:




hI [µk] = 1− µk

hI [−1 + µk] = µk

(3.6)

The interpolating equation (3.2) reduces to

y[k] = x[mk](1− µk) + x[mk + 1]µk, (3.7)

where Tin has been set to 1 with no loss of generality. The computation of y[k] using

(3.7) is illustrated in Figure 3.4 where y[k] is the point on the line passing through

x[mk] and x[mk + 1] at a distance of µkTin from x[mk].
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Figure 3.4 Linear interpolation.

Interpolating polynomial filters offer good filter characteristics in stopband re-

sponse and passband response [2]. Also, there is a special FIR structure, namely

Farrow structure, that allows simple handling of filter coefficients [3]. Farrow struc-

ture is applicable only to polynomials. The structure is discussed in Chapter 5. Good
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performance and effective hardware structure make polynomial filters widely chosen

in practise. Mathematical expressions and frequency responses of interpolating poly-

nomial filters are discussed further in Appendix A.

Interpolation Error

Obviously, interpolation filter introduces errors to the signal. The error for the case

of linear interpolation is depicted in Figure 3.5. As can be seen, the linear interpolator

does not perform very well in this scenario. In the ideal situation, y(kTout) should

be on the x(t) curve. The linear interpolator does not provide good interpolation on

curved functions unless the sample rate is very high.
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Figure 3.5 Linear interpolation error.

Interpolation error obviously ties to a certain type of signal. In our system, QAM

signal is taken into consideration when analyzing the error of different types of inter-

polation filters. The performance of polynomial interpolation is evaluated in timing

recovery application based on the MER criterion. As discussed in Chapter 2, MER

is a very useful indicator of the quality of received signals in QAM systems. The

circuit to evaluate MER performance of interpolating polynomial filters is presented

in Chapter 4.
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3.2 Resampling Operations in Hardware

With the background of digital interpolation presented in the previous section, this

section discusses the operations of digital resampling in hardware and then devises

practical resampling circuits that are suitable for hardware implementation. The

model of resampling in Figure 3.1 is now explored further with the presence of an

interpolator block and an interpolator controller block as shown in Figure 3.6.
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controller

m kµ k

Digital resampler

[ ]x m [ ]y k

in
F

out
F

in
clk

out
clk

clk

c
F

Figure 3.6 Resampler.

A new clock signal is introduced in Figure 3.6, which is the system clock clk with

rate Fc. For simplicity, the figure does not show clock domain interfaces between clk

and clkin, and clkout. The interpolator controller generates input sample index m, the

fractional interval µk, and the output interpolant index k, and makes them available

to the interpolator. m can be seen as an input sample enable signal and k can be

seen as an output sample enable signal. The base point index mk is determined from

m and k. Note that the basepoint index mk identifies the I = I2 − I1 + 1 signal

samples while the fractional interval µk identifies the I filter coefficients. The I filter

coefficients are convolved with the I input samples to generate the new interpolant.

Figure 3.7 depicts the sampling time with respect to the input clock and the

output clock. In the figure, one input sample is loaded into the resampler at every

positive edge of clkin and one output interpolant is expected from the resampler at
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every positive edge of clkout. The figure ignores delays caused by the resampler as in a

resampler circuit, y[k] is not available immediately after x[mk]. While the operations

and hardware structure of a polynomial interpolator are straightforward by using

the Farrow structure, the focus of this section is on hardware operations and circuit

designs of the interpolator controller. As discussed in Chapter 1, the methodology

used in this thesis is based on the idea of time base generation and synchronization [7],

which will be presented next.
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Figure 3.7 Sampling time relation.

3.2.1 Time Base Generation

Let’s start by quantizing the time t with two approaches. In the first approach,

the quantized value of t is called the input clock time base and it is denoted by Yin.

Yin is incremented by Tin for every Tin period. In the second approach, the quantized

value of t is called the output clock time base and it is denoted by Yout. Similarly, Yout

is incremented by Tout for every Tout period. Obviously, both Yin and Yout have units

of seconds.

In hardware, Yout can be generated by an accumulator which is clocked by the
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output clock at frequency Fout (units of samples/second). Figure 3.8 shows the circuit

for the time base generator clocked at Fout, i.e., the output clock time base Yout. Yout

is produced by incrementing the content of the register, or accumulator, by Tout at

every clock cycle, Fout. As it is impossible to acquire the exact value of a real number,

Tout is estimated by T̂out in hardware. As a consequence, Yout is the quantized value

of time t with step size T̂out.
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Figure 3.8 Output clock time base generator.

Mathematically Yout is given by

Yout = T̂out × int
[

t

Tout

]
=

T̂out

Tout

t + nout, (3.8)

where nout = −T̂out× frac[t/Tout] is the quantization noise and frac[·] is the fractional

part of a real number. The circuit for the input clock time base Yin is identical. Yin is

generated by Fin with step size T̂in. Again, T̂in is a close estimate of Tin in hardware.

Similar to Yout, Yin is the quantized value of time t with step size T̂in and is given by

Yin =
T̂in

Tin

(t−∆Y ) + nin, (3.9)

where ∆Y represents the timing offset between input and output clocks and nin =

−T̂in × frac[(t−∆Y )/Tin] is the quantization noise. Figure 3.9 depicts the hardware

construction of Yin.
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Figure 3.9 Input clock time base generator.

3.2.2 Time Base Synchronization

Since both Yin and Yout represent quantized values of time t with different step

sizes, they are synchronized if and only if

Yout − Yin = nout − nin. (3.10)

This happens when the slope of the output clock time base ramp, Yout, (see Figure 3.8)

is equal to the slope of the input clock time base ramp, Yin (see Figure 3.9). Both

slopes can be made equal by modifying the step size of one of the time base generator

by an appropriate amount. The right amount is estimated by means of a phase

lock loop (PLL). In other words, the PLL can either estimate T̂in or T̂out so that

T̂in/Tin = T̂out/Tout after the PLL has converged. The timing offset, ∆Y , is removed

in the process of finding the right step size. More precisely, the PLL is set up with

reference T̂out/Tout and feedback output T̂in/Tin or vice versa.

Using PLL solves the problem of rate changing and step estimation, as it syn-

chronizes and makes the circuit adapt to the change in the input sampling rate or in

the output sampling rate. Either Yout is taken as the reference to estimate T̂in, or Yin

serves as the reference to estimate T̂out. Circuits are given for both methods in the

next section.
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3.3 Resampling Circuits

The method to generate and synchronize input clock time base and output clock

time base is applied to devise the circuits for asynchronous sampling rate conversion.

The circuits, referred to as resamplers, are suitable for hardware implementation.

The sampling rate converter circuit which uses the output ramp as the reference is

referred to as a “resampler with input clock time base”. Likewise, the circuit which

uses the input ramp as the reference is referred to as a “resampler with output clock

time base”.

3.3.1 Resampler with Input Clock Time Base

For this case the input clock time base is constructed from the output clock time

base by using the output clock time base as a reference in a PLL. This method is

based on the input time domain Tin. In this case the rate of the system clock clk

in Figure 3.6 must be an integer multiple of the input sampling rate, or Fc = MFin,

where M is an integer number which is taken sufficiently large so Fc > Fout. As the

circuit is clocked by clk, the unit of time in the circuit is Tin/M .

The resampler needs to know the expected output sampling rate Fout, or equiv-

alently, the output clock time base Yout. Yout is then used as the reference to con-

struct/estimate the input clock time base Yin. Yin is then compared with Yout to find

k and compute µk.

The time base generators are set up as follows. Output clock time base Yout is

normalized by fixing the input of the accumulator (i.e., step size) in Figure 3.8 to

T̂out = 1. This causes the output, Yout, to be scaled by 1/Tout.

Yout/Tout is now time t scaled by 1/Tout and then quantized with step size 1. Next

the input clock time base is modified to also generate quantized values of t/Tout as

shown in Figure 3.11.

The step size of the input clock time base is the estimate produced by the PLL

to synchronize input and output time bases. In hardware, Yin is constructed by the
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clock with frequency Fc = MFin. It is now (t −∆YM)/Tout quantized with step size

T̂in/(MTout), where ∆YM is the timing offset between clk and clkout as indicated in

Figure 3.11.

The normalization process makes the circuit much simpler, as the input clock time

base can be compared with integer numbers to generate k and µk. A block diagram

of the resampler with input clock time base is shown in Figure 3.12. It has three

inputs, x[m], clkin and clkout and one output, y[k].

In Figure 3.12 a clock at frequency Fc = MFin is synthesized from clkin using a

built-in PLL in the FPGA. M must be chosen large enough so Fc > Fout. The block

labeled “Output clock time base generator” is the circuit in Figure 3.10. The block
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Figure 3.12 Resampler with input clock time base.

labeled “Input clock time base” is the circuit in Figure 3.11. Its input, denoted by

“adjusted step” in Figure 3.12, is generated by the “Time base synchronizer” block.

This block is the PLL that is set up to estimate T̂in/(MTout), which is the amount by

which Accumulator 1 is to be incremented on each edge of clk, which has frequency

MFin.

A model for the PLL is shown in Figure 3.13, where the phase comparator is

simply the difference between input and output ramps. Accumulator 1 is the “Input

clock time base” block in Figure 3.12, and Accumulator 2 is an additional accumulator

that is needed to hold T̂in/(MTout). Accumulator 2 builds up during the acquisition

phase to settle to T̂in/(MTout). The PLL operates as follows [14]. The average value

of the input to Accumulator 1 must be exactly T̂in/(MTout) for the loop to be locked.

The gain G1 is much larger than G2 so that at start up the loop looks as if the leg

with G2 is not presented. After locking the error signal will fluctuate somewhat wildly

but it will have a DC value of T̂in/(G1MTout) as it must for the loop to be locked.

This DC value causes Accumulator 2 to ramp up or down depending on whether the

error is positive or negative. The input to the Accumulator 1 must have an average
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value of T̂in/(MTout) for the loop to remain locked so the DC value at the output of

G1 diminishes as the output of Accumulator 2 grows. In steady state, the error has

no DC value Accumulator 2 neither grows or diminishes. The output of G1 becomes

AC noise. Of course, the leg with G1 is necessary to make the PLL stable.

In the steady state, the two time bases are synchronized. They are both quantized

representations of t/Tout, one with a step size of 1, and the other with a step size of

T̂in/Tout.
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Figure 3.13 Setting up the PLL with all registers (i.e., z−1) clocked at rate MFin.

The presence of different clocks inside the circuit in Figure 3.12 calls for a special

interface, which allows samples to be written and read using different physical clocks.

The average writing and reading rates are the same but the access to the samples

inside the structure, represented by the block labeled “Clock domain interface” in

Figure 3.12, occurs at different instants of time. Such a structure is best implemented

with a circular buffer and logics to control the access of the buffer. Two of these blocks

are needed, one to interface the clocking of the input samples and the interpolator

and the other one to interface the output of the interpolator and the clocking of the

output samples.

The last block which remains to be described in Figure 3.12 is the “Input enable,
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fractional interval, and output enable generator” block. This module uses the recon-

structed input ramp, Yin/Tout, to produce m, µk, and k. m is basically an input enable

signal for registers that store the value of x[m] and k is an output enable signal for

registers that store the value of y[k]. The kth output interpolant is generated from

the basepoint index mk and the fractional interval µk. The generations of mk and µk

are described as follows.

When the value of Yin/Tout crosses an integer number, the output enable signal k

is set to high. It is set to low otherwise. When k is high (i.e., an integer cross-over

was detected), the last received input sample index m is identified as the basepoint

index mk. The new interpolant is generated at positive edges of Fc when the output

enable signal k is high. Most of the time, especially if M is large, this clock edge

does not coincide with a positive clock edge of clkin. The situation with M = 4 is

depicted in Figure 3.14, where the top graph shows the position of y[k] with respect

to the input samples, the middle graph shows all three clocks and the bottom graph

shows the ramps where both the integer crossing and fractional part (i.e., frac[ Yin

Tout
])

which enters in the computation of µk have been identified.

The computation for µk depends on which clock edge of Fc the integer cross-

over was detected. Since Fc is M times faster than Fin, M clock cycles of Fc occur

between one clock cycle of Fin. Suppose that between input sampling times mkTin

and (mk + 1)Tin, an integer cross-over is detected at the lthk positive clock edge of Fc.

Then µk is given by

µk =
lk
M
− Tout

T̂in

× frac
[

Yin

Tout

]
. (3.11)

Figure 3.14 shows the case for M = 4, lk = 1, lk+1 = 3. There is a division in (3.11)

which needs explanation, as it is not required in the second circuit to be described

later, and causes additional complexity in the calculation of µk. The fractional part,

frac[Yin/Tout], which is used to compute the time that separates the new interpolant

from the input sample, is expressed as a fraction of the output clock cycle. This time

must be converted in units of fraction of the input clock cycle to yield µk. This is
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Figure 3.14 Timing relation in input clock time base resampling.

achieved in (3.11) by dividing frac[Yin/Tout] by T̂in/Tout.

Note that k determines the writing rate and Fout determines the reading rate of

the “Clock domain interface” at the output in Figure 3.12, i.e., the interface for y[k].

When the step size has been estimated and the two time bases have been synchronized,

the resampler is operated in the steady state. In the steady state, the output enable

signal k is high on the average at the same rate as Fout, which makes the writing and
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reading rates the same.

3.3.2 Resampler with Output Clock Time Base

In this method, Yin is used as the reference to construct Yout, which is then used

to generate mk, k and µk. The circuit is shown in Figure 3.15. Here the system clock,

clk at frequency Fc = M × Fout is synthesized, where M is taken sufficiently large

so that Fc > Fin. In case the output sampling rate is higher than the input rate, M

equals to 1 is enough and no PLL-synthesizer is needed.

In this circuit, the step size of the “Input clock time base generator” block is set

to 1 and the step size of the “Output clock time base generator” is determined with

the PLL.
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Figure 3.15 Resampler with output clock time base.

Compared to the circuit in Figure 3.12, the main difference is that a new inter-

polant is produced at every positive edge of the resampling clock Fout. This means

the output enable signal k now is set to high at every positive edge of clkout. It

is low otherwise. In this case, whenever an integer cross-over in the reconstructed

output ramp is detected, m is set to high and a new input sample is loaded into the

interpolator. m is low otherwise. The basepoint index identified by mk is now the
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latest loaded input sample index.

In other words, the roles of m and k are exchanged in the two approaches. In the

first approach, k is set accordingly to the time when an integer cross-over is detected.

In the current approach, m is set instead. In the first approach, m is set to high at

every positive edge of clkin and low otherwise. In the current approach, k is set to

high at every positive edge of clkout and low otherwise.

The fractional interval is simply given by

µk = frac
[
Yout

Tin

]
. (3.12)

In this case there is no division since the fractional part is already expressed as a

fraction of the input clock cycle. Recall that in this method the step size of the output

clock time base generator is adjusted to reproduce the ramp of the input clock, and

therefore its content is directly given in the input clock domain. The timing relation

for the case Fc = 2Fout is depicted in Figure 3.16. The figure puts together the timing

relation between sample times, clkout, clk, clkin, and the construction of the input

clock time base and the output clock time base from the top graph to the bottom

graph, respectively.

As internal PLL synthesizers are readily available in FPGA, any of the two meth-

ods can be applied independently on the relation between input and output sampling

rates. Since the second circuit leads to lower hardware complexity by avoiding a divi-

sion, the second method, namely resampling with output clock time base, is preferred.

3.4 Verification

Both resampler circuits were simulated in Matlab/Simulink software. The input

signal x[m] was generated with 4 samples per symbol using a random BPSK sequence

and a raised cosine pulse shaping filter with a roll-off factor equal to 0.25.

The first simulation is set up as follows. A resampler with input clock time base

is simulated using the Simulink software to resample the input signal from input rate
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Figure 3.16 Timing relation in output clock time base resampling.

Fin to output rate Fout = (4/3)Fin. The circuit is clocked by system clock clk at rate

Fc = 4Fin (i.e., M = 4). The PLL (see Figure 3.13) was set up with small loop gains

to reduce the effect of timing jitter, which is the random fluctuation in the timing [4].

Figure 3.17 shows the evolution of the step size, which converges to 1/3 and

matches to the theoretical value, i.e., the input T̂in/(MTout) of the accumulator in

Figure 3.11. In steady state, the step size is fluctuated around 1/3 as shown in Figure

3.18.
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Figure 3.18 The step size in steady state.

Figure 3.19 shows the convergence of the input clock time base Yin to the output

clock time base Yout (as the reference). Note that the output time Tout is normalized

to 1 second. Figure 3.20 shows the two ramps which are synchronized after the step

size has been converged.

Figure 3.21 shows sets of input samples (marked with a circle) and output inter-

polants (marked with an asterisk) after the circuit has found the correct step size

and the two time bases have synchronized. The corresponding fractional intervals

(marked with an asterisk) are shown in Figure 3.22. Cubic interpolator is used in this
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base.

simulation.

The second simulation is set up to show the Power Spectral Densities (PSDs)

of the resampled signals. The PSDs of the resampled signals were estimated using

Welch’s 50% overlapping method with blocks of length 213 samples intervals [15]. Both

resampler circuits were simulated with two different conversion rates, 10/3 ≈ 3.33 and

10/17 ≈ 0.59 of the input rate, where the input rate was Fin = 4/T with 1/T being the
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Figure 3.21 Input samples and output interpolants.
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symbol rate. The interpolator was a third order Farrow filter1. The PSD estimates

obtained from the resampler with input clock time base are plotted in Figure 3.23

and Figure 3.24 (solid curve) and the PSD estimates obtained from the resampler

with output clock time base are plotted in Figure 3.25 and Figure 3.26 (solid curve).

Theoretical curves (dashed curves) are also plotted in all the graphs of Figures

3.23, 3.24, 3.25, and 3.26. The equation for the theoretical curves is given in (3.13),

which is the frequency response of the raised cosine pulse [16].

1Farrow filter is reviewed in Chapter 5 of this thesis.
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Figure 3.23 Resampler with input clock time base - PSDs for conversion rate≈ 0.59.
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Figure 3.24 Resampler with input clock time base - PSDs for conversion rate≈ 3.33.

H(f) =





1, |f | ≤ 1−β
2T

1
2

[
1 + cos

(
πT
β

[
|f | − 1−β

2T

])]
, 1−β

2T
≤ |f | ≤ 1+β

2T

0, otherwise.

(3.13)

In Equation (3.13), T is the symbol period and β is the roll-off factor, which is a

real number between 0 and 1. The roll-off factor β determines the excess bandwidth

of the filter. The excess bandwidth is the bandwidth occupied beyond the Nyquist

bandwidth of 1/(2T ).

The close agreement between the experimental and theoretical curves strongly

suggests that the circuits work properly. From the plots, the performances of both
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Figure 3.25 Resampler with output clock time base - PSDs for conversion rate ≈
0.59.
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Figure 3.26 Resampler with output clock time base - PSDs for conversion rate ≈
3.33.

circuits appear to be identical. However, the resampler using output clock time base

requires no division for the computation of µk and therefore is the preferred one.

3.5 Summary

The first part of this chapter reviewed basic theory of digital interpolation. In

the second part, the problem of resampling and the method to perform resampling

in hardware have been discussed. The method to perform resampling is time base
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generation and synchronization, which is very suitable for hardware implementation.

The method is fundamental to devise practical circuits for asynchronous sampling

rate conversion in the third part.

In the third part, two resampler circuits were described and simulated with MAT-

LAB/Simulink software. Simulations show that both circuits offer similar perfor-

mance but one of them, namely the resampler circuit which uses the output clock

time base has a hardware implementation advantage over the other one. It does not

require any division to compute the position of the new samples with respect to the

incoming samples. This is a significant advantage in FPGA implementation.

The main contribution of this chapter is the detailed methodology and implemen-

tation of resampling operation in hardware. Practical circuits for digital resampling

have been devised, verified and compared by simulation.

54



4. Digital Timing Recovery

4.1 Timing Recovery Circuits

The concepts and operations of timing recovery were reviewed in Chapter 2. In

this chapter we devise timing recovery circuits with two different approaches. Both

approaches share the basic ideas of time base generation and synchronization de-

scribed in Chapter 3. The major difference between sampling rate conversion circuits

and timing recovery circuits is that, while the sampling rate conversion circuits use

a PLL to synchronize the input clock time base and output clock time base, the

timing recovery circuits use a TED to estimate the timing offset between the cur-

rent sampling times and the correct sampling times. More explicitly, timing recovery

circuits estimate the value of current timing error to build up the step size of the

reconstructed clock time base. The Gardner TED is adopted in this research since it

is very efficient for QAM data [4].

4.1.1 Timing Recovery with Input Clock Time Base

The first approach, referred to as timing recovery with input clock time base,

arises naturally from the timing problem described in Chapter 2. The transmitter

sampling clock is clktx with the sampling rate Ftx and the receiver sampling clock

is clkin with rate Fin. In the receiver, the timing recovery circuit is used to recover

the correct sampling rate Ftx (i.e., remove the sampling frequency offset) and the

correct sampling times (i.e., remove the timing offset). The circuit works in the clkin

time domain, i.e., it is operated with system clock clk with rate Fc = MFin, where

M is an integer number. In the receiver, from the received samples x[m] obtained
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with rate Fin, the timing recovery circuit generates output interpolants y[k] with the

output enable signal k. The objective is to make k active with an average rate equal

to Ftx (i.e., to recover the correct sampling frequency). The timing recovery circuit

also needs to remove the timing offset (i.e., it recovers the correct sampling times).

The time base generation and synchronization are set up as follows. First, Ttx is

normalized to 1 to generate the transmitter clock time base as a reference (see Figure

4.1). The quantity Ytx/Ttx is time t scaled by 1/Ttx and then quantized with step size

1.
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Figure 4.1 Transmitter clock time base.

The timing recovery circuit, in the process of estimating Ftx, will construct an

input (receiver) clock time base that also generates quantized values of t/Ttx. In

other words, the circuit constructs an input clock time base that has the same slope

as the transmitter clock time base. As in Chapter 3 this is called the time base

synchronization process. Note that in this scenario, receiver clock time base and

input clock time base are the same. Since the circuit works in input time domain Tin,

synchronization happens if the step size of the input clock time base is Tin/Ttx. In

hardware, the step size is estimated by T̂in/Ttx.

Since the circuit is operated with clock rate Fc = MFin, Yin/Ttx is (t−∆YM)/Ttx

quantized with step size T̂in/(MTtx), where ∆YM is the timing offset between clk and

clktx. The construction of Yin/Ttx by system clock clk is depicted in Figure 4.2.
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Figure 4.2 Receiver clock time base.

A complete block diagram of the timing recovery circuit with input clock time

base is described in Figure 4.3. The timing recovery circuit has two inputs, x[m] and

clkin. The output of the circuit is the symbol sequence at rate Fsymbol. The output of

the interpolator, y[k], represents QAM interpolants. In the QAM systems that uses

4 samples per symbol, Ftx = 4Fsymbol and one QAM symbol is detected from every

4 consecutive interpolants y[k]. In Figure 4.3, the clock at frequency Fc = MFin is

generated from a built-in PLL in the FPGA device where M is an integer number.

Normally in the context of timing recovery, Ftx is very close to Fin so M = 2 is

large enough for the circuit to operate. More specifically, Fc is the fastest rate the

circuit can generate output enable k so M is chosen to make Fc ≥ Ftx. The block

labeled “Input clock time base” is the circuit in Figure 4.2, which is clocked by clk

at frequency Fc = MFin.

In a QAM receiver, the Gardner TED [1] uses two samples per QAM symbol to

estimate the timing error between the current sampling time and the correct sampling

time (transmitter sampling time). In a system that uses 4 samples per QAM symbol,

one sample in every two consecutive interpolants y[k] is used. The hardware structure

to implement Gardner TED in Equation (2.19) is illustrated in Figure 4.4 for a system

that use 4 samples per QAM symbol [4]. The timing error, i.e., output of the Gardner
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Figure 4.3 Timing recovery circuit with input clock time base.

TED, is then used to adjust the step size of the estimated transmitter time base. This

is the major difference from the resampler with input clock time base, where the step

size was adjusted from the difference between the input clock time base and the

output clock time base.

The circuit to update the step size from timing error is illustrated in Figure 4.5.

It is set up in a similar way as in Figure 3.13 for the PLL of the resampler with input

clock domain. Accumulator 1 holds the value of input clock time base, which is the

block “Input clock time base” in Figure 4.3. All other parts of Figure 4.5 make up

the block “Loop processor” in Figure 4.3. Accumulator 2 is needed to hold the step

size. The acquisition process of Accumulator 2 works as follows. If the current timing

estimation is too early from the correct timing, which indicates that the timing should

be advanced, the Gardner TED equation produces a positive and larger timing error.

This makes the step size larger, which causes the input clock time base Yin/Ttx to

become larger and keeps track with the transmitter clock time base. The error is then

smaller at the next pass through the loop. Conversely, if the current timing is too

late from the correct timing, then the step size becomes smaller to make the timing

earlier.
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Since the output timing error of the Gardner TED is noisy, it is filtered by a

loop filter. Only a small portion of the error is then used to update the step size

T̂in/(MTtx) (Accumulator 2). A bigger portion is used to update the input clock time

base directly. Therefore, in the design, gain G2 is much smaller than gain G1. After
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the loop has found the correct timing, the error is close to 0 and the loop operates

in the steady state. In the steady state, Accumulator 2 contains the step size value

which is approximately equal to Tin/(MTtx).

The time base Yin/Ttx is then used to generate m, µk, and k to be used in the “Input

enable, fractional interval, and output enable generator” block. The computation of

µk and generation of m and k are similar to that in the resampler circuit with the

input clock time base. The fractional interval µk is calculated as in Equation (3.11)

and the timing relationship is depicted in Figure 3.14. The “Input enable, fractional

interval, and output enable generator” block does not require the value of transmitter

time base (as a reference) to detect the integer crossing, so the timing recovery circuit

works without actually generating the transmitter time base.

As an example, if M = 2, Tin = 0.8Ttx, then the step size is equal to 0.4 in the

steady state. In this example, Fin is faster than Ftx, the circuit is operated by clk at

rate Fc = 2Fin. Since the step size equals to 0.4, the output enable k is active every

1/0.4 = 2.5 clk cycles on the average. The average active rate of k is then equal to

Fc/2.5 = Ftx. Thus the circuit recovered the correct sampling rate Ftx. The circuit

also found the correct sampling times since the Garder TED timing error is 0 in the

steady state.

As discussed, there is a division when computing µk, this may introduce additional

errors and hardware complexities to a practical receiver.

4.1.2 Timing Recovery with Output Clock Time Base

The timing recovery circuit with output clock time base is operated by the system

clock clk with the rate Fc = MFout, where Fout is an integer multiple of the symbol

rate. For a system that uses 4 samples per QAM symbol, Fout = 4Fsymbol. The circuit

still uses clkin at rate Fin as the receiver sampling clock. This approach assumes

that the receiver knows the symbol rate Fsymbol and the receiver’s front-end sampling

rate (i.e., Fin) can be different from an integer multiple of Fsymbol. In this scenario,

Fout = Ftx and Fout shall be used instead of Ftx in this subsection. This approach
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could allow a flexibility in choosing the receiver’s front-end sampling rate and make

the processing of QAM symbols after timing recovery easier.

The setup of time bases is as follows. The input (receiver) clock time base is set

up by normalizing the step size as illustrated in Figure 4.6. The output (transmitter)

clock time base is now constructed from the output clock as in Figure 4.7. Again,

the time base synchronization is obtained by processing the timing error of Gardner

TED. In this approach, the TED estimates the timing error to update the step size
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T̂out/(MTin) of the output clock ramp Ŷout/Tin. The complete timing recovery circuit

with output clock time base is depicted in Figure 4.8.
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Figure 4.8 Timing recovery circuit with output clock time base.

The system clock clk with rate Fc = MFout (M is an integer number) is generated

from the PLL synthesizer inside the FPGA device . Normally, Fout is very close to

Fin so M = 2 is large enough for the circuit to read input samples x[m] with rate

Fin. Technically, Fc determines the fastest rate the circuit can read the input signal,

so M should be large enough to make Fc ≥ Fin. In the steady state, the reading

and writing rates at the clock domain interfaces are the same. The operations of this

timing recovery circuit are similar to the timing recovery circuit with input clock time

base. The computation of µk and the generation of m and k are exactly the same as

in the case of resampler with output clock time base. The computation of µk does

not require a division so this is the reason to make the circuit a preferred choice in

many practical applications.

4.2 Performance Analysis

The performance of a timing recovery circuit depends on many factors. One of the

most significant factors is the interpolation error. This raises an interesting question

to system designers: Which type of interpolator is good enough and suitable for
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a certain application? Another factor that can affect the performance of a timing

recovery circuit is self noise caused by a repetition of the symbols with the same

polarity. Self noise degrades the performance of Gardner TED and some techniques

have been proposed to mitigate self noise. In this research, we focus on interpolation

error and try to isolate other factors that might affect the performance of the circuits.

The effect of self noise is minimized by choosing small loop gains (refer to Figure 4.4).

Small loop gains also help to reduce the effect of timing jitter [4].

Model

To analyze the performance of an interpolator in timing recovery, the method

is to use a resampler to change the sampling rate of the original QAM sequence

from sampling rate Ftx to Fin. Then use a timing recovery circuit to recover QAM

sequence back to sampling rate Ftx. The model is described in Figure 4.9 where a[i],

b[j], and a′[i] are QAM sample sequences. Ftx is the input sampling rate, which is

normally 4 times the symbol rate. For the purpose of demonstration, when using the

same symbol index i we ignore clock delays between a[i] and a′[i] introduced by the

whole circuit. The performance of the interpolator under test in the timing recovery

circuit is then obtained from input QAM symbols (the input sample sequence a[i])

and output QAM symbols (detected from output sample sequence a′[i]).

Resampler

[ ]a i

tx
F

tx
clk

Timing 

recovery

[ ]b j

in
F

in
clk

'[ ]a i

Figure 4.9 An approach to timing recovery performance analysis.

To minimize the error caused by the resampler, QAM symbols are upsampled by

16 before passing through the interpolator. To minimize the effect of timing jitter,

a fixed step size is used in the resampler instead of an adjustable step size. In this

way we can eliminate the need of time base synchronizer in the resampler. Recall

that the step size of the input clock time base in the resampler determines the output
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sampling rate of the resampler, denoted by Fin in this case as it is the input rate

of the timing recovery part. The timing recovery part does not know Fin and its

task is to recover the sampling rate Ftx. This design maintains the key requirement

of the timing recovery circuit, namely recovering the symbol time. More explicitly,

timing recovery circuit removes the sampling frequency offset between Fin and Ftx,

and removes the timing offset in its input samples.

To minimize the effect of clock jitter and the error that PLL synthesizer in FPGA

devices could introduce when generating incommensurate sampling clocks, in Figure

4.9 the resampler uses the input clock time base and the timing recovery uses the

output clock time base. The design objective of the performance analysis circuit is to

maximize the combination of random QAM data and fractional intervals. First, the

input QAM symbols a[i] is generated from a random bit sequence. Second, since the

step size of the resampler determines the ratio between Ftx and Fin, the value of that

step size is set to make fractional intervals vary in the range [0, 1]. The design of the

analysis circuit is presented in the next subsection.

4.2.1 Performance Analysis Circuit

The proposed circuit to analyze the performance of different interpolators in tim-

ing recovery is illustrated in Figure 4.10.

The circuit includes the following modules. PLL synthesizer is a PLL inside

the FPGA device to generate clock signal clk with rate Fc. In the design Fc =

Ftx = 4Fout = 16Fsymbol. QAM generator module generates a symbol stream pseudo-

randomly using LFSR (Linear Feedback Shift Register) before passing through a RC

filter and an up-sampler by 16 to generate QAM sample sequence x1[m1] at rate Ftx.

x1[m1] is then the input sample sequence with 16 samples per QAM symbol, and

QAM symbols are at right timing.

The resampler implements a cubic interpolator and generates an input clock time

base at a fixed step size. In the design, the step size is set to 0.99 to make the output

sampling rate Fout1 = 0.99 × Ftx. This simulates the effect of sampling frequency
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Figure 4.10 Performance analysis circuit for interpolators in timing recovery.

offset and timing offset experienced in the sequence y1[k1] or b[j]. The sequence y1[k1]

is then down-sampled by 4 before passing to the timing recovery circuit. The down-

sampling by 4 of y1[k1] is implemented by simply down-sampling by 4 the output

enable k in the resampler.

Sequence y1[k1] is written to the clock domain interface with rate Fout1. In the

steady state (i.e., the step size is fluctuated around a stable value), timing recovery

circuit reads from the clock domain interface with the same rate, Fout1. Recall that

the timing recover circuit with output clock time base generates m at the same rate
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as the input samples of the circuit (in this case Fout1). The interpolator under test

could be a linear interpolator, cubic interpolator or parabolic interpolator.

The workspace analyzes performance of the timing recovery circuit. The module

to compute MER from the input QAM symbol sequence and the output QAM symbol

sequence is operated at symbol rate Fsymbol. The workspace uses MATLAB software

to do the computation for both Simulink simulation and FPGA implementation.

A summary of the main operations is as follows. A sequence of QAM samples

(with 16 samples per symbol) is generated from the QAM generator and upsampled

by 16. The resampler with input clock time base operates at rate Fc = 16Fsymbol

and changes the input QAM samples from rate Ftx = 16Fsymbol to Fout1 = 0.99Ftx.

The down sampler by 4 reduces the rate from Fout1 to Fin = 0.25Fout1. The timing

recovery circuit with output clock time base operates at clock rate Fc/4 and recovers

the right sampling rate, i.e., 0.25Ftx. Note that in the design, the resampler is clocked

by Fc = 16Fsymbol and the timing recovery circuit is clocked with rate 8Fsymbol. In

this way, error from using incommensurate clocks is avoided.

4.2.2 Results and Evaluation

The performance analysis circuit is simulated using MATLAB/Simulink software.

To accurately measure the performance of interpolation filters, simulation is set up

without the presence of noise. Also, a square 2λ-QAM constellation can be simplified

by considering only its inphase component (or its quadrature component). This is

equivalent to a 2
λ
2 -PAM modulation. Figure 4.11 shows a 2-PAM signal as the input

of the performance analysis circuit. The filter is a RC with roll-off factor β = 0.25.

The filter’s sampling frequency equals 16 times the input symbol rate and the filter’s

group delay equals to 10 input symbol periods. The delay caused by the RC filter is

not shown in the figure for the purpose of illustration.

As discussed in Chapter 1, MER is chosen as performance indicator for an inter-

polator in timing recovery. In timing recovery, the input sampling frequency is often

very close to the transmitter sampling frequency. This implies that the step size of the
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Figure 4.11 2-PAM sample sequences before and after shaping filter.

resampler can be initialized to 0.5 at the startup of the simulation. Recall that the

timing recovery part of the performance analysis circuit is clocked at twice the rate

of the output interpolants (i.e., M = 2). During the simulation, the loop processor

should be able to adjust the step size to converge to 0.495 as Fout1 = 0.99×Ftx. The

evolution of the step size in the timing recovery part is shown in Figure 4.12 for the

case of 2-PAM input signal.
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Figure 4.12 Evolution of the step size in timing recovery.
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After the loop has found the correct step size and has removed the timing offset,

it operates in the steady state. The input sample sequence and the output sample

sequence of the interpolator under test are illustrated in Figure 4.13. The figure shows

that the circuit has found the correct symbol sequence (see also Figure 4.11).
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Figure 4.13 Example of 2-PAM signal in the timing recovery part.

MER measurement of the circuit is evaluated from the output symbol sequence

and the input symbol sequence. Three of the most common types of polynomial

interpolation filters to be evaluated are linear interpolator, parabolic interpolator,

and cubic interpolator. Figure 4.14 shows how different filters interpolate between a

set of 2-PAM input samples after RC pulse-shaping with 4 samples per symbol.

Pulse-shaping filters are also taken into consideration as they affect the PAM

signal as the input of the interpolator under test. The pulse-shaping filter is chosen
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Figure 4.14 Polynomial interpolation.

to be an RC filter with different roll-off factors and different filter’s group delays.

Figure 4.15 shows the MER performance of a cubic interpolator for 2-PAM signals.

Observe from Figure 4.15 that in the high group delay range, the smaller the roll-

off factor is, the better the MER performance becomes. A small roll-off factor means

that the bandwidth of the PAM signal at the input of the cubic interpolator is small

(see Equation (2.18)) and the interpolation filter causes less distortion to the signal

(see also Section A.4). Less distortion to the signal increases the MER performance.

This is not true for the small group delay range, when a bigger roll-off factor leads to

a better performance. The reason is that truncation has more effect to the filter for

a small roll-off factor than that of a bigger roll-off factor as illustrated in Figure 4.16.

The simulation results show that the cubic interpolator offers good MER per-

formance for 2-PAM signals. In a practical system where hardware resource is an

important consideration, a RC filter with roll-off factor β = [0.2, 0.3] can provide a

MER of about 52 dB without the need of having a long pulse-shaping filter’s length.
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Figure 4.17 shows the MER performance with the linear interpolator. As can

be seen from Figures 4.15 and 4.17, the cubic interpolator outperforms the linear

interpolator in MER performance. The difference is approximately 20 dB. The MER

performance with the parabolic interpolator is shown in Figure 4.18. It is interesting

to note that in the large roll-off factor range, an RC filter with a short filter length

offers a better performance than the one with a longer filter length. This can be

explained by the fact that the parabolic interpolator adds some amplitude gain to

the signal (see Appendix A).
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Figure 4.17 MER performance with the linear interpolation filter for 2-PAM signals.

In general, the cubic interpolation filter offers a significant MER performance ad-

vantage over the parabolic and linear interpolators. The linear interpolation filter,

not surprisingly, has the worst performance. Also, there is not much difference in

performance between the linear interpolator and the parabolic interpolator, even the

hardware structure of the linear interpolator is much more simpler than that of the

parabolic interpolator. Finally, results show that the MER performance of an inter-

polator does not depend at all on the order of PAM modulation. This is illustrated
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Figure 4.18 MER performance with the parabolic interpolation filter for 2-PAM

signals.

in Figures 4.19 and 4.20 for a cubic interpolator with 4-PAM and 8-PAM signals,

respectively.

4.3 Summary

In the first part of this chapter, two timing recovery circuits were described. The

circuits were devised based on the idea of time base generation and synchronization

in Chapter 3. The operations of the two timing recovery circuits are similar to that of

the two resampler circuits discussed in Chapter 3. The timing recovery circuit with

the output clock time base does not require any division to compute the position of

the new samples. This is a significant advantage in FPGA implementation.

The second part of this chapter is devoted to the performance analysis of polyno-

mial interpolation filters in timing recovery context. A model was proposed and

a performance analysis circuit was devised. The circuit was simulated in MAT-

LAB/Simulink software. Three types of interpolation filter, namely cubic interpo-
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Figure 4.19 MER performance with the cubic interpolation filter for 4-PAM signals.
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Figure 4.20 MER performance with the cubic interpolation filter for 8-PAM signals.
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lator, parabolic interpolator and linear interpolator, were evaluated in terms of MER

for PAM/QAM signals. Simulation results show that the cubic interpolator offers

very good MER performance for RC-shaped PAM/QAM signals and it outperforms

linear interpolator and parabolic interpolar by about 20 dB.

The main contributions of this chapter are the comparison between the two meth-

ods of timing recovery and the MER performance analysis of polynomial interpolation

filters for PAM/QAM signals. The results can provide a good reference for a system

designer on the selection of an interpolation filter and a pulse-shape filter given per-

formance requirements and hardware resource availability.

74



5. Hardware Implementation in FPGA

This section presents the FPGA implementation of the performance analysis cir-

cuit for timing recovery in Figure 4.10 (Chapter 4). It focuses on the design of

“polynomial interpolators” in Farrow structure, “input enable, fractional interval,

and output enable generators”, “clock domain interface”, and “loop processor”.

5.1 Polynomial Interpolators

The three interpolators considered in this thesis are linear interpolator, parabolic

interpolator and cubic interpolator. Those interpolators are three most common type

of polynomial interpolators. The mathematical background for these interpolators is

reviewed in Appendix A.

Linear Interpolator

For a linear interpolator, Equation (3.7) is written as follows:

y[k] = x[mk + 1]µk + x[mk](1− µk). (5.1)

In essence, a linear interpolator can be considered as a filter with 2 coefficients, µk

and µk + 1. The design of a linear interpolation filter is shown in Figure 5.1 where

input enable is an enable signal for the registers that store the input samples.

The input samples and output interpolants are chosen to be 14-bit signed numbers

as many ADC/DAC standards use 14-bit length for digital signals. Signed numbers

are represented in two’s complement arithmetic. The fractional intervals are chosen

to be 20-bit signed number. As 0 ≤ µk < 1, the signed bit of µk, i.e., the most
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Figure 5.1 FPGA design of a linear interpolator.

significant bit, is always equal to 0. A fractional interval number is then quantized

with an accuracy of 2−19. There is a 19-bit truncation when computing the output

y[k]. The design can be reduced to use only 1 multiplier if Equation (5.1) is rewritten

as follows:

y[k] = (x[mk + 1]− x[mk])µk + x[0]. (5.2)

Figure 5.2 shows the equivalent FPGA design for Equation (5.2). Two adders are

used instead of one adder in the design in Figure 5.1. But since a multiplier costs

much more resource than an adder, the design which uses one multiplier is preferred.

The output interpolant y[k] is then written to a register when output enable k is

high. The output enable is also an enable signal for the register that stores y[k]. For

the purpose of illustration, the design does not show delays in multipliers and adders.

Normally the output of a multiplier or an adder is delayed by one clock cycle. In a

real implementation, the input of an interpolator needs to be delayed according to the

delay caused by adders and multipliers. For example, in Figure 5.2, if the first adder

(the one that subtracts x[mk] from x[mk + 1]) has one clock cycle delay, then the

fractional interval µk has to be delayed one clock cycle before being used to multiply

with the output of the first adder. Also, x[k] needs to be delayed two clock cycles

before being added to the output of the multiplier.
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An interpolation filter can compute interpolants basically in two approaches. The

first approach is to compute the filter coefficients as functions of µk for each inter-

polant. In this way, all the filter coefficients need to be computed before generating

the output interpolant. This approach is not efficient as the filter coefficients are poly-

nomials of µk and computations require more resources. The second method is to the

compute interpolants directly without finding filter coefficients. Since the purpose is

to generate interpolants, not to explicitly build the filters, the second approach is the

preferred one in a real implementation. For a linear interpolator, the two approaches

are not much different. For the designs of parabolic interpolator and cubic inter-

polator, the two approaches are significantly different. The hardware structure for

the second method was originally proposed by Farrow [3]. The designs of parabolic

interpolator and cubic interpolator following the Farrow structure are described next.

Cubic Interpolator

The impulse response of a polynomial filter can also be represented in the following

form [2]:

hI [(i + µk)Tin] =
N∑

l=0

bl(i)µ
l
k, i = I1, . . . , I2. (5.3)
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Substituting (5.3) into (3.5) yields:

y[k] =
I2∑

i=I1

x[mk − i]
N∑

l=0

bl(i)µ
l
k

=
N∑

l=0

µl
k

I2∑

i=I1

bl(i)x[mk − i]

︸ ︷︷ ︸
v(l)

(5.4)

=
N∑

l=0

µl
kv(l),

where

v(l) =
I2∑

i=I1

bl(i)x[mk − i]. (5.5)

The most efficient approach to evaluate y[k] is to use nested evaluation. For a

cubic interpolator, it has the following form:

y[k] = [v(3)µk + v(2)µk + v(1)]µk + v(0). (5.6)

The evaluation of Equation (5.6) can be effectively implemented in hardware by

using the Farrow structure. The computation of y[k] is then performed by a cascade

of N multiplications where N is the order of the polynomial. Here N = 3 for cubic

interpolation. Each multiplier has the fractional interval µk as one of its input. In

this way, the structure transfers only µk for each interpolation instead of I filter

coefficients. The block diagram for cubic interpolation is shown in Figure 5.3, where

I1 = −2 and I2 = 1. The Farrow coefficients bl(i) for cubic interpolator are found

from Equation (A.16) and they are shown in Table 5.1.

Table 5.1 Farrow coefficients bl(i) for cubic interpolator.

i l = 0 l = 1 l = 2 l = 3

−2 0 −1
6

0 1
6

−1 0 1 1
2

−1

0 1 −1
2

−1 1
2

1 0 −1
3

1
2

−1
6
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Figure 5.3 Farrow structure for cubic interpolator

As coefficients bl(i) are fixed, they can be implemented with a lookup table or using

shift/add operations for some special cases. In this thesis, the coefficients in Table

5.1 are scaled up 6 times and the result are divided by 6. In this way, coefficients bl(i)

become 0, ±1, ±2, ±3, and ±6. The multiplication by 2 can be easily implemented

by a shift operation. Similarly, the multiplication by 3 can be implemented by a shift

operator and an adder. The multiplication by 6 can be computed by a multiplication

by 3 and a multiplication by 2. Also, the division by 6 of the result can be implemented

by a shift operator and a multiplication by a constant 1/3.

Parabolic Interpolator

The coefficients bl(i) for a parabolic interpolator can be derived from Equation

(A.20). Table 5.2 lists the coefficients where α is the parameter that controls the

piecewise parabolic function (see Appendix A).

It can be seen that the coefficients become convenient to use when α = 0.5. The
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Table 5.2 Farrow coefficients bl(i) for piecewise parabolic interpolator.

i l = 0 l = 1 l = 2

−2 0 −α α

−1 0 α + 1 −α

0 1 α− 1 −α

1 0 −α α

multiplication by 0.5 can be implemented as a shift operator. The multiplication by

1.5 can be implemented as a shift operator and an adder. The Farrow structure for a

parabolic interpolator is similar to the structure of a cubic interpolator. It is actually

simpler with only 2 cascade multiplications by µk.

Farrow structure provides an efficient method to implement polynomial interpo-

lators in hardware. In a real implementation, as discussed for the case of linear

interpolator, proper clock delays caused by adders/multiplicators need to be taken

into account. Also, enable signals for registers need to be properly controlled.

5.2 Fractional Interval Generator

“Fractional interval generator” is a short name used for the module “Input enable,

fractional interval, and output enable”. The design of a fractional interval generator

is similar for both resampler/timing recovery methods (i.e., input clock time base or

output clock time base). The only difference is that in the input clock time base

method, in the process of generating fractional intervals, the circuit also generates

output enable signal k. On the other hand, with the output clock time base method,

the circuit generates the input enable m. The design of each method is discussed

separately in the following.

Input Clock Time Base Method

In the performance analysis circuit (see Figure 4.10), the resampler uses fixed step

size 0.99 to resample the rate Ftx to 0.99Ftx. As discussed in Chapter 4, the resampler
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can be clocked at rate Ftx. Since the resampler is clocked with the same rate as the

input sampling rate, M = 1, lk = 1, and the step size ∆ = T̂in/Tout = 0.99. Then

Equation (3.11) becomes

µk = 1− 1

∆
× frac

[
Yin

Tout

]
. (5.7)

This setting makes the hardware design much more easier since the input clock time

base, the output clock time base and the fractional interval generator blocks can be

integrated into one single block as illustrated in Figure 5.4.
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⊕
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step ∆

20

⊕

1

20

Figure 5.4 Fractional interval generator for input clock time base method.

The accumulator in Figure 5.4 is the modified input clock time base. The accu-

mulator uses 20 least significant bits to keep the fractional part of the input clock

time base and 1 most significant bit (MSB) to detect integer-cross overs. At every

positive edge of clock that MSB changes, an integer-cross over is detected, and the

output enable k is set to high. At a positive edge of clock that MSB does not change,

there is no integer-cross over and k is set to low. Recall that integer-cross over means

the input clock time base crosses the output clock time base. When k is high and µk
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is available, a new interpolant is generated. Note that in the design, there is no need

to actually generate output clock time base. It is implied that values of output clock

time base are integer numbers.

Output Clock Time Base Method

A similar approach is applied to the fractional interval generator in the output

clock time base method. The input clock time base, the output clock time base

and the fractional interval generator blocks are integrated into one single block. The

design is shown in Figure 5.5 for a general case and it is much simpler than in the

input clock time base method.

accumulator

⊕

k
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Input enable

c
F

20

A=B

reg

A

B
reg

EN 20

MSB

d q

q

clk

20

1

m

step ∆

Figure 5.5 Fractional interval generator for output clock time base method.

Similarly, the accumulator in Figure 5.5 is the modified output clock time base.

The fractional part of the output clock time base is kept in the 20 least significant bits

of the accumulator. Integer-cross overs are detected from the accumulator’s 1 MSB.

At every positive edge of clock that MSB changes, an integer-cross over is detected,

and the input enable m is set to high. That means one input sample is loaded to
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the interpolator. At a positive edge of clock that MSB does not change, there is no

integer-cross over and m is set to low. There is no need to actually generate input

clock time base as it is understood to be an integer.

5.3 Loop Processor

Figure 5.6 shows a design of the loop filter inside the loop processor (see Figure

4.5). The filter is enabled by the symbol enable signal as timing error is only available

every symbol period.

EN
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clk 
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20

reg

reg

Symbol enable

Timing error
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a

Loop filter’s 

output

20

20

truncation

19

20

truncation

19

20

20

Figure 5.6 FPGA design of a loop filter.

The designs of Gardner TED and and other parts of the loop processor are straight-

forward from the descriptions in Figures 4.4, 4.5, respectively.

5.4 Clock Domain Interface

A “clock domain interface” interfaces two blocks/systems working at two differ-

ent clocks. This interfacing is one of the main challenges in hardware design as

data transfers may suffer from setup and hold violation, metastability and unreliable.

There are several approaches to solve the problem of interfacing. Two of the most

common ones are handshake signaling and asynchronous FIFO (First In First Out).

In handshake signaling, sender asserts the request-to-send signal, and receiver asserts

the acknowledge-to-accept signal. Data is only transferred after the handshaking has
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been setup. An asynchronous FIFO stack has two interfaces. One interface for writ-

ing the data into the FIFO by a writing clock and a writing enable signal. The other

for reading the data out by a reading clock and a reading enable signal. The second

method is more efficient in our system as it provides faster exchange rates than in

the first method, where the handshaking takes several clock cycles to set up.

The design for a clock domain interface is shown in Figure 5.7 [7]. The design

builds on the idea of asynchronous FIFO with some modifications. For example, there

is no full or empty signal as in a common FIFO .
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sample_out
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Figure 5.7 FPGA design of a clock domain interface.

Samples are written to the interface by clk a and controlled by write en (write

enable) signal. Samples are read from the interface by by clk b and controlled by

read en (read enable) signal. There are 4 registers to store samples in the interface.

Two counters are included to control the writing and reading inside the interface.

Also, a wait signal is introduced to avoid the situation of writing and reading one

84



register at the same time. In the steady state, wait will be inactive.

5.5 Performance Analysis

The performance analysis circuit was designed using Verilog HDL (Hardware De-

scription Language) and implemented in an Altera DE2 board. The generation of

random input binary sequence in hardware can be implemented by means of a linear

feedback shift register (LFSR). A LFSR can produce a sequence of bits which appears

random, i.e., pseudo-random sequence.

Data from the FPGA device is captured via a SignalTap module and then trans-

ferred into MATLAB workspace for performance analysis. The length of the symbols

to be captured in SignalTap depends on the memory of the FPGA device. For a

2-PAM signal, the signal is constructed by passing a sequence ±1 through a RC filter

with roll off factor β = 0.25. The choice of β = 0.25 follows from the simulation setup

in Chapter 4, which provides good MER performance without the need of a long RC

filter’s length. Figures 5.8 and 5.9 show the input symbol sequence and the output

symbol sequence after timing recovery for MER values of 26.5 and 50dB, respectively.

For Figures 5.8 and 5.9, 2-PAM symbols are two’s complement numbers with 14-

bit length. The input signal is a pseudo-random ±211 sequence generated from the

LFSR module. The result suggests the circuit works properly since timing has been

recovered and symbols have been detected correctly. Figure 5.10 shows the MER

performance of the cubic interpolation filter for different lengths of RC pulse-shaping

filters.

The MER performance curve in Figure 5.10 matches very well with the simula-

tion results. Obviously there is always some difference in performance between a real

implementation and a MATLAB/Simulink simulation. The difference in this case is

about 2.5 dB. This is most likely caused by the effects of truncation in the real imple-

mentation. The agreement between implementation and simulation results suggests

that the design methodology and circuits in this thesis are practical and suitable for
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Figure 5.8 2-PAM input symbol sequence and output symbol sequence for MER

of 26.5 dB.
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Figure 5.10 MER performance of the cubic interpolation filter for 2-PAM signals in

FPGA implementation and MATLAB simulation for β = 0.25.

hardware implementation.

5.6 Summary

This chapter presented the FPGA implementation of the performance analysis

circuit for timing recovery of PAM/QAM signals introduced in Chapter 4. The hard-

ware structure of the circuit is described in detail and the circuit was implemented in

a real FPGA device. The implementation results show that the circuit works prop-

erly, which validates the practicality of the resampler and timing recovery circuits

described in this thesis.
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6. Conclusions

The methodology of time base generation and synchronization provides a very

practical and convenient approach to digital resampling. Based on the methodology,

two methods were applied to devise resampling circuits, which can perform virtually

any rate conversion. Both circuits offer similar performances but one of them, namely

the resampler circuit which uses the output clock time base, does not require any

division to compute the position of the new samples with respect to the incoming

samples. Also, the computation is more desirable as it happens at positive edges of

the output sampling clocks and this makes the circuit even more simpler. These are

significant advantages in hardware implementation.

The performance of polynomial interpolation filters was investigated in terms of

MER. The proposed model was able to measure effectively the MER performance

due to the use of different interpolation filters. It was shown that MER performance

depends strongly on the spectrum of the input signal, which is governed by the pulse-

shaping filter. In general, the cubic interpolator offers an excellent performance,

which can be as high as about 52.5 dB. The linear interpolator, with a very simple

structure, can provide a decent MER performance, about 31.5 dB. This may still

lead to very good BER results in some applications. The parabolic interpolator,

which is more complicated than the linear interpolator, offers only a slightly better

performance (when the parameter α is set to 0.5). The results also show that the

order of PAM/QAM modulation has only a small effect to the MER performance.

The excellent agreement between MER performance from MATLAB/Simulink

simulation and hardware implementation gives a strong evidence about the perfor-
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mance of the interpolation filters if being used in an actual QAM system. The results

can provide a system designer with a good selection of pulse-shaping filter’s length

to meet the requirements on performance and hardware resources.

Future research could be done on some modifications of the interpolation filters

so that they can provide a better MER performance for QAM signals. The linear

interpolation filter is very attractive for modification as it has a very simple structure.

Also, other types of interpolation filters and pulse-shaping filters can be investigated.
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A. Polynomial Interpolation Filters

For convenience, the mathematical model of interpolation in Figure 3.2 (Chapter

3) is redrawn in Figure A.1.

Fictitious

DAC

Continuous

-time filter

Sampler

Analog 

interpolated 

signals

Analog 

impulses

in( )x mT
out( )y kT( )x t ( )y t

outt kT=

( )Ih t

Figure A.1 Rate conversion with continuous-time filter.

The interpolants are computed at time kTout = (mk +µk)Tin and the interpolation

equation is

y(kTout) =
I2∑

i=I1

x((mk − i)Tin)hI((i + µk)Tin). (A.1)

The bandlimited signal x(t) in Figure A.1 can be reconstructed, i.e., y(t) = x(t),

if the filter hI(t) is an ideal filter with impulse response [17]

hI(t) =
sin(πt/Tin)

πt/Tin

. (A.2)

As can be seen, the ideal filter is not practical since it is an IIR and noncausal

filter. That means y(t) can never be the same as x(t) in practise. Since the objective

here is to compute the interpolants, a practical interpolation filter does not need to

recover the input waveform and can be derived from many other types of mathemat-

ical functions. Among which the most efficient one for hardware implementation is

polynomial [2]. This means that the impulse response hI(t) of the continuous filter in

Figure A.1 is a polynomial in t and y(t) is approximated by a varying continuous-time
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polynomial pk(t), i.e., y(kTout) = pk(kTout). The subscript k in pk(t) indicates that

the approximating polynomial is different for each y(kTout).

As a special case, if pk(mTin) = x(mTin) for all I points of the kth basepoint set,

and for all k, then pk(t) is said to be an interpolating polynomial. An interpolating

polynomial can be described in terms of its Lagrange coefficients. The coefficients

are polynomials of degree I − 1 in t, or equivalently µk if a basepoint index mk

is explicitly defined. To obtain a unique basepoint set for an interpolant, the two

following conditions must be satisfied [17]:

• the number of samples in the basepoint set must be even,

• interpolation is performed only in the central interval of the basepoint set.

The three most common types of interpolating polynomials are linear interpola-

tion, parabolic interpolation, and cubic interpolation. Those interpolators are dis-

cussed next.

A.1 Linear Interpolator

For the case of linear interpolator, the interpolating filter takes only two coeffi-

cients, with indices I1 = −1 and I2 = 0. The interpolation equation is

y(kTout) =
0∑

i=−1

x[(mk − i)Tin)]hI [(i + µk)Tin] (A.3)

= x[mkTin]hI [µkTin] + x[(mk + 1)Tin]hI [(−1 + µk)Tin]. (A.4)

Without lost of generality, let Tin = 1, and note that kTout = (mk + µk)Tin. The

linear interpolation equation becomes

y(mk + µk) = x[mk]hI [µk] + x[mk + 1]hI [−1 + µk]. (A.5)

And also, the basepoint index mk can be set to 0 without any lost of generality.

Then we have

y(µk) = x[0]hI [µk] + x[1]hI [−1 + µk]. (A.6)
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Now we need to find the Lagrange coefficients hI [µk] and hI [(−1 + µk)] for the

linear interpolator. The approach is to fit a first order polynomial, pk(µ) = aµ + b,

through x[0], x[1] and then compute y(µk) by taking value of pk(µ) at µ = µk. To

find a and b, notice that





pk[0] = x[0] = b

pk[1] = x[1] = a + b
(A.7)

Thefore




a = x[1]− x[0]

b = x[0]
(A.8)

The first order polynomial pk(µ) is

pk(µ) = (x[1]− x[0])µ + x[0] (A.9)

Now to compute y(µk), we take the value of pk(µ) at µ = µk:

y(µk) = pk(µk) = aµk + b

= (x[1]− x[0])µk + x[0] = x[1]µk + x[0](1− µk) (A.10)

From Equations (A.10) and (A.6) we have the following Lagrange coefficients for

a linear interpolator:





hI [µk] = 1− µk

hI [−1 + µk] = µk

The frequency response of a linear interpolator filter is plotted in Figure A.2 for

µk = 0.1, 0.3, 0.5. Note that the responses for µk and 1− µk are the same.

Figure A.2 shows the amplitude and phase distortions caused by the filter to the

signal. It can be seen that the linear interpolation filter attenuates the amplitude of

a signal more when µk is increased from 0 to 0.5. There is a significant distortion for

the case of µk = 0.5 at the high frequency range.
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Figure A.2 Frequency response of the linear interpolator.

The group delay of a filter, denoted by τg, is defined as the derivative of radian

phase shift with respect to radian frequency [18]:

τg = −dφ(ω)

dω
, (A.11)

where ω is the angular frequency and φ(ω) is the radian phase shift introduced by the

filter. Equation (A.11) suggests that if the phase response of a filter is linear, then

the filter has a constant group delay at all frequencies. This constant group delay is

a desirable property of a filter as there is no phase distortion for selected frequencies.

As the phase response of the linear interpolation filter with µk = 0.5 is linear, the

group delay is equal to minus the slope of the linear phase response of the filter. It

is 0.5 samples in this case. The linear phase is a good filter characteristic, but it is

not the case for other values of µk. When the phase response is not linear, the filter

introduces phase distortion to the output signal.
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A.2 Cubic Interpolator

For a cubic interpolator, there are four coefficients, and I1 = −2 and I2 = 1. The

interpolation equation is

y(kTout) =
1∑

i=−2

x[(mk − i)Tin]hI [(i + µk)Tin] (A.12)

Without lost of generality, we can set Tin equal 1 and eliminate Tin from the above

equation. Noting that kTout = (mk +µk)Tin, the cubic interpolation equation become

y(mk + µk) =
1∑

i=−2

x[mk − i]hI [i + µk] (A.13)

The basepoint index mk can also be set to 0 without any lost of generality. This gives

y(µk) =
1∑

i=−2

x[−i]hI [i + µk] (A.14)

To find the Lagrange coefficients hI [(i + µk)] for i = −2,−1, 0, 1, pass a third

order polynomial, pk(µ) = aµ3 + bµ2 + cµ+d, through x[−1], x[0], x[1], x[2] and then

compute y(µk) by taking value of pk(µ) at µ = µk. The results are:




a = −1
6
x[−1] + 1

2
x[0]− 1

2
x[1] + 1

6
x[2]

b = 1
2
x[−1]− x[0] + 1

2
x[1]

c = −1
3
x[−1]− 1

2
x[0] + x[1]− 1

6
x[2]

d = x[0]

(A.15)

From a, b, c, d in Equation (A.15) one has an equation for the polynomial pk(µ).

The interpolant y(µk) = pk(µk) is computed as follows:

y(µk) = x[2]
(

1

6
µ3

k −
1

6
µk

)
+ x[1]

(
−1

2
µ3

k +
1

2
µ2

k + µk

)

+x[0]
(

1

2
µ3

k − µ2
k −

1

2
µk + 1

)
+ x[−1]

(
−1

6
µ3

k +
1

2
µ2

k −
1

3
µk

)
(A.16)

From Equation (A.16), the Lagrange coefficients for a cubic interpolator are:




hI [−2 + µk] = 1
6
µ3

k − 1
6
µk

hI [−1 + µk] = −1
2
µ3

k + 1
2
µ2

k + µk

hI [µk] = 1
2
µ3

k − µ2
k − 1

2
µk + 1

hI [1 + µk] = −1
6
µ3

k + 1
2
µ2

k − 1
3
µk

(A.17)
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The frequency response of a cubic interpolation filter is plotted in Figure A.3 for

µk = 0.1, 0.3, 0.5.
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Figure A.3 Frequency response of the cubic interpolator.

Similar to the linear interpolation filter, the cubic interpolation filter causes the

worst distortion to the signal amplitude for the case µk = 0.5. Comparing Figure A.3

with Figure A.2, it is seen that the cubic interpolator causes less amplitude distortions

to the signal than in the case of the linear interpolator.

A.3 Piecewise Parabolic Interpolator

Beside the classical linear and cubic polynomial interpolators, Erup [2] proposed

a four points interpolating filter with piecewise parabolic impulse response. Similarly

to the case of a cubic interpolator, set I1 = −2, I2 = 1, Tin = 1, and mk = 0. The
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interpolating filter has four coefficients [11]:





hI [−2 + µk] = αµ2
k − αµk

hI [−1 + µk] = −αµ2
k + (α + 1)µk

hI [µk] = −αµ2
k + (α− 1)µk + 1

hI [1 + µk] = αµ2
k − αµk

(A.18)

where α is the parameter that controls the piecewise parabolic function. The inter-

polation equation becomes

y(µk) =
1∑

i=−2

x[(−i)]hI [(i + µk)]

= x[2](αµ2
k − αµk) + x[1](−αµ2

k + (α + 1)µk) (A.19)

+x[0](−αµ2
k + (α− 1)µk + 1) + x[−1](αµ2

k − αµk)

Recall that α = 0.5 significantly reduces the hardware complexity. The frequency

response of the cubic interpolator filter is plotted in Figure A.4 for µk = 0.1, 0.3, 0.5

and α = 0.5. The filter, again, attenuates the most to the signal amplitude when

µk = 0.5. The frequency responses of parabolic interpolation filters for different α are

plotted in Figure A.4 for µk = 0.5.

Figure A.5 demonstrates that a parabolic interpolation filter might add some

amplitude gain to a QAM signal. Comparison of polynomial filters is discussed next.

A.4 Comparison

To compare performances of the interpolation filters in terms of their frequency

responses, let consider QAM signals with bandwidths B1 = 1/8 = 0.125, B2 =

1.25/8 = 0.15625 and B3 = 2/8 = 0.25 cycles per sample (see Equation (2.18)). The

digital bandwidths B1, B2, B3 are the bandwidths of a QAM signal after passing

through RC filters with roll-off factors 0, 0.25 and 1, respectively. The frequency

responses of the ideal interpolation filter (Equation (A.2), truncated to be at 32-

sample length) and polynomial filters with a fractional delay µk = 0.5 are plotted in

Figure A.6.
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Figure A.4 Frequency response of the parabolic interpolator.
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Figure A.5 Frequency response of the parabolic interpolator for µk = 0.5 as a

function of α.

97



0 0.1 0.2 0.3 0.4 0.5
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

5

Normalized frequency (cycles/sample)

M
ag

ni
tu

de
 (

dB
)

 

 

ideal interpolation
linear interpolation
parabolic interpolation
cubic interpolation

Figure A.6 Frequency responses of the ideal interpolation filter and polynomial

filters for µk = 0.5.

From the frequency responses of the filters, distortions (measured in dB) caused

by interpolation filters are shown in Table A.1. Note that the parabolic filter is

implemented with α = 0.5. See also Figure 4.14 for comparison.

Table A.1 Amplitude distortions (dB) caused by interpolation filters for µk = 0.5.

Frequency Ideal Linear Parabolic Cubic

0.125 0.02 0.68 −0.48 0.08

0.15625 −0.1 1.1 −0.65 0.2

0.25 0.12 3 −0.5 1.1

In Table A.1, a negative distortion means a filter adds some amplitude gain to the

output signal. The table shows that the cubic interpolator offers a good performance

for QAM signal in general while the linear interpolator only offers a good performance

at a low frequency range (or at a high sampling frequency). Also, the parabolic

interpolator gives good filter characteristics from its frequency responses. Recall the
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big difference in MER performances with the use of the cubic interpolation filter in

comparison with the linear and parabolic interpolation filters (Chapter 4). It is clear

that frequency responses do not tell much about actually effects of interpolation on

QAM signals.
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