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ABSTRACT

In this thesis, Wynn's Vector Epsilon Algorithm (VEA) is examined. Although

the usefulness of this sequence-to-sequence transformation for inducing and enhancing

convergence in vector sequences has been amply demonstrated by others, it is still not

well understood. After reviewing some known important theoretical results for the

VEA and its kernel (the full set of vector sequences which the VEA transforms to give a

constant vector sequence), the author provides a sufficient and necessary condition for

membership of a vector sequence in the real part of the kernel of the 1st order VEA.

This kernel is shown to be the set of all real vector sequences {xn } converging toward,

orbiting, or diverging away from some vector x where each term of the error sequence

{xn - x} is a scaled and/or rotated version of the previous term of the error sequence,

called AR sequences. This result is contrasted with one by McLeod and Graves-Morris.

It is then shown that AR sequences may also be described as those sequences {xn }

whose terms satisfy xn =x + znw + znw where z '* 0, z '* 1, Ilwll > 0, and (w, w) =0.

Numerical experiments by the author on vector sequences generated by the for­

mula Xn = AXn-l + b are reported. Circumstances are found under which the VEA order

of such sequences is lower than the upper bound given by Brezinski. The reduction is

triggered by the presence of certain orthogonal relationships between eigenvector and

generalised eigenvector components whose corresponding Jordan blocks in the Jordan

canonical form of A have complex conjugate eigenvalues. This empirical result antici­

pates the co~plex kernel of the 1st order VEA which is shown to be every sequence

{xn } whose terms satisfy xn =x + znw 1 + ZnW 2 with z '* 0, Z '* 1, IlwIlI + IIw211 > 0, and
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(w 1, W 2 ) =0 and no others. Some remaining open questions are noted in the final

chapter.
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1. INTRODUCTION

The heart of this thesis is a search for insights into the fundamental nature of

Wynn's Vector Epsilon Algorithm (VEA). The algorithm is a non-linear sequence-to­

sequence transformation whose usefulness lies in its ability to transform many slowly

convergent sequences of vectors into sequences that converge much more quickly to the

same limit. It is also able to transform many sequences that diverge into ones that

actually converge to the antilimit vector of the original sequence, the unique vector

away from which the original sequence diverges.

Different orders of VEA transform sequence may be computed, each associated

with a positive integer. Each vector in the 1st order VEA transform sequence is com­

puted from three consecutive vectors from the original sequence. The formula for

computing the VEA is a recursive one; in the process of computing a kth order VEA

transform sequence, portions of the 1st through (k - 1)th order VEA transform sequences

must first be computed. Typically, when the algorithm works at all, each order ofVEA

produces a transform sequence with better convergence properties than that of the

previous order.

The VEA has been profitably applied to a variety of iterative methods which

generate sequences of approximations to the desired solution vector, but having a rate of

convergence which may not be satisfactory. Wynn [32] has shown this algorithm to be

very effective and economical in accelerating the convergence of a wide variety of

vector sequences. The VEA has been successfully used for convergence acceleration

when iteratively solving non-singular [12] and singular [3,25] systems of linear equa-
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tions and systems of non-linear equations [2, 12] as well. Brezinski [5] has given an

algorithm for efficiently computing several eigenvalues and eigenvectors simultane­

ously using the VEA and an extension of the Rayleigh quotient method.

Successful engineering applications include the following. After Hafez and

Cheng [14] and Hafez et al [15] used the SEA to quite significantly reduce convergence

times in iterative transonic flow calculations with Richardson-type iteration, Cheung et

al [9] did the same thing with hypersonic flow calculations using the VEA, achieving a

50% reduction in computation time. (See §6.4.1 for comment on this work.) Tan [29]

showed how to obtain exact values for the partial derivatives of the eigenvalues and

eigenvectors of parameter dependent matrices by using a small number of steps of the

VEA on a slowly convergent iterative method. Tan and Andrew [30] have used the

VEA and related algorithms to do the same for an iterative method by Andrew. The

eigenvalues and eigenvectors of parameter dependent matrices are crucial to the fields

of design optimisation, finite element solution sensitivity analysis and others. More

recently, Dolovich and Brodland [11] have demonstrated the value of the VEA in

significantly accelerating the convergence of iterative finite element methods, and Lowe

[17] has shown that the VEA is very effective in accelerating the convergence of a

variety ofalgebraic reconstruction algorithms in computerised tomography.

Despite abundant demonstrations of its capabilities and uses during the past 39

years, the VEA is still not well understood. The central mystery concerning this algo­

rithm has been its kernel. The kernel is the set of all sequences that the VEA transforms

to give a constant vector sequence, i.e. a vector sequence where every vector of the

sequence is identical. This can be thought of as a sequence which, more than just
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converging to the limit, has actually already converged to the (anti)limit vector. Prior

to 2000, only subsets of the kernel of the VEA had been published. With Prof. Allan

Dolovich, the author [27] has given the real part of the kernel for the 1st order VEA. In
this thesis, the entire complex kernel for the 1st order VEA is provided as well. It is the

author's hope that once its nature is understood fully, the algorithm will find use in

those engineering and mathematical applications to which is ideally suited.

The thesis progresses as follows. Chapter 2 gives an introduction to the Vector

Epsilon Algorithm including a brief history with some of the theoretical results per­

taining to the VEA relevant to the work presented here. This will include the transla­

tivity, homogeneity, and unitary transformativity of the VEA. Also reviewed is some of

what is known regarding the kernel of the VEA. The 1st fundamental result regarding

the kernel was essentially a sufficient but not necessary condition for membership in the

kernel published in 1971 for the real case by McLeod [18] and in 1983 for the complex

case by Graves-Morris [13]. Other more recent results are also touched on.

Chapter 3 gives the proof for the real part of the kernel of the 1st order VEA as

already published by this author [27]. It is shown that it is the set of all real vector

sequences {xn } converging toward, orbiting, or diverging away from some vector x for

which each term of the error sequence {xn - x} is a scaled and/or rotated version of its

predecessor in the error sequence. The comments at the end of the chapter distinguish

this result from the 1st order case of the McLeod - Graves-Morris sufficient condition.

Chapter 4 reworks the real kernel of Chapter 3 using two different derivations

that show that the set of AR sequences (and the real part of the kernel of the 1st order
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VEA) is identical to the set of sequences {xn } for which xn 0= x + znw +;n W , n = 0, 1,

... where z is complex, z '* 0, z '* 1, Ilwll > 0, and (w, w) =0.

Chapter 5 explores vector sequences {xn } all of whose terms satisfy

xn = Ax n- l + b where A is a square matrix and b is a vector. First, theoretical results

by Gekeler and Brezinski based on the McLeod - Graves-Morris condition are reviewed

and discussed. These results culminate in an upper bound by Brezinski on the order of

VEA needed to give the (anti)limit of {xn}. Following this, a set of numerical experi-

ments by the author are reported. These experiments were done using the above

generating formula in order to search for circumstances under which an order of VEA

lower than Brezinski's upper bound yields x. The author has found no description of

such circumstances in the literature. A reduction in VEA order below Brezinski's upper

bound was found to occur whenever mutually orthogonal eigenvector and generalised

eigenvector components were present in oXn - x whose corresponding Jordan blocks in

the corresponding Jordan canonical form of A have complex conjugate eigenvalues. In

some cases, the VEA order of the resulting sequence was reduced by as much as half.

Chapter 6 determines exactly which orthogonal relationships between these

components are critical to this reduction in VEA order. It describes further experiments

on iteration ~atrices A having two same-sized complex-conjugate Jordan blocks and

varying combinations of orthogonality relations between the associated eigenvectors

and generalised eigenvectors. These experiments reveal that the only orthogonal

relationships instrumental in a reduction in the VEA order below Brezinski's upper

bound are between vectors of differing column blocks and not between any two vectors
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in the same column block. The results are then summarised and a generalising conjec­

ture is put forth which suggests a possible explanation for the degree of success enjoyed

by Cheung et al [9] in their application of the VEA to hypers~nic flow calculations.

The conclusion also anticipates the result of the next chapter.

Chapter 7 defines a zw sequence which is a generalisation of the reformulation

in Chapter 4 of the AR sequences introduced in Chapter 3. It is shown that every zw

sequence is defined by three distinct vectors: two initial vectors Xo and Xl and a(n)

(anti)limit vector x. A method for finding the formula for Xn, n = 0, 1, ... for every zw

sequence from xo, Xl and X is also provided. Then it is shown that the kernel of the 15t

order VEA is the set containing every zw sequence. Finally, Chapter 8 offers some

open questions to be answered in subsequent investigations.

It has been the author's intention to make this work accessible to readers with a

background in engineering and not necessarily in applied mathematics. To that end,

material has been included in both the main body and the appendices to provide useful

background in some of the areas into which this dissertation ventures. Terminology

used but not defined in the main text is usually defined in an appendix referred to prior

to the first use of the term. Appendix C includes some original intewretation of mini­

mal polynomials.
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2. INTRODUCTION TO THE VEA

The Vector Epsilon Algorithm (VEA) was developed by Wynn [32] in 1962. It

originated through a modification to the Scalar Epsilon Algorithm (SEA) discovered by

Wynn [31] in 1956. The SEA, in turn, was a more computationally efficient way to

calculate the Shanks transform [24, 23] which does for many scalar sequences what the

VEA does for many vector sequences. This chapter, therefore, begins with the Shanks

transform. Section 2.2 presents a brief look at the SEA. In §2.3, the VEA is intro­

duced.

2.1 The Shanks Transform

The Shanks transform is a useful sequence-to-sequence transformation for in­

ducing or accelerating convergence in scalar sequences. It is named for Daniel Shanks

who published it in 1955 [24] although the same algorithm was described by Schmidt

[23] and O'Beime [19] previously. (See Brezinski [8, p. 79] for details.) From a

convergent scalar sequence, the transform produces other scalar sequences that con­

verge to the same limit. Depending on the nature of the original sequence, these

transform sequences often converge much more quickly than the original sequence.

When the original sequence diverges, the transform sequences sometimes converge to

the scalar from which the original sequence diverges (the antilimit of the original

sequence). Failing this, the transform sequences diverge from the same antilimit as the

original sequence, if such an antilimit exists, and this divergence is often slower.
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From a given sequence, several different transform sequences may be found de­

pending on the order of transform applied. The calculation of a single term of a kth

order Shanks transform sequence requires 2k + 1 terms of the original sequence and the

evaluation of two determinants of order k + 1. The 15t order Shanks transform is

equivalent to Aitken's method [1].

Given a scalar sequence {Sn}, the terms of the kth order Shanks transform se-

quence {ei.Sn)} are defined by

Sn Sn+l Sn+2 Sn+k

Sn+l - Sn Sn+2 - Sn+l Sn+3 - Sn+2 Sn+k+l - Sn+k

Sn+2 - Sn+l Sn+3 -Sn+2 Sn+4 - Sn+3 Sn+k+2 - Sn+k+l

ek(Sn)=
Sn+k - Sn+k-l Sn+k+l - Sn+k Sn+k+2 - Sn+k+l Sn+2k - Sn+2k-l (2.1)

1 1 1 1

Sn+l -Sn Sn+2 - Sn+l Sn+3 -Sn+2 Sn+k+l - Sn+k

Sn+2 - Sn+l Sn+3 -Sn+2 Sn+4 - Sn+3 Sn+k+2 - Sn+k+l

Sn+k - Sn+k-l Sn+k+l - Sn+k Sn+k+2 - Sn+k+l Sn+2k - Sn+2k-l

Notice that the numerator and denominator determinants are identical except for their

first rows. Therefore, if each is expanded by the first row, the cofactors from the first

may be reused in calculating the second reducing the real burden to little more than that

of a single determinant of order k + 1.

The transient, which is so common in physical and numerical processes, is

among the sequences for which the Shanks transform will yield a sequence all of whose

terms are the limit or antilimit of the original sequence. An mth order mathematical

transient is a sequence of the form

7



m

Sn =S+ 2:Cir/,
i=l

(2.2)

with rj *" 1, for i = 1, ... , m. .As an example, consider the second order transient se-

quence {Sn} whose generating formula is

Sn =3 + 8(xY + 27(){Y , (2.3)

and whose values along with those of the first two Shanks transform sequences appear

in Table 2.1, below. (All values are exact unless truncation is indicated by an ellipsis.)

Note that each term of each transform sequence appears to the right of the latest term of

the original sequence used in its computation. This arrangement makes apparent the

improvement in the estimate of the limit of the original sequence due to the Shanks

transform.

Table 2.1 - A comparison of Shanks' transform sequences

Sn el(Sn) e2(Sn)
So- 38
SI = 16
S2=8 et(So) = 3.42857 ...
S3 = 5 et(St) = 3.2
S4 = 3.833 ... el(S2) = 3.0909... e2(So) = 3
S5 = 3.3611. .. el(S3) = 3.04 e2(SI) = 3

Though S2 is 5 away from the sequence limit of3, el(So) reduces this distance to

only 0.42857... , eliminating more than 91% of the error. Similarly, el(S3) removes just

under 89% of the error present in S5. Notice, however, that e2(Sn) is a constant sequence

which removes all of the transient components in Sn. This is because when k, the order

. of Shanks' transform in equation (2.1) equals m, the order of the transient defined by

8



equation (2.2), then ek(Sn) = S of equation (2.2) for all n. The transient sequence

defined by equation (2.3) is said to be part of the kernel of the second order Shanks

transform, the set of all sequences that the second order algorithm transforms to a

constant sequence. The terms of this constant sequence will be the limit or antilimit of

the original sequence.

One form of the kernel of the transform was provided by Wynn [34], who

proved

Theorem 2.1: If and only if, for some sequence {Sn}, there exist scalars S and ai,

i = 0,1, ... , k such that Lai* 0, ak *°and

k

Laj(Sn+j-S)=O, n=O,I, ... ,
i=O

(2.4)

An illuminating derivation of this expression found in [4] is given in Appendix A.

If equation (2.4) is written in expanded form to give

since ak * 0, it follows that

where

9
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If the related sequence {Sn - S} is called the error sequence associated with {Sn}, then it

may be said that the kernel of eJ!..Sn) is every scalar sequence having the property that

each· term of its error sequence is a linear combination of the previous k terms of its

error sequence with the k coefficients bi not totalling unity.

This kernel is called the implicit kernel for the Shanks transform because Sn in

equation (2.4) is not isolated on one side of the equals sign. In 1970, Brezinski and

Crouzeix [7] offered the following explicit form for the kernel of the Shanks transform

using the classic solution for the difference equation (2.4).

Theorem 2.2: The quantity eJ!..Sn) = S if and only if each term of {Sn} has the

generating formula

p q m

Sn =S + LA;(n)'in+ L [B;(n)cos(b;n) + C;(n)sin(b;n)]ew;n + Lc;8;n (2.8)
w ~~ ~

where n, r2, ..., rp =:;:. 1, Ai, Bi, and Ci are polynomials in n, Ci is a scalar for i = 0,

... , m, and 8;n is a Kronecker delta. The relation governing k, the order of

Shanks' transform necessary to give S, is

p q

m+Ld;+2Ld;=k-l
;=1 ;=p+l

(2.9)

where di is equal to one plus the degree of Ai for i = 1, , p, and equal to one

plus the maximum of the degrees of B; and C; for i =p+1, , q. By convention,

m =-1 ifno Ci exist.

This somewhat daunting formulation does yield some useful insights upon

closer examination. In equation (2.8), each summation represents one type of compo-

nent in {Sn - S}. Apart from the polynomial factors, the summation from 1 to p in-
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cludes geometrically varying components (which would include those of the transient

from the previous example) while the summation from p +1 to q includes sinusoidal

components with an exponential factor. The Kronecker delta in the final summation

allows for the presence of arbitrary error en in Sn for n = 0, ... , m. Equation (2.9)

indicates how much each type of component influences the order of the Shanks trans-

form required to obtain S. In particular, it shows that sinusoidally varying components

in {Sn} are twice as taxing on the Shanks transform as geometrically varying compo-

nents.

2.2 The Scalar Epsilon Algorithm

The Scalar Epsilon Algorithm or SEA was developed by Wynn [31] in 1956. It

yields eJJ..Sn) without the burdensome evaluation of determinants. However, each order

of SEA first requires the calculation of terms of an intermediate sequence having little

known practical importance. Because of this, a new notation is used in which each term

of each sequence is described by the symbol c with a subscript that denotes the se-

quence to which the term belongs and a superscript that denotes the index of the term

within the sequence. It is really only the even numbered sequences ci;) ,k = 0,1, ... , that

are of interest wh!ch, where they exist, are equal to ei..Sn). Therefore, the sequence

{ c~;)} will be called the kth order transform sequence. Thus, the 1st order transform

sequence is {sin) }.

The SEA is defined by the following expressions.

c(n) =°-1 ,
c(n) = S
On'

11

n=O,I, ... (2.1 0)



j, n = 0, 1, ... (2.11 )

As seen in equation (2.11), the tenns of each new sequence are calculated by finding the

differences between consecutive tenns of the previous sequence, inverting the differ-

ence, and adding it to a tenn from a sequence previous to that. As long as consecutive

tenns of a sequence remain distinct, the differences will be invertible and the algorithm

will give the same results as the Shanks transfonn, excluding machine roundoff effects.

If some such tenns are not distinct, the algorithm encounters division by zero, and the

tenn being calculated may not be defined by equation (2.11). In some cases, such

singularities can be avoided and stability enhanced through modifications to the basic

algorithm. Wynn [33] has developed rules for jumping over such singularities called

particular rules and Cordellier [10] has generalised them for consecutive singularities in

adjacent transfonn sequences.

The calculation scheme of equations (2.10) and (2.11) lends itself well to a

tabular arrangement. It is usually represented as shown in Table 2.2.
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Table 2.2 - The scalar &-table

&(0) - So - 0
&~~) =0 &(0)

I

&(1) - S &(0)
0-1 2

&~i) =0 &(1) &(0)
1 3

&(2) - S &(1) &(0)
o - 2 2 4

&~;) =0 &(2) &(1)
1 3

&(3) - S &(2) &(1)
o - 3 2 4

&~~) =0 &(3) &(2)
I 3

&(4) - S &(3)
o - 4 2

In this table, notice that the sequences involved are represented as columns. Beginning

with {&~7)} and {&~n)} of equations (2.10), subsequent columns are calculated from left

to right. The utility of this arrangement of terms is seen with a sample calculation of

equation (2.11). Notice that each new term in the &- table is defined by the three terms

which are closest to it on its left.

The second order transient already considered in §2.1 is now revisited. Table

2.3 gives the &-table for that example. (Again, all values are exact unless truncation is

indicated by ellipsis.) By inspection of Tables 2.1 and 2.3, it is apparent that {&i~)} is

the same as {eJc(Sn)} for both k = 1 and k = 2.

Due to the simplicity of the SEA, some useful and already known results are

easily shown. For example,

Theorem 2.3: Given some sequence {Sn} to which the kth order SEA is applied

resulting in
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Table 2.3 - The scalar G-table for the sequence given by equation (2.3)

E6°) = 38

E~i =0 EiO) =-0.04545 ...

E~l) = 16 E~O) =3.42857 ...

E~~) =0 E~l) = -0.125 E~O) = -4.5

E6
2
) = 8 E~l) = 3.2 E~O) = 3

E~) = 0 E~2) = -0.333 ... E~l) = -9.5

E6
3
) = 5 Ei

2
) = 3.0909 ... E~l) =3

E~i) =0 E~3) = -0.85714 ... E~2) = -20.5

E6
4
) = 3.833 ... Ei

3
) = 3.04

E~) = 0 E~4) = -2.11764 ...

E6
5

) = 3.3611. ..

(n) - 0 1
G2k-1 - P n ' n = , , ...

and

(n) - 0 1G2k - qn' n = , , ... ,

if a new sequence {Tn} is created where

Tn =Sn + C , n =0, 1, ...

(2.12)

(2.13)

(2.14)

with C an arbitrary complex scalar and then the kth order SEA is applied to {Tn},

then

and

(n) - 0 1
G 2k-1 - P n ' n = , , ... ,

(n) - 0 1G2k - qn + C , n = , , ....

14

(2.15)

(2.16)



The SEA, and thus the Shanks transform, is therefore translative. In addition, there is

Theorem 2.4: Given some sequence {Sn} to which the kth order SEA is applied

resulting in

(n) - 0 1&2k-1 - Pn , n = , , ...

and

(n) - 0 1& 2k - qn ' n = , , ... ,

if {Tn} is defined such that

Tn = cSn, n = 0, 1, ...

(2.17)

(2.18)

(2.19)

with c an arbitrary complex scalar and then the kth order SEA is applied to {Tn},

then

and

(n) 0 1& 2k = cqn , n = , , ....

(2.20)

(2.21)

The SEA is thus homogeneous of degree one or, simply, homogeneous. For a given

order, if {Sn} transforms to give {qn}, then {cSn + d} transforms to give {cqn + d}.

These properties are sometimes expressed by saying that the SEA (as well as the Shanks

transform) is quasilinear.

Many other results are known for the SEA including a whole body of conver-

gence results which do not directly bear on the work reported here. For an overview
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and bibliography of these and other results, the interested reader is referred to Brezinski

and Redivo-Zaglia [8].

2.3 The Vector Epsilon Algorithm

The SEA was the first important non-linear sequence-to-sequence transforma­

tion. The economy with which it obtained any order of Shanks' transform enabled

much more vigorous empirical exploration of its applicability to accelerate the conver­

gence of scalar sequences. It could also be applied to sequences of N-dimensional

vectors by treating each vector sequence as though it were a set ofN independent scalar

sequences. However, whenever consecutive vectors had one or more identical co­

ordinates, the SEA was prevented from giving results. (This was before Cordellier

developed so called particular rules [10,33] which often enable the calculation of terms

of the &-table on all sides of a region of singularity.) In addition, what was happening in

the transformation of one sequence of co-ordinates in no way informed what was

happening in other co-ordinate sequence transformations. These limitations motivated

the search for a new way to deal with vector sequences as a whole.

The idea pursued by Wynn was to modify the definition of the SEA as little as

possible in order to enable it to handle vector sequences. The only real problem with

equations (2.10) and (2.11) was the denominator in (2.11). How does one divide unity

by a vector? This problem suggested the need to define a vector inverse. Wynn's

proposal was what he called the Samelson inverse, named after the colleague who

suggested it to him. This inverse is defined by
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_) x
x =--

(x,x)
(2.22)

.
where the overbar denotes the complex conjugate and the inner product in the denomi-

nator is

N

(x,y) = LXjYj
j=)

(2.23)

and N is the dimension of x. This inverse has the property expected of an inverse,

which is that

(2.24)

With this modification, Wynn created the Vector Epsilon Algorithm [32] which

is defined by

and

&(n) =0
-) , E(n) = X

On'
n = 0, 1, .,. (2.25)

j, n = 0, 1, ... (2.26)

where the inverse is defined by equations (2.22) and (2.23).

Despite its origin with a seemingly very small modification of the SEA, this one

change effectively divorced the VEA from much of the abundant theory known for its
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predecessor, the SEA. However, several theoretical results' for the VEA analogous to

some of those reported above for the SEA are known.

Consider the Samelson inverse. If x is the one dimensional vector [ x ], then X-I

is the one-dimensional vector [ l/x]. Therefore, for sequences made up of one-

dimensional vectors, the VEA gives the same results as the SEA gives for the corre-

sponding scalar sequences. Therefore, the VEA must be quasilinear in the same sense

that the SEA was quasilinear. However, it goes further than this.

Theorem 2.5: Given a vector sequence {xn } which, when the kth order VEA is

applied to it, results in

Ei~-l =Pn' n=O, 1, ...

and

Ei~ =qn' n=O, 1, ... ,

if a new sequence {tn } is created such that

tn=cUXn+Y, n=O,l, ... ,

(2.27)

(2.28)

(2.29)

where c is an arbitrary complex scalar, U is a unitary matrix and Yis an arbitrary

complex vector, then it can be shown that the kth order VEA applied to {tn} re-

sults in

and

(n) - l/U = °1G2k-I-Ic Pn' n " ...

Ei~ = cUqn +Y, n = 0,1, ....

18

(2.30)

(2.31 )



The reader may recall that a unitary matrix is a complex matrix whose inverse is

its complex conjugate-transpose. It may be thought of as the generalisation of an

orthogonal matrix to a complex vector space. Just as the col~s and rows of an

orthogonal matrix are of unit length and mutually orthogonal, so are the columns and

rows of a unitary matrix. The straight-forward proof of the results in (2.30) and (2.31)

exploits the fact that, as with premultiplication by an orthogonal matrix in real vector

spaces, premultiplication by a unitary matrix can be thought of as causing some combi-

nation of rotations and reflections in a complex vector space. Such transformations

preserve inner products. As a consequence of this result, in whatever way one may

wish to scale uniformly, translate, rotate and reflect the vectors of a sequence, the

transform sequence produced by any order of the VEA will be similarly scaled uni-

formly, translated, rotated and reflected.

In 1971, McLeod [18] gave a result almost analogous to the one given previ-

ously for the Shanks transform with equation (2.4). In a difficult proof, he showed

Theorem 2.6: If, for some vector sequence {xn}, there exist real scalars ai, i = 0,

1,... ,k such that I:ai* 0, ak *°and vector x such that

k

Laj(xn+i-x)=O, n=O,I, ... ,
j=O

then Ei~ = x, n = 0, 1, ....

(2.32)

In 1983, Graves-Morris [13] showed that the same was true for complex ai using a

completely different proof.
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The results of McLeod and Graves-Morris with equation (2.32) were called al-

most analogous because they supply a sufficient but not necessary condition. This

allows the possibility that E~~ =X may hold for n = 0, 1, ... when the VEA is applied to

some vector sequence {xn }, even though no scalars ai, i = 0, 1, ... , k exist that will

satisfy equation (2.32). Therefore, the set of sequences satisfying equation (2.32) may

well be a proper subset of the kernel of the kth-order VEA. Also, some of the sequences

satisfying the condition for a given value of k may, in fact, be members of the kernel for

an order of VEA smaller than k. The reality of both of these phenomena will be demon-

strated in Chapters 3, 5 and 6.

As mentioned previously, the origins of the VEA prevented many theoretical re-

sults for the SEA and the Shanks transform from providing counterparts for the VEA.

One of these deficits has been the lack of a way to express each term of a VEA trans-

form sequence as the ratio of two determinants similar to that given for the Shanks

transform in equatiop (2.1). Apart from the VEA, practically all known recursively

computed sequence-to-sequence transformations have such expressions.

In 1994, Salam [20] showed that each vector of each VEA transform sequence

can be expressed as a ratio of two designants1 whose elements are vectors from a

Clifford algebra2
• In 1998, Salam [21] modified the usual definition for a Hankel

determinant3 to one consisting of vectors in a Clifford algebra instead of scalars and

1 Designants are related to determinants but do not rely on multiplication being commutative.
2 Clifford algebras are generalisations of Hamilton's quatemions and contain scalars and vectors alon with
entities called bivectors and other multivectors. Noncommutative multiplacation is defined between all
entities in a Clifford algebra.
3 The Shanks transform can also be defmed as a ratio of two Hankel determinants.
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showed that such a determinant would itself be a vector. In 2000 [22], he revised the

definition of a Hankel determinant to one which no longer relied on Clifford algebras,

and indicated at the end of the paper that the kernel of the VEA would be forthcoming.

Also in 2000, Brezinski published a review paper [6] indicating that a determi­

nantal expression for each vector in a VEA transform sequence had been found. It was

presented at a conference in Luminy last summer by Salam and Graves-Morris, and will

appear very soon in Numerical Algorithms with other papers presented at the confer­

ence. The expression involves determinants of order 2k + 1, rather than k + 1 as with

Shanks transform. This result will furnish the kernel of all orders of the VEA. It will

mean that the unique character of the VEA can soon be fully exploited by those engi­

neering and mathematical applications which, by their nature, generate vector sequences

of the same fundamental character as those which the VEA extrapolates.
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3. THE REAL KERNEL OF THE 1ST ORDER YEA

Early in the author's research into the VEA, in an effort to come to some intui­

tive understanding of the way In which the 15t order VEA behaves, he repeatedly plotted

three ordered but random points on the Cartesian plane, applied the 15t order VEA to the

correspondingly ordered 2-dimensional vectors terminating at those three points, and

then plotted the endpoint of the result. It seemed from the lines drawn from each of the

three points to the point given by the VEA that the points transformed lay at equally

spaced angles around an equiangular spiral whose centre was the endpoint of the vector

given by the VEA. Figure 3.1, below, gives two representative examples whose vector

endpoints have integer co-ordinates. The VEA limit point for each example has a small

circle around it. Freehand curves suggesting the relevant spirals have also been added.

y

20

15

10

5

x

5 10 15 20 25 30 35

Figure 3.1 Two sets of three ordered pairs with their VEA limits.
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The implication of this hypothesis was that each term xn - x of the error vector

sequence {xn - x} is a scaled and rotated version of its predecessor. In this chapter, a

geometric proof is given confirming that, for real vector sequences, this is indeed the

case. This result first appeared in a paper by Steele and Dolovich [27] in June of 2000.

Section 3.1 gives, in symbolic terms, the condition for success of the 1st order

VEA in transforming a real vector sequence into a constant sequence of its limit or

antilimit. In §3.2 and §3.3, proofs that the condition is necessary and sufficient, respec-

tively, are given. In §3.4 some comments are made on the result. Throughout this

chapter, the term "VEA-l" will be used as an abbreviation for "the 1st order VEA".

3.1 The Result

Theorem 3.1: Given a sequence of real N-dimensional vectors {Xn}, E~n) = x for

n = 0, 1, ... if and only if

(3.1)

where A is a real scalar, R is a real N x N rotator, e is a real non-zero vector ex­

isting solely within the plane of rotation of R, A > 0, and AR * I, the identity

matrix. For N ~ 2, by rotator is meant a matrix which rotates vector components

within a two-dimensional subspace but has no effect upon vector components

within the remaining (N - 2)-dimensional subspace. Every Jordan canonical

form of such a matrix will be diagonal, with two eigenvalues being complex

conjugates of each other and of unit modulus and all other eigenvalues being

unity. All eigenvectors will be mutually orthogonal. In addition, the eigenvec­

tor associated with the second complex eigenvalue will be the complex conju­

gate of an eigenvector associated with the first complex eigenvalue. (These at­

tributes of a rotator are shown in §4.2 in the next chapter.) For N= 1, the con-
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vention is adopted that the rotator is the 1 x 1 identity matrix whose, rotation not

being meaningful in a one-dimensional space.

Such sequences will be referred to as AR sequences. This result, therefore, may

be restated as follows: with respect to real vector sequences, the kernel ofVEA-1 is the

set of all AR sequences.

3.2 Proof of Necessity

Recall the definition of the VEA from equations (2.22,23,25&26) in which

and

E(n) =0
-I ,

E(n) = X
On' n = 0, 1, ... (3.2)

j, n = 0, 1, ... (3.3)

where the inverse in (3.3) for real vectors is defined by

w-l = W

(w,w)

and the inner product for real vectors is

N

(x,Y) = LXiYi·
i=l

(3.4)

(3.5)

The proof begins with a construction illustrating the geometry of VEA-1 when acting

upon three real N-dimensional vectors. Consider three such vectors Xo, xl, and X2 and
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the vector E-table resulting from an application of VEA-1 °to them which appears in

Table 3.1, below.

Table 3.1 First order E-table for arbitrary real Xo, x}, and X2.

E(O) - X
0-0

E~l =0 E(O)
1

E(l) - X E(O)
0-1 2

E~~) = 0 E(l)
1

E(2) - X
o - 2

In seeking the necessary conditions for which E~n) =X for all non-negative integers n,

sequences for which equation (3.3) will encounter division by zero must be eliminated.

Therefore, a restriction is placed upon XI such that

(3.6)

(3.7)

and

(3.8)

In all other respects, vectors xo, x}, and X2 are arbitrary. Let their endpoints be called

Po, PI, and P2, respectively, which define a plane depicted in Figure 3.2. Therefore,

- - -these vectors may also be called OPo , O~, and OP2 , respectively, 0 being some

25



origin generally not in the plane of the page. (The case where Po, PI, and P2 are collin­

ear will be addressed below.)

p

Figure 3.2. VEA-l applied to 3 arbitrary vectors.

These three vectors correspond to E6°), E61), and E62
), respectively, in Table 3.1. By

equations (3.6) and (3.7), the difference vectors Po~ and ~P2 are invertible. When

inverted (according to equation (3.4)) and added to the zero vectors (E~li and E~~»),

vectors A~ and p'B (E~O) and E~l)), respectively, are obtained. (The unit circle is

shown as a visual reference for the inversion of vector lengths.) The difference between

these vectors is ~C which, because of equation (3.8), inverts to give p'P. When

added to the original second vector O~ (E~l»), the result is the vector OP (EiO»).

Finally, lines corresponding to vectors PoP and P2P are drawn, completing the con­

struction.
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The inverse relationships of Po~ and ~P to A~ and ~C , respectively, cause

MoPIP to be similar to LiCP1A. For the same reasons, M IP2P is similar to M I CB. It

is also clear that LiCPIA is congruent to M I CB. Therefore, MoPIP must be similar to

M IP2P. The arbitrariness of xo, Xl, and X2 means that VEA-I will always locate P in

such a way that M IP2P will be a scaled and/or rotated version ofMoPIP.

It can easily be shown that the scaling factor is given by

so that A is real and A;;::: 0, and that the angle of rotation is given by

()=1r-mLPo~~,

(3.9)

(3.10)

where mLPO~P2 is the measure of LPO~P2. For ()= 0 or 1r, endpoints Po, PI and P2

are collinear and the triangles in Figure 3.2 are degenerate; each triangle is then a scaled

but unrotated version of its neighbours. Despite this degeneracy, the steps in the

construction above and the logic that follows them are still valid. This collinear case in

two dimensions also illustrates the case for N = 1.

Now, if a vector sequence {xn } is such that VEA-I gives the same vector X when

applied to any set of three consecutive vectors, then the geometric relationship between

the head of X and the heads of the sequence vectors is as shown in Figure 3.3. Because

of the operation of VEA-I, every triangle is a scaled and/or rotated copy of its neigh-

bours and thus every other triangle, and all lie on the same two-dimensional subspace.
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Therefore, a unique matrix R may be defined with rotation angle Bgiven above such

that

(3.11)

and

(3.12)

P3

"head of
vector X3

head of
vector X2

head of

p ,
head of ----1~
vector x

head of
vectorxo

l
PoL.---------~

Figure 3.3. The heads ofa vector sequence such that VEA-l gives
the vector x for every set of three consecutive vectors.

If e = X o - x, then

X o =x +e, (3.13)

and, by equation (3.12),
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Xl = x+ARe,

or

(3.14)

which is equation (3.1).

The restrictions placed on Xl in equations (3.6), (3.7) and (3.8) must also be gen-

eralised to Xn. In addition to equation (3.14), every Xn must satisfy

(3.15)

and

(3.16)

If we assume that A = 0, equation (3.11) leads to a contradiction of equation (3.15), so

A> O. If we assume that AR = I, equation (3.11) leads to a contradiction of equation

(3.16), so AR *- I. Finally, if we assume that e = 0, then equation (3.12) leads to a

contradiction of equation (3.15), so e is non-zero. Thus, if VEA-l is to give the same

vector X when applied to any three consecutive vectors in some sequence {xn }, it is

necessary that {xn} be a AR sequence.
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3.3 Proof of Sufficiency

The second part of the proof begins by considering the set of all AR sequences

in some detail to enhance the clarity of what follows. By definition, the terms of any

such sequence, say {wn}, are given by

(3.17)

where A > 0 and AR *' I and e *' O. Each AR sequence can be characterised by its

parameters w, A, R, and e. If 1..1,1 < 1, then w is clearly the limit of the sequence because

AnR ne goes to 0 as n approaches 00. If 1..1,1 > 1, then the sequence diverges from the

unique vector w which is the antilimit, about which more will be said below. In both of

these cases, if R = I, then the heads of all vectors wn and of vector w are collinear and

the associated triangles are degenerate. If A= 1, the prohibition AR *' I means that R *'

I, and that N ~ 2. In this case, each triangle is a rotated but unsealed version of its

neighbours and, hence, isosceles. The heads of the vectors wn lie on the circumference

of a circle centred on the head ofw.
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Q,
head of ----1_

vectorw

e
ARe

!

head of
vectorw\

"Qo·····_·························· _ (2\ head of
vectorw2

Figure 3.4. The heads ofthe vectors in an arbitrary AR sequence {wn }

with the head ofthe limit (antilimit) vector w.

An arbitrary AR sequence {wn} is now considered. Let Qn be the endpoint of

vector W n and let Q be the endpoint of vector w. Figure 3.4 shows the heads of these

vectors with some of the accompanying geometric relationships for N ~ 2. It has

already been shown that for each set of vectors W n, Wn+I, and Wn+2, VEA-l will give a

vector E~n) whose endpoint forms scaled and/or rotated similar triangles with Qn, Qn+I,

and Qn+2. It remains only to show that such E~n) = W for an arbitrary n. The possibility

that these two vectors are not equal is depicted in Figure 3.5.
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Figure 3.5. A possible difference between w (having endpoint Q)

and E~O) (having endpoint Q(O).

Consider segment QOQ1, the length of which will be called I. Let e be the length

of e which is QQo and let s be the distance from Qo to Q(O), the endpoint of E~O). Both

() and A. are known from the definition of the sequence. These will also determine the

corresponding proportions for any triangles set up by VEA-l. The law of cosines gives

expressions for Pin terms of s and in terms of e:

(3.18)

or

(3.19)

so S2 = e2. Since both s and e are lengths, s = e and ~QOQlQ(O) is congruent to

~QOQIQ. Therefore, Q(O) = Q = Q(n) for all n. If N = 1, the same logic holds and the
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theorem is proven. In order for VEA-1 to give the limit of a vector sequence, it is both

sufficient and necessary that the sequence be AR.•

3.4 Comments on the Result

Note that a vector sequence may become AR without starting that way. In this

case, it may be reindexed with 0 assigned to the first vector of the AR subsequence.

When VEA-1 is applied to this AR subsequence, it will give the corresponding limit or

antilimit.

The fact that VEA-1 locates the antilimit vector for a diverging AR sequence il­

lustrates an often-useful property of the VEA. It is frequently able to obtain meaningful

results from divergent computational processes. For example, its scalar counterpart, the

SEA, obtains very accurate values for power series expansions outside the domain for

which they are convergent.

Finally, it should be noticed that equation (3.12),

resembles equation (2.32) for k = 1 which becomes

X n+1 - X =c(xn - x)

(3.20)

(3.21 )

where C = -ao/at. Sequences satisfying (3.21) are such that each error vector is only a

scaled version of the previous error vector. Such sequences cannot exhibit the rotation

shown by typical AR sequences satisfying equation (3.20). Conversely, sequences

33



satisfying (3.21) are a subset of the set of AR sequences, namely, those for which R =I.

It will be shown, however, that equation (2.32) for k = 2 can be used to describe any AR

sequence. Recall that for such a sequence, all error vectors lie on a subspace spanned

by any two consecutive error vectors (xn - x) and (xn+1 - x). Clearly then, for a given n,

(Xn+2 - x) can be expressed as a linear combination of(xn - x) and (Xn+l - x). Therefore,

(3.22)

which is equation (2.32) with k = 2. Ifboth sides of (3.22) are premultiplied by AR,

(3.23)

is obtained. By equation (3.12), this becomes

(3.24)

By induction, it is clear that for every AR sequence, there exist ao, at, and a2 such that

(3.22) is satisfied for all n. According to equation (2.32) of Theorem 2.6, therefore, an

application of the second order VEA is sufficient to obtain x for any AR sequence. In

contrast, the result of this chapter shows that the 1st order VEA is sufficient.

It will be seen in Chapters 5 and 6 that AR sequences are the simplest of several

families of vector sequences requiring an order of VEA which is lower than that offered

by the result of McLeod and Graves-Morris.
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4. AN ALTERNATIVE FORM FOR THE REAL KERNEL OF
THE 1sT ORDER VEA

Looking back on the result of Chapter 3 and equation (3.1), it can be seen that

there are more constraints in the definition of R than the result actually requires. Recall

that if {xn - x} is the error sequence corresponding to a JR sequence, then by equation

(3.1 ),

(4.1)

where non-zero e exists solely within the plane of rotation of R. This is equivalent to

saying that e is a linear combination of the two eigenvectors of R that span the plane of

rotation. Because of this, the only relevant eigenvalues of R are the two associated with

these spanning eigenvectors. In this case, however, there are an infinite number of

other matrices that could stand in for R in equation (4.1) just as well. Instead of having

N - 2 eigenvalues equal to unity, those eigenvalues could equal anything without

interfering with the definition. To succinctly capture the essence of a JR sequence and

the real part of the kernel of the 1st order VEA, it is necessary to refine this definition

until it relies upon a much leaner structure than a rotation matrix. The refinement

process begins with further observations about rotation, as it is not covered in any depth

in any of the several texts on linear algebra consulted by the author and the concept is

central to the result of this chapter.

First, a new entity is defined. Recall from the previous chapter that the kernel of

the 1st order VEA'is the set of AR sequences. These sequences all have the property

that each error term Xn - x is a scaled and rotated version of Xn-l - x. Therefore, a
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definition of a real scaled rotation sequence or RSRS is given, stating it to be a se­

quence {en} whose terms satisfy

(4.2)

where 2 is a real scalar, R is a real N x N rotation matrix, e is a non-zero real vector

existing solely within the plane of rotation 'Of R, with 2 > 0, and 2R *" I, the identity

matrix. An RSRS may therefore be thought of as a 2R sequence each of whose vectors

has been translated so that its limit or antilimit is the origin.

Section 4.1 delves somewhat intuitively into the topic of scaled rotations in a

real vector space, deriving another formula satisfied by the vectors of an RSRS. Section

4.2 does the same thing through the eigenvalue decomposition of the corresponding

rotation matrix. Finally, §4.3 gives an alternative form for the condition proved in

§§3.2 and 3.3.

Although the author believes that all of the elements of the analyses presented in

this chapter must surely have appeared already in print previously for other purposes,

the author knows of no such publications, allowing a claim at least of originality to be

made if not ofpriority ofpublication.

4.1 An Intuitive Definition of a Real Scaled Rotation Sequence

The starting point for this section is the knowledge of three vectors: eo, the first

vector in {en} and vbejand vaft representing, respectively, an arbitrary vector in the plane

of rotation of R before and after undergoing the scaled rotation. Subsection 4.1.1
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provides a derivation of an expression for the terms en, n = 0, 1, ... of an RSRS using

only real scalars and vectors in the definition. Then, in Subsection 4.1.2, a derivation is

given for a different expression for each of the vectors of the same sequence {en} using

complex scalars along with vectors in the natural complex extension of the previous real

vector space. In the process, the linear algebra of real scaled rotation sequences is

explored.

4.1.1 A Real Scaled Rotation Sequence in Real Terms

An RSRS {en} may be defined quite intuitively using eo, the first vector in {en},

and two real linearly independent vectors Vbej and vajt respectively representing an

arbitrary vector in the plane of rotation before and after undergoing the defined scaling

and rotation. The vectors vbejand vajt simultaneously and conveniently define a plane of

rotation, an angle of rotation, and a scaling factor. They may be used to define a unique

rotation matrix R and a scaling factor Jl.. such that

V aft =Jl..Rv be! •

By equation (4.2) with RO = I,

(4.3)

(4.4)

which exists solely in the plane of rotation of R. Therefore, an orthonormal basis for

this plane can be obtained as follows. First, vbejis normalised to give qI, a unit vector in

the plane of rotation. So, let
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(4.5)

Next, v1. ("v-perp"), orthogonal to qI but also in the plane defined by Vbej .and vaft, is

defined by removing from vaft its orthogonal projection onto qI. Thus,

(4.6)

Ifvaft =pVbejwhere p is a real scalar, then vbejand Valt are not independent and equation

(4.6) will yield v1. = O. If this is the case, the vector e can be substituted for vaft in

equation (4.6) to give v1.. This will ensure that the plane defmed contains e. If e = qvbej

where q is also a real scalar, then any arbitrary vector may be used in place of vaft in

equation (4.6) to give v1.. Normalising v1. to give

(4.7)

the orthonormal basis for the plane of rotation is completed. These vectors are depicted

in Figure 4.1, below.

bej

Figure 4.1 The orthonormal basis, qI and q2, for the plane of rotation from vbejand Vaft·
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Since ql and q2 constitute an orthononnal basis for the plane of rotatIon, every

vector lying in the plane of rotation may be expressed as a real linear combination of ql

and q2, including the vectors of the RSRS {en} which will satisfy

(4.8)

where the rn,i are real. In particular,

(4.9)

or, in the tenns of linear algebra,

(4.10)

where

(4.11)

and

(4.12)

The matrix Q' may be extended by defining
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(4.13)

an orthogonal matrix. (Gram-Schmidt orthogonalisation will supply the additional

orthogonal vectors qi, 3 :s;; i :s;; N, necessary to obtain a complete orthogonal basis for the

space.) The vector r' may also be extended by defining

rO,1 rO,1

r O,2 r O,2

ro = r O,3 = 0 (4.14)

rO,N 0

so that

(4.15)

also holds.

The coefficients rO,l and ro,2 may be determined by premultiplying equation

(4.15) by Q-l which is Qr, Q being orthogonal, to obtain

(4.16)

or
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r O,!
T- - q!

r O,2
T- - q2

r O,3 = T
eo (4.17)- - q3

rO,N
T- - qN

In fact, if it is known that eo is solely in the plane spanned by qI and q2, then it is

necessary only to find ro' which, by equation (4.17) is

I

[
ro,l] =[- - q~ - -] e/

o
rO,2 - - q2 - - I

I

or

r '-Q'Teo - o·

(4.18)

(4.19)

Suppose it were necessary to verify that eo is in the plane of rotation defined by

V bel and vaft. Resort could be made to equation (4.1 7) with the knowledge that if, for

some i > 2, rO,i * 0, then clearly eo contains components outside of the plane of rotation

spanned by qI and q2. However, since multiplication by an orthogonal matrix is a

norm-preserving operation, if
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this also will indicate that eo contains components outside of the plane of rotation.

Thus, the co-ordinates of eo may be determined and its membership in the plane of

rotation verified using the shorter calculation ofequation (4.19).

Once

(4.21)

the Euclidean length of eo, is calculated, eo may be expressed in polar form as

(4.22)

where ¢o is the angle in the plane of rotation from qI to eo measured toward q2. There­

fore, by comparison of equation (4.22) with equation (4.9)

(4.23)

and

(4.24)

If rO,2 is not negative, then

(4.25)

Otherwise,

(4.26)
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Now, since vbejand vafi are real vectors, the angle of rotation from vb~fto vafi may

be found by normalising vbejand Vafi to give qbej= qI from equation (4.5) and

(4.27)

respectively, so that

(4.28)

and

(4.29)

where B is the angle from qbej to qafi measured in the direction toward q2. Because of

the way in which v1- and then q2 have been defined in equations (4.6) and (4.7),

Finally, A, the scaling factor, is defined by

(4.30)

Now, eI, the next vector of the RSRS, may be determined. This is the vector eo

after it has undergone the rotation and scaling defined by vbej and vafi. Therefore, the

angle from qI to el measured toward q2 will be the angle from qI to eo measured toward

q2 which is ¢Jo, plus the angle from Vbejto vafi measured toward q2 which is B. Thus,
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(4.31 )

By induction,

(4.32)

4.1.2 A Real Scaled Rotation Sequence in Complex Terms

Now, for the purpose of defining the very same RSRS in a new way, the real

vector space is extended to its natural complex counterpart and a complex unit vector

(4.33)

is defined so that its complex conjugate is

(4.34)

Therefore,

u+u (4.35)ql= ..fi

and

_ i(u-ii) (4.36)q2 - ..fi .

-
Note an important property of u revealed by the inner product (u, u). By defi-

nition,
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(4.37)

Because inner products are distributive,

(4.38)

Recall, also, that inner products are conjugate linear, which is to say that for any com-

plex scalar z,

(za,b) =z(a,b)

and

-
(a,zb) = z(a, b) .

Therefore,

Since ql and q2 are mutually-orthogonal real unit vectors, this becomes

-
(u,u) =~ -iO-iO- ~ =0
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and it is seen that u is orthogonal to its complex conjugate: In fact, for any complex

scalars Cl and C2, it is found that Clu is orthogonal to C2 u because

- --
(C1U,C2 u) = G~ (u,u) =o. (4.43)

Continuing on, if equations (4.35) and (4.36) are substituted into equation

(4.32), then

(4.44)

or

Ane Sf }
en = i. lCOS(~o +nO)+isin(~o+nO)]u+[cos(~o+nO)-isin(~o+nO)p; (4.45)

is obtained. It follows from Euler's formula,

ia ••e = cos a + I SIn a ,

that

or

which is
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(4.49)

or

(4.50)

where

(4.51)

and

(4.52)

Finally, it is necessary to deal with the other restrictions in the definition of

equation (4.2). If Il > 0, then by equation (4.51), Z * O. Also, if IlR * I then it must not

be simultaneously true that Il = 1 and B= O. Thus, by equation (4.51), Z * 1. If e * 0,

then by equations (4.4) and (4.21), eo> 0, so by equation (4.52), W * O. Recall also that

by equations (4.43) and (4.52), w is orthogonal to its complex conjugate. Therefore, an

alternate definition for a real scaled rotation sequence to that of equation (4.2) is a

sequence {en} where, for n = 0, 1, ... , en satisfies equation (4.50) with complex Z * 0, Z

* 1, and non-zero w is orthogonal to w .

In the next section, equation (4.50) is obtained from the properties of a rotation

matrix R acting on two orthogonal unit vectors in the plane of rotation.
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4.2 An Eigenvector Expansion for a Real Scaled Rotation Sequence

It is also possible to arrive at the expression given in equation (4.50) for an

RSRS through an eigenvalue decomposition of the rotator R in equation (4.2). Such a

rotator may be defined by two real orthonormal vectors, qI and q2, which span the plane

of rotation and by an angle Bthrough which the vectors are rotated in the direction from

qi toward q2. Thus,

Rq} =cosBql + sinBq2

and

Rq2 =-sinBq} + cosBq2.

This is depicted in Figure 4.2, below.

o qi

(4.53)

(4.54)

Figure 4.2 - The action ofR on vectors qi and q2.

Further, for every vector y orthogonal to both qi and q2,

Ry=y
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An orthononnal set of vectors qj, 3 :::; i :::; N, are defined which are also orthogonal to

both qI and q2 so that they satisfy

In matrix fonn, equations (4.53), (4.54) and (4.56) are expressed as

(4.56)

or

where

and

R q\ q2 q3 ... qN = q\ q2 q3 ... qN

I I I
I I I

RQ=QR'

cosO -sinO 0 0

sinO cosO 0 0

o 0 1 ".0

o 0 0· .. 1

(4.57)

(4.58)

(4.59)

cosO -sinO 0 ... 0

sinO cosO 0 ... 0

R'= 0 0 1 '.0 (4.60)

0 0 0 ... 1
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Postmultiplying both sides of (4.58) by Q-I,

R=QR'Q-I. (4.61)

This is equivalent to saying that R is similar to R'. Thus, every rotator is similar to R'

for some angle O.

Now, an eigenvalue decomposition of R' is given. By inspection, it is plain that

columns 3 through N of R' are eigenvectors of R' associated with unity eigenvalues.

The remaining two eigenvalues and two eigenvectors can be found by examining the 2 x

2 block in the top left-hand comer of R' which will be called R2'. For each remaining

eigenvalue p ofR', it is known that det(R2'-pI) = 0 or

cosO - p - sinO
= cos2

() - 2p cos0 + J./ + sin 2 0 = 0
sin () cos0 - P

or

1- 2pcosO + p 2 = O.

This quadratic polynomial in P is solved to give

PI = cos () + i sin 0 .

and

P2 =PI =cos () - i sin 0 .
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The constant J-l will be defined to be equal to J-ll so that J-l and J-l are the two eigenval-

ues ofR2'. Therefore,

, [- isin 0 - sin 0 ] . [i 1]R 2 -j.JI = = -sInO
sin 0 - i sin 0 -1 i

has a null space spanned by

while

,- [isine - sine] . [i -1]R -J-lI = =sInO
2 sin 0 i sin 0 1 i

has a null space spanned by

Normalising u' and u' and placing them into a column matrix, it is found that

(4.66)

(4.67)

(4.68)

(4.69)

By Euler's formula,

[
cose + isinO 0 ] =[e i

(} e~(}].
o cosO - isinO 0
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so

(4.72)

or

R 2 'U 2 =U 2M 2 (4.73)

where

[e" 0] (4.74)M =
2 0 e-i8

and

U =[Y'" Y",l (4.75)
2 Yv 1,[2,[2

Therefore, the full eigenvalue decomposition of R' is

Y,[2 Y,[2 0 ···0 Y,[2 Y,[2 0 ···0 ei8 0 0 ,··0

Y,[2 1,[2 0 ... 0 Y,[2 1,[2 0 ... 0 0 -i8 0 ... 0e
R' 0 0 1 '.0 = 0 0 1 '.0 0 0 1 '.0 (4,76)

.

0 0 0 ,.. 1 0 0 0 ... 1 0 0 o ... 1

or

R'U'=U'M

where
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is a unitary matrix, and

Y,fi Y,fi 0 0

1,fi Y,fi 0 0

U'= 0 0 1'·. 0

o 0 0 ... 1

eiB 0 0 ···0

0 e-iB 0 ... 0

M= 0 0 1 '.0

0 0 0 ... 1

(4.78)

(4.79)

Postmultiplying equation (4.77) by U'-l which is U'H, the complex conjugate transpose

ofU', gives

R'=U'MU'H.

If equation (4.80) is substituted into equation (4.61), then

(QH = QT for real Q.) or

R=UMUH

where

U =QU',
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a unitary matrix, being a product of unitary matrices. By this equation, the columns of

U which are the eigenvectors ofR are

YJ2 YJ2 0 ···0

-YJ2 YJ2 0 ···0
o 0 1'·. 0 =

o 0 0 ... 1

Q'1t Ql:);2 q3 ... qN

I I
I I

(4.84)

Since all qi are real vectors, the first two columns of U are clearly complex conjugates.

Therefore, the first two columns may be labelled u and ~ so that

U = U U U 3

where

Now, recall from the definition of an RSRS in equation (4.2) that

(4.85)

(4.86)

(4.87)

where R is a rotator, non-zero e exists solely in the plane of rotation of R, A is real and

non-zero, and AR"* I. Therefore, by equation (4.82),
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or

which, as UHU is I, gives

Let

en = An pMUHUMUH...UMUH,e
v

n times

(4.88)

(4.89)

(4.90)

(4.91)

Then c is the co-ordinate vector of e in the basis of the columns of U because premulti-

plying (4.91) by U gives

Uc=e

or

(4.92)

I I I C\

I I I C2

U U u3 ... UN C3 =e. (4.93)

I I I
I I I CN

Substituting equation (4.91) into equation (4.90) gives
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Since e exists solely in the plane of rotation and is non-zero, it must be a linear combi-

nation of u and u only. Therefore, the first two coefficients of c, CI and C2, are non-

zero and C3 through CN are zero. The fact that e is real means that the coefficients CI and

-
C2 must, themselves, be complex conjugates. Therefore, CI and C2 are renamed C and C

and

einO 0 0 ... 0 C

0 e-inO 0 ... 0 c

en = Anu 0 0 1 '.0 0 (4.95)

.
0 0 0 ... 1 0

or

I I I ceinB

I I I - -inOce
e =A

n
U U u3 "'U N 0 (4.96)

n

I I
I I 0

which is

(4.97)

or

(4.98)

where
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and

z = ., ~if}
~ ,

w=cu.

(4.99)

(4.100)

As with equation (4.50), it is necessary to apply the restrictions that z"* 0 and z"*

1 and that w "* O. Also, since the formula for w in this derivation, beginning with the

definitions of qt and q2 and following on through equations (4.84) and (4.85), satisfies

the assumptions leading to equation (4.43), w is orthogonal tow.

4.3 The Kernel of the 1st Order VEA, Real Part, Complex Form

To recapitulate, it has been established, by two different routes, that the original

definition of an RSRS given in equation (4.2),

e = .,nRne .c. r 0 1 2n A ,10 n = , , , ... (4.101)

where /l is a real scalar, R is a real N x N rotation matrix, e is a non-zero real vector

existing solely within the plane of rotation of R, with /l > 0, and /lR "* I, the identity

matrix, is equivalent to

-n-
en = znw + z w, for n = 0, 1,2, ... (4.102)

where the complex scalar z "* 0, z "* 1, and w is non-zero and orthogonal to its complex

conjugate. The equivalence of (4.101) to (4.102) means that an alternative fonn of the

. necessary and sufficient condition for the success of the 1st order VEA on real vector
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sequences in equation (3.1), which is also the original definition of a AR sequence, can

be given. By equations (4.101), (4.102) and (3.1), it has been shown that, given a

vector sequence {xn } whose terms are real and N-dimensional, then E~n) = x for n = 0, 1,

... if and only if

-n-
x n =X + znw + Z w, n = 0, 1, ... (4.103)

where z is a complex scalar, z ;;j:. 0, Z ;;j:. 1, and w is a non-zero complex vector which is

orthogonal to its complex conjugate. This new definition fulfils the expectations that

emerged at the start of this chapter that there must be an alternative form for the kernel

of the 1st order VEA that makes no reference to rotation matrices. This definition will

strongly resemble the complex kernel for the 1st order VEA to be given in Chapter 7.
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5. EXPERIMENTATION TOWARD THE KERNEL OF THE
VEA

The focus of the work, up to this point, has been only the 1st order VEA. For

this chapter and the next, the picture is broadened to include higher orders of the VEA.

In addition, the methods employed are empirical: careful observation of what order of

VEA is necessary to create a constant transform sequence from a variety of carefully

constructed original sequences all generated in the same manner. The object of the

experiments is to look for vector sequences where the minimum order of VEA trans-

form necessary to give a constant sequence is lower than the sufficient order suggested

by McLeod and Graves-Morris and reported in Theorem 2.6., i.e. vector sequences

which do not satisfy the equation (2.32) when k is the order of VEA used. The intention

for these experiments is that they would lead to the discovery of conditions that are both

sufficient and necessary for membership of a vector sequence in the kernel of the VEA.

Throughout this chapter and the next, reference will be made to the VEA order

of a sequence. By this is meant the lowest order of VEA which is capable of yielding a

transform sequence all of whose terms are the same vector. If no order of the VEA is

capable of making such a transformation, then the sequence will be said to have no

VEA order.

The vector sequences used in these experiments are all generated by defining an

N x N matrix A, and N-dimensional vectors b and Xo, and then generating the sequence

{xn} to satisfy the formula

(5.1)
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One reason for choosing this method of sequence generation is that, though none of

them is practically implemented as such, all of the classic iterative techniques for the

solution of large systems of linear equations generate vector sequences which satisfy

equation (5.1). These include Jacobi iteration, Gauss-Seidel iteration, Jacobi underre-

laxation, successive over-relaxation and Richardson iteration. Because of this, such

sequences have already received much attention which has resulted in useful extensions

of the McLeod - Graves-Morris condition. These extensions by Gekeler and by Brezin-

ski have shown that, under certain mild conditions4
, the sequence will have a VEA

order and the vector of the constant transform sequence will be the limit or antilimit

vector x satisfying

x=Ax+b. (5.2)

One consequence of this is that the VEA is able to convert iterative solution methods

that rely upon a matrix A having a spectral radius less than unity into direct solution

methods with no such spectral constraint.

In this chapter, some current theory pertaining to such vector sequences is intro-

duced and explained somewhat in order that the experiments and their results may be

understood in their proper context. In addition, the results of the an initial group of

experiments are given which demonstrate that the VEA order of certain sequences is

lower than the, upper limit given in the current theory. A subsequent group of experi-

ments designed to determine precisely when this is so is the subject of Chapter 6.

4 By a mild condition is meant the disallowance of some parameter taking one of a finite number of
values.
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Section 5.1 introduces some important background pertaining to the iterative

solution of systems of linear equations in general and these numerical experiments in

particular. Following this, §5.2 presents and illustrates some theoretical results by

Gekeler and Brezinski regarding an upper bound on the VEA order of a vector sequence

generated by the iterative scheme of equation (5.1). Then, the results of the initial

experiments are described in §5.3. They indicate that the VEA order of a vector se­

quence whose generating matrix A has eigenvalues which are complex conjugates and

corresponding eigenvectors and generalised eigenvectors that are mutually orthogonal is

lower than the upper bounds given by Brezinski. However, it is not determined until

the experiments of the next chapter which of the orthogonality relationships present

between the eigenvectors and generalised eigenvectors of A are critical to this reduction

in the VEA order of the sequence below the upper bound.

5.1 Background Material

Under certain mild conditions, the sequence generated by equation (5.1) will

either converge toward or diverge from some vector x satisfying both equation (5.2) and

(I-A)x = b. (5.3)

If I - A is non-singular, then equation (5.3) will have a unique solution and {xn } will

have a limit or antilimit. If I - A is singular, then as long as b is a linear combination of

the columns of I - A (i.e. in the range or column space of I - A), equation (5.3) will still

have a solution, though there mayor may not exist a limit or antilimit of {xn }.

If equation (5.2) is subtracted from equation (5.1), then
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(5.4)

which is

(5.5)

where

(5.6)

This en may be thought of as the error present in Xn. By induction on equation (5.5),

(5.7)

Plainly, the nature of the sequence {en} depends completely upon A and eo. By

equation (5.6), however, {en} is just a translation of the sequence {xn}. This has a clear

implication for the experiments. Since, by Theorem 2.5, the VEA order of all transla­

tions of a given vector sequence are the same, the investigation may be confined to the

sequences {xn} whose (anti)limit is 0, which is to say, sequences {xn} generated by

equation (5.1) for which b = 0 or

(5.8)

These are convenient sequences to analyse because the error present in each term of

such a sequence is simply the term, itself. To emphasise these aspects, these sequences

will be denoted by {en} instead of {xn}.
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Now, consider what happens when the matrix An premultiplies some vector eo·

If J, a Jordan canonical form of A, and V, the corresponding matrix of eigenvectors and

generalised eigenvectors, are computed, then by definition

A=VJV-1.

(See Appendix B for a short introduction to this form.) Therefore,

or

A neo = yJV-1VJV-I ...VJV-I,eo •
v

ntimes

(5.9)

(5.10)

(5.11 )

Notice that every occurrence ofVIV becomes the identity matrix I and disappears from

the expression to leave

Let

V -I
C = eO.

Substituting equation (5.13) into equation (5.12) gives

which, by equation (5.7), is just
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(5.15)

The meaning of equation (5.15) can be made clearer with the introduction of

partitions of V, J and c according to the dimensions of Jordan blocks J j , i = I, 2, ... , r.

Thus,

where, for each i,

J= (5.16)

J.li 1 0 0 0

0 J.li 1 0 0

0 0 J.li 0 0
(5.17)J i = ,

0 0 0 •. J.li 1

0 0 0 ... 0 J.li

and each Ji is an Mx N i block. In like manner, V is partitioned into column blocks Vj ,

i= 1,2, ... ,rsothat

(5.18)

and for each i
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Vi = V i ,1 V i ,2 V j ,3

Finally, c is partitioned into segments Ci, i = 1,2, ... , r so that

C=

and the entries in each Ci are designated

c. =
I

Now, premultiplying equation (5.13) by V, the result is

Vc=eo

which is
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VI,I V 2,1
••. V

: r,1 V r,N, (5.23)

Thus, c is the vector containing the coefficients in the linear combination of eigenvec-

tors and generalised eigenvectors that make up eo. It represents a decomposition of eo

into components in the columns ofV. This c is sometimes called the co-ordinate vector

of eo in the eigenbasis ofA.

If equation (5.15) is premultiplied by Vi, the result is a related sequence

(5.24)

If Vi is a unitary matrix (i.e. if V is a unitary matrix), then this related sequence

{VIen } is merely the sequence {en} after it has undergone a unitary transformation. It

will be of the class of sequences described by equation (2.29) in Theorem 2.5. There­

fore, if the J(h order VEA applied to {en} gives the zero sequence (the sequence all of

whose terms are 0), the zero vector being the (anti)limit of {en}, then the kth order VEA

applied to {Vlen } will give {VIO} which is also the zero sequence, This means that

for each A having mutually orthogonal unit-length eigenvectors and generalised eigen-

vectors, all sequences {xn} satisfying
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X n =AXn_1 +b, n = 1,2, ...

can be fully investigated by examining only those sequences {en} generated by

(5.25)

(5.26)

a much more transparent set of sequences with which to work. For the sake of under-

standing those matrices A not having orthonormal eigenvectors and generalised eigen-

vectors, the experiments have included sequences satisfying equation (5.15) or

(5.27)

where V is not unitary, Le. does not have mutually orthogonal columns of unit 2-norm.

The contrast between the sets of results for these two cases provides the motivation for

the experiments of the next chapter.

5.2 Published Theoretical Results

Theorem 2.6 gave the sufficient condition of McLeod [18] and Graves-Morris

[13] for membership in the kernel of the kth order VEA. They said that if there exist

scalars ai, i = 0, 1, ... , k, and vector x such that Lai * 0, ak * 0, and

k

Lai(xn+i-x)=O, n=O,l, ... ,
i=O

(5.28)

then 8i~) = x for every n. Since these conditions are not necessary, there may exist

sequences whose VEA order is k but do not satisfy them as well as sequences which do

satisfy them but have lower VEA order than k of the conditions. (An example of this
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was seen in the.ILR sequences of Chapter 3.) Hence, Theorem 2.6 gives an upper bound

on the VEA order of any sequence satisfying equation (5.28).

In 1972, Gekeler [12] used this sufficient condition to prove

Theorem 5.1: If {xn} is a vector sequence generated by equation (5.1) with 1­

A non-singular and m is the degree of the minimal polynomial of A for the vec­

tor Xo - x where x is the unique solution of the linear system of x = Ax + b , then

E~~ =x, n=O, 1, .... (5.29)

By equation (5.6), Xo - x is simply eo. Also, the minimal polynomial of a matrix

A for a vector w is the monies polynomial

(5.30)

of lowest degree m such that

(5.31)

It will be denoted Pmin,A,w(J.L). (See Appendix C for a presentation of the minimal

polynomial of a matrix for a vector.) This polynomial may be alternatively defined as

follows. Let Vi, 1= 1, 2, ... , q be the q distinct eigenvalues of A, let CiJ be the coeffi-

cients defined in equation (5.21) and let Ki equal the highest indexj for which Ci,j::f. 0 for

every i whose corresponding Jordan block Ji has eigenvalue Pi = Vi. Then, the minimal

polynomial ofA for the vector w may be defined as

5 A monic polynomial is one where the coefficient for the term of highest degree is unity.
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(5.32)

with the convention that KI = 0 if CiJ = 0 for every j when Pi = \1. In other words, for

each distinct eigenvalue \1 of A, of all the column vectors Vi,j in all of the column blocks

Vi corresponding to Pi = VI, the highest j for which some of vector ViJ is present as a

component in w is the power to which (J1 - lite) is raised in Pmin,A,w(J1). If, for some \1

and every Pi = VI, none of the Vi,j,j = 1, 2, ... , N;, is present in w, then (J1 - \1) will not

be a factor ofpmin,A,w(J1).

This theorem provided the first extension of the McLeod - Graves-Morris suffi-

cient condition to vector sequences satisfying equation (5.1), providing an upper bound

on the VEA order of such sequences. Appendix D gives the brief and enlightening

proofof this theorem by Gekeler.

The appropriateness of the minimal polynomial of a matrix for a vector as a tool

to indicate the complexity of a vector sequence is apparent when considering the

following example. It is given using V, J and c in the form of equation (5.15) rather

than using A and eo in the form of equation (5.7).

en = VI,I V I,2 V I,3 V I,4 V 2,1 V 2,2 V 2,3

1 0 0
n

0PI

0 PI 1 0 CI,2

0 0 PI 1 CI,3

0 0 0 PI 0 (5.33)
......... - ... -................... __ .... _-

P2 1 0 C2,I

0 P2 1 0

0 0 P2 0
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Here, J is 7 x 7 and consists of 2 Jordan blocks, but it multiplies a vector c having some

zero coefficients. Only nonzero coefficients in c have been labelled. The matrix J

raised to the power n becomes

PIn (: )p;-I (; )Pln-2
(; )pr3

:

o P; (: )prl (; )Pln-2
:

o 0 . P; (: )p;-I :
In = 0 0 0 P;................................................[p;...U}p;~·I···{Dp;~i·

: 0 P; (: )prl

: 0 0 p;

where (~) is the binomial coefficient whose formula is

(i)_ _ i!
j - i Cj - -.,-:-(.---.)

J. 1- J

(5.34)

(5.35)

with the convention that t)= 0 if j > i. Therefore, substituting equation (5.34) into

equation (5.33) and completing the multiplication Jnc, en can be written as

or

V I,2 V I,3 V I,4 V 2,1 V 2,2
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which is also

[ (n) n-I (n) n-2 1 r n (n) n-d
en = C1,2 I If.JI + Cl,3 2 If.JI .1"1,1 + LCI,2,ul + CI,3 I If.JI .1"1,2

(5.37)

(5.38)

Equation (5.37) shows four distinct coefficients multiplying four different vectors.

Equation (5.38) shows four distinct monomials multiplying four different combinations

of vectors. Whichever way it is distributed, there are four fundamentally different

component vector functions making up en' In fact, this very same error sequence is

generated by

1 0
n

0PI

0 PI 1 CI,2
(5.39)e = VI,I V I,2 V I,3 V 2,1n

0 0 PI CI,3
............................

P2 C2,1

although the first matrix on the right-hand side of this expression is now 7 x 4 and no

longer square.

The fourth order character of the behaviour of this sequence is detected by the

minimal polynomial of A for the vector Xo which (see Appendix C) is the same as the

minimal polynomial of J for the vector c. With two distinct eigenvalues, VI =PI and

l-2 = /-l2, each corresponds to only one Jordan block. The highest j for which Clj ~ 0 is
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j = 3, so K 1 = 3. The highest j for which C2,j "* 0 is j = 1, so K2 = 1. Thus, the minimal

polynomial ofJ for the vector c in this example is

(5.40)

and the degree of Pmin,A,eo (,u) is 4.

Brezinski [3] refined Gekeler's result supplying

Theorem 5.2: Given a vector sequence {xn} generated by equation (5.1) with 1­

A non-singular, if m is the degree of the minimal polynomial of A for the vector

Xo - x where x is the unique solution of the linear system of equation (5.2) and k

is the number of zeroes of the same polynomial that are equal to 0, then, for

o~P ~k,

(n+p) 0 1E2(m-p) = x , n = , , .... (5.41)

The minimal polynomial of A for the vector Xo - x having k roots of zero means

that present in Xo - x is some part of the J(h vector of some column block associated with

a Jordan block having zero as an eigenvalue. Ifvi,k is that generalised eigenvector, then

(equation (B.12) with ,ui = 0)

Since, by equation (5.4),

Av. k = v. k-l •I, 1,
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that component OfVi,k present in Xo - x is, by equation (5.42), annihilated in Xl - X and

replaced by a corresponding portion of Vi,k-l. This causes the degree m of the minimal

polynomial of A for the vector Xl - X to be one less than that for Xo - x. Therefore, b'y

Theorem 5.1, one lower order of the VEA is needed to give the limit vector X provided

the sequence to be transformed begins with Xl instead of xo. This explains the case for

p = 1. This effect continues with each iteration until Xk which no longer has any repre-

sentative of any column block Vi for which Pi = O.

These results do not yield a sufficient condition if the matrix I - A is singular.

Brezinski [3] addressed this lack with

Theorem 5.3: Given a vector sequence {xn} generated by equation (5.1), if1­

A is singular and b is in the range of I - A (which means that X = Ax + b has in­

finitely many solutions x), let m denote the degree of the minimal polynomial of

A for the vector Xo - x, let k denote the number of zeros of the same polynomial

that are equal to 0, and let q denote the number of zeros of the same polynomial

that are equal to 1. Then, if q = 1, for 0 ~p ~ k,

(n+p) 0 1
&2(m-p)-2 =x, n = , , ... ,

and if q = 2,

(n+p) - 0 1
&2(m-p)-3 - z, n = , , ...

where z is a constant vector.

(5.44)

(5.45)

If q = 1, there exists in Xo - X one or more parts of vectors Vi, I for which Pi = 1.

The fact that Vi,l is a true eigenvector associated with unity means that

Avo] =v.]'
I, 1,
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Therefore, any component of Vi,l present in Xo - x which is eo endures Unchanged

throughout all en' These vector components represent merely a translation of the vector

sequence {xn} along the null space of I-A. The presence of these vector components

in Xo - x places no added burden on the VEA because, by Theorem 2.5, a translation of

the vectors in a vector sequence causes no change in the VEA order of the sequence.

Therefore, the contribution of these vector components to the degree of the minimal

polYnomial is corrected for in the E subscript of equation (5.44). Thus, Brezinski has

extended the upper bound on the VEA order of sequences generated by equation (5.1)

to those for which I - A is singular.

When q = 2, the vector Xo - x has at least some component of the second column

vector Vi,2 from a column block Vi for which Pi = 1 in it, a generalised eigenvector

component. The equation for this generalised eigenvector is (again, equation (B.12))

AVo 2 =V0 2 +vo 1•
" I, I,

(5.47)

Therefore, with each premultiplication by A, not only is the generalised eigenvector

preserved, but there appears an added true eigenvector component. Therefore, el2 will

have had 12vi,1 added to it due to equation (5.7). Such a sequence can no more have a

limit or antilimit than can the integer sequence {n}. Theorem 5.3 confirms this in

equation (5.45) where the E subscript is odd. This represents a complete breakdown for

the algorithm because if the vectors in an odd column of the E table are constant, then

the previous transform sequence of vectors must not be constant. The terms of the next

transform sequence are not defined, because their calculation requires the inversion of a

zero difference vector. Clearly, the presence in Xo - x of any part of a generalised
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eigenvector of A associated with a unity eigenvalue in the sequence vectors means that

it can have no VEA order.

One commonly found description of the action of the VEA on vector sequences

generated according to equation (5.1) is that the kth order VEA produces a transform

sequence which behaves as if A had had its k largest magnitude eigenvalues set to zero.

In effect, each order of VEA zeroes a dominant eigenvalue of A. At the end of the next

section, it shall be seen that under some circumstances, a single order of the VEA is

effectively able to zero two of the largest magnitude eigenvalues of A. The full de-

scription of these circumstances constitutes the subject of the next chapter.

5.3 The Initial Experimental Results

The experimental results are reported in two subsections. Subsection 5.3.1 gives

the results of the experiments on sequences satisfying

(5.48)

These sequences correspond to those generated according to

(5.49)

for which A can be transformed into its Jordan canonical form J by a unitary matrix V.

Subsection 5.3.2 summarises the results of experiments on sequences satisfying

(5.50)
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where V is not unitary. This set of sequences corresponds to those generated according

to equation (5.49) for which A can only be transfonned into its Jordan canonical fonn J

by a matrix V which is not unitary.

5.3.1 When V is Unitary

The first set of experiments done were on vector sequences {en} satisfying

equation (5.26) which is

(5.51)

This set of experiments uncovered circumstances under which the VEA order of a

sequence was lower than the upper bound given in Theorems 5.2 and 5.3. In some

cases, the VEA order was half of the upper bound of the theorems reviewed. These

circumstances are now given. In order to describe the circumstances, a phenomenon to

which the author has given the name overshadowing is introduced.

For a matrix J having both Vc and its complex conjugate Vc for eigenvalues, let

the powers to which (j.J, - vc) and (p - vc ) are raised in the factored fonn ofPmin,J,c be

denoted K y and K-, respectively. Then, if K > K-, it will be said that some
c yc Vc Yc

Jordan block having Vc as an eigenvalue overshadows those Jordan blocks having V c

for an eigenvalue. Similarly, if K y < K-, then it will be said that some Jordan block
eYe

having V c for an eigenvalue overshadows those Jordan blocks having Vc for an eigen-

value. Every instance of a complex number and its complex conjugate both being

eigenvalues ofJ will result in one or more overshadowed Jordan blocks, provided there
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exist nonzero cij in c corresponding both to Jordan blocks having Vc for an eigenvalue

and to Jordan blocks having V c for an eigenvalue.

Now, it was found in this first set of experiments that the amount by which the

VEA order of {en} fell below the upper bound given by Theorems 5.2 and 5.3 was the

sum of the K y and/or K- corresponding to overshadowed Jordan blocks in J. An-
c yc

other way to say it is that in order to arrive at the true VEA order using the formulae of

Theorems 5.2 and 5.3, it is necessary to let m be the order of the minimal polynomial of

the matrix J for the vector c where J is the matrix J after the eigenvalue of each

overshadowed Jordan block has been changed to that of its complex conjugate.

To illustrate the concept of overshadowing, consider the sequence {en} gener-

ated according to

3 1 ~

o 3i
............: _ : _.. _ -..

e =n

~l+i 1 0

~ 0 l+i 1 :

~ 0 0 l+i ~
·········T······························f·i"~i······i··

. .. .
~ ~ 0 l-i

where i in this expression is the square root of negative one. In this equation, only non-

zero scalars in c have been given their labels. It can be seen that Ct,t, C2,3, and C3,2 are

the non-zero coefficients with greatest second index in c. Therefore, the minimal

polynomial of J for the vector c will be
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P min J c (u) =eU - 3)(u - 1- i )3 (p - 1+ iY (5.53)

having degree 6. Since I -- J is nonsingular and 0 is not a root ofPmin,J,c{J1), by Theorem

5.2, a sixth order application of the VEA to {en} is sufficient to give a constant 0

sequence. What is observed, however, is that a fourth order application of the VEA to

{en} yields the zero sequence. The second Jordan block overshadows the third Jordan

block because the eigenvalues of the blocks are complex conjugates and the non-zero

scalar ofhighest index in C2 is three compared to that of C3 which is only two.

If c were changed and {en} were, instead, generated by

3 1

o 3\
.............: _ : .

~l+i 1 0

en = ~ 0 1+ i 1 ~

~ 0 0 l+i ~
·········T····························-·r·i~i-·····i··

. .. .
~ ~ 0 l-i

n

C2,l

0 (5.54)

0

C 3,1

C3,2

then the third Jordan block would overshadow the second, even though the second

block is bigger; it is the greatest index of non-zero coefficient in C2 and not the size ofJ2

which determines the power of the corresponding factor (J1 - 1 - i) in Pmin,J,c{J1).

Therefore, only a third order application of the VEA is required instead of a fourth order

application in order to give the zero sequence.

The most dramatic examples of this reduction are 2k x 2k matrices J having two

distinct eigenvalues in two k x k Jordan blocks having non-zero non-unity complex

conjugate eigenvalues with c having nonzero coefficients Ct,k and C2,k. In this case, the
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degree of Pmin J c is 2k as is Brezinski's upper bound for the VEA order of {en} while

the VEA order of {en} is only k.

To summarise, what is seen is that two vector sequences {e'n} and {e"n} can be

generated by matrices J' and J", respectively, and vectors e' and e", respectively, where

Brezinski's upper bound for the VEA order in both cases is k and yet {e'n} will have a

VEA order lower than k while {e"n} does not. This difference will be due to J' having

complex conjugate eigenvalues.

5.3.2 When V is Not Unitary

Experiments done on vector sequences {en} satisfying equation (5.15)

(5.55)

where V is not unitary revealed that the phenomenon of overshadowing was necessary

in order for the VEA order of {en} to be lower than the upper bound of Theorems 5.2

and 5.3 but that overshadowing in itself was not sufficient. When the columns of V

were scaled so that they no longer had unit length but still remained mutually orthogo­

nal, overshadowing continued to lower the VEA order as when V was unitary. How­

ever, when some of the orthogonality relationships between the columns of V were

destroyed, the effect of overshadowing was sometimes unchanged and sometimes

partially or completely eliminated. In other words, if the VEA order of the sequence

{Jne} is u orders lower than the upper bound of Theorems 5.2 and 5.3, the VEA order of

{VJne} will be v orders lower than the upper bound of Theorems 5.2 and 5.3 where
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o~ v ~ u, depending upon the presence or absence of certain not yet identified orthogo­

nal relationships between the columns of V.

In order to determine the precise correlation between combinations of orthogo­

nal relationships among the columns of V and the magnitude of the reduction of the

VEA order of the resulting sequence below Brezinski's upper bounds, a second set of

experiments was designed and executed. The design and results of these experiments is

the subject of the next chapter.
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6. ORTHOGONALITY IN V AND VEA ORDER REDUCTION

In the experiments of the previous chapter, it was observed (Subsection 5.3.1)

that some vector sequences {en} whose terms satisfy

(6.1)

do have a VEA order lower than the upper bound given by Brezinski in Theorems 5.2

and 5.3. In this expression, J is in Jordan canonical form (i.e. N x N and block diago-

nal), having the form

J=

and each Jordan block J i is Ni X M and has the form

(6.2)

J1i 1 0 0 0

0 J1i 1 0 0

0 0 J1i 0 0
(6.3)J i =

0 0 0 J1i 1

0 0 0 0 J1i

while c is N x 1 and can be partitioned in a conformable fashion so that
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c=

and each Ci is N; x 1 having elements labelled according to

(6.4)

Ci,l

Ci,2 (6.5)C -i-

Ci,N;

Those sequences having a lower VEA order than Brezinski's upper bound are generated

by a matrix J having pairs of complex conjugate eigenvalues and a vector C having

some non-zero coefficients CiJ corresponding to Jordan blocks J i of both such eigenval-

ues. How much lower the VEA order of the sequence is than Brezinski's upper bound

is determined by how many degrees of Pmin,J,c(j.L) are due to overshadowed Jordan

blocks in J.

It was also observed that if a nonunitary matrix V premultiplies this vector se-

quence to create {Yen}, then the reduction in VEA order below Brezinski's upper bound

due to overshadowed Jordan blocks may be either preserved, diminished, or eliminated.

Which of these occurs depends not on the lengths of the column vectors of V, which is

to some extent arbitrary, but upon the presence or absence of certain orthogonal rela-

tionships among the column vectors in V. This chapter describes the experiments

carried out in order to determine the exact correlation between orthogonal relationships

among the column vectors of V and the degree of VEA order reduction preserved from
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that observed when V is unitary. It also seeks to extend these results with a conjecture

for higher orders and notes some consequences of these results.

Section 6.1 describes the components of the experiments in some detail.· In

§6.2, the experimental details and specific results for N = 2, 4, 6, and 8 are given.

Section 6.3 summarises these results and formulates a conjecture for all higher orders

consistent with them. Finally, §6.4 describes consequences of these results, including a

possible insight into one successful application of the VEA and a broader sufficient

condition for membership ofa vector sequence in the kernel of the 1st order VEA.

6.1 Design of the Experiments

The sequences used in these experiments all satisfy the expression

n

o

e =n

o

, n = 0, 1, ... (6.6)

where V1 and V2 are column blocks of equal size on whose column vectors some set of

orthogonality relations has been imposed and J 1 and J 2 are Jordan blocks of equal size

having unequal complex conjugate eigenvalues. Therefore, the size of V and of J is an

even number. The eigenvalues of J 1 and J2 are not equal to zero or one6 so, by Theo-

rem 5.2, the upper bound on the VEA order for all resulting sequences is simply the

6 Actual eigenvalues used in tests were .8±i.6and 1±i.5.
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degree ofPmin,J,c(;J). The vector c used in each case is random with the constraint that

(6.7)

This ensures that the degree ofPmin,J,c(;J) for every case is N. By turn, a list of combi-

nations of orthogonality relatio~ships is defined. For each combination in the list, a

matrix V is generated possessing those and only those orthogonalities called for in that

combination. Then, the terms of the sequence {en} are generated according to equation

(6.6), the corresponding E-table constructed, and the YEA-order of {en} determined. In

this way, it can be ascertained which vectors in VI and V2 must be and which need not

be orthogonal in order to obtain various reductions in the VEA order below N.

A tool of the author's invention called an o-diagram which will prove useful is

now introduced. It will illustrate any set of orthogonality relationships present between

the columns of V. The diagram begins with a set of N dots, each dot representing a

column vector of V in a one-to-one correspondence, located at the vertices of a regular

N-sided polygon. The dots are positioned so that there are two top-most dots beside

each other, and since N is even, the same will be true of two bottom-most dots. The

dots of the left half of the diagram correspond to vectors in V I and those of right half to

vectors in V2. The top-most dots correspond to VI,I and V2,I. Consecutive dots con-

tinuing down each side of the diagram correspond to subsequent vectors within each

column block of V, the left and right bottom-most dots corresponding to v 1,N
1

and

V 2 N ,respectively. The diagram will also have zero or more line segments connecting
, 2

pairs of dots to form a simple graph. Each segment indicates an orthogonal relationship
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between the vectors corresponding to the dots joined by the segment. This arrangement

of dots permits all such segments to be distinguished visually because no three dots are

collinear.

For the matrix

v = VI,] V],2 V 2,1 V 2,2 (6.8)

having no orthogonal relationship between any two column vectors, the corresponding

o-diagram is given in Figure 6.1, below. In this figure, each dot is labelled with the

vector it symbolises. Labels will generally be omitted from subsequent o-diagrams.

VI,1 • • V2,1

VI,2 • • V2,2

Figure 6.1 - The o-diagram for V with 2 vectors in each column block,
and no 2 vectors orthogonal.

Between the four column vectors of V in equation (6.8), there exist six possible

orthogonal relationships. As each relationship has only two possible states, orthogonal

or not orthogonal, it is natural to use the binary number system to represent combina-

tions of orthogonal relationships. However, this will require an ordering of the relation-

ships. A natural ordering emerges when considering the left-to-right order of the

vectors in V, ignoring the column block separator. This order is shown in Table 6.1.
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Notice that each row of the table records a vector relating to each of the vectors to its

left in V, each of which appears in sequence from left to right in V.

Table 6.1 - The order used for orthogonality relations in this chapter.

v I,2l-V 1,1 ?

V I,3l-V I,I? V I,3l-v 1,2 ?

V I,4l-V I,I? V 1,4l-V1,2? V 1,4l-v 1,3 ?

V I,N) l-vI,I? V I,N)l-V I,2? ••• V I,N) l-vI,N1-I ?

v 21 l-vII ? v 21 l-vI2 ? v21l-vIN_I? V 21l-vIN ?.,., .,., ,., 1 .,., 1

V 2N l-vII? V 2N l-v12? ••• v 2N l-vI N? v 2N l-v2I? ••• V 2N l-v2N -1 ?
,2, '2' '2,),2, ,2,2

Clearly, the number of possible relationships between N vectors is 1 + 2 + ... + (N - 2)

+ (N - 1) = Y2(N - 1)N, and this is also the number of binary digits needed to represent

any combination of orthogonalities in a V matrix ofN columns. The right-most binary

digit has been made to correspond to the relationship at the top of Table 6.1 and the left-

most binary digit to the bottom right-hand relation in Table 6.1. A 1 will indicate

orthogonality and a 0 nonorthogonality. For the 4-column V of equation (6.8), the 26

possible combinations of orthogonalities are represented by the binary numbers 000000

through 111111 or 0 through 63. The order of each of these relations is further illus-

trated by Figure 6.2.
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V1,2

2

5 '

Figure 6.2 - An ordering of the relationships in an o-diagram for V
consisting of 2 column blocks with 2 vectors each.

To ease the job of reading binary numbers, commas will be inserted between

groups of digits corresponding to relationships on the same row of Table 6.1. Thus,

Figure 6.1 shows the diagram corresponding to the number 0 or 000,00,0 in binary

notation, Figure 6.3 gives the same for 63 or 111,11,1 in binary, and Figure 6.4 gives

the diagram for 13 or 001,10,1 in binary.

Figure 6.3 - O-diagram for unitary V consisting of 2 column blocks with 2
vectors each.

Figure 6.4 - O-diagram for V consisting of 2 column blocks with 2 vectors
each, with orthogonal relationships 001,10,1.

Figures 6.5 and 6.6 give examples of o-diagrams for V matrices consisting of 2

column blocks having 3 vectors in each block and 4 vectors in each block, respectively.
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Figure 6.5 - O-diagram for V consisting of2 column blocks, 3 vectors
each, with orthogonality 10100,1000,001,10,1.

Figure 6.6 - O-diagram for V consisting of2 column blocks, 4 vectors
each, with orthogonality 0000001,000001,00001,0001,001,01,1.

For each combination of orthogonality relations, a matrix V having the pre­

scribed relations must be generated. This is done by beginning with the JIIh-order

identity matrix and adjusting coefficients above the diagonal one at a time until the

desired orthogonality relationships are realised. The order in which coefficients are

adjusted is shown in alphabetical order by the letters a throughfin the matrix

1 a:b d

0 1 ~c e
(6.9)V=

0 0:1 f
0 0:0 I
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Thus, the order of relationships in Table 6.1 is mirrored in the sequence of coefficients

set in order to generate a suitable V. For the number 13 or binary 001,10,1, the corre-

sponding V matrix generated for use in the experiments was

1 0~1 0

0 1 ~ 0 1
(6.10)V=

0 o ~ 1 1

0 0:0 1

and corresponds to the o-diagram given in Figure 6.4.

6.2 Test Results

6.2.1 N= 2

Between the two column vectors of V there is only one relationship to consider

and therefore 21 = 2 matrices V with 2 o-diagrams to generate and two sequences for

which to determine the VEA order. It was found that if v1,1 1. V2,1 then the correspond-

ing sequence {en} was 1st order and otherwise it was 2nd order. Therefore, the 0-

diagram illustrating the necessary orthogonality relationships for a reduction in VEA

order of 1 is given in Figure 6.7. See §6.4.2 for further comments on this case.

• •
Figure 6.7 - O-diagram for V having 2 column blocks with 1 vector each giving a reduc­

tion of 1 VEA order below Brezinski's upper bound.
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6.2.2 N= 4

As already mentioned, for N = 4 the 6 relations define 64 different combinations

with their o-diagrams for each of which the corresponding VEA order must be deter­

mined. The results of all 64 o-diagrams is shown in Figure 6.8 with 4th order 0­

diagrams to the left and unframed, 2nd order to the right and solidly framed, and 3rd

order in between with dotted frames. For each order, the o-diagram with the fewest

orthogonal relationships is shaded.

," ... ," ..."- -----~ .

Figure 6.8 - The 64 o-dia~rams for V having 2 column blocks with 2 vec:ors each,
grouped by order, 4t order not framed, 3rd order framed by dotted hnes,

and 2nd order framed by solid lines.

Of the unframed 4th order o-diagrams, perhaps the most telling one is in the

bottom right-hand corner of that group. It contains every orthogonal relationship

possible except the one between the two eigenvectors VI,I and V2,I. Notice also that the

32 cases which do show a reduction in VEA order, members of the 3rd and 2nd order

groups, all correspond to V matrices having orthogonal eigenvectors. Clearly, without

that relationship, there is no reduction whatsoever in VEA order below the upper bound.

In this respect, the results for N = 4 are similar to those for N = 2.
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Of the solidly framed 2nd order o-diagrams, the shaded one defines three or­

thogonal relationships which are present in every other 2nd order diagram. Every 3rd

order o-diagram lacks either the orthogonality between VI, 1 and V2,2 or the one between

VI,2 and V2,1 or both. Therefore, it appears that the orthogonality between eigenvectors

provides the first reduction in VEA order, and these two "cross orthogonalities" provide

the second reduction in VEA order.

6.2.3 N= 6

With the increase in the number of vectors to six, the number of relationships

increases to 15, and the number ofpossible combinations of these relationships to 215 or

32,768. It should be noted that all results thus far were obtained on an HP 48GX

programmable scientific calculator. On it, the 64 cases could be run in just under an

hour. The 32,768 cases for N = 6 would take just over 45 days to complete, longer than

the lifespan of one set ofbatteries. Clearly, something else had to be done.

It was noted that all of the N = 4 results showed no advantage to the presence of

an orthogonal relationship without its mirror image relationship (mirrored with respect

to a central vertical axis on the o-diagram) also being orthogonal. Therefore, it was

decided to determine how many orthogonal relationships could be grouped with their

mirror images and either included or omitted together. This approach reduced the

number of degrees of freedom to 9. The corresponding o-diagrams for these symmetri­

cally grouped orthogonalities are shown in Figure 6.9.
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Figure 6.9 - O-diagrams for 9 symmetrically grouped sets of orthogonal
relationships for V having 2 column blocks with 3 vectors each.

With this change, the number of cases to run became 29 or S12, ajob of only 17

hours. Subsequent procurement of an HP 48GX simulator to run on a PC ultimately

reduced the job to 1.S hours. The results are summarised one order at a time beginning

with the 1st reduction of one VEA order.

a.

e--e

• •
• •

b.

Figure 6.10 - a. The maximal 6th order o-diagram, and b. the minimalSth

order o-diagram for V having 2 column blocks with 3 vectors each.

It was found that every 6th order o-diagram was a subset of the 6th order 0-

diagram shown in Figure 6.10 a. (Such o-diagrams will be referred to as maximal.)

Thus, every 6th order o-diagram, like those of the 4th order for N = 4 and 2nd order for N

= 2, lacked the top segment between VI,I and V2,1. It was also found the every o-diagram

of Sth order was a superset of the one shown in Figure 6.10 b. (Such o-diagrams will be

referred to as minimal.) All lower order o-diagrams were also supersets of Figure 6.1 0

b. Once again, the first reduction of one VEA order below Brezinski's upper bound

relies solely on the presence of an orthogonality between the two eigenvectors ofV.
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• •

a. b.
• •

c.

Figure 6.11 - a. The minimal 5th order o-diagram, b. the maximal 5th

order o-diagram, and c. the minimal 4th order o-diagram for V having 2
column blocks with 3 vectors each.

The minimal and maximal 5th order o-diagrams of Figure 6.11 a. and b. show

that every 5th order o-diagram both included the orthogonality between eigenvectors and

excluded the orthogonalities between VI,I and V2,2 and between V2,1 and VI,2. It was also

observed that the three orthogonalities present in the minimal 4th order o-diagram of

Figure 6.11 c. were present in every 4th order and every 3rd order diagram. Subsequent

testing of the o-diagram in Figure 6.11 c. with either of these two orthogonalities

removed also resulted in 5th order sequences. This parallels the situation found with

N= 4. The second reduction of one VEA order, given a first such reduction, hinges

completely on the presence of both the orthogonality between VI,2 and V2,1 and that

between VI,I and V2,2.

The 3rd VEA order reduction is a little trickier to analyse. The o-diagrams of

Figure 6.12 a. and b. are two different maximal 4th order diagrams. (Every 4th order 0-

diagram was a subset of one of these two figures.) Figure 6.12 a. lacks only the or-

thogonality between VI,2 and V2,2. The only orthogonalities lacking in Figure 6.12 b. are

those between VI I and V23 and between V2I and V13. The minimal 3rd order o-diagram
" "

of Figure 6.12 c. contains all three of these orthogonalities as well as those of the

minimal 4th order o-diagram. It may therefore be concluded that the third reduction of
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one VEA order requires all three of these orthogonalities in addition to those needed for

the previous two reductions.

a. b. *c.

Figure 6.12 - a.,b. Two maximal 4th order o-diagrams and c. the minimal
3rd order o-diagram for V having 2 column blocks with 3 vectors each.

6.2.4 N= 8

Between pairs chosen from eight vectors, 28 different relationships are possible

defining 268,435,456 different 8 x 8 V matrices to create, sequences to generate, and 8th

order E-tables to calculate. Even a reduction to the 16 symmetric orthogonal relation-

ship components leaves 65,536 cases to run, too much for the author's chosen research

tools at the time.

Up to this point, none of the orthogonalities essential to any VEA order reduc-

tion have been between vectors of the same column block. If the 6 corresponding

symmetric relationship sets are removed from the test, there remain still 10 symmetric

degrees of freedom. If the test is further restricted to a search for a 4th VEA order of

reduction given 3 VEA orders of reduction below the upper bound, then the 4 symmet-

ric sets of orthogonalities necessary to obtain 3 reductions of VEA order can be in-

eluded in all cases tested leaving only 6 symmetric degrees of freedom and 64 cases to

run. The basic configuration and the 6 symmetric components to be added in combina-

tions are shown in Figure 6.13.
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a. b. c. d.

• • • • • •
• • • • • •
• • ~ • •• • • •

e. f. g.

Figure 6.13 - a. O-diagram for an expected reduction of3 VEA orders
and b.-g. six symmetric orthogonality sets to add to it in search of a 4th

VEA order reduction for V having 2 column blocks with 4 vectors each.

Because all 64 combinations include what are expected to be the necessary or-

thogonalities for 3 VEA orders of reduction below the upper bound for N = 8, it is

expected that no case will produce a sequence of higher than 5th order. This turned out

to be the case. Figure 6.14 shows the two maximal 5th order diagrams and the minimal

4
th

order o-diagram. Of all the orthogonalities tested, the ones missing from Figure 6.14

a. are those between VI,2 and V2,3 and between VI,3 and V2,2. Those missing from Figure

6.14 b. are between VI,1 and V2,4 and between VI,4 and V2,1. These four orthogonalities

are the ones that appear along with those orthogonalities necessary for a reduction of 3

VEA orders in Figure 6.14 c. which together resulted in 4 VEA orders of reduction.

Subsequent testing showed that the removal of any of these four added orthogonal

relationships in Figure 6.14 c. disabled the 4th VEA order reduction and produced a 5th

order sequence. Thus, the fourth reduction of one VEA order requires the presence of
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these four orthogonalities in addition to those required for the first 3 VEA orders of

reduction.

a. b. c.

Figure 6.14 - a., b. Two maximal 5th order o-diagrams minus possible
same-block relationships and c. the minimal 4th order o-diagram for V

having 2 column blocks with 4 vectors each.

6.3 Summary and Generalising Conjecture

In light of the surprising finding (to the author) that none of the orthogonalities

advantageous to reductions in VEA order are between column vectors in the same

column block, an alternative form for such diagrams suggests itself in which the vectors

within a column block appear evenly spaced along an undrawn vertical line with the

same top-to-bottom ordering as previously. The two column blocks give rise to two

such vertical columns. It is instructive to consider the orthogonalities shown in Figure

6.14 c. on such a revised o-diagram. It is shown in Figure 6.15 with 4 open circles

strategically placed.
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Figure 6.15 - The vertical format minimal 4th order o-diagram with
central open circles for V having 2 column blocks with 4 vectors each.

Notice that the ith open circle from the top has i segments passing through it and

that the orthogonalities corresponding to these segments are those required for the jth

reduction in VEA order given a pre-existent reduction of i-I VEA orders. This

observation suggests a conjecture for all subsequent reductions in VEA order below

Brezinski's upper bound. It is that a sufficient condition for a reduction of k VEA

orders below Brezinski's upper bound is that every relation in the set of relations

k i

UUV1,j..l.v2,i+I-j
i=l j=l

(6.11 )

hold. The author is convinced that it is true, though the experiments reported here only

demonstrate its sufficiency up to N = 8. The author has also confirmed its sufficiency

for N= 10. It may be that the condition is also necessary, though these experiments do

not address this question.

6.4 Consequences of the Result

6.4.1 Hypersonic Flow Calculations

In light of this phenomenon whereby each order of the VEA negates the effect

of two complex conjugate eigenvalues when associated with mutually orthogonal

eigenvectors, it is interesting to note results published by Cheung et al [9]. Their work
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applied Richardson relaxation to the problem of hypersonic flow calculations which

make use of Steger-Warming flux-vector-splitting in the formation of their iteration

matrix. (Recall that Richardson relaxation is one of the iterative schemes which gener-

ates a sequence according to equation (5.1).) They then accelerated the convergence of

the resulting sequence using the VEA, consistently achieving a 50% reduction in

computing time. Figure 6.16' shows a typical subset of the eigenvalues of the

Richardson relaxation matrix A used in their solution procedures applied to inviscid

flows. Figure 6.17 shows the same for viscous flow calculations.

,N\fIlClP

•
V1SCOUS

REAL AXIS

FJa.:1 .El&enwalue5~ ........ eaIc:la1atioo: M. = :JO; Il~L =
.. x 18";. =G; bllUlt _ pid 63 x 60 wilh $ .. 1 x 10-',

REAL AXIS

Fla. 1 EJaaul_~ IDYlBddcalcBlalioll: II• .. :JO; CI =0;
bluDIeoJ*pid63 x 60wttlu = 1 x IO~·.

.. 1.0

Figure 6.16. Some of the eigenvalues ofA
for inviscid hypersonic flow calculations

from Cheung et at [9].

Figure 6.17. Some ofthe eigenvalues ofA
for viscous hypersonic flow calculations

from Cheung et at [9].

Applying the vertical axis for Figure 6.16 to both figures, notice that in both

cases the eigenvalues come in complex conjugate pairs. If, in the presence of mutually

orthogonal eigenve~tors, each order of the VEA effectively zeroes two complex conju-

gate eigenvalues ofA, it seems somewhat likely that this property of the VEA may have
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been unwittingly exploited by Cheung et al. It would be very interesting to learn

whether or not the complex conjugate eigenvalues of their A matrices were in fact

accompanied by mutually orthogonal eigenvectors.

This observation suggests to the author that it would be worth finding out which

engineering applications routinely give rise to iteration matrices having complex

conjugate eigenvalues whose corresponding eigenvectors are mutually orthogonal.

Such applications are ripe for acceleration by the VEA.

6.4.2 Consequences for the 1st Order VEA Kernel

The results of this chapter for N = 2 are now explored a little more fully. They

support the sufficient condition that every sequence {en} whose terms en satisfy

(6.12)

with nonzero 2-dimensional vectors VI 1.. V2, with J.l "* 0 and J.l"* 1 has VEA order of 1.

Inequality (6.7) ensured that Brezinski's upper bound was 2. If it is permitted that

either CI or C2 of equation (6.12) is zero, then this lowers the upper bound to 1, giving

the other way to obtain a VEA order of 1. Therefore, the condition

(6.13)

is added to the constraints on equation (6.12). Otherwise, allowing ICII + IC21 = 0 would

mean that en = 0, n = 0, 1, ... resulting in a constant vector sequence which may be

thought of as having a VEA order of o.
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If each of VI and V2 were extended to some dimension k> 2 by zero padding

(filling the new coefficient positions in each vector with zeroes), it is obvious that the

resulting sequence will have the same order. By Theorem 2.5, each term of this se-

quence may, in turn, be premultiplied by any unitary matrix U to produce a new se-

quence having the same VEA order and zero (anti)limit vector. For this reason, we may

remove the constraint on the vectors VI and V2 that they be 2-dimensional. Any two

orthogonal nonzero vectors may be used to define {en} and still give a sequence with

VEA order of 1.

Calculating the product of equation (6.12) yields

(6.14)

Since the scaling of any eigenvector of any matrix is arbitrary, let WI = CIVI and W2 =

C2V2, giving the simpler result

(6.15)

Notice that if J1 is real, the expression simplifies to

(6.16)

where W= WI + W2, J1 *- 0, J1 *- 1 and Ilwll > O. Ifw2 = 0, then equation (6.16) still holds

with W = WI. In both cases, equation (6.16) is just a geometric progression which

satisfies McLeod's sufficient condition for a 1st order VEA sequence.
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Now, recall that throughout this thesis, en has been defined by

en = Xn - X, n = 0, 1, ....

Substituting this into equation (6.15) yields

(6.17)

(6.18)

where Jl *" 0, Jl *" 1, IIwdl + IIw211 > 0, and WI 1.. W2. Thus, the experiments of this chapter

indicate that equation (6.18) with subsequent qualifications is a sufficient condition for

membership of a vector sequence in the kernel of the 1st order VEA.

The resemblance between equation (6.18) and equation (4.103) which is

-n-
xn =X + znw + Z w, for n = 0, 1,2, ... (6.19)

is striking. The only difference apart from nomenclature is that two orthogonal vectors

which are complex conjugates are now replaced by two orthogonal vectors which are

not complex conjugates and do not even necessarily have the same 2-norm. One of

them may even be the zero vector. Recall that the condition that the terms of a real

sequence {xn } satisfy equation (4.103) was both sufficient and necessary for E ~n) = X •

Now that complex sequences are under consideration, this condition is only sufficient as

only real vector sequences can satisfy it. By inspection, however, it is clear that equa-

tion (6.18) includes equation (6.19) as a special case.

It will be shown in the next chapter that the sufficient condition of equation

(6.18) is also a necessary one.
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7. THE COMPLEX KERNEL FOR THE 1ST ORDER YEA

In Chapters 3 and 4, the real part of the kernel of the 15t order VEA was shown.

The result at the end of Chapter 4, given in equation (4.103), was that the kernel of the

15t order VEA is every vector sequence {xn } whose terms satisfy

(7.1)

with complex Z * 0, Z * 1, (w,w) =0, but IIwll > 0. Then, Chapters 5 and 6 explored

complex vector sequences experimentally. It was determined (equation (6.18) with a

small change in nomenclature) that every sequence {xn } whose terms Xn satisfy

n -n
x n =x+ZW1 +ZW 2 ' n=O,l, ... (7.2)

with Z * 0, Z * 1, IIwlll + IIw211 > 0, and WI ..L W2 is a member of the kernel of the 15t order

VEA. This condition, however, is only ,a sufficient one. There is yet no reason to

believe that every possible type of complex 15t order VEA sequence has been examined

and that every term of such a sequence must satisfy equation (7.2).

One step toward a necessary and sufficient condition for membership in the ker-
~

nel of the 15t order VEA is to transform equation (7.1) according to equation (2.29) and

apply Theorem 2.5. Therefore, let

tn=cUXn+Y, n=O,l, ...
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where c is a complex scalar, U is a unitary matrix, Xn is the nth term of {xn} which is a

member of the real kernel of the 15t order VEA, and y is an arbitrary complex vector.

Substituting equation (7.1) into equation (7.3),

or

where

and

-n
t n =t+znw1 +z w 2

t =cUx+y,

W1 =cUW,

W2 =cUW.

(7.4)

(7.5)

(7.6)

(7.7)

(7.8)

If W and its complex conjugate vector are orthogonal before undergoing a unitary

transformation, then that will not change after the transformation.. They will also

continue to have the same lengths. Therefore, WI and W2 are also mutually orthogonal

and of equal length. By Theorem 2.5, sequences {tn } whose terms satisfy equation (7.5)

with z *- 0, z *- 1, and WI and W2 orthogonal, of equal 2-norm and having 2-norms not

totalling zero are also members of the kernel of the 15t order VEA.

103



Now, recall the origins of the constraint that the lengths of WI and W2 be equal.

In §4.1, it was the fact that en was real that lead to rn,l and r n,2 in equation (4.8) being

real. These, in turn, gave complex conjugate coefficients ej~o and e-j~ to the complex

conjugate vectors u and ;;- creating W and W in equation (4.50). In §4.2, eo being real

lead to Cl and C2 of equation (4.93) being complex conjugates and giving equation

(4.95). This extension of the real part of the kernel to vector sequences whose terms lie

in complex N-space leads naturally to the removal of this constraint.

Notice also that equation (7.5) is of the same form and satisfies all of the con-

straints of equation (7.2). Therefore, this expression will be used in the following

definition. Let a zw sequence be defined as a vector sequence {Xn} whose terms are in

complex N-space and satisfy

with z :;t: 0, z :;t: 1,

and

-n
xn =x+znw1 +z w 2 (7.9)

(7.10)

(7.11 )

If W 2 = WI' then {xn } is simply a JR sequence. Thus, the set of zw sequences

includes the set of JR sequences.
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In §7.1, it will be demonstrated that any three distinct N-dimensional complex

vectors Xo, Xl and X define a zw sequence. It will be shown how to solve for z, WI and

W2 satisfying relations (7.9) through (7.11) for n = 0 and n = 1. It will be seen that as

long as Xo, Xl and X are distinct, some zw sequence can be defined which begins with Xo

and Xl and has X for its (anti)limit. In §7.2, it is proven that being zw is a necessary and

sufficient condition for membership of a vector sequence in the kernel of the 1st order

VEA.

7.1 Three Distinct Vectors Define a zw Sequence

In order for Xo and Xl to be the first two vectors of a zw sequence having x as a

limit or antilimit, they must satisfy, respectively,

and

where z *- 0, Z *- 1,

and

Xl = X +zw1 +zw2

(w I' WI) + (w 2' W 2) *- O.
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If Xo = x, then by equation (7.12), WI = -W2. The only way, then, to satisfy equation

(7.14) is for them to violate inequality (7.15). If Xl = x, then by equation (7.13), z must

violate z -::;:. O. If Xo = x}, then z -::;:. 1 is violated. Therefore, xo, Xl and X satisfying rela-.

tions (7.12-15) must be distinct.

These expressions are now solved for z, WI and W2 by defining

eo =Xo - X

and

Therefore, z, WI and W2 must be found such that eo and el satisfy

and

(7.16)

(7.17)

(7.18)

(7.19)

The three inner products involving eo and el are now scrutinised in tum. First, consider

the inner product

This distributes to give

(eo, eo) = (wl' WI) + (w l' W 2) + (w 2' WI) + (w 2' W 2) .
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By equation (7.14), this becomes

Similarly, the inner product

- -
(el,e1) = (zw1 + ZW2 ,ZW1 + ZW2 )

becomes

(eI' e l) =Z~(W I' WI) + (W 2'W2)) .

The scalar Z may be expressed as

(7.22)

(7.23)

(7.24)

(7.25)

where Zr and Zj are real scalars representing the real and imaginary parts of z, respec-

tively. Substituting this into equation (7.24), the result is

(7.26)

which is

(7.27)

Therefore, by equations (7.27) and (7.22),

(7.28)

holds.
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Now, consider

-
(eO,el) =(W1+W 2,ZW1+ZW2 )

which becomes

-
(eO' eI) =z(w l'WI) + z(w 2' W2) .

Substituting equation (7.25) into equation (7.30) gives

or

(7.29)

(7.30)

(7.31 )

Therefore, by equation (7.22),

and by equation (7.28),

(7.33)

(7.34)

It must now be decided whether Zj will be the positive or the negative root. For

now, the positive root will be chosen in what will be called case A. Case B where Zi is

the negative root will be addressed at the end of the section. Therefore, for case A,
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(7.35)

and z is found. At this point, equations (7.18) and (7.19) can be solved for WI and W2·

Ifz is real, then z = z and equations (7.18) and (7.19) are not independent. In this case,

the values

(7.36)

and

(7.37)

satisfy both equations and all the constraints on WI and W2. If z is not real, then equa-

tions (7.18) and (7.19) are independent and equation (7.18) may be multiplied by z and

subtracted from equation (7.19) to give

(7.38)

or

(7.39)

Similarly, WI may be eliminated to obtain

(7.40)
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Now, consider case B where Zj is the negative of the root in equation (7.35). In

this case, the resulting value for Z would be the complex conjugate of Z for case A.

From equations (7.39) and (7.40), WI for case B would equal W2 for case A and W2 for

case B would equal WI for case A. Therefore, the only consequence of the choice is

which vector receives which label.

7.2 The Complex Kernel of the 1st Order VEA

The section begins with

Theorem 7.1: Given a vector sequence {xn } whose terms are complex and N­

dimensional, E~n) = x for n = 0, 1,2, .. .if and only if

-n
X n =X + Z nWI + Z W 2 , for n = 0, 1, ...

where Z is a complex scalar, z"* 0, z"* 1,

(w l' WI) + (w 2' W2) > 0,

and

(7.41)

(7.42)

(7.43)

The conditions given in Theorem 7.1 are simply the defining attributes of a zw

sequence. Therefore, the theorem may be restated as follows: the kernel of the 15t order

VEA is the set of all zw sequences.

Notice that any three consecutive vectors of a zw sequence

-n
X n = X + zn W 1 + Z W 2 ' n = k, k + 1, k + 2
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may be chosen to define the first three vectors

-n
X.' n = X + Zn W \ +Z W'2' n = 0, 1,2,

of the related zw sequence {x'n} for which

I k
WI=Z WI

and

-k
W'2 = Z W 2 •

(7.45)

(7.46)

(7.47)

Therefore, a proof for xo, Xl and X2 will apply for any n as long as every Xn satisfies the

constraints given in the theorem and the definition of a zw sequence.

The proof for this theorem appears in the fc)llowing two subsections. Subsection

7.2.2 gives the proof that a sequence being zw is sufficient to make it a member of the

kernel of the 1st order VEA, while Subsection 7.2. gives the proof that a sequence being

zw is necessary for. it to be a member of the kernel of the 1st order VEA.

7.2.1 Proof that Being zw is Sufficient

In order to make the differences between vectors of the E-table more plain than

is possible using superscripts and subscripts, the symbols Xo, XI, X2, 3, b and c will be

used in place of E(O) E(l) E(2) E(O) coO) and co(o) ]Oespectively as shown in table 7 10' 0' 0 , 1 ,Col' Co2'., • •
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Table 7.1 The e-table used for the complex kernel proof.

coCO) - xvo - 0

coCO) -- a
VI --

... (1) -x
vo - 1

co(2) - Xvo - 2

To simplify the repeated calculations in this proof, an identity is presented.

Given a vector y satisfying

(7.48)

where a is a complex scalar and P is a real scalar, with WI and W2 being mutually

orthogonal complex vectors, the inverse ofy according to equation (2.22) which is

will be

which is

-I X
X =--

(x, x)
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aw l +aw 2

-I f3y =
aa(w I' WI) + (lV 2' W 2»)

f3f3

or

y_'= p~+a~
a a((w1' WI) + (l" 2 , W 2 ) ) •

To begin, by equation (7.41),

Xo =X+W 1 +W 2 '

and

By equation (2.26),

so equation (7.53) is subtracted from equation (7.54) to obtain

(7.51)

(7.52)

(7.53)

(7.54)

(7.55)

(7.56)

By equation (7.55) and using the identity of equation (7.52) with the definitions in

equation (7.48),

(7.57)
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is obtained. Also by equation (7.41),

By equation (2.26),

so equation (7.54) is subtracted from equation (7.58) and

or

is obtained. By equation (7.59) and using equations (7.48) and (7.52),

Also by equation (2.26),

Therefore, equation (7.57) is given a common denominator with (7.62) and
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is obtained. Subtracting this from equation (7.62}1 the resulting expression is

which simplifies to become

-ZW -z'w
b-a= 1 2 •

Z z((w1, WI) + (lV 2 , W 2 ) )

Inverting this according to equations (7.48) and (7,,52) gives

or

(7.65'

(7.66)

(7.67)

(7.68)

When this result with equation (7.54) is substituted into equation (7.63), the result is

or

c=x.

(7.69)

(7.70)

Notice the presence of (WI' WI) + (w 2' W 2) as well as z and z - 1 with their

complex conjugates in the denominator in equation (7.62). This leads to the constraints

on z, WI and W2 given in the theorem as well as the definition of a zw sequence. Thus, a
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sequence being zw is a sufficient condition for its membership in the kernel" of the 1st

orderVEA.

7.2.2 Proof that being zw is necessary

In order to prove that being zw is a necessary condition for membership of a se-

quence in the kernel of the 1st order VEA, it must be shown that every sequence that the

1st order VEA transforms to its limit must be a zw sequence. Therefore, it will be

assumed that the 1st order VEA applied to Xo, Xl and X2 results in E~O) = x. Then, it will

be determined what conditions these assumptions impose upon X2.

By definition, if {xn} is in the kernel of 1he 1st order VEA, then by equations

(2.25) and (2.26),

(7.71)

Also by equation (2.26),

(7.72)

For n = 0 given E(n) =X, 2 ,

(7.73)

This expression can be solved for X2. Subtracting Xl and inverting yields

(7.74)
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Adding (Xl - xor
l and inverting gives

(7.75)

or

(7.76)

If a breakdown in the computation of X2 is to be avoided, then Xl ::;:. X, Xo ::;:. X}, and X ::;:.

Xo.
7 Thus, if {xn} is in the kernel of the 1st order VEA, then xo, x}, and X are distinct.

Recall from §7.1 that any three distinct points xo, Xl and X may be used to define

a zw sequence. Is X2 as defined by equation (7.76) also a member of the zw sequence

defined by xo, Xl and x? If so, then being zw is necessary for membership in the kernel

of the 1st order VEA.

Since z, WI and W2 can always be found from distinct xo, XI and x, such that

Xo = X + WI + W 2,

and

where Z is a complex scalar, Z ::;:. 0, z::;:. 1,

7 Note that two ofthese breakdowns are easily overcome by replacing X2 with the limit OfX2 as Xl
approaches Xor Xo.
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and

(7.80)

equations (7.77) and (7.78) may be substituted into equation (7.76) to determine a

formula for X2 such that {xn} is in the 1st order VEA kernel.

By equation (7.78),

By the inverting identity of equation (7.52),

( )
-1 -ZWI -ZW 2

X-Xl = .
ZZ(W I , WI) + (W 2' W 2»)

Subtracting equation (7.77) from (7.78),

Inverting this by equation (7.52),

( _ )-1 _ (~ -1)~+ (z -1)~
Xl X o - (\t .

(z -1) ; -1J\(W I , ,~ I) + (W 2' W 2))

Giving equations (7.82) and (7.84) common denonlinators,

(X-XJ-I = -~(Z-l~-l)~-Z(Z-lX;-I)~,
Zz(Z -1)(~ -1X(w 1, 'W 1) + (w 2 , W 2))
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and

Adding equations (7.85) and (7.86) and simplifying gives

(7.86)

Inverting this by equation (7.52) and simplifying yields

Substituting this and equation (7.78) into equation (7.76) gives

which simplifies to become

This procedure maybe repeated with xo', Xl' and X where

to show by induction that

-n
x n =x+znw1 +z w 2 ' n=O, 1, ....
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Thus, in order for the 1st order VEA to yield a constant sequence, the original sequence

must be a zw sequence.•
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8. FUTURE WORK

There are a number of unanswered questions which arise fairly directly from the

work reported in this thesis, and seem to the author to be not out of reach. The answers

to each of them will contribute in some significant way to a practical understanding of

the VEA, its kernel, and its most apt uses. These questions include the following.

8.1 Orthogonality & Multiple CompleJ( Conjugate Jordan Blocks

The experiments in Chapter 6 laid some useful ground work but fall short of the

broadest possible sufficient condition for vector sequences {xn} whose terms Xn, n = 0,

1, ... satisfy equation (5.1) to be members of the lowest possible order kernel of the

VEA. What are the orthogonality relations required between members of each of the

column blocks for each reduction in VEA order when the Jordan form of A in equation

(5.1) has multiple Jordan blocks for each of two Icomplex conjugate eigenvalues? Do

the critical relationships continue to be between the ViJ or are they actually between the

linear combinations of the ViJ associated with each of the two eigenvalues present in eo?

Answers to this question should emerge readily from slightly more sophisticated

sets of experiments (run on something a little bigge:r and faster than an HP 48GX).

8.2 Overshadowing and Linear Independence

Due to the procedure illustrated in equation (6.9), all the matrices V generated

for the experiments of Chapter 6 were nonsingular. This was done somewhat arbitrarily

for consistency with the theory presented earlier where A = VJVI
. If V were singular,

there could be no y-I and the resulting sequence would no longer be computable by
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equation (5.1). That said, are there any constraints on the linear independence of the

column vectors ViJ that pertain to the phenomenon of overshadowing for vector se-

quences {xn} where x n = VJnc with J being in Jordan canonical form having two

complex conjugate Jordan blocks? Can the samle column vector appear in more than

one place in a given Vi without affecting the VEA order of the resulting sequence?

8.3 The Generality of an Empirical Description of the 2nd order YEA

It is hoped that, once the experiments described in the previous sections have

been completed, an experimentally determined formula will be suggested for the kernel

of the 2nd order VEA. Can the parameters present in such a formula be adjusted in such

a way that it fits any sequence of 5 vectors Xn, n = 0, 1, 2, 3, and 4 for which E~O) is

defined? Can these parameters be solved for uniquely? Alternatively, can the parame­

ters present in such a formula be adjusted in such a way that it fits any sequence of 4

vectors Xn, n = 0, 1, 2, and 3, and an arbitrary limit vector E~O) which will allow

x4 = E~4) to be calculated? If so, then there must be a proof analogous to that given in

Chapter 7 for the kernel of the 2nd order VEA. If there do exist sequences having a 2nd

order VEA limit which cannot be obtained by adjusting the parameters for such a

formula, what is the nature of those sequences {xn } not fitting the formula and yet for

which there exists (anti)limit x = E~n), n = 0, 1, ...? Such sequences, if they exist will

probably suggest another set of experiments that may encompass all sequences begin­

ning with any Xo, Xl, X2, and X3, having a defined I~~O), leading to a proof for the second

order kernel of the VEA analogous to that of Chapter 7.
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8.4 Applications with VEA Order-Reducing Orthogonalities

In Subsection 6.4.1, an application of the VEA involving an iteration matrix A

having many pairs of complex conjugate eigenvalues was noted. The results and

conjecture of §6.3 indicate that if the eigenvectors associated with complex conjugate

eigenvalues in the iteration matrices of such applications are mutually orthogonal, then

the VEA can be expected to accelerate the convergence of these calculations especially

well. Do hypersonic flow calculations which use Steger-Warming flux-vector-splitting

indeed employ iteration matrices whose eigenvectors associated with complex conju­

gate eigenvalues are mutually orthogonal? If thle associated Jordan blocks are larger

than 1 xl, do they possess any of the orthogonal relationships shown to result in further

reductions in VEA order? What other iterative solution procedures currently used in

engineering problems generate such an iteration matrix? Can iterative procedures

which do not create such an iteration matrix be modified to do so in order to take

advantage ofthis particular strength ofth~ VEA?
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APPENDIX A - A DERIVATION OF THE KERNEL OF THE
SHANKS TRANSFORM

In this appendix, the conditions under which e!J..Sn) = S, for some k and n = 0, 1,

... will be derived.

Each term of the kth order Shanks transform sequence {e!J..Sn)} is calculated ac-

cording to the formula

Sn Sn+l Sn+2 Sn+k

Sn+l -Sn Sn+2 - Sn+l Sn+3 - Sn+2 Sn+k+l - Sn+k

Sn+2 -Sn+l Sn+3 - Sn+2 Sn+4 _. Sn+3 Sn+k+2 - Sn+k+l

ek(Sn)=
Sn+k - Sn+k-l Sn+k+l - Sn+k Sn+k+2 _. Sn+k+i Sn+2k - Sn+2k-l (A.1)

1 1 1 1

Sn+l - Sn Sn+2 -Sn+l Sn+3 - Sn+2 Sn+k+l -Sn+k

Sn+2 - Sn+l Sn+3 -Sn+2 Sn+4 - Sn+3 Sn+k+2 - Sn+k+l

Sn+k - Sn+k-l Sn+k+l - Sn+k Sn+k+2 - Sn+k+l Sn+2k - Sn+2k-l

where the Sj in the determinants above are terms of the original sequence {Sn}. Now,

suppose that e!J..Sn) = S for some k and every n = 0, 1, .... Then, if both sides of equa-

tion (A.l) are multiplied by the denominator of the right-hand-side and the S now on the

left-hand-side is multiplied through the first row of the determinant on the new left-

hand-side, the resulting equation is
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S S S

Sn+\ - Sn Sn+2 - Sn+\ Sn+k+\ - Sn+k

Sn+k - Sn+k-\ Sn+k+\ - Sn+k Sn+2k - Sn+2k-l
, n = 0, 1, ... (A.2)

Sn Sn+\ Sn+k

Sn+\ - Sn Sn+2 -Sn+J Sn+k+\ - Sn+k
=

Sn+k - Sn+k-l Sn+k+J - Sn+k Sn+2k - Sn+2k-J

If both detenninants are expanded by their top rows, they will have the same cofactors

and the computation will look like

with Cj being the cofactor corresponding to Si in the top row of the right-band-side of

equation (A.2). Subtracting the left-hand-side from the right-band-side of equation

(A.3) and grouping like tenns gives

This is equivalent to saying

(A.4)

S -S Sn+J -S Sn+k -Sn

Sn+\ -Sn Sn+2 -Sn+\ Sn+k+l - Sn+k
=0, n = 0, 1, .... (A.5)

Sn+k - Sn+k-J Sn+k+1 - Sn+k Sn+2k - Sn+2k-1

If the first row of this detenninant is added to the second row, this new second row is

added to the third row, and so on to the bottom row, the result
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S -Sn

Sn+l -S

Sn+l - S

Sn+2 - S

Sn+k - S

Sn+k+l - S. =0, n = 0, 1, .... (A.6)

Sn+k - S Sn+k+l - S Sn+2k - S

still holds. From this, it follows directly that the set of homogeneous linear equations

S -S Sn+l -S Sn+k -S aO °n

Sn+l -S Sn+2 - S Sn+k+l - S a1 ° (A.7)= , n = 0, 1, ...

Sn+k - S Sn+k+l - S Sn+2k - S ak 0

is singular. Thus, if ei.Sn) = S, then there must exist ai, i = 0,1, .. .,k such that equation

(A.7) is satisfied. Since all of the above operations are reversible, if there exist ai, i = 0,

1, ... , k such that equation (A.7) is satisfied then ei.Sn) = S, assuming that the denomi-

nator of equation (A. 1) is not zero. It is easy to show that if the ai sum to zero and

equation (A.7) is satisfied by some value of S, then it will also be satisfied by any other

value of S. It can also be shown that if, using ai totalling zero, a sequence is generated

that satisfies equation (A.7), then each of the cofactors Ci in equation (A.3) is zero and

both the numerator and the denominator of equation (A.1) are zero leaving ei.Sn)

undefined. Hence, the ai must not add to give zero.

Notice that if equation (A.7) is true, then the dimension of any solution vector to

equation (A.7) for which k = m may be extended with p zero elements and the matrix in

(A.7) extended to include p additional rows and columns to give the system
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8 n -8 8 n+m -8 8 n+m+I - 8 8n~m+p -8 a o

8 n+m -8 8 n+2m -8 8 n+2m+I - 8 8 n+2m+p - 8 am
=0 (A.8)

8 n+m+I - 8 8 n+2m+I - 8 8 n+2m+2 - 8 8n+2m+p+I - 8 0

8 n+m+p -8 8 n+2m+p - 8 8n+2m+p+I - 8 8n+2m+2p - 8 0

The result is that equation (A.7) is satisfied with k= m +p. Similarly, if the coefficient

ak in equation (A.7) equals zero, then the last column ofthe matrix is not involved in the

linear combination ofcolumns that sum to zero. Therefore, the matrix of equation (A.7)

may be trimmed of its last row and column and the solution vector made to stop at ak-l

and the system of equations will still be singular. Thus, the requirement that ak not

equal zero ensures that k is minimal.

Finally, it is noted that equation (A.7) is equivalent to

kLai (8n+i -8)=0, n=O,I, ....
i=O .
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APPENDIX B - THE JORDAN CANONICAL FORM

The Jordan canonical form of a square matnx and the corresponding decompo-

sition is most instructive. It not only gives the eigenvalues and eigenvectors but also the

generalised eigenvectors, which occur when the matrix cannot be diagonalised. It

clearly reveals the effect that repeated premultiplication by such a matrix will have on

any vector or matrix which may be viewed as an ordered set of column vectors. It also

plays an important role in the work reported in this thesis. The author first encountered

this theoretical tool in the illuminating introductory text on linear algebra by Gilbert

Strang [28]. This exposition elaborates on an introduction to the Jordan canonical form

given in an article by Avram Sidi [25].

To begin, every square matrix A has a Jordan canonical form J, Le. a diagonal

or nearly diagonal square matrix to which it is similar. This may be expressed symboli-

cally by saying that for every N x N matrix A, there exists some non-singular matrix V

such that

A=VJV-1

and J is block-diagonal, having the form

(B.l)

J 1 0 0 0

0 J 2 0 0

J= 0 0 J 3 0 (B.2)

0 0 0 J r

where each J; (called a Jordan block) is Ni xNi, and has the form
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Pi 1 0 0 0

0 Pi 1 0 0

0 0 Pi 0 0
(B.3)J i =

0 0 0 ". Pi 1

0 0 0 ... 0 Pi

(Some texts show the l's appearing below the diagonal.) When J consists of 2 or more

distinct Jordan blocks, then J is not unique. However, the differences will lie only in

the permutation of the Jordan blocks. The order in which they appear is determined by

the matrix V used for the decomposition.

It is useful to partition V into blocks of column vectors (column blocks) in such

a way as to make apparent which column block each Jordan block multiplies. Thus,

and each Vi is NxNi in size and has column vectors labelled

(BA)

Vi = Vi,l V i ,2 V i ,3 Vi,Nj

(B.5)

Ifboth sides of equation (B.l) are post-multiplied by V to get
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AV=VJ

and then the result is viewed in blocks, the result is

(B.6)

I
I

A VI V2 V3 ... Vr = VI V2 V3 ... V
r

I
I

or

J} 0 0 0

o J 2 0 0

o 0 J 3 ". 0

o 0 0 ... J
r

(B.7)

I
I

A VI V 2 V3 ... V r = V}JI V 2J 2 V3J 3 ... VrJ r

I I I I
I I I I

(B.8)

which resembles the classic eigenvalue equation except that the expression uses Jordan

blocks and column blocks instead of eigenvalues and eigenvectors. If A is diagonalis-

able, then N i = 1, i = 1,2,... , r, which means that every Jordan block J i in equation (B.8)

is merely an eigenvalue and every column block Vi is but an eigenvector.

Since not all square matrices are diagonalisable, it is necessary to understand

what goes on when a Jordan block multiplies a column block. This is shown below.

Pj 1 0 0

0 Pi 1 0

VjJ i = Vi,1 V j,2 V j,3 Vi,Ni
0 0 Pi (B.9)

1

0 0 0 Pi
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or

ViJ i = Pi V i,1 Pi V i,2 + V i,l Pi V i,3 + V i,2 ••• PiV i,N; + V i,N;-l (B.lO)

From equations (B.8) and (B.IO), the first vector Vi,l in each column block Vi is an

eigenvector which, with the accompanying eigenvalue Pi satisfies the equation

AV'l =p,v' lI, I I,
(B.II)

which is the classic eigenvalue formula. However, equations (B.8) and (B.10) also

reveal that the equation governing the subsequent vectors Vij, 2 5:j 5: N; of the column

block Vi is

Av .. = p.V .. +V .. l'
I,] 1 I,] 1,]-

These subsequent vectors Vij, 2 5:j 5: Ni are called generalised eigenvectors.

(B.12)

Notice the appearance of Vij-l on the right-hand side of equation (B.12). When

A premultiplies a generalised eigenvector, the result pulls in a component of the previ-

ous vector in the column block. Thus, the vectors of a column block form a sort of

chain beginning with a single eigenvector and followed by a sequence of generalised

eigenvectors.

To obtain a Jordan form of a matrix A, equation (B. 11 ) is equivalent to
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or

AVo1=p.IVo 1I, I 1,
(B.13)

(B.14)

For nontrivial Vi,}, therefore, the matrix A - PiI must be singular, which is to say that

det(A - PiI) =O. (B.15)

Evaluating the left-hand side of this equation and equating it to zero will yield a poly-

nomial of degree N which must be solved to give the eigenvalues Pi. Each eigenvalue is

substituted into equation (B.14) which is solved for each Vi,}, making sure to watch for

multiple independent eigenvectors for each distinct eigenvalue. The integer r will be

the total number of eigenvectors obtained for all distinct eigenvalues and, thus, the

number ofJordan blocks in J.

Now, equation (B.12) is equivalent to

or

Avo 0 = p.Ivo. +V .. 1
l,j I l,j l,j-

(A - p.I)v 0 0 = v. 0 1 •
I l,j l,j-

(B.16)

(B.17)

Therefore, for i = 1, placing Vi,! on the right-hand side, equation (B.17) may be solved

recursively for Vij, j = 2, ... until no further solution exists. The highest j is Ni . This

process is then be repeated for i = 2, ... , r.
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APPENDIX C - THE MINIMAL POLYNOMIAL

While it is not difficult to define the minimal polynomial of a square matrix, its

significance is not obvious. The minimal polynomial of a square matrix/or a particular

vector is less commonly seen and also less obvious in meaning but turns out to be a

very succinct tool in already known results concerning the capabilities of the Vector

Epsilon Algorithm. This appendix defines and explains some of the significance of the

characteristic polynomial of a matrix (§C.1), the minimal polynomial of a matrix

(§C.2), and the minimal polynomial of a matrix for a particular vector (§C.3). An

introduction to the minimal polynomial can also be found in Theory and Problems of

Linear Algebra by Seymour Lipschutz [16] and other textbooks for a first or second

course in linear algebra. Though a few of these books have been consulted, the use of

the block diagonal Jordan form in the factored versions of the characteristic and mini-

mal polynomials is original, as is all of §C.3.

e.l The Characteristic Polynomial

The characteristic polynomial of an N x N matrix A, denoted Pch,A, is defined by

P ch,A (p) = det(A - pI) (C.l)

where I is the identity matrix. When evaluated, the right-hand side of equation (C.1)

becomes a polynomial of the form

(C.2)
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Because the coefficient of the term of highest degree is one, this polynomial is called a

monic polynomial. The characteristic equation of A is then

P ch,A (u) =0 . (C.3)

The polynomial Pch,A(;J,) will have N zeros (i.e. equation (C.3) will have N roots) and

these zeros will be the eigenvalues of A. This is the same as saying that Pch,A(;J,) may be

factored and expressed as

(C.4)

where the ;Ji are the N roots ofPch,A(;J,) which are not necessarily distinct.

The Cayley-Hamilton theorem states that every square matrix A satisfies its

characteristic equation. Therefore, changing the notation to accommodate matrices,

equation (C.3) becomes

Pch,A (A) = 0

or

:AN AN-I A N - 2 A I 0~ +CN- 1 +CN- 2 +,,,+c1 +co = .

where 0 is now. the N xN zero matrix.

(C.5)

(C.6)

It is instructive to consider the Jordan canonical decomposition of A (see Ap-

pendix B) which is

A=VJV-1
•
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where Y is a nonsingular matrix and J is a Jordan canonical form of A having the block

diagonal form

o
o
o (C.8)

o 0 0 ... J r

Each of the r Jordan blocks J j is NixNi and has the form

Pj I 0 0 0

0 Pj I 0 0

0 0 Pi 0 0
J -i-

0 0 0 . Pi I

0 0 0 ... 0 Pi

From equation (C.7), for any positive integer n,

An = YJV-1YJV-1...YJV-1
\ ,

V

n times

or

An =YJny-l .

If equation (C. I I ) is substituted into (C.6), the result is

YJNy-1 VJN-Iy-l YJN-2y-1 YJV-1 I 0+ CN-l + CN-2 +... + c1 + Co =

which distributes to give
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Since V is nonsingular,

I N IN-I I N - 2 J I 0+CN - 1 +CN - 2 +... +c1 +co =

which is to say that

Pch,A (J) =O.

Since equation (C.2) is equivalent to equation (CA), equation (C.l4) implies that

The truth of this can be seen in what follows.

(C.13)

(C.14)

(C.15)

(C.16)

Since all of the eigenvalues in a given Jordan block are identical, there can be no

more than r distinct roots ofPch,A(;..L) and possibly fewer if two or more Jordan blocks

have the same eigenvalue. Therefore, the symbol Pi will be used for the eigenvalues of

A indexed from 1 through r to reflect the Jordan block in which they appear. Therefore,

equation (C.16) may be rewritten as

or

rIl(J - piI)N; =0
i=l
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which is

J r ,] J r,r

N,

= 0 (C.19)

where Ji,j is the Mx Mblock of the form

Pi - P j 1 0 0 0

0 Pi - P j 1 0 0

0 0 Pi - P j 0 0
J .. = (C.20)I,)

0 0 0 . Pi-P j 1

0 0 0 0 Pi - P j

Thus,

0 1 0 0 0

0 0 1 0 0

0 0 0 0 0
J .. = , i = 1,2, ... , r. (C.2I)1,1

0 0 0 0 1

0 0 0 0 0

Now, consider the result of raising each Ji,j to some power. It can easily be veri-

tied that if some NB xNB matrix B has the form
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P 1 0 0 0

0 P 1 0 0

0 0 p 0 0
B= ,

0 0 0 P 1

0 0 0 0 p

as will every J;j, then

(C.22)

pn (~)pn-l

pn (~)pn-l

o

where (~) is the binomial coefficient defined by

(, ) i'
~ = (" .) 0'

1- J .J.

( n )lf3n-NB+2
NB -2

(C.23)

(C.24)

with the convention that (~) = 0 ifj> i. For example, ifB is 7 x 7, then

p4 4p3 6p2 4P 1 0 0

0 p4 4p3 6p2 4P 1 0

0 0 p4 4p3 6p2 4P 1

B4 = 0 0 0 p4 4p3 6p2 4P , (C.25)

0 0 0 0 p4 4p3 6p2
0 0 0 0 0 p4 4p3
0 0 0 0 0 0 p4
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but

/38 8/37 28/36 56/35 70/34 56/33 28/32

0 /38 8/37 28/36 56/35 70/34 56/33

0 0 /38 8/37 28/36 56/35 70/34

B8 = 0 0 0 /38 8/37 28/36 56/35 (C.26)

0 0 0 0 /38 8/37 28/36

0 0 0 0 0 /38 8/37

0 0 0 0 0 0 /38

Notice that for each Ji,i in equation (C.2I), /3= o. Therefore, Ji,i4 would have the

same form. as B4 in equation (C.25) with every coefficient being zero except for the

ones which appear on the 4th superdiagonal. Thus, the first n columns of Ji,in will

consist entirely of zeros. It follows that

J i,i N, =0 , i = 0, 1, ... , r.

That is, each Ji,i is nilpotent.8 Therefore, equation (C.I9) becomes

o
o

which is more plainly true than equation (C.16).

8 A square matrix M is nilpotent if, for some positive integerp, MP = O.
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e.2 The Minimal Polynomial of a Matrix

Now, notice the impact that two Jordan blocks having the same eigenvalue has

on equation (C.19). Suppose PI = P2. This means that both J2,I and JI,2 (s~e equation

(C.20» are also nilpotent. If N I ~ N2, then J~~ of the first factor matrix of equation

(C.28) is also equal to O. In this case, if the second factor matrix of equation (C.28)

were removed from the left-hand side of the equation, the product would still equal the

zero matrix because the second block of the diagonal would be annihilated by J ~~. If

NI :s; N2, then J~~ of the second factor matrix of equation (C.28) is also equal to 0 and

the first factor matrix of equation (C.28) can be removed from the equation with the

product still equalling the zero matrix because the first block of the diagonal is annihi-

lated by J~~. This means that whenever two or more Jordan blocks in a Jordan canoni-

cal form of some matrix A have the same eigenvalue, there exists a monic polYnomial

p(P) of lower degree than that ofpch,A(P) such thatp(A) = O.

Briefly, the minimal polynomial of an Nx N square matrix A is defined as the

monic polynomial

(C.29)

of lowest degree m such that

(C.30)
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This polynomial will be denoted by Pmin,A(J..J). It may be thought of as what is'left of the

characteristic polynomial after all of the factors (J - piI)N; having redundant nilpotent

blocks (arising from two or more Jordan blocks having the same eigenvalues) have been

removed.

The factored form ofPmin,A(J..J) may be constructed as follows. Let VI, }1, ... Vq

be the q distinct eigenvalues of A, and let Mk be the size of the largest Jordan block in J,

a Jordan canonical form of A, having l1- as its eigenvalue. The minimal polynomial of

A will then be

(C.31 )

and

where m = LMk is minimal. More concisely,

q

Pmin,A (J)= I1(J -vkI)Mk =O.
k=l

(C.32)

(C.33)

This time, there is one factor per distinct eigenvalue rather than one factor per Jordan

block as in equation (C.18).

C.3 The Minimal Polynomial ofa Matrix for a Vector

The minimal polynomial of A for the vector w is the polynomial
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of lowest degree m such that

p(A)w=O.

(C.34)

(C.35)

The 0 in this expression is the zero vector. The polynomial will be denoted by

Pmin,A,w(JJ,). It may be of lower degree than that ofPmin,A(JJ,) because orthogonal relation-

ships between the rows ofPmin,A,w(A) and the vector w perform a part of the annihilation

left undone by Pmin,A,w(JJ,). The source of this reduction in m is illustrated below.

Substituting the Jordan decomposition of A given in equation (C.7) into equa-

tion (C.35) yields

Pmin,A,w (VJV-1 )w= 0

which, through the process depicted in equations (C.IO) through (C.14), becomes

VPmin,A,w (J)V-1w = o.

If a vector c is defined by

then, premultiplying both sides of (C.38) by V, c satisfies

Vc=w.
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Thus, c is the co-ordinate vector of w in the basis defined by the columns of V. The

scalar entries of c are the coefficients of the linear combination of the columns of V that

makeupw.

Substituting equation (C.38) into equation (C.37) gives

VPmin,A,w (J)c= o.

Since V is nonsingular,

Pmin,A,w (J)c= o.

(CAD)

(CAl)

Now, c can likewise be partitioned in a fashion which is compatible with J so

that

c=

and each Ci is Mx 1 with elements labelled

c ­i-

Thus, equation (CAl) becomes
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J 1 0 0 0 C1 0

0 J 2 0 0 C2 0

Pmin,A,w 0 0 J 3 0 C3 = 0 (C.44)

0 0 0 J r cr 0

or

Pmin,A,w (JJ 0 0 0 C1 0

0 Pmin,A,w (JJ 0 0 C2 0

0 0 Pmin,A,w (J3) ". 0 C3 = 0 (C.45)

o o o o

Therefore, Pmin,A,w(J.l) must be such that

(C.46)

Thus, the job of annihilating each of the r segments of the vector on the right-hand side

of equation (C.45) is now shared between the block matrix Pmin,A,w(Jj ) and the vector

segment Cj. Some part ofPmin,A,w(Jj ) can be left nonzero as long as the nonzero part of

Pmin,A,w(Ji) only multiplies zero coefficients present in Cj.

The polynomial Pmin,A,w has a factored form. Therefore, equation (C.46) may be

written as

where Kk :5: Mk, k = I, ... , q. This is just
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q

Pmin,A,w (J; )C; = TI (J; - vkI)Kkci = 0 i = 1,2, ... , r.
k=l

This is almost the same as equ~tion (C.33).

(CA8)

How to determine the value of each Kk for this equation has not yet been shown.

Notice that all of the blocks Ji - vkI for which Vk;;; Pi are upper-triangular. (All coeffi-

cients below those on the diagonal are equal to zero.) In fact, for each i, exactly one of

the blocks Ji - VirI is strictly upper triangular: that for which Vk = Pi. (All entries below

and including those on the diagonal are zero.) Notice what happens when a strictly

upper triangular matrix is present as a factor surrounded by upper triangular matrices in

a matrix product. IfTpre and Tpost are upper-triangular NiX N i matrices and the matrix J i

- vkI is a strictly upper-triangular Nt X Ni matrix identical to Ji,i of equation (Co21), then

the product Tpre(Ji - vkI)KTpost where K < N i will have the form

0 0 1 0 0 0 0 0 * * * *
0 0 0 1 0 0 0 0 0 * * *.

0 0 0 0 1 0 0 0 0 0 * *
T pre 0 0 0 0 0 1

Tpost =
0 0 0 0 0 *

(CA9)

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

where an asterisk denotes each nonzero coefficient and the first non-zero coefficient in

the top row of the product is at the top of the (K + 1)th column. The first K columns of

the product are zero, just as the first K columns of (Ji - vkI)K are zero. Therefore, the

presence of (Ji - VirI)K as a factor surrounded by upper-triangular factor matrices has the
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effect of squeezing all the nonzero coefficients in the product into the upper right-hand

corner at and above the one non-zero super-diagonal of (Ji - vkI)K, leaving the first K

columns of the product all zeroes.

Now, if the resulting matrix is to premultiply a vector and the product is to be 0,

then all of the nonzero coefficients of that vector must lie in the first K positions. Thus,

the critical parameter Kk for each distinct eigenvalue Vic is no longer the size of the

largest Jordan block Ji for which J.1i = Vk but rather the greatest index j for which Cij (in

Ci where J..li = Vk) is non-zero. Recall what was mentioned after equation (C.39), that

each Ci,j signifies how much of ViJ is present in w. Therefore, for each distinct eigen­

value Vk and all of the column vectors ViJ associated with J.1i = Vt, Kk is the highest index

j for which some v iJ is present in w. This defines the last of the parameters in equation

(CA8).

To summarise, let Kk equal the highest indexj for which Cij *- 0 for every i satis­

fying J.1i = Vk. Then, the minimal polynomial ofA for the vector w may be defined as

(C.50)

with the convention that K k = 0 if cij = 0 for every j when J.1i = Vic. That is, for each

distinct eigenvalue Vic of A, of all the column vectors Vi,j in all of the column blocks Vi

associated with Jordan blocks whose eigenvalue J.1i equals Vk, the highest j for which

some of vector Vi,j is present as a component in w is the power to which (p, - Vk) is

raised inpmin,A,w(p,). If, for some Vk and every J..li = Vt, none of the Vi,j,j = 1, 2, ... , N;, is

present in w, then (J..l- Vk) will not be a factor ofpmin,A,w(p,).
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For example, suppose that A and ware such that for some nonsingular matrix V

satisfying A =VJV1
,

a I 0

o a I

o 0 a

and w =Vc with

J=
a I 0

o a 1

o 0 a

b 1

o b

(C.5I)

C1,1

C1,2

C1,3

c=
C 2,1

(C.52)
C 2,2

C 2,3

C3,1

C3,2

Table C.l shows the correlation between five different sets of zero and non-zero values

for the CiJ and the exponents for each of the factors of

(C.53)

resulting in a polynomial ofdegree K. Again, asterisks denote non-zero entries in c.
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Table C.l The effect of non-zero Cij on K1, K2, and K of equation (C.53).

labels example 1 example 2 example 3 example 4 example 5
~J * 0 0 * 0
C1,2 * 0 * 0 0
Cl~ * * 0 0 0"'c';:;'" "',jc C)"········· * ·········0.. ·············· ·0·······

C2,2 * 0 0 0 *
C 23 * 0 0 0 0

···c~:;··· ········*·················0·················*·················0·················0·······

C3,2 * * 0 * 0
K} 3 3 2 1 2
K 2 2 2 1 2 0
K 5 5 3 3 2

151



APPENDIX D - GEKELER'S PROOF OF THEOREM 5.1 [12], P. 68

Theorem 5.1: If {Xn} is a vector sequence generated by Xn = AXn-l + b with I ­

A non-singular and m is the degree of the minimal polynomial of A for the vec-

tor Xo - x where x is the unique solution of the linear system of x = Ax + b , then

co(n) - X - °1(12m - , n - , , ....

Proof: Given a sequence of vectors Xn such that

xn+1=Axn+b, n=O,l, ...

where I - A is non-singular so that

x=Ax+b

(D.1)

(D.2)

(D.3)

has a unique solution x, if equation (D.3) is subtracted from equation (D.2), the result is

(X n+1 -x) = A(x n -x)

which implies that

(X n -x)=An(xo -x), n=O, 1, ....

Let

m

p(t) =LaJi
i=O

be the minimum polynomial of A for Xo - x. That is
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m

p(A)(xo -x)= LaiAi(xO-X)=O.
i=O

Equation (D.7) can be pre-multiplied by An to get

m m

AnLaiAi(xo-x)= LaiAn+i(xo-x)=O
i=O i=O

but by equation (D.5) this is the same as

m

Lai(xn+i -x)= 0
i=O

which McLeod and Graves-Morris have shown gives

E~~ =x, n =0, 1, ...

if

(n) 0 (n) - 0 1E_1 = , Eo =xn,n- , , ....

which was to be shown.•
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