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ABSTRACT

Bit-interleaved coded modulation with iterative decoding (BICM-ID) is a spectral ef-

ficient coded modulation technique to improve the performance of digital communica-

tion systems. It has been widely known that for fixed signal constellation, interleaver

and error control code, signal mapping plays an important role in determining the

error performance of a BICM-ID system. This thesis concentrates on signal mapping

designs for BICM-ID systems. To this end, the distance criteria to find the best map-

ping in terms of the asymptotic performance are first analytically derived for different

channel models. Such criteria are then used to find good mappings for various two-

dimensional 8-ary constellations. The usefulness of the proposed mappings of 8-ary

constellations is verified by both the error floor bound and simulation results.

Moreover, new mappings are also proposed for BICM-ID systems employing the

quadrature phase shift keying (QPSK) constellation. The new mappings are obtained

by considering many QPSK symbols over a multiple symbol interval, which essentially

creates hypercube constellations. Analytical and simulation results show that the use
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of the proposed mappings together with very simple convolutional codes can offer

significant coding gains over the conventional BICM-ID systems for all the channel

models considered. Such coding gains are achieved without any bandwidth nor power

expansion and with a very small increase in the system complexity.
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1. Introduction

A general digital communication system includes three basic elements: a trans-

mitter, a communication channel and a receiver. The transmitter translates the

information bits to signals that can be effectively transmitted over the channel. The

communication channel is the physical medium used to send the signal from the trans-

mitter to the receiver. At the receiving end of a digital communication system, the

receiver tries to recover the transmitted information as correctly as possible.

In almost any communication systems, the channel encoder is a very important

part of the transmitter. The purpose of the channel encoder is to introduce, in

a controlled manner, some redundancy in the binary information sequence. This

redundant information can be used at the receiver to overcome the effects of noise and

interference encountered during the transmission of the signal through the channel.

The use of error control coding in digital communication results in coded systems, as

illustrated in Fig. 1.1.

The transmitter of such systems consists of an encoder and a modulator. Most of

the error control codes that have been devised for increasing the reliability of informa-

tion transmission are effective when the channel is assumed to be memoryless (i.e.,

the channel imperfectness is independent from symbol to symbol). For correlated

channels, the errors are no longer statistically independent and the memoryless as-

sumption is invalid. The successive symbol-by-symbol detection becomes unreliable,

hence, the performance of the codes designed for memoryless channel is degraded.

One example of correlated channels is the class of channels characterized by multi-

paths and fading. One of the effective ways to deal with this class of channels is to

1
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Figure 1.1 The block diagram of a coded communication system.

interleave coded data in such a way that the bursty channel is transformed into a

channel having independent errors. In this case, the encoded data is reordered by the

interleaver as shown in Fig. 1.1. The interleaver is used to break the correlation of

the channel, and as a result, error bursts are spread out in time so that errors within

a codeword appear to be independent. At the receiver, the opposite operations are

performed accordingly. After demodulation, the deinterleaver puts the demodulated

data in a proper sequence and passes it to the decoder. The decoder attempts to

reconstruct the original information sequence from the knowledge of the code used

by the channel encoder and the redundancy contained in the received data.

In general, there are two types of error control codes, namely linear block codes

and trellis codes (or convolutional codes). This thesis only focuses on convolutional

codes due to the existence of an efficient “soft decoding” method for these codes.

Traditionally, the channel encoder and the modulator are treated separately. The

design of a good code strives to maximize its minimum Hamming distance dH [3].

Using error control coding improves the performance of the system at the cost of

spending more bandwidth for the transmitted signal, and an increase in the receiver

implementation complexity. Generally, the use of a very powerful code is required to

2



trade the bandwidth and implementation complexity for the transmitted power.

On the other hand, if one wants to have the benefit of coding gain without

increasing the transmission bandwidth, one must employ a multilevel/multiphase-

modulation scheme. However, the use of such a modulation scheme results in a more

crowded constellations and therefore it has a negative effect on the error performance

of the overall system.

If the modulator and the encoder are designed as a single identity, the loss due to

the expansion of the signal set can be overcome and a significant coding gain can be

obtained by using relatively simple codes. The integration of these two components

results in a digital coded modulation system and it was first studied by Massey [4].

Coded modulation that jointly optimizes coding and modulation is now a popular

and powerful technique to improve the performance of digital communication sys-

tems whose bandwidths are limited. In 1982, Ungerboeck introduced a trellis-coded

modulation (TCM) system as a bandwidth-efficient signaling over an additive white

Gaussian noise (AWGN) channel [5]. The first important insight of Ungerboek is that

for the non-binary signal constellations used in TCM (such as ASK, PSK and QAM),

the minimum free Euclidean distance (FED), not the minimum free Hamming dis-

tance of the code, is the primary parameter that determines the code’s performance.

The technique of “mapping by set partitioning” suggested in [5], as opposed to the

conventional Gray mapping used in uncoded systems, turned out to be the key to

achieving performance gains with TCM compared to uncoded modulation. One of the

important goals of mapping by set partitioning is to insure that parallel transitions

in the code trellis are mapped into signals far apart in the signal constellation, thus

minimizing the probability of short, one-branch error event due to the uncoded bits.

Independently, multilevel-coded modulation employing multiple binary codes was

proposed by Imai and Hirakawa in 1977 [6]. The main idea is also to optimize the

code in the Euclidean space rather than dealing with Hamming distance as in classical

coding schemes. The multilevel coding (MLC) protects each bit of the signal point

by an individual binary code. The individual codes are chosen in such a way that the

3



minimum distance of the Euclidean code space is maximized. In contrast to TCM,

the MLC approach provides flexible transmission rates and it can employ block codes,

convolutional codes or concatenated codes as component codes. The disadvantage of

MLC compared to TCM is that it requires multiple encoders and decoders.

As mentioned earlier, Ungerboeck’s TCM approach is based on mapping by set

partitioning that maximizes the minimum intra-subset Euclidean distance [5]. Such

an approach is only advantageous for AWGN channels. For fading channels, the

primary design criterion is shifted to the diversity order of the coded modulation

system [7]. More specifically, it is demonstrated in [7] that the Hamming distance

between any two transmitted sequences is the primary factor that determines the

system performance at high signal-to-noise ratio (SNR). Since conventional TCM is

designed to maximize the Euclidean distance, it usually exhibits a low diversity order.

Therefore, the performance of TCM over fading channels is significantly degraded.

Adding a symbol interleaver and avoiding parallel transitions are the well known

techniques to improve the performance of TCM over fading channels [7]. However,

the diversity order for any symbol interleaved coded system is limited to the minimum

number of distinct symbols along any error event. This implies that an increase in

diversity order can only be done at the cost of increasing the complexity of the code.

To improve the performance of TCM over fading channels, the principle of interleaving

over coordinates was recently studied in [8], where it is shown that the number of

different coordinates between two coded sequences is the diversity order in this case.

Based on this technique, the signal set design for TCM that achieves a high level of

diversity order while preserving the coding gain over AWGN channels was proposed

in [9].

In [1], a different approach, called bit-interleaved coded modulation (BICM), was

suggested by Zehavi to improve the performance of coded modulation systems over

fading channels. It was shown that the diversity order can be increased to the min-

imum number of distinct bits rather than the number of distinct channel symbols

by using bitwise interleaving. This scheme, however, increases the time diversity of
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coded modulation at the expense of reducing the free squared Euclidean distance

(FED), leading to a performance degradation over additive white Gaussian noise

(AWGN) channels when compared to TCM systems [1,10]. Reference [10] presents in

a comprehensive fashion the theory of BICM, which provides tools for evaluating its

performance and gives guidelines for the design. As BICM is the main topic of this

thesis, the theory of BICM is reviewed in Chapter 2.

Since the invention of turbo codes [11], interleaving and iterative processing have

also been applied to coded modulation systems. It was shown in [12–18] that with

iterative decoding, BICM, a bandwidth-efficient approach primarily considered in the

past for fading channels, can in fact be used to provide excellent error performance

over both Gaussian and fading channels. More specifically, it was shown in [14] that

with a careful design of signal mapping, iterative decoding can increase the mini-

mum intersignal Euclidean distance of BICM while retaining the desirable Hamming

distance. This makes BICM with iterative decoding (BICM-ID) greatly outperform

TCM and compare favorably with the bandwidth-efficient turbo TCM (TTCM) [19].

The advantage of BICM-ID over TTCM is that it requires only one soft-input soft-

output (SISO) decoder instead of two as normally used in turbo decoding [11,19].

For given signal constellation, interleaver and convolutional code, signal mapping

plays an important role in determining the error performance of a BICM-ID system.

Generally, there are two approaches to study the effect of signal mapping on the

performance of BICM-ID systems. The first technique is based on the error bound

[12–14], which is only related to the asymptotic performance of the systems. Another

technique based on mutual information was also introduced in [16, 18]. This thesis

applies these above two techniques to study the signal mapping designs in order to

improve the error performance of BICM-ID systems. The designs are considered for

both AWGN and Rayleigh fading channels.
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1.1 Thesis Contributions

The first part of this thesis considers BICM-ID systems employing two-dimensional

constellations. The mapping problem is studied based on both the upper bound of

the error performance and the bitwise mutual information. Good signal mappings of

various 8-ary constellations are then proposed. These mappings are the best map-

pings in terms of asymptotic performance of BICM-ID systems. The bit error rate

(BER) performance as well as the convergence behavior are discussed and verified by

analytical and simulation results.

The second part of the thesis is concerned with BICM-ID systems employing a

QPSK constellation. Using bitwise mutual information, reference [17] shows that

while Gray mapping of QPSK is the best for BICM (i.e., when no iteration is im-

plemented between the channel decoder and the demodulator), it is the anti-Gray

mapping that is preferred for BICM-ID1. In contrast to [17], here, instead of map-

ping two coded bits to one QPSK symbol, a group of m = 2n coded bits, n > 1, is

mapped to n consecutive QPSK symbols. Since a QPSK constellation is built from

two quadrature (orthogonal) carriers, there are 4n distinct combinations of n QPSK

symbols and they are the vertices of a 2n-dimensional hypercube (2n-cube). Per-

forming signal mapping on this 2n-cube is exactly what is proposed in the second

part of this thesis. It should be mentioned that using Gray or anti-Gray mapping for

each QPSK constellation is just one special case of the above general mapping. The

obvious question is “how to find the best mapping ?”. Since the number of signal

points in this hypercube constellation can be very large, a computer search to find

the best mapping becomes impossible. As an example, there are 16! ≥ 1013 possible

mappings for a four-dimensional hypercube.

Nevertheless, by exploiting the symmetry of a hypercube constellation, a universal

condition for the best mapping with respect to the asymptotic performance is estab-

lished in this thesis. A simple and general algorithm to construct the best mapping

1Note that Gray and anti-Gray mappings are the only two mappings available for a QPSK

constellation.
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is also proposed. Extensive simulations have been carried out to demonstrate the

advantage of the proposed systems compared to conventional ones. The tightness of

the error bound derived in this thesis is also observed. It is shown that significant

coding gains over the conventional systems can be obtained by using very simple

convolutional codes in the proposed systems.

1.2 Thesis Organization

The remaining of the thesis is organized as follows.

Chapter 2 studies bit-interleaved coded modulation (BICM) systems [1]. The

suboptimum decoding method is first introduced. The influence of the signal map-

ping to the error performance will be discussed based on the error bound and the

technique of mutual information. It is then shown that for fixed convolutional code

and signal constellation, signal mapping plays a crucial role in determining the error

performance. The most suitable mappings are also mentioned with respect to the

asymptotic performance.

Chapter 3 is devoted to the conventional bit-interleaved coded modulation with

iterative decoding (BICM-ID) systems. As bandwidth efficiency is a primary concern

in this thesis, the signal constellations employed are in two-dimensional signal space.

The chapter starts with the introduction of the system model and the iterative pro-

cessing between the demodulator and the channel decoder. Two types of feedback

from the decoder to the demodulator will be discussed. They are the hard-decision

feedback and the soft-decision feedback. As before, the performance evaluation of the

system will be studied using the error bound and mutual information. Finally, the

mapping problems of different 8-ary constellations are investigated and good signal

mappings are proposed.

Chapter 4 is the main contribution of this thesis, which introduces the BICM-ID

systems employing QPSK constellation, viewed as a hypercube. First, a hypercube

and its distance properties is studied. Then the proposed system is described. The

7



influence of signal mapping on the hypercube to the error performance will be stud-

ied by evaluating the error floor of the system and analyzing the bitwise mutual

information. By exploiting the symmetric properties of the hypercube, the distance

criterion of the best mapping in terms of the asymptotic performance for different

channel models is established. A universal condition for the best mapping is then

introduced. A simple and general algorithm to construct the best mapping for the

system is then proposed. Analytical and simulation results are also provided in this

chapter to demonstrate the advantages of the proposed systems and the tightness of

the error bound.

Finally, Chapter 5 draws the conclusions and gives suggestions for further studies.
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2. Bit-Interleaved Coded Modulation (BICM)

For a communication system operating over a multi-path fading environment, the

correlation between the sequential fading coefficients degrades the error performance

of the system. It is well known that over a fading channel, the diversity order of any

coded system is the key parameter in determining its error performance [7]. Tradition-

ally, the symbol interleaver is used to break the fading correlation and the diversity

order is measured at the symbol level. With a symbol interleaver, the diversity order

is the minimum number of distinct symbols between any two codewords. Thus, the

diversity order can only be increased by preventing parallel transitions and increasing

the constraint length of the convolutional code.

The potential of BICM systems over a fading channel was first recognized by

Zehavi in [1] where he suggested a coded system built from a convolutional encoder

followed by random bit interleavers. More specifically, a system with an 8-state, rate–

2/3 convolutional code and three random bit interleavers as shown in Fig. 2.1 was

proposed. A group of 3 bits at the output of the interleavers is mapped to a symbol

in 8-PSK constellation by Gray mapping1. By assuming random interleavers, the

combined interleavers and mapping can be viewed as three statistically independent

communication modulators and channels. It was shown in [1] that, due to the random

modulation, higher diversity order can be achieved with the proposed system com-

pared to the conventional coded system. Thus, BICM systems are quite attractive for

transmission over fading channels. More specifically, it was pointed out in [1] that

1Gray mapping is the mapping in which the labels of two nearest signal points differ in only one

bit.
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the diversity order can be increased to the minimum number of distinct bits between

two codewords rather than the number of distinct symbols. The comparison made

in [1] showed that an 8-state, rate–2/3 convolutional code with 8-PSK Gray mapping

and random bit interleaving outperforms the 8-state, 8-PSK Ungerboeck’s TCM with

symbol interleaving over a Rayleigh fading channel by more than 2dB at the bit error

rate level of 10−5.

Recently, an analytical framework for the evaluation of Zehavi’s BICM systems

was presented in [10]. The advantage of a BICM system is that it treats coding

and modulation as separate components, hence, the code and the modulator can

be flexibly selected. The diversity order can now be maximized by using the best

convolutional code, which provides the largest dH for given code rate and constraint

length. The following discussion of BICM systems is mainly based on [10]. Special

attention is paid to the signal mapping in order to improve the system performance.
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Figure 2.1 BICM transmitter with 8-PSK constellation and Gray mapping [1].

2.1 The BICM System Model

A conventional BICM system is built from a serial concatenation of a channel

encoder, a bit interleaver π and an M -ary memoryless modulator (where M = 2m)

as shown in Fig. 2.2. The sequence of information bits u is first encoded by a

convolutional encoder to produce the output coded bit sequence c. The convolu-

tional code should be chosen to be optimal in the sense that it gives the largest free

Hamming distance dH for given code rate and constraint length. The pseudoran-
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Figure 2.2 General block diagram of a BICM system.

dom interleaver permutes the encoded bits, as opposed to the channel symbols in

the symbol-interleaved coded systems. The purpose of the interleaver is to break the

fading correlation and increase the diversity order to the minimum Hamming distance

dH of the convolutional code. Note that there is only a single bit interleaver in Fig.

2.2 instead of m bit interleavers used in Zehavi’s appoach. The reason for not using

m bit interleavers is that it limits the flexibility of BICM and complicates the anal-

ysis [10]. Moreover, using m bit interleavers creates a fixed correspondence between

the coded bits and the label positions. This leads to unequal error protection and

suboptimal performance when the code is chosen at random [10].

After the interleaver, m consecutive bits of the interleaved coded sequence are

grouped as a channel symbol v = (v1, ..., vm). The complex transmitted signal si =

ξ(v), 1 ≤ i ≤ M , is then chosen from the M -ary constellation Ψ to carry the m coded

bits over each symbol duration. Here, ξ denotes the mapping scheme from the bit

patterns to the constellation points. For a frequency non-selective Rayleigh fading

channel and coherent detection, the received signal during each symbol interval can

be written as follows:

r = gsi + w (2.1)

11



In (2.1), w is complex white Gaussian noise with independent inphase and quadrature

components having two-sided power spectral density σ2 = N0/2. The scalar g is a

Rayleigh random variable representing the fading amplitude of the transmitted signal

si. It is assumed that the channel fades slowly so that the fading amplitude is constant

over one symbol duration. It is also assumed that g is perfectly estimated at the

receiver. Note that in the case of an AWGN channel, g = 1.

The receiver of a BICM system includes three elements: the demodulator, the

de-interleaver and the convolutional decoder. Due to the presence of the random bit

interleaver, the true maximum likelihood decoding of BICM requires joint demodu-

lation and convolutional decoding and it is therefore too complicated to implement

in practice. In [1], as a trade-off between the complexity and error performance, Ze-

havi suggested a suboptimal decoding method that includes two separate steps: the

bit metric computation and the decoding of convolutional code by the Viterbi algo-

rithm [3]. For each received signal r, 2m log-likelihood bit metrics for m coded bits

vk, 1 ≤ k ≤ m, are computed using the maximum likelihood (ML) rule as follows:

λ(vk = b) = log p(r|vk = b, g) ∼ log
∑

si∈Ψk
b

p(r|si, g) (2.2)

where Ψk
b , b ∈ {0, 1}, denotes the subset of Ψ that contains all symbols whose labels

have the value b in the kth position. The function p(r|si, g) is the probability density

function of the received signal r given the fading amplitude g and signal si was

transmitted. The symbol ∼ in (2.2) indicates replacement by an equivalent statistic.

With a two-dimensional M -ary signal constellation Ψ, p(r|si, g) is given as:

p(r|si, g) =
1

2πσ2
exp

[
−(r1 − gsi1)

2 + (r2 − gsi2)
2

2σ2

]
(2.3)

where (r1, r2) and (si1, si2) are the components of r and si, respectively.

For practical implementation, the log-sum calculation is preferred and the subop-

timum maximum log-likelihood bit metric is written as:

λ(vk = b) ≈ max
si∈Ψk

b

log p(r|si, g) = − min
si∈Ψk

b

||r− gsi||2 (2.4)

12



Equation (2.4) basically implies that each bit metric is computed based on the mini-

mum squared Euclidean distance between the received signal r and the signal point

si over the subset Ψk
b . At the decoder, the trellis branch metrics are computed by

summing the corresponding bit metrics after de-interleaving. The standard Viterbi

algorithm for convolutional code is then applied in the final step.

An example of subset partitioning for each bit of 8-PSK constellation with Gray

mapping is shown in Fig. 2.3. The bit metric for the first bit of a transmitted signal
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Figure 2.3 The subset partitioning for each bit of Gray mapping of 8-PSK con-

stellation.

taking on value 1 is:

λ(v1 = 1) = −min
(
d2

100, d
2
101, d

2
110, d

2
111

)
(2.5)

Likewise, the bit metric for the first bit taking on value 0 is:

λ(v1 = 0) = −min
(
d2

000, d
2
001, d

2
010, d

2
011

)
(2.6)

In (2.5) and (2.6), d2
v, v = 000, . . . , 111, is the squared Euclidean distance between

the received signal r and the transmitted signal associated with label v. The bit

metrics for the other two bit positions can be calculated similarly.

2.2 The Role of Signal Mapping

This section discusses the influence of signal mapping to the error performance

of BICM systems. Two relevant techniques, namely the error bound and mutual

information, will be reviewed first.
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2.2.1 The Error Bound of BICM Systems

Using the same notations as in [10], the union bound of the bit-error-rate (BER)

for a BICM system employing a rate-kc/nc convolutional code, a constellation Ψ and

a mapping ξ is given by:

Pb ≤ 1

kc

∞∑

d=dH

cdf(d, Ψ, ξ) (2.7)

In (2.7), cd is the total information weight of all error events at Hamming distance

d and dH is the free Hamming distance of the code. The function f(d, Ψ, ξ) is the

average pairwise probability, which depends on the Hamming distance d, the constel-

lation Ψ and the mapping ξ. Let c and c̆ denote the input sequence and the estimated

sequence with the Hamming distance d between them. These binary sequences cor-

respond to the signal sequences x and x̆, respectively. The function f(d, Ψ, ξ) can be

computed from the pairwise error probability (PEP) P (x → x̆) by taking the average

over all the possible sequences x and x̆ with respect to the label positions and the

label mappings [10].

It was pointed out in [10] that averaging over all sequences x and x̆ is impractical

due to the huge number of coded sequences. By neglecting the irrelevant error events

and by using the expurgation technique based on the principle of “decomposability” of

error sequences, the authors in [10] derived a new tight bound called BICM expurgated

bound (BICM-EX bound) for BICM systems. The key idea in obtaining BICM-EX

bound is that for each coded sequence x, only one relevant error event x → x̆, where

x̆ is the unique nearest neighbor of x, is considered [10]. This technique results in a

computationally efficient form of the bound. It was also shown in [10] that the BICM-

EX bound provides a very tight approximation to the PEP for different signal sets

employing Gray or near Gray mappings. For other mappings, however, this bound

might yield too optimistic results since there are many more nearest neighbors of each

transmitted signal sequence.

By studying the asymptotic behavior of PEP, reference [10] also provides some

insights into the asymptotic performance of BICM at high signal-to-noise ratio (SNR).

14



Over an AWGN channel, the performance of BICM is asymptotically dominated by

the following free squared Euclidean distance (FED):

FED = dHd2
min (2.8)

where dmin is the minimum Euclidean distance of the signal constellation. In the case

of a Rayleigh fading channel with perfect channel state information (CSI), the factor

that determines the asymptotic performance of a BICM system is the harmonic mean

squared Euclidean distance between the complementary subsets of Ψ, which is defined

as [10]:

d2
h =


 1

m2m

m∑

k=1

∑

si∈Ψk
b

1

|si − ŝi|2



−1

(2.9)

where b̄ is the complement of b and ŝi ∈ Ψk
b̄

denotes the nearest neighbor of si. More

specifically, the asymptotic performance of BICM over a Rayleigh fading channel is

approximated by [10]:

log10 Pb ' −dH

10

[
(Rd2

h)dB +

(
Eb

N0

)

dB

]
+ const (2.10)

where Pb is the probability of bit error and R is the information rate.

Another relevant parameter that affects to the performance of BICM systems over

both AWGN and Rayleigh fading channels is the average number of signals at the

minimum Euclidean distance, defined as [2, 10]

Nmin =
1

m2m

∑
si∈Ψ

m∑

k=1

Nmin(si, k) (2.11)

where Nmin(si, k) is the number of signal points at the Euclidean distance dmin whose

label differs at position k compared to that of si. The above parameter obviously

depends on a specific mapping and it should be kept as small as possible.

Based on the error bound of BICM systems, it can be observed that for a fixed

error control code and a fixed signal constellation, signal mapping plays an important

role in determining the error performance of the systems. It was also suggested in [10]

that the Gray and quasi-Gray mappings are optimal for BICM systems.
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2.2.2 The Technique of Mutual Information

A brief discussion on the concepts of mutual information and channel capacity is

provided in Appendix A. Here, these concepts shall be applied to study the effect of

signal mapping in BICM systems.

Consider a two-dimensional M -ary constellation Ψ and a Rayleigh fading chan-

nel. The channel output r is given in (2.1). Then the channel capacity of a coded

modulation system employing constellation Ψ can be computed as follows:

C = Eg

[
1

M

M∑
i=1

Ig(si; r)

]

= Eg

[
1

M

M∑
i=1

∫ +∞

−∞
p(r|si, g)log2

p(r|si, g)

p(r|g)
dr

]
(2.12)

where si = (si1, si2) and r = (r1, r2) represent the transmitted and received signals

respectively, Ig(si; r) is the mutual information between the transmitted signal si and

the received signal r given the fading coefficient g. The function p(r|si, g) is given in

(2.3) and the function p(r|g) is the probability density function of r given g. Assume

that the transmitted signals are equally likely, the function p(r|g) can be expressed

as:

p(r|g) =
1

M

M∑
i=1

p(r|si, g) (2.13)

Note also that the integral in (2.12) is a two-fold integral. The channel capacity

in (2.12) is simply the symbol-wise mutual information of any two-dimensional M -

ary modulation scheme. It is clear that for a fixed constellation, the symbol-wise

mutual information is independent of the applied mapping. The symbol-wise mutual

information can also be expressed as the sum of the bitwise mutual information as

[16,20]:

C =
m−1∑
L=0

Eg

[
IL|g

]
=

m−1∑
L=0

IL (2.14)

where IL|g is the bitwise mutual information given g and under the condition that “L

other bits in one symbol are known”. Let {v1, v2, . . . , vm} denote the m-bit label (or

mapping) of one symbol in the constellation Ψ where m = log2 M . Then the bitwise

16



mutual information can be computed as:

Eg[IL|g] = IL = IL(vk; r|L bits in {v1, . . . , vk−1, vk+1, . . . , vm} are known) (2.15)

The bar in the above equation means that the bitwise mutual information is averaged

over all possible cases of “other L bits known”, all bits in mapping as well as the bit

value 1 or 0 for vk. Note that, since conditioning increases mutual information, one

has I0 ≤ I1 ≤ . . . ≤ Im−1. Under the condition of ideal interleaver and uniform-input

distribution, the channel capacity of BICM system over a Rayleigh fading channel

can be computed as [10]:

CBICM = mI0 (2.16)

The roles of other bitwise mutual information will be discussed later when BICM

systems with iterative decoding are considered.

Observe that Equation (2.16) indicates the suboptimality of a BICM system com-

pared to a general coded modulation system. On the other hand, (2.16) shows that,

since the bitwise mutual information I0 depends on the signal mapping, the signal

mapping is an important factor to achieve good performance of BICM systems.

The mapping problem for BICM was recently addressed in [2] for various two-

dimensional M -ary constellations by using the concept of channel capacity limit. It

was shown in [2] that the ideal mappings for BICM are Gray mapping and quasi-Gray

mapping. Such an observation is also consistent with the observation obtained with

the error bound technique. The most suitable mappings of different 8-ary constella-

tions for BICM systems found in [2] are shown in Fig. 2.4.

Finally, it should be mentioned here that reference [2] only studies the signal

mappings of BICM systems over AWGN channels. We have also verified that these

mappings are also the most suitable mappings for BICM systems over Rayleigh fading

channels [21].
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Figure 2.4 The best mappings in terms of channel capacity for different 8-ary

constellations [2].
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3. Bit-Interleaved Coded Modulation with

Iterative Decoding (BICM-ID)

As demonstrated in Chapter 2, BICM performs well over fading channels by in-

creasing the diversity order of the systems. However, due to “random modulation”

caused by the bitwise interleaver, the free Euclidean distance of BICM is reduced.

Recall that a large free Euclidean distance is the key for achieving good performance

of a coded modulation system over an AWGN channel. This “random modulation”

therefore results in the performance degradation of a BICM system compared to the

conventional coded systems (i.e., TCM) over an AWGN channel [1, 10]. Even in the

case of fading channels, when the fading is slow and interleaving is insufficient, the

conventional TCM is still preferred.

In BICM, by using bitwise interleaving, the coded bits in one channel symbol

are far apart to each other in the original coded sequence. With ideal interleaving

(i.e., the interleaving depth is of infinite size and the interleaving pattern is completely

random), the coded bits forming a channel symbol can be assumed to be independent.

Obviously, the conventional decoder of a BICM system suggested in [1] does not fully

exploit the advantages provided by bit interleaving and can therefore be improved.

Recently, the success of turbo codes has demonstrated the advantages of iterative

processing in the decoding of concatenated coding schemes. Reference [12] appears to

be the first paper that studies iterations between the demodulator and the decoder to

overcome the drawbacks of conventional BICM systems. In that paper, a simple iter-

ative decoding processing with a hard-decision feedback is proposed. It was pointed

out in [12] that by carefully choosing the signal mapping, a large binary Hamming
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distance between coded bits is indirectly translated into a large Euclidean distance.

Using a simple decoder for convolutional code and the binary hard-decision feed-

back to the demodulator, it was shown in [12, 13] that BICM-ID with hard-decision

feedback compares favorably with TCM over AWGN channels, while it significantly

outperforms the latter over fading channels.

In iterative processing, the feedback from the section which is less affected by the

channel noise removes the ambiguity in the high-order demodulation and enhances

the decoding of the weak data sections. With perfect knowledge of the other m − 1

bits, an M -ary constellation, M = 2m, is translated to binary modulation selected

from M/2 = 2m−1 possible sets of binary constellations. It then follows that iterative

decoding of BICM not only increases the intersubset Euclidean distance, but also

reduces the number of nearest neighbors. This leads to a significant improvement

over both AWGN and fading channels. Of course, if the feedback contains errors,

wrong binary constellations are chosen and this leads to the degradation of the system

performance. This also explains why it is important to control well the feedback and

the error propagation.

By using the soft-decision feedback in the iterative processing, it has been shown

in [14] that the performance of BICM-ID can be further improved. It was observed

in [14] that the soft-decision feedback is the key to obtain coding gains in BICM

while mitigating the error propagation. The results in [14] show that BICM-ID with

soft-decision feedback significantly outperforms the conventional TCM and performs

closely to the turbo-TCM [19] over both AWGN and Rayleigh fading channels.

This chapter is concerned with BICM-ID systems employing two-dimensional con-

stellations. The system model with iterative processing at the receiver with two types

of feedbacks mentioned before is first introduced. The effect of the interleaver will

be briefly discussed. As in the previous chapter, here, the influence of the signal

mapping to the error performance will also be discussed with two approaches. The

first approach is based on the error bound of a BICM-ID system. The second one

relies on the technique of bitwise mutual information. Finally, various good 8-ary

20



constellations and mappings for BICM-ID will be presented.

3.1 BICM-ID System Model

Figures 3.1 and 3.2 show the block diagram of BICM-ID systems using hard-

decision and soft-decision feedback, respectively. Observe that the transmitters
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Figure 3.1 The block diagram of a BICM-ID system with hard-decision feedback.
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Figure 3.2 The block diagram of a BICM-ID system with soft-decision feedback.

of BICM-ID systems are similar to that of a BICM system, which are based on
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the serial concatenation of a convolutional encoder, an interleaver and an M -ary

modulator. The differences are in the receivers of these systems. In the case of

systems with hard-decision feedback, a simple Virterbi decoder for convolutional code

is used as in the conventional BICM systems. The hard-decision from the output of

the Viterbi decoder is transferred back to the demodulator. On the other hand,

the decoder of a BICM-ID system with soft-decision feedback is substituted by a

more sophisticated decoder, namely the soft-input soft-output (SISO) decoder for

convolutional code [22]. Here, the iterative processing between the demodulator and

the SISO decoder transfers the extrinsic information, a term well explained in the

literature of turbo codes [11, 22], of the coded bits to each other. The extrinsic

information becomes the a priori information at the input of each component. The

following discussion explains these two iterative receivers in more detail.

3.1.1 BICM-ID with Hard-Decision Feedback

Recall that in the conventional BICM systems, the bit metric for each coded bit

is computed at the demodulator as in (2.2) based on the ML rule. This metric is es-

sentially a simplification of the a posteriori probabilities in the maximum a posteriori

probability (MAP) criterion [23], which can be computed as follows:

λ(vk = b) = log
∑

si∈Ψk
b

P (si|r, g) (3.1)

In (3.1), P (si|r, g) is the a posteriori probability of the transmitted signal si given

the received signal r and the channel fading coefficient g. The set Ψk
b , b ∈ {0, 1},

denotes the subset of Ψ that contains all symbols whose labels have the value b at

the kth position. Using Bayes rule [24], the a posterior probability P (si|r, g) can be

computed as:

P (si|r, g) =
p(r|si, g)P (si)

p(r|g)
(3.2)

where P (si) is the a priori probability that the signal si is transmitted at the trans-

mitter. The denominator of (3.2) can be expressed as:

p(r|g) =
M∑
i=1

p(r|si, g)P (si) (3.3)
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From (3.2) and (3.3), it can be observed that the computation of the a posterior

probability P (si|r, g) requires knowledge of the a priori probability P (si) and the

conditional probability density function p(r|si, g). Hence, the statistic for the bit

metric λ(vk = b) can be written as follows:

λ(vk = b) ∼ log
∑

si∈Ψk
b

p(r|si, g)P (si) (3.4)

Assume that the transmitted signals are equally likely, then the MAP rule becomes

ML rule and the bit metrics in (3.4) and (2.2) are the same.

As mentioned in Chapter 1, the function of the channel encoder is to introduce

some redundancy into the information sequence. This also creates the memory and

redundancy in the signal sequence {si}. The assumption of equally likely transmitted

signals fails to use this information, mainly because it is too difficult to specify this

information in advance for any decoding. However, the a priori information of the

transmitted signals can be reflected from the output of the decoder and therefore can

be included through the iterative processing.

The hard-decision feedback in [12] considers only binary-decision feedback for the

calculation of the bit metrics. The following example illustrates the calculation of

λ(v1 = 1) with an 8-ary signal constellation. The a priori information for any signal

si with label si ∼ ξ(v1 = 1, v2, v3) ∈ Ψ1
1 is given by:

P (si) =





1, if v1 = 1, v2 = v̂2, v3 = v̂3

0, otherise
(3.5)

where v̂2 and v̂3 are the results reflected from the previous decoding decisions. The

bit metric is then computed as:

λ(v1 = 1) = −||r− gsi(1, v̂2, v̂3)||2 (3.6)

The bit metrics for different values of b and k can be computed similarly.

Given (m − 1) values of the feedback coded bits, an M -ary constellation with

mapping ξ is translated into a binary modulation selected from a set of M/2 possible
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binary constellations. It was shown in [12] that with an appropriate signal mapping,

the minimum Euclidean distance between two coded sequences can be large for BICM-

ID. It makes the BICM-ID suitable for both Rayleigh fading and AWGN channels.

3.1.2 BICM-ID with Soft-Decision Feedback

In BICM-ID systems with soft-decision feedback, instead of a standard Viterbi de-

coder, a more advanced soft feedback method is used to reduce the error propagation.

As shown in Fig. 3.2, the receiver of the system uses a suboptimal, iterative method

with soft-output demodulator and the SISO decoder. Though the two components

of the receiver are individually optimal, the demodulation of the received signal and

the decoding of the convolutional code act separately.

In the first iteration, it is reasonable to assume that the transmitted signals {si}
are equally likely. The a posteriori probabilities of the coded bits can be calculated

similarly to the case of BICM as well as BICM-ID systems with hard-decision feedback

as in (2.2) and (3.4). This information is passed to the SISO decoder [22] which is used

for decoding the convolutional code. Based on the information from the demodulator

and the trellis structure of the convolutional code, the SISO module generates the a

posteriori probabilities for the information and the coded bits.
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Figure 3.3 Block diagram of the receiver for a BICM-ID system with soft-decision

feedback.

Figure 3.3 shows the block diagram of the receiver for a BICM-ID system with

soft-decision feedback. Using the same notation as in [14,22], the a priori probability

and the a posteriori probability of a random variable q are denoted by P (q; I) and

P (q; O), respectively. It should be mentioned here that P (q; O) is often referred to
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as the extrinsic information in turbo code literature [11]. From the second iteration,

the extrinsic information P (ck; O) of the coded bits is transferred back to the demod-

ulator. After being interleaved, it becomes the a priori information P (vk; I) at the

input of the demodulator. Since the (ideal) interleaver makes m bits in one symbol

independent, the a priori information P (si) of each signal si ∈ Ψ can be obtained

as [14]:

P (si) = P (v1(si), . . . , vm(si)) =
m∏

k=1

P (vk = vk(si); I) (3.7)

where vk(si) ∈ {0, 1}, 1 ≤ k ≤ m is the value of the kth bit in the label of si. Clearly,

the calculation of P (si) in the case of hard-decision feedback in (3.5) is a special case

of (3.7). Using (3.7) and (3.4), the extrinsic information from the second iteration

can be obtained as [14]:

P (vk = b; O) =
P (vk = b|r)
P (vk = b; I)

=

(∑
si∈Ψk

b
P (r|si)P (si)

)

P (vk = b; I)

=
∑

si∈Ψk
b

(
P (r|si)

∏

i6=k

P (vj = vj(si); I)

)
(3.8)

It can be observed from (3.8) that the bit metric P (vk = b; O) is computed from the a

priori probabilities P (vj; I) of the other bits (i 6= k) on the same channel symbol. The

regenerated bit metrics are then delivered to the SISO decoder. The SISO decoder

treats that information as the a priori information for the coded bits and the itera-

tive demodulation and decoding keep running. The hard-decision for the information

bits is made at the final iteration based on the extrinsic information P (uj; O). This

information can also be understood as the total a posteriori probabilities of the infor-

mation bits, since the a priori probabilities P (uj; I) are not available in the iterative

processing [14].

3.2 The Effects of the Interleaver

The interleaver is critical to the high performance of BICM-ID systems. This

section briefly discusses some aspects in the design of a good interelaver for BICM-ID

systems.
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The key idea in the design of a good interleaver for a BICM-ID system is to make

the interleaved coded bits in the same channel symbol as far apart as possible. More

specifically, as pointed out in [14], two design objectives of a good interleaver are as

follows:

(i) To increase the minimum Euclidean distance between any two coded sequences

(ii) To mitigate the error propagation during the iterative decoding.

Some design rules are also suggested in [14] to obtain a good interleaver. These rules

are quite similar to those for spread-random interleavers studied in [25] and given

below:

• Modularity : The bit position before and after interleaving must have the same

modulo-m value. This ensures that the coded bits with different protection,

due to their different positions in the channel symbol labels, are distributed

uniformly along the trellis.

• Reverse Spread : The m bits going to the same channel symbol should be spread

as far apart as possible from each other. This ensures feedback independence

in the bit metric recalculation and it mitigates the error propagation.

Another important parameter for the error performance of a BICM-ID system

is the block length of the interleaver. It is well known for many iterative decoding

schemes that the longer the interleaver, the better the error performance becomes.

This is also the case for BICM-ID systems. A small block size might cause a sub-

stantial performance degradation to BICM-ID. It should be noted that increasing the

block length leads to earlier convergence, in terms of both the SNR and the number

of iterations. The reason for this is the reduction in the number of nearest neighbor

codewords when the interleaver size is increased. However, increasing the interleaver

size does not improve the performance of BICM-ID systems after a certain high SNR
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level (as normally seen in standard turbo codes). This is due to the fact that the per-

formance at a high SNR mainly depends on dfree of the whole code and this parameter

is constant for most interleavers.

The question on whether there exists an ideal interleaver with a finite block length

for BICM-ID still remains unanswered.

3.3 The Effect of Signal Mapping

Similar to the case of BICM systems, this section considers the effect of signal

mapping on the error performance of BICM-ID systems. Since only soft-decision

feedback is applied in this thesis, such a consideration concentrates on BICM-ID

systems with soft-decision feedback. The effect of signal mapping to BICM-ID with

hard-decision feedback is studied in [13]. Two different approaches, namely the error

bound and the mutual information, will be taken into account.

3.3.1 The Upper Bound on the Error Performance of a BICM-

ID System

Due to the large coding gain produced by iterative processing, one is most inter-

ested in the asymptotic performance to which the iterative processing converges. Such

an asymptotic performance of the systems under consideration can be analyzed with

the error-free feedback bound (EF bound) introduced in [14, 15]. The EF bound for

the case of a Rayleigh fading channel is essentially the BICM expurgated bound [10]

introduced in Chapter 2 modified for a BICM-ID system by assuming the error-free

feedback. Over an AWGN channel, references [14] and [15] compute the error bound

based on the Euclidean distances FED and FEDC. However, it was shown in [26] that

these distances sometimes fail to discriminate the differences in error performance of

different mappings. In this section, an upper bound on the BER performance of a

BICM-ID system using the techniques in [27,28] is derived. From the upper bound, a

distance criterion is identified to find the best mappings in terms of asymptotic per-

formance over AWGN and Rayleigh fading channels. For Rayleigh fading channels,

27



the result is similar to the one derived in [14,15]. More importantly, the derivations in

this section will also be extended to BICM-ID systems with hypercube constellations

proposed in Chapter 4.

The union bound of the BER , Pb, for a BICM-ID system can also be written

similarly to that of a BICM system in (2.7). Using the same notation as in Chapter 2,

let c and c̆ denote the input sequence and the estimated sequence with the Hamming

distance d between them. These binary sequences correspond to the symbol sequences

x and x̆, each consisting of d signal symbols. In what follows, the function f(d, Ψ, ξ) is

computed from the PEP P (x → x̆) under the assumption that the iterative processing

works perfectly.

Without loss of generality, assume that c and c̆ differ in the first d consecutive

bits. Hence, x and x̆ can be redefined as sequences of d M -ary signals as follows:

x = [x1, . . . ,xd] (3.9)

x̆ = [x̆1, . . . , x̆d] (3.10)

Also let

g = [g1, g2, . . . , gd] (3.11)

where ge, 1 ≤ e ≤ d, represents the Rayleigh fading coefficient corresponding to the

eth M -ary symbol. Then the PEP conditioned on g can be computed as1

P (x → x̆|g) = Q




√√√√ 1

2N0

d∑
e=1

g2
e‖xe − x̆e‖2


 (3.12)

It should be mentioned here that with the ideal interleaver, ge, 1 ≤ e ≤ d, can be

assumed to be independent and identical distributed (i.i.d) random variables [10]. In

the case of AWGN channels, all the fading coefficients {ge} equal 1. The PEP can

then be obtained by removing the condition on g in (3.12) as follows.

1The Q-function is defined as Q(x) = 1√
2π

∫∞
x

e−t2/2dt.
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First, for Rayleigh fading channels, by using the following Gaussian probability

integral:

Q (γ) =
1

π

∫ π/2

0

exp

(
− γ2

2 sin2 θ

)
dθ (3.13)

and averaging (3.12) over the sequence g of d i.i.d Rayleigh random variables, it can

be shown that [27,28]:

P (x → x̆) = Eg

{
P (x → x̆|g)

}
=

1

π

∫ π

0

(
d∏

e=1

∆e

)
dθ (3.14)

where

∆e =

(
1 +

1

4N0

‖xe − x̆e‖2

sin2 θ

)−1

(3.15)

Note that the term inside the brackets of (3.15) is obtained by invoking the following

equality for a Rayleigh random variable g:

Eg{exp(−γg2)} = 1/(1 + γ) (3.16)

Owning to the success of decoding steps (i.e., the iterations between the SISO decoder

and the demodulator are assumed to work perfectly), one needs to consider the two

signal symbols xe and x̆e whose labels differ in only one bit. Also observe that ∆e are

i.i.d. random variables. Hence, the function f(d, Ψ, ξ) in (2.7) for BICM-ID systems

can be obtained by averaging over all the signal symbols of the M -ary constellation

Ψ [10,27].

Consider a single signal symbol si ∈ Ψ and let sj(i,k) denote the signal whose label

differs at position k compared to the label of si. Thus j(i, k) is simply understood as

an integer index of a signal symbol and it depends on i, k and the specific mapping

ξ. Now taking the average over all the symbol si and the corresponding symbol sj(i,k)

in the M -ary constellation Ψ gives:

f(d, Ψ, ξ) ≤ 1

π

∫ π/2

0

[
E

{(
1 +

1

4N0

· ‖si − sj(i,k)‖2

sin2 θ

)−1
}]d

dθ (3.17)

where

E

{(
1 +

1

4N0

‖si − sj(i,k)‖2

sin2 θ

)−1
}

=

1

m2m

∑
si∈Ψ

m∑

k=1

[(
1 +

1

4N0

‖si − sj(i,k)‖2

sin2 θ

)−1
]

(3.18)

29



Although (3.17) can be efficiently computed with a single integral and it gives an

accurate approximation for the asymptotic performance (i.e., the error floor) of the

system, it does not give an insight on how to design good mappings for a given constel-

lation. To understand the influence of the constellation mapping to the asymptotic

behavior of the PEP, the following inequality is useful:

Q (γ) <
1

2
exp(−γ2

2
) (3.19)

By substituting (3.19) into (3.12) and taking the average over g, one obtains:

P (x → x̆) <
1

2

d∏
e=1

(
1 +

‖xe − x̆e‖2

4N0

)−1

(3.20)

As before, taking the average over the all symbols si and the corresponding symbols

sj(i,k), the function f(d, Ψ, ξ) can be approximated at high signal-to-noise ratio (SNR)

as:

f(d, Ψ, ξ) ≈ 1

2
[δ1(Ψ, ξ)]d (3.21)

where the parameter δ1(Ψ, ξ) depends on the constellation and mapping, and is given

by:

δ1(Ψ, ξ) =
1

m2m

∑
si∈Ψ

m∑

k=1

(
1 +

‖si − sj(i,k)‖2

4N0

)−1

(3.22)

Since ‖si − sj(i,k)‖2 > 0, we use the following approximation when N0 → 0:

(
1 +

‖si − sj(i,k)‖2

4N0

)−1

≈ 4N0

‖si − sj(i,k)‖2
(3.23)

Thus, f(d, Ψ, ξ) can be approximated as

f(d, Ψ, ξ) ≈ 1

2

[
4N0 · δ̃1(Ψ, ξ)

]d

(3.24)

where

δ̃1(Ψ, ξ) =

(
1

m2m

∑
si∈Ψ

m∑

k=1

1

‖si − sj(i,k)‖2

)
(3.25)

Note that δ̃1(Ψ, ξ)−1 is exactly the harmonic mean Euclidean distance with ideal

feedback defined in [14] for a BICM-ID system over a Rayleigh fading channel.
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For the case of an AWGN channel, the probability P (x → x̆) is simply obtained

as in (3.12) with all fading coefficients set to 1. It then follows that

f(d, Ψ, ξ) ≤ 1

π

∫ π/2

0

[
E

{
exp

(
−‖si − sj(i,k)‖2

4N0 sin2 θ

)}]d

dθ (3.26)

where

E

{
exp

(
−‖si − sj(i,k)‖2

4N0 sin2 θ

)}
=

1

m2m

∑
si∈Ψ

m∑

k=1

exp

(
−‖si − sj(i,k)‖2

4N0 sin2 θ

)
(3.27)

Again, the function f(d, Ψ, ξ) at high SNR can be approximated as

f(d, Ψ, ξ) ≈ 1

2
[δ2(Ψ, ξ)]d (3.28)

where

δ2(Ψ, ξ) =
1

m2m

∑
si∈Ψ

m∑

k=1

exp

(
−‖si − sj(i,k)‖2

4N0

)
(3.29)

Obviously, the two parameters δ1(Ψ, ξ), δ2(Ψ, ξ) derived above characterize the

influence of the signal mapping to the asymptotic performance of a BICM-ID system

over the two channel models, respectively. Specifically, the smaller these parame-

ters are, the lower the asymptotic BER performance of the systems becomes. The

best mappings with respect to the asymptotic performance of a BICM-ID system

over Rayleigh and AWGN channels are the ones that have the smallest δ1(Ψ, ξ) and

δ2(Ψ, ξ), respectively.

3.3.2 The Technique of Mutual Information

A different technique based on mutual information was introduced in [16, 18] to

explain the influence of signal mapping on the performance of BICM-ID. As mentioned

in Chapter 2, the symbol wise mutual information C of a coded modulation scheme

employing an M -ary constellation can be expressed as the sum of the bitwise mutual

information IL, 0 ≤ L ≤ (m− 1) in (2.15). Furthermore, for a fixed constellation, C

is independent of the applied mapping.

Using the concept of equivalent channels in [29], a channel accepting an M -ary

signal symbol can be seen as consisting of m sub-channels, each carries one bit with a
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different condition on “the other bits being known”. For example, the sub-channel L

carries one bit with the condition that the other m− 1−L bits are perfectly known.

Thus the capacity of this channel is the bitwise mutual information Im−1−L. Though,

for a fixed constellation, C =
∑m−1

L=0 IL is always a constant regardless of the signal

mapping, the bitwise mutual information IL depends on the mapping.

Since the calculation of the bitwise mutual information I0 assumes that there is

no information from the other bits, I0 is an important parameter for the performance

of BICM-ID with no iteration, i.e., the performance of a BICM system studied in

Chapter 2. If the iteration between the channel decoder and the demodulator works,

then a more and more accurate information about the other bits in one symbol will

be transferred to the next iteration [18]. Therefore, with iterations, I0 is not very

important any more. Instead, I1, I2, . . . , Im−1 become dominant parameters to the

error performance of BICM-ID systems when the number of iterations becomes larger.

Finally, if the perfect a priori knowledge of all other bits is available, only Im−1

dominates the performance of BICM-ID. Equivalently, it can be seen that Im−1 is

the key parameter in determining the asymptotic performance of BICM-ID systems.

The exact expression for the bitwise mutual information with the perfect knowledge

of the other bits in one channel symbol is provided in Appendix B.

Since the sum of bitwise mutual information is always a constant for a fixed

constellation, there is a trade-off in the values of bitwise mutual information among

different mappings. To have a good performance with no iteration, one should apply

the mapping that has large I0. However, large value of I0 means that the other mutual

information with a priori knowledge will be smaller, implying that iteration may not

helpful. A compromise solution is to design the mapping with I0 big enough to make

iteration work, while maximizing Im−1 to achieve good error performance after a large

number of iterations.

It should be pointed out that the bitwise mutual information depends on the par-

ticular value of the signal-to-noise ratio (SNR), i.e., the channel condition. Thus the

bitwise mutual information can be used to evaluate and compare different constella-
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tions/mappings of a BICM-ID system operating at a specific range of SNR. This is

the major advantage of mutual information compared to the error bound discussed

in the previous section.

3.4 Proposed Mappings of 8-ary Constellations for BICM-ID

Based on the theories introduced in the previous sections, this section presents

good mappings of various 8-ary constellations for BICM-ID systems operating over

frequency non-selective block Rayleigh fading channels.

In [14], different mappings for an 8-PSK constellation were studied. It was shown

that a BICM-ID system using semi-set partitioning (SSP) mapping shown in Fig.

3.4–(a) offers the best performance over other popular 8-PSK mappings provided

that a large enough block length of the interleaver is used.

Here, three more popular constellations, including (1,7), cross 8-ary, and the op-

timum 8-ary constellations, are also considered. They are shown in Fig. 3.4–(b), (c),

and (d), respectively. The exact locations of the signal points in the optimum 8-ary

constellation are provided in [30]. This constellation is optimum in the sense that it

performs optimally at high SNR for uncoded systems over an AWGN channel.

3.4.1 The Proposed Mappings

For each constellation, the mapping of interest to us is the one that minimizes

δ̃1(Ψ, ξ) computed as in (3.25). Such mappings are found for the above constellations

by computer search and they are also presented in Figs. 3.4–(b), (c), and (d). Table

3.1 lists the parameter δ̃1(Ψ, ξ)−1 of the proposed mappings where it is assumed that

the average symbol energy is normalized to be one. Also shown in Table 3.1 is the

harmonic mean distance d2
h defined in (2.9). Recall that this parameter affects the

asymptotic performance of BICM systems (i.e., the performance of the first iteration

of the BICM-ID systems).

It is interesting to observe that d2
h of SSP 8-PSK is smallest among four constel-
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Figure 3.4 The best mappings in terms of asymptotic performance of various 8-ary

constellations for BICM-ID systems over a Rayleigh fading channel.

Table 3.1 The parameters δ̃1(Ψ, ξ)−1 and d2
h for the proposed mappings

(minimized-δ̃1(Ψ, ξ) mappings).

Constellation δ̃1(Ψ, ξ)−1 d2
h

(a) SSP 8-PSK 2.8766 0.5858

(b) (1,7) 2.3045 0.8880

(c) Cross 8-ary 2.5946 0.8348

(d) Optimum 8-ary 2.3420 0.9163

(e) Asymmetric 8-PSK 3.5241 0.3052

lations/mappings in Figs. 3.4–(a), (b), (c), and (d). This suggests that if iterations

work well with SSP 8-PSK, they also work well with other contellations/mappings.
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Even with a short interleaver length which makes the performance of a BICM-ID

system with SSP 8-PSK mapping degraded, the BICM-ID systems employing other

constellations/mappings might still deliver good performance. In contrast to d2
h, SSP

8-PSK has the biggest value of δ̃1(Ψ, ξ)−1. This means that the asymptotic perfor-

mance of a BICM-ID system using SSP 8-PSK mapping outperforms the systems

using other constellations/mappings. The above discussion is confirmed by analytical

and simulation results in Section 3.4.3.

As far as the asymptotic performance is concerned, it is also interesting to find

a constellation/mapping that performs better than SSP 8-PSK, i.e., having a larger

δ̃1(Ψ, ξ)−1 than that of SSP 8−PSK. This task can be accomplished by a simple

modification of SSP 8-PSK as follows. Observe that the signal points in SSP 8-PSK

are divided into even and odd subsets. The even subset includes all the signal points

whose labels have even Hamming weights. Similarly, the odd subset includes all the

signal points whose labels have odd Hamming weights. Now if the signal points in

each subset move closer to each other, δ̃1(Ψ, ξ)−1 will increase. It is easy to verify that

when all four signals in each subset collapse to one point, the parameter δ̃1(Ψ, ξ)−1

is the biggest. However, the use of this ambiguity constellation/mapping will result

in a very poor error performance at any practical SNR level due to the large value of

Nmin and the fact that the minimum Euclidean distance between the signal points is

0.

A compromise solution proposed here is a constellation/mapping shown in Fig.

3.4-(e), which shall be referred to as an asymmetric 8-PSK constellation. In each odd

or even subset of this constellation/mapping, the angle between any two nearest signal

points is π/6. The harmonic mean d2
h and δ̃1(Ψ, ξ)−1 of this constellation/mapping

are shown in Table 3.1. Observe that the parameter δ̃1(Ψ, ξ)−1 of the asymmetric

8-PSK constellation/mapping is much higher than that of SSP 8-PSK and, therefore,

it is expected to have a very good asymptotic performance. However, it should be

mentioned that due to the small value of d2
h, it might need a long interleaver and a

large number of iterations to achieve the asymptotic performance of this asymmetric
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8-PSK constellation/mapping. Again, this prediction is also confirmed by analytical

and simulation results in Section 3.4.3.

3.4.2 A Study of the Proposed Mappings by Mutual Infor-

mation

As discussed before, for a BICM-ID system with 8-ary constellation, I0 is a dom-

inant parameter for the performance after the first iteration. From the second itera-

tion, if I0 is big enough to make the iteration work, then I1 and I2 become dominant

parameters. Finally, I2 is the most important parameter for the asymptotic perfor-

mance of a BICM-ID system.

With any 8-ary constellation and mapping, the bitwise mutual information can

be calculated for different mappings. Especially, I2 can be computed with a high

accuracy using a series expansion as provided in Appendix B. Starting with the 8-

PSK constellation, it can be seen that SSP mapping is the mapping with maximized

I2. It is also easy to verify that for given constellations, the mappings introduced in

the previous section are the mappings that maximize I2. With a fixed convolutional

code, the length of the interleaver affects the convergence of the error performance of

a BICM-ID system. In general, a longer interleaver leads to an earlier convergence.

This also implies that, with a shorter interleaver and if only a few iterations can be

used, the one with bigger I2 might not be preferred for BICM-ID. The bitwise mutual

information I2 for the I2-maximized mappings of the five different constellations are

plotted in Fig. 3.5. Due to the arrangements of the signal points, I2-maximized

asymmetric mapping has the biggest I2 among all the I2-maximized mappings. This

observation is consistent with the fact that this special mapping of 8-PSK has the

largest value of δ̃1(Ψ, ξ)−1. The (1, 7) and optimum 8-ary constellations/mappings

have almost the same value of I2, which is also smallest. There is a small difference

in I2 between SSP 8-PSK and I2-maximized cross 8-ary mapping and it is clear that

SSP 8-PSK is preferred.

Finally, Fig. 3.6 shows the bitwise mutual information where it is assumed that
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Figure 3.5 Bitwise mutual information with the perfect knowledge of the other two

bits (I2) of various 8-ary constellations/mappings: The channel model

is Rayleigh fading and the code rate is 2/3.

there is no information from the other bits, I0, for the above mappings. It can be seen

that in contrast to I2, the asymmetric 8-PSK mapping has the lowest I0. The values

of I0 are almost the same for the cross 8-ary, optimum 8-ary and (1, 7) mappings.

This suggests that when using the same interleaver, especially a short interleaver,

these three mappings are more suitable than SSP 8-PSK and the asymmetric 8-PSK.

This expectation is again confirmed by the analytical and simulation results in the

next section.

3.4.3 Analytical and Simulation Results

This subsection provides the analytical and simulation results to verify the per-

formance of the mapping designs introduced in Section 3.4. As the investigation

concentrates on signal mapping, a rate-2/3, 8-state convolutional code (CC) with the
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Figure 3.6 Bitwise mutual information I0 for maximized-I2 mappings.

generator sequences g1 = (4, 2, 6) and g2 = (1, 4, 7) is always assumed. The bitwise

interleavers used in all simulations are designed according to the rules outlined in

Section 3.2. Each point of the BER curves is obtained by simulating the systems

with 107 to 108 coded bits. Also observe from Table 3.1 that the cross 8-ary, (1, 7)

and optimum 8-ary constellations/mappings have almost the same values of d2
h and

δ̃1(Ψ, ξ)−1. Thus it can be expected that these constellations/mappings perform very

closely.

First, a long interleaver with a length of 12, 000 coded bits is used. Figures

3.7, 3.8 and 3.9 present the performances with 1 to 8 iterations of the BICM-ID

systems employing the asymmetric 8-PSK, SSP 8-PSK, cross 8-ary and the proposed

mappings (see Fig. 3.4), respectively. Also shown in each figure is the asymptotic

performance calculated from (2.7) and (3.17) using the first 20 Hamming distances of

the convolutional code. It is clear from these figures that iterations work well with all
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Figure 3.7 BER performance of a BICM-ID system: Asymmetric 8-PSK/proposed

mapping, rate-2/3, 8-state CC, 12,000-bit interleaver, 8 iterations.

the constellations/mappings and they also converge to the asymptotic performances.

Note, however, that the convergence behavior of each constellation/mapping is very

different. This is of course due to the difference in the parameters d2
h and δ̃1(Ψ, ξ)−1

and can be summarized as follows. For a constellation/mapping with a small d2
h and

a large δ̃1(Ψ, ξ)−1 (such as the asymmetric 8-PSK), it requires a higher value of SNR

for the iteration to work, but it converges to a lower asymptotic performance. For

a constellation/mapping with a large d2
h and a small δ̃1(Ψ, ξ)−1 (such as the cross

8-ary), it is the other way around: the iterations start working at a lower SNR region

but it converges to a higher asymptotic performance.

Figure 3.10 compares the BER performance of different constellations/mappings

after 8 iterations. Due to having a bigger value of δ̃1(Ψ, ξ)−1, the asymptotic perfor-

mance of the asymmetric 8-PSK constellation is better than that of both the cross
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Figure 3.8 BER performance of a BICM-ID system: SSP 8-PSK mapping, rate-

2/3, 8-state CC, 12,000-bit interleaver, 8 iterations.

8-ary and 8-PSK constellations. On the other hand the asymptotic performance of

the 8-PSK is only slightly better than that of the cross 8-ary. As the convergence

behaviors of these constellations/mapping are different, the appropriate choice of sig-

nal constellation/mapping depends on the desired BER level. For example, Fig. 3.10

suggests that the cross 8-ary, (1, 7) and optimum 8-ary are the best choices if the

targeted BER level is 10−3. The 8-PSK performs the best at BER levels in the range

from 10−3 to 10−4. Finally, to achieve a BER of 10−6, the asymmetric 8-PSK is the

most efficient constellation (about 1dB is gained compared to other constellations).

It is also of interest to study the performance of BICM-ID systems employing

different constellations/mappings, a short interleaver and when only a few iterations

can be afforded. This is important when receiver complexity and/or short delay are of

particular concern(s). Figure 3.11 presents the BER performance of BICM-ID systems
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Figure 3.9 BER performance of a BICM-ID system: Cross 8-ary/proposed map-

ping, rate-2/3, 8-state CC, 12,000-bit interleaver, 8 iterations.

using an interleaver with a length of 1, 200 coded bits and after 5 iterations. As can

be expected, the performance of the asymmetric 8-PSK constellation/mapping is very

poor compared to that of other constellations/mappings. Obviously, the iterations

do not work with this asymmetric 8-PSK constellation because of its small value of

d2
h and the use of a short interleaver. With bigger values of d2

h, the advantage of

the cross 8-ary, (1, 7) and the optimum 8-ary constellations is clear from Figure 3.11.

They outperform both the asymmetric 8-PSK and 8-PSK constellations at practical

range of BER level from 10−3 to 10−5.

Finally, for AWGN channels, reference [26] also demonstrates that the mappings

proposed in Fig. 3.4 are also the best mappings in terms of asymptotic performance.

It can also be verified easily that these mapping achieve the minimum values of

δ2(Ψ, ξ). However, it should be pointed out that the iterative decoding gains offered
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Figure 3.10 BER performance of BICM-ID systems: Different constella-

tions/mappings, rate-2/3, 8-state CC, 12,000-bit interleaver, 8 itera-

tions.

by these proposed mappings might not be evident at BER values of interest. This

observation is also consistent with that in [14].
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Figure 3.11 BER performance of BICM-ID systems: Different constella-

tions/mappings, rate-2/3, 8-state CC, 1,200-bit iterleaver, 5 iterations.
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4. BICM-ID with Hypercube Constellations

As pointed out in Chapter 3, BICM-ID is a spectral efficient coded modulation

technique for both AWGN and Rayleigh fading channels. The main advantage of

BICM-ID is that its implementation is quite simple compared to other complex

coded modulation techniques while still providing large coding gains. This is be-

cause BICM-ID requires only one soft-input soft-output (SISO) decoder instead of

two as normally seen in turbo decoding [19, 31]. In BICM-ID systems, the iterative

processing is implemented between one SISO decoder and the soft-output demodula-

tor. The complexity of the soft-output demodulator is relatively small compared to

that of a SISO decoder [14] (which requires forward and backward recursions [22]),

since the soft-output demodulator can be considered as a one-state (zero-memory)

decoder. For example, it was shown in [14] that while the complexity of an 8-state

BICM-ID system is about one half of that of an 8-state turbo TCM, its performance

closely matches that of the turbo TCM system.

Using multi-dimensional constellations, it has been shown in [32,33] that the error

performance of trellis coded modulation (TCM) systems can be improved significantly.

The multi-dimensional constellation can be created by considering many symbols

over a multiple symbol interval. Obviously, such a larger constellation offers a more

flexibility for the mapping design compared to two-dimensional constellations.

Motivated by the above observation, this chapter shall study signal mapping in

multi-dimensional constellations to improve the error performance of BICM-ID. More

specifically, the chapter is concerned with BICM-ID systems employing QPSK. Since

QPSK consists of orthogonal components, considering multiple QPSK symbols over
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a multiple symbol interval is equivalent to employing a multi-dimensional hypercube

as a signal constellation.

The chapter starts with a brief study of the hypercube and its distance properties.

Then BICM-ID models employing hypercube constellations are described. As in the

conventional BICM-ID systems, the effect of signal mapping to the system perfor-

mance will be studied based on both the error bound and the technique of mutual

information.

In the case of error bound, the guideline for mapping design derived from the

error bound in [10, 14] cannot be applied directly to the proposed system. This is

because the multiple QPSK symbols in our systems are treated as a single hypercube

signal and need to be taken into account simultaneously. Nevertheless, by using the

techniques in Chapter 3, the upper bounds for the bit error rate (BER) of the BICM-

ID systems under consideration can also be evaluated. Distance criteria and related

conditions are then obtained to find the best mapping of a hypercube with respect

to the asymptotic performance. Moreover, by investigating the distance properties

of a hypercube, a general and simple algorithm to construct the best mapping of a

hypercube is proposed. It is then demonstrated by simulation that the use of the

proposed mappings provide significant coding gains over the conventional systems for

both AWGN and Rayleigh fading channels. The tightness of the error bound derived

in this chapter is also verified.

4.1 A Hypercube and Its Distance Properties

A hypercube is a cube of more than three dimensions where the coordinate of

any vertex in each dimension is either −1 or +1. A single point (or vertex) can be

considered as a zero-dimensional cube. Two vertices (21) joined by a line form a

one-dimensional cube. Four vertices (22) arranged in a square are a two-dimensional

cube and eight (23) vertices are an ordinary three-dimensional cube. Continuing this

geometric progression, the first hypercube is four-dimensional cube with 24 = 16

vertices. Generally, m-dimensional cube (m-cube) has 2m vertices and each vertex
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can be identified by a set of m Cartesian coordinates, where each coordinate takes on

the value +1 or −1. To make an (m + 1)-dimensional cube, take two m-dimensional

cubes and join each vertex on one cube to the corresponding vertex on the other.

More simply, a (m + 1)-cube can be created from m-cube and 1-cube by adding the

single coordinate of 1-cube to the m Cartesian coordinates of m-cube. Examples of

1-cube, 2-cube, 3-cube and 4-cube are plotted in Fig. 4.1.
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���
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���
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Figure 4.1 Cubes in 1, 2, 3 and 4-dimensional space.

Consider two vertices represented by two m Cartesian coordinates si =

[si,1, . . . , si,m] and sj = [sj,1, . . . , sj,m] where si,k, sj,k, 1 ≤ k ≤ m, are either +1 or

−1 and 1 ≤ i, j ≤ 2m. The squared Euclidean distance between the two vertices can

be computed as follows:

d2
i,j =

m∑

k=1

(si,k − sj,k)
2 (4.1)

Observe that since (si,k−sj,k)
2 is either 0 (when si,k = sj,k) or 4 (when si,k 6= sj,k), d2

i,j

can be obtained from the coordinate Hamming distance Hi,j between si and sj (i.e.,
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Figure 4.2 Coordinate Hamming distance profile of an m-cube.

the number of positions in which the two m-tuples of Cartesian coordinates disagree)

as:

d2
i,j = 4Hi,j (4.2)

Thus, to study the Euclidean distance properties of a cube, one may investigate the

coordinate Hamming distance properties, instead.

There are a total of 2m vertices in an m-dimensional cube, but the coordinate

Hamming distance between any two vertices ranges from 0 to m. For any vertex si,

the coordinate Hamming distance is zero when compared to itself and it equals to m

when compared to the vertex sj whose coordinates are the complements of that of si.

It is also not difficult to show that for any vertex si, the number of vertices {sj} with

coordinate Hamming distance Hi,j = k, 0 ≤ k ≤ m, to the vertices si is:

mk =


 m

k


 (4.3)

Hence, the coordinate Hamming distance profile of an m-cube can be represented by

the famous Pascal triangle of Fig. 4.2.

Here, the mth horizontal row in this triangle represents the coordinate Hamming

distance profile for the (m − 1)-cube. As an example, the fourth row of the triangle
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shows that, for any vertex in a three-dimensional cube, there is 1 vertex at coordinate

Hamming distance 0, 3 vertices at coordinate Hamming distance 1, 3 vertices at

coordinate Hamming distance 2 and 1 vertex at coordinate Hamming distance 3

away from this vertex.

Also observe from the above Pascal triangle that there are m vertices with coor-

dinate Hamming distance 1, m vertices with coordinate Hamming distance (m − 1)

and 1 vertex with Hamming distance m to any reference vertex in an m-cube. The

vertex with coordinate Hamming distance 1 (i.e., the minimum Euclidean distance

dmin = 4) to a reference vertex is called the nearest neighbor of this vertex.

It should be emphasized that the above properties hold for any m-cube in general.

As will be seen later, only the m-cube with m is even is considered in this thesis.

This is because the hypercube considered in this thesis is constructed from QPSK

components. For this reason, the m-cube mentioned hereafter always corresponds to

m = 2n.

4.2 BICM-ID with Hypercube Constellations

Consider a BICM-ID system that employs QPSK modulation and a rate-1/2 con-

volutional code (CC). This combination yields a spectral efficiency of 1 bit/s/Hz. For

every n symbol interval, a group of m = 2n coded bits is mapped to n consecu-

tive QPSK symbols. As a result, a 2n-dimensional hypercube (2n-cube) is created.

There are a total of 4n vertices in this hypercube constellation. Clearly, the Gray or

anti-Gray mapping for each QPSK constellation is just one special case of the above

general mapping. Assume that the energy of each QPSK symbol is normalized to

be 2 joules. Then the coordinates of the four QPSK symbols are [+1, +1], [+1,−1],

[−1, +1] and [−1,−1]. The vertex of the 2n-cube can be represented by the following

vector:

si = [si,1, si,2, . . . , si,2n−1, si,2n] (4.4)

48



where si,j ∈ {±1}, 1 ≤ j ≤ 2n, and i = 1, . . . , 4n. Equivalently,

si = [qi,1, . . . ,qi,n] (4.5)

where qi,p = [si,2p−1, si,2p], 1 ≤ p ≤ n, represents the pth QPSK symbol. Clearly, the

energy of each 2n-cube signal is 2n and each signal carries 2n coded bits. Also there is

no change in bandwidth efficiency due to the use of this general 2n-cube constellation.

When a 2n-cube is employed as a signal constellation in a BICM-ID system, each

vertex si represents a transmitted signal and it is labelled by 2n binary digits (or bits)

as follows:

ai = (ai,1, ai,2, . . . , ai,2n) = ξ−1(si) (4.6)

where ai,k, 1 ≤ k ≤ 2n, is either 0 or 1 and ξ denotes the symbol mapping from 2n bits

to one 2n-cube signal. It should be pointed out that while the Cartesian coordinates

si define the location of the transmitted signal in the Euclidean space (i.e., the actual

waveform of the transmitted signal), choosing the labels ai of the signal points can

be done freely and it is the main subject of this chapter. In the remaining of this

chapter, the coordinate Hamming distance refers to the Hamming distance computed

from the Cartesian coordinates of two vertices, while the label Hamming distance is

determined from the labels of two vertices.

Let r = [r1, . . . , rn] represent the received signal in a 2n-dimensional signal space.

For a frequency non-selective slowly Rayleigh fading channel, rp is related to the

transmitted symbol qi,p as:

rp = gpqi,p + wp (4.7)

where 1 ≤ p ≤ n and i is the index of the transmitted signal. In (4.7), wp is

complex white Gaussian noise with independent components having two-sided power

spectral density N0/2 and the scalar gp is a Rayleigh random variable representing

the fading amplitude of the pth QPSK symbol. It is assumed that the channel fades

slowly compared to one QPSK symbol interval and two cases of fading amplitude are

considered:
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(i) The coefficients {gp} are different for different QPSK symbols in one 2n-cube

signal.

(ii) The coefficients {gp} are constant over n consecutive QPSK symbols, i.e., over

the duration of the 2n-cube signal.

The channel model in the first case is referred to as the fast fading channel. The

second channel model is usually referred to as a quasistatic fading channel [34]. The

fading coefficients can be modeled as independent and identical distributed (i.i.d)

Rayleigh random variables as mentioned in Chapter 3. It is also further assumed

that perfect channel state information (CSI) is available at the receiver, i.e., gp can

be perfectly estimated. In the case of an AWGN channel, gp equals 1 for all p.

The receiver in the proposed BICM-ID systems also includes the soft-output de-

modulator and SISO decoder as described in Chapter 3. The only difference here is

in the soft-output demodulator, where it works with a hypercube constellation.

4.3 The Upper Bound of BER Performance

This section studies the asymptotic performance of the systems under considera-

tion with the assumption of error-free feedback. Similar to Chapter 2 and Chapter 3,

to obtain the upper bound of the bit error rate Pb, one needs to compute the average

pairwise error probability f(d, Ψ, ξ). The function f(d, Ψ, ξ) depends on the Hamming

distance d, the 2n-cube constellation Ψ and the mapping ξ. Using the same notation

as in Chapters 2 and 3, c and c̆ denote the input sequence and the estimated sequence

with the Hamming distance d between them. These binary sequences correspond to

the sequences x and x̆, each consisting of d 2n-cube symbols.

In what follows, the technique in [27, 28] is also applied to compute the PEP for

the BICM-ID systems under consideration. For the cases of Rayleigh quasistatic fad-

ing and AWGN channels, the analysis yields a similar result as in Chapter 3 with

two-dimensional constellations. More significantly, the analysis obtains a distance

criterion for mapping design when the channel is a Rayleigh fast fading channel men-
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tioned earlier.

Without loss of generality, assume that c and c̆ differ in the first d consecutive

bits. Hence, x and x̆ can be redefined as sequences of d 2n-cube signals as follows:

x = [x1, . . . ,xd] =
[
y1,1, . . . ,y1,n, . . . ,yd,1, . . . ,yd,n

]
(4.8)

x̆ = [x̆1, . . . , x̆d] =
[
y̆1,1, . . . , y̆1,n, . . . , y̆d,1, . . . , y̆d,n

]
(4.9)

Also let

g = [g1,1, g1,2, . . . g1,n, . . . , gd,1, gd,2, . . . , gd,n] (4.10)

where ge,p, 1 ≤ e ≤ d, 1 ≤ p ≤ n, represents the Rayleigh fading coefficient corre-

sponding to the pth QPSK symbol (ye,p) in the eth 2n-cube signal (xe). Then the

PEP conditioned on g can be computed as

P (x → x̆|g) = Q




√√√√ 1

2N0

d∑
e=1

n∑
p=1

g2
e,p‖ye,p − y̆e,p‖2


 (4.11)

To further evaluate (4.11), three different cases of channel model are considered next.

4.3.1 The Fast Fading Channels

For this channel model, the QPSK symbols in each 2n-cube signal fade indepen-

dently. By using the Gaussian probability integral in (3.13) and averaging (4.11) over

the sequence g of n×d i.i.d. Rayleigh random variables, it can be shown that [27,28]:

P (x → x̆) = Eg

{
P (x → x̆|g)

}
=

1

π

∫ π

0

(
d∏

e=1

∆e

)
dθ (4.12)

where

∆e =
n∏

p=1

(
1 +

1

4N0

‖ye,p − y̆e,p‖2

sin2 θ

)−1

(4.13)

The term inside the brackets of (4.13) is obtained similarly by invoking the equality

for a Rayleigh random variable g in (3.16).

Similar to Chapter 3, assume that the iterative processing works perfectly. Thus,

one needs to consider the two vertices xe = [ye,1, . . . ,ye,n] and x̆e = [y̆e,1, . . . , y̆e,n]
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whose labels differ in only one bit. Also observe that ∆e are i.i.d. random variables.

Therefore, the function f(d, Ψ, ξ) can be obtained by averaging over all vertices of

2n-cube Ψ [10, 27]. Consider a single vertex si ∈ Ψ and the vertex sj(i,k) that is

related to si as described in Chapter 31. Taking the average over all the vertices

si = [qi,1, . . . ,qi,n] and the corresponding vertices sj(i,k) = [qj(i,k),1, . . . ,qj(i,k),n] in the

2n-cube Ψ gives

f(d, Ψ, ξ) ≤ 1

π

∫ π/2

0


E





n∏
p=1

(
1 +

1

4N0

‖qi,p − qj(i,k),p‖2

sin2 θ

)−1







d

dθ (4.14)

where

E





n∏
p=1

(
1 +

1

4N0

‖qi,p − qj(i,k),p‖2

sin2 θ

)−1


 =

1

m2m

∑
si∈Ψ

m∑

k=1




n∏
p=1

(
1 +

1

4N0

‖qi,p − qj(i,k),p‖2

sin2 θ

)−1

 (4.15)

and m = 2n is the number of coded bits per vertex. To understand the effect of

the constellation mapping on the asymptotic behavior of the PEP, the inequality in

(3.19) is substituted into (4.11). Taking the average over g gives

P (x → x̆) <
1

2

d∏
e=1

n∏
p=1

(
1 +

‖ye,p − y̆e,p‖2

4N0

)−1

(4.16)

As before, by taking the average over all the vertices si = [qi,1, . . . ,qi,n] and the

corresponding vertices sj(i,k) = [qj(i,k),1, . . . ,qj(i,k),n], the function f(d, Ψ, ξ) is ap-

proximated at high SNR as:

f(d, Ψ, ξ) ≈ 1

2

[
δ
(A)
1 (Ψ, ξ)

]d

(4.17)

where the parameter δ
(A)
1 (Ψ, ξ) depends on the constellation and mapping. This

parameter is given by

δ
(A)
1 (Ψ, ξ) =

1

m2m

∑
si∈Ψ

m∑

k=1

n∏
p=1

(
1 +

‖qi,p − qj(i,k),p‖2

4N0

)−1

(4.18)

1Recall that sj(i,k) denotes the signal whose label differs at position k compared to the label of

si.
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4.3.2 The Quasistatic Fading Channels

The assumption of quasistatic fading in [34] implies that the fading is sufficiently

slow as to be constant over the duration of a number of QPSK symbols. It is therefore

reasonable to assume that QPSK symbols in each 2n-cube signal fade simultaneously.

The fading coefficients ge,p just equal ge for all 1 ≤ p ≤ n and g = [g1, . . . , gd]. With

an ideal interleaver, ge, 1 ≤ e ≤ d, can be assumed to be i.i.d random variables [10].

Hence, the upper bound derived in Chapter 3 for the conventional BICM-ID systems

over Rayleigh fading channels can be applied in this case. It is straightforward to

show that

f(d, Ψ, ξ) ≤ 1

π

∫ π/2

0

[
E

{(
1 +

1

4N0

· ‖si − sj(i,k)‖2

sin2 θ

)−1
}]d

dθ (4.19)

where E{·} denotes the average over all the vertices si.

At high SNR, the function f(d, Ψ, ξ) is approximated by:

f(d, Ψ, ξ) ≈ 1

2

[
δ
(B)
1 (Ψ, ξ)

]d

(4.20)

where

δ
(B)
1 (Ψ, ξ) =

1

m2m

∑
si∈Ψ

m∑

k=1

(
1 +

‖si − sj(i,k)‖2

4N0

)−1

(4.21)

4.3.3 The AWGN Channels

The result for this channel model is exactly what was derived in Chapter 3. The

function f(d, Ψ, ξ) at high SNR can be approximated as

f(d, Ψ, ξ) ≈ 1

2
[δ2(Ψ, ξ)]d (4.22)

where

δ2(Ψ, ξ) =
1

m2m

∑
si∈Ψ

m∑

k=1

exp

(
−‖si − sj(i,k)‖2

4N0

)
(4.23)

As before, the three parameters δ
(A)
1 (Ψ, ξ), δ

(B)
1 (Ψ, ξ) and δ2(Ψ, ξ) derived above

characterize the influence of the signal mapping to the asymptotic performance of

BICM-ID systems over the three channel models, respectively. Specifically, the smaller
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these parameters are, the lower the asymptotic bit error rate performance of the pro-

posed systems becomes. It is clear that for a high-dimensional cube, an exhaustive

search to find the mappings that yield the smallest values of these parameters is im-

possible. In the next section, by obtaining the lower bounds on δ
(A)
1 (Ψ, ξ), δ

(B)
1 (Ψ, ξ)

and δ2(Ψ, ξ) for a hypercube constellation, a universal condition for the best mapping

that minimizes all these parameters is established. An algorithm to construct the

mapping that satisfies the condition is also provided.

As in the case of conventional BICM-ID system, it is also important to investigate

the error performance of system after the first iteration (i.e., the performance of

a BICM system). This is because such a performance influences the performance

convergence behavior of a BICM-ID system. Similar to the previous derivations,

performance evaluation of a BICM system can be obtained by substituting sj(i,k) by

sbicm
j(i,k), where sbicm

j(i,k) is the nearest vertex of si whose labels differ at position k [10]2.

In the case of an AWGN channel, the key parameter for the asymptotic performance

of a BICM system is the minimum Euclidean distance between any two signal points

in the constellation [2, 10]. The other relevant parameter is the average number of

signals at the minimum Euclidean distance Nmin defined in (2.11).

4.4 The Best Mapping of a Hypercube Constellation

4.4.1 The Lower Bounds on δ
(A)
1 (Ψ, ξ), δ

(B)
1 (Ψ, ξ) and δ2(Ψ, ξ)

First, the lower bound on δ
(A)
1 (Ψ, ξ) is obtained as follows. Define the parameter

δ
(A)
1 (Ψ, ξ, si) associated with each vertex si as:

δ
(A)
1 (Ψ, ξ, si) =

1

m

m∑

k=1

n∏
p=1

(
1 +

‖qi,p − qj(i,k),p‖2

4N0

)−1

(4.24)

where m = 2n. Observe that ‖qi,p − qj(i,k),p‖2 can only take a value in {0, 4, 8}.
This observation together with the distance properties of a cube implies the following

2These two vertices are not necessarily at the minimum Euclidean distance.
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inequality:

δ
(A)
1 (Ψ, ξ, si) ≥ 1

m

[(
1 +

2

N0

)1−n
([

1 +
2

N0

]−1

+ (m− 1)

[
1 +

1

N0

]−1
)]

(4.25)

Hence

δ
(A)
1 (Ψ, ξ) =

1

2m

∑
si∈Ψ

δ
(A)
1 (Ψ, ξ, si) ≥

1

m

[(
1 +

2

N0

)1−n
([

1 +
2

N0

]−1

+ (m− 1)

[
1 +

1

N0

]−1
)]

(4.26)

The inequalities in (4.25) and (4.26) follow from the fact that for each vertex si of a

hypercube, there is only one vertex with coordinate Hamming distance m and there

are m vertices with coordinate Hamming distance (m− 1) to si.

The lower bound in (4.26) is valid for any mapping. This means that the mapping

that achieves the lower bound in (4.26), if it exists, is the best mapping as far as

minimizing δ
(A)
1 (Ψ, ξ) is concerned. Furthermore, it is simple to see that such a

mapping must satisfy the following condition.

Condition 1: For any vertex si of an m-cube, the vertices with coordinate Hamming

distance m to si must have label Hamming distance 1 to si. Furthermore, there must

be (m − 1) vertices with coordinate Hamming distances (m − 1) and label Hamming

distance 1 to si.

Next, to obtain the lower bound on δ
(B)
1 (Ψ, ξ), define and bound the parameter

δ
(B)
1 (Ψ, ξ, si) associated with each vertex si as follows:

δ
(B)
1 (Ψ, ξ, si) =

1

m

m∑

k=1

(
1 +

‖si − sj(i,k)‖2

4N0

)−1

=
1

m

m∑

k=1

(
1 +

Hi,j(i,k)

N0

)−1

≥ 1

m

[(
1 +

m

N0

)−1

+ (m− 1) ·
(

1 +
m− 1

N0

)−1
]

(4.27)

The above implies that

δ
(B)
1 (Ψ, ξ) =

1

2m

∑
si∈Ψ

δ
(B)
1 (Ψ, ξ, si) ≥ 1

m

[(
1 +

m

N0

)−1

+ (m− 1) ·
(

1 +
m− 1

N0

)−1
]

(4.28)
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Again, it is not hard to see that the best mapping of a hypercube that achieves the

lower bound in (4.28) in this case is also the mapping that satisfies Condition 1.

Finally, for AWGN channels, define and bound the parameter δ2(Ψ, ξ, si) associ-

ated with each vertex si as follows:

δ2(Ψ, ξ, si) =
1

m

m∑

k=1

exp

(
−‖si − sj(i,k)‖2

4N0

)
=

1

m

m∑

k=1

exp

(
−Hi,j(i,k)

N0

)

≥ 1

m

[
exp

(
− m

N0

)
+ (m− 1)exp

(
−m− 1

N0

)]
(4.29)

The lower bound on δ2(Ψ, ξ) is then given by

δ2(Ψ, ξ) =
1

2m

∑
si∈Ψ

δ2(Ψ, ξ, si) ≥ 1

m

[
exp

(
− m

N0

)
+ (m− 1)exp

(
−m− 1

N0

)]
(4.30)

Similarly, the mapping, if it exists, that achieves the lower bound in (4.30) is the best

mapping as far as minimizing δ2(Ψ, ξ) is concerned. Such a mapping must also satisfy

Condition 1.

Finally, it should be mentioned here that the technique of bitwise mutual infor-

mation also lead to the same condition for the best mapping obtained above. The

detailed justification can be found in Appendix C.

4.4.2 An Algorithm to Construct the Best Mapping

Instead of proving the existence of the mapping that satisfies Condition 1, it is

convenient to introduce the equivalent condition, called Condition 2. The proof that

the two conditions are equivalent is straightforward and follows from the distance

properties of a hypercube discussed in Section 4.1.

Condition 2: For any vertex si in an m-cube, there must be one vertex sj with coor-

dinate Hamming distance m and label Hamming distance 1 to si. Furthermore, there

must exist (m − 1) vertices all of which have coordinate Hamming distance 1 to sj

(the nearest neighbors3 of sj) and label Hamming distance 2 to sj. For any of these

3It should be noted that each vertex has a total of m nearest neighbors.
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(m − 1) vertices, one of the two positions in which its label differs from the label of

sj must be the same as the position where the labels of si and sj differ.

The proof that a mapping that satisfies Condition 2 exists is by construction,

where an explicit procedure to construct the desired mapping is provided below.

The Algorithm to Construct the Best Mapping ξ for m-Cube Ψ

• Step 1 : Construct a (m − 1)-cube with Gray labels as follows. For any vertex

si of the (m− 1)-cube with Cartesian coordinates si = [si,1, . . . , si,m−1], label it

with ai = (ai,1, . . . , ai,m−1), where

ai,k = (si,k + 1)/2 (4.31)

It is straightforward to show that with this labeling scheme, the label Hamming

distance between any two vertices that are the nearest neighbors of each other

(i.e., the coordinate Hamming distance between them is one) is one. Hence, the

above labeling is Gray labeling.

• Step 2 : For each vertex si, modify its current label ai = (ai,1, . . . , ai,m−1) to

âi = (b, ai,1, . . . , ai,m−1) = (b, âi,1, . . . , âi,m−1), where b = 0 if the weight of ai is

even and b = 1 if the weight of ai is odd. Denote the (m − 1)-cube with the

modified m-bit labels by Ω. The above modification guarantees that:

(i) the label Hamming distance between any two nearest neighbor vertices of

Ω is two.

(ii) the labels of the two nearest neighbor vertices always differ in the lowest

significant bit position.

(iii) the label Hamming weight of any vertex is always even.

• Step 3 : From Ω, one-half of m-cube Ψ is constructed as follows. For each

vertex si in Ω (with label âi), the coordinates of si are changed by inserting

a −1 in the lowest significant position to become ŝi = [−1, si,1, . . . , si,m−1] =
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[−1, ŝi,1, . . . , ŝi,m−1]. This procedure creates a subset Ψ̂ of Ψ which contains

2m−1 vertices ŝi with label âi. The following properties of Ψ̂ can be obtained

from the properties of Ω:

(i) The label Hamming weight of any vertex in Ψ̂ is even (for this reason,

denote the set of labels in Ψ̂ by ξe).

(ii) For any vertex ŝi = [−1, ŝi,1, . . . , ŝi,m−1] in Ψ̂ with the label âi =

(b, âi,1, . . . , âi,m−1), the relationship between the coordinate ŝi,k and the

labeling bit âi,k can be obtained from (4.31) to be

âi,k = (ŝi,k + 1)/2 (4.32)

(iii) Each vertex ŝi in Ψ̂ has (m − 1) nearest neighbor vertices in Ψ̂ and the

label Hamming distance between any of these (m − 1) nearest neighbors

to ŝi is two, including the difference in the lowest significant bit.

• Step 4 : The remaining half of the vertices of Ψ (denoted by Ψ̃) is created as fol-

lows. For each ŝi = [−1, ŝi,1, . . . , ŝi,m−1] ∈ Ψ̂ with label âi = (b, âi,1, . . . , âi,m−1) ∈
ξe, obtain a new vertex s̃i = [+1,−ŝi,1, . . . ,−ŝi,m−1] = [+1, s̃i,1, . . . , s̃i,m−1] ∈ Ψ̃

and label it with ãi =
(
b, âi,1, . . . , âi,m−1

)
=

(
b, ãi,1, . . . , ãi,m−1

)
, where b = 1−b.

By the above construction, there is a one to one correspondence between ŝi and

s̃i as well as their labels: If ŝj is the nearest neighbor of ŝi and their labels

differ in two bits, including the lowest significant bit, then s̃j is also the nearest

neighbor of s̃i and their labels also differ in two bits. Furthermore, the vertices

in Ψ̃ possess the following properties similar to those in Ψ̂:

(i) The label Hamming weight of any vertex in Ψ̃ is odd (hence, denote the

set of labels in Ψ̃ by ξo).

(ii) For any vertex s̃i = [+1, s̃i,1, . . . , s̃i,m−1] in Ψ̃ with the label ãi =
(
b, ãi,1, . . . , ãi,m−1

)
(b = 0 when

∑m−1
k=1 ãi,k is odd and b = 1 when

∑m−1
k=1 ãi,k

is even), the relationship between the coordinate s̃i,k and the bit ãi,k can

be obtained from (4.32) to be

ãi,k = âi,k =
(ŝi,k + 1)

2
=

(−s̃i,k + 1)

2
(4.33)
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(iii) Each vertex s̃i in Ψ̃ has (m − 1) nearest neighbor vertices in Ψ̃ and the

label Hamming distance between any of these (m − 1) nearest neighbors

to s̃i is two, including the difference in the lowest significant bit.

• Step 5 : The m-cube Ψ and the best labels ξ are finally obtained as Ψ = Ψ̂∪ Ψ̃

and ξ = ξe ∪ ξo.

Verifying that the m-cube Ψ with mapping ξ as constructed above satisfies Con-

dition 2 is quite simple. It can be seen that for any ŝi ∈ Ψ̂, the vertex s̃i ∈ Ψ̃ is the

vertex whose label differs in only 1 bit at the lowest significant position and whose

coordinate Hamming distance to si is m. There are (m− 1) nearest neighbor vertices

s̃j ∈ Ψ̃ of s̃i ∈ Ψ̃ whose labels differ in 2 bits compared to that of s̃i, including the

difference in the lowest significant position. Similarly, these properties are also true

for any s̃i ∈ Ψ̃.

To illustrate the above procedure, an example is provided next.

Example 1 : Consider constructing the best mapping for a four-dimensional hypercube

(4-cube). The steps in the proposed algorithm are carried out as follows:

• Step 1 : A 3-cube has 23 = 8 vertices with the following Cartesian coordinates:

[−1,−1,−1], [−1,−1, +1], [−1, +1,−1], [−1, +1, +1]

[+1,−1,−1], [+1,−1, +1], [+1, +1,−1], [+1, +1, +1]

The Gray mapping for this 3-cube is shown in Fig. 4.3 and it is obtained as:

si = [si,1, si,2, si,3] −→ ai =

(
si,1 + 1

2
,
si,2 + 1

2
,
si,3 + 1

2

)

• Step 2 : Modify the labels of 3-cube with Gray mapping as follows. The label

with odd Hamming weight has binary bit 1 inserted. Otherwise, binary bit 0

is inserted. This step gives a 3-cube Ω with modified 4-bit labels as shown in
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Figure 4.3 The Gray mapping for 3-cube.

Fig. 4.4. It is easy to verify that the label Hamming weight of any vertex in Ω

is now even. The labels of any two nearest neighbors differ in 2 positions.
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Figure 4.4 The 3-cube Ω with modified 4-bit labels.
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• Step 3 : Create subset Ψ̂ that contains one-half of the vertices of Ψ by inserting

−1 to the coordinates of each vertex of Ω. This procedure gives eight vertices

ŝi with the corresponding labels âi as follows:

ŝ1 = [−1,−1,−1,−1] −→ â1 = (0, 0, 0, 0)

ŝ2 = [−1,−1,−1, +1] −→ â2 = (1, 0, 0, 1)

ŝ3 = [−1,−1, +1,−1] −→ â3 = (1, 0, 1, 0)

ŝ4 = [−1,−1, +1, +1] −→ â4 = (0, 0, 1, 1)

ŝ5 = [−1, +1,−1,−1] −→ â5 = (1, 1, 0, 0)

ŝ6 = [−1, +1,−1, +1] −→ â6 = (0, 1, 0, 1)

ŝ7 = [−1, +1, +1,−1] −→ â7 = (0, 1, 1, 0)

ŝ8 = [−1, +1, +1, +1] −→ â8 = (1, 1, 1, 1)

• Step 4 : For each ŝi = [−1, si,1, si,2] ∈ Ψ̂ with label âi = (b, ai,1, ai,2) ∈ ξe, obtain

a new vertex s̃i = [+1,−si,1,−si,2] ∈ Ψ̃ and label it with ãi = (1− b, ai,1, ai,2)

(taking the complement (1 − b) of the lowest significant bit). This procedure

gives the remaining half of the vertices of Ψ with the corresponding labels as

follows:

s̃1 = [+1, +1, +1, +1] −→ ã1 = (1, 0, 0, 0)

s̃2 = [+1, +1, +1,−1] −→ ã2 = (0, 0, 0, 1)

s̃3 = [+1, +1,−1, +1] −→ ã3 = (0, 0, 1, 0)

s̃4 = [+1, +1,−1,−1] −→ ã4 = (1, 0, 1, 1)

s̃5 = [+1,−1, +1, +1] −→ ã5 = (0, 1, 0, 0)

s̃6 = [+1,−1, +1,−1] −→ ã6 = (1, 1, 0, 1)

s̃7 = [+1,−1,−1, +1] −→ ã7 = (1, 1, 1, 0)

s̃8 = [+1,−1,−1,−1] −→ ã8 = (0, 1, 1, 1)
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• Step 5 : The 4-cube Ψ and the best mapping ξ are obtained by combining Ψ̂

and Ψ̃ and their labels ξe and ξo. The final results are shown in Table 4.1.

In Table 4.1, the binary numbers under each signal (in the first row) denotes the

proposed mapping. As an example, s2 = [−1 − 1 − 1 + 1] is labeled with 1001,

s15 = [+1 + 1 + 1− 1] is labelled with 0001. These two labels differ in only the first

bit and the Euclidean distance between these two 4-cube signals is 16. It can also

be verified from Table 4.1 that the coordinate Hamming distance between any two

vertices whose labels differ in the first bit, the second bit, the third bit and the fourth

bit are 4, 3, 3 and 3, respectively. They correspond to 16, 12, 12 and 12 in terms of

the squared Euclidean distances which are shown in bold numbers in Table 4.1.
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4.4.3 Theoretical Performance Comparison Between the Pro-

posed Mapping and the Anti-Gray Mapping

As mentioned earlier, the anti-Gray mapping is superior to Gray mapping for a

QPSK constellation in the conventional BICM-ID systems. It is therefore of interest

to compare the anti-Gray mapping and the proposed multi-dimensional mapping of

an m-cube.

First, with the anti-Gray mapping of each QPSK symbol in an m-cube signal, it

can be seen that the parameters δ
(A)
1 (Ψ, ξ), δ

(B)
1 (Ψ, ξ) and δ2(Ψ, ξ) are independent of

m. This property also holds for the parameters that affect the performance of the first

iteration mentioned before. This implies that anti-Gray mapping results in the same

performance for a BICM-ID system employing an m-cube constellation. Furthermore,

it can be seen that δ
(A)
1 (Ψ, ξ) and δ

(B)
1 (Ψ, ξ) are identical for the anti-Gray mapping.

Thus, there is no difference in the performance of a BICM system employing m-cube

and anti-Gray mapping over the two different Rayleigh fading channels.

Next, observe that the anti-Gray mapping of the QPSK symbols is identical to

the proposed mapping for the simplest case of m = 2. Furthermore, since all the

achievable bounds in (4.26), (4.28) and (4.30) for the parameters δ
(A)
1 (Ψ, ξ), δ

(B)
1 (Ψ, ξ)

and δ2(Ψ, ξ) decrease as m increases, the asymptotic performance of a BICM-ID

system with a hypercube constellation is improved by simply increasing m (i.e., the

size of the hypercube).

Although the asymptotic performance of the proposed mapping can be signifi-

cantly improved by increasing m, the performance after the first iteration becomes

worse. This means that it might need a higher SNR to make the iterations work and

a larger number of iterations to converge to the asymptotic performance. The worse

performance of the first iteration when m increases can be explained by evaluating the

parameter Nmin described before. To compute this parameter for the proposed map-

ping, some properties of the nearest neighbors of a vertex in an m-cube are discussed

next.
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Consider any vertex ŝi =
[−1, ŝi1 , . . . , ŝim−1

] ∈ Ψ̂ with label âi =
(
b, âi1 , . . . , âim−1

)
. It is clear that ŝi has (m − 1) vertices ŝj ∈ Ψ̂ as its nearest

neighbors and the labels of ŝi and ŝj differ in 2 bits, including the difference in the

lowest significant position. Denote the mth nearest neighbor of ŝi as ñi whose coordi-

nate is ñi =
[
+1, ŝi1 , . . . , sim−1

]
. Since the first coordinate of ñi equals +1, it can be

seen that ñi ∈ Ψ̃. Hence, its label l̃i =
(
q, l̃i1 , . . . , l̃im−1

)
has the following properties,

which follows from (4.32) and (4.33):

l̃ik =
−ŝik + 1

2
= 1− ŝik + 1

2
= 1− âik (4.34)

Let A =
∑m−1

k=1 âik and L =
∑m−1

k=1 l̃ik . It then follows that b equals 0 or 1 when

A is even or odd, respectively. Similarly, q equals 1 or 0 when L is even or odd,

respectively. From (4.34) one has

A + L = m− 1 (4.35)

Thus, it is clear that b = q when m is even, while b 6= q when m is odd. Equivalently,

it can be seen that when m is odd, the label Hamming distance between any vertex

ŝi and its mth nearest neighbor is m. On the other hand, when m is even, this

label Hamming distance is (m− 1) and their labels differ in all bits except the lowest

significant bit. Similarly, this property can be obtained for s̃i. Thus the above

property holds for any vertex si in the m-cube with the proposed mapping.

From the above properties, the parameter Nmin can be computed as follows.

• m is even: For any vertex si, the number of nearest vertices whose labels differ

in the lowest significant bit is (m − 1). Moreover, for any k, 2 ≤ k ≤ m, the

number of nearest vertices whose labels differ in the kth bit is 2. Therefore,

Nmin =
1

m
[(m− 1) + (m− 1) · 2] =

3(m− 1)

m
(4.36)

• m is odd: For any vertex si, the number of nearest vertices whose labels differ

in the lowest significant bit is m. For any k, 2 ≤ k ≤ m, the number of nearest

vertices whose labels differ in the kth bit is 2. Therefore,

Nmin =
1

m
[m + (m− 1) · 2] =

3m− 2

m
(4.37)
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Notice that for the BICM-ID systems considered in this chapter, the value of m is

always even, hence, Nmin in (4.36) is of interest. For a conventional BICM-ID system

employing QPSK constellation with anti-Gray mapping, then m = 2 and Nmin = 1.5.

Observe that the value of Nmin always increases as m increases, and for a large m,

Nmin ≈ 3.

Finally, the comparison for the BICM-ID systems operating over the two different

Rayleigh fading channels can also be made by comparing δ
(A)
1 (Ψ, ξ) and δ

(B)
1 (Ψ, ξ).

Using the approximation (1 + x)−1 ≈ x−1 when x → ∞, (4.26) and (4.28) simplify

to:

δ
(A)
1 (Ψ, ξ) ≈ 1

m
· Nn

0

2n
(2m− 1) (4.38)

and

δ
(B)
1 (Ψ, ξ) ≈ N0(m + 1)

m2
(4.39)

It then follows that:

γ =
δ
(A)
1 (Ψ, ξ)

δ
(B)
1 (Ψ, ξ)

≈ Nn−1
0 (2m− 1)m

2n(m + 1)
(4.40)

Note that for m > 2 (i.e., n > 1) and when N0 is small enough, γ << 1. Therefore,

with respect to the asymptotic performance, the system employing the proposed

mapping performs better over a Rayleigh fast fading channel. This result is similar

to the performance of a BICM-ID system with signal space diversity studied in [15].

It is also consistent with the fact that the diversity order dominates the performance

of a communications system over a fading channel [7].

4.5 Simulation and Numerical Results

This section provides the simulation and numerical results to confirm the advan-

tage of the BICM-ID systems that employ the hypercube constellations together with

the proposed mappings over different channel models. For comparison, the perfor-

mance of the conventional systems with anti-Gray mapping is also provided. The

bitwise interleaver with a length of 12,000 coded bits is designed according to the

rules outlined in Chapter 3. Each point in the BER curves is simulated with 107 to
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108 coded bits. The error floors calculated according to (2.7) are also plotted to show

how the iterations converge. In calculating (2.7), the first 20 Hamming distances of

the convolutional codes are retained to guarantee the accuracy of the error bounds.

4.5.1 Performance over an AWGN Channel

For the AWGN channel model, we first use a very simple, rate-1/2, 4-state convo-

lutional code with the generator sequences g1 = 5 and g2 = 7. Figure 4.5 presents the

performance of a BICM-ID system employing a 4-cube constellation and the proposed

mapping (see Table 4.1). Specifically, shown in the figure are the BER of the system

after 1, 5, 9 and 12 iterations. For comparison, the performance after 12 iterations of

the conventional system using anti-Gray mapping of QPSK is also plotted.
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Figure 4.5 BER performance of BICM-ID systems over an AWGN channel: a rate-

1/2, 4-state convolutional code and different mappings of a 4-cube.

It can be seen from Fig. 4.5 that, the simulation results converge to the error
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floor bound for the proposed mapping in the range of the BER of interest (around

10−6). For the anti-Gray mapping, the error floor bound underestimates the actual

BER after 12 iterations. This is merely due to the poor performance of the anti-Gray

mapping in the range of the signal-to-noise (SNR) shown in Fig. 4.5. The tightness

of the error floor bound should be observed at a higher SNR region for the anti-Gray

mapping. It is also obvious from Fig. 4.5 that a significant coding gain is achieved

by the proposed mapping over the anti-Gray mapping.

To see what is the coding gain provided by the proposed mapping over the con-

ventional anti-Gray mapping at a practical level of BER, Fig. 4.6 plots the error floor

bounds for the systems employing the two mappings over the SNR range from 0 to

6 dB. Observe that with the selected 4-state convolutional code, the coding gain of-

fered by the best 4-cube mapping at the BER level of 10−6 is about 3.8 dB. It should

be emphasized that this coding gain is achieved with a very small increase in the

receiver complexity which is only required to address the soft-output demodulation

of a higher-order hypercube constellation.

It is also, of interest, to consider the trade-off between the complexity of the soft-

output demodulator and that of the SISO decoder (i.e., using a higher-dimensional

cube versus using a convolutional code with a larger constraint-length). Figure 4.7

compares the BER performance for two systems: the first one employs the proposed 4-

cube mapping together with a 4-state convolutional code and the second one employs

the proposed 6-cube mapping and a 2-state code (the simplest possible convolutional

code). Observe that there is not much difference in the performance of the two

systems after 12 iterations. Similar to Fig. 4.5, a significant coding gain over the

conventional systems can also be achieved with the use of 6-cube mapping together

with the 2-state code. In terms of complexity, the first system that uses 4-cube and

4-state code might be preferred. This is because, while the complexity of the SISO

decoder of the first system is about twice as that of the second one, the complexity of

its demodulator is only about one quarter of that of the demodulator in the second

system.
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Figure 4.6 Error floors bounds for different mappings of a 4-cube and with a 4-

state convolutional code over an AWGN channel.

It can also be observed from Fig. 4.5 that these two systems have different con-

vergence behaviors. The use of a more complicated convolutional code (i.e., with a

larger memory length) should result in a lower error floor due to the larger Ham-

ming distances of the code. But because of the bigger error multiplicity, it needs a

higher SNR and more iterations for the BER to converge to the very low error floor.

However, the convergence behavior is also affected by using a higher-dimensional con-

stellation as analyzed in the previous section. In the second system, a simple code

leads to an earlier convergence compared to the first system. On the other hand, its

higher-dimensional constellation results in the opposite influence. However, the effect

of the code memory can compensate for that of the use of a higher-dimensional con-

stellation. Hence, the system with 6-cube is preferred with respect to the convergence

behavior as observed in Fig. 4.7. The above observation is based on the simulation

results, but the interested reader is referred to the EXIT chart technique in [18] to
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Figure 4.7 BER performance over an AWGN channel: Two systems with different

code memories and different hypercube mappings.

investigate the convergence behavior of BICM-ID systems.

4.5.2 Performance over Rayleigh Fading Channels

First, the case in which QPSK symbols fade independently (i.e., fast fading chan-

nel) is considered. Figure 4.8 presents the performance of a BICM-ID system employ-

ing the proposed 4-cube mapping and a rate-1/2, 4-state convolutional code. More

specifically, shown in the figure are the BER performances after 1, 5, 9 and 12 it-

erations. As before, the performance of the system using the anti-Gray mapping of

QPSK after 12 iterations is provided and the error floor bounds calculated from (2.7)

are also shown. It can be seen from Fig. 4.8 that, the simulation results converge

to the error floor bound for the 4-cube mapping in the range of the BER of interest

(around 10−5 to 10−6). Similar to the case of an AWGN channel, the error floor bound
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underestimates the actual BER performance for the anti-Gray mapping. The reason

is also due to the poor performance of the anti-Gray mapping in the range of the

SNR shown in Fig. 4.8. As can be seen clearly, a significant coding gain is obtained

by the 4-cube mapping over the anti-Gray mapping. The approximated coding gain

offered by the best 4-cube mapping can be determined from Fig. 4.9, which shows

the error floor bounds for the two systems over the SNR range from 2 to 12 dB. With

the selected 4-state convolutional code, the coding gain is about 7.4 dB at the BER

level of 10−6.
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Figure 4.8 BER performance of a BICM-ID system employing a 4-cube constella-

tion over a Rayleigh fast fading channel.

As in the case of an AWGN channel, Fig. 4.10 compares the performance of

two systems that use 4-cube mapping/4-state CC and 6-cube mapping/2-state CC,

respectively. Again, a significant coding gain compared to the conventional system

can also be obtained by the use of 6-cube mapping together with a 2-state code. There

is a slight difference for the asymptotic performance of these two systems, but the
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Figure 4.9 Error floor bounds for different mappings of a 4-cube and with a 4-state

convolutional code over a Rayleigh fast fading channel.

first one is preferred in terms of the implementation complexity. However, the latter

one is superior with respect to the convergence behavior as was seen in an AWGN

channel.

For the case of Rayleigh fading channel in which QPSK components fades simul-

taneously (i.e., quasistatic fading channel), Fig. 4.11 shows the BER performance

after 12 iterations of the system employing the best 4-cube mapping together with

its error floor bound. Also for comparison, the performance after 12 iterations and

the error bound for the system operating over a fast fading channel also shown. It is

observed that for the anti-Gray mapping, there is no difference in BER performance

between the two models of Rayleigh fading channels. This observation is consistent

with the analytical evaluation made in the previous section. It can be seen from Fig.

4.11 that, the BER performance with iterations work better and it converges to the

72



2 2.5 3 3.5 4 4.5
10

−8

10
−6

10
−4

10
−2

10
0

E
b
/N

0
 (dB)

B
E

R

Best 4−cube mapping, 4−state, after 12 iterations
Best 6−cube mapping, 2−state, with 1, 5, 9 and 12 iterations
BER floor

Figure 4.10 BER performance comparison over a Rayleigh fast fading channel: Two

systems with different code memories and different hypercube map-

pings.

error floor faster for the case of a Rayleigh quasistatic fading channel than for the

case of a Rayleigh fast fading channel. However, its error floor bound is higher as

expected.

Finally, the coding gain over the conventional BICM-ID system employing the

anti-Gray mapping calculated from error floor bounds for a Rayleigh quasistatic fading

channel is about 4dB at the BER level of 10−6. Although, this is still a significant

gain, comparing to that of a Rayleigh fast fading channel, the coding gain drops about

3.4dB.
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Figure 4.11 Performances of the proposed BICM-ID system over different fading

channels.
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5. Conclusions and Suggestions for Further

Research

5.1 Conclusions

This thesis addressed the signal mapping problem to improve the error perfor-

mance of bit-interleaved coded modulation (BICM) and BICM with iterative decod-

ing (BICM-ID) over AWGN and Rayleigh fading channels. The influence of signal

mapping was studied with two different approaches. The first approach relies on the

upper bound of the system’s error performance, whereas the second one is based on

the technique of bitwise mutual information.

The effect of signal mapping on the error performance of BICM systems was

first studied. It was observed that for any constellation, the Gray mapping and

near Gray mapping are the optimal choices in terms of bit error rate performance.

These mappings are suitable for both AWGN and Rayleigh fading channels. As an

example, various Gray or near Gray mappings of many popular 8-ary constellations

were introduced.

With BICM-ID systems, as demonstrated throughout the thesis, for given signal

constellation, interleaver length, channel code and the channel itself, signal mapping

plays an important role in determining the system performance. Starting with the

conventional BICM-ID systems employing two-dimensional constellations, the tech-

niques of error bound and mutual information were applied to provide an insight on

how to obtain the best mapping of a given constellation with respect to the asymp-

totic performance. Good signal mappings of popular 8-ary constellations, including

8-PSK, cross 8-ary, (1,7) and optimum 8-ary were first proposed. A new 8-ary con-
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stellation/mapping, referred to as the asymmetric 8-PSK, was then introduced to

improve the error performance of BICM-ID. It was shown that the use of the new

constellation/mapping results in about 1dB coding gain compared to other popular

constellations/mappings with respect to the asymptotic performance. Nevertheless,

it was concluded that for BICM-ID, the most suitable constellation/mapping depends

on the length of the interleaver, the number of iterations one is willing to use and the

desired BER level.

Signal mapping design was also carried out for BICM-ID systems with multi-

dimensional constellations. More specifically, BICM-ID employing QPSK, viewed

as hypercube constellations, was studied. To the best of our knowledge, it is the

first time BICM-ID with multi-dimensional constellations is investigated. This work

was motivated from the relatively small complexity of the soft-output demodulator

compared to the SISO decoder and the flexibility of the signal mapping design in

multi-dimensional constellations. In this thesis, the multi-dimensional constellation

is a hypercube because it is constructed from QPSK. By analytically evaluating the

error performance of the proposed systems over different channel models, the design

criteria for the best mappings were established. It was pointed out that an exhaustive

search to find the best mapping as previously done in conventional BICM-ID becomes

intractable for a hypercube constellation. By studying the symmetry of a hypercube,

universal conditions to find the best mapping of a hypercube constellation under dif-

ferent channel models were established. A general and simple algorithm to construct

the best mapping was then introduced. It was demonstrated that, by employing the

proposed mappings for four-dimensional and six-dimensional hypercubes and with

very simple 2-state and 4-state convolutional codes, significant coding gains can be

achieved over the conventional BICM-ID systems that use the anti-Gray mapping

of QPSK symbols. More specifically, over an AWGN channel, the coding gain com-

pared to the conventional systems is about 3.8dB. The coding gains over fast Rayleigh

fading and quasistatic Rayleigh fading channels are 7.4dB and 4.0dB, respectively.

Such coding gains are obtained with a very small increase in the receiver complexity
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which is required to address the soft-output demodulation of a higher-order constel-

lation. The tightness of the error bounds derived in this thesis for BICM-ID with

multi-dimensional constellations was also verified.

5.2 Suggestions for Further Research

This thesis only considers the simplest case of multi-dimensional constellations

constructed from QPSK. When bandwidth efficiency is the primary concern, it is

of interest to study the signal mapping problems in multi-dimensional constellations

built from other conventional higher order constellations (such as M -PSK, M -QAM).

For these larger constellations, the binary switching algorithm (BSA) [35] might be

useful. However, this algorithm only provides the locally optimized mappings. There-

fore, the question on whether there exists an algorithm to construct the optimal map-

pings needs to be answered and it should be an interesting topic for further studies.

Recently, as further extensions of BICM and BICM-ID, bit-interleaved space

time coded-modulation with iterative decoding (BI-STCM-ID) has been studied over

Rayleigh block fading multi-input multi-output (MIMO) channels [36]. The signal

constellations and mappings were still only studied in two-dimensional signal space.

The performance of MIMO systems can certainly be further improved by extending

the idea of multi-dimensional constellations and mappings proposed in this thesis.

Finally, for conventional BICM-ID systems and BICM-ID systems employing hy-

percube constellations in this thesis, the upper bound of the error performance was

derived based on the assumption of infinite interleaver length and ideal feedback from

the SISO decoder to the soft-output demodulator. This bound is only tight at high

SNR, or equivalently, at the region of convergence. Therefore, obtaining a tighter

bound for finite interleaver length of BICM-ID systems would be very attractive.
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A. Appendix A: A Review of Mutual Information

and Channel Capacity

In general, the mutual information between two random variables is a measure of

information provided by one random variable about the other random variable. As

an example, consider two discrete random variables X and Y with possible outcomes

{xk}M
k=1 and {yj}N

j=1, respectively. If we observe some outcome Y = yj, the mutual

information I(xk,yj) determines quantitatively the amount of information that the

occurrence of the event Y = yj provides about the event X = xk. This information

is given as:

I(xk,yj) = log
P (xk|yj)

P (xk)
(A.1)

where P (xk) is the probability mass function (PMF) that the discrete random variable

X receives the value xk and P (xk|yj) is the conditional PMF of X given Y = yj.

The unit of mutual information is bits or nats, depending on the base (2 or e) of the

logarithm.

For the channel with discrete inputs S = {xk}, 1 ≤ k ≤ M and the continuous

output R = {r}, the average mutual information provided by the output R about

the input S is:

I(S,R) =
M∑

k=1

∫ +∞

−∞
p(r|sk)P (sk) log

p(r|sk)

p(r)
dr (A.2)

where P (sk), p(r|sk) and p(r) are defined similarly as in Chapter 2.

The value of I(S,R) maximized over the set of input symbol probabilities P (sk)
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is called the capacity of the channel. It is denoted by C and given below:

C = max
P (sk)

M∑

k=1

∫ +∞

−∞
p(r|sk)P (sk) log

p(r|sk)

p(r)
dr (A.3)

Over an AWGN channel, it has been shown that [23] the capacity of the channel is

obtained when the input symbols are equally probable. However, nothing can be said

in general about the set {P (sk)} that maximizes the average mutual information. In

this thesis, however, the channel capacity C refers to the average mutual information

in (A.2).
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B. Appendix B: The Bitwise Mutual Information

I0 and Im−1 for an M-ary Constellation

B.1 The Bitwise Mutual Information I0

For an M -ary constellation, the explicit expressions for the bitwise mutual in-

formation I0 can be obtained as follows. Let {v1, . . . , vm} denote the m-bit label of

one symbol in an M -ary constellation Ψ. Then the unconditional bitwise mutual

information I0 given the fading amplitude g is:

I0|g =
1

m

m∑

k=1

I(vk; r|g) =
1

m

m∑

k=1

[
1

2

1∑

b=0

I(vk = b; r|g)

]

=
1

2m

m∑

k=1

1∑

b=0

I(vk = b; r|g) (B.1)

where I(ci = b; r|g) is calculated as:

I(vk = b; r|g) =

∫ ∞

−∞





 2

M

∑

si∈Ψk
b

p(r|si, g)


 · log2

[
2
M

∑
si∈Ψk

b
p(r|si, g)

]

p(r|g)


 dr (B.2)

Recall that Ψk
b in (B.2) denotes the subset of Ψ that contains all symbols whose labels

have the value b ∈ {0, 1} at the position k. The functions p(r|si, g) and p(r|g) are

given in (2.3) and (2.13), respectively. The unconditional bitwise mutual information

I0 is then obtained by averaging I0|g over the fading amplitude g.

B.2 The Bitwise Mutual Information Im−1

With the perfect knowledge of the other (m − 1) bits, an M -ary constellation is

translated to BPSK constellations, each constellation contains 2 signal points whose
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labels differ in only 1 bit. Therefore, the bitwise mutual information Im−1 can be

computed by simply taking the average of the symbol mutual information of all BPSK

constellations. This value for an M -ary constellation Ψ with the labelling scheme ξ

can be computed as follows:

Im−1 =
1

m2m

∑
si∈Ψ

m∑

k=1

Ik(si) (B.3)

where Ik(si) is interpreted as the average mutual information of the BPSK constella-

tion consisting of two signal symbols si and sj(i,k).

For the case of an AWGN channel, Ik(si) is exactly the channel capacity with two

possible inputs si and sj(i,k) [23], since all the signal symbols si ∈ Ψ are equally likely.

This value can be numerically computed using a one-fold integral as demonstrated

in [23].

For a Rayleigh fading channel, Ik(si) can be computed by numerical integration

with a two-fold integral, but the accuracy of the numerical integration can be an

issue. In this case, by applying the power series expansion techniques in [37], Ik(si)

can be determined with any desired accuracy level as follows:

Ik(si) =
1

2

√
δi,j(i,k)

1 + δi,j(i,k)

∞∑
n=0

1

2n
· n!

g(δi,j(i,k))[g(δi,j(i,k)) + 1] · · · [g(δi,j(i,k)) + n]
(B.4)

where g(x) = 1
2

(
1 +

√
1 + 1

x

)
, δi,j(i,k) =

d2
i,j(i,k)

4N0
and N0 is one-sided power spectral

density of AWGN. Recall that di,j(i,k) is the Euclidean distance between the two

signal symbols si and sj(i,k), respectively. The summation in (B.4) can be truncated

to the first N terms with an error of at most
√

δi,j(i,k)

1+δi,j(i,k)
2−N [37]. Thus, Im−1 can be

efficiently computed with a high accuracy.
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C. Appendix C: The Bitwise Mutual Information

for a Hypercube Constellation

This Appendix studies the bitwise mutual information Im−1 of an m-hypercube to

find the condition of the best mapping with respect to the asymptotic performance.

With the perfect knowledge of the other (m− 1) bits, an m-hypercube constellation

is also translated to BPSK constellations. The bitwise mutual information therefore

can be computed as in (B.3). In the following, the bitwise mutual information in

(B.3) is further evaluated for each channel model considered in this thesis.

In the case of an AWGN channel, Ik(si) is the channel capacity with two possible

inputs si and sj(i,k) [23]. For a fixed value of N0, Ik(si) is a function of the Euclidean

distance di,j(i,k) between two vertices si and sj(i,k). Thus, it depends on the coordinate

Hamming distance Hi,j(i,k). Next, denote Ik(si) by fa(Hi,j(i,k)), where fa(Hi,j(i,k)) is

understood as a function of Hi,j(i,k). Furthermore, this function increases monotoni-

cally as Hi,j(i,k) increases [23]. Also define:

I(si) =
1

m

m∑

k=1

Ik(si) (C.1)

Then Im−1 can be rewritten as follows:

Im−1 =
1

2m

2m∑
i=1

I(si) (C.2)

Since for each vertex si, there is one and only one vertex with coordinate Hamming

distance m and there are m vertices with coordinate Hamming distance (m − 1) to

si, then,

I(si) =
1

m

m∑

k=1

Ik(si) ≤ 1

m
[fa(m) + (m− 1)fa(m− 1)] (C.3)
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It then follows that:

Im−1 =
1

2m

2m∑
i=1

I(si) ≤ 1

m
[fa(m) + (m− 1)fa(m− 1)] (C.4)

Therefore, the ideal mapping that achieves equality in (C.4), if it exists, should satisfy

Condition 1.

For a Rayleigh quasistatic fading channel, Ik(si) can be determined with any

desired accuracy level as in (B.4). It should be mentioned that the parameter δi,j(i,k)

can also be expressed in terms of Hi,j(i,k), the coordinate Hamming distance between

the two vertices si and sj(i,k), as follows:

δi,j(i,k) =
d2

i,j(i,k)

4N0

=
Hi,j(i,k)

N0

(C.5)

For a fixed level of additive noise N0, it can be seen that Ik(si) depends only on

the coordinate Hamming distance Hi,j(i,k) between two vertices si and sj(i,k). As in

the case of an AWGN channel, also denote Ik(si) by frs(Hi,j(i,k)). Since g(x) is a

decreasing function1 of x and
δi,j(i,k)

1+δi,j(i,)
is an increasing function of δi,j(i,k), it follows

from (B.4) that Ik(si) = frs(Hi,j(i,k)) is an increasing function of Hi,j(i,k). Similarly,

by defining I(si) for each vertex si, one obtains:

Im−1 =
1

2m

2m∑
i=1

I(si) ≤ 1

m
[frs(m) + (m− 1)frs(m− 1)] (C.6)

Clearly, the ideal mapping that achieves equality in (C.6), if it exists, should also

satisfy Condition 1.

Finally, for the case of a Rayleigh fast fading channel, unfortunately, there is no

closed form expression for Ik(si) and the numerical integration is needed. However,

observe that for a BPSK constellation, a bigger Euclidean distance between the two

signal points results in a higher average mutual information, it is expected that the

best mapping in this case should also satisfy Condition 1.

1See Appendix B.
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