
An Enumeration Problem for Sequences of

n-ary Trees Arising from Algebraic

Operads

A Thesis Submitted to the

College of Graduate and Postdoctoral Studies

in Partial Fulfillment of the Requirements

for the degree of Master of Science

in the Department of Mathematics and Statistics

University of Saskatchewan

Saskatoon

By

Daniel W. Stasiuk

c©Daniel W. Stasiuk, December/2018. All rights reserved.

Permission to Use

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree

from the University of Saskatchewan, I agree that the Libraries of this University may make

it freely available for inspection. I further agree that permission for copying of this thesis in

any manner, in whole or in part, for scholarly purposes may be granted by the professor or

professors who supervised my thesis work or, in their absence, by the Head of the Department

or the Dean of the College in which my thesis work was done. It is understood that any

copying or publication or use of this thesis or parts thereof for financial gain shall not be

allowed without my written permission. It is also understood that due recognition shall be

given to me and to the University of Saskatchewan in any scholarly use which may be made

of any material in my thesis.

Requests for permission to copy or to make other use of material in this thesis in whole

or part should be addressed to:

Head of the Department of Mathematics and Statistics

142 McLean Hall, 106 Wiggins Road

University of Saskatchewan

Saskatoon, Saskatchewan S7N 5E6 Canada

OR

Dean

College of Graduate and Postdoctoral Studies

University of Saskatchewan

116 Thorvaldson Building, 110 Science Place

Saskatoon, Saskatchewan S7N 5C9 Canada

i

Abstract

This thesis solves an enumeration problem for sequences of complete n-ary trees. Given

the sequence of all complete n-ary plane trees with a given number of internal nodes (weight),

in lexicographical order, we perform graftings with the basic n-ary tree to construct sets of

sequences of trees of higher weight. Determining the number of elements of these sets solves

a problem originating from the theory of free nonsymmetric operads, as the sets of sequences

of trees are equivalent to spanning sets of homogeneous subspaces of a principal operad ideal.

Two different solutions will be presented: one using recurrence relations and properties of

forests, the other using occupancy problems.

ii

Acknowledgements

I would like to extend my sincere gratitude to my supervisors, Chris Soteros and Murray

Bremner, for providing their expertise and continuous support over the course of the project.

I would also like to thank the other members of my advisory committee, Ebrahim Samei and

Mik Bickis.

iii

To my grandfather, Greg Barnsley.

iv

Contents

Permission to Use i

Abstract ii

Acknowledgements iii

Contents v

List of Tables vii

List of Figures viii

List of Notation ix

1 Introduction and motivation 1
1.1 Constructing the composition system . 2

1.1.1 Operation diagrams . 3
1.1.2 Composing more than two copies of ψψψ: associativity 3
1.1.3 Trees and general compositions . 6

1.2 Introducing the enumeration problem . 9
1.2.1 Enumerating the elements of RiRiRi . 11

2 Review of combinatorial results about trees and forests 15
2.1 Enumerating the complete nnn-ary plane trees 15

2.1.1 The word representation of a tree . 16
2.1.2 Identifying valid words . 18
2.1.3 The path representation of a word . 19

2.2 Lexicographical order of trees . 24
2.3 Enumerating forests of nnn-ary trees . 26

2.3.1 The word representation of a forest 26
2.3.2 Identifying valid words . 27
2.3.3 The path representation of a word . 29

2.4 The Hagen-Rothe Identity . 31
2.5 Summary . 32

3 Proof of Main Thoerem 2 (w > 1) 33
3.1 The word representation of elements of RiRiRi 33

3.1.1 Identifying valid words and equivalent words 36
3.2 Basic properties and enumerating the elements of R1R1R1 41

3.2.1 Basic properties of Procedure σ and Procedure τ 42
3.2.2 Enumerating the elements of R1R1R1 . 44

v

3.3 Further properties and enumerating the elements of R2R2R2 44
3.3.1 Further properties of Procedure σ and Procedure τ 44
3.3.2 Enumerating the elements of R2R2R2 . 55

3.4 Enumerating the elements of RiRiRi . 57
3.5 An algorithm for generating RiRiRi . 61
3.6 Summary . 63

4 Rephrasing elements of Ri as words: an additional proof of Main Theo-
rem 2 64
4.1 Equivalent words and standard form . 64
4.2 A strategy for enumerating the elements of SV (Ai)SV (Ai)SV (Ai) 67

4.2.1 Enumerating the elements of U(Ai)U(Ai)U(Ai): the occupancy problem 67
4.3 Proving that |SV (Ai)| = |U(Ai)||SV (Ai)| = |U(Ai)||SV (Ai)| = |U(Ai)| . 69

4.3.1 Prefixes and the tier of a letter . 70
4.3.2 Words beginning with simple prefixes 72
4.3.3 Words beginning with compound prefixes 76
4.3.4 Showing that f is a bijection . 82

4.4 Summary . 90

5 Conclusions and future work 91

References 93

vi

List of Tables

1.1 Numerical data for 2 ≤ n ≤ 4, 2 ≤ w ≤ 5. 14

4.1 Occupancy problem for i = 2, |Ai| = 3 . 68
4.2 List of words in SV (Ai) for n = 2, w = 2 and i = 4. 71
4.3 Simple prefixes of length 2, 3, and 4 with their corresponding images for n = 3,

w = 2. 75
4.4 f(τ2τ3τ1τ2τ2σ13σ16σ19) . 76
4.5 The compound prefixes of length 4 and their corresponding images for n = 3,

w = 2. 79
4.6 The compound prefixes of length 5 and their corresponding images for n = 3,

w = 2. 80
4.7 f(τ1τ2τ1τ3τ2τ1τ3τ2τ1τ2τ2σ16σ20σ27σ30) . 82
4.8 h(τ1τ2τ2σ16σ18σ18σ18σ20σ25σ25σ27σ28σ29σ29σ30). 86

vii

List of Figures

1.1 An example of a tree with 5 leaf nodes and 4 internal nodes. 6
1.2 Two different sequences of procedures resulting in the same element of R2. . 13

2.1 Three binary trees with respective word representations aababbb, aaabbbb, and
abb. 17

2.2 The path for W = abbbbba (n = 3). 21
2.3 The forest with word representation aababbbaaabbbbabb. 27

3.1 Null word for n = 2, w = 2. 35
3.2 Applying Procedure τ at leaf 1, n = 2, w = 2. 36
3.3 Applying Procedure τ at leaf 1 and then at leaf 2, n = 2, w = 2. 37
3.4 Applying Procedure τ at leaf 1, at leaf 2, and then Procedure σ at leaf 1,

n = 2, w = 2. 38
3.5 Applying Procedure τ at leaf 1, at leaf 2, Procedure σ at leaf 1, and then at

leaf 2, n = 2, w = 2. 39
3.6 Example 3.1.6. 40
3.7 Proof that σ1τ1 ∼= τ1σ1. 41
3.8 Example 3.3.3. 53
3.9 Example 3.3.5, step 1. 56
3.10 Example 3.3.5, step 2. 57
3.11 Example 3.3.5, step 3. 57
3.12 Example 3.3.5, S̃. 58

4.1 τ1τ2 6= τ2τ1 (n = 2, w = 2). 65
4.2 Mapping SV ′(Ai)→ U ′(Ai) . 69
4.3 Mapping U ′(Ai)→ SV ′(Ai) . 86

viii

List of Notation

ψ Denotes the basic operation.
◦i Given two operations α and β, α ◦i β denotes replacing the

ith argument of α with the output of β.
Tα Denotes the tree representation of the operation α.
N(w) The number of leaves in a tree with exactly w internal nodes

for a given arity.
n Denotes the arity of a tree or operation.
w Denotes the (starting) weight, that is the number of internal

nodes.
Tψ(K) Denotes the set of all operations arising from ψ whose tree di-

agrams are complete n-ary plane trees with exactly K leaves.
lw Denotes the number of n-ary trees of weight w.
R0 The 1-set containing the sequence (X1, X2, X3, . . . , Xlw), the

sequence of n-ary trees of weight w in lexicographical order
for a fixed n and w.

Ri Denotes the set of sequences generated by performing i se-
quence compositions of the starting sequence with Tψ.

R
⋃
i≥0Ri

`(i) For a given element of Ri, this denotes the number of leaves
each tree in the sequence has.

F (i, t;n) Denotes the number of forests of t n-ary trees having a total
of i internal nodes.

a Denotes an internal node in the word representation of a tree
or forest.

b Denotes a leaf node in the word representation of a tree or
forest.

σj Denotes an application of Procedure 1.2.1 at the jth leaf in
the word representation of an element of Ri.

τk Denotes an application of Procedure 1.2.2 at the kth leaf in
the word representation of an element of Ri.

R
(1)
i Denotes the elements of Ri that can be generated by applying

Procedure 1.2.1 to an element of Ri−1.

R
(2)
i Denotes the elements of Ri that can be generated by applying

Procedure 1.2.2 to an element of Ri−1.

R
(1o)
i The set of all elements of Ri that can be generated by a se-

quence of i applications of Procedure 1.2.1.
Lτ Denotes the length of the τ sequence (number of τ ’s) in the

word representation of an element of Ri.

ix

Ri
(1o)

the set of all elements of Ri that cannot be generated by
applying Procedure 1.2.1 i times. Procedure 1.2.2 must have
been applied at least once.

R
(unique)
i The set of all elements of Ri that are j-unique sequences for

some j (1 ≤ j ≤ n).

R
(unique, k)
i The set of all elements of R

(unique)
i in which the common level-1

subtrees have a total of k internal nodes.

x

Chapter 1

Introduction and motivation

Enumerative combinatorics is the area of mathematics dealing with counting problems,

one of the oldest classes of mathematical problem. Its purpose is to construct and identify

a counting function, that is a map from a collection of finite sets to the whole numbers,

that outputs the number of elements in a given set. The counting function is ideally an

explicit formula or a polynomial-time algorithm to compute the function [19, 20]. Some

well-known counting problems include calculating the number of linear arrangements of a

given set of objects (permutations), finding the number of subsets of a given finite set (the

binomial coefficients), enumerating the spanning trees on a complete graph with labelled

vertices (Cayley’s formula), and counting the Latin squares of a certain order. For a more

extensive overview, see [20].

The focus of this thesis is an enumerative problem on trees. Of the literature on the

combinatorics of trees, perhaps the most important result for our purposes is the Catalan

numbers that enumerate the complete binary trees with a given number of internal nodes

[5, 20]. This solution can be generalized to complete n-ary trees for arbitrary n [16], and

its proof will be reviewed later in the thesis. The enumeration problem we are interested

in solving originates from the theory of algebraic operads. Operads are a general way of

describing the composition of functions, and they can naturally be represented in terms of

trees [2, 7, 11]. This connection will allow us to formulate the enumerative problem in a

combinatorial way.

Concepts from operad theory date back to at least 1898 [12], but the term “operad”

was first introduced and formally defined in 1972 by topologist J. Peter May in his work

on homotopy theory [13]. Operad theory was further developed throughout the 1990s and

early 2000s, finding applications to algebraic geometry and mathematical physics; for more

1

information, see [12] and [2]. The enumeration problem we will consider in this thesis is

based on the concept of principal ideals in the free nonsymmetric operad. However, a formal

treatment of operads is outside the scope of this thesis because a complete explanation would

require a discussion of operads over general polynomial rings as well as module theory. We will

instead construct a composition system that is isomorphic to the free nonsymmeric operad,

which will allow us to present the enumeration problem strictly in terms of sequences of trees.

For detailed information on the connection between trees and nonsymmetric operads, see [3]

and [2, Chapter 3].

We will begin by defining a system of compositions in terms of a single operation, which

we will represent with operation diagrams. Operation diagrams represent operations in terms

of n-ary plane trees, where a composition is equivalent to a grafting of trees. We will then

naturally extend the definition of composition to sequences of trees, which will allow us to

define the enumeration problem of interest. Finally, we will use numerical data to propose a

counting function that solves the enumeration problem. Proving this conjecture will be the

main purpose of this thesis.

Please note that in definitions, in order to make clear which terms are being defined,

symbols will be made boldface as a convention. Boldface symbols are not used for any other

purpose in this thesis.

1.1 Constructing the composition system

For this section, our main point of reference will be [2, Chapter 3] except where otherwise

stated. We will emphasize and expand on concepts needed for the remainder of this thesis.

We begin with an arbitrary (but fixed) n-ary operation, that is a function (denoted by ψ)

mapping a sequence of n inputs (from a given set) to a single output (from the same set)

for some natural number n ≥ 2. We are not concerned about the internal workings of the

function. Instead, it will be considered a “black box”, expressed only in terms of its input

and output.

2

1.1.1 Operation diagrams

We will use a black square, �, to represent an n-ary operation with inputs denoted x1, . . . , xn

from left to right, and one output given by ψ(x1, x2, . . . , xn). This results in the tree diagram,

denoted by Tψ, shown in (1.1) (trees will be defined more precisely in Section 1.1.3); note

that the inputs will always be placed at the bottom and the output at the top.

Tψ


ψ(x1, x2, . . . , xn)

�

x1 · · · xi · · ·xn

OO

?? OO __ (1.1)

Using the concept of function compositions, more complicated operations arise from ψ. Given

a natural number i ≤ n we can take the output of one copy of ψ as the ith input of a second

copy of ψ. This new operation will again have one output, but 2n − 1 inputs. As before

the inputs are labelled x1, . . . , x2n−1. In the resulting tree diagram (shown in (1.2)), we start

with a single copy of Tψ and graft the second copy of Tψ at what was originally the ith input.

Tψ◦iψ



ψ(x1, x2, . . . , xi−1, ψ(xi, . . . , xi+n−1), xi+n, . . . , x2n−1)

�

x1 · · · xi−1 � xi+n · · · x2n−1

xi · · · xi+n−1

OO

44 __OO?? jj

?? __

(1.2)

Definition 1.1.1. The notation ψ ◦i ψψ ◦i ψψ ◦i ψ represents the result of taking the output of the

second copy of ψ and using it as the ith input of the first copy of ψ. This is called the iiith

composition of ψψψ with itself. For each i ∈ {1, 2, ..., n} the operation has 2n− 1 inputs.

Note that by definition two functions that have the same tree diagram will produce the

same output given the same inputs, provided that both functions are compositions of two or

more copies of ψ.

1.1.2 Composing more than two copies of ψψψ: associativity

There are two different ways in which we can compose three copies of ψ: parallel composition

and sequential composition [2]. For parallel composition, we choose two numbers i and j such

3

that 1 ≤ i < j ≤ n. We start with one copy of ψ and take the output of a second copy of ψ

as the ith input. Then, we take the output of a third copy of ψ as the jth input of the first

copy of ψ. The diagram is given in (1.3); note that we have simplified it by dropping the x’s

(writing only the subscripts) and replacing the final output with *.

T(ψ◦iψ)◦j+n−1ψ



∗

�

1 · · · i−1 � i+n · · · j+n−2 � j+2n−1· · · 3n−2

j+n−1 · · ·j+2n−2i · · · i+n−1

OO

335599 BB \\ eeiikk

BB \\BB \\

(1.3)

Definition 1.1.2 ([2]). A composition of the form (ψ ◦i ψ) ◦j+n−1 ψ(ψ ◦i ψ) ◦j+n−1 ψ(ψ ◦i ψ) ◦j+n−1 ψ (where 1 ≤ i < j ≤ n)

is called a parallel composition.

There are two equivalent ways to express a parellel composition in terms of compositions

of ψ with itself:

• When we replace the ith argument of the first copy of ψ with another copy of ψ,

arguments i + 1 through n become arguments i + n through 2n − 1. That is, the

argument number increases by n− 1. So argument j becomes argument j + n− 1 (see

Equation 1.3). Thus, the composition can be expressed as (ψ ◦i ψ) ◦j+n−1 ψ.

• We can instead first replace the jth argument of the first copy of ψ with another copy

of ψ. The labels on the first j − 1 arguments of the first copy of ψ do not change, so

the ith argument remains the ith argument because i < j (see Equation 1.3). Thus we

can express this composition as (ψ ◦j ψ) ◦i ψ.

This proves the following known identity:

Proposition 1.1.1 ([2]). If 1 ≤ i < j ≤ n then (ψ ◦i ψ) ◦j+n−1 ψ = (ψ ◦j ψ) ◦i ψ.

For sequential composition, we choose two numbers i and j (each between 1 and n). We

start with one copy of ψ and take the output of a second copy of ψ as the ith input. Then,

4

we take the output of a third copy of ψ as the jth input of the second copy of ψ as given in

(1.4).

Tψ◦i(ψ◦jψ)



∗

�

1 · · · i−1 � i+2n−1 · · · 3n−2

i · · · i+j−2 � i+j+n−1 · · · i+2n−2

i+j−1 · · · i+j+n−2

OO

44 ?? OO __ jj

44 ?? OO __ jj

?? __

(1.4)

Definition 1.1.3 ([2]). A composition of the form ψ ◦i (ψ ◦j ψ)ψ ◦i (ψ ◦j ψ)ψ ◦i (ψ ◦j ψ) is called a sequential com-

position.

As with the parellel compositions there are two equivalent ways to express a sequential

composition in terms of compositions of ψ with itself:

• We can first replace the jth input of the “second” copy of ψ by the output of a third copy

of ψ, then replace the ith input of the “first” copy of ψ by the output of this operation

(see Equation 1.4). So the composition as a whole is represented as ψ ◦i (ψ ◦j ψ).

• We first replace the ith input of the “first” copy of ψ by the output of a second copy

of ψ (see Equation 1.4). In this second copy of ψ, arguments 1 through n are labelled

i through i + n− 1 (respectively). So what was originally the jth input of the second

copy of ψ is now the (i + j − 1)th. Thus the composition as a whole is represented as

(ψ ◦i ψ) ◦i+j−1 ψ.

This proves the following known identity:

Proposition 1.1.2 ([2]). ψ ◦i (ψ ◦j ψ) = (ψ ◦i ψ) ◦i+j−1 ψ

Propositions (1.1.1) and (1.1.2) together define a generalized form of associativity for the

composition of operations. We can naturally extend this composition process indefinitely

to obtain all possible operation diagrams, generated by composing any number of copies of

the original diagram. Before we further generalize composition however, we must introduce

standard terminology and review some known results related to trees.

5

1.1.3 Trees and general compositions

The remainder of this thesis will assume the standard graph theory textbook terminology

such as graphs, edges, and cycles. Unless stated otherwise definitions are consistent with

those in [9]. In this section we will first review several terms related to trees, then apply

them to general compositions. These terms will be used extensively in the following chapters.

We will begin with the definition of a tree.

Definition 1.1.4. [9] A tree is a simple connected graph with no cycles; see Figure 1.1.

Figure 1.1: An example of a tree with 5 leaf nodes and 4 internal nodes.

Definition 1.1.5 ([9]). • A rooted tree is a tree in which one vertex has been desig-

nated as the root.

• Given any vertex in the tree, each edge leads to either its parent vertex (closer to the

root) or one of its child vertices (further from the root). By definition, the root has no

parent.

• A vertex with no children is called a leaf, while a vertex with children is called an

internal node. By definition the root of any tree with more than one vertex will be

an internal node.

6

• The level of a vertex is the length of the path (that is, the number of edges) connecting

the vertex to the root. For example the root will have a level of 0 and each of its children

will have a level of 1.

• A plane tree is an embedding of a tree into the plane; this is equivalent to specifying

a left-to-right ordering of the leaves [6].

• An nnn-ary tree is a rooted tree in which each vertex has at most n children. A complete

nnn-ary tree is an n-ary tree in which each internal node has exactly n children.

Note that the operation diagrams we have been using for the composition system, such as

Equations 1.3 and 1.4, are equivalent to complete n-ary plane trees, in which the numbered

inputs are the leaves and the final output is the root.

Remark 1.1.1. In this thesis, the root will always be placed at the top of the tree by

convention. Figure 1.1 depicts a complete binary plane tree with three internal nodes.

The following result, related to the number of leaves in an n-ary tree, will be essential in

keeping track of the total number of arguments in a composition system.

Proposition 1.1.3 ([10]). Every complete n-ary tree with w internal nodes has exactly (n−

1)w + 1 leaves.

Proof. This is a standard result that can be proven by mathematical induction on w. For

full details, see [10].

Definition 1.1.6. Given a fixed arity n, we will use N(w)N(w)N(w) to denote the number of leaves

that a complete n-ary tree with w internal nodes has. Thus N(w) = (n− 1)w + 1.

We can now use this terminology to finish defining our composition system and generalize

Definition 1.1.1 to all functions arising from ψ. If we compose w copies of the original

diagram (1.1) in some way, we obtain a complete n-ary plane tree (where n is the arity

of ψ) with exactly w internal nodes. By Proposition 1.1.3 such a tree will have exactly

N(w) = 1 + w(n− 1) leaves, corresponding to the number of inputs that the operation has.

For the sake of simplicity, we will draw the trees without arrowheads on the edges (with

the understanding that the leaves represent the inputs, the root represents the final output,

7

and so on). We will use black circles (•) to represent the vertices (internal nodes, including

the root, as well as leaves).

Definition 1.1.7. For a tree corresponding to an operation, the leaf corresponding to the

jth input is called the jjjth leaf of the tree.

This follows naturally from how we have defined operation diagrams in the previous

section, but it should be noted that we can equivalently number the leaves in the order they

would be visited in a depth-first traversal which will be defined in Definition 2.1.2. To further

simplify our operation diagrams the leaves will be unlabelled with the understanding that

the leftmost leaf corresponds to the first input of the operation (and so on), consistent with

previous diagrams such as Equations 1.3 and 1.4.

Definition 1.1.8. The tree form of ψ, denoted by TψTψTψ, is called the basic nnn-ary tree.

Definition 1.1.9. The number of internal nodes (compositions) in a given tree (operation)

is called the weight. www will often be used to denote weight.

Definition 1.1.10. We will use Tψ(K)Tψ(K)Tψ(K) to denote the set of all operations arising from ψ

whose tree diagrams are complete n-ary plane trees with exactly K leaves. Note that every

tree in Tψ(K) will have the same weight w, where K = N(w). We denote the disjoint union

of Tψ(N(w)) for all w ≥ 1 by TψTψTψ.

This next definition will generalize the composition operation, for both operations and

for their tree representations.

Definition 1.1.11. Let g ∈ Tψ(K) and h ∈ Tψ(K ′) be operations with tree diagrams Tg

and Th respectively. Thus g has K total inputs (Tg has K leaves) and h has K ′ total inputs

(Th has K ′ leaves). Given an i ∈ {1, ..., K} we form the composition g ◦i hg ◦i hg ◦i h by replacing

the ith input of g by the output of h. Equivalently, the composition Tg ◦i ThTg ◦i ThTg ◦i Th denotes the tree

formed by grafting the root of Th at the ith leaf of Tg. g ◦i h ∈ Tψ(K +K ′ − 1).

Proposition 1.1.4. The compositions of arbitrary elements of Tψ (their tree diagrams) sat-

isfy the associativity relations Proposition 1.1.1 and Proposition 1.1.2 if we replace ψ with

arbitrary operations f , g, and h (arbitrary trees Tf , Tg, and Th).

8

Proof. This follows immediately from the preceding definition and from the proofs of Propo-

sition 1.1.1 and Proposition 1.1.2.

Remark 1.1.2. Note that if n-ary trees Tg and Th have weights w1 and w2 respectively,

Tg ◦i Th (where 1 ≤ i ≤ N(w1)) will have weight w1 + w2. Importantly, this means that the

weight of Tg ◦i Tψ or Tψ ◦j Tg (where j ≤ n) will be w1 + 1.

We will use our definitions of composition to construct a representation of the free non-

symmetric operad. Note that this equivalent to the partial-composition definition of an

operad, which is defined precisely in [2, Section 3.2.2].

Definition 1.1.12 ([2]). Given an arbitrary n-ary operation ψ, the set Tψ equipped with the

composition operation given in Definition 1.1.11 is called the free nonsymmetric operad

generated by ψ; ψ is known as the operad generator.

We will use this definition of the free nonsymmetric operad to present and solve an open

enumeration problem from operad theory using the properties of trees. This problem will be

introduced in the following section.

1.2 Introducing the enumeration problem

In this section, we will mainly work in terms of trees rather than operations. The definitions

and results for operations are equivalent, but our solutions to the enumeration problem will

be based on n-ary trees thus it is reasonable to define the problem in terms of trees as well.

We begin by naturally defining a distributive property of compositions over a sequence of

trees, after introducing some convenient notation for the number of n-ary trees of a given

weight.

Definition 1.2.1. lwlwlw denotes the number of complete n-ary plane trees of weight w.

It is known that lw =
(nww)

w(n−1)+1
[5] and the proof will be reviewed in Chapter 2.1.

Definition 1.2.2. Let T be an n-ary tree with at least i leaves and let (T1, T2, T3, . . . , Tm) be

a sequence of m n-ary trees of weight w. Then, T ◦i (T1, T2, T3, . . . , Tm)T ◦i (T1, T2, T3, . . . , Tm)T ◦i (T1, T2, T3, . . . , Tm) produces the sequence

9

(T ◦i T1, T ◦i T2, T ◦i T3, . . . , T ◦i Tm). Likewise, if we assume each tree in the sequence has at

least j inputs then (T1, T2, T3, . . . , Tm) ◦j T(T1, T2, T3, . . . , Tm) ◦j T(T1, T2, T3, . . . , Tm) ◦j T = (T1 ◦j T, T2 ◦j T, T3 ◦j T, . . . , Tm ◦j T). This type

of composition, a tree with a sequence of trees, will be called a sequence composition.

Of interest will be sets generated by sequence compositions on the lexicographically or-

dered sequence of tree representations of elements of Tψ(N(w)) (for a fixed arity and a

given weight w). Lexicographical order will be defined in Section 2.2, based on the word

representation of trees introduced earlier in that chapter.

Definition 1.2.3. Let w be our starting weight and denote the sequence of complete n-

ary plane trees of weight w in lexicographical order by (X1, X2, X3, . . . , Xlw), known as the

starting sequence. We define R0R0R0 = {(X1, X2, X3, . . . , Xlw)}. Given i ≥ 1, RiRiRi denotes the

set of sequences generated by performing i sequence compositions of the starting sequence

with the basic n-ary tree Tψ. More precisely for i ≥ 1,

Ri = {S ◦j Tψ | S ∈ Ri−1, 1 ≤ j ≤ N(w + i− 1)} ∪ {Tψ ◦k S | S ∈ Ri−1, 1 ≤ k ≤ n}.

We will define RRR =
⋃
i≥0Ri.

The purpose of this thesis will be to find a formula for enumerating the elements of Ri

given fixed arity n and starting weight w. This solves an open problem from operad theory,

but we have reformulated it in a purely combinatorial way using sequences of trees and

sequence composition. The connection to operad theory will be made clear in the following

theorem, which we will present without proof1:

Theorem 1.2.1. Let Tψ be the free nonsymmetric operad generated by the n-ary operation

ψ. Let g be an arbitrary element of Tψ which is homogeneous of degree 1+w(n−1) for a given

positive integer w. Then g is a formal linear combination (with indeterminate coefficients)

of all elements of Tψ(N(w)). The operad ideal generated by g is spanned as a subspace of Tψ

by all possible compositions of g with any number i occurences of the original n-ary operation

ψ. The set of all such compositions, for a given value of i, is isomorphic to Ri.

1Email correspondence with Murray Bremner, August 22, 2018

10

Note that “homogenous” means that all trees in the starting sequence (the sole element

of R0) will have the same number of leaves. Since g and all compositions with copies of

ψ are formal linear combinations with arbitrary coefficients, they can be represented as

sequences of trees in Ri. An operad ideal is a subset of an operad that is closed under partial

compositions with other elements of that operad. This is somewhat analogous to ideals in

ring theory. Further details of the connection between operad ideals and this enumeration

problem are beyond the scope of this thesis. Complete details would require long digressions

into the theory of operads over general polynomial rings and the theory of free modules over

polynomial rings. For more information on these topics, see [2].

1.2.1 Enumerating the elements of RiRiRi

Generating Ri

We will first precisely define the two methods for generating an element of Ri given an element

(T1, T2, T3, . . . , Tlw) ∈ Ri−1. These follow automatically from the recursive definition of Ri

(Definition 1.2.3):

Procedure 1.2.1 (Procedure σσσ). Let (T1, T2, T3, . . . , Tlw) ∈ Ri−1, and suppose 1 ≤ j ≤

1 + (w + i− 1)(n− 1). The composition (T1, T2, T3, . . . , Tlw) ◦j Tψ can be computed. We say

that we are applying Procedure σσσ at leaf jjj.

Procedure 1.2.2 (Procedure τττ). Let (T1, T2, T3, . . . , Tlw) ∈ Ri−1, and suppose 1 ≤ j ≤ n.

The composition Tψ ◦j (T1, T2, T3, . . . , Tlw) can be computed. We say that we are applying

Procedure τττ at leaf jjj.

Because we are using trees in the context of a composition system, it is only possible to

graft roots to internal nodes. Thus Procedure σ and Procedure τ are the only two procedures

we need to consider. To distinguish the two procedures, note that Procedure τ (Procedure

1.2.2) grafts at the root (‘T’op) of each tree in the sequence (T1, T2, T3, . . . , Tlw). Given Ri−1,

we can then use these two procedures to generate Ri with the following algorithm:

For each element (T1, T2, T3, . . . , Tlw) ∈ Ri−1,

11

1. For each j from 1 to 1 + (w + i− 1)(n− 1) (the number of leaves in each tree), apply

Procedure σ at leaf j and include the element generated in Ri.

2. For each j from 1 to n, apply Procedure τ at leaf j and include the element generated

in Ri.

Note that this algorithm can generate duplicate elements, as will be shown in Example

1.2.4, making the enumeration of the elements of Ri non-trivial. In Section 2.2, it will

be shown that both Procedure σ and Procedure τ preserve lexicographical order (Theorem

2.2.3).

Example 1.2.4. Take n = 2, w = 2. Then the sole element of R0, the starting sequence,

consists of two binary trees. Each of these binary trees has two internal nodes: the root and

its left child, or the root and its right child. In the top-left of Figure 1.2, the element of

R1 generated by applying Procedure σ to the starting sequence at leaf 2. When we apply

Procedure σ to the first leaf of this element, we get the sequence of trees in the top-right of

Figure 1.22.

If we instead apply Procedure σ to the starting sequence at leaf 1 (bottom-left of Figure

1.2) followed by Procedure σ at leaf 3, we get the sequence of trees in the bottom-right of

Figure 1.2. This sequence is identical to the one in the top-right. Thus in generating R2,

duplicate elements are generated.

For w = 1, R0 = {Tψ} and each sequence in Ri has only one element (a n-ary tree with

i+ 1 internal nodes). Thus |Ri| is simply the number of n-ary trees with i+ 1 internal nodes.

The algorithm in this section was run in Maple for w > 1, and the numerical data were

searched on the Online Encyclopedia of Integer Sequences (OEIS). The results are given in

Table 1.1.

Based on these numerical results, we propose the following formulas for calculating |Ri|,

which will be proven in this thesis.

Main Theorem 1. For w = 1,

|Ri| =
1

1 + (n− 1)(i+ 1)

(
n(i+ 1)

i+ 1

)
.

2Figures created with Draw.io, https://www.draw.io/

12

https://www.draw.io/

Figure 1.2: Two different sequences of procedures resulting in the same element of
R2.

Proof. As mentioned earlier, |Ri| is the number of n-ary trees with i+ 1 internal nodes. The

number of such trees is equivalent to the (i+ 1)th n-ary Catalan number, 1
1+(n−1)(i+1)

(
n(i+1)
i+1

)
.

This is a well-known result [5, 16], but its proof will be presented in the following chapter

for the sake of completeness.

Main Theorem 2. For w > 1,

|Ri| =
(

(n− 1)(w + i) + i+ 1

i

)
.

Chapter 3 and Chapter 4 will use original arguments to prove Main Theorem 2.

Summary and Overview

Through the use of operation diagrams, we have been able to construct a composition system

isomorphic to the free nonsymmetic operad. This allowed us to express the principal ideal

problem of interest in terms of sets of sequences of trees, which we can state as an enumerative

13

n w |Ri| OEIS Formula

2 2 1, 5, 21, 84, 330, . . . A002054
(
2i+3
i

)
2 3 1, 6, 28, 120, 495, . . . A002694

(
2i+4
i

)
2 4 1, 7, 36, 165, 715, . . . A003516

(
2i+5
i

)
2 5 1, 8, 45, 220, 1001, . . . A002696

(
2i+6
i

)
3 2 1, 8, 55, 364, 2380, . . . A013698

(
3i+5
i

)
3 3 1, 10, 78, 560, 3876, . . . n/a

(
3i+7
i

)
3 4 1, 12, 105, 816, 5985, . . . A004321

(
3i+9
i

)
3 5 1, 14, 136, 1140, 8855, . . . n/a

(
3i+11
i

)
4 2 1, 11, 105, 969, 8855, . . . n/a

(
4i+7
i

)
4 3 1, 14, 153, 1540, 14950, . . . n/a

(
4i+10
i

)
4 4 1, 17, 210, 2300, 23751, . . . n/a

(
4i+13
i

)
4 5 1, 20, 276, 3276, 35960, . . . A004334

(
4i+16
i

)
Table 1.1: Numerical data for 2 ≤ n ≤ 4, 2 ≤ w ≤ 5.

combinatorics problem. Using empirical data, we were able to formulate a counting function

for the size of these sets.

We will prove Main Theorem 2 in the following chapters. In Chapter 2 we will review

known results regarding Catalan numbers and the enumeration of plane trees as well as

plane forests. These results will be necessary to support the proofs in the following chapter.

Chapter 3 will prove Main Theorem 2 case through a recurrence relation, as well as introduce

a new formula for |Ri| that provides a non-recursive method of generating the elements of

Ri. We will also introduce more compact notation for elements of Ri which, in Chapter 4,

will lead to another proof for Main Theorem 2 involving an occupancy problem. The proofs

in these two chapters will be original work. In Chapter 5 we will summarize our results and

discuss future work that can build on these findings.

14

Chapter 2

Review of combinatorial results about trees

and forests

In this chapter, it will be proven that the the number of complete n-ary plane trees with

i+ 1 internal nodes is equal to 1
1+(n−1)(i+1)

(
n(i+1)
i+1

)
, the (i+ 1)th n-ary Catalan number. This

standard result ([5, 16]) proves Main Theorem 1 (the w = 1 case) as discussed in Section

1.2.1. Its proof will be reviewed here for the sake of completeness and to add clarity to the

proof of the w > 1 case given in Chapters 3 and 4.

We will also provide the proofs for other known results. Firstly, we will prove that the

number of forests of t n-ary trees and i internal nodes is t
ni+t

(
ni+t
i

)
[5, 16]. This will be a

generalization of the proof for the number of complete n-ary plane trees with a given number

of internal nodes. We will also prove the Hagen-Rothe Identity
∑L

j=0
p

p+qj

(
p+qj
j

)(
r−qj
L−j

)
=
(
p+r
L

)
[18], a useful convolution property. Both the formula for the number of forests and the Hagen-

Rothe Identity will be necessary for the proof of the general case given in Chapter 3.

2.1 Enumerating the complete nnn-ary plane trees

We will enumerate the complete n-ary plane trees with a given number of internal nodes.

This proof involves representing trees as words over a binary alphabet {a, b}. We can easily

determine the number of words of a given length, but we need a way of identifying which

words are actually valid (that is, represent trees). This can be done by converting the

words to paths over the Cartesian plane, which will allow us to show that invalid words can

be converted to valid words by the means of a cyclic shift. The problem of enumerating

complete n-ary plane trees is closely related to the Cycle Lemma and the Ballot Theorem

15

[5, 16]. Unless stated otherwise we will use [5] as our main point of reference, though the

basic outline of the proof comes from [1].

2.1.1 The word representation of a tree

To help with the enumeration task, we will first introduce a more compact way of writing

trees [1].

Definition 2.1.1 ([8]). A word is an (ordered) sequence of letters from a given finite set,

known as an alphabet.

The purpose of this section will be to establish a natural bijection between complete

n-ary trees and a certain subset of words over the alphabet A = {a, b} [5]. For our word

representation (Definition 2.1.3), we will use pre-order depth-first traversal [9]. Depth-first

traversal is defined recursively in Definition 2.1.2. Note that post-order depth-first traversal

is used in [5], but we will instead use pre-order depth-first traversal because it is consistent

with the treatment of trees as operation diagrams and leaves as arguments of a function

given in the previous chapter. It will also make the definition of lexicographical order and

the proof of the Hagen-Rothe identity more intuitive. The arguments, however, are parallel.

Definition 2.1.2 (Depth-first traversal [9]).

Given a plane tree T with root vertex r.,

1. Visit the root vertex r.

2. If r is a leaf node, stop.

3. Otherwise, for each child vertex of r (going from left to right in the plane), perform a

Depth-first traversal on the subtree rooted at that vertex (the subtree of T consisting

of that vertex, its descendants, and all connecting edges.

In a pre-order depth-first traversal of a tree, the vertices are labelled as they are first

visited. In a post-order depth-first traversal, the leaves are labelled in the order they

are visited but an internal node is only labelled after all of its children have been labelled.

We will use pre-order depth-first traversal throughout the remainder of this thesis.

16

Definition 2.1.3 ([1, 9]). To write the word representation of a complete nnn-ary tree

over the alphabet A = {a, b}A = {a, b}A = {a, b}, traverse the tree through depth-first traversal. Each time a

vertex is visited, write an a if the vertex is an internal node (including the root) and a b if

the vertex is a leaf node.

Some examples trees and their corresponding word representations are given in Figure

2.1.

Figure 2.1: Three binary trees with respective word representations aababbb, aaabbbb,
and abb.

Conversely given a word W of length L, we can construct the corresponding tree through

the procedure defined in Definition 2.1.4. The algorithm constructs a tree recursively, while

classifying vertices as leaves or internal nodes as the procedure executes (though vertices will

be unclassified as they are first generated).

Definition 2.1.4 (Constructing a tree from its word representation).

17

Given a valid word W of length L > 0,

1. Let v1 be a new vertex. This will be the root of the tree.

Given a vertex v, we define next(v) to be the vertex visited immediately after v in a

depth-first pre-order traversal of the tree under construction.

2. For each m from 1 to L do:

(a) If the mth letter of W is a, classify vm as an internal node. Replace vm with the

basic n-ary tree.

(b) If the mth letter of W is b, classify v as a leaf node.

(c) If m < L, vm+1 = next(vm).

Note that the word b produces the tree with only one node. Definition 2.1.3 and Definition

2.1.4 together show a well-defined natural bijection between complete n-ary plane trees and

a subset of words over A = {a, b}. We will define this subset more precisely in the following

section, in which we will introduce the concept of word validity.

2.1.2 Identifying valid words

We can determine the number of complete n-ary plane trees that have exactly w internal

nodes by identifying words that represent such trees, then enumerating these words [5].

Definition 2.1.5. A word is said to be (n,w)(n,w)(n,w)-tree-valid if it represents a complete n-ary

tree with w internal nodes. For the remainder of this section, the term “tree-valid” will

refer to an (n,w)-tree valid word.

Lemma 2.1.1 ([5]). A tree-valid word must satisfy the following three conditions. Conversely,

every word satisfying these conditions is tree-valid:

1. The total number of a’s is equal to w, one for each internal node.

2. The total number of b’s is equal to (n− 1)w + 1, one for each leaf node.

18

3. Let the word have length L. For the first m letters of the word (m < L), the number

of b’s does not exceed n− 1 times the number of a’s.

Proof. Condition 1 follows immediately. Condition 2 follows from Proposition 1.1.3. To

see that condition 3 is necessary, imagine constructing a tree from a word as described in

Definition 2.1.4. Each vertex in the tree under construction can be placed into one of three

categories: internal nodes, leaves (vertices that will definitely be leaves in the final tree),

and unclassified vertices (vertices that are leaves in the tree under construction, but may

become internal nodes as the tree is built further). After reading the first m letters of a

word W (where m < L), the tree under construction must have at least one unclassified

vertex (otherwise there is no way to extend the tree). Each b classifies one vertex, while each

a classifies one vertex but generates n unclassified vertices. Since we begin with the root

(an unclassified vertex that we classify with the first letter) the total number of unclassified

vertices is 1 plus n− 1 times the number of a’s minus the number of b’s.

Conditions 1 and 2 ensure that the tree has the correct number of leaves and internal

nodes. Condition 3 ensures that when constructing the tree, we never “run out” of unclassified

vertices (until the final step, when the number of b’s is exactly 1 more than (n − 1) times

the number of a’s). As we construct the word through pre-order depth-first search, the same

way we would traverse a tree to write its word representation, it follows that we visit and

classify every vertex and that Conditions 1 through 3 are necessary and sufficient for a word

to be tree-valid.

Thus to find the number of complete n-ary plane trees with w internal nodes, we must

find the number of words with w a’s and 1 + w(n− 1) b’s that satisfy the third condition in

Lemma 2.1.1. In the following section, we will use the concept of cyclic shifts to identify the

words that satisfy this condition.

2.1.3 The path representation of a word

To more easily distinguish tree-valid from tree-invalid words, we can represent them as paths

in the xy plane [16]. This will make the proof more intuitive. We take a word with w a’s

and [w(n − 1) + 1] b’s, and begin at the origin. At the point (x, y) join a line segment to

19

(x + 1, y + n − 1) if the following letter is a, or to (x + 1, y − 1) if it is b. By definition, all

paths will start at (0, 0) and end at (nw + 1,−1). If the word is tree-valid, the path will

never fall below the x-axis until the final step. If the word is tree-invalid, the path will fall

below the x-axis before the final step (see Figure 2.2).

Definition 2.1.6. The jjjth cyclic shift of a word of length L is a word formed by removing

the last j letters of the word (1 ≤ j ≤ L) and rewriting them at the start of the word (in

order).

Lemma 2.1.2 ([16]). Every word composed of w a’s and [w(n− 1) + 1] b’s can be converted

to a tree-valid word through a cyclic shift.

Proof. Consider a tree-invalid word W and its corresponding path P . At some point (q,−m),

where m > 0 and q < nw+1, P will reach a minimum such that y ≥ −m for all x ∈ [0, nw+1]

and y > −m for all x < q. To convert W to a tree-valid word, partition it into two sub-words

W1 and W2, where W1 consists of the first q letters of W and W2 consists of the remaining

nw+ 1− q letters. Let Pk be the path corresponding to the subword Wk (where k ∈ {1, 2}).

P1 starts at (0, 0) and ends at (q,−m). The net change in y (net change for short) is −m, and

the y-coordinate does not reach −m until the very last step. P2 starts at (q,−m) and ends

at (nw + 1,−1). The net change is m− 1, and the path never falls below the line y = −m.

Now, consider the word W ′, formed by interchanging W1 and W2, and its path P ′. P ′1

starts at (0, 0) and ends at (q,m− 1), never falling below the x-axis. P ′2 starts at (q,m− 1)

and ends at (nw+1,−1), never falling below the x-axis until the final step. W ′ is a tree-valid

word, and a cyclic shift of W .

Example 2.1.7. Consider Figure 2.2, in which we start with the path representation for the

invalid word W = abbbbba (n = 3). We have (q,−m) = (6,−3) so we take W1 = abbbbb and

W2 = a. Interchanging W1 and W2, we get W ′ = aabbbbb. The path representation of W ′ is

given in Figure 2.2.

Lemma 2.1.3 ([16]). Every word W (with w a’s and [w(n− 1) + 1] b’s) has exactly nw + 1

distinct cyclic shifts. Of these, only one is tree-valid.

20

Figure 2.2: Top: the path for W = abbbbba (n = 3). Bottom: the path for W ′ =
aabbbbb, the only valid cyclic shift of W .

Proof. As shown in Lemma 2.1.2, every such word W has at least one tree-valid cyclic shift.

So we will assume that W is tree-valid. The total number of unique cyclic shifts of W is at

most nw + 1 (the length of the word, L). Let Wj be the subword of W consisting of the

first j letters of W and Pj be the corresponding path. Consider the jth cyclic shift to the

right (that is, where each letter of W is moved j positions to the right wrapping around as

necessary) where 0 < j ≤ nw + 1. It will be shown that:

A) In the path corresponding to the jth cyclic shift, the minimum first occurs at x = j.

If this is true for all j between 1 and nw + 1 (inclusive), then each cyclic shift is unique.

B) The minimum is negative. This ensures that the word is tree-invalid (unless j = nw+1,

which is just the original word).

21

We will show A) by induction on j. First, consider the j = 1 case (first cyclic shift of

W). Since W is valid its path P reaches its minimum at (L,−1). Thus the last letter of W

must be b and the first cyclic shift of W will be b followed by WL−1). Notice that PL−1 never

falls below the x-axis. The path corresponding to the first cyclic shift of W begins at (0, 0)

and falls to (1,−1). The remainder of the path consists of PL−1 shifted one unit down and

one unit to the right (never falling below the line y = −1). Thus the minimum first occurs

at x = 1.

Now, consider the j = k case (kth cyclic shift, where k > 1. Suppose that for the (k−1)th

cyclic shift, the minimum first occurs at (k−1,−m) (it will later be shown that the minimum

must be negative, that is m > 0, though this is not necessary to prove this result). We will

define the function f of x to model the y coordinate of the path for the (k− 1)th cyclic shift

of W , which consists solely of connected line segments. It immediately follows that:

i) f(k − 1) = −m

ii) f(x) ≥ −m

iii) If x < k − 1, f(x) > −m.

The kth cyclic shift of W will be the last letter of the (k − 1)th cyclic shift followed by

the first L− 1 letters of the (k− 1)th cyclic shift. Thus the path for the kth cyclic shift will

be the same as the path for the (k − 1)th cyclic shift, but shifted one unit to the right and

either one unit down or n− 1 units up. If the last letter of the (j− 1)th cyclic shift of W is a

(that is, WL−(k−1) ends in a), the path will be shifted n− 1 units up. If the last letter of the

(j− 1)th cyclic shift of W is b (that is, WL−(k−1) ends in b), the path will be shifted one unit

down. We also draw a line segment from the origin to either (1,−1) or (1, n− 1). To express

this more easily, we will define g as a function of x that models the y coordinate of the path

for the kth cyclic shift of w. Thus for x ≥ 1, g(x) = f(x− 1) + h, where h ∈ {−1, n− 1}. It

immediately follows that:

i) g(k) = f(k − 1) + h = −m+ h

ii) g(x) ≥ −m+ h

iii) If x < k, g(x) > −m+ h.

In other words, the minimum of g first occurs at x = k. Through induction on j, we see

that the minimum first occurs at x = j for all j between 1 and nw+1 (inclusive) as required.

22

Therefore, each cyclic shift of W is unique.

To show B), consider the jth cyclic shift of W . It consists of the last j letters of W

followed by WL−j, with the minimum occuring at x = j. Let Wj have α a’s and β b’s. We

have

α(n− 1) ≥ β.

At the minimum (occuring at x = j), we have:

y = (n−1)(w−α)−[w(n−1)+1−β] = w(n−1)−α(n−1)−w(n−1)−1+β = β−α(n−1)−1.

Since α(n− 1) ≥ β,

β − α(n− 1) ≤ 0

β − α(n− 1)− 1 < 0.

This means that at x = j, the minimum value of y occurs and is negative. Thus the jth

cyclic shift of W is tree-invalid.

We can now determine the number of tree-valid words. The total number of words of

length nw + 1 with w a’s (tree-valid or not) is
(
nw+1
w

)
. Let Vn,w be the number of tree-valid

words. Since every word of length nw+ 1 is either tree-valid or is a cyclic shift of a tree-valid

word,

(nw + 1)Vn,w =

(
nw + 1

w

)
.

Solving for Vn,w,

Vn,w =

(
nw+1
w

)
nw + 1

=
(nw + 1)!

w!(nw + 1− w)!(nw + 1)

=
(nw)!

w!(nw − w)!(nw + 1− w)
=

(
nw
w

)
nw + 1− w

=

(
nw
w

)
w(n− 1) + 1

.

Thus there are exactly
(nww)

w(n−1)+1
complete n-ary plane trees with w internal nodes.

Remark 2.1.1 ([16]). Numbers of the form
(nww)

w(n−1)+1
are known as the n-ary Catalan num-

bers.

23

We will next use the word definition to define a lexicographical order on trees and to show

that Procedure σ (Procedure 1.2.1) and Procedure τ (Procedure 1.2.2) preserve this ordering.

This ordering is necessary to properly define Ri as in Definition 1.2.3. In the remainder of

the chapter, we will generalize the enumeration of n-ary trees to forests of n-ary trees as well

as prove the Hagen-Rothe convolution identity. These results will be used in Chapter 3 to

prove Main Theorem 2 (the w > 1 case).

2.2 Lexicographical order of trees

We can use the word representation of a tree to define a standard lexicographical order for

complete n-ary plane trees with a given number of internal nodes, as required by Definition

1.2.3. We will also show that both Procedure σ and Procedure σ preserve lexicographical

order.

Definition 2.2.1 (Lexicographical order on nnn-ary trees of weight www [17]). Let T1 and

T2 be complete n-ary trees, each with w internal nodes. We say that T1 ≺ T2 if and only if

the word representation for T1 comes before the word representation for T2 alphabetically.

Since the trees in a given element of Ri, i ≥ 0, all have the same number of internal nodes

(thus the word representations have the same length) we need not define the comparison of

two words of different lengths.

Let V and W be two words of length L over {a, b}, with V 6= W . Let Vi (Wi respectively)

denote the ith letter of V (W respectively), we can use the following simple algorithm to

determine whether V ≺ W [17]:

For each i from 1 to L do:

• If Vi = a and Wi = b, return “true”

• Else if Vi = b and Wi = a, return “false”.

We will now show that applying Procedure σ and Procedure τ to a sequence of trees

preserves lexicographical order.

24

Proposition 2.2.1. Let T1 and T2 be n-ary trees of weight w, with T1 ≺ T2, and let T be any

other n-ary tree. Given any i insert T at the ith leaf of T1 and T2, where 1 ≤ i ≤ 1+w(n−1),

and denote the new trees by T ′1 and T ′2 respectively. Then, T ′1 ≺ T ′2.

Proof. Let V , W , V ′, and W ′ denote the word representations of T1, T2, T
′
1, and T ′2 respec-

tively. Let Vj denote the jth letter of V and let Wj denote the jth letter of W . Suppose Wx

is the ith b in W (thus corresponding to the ith leaf of T2). There are three possibilities:

1. Vj 6= Wj for some j < x. In this case, it immediately follows that V ′ ≺ W ′ since the

beginning of each word is unaffected. Thus T ′1 ≺ T ′2.

2. Vj = Wj for all j ≤ x. In this case, it immediately follows that V ′ ≺ W ′ since the

beginning and end of each word is unaffected and the “middle” is the same for both V and

W (the b at position x is replaced by the word representation of T). Thus T ′1 ≺ T ′2.

3. Vj = Wj for all j < x but Vx 6= Wx. Since V ≺ W , this must mean that Vx = a and

Wx = b. Now, in W ′ this b will have been replaced by the word representation of T . To

generate V ′, on the other hand, the next b will be replaced by the word representation of

T . Every letter until then will be an a. W ′ will reach the first b of the word representation

of T before V ′ does, and the corresponding letter in V ′ must be an a. Thus V ′ ≺ W ′ and

T ′1 ≺ T ′2.

It immediately follows from this result that Procedure σ preserves lexicographical order.

Proposition 2.2.2. Let T1 and T2 be complete n-ary plane trees of weight w, with T1 ≺ T2,

and let T be any other complete n-ary plane tree (with weight w′). Insert T1 at the ith leaf of

T to generate T ′′1 , and insert T2 at the ith leaf of T to generate T ′′2 , where 1 ≤ i ≤ 1+w′(n−1).

Then, T ′′1 ≺ T ′′2 .

Proof. Let U , V , W , V ′′, and W ′′ denote the word representations of T , T1, T2, T
′′
1 , and

T ′′2 respectively. Let Uj denote the jth letter of U . Suppose Ux is the ith b in U (thus

corresponding to the ith leaf of T). Then U , V ′′, and W ′′ will be identical up to the first x

letters. Starting at position x+ 1, V ′′ and W ′′ will concur with V and W respectively. Thus

V ′′ ≺ W ′′ and T ′′1 ≺ T ′′2 .

It immediately follows from this result that Procedure τ preserves lexicographical order.

Combining these two results, we obtain:

25

Theorem 2.2.3. Procedure σ and Procedure τ both preserve lexicographical order.

2.3 Enumerating forests of nnn-ary trees

We can generalize the argument from Section 2.1.1 to forests of complete n-ary plane trees

[1, 5], which will be useful in the following chapter when we prove Main Theorem 2. The

arguments that follow are largely adapted from [5] and [16]. We begin with some terminology.

Definition 2.3.1 ([9]). A forest is a graph consisting of a disjoint union of trees. A plane

forest is an embedding of a forest in a plane. That is, the order in which the trees are placed

in the plane is relevant. Conventionally, plane forests of rooted trees have the roots placed

on the same horizontal axis.

Definition 2.3.2. We will use F (i, t;n)F (i, t;n)F (i, t;n) to denote the number of plane forests composed of

t complete n-ary trees with i internal nodes between them.

It is well-known that F (i, t;n) = t
ni+t

(
ni+t
i

)
[5, 1]. The proof for this result will be reviewed

in this section.

Proposition 2.3.1 ([1]). A forest of t n-ary trees with i internal nodes has i(n− 1) + t leaf

nodes.

Proof. Let the forest have t trees, and let the kth tree have ik internal nodes. The kth tree

then has ik(n− 1) + 1 leaves, so the total number of leaf nodes in the forest is

t∑
k=1

[ik(n− 1) + 1] =
t∑

k=1

ik(n− 1) +
t∑

k=1

1 = (n− 1)
t∑

k=1

ik + t = (n− 1)i+ t

2.3.1 The word representation of a forest

The word representation of a forest follows naturally from the word representation of n-ary

trees given in Definition 2.1.3 [5].

Definition 2.3.3 ([5]). To write the word representation of a forest, write the word

representation of each tree in the forest and concatenate them from left to right.

26

An example of a forest and its word representation is given in Figure 2.3.

Figure 2.3: The forest with word representation aababbbaaabbbbabb.

Conversely, we can construct a forest from a word through the procedure in Definition

2.1.4, but starting a new tree as soon as we have classified all vertices (i.e. have nowhere else

to extend the current tree).

As with trees, we will need a way of identifying which words over A = {a, b} actually

represent forests of n-ary trees.

2.3.2 Identifying valid words

Definition 2.3.4. A word is said to be (n, i)(n, i)(n, i)-forest-valid if and only if it represents a plane

forest of t complete n-ary trees with a total of i internal nodes. For the remainder of this

section, the term “forest-valid” will refer to a word that is (n, i)-forest-valid.

We again identify necessary and sufficient conditions for a word to be valid.

Lemma 2.3.2 ([5]). A word W representing a plane forest of t complete n-ary plane trees

with a total of i internal nodes must satisfy the following three conditions. Conversely, every

word satisfying these criteria will represent such a forest:

1. i a’s, one for each internal node.

2. i(n− 1) + t b’s, one for each leaf node.

3. It must be possible to partition W into t subwords W1,W2, . . .Wt. Each of these

subwords represents a complete n-ary tree. That is, the following is true for each

k ∈ {1, 2, . . . , t}:

27

• Let Lk be the length of Wk. The total number of b’s in Wk is one more than n− 1

times the number of a′s. For the first m letters of Wk (m < Lk), the number of

b’s does not exceed n− 1 times the number of a’s.

Proof. Conditions 1 and 2 follow immediately and from Proposition 2.3.1, respectively. Con-

dition 3 is necessary (and sufficient) to ensure that we get a forest with the correct number

of complete n-ary trees. This follows from the forest construction algorithm.

Note that by definition the partition of W into tree-valid subwords will be unique, as W1

would no longer be valid if letters were added or removed. The same argument can be made

for W2 through Wt.

Thus to find the number of plane forests of t complete n-ary trees with i internal nodes,

we must find the number of words with i as and i(n−1)+ t bs that satisfy the third condition

in Lemma 2.3.2. The total number of words (forest-valid or forest-invalid) with i a’s and

i(n − 1) + t b’s is
(
ni+t
i

)
. Let r be the ratio of forest-valid words to total words. We have

F (i, t;n) = r
(
ni+t
i

)
. So to find a formula F (i, t;n), all that remains is to find a formula for r.

We will again turn to the path representation of words and cyclic shifts as in Section 2.1.3

(see also [5] and [16]). The proof will be slightly more involved this time however, because a

word can have more than one valid cyclic shift. For example if we take n = 2, t = 2, i = 1 the

valid word abbb has another valid cyclic shift (babb). Thus, we will introduce a new system

that gives us a way of distinguishing cyclic shifts of a word. Firstly, we use A′ to denote the

alphabet {a1, a2, a3, ..., ai, b1, b2, ..., bi(n−1)+t}. We will consider words over A′ that use each

letter exactly once. A word over Ai is said to be valid if and only if removing the subscripts

would produce a valid word over {a, b}.

The advantage of using A′ is that, since each letter-subscript pairing is considered a

distinct letter, the total number of distinct cyclic shifts (forest-valid or not) for any word

is equal to the length of the word ni + t. For example a1b1b2a2b3b4 would be considered a

different cyclic shift from a2b3b4a1b1b2, even though these two words would be the same if

the subscripts were removed.

Lemma 2.3.3. Let B be the set of all words of length ni+ t with exactly i a’s and i(n−1)+ t

b’s (no subscripts) and let BV be the set of all forest-valid words of length ni+ t with exactly

28

i a’s and i(n − 1) + t b’s (no subscripts). Let B′ be the set of all words using all letters of

the alphabet A′ = {a1, a2, a3, ..., ai, b1, b2, ..., bi(n−1)+t} exactly once, and let B′V be the set of

all forest-valid words using all letters of A′ exactly once. Then, |B′V |/|B′| = |BV |/|B| = r.

Proof. Given an element of B, there are i![i(n − 1) + t]! elements of B′ that would give the

same element of B if the subscripts on the letters were removed (the number of ways to

permute the subscripts on the a’s, times the number of ways to permute the subscripts on

the b’s). Likewise, given an element of BV , there are i![i(n − 1) + t]! elements of B′V that

would give the same element of BV if the subscripts on the letters were removed. Thus,

|B′V |
|B′|

=
|BV | · i![i(n− 1) + t]!

|B| · i![i(n− 1) + t]!
=
|BV |
|B|

= r.

2.3.3 The path representation of a word

As in Section 2.1.3, every word with i a’s and [i(n − 1) + t] b’s can be represented as a

path in the xy plane, starting at the origin [16]. At the point (x, y) join a line segment to

(x + 1, y + n − 1) if the following letter is a a, or to (x + 1, y − 1) if it’s a b. By definition,

all paths will start at (0, 0) and end at (ni+ t,−t). If the word is forest-valid, the path will

never fall below the line y = 1− t until the final step. If the word is forest-invalid, the path

will fall below the line y = 1 − t before the final step. When drawing the paths for words

over A′, we will ignore the subscripts (thus each path will correspond to multiple words).

Lemma 2.3.4 ([16]). Every word over A′ can be converted to a forest-valid word through a

cyclic shift.

Proof. Consider a forest-invalid word W and its corresponding path P . At some point

(q,−m), where m > t − 1 and q < ni + t, P will reach a minimum such that y ≥ −m

for all x ∈ [0, ni+ t] and y > −m for all x < q. To convert W to a forest-valid word, partition

it into two sub-words W1 and W2, where W1 consists of the first q letters of W and W2

consists of the remaining ni+ t− q letters. Let Pk be the path corresponding to the subword

Wk. P1 starts at (0, 0) and ends at (q,−m). The net change is −m, and the y-coordinate

29

does not reach −m until the very last step. P2 starts at (q,−m) and ends at (ni + t,−t).

The net change is m− t, and the path never falls below the line y = −m.

Now, consider the word W ′, formed by interchanging W1 and W2, and its path P ′. P ′1

starts at (0, 0) and ends at (q,m − t), never falling below the line y = 1 − t. P ′2 starts at

(q,m− t) and ends at (ni+ t,−t), never falling below the line y = 1− t until the final step.

W ′ is a forest-valid word, and a cyclic shift of W .

Lemma 2.3.5 ([16]). Let W be a word over A′. W has ni+ t distinct cyclic shifts, of which

t are forest-valid.

Proof. Without loss of generality (see Lemma 2.3.4), assume W is forest-valid. Let

W = W (1)W (2)W (3) . . .W (t),

where each subword W (j) represents a tree. Clearly W (t)W (1)W (2) . . .W (t−1),

W (t−1)W (t)W (1) . . .W (t−2), etc. are valid cyclic shifts of W , so at least t of the cyclic shifts

of W are forest-valid.

Next, consider the kth cyclic shift of W , where k < L(t) (the length of W (t)). Let

X = W (1)W (2)W (3) . . .W (t−1), and let W
(j)
c represent the first c letters of W (j). The kth

cyclic shift of W consists of the last k letters of W (t), followed by X, followed by W
(t)
L−k. Let

W
(t)
L−k have α a’s and β b’s. Since W (t) represents an n-ary tree, β ≤ (n − 1)α. The last k

letters of W (t) must have γ−α a’s and γ(n− 1) + 1− β b’s. The path representation for the

kth cyclic shift of W will then go through the following points:

1. The starting point (0, 0)

2. (k, [γ − α][n− 1]− γ[n− 1]− 1 + β) = (k, β − α[n− 1]− 1) (the last k letters of W (t))

3. (in+ t− α− β, β − α[n− 1]− 1− [t− 1]) = (in+ t− α− β, β − α[n− 1]− t) (for X)

4. (in+ t,−t)

Because β ≤ (n− 1)α, β − (n− 1)α ≤ 0. This means that β − α[n− 1]− t < 1− t. So

the path representation for the kth cyclic shift of W falls below the line y = 1− t (at step 3

above), thus the kth cyclic shift of W cannot be a forest-valid word.

This means that the only valid cyclic shifts of W are:

W (1)W (2)W (3) . . .W (t−1)W (t).

30

W (t)W (1)W (2) . . .W (t−1),

W (t−1)W (t)W (1) . . .W (t−2),

. . .

W (2)W (3)W (4) . . .W (t−1)W (t)W (1).

So W has exactly t forest-valid cyclic shifts.

Since every over A′ is either forest-valid or a cyclic shift of a forest-valid word, r = t
in+t

.

Multiplying r by the total number of words with i a’s and (n − 1)i + 1 b’s (no subscripts)

results in Proposition 2.3.6:

Proposition 2.3.6 ([5]).

F (i, t;n) =
t

ni+ t

(
ni+ t

i

)
.

2.4 The Hagen-Rothe Identity

We will next use the word and path representations of forests from the previous section to

prove an identity related to convolutions of finite sequences. This identity will be used in the

next chapter. This result is fairly well-known [18, 4, 14, 15], and we will go through a proof

given in [18].

Lemma 2.4.1 (Hagen-Rothe Identity [18]). Let p, q, r, and L be non-negative integers

with p > 0, q > 0, and r ≥ qL. Then,

L∑
j=0

p

p+ qj

(
p+ qj

j

)(
r − qj
L− j

)
=

(
p+ r

L

)
(2.1)

Proof. Consider fixed p, q, r, and L as given in the statement of the Lemma. It does not

matter what the value of q is, provided that r ≥ qL (to ensure that the left side of the

equation is defined). The right side of the equation is simply the total number of words

with L a’s and p+ r − L b’s (no other restrictions). The path representation of such a word

can be defined as in Section 2.1.3, but moving from (x, y) to (x + 1, y + q − 1) for every a.

31

The net change in y is L(q − 1) − (p + r − L) = Lq − p − r. Since r ≥ qL, q ≤ r
L

. So

Lq − p − r ≤ L(r
L

) − p − r. Thus the net change in y cannot exceed −p. This means the

path representation for any word (with L a’s and p+ r−L b’s) must touch the line y = −p.

For the left side, consider any word W (that has L a’s and p + r − L b’s) and its path

P . Divide W into two parts W1 and W2 and their corresponding paths P1 and P2, where the

path does not fall below the line y = 1− p until the final step of P1. W1 can then represent a

plane forest of p complete q-ary trees. If W1 is to have j a’s, there are F (j, p; q) possibilities

for W1. W1 is of length p+ qj, so the length of W2 is p+ r − (p+ qj) = r − qj. Since there

are no restrictions on W2, there are
(
r−qj
L−j

)
possibilities. Applying the multiplication principle

and summing over all possible values of j gives

L∑
j=0

F (j, p; q)

(
r − qj
L− j

)
=

L∑
j=0

p

p+ qj

(
p+ qj

j

)(
r − qj
L− j

)
which is the left side of the equation given in Lemma 2.4.1.

Remark 2.4.1. Note that if q = 0 and we have p ≥ L and q ≥ L, the Hagen-Rothe identity

reduces to the more familiar Vandermonde’s Identity.

2.5 Summary

We have reviewed the proofs for three major known results that can be related to the proof

of the Main Theorems. Firstly, we have shown that the number of complete n-ary plane

trees with w internal nodes is exactly
(nww)

w(n−1)+1
, from which Main Theorem 1 immediately

followed. We also generalized this result to plane forests with t complete n-ary trees and

w total internal nodes, showing that there are t
nw+t

(
nw+t
w

)
such forests. Lastly, we reviewed

a proof of the Hagen-Rothe convolution identity that used the properties of forests. These

latter results will be used in the following chapter to prove Main Theorem 2.

32

Chapter 3

Proof of Main Thoerem 2 (w > 1)

This chapter will provide a proof of Main Theorem 2 (the w > 1 case). We will develop

properties of Procedure σ (Procedure 1.2.1) and Procedure τ (Procedure 1.2.2), and use

them to divide Ri into i+ 1 different subsets. We will prove that these subsets are mutually

exclusive and exhaustive (a partition of Ri), and then determine the number of elements in

each of them. This will ultimately lead to a recurrence relation that we can solve. We will

end by providing a new, non-recursive method of generating the elements of Ri. The proofs

we provide are original, though when we enumerate the elements of the subsets of Ri and

solve the recurrence relations we will make use of known results reviewed in Chapter 2. The

proof also involves forests of n-ary trees, and may have further applications to this topic.

We begin with notation that allows us to write elements of Ri as words based on which

procedures were used to generate them. This notation can be used to prove some properties

related to Procedure σ and Procedure τ . We will next characterize and enumerate the

elements of R1 and R2, then generalize to higher values of i. Unless otherwise stated, we will

assume that n and w are fixed integers greater than 1.

3.1 The word representation of elements of RiRiRi

We will begin this section by introducing some new notation that will help us to write

elements of Ri more compactly as a sequence of applications of Procedure σ and Procedure

τ . We will then develop some basic identities related to this notation. These properties will

be useful in our two proofs of Main Theorem 2, one of which will be presented in this chapter

and one in the following chapter.

We will first introduce new notation for the number of leaves per tree for each element

33

of Ri. This notation is simpler than the N(w) notation introduced in Chapter 1 (Definition

1.1.6), and it is unambiguous because we have assumed n and w to be fixed constants.

Definition 3.1.1. Given fixed arity n and weight w and any i ≥ 0, we define `(i)`(i)`(i) to be the

number of leaves per tree for each element of Ri.

Note that

`(i) = N(w + i) = 1 + (w + i)(n− 1), (3.1)

by Proposition 1.1.3.

We next introduce a new notation for elements of Ri. Each element of Ri can be defined

by at least one sequence of applications of Procedure σ and Procedure τ 1. We will represent

each procedure as a letter, as defined in the following notation.

Definition 3.1.2. Let σjσjσj represent applying Procedure σ at the jth leaf (that is, grafting

Tψ at the jth leaf of each tree in a given sequence), and let τkτkτk denote applying Procedure τ

at the kth leaf (that is, grafting each tree in a given sequence at the kth leaf of the basic tree

Tψ).

Recall that the leaves of a tree are labelled through pre-order depth-first traversal, con-

sistent with the operation diagrams given in Chapter 1.

Recall that applying Procedure σ at the jth leaf to a given sequence of trees produces

a new sequence of trees where each term is produced by grafting the basic tree Tψ at the

jth leaf of the corresponding term of the original sequence. Likewise applying Procedure τ

at the kth leaf to a given sequence of trees produces a sequence of trees where each term is

produced by grafting the corresponding term of the original sequence to the kth leaf of the

basic tree Tψ. Thus every element of Ri can be represented by a set of words of length i over

the alphabet Ai = {τ 1, τ2, τ 3, . . . , τn, σ1, σ2, σ3, . . . , σ`(i−1)} (we will discuss elements of Ri

having multiple word representations, known as equivalent words, later in this section). By

convention, the procedures are to be executed from left to right starting on the sole element

of R0, denoted by (X1, X2, X3, . . . , Xlw).

1Adapted from unpublished paper by Nick Beaton.

34

Example 3.1.3. Let n = 2, w = 2. Thus R0 = {(X1, X2)}. We will denote S0 = (X1, X2)

(X1 and X2 are shown in Figure 3.12). The word τ1τ2σ1σ2 represents the following sequence

of procedures:

1. Apply Procedure τ at leaf 1. That is, insert each tree in S0 at leaf 1 of the basic tree

Tψ to produce the sequence Tψ ◦1 S0 = (Tψ ◦1 X1, Tψ ◦1 X2) (which we will denote as

S1 = (X ′1, X
′
2)). See Figure 3.2.

2. Apply Procedure τ at leaf 2. That is, insert each tree in S1 at leaf 2 of the basic tree

Tψ to produce the sequence Tψ ◦2 S1 = (Tψ ◦2 X ′1, Tψ ◦2 X ′2) (which we will denote as

S2 = (X ′′1 , X
′′
2)). See Figure 3.3.

3. Apply Procedure σ at leaf 1. That is, insert the basic tree Tψ at leaf 1 of each of the

trees in the sequence S2 to produce the sequence S2 ◦1 Tψ = (X ′′1 ◦1 Tψ, X ′′2 ◦1 Tψ) (which

we will denote as S3 = (X ′′′1 , X
′′′
2)). See Figure 3.4.

4. Apply Procedure σ at leaf 2. That is, insert the basic tree Tψ at leaf 2 of each of the

trees in the sequence S3 to produce the sequence S3 ◦2 Tψ = (X ′′′1 ◦2 Tψ, X ′′′2 ◦2 Tψ). See

Figure 3.5.

Figure 3.1: Null word for n = 2, w = 2.

2Figures created with Draw.io, https://www.draw.io/.

35

https://www.draw.io/

Figure 3.2: Applying Procedure τ at leaf 1, n = 2, w = 2.

3.1.1 Identifying valid words and equivalent words

We will next define valid words over Ai.

Definition 3.1.4. A word of length i over Ai is said to beAiAiAi-valid if it represents an element

of Ri. The set of all Ai-valid words of length i over Ai is denoted by V (Ai).

For the remainder of this chapter, the term “valid” will refer to Ai-valid words.

A letter σj or τj at position k in an Ai-valid word means that the corresponding operation

is being applied to an element of Rk−1, where elements of Rk−1 are sequences of trees each

with `(k − 1) leaves (see Definition 3.1.2). Clearly, τ ’s can be placed anywhere as any tree

can be inserted into Tψ at any of its n leaves. However, σj can only be placed at a position

k of a valid word if j ≤ `(k − 1) so that leaf j is available for applying Procedure σ. For

example if w = 2 and n = 2, the word σ4σ3 is not valid because each of the trees in the sole

element of R0 only have 3 leaves, so we cannot insert Tψ at the 4th leaf. Note that a word

will be valid if and only if the sequence of procedures could be applied to any one of the trees

in the starting sequence S0, as all trees will have the same number of leaves in any element

of Ri.

Lemma 3.1.1. If W ∈ V (Ai), then the first j characters of W form an element of V (Aj)

for all j ≤ i.

36

Figure 3.3: Applying Procedure τ at leaf 1 and then at leaf 2, n = 2, w = 2.

Proof. This follows immediately from the definition of validity and of a word as a sequence

of procedures applied to the sole element of R0.

We will next define and prove two identities related to equivalent words over Ai.

Definition 3.1.5. Two valid words are said to be equivalent if they represent the same

element of Ri. If W1 and W2 are equivalent words, we say that W1
∼= W2.

Lemma 3.1.2. Given any i ≥ 1, let W1 and W2 be words over Ai such that there exists j, k

with j > k and where W1σjσkW2 is a valid word (of length i, over Ai). Then W1σjσkW2
∼=

W1σkσj+(n−1)W2.

Likewise if W1σlσmW2 is a valid word where m ≥ l+(n−1) then W1σlσmW2
∼= W1σm−(n−1)σlW2.

Proof. Since W1σjσkW2 is valid so are W1, W1σj, and W1σjσk (by Lemma 3.1.1). We first

note that W1σkσj+(n−1)W2 is guaranteed to be a valid word given the validity of W1σjσkW2.

To see this, we denote the length of W1 by L1 (that is, W1 ∈ RL1). Hence W1σj being valid

means that j ≤ `(L1), that is j ≤ 1 + (w + L1)(n− 1). Likewise W1σjσk being valid means

that k ≤ `(L1+1), that is k ≤ 1+(w+L1+1)(n−1). Since k < j it immediately follows that

k ≤ `(L1) and that j + (n− 1) ≤ `(L1 + 1) (since j + (n− 1) ≤ 1 + (w+L1)(n− 1) + (n− 1)

37

Figure 3.4: Applying Procedure τ at leaf 1, at leaf 2, and then Procedure σ at leaf 1,
n = 2, w = 2.

so j + (n− 1) ≤ 1 + (w + L1 + 1)(n− 1)). This makes W1σkσj+(n−1) a valid word. Since W2

is unchanged, W1σkσj+(n−1)W2 must be valid as well.

Now consider the left-hand side of the equivalence W1σjσkW2
∼= W1σkσj+(n−1)W2. In

W1σj, leaf j of each of the original trees in the sequence of trees represented by W1 is

replaced by the basic tree Tψ. Leaves j+1 and above are relabelled, but leaf k is not because

k < j. So the σk step simply inserts Tψ at what was leaf k in each of the original trees (in

the sequence of trees represented by W1). The sequence of procedures given by W2 is then

applied.

For the right hand side, we first replace leaf k in each of the original trees (in the sequence

of trees represented by W1) by Tψ (leaf k must exist because k < j and W1σj is valid so leaf

j exists). For leaves k + 1 and higher, the label is increased by n − 1 (since Procedure σ

increases the total number of leaves by n − 1). This means leaf j becomes leaf j + (n − 1).

Thus σj+(n−1) inserts Tψ at what was leaf j in the original trees. The sequence of procedures

given by W2 is then applied.

For the converse the arguments are parallel. However, we have the additional requirement

that the difference between the two subscripts exceeds n− 1, as otherwise the second appli-

cation of Procedure σ (denoted by σm) would be at one of the leaves generated by the first

38

Figure 3.5: Applying Procedure τ at leaf 1, at leaf 2, Procedure σ at leaf 1, and then
at leaf 2, n = 2, w = 2.

application of Procedure σ (denoted by σl) so it must be performed after the first application

of Procedure σ.

Example 3.1.6. Let w = n = 2. This example will demonstrate a special case of the

preceding lemma for Ai = A2 = {τ1, τ2, σ1, σ2, σ3, σ4} and where both W1 and W2 correspond

to the null word. Figure 3.6 demonstrates that σ2σ1 ∼= σ1σ3.

Lemma 3.1.3. Given any i ≥ 1 let W1 and W2 be words over Ai such that W1σjτkW2 is a

valid word over Ai for some positive integers j and k. Then W1σjτkW2
∼= W1τkσj+(k−1)W2.

Likewise if we denote the length of W1 by L1 and W1τlσmW2 is a valid word where l ≤

m ≤ `(L1 + 1)− (l − 1) then W1τlσmW2
∼= W1σm−(l−1)τlW2.

Proof. Firstly note that similar to Lemma 3.1.2, W1τkσj+(k−1)W2 is guaranteed to be a valid

word. We know that j ≤ `(L1); that is j ≤ 1 + (w + L1)(n− 1). It immediately follows that

j + (n− 1) ≤ `(L1 + 1), since j + (n− 1) ≤ 1 + (w + L1)(n− 1) + (n− 1) so j + (n− 1) ≤

1 + (w + L1 + 1)(n− 1).

On the left-hand side, Procedure σ is applied at leaf j in each of the trees in the sequence

represented by W1. Then Procedure τ is applied at leaf k of the basic tree (that is, inserting

each tree in the sequence at leaf k in Tψ). The relabelling of leaves resulting from the first

39

Figure 3.6: Example 3.1.6.

procedure does not affect Procedure τ . The sequence of procedures represented by W2 is

then applied.

For the right-hand side, Procedure τ is first applied at leaf k. This means leaf k in the

basic tree was replaced by each tree in the sequence represented by W1. This procedure

added k − 1 leaves to the left of the original tree and n − k to the right. Thus each of the

original leaves has its label increased by k − 1. So what was originally leaf j is now leaf

j + (k − 1). Thus we apply σj+(k−1).

For the converse the arguments are parallel. However, we have the additional requirement

that the application of Procedure σ (denoted by σm) is not at one of the leaves added by

the application of Procedure τ (denoted by τl). This means we cannot have m < l or

m > `(L1+1)−(l−1). Note also that if we had m < l or m > `(L1+1)−(l−1), W1σm−(l−1)τl

would be invalid (as we would have either m− (l − 1) < 1 or m− (l − 1) > `(L1 + 1).

Example 3.1.7. Let w = n = 2. This example will demonstrate a special case of the

40

preceding lemma for Ai = A2 = {τ1, τ2, σ1, σ2, σ3, σ4} and where both W1 and W2 correspond

to the null word. Figure 3.7 demonstrates that σ1τ1 ∼= τ1σ1.

Figure 3.7: Proof that σ1τ1 ∼= τ1σ1.

These identities will be useful in proving key properties of Procedure σ and Procedure τ

that we will use in our partitions of Ri.

3.2 Basic properties and enumerating the elements of

R1R1R1

Our strategy in proving Main Theorem 2 will be to develop a partition of Ri. We will develop

this partition based on the procedure used to generate a given element of Ri. In this section

we will develop properties of Procedure σ and Procedure τ that we will use to partition R1.

Our strategy for enumerating the elements of R2 and Ri for higher values of i will be parallel,

though we will require slightly more complex properties of Procedure σ and Procedure τ .

41

3.2.1 Basic properties of Procedure σ and Procedure τ

This next definition will help us develop our partition of Ri.

Definition 3.2.1. Let R
(1)
iR
(1)
iR
(1)
i denote the elements of Ri that can be generated by applying

Procedure σ to an element of Ri−1 (that is, the element of Ri has a word representation that

ends with a σ). Similarly, letR
(2)
iR
(2)
iR
(2)
i denote the elements of Ri that can be generated by applying

Procedure τ to an element of Ri−1 (that is, the element of Ri has a word representation that

ends with a τ). Thus Ri = R
(1)
i ∪R

(2)
i and

|Ri| = |R(1)
i |+ |R

(2)
i | − |R

(1)
i ∩R

(2)
i |.

The following properties will help us to identify elements of R
(2)
i , providing a necessary

and sufficient condition. We begin with a definition.

Definition 3.2.2. A singular tree is a complete n-ary plane tree with exactly n− 1 leaves

at level 1. A jjj-singular tree is a singular tree in which the sole internal node at level 1 is

located at position j (from the left).

Example 3.2.3. In Figure 3.7, both trees in τ1 are 1-singular as the first (leftmost) vertex

is the only internal node at level 1.

We will use Definition 3.2.2 to characterize elements of R
(2)
i in the following properties.

Proposition 3.2.1. If S ∈ R(2)
i for some i ∈ N, then S is a sequence of j-singular trees for

some j ∈ {1, 2, . . . , n}.

Proof. This follows immediately from Definition 3.2.2 and the definition of Procedure τ . In

particular S having a word representation ending in τj for some j ∈ {1, 2, . . . , n} implies S

is a sequence of j-singular trees.

This property allows us to simplify the enumeration of the elements of R1.

Corollary 3.2.2. If w > 1, R
(1)
1 ∩R

(2)
1 = ∅

42

Proof. The sole element of R0, (X1, X2, X3, . . . , Xlw), cannot be a sequence of singular trees

for w > 1 as this element is a sequence of all complete n-ary plane trees of weight w, which

must necessarily include at least one tree with two internal nodes at level 1. Applying Pro-

cedure σ to this sequence will not result in a sequence of j-singular trees because Procedure

σ cannot reduce the number of level-1 internal nodes. Thus by Proposition 3.2.1 all elements

of R
(2)
1 can only be generated through Procedure 2.

These results are sufficient for enumerating the elements of R1. However, the converse of

Proposition 3.2.1 can be proven easily and will be used in the following sections so its proof

will be presented now.

Proposition 3.2.3. Given any i ∈ N, suppose S ∈ Ri and S is a sequence of j-singular trees

for some value of j ≤ n. Then, S ∈ R(2)
i .

Proof. The proof is by induction on i. For i = 1, the only way to generate a sequence of

j-singular trees is to apply Procedure τ to the only element of R0 (see Corollary 3.2.2). Thus

the i = 1 case follows immediately.

Now, suppose Proposition 3.2.3 is true for i ≤ m. Suppose S ∈ Rm+1 is a sequence of

j-singular trees. Then, since Ri = R
(1)
i ∪ R

(2)
i , S must be an element of R

(1)
m+1 if S /∈ R(2)

m+1.

Let S ′ be an element of Rm that produces S if Procedure σ is applied at leaf l for some

l ≤ `(m− 1) (that is, S = S ′ ◦l Tψ. Then, since every tree in S is j-singular, the leaf l where

Tψ is inserted must not be one of the n− 1 level-1 leaves and S ′ must also be a sequence of

j-singular trees. From the inductive hypothesis, S ′ ∈ R(2)
m . Thus there is an element of Rm−1

that produces S ′ after Procedure τ is applied at leaf j. We will call this element S ′′ (that is,

S ′ = Tψ ◦j S ′′).

Thus if W is the word representation of S ′′, the word representation of S will be Wτjσl.

Since S (as well as S ′) must be a sequence of j-singular trees we cannot have l < j or

l > `(m) − j. Thus by Lemma 3.1.3, Wσl−(j−1)τj will also be a word representation for S.

Since a word representation of S ends in a τ , S ∈ R
(2)
m+1. Thus by induction, Proposition

3.2.3 is true for all i ∈ N.

Combining Propositions 3.2.1 and 3.2.3, we get:

43

Proposition 3.2.4. Given a sequence S ∈ Ri, S ∈ R
(2)
i if and only if S is a sequence of

j-singular trees for some value of j ≤ n.

We will next use these properties of Procedure σ and Procedure τ to enumerate the

elements of Ri

3.2.2 Enumerating the elements of R1R1R1

As stated in Corollary 3.2.2, R
(1)
1 ∩R

(2)
1 = ∅.

This means that for i = 1, Ri can be partitioned into i+1 = 2 mutually exclusive subsets:

• R(1)
1 , the set of all elements generated by applying Procedure σ to the sole element of

R0. Since the trees in this sequence have 1 + w(n− 1) leaves, |R(1)
1 | = 1 + w(n− 1).

• R(2)
1 , the set of all elements generated by applying Procedure τ to the sole element of

R0. Since the basic n-ary tree has n leaves, |R(2)
1 | = n.

Thus |R1| = 1+w(n−1)+n. The value predicted by Main Theorem 2 is
(
(n−1)(w+i)+i+1

i

)
=(

(n−1)(w+1)+1+1
1

)
= (n − 1)(w + 1) + 1 + 1 = 1 + w(n − 1) + n − 1 + 1 = 1 + w(n − 1) + n.

Thus Main Theorem 2 holds for i = 1.

3.3 Further properties and enumerating the elements

of R2R2R2

We will next extend the arguments to R2. We will first need to develop some more complex

properties of Procedure σ and Procedure τ , as the partition of R2 will involve more subsets.

3.3.1 Further properties of Procedure σ and Procedure τ

Firstly, we have a recursive property for |R(2)
i+1|.

Proposition 3.3.1. For i ≥ 0, |R(2)
i+1| = n|Ri|.

44

Proof. Suppose S ∈ Ri. Since there are n different τ ’s (ways to apply Procedure τ), there are

at most n different ways to add a τ to the end of the word representation of S and generate

an element of R
(2)
i+1. This means |R(2)

i+1| ≤ n|Ri|.

We must now show that every application of Procedure τ to an element of Ri produces

a unique element of Ri+1. That is given elements S1, S2 ∈ Ri and natural numbers j1 and

j2 we must show that an application of Procedure τ to S1 at leaf j1 will produce the same

sequence as an application of Procedure τ to S2 at leaf j2 only if S1 = S2 and j1 = j2. We

will call the former sequence S ′1 and the latter S ′2. By definition, an application of Procedure

τ at leaf j1 must produce a sequence of j1-singular trees. Thus S ′1 must be a sequence of

j1-singular trees. Likewise, S ′2 must be a sequence of j2-singular trees. Since S ′1 = S ′2, we

must have j1 = j2. If we look at the first tree in S ′1, we know that it was constructed by

grafting the first tree of S1 to the j1th leaf of the basic tree Tψ. Likewise the first tree of S ′2

was constructed by grafting the first tree of S2 to the j1th leaf of the basic tree Tψ. The first

tree of S ′1 must be the same as the first tree of S ′2, but this is only possible if the first tree of

S1 is the same as the first tree of S2. We follow this same reasoning for each of the trees in

S1 and S2 and conclude that S1 = S2.

It follows that |R(2)
i+1| = n|Ri|.

This next property will relate to the case where Procedure σ is applied to an element of

R
(2)
i . We will use it to partition Ri based on how many times Procedure σ was applied to the

“new” leaves generated by the last application of Procedure τ . This concept will be defined

more precisely in the following definitions.

Definition 3.3.1. The set of all elements of Ri that can be generated by a sequence of i

applications of Procedure σ will be denoted by R
(1o)
iR
(1o)
iR
(1o)
i , where “1o” is short for “Procedure

σ only”. We will denote the complement of this set by Ri
(1o)

Ri
(1o)

Ri
(1o)

. That is Ri
(1o)

is defined to

be the set of all elements of Ri that cannot be generated by applying Procedure σ i times.

Procedure τ must have been applied at least once (so any word representation of an element

of Ri
(1o)

will have at least one τ).

Definition 3.3.2. Given 1 ≤ j ≤ n a sequence of complete n-ary plane trees will be called

45

jjj-unique if each of the trees in the sequence have n− 1 level-1 subtrees in common but one

subtree, the jth, is different for each tree in the sequence. That is the jth level-1 vertex in

each tree in S is the root of a subtree which is different for each tree in the sequence but the

trees are otherwise identical. In such a sequence, we will refer to the jth level-1 subtree as the

unique level-1 subtree or simply as the unique subtree. The other level-1 subtrees will

be referred to as common (level-1) subtrees. The subset of Ri consisting of all sequences

which are j-unique for some j will be denoted by R
(unique)
iR
(unique)
iR
(unique)
i .

We will show that Ri
(1o)

= R
(unique)
i .

Lemma 3.3.2. Ri
(1o) ⊆ R

(unique)
i

Proof. We first show that the following two statements together are sufficient to prove the

lemma:

1. Given an arbitrary j < i, R
(2)
j ⊆ R

(unique)
j .

2. An application of Procedure σ to an element of R
(unique)
j produces an element of

R
(unique)
j+1 .

Since every element of Ri
(1o)

is either an element of R
(2)
i or is generated by a sequence of

i − j applications of Procedure σ to an element of R
(2)
j , conditions 1 and 2 together would

automatically imply that Ri
(1o) ⊆ R

(unique)
i .

To show that the first statement is true, we know by Proposition 3.2.4 that all trees in

an element of R
(2)
j will have n − 1 level-1 subtrees in common, as these level-1 subtrees are

simply the leaves generated by the last application of Procedure τ) (by Proposition 3.2.4).

Thus R
(2)
j ⊆ R

(unique)
j for any positive value of j.

If Procedure σ is applied to an element of R
(unique)
j , the basic tree will be inserted either

within one of the common level-1 subtrees or within the unique level-1 subtree. Since the

number of leaves within the unique level-1 subtree is the same for every tree in the sequence,

either way the result will be an element of R
(unique)
j+1 .

It follows that Ri
(1o) ⊆ R

(unique)
i .

Lemma 3.3.3. R
(unique)
i ⊆ Ri

(1o)

Proof. We can show this by induction on i.

46

Base case: we will show that R
(unique)
1 ⊆ R1

(1o)
. We will denote the sole element of R0

(the starting sequence) by S0. Since w > 1, S0 must contain at least one tree T in which the

leftmost level-1 vertex is the only one that has children. S0 must also contain another tree

U in which the second level-1 vertex from the left is the only one that has children. Clearly,

T and U differ at two level-1 subtrees so S0 /∈ R(unique)
0 (thus R

(unique)
0 = ∅). Both T and U

have (n− 1)w+ 1 leaves. In T , leaves 1 through (n− 1)w+ 1− (n− 1) inclusive (that is, all

except the rightmost n− 1 leaves) are descendants of the first (leftmost) level-1 vertex. The

second level-1 vertex is leaf (n− 1)w+ 1− (n− 1) + 1. In U , leaf 1 is the first level-1 vertex

and leaves 2 through (n − 1)w + 1 − (n − 1) + 1 inclusive (that is, all except the first and

the rightmost n− 2 leaves) are descendants of the second level-1 vertex. We will look at the

four different possible cases of applying Procedure σ to S0 and its effect on T and U .

• If we apply Procedure σ to S0 at leaf 1, the number of leaves within the first level-1

subtree increases by n − 1 in both T and in U . We will call these new trees T ′ and

U ′ respectively. Thus the number of leaves in the first level-1 subtree of the resulting

tree T ′ will still exceed the number of leaves in the first level-1 subtree of U ′. Since the

second level-1 subtree has not been changed in either tree, the second level-1 subtree

in T ′ still will not have as many leaves as the second level-1 subtree in U ′. Thus T ′ and

U ′ still differ at two level-1 subtrees and we do not get an element of R
(unique)
i .

• If we apply Procedure σ to S0 at leaf j, where 2 ≤ j ≤ (n−1)w+1−(n−1), the number

of leaves within the first level-1 subtree increases by n − 1 in T . In U , the number of

leaves on the second level-1 subtree will increase by n − 1. We will (again) call these

new trees T ′ and U ′ respectively. Thus the number of leaves in the first level-1 subtree

of the resulting tree T ′ will still exceed the number of leaves in the first level-1 subtree

of U ′. Since the second level-1 subtree has not been changed in T , the second level-1

subtree in T ′ still will not have as many leaves as the second level-1 subtree in U ′. Thus

T ′ and U ′ still differ at two level-1 subtrees and we do not get an element of R
(unique)
i .

• If we apply Procedure σ to S0 at leaf (n − 1)w + 1 − (n − 1) + 1 (the second level-1

vertex of T ; a descendant of the second level-1 vertex of U), the number of leaves in

the second level-1 subtree increases by n − 1 in both T and U , but the first level-1

47

subtree will be unchanged. Thus the two trees still differ at two level-1 subtrees and

the sequence produced is not an element of R
(unique)
1 .

• If we apply Procedure σ to S0 at leaf j, where (n−1)w+1−(n−1)+2 ≤ j ≤ (n−1)w+1,

the first two level-1 subtrees are unchanged in both T and U (thus they are different

for both trees). The sequence produced is not an element of R
(unique)
1 .

This covers all possibilities for applying Procedure σ to S0, so we must conclude that the

only way to generate an element of R
(unique)
1 is to apply Procedure τ to S0. Thus R

(2)
1 = R1

(1o)

and R
(unique)
i ⊆ R1

(1o)
.

Inductive step: Firstly notice in the base case that no matter where we apply Procedure

σ to, the difference between the number of leaves within the first subtree of T ′ and the first

level-1 subtree of U ′ will always be equal to the difference between the number of leaves

within the second level-1 subtree of U ′ and the second subtree of T ′. In S0 this difference is

equal to (n − 1)w + 1 − (n − 1) − 1. Depending on where we apply Procedure σ the four

possibilities are (respectively): increase the number of leaves by n− 1 within the first level-1

subtree in both T and U , increase the number of leaves by n−1 within the first level-1 subtree

of T and the second level-1 subtree of U , increase the number of leaves by n− 1 within the

second level-1 subtree in both T and U , or increase the number of leaves in a different level-1

subtree and leave the first two unchanged in both T and U . Either both differences remain

unchanged, or both increase by n− 1. For the inductive step then, we will take S ∈ Rm and

S /∈ R(unique)
m for some m > 0. We will also assume that S has two trees T and U satisfying

the following properties (where x, y, and a are arbitrary natural numbers):

T U

1st level-1

subtree

2nd level-1

subtree

1st level-1

subtree

2nd level-1

subtree

Number of

leaves

x y−a x−a y

Leaf range 1 to x
x+1 to

x+y−a
1 to x−a

x−a+1 to

x+y−a

48

We have defined a to be the difference between the number of leaves within the first subtree

of T and the first level-1 subtree of U . We will use T ′ and U ′ to denote T and U after

Procedure σ has been applied. Note that, as explained above, every element of R1 that is

not an element of R
(unique)
1 will have two trees that have these properties. Thus if we can

prove that no application of Procedure σ to S produces an element of R
(unique)
m+1 , and that the

difference between the number of leaves within the first subtree of T ′ and the first level-1

subtree of U ′ will always be equal to the difference between the number of leaves within the

second level-1 subtree of U ′ and the second subtree of T ′, it will follow by induction that for

all values of i Procedure τ must be applied at least once to generate an element of R
(unique)
i .

Notice that in both T and U , the total number of leaves in the first two level-1 subtrees

is x+y−a. If we apply Procedure σ to S at one of the first x−a leaves, we get the following

table:

T ′ U ′

1st level-1

subtree

2nd level-1

subtree

1st level-1

subtree

2nd level-1

subtree

Number of

leaves

x+n−1 y−a x−a+n−1 y

Leaf range 1 to x+n−1
x+n to

x+n+y−a−1

1 to

x−a+n−1

x−a+n to

x−a+y+n−1

Thus the number of leaves in the first level-1 subtree of the resulting tree T ′ will still

exceed the number of leaves in the first level-1 subtree of U ′. Since the second level-1 subtree

has not been changed in either tree, the second level-1 subtree in T ′ still will not have as

many leaves as the second level-1 subtree in U ′. Thus the two trees again differ at two level-1

subtrees — we simply replace x with x + n − 1. Furthermore, the difference between the

number of leaves within the first subtree of T ′ and the first level-1 subtree of U ′ is equal to

the difference between the number of leaves within the second level-1 subtree of U ′ and the

second subtree of T ′ (both are equal to a), as required.

If we instead apply Procedure σ to S at leaf j, where x − a + 1 ≤ j ≤ x, we get the

following:

49

T ′ U ′

1st level-1

subtree

2nd level-1

subtree

1st level-1

subtree

2nd level-1

subtree

Number of

leaves

x+n−1 y−a x−a y+n−1

Leaf range 1 to x+n−1
x+n to

x+y−a+n−1
1 to x−a

x−a+1 to

x+y−a+n−1

Thus the number of leaves in the first level-1 subtree of the resulting tree T ′ will still exceed

the number of leaves in the first level-1 subtree of U ′. Likewise the number of leaves in the

second level-1 subtree of the resulting tree U ′ will still exceed the number of leaves in the

second level-1 subtree of T ′. The two trees again differ at two level-1 subtrees — we simply

replace a with a + n − 1. Furthermore, the difference between the number of leaves within

the first subtree of T ′ and the first level-1 subtree of U ′ is equal to the difference between the

number of leaves within the second level-1 subtree of U ′ and the second subtree of T ′ (both

are equal to a+ n− 1), as required.

If we instead apply Procedure σ to S at leaf j, where x + 1 ≤ j ≤ x + y − a, we get the

following:

T ′ U ′

1st level-1

subtree

2nd level-1

subtree

1st level-1

subtree

2nd level-1

subtree

Number of

leaves

x y−a+n−1 x−a y+n−1

Leaf range 1 to x
x+1 to

x+y−a+n−1
1 to x−a

x−a+1 to

x+y−a+n−1

Thus the number of leaves in the second level-1 subtree of the resulting tree U ′ will still

exceed the number of leaves in the second level-1 subtree of T ′. Since the first level-1 subtree

has not been changed in either tree, the first level-1 subtree in U ′ still will not have as many

leaves as the first level-1 subtree in T ′. Thus the two trees again differ at two level-1 subtrees

— we simply replace y with y + n − 1. Furthermore, the difference between the number of

50

leaves within the first subtree of T ′ and the first level-1 subtree of U ′ is equal to the difference

between the number of leaves within the second level-1 subtree of U ′ and the second subtree

of T ′ (both are equal to a), as required.

Applying Procedure σ to S at leaf j, where j > x + y − a, does not add leaves to either

the first or the second level-1 subtree. Thus T ′ and U ′ still differ at two different subtrees,

and the difference between the number of leaves within the first level-1 subtree of T ′ and the

first level-1 subtree of U ′ is the same as the difference between the number of leaves within

the second level-1 subtree of U ′ and the second level-1 subtree of T ′.

This covers all possibilities for applying Procedure σ to S. Combined with the base case,

it follows that repeated applications of Procedure σ to S0 cannot produce an element of

R
(unique)
i .

Combining these two lemmas, we obtain:

Proposition 3.3.4. Ri
(1o)

= R
(unique)
i .

Two major consequences immediately follow from this result. The first will be used to

develop our partition of Ri and the recurrence relation that will be introduced in the next

section.

Corollary 3.3.5. For each element S ∈ Ri
(1o)

there exists a unique ordered triple (j, Fk, Sk),

where:

• 1 ≤ j ≤ n.

• 0 ≤ k ≤ i− 1.

• τj is the rightmost τ in any word representation of S.

• Fk is a plane forest with n− 1 complete n-ary trees and a total of k internal nodes.

• Sk ∈ Ri−k−1.

Because each element of Ri
(1o)

has a specified value of k, we can partition Ri
(1o)

based on

this value. There are i possible values k can take, so such a partition will divide Ri
(1o)

into i

mutually exclusive subsets.

51

Proof. By Proposition 3.3.4, an element of Ri will be an element of Ri
(1o)

if and only if it’s

an element of R
(unique)
i — that is, a j-unique sequence for some value of j. This j-value

will be the last application of Procedure τ and therefore τj must be the rightmost τ in any

word representation of S. We construct the plane forest Fk by considering (without loss of

generality) the first tree in S, which we will call T1. We remove the unique level-1 subtree

from T1 (i.e. the jth) as well as the root and all edges joining the root to a level-1 vertex.

This results in the plane forest Fk. Note that because S is j-unique, the same forest results

regardless of which tree in S is used to generate it. The subscript k denotes the number

of internal nodes in the forest. Equivalently, k is the total number of internal nodes in the

common level-1 subtrees of T1 or the number of σ’s to the right of τj in a word representation

of S where τj is as far to the right as possible. We will denote this word representation by

W . Sk is defined to be the sequence of unique level-1 subtrees, one from each tree in S. More

precisely, given 1 ≤ m ≤ lw, the mth tree in Sk will be the unique level-1 subtree of the mth

tree in S. Because W is of length i and there are k σ’s to the right of τj, the first i− k − 1

letters of W are a word representation of Sk. Therefore Sk ∈ Ri−k−1.

Corollary 3.3.5 can be understood more easily through an example.

Example 3.3.3. Suppose w = n = 2 and i = 4. Consider the sequence S ∈ R4 given in

Figure 3.8. We can see that the first (leftmost) level-1 subtree is the same for both trees in the

sequence, but the second (rightmost) differs. Thus S is a 2-unique sequence, S ∈ R(unique)
4 ,

and S ∈ R4
(1o)

. We can conclude that the last application of Procedure τ was at the second

leaf (so the rightmost τ in any word representation of S would be τ2). The common level-1

subtree (the first) has a total of two internal nodes, so a word representation of S with τ2 as

far to the right as possible will end in τ2σσ (in this case, it would end with τ2σ1σ2). Since

there is only one common level-1 subtree, the forest F2 consists of only one tree (the leftmost

level-1 subtree in either tree in S).

We will next define a partition of Ri based on Corollary 3.3.5.

Definition 3.3.4. We have already defined R
(1o)
i and Ri

(1o)
, the latter being equivalent to

R
(unique)
i . We will use the notation R

(unique, k)
iR
(unique, k)
iR
(unique, k)
i (where 0 ≤ k ≤ i − 1) to denote the subset of

52

Figure 3.8: Example 3.3.3.

R
(unique)
i in which the common level-1 subtrees have a total of k internal nodes. Thus the sets

R
(1o)
i , R

(unique, 0)
i , R

(unique, 1)
i , R

(unique, 2)
i , . . . , R

(unique, i−1)
i will be a partition of Ri.

Our next corollary will ultimately help us develop an algorithm for directly generating Ri

(that is, without generating duplicate elements).

Corollary 3.3.6. For each element S ∈ Ri there exists a unique ordered pair (s, F), where

s is a sequence of τ ’s of length Lτ (where 0 ≤ Lτ ≤ i) and F is a plane forest of 1 + w(n−

1) + Lτ (n− 1) complete n-ary trees with a total of i− Lτ internal nodes.

Proof. As in the proof for Corollary 3.3.5 we can tell whether or not Procedure τ has ever

been used to generate S. If indeed S ∈ Ri
(1o)

, then there exists j1 (as in the statement of

Corollary 3.3.5) such that S is a j1-unique sequence. τj1 will be the rightmost τ in any word

representation of S.

From S we will form a new sequence of trees, denoted by S2, that consists of the unique

level-1 subtrees of each tree in S. S2 is necessarily an element of Rk for some k ≥ 0. If

S2 ∈ Rk
(1o)

, then Corollary 3.3.5 applies again and there exists j2 such that the j2th level-1

subtree is the unique one and τj2 is the rightmost τ in any word representation of S2. We

can form a new sequence of trees denoted by S3, that consists of the unique level-1 subtrees

of each tree in S2, and repeat the process until we get a sequence of trees Sx+1 such that

53

Sx+1 ∈ R(1o)
m for some m ≥ 0. Thus any word representation of S will have x τ ’s, with their

subscripts determined by where Procedure τ was applied. In the case where S ∈ R(1o)
m , we

have x = 0 so the sequence of τ ′s is empty. Thus Lτ = x.

From Lemma 3.1.3, there exists a word representation of S in which all of the τ ’s are at

the beginning. Given this sequence of τ ’s (which will be empty if Lτ = 0 and S ∈ R
(1o)
i),

we obtain the forest as follows. We first apply the τ sequence to the sole element of R0 to

obtain a sequence of trees, which we will call S̃ (if Lτ = 0 then S̃ = S). We will denote

these sequences by S = (T1, T2, . . . , Tlw) and S̃ = (T̃1, T̃2, . . . , T̃lw). For a tree Tp in S (where

1 ≤ p ≤ lw), the corresponding tree T̃p in S̃ is a plane subtree of Tp with the same root

as Tp. Hence corresponding to each leaf vertex v of T̃p there will be a subtree of Tp whose

root is v - call this subtree Tp(v). Labelling the leaves of T̃p lexicographically and according

to their position in the plane (the way we would with a pre-order depth-first labelling), we

obtain a corresponding sequence of trees Tp(v1), Tp(v2), . . . , Tp(v`(Lτ)). This is the required

plane forest. Note that the subtrees Tp(v) must have resulted from applications of Procedure

σ (since they are not part of T̃p) and hence every tree in S yields the same forest.

This will again be made more clear with an example.

Example 3.3.5. Suppose w = n = 2 and i = 4. Consider the sequence S ∈ R4 given in

Figure 3.9. We will determine the sequence of τ ’s that any given word representation of S

will have.

1. We first note that the first (leftmost) level-1 subtree is the same for both trees in S.

Thus we conclude that the last (rightmost) τ is τ2, since the unique level-1 subtree is

the second.

2. We next take the second level-1 subtree from each tree in S and form the new sequence

S2 (Figure 3.10). We see that the second (rightmost) level-1 subtree is the same for

both trees in S2, so the second last τ is τ1 as the unique level-1 subtree is the first.

3. We take the first level-1 subtree from each tree in S2 and form the new sequence S3

(Figure 3.11). We see that the first level-1 subtree in the first tree of S3 is not the same

54

as the first level-1 subtree in the second tree of S3. Likewise the second level-1 subtree

in the first tree of S3 is not the same as the second level-1 subtree in the second tree

of S3. Thus S3 /∈ Rk
(1o)

for any k ≥ 0 (in this case S3 ∈ R0 but S3 /∈ Ri
(1o)

, which is

empty).

Thus every word representation of S will contain a τ1 somewhere in the word, with a τ2

somewhere to the right of the τ1.

For the forest F , we compare the original sequence of trees S with the sequence S̃, which

we obtain by applying the τ sequence to the sole element of R0 (Figure 3.12). Without loss

of generality we compare the first tree in S (denoted by T1) with the first tree in S̃ (denoted

by T̃1). Each leaf of T̃1 corresponds to the root of a subtree of T1 (Figure 3.9). F consists of

these subtrees. Since T̃1 has five leaves, F will consist of the following five trees:

1. A binary tree with two internal nodes (the root and its right child). This corresponds to

leaves 1, 2, and 3 in T1 (and the two internal nodes along the shortest path connecting

these three leaf vertices).

2. A single vertex. This corresponds to leaf 4 in T1.

3. A single vertex. This corresponds to leaf 5 in T1.

4. A single vertex. This corresponds to leaf 6 in T1.

5. A single vertex. This corresponds to leaf 7 in T1.

Note that F will be the same if we use T2 and T̃2 instead of T1.

To provide an example of the partitioning strategy, we will use it to enumerate the

elements of R2.

3.3.2 Enumerating the elements of R2R2R2

By Definition 3.3.4, we can partition R2 into 2 + 1 = 3 different classes:

1. Elements of R
(1o)
2 . Every word representation consists of two σ’s. This can be broken

up into two sub-cases:

55

Figure 3.9: Example 3.3.5, step 1.

(a) Starting from the sole element R0, choose a pair of leaves on each tree (ie the first

and third leaf on every tree in the original sequence) and apply Procedure σ at

both of these leaves. There are
(
1+w(n−1)

2

)
elements of this type.

(b) Starting from the sole element of R0, apply Procedure σ at leaf j (1 ≤ j ≤

1 +w(n− 1)). Then apply Procedure σ to one of the new leaves generated in the

first step (leaves j through j + n− 1). There are [1 +w(n− 1)]n elements of this

type.

2. Elements of R
(unique, 0)
2 (equivalent to R

(2)
2). By Proposition 3.3.1, |R(2)

2 | = n|R1| =

n[1 +w(n− 1)] + n2. These elements of R2 have a word representation that ends with

a τ .

3. Elements of R
(unique, 1)
2 . That is, the word representation has exactly one τ and the

common level-1 subtrees have one internal node between them (so one of them has

an internal node, while the other n − 2 common level-1 subtrees are just leaf nodes).

The word representation will be of the form τjσk, where 1 ≤ j ≤ n and k < j or

k > j + w(n − 1). There are n(n − 1) possible ways to perform this sequence of

procedures.

56

Figure 3.10: Example 3.3.5, step 2.

Figure 3.11: Example 3.3.5, step 3.

Summing these terms, we get n[1+w(n−1)]+n2 +n(n−1)+
(
1+w(n−1)

2

)
+n[1+w(n−1)],

which can be shown to be equal to
(
(n−1)(w+2)+2+1

2

)
through expansions. This is the value

predicted by Main Theorem 2.

3.4 Enumerating the elements of RiRiRi

Definition 3.3.4 allows us to partition Ri into i + 1 mutually exclusive classes. We will use

this partition to set up a recurrence relation for enumerating the elements of Ri. For the

enumeration, we will need to set up two bijections: one for Ri
(1o)

, and one for R
(1o)
i .

Proposition 3.4.1. Let k be a fixed integer (where 0 ≤ k ≤ i− 1) and let T (k)
i be the set of

57

Figure 3.12: Example 3.3.5, S̃.

ordered triples (j, Fk, Sk), where:

• 1 ≤ j ≤ n.

• τj is the rightmost τ in any word representation of S.

• Fk is a plane forest with n− 1 complete n-ary trees and a total of k internal nodes.

• Sk ∈ Ri−k−1.

Then there is a bijection between T (k)
i and R

(unique, k)
i .

Proof. By Corollary 3.3.5, for every element of R
(unique, k)
i there exists a unique element of

T (k)
i . Thus to show a bijection, we must show that for each element of T (k)

i there exists a

unique element of R
(unique, k)
i . Given (j, Fk, Sk) we begin by applying Procedure τ to Sk at

leaf j. This gives us an element of R
(2)
i−k, which we will denote by S ′k. We can write a word

representation of this sequence by writing τj at the end of any word representation of Sk.

We will use Fk to extend this word so that we get an element of R
(unique, k)
i . First, we draw

a forest of n− 1 single-node trees which we will denote by F ′k. We then label the first j − 1

leaf vertices in F ′k sequentially from left to right. For leaf vertices j through n, we assign the

labels `(i− k)− (n− j) through `(i− k) (this matches the level-1 leaves in the sequence of

trees S ′k). We then apply the following recursive algorithm:

58

1. Simultaneously traverse both F ′k and Fk through pre-order depth-first traversal, starting

from the leftmost tree and moving rightward, until we reach a vertex which is a leaf

node in F ′ but an internal node in Fk. Suppose this is the mth leaf node in F ′k. We

replace this leaf node with the basic n-ary tree. We write σm at the end of the word

(since this represents an application of Procedure σ, then add n − 1 to the labels of

all leaves in F ′ with labels greater than m. The leaves of the basic tree that were just

added are labelled m through m+ n− 1.

2. Repeat step 1 until F ′k = Fk. The final word will represent an element of R
(unique, k)
i .

This result allows us to use the multiplication rule to enumerate the elements of R
(unique, k)
i ,

proving the following:

Proposition 3.4.2. |R(unique, k)
i | = n F (k, n− 1;n) |Ri−k−1|.

The following bijection will build on Corollary 3.3.6. It will allow us to enumerate the

elements of R
(1o)
i .

Proposition 3.4.3. Let Pi be the set of ordered pairs (s, F), where s is a sequence of τ ’s of

length Lτ (where 0 ≤ Lτ ≤ i) and F is a plane forest of 1 + (w + Lτ)(n− 1) complete n-ary

trees with a total of i− Lτ internal nodes. Then there is a bijection between Pi and Ri.

Proof. By Corollary 3.3.6, for every element of Ri there exists a unique element of Pi. Thus

to show a bijection, we must show that for each element of Pi there exists a unique element of

Ri. Given (s, F) we first apply the sequence of iterations of Procedure τ given in s to the sole

element of R0. We will call this sequence of trees S̃. Each tree in S̃ has 1 + (w + Lτ)(n− 1)

leaves. We will use F to extend s so we get a word representation of an element of Ri. First,

we draw a forest of 1 + (w+Lτ)(n− 1) single-node trees which we will denote by F ′. Then,

we follow this recursive algorithm:

1. Label the leaf nodes of F ′ through pre-order depth-first traversal starting from the

leftmost tree and moving rightward.

59

2. Simultaneously traverse both F and F ′ through pre-order depth-first traversal, starting

from the leftmost tree and moving rightward, until we reach a vertex which is a leaf

node in F ′ but an internal node in F . Suppose this is the mth leaf node in F ′. We

replace this leaf node with the basic n-ary tree. We write σm at the end of the word,

then go back to the previous step.

Once F = F ′, the algorithm ends and we have a word representation of an element of Ri

corresponding to F . Thus there is a bijection between Pi and Ri.

This result proves the following:

Proposition 3.4.4. |R(1o)
i | = F (i, 1 + w(n− 1);n).

Combining Proposition 3.4.2 with Proposition 3.4.4 we get the following recurrence rela-

tion:

Proposition 3.4.5. |R0| = 1. For i > 0, the following equation holds:

|Ri| = |R(1o)
i |+

i−1∑
k=0

|R(unique, k)
i |

= F (i, 1 + w(n− 1);n) +
i−1∑
k=0

n|Ri−k−1|F (k, n− 1;n)

=
1 + w(n− 1)

ni+ 1 + w(n− 1)

(
ni+ 1 + w(n− 1)

i

)
+

i−1∑
k=0

n|Ri−k−1|
n− 1

nk + n− 1

(
nk + n− 1

k

)
.

(3.2)

Note that the initial condition (|R0| = 1) implies that any solution to this recurrence

relation must be unique. This immediately follows by induction on i. So if the conjectured

value of |Ri| satisfies the recurrence relation, Main Theorem 2 is proven automatically. We

will show this using the Hagen-Rothe identity (Lemma 2.4.1).

Proposition 3.4.6. The conjectured value of |Ri| satisfies the recurrence relation in Propo-

sition 3.4.5.

Proof. From Main Theorem 2, |Ri| =
(
i+(w+i)(n−1)+1

i

)
=
(
wn+in−w+1

i

)
. Substituting this into

the right side of 3.2:

1+w(n−1)

ni+1+w(n−1)

(
ni+1+w(n−1)

i

)
+

i−1∑
k=0

n|Ri−k−1|
n−1

nk+n−1

(
nk+n−1

k

)

60

=
1+w(n−1)

ni+1+w(n−1)

(
ni+1+w(n−1)

i

)
+n

i−1∑
k=0

(
wn+in−nk−n−w+1

i−k−1

)
n−1

nk+n−1

(
nk+n−1

k

)

=
1+w(n−1)

ni+1+w(n−1)

(
ni+1+w(n−1)

i

)
+n

i−1∑
k=0

n−1

nk+n−1

(
nk+n−1

k

)(
wn+in−nk−n−w+1

i−k−1

)
=

1+w(n−1)

ni+1+w(n−1)

(
ni+1+w(n−1)

i

)
+n

(
(n−1)+(wn+in−n−w+1)

i−1

)

(by Lemma 2.4.1 with L = i− 1, p = n− 1, q = n, and r = wn+ in− n− w + 1)

=
1+w(n−1)

ni+1+w(n−1)

(
ni+1+w(n−1)

i

)
+n

(
wn+in−w)

i−1

)
=

1+w(n−1)

ni+1+w(n−1)

(
ni+1+w(n−1)

i

)
+

n(wn+in−w)!

(i−1)!(wn+in−w−i+1)!

=
1+w(n−1)

ni+1+w(n−1)

(
ni+1+w(n−1)

i

)
+

n(wn+in−w)!

(i−1)!(wn+in−w−i+1)!
· i
i
· (wn+in−w+1)

(wn+in−w+1)

=
1+w(n−1)

ni+1+w(n−1)

(
ni+1+w(n−1)

i

)
+

ni(wn+in−w+1)!

i!(wn+in−w−i+1)!(wn+in−w+1)

=
1+w(n−1)

ni+1+w(n−1)

(
ni+1+w(n−1)

i

)
+

ni

wn+in−w+1

(
ni+1+w(n−1)

i

)
=

1+w(n−1)

ni+1+w(n−1)

(
ni+1+w(n−1)

i

)
+

ni

ni+1+w(n−1)

(
ni+1+w(n−1)

i

)
=

(
ni+1+w(n−1)

i

)
1+w(n−1)+ni

ni+1+w(n−1)
=

(
ni+1+w(n−1)

i

)
.

Thus Main Theorem 2 holds for all w > 1.

3.5 An algorithm for generating RiRiRi

We will end this chapter by using Proposition 3.4.3 to derive an alternate fomula for |Ri|.

This formula will provide a straightforward algorithm for generating Ri for a given value of

i. We will show that the formula satisfies the recurrence relation in Proposition 3.4.5, which

proves that it’s equivalent to the conjectured value of |Ri|.

Firstly we know from Corollary 3.3.6 that given an element S ∈ Ri, the sequence of τ ’s

will be the same for every word representation for that element. This sequence can be moved

61

to the beginning of a word representation of S. Secondly we know from Proposition 3.4.3

that there is a bijection between Ri and the set of ordered pairs of the form (s, F), where s is

a sequence of τ ’s of length L (where 0 ≤ L ≤ i) and F is a plane forest of 1 + (w+Lτ)(n−1)

complete n-ary trees with a total of i− Lτ internal nodes.

Thus each element S ∈ Ri consists of two components, each of which can easily be

generated:

1. A sequence of τ ’s of length L, where 0 ≤ L ≤ i. This corresponds to L applications of

Procedure τ .

2. A plane forest of 1 + (w+L)(n− 1) complete n-ary trees with a total of i−L internal

nodes (for some 0 ≤ L ≤ i).

Thus we have the following result:

Theorem 3.5.1.

|Ri| =
i∑

L=0

F (i− L, 1 + (w + L)(n− 1);n)nL.

We will lastly verify that this formula for |Ri| satisfies the recurrence relation given in

Proposition 3.4.5.

Proposition 3.5.2. The formula for |Ri| given in Theorem 3.5.1 satisfies the recurrence

recurrence relation given in Proposition 3.4.5.

Proof. For i = 0, we have:

|Ri| =
0∑

L=0

F (0− L, 1 + (w + L)(n− 1);n)nL = F (0, 1 + w(n− 1);n)n0 = 1.

Thus the initial condition holds. For i > 0,

|Ri| = F (i, 1+w(n−1);n)+
i−1∑
k=0

n|Ri−k−1|F (k, n−1;n)

= F (i, 1+w(n−1);n)+
i−1∑
k=0

n ·
i−k−1∑
L=0

F (i−k−1−L, 1+(w+L)(n−1);n)nLF (k, n−1;n)

62

= F (i, 1+w(n−1);n)+
i−1∑
k=0

i−k−1∑
L=0

F (i−k−1−L, 1+(w+L)(n−1);n)nL+1F (k, n−1;n)

= F (i, 1+w(n−1);n)+
i−1∑
k=0

i−k−1∑
L=0

F (i−k−1−L, 1+(w+L)(n−1);n)nL+1F (k, n−1;n)

= F (i, 1+w(n−1);n)+
i−1∑
L=0

i−L−1∑
k=0

F (i−k−1−L, 1+(w+L)(n−1);n)nL+1F (k, n−1;n)

= F (i, 1+w(n−1);n)+
i−1∑
L=0

nL+1

i−L−1∑
k=0

F (i−L−1−k, 1+(w+L)(n−1);n)F (k, n−1;n)

= F (i, 1+w(n−1);n)+
i−1∑
L=0

nL+1F (i−(L+1), 1+(w+L+1)(n−1);n)

(combining the two forests with a fixed number of total internal nodes into a single forest)

= F (i, 1+w(n−1);n)+
i∑

L=1

nLF (i−L, 1+(w+L)(n−1);n)

=
i∑

L=0

nLF (i−L, 1+(w+L)(n−1);n)

This is the formula for |Ri| given in Theorem 3.5.1.

3.6 Summary

We developed properties of Procedure σ and Procedure τ that allowed us to partition Ri into

i+1 mutually exclusive subsets. We used the properties of forests to enumerate these subsets

and develop a recurrence relation for |Ri|. We were then able to show that the conjectured

value of |Ri| satisfies the recurrence relation, thus proving Main Theorem 2 for the general

case. These properties also helped us to develop an alternative formula for |Ri| and an

algorithm for generating elements of Ri. We also introduced new notation for Procedure σ

and Procedure τ that will allow us to write elements of Ri in a more compact way. This

notation will be particularly useful in the following chapter, in which we will provide an

additional proof for Main Theorem 2 using the occupancy problem.

63

Chapter 4

Rephrasing elements of Ri as words: an ad-

ditional proof of Main Theorem 2

In this chapter, we will demonstrate an additional proof of Main Theorem 2. It will again

be assumed throughout that, unless otherwise stated, n and w are fixed constants (with

n > 1) so we have fixed R0 = {(X1, X2, X3, . . . , Xlw)}. As such, the definitions that follow

will be dependent on the values of n and w. Recall from Section 3.1, each element of Ri

can be defined as a sequence of procedures, which can then be denoted as a word over the

alphabet Ai = {τ 1, τ2, τ 3, . . . , τn, σ1, σ2, σ3, . . . , σ`(i−1)}, where `(i−1) is the number of leaves

that every tree in an element of Ri has (see Definition 3.1.2)1. Since n and w are fixed, we

have fixed R0 = {(X1, X2, X3, . . . , Xlw)}. Enumerating the elements of Ri, then, becomes a

matter of finding the number of (non-redundant) words that represent elements of Ri. The

method we present will be original. However some standard results, as well as material from

the previous chapter, will be applied where necessary. To eliminate redundant words, we will

define a standard form for valid words over Ai. We will then develop a bijection from the set

of standard-form valid words to another set, one that can easily be enumerated through the

occupancy problem. The proof in this chapter will also lead to a straightforward algorithm

for generating Ri.

4.1 Equivalent words and standard form

Recall from Definition 3.1.4 in Section 3.1.1 that a word is said to be Ai-valid (hereafter

valid) if it represents an element of Ri. We used the set V (Ai) to represent all valid words.

1Adapted from unpublished paper by Nick Beaton.

64

Recall that a τ can be placed anywhere in a valid word, but we can place σj at position k if

and only if j ≤ `(k − 1). In Lemmas 3.1.2 and 3.1.3, we proved some properties related to

equivalent words over Ai - that is, words that represent the same element of Ri.

To enumerate Ri, then, we must enumerate the valid words of length i (over Ai) while

eliminating words that are redundant (that is, equivalent to one another). We will do this

by defining a standard form of words over Ai. This will naturally lead to an enumeration

problem on valid words in standard form, which will be of equal cardinality to Ri. We will

solve this problem by constructing a bijection to a set of words that is easier to enumerate.

Definition 4.1.1. A word of length i over Ai is said to be in standard form if the τ ’s are

written before the σ’s, and the indices on the σ’s are written in non-decreasing order. We

denote the set of all such words by S(Ai)S(Ai)S(Ai).

Remark 4.1.1. Standard form does not require the τ ’s to be in any particular order, and

Figure 4.12 illustrates that τ1τ2 6= τ2τ1. Furthermore, a word in standard form is not neces-

sarily valid. τ1σ5σ5σ6 is in standard form, but is not valid for n = w = 2.

Figure 4.1: τ1τ2 6= τ2τ1 (n = 2, w = 2).

Definition 4.1.2. SV (Ai)SV (Ai)SV (Ai) = S(Ai) ∩ V (Ai).

We will now show that there is a bijection between SV (Ai) and Ri.

2Figures created with Draw.io, https://www.draw.io/.

65

https://www.draw.io/

Lemma 4.1.1 (Surjection). Let W ∈ V (Ai). Then, there exists a word W ′ such that W ′ ∈

S(Ai) and W ∼= W ′.

Proof. We can apply Lemma 3.1.3 repeatedly so that all of the τ ’s are before the σ’s. Lemma

3.1.2 can then be applied to rearrange the σ’s so that their subscripts are in non-decreasing

order.

Thus every element of Ri has at least one word representation that is in standard form.

Lemma 4.1.2 (Injection). Let W ∈ SV (Ai). Then, no other word over Ai can be both

equivalent to W and in standard form.

Proof. Corollary 3.3.6 implies that any standard-form word equivalent to W must begin with

the same sequence of τ ’s. To construct the sequence of trees represented by W , Procedure τ

(Procedure 1.2.2) is first performed as indicated by the τ ’s.

Note that the leaves of the trees in any given element of Ri are labelled through pre-order

depth-first traversal (Definition 2.1.2). When Procedure σ (Procedure 1.2.1) is applied at

a given leaf, that leaf becomes an internal node and the labels on subsequent leaves are

increased by n − 1. When the subscripts on the σ’s are in non-decreasing order (as in a

standard-form word), this therefore implies that the trees are constructed and traversed in

the same way (pre-order depth-first traversal) as we apply Procedure σ according to the σ’s in

W . Since a tree has only one pre-order depth-first traversal, there must be only one sequence

of σ’s in increasing order that can correspond to that element and therefore no word can be

both equivalent to W and in standard form.

Thus every element of Ri has exactly one standard form word representation. This one-

to-one correspondence gives the following result.

Proposition 4.1.3. |SV (Ai)| = |Ri|.

We have now reframed the problem of enumerating elements of Ri (sequences of trees)

to a problem of enumerating words, now that we have a well-defined set SV (Ai) which is of

equal cardinality to Ri. We will next describe a strategy for enumerating the elements of

SV (Ai).

66

4.2 A strategy for enumerating the elements of SV (Ai)SV (Ai)SV (Ai)

A method for direct enumeration of the elements of SV (Ai) is not immediately obvious.

However, it is possible to set up a bijection between SV (Ai) and a set of words that is much

easier to enumerate.

Definition 4.2.1. Let U(Ai)U(Ai)U(Ai) be the set of elements of S(Ai), with the additional condition

that the indices on the τ ’s are in non-decreasing order.

U(Ai) excludes some elements of SV (Ai) (τ2τ1 where i = 2, for example). However there

are elements of U(Ai) that are not in SV (Ai), as there is no requirement for the words

in U(Ai) to be valid. If we set n = i = w = 2 for instance, we get σ4σ4 ∈ U(Ai) but

σ4σ4 /∈ SV (Ai) . Equivalently, the following four conditions define SV (Ai) and U(Ai):

1. σj can only be placed at the kth position if j ≤ `(k − 1).

2. All of the τ ’s occur before the σ’s.

3. The indices on the σ’s are in non-decreasing order.

4. The indices on the τ ’s are in non-decreasing order.

Conditions 1-3 define SV (Ai), while conditions 2-4 define U(Ai).

We will first show that |U(Ai)| is the conjectured value of |Ri|. We will then establish a

bijection between U(Ai) and SV (Ai).

4.2.1 Enumerating the elements of U(Ai)U(Ai)U(Ai): the occupancy problem

Notice that conditions 2-4 imply that calculating |U(Ai)| is equivalent to finding the number

of words of length i over an alphabet of size |Ai| with the only restriction that the letters

must be arranged in alphabetical order. Thus the only information we need to construct a

word is the number of each type of letter. This can be modelled as an occupancy problem,

the combinatorial problem of determining the number of ways in which a given number of

balls can be sorted into a given number of bins. There are many variants of the occupancy

problem - the balls and the bins may be identical or distinguishable, and empty bins may or

67

may not be allowed [17]. Calculating |U(Ai)| is equivalent to the version in which bins are

distinguishable but balls are not. Empty bins are allowed, and there are no other constraints.

The length of the word (i) is the number of balls, and each letter type corresponds to a bin.

Thus there are |Ai| total bins. The solution to this occupancy problem is a standard result

[17], though its proof will be reviewed here for the sake of completeness.

Proposition 4.2.1 ([17]). There are
(
i+|Ai|−1

i

)
ways to sort i indistinguishable balls into |Ai|

distinguishable bins.

Proof. We can represent each possibility by using a dot to represent each ball and a vertical

line to represent each boundary between two bins [17]. For example if we have i = 2, |Ai| = 3,

the possible sortings are as given in Table 4.13.

Representation Description

• • || Both balls in first bin.

•| • | One ball in first bin, one ball in second bin.

•||• One ball in first bin, one ball in third bin.

| • •| Both balls in second bin.

| • |• One ball in second bin, one ball in third bin.

|| • • Both balls in third bin.

Table 4.1: Occupancy problem for i = 2, |Ai| = 3

If there are |Ai| bins in total, there must be |Ai| − 1 vertical lines between bins. So the

number of possible sortings is the number of arrangements of i dots and |Ai|−1 vertical lines.

Thus we have a word of length i + |Ai| − 1, and we must choose i positions to be occupied

by dots. There are
(
i+|Ai|−1

i

)
ways in which to do this.

Since |Ai| = n+ 1 + (w + i− 1)(n− 1),

|S| =
(
i+ |Ai| − 1

i

)
=

(
i+ n+ 1 + (w + i− 1)(n− 1)− 1

i

)
3This example isn’t actually possible in the context of words over Ai, as it would imply that n < 2 or

w < 2. However, it still works to illustrate this case of the occupancy problem.

68

=

(
i+ n+ 1 + (w + i)(n− 1)− n+ 1− 1

i

)
=

(
(w + i)(n− 1) + i+ 1

i

)
.

This is exactly the value conjectured for |Ri|. Thus showing that |SV (Ai)| = |U(Ai)| is

enough to prove Main Theorem 2. We will prove this by constructing a bijection between

the two sets.

4.3 Proving that |SV (Ai)| = |U(Ai)||SV (Ai)| = |U(Ai)||SV (Ai)| = |U(Ai)|

We will construct a bijection f : SV (Ai) → U(Ai). We can partition SV (Ai) ∪ U(Ai) into

three subsets: SV (Ai)∩U(Ai), SV (Ai)\U(Ai), and U(Ai)\SV (Ai). To simplify the notation

we introduce the following definitions.

Definition 4.3.1. We will define SV ′(Ai)SV ′(Ai)SV ′(Ai) = SV (Ai)\U(Ai) and U ′(Ai)U ′(Ai)U ′(Ai) = U(Ai)\SV (Ai).

That is: SV ′(Ai) ⊂ SV (Ai), SV
′(Ai) ∩ U(Ai) = ∅, U ′(Ai) ⊂ U(Ai), U

′(Ai) ∩ SV (Ai) = ∅,

and SV ′(Ai) ∪ U ′(Ai) ∪ (SV (Ai) ∩ U(Ai)) = SV (Ai) ∪ U(Ai).

We will naturally define f so that any element of SV (Ai) ∩ U(Ai) is mapped to itself.

Next, we must find a way to map each element of SV ′(Ai) to a unique element of U ′(Ai).

This will involve the τ sequence at the beginning of the word, which we will define more

formally in the following section along with other key terms related to SV ′(Ai) and U ′(Ai).

Roughly speaking, sequences of τ ’s that are not in non-decreasing order are sent to blocks of

σ’s that result in an invalid word. This is illustrated in Figure 4.2 and full details are given

in the following two sections.

Figure 4.2: Mapping SV ′(Ai)→ U ′(Ai)

69

4.3.1 Prefixes and the tier of a letter

Definition 4.3.2. A simple prefix is defined to be a sequence of τ ’s of any length L > 1

satisfying the condition that the indices on the first L − 1 τ ′s are in non-decreasing order,

but the index on the Lth τ is less than the index on the (L− 1)th τ . A compound prefix

is a sequence of two or more simple prefixes.

A standard-form word over Ai must either begin with a compound prefix, begin with a

simple prefix, or have no prefix. To avoid confusion we will say that a word begins with a

simple prefix only if the remainder of the word does not have any other prefixes - that is the

original word did not begin with a compound prefix (even though a word beginning with a

compound prefix technically does begin with a simple prefix, as a compound prefix consists

of two or more simple prefixes in sequence).

Note that a word in SV (Ai) without a prefix must have either no τ ’s or its τ ’s will be in

non-decreasing order, so it will be an element of SV (Ai) ∩ U(Ai). Conversely every word in

SV ′(Ai) must begin with either a simple prefix (followed either by no τ ’s at all or τ ’s with

indices in non-decreasing order) or a compound prefix. A word in U(Ai) will have no prefix

by definition, so our objective will be to map each valid word beginning with a simple prefix

to an invalid word without a prefix. Some examples are provided for clarity.

Example 4.3.3. Suppose n = 4, w = 2. The word τ1τ2τ1σ1 begins with the simple prefix

τ1τ2τ1. The word τ1τ2τ3τ4τ4τ3τ2τ1τ1τ2τ3σ2 begins with the compound prefix τ1τ2τ3τ4τ4τ3τ2τ1

(which consists of the simple prefixes τ1τ2τ3τ4τ4τ3 and τ2τ1).

Example 4.3.4. For n = w = 2 and i = 4, a list of words in SV (Ai) and their prefixes is

given in Table 4.2.

Definition 4.3.5. The tier of a letter is the earliest possible position at which that letter

can appear in a word. If l ∈ Ai, we denote the tier of l by t(l).

For any j ∈ {1, 2, 3, . . . , n}, t(τj) = 1. As noted in 3.1.1, σj can be placed at the kth

position in a word if and only if j ≤ 1 + (w + k − 1)(n − 1). Solving this inequality for k

gives k ≥ j−1
n−1 − w + 1. By definition, the tier of any letter must be a positive integer. Thus

t(σj) = max(1, d j−1
n−1 − w + 1e).

70

Word Prefix Type of Prefix

σσσσ None N/A

τσσσ None N/A

τ1τ1σσ None N/A

τ1τ2σσ None N/A

τ2τ1σσ τ2τ1 Simple

τ2τ2σσ None N/A

τ1τ1τ1σ None N/A

τ1τ1τ2σ None N/A

τ1τ2τ1σ τ1τ2τ1 Simple

τ1τ2τ2σ None N/A

τ2τ1τ1σ τ2τ1 Simple

τ2τ1τ2σ τ2τ1 Simple

τ2τ2τ1σ τ2τ2τ1 Simple

τ2τ2τ2σ None N/A

τ1τ1τ1τ1 None N/A

Word Prefix Type of Prefix

τ1τ1τ1τ2 None N/A

τ1τ1τ2τ1 τ1τ1τ2τ1 Simple

τ1τ1τ2τ2 None N/A

τ1τ2τ1τ1 τ1τ2τ1 Simple

τ1τ2τ1τ2 τ1τ2τ1 Simple

τ1τ2τ2τ1 τ1τ2τ2τ1 Simple

τ1τ2τ2τ2 None N/A

τ2τ1τ1τ1 τ2τ1 Simple

τ2τ1τ1τ2 τ2τ1 Simple

τ2τ1τ2τ1 τ2τ1τ2τ1 Compound

τ2τ1τ2τ2 τ2τ1 Simple

τ2τ2τ1τ1 τ2τ2τ1 Simple

τ2τ2τ1τ2 τ2τ2τ1 Simple

τ2τ2τ2τ1 τ2τ2τ2τ1 Simple

τ2τ2τ2τ2 None N/A

Table 4.2: List of words in SV (Ai) for n = 2, w = 2 and i = 4. Note that for letters
with missing subscripts, the prefix and type of prefix are the same regardless of the
subscripts on these letters.

A word will be valid if and only if for every position p occupied by letter l in the word,

t(l) ≤ p. For any given word in U ′(Ai), there is a letter l at some position p such that

t(l) > p. This follows from the definition of U ′(Ai), as every word in U ′(Ai) must be invalid.

The rule we will define for mapping an element of SV ′(Ai) to U ′(Ai) will depend on

the prefix the word begins with. Roughly, the τ sequence that makes up the prefix will be

mapped to sequences of σ’s with high enough tiers to cause the output word to be invalid.

The other τ ’s and σ’s in the original word are then added to the output word in between

these σ’s. This process is illustrated in Figure 4.2.

We begin with words that have simple prefixes.

71

4.3.2 Words beginning with simple prefixes

We must develop a rule for mapping each word in SV ′(Ai) that begins with a simple prefix

(but not a compound prefix) to an element of U ′(Ai). It becomes more apparent how to

do this after we notice that there is a one-to-one correspondence between simple prefixes of

length L and words of length L in which all of the letters are of the same tier t, where t

ranges from 2 to L. Note that all of the letters in these words will be σ’s, as the tier of any

τ is 1, and all must be invalid (as the first letter will be of tier 2 or higher). Our strategy

will be to first map each (valid) simple prefix to one of these (invalid) words. This is given

more precisely in the following definition.

Definition 4.3.6. Let L be a fixed integer, where L ≥ 2. We will denote the set of all simple

prefixes of length L by XXX. The set of all standard-form words of length L consisting only of

tier t letters (where 2 ≤ t ≤ L+ 1) will be denoted by YtYtYt.

Proposition 4.3.1. |X| = |
⋃L
t=2 Yt| = (L− 1)

(
L+n−2

L

)
Proof. |

⋃L
t=2 Yt| is relatively simple to calculate. With the exception of the first tier (which

includes the n τ ’s as well as σ1 through σ1+w(n−1)), each tier has exactly n − 1 letters (as

each procedure adds exactly n − 1 new leaves). For example tier 2 consists of σ2+w(n−1)

through σ1+(w+1)(n−1) and in general, tier t (where t > 1) consists of σ2+(w+t−2)(n−1) through

1 + (w+ t− 1)(n− 1). The only restrictions on a word in Yt are that all letters need to be of

tier t and that the indices on the σ’s must be in non-decreasing order. So given a tier t ≥ 2,

the number of words is equal to the number of ways in which L indistinguishable balls can

be sorted into n − 1 distinguishable bins (empty bins are allowed). Since 2 ≤ t ≤ L, there

are L− 1 possible values for t. Thus the total number of such words is (L− 1)
(
L+n−1−1

L

)
=

(L− 1)
(
L+n−2

L

)
.

We can calculate |X|, the number of simple prefixes of length L, by considering each

possible case for the second-last letter in the prefix. Suppose the second-last letter is τj.

Then the first L − 2 letters of the prefix are elements of the set {τ1, τ 2, τ3, . . . , τj}, and the

indices on the first L− 2 τ ′s are in non-decreasing order. The number of possibilities for the

first L−2 letters of the prefix is equal to the number of ways in which L−2 indistinguishable

72

balls can be sorted into j distinguishable bins (empty bins are allowed). There are also j− 1

possibilities for the last letter of the prefix as it must be a τ with an index strictly less than

j. Thus if the second-last letter is τj, there are
(
L−2+j−1
L−2

)
(j − 1) =

(
L+j−3
L−2

)
(j − 1) prefixes of

length L. Summing over all possible values of j, there are

n∑
j=2

(
L+ j − 3

L− 2

)
(j − 1)

total prefixes of length L.

Thus we must now prove that the equality

n∑
j=2

(
L+ j − 3

L− 2

)
(j − 1) = (L− 1)

(
L+ n− 2

L

)
holds for all possible combinations of L, n. This is done through induction on n. For

n = 2, the left side becomes

n∑
j=2

(
L+ j − 3

L− 2

)
(j − 1) =

2∑
j=2

(
L+ j − 3

L− 2

)
(j − 1)

=

(
L+ 2− 3

L− 2

)
(2− 1) =

(
L− 1

L− 2

)
=

(L− 1)!

(L− 2)!(L− 1− L+ 2)!

=
(L− 1)(L− 2)!

(L− 2)! · 1!
= L− 1

The right side becomes

(L− 1)

(
L+ n− 2

L

)
= (L− 1)

(
L+ 2− 2

L

)
= (L− 1)

(
L

L

)
= L− 1

So the equality holds for n = 2.

Next, suppose that the equality holds for all n ≤ m for some m ≥ 2. For n = m+ 1, the

left-side becomes

n∑
j=2

(
L+ j − 3

L− 2

)
(j − 1) =

m+1∑
j=2

(
L+ j − 3

L− 2

)
(j − 1)

=

(
L+m+ 1− 3

L− 2

)
(m+ 1− 1) +

m∑
j=2

(
L+ j − 3

L− 2

)
(j − 1)

= m

(
L+m− 2

L− 2

)
+ (L− 1)

(
L+m− 2

L

)
73

= m
(L+m− 2)!

(L− 2)!m!
+ (L− 1)

(L+m− 2)!

L!(m− 2)!

=
(L+m− 2)!

(L− 2)!(m− 2)!
(

m

m(m− 1)
+

L− 1

L(L− 1)
)

=
(L+m− 2)!

(L− 2)!(m− 2)!
(

1

m− 1
+

1

L
)

=
(L+m− 2)!

(L− 2)!(m− 2)!
(
L+m− 1

L(m− 1)
) =

(L+m− 1)!

(m− 1)!(L)(L− 2)!

=
(L+m− 1)!

(m− 1)!L(L− 2)!
· L− 1

L− 1
=

(L+m− 1)!(L− 1)

(m− 1)!L!
= (L− 1)

(
L+m− 1

L

)
= (L− 1)

(
L+ (m+ 1)− 2

L

)
= (L− 1)

(
L+ n− 2

L

)
Thus the equality holds for n = m+ 1. This proves the proposition for all L, n combina-

tions.

So we can map each simple prefix of length L to a word of length L composed only of

tier t letters, where 2 ≤ t ≤ L (with indices on the σ’s in non-decreasing order). It does

not really matter which word we map each prefix to, but the most natural way would be

to list both sets in lexiographical order and simply make a correspondence according to this

ordering. We denote this function by ggg.

Example 4.3.7. For w = 2, n = 3, the simple prefixes of length 2, 3, and 4 and their

corresponding images are as given in Table 4.3.

For any prefix P , g(P) is not a valid word (as the tier of the first letter is at least 2). We

will next define our function mapping SV ′(Ai)→ U ′(Ai) for all elements of SV ′(Ai) (that is,

valid words in standard form) beginning with a simple prefix.

Definition 4.3.8. Let W ∈ SV ′(Ai) be a word beginning with a simple prefix. We use the

following procedure to define f(W):

1. If W is a simple prefix, then f(W) = g(W).

2. Otherwise,

(a) Identify the (simple) prefix of W , hereafter P .

74

P g(P)

τ2τ1 σ6σ6

τ3τ1 σ6σ7

τ3τ2 σ7σ7

τ1τ2τ1 σ6σ6σ6

τ1τ3τ1 σ6σ6σ7

τ1τ3τ2 σ6σ7σ7

τ2τ2τ1 σ7σ7σ7

τ2τ3τ1 σ8σ8σ8

τ2τ3τ2 σ8σ8σ9

τ3τ3τ1 σ8σ9σ9

τ3τ3τ2 σ9σ9σ9

τ1τ1τ2τ1 σ6σ6σ6σ6

τ1τ1τ3τ1 σ6σ6σ6σ7

P g(P)

τ1τ1τ3τ2 σ6σ6σ7σ7

τ1τ2τ2τ1 σ6σ7σ7σ7

τ1τ2τ3τ1 σ7σ7σ7σ7

τ1τ2τ3τ2 σ8σ8σ8σ8

τ1τ3τ3τ1 σ8σ8σ8σ9

τ1τ3τ3τ2 σ8σ8σ9σ9

τ2τ2τ2τ1 σ8σ9σ9σ9

τ2τ2τ3τ1 σ9σ9σ9σ9

τ2τ2τ3τ2 σ10σ10σ10σ10

τ2τ3τ3τ1 σ10σ10σ10σ11

τ2τ3τ3τ2 σ10σ10σ11σ11

τ3τ3τ3τ1 σ10σ11σ11σ11

τ3τ3τ3τ2 σ11σ11σ11σ11

Table 4.3: Simple prefixes of length 2, 3, and 4 with their corresponding images for
n = 3, w = 2.

(b) Write g(P). This will hereafter be called the “translated prefix”. All letters in the

translated prefix will be of the same tier (between 2 and L).

(c) Read the remainder of W from left to right. Take the first letter that has not yet

been read. This will be called l.

i. If t(l) exceeds the tier of the translated prefix, write l at the end of the word.

This ensures l stays in the word, the translated prefix can be identified in

f(W), and f(W) remains invalid.

ii. Otherwise, write l immediately before the translated prefix. Increase the index

on each of the letters to the right of l by n− 1. This ensures that f(W) will

be invalid, the translated prefix can be identified in f(W), and l remains in

the word.

(d) Repeat step c until all of W has been read. The output is f(W).

75

The easiest way to understand this procedure is with an example, which will be worked

out step-by-step.

Example 4.3.9. Let w = 2, n = 3. In Table 4.4, it is shown that f(τ2τ3τ1τ2τ3σ13σ16σ19) =

τ2τ3σ13 σ14σ14σ14 σ16σ19 (as defined in Definition 4.3.8). Note that τ2τ3σ13σ14σ14σ14σ16σ19 is

an invalid word (since t(σ14) = 6) and an element of U(Ai) (since the indices on the τ ’s are

in non-decreasing order). Thus f(τ2τ3τ1τ2τ3σ13σ16σ19) ∈ U ′(Ai).

Input letter(s) Current output Notes

τ2τ3τ1 σ8σ8σ8 Prefix P is τ2τ3τ1. Translated prefix g(P) will

be underlined to distinguish it. See Table 4.3.

t(σ8) = 3

τ2 τ2 σ10σ10σ10 t(τ2) = 1. Since 1 < t(σ8), we write τ2 before

the translated prefix and increase the indices

by n− 1 = 3− 1 = 2. t(σ10) = 4

τ3 τ2τ3 σ12σ12σ12 t(τ3) = 1. Since 1 < t(σ10), we write τ3 be-

fore the translated prefix and increase the in-

dices accordingly. t(σ12) = 5

σ13 τ2τ3σ13 σ14σ14σ14 t(σ13) = 5. Since 5 = t(σ12), we write σ13

before the translated prefix and increase the

indices accordingly t(σ14) = 6

σ16 τ2τ3σ13 σ14σ14σ14 σ16 t(σ16) = 6. Since 6 > t(σ14), we simply write

σ16 at the end of the word.

σ19 τ2τ3σ13 σ14σ14σ14 σ16σ19 t(σ19) = 7. Since 7 > t(σ14), we simply write

σ19 at the end of the word.

Table 4.4: f(τ2τ3τ1τ2τ2σ13σ16σ19)

4.3.3 Words beginning with compound prefixes

Thus far, we have been able to calculate f(W) for any W ∈ SV (Ai) such that W ∈ U(Ai)

or W begins with a simple prefix (this includes cases in which W itself is a simple prefix).

76

We must now develop a rule for mapping words beginning with compound prefixes to U(Ai),

one that does not contradict the previous rules. If we were given the word W = τ2τ1τ2τ1σ1

and n = 3, w = 2, using Definition 4.3.8 to calculate f(W) would not produce an element

of U ′(Ai) (as we would still be left with two τ ’s not in non-decreasing order after translating

the first simple prefix τ2τ1). Thus we need to extend our definition to cover words beginning

with compound prefixes.

We will start with the case where W itself is a compound prefix. Our strategy will be

a generalization of the strategy for mapping simple prefixes to invalid words (in which all

letters of the translated prefix have the same tier). A compound prefix is a sequence of simple

prefixes. We will thus map each component simple prefix to a word of the same length, with

all letters of the same tier. We will ensure that each of these translated simple prefixes is of

a different tier, and that the final word is invalid.

More precisely, let W = P1P2P3 . . . Pp, where Pj is a simple prefix of length Lj for 1 ≤

j ≤ p, and let L =
∑p

j=1 Lj. We will show that the following procedure can be used to map

W to an element of U ′(Ai):

1. Replace Pp with a word of length Lp composed only of tier t letters, where L−Lp+2 ≤

t ≤ L (with indices on the σ’s in non-decreasing order). By convention, we will use

the same lexiographical ordering system used for simple prefixes. For the remainder of

the procedure, we will denote this value of t as tp. This first step ensures that the final

word is invalid.

2. For each j from p − 1 to 1 (counting downward), replace Pj with a word of length Lj

composed only of tier t letters (indices on σ’s in non-decreasing order), where tj+1 −

Lj + 1 ≤ t ≤ tj+1 − 1. By convention, we will use the same lexiographical ordering

system used for simple prefixes. For the remainder of this procedure, we will denote

this value of t as tj. This step ensures that each simple prefix is mapped to a word of

a different tier.

We will denote this procedure by ggg. Note that this is a generalization of the g we had in the

previous section, so we use the same notation.

Proposition 4.3.2. g is well-defined and injective.

77

Proof. We will first show that g is well-defined. As proven in Proposition 4.3.1 the number of

simple prefixes of length Lj is equal to (Lj − 1)
(
n+Lj−2

Lj

)
, the number of standard-form words

of length Lj composed only of tier t letters (where 2 ≤ t ≤ Lj). The number of words of

length Lj composed only of tier t letters, where instead t ranges from tj+1−Lj +1 to tj+1−1,

is also equal to (Lj − 1)
(
n+Lj−2

Lj

)
. Similarly the number of words of length Lp composed

only of tier t letters, where t ranges from L − Lp + 2 to L, is equal to (Lp − 1)
(
n+Lp−2

Lp

)
.

Furthermore, each simple prefix is guaranteed to be translated to a word of a different tier

(in step 2), and it can be shown by induction on p that the first (leftmost) simple prefix will

always be translated to a word of tier p + 1 or higher (so g(P) must be invalid for every

compound prefix P). Thus g is well-defined for every compound prefix.

We will next show that g is an injective map. Let P and Q be compound prefixes,

and suppose g(P) = g(Q). We will show that P = Q. Without loss of generality we will

take g(P) = W1W2 . . .Wp, where p ≥ 2 and Wj is a standard-form word of length Lj and

composed solely of tier tj letters (for 1 ≤ j ≤ p). We also need L− Lp + 2 ≤ tp ≤ L (where

L is the total length of g(P) and, by definition, P and Q as well) and, for 1 ≤ j ≤ p − 1,

tj+1 − Lj + 1 ≤ t ≤ tj+1 − 1. We can use the following procedure to get P given g(P):

1. Make a list of simple prefixes of length Lp in lexicographical order. Then make a list

of standard-form words, in lexicographical order, consisting only of letters of the same

tier (with tier ranging from L−Lp + 2 to L). Draw a correspondence between the two

sets. Wp is matched to Pp, the last simple prefix of P . Because this correspondence is

one-to-one, the last simple prefix of Q must also be Pp.

2. For each j from p−1 to 1 (counting downward), make a list of simple prefixes of length

Lj in lexicographical order. Then make a list of standard-form words, in lexicographical

order, consisting only of letters of the same tier (with tier ranging from tj+1 − Lj + 1

to tj − 1). Draw a correspondence between the two sets. Wj is matched to Pj, the jth

simple prefix of P . Because this correspondence is one-to-one, the jth simple prefix of

Q must also be Pj.

Since all simple prefixes in both P and Q are the same, P = Q and g is an injective map.

78

Example 4.3.10. For n = 3, w = 2, the compound prefixes of length 4, 5 and their

corresponding images are as given in Tables 4.5 and 4.6.

P g(P)

τ2τ1τ2τ1 σ8σ8σ10σ10

τ2τ1τ3τ1 σ8σ8σ10σ11

τ2τ1τ3τ2 σ8σ8σ11σ11

τ3τ1τ2τ1 σ8σ9σ10σ10

τ3τ1τ3τ1 σ8σ9σ10σ11

τ3τ1τ3τ2 σ8σ9σ11σ11

τ3τ2τ2τ1 σ9σ9σ10σ10

τ3τ2τ3τ1 σ9σ9σ10σ11

τ3τ2τ3τ2 σ9σ9σ11σ11

Table 4.5: The compound prefixes of length 4 and their corresponding images for
n = 3, w = 2.

We will next define our function mapping SV ′(Ai)→ U ′(Ai) for all elements of SV ′(Ai)

(that is, valid words in standard form) beginning with a compound prefix.

Definition 4.3.11. Let W ∈ SV ′(Ai) be a word beginning with a compound prefix. We use

the following procedure to find f(W):

1. If W is a compound prefix, then f(W) = g(W).

2. Otherwise,

(a) Identify the (compound) prefix of W , hereafter P .

(b) Write g(P). This will hereafter be called the “translated prefix”. Keep track of

which component of g(P) corresponds to each simple prefix comprising P . All

letters in a given component of the translated prefix will be of the same tier, and

no two components will have the same tier.

(c) Read the remainder of W from left to right. Take the first letter that has not yet

been read. This will be called l.

79

P g(P)

τ1τ2τ1τ2τ1 σ8σ8σ8σ12σ12

τ1τ2τ1τ3τ1 σ8σ8σ8σ12σ13

τ1τ2τ1τ3τ2 σ8σ8σ8σ13σ13

τ1τ3τ1τ2τ1 σ8σ8σ9σ12σ12

τ1τ3τ1τ3τ1 σ8σ8σ9σ12σ13

τ1τ3τ1τ3τ2 σ8σ8σ9σ13σ13

τ1τ3τ2τ2τ1 σ8σ9σ9σ12σ12

τ1τ3τ2τ3τ1 σ8σ9σ9σ12σ13

τ1τ3τ2τ3τ2 σ8σ9σ9σ13σ13

τ2τ2τ1τ2τ1 σ9σ9σ9σ12σ12

τ2τ2τ1τ3τ1 σ9σ9σ9σ12σ13

τ2τ2τ1τ3τ2 σ9σ9σ9σ13σ13

τ2τ3τ1τ2τ1 σ10σ10σ10σ12σ12

τ2τ3τ1τ3τ1 σ10σ10σ10σ12σ13

τ2τ3τ1τ3τ2 σ10σ10σ10σ13σ13

τ2τ3τ2τ2τ1 σ10σ10σ11σ12σ12

P g(P)

τ2τ3τ2τ3τ1 σ10σ10σ11σ12σ13

τ2τ3τ2τ3τ2 σ10σ10σ11σ13σ13

τ3τ3τ1τ2τ1 σ10σ11σ11σ12σ12

τ3τ3τ1τ3τ1 σ10σ11σ11σ12σ13

τ3τ3τ1τ3τ2 σ10σ11σ11σ13σ13

τ3τ3τ2τ2τ1 σ11σ11σ11σ12σ12

τ3τ3τ2τ3τ1 σ11σ11σ11σ12σ13

τ3τ3τ2τ3τ2 σ11σ11σ11σ13σ13

τ2τ1τ1τ2τ1 τ8τ8τ10τ10τ10

τ2τ1τ1τ3τ1 τ8τ8τ10τ10τ11

τ2τ1τ1τ3τ2 τ8τ8τ10τ11τ11

τ2τ1τ2τ2τ1 τ8τ8τ11τ11τ11

τ2τ1τ2τ3τ1 τ10τ10τ12τ12τ12

τ2τ1τ2τ3τ2 τ10τ10τ12τ12τ13

τ2τ1τ3τ3τ1 τ10τ10τ12τ13τ13

τ2τ1τ3τ3τ2 τ10τ10τ13τ13τ13

P g(P)

τ3τ1τ1τ2τ1 τ8τ9τ10τ10τ10

τ3τ1τ1τ3τ1 τ8τ9τ10τ10τ11

τ3τ1τ1τ3τ2 τ8τ9τ10τ11τ11

τ3τ1τ2τ2τ1 τ8τ9τ11τ11τ11

τ3τ1τ2τ3τ1 τ10τ11τ12τ12τ12

τ3τ1τ2τ3τ2 τ10τ11τ12τ12τ13

τ3τ1τ3τ3τ1 τ10τ11τ12τ13τ13

τ3τ1τ3τ3τ2 τ10τ11τ13τ13τ13

τ3τ2τ1τ2τ1 τ9τ9τ10τ10τ10

τ3τ2τ1τ3τ1 τ9τ9τ10τ10τ11

τ3τ2τ1τ3τ2 τ9τ9τ10τ11τ11

τ3τ2τ2τ2τ1 τ9τ9τ11τ11τ11

τ3τ2τ2τ3τ1 τ11τ11τ12τ12τ12

τ3τ2τ2τ3τ2 τ11τ11τ12τ12τ13

τ3τ2τ3τ3τ1 τ11τ11τ12τ13τ13

τ3τ2τ3τ3τ2 τ11τ11τ13τ13τ13

Table 4.6: The compound prefixes of length 5 and their corresponding images for
n = 3, w = 2.

i. If t(l) exceeds the tier of every component of the translated prefix, write l at

the end of the word.

ii. Otherwise, write l immediately before the leftmost component with tier greater

than or equal to t(l). Increase the index on each letter to the right of l by

n− 1 (this ensures that the f(W) will be invalid).

(d) Repeat step c until all of W has been read. The output is f(W).

We will work through an example step-by-step to illustrate how this procedure is applied.

Example 4.3.12. Let w = 2, n = 3. In Table 4.7 it is shown that

f(τ1τ2τ1τ3τ2τ1τ3τ2τ1τ2τ2σ16σ20σ27σ30) = τ1τ2τ2σ16σ18σ18σ18σ20σ25σ25σ27σ28σ29σ29σ30,

80

as defined in Definition 4.3.11. Notes on Table 4.7:

1. The prefix is τ1τ2τ1τ3τ2τ1τ3τ2, composed of three separate simple prefixes: τ1τ2τ1, τ3τ2,

and τ1τ3τ2. Following the procedure for translating compound prefixes,

g(τ1τ2τ1τ3τ2τ1τ3τ2) = σ10σ10σ10σ15σ15σ16σ17σ17.

Each part of the translated prefix has been underlined to distinguish it. t(σ10) = 4,

t(σ15) = 6, t(σ16) = t(σ17) = 7

2. t(τ1) = 1. Since 1 < t(σ10), we write τ1 before the first component of the translated

prefix and increase the indices accordingly. t(σ12) = 5, t(σ17) = 7, t(σ18) = t(σ19) = 8

3. t(τ2) = 1. Since 1 < t(σ12), we write τ2 before the first component of the translated

prefix and increase the indices accordingly. t(σ14) = 6, t(σ19) = 8, t(σ20) = t(σ21) = 9

4. t(τ2) = 1. Since 1 < t(σ14), we write τ2 before the first component of the translated

prefix and increase the indices accordingly. t(σ16) = 7, t(σ21) = 9, t(σ22) = t(σ23) = 10

5. t(σ16) = 7. Since 7 = t(σ16), we write σ16 before the first component of the translated

prefix and increase the indices accordingly. t(σ18) = 8, t(σ23) = 10, t(σ24) = t(σ25) = 11

6. t(σ20) = 9. Since t(σ18) < 9 < t(σ23), we write σ20 after the first component but before

the second component of the translated prefix and increase the indices accordingly.

t(σ25) = 11, t(σ26) = t(σ27) = 12.

7. t(σ27) = 12. Since t(σ25) < 12 ≤ t(σ27), we write σ27 after the second component but

before the third component of the translated prefix and increase the indices accordingly.

t(σ28) = t(σ29) = 13.

8. t(σ30) = 14. Since 14 > t(σ29), we write σ30 at the end of the word. Thus,

f(τ1τ2τ1τ3τ2τ1τ3τ2τ1τ2τ2σ16σ20σ27σ30) = τ1τ2τ2σ16σ18σ18σ18σ20σ25σ25σ27σ28σ29σ29σ30.

Note that τ1τ2τ2σ16σ18σ18σ18σ20σ25σ25σ27σ28σ29σ29σ30 is an invalid word (since t(σ16) =

7) and an element of U(Ai) (since the indices on the τ ’s are in non-decreasing order).

Thus f(τ1τ2τ1τ3τ2τ1τ3τ2τ1τ2τ2σ16σ20σ27σ30) ∈ U ′(Ai).

81

Input Letter(s) Current output Notes

τ1τ2τ1τ3τ2τ1τ3τ2 σ10σ10σ10 σ15σ15 σ16σ17σ17 1

τ1 τ1 σ12σ12σ12 σ17σ17 σ18σ19σ19 2

τ2 τ1τ2 σ14σ14σ14 σ19σ19 σ20σ21σ21 3

τ2 τ1τ2τ2 σ16σ16σ16 σ21σ21 σ22σ23σ23 4

σ16 τ1τ2τ2σ16 σ18σ18σ18 σ23σ23 σ24σ25σ25 5

σ20 τ1τ2τ2σ16 σ18σ18σ18 σ20 σ25σ25 σ26σ27σ27 6

σ27 τ1τ2τ2σ16 σ18σ18σ18 σ20 σ25σ25 σ27 σ28σ29σ29 7

σ30 τ1τ2τ2σ16 σ18σ18σ18 σ20 σ25σ25 σ27 σ28σ29σ29 σ30 8

Table 4.7: f(τ1τ2τ1τ3τ2τ1τ3τ2τ1τ2τ2σ16σ20σ27σ30)

We have now constructed a map from SV (Ai) to U(Ai), defined for all words in SV (Ai).

It must still be shown that this map is bijective. This will be proven in the following section.

4.3.4 Showing that f is a bijection

Our definition of f(W) in cases where W begins with a simple prefix is a special case of the

definition for words beginning with compound prefixes. This simplifies the final definition of

f .

Given a word W ∈ SV (Ai), we calculate f(W) as follows:

1. If W ∈ U(Ai), f(W) = W .

2. If W is a prefix (simple or compound), then f(W) = g(W)

3. Otherwise, W will begin with a compound prefix:

(a) Identify the prefix of W , hereafter P .

(b) Write g(P). This will hereafter be called the “translated prefix”. Keep track of

which component of g(P) corresponds to each simple prefix comprising P (there

will be only one component if P is simple). All letters in a given component of

82

the translated prefix will be of the same tier, and no two components will have

the same tier.

(c) Read the remainder of W from left to right. Take the first letter that has not yet

been read. This will be called l.

i. If t(l) exceeds the tier of every component of the translated prefix, write l at

the end of the word.

ii. Otherwise, write l immediately before the leftmost component with tier greater

than or equal to t(l). Increase the subscript on each letter to the right of l by

n− 1 (this ensures that the f(W) will be invalid).

(d) Repeat step c until all of W has been read. The output is f(W).

We must prove now that f is a bijection from SV (Ai) to U(Ai). That is f is well-defined,

injective, and surjective.

Lemma 4.3.3. f is a well defined function mapping SV (Ai) to U(Ai).

Proof. This follows immediately. f(W) cannot have a prefix, so the subscripts on the τ ’s

must be in non-decreasing order. This ensures f(W) ∈ U(Ai). The procedure for calculating

f(W) defines a way to map each element of SV (Ai) to a single element of U(Ai). This

includes each type of element: elements of SV (Ai) ∩ U(Ai), words beginning with a simple

prefix, and words beginning with a compound prefix.

To show that f is a bijection, we will prove that f has an inverse function. First, define

h : U(Ai)→ SV (Ai) as follows: given a word V ∈ U(Ai),

1. If V ∈ SV (Ai), then h(V) = V .

2. Otherwise, V is invalid. We will keep track of the tier and position of each letter of

V , and a sequence of letters of the same tier will be referred to as a block. Suppose V

consists of b blocks B1, B2, . . . , Bb. To calculate h(V), we execute the following steps.

We initially have a null word as the output and as the remainder.

For j = b to 1 (counting downwards),

83

(a) If the remainder is a null word,

i. If the position of the first (leftmost) letter of Bj is at least t(Bj), write Bj at

the beginning (far left) of the output word.

ii. If t(Bj) exceeds the position of the first letter of Bj, Bj becomes the remainder.

The output is not changed.

(b) Otherwise, let r be the first (leftmost) letter of the remainder.

i. If t(r)−t(Bj) ≥ LBj (where LBj is the length of Bj), write Bj at the beginning

of the remainder. The output is not changed.

ii. Otherwise, write Bj at the beginning of the output. In the remainder, the

subscript of each σ is reduced by LBj(n− 1).

Once this has been done for all blocks, find the prefix P such that g(P) gives the

remainder. Write P at the beginning of the output word. The final output is h(V).

This is most easily illustrated with an example.

Example 4.3.13. We will let w = 2, n = 3 and show that

h(τ1τ2τ2σ16σ18σ18σ18σ20σ25σ25σ27σ28σ29σ29σ30) = τ1τ2τ1τ3τ2τ1τ3τ2τ1τ2τ2σ16σ20σ27σ30

The first step is to write down the tier and position of each letter in h.

τ1 τ2 τ2 σ16 σ18 σ18 σ18 σ20 σ25 σ25 σ27 σ28 σ29 σ29 σ30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 1 7 8 8 8 9 11 11 12 13 13 13 14

So the blocks are: τ1τ2τ2, σ16, σ18σ18σ18, σ20, σ25σ25, σ27, σ28σ29σ29, σ30. In Table 4.8, we

process each of these blocks starting with σ30. Notes on Table 4.8:

1. t(σ30) = 14, and this block begins at position 15. Thus it’s not a part of the remainder

and will be added to the output.

2. t(σ28) = 13, and this block begins at position 12. Thus it’s part of the remainder.

84

3. The length of this block is 1, and the tier is 12. The tier of the first block of the

remainder is 13. Since 13− 12 ≥ 1, this block is not part of the remainder and will be

added to the output. In the remainder, we reduce each subscript by 1(n−1) = 3−1 = 2.

4. The length of this block is 2, and the tier is 11. The tier of the first block of the

remainder is 12. Since 12− 11 < 2, this block is part of the remainder.

5. The length of this block is 1, and the tier is 9. The tier of the first block of the remainder

is 11. Since 11 − 9 ≥ 1, this block is not part of the remainder and will be added to

the output. In the remainder, we reduce each subscript by 1(n− 1) = 3− 1 = 2.

6. The length of this block is 3, and the tier is 8. The tier of the first block of the remainder

is 10. Since 10− 8 < 3, this block is part of the remainder.

7. The length of this block is 1, and the tier is 7. The tier of the first block of the remainder

is 8. Since 8− 7 ≥ 1, this block is not part of the remainder and will be added to the

output. In the remainder, we reduce each subscript by 1(n− 1) = 3− 1 = 2.

8. The length of this block is 3, and the tier is 1. The tier of the first block of the remainder

is 7. Since 7− 1 ≥ 3, this block is not part of the remainder and will be added to the

output. In the remainder, we reduce each subscript by 3(n− 1) = 3(3− 1) = 6.

9. The final remainder is σ10σ10σ10σ15σ15σ16σ17σ17. As demonstrated in Example 4.3.12,

this corresponds to the prefix τ1τ2τ1τ3τ2τ1τ3τ2. Thus,

h(τ1τ2τ2σ16σ18σ18σ18σ20σ25σ25σ27σ28σ29σ29σ30) = τ1τ2τ1τ3τ2τ1τ3τ2τ1τ2τ2σ16σ20σ27σ30.

This example is summarized in Figure 4.3.

We must now prove that h is well-defined (that is, h(V) has exactly one value for every

word V ∈ U(Ai)) and that h is an inverse of f .

Lemma 4.3.4. h is well-defined.

Proof. There are three cases that need to be considered: cases where V is valid, cases where

(after reading all blocks of V) the remainder consists of only one block, and cases in which

the remainder consists of two or more blocks.

85

Block Current output Current remainder Notes

σ30 σ30 None 1

σ28σ29σ29 σ30 σ28σ29σ29 2

σ27 σ27σ30 σ26σ27σ27 3

σ25σ25 σ27σ30 σ25σ25σ26σ27σ27 4

σ20 σ20σ27σ30 σ23σ23σ24σ25σ25 5

σ18σ18σ18 σ20σ27σ30 σ18σ18σ18σ23σ23σ24σ25σ25 6

σ16 σ16σ20σ27σ30 σ16σ16σ16σ21σ21σ22σ23σ23 7

τ1τ2τ2 τ1τ2τ2σ16σ20σ27σ30 σ10σ10σ10σ15σ15σ16σ17σ17 8

Prefix τ1τ2τ1τ3τ2τ1τ3τ2τ1τ2τ2σ16σ20σ27σ30 σ10σ10σ10σ15σ15σ16σ17σ17 9

Table 4.8: h(τ1τ2τ2σ16σ18σ18σ18σ20σ25σ25σ27σ28σ29σ29σ30).

Figure 4.3: Mapping U ′(Ai)→ SV ′(Ai)

The first case follows immediately from the definition. Every valid word without a prefix

is an element of SV (Ai), so h(V) ∈ SV (Ai) for any valid word V .

For the second case, let V = V1BV2, where B is the block that will comprise the remainder

(V1 and V2 may have any number of blocks, or may be null words). Let L1, LB, and L2 be

the lengths of V1, B, and V2 respectively. Clearly t(B) > L1 + 1 (as otherwise V would be

valid), so t(B) − L1 > 1. That is, t(B) − L1 ≥ 2. Thus the tier of V ′ is at least 2. On the

other hand, t(B) must be less than the tier of the first block of V2. This value is at most

L1 +LB + 1. Thus t(B) < L1 +LB + 1, or t(B)−L1 < LB + 1. That is, 2 ≤ t(B)−L1 ≤ LB.

So the tier of B ranges between 2 and LB (the length of the block). When finding h(V),

86

the final step of the algorithm leaves B as the remainder and V1V2 as the current output.

By Proposition 4.3.1, we can map every possible remainder B to a simple prefix P . Thus

h(V) = PV1V2.

For the third case, let b be the total number of blocks in the remainder and let V =

V1B1V2B2 . . . VbBbVb+1 (where B1, B2, . . . , Bb will be the blocks that comprise the remainder

and V1, V2, . . . , Vb+1 are words consisting of any number of blocks). Let Li be the length of

Vi and LBi be the length of Bi. In the final remainder then, the tier of the final block will

be t(Bb)−
∑b

j=1 Li.

For Bb to be part of the remainder we need t(Bb) > 1 +
∑b−1

i=1 LBi +
∑b

j=1 Li, so

t(Bb)−
b∑

j=1

Li ≥ 2 +
b−1∑
i=1

LBi .

On the other hand, t(Bb) must be less than or equal to the total length of V (less the length

of Vb+1). That is,

t(Bb) ≤
b∑
i=1

LBi +
b∑

j=1

Lj

t(Bb)−
b∑

j=1

Lj ≤
b∑
i=1

LBi .

Putting these together, we get

2 +
b−1∑
i=1

LBi ≤ t(Bb)−
b∑

j=1

Li ≤
b∑
i=1

LBi

2 +
b∑
i=1

LBi − LBi ≤ t(Bb)−
b∑

j=1

Li ≤
b∑
i=1

LBi .

Compare this with the output of g(P) for an arbitrary prefix P composed of b simple prefixes

(as in Proposition 4.3.2). The tier of the final block of the translated prefix is between

LP − Lb + 2 and LP , where LP is the total length of the prefix and Lb is the length of the

final simple prefix. This is exactly the range we have calculated above.

Next, consider an arbitrary block Bj, where 1 ≤ j < b. On the one hand, for Bj to be

part of the remainder we need

(t(Bj+1)− Lj+1)− t(Bj) < LBj

87

(t(Bj+1)− Lj+1)− LBj < t(Bj)

t(Bj) > (t(Bj+1)− Lj+1)− LBj

t(Bj) ≥ 1 + (t(Bj+1)− Lj+1)− LBj

t(Bj)−
j∑
i=1

Li ≥ 1 + t(Bj+1)−
j∑
i=1

Li − Lj+1 − LBj

t(Bj)−
j∑
i=1

Li ≥ 1 + (t(Bj+1)−
j+1∑
i=1

Li)− LBj .

On the other hand t(Bj) must be less than the tier of the first block of Vj+1, which we

will denote by V1,j+1. Since Vj+1 is part of the output, we need t(Bj+1) − t(V1,j+1) ≥ Lj+1.

That is,

t(Bj+1)− t(V1,j+1) ≥ Lj+1

t(Bj+1)− Lj+1 ≥ t(V1,j+1)

t(Bj) < t(V1,j+1) ≤ t(Bj+1)− Lj+1

t(Bj) ≤ t(Bj+1)− Lj+1 − 1

t(Bj)−
j∑
i=1

Li ≤ t(Bj+1)− Lj+1 −
j∑
i=1

Li − 1

t(Bj)−
j∑
i=1

Li ≤ (t(Bj+1)−
j+1∑
i=1

Li)− 1.

Combining these inequalities, we obtain:

1 + (t(Bj+1)−
j+1∑
i=1

Li)− LBj ≤ t(Bj)−
j∑
i=1

Li ≤ (t(Bj+1)−
j+1∑
i=1

Li)− 1.

Compare this with the output of g(P) for an arbitrary prefix P composed of b simple

prefixes (as in Proposition 4.3.2). The tier of the jth block of the translated prefix (where

1 ≤ j < b), denoted by tj, is between tj+1 − Lj + 1 and tj+1 − 1, where Lj is the length of

the jth simple prefix. This is exactly the range we have calculated above.

Thus we can find a prefix P such that g(P) gives the final remainder. This means h(V)

is well-defined for any V ∈ U(Ai).

88

Lemma 4.3.5. f and h are inverse functions.

Proof. We will prove that h(f(W)) = W for all W ∈ SV (Ai). This is most easily seen if we

look at the equivalent definition of f in terms of blocks:

Given a word W ∈ SV (Ai), we calculate f(W) as follows:

1. If W ∈ U(Ai), f(W) = W .

2. If W is a prefix, then f(W) = g(W).

3. Otherwise, W will begin with a simple prefix or a compound prefix:

(a) Identify the prefix of W , hereafter P . It is composed of the simple prefixes

P1, P2, . . . , Pp, where p ≥ 1.

(b) Write g(P). This will hereafter be called the “translated prefix”, Q. Q will be

composed of the blocks Q1, Q2, . . . , Qp. These will hereafter be referred to as the

Q-blocks.

(c) The remainder of W will be the blocks B1, B2, . . . , Bk, where k ≥ 1. For each j

from 1 to k, write Bj to the right of Bj−1 (if j > 1), to the left of any Q-blocks of

tier less than t(Bj), and to the right of any Q-blocks of tier greater than or equal

to t(Bj). For Q-blocks to the right of Bj, increase the tier of each of these blocks

by the length of Bj (that is, add LBj(n− 1) to the index on each letter).

(d) The output is f(W).

Now, to calculate h(f(W)) we read the word from right to left (one block at a time). Every

block will either be a B-block or a Q-block (in the latter case, the tier will have been

increased). We must ensure that h correctly identifies which blocks are B-blocks and which

are Q-blocks, and that the original translated prefix Q is all that remains after all blocks

have been read. We know from the definition of g, the prefix translation function, that the

tier of the rightmost Q-block must be greater than the position of its first (leftmost) letter.

Conversely, any block that meets this criterion cannot be a B-block (as that would result

in an invalid word after applying h). After the right-most Q-block has been identified, we

continue reading blocks from right to left, determining whether the tier of the next block

89

exceeds the tier of the leftmost known Q-block by at least the length of the block. If so, we

reduce the tier on all known Q-blocks by the length of the block. This is, again, consistent

with the above definition of f as well as the prefix translation function. Every step of h

undoes a step of f , but in the reverse order. Thus we eventually do get Q as our remainder

and W as the final result. Likewise, we could similarly reason that f(h(W)) = W .

This proves that there exists a bijection between SV (Ai) and U(Ai). Thus, |Ri| =

|SV (Ai)| = |U(Ai)| =
(
ni+1+w(n−1)

i

)
.

4.4 Summary

We have formulated a way to write the elements of Ri as words over a given alphabet and

to identify whether a given word over this alphabet actually represents an element of Ri.

We then identified two properties that allowed us to identify words that represent the same

element of Ri and to define a unique standard form for words. The number of valid words in

standard form is then equal to |Ri|. We were able to develop a bijection between the set of

valid words in standard form and another set of words (over the same alphabet) that could

be enumerated using the occupancy problem. This proved Main Theorem 2.

90

Chapter 5

Conclusions and future work

We began this thesis by constructing a representation of the free nonsymmetric operad and

the principal operad ideal in terms of a composition system. We were then able to present the

enumeration problem on spanning sets (Ri) of the principal operad ideal in terms of trees,

and give a recursive algorithm for generating these spanning sets. We then introduced a

conjectured solution based on empirical data. Known results on the enumeration of complete

n-ary plane trees and the n-ary Catalan numbers allowed us to prove Main Theorem 1, which

enumerates the elements of Ri where the starting weight is 1. We then used properties of

the recursive algorithm, along with known results on plane forests of complete n-ary trees, to

generate a recurrence relation for enumerating the elements of Ri in the case where w > 1.

The conjectured value of |Ri| satisfied this recurrence relation, proving Main Theorem 2.

We were also able to develop a non-recursive algorithm for generating the elements of Ri for

an arbitrary value of i, without generating duplicate elements. We then presented a word

representation for elements of Ri, which led to an additional proof of Main Theorem 2 by

the means of occupancy problems.

We provided two different independent proofs of Main Theorem 2. A natural way to

connect these two perspectives is not obvious, and may be an interesting area for future

research. This may lead to a way to relate forests of n-ary trees to occupancy problems.

Notably, the formula for |Ri| for the w > 1 case appears to be very similar to the formula

for the number of plane forests of 1 +w(n− 1) complete n-ary trees with a total of i internal

nodes, after removing the t
ni+t

factor (where t is the number of trees):

|Ri| =
(

(n−1)(w+i)+i+1

i

)
=

(
ni+(w(n−1)+1)

i

)
91

=
w(n−1)+1

ni+(w(n−1)+1)
·
(
ni+(w(n−1)+1)

i

)
· ni+(w(n−1)+1)

w(n−1)+1

= F (i, 1+w(n−1);n) · ni+(w(n−1)+1)

w(n−1)+1

.

Rearranging this equation, we get the following:

|Ri| · (w(n−1)+1) = F (i, 1+w(n−1);n) · [ni+(w(n−1)+1].

This result could provide some further insight into the connection between |Ri| and plane

forests, as each element of |Ri| can be thought of as a forest of n-ary trees satisfying certain

conditions.

Additionally, our scope was limited to principal ideals on nonsymmetric operads. It may

be of interest to expand or generalize these results to ideals with more than one generator.

In terms of trees, this would begin with an R0 set that contains more than one sequence.

Likewise, there are likely avenues for applying this research to symmetric operads.

92

References

[1] P.C. Biswal. Discrete Mathematics and Graph Theory. PHI Learning, 2015.

[2] M. Bremner and V. Dotsenko. Algebraic Operads: An Algorithmic Companion. CRC
Press, Taylor & Francis Group, 2016.

[3] M. Bremner and J. Sánchez-Ortega. Quadratic nonsymmetric quaternary operads.
Linear and Multilinear Algebra, 65(8):1683–1703, 2017.

[4] W. Chu. Elementary proofs for convolution identities of Abel and Hagen–Rothe.
Electronic Journal of Combinatorics, 17(1):5, 2010.

[5] N. Dershowitz and S. Zaks. The cycle lemma and some applications. European Journal
of Combinatorics, 11(1):35–40, 1990.

[6] R. Diestel. Graph Theory, volume 173 of Graduate texts in mathematics. Springer,
2016.

[7] P. Hilger and N. Poncin. Lectures on algebraic operads. https:
//orbilu.uni.lu/bitstream/10993/14381/1/LecturesAlgebraicOperads.pdf,
2011. Course notes, University of Luxembourg.

[8] J. Hopcroft, R. Motwani, and J. Ullman. Introduction to Automata Theory,
Languages, and Computation. Pearson, 3rd edition, 2006.

[9] B. Kanti and S. Kumar. Combinatorics and Graph Theory. PHI Learning Pvt. Ltd,
2016.

[10] V. Karavirta and C. Shaffer. TDDD86: Data Structures, Algorithms and Programming
Paradigms. http://www.ida.liu.se/opendsa/OpenDSA/Books/TDDD86_2014/html/
BinaryTreeFullThm.html, December 2014. Course notes, Linköping University.

[11] J. Loday and B. Vallette. Algebraic Operads. Springer-Verlag Berlin Heidelberg, 2012.

[12] M. Markl, S. Shnider, and J.D. Stasheff. Operads in Algebra, Topology and Physics.
Mathematical surveys and monographs. American Mathematical Society, 2007.

[13] J.P. May. The Geometry of Iterated Loop Spaces. Number no. 271 in Lecture notes in
mathematics. Springer-Verlag, 1972.

[14] G. Mohanty. Lattice Path Counting and Applications. Probability and mathematical
statistics. Academic Press, 1979.

93

https://orbilu.uni.lu/bitstream/10993/14381/1/LecturesAlgebraicOperads.pdf
https://orbilu.uni.lu/bitstream/10993/14381/1/LecturesAlgebraicOperads.pdf
http://www.ida.liu.se/opendsa/OpenDSA/Books/TDDD86_2014/html/BinaryTreeFullThm.html
http://www.ida.liu.se/opendsa/OpenDSA/Books/TDDD86_2014/html/BinaryTreeFullThm.html

[15] T.V. Narayana. Lattice Path Combinatorics, with Statistical Applications.
Mathematical expositions. University of Toronto Press, 1979.

[16] M. Renault. Four proofs of the ballot theorem. Mathematics Magazine, 80(5):345–352,
12 2007.

[17] F. Roberts and B. Tesman. Applied Combinatorics, Second Edition. CRC Press, 2009.

[18] M. Spivey. Combinatorial proofs of two Hagen-Rothe identities in concrete
mathematics. https://mikespivey.wordpress.com/2015/09/04/
combinatorial-proofs-of-two-hagen-rothe-identities-in-concrete-mathematics/,
2015.

[19] H. Wilf. Algorithms and Complexity. A. K. Peters, Ltd., 2002.

[20] D. Zeilberger. Princeton Companion to Mathematics, chapter Enumerative and
Algebraic Combinatorics, pages 550–561. Princeton University Press, Princeton, 2008.

94

https://mikespivey.wordpress.com/2015/09/04/combinatorial-proofs-of-two-hagen-rothe-identities-in-concrete-mathematics/
https://mikespivey.wordpress.com/2015/09/04/combinatorial-proofs-of-two-hagen-rothe-identities-in-concrete-mathematics/

	Permission to Use
	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	List of Notation
	Introduction and motivation
	Constructing the composition system
	Operation diagrams
	Composing more than two copies of -.4: associativity
	Trees and general compositions

	Introducing the enumeration problem
	Enumerating the elements of Ri-.4

	Review of combinatorial results about trees and forests
	Enumerating the complete n-.4-ary plane trees
	The word representation of a tree
	Identifying valid words
	The path representation of a word

	Lexicographical order of trees
	Enumerating forests of n-.4-ary trees
	The word representation of a forest
	Identifying valid words
	The path representation of a word

	The Hagen-Rothe Identity
	Summary

	Proof of Main Thoerem 2 (w>1)
	The word representation of elements of Ri-.4
	Identifying valid words and equivalent words

	Basic properties and enumerating the elements of R1-.4
	Basic properties of Procedure and Procedure
	Enumerating the elements of R1-.4

	Further properties and enumerating the elements of R2-.4
	Further properties of Procedure and Procedure
	Enumerating the elements of R2-.4

	Enumerating the elements of Ri-.4
	An algorithm for generating Ri-.4
	Summary

	Rephrasing elements of Ri as words: an additional proof of Main Theorem 2
	Equivalent words and standard form
	A strategy for enumerating the elements of SV(Ai)-.4
	Enumerating the elements of U(Ai)-.4: the occupancy problem

	Proving that |SV(Ai)|=|U(Ai)|-.4
	Prefixes and the tier of a letter
	Words beginning with simple prefixes
	Words beginning with compound prefixes
	Showing that f is a bijection

	Summary

	Conclusions and future work
	References

