IN VITRO AND IN VIVO CULTURE SYSTEMS
FOR DEVELOPMENT OF PORCINE TESTIS CELLS AND TISSUE

A Thesis Submitted to the College of
Graduate and Postdoctoral Studies
In Partial Fulfillment of the Requirements
For the Degree of Doctor of Philosophy
In the Department of Veterinary Biomedical Sciences
University of Saskatchewan
Saskatoon

By

Awang Hazmi Awang Junaidi

© Copyright Awang Hazmi Awang Junaidi, March 2019. All Rights Reserved.
PERMISSION TO USE

In presenting this thesis in partial fulfilment of the requirements for the degree of Doctor of Philosophy from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis work, or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis.

Requests for permission to copy or to make other use of material in this thesis in whole or part should be addressed to:

 Head of the Department of Veterinary Biomedical Sciences (VBMS)
 Western College of Veterinary Medicine
 52 Campus Drive
 University of Saskatchewan
 Saskatoon, Saskatchewan S7N 5B4 Canada

 OR

 Dean
 College of Graduate and Postdoctoral Studies
 University of Saskatchewan
 116 Thorvaldson Building, 110 Science Place
 Saskatoon, Saskatchewan S7N 5C9 Canada
ABSTRACT

The studies presented in this thesis were designed to identify, examine, and manipulate potential factors associated with the development of porcine testis cells and tissue using \textit{in vitro} and \textit{in vivo} culture systems. The objective of the first \textit{in vitro} study was to examine several conditions for short-term culture of testis cells to optimize the maintenance and propagation of neonatal porcine gonocytes. We found that culturing testis cells at 3.0×10^4 cells/cm2 containing $\sim 40\%$ gonocytes in DMEM+10\% FBS, at 37 $^\circ$C, and without changing the medium for 7 days, improves \textit{in vitro} maintenance, proliferation, and formation of gonocyte colonies. The goal of the second \textit{in vitro} study was to apply these optimized conditions for prolonged culture to study the behavior, colony formation, and ultrastructure of gonocytes. We observed that gonocytes extensively migrate after developing various cytoplasmic projections, rapidly propagate, and form pluripotent embryoid body-like colonies (EBLC). The first \textit{in vivo} study was designed to establish an efficient method for implantation of neonatal porcine testis cell aggregates under the back skin of recipient mice, and to explore the use of ultrasound biomicroscopy (UBM) for the non-invasive \textit{in vivo} evaluation of implants. We showed that the subcutaneous injection approach, as compared with the conventional surgical approach, offers a less invasive route for implantation of cell aggregates, and results in a more consistent \textit{de novo} formation of testis tissue in the implants. UBM proved to be a unique means for the non-invasive monitoring of implants and the prediction of the outcomes. The second \textit{in vivo} study was aimed at utilizing this improved cell implantation model to examine the effects of pre-implantation exposure of testis cells to various growth factors (\textit{i.e.}, EGF, GDNF, FGF2, FGF9, VEGF, LIF, SCF, and RA) on \textit{de novo} morphogenesis of porcine testis tissue. We observed that each growth factor had a distinct effect on development of the testis tissue, ranging from enhanced development to improved gonocyte survival, and promotion of certain types of seminiferous cords. In summary, we discovered several critical elements for the \textit{in vitro} and \textit{in vivo} culture systems for the development of testis cells and tissue.
ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisor, Dr. Ali Honaramooz, for his continuous support and encouragement throughout my PhD program. I have been very fortunate to have the opportunity to work under a very patient, enthusiastic, and a visionary person like him. He has been a great mentor, and I thank him for his endless contribution during the preparation of the manuscripts and thesis.

I am indebted to my advisory committee, Drs. Karen Machin, Muhammad Anzar, Daniel MacPhee, and Patrick Krone for their constant guidance and insightful comments. I would also like to thank the external examiner for spending valuable time on my thesis.

I would like to acknowledge Universiti Putra Malaysia and Ministry of Higher Education Malaysia as well as the University of Saskatchewan for financial assistance, and the Natural Sciences and Engineering Research Council of Canada (NSERC) for support of our research.

I also sincerely thank the staff at the Prairie Swine Centre and Lab Animal Service Unit for their assistance with animal studies, Dr. Jaswant Singh for his support in the UBM study, and Eiko Kawamura and LaRhonda Sobchisin of WCVM Imaging Centre for their technical support in imaging.

Many special thanks to the rest of personnel in the VBMS including the researchers, academicians, staff, and graduate students for all the knowledge, supports, and good memories.

Finally, I am grateful to my family, colleagues and friends in Malaysia for their faith in me. Thank you for always being there, through thick and thin.
DEDICATION

This thesis is dedicated to my beloved parents Awang Junaidi and Dayang Rajanah, whom without their continuous love, encouragement, and prayers none of this would have happened. Not to forget my sister, Dayang Saftuyah, and brothers, Awang Ramzi and Awang Rosdi who always believe in me and are there whenever I need a shoulder to lean on.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERMISSION TO USE</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iv</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xv</td>
</tr>
<tr>
<td>CHAPTER 1 GENERAL INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>CHAPTER 2 LITERATURE REVIEW AND OBJECTIVES</td>
<td>5</td>
</tr>
<tr>
<td>2.1 Anatomy and Physiology of the Testis</td>
<td>5</td>
</tr>
<tr>
<td>2.1.1 Origin and Development of the Testis</td>
<td>5</td>
</tr>
<tr>
<td>2.1.2 Testis Structure and Function</td>
<td>7</td>
</tr>
<tr>
<td>2.1.3 Spermatogenesis</td>
<td>9</td>
</tr>
<tr>
<td>2.1.4 Regulation of Spermatogenesis</td>
<td>11</td>
</tr>
<tr>
<td>2.2 Origin and Development of Male Germline Stem Cells</td>
<td>13</td>
</tr>
<tr>
<td>2.2.1 Primordial Germ Cells</td>
<td>13</td>
</tr>
<tr>
<td>2.2.2 Gonocytes</td>
<td>14</td>
</tr>
<tr>
<td>2.2.3 Spermatogonial Stem Cells</td>
<td>17</td>
</tr>
<tr>
<td>2.3 In Vitro Culture and Manipulation of Gonocytes</td>
<td>18</td>
</tr>
<tr>
<td>2.3.1 Identification, Isolation, and Enrichment of Gonocytes</td>
<td>18</td>
</tr>
<tr>
<td>2.3.2 Maintenance and Propagation of Gonocytes in Culture</td>
<td>21</td>
</tr>
<tr>
<td>2.3.3 Potential Derivation of Pluripotent Stem Cells</td>
<td>23</td>
</tr>
<tr>
<td>2.3.4 In Vitro Spermatogenesis</td>
<td>25</td>
</tr>
<tr>
<td>2.4 Involvement of Growth Factors Involvement in Testis Development</td>
<td>28</td>
</tr>
<tr>
<td>2.4.1 Fibroblast Growth Factors</td>
<td>28</td>
</tr>
<tr>
<td>2.4.2 Glial Cell-Derived Neurotrophic Factor</td>
<td>29</td>
</tr>
<tr>
<td>2.4.3 Stem Cell Factor</td>
<td>30</td>
</tr>
<tr>
<td>2.4.4 Leukemia Inhibitory Factor</td>
<td>31</td>
</tr>
<tr>
<td>2.4.5 Vascular Endothelial Growth Factor</td>
<td>32</td>
</tr>
<tr>
<td>2.4.6 Retinoic Acid</td>
<td>33</td>
</tr>
<tr>
<td>2.4.7 Epidermal Growth Factor</td>
<td>34</td>
</tr>
<tr>
<td>2.5 In Vivo Culture Systems for Male Germline Stem Cells</td>
<td>35</td>
</tr>
<tr>
<td>2.5.1 Male Germ Cell Transplantation</td>
<td>35</td>
</tr>
<tr>
<td>2.5.2 Testis Tissue Xenografting</td>
<td>38</td>
</tr>
<tr>
<td>2.5.3 Testis Cell Aggregate Implantation</td>
<td>40</td>
</tr>
</tbody>
</table>
2.5.4 Factors Affecting the Outcome of Testis Tissue Xenografting and Testis Cells Implantation ... 42
2.6 Application of Male Germline Stem Cells in Fertility and Conservation 47
2.7 Conclusions .. 49
2.8 Objectives and Hypotheses ... 51

CHAPTER 3 OPTIMIZATION OF CULTURE CONDITIONS FOR SHORT-TERM MAINTENANCE, PROLIFERATION, AND COLONY FORMATION OF PORCINE GONOCYTES ... 53
3.1 Abstract .. 53
3.2 Introduction .. 54
3.3 Materials and Methods .. 56
 3.3.1 Testis Collection and Preparation .. 56
 3.3.2 Isolation of Testis Cells and Enrichment for Gonocytes 56
 3.3.3 Simultaneous Cell Quantification and Viability Assessment 58
 3.3.4 Cell Culture .. 58
 3.3.5 Cell Sampling .. 59
 3.3.6 DBA Fluorescent Labeling .. 59
 3.3.7 Statistical Analyses ... 60
3.4 Results .. 62
 3.4.1 Experiment 1: Effect of Cell Seeding Density and Gonocyte Proportion ... 62
 3.4.2 Experiment 2: Effect of Incubation Temperature 63
 3.4.3 Experiment 3: Sampling of Cultured Testis cells for Analysis 67
 3.4.4 Experiment 4: Short-Term Culture of Neonatal Porcine Testis Cells 69
 3.4.5 Experiment 5: Floating Cells in the Culture Medium 69
 3.4.6 Experiment 6: Effect of Medium Changing Regimens on Attached Gonocytes. 70
3.5 Discussion .. 76
3.6 Conclusions .. 81
Transition .. 82

CHAPTER 4 LIVE-CELL IMAGING AND ULTRASTRUCTURAL STUDY OF CULTURED PORCINE GONOCYTES ... 83
4.1 Abstract .. 83
4.2 Introduction .. 84
4.3 Materials and Methods .. 86
 4.3.1 Testis Collection and Preparation .. 86
 4.3.2 Isolation of Testicular Cells .. 87
 4.3.3 Cell Culture .. 87
 4.3.4 Live-Cell Imaging .. 87
 4.3.5 Fluorescent Labeling ... 88
 4.3.6 RNA Extraction and Reverse Transcription Polymerase Chain Reaction
CHAPTER 5 EFFECT OF MULTIPLE FACTORS ON REGENERATION OF TESTIS TISSUE AFTER ECTOPIC IMPLANTATION OF PORCINE TESTIS CELL AGGREGATES IN MICE: IMPROVED OUTCOMES CONSISTENCY AND IN SITU MONITORING

5.1 Abstract .. 114
5.2 Introduction .. 115
5.3 Materials and Methods ... 118
 5.3.1 Study Design .. 118
 5.3.2 Testis Collection and Preparation ... 118
 5.3.3 Isolation of Testis Cells .. 120
 5.3.4 Experiment 1 – Evaluation of Basic Gel-Based Matrices as Carriers for Implantation of Testis Cell Aggregates .. 120
 5.3.4.1 Preparation of Gel-Based Matrices .. 120
 5.3.4.2 Implantation of Gel Matrix-Based Neonatal Testis Cell Aggregates via the Surgical Method ... 121
 5.3.5 Experiment 2 – Development of an Alternative Method for Implantation of Neonatal Testis Cell Aggregates ... 122
 5.3.5.1 Implantation of Neonatal Testis Cell Aggregates via an Injection Method 122
 5.3.5.2 Ultrasound Biomicroscopy (UBM) Assessment .. 122
5.3.5.3 Implant Retrieval and Gross Evaluation .. 123
5.3.6 Histological Evaluation ... 124
5.3.7 Statistical Analyses .. 124
5.4 Results ... 125
 5.4.1 Feasibility of Using UBM for Assessment of Implants 125
 5.4.2 Fidelity of UBM Measures for Predicting the Size of Implants Prior to Retrieval ... 130
 5.4.3 Gross Evaluation of Implants ... 130
 5.4.4 Histological Evaluation of Implants ... 133
 5.4.5 The Effect of Gonadal Status of the Recipient Mice on Development of Implants ... 136
 5.4.5.1 Vesicular Gland Index and Implant Weight 136
 5.4.5.2 De Novo Formation of Testis Tissue ... 136
 5.4.5.3 The Effect of Implantation Site .. 137
5.5 Discussion .. 139
5.6 Conclusions ... 143
Transition ... 144

CHAPTER 6 EFFECTS OF GROWTH FACTORS ON DE NOVO REGENERATION OF PORCINE TESTIS TISSUE AFTER ECTOPIC IMPLANTATION OF TESTIS CELLS IN MICE .. 145
6.1 Abstract .. 145
6.2 Introduction .. 146
6.3 Materials and Methods .. 148
 6.3.1 Animal and Experimental Design ... 148
 6.3.2 Testis Collection and Preparation ... 152
 6.3.3 Isolation of Testis Cells .. 152
 6.3.4 Cell Aggregate Preparation .. 152
 6.3.5 Cell Aggregate Implantation ... 152
 6.3.6 Retrieval of Implants .. 153
 6.3.7 Tissue Processing and Histology ... 153
 6.3.8 Gross and Histological Analysis .. 153
 6.3.9 Statistical Analyses .. 154
6.4 Results .. 155
 6.4.1 Gross Evaluations .. 155
 6.4.1.1 Recipient Mouse Body Weight and Vesicular Gland Index 155
 6.4.1.2 Implant Recovery and Implant Weight .. 155
 6.4.2 Histological Evaluations ... 160
 6.4.2.1 Implant Area .. 160
 6.4.2.2 General Development/Regeneration of Testis Tissue 160
 6.4.2.3 Formation of Seminiferous Cords (SC) ... 167
6.4.2.3.1 First Appearance and Prevalence of SC in Implants ... 167
6.4.2.3.2 SC Area in Implants ... 167
6.4.2.3.3 Classification of SC ... 171
6.4.2.3.4 Predominant Type of SC Per Group ... 177
6.4.2.4 Relative Number of Gonocytes ... 177
6.4.2.5 Rete Testis-Like Formation ... 180
6.4.2.6 Fluid-Filled Cavity ... 180
6.5 Discussion ... 183
6.6 Conclusions ... 189

CHAPTER 7 GENERAL DISCUSSION AND FUTURE DIRECTIONS 190
7.1 General Discussion ... 190
7.1.1 Optimized Culture Conditions for Maintenance, Proliferation, and Colony Formation of Porcine Gonocytes ... 190
7.1.2 Development of Neonatal Porcine Testis Cells and Colonies In Vitro 191
7.1.3 The Ectopic Testis Cell Implantation (TCI) Model ... 192
7.1.4 The Effect of Growth Factors on De Novo Porcine Testis Tissue Morphogenesis In Vivo ... 194
7.2 Future Directions ... 196
7.2.1 Manipulation of Culture Conditions for Long-Term Maintenance and Propagation of Porcine Gonocytes ... 196
7.2.2 Motility and Pluripotency of Porcine Gonocytes and EBLC 197
7.2.3 Incorporating the UBM into the TTX and TCI Studies ... 198
7.2.4 Utilizing De Novo Morphogenesis of Testis Tissue for the Study of Testiculogenesis and Spermatogenesis ... 199

REFERENCES ... 200
APPENDIX A ... 247
APPENDIX B ... 248
LIST OF TABLES

Table 3.1	The population of testis cells obtained after enzymatic digestion and subsequent enrichment.	64
Table 3.2	The effect of seeding density on the growth of testis cells in culture.	65
Table 3.3	The effect of incubation temperature on the growth of testis cells in culture.	66
Table 4.1	Changes in the number and diameter of embryoid body-like colonies (EBLC) over time.	99
Table 5.1	The number of implants upon retrieval at 2 wk post-implantation in Experiment 1.	129
Table 5.2	Relationships between the implant dimensions measured either *in vivo* using ultrasound biomicroscopy (UBM) or *post-mortem* after implants were visualized while still attached to the skin.	131
Table 6.1	Summary of the growth factors, recipients, and implants in each treatment group.	150
Table 6.2	The recipient mouse body weight, vesicular gland index, and the relative number of implants retrieved at the time of euthanasia.	156
Table 6.3	Relationships among the recipient mouse vesicular gland index, implant weight, implant area, and seminiferous cord area at euthanasia (8 wk post-implantation) in EGF and GDNF groups of implants.	159
Table 6.4	Relationships among the recipient mouse vesicular gland index, implant weight, implant area, and seminiferous cord area at euthanasia (8 wk post-implantation) in FGF2, FGF9, LIF, SCF, and RA groups of implants.	164
Table 6.5	The prevalence of testis tissue regeneration among implants of different groups and over time.	166
Table 6.6	The prevalence and first appearance of seminiferous cord formations among implants with regenerated testis tissue from different groups.	168
Table 6.7	The prevalence of each type of seminiferous cords and their relative area among implants with regenerated testis tissue from different groups.	176
Table 6.8 The predominant type of seminiferous cords per group, calculated based on two different approaches. .. 178

Table 6.9 The prevalence and first appearance of rete testis formations among implants from different groups. .. 181

Table 6.10 The prevalence of fluid-filled cavities among implants of different groups and over time. .. 182
LIST OF FIGURES

Fig. 3.1	*Dolichos biflorus* agglutinin (DBA) fluorescent labeling of neonatal gonocytes.	61
Fig. 3.2	Schematic representation of the areas within culture plates used for sampling in Experiment 3.	68
Fig. 3.3	Morphology of testis cells in short-term cell culture.	72
Fig. 3.4	Number of gonocytes upon analysis of the floating cells from the removed medium.	73
Fig. 3.5	Number of gonocytes or gonocyte colonies observed after applying different medium changing regimens.	74
Fig. 3.6	Viability of cells at seeding and after applying different medium changing regimens.	75
Fig. 4.1	Representative images showing the organization of neonatal porcine testis cells in culture over time.	92
Fig. 4.2	Representative serial images, taken every 30 seconds (sec), from a single porcine gonocyte in culture.	95
Fig. 4.3	Higher magnification images of neonatal porcine gonocytes in culture showing the transition to form an embryoid body-like colony (EBLC).	96
Fig. 4.4	Changes in the number (A) and diameter (B) of cultured porcine gonocytes over time.	98
Fig. 4.5	Fluorescent labeling of embryoid body-like colonies (EBLC) formed in culture of porcine testis cells.	101
Fig. 4.6	Expression of the pluripotency marker POU5F1 (OCT-4) in cultured porcine testis cells.	102
Fig. 4.7	Representative scanning electron microscopy (SEM) images of neonatal porcine gonocytes in culture showing the formation of embryoid body-like colonies (EBLC).	105
Fig. 4.8	Representative transmission electron microscopy (TEM) images of neonatal porcine gonocytes in culture.	106
Fig. 5.1 Schematic overview of the study design for Experiments 1 and 2. ………... 119

Fig. 5.2. Representative in vivo images of gel-based implants obtained using ultrasound biomicroscopy (UBM). ………………………………………………………….. 127

Fig. 5.3 Representative in vivo images of cell injection implants obtained using ultrasound biomicroscopy (UBM). ………………………………………………………….. 128

Fig. 5.4 Representative photomacrographs showing implants before and after retrieval at 2 wk post-implantation in Experiments 1 and 2. …………... 132

Fig. 5.5 Representative histological photomicrographs of implants from Experiment 1 at 2 wk post-implantation. ………………………………………………………….. 134

Fig. 5.6. Representative histological photomicrographs of implants from Experiment 2 at 2 wk post-implantation in Experiment 1 and 2. ………………… 135

Fig. 5.7 Weight of the retrieved implants from Experiment 2 based on the site of implantation. ……………………………………………………………………………………… 138

Fig. 6.1 Representative photomacrographs demonstrating the recipient mice undergoing ectopic implantation of testis cell aggregates. ………………… 151

Fig. 6.2 The weight of implants (mg) in (A-C) the epidermal growth factor (EGF) and (D-F) glial-derived neurotrophic growth factor (GDNF) groups over time. ………………………………………………………………………………… 157

Fig. 6.3 The weight of implants (mg) in the (A) basic fibroblast growth factor (FGF2), (B) fibroblast growth factor 9 (FGF9), (C) vascular endothelial growth factor (VEGF), (D) leukemia inhibitory factor (LIF), (E) stem cell factor (SCF), and (F) retinoic acid (RA) groups over time. …………… 158

Fig. 6.4 The implant areas (mm²) measured at the widest cross-section in (A-C) epidermal growth factor (EGF) and (D-F) glial-derived neurotrophic factor (GDNF) samples over time. ……………………………………………………………………….. 162

Fig. 6.5 The implant areas (mm²) measured at the widest cross-section in the (A) basic fibroblast growth factor (FGF2), (B) fibroblast growth factor 9 (FGF9), (C) vascular endothelial growth factor (VEGF), (D) leukemia inhibitory factor (LIF), (E) stem cell factor (SCF), and (F) retinoic acid (RA) groups over time. ……………………………………………………………………….. 163
Fig. 6.6 Representative histological photomicrographs demonstrating *de novo* morphogenesis of porcine testis tissue after implantation of porcine testis cell aggregates under the back skin of recipient mice. Each image represents a typical morphology observed at 1, 2, 4, and 8 wk post-implantation. ... 165

Fig. 6.7 The area occupied by seminiferous cords (SC) relative to the total implant area (%), measured at the widest cross-section of samples over time in (A-C) epidermal growth factor (EGF) and (D-F) glial-derived neurotrophic factor (GDNF) groups. Two doses of each growth factor were evaluated, low dose (20 ng/mL of cells): (A) EGF-L and (D) GDNF-L, and high dose (2 mg/mL of cells): (B) EGF-H and (E) GDNF-H. 169

Fig. 6.8 The area occupied by seminiferous cords (SC) relative to the total implant area (%), measured at the widest cross-section of samples over time in the (A) basic fibroblast growth factor (FGF2), (B) fibroblast growth factor 9 (FGF9), (C) vascular endothelial growth factor (VEGF), (D) leukemia inhibitory factor (LIF), (E) stem cell factor (SCF), and (F) retinoic acid (RA) groups. ... 170

Fig. 6.9 Representative histological photomicrographs demonstrating typical morphology of seminiferous cords (SC) classified into: (A) regular (rSC), (B) irregular (irSC), (C) enlarged (eSC), and (D) aberrant seminiferous cords (abSC). .. 174

Fig. 6.10 The prevalence (%) of different types of seminiferous cords (SC) as well as their relative area (%), compared with the total implant area, measured at the widest cross-section of samples .. 175

Fig. 6.11 The relative number of gonocytes (per 1,000 Sertoli cells) in implants retrieved from different groups. ... 179
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D</td>
<td>two-dimensional</td>
</tr>
<tr>
<td>3D</td>
<td>three-dimensional</td>
</tr>
<tr>
<td>AMH</td>
<td>Anti Müllerian Hormone</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>ART</td>
<td>Assisted Reproductive Technology</td>
</tr>
<tr>
<td>BCL6B</td>
<td>B-Cell Leukemia/lymphoma 6</td>
</tr>
<tr>
<td>BW</td>
<td>body weight</td>
</tr>
<tr>
<td>cDNA</td>
<td>complementary DNA</td>
</tr>
<tr>
<td>c-kit</td>
<td>Tyrosine-protein kinase KIT</td>
</tr>
<tr>
<td>d</td>
<td>day(s)</td>
</tr>
<tr>
<td>DAPI</td>
<td>4’,6-Diamidino-2-Phenylindole</td>
</tr>
<tr>
<td>DAZL</td>
<td>Deleted In Azoospermia Like</td>
</tr>
<tr>
<td>DBA</td>
<td>Dolichos Biflorus Agglutinin</td>
</tr>
<tr>
<td>DIC</td>
<td>Differential Interference Contrast</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco’s Modified Eagle’s Medium</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic Acid</td>
</tr>
<tr>
<td>DPBS</td>
<td>Dulbecco’s Phosphate Buffered Saline</td>
</tr>
<tr>
<td>dpc</td>
<td>days post-coitum</td>
</tr>
<tr>
<td>dpp</td>
<td>days post-partum</td>
</tr>
<tr>
<td>EBLC</td>
<td>Embryoid Body-Like Colony</td>
</tr>
<tr>
<td>ECM</td>
<td>Extracellular Matrix</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic Acid</td>
</tr>
<tr>
<td>EGF</td>
<td>Epidermal Growth Factor</td>
</tr>
<tr>
<td>ETV5</td>
<td>ETS variant 5</td>
</tr>
<tr>
<td>FBS</td>
<td>Fetal Bovine Serum</td>
</tr>
<tr>
<td>FFC</td>
<td>Fluid-Filled Cavities</td>
</tr>
<tr>
<td>FGF</td>
<td>Fibroblast Growth Factor</td>
</tr>
<tr>
<td>FITC</td>
<td>Fluorescein Isothiocyanate</td>
</tr>
<tr>
<td>FSH</td>
<td>Follicle-Stimulating Hormone</td>
</tr>
<tr>
<td>Acronym</td>
<td>Abbreviation</td>
</tr>
<tr>
<td>----------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>g</td>
<td>g-force</td>
</tr>
<tr>
<td>GCT</td>
<td>Germ Cell Transplantation</td>
</tr>
<tr>
<td>GDNF</td>
<td>Glial Cell-Derived Neurotrophic Factor</td>
</tr>
<tr>
<td>h</td>
<td>hour(s)</td>
</tr>
<tr>
<td>H&E</td>
<td>Hematoxylin and Eosin</td>
</tr>
<tr>
<td>HSCID</td>
<td>Hairless Severe Combined Immune Deficient</td>
</tr>
<tr>
<td>ICSI</td>
<td>Intra-Cytoplasmic Spermatozoa Injection</td>
</tr>
<tr>
<td>iPSC</td>
<td>induced Pluripotent Stem Cells</td>
</tr>
<tr>
<td>IVF</td>
<td>In Vitro Fertilization</td>
</tr>
<tr>
<td>KITL</td>
<td>KIT Ligand</td>
</tr>
<tr>
<td>KSR</td>
<td>Knockout Serum Replacement</td>
</tr>
<tr>
<td>LH</td>
<td>Luteinizing Hormone</td>
</tr>
<tr>
<td>LIF</td>
<td>Leukemia Inhibitory Factor</td>
</tr>
<tr>
<td>MEF</td>
<td>Mouse Embryonic Fibroblasts</td>
</tr>
<tr>
<td>MGSC</td>
<td>Male Germine Stem Cells</td>
</tr>
<tr>
<td>min</td>
<td>minute(s)</td>
</tr>
<tr>
<td>mo</td>
<td>month(s)</td>
</tr>
<tr>
<td>N.A</td>
<td>Numerical Aperture</td>
</tr>
<tr>
<td>N.S</td>
<td>Not Significant</td>
</tr>
<tr>
<td>NANOG</td>
<td>NANOG homeobox</td>
</tr>
<tr>
<td>OCT4</td>
<td>Octamer-binding Transcription Factor 4</td>
</tr>
<tr>
<td>PGC</td>
<td>Primordial germ cells</td>
</tr>
<tr>
<td>PGD2</td>
<td>Prostaglandin D2</td>
</tr>
<tr>
<td>PGP9.5</td>
<td>Protein Gene Product 9.5</td>
</tr>
<tr>
<td>POU5F1</td>
<td>POU Class 5 Homeobox 1</td>
</tr>
<tr>
<td>PSC</td>
<td>Pluripotent Stem Cells</td>
</tr>
<tr>
<td>RA</td>
<td>Retinoic Acid</td>
</tr>
<tr>
<td>ROSI</td>
<td>Round Spermatid Injection</td>
</tr>
<tr>
<td>RT</td>
<td>rete testis</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>Reverse Transcription-Polymerase Chain Reaction</td>
</tr>
<tr>
<td>SBB</td>
<td>Sudan black B</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>SC</td>
<td>Seminiferous Cords</td>
</tr>
<tr>
<td>SCF</td>
<td>Stem Cell Factor</td>
</tr>
<tr>
<td>SCID</td>
<td>Severe Combined Immune Deficient</td>
</tr>
<tr>
<td>sec</td>
<td>seconds</td>
</tr>
</tbody>
</table>
| SEM^{1,2} | 1 Standard Error of Mean
2 Scanning Electron Microscopy |
| SHO | SCID Hairless Outbred |
| SOX9 | SRY (Sex determining region Y)-Box 9 |
| SRY | Sex Determining Region Y |
| SSC | Spermatogonial Stem Cells |
| SSEA-1 | Stage Specific Embryonic Antigen-1 |
| STO | SIM Embryo-Derived Thioguanine and Aoubain Resistant |
| TCI | Testis Cell Implantation |
| TEM | Transmission Electron Microscopy |
| TTX | Testis Tissue Xenografting |
| UBM | Ultrasound Biomicroscopy |
| UCHL1 | Ubiquitin C-terminal Hydrolase L1 |
| v/v | volume/volume |
| VAD | Vitamin A-Deficient |
| VEGF | Vascular Endothelial Growth Factor |
| VG | vesicular glands |
| vs. | versus |
| w/v | weight/volume |
| wk | week(s) |
CHAPTER 1

INTRODUCTION

Male germline stem cells (MGSC) are progenitors of all male germ cells, and form the foundation of spermatogenesis and male fertility. As putative multipotent stem cells, MGSC may also give rise to non-reproductive cells and tissues. However, our understanding of their biology and potential is limited, and due to the complexity of the testis architecture and cellular interactions, the study and manipulation of MGSC require proper in vitro and in vivo models.

Gonocytes are a transient population of MGSC after the mitotic arrest of primordial germ cells (PGC) and prior to differentiation into spermatogonial stem cells (SSC). In the neonatal testis, gonocytes are easily identified, because they are the only germ cells present in the neonatal testis, and have a distinct morphology (McGuinness and Orth, 1992). The presence of gonocytes in the postnatal testis continues for several days or up to several years, depending on the species (Hughes and Varley, 1980; McLean et al., 2003; Li et al., 2012). Based on the aforementioned characteristics, gonocytes are considered as the precursors of all germline lineages in the postnatal testis.

The study and manipulation of MGSC necessitates the development of high fidelity in vitro and in vivo models. This stems from the complex structure of the testis tissue, interactions of various somatic and germ cells, and involvement of for instance numerous known and unknown growth factors. As with other MGSC, gonocytes possess self-renewal and proliferation capacities, which can be manipulated in vitro. Gonocytes have been successfully maintained and propagated for long-term (~6 months) in culture (Han et al., 2009; Lee et al., 2013; Sahare et al., 2016). Under certain conditions such as in the presence of retinoic acid (RA), differentiation of gonocytes to SSC can initiate (Wang and Culty, 2007; Zhou et al., 2008). In addition, gonocytes form germ cell colonies that express pluripotency markers in culture (Han et al., 2009; Fujihara et al., 2011). Pluripotent stem cells are capable of giving rise to specialized cells and tissues of the three germinal layers
(i.e., mesoderm, endoderm, and ectoderm) (Evans and Kaufman, 1981; Thomson et al., 1998). Therefore, as a first step, we conducted a systemic study to examine and optimize a number of factors that can affect the maintenance and proliferation of porcine gonocytes in culture, as an in vitro system for their study and manipulation (Chapter 3). We then used these optimized culture conditions to examine porcine gonocytes further in terms of their in vitro behavior, ultrastructure, colony formation, and expression of pluripotency markers (Chapter 4).

An example of relevant in vivo models is the ectopic xenografting of testis tissue from diverse donor species into recipient mice, which is capable of promoting development of the grafted tissue, resulting in ultimate production of functional spermatozoa in the grafts (Honaramooz et al., 2002a; Schlatt et al., 2002a; Gassei et al., 2006; Abbasi and Honaramooz, 2012). Therefore, ectopic testis tissue xenografting has provided an in vitro culture system for the study of testis function, development, and spermatogenesis. In addition, this system could be used as a potential tool for the preservation of genetic material. Dissociated cells, at least initially lack the structural framework that could maintain and support their transformation into a functioning tissue. However, rather surprisingly, de novo (i.e., ‘to restart from the beginning’) formation of functional testis tissue was observed after ectopic implantation of dissociated porcine testis cells under the back skin of mouse hosts (Arregui et al., 2008; Honaramooz et al., 2007). The heterogeneous populations of implanted testis cells were fully capable of organizing themselves, and undergoing extensive rearrangement to once again form seminiferous cords, indistinguishable from those in the intact testis. This phenomenon opened an opportunity for the introduction of a new in vivo model, which is unique in that testis cells could be manipulated before implantation to study the potential factors involved in testis tissue morphogenesis. In this thesis, we set out to investigate several factors that could potentially improve the testis cell implantation model, and lead to more consistent results (Chapter 5), before utilizing it to examine the effects of various growth factors on de novo formation of testis tissue after implantation of cell aggregates (Chapter 6).

The laboratory mouse has long been used as an accessible and convenient model for biomedical research, and has contributed in a significant way to the understanding of human biology (Morse, 2007). The mouse also offers low maintenance costs, ease of management, and pronounced genetic similarities to humans (Waterston et al., 2002). Most of our understanding of the biology of MGSC has been deciphered from the mouse model. The availability of transgenic, knockout/knockin,
mutant, and immunodeficient mice has also contributed significantly to the advancement of MGSC research and technologies. However, rodents are not an ideal animal model for the recapitulation of most human diseases and disorders (Seok et al., 2013), and might respond differently to experimental interventions due to their marked pathophysiological differences with humans (Perlman, 2016). For this reason, the pig is considered a superior model for human biology and diseases (Kuzmuk and Schook, 2011).

Being omnivore and of comparable size to humans, pigs are also more closely related to humans in terms of anatomy, physiology, metabolic regulation, and predisposition to different disorders (Panepinto, 1996; Tumbleson and Schook, 1996; Spurney et al., 2006; Kuzmuk and Schook, 2011; Swindle et al., 2012; Dalgaard, 2015; Huppertz et al., 2015). More specifically for the purpose of this thesis, the pig offered great advantages as a donor of testis cells and tissue for the study and manipulation of MGSC. Fresh neonatal pig testes could be obtained in large quantities at the time of routine castration of piglets at the University of Saskatchewan Prairie Swine Center. The collected testes can be processed to obtain large numbers of MGSC, particularly gonocytes. Compared with rodents (1-4 dpp), gonocytes in pigs are present for much longer periods of time (2 months) (Hughes and Varley, 1980; Russell, 1980; McLean et al., 2003). This unique temporal pattern coupled with the availability of specific surface markers for pig gonocytes, such as Dolichos biflorus agglutinin (DBA) (Goel et al., 2007), provide unequivocal means for identification of gonocytes. Improved methods for isolation and enrichment of pig gonocytes have also been introduced in recent years, allowing the isolation of high proportions of gonocytes (~40%), which could be further enriched (to ~90%) using density gradient centrifugation and differential plating (Yang et al., 2010; Yang and Honaramooz, 2011). Pigs have also served as a donor species for the development of testis tissue xenografting model, as well as the ectopic cell implantation model (Honaramooz et al., 2002a, 2007), and therefore were suited for the studies outlined in this thesis.

Gonocytes possess many potential applications in the fields of assisted reproductive technologies and regenerative medicine. For instance, gonocytes could be preserved (cryopreserved or ‘biobanked’) as a source of genetic material for fertility preservation, restoration, and conservation, as well as for the generation of induced pluripotent stem cells (iPSC) for cell-based therapy. On the other hand, gonocytes that fail to migrate to proper stem cell niches in the seminiferous tubules have been associated with cases of testicular carcinoma in situ (Skakkebaek et al., 1987; Hoei-
Hansen et al., 2005). Taken together, extensive research is required to understand further the biology, feasibility of manipulation, and safety of using gonocytes prior to their applications. Ironically, gonocytes are the least studied cells among MGSC, and hence are the subject of this thesis. Therefore, the overall objective of the present work was to study in vitro and in vivo culture systems for the development of porcine testis cells and tissue.
CHAPTER 2

LITERATURE REVIEW AND OBJECTIVES

2.1 Anatomy and Physiology of the Testis

2.1.1 Origin and Development of the Testis

Embryonic development of the mammalian testis is unique because, in addition to complex folding of the germinal layers (i.e., mesoderm and ectoderm) and migration of individual cells, it involves the formation and assembly of both germ cells and somatic cells (Svingen and Koopman, 2013). Based on the mouse model, development of the indifferent gonad begins with the formation of a paired thickening of the epithelial layer overlying the mesonephros (at 9.5 days post-coitum, dpc). The thickenings are due to the proliferation of the coelomic epithelium, which lead to the formation of the gonadal/genital ridges at 10-10.5 dpc (Svingen and Koopman, 2013; Tanaka and Nishinakamura, 2014). This coelomic epithelium also gives rise to the somatic cell lineages of the gonad. Formation of the genital ridge is known to be triggered by several genes including the steroidogenic factor 1 (Sf1) and Wilm’s tumour-associated gene 1 (Wt1) (Hammes et al., 2001; Wilhelm and Englert, 2002; Ozisik et al., 2003; Buaas et al., 2009). Primordial germ cells (PGC) that form the germ cell component of the gonad are derived from the epiblast cells, and can be found at the posterior primitive streak at 6.25 dpc (Tanaka and Nishinakamura, 2014). These cells are passively translocated from the mesoderm to the endoderm at 7.5 dpc, where they gain motility prior to their migration towards the genital ridges. PGC begin migrating toward the genital ridges at 8.5 dpc, via the hindgut, and reach the genital ridges at 10.5 dpc (Anderson et al., 2000; Molyneaux et al., 2001; Hara et al., 2009).

Migration and proliferation of PGC occur through signals from chemo-attractants released by the developing genital ridges (Martineau et al., 1997) and specific proteins expressed along the migratory route (Patni et al., 2017). During this migration, PGC undergo extensive proliferation, increasing from an initial 50-80 cells to ~30,000 by the time they reach the genital ridge (Bendel–
Stenzel et al., 1998; Wylie, 1999). Once arrived at the genital ridges, PGC become immotile and transform morphologically (lose cytoplasmic processes) to convert to gonocytes (Baillie, 1964; Donovan et al., 1986). Development of the porcine testis follows the general mammalian pattern; the genital ridges are formed at ~18 dpc, and the indifferent gonads are completely formed by ~25 dpc (Hurst et al., 1991). At this point, regardless of the genetic make-up (XX or XY), the primitive gonad is bipotential, equally capable of developing into a testis or an ovary depending on the molecular cues (Koopman et al., 1991; Vidal et al., 2001; Barrionuevo et al., 2006). Differentiation of the indifferent gonad is initiated by the sex-determining region Y (SRY) protein, a testis-determining factor (TDF) encoded by the Sry found on the Y chromosome, and expressed by the pre-Sertoli cells (derived from the coelomic epithelium) (Gubbay et al., 1990; Sinclair et al., 1990; Koopman et al., 1991). Expression of SRY activates the testicular genes, leading to deactivation of the ovarian genes (Li et al., 2014). The duration of SRY expression is very short, lasting only ~6 h in mice (at ~11 dpc) (Hiramatsu et al., 2009). Transient expression of SRY upregulates the expression of Sry-box 9 (SOX9) by the pre-Sertoli cells and leads to their differentiation into Sertoli cells (Sekido et al., 2004; Wilhelm et al., 2005). The expression of SOX9 also upregulates the expression of fibroblast growth factor 9 (FGF9) and anti Müllerian hormone (AMH) by Sertoli cells. While SOX9 and FGF9 drive the formation of the testis cords and proliferation of Sertoli cells, AMH prevents the formation of the Müllerian ducts (Josso, 1992; Kim et al., 2006a). The persistent expression of SOX9 during testis development is crucial and is achieved via feedforward loops with FGF9 and prostaglandin-D2 (PGD2) (Kim et al., 2006a; Moniot et al., 2009).

Activation of Sox9 and its upstream genes (e.g., Fgf9) initiates the aggregation of Sertoli cells around germ cell clusters at 11.5 dpc (Combes et al., 2009; Svingen and Koopman, 2013). Concurrently, FGF9 expression attracts the migration of endothelial and peritubular myoid cells from the mesonephros into the gonad (Martineau et al., 1997). By 12.5 dpc (27 dpc in the pig), germ cells are completely surrounded by Sertoli cells, which in turn are enclosed by peritubular myoid cells to form testis cords (Hurst et al., 1991; Combes et al., 2009). At this point, germ cells begin undergoing mitotic arrest (Escalante-Alcalde and Merchant-Larios, 1992). Formation of testis cords results in the establishment of the interstitial compartment, which later hosts Leydig cells, mesenchymal cells, and blood vessels (Combes et al., 2009). Growth of the early testis is rapid compared with the early ovary, because by 13.5 dpc the testis is twice the size of the same-age ovary (Schmahl et al., 2000; Park and Jameson, 2005).
The origin of Leydig cells remains poorly understood; however, they are presumed to be derived from precursor cells of the coelomic epithelium and mesonephros mesenchyme (Merchant-Larios and Moreno-Mendoza, 1998; O’Shaughnessy et al., 2006; Söder, 2007), regulated by AMH and other Sertoli cell signals (Patni et al., 2017). Under the influence of SF1 and GATA4, Leydig cells express several genes for encoding enzymes such as steroidogenic acute regulatory protein (StAR), Cyp11a1 and Cyp17 (cytochrome P450 hydroxylases), and hydroxysteroid dehydrogenase (3βHSD), required for testosterone biosynthesis (Park and Jameson, 2005; Patni et al., 2017). Testosterone acts on the cranial and caudal portions of the mesonephric duct to form the epididymis and ductus deferens, respectively. The mesenchyme between the testicular cords then forms septa, which give rise to the lobulated structure of the testis parenchyma (Patni et al., 2017). Later, the testis descends into the scrotum through two phases; the transabdominal phase, which in the mouse occurs between 15.5 and 17.5 dpc, and the inguinoscrotal phase, which occurs after birth at ~6 dpp. In the pig, these processes take place at 55 dpc and 85-90 dpc, respectively (Klonisch et al., 2004).

2.1.2 Testis Structure and Function

The mature testis is responsible for the production of male gametes and sex hormones, via the interrelated processes of spermatogenesis and steroidogenesis, respectively. These processes occur in distinct compartments of the testis parenchyma; spermatogenesis takes place in the seminiferous tubules and steroidogenesis happens in the interstitial compartment by Leydig cells. The activities in these compartments are regulated by a feedback system known as the hypothalamic-pituitary-gonadal (HPG) axis (Weinbauer et al., 2010).

The testes are paired oval-shaped organs enclosed within the scrotum that are attached to the body via the spermatic cord. The cremaster muscles covering the spermatic cord is responsible for raising and lowering the testes for thermoregulation (Kayalioglu et al., 2008). In most species (i.e., mammals, amphibians, and birds), the testes are asymmetrical where the left testis is larger than the right testis (Birkhead et al., 1997; Yu, 1998; Liu et al., 2012). Surface of the testis is covered by a complex multi-layered tissue. These layers include the tunica vaginalis, which extends from the peritoneum and forms a lining that covers both the scrotal cavity (parietal tunica vaginalis) and the tunica albuginea (visceral tunica vaginalis). The fluid-filled space (i.e., tunica vaginalis cavity) created by these two sub-layers allows the testes to move freely in the scrotum. The tunica
albuginea is a tough fibrous connective tissue that forms the outer surface of the testis and encapsulates it. Branching of the tunica albuginea (i.e., septa) divide the testis parenchyma into several lobes and lobules that contain seminiferous tubules and interstitial tissue (Miller et al., 1983; Sprengel et al., 1990). In addition to acting as a protective physical barrier for the testis, the tunica albuginea plays a significant role in spermatozoa transport, testis vascularization, and maintenance of testis structure. The inner surface of the tunica albuginea is covered by the tunica vasculosa, an area enriched with blood vessels that facilitates the blood supply to the testis (Leeson and Cookson, 1974; Setchell et al., 1994).

The testis parenchyma can be divided into two main compartments, namely the seminiferous tubules and the interstitial tissue. Seminiferous tubules are structures with a lumen and a seminiferous epithelium lining, made up of sustentacular Sertoli cells and germ cells in various stages of development (Siu and Cheng, 2004a; Jiang et al., 2013). Germ cells form close contacts with Sertoli cells via N-cadherin and galactosyltransferase (GalTase) expressed on the surface of both cells (Newton et al., 1993; Pratt et al., 1993). During spermatogenesis, Sertoli cells nourish and facilitate the development of germ cells, establish dynamic interactions, regulate the environmental milieu within the seminiferous tubules (Griswold, 1998), and eliminate the residues produced during germ cell differentiation via phagocytosis (Yefimova et al., 2013). Sertoli cells are joined together by tight junctions formed by basal cytoplasmic processes, creating a physical impediment commonly known as the blood-testis barrier. This structure provides an anatomical, physiological, and immunological barrier that divides the seminiferous tubule epithelium into a basal compartment and an adluminal compartment. The basal compartment consists of a specialized microenvironment, known as the stem cell niche, where Sertoli cells support and regulate the self-renewal and differentiation of spermatogonial stem cells (SSC) (De Rooij, 2009), while the adluminal compartment houses more advanced stages of germ cells. Thus, the blood-testis barrier provides an immunoprivileged environment to protect the haploid germ cells, while ensuring that nutrients reach these cells. In addition, the blood-testis barrier may have a role in preventing harmful substances from entering the adluminal compartment (Pelletier and Byers, 1992).

Fully developed seminiferous tubules have a constant number of Sertoli cells per unit length; although, the diameter and luminal volume of tubules change depending on the stage of the
spermatogenic cycle (Wing and Christensen, 1982). Seminiferous tubules are circumferentially enclosed by contractile cells known as the peritubular myoid cells, which contain an abundance of actin filaments and cytoskeleton proteins (Maekawa et al., 1996). The contractile action of peritubular myoid cells assist the propulsion of spermatozoa and testicular fluid along the lumen of seminiferous tubules toward the rete testis, efferent ductules, and epididymis. The epididymis acts as temporary storage, where the maturation of spermatozoa continues (King, 1993; Hafez, 2000; Almeida et al., 2006).

The interstitial compartment of the testis is mainly populated with the androgen-producing Leydig cells, along with other cells such as fibroblasts, mast cells, and macrophages (Schulze, 1984). Leydig cells are polygonal in shape and, being a steroid-producing cell, rich in smooth endoplasmic reticulum and mitochondria (Weinbauer et al., 2010). Unlike adult germ cells and Sertoli cells, where the development continues from their preexisting predecessors of the embryogenic stage, adult Leydig cells are believed to be derived from stem Leydig cells, which are morphologically and functionally distinct from fetal Leydig cells. For instance, stem Leydig cells are originally spindle-shaped and lack LH receptors and steroidogenic-cell markers, but under the influence of growth factors and hormones they undergo transitional steps to ultimately differentiate into immature, and at puberty into adult Leydig cells. Most fetal Leydig cells regress shortly after birth and are not involved in the production of testosterone (Ge and Hardy, 1997; Faria et al., 2003). The production of testosterone by Leydig cells is LH- and FSH-dependent, where testosterone has a significant influence on Sertoli cells and spermatogenesis (O’Shaughnessy et al., 2009).

2.1.3 Spermatogenesis

Spermatogenesis is a complex cyclical process where MGSC undergo a series of mitotic and meiotic divisions, eventually resulting in the production of mature spermatozoa (Russell et al., 1993). Molecular cues for the initiation of spermatogenesis are poorly understood, but they also extend beyond the testis and involve the hypothalamus and pituitary gland. Regulation of spermatogenesis involves a systematic interplay between the hormonal/endocrine and paracrine/autoocrine systems (de Kretser et al., 1998); for instance, in mice, this process is triggered by the bone morphogenetic protein 8B (BMP8B) released by spermatogonia during the onset of puberty (Zhao et al., 1996).
During spermatogenesis, germ cells develop into successively advanced stages, spanning from the basal compartment (during mitotic divisions) at the periphery of the seminiferous epithelium toward the adluminal compartments (for meiotic divisions). Prior to puberty, gonocytes and later spermatogonial stem cells (SSC) are the only germ cells in the testis.

Spermatogenesis begins at the basement membrane with mitosis of SSC. Spermatogonia type A_{single} (A_s) comprise a rare and relatively quiescent population of cells that represent ‘true’ SSC, because they uniquely manage to retain their pluripotency and capability to undergo both self-renewal and differentiation (De Rooij and Russell, 2000). These cells can undergo division to form either two new A_s (for self-renewal) or a pair of spermatogonia that remain connected A_{pair} (A_{pr}, destined for differentiation). In rodents, differentiation of type A_s to A_{pr} is followed by a series of divisions that lead to the formation of type A_{aligned} (A_{al}) spermatogonia which remain interconnected and can have chains of 4, 8, or 16 cells. While all are considered ‘undifferentiated’ spermatogonia, A_{pr} and A_{al} cells are on their way toward differentiation and hence are sometimes referred to as ‘transient amplifying progenitor’ cells. The next steps involve transition without cell division of A_{al} into A1 differentiating spermatogonia, followed by five synchronized cell divisions to form A2, A3, A4, intermediate (In), and type B spermatogonia. Undifferentiated spermatogonia (types A_s, A_{pr}, and A_{al}) have similar cellular morphology; however, transition from A_{al} to A1, which marks the beginning of differentiated spermatogonia is accompanied by significant morphological and mitotic behavior changes (de Rooij, 1998). Further differentiation of type B spermatogonia gives rise to spermatocytes and subsequently to haploid spermatids, which eventually develop into spermatozoa (Russell et al., 1993; De Rooij and Russell, 2000).

Prior to further development, the resultant B-spermatogonia must leave the basal compartment by physically passing through the blood-testis barrier. Once in the adluminal compartment, B-spermatogonia undergo another mitotic division to produce primary spermatocytes that immediately enter the first phase of meiosis. During the long prophase of the first meiosis, the DNA undergoes complete replication to form tetrads, followed by crossing-over of homologous chromosomes to ensure genetic heterogeneity of the resultant germ cells. At the end of the first meiosis, each primary spermatocyte has produced two secondary spermatocytes (haploid, N), which are relatively short-lived and immediately undergoes the second meiotic division. Meiosis II leads to subdivision of each secondary spermatocyte into two haploid round (spherical)
spermatids, after which time, no further cell division will occur, instead they undergo extensive morphological differentiation to transform into spermatozoa via a process known as spermiogenesis. During the differentiation process, dramatic changes need to take place to transform round spermatids into elongating/elongated spermatids and spermatozoa, before they are released into the lumen of seminiferous tubules to be transported out of the testis (King, 1993; Dym, 1994; Gilbert, 2000; Hafez, 2000; Almeida et al., 2006).

2.1.4 Regulation of Spermatogenesis

At the onset of puberty, the release of gonadotropin-releasing hormone (GnRH) by the hypothalamus drives the release of gonadotropins, FSH and LH, from the pituitary gland. These gonadotropins initiate the first wave of spermatogenesis, which begins shortly after birth in mice and ~5-8 months of age in pigs (Vergouwen et al., 1993; Almeida et al., 2006; Gartner and Hiatt, 2006). FSH exerts its effect on Sertoli cells to promote their function in nourishing germ cells and facilitating spermatogenesis, while LH acts on Leydig cells to stimulate the production of testosterone. In turn, testosterone and inhibin-B (produced by Sertoli cells) act through a negative feedback mechanism to temporarily inhibit further release of GnRH, FSH, and LH (Boepple et al., 2008).

During the first wave of spermatogenesis, the testis experiences sudden changes at the structural and hormonal levels. One of the most significant events occurring at this period is a massive Bax-dependent germ cell apoptosis, which is believed to establish a proper germ-Sertoli cell ratio (Rodriguez et al., 1997; Print and Loveland, 2000). FSH and testosterone play a significant role in altering the rate of apoptosis during this process to bring about a balance (Rodriguez et al., 1997; Ruwanpura et al., 2007; Walczak-Jedrzejowska et al., 2011). Reduced FSH levels during this period may result in significant increases in germ cell death (Billig et al., 1995; Meachem et al., 2005; Ruwanpura et al., 2007), while supplementation of testosterone can have the opposite results (Rodriguez et al., 1997).

During the subsequent spermatogenic cycles and throughout adulthood, FSH and testosterone seem to work in an independent, synergistic and/or overlapping manner to ensure completion of spermatogenesis (Saito et al., 2000; Haywood et al., 2003; Matthiesson et al., 2005). FSH is important in ensuring the optimum spermiation output by maintaining or increasing (via
proliferation) the number of spermatogonia and thereby the population of more advanced germ cells (Zirkin et al., 1994; Griswold, 1998; Simorangkir et al., 2009; Walczak-Jedrzejowska et al., 2011). Using transgenic mouse models lacking FSH or its receptor, it has been shown that although the mice can remain fertile, the number of germ cells and their survival rate are reduced (Dierich et al., 1998; Meachem et al., 1999; Abel et al., 2000; Wreford et al., 2001; Matthiesson et al., 2005). Similarly, an increase in the number of spermatogonia and spermatocytes can be observed after FSH treatment of hypophysectomized and/or GnRH-immunoneutralized rats (Russell et al., 1993; McLachlan et al., 1995). Within seminiferous tubules, FSH receptors are only found on Sertoli cells, suggesting that any FSH effects on germ cells is likely achieved by modulating the Sertoli cell function (McLachlan et al., 1995; Asatiani et al., 2002). FSH, however, has no or limited direct effect on completion of meiosis and spermatogenesis (Russell et al., 1993; McLachlan et al., 1995).

Testosterone also plays a role in maintaining the population of spermatogonia; however, its most crucial function in spermatogenesis seems to be related to the transition of spermatocytes to spermatids (Welsh et al., 2009; O’Shaughnessy et al., 2012). Studies have shown that both testosterone withdrawal and lack of androgen receptors can result in male infertility, due to the failure to generate post-meiotic germ cells (Haywood et al., 2003; Welsh et al., 2009; O’Shaughnessy et al., 2012). Using a hypophysectomized rat model, it was shown that while FSH supports the development of germ cells up to the step 7-8 spermatids, spermiogenesis was not observed in the absence of testosterone (Bartlett et al., 1989; Kerr et al., 1992). Furthermore, treatment with testosterone successfully recovers spermatogenesis of mice that have a mutation of the gonadotropin-releasing hormone gene, suggesting that this recovery is LH- and FSH-dependent (Cattanach et al., 1977; Singh et al., 1995). Similar to FSH, any effect of testosterone on germ cells is indirect and mediated through somatic cell populations, because androgen receptors are absent in germ cells but found abundantly in Sertoli, peritubular myoid, and Leydig cells (Skinner et al., 1989; De Gendt et al., 2004; Abel et al., 2008).

A potential role has also been suggested for estrogen in the regulation of spermatogenesis; however, the mechanism by which estrogen acts to regulate this process is poorly understood. Androgens are converted to estrogens via aromatase activity in the testis (Dorrington et al., 1978), where estrogen receptors-α and β (ERα and ERβ) as well as aromatase are found in abundance.
(Couse et al., 1997; Rosenfeld et al., 1998), and the lack of ERα or aromatase leads to spermatogenesis impairment in mice (Lubahn et al., 1993; Korach, 1994; Eddy et al., 1996; Honda et al., 1998; Robertson et al., 1999; Toda et al., 2001). Activin and inhibin are peptide growth factors mainly produced by Sertoli cells which participate in the regulation of spermatogenesis. As their names suggest, these structurally-related proteins have opposing biological effects; while activin has a stimulatory effect (Mather et al., 1990; Nagano et al., 2003), inhibin exerts inhibitory effects on proliferation of spermatogonia (Meachem et al., 2001).

2.2 Origin and Development of Male Germline Stem Cells

2.2.1. Primordial Germ Cells

Primordial germ cells (PGC) are the progenitors of both male and female germline, which arise from a small population of epiblast cells distributed throughout the primitive streak (Anderson et al., 2000; Yabuta et al., 2006). This event occurs during gastrulation (~6.0-6.5 dpc in mice), under the influence of bone morphogenetic proteins (BMP4 and BMP8b), produced by the cells of extraembryonic ectoderm and visceral endoderm (Ginsburg et al., 1990; Saga, 2008; Ying et al., 2000). These BMP induce the expression of PR-domain-containing protein 1 (PRDM1), also known as B-lymphocyte-induced maturation protein 1 (BLIMP1), which allows the specification of the epiblast cells to become PGC. This is achieved by promoting the expression of germ cell-specific genes (e.g., Stella and Fragilis) and repressing the expression of somatic genes (e.g., Hox) (Ohinata et al., 2005; Saitou, 2009). Later, PGC develop cytoplasmic extensions and migrate to the base of the allantois (through the mesoderm and endoderm), where they are present as a cluster of alkaline phosphatase positive cells, at 7.0-7.5 dpc in mice (Chiquoine, 1954; Ginsburg et al., 1990) or 22 days of gestation in humans (Falin, 1969). At this point, PGC are known as the pre-migratory PGC since they are about to begin their journey to the genital ridges.

Migration of PGC to the genital ridges occurs between ~8.5 and 13.5 dpc in mice (by 4.5 wk of gestation in humans). This migration is driven by chemotaxis and PGC undergo extensive multiplication while traveling along the hindgut, via the mesenchyme or dorsal mesentery (Tam and Snow, 1981; Francavilla et al., 1990; Rabinovici and Jaffe, 1990; Anderson et al., 2000). Migratory PGC maintain the expression of STELLA and also express the pluripotency markers OCT4, NANOG, SOX2, and stage-specific embryonic antigen-1 (SSEA-1) (Chuma et al., 2005;
Once in the gonadal ridges, the deleted in azoospermia-like protein (DAZL) ensures the population of PGC remain constant and healthy by preventing apoptosis and terminating abnormal PGC (Lin and Page, 2005; Chen et al., 2014). Once residing in the gonadal ridges, PGC are subjected to sex determination.

Uniquely, the fate of PGC is not determined by their chromosomal sex, but largely by the surrounding somatic cells; therefore, PGC have an equal capacity to become gonocytes or oocytes (Adams and McLaren, 2002; Chiquoine, 1954; McLaren et al., 1995; Molyneaux et al., 2001; Tilgner et al., 2008). Several studies have shown that PGC will enter meiosis if not co-cultured with embryonic testis tissue or if the testis architecture is disrupted in culture (Dolci and De Felici, 1990; McLaren and Southey, 1997; Yao et al., 2003). Molecular cues involved in the sexual determination of PGC are poorly understood. During this phase, the sex determination genes are upregulated and the pluripotency genes are suppressed (Hu et al., 2015). The DAZL is believed to be one of the important factors that promote this process, because its absence results in maintenance of pluripotency and inhibition of differentiation into advanced germ cells (Gill et al., 2011). The presence of Sertoli cells also influences the sexual determination of PGC (Bowles et al., 2006). Gender-specific behavior of PGC can be seen at ~12.5 dpc in mice; in male (XY) embryos, PGC are arranged in rows, while they are arranged in random arrays in female (XX) embryos (Jost et al., 1973; Hilscher et al., 1974; McLaren and Southey, 1997; McLaren, 2001). The male PGC undergo several rounds of mitotic divisions before entering a mitotic arrest in the \(G_0/G_1\) phase of the cell cycle, where they become known as gonocytes and remain quiescent until after birth (McLaren, 2001). In the female, after several rounds of proliferation, PGC undergo arrest at the diplotene stage of prophase I of meiosis (Tam and Snow, 1981).

2.2.2 Gonocytes

As the only type of germ cells present at birth, gonocytes are crucial for the development of more advanced stages of germ cells, ensuring the continuity of male germline throughout life (Culty, 2009; 2013). Gonocytes are a transitional population of MGSC found between the stages of PGC and SSC (de Rooij, 1998; Jiang and Short, 1998). They appear at ~13.5 dpc in rodents, and 7 wk of gestation in human embryos (McLaren, 2003; Culty, 2009) and their development is hormone-independent (Baker and O’Shaughnessy, 2001; O’Shaughnessy et al., 2012). Concurrent with the
establishment of testis cords and upon activation of the germ cell nuclear antigen 1 (GCNA1), PGC are committed to adopting male germ cell fate and becoming gonocytes. This transition is marked by the complete suppression of the alkaline phosphatase activity at ~14.5 dpc in mice (Enders and May, 1994; Richards et al., 1999). Gonocytes undergo several rounds of proliferation between 13.5 and 18 dpc in rodents, and at 18 wk of gestation in human embryos, before they undergo mitotic arrest and enter the quiescent stage (Ginsburg et al., 1990; Vergouwen et al., 1991; McLaren, 2003; Oatley and Brinster, 2008; Western et al., 2008; Culty, 2009).

Gonocytes have heterogeneous subpopulations that can genetically and behaviorally overlap with both the preceding and subsequent stages (Nagano et al., 2000). Based on mitotic activity and temporospatial distribution, gonocyte subpopulations can be more accurately categorized into: 1) Multiplying (M)-prospermatogonia; the population of gonocytes immediately following the PGC stage and prior to their mitotic arrest in the embryonic gonad. 2) Primary transitional (T1)-prospermatogonia; quiescent gonocytes in the first state of transition between M-prospermatogonia and A-spermatogonia that reside at the center of testis cords. 3) Secondary transitional (T2)-prospermatogonia; mitotically active gonocytes in the second state of transition to A-spermatogonia that have migrated to the basement membrane of cords (McLaren, 2003).

The proliferative activity of gonocytes (M-prospermatogonia) prior to their mitotic arrest has been suggested to occur under the influence of retinoic acid (RA). An increase in the number of rat gonocytes was observed after RA treatment in 12.5-14.5 dpc gonadal tissue cultures, but the opposite happened when RA was added to 16.5 dpc gonadal tissues (Livera et al., 2000a; Trautmann et al., 2008). The mechanisms involved in the mitotic arrest of gonocytes remain unknown; however, gonocytes enter the G1-S phase, and dephosphorylation of retinoblastoma protein (RB) occurs at 13.5 dpc in rodents (Western et al., 2008; Spiller et al., 2010). The quiescent stage of gonocytes (T1-prospermatogonia) has been observed in all examined mammalian species except in sheep (Hochereau-de Reviers et al., 1995). This quiescent state lasts for days, weeks, months, or years after birth, depending on the species (Russell, 1990; Olaso and Habert, 2000; Shinohara et al., 2001; McLaren, 2003; Oatley and Brinster, 2008; Culty, 2009). Gonocytes resume their proliferative activity at 1-4 dpp in rodents or ~8 wk after birth in the male infant (Culty, 2009). Throughout the quiescent stage, gonocytes reside at the center of seminiferous cords, where they
can be identified as distinctively large round cells, with one or two nucleoli in a prominent nucleus (McGuinness and Orth 1992).

Prior to birth or shortly after, gonocytes (T1-prospermatogonia) migrate to the basement membrane, resume mitotic divisions and differentiation into T2-prospermatogonia (Coucouvanis et al., 1993; de Rooij, 1998; Jiang and Short, 1998). Prior to their migration, gonocytes undergo physical changes through the development of cytoplasmic extensions or pseudopods. These features are believed to aid in the amoeboid movement that directs the migration of gonocytes (McGuinness and Orth, 1992; Nagano et al., 2000). The population of gonocytes that fail to develop these cytoplasmic extensions will remain in the center of the seminiferous cords, degenerate, and undergo apoptosis (Roosen-Runge and Leik, 1968; Orwig et al., 2002a). In rats, gonocytes with pseudopods were able to drive full donor-derived spermatogenesis after transplantation into recipient testes, while most round, smooth gonocytes that lacked the cytoplasmic projections underwent apoptosis (Orwig et al., 2002a). Migration of gonocytes requires the expression of molecular cues that allow the interaction of gonocytes and somatic cells. Gonocytes with pseudopods were shown to express c-kit, blocking of which reduced gonocyte numbers in vitro and disrupted their migration to the basement membrane in vivo (Orth et al., 1997; Basciani et al., 2008). Suppression of PDGF receptors (PDGFRα and β) also exerted the same effects (Thuillier et al., 2003; Basciani et al., 2008). A role has also been suggested for A-Disintegrin and A-Metalloprotease domain (ADAM)-Integrin-Tetraspanin complexes (Kierszenbaum, 2005; Culty, 2009), due to their timely expression during the relocation and interaction with the extracellular matrix components of the basement membrane (Rosselot et al., 2003; Siu and Cheng, 2004b).

In rats, approximately 20% of the neonatal gonocytes undergo mitosis between 4 and 5 dpp (McGuinness and Orth, 1992). This event has been known to be driven by several molecular cues including 17β-estradiol (E2) and platelet-derived growth factor (PDGF) (Thuillier et al., 2003; Wang et al., 2004; Basciani et al., 2008). Administration of E2 to mouse pups for three consecutive days after birth doubled the number of gonocytes (Vigueras-Villaseñor et al., 2006), while in the absence of estrogen receptors, the number of gonocytes was reduced two fold (Delbès et al., 2004). Other factors that have been identified to affect the proliferative activity of gonocytes include RA (Livera et al., 2000b; Boulogne et al., 2003; Zhou et al., 2008), leukemia inhibitory factor (LIH)
(De Miguel et al., 1996), and glial-derived neurotrophic factor (GDNF) (Braydich-Stolle et al., 2007). Once settled at the basement membrane, gonocytes are confined in a special microenvironment, bounded by the basal lamina at the periphery, embedded between neighboring Sertoli cells, and isolated from the adluminal compartment via the blood-testis barrier. This microenvironment supports the differentiation of gonocytes to T2-prospermatogonia and future SSC, and hence is referred to as the ‘stem cell niche’.

2.2.3 Spermatogonial Stem Cells

Gonocytes that successfully migrate to the basement membrane (T2-prospermatogonia) resume proliferative activity, and a subset of this population (potentially NANOS3-positive) will differentiate and give rise to spermatogonial stem cells (SSC) (Yoshida, 2006; Nakagawa et al., 2007; Suzuki et al., 2009). In mice, SSC appear at 3-8 dpp (Vergouwen et al., 1991; Drumond et al., 2011) and immediately initiate the first wave of spermatogenesis (Yoshida, 2006). In pigs and infant boys, SSC can be first detected at 1-2 mo and 3-12 mo, respectively (Hughes and Varley, 1980; Goel et al., 2007; Chen and Liu, 2015). As precursors to all subsequent generations of germ cells, SSC undergo continuous self-renewal and differentiation (spermatogenesis) to produce tens of millions of spermatozoa per day throughout the adult life (De Rooij and Russell, 2000; Kubota and Brinster, 2006). However, SSC are a rare population among testis cells; in adult rodents, they comprise ~0.02-0.2% of testis cells, other estimates put their numbers at ~0.03% of all germ cells or 30,000 per testis in mice (Huckins, 1971; Tegelenbosch and de Rooij, 1993; de Rooij, 1998; Kanatsu-Shinohara et al., 2005). SSC reside in the stem cell niche, which ensures their survival, and regulates their differentiation and self-renewal (Oatley et al., 2009; Oatley and Brinster, 2012).

Differentiation of gonocytes (T2-prospermatogonia) to SSC in rodents is induced by the RA and PDGF signaling pathways (Wang and Culty, 2007; Zhou et al., 2008; Manku et al., 2015). The involvement of microRNA (miRNA) in coordinating the differentiation of gonocytes to SSC has also been suggested (Tong et al., 2011; McLver et al., 2012). The differentiation to SSC is morphologically evident by proliferations to form spermatogonial clusters connected by intercellular bridges (Aponte et al., 2005; Kanatsu-Shinohara and Shinohara, 2013).

Spermatogenesis begins at the basement membrane with mitosis of SSC to produce two daughter cells; one maintains its SSC characteristics to preserves the SSC pool to ensure continuity of the
process, while the other may continue mitotic divisions to form more advanced stages of spermatogonia. More detailed involvement of SSC in spermatogenesis was discussed in Chapter 2.1.3. This self-renewal capability is essential in ensuring the maintenance of SSC pool (De Rooij and Russell, 2000; De Rooij, 2001a). Self-renewal and differentiation of spermatogonia must be kept in balance, or it may lead to either germ cell tumor or depletion of SSC (Meng et al., 2000). This balance is regulated by both extrinsic and intrinsic factors, including GDNF, as one of the most important regulators of SSC self-renewal, produced by Sertoli cells under the influence of FSH. GDNF signaling induces expression of specific genes such as Ets variant gene 5 (Etv5) and B-cell leukemia/lymphoma 6 (Bcl6b) that are involved in SSC self-renewal (Simon et al., 2007), while RA and DAZL are crucial regulators for spermatogonial differentiation (van Pelt and de Rooij, 1990; de Rooij et al., 1999).

2.3 In Vitro Culture and Manipulation of Gonocytes

2.3.1 Identification, Isolation, and Enrichment of Gonocytes

Gonocytes have unique attributes that make them a suitable model for MGSC research and use in preserving or restoring fertility. However, gonocytes are present at very low numbers in the neonatal testis, comprising ~1-2% of total testis cells in rat pups, and ~7% of cells within seminiferous cords in piglets (Orwig et al., 2002a; Honaramooz et al., 2005a). The low number of gonocytes limits their use in downstream applications and necessitates their efficient identification, isolation, enrichment, and propagation in culture.

Being the only germ cells present in the testis at birth, gonocytes can be identified by their size, distribution, and distinct morphology (Orwig et al., 2002a; Goel et al., 2007). In the neonatal testis, gonocytes reside at the center of seminiferous cords, and are characterized as large round cells with one or more nucleoli in their prominent nucleus (McGuinness and Orth, 1992; Orth et al., 2000). Upon digestion of the neonatal testis tissue, freshly isolated gonocytes are comparatively larger in size than Sertoli cells (Goel et al., 2007). In culture, gonocytes develop pseudopodia or cytoplasmic extensions, an attribute that is believed to be crucial for their migration (McGuinness and Orth, 1992; van Dissel-Emiliani et al., 1993). Transplanting donor rat gonocytes with or without pseudopods into infertile mice showed that only gonocytes with pseudopods are able to produce donor-derived spermatogenesis (Orwig et al., 2002a). Although the morphological attributes of
gonocytes provide a valuable means for their identification, availability of molecular markers exclusively expressed by gonocytes remain crucial for their efficient identification, isolation, and enrichment.

Currently, no biomarker is known to be uniquely expressed by gonocytes; hence, identification of gonocytes commonly relies on using other germline- and stem cell-specific markers. Germline-specific markers such as DAZL and VASA, which are uniquely expressed in the germ cell lineage can be used to distinguish gonocytes from somatic cells (Castrillon et al., 2000; Reijo et al., 2000; Wu et al., 2009; Fujihara et al., 2011). Gonocytes have also been shown to express specific stem cell markers such as Oct3/Oct4, ZBTB16 (also known as PLZF), KIT, SSEA, NANOG and SALL4 (Ohbo et al., 2003; Hoei-Hansen et al., 2005; Yamaguchi et al., 2005; Rajpert-De Meyts, 2006; Goel et al., 2007; Basciani et al., 2008; Fujihara et al., 2011). Gonocytes also have alkaline phosphatase activity and express surface markers such as CD9, THY1 (CD90), ubiquitin carboxyl-terminal hydrolase-L1 (UCHL1, otherwise known as protein gene product 9.5 –PGP9.5) (Richards et al., 1999; Han et al., 2009) (Kubota et al., 2003; Kanatsu-Shinohara et al., 2004a; Luo et al., 2006; Goel et al., 2007; Lee et al., 2013; Zheng et al., 2014a). THY1 has been suggested as a reliable surface marker for undifferentiated male germ cells including gonocytes in farm animals (i.e., cattle, pig, goat) (Reding et al., 2010; Abbasi et al., 2013; Zheng et al., 2014a). Lectin Dolichos biflorus agglutinin (DBA) is also an alternative surface marker for identification and purification of gonocytes, especially in pigs (Goel et al., 2007; Yang and Honaramooz, 2010; Abbasi et al., 2013). In contrast to the germline-specific markers for which the expression is conserved in all cells of the germ cell lineage, the expression of stem cell markers and surface markers in gonocytes are stage-dependent and may show different patterns in different populations of gonocytes (e.g., mitotic fetal, quiescent, and mitotic postnatal/migratory).

Ideally, the isolation of gonocytes from testes should be performed using neonatal donors (immediately or shortly after birth) to obtain a higher proportion of gonocytes and to exclude SSC. This is especially critical in studies involving rodents because the window of gonocyte presence in these species is shorter (few days) (Hamra et al., 2008). The protocols for isolating gonocytes vary among laboratories, but a commonly used method has been a two-step enzymatic digestion. In the first step of this method, the parenchyma of neonatal testis tissue is minced and exposed to enzymes, such as collagenase and hyaluronidase, to dissociate the extracellular matrices/interstitial
tissue. In the second step, the tissue digestion is followed by treatment with trypsin either alone or in combination with other enzymes such as DNase to digest the seminiferous cords and prevent aggregation of cells (van Dissel-Emiliani et al., 1993; Orwig et al., 2002a; Goel et al., 2007). The main drawback of the two-step method is that it has not been specifically designed for isolation of neonatal testis cells, thus results in low gonocyte yields (~10%) in the freshly isolated cells from various species (van Dissel-Emiliani et al., 1989; van Dissel-Emiliani et al., 1993; Li et al., 1997; Orwig et al., 2002a; Lo et al., 2005; Herrid et al., 2009). In more recent years, the technique for isolation of gonocytes from fresh neonatal testis tissue has been improved by the introduction of a three-step isolation method, where gentle enzymatic digestion is combined with mechanical agitation (by including two rounds of vortexing). This procedure results in obtaining ~40% gonocytes among the isolated neonatal pig testis cells (Yang et al., 2010).

Several strategies have been applied to enrich gonocytes in the populations of isolated testis cells. Methods such as velocity sedimentation (STA-PUT) or density gradient centrifugation (e.g., using BSA, Percoll, or Nycodenz) have allowed separation of gonocytes from other testis cells based on their cell size/density differences (van Dissel-Emiliani et al., 1989; Luo et al., 2006; Goel et al., 2007; Yang and Honaramooz, 2011; Bryant et al., 2013). For instance, gonocytes were purified to 70-75% among freshly isolated rat testis cells, using the two-step enzymatic digestion, followed by BSA separation (van Dissel-Emiliani et al., 1989). The gonocyte proportion also has been increased from an initial 40% in the freshly isolated pig testis cell to ~80% after Nycodenz centrifugation (Yang and Honaramooz, 2011). Another commonly used approach to gonocyte enrichment is utilizing the differences in adhesion of somatic cells and gonocytes toward extracellular matrices (e.g., fibronectin, laminin, or collagen). This strategy is referred to as differential plating and can be applied to either freshly isolated testis cells or gonocytes enriched using other methods for further purification. Using differential plating can lead to purification of gonocytes up to ~90% for testis cells of farm animals (Han et al., 2009; Kuijk et al., 2009; Kim et al., 2010a; Yang and Honaramooz, 2011; Zheng et al., 2014a). Alternatively, gonocytes can be enriched using cell sorting technologies targeted toward gonocyte surface markers (i.e., fluorescent-activated cell sorting –FACS– and magnetic-activated cell sorting –MACS) (Valli et al., 2014). Freshly isolated testis cells or cells enriched using other methods can be labelled with either single or double markers that can positively or negatively select gonocytes. Although this technology can yield highly enriched populations of gonocytes (Kubota et al., 2004a; Abbasi et al.,
2013; Wu et al., 2013; Kim et al., 2014; McMillan et al., 2014; Zheng et al., 2014a), it also leads
to a significant gonocyte loss that limits its use for most applications.

2.3.2 Maintenance and Propagation of Gonocytes in Culture

The use of gonocytes for certain applications, such as transplantation into recipient testes, requires
very high numbers that necessitates in vitro propagation of gonocytes. This requires the
identification of ideal culture conditions that support self-renewal of gonocyte while maintaining
their pluripotency. For mouse SSC, long-term culture systems (5 mo to 2 yr) have been successfully
established (Kanatsu-Shinohara et al., 2003; Ryu et al., 2005). Application of either the same or
modified culture systems for gonocytes using farm animal donors (e.g., goats, cattle, pigs),
however, has been less successful in maintaining them beyond 2 mo (Luo et al., 2006; Goel et al.,
2007; Kuijk et al., 2009; Bahadorani et al., 2012; Heidari et al., 2012; Zheng et al., 2013; Sahare
et al., 2015). The reasons are not clear but likely involve a reduction in self-renewal capacity of
gonocytes in culture, differentiation into SSC, or apoptosis over time (Zheng et al., 2014b). However, a few studies have reported successful maintenance of bovine and porcine gonocytes in
culture for various periods, with the longest being up to 6 mo (Han et al., 2009; Lee et al., 2013;
Sahare et al., 2016). These two groups each used a different culture system, and to date there is no
standardized system for maintenance and propagation of gonocytes from farm animal species.
Variations in culture conditions (i.e., media, temperature, additives, feeder layer), protocols, and
sources of cells make it difficult to replicate the reported systems for maintenance and propagation
of gonocytes in different species/laboratory settings.

Once cultured, gonocytes are believed to require the presence of supporting cells or a feeder layer;
therefore, at least initially, gonocytes are commonly co-cultured with Sertoli cells (Orth and
Boehm, 1990; Orth and McGuinness, 1991; van Dissel-Emiliani et al., 1993). Sertoli cells promote
in vitro survival of gonocytes via the establishment of specific Sertoli-gonocyte contacts, even in
the presence of other testis somatic cells (van Dissel-Emiliani et al., 1993). However, it has also
been suggested that various metabolic products or molecular signals released from Sertoli cells
may potentially inhibit the proliferation of gonocytes, while promoting their differentiation
(Griswold, 1998; Hasthorpe et al., 2000). Alternative cells for co-culturing with MGSC have
included mitotically-inactivated cells such as SIM embryo-derived thioguanine and aoubain
resistant (STO) or mouse embryonic fibroblasts (MEFs), obtained through mitomycin-C treatment or irradiation. The STO cells have been found to be the most effective feeder cells for maintenance of MGSC, notably SSC, and have also been used to co-culture with gonocytes of various donor species (e.g., rodent, bovine, porcine, human) (van Dissel-Emiliiani et al., 1993; Olie et al., 1995; Nagano et al., 1998; Hasthorpe et al., 1999; Oatley et al., 2002; Kent Hamra et al., 2004; Kubota et al., 2004a; Childs et al., 2008; Wu et al., 2009; Han et al., 2009; Nasiri et al., 2012). The use of feeder cells, however, is not without its limitations. Different types of feeder cells have different effects on proliferation and self-renewal capability of MGSC, and there is considerable variation in the source, treatments applied, and batches among these cells. In addition, some of the same concerns remain over the potential adverse effects of their released metabolites/factors on MGSC (He et al., 2015).

Since the establishment of in vitro culture systems for MGSC, the choice of culture media has always been an essential component of the culture system. Different types of media have been used for culturing gonocytes, ranging from very basic (e.g., DMEM) to enriched/specialized (e.g., DMEM/F12, StemPro) (van Dissel-Emiliiani et al., 1993; Goel et al., 2007; Aponte et al., 2008; Fujihara et al., 2008; Kuijk et al., 2009). The serum has been commonly added as a main component to these media to support optimal growth of cells; although its effect on cultured MGSC remains poorly understood. The use of serum may in fact have inadvertent influences on the rate of proliferation and differentiation of SSC, since higher serum concentrations were found to negatively affect the expansion of SSC (Kanatsu-Shinohara et al., 2005; Bahadorani et al., 2012). Effects of serum on gonocytes are even less studied, but have been suggested to be similar to SSC. Fetal bovine serum (FBS) used at 5% was shown to promote the survival of porcine gonocytes up to 9 days when cultured either alone or in the presence of Sertoli cells (Marret and Durand, 2000). However, FBS exerted deleterious effects when added at 2-8% to cultured rat gonocytes, where a reduction in gonocyte numbers was observed at 5 days onward (van Dissel-Emiliiani et al., 1993). Using neonatal pig testis cells, a negative correlation was observed between the colony formation potential of gonocytes and serum concentrations (i.e., more colonies in 1% than 10% FBS) (Zheng et al., 2013). High concentrations of serum in the media may also enhance the growth of somatic cells and exert detrimental effects on SSC proliferation (Izadyar et al., 2003a; Bahadorani et al., 2012; Zheng et al., 2013). These findings collectively suggest that serum should be used cautiously
as an additive to the culture of gonocytes. Similar to feeder cells, variations in the sources, composition, batches, and manufactures of serum may influence the cell culture outcomes.

Given the limitations and uncertainty over the effects of feeder cells and serum on MGSC, alternative serum-free and feeder-free culture conditions have also been explored. In serum-free systems, a variety of specialized media may be used that include minimum essential medium-alpha (MEMα), F10, Knockout Serum Replacement (KSR), StemPro-34, B27 supplement, and Iscove’s modified Dulbecco’s medium (IMDM) (Kubota et al., 2004a; Kanatsu-Shinohara et al., 2005, 2011; Aoshima et al., 2013; Kanatsu-Shinohara et al., 2014; Sahare et al., 2016). To replace feeder cells, MGSC have been cultured on plates coated with extracellular matrices such as laminin, gelatin, or poly-L-lysine (Sadri-Ardekani et al., 2009; Kanatsu-Shinohara et al., 2011; Kanatsu-Shinohara and Shinohara, 2013; Lee et al., 2013; Sahare et al., 2016). On the other hand, exogenous nutrients such as bovine serum albumin (BSA), growth factors, amino acids, and vitamins have been added as essential components in serum-free and feeder-free culture systems. As discussed in Chapter 2.4, a number of growth factors have been identified to regulate the proliferation and self-renewal of cultured MGSC/gonocytes including GDNF, PDGF, RA, epidermal growth factor (EGF), basic fibroblast growth factor 2 (FGF2), leukemia inhibitory factor (LIH), and stem cell factors (SCF). Thus far, serum-free and feeder-free culture systems have been developed for culturing gonocytes from rodents (Kanatsu-Shinohara et al., 2011, 2014), cattle (Sahare et al., 2016), humans (Sadri-Ardekani et al., 2009; Piravar et al., 2013), and pigs (Lee et al., 2013).

2.3.3 Potential Derivation of Pluripotent Stem Cells

Pluripotent stem cells (PSC) are undifferentiated cells that have the capacity for self-renewal, proliferation, and giving rise to different types of cells and tissues of all three germinal layers (i.e., ectoderm, mesoderm, and endoderm). These PSC can be of embryonic origin (i.e., embryonic stem -ES- cells) or artificially induced (iPSC) in vitro (Evans and Kaufman, 1981; Thomson et al., 1998). The ES cells are collected from the inner-mass cells of embryos at the blastocyst stage, while iPSC are obtained through reprogramming of somatic cells by enforcing the expression of key pluripotency genes (i.e., Oct3/4, Klf4, c-Myc, Sox2) (Takahashi and Yamanaka, 2006; Takahashi et al., 2007; Wernig et al., 2007; Yu et al., 2007; Lowry et al., 2008; Park et al., 2008; Kim et al., 2016). Once induced, iPSC share many similarities with ES cells (i.e., morphology,
karyotype, gene expression) and the resemblance becomes more prominent as iPSC lose their epigenetic markers over time, after multiple passages (Wernig et al., 2007; Yu et al., 2007; Kim et al., 2010b). Therefore, iPSC offer an alternative to ES cells, where the collection is hampered by ethical issues and limited supply (Yamanaka and Blau, 2010). However, given the use of viral vectors for the induction of pluripotency genes, the clinical application of iPSC for stem cell therapy (i.e., regenerative medicine) carries a risk of carcinogenicity. While iPSC can be used as a valuable tool for diseases modelling and drug screening *in vitro* (Colman and Dreesen, 2009), the search continues for alternative sources of pluripotent stem cells whose application is not hampered by ethical or carcinogen concerns.

Male germline stem cells (i.e., PGC, gonocytes, SSC) may have the potential to be induced into PSC (Sabour and Schölér, 2012). The original concept was suggested in 1979 (Illmensee and Stevens, 1979), a decade before PSC were successfully obtained *in vitro* from PGC of 8.5-12.5 dpc embryos, under the influence of growth factors (i.e., FGF2, SCF, LIF) (Matsui et al., 1992; Resnick et al., 1992). These PSC where characterized by the formation of embryoid bodies and differentiation into multiple type of cells in long-term culture, development of tumors (i.e., teratomas and teratocarcinomas) upon implantation into nude mice, and contribution to germline chimeras when microinjected into blastocysts (Matsui et al., 1992; Resnick et al., 1992; Labosky et al., 1994; Stewart et al., 1994). It was initially presumed that the capability to transform into PSC was restricted to PGC, because an attempt to derive PSC from postnatal spermatogonia using the same conditions had failed (Labosky et al., 1994). However, this view changed in 2003, when ES-like cells were derived from mouse SSC, which showed PCS characteristics upon culture in a newly developed long-term system (Kanatsu-Shinohara et al., 2003, 2004b, 2005). Interestingly, the transformation into pluripotency state occurred without the need for ‘reprograming’ and in the absence of GDNF, a key factor associated with SSC self-renewal (Kanatsu-Shinohara et al., 2004b). Unlike iPSC from somatic cells and ES cells (Hayashi et al., 2012; Easley et al., 2014), SSC-derived PSC lose their spermatogenic potential (Kanatsu-Shinohara et al., 2004b, 2008b).

Although SSC-derived PSC have been produced from mice of different ages (Guan et al., 2006; Seandel et al., 2007; Ko et al., 2009), a recent study suggested that the capability of SSC to be induced pluripotent is age-dependent, where it decreases as the mouse reached adulthood (Azizi et al., 2016). In addition to mouse SSC, PSC have also been derived from human, porcine, bovine,
and caprine SSC (Conrad et al., 2008; Kossack et al., 2009; Wang et al., 2014, 2016a; Jafarnejad et al., 2018).

ES-like colonies have been produced and characterized mostly in cultures using gonocytes from non-rodent models (i.e., pigs, cattle, goats), because relatively large numbers of testis cells can be collected from their neonatal testes (Goel et al., 2009; Kuijk et al., 2009; Zheng et al., 2014a). More recently, derivation of PSC from mouse and pig gonocytes has also been reported (Tanaka et al., 2015; Niu et al., 2016). Mechanisms underlying the formation of ES-like cells from postnatal MGSC remain to be elucidated. It was hypothesized that ES-like cells might be the remnants of pluripotent cells from the fetal stage (Kubota and Brinster, 2006); however, this possibility has been questioned because the direct derivation of ES-like cells from either ES cells or embryonic germ cells in culture conditions has been problematic (Labosky et al., 1994; Kanatsu-Shinohara et al., 2004b). The frequency of ES-like cells formation by postnatal MGSC is low, but treatment with glycogen synthase kinase-3 (GSK3) inhibitors and vitamin C has been found to promote the formation of ES-like cells from SSC culture (Moraveji et al., 2012; Wang et al., 2014). A newly-developed protocol involving depletion of two germ cell tumor candidate genes, Trp53 and Dmrt1 (double knockout), improved the efficiency of PSC derivation from MGSC (Takashima et al., 2014; Tanaka et al., 2015).

2.3.4 In Vitro Spermatogenesis

In vitro spermatogenesis refers to an ex vivo production of haploid cells from diploid male germ cells in an artificial environment, which can be performed by culturing testis organ, tissue, or cells in two- (2D) or three-dimensional (3D) systems (Tesarik et al., 1999; Izadyar et al., 2003a; Suzuki and Sato, 2003; Stukenborg et al., 2008; Sato et al., 2011a; Abu Elhija et al., 2012; Riboldi et al., 2012; Yokonishi et al., 2014). Testis organ/tissue culture involves using a whole testis or its small fragments, which ensures that the germ cells remain in their niche architecture and microenvironment throughout the culture period (Ibtisham et al., 2017). However, the success of this technique relies heavily on the ability of the system to keep the tissue viable for a longer period. The use of isolated testis cells, on the other hand, involves culturing of germ cells with or without somatic or feeder cells to initiate the spermatogenic process (as described in Chapter 2.3.2).
Replicating the complex process of spermatogenesis *in vitro* has many applications that range from use as a research model to potential experimental/clinical use as an alternative for infertility treatment or conservation/preservation of endogenous spermatogenesis. Therefore, achieving *in vitro* differentiation of germ cells has been a long-standing research objective going back a century (Champy, 1920). Since then, substantial improvements have been made especially in cell culture protocols and in our understanding of the requirements of *in vitro* differentiation. The media composition and additives may play an important role during this process. Several studies have reported positive effects of FBS on *in vitro* differentiation of germ cells (Haneji *et al*., 1983; Izadyar *et al*., 2003b), while the effects of serum-free media have been less consistent. When KSR was used in cultures of neonatal and adult mouse testis tissues, differentiation potential was greatly improved as compared with FBS (Sato *et al*., 2011a; Riboldi *et al*., 2012). However, another study using fetal mouse testes reported that using KSR prevented the entry of male germ cells into mitotic arrest and caused epigenetic instabilities that raised safety concerns (Hogg and Western, 2015). *In vitro* differentiation and fertilization potential of germ cells were improved with the use of FSH and testosterone, alone or in combination, in culture systems (Tesarik *et al*., 1998; Sousa *et al*., 2002; Movahedin *et al*., 2004; Vigier *et al*., 2004; Hasegawa *et al*., 2010; Xie *et al*., 2010). Similarly, RA promoted *in vitro* germ cell differentiation, especially in the early steps; however, the effect on later steps requires further investigation, since the production of haploid germ cells was found to be less efficient (Wang *et al*., 2016b).

Cryopreservation does not seem to hinder the progression of spermatogenesis *in vitro*, which has important clinical implications. Cryopreserved immature mouse testis tissue was shown to have comparable differentiation potential (SSC to secondary spermatocytes and spermatids after 2 wk of culture), and even slightly higher fertilization rate (78% vs. 74%) than that of fresh adult testis tissue (Suzuki and Sato, 2003). Viable offspring have also been produced from spermatids produced *in vitro* from cryopreserved testis tissue, through the use of round spermatid injection (ROSI) or intra-cytoplasmic spermatozoa injection (ICSI) (Sato *et al*., 2011a; Yokonishi *et al*., 2014). The differentiation efficiency appears donor age-dependent; fewer fertile haploid cells were produced when the tissue was from adult mouse testes than from neonates (Sato *et al*., 2015).

There is no consistent or standardized incubation temperature defined for *in vitro* spermatogenesis since the temperatures used vary from 30-39 °C (Matte and Sasaki, 1971; Hofmann *et al*., 1994;
Using different incubation temperatures in a single study showed that although both germ cell proliferation and differentiation occurred steadily at 37 °C, conditions were more favorable for proliferation at 39 °C and better for differentiation at 32 °C (Hofmann et al., 1994). In more recent years, 3D culture technology has been introduced for in vitro spermatogenesis, in which isolated cells or tissue fragments are cultured on/in 3D scaffolds, made from natural or synthetic polymers (e.g., agarose, collagen matrix, methylcellulose) or poly lactic-co-glycolic acid (PLGA). The 3D culture system, however, seems to be more efficient than the 2D system, because it led to increased occurrence of post-meiotic cells (haploid germ cells) (Lee et al., 2007a; Abu Elhija et al., 2012; Khajavi et al., 2014; Huleihel et al., 2015).

The results of in vitro spermatogenesis in the literature vary greatly, and different degrees of germ cell differentiation have been reported. The results seem to be heavily affected by the source of cells/tissues (i.e., prepubertal vs. adult vs. cryptorchid, or nonobstructive- vs. obstructive azoospermia), strains (wild-type vs. transgenic), species (mouse, rat, human, non-human primates, cattle), culture length (short-term vs. long-term), and culture systems (organ/tissue vs. isolated cells, or 2D vs. 3D). Nevertheless, more recently functional spermatozoa have been successfully produced in vitro using both organ/tissue and isolated cell cultures, with greater success (75%) using organ/tissue cultures (Sato et al., 2011a, b; Abu Elhija et al., 2012; Yokonishi et al., 2014). Interestingly, these successful studies were all performed using rodent donors, in the form of tissues or cells, and 3D systems. The resultant haploid germ cells (i.e., spermatids and spermatozoa) were also functional, examined through the use of ROSI or ICSI, resulting in the production of donor-derived offspring (Sato et al., 2011a, b; Yokonishi et al., 2014).

Thus far, there has been no report of studies achieving or specifically testing the differentiation potential of neonatal gonocytes all through the production of spermatozoa in vitro. Almost all available literature refers to the use of cells or tissues from immature/prepubertal to adult rodents (Matte and Sasaki, 1971; Tesarik et al., 1999; Izadyar et al., 2003b; Suzuki and Sato, 2003; Movahedin et al., 2004; Stukenborg et al., 2008; Abu Elhija et al., 2012; Riboldi et al., 2012). Because in mice, SSC appear as early as 3-8 dpp (Vergouwen et al., 1991; Drumond et al., 2011), even in the studies where the source of testes was indicated as neonates, the earliest germ cells were SSC, not gonocytes (Sato et al., 2011a; Wang et al., 2016b). Since differentiation of
gonocytes to SSC can be induced in vitro such as with RA treatment (Wang and Culty, 2007; Zhou et al., 2008), in vitro spermatogenesis from gonocytes is theoretically achievable.

2.4 Involvement of Growth Factors in Testis Development

2.4.1 Fibroblast Growth Factors

Members of the fibroblast growth factor (FGF) family are expressed in various cells throughout the male reproductive tract and play an important role in the development of fetal and postnatal testes. As described earlier (in Chapter 2.1.1), FGF9 is one of key regulators of sexual differentiation, in which the expression is upregulated as a result of Sry-activated SOX9 (Colvin et al., 2001; Sekido et al., 2004; Wilhelm et al., 2005). Persistent expression of FGF9 is crucial in maintaining SRY and SOX9 to drive the center-to-pole (poleward expansion) of testiculogenic programs and testis cords formation in the developing gonad (Kim et al., 2006a; Moniot et al., 2009). The FGF9 signaling drives the proliferation of mesenchymal stem cells and the migration of mesonephric cells into the gonad, leading to formation of the interstitial compartment (Colvin et al., 2001). Coordinated expression of SRY, SOX9, and FGF9 maintain the expression of testis genes, while deactivating genes involved in the ovarian development (Li et al., 2014). FGF9 alone has been shown to exert antagonist effects on WNT4, a crucial factor in promoting the female gonad development (Jameson et al., 2012).

Other members of the FGF family involved in testis development include FGF8, FGF1, FGF2, and FGF4. For instance, FGF8 has an important function in maturation of the seminiferous epithelium, thus its expression can decrease over time (Valve et al., 1997). FGF2 and FGF4 affect somatic cells of the testis by playing an important role in the proliferation and survival of Sertoli cells, respectively (van Dissel-Emiliani et al., 1996), while FGF2 and FGF1 have been associated with steroidogenesis and the normal function of Leydig cells (Sordoillet et al., 1992; Laslett et al., 1997). The potential direct role of the FGF family on germ cells is less clear; however, it has been suggested that the proliferation of neonatal gonocytes in vitro can be induced by FGF2 (van Dissel-Emiliani et al., 1996). FGF2 is also a critical regulator of SSC self-renewal, where it is involved in the expression of ETV5 and BCL6B, candidate transcription factors for SSC-self renewal (Ishii et al., 2012). The FGF9 signaling is also involved in mitogen-activated protein (MAP) kinase activation, which contributes to the proliferation of primitive spermatogonia and spermatogenic
meiosis during fetal and postnatal stages, respectively (Sun et al., 1999). Finally, FGF4 and FGF21 exert anti- and pro-apoptotic effects on germ cells, respectively, as a potential mechanism for maintaining the germ cell pool in the testis (Yamamoto et al., 2002; Hirai et al., 2004).

2.4.2 Glial Cell-Derived Neurotrophic Factor

The glial cell-derived neurotrophic factor (GDNF), a member of the transforming growth factor-beta (TGFβ), was first identified in the media of glioma cell line cultures (Lin et al., 1993). GDNF has been shown to promote the renal and neural development, while in the testis, it is produced by Sertoli cells under the influence of FSH, certain growth factors, and cytokines (Tadokoro et al., 2002; Simon et al., 2007). GDNF exerts its effects via the GFRα-1 and RET receptors, expressed by undifferentiated spermatogonia, to affect the establishment of stem cell niche, and to regulate SSC self-renewal and differentiation both in vivo and in vitro (Meng et al., 2000; Viglietto et al., 2000; Tadokoro et al., 2002; Kanatsu-Shinohara et al., 2003; Yomogida et al., 2003; Hofmann et al., 2005; Naughton et al., 2006). The GDNF-receptor complex is involved in the intercellular communications between Sertoli cells and SSC, development of actin cytoskeleton, and migration of gonocytes/SSC to the stem cell niche (Dovere et al., 2013). Disruptions in GDNF signaling, as observed in Ets variant gene 5 (Etv5) knockout mice, results in the loss of spermatogonia, due to decreased chemoattraction between Sertoli cells and SSC (Simon et al., 2010), while overexpression of GDNF promotes the proliferation of spermatogonia (Meng et al., 2000). Subsequent germ cell transplantation studies, where SSC from fertile donors were transplanted into GDNF knockout mice further validated these findings (Kanatsu-Shinohara et al., 2003; Ogawa et al., 2003; Yomogida et al., 2003). In addition to the effects on germ cells, GDNF plays a role in the proliferation of Sertoli cells in the developing testis (Wu et al., 2005).

GDNF was also one of the growth factors used in the establishment of a long-term culture system for the maintenance of SSC (Kanatsu-Shinohara et al., 2003). The spermatogonia from neonatal mouse testes cultured on mouse embryonic fibroblasts (MEFs) in the presence of GDNF, EGF, LIH, and FGF2 supported the formation of germ cell colonies expressing SSC markers for up to 2 years. Since then, GDNF has been added as an indispensable component in long-term cultures of SSC from young and adult mice (Kanatsu-Shinohara et al., 2004b; Kubota et al., 2004a; Ogawa et al., 2004; Ryu et al., 2005). The GDNF signaling for self-renewal of SSC occurs via the activation
of phosphoinositide 3-kinase (PI3K)/AKT and mitogen-activated protein kinase/ERK1 kinase-1 (MEK) pathways (Braydich-Stolle et al., 2007; Lee et al., 2007b; Oatley et al., 2007), which are responsible for the expression of transcription factors such as ETV5, BCL6B, EGR2 LHX1, FOXO1, ID4, POU3F1, and L-GILZ (Oatley et al., 2006, 2011; Wu et al., 2011; Ishii et al., 2012; Romero et al., 2012). Some of these factors (e.g., ETV5, BCL6B, FOXO1, L-GILZ) are necessary in maintaining the expression of the RET receptor. In addition, the presence of ETV5 upregulates the expression of CXCR4, a chemokine receptor involved in the migration of PGC to the developing gonad, and SSC to the stem cell niche in the postnatal testes. Thus, the suppression of GDNF signaling pathways and their downstream transcription factors result in the failure of SSC to proliferate or survive and hence lead to depletion of spermatogenesis (Ara et al., 2003; Kanatsu-Shinohara et al., 2012; Kanatsu-Shinohara and Shinohara, 2013).

2.4.3 Stem Cell Factor

The stem cell factor (SCF) and its receptor, the tyrosine kinase receptor c-kit (SCF/c-kit), have been shown to play an important role in the development of functional testis tissue. SCF is produced by Sertoli cells, and its expression in the adult testis can be seen at the basement membrane of seminiferous tubules and on the surface of Sertoli cells, while c-kit receptors are localized to germ cells (i.e., spermatogonia, spermatids) and Leydig cells (Bokemeyer et al., 1996; Unni et al., 2009). Therefore, the SCF/c-kit complex provides the microenvironment necessary for spermatogenesis by exerting its effect on both the somatic and germ cell components of the testis (Bokemeyer et al., 1996). Mutation of the \(W \) and \(Sl \) loci, which encode c-KIT and SCF, respectively, results in aberrations of spermatogenesis (Morrison-Graham and Takahashi, 1993; Loveland and Schlatt, 1997; Olaso and Habert, 2000). On somatic cells, the SCF/c-kit complex has been found to regulate the formation of Leydig cell populations during testis morphogenesis, support their survival, and affect testosterone synthesis during testis development (Yoshinaga et al., 1991; Yan et al., 2000a).

The actions of SCF/c-kit on germ cells persist throughout life; for instance, during gonadal development, expression of c-kit regulates the migration, survival, and proliferation of PGC and can be traced back to 7-12.5 dpc (Dolci et al., 1991; Matsu et al., 1991; Motro et al., 1991). SCF/c-kit also supports the subsequent processes and events in testis development, including the
promotion of Sertoli-germ cell adhesion during testis cords formation (Marziali et al., 1993). Decreases in SCF at certain stages of testis development have been associated with the mitotic arrest of spermatogonia (Mauduit et al., 1999). In the postnatal testis, SCF/c-kit is known to support the differentiation of various germ cells, and survival of differentiated spermatogonia, spermatocytes, and spermatids (Yan et al., 2000a) (Dolci et al., 1991; Yoshinaga et al., 1991; Hakovirta et al., 1999; Schrans-Stassen et al., 1999). This action was further highlighted in a study using telomerase-immortalized type A spermatogonia, where in the presence of SCF, these cells became capable of undergoing differentiation into haploid spermatids (Feng et al., 2002).

2.4.4 Leukemia Inhibitory Factor

The leukemia inhibitory factor (LIF) is a multifunctional polypeptide cytokine/growth factor of the interleukin 6 (IL-6) family, first identified for its supporting role in the maintenance of self-renewal and totipotency of mouse ES cells (Smith et al., 1988). LIF is produced predominantly by the peritubular myoid cells, and in the rat testis can be detected from 13.5 dpc until adulthood (Piquet-Pellorce et al., 2000). LIF receptors (LIF-R) are expressed by germ cell precursors (i.e., PGC, gonocytes, spermatogonia), as well as Sertoli cells and Leydig cells. Therefore, considerable amounts of bioactive LIF can be found in both the interstitial and tubular compartments of the testis (Jenab and Morris, 1998; Piquet-Pellorce et al., 2000).

In vitro studies have demonstrated that LIF plays a significant role in the proliferation and survival of MGSC (Matsui et al., 1991; Pesce et al., 1993; Cheng et al., 1994; De Miguel et al., 1996; Koshimizu et al., 1996). LIF has been found to promote the proliferation of murine PGC in vitro, even in the absence of feeder cells, where the blocking of its receptor using LIF-R antiserum results in their apoptosis and death (Pesce et al., 1993; Cheng et al., 1994) (Godin et al., 1991; Matsui et al., 1991). The addition of LIF initiates the proliferation and survival of rodent gonocyte-Sertoli co-cultures (De Miguel et al., 1996), enhances the formation of germ cell colonies, and promotes the differentiation of murine and bovine gonocytes to spermatogonia (Kanatsu-Shinohara et al., 2007; Aponte et al., 2008; Rastegar et al., 2015). On the other hand, the withdrawal of LIF can disrupt the development of SSC and their colonies (Rastegar et al., 2015). A role for LIF in the proliferation and survival of SSC has been shown by the increased incorporation of 3H-thymidine in spermatogonia in the micro-dissected seminiferous tubule cultures (Dorval-Coiffé et al., 2005).
For somatic cells, LIF has been found to promote the survival of Sertoli cells when co-cultured with gonocytes (De Miguel et al., 1996), and upregulate transcription of the c-fos gene, which is important for their differentiation in primary cultures (Jenab and Morris, 1998). LIF may also act as a regulator of testosterone production (Jenab and Morris, 1998; Yano et al., 1998). Much less is known about the role of LIF in differentiated germ cells; the incubation of spermatozoa with LIF promotes their motility and survival in a dose-dependent manner (Attar et al., 2003), while overexpression of LIF has been found to have detrimental effects on spermatogenesis (Hilton and Gough, 1991; Shen et al., 1994; Yano et al., 1998).

2.4.5 Vascular Endothelial Growth Factor

The vascular endothelial growth factor (VEGF) is a very important family of growth factors for diverse functions ranging from blood vessel development and permeability to cellular migration (Ferrara et al., 1996; Ferrara, 2000). The VEGF proteins are well-conserved and have several subtypes encoded in humans by five different genes including, VEGF-A, VEGF-B, VEGF-C, VEGF-D, and placental growth factors (PLGF). During embryonic development, the absence of even a single VEGF allele halts the development of vasculature, which is lethal for the embryo (Carmeliet et al., 1996; Ferrara et al., 1996). The VEGF family exert their actions via receptors known as VEGFR1 and VEGFR2, where, for instance, VEGFR1 is responsible for the development of endothelial lineage and VEGFR2 for the organization of endothelium (Fong et al., 1995; Shalaby et al., 1995). The role of VEGF in the testis is poorly understood because the adult tissue is not an active site of angiogenesis. VEGF expression has been detected along the male genital tract, such as in Leydig and Sertoli cells, as well as the lining of the epididymis, prostate, and vesicular glands (Carmeliet et al., 1996). VEGF-A is produced by Sertoli and Leydig cells during different stages of testis development (Liu and Yang, 2004; Bott et al., 2006). VEGFR2 is expressed in the testis micro-vasculature and vascular endothelium of the epididymis, while VEGFR1 is expressed in human and rodent germ cells (Ergün et al., 1997; Korpelainen et al., 1998; Nalbandian et al., 2003; Rudolfsson et al., 2004). Therefore, it is presumed that the role of VEGF in the testis may involve vascular permeability and postnatal germ cell development (Korpelainen et al., 1998).

During the fetal period, VEGF-A is involved in the formation of testis cords, where it promotes and coordinates the migration of cells, including endothelial cells from the mesonephros into the
developing gonad (Bott et al., 2006; Cool et al., 2011). Blocking the VEGF receptors with VEGF antagonists results in disruption of seminiferous cords formation. Testis tissue xenografting and testis cell implantation studies demonstrated that VEGF is required for the normal function of germ cells, where treating the donor testis tissue and cells with VEGF (i.e., VEGF-A or VEGF-164) prior to grafting/implantation promoted the proliferation, survival, and differentiation of germ cells (Schmidt et al., 2006a; Dores and Dobrinski, 2014). A protective role for VEGF on germ cells has also been suggested using a ‘loss-of-function’ approach; VEGFR2 antagonists caused a reduction of germ cell numbers in bovine testis tissue fragments after 5 days in culture, while this number increased when VEGF-A was added (Caires et al., 2009). On the other hand, the overexpression of VEGF (e.g., VEGF-A120 and VEGF-A165) in transgenic mice increased the size, density, and permeability of vasculature in the testis and epididymis, but also caused infertility, likely as a result of elevated testis temperature, leading to impaired spermatogenesis (Korpelainen et al., 1998; Huminiecki et al., 2001).

2.4.6 Retinoic Acid

Retinoic acid (RA) or tretinoin is a bioactive metabolite of retinol (vitamin A). Long known as a crucial factor for vision, RA is also involved in the development of cells and organs, and various other functions in the immune and reproductive systems (Mark et al.; Wang et al., 1997; Gale et al., 1999; White et al., 2000; Doyle et al., 2007; Anderson et al., 2008; Chung et al., 2011; Cassani et al., 2012; Valli et al., 2014). Because RA cannot be synthesized in vivo (except in the testis), it has to be acquired from the diet and stored in the liver to be delivered to target tissues via binding with retinol binding proteins. In the tissue, retinol is converted to all-trans retinal through oxidation by retinal dehydrogenase enzymes (Theodosiou et al., 2010; Napoli, 2012). Thus far, several RA isomers including all-trans-RA, 9-cis-RA, 13-cis-RA, 11-cis RA and 9, and 13-di-cis-RA have been identified (Kunchala et al., 2000). The molecular actions of RA are exerted through binding to heterodimers or nuclear RA receptors (RARα, β, γ) and retinoid X receptors (RXα, β, γ). However, amongst all receptors, the expression of RARβ is known to be markedly enhanced by RA (Ghyselinck et al., 2006; Cassani et al., 2012; Samarut and Rochette-Egly, 2012).

The required RA in the testis is synthesized in situ by Sertoli cells and distributed to germ cells (Livera et al., 2002), where RA receptors are found in both Sertoli cells and differentiated germ
cells (Dufour and Kim, 1999; Chung et al., 2009). A number of important roles are played by RA, which include contributing to testosterone production, ensuring the integrity of the stem cell niche (e.g., by maintaining the blood-testis barrier and anchoring germ cells to Sertoli cells), and assisting in the release of mature spermatozoa into the lumen of seminiferous tubules (Appling and Chytil, 1981; Huang et al., 1983; Vernet et al., 2006). In the fetal testis, RA appears to stimulate both the proliferation and apoptosis of gonocytes (Livera et al., 2001). The expected decrease in gonocyte mitotic activity between 11.5 and 13.5 dpc was partly prevented under the influence of RA in organ culture (Trautmann et al., 2008), while the number of mitotic 16.5 dpc gonocytes reduced after 6 days of culture with RA (Boulogne et al., 2003). This dual action of RA is thought to be important in maintaining the fetal gonocyte pool and eliminating abnormal gonocytes. In the postnatal testis, RA has a critical role in spermatogenesis, where its lack results in impaired spermatogenesis. In the vitamin A-deficient (VAD) model, spermatogenesis is arrested at the type A spermatogonia stage in mice and at the preleptotene stage in rats, but it can be restored with the systemic administration of vitamin A (van Pelt and de Rooij, 1990; Van Pelt and de Rooij, 1991). RA has also been identified as the leading promoter of gonocyte differentiation into spermatogonia. In vitro-cultured neonatal mouse and rat gonocytes treated with RA show increased Stra8 expression, an indicator of gonocyte differentiation to spermatogonia (Wang and Culty, 2007; Zhou et al., 2008).

2.4.7 Epidermal Growth Factor

The epidermal growth factor (EGF) is a cytokine first found in the submandibular salivary gland of mice and in human urine (also named urogastrone) (Carpenter and Cohen, 1990). However, EGF has been shown to be involved in diverse and important processes such as facilitating cell proliferation, tissue differentiation, and organogenesis (Fisher and Lakshmanan, 1990; Adamson, 1993). The localization of EGF expression in the testis varies in different species; in rodents, it is expressed predominantly in Leydig cells (Zhang et al., 1997; Yan et al., 1998), in boars and bulls, mainly in germ cells (Caussanel et al., 1996; Kassab et al., 2007), and in adult alpaca, in both germ cells and somatic cells (He et al., 2009). EGF exerts its effect via EGF receptor (EGFR) mainly found on testis somatic and germ cells in rodents, humans, and non-human primates (Stubbs et al., 1990; Suarez-Quain and Niklinski, 1990; Haneji et al., 1991; Radhakrishnan et al., 1992; Moore and Morris, 1993; Caussanel et al., 1996; Nakazumi et al., 1996). The role of EGF in male...
reproduction was initially studied using sialoadenectomy—the removal of submandibular glands—in mice which led to a significant drop in the circulating levels of EGF, and a marked decrease in the number of mature spermatozoa in the epididymis. Treating mice with EGF restored the number of mature spermatozoa in the epididymis and spermatids in the testis to normal levels (Tsutsumi et al., 1986; Liu et al., 1994; Suarez-Quian et al., 1994). The EGF/EGFR complex is involved in the proliferation and differentiation of germ cells, as shown by the increased incorporation of 3H-Thymidine (3H-dT) into rat spermatogonia using cultured seminiferous tubules (Wahab-Wahlgren et al., 2003). *In vitro* incubation of testis fragments from cryptorchid donor mice with EGF induced differentiation of spermatogonia type A into type B and primary spermatocytes (Haneji et al., 1991). Moreover, spermatogenesis is impaired in EGFR knockout mice, although the testes appear to be of normal size (Levine et al., 2000).

2.5 **In Vivo Culture Systems for Male Germline Stem Cells**

2.5.1 **Male Germ Cell Transplantation**

Male germ cell transplantation (GCT) is a technique introduced in 1994, which involves the transfer of germ cells (i.e., containing SSC) isolated from a fertile donor into the seminiferous tubules of infertile recipient testes. The transplanted germ cells are capable of migrating from the seminiferous tubular lumen, where they are deposited, to the basement membrane, where they colonize and undergo complete spermatogenesis; making it possible for the recipient to sire progeny using donor-derived spermatozoa (Brinster and Avarbock, 1994; Brinster and Zimmermann, 1994). Being initially established in a mouse model, the same principle has been extrapolated for using GCT in other rodents (i.e., rats, hamsters), and modified for use in farm animals (i.e., pigs, goats, sheep, cattle), monkeys, fish, and chicken (Jiang and Short, 1995; Clouthier et al., 1996; Ogawa et al., 1999; Schlatt et al., 2002b; Takeuchi et al., 2003; Zhang et al., 2003; Honaramooz et al., 2003a, b; Izadyar et al., 2003b; Joerg et al., 2003; Trefil et al., 2006, 2010; Stockwell et al., 2009; Herrid et al., 2009; Hermann et al., 2012; Pacchiarini et al., 2014; Yoshizaki and Lee, 2018). Cross-species (heterologous) transplantation (xenotransplantation) of germ cells is also feasible, but only for closely-related species (e.g., between rodent species) (Clouthier et al., 1996; Ogawa et al., 1999; Honaramooz et al., 2002a; Zhang et al., 2003). Although the initial stages of colonization can occur when transplanting donor germ cells between
phylogenetically-distant species, such as from a non-rat donor (i.e., pig, dog, cattle, horse, baboon, cat, human) into rodent recipients, spermatogenesis fails to advance (Dobrinski et al., 1999; Nagano et al., 2001, 2002; Kim et al., 2006b). Prior to applying GCT, donor germ cells and recipient animals need to be prepared.

As with any transplantation, the success and efficiency of GCT highly depend on the number and developmental potential of donor cells. Increasing the number of transplanted donor germ cells and/or increasing the proportion of SSC in donor cells are both directly correlated with the rate of colonization by donor cells in the recipient testes (Nagano et al., 1999; Shinohara et al., 1999, 2001; Jiang, 2001; Buageaw et al., 2005). This can be achieved by propagating and/or purifying/enriching isolated donor germ cells before use. Certain donor animals, such as the cryptorchid, VAD, and Steel mutant (Sl), can offer high proportions of SSC for transplantation, because in all of these animal models, the only type of germ cells remaining in the testis is undifferentiated spermatogonia (van Pelt et al., 1996; Ogawa et al., 2000; Shinohara et al., 2000a). Another more readily available source of donor germ cells, however, is the neonatal/immature animal, which provides proportionally higher populations of MGSC (gonocytes and/or SSC) than adults (Honaramooz and Yang, 2010).

The efficiency of GCT also heavily relies on the proper preparation of the recipient testes; namely, the recipient testes must not immunologically reject the donor cells, and should ideally have sufficient unoccupied stem cell niches for colonization of donor SSC. For GCT in rodent models, immunocompatibility between donors and recipients is typically not a limiting factor, because genetically-compatible recipients (congenic) and/or immunodeficient animals are readily available (Brinster and Avarbock, 1994; Kanatsu-Shinohara et al., 2003; Zhang et al., 2003). For GCT in non-rat species, although congenic or immunodeficient recipients are not readily available, surprisingly no evidence of donor testis cell rejection was observed after GCT between immunocompetent goats of different breeds (Honaramooz et al., 2003b), paving way for the application of GCT in several farm species (Honaramooz et al., 2002b, 2003a; Rodriguez-Sosa et al., 2009; Stockwell et al., 2009). The degree of donor germ cell colonization is also improved when the recipient testes contain little or no endogenous germ cells, allowing more stem cell niches to be available. Cytoablative methods such as chemotherapy or irradiation are commonly used to deplete the endogenous populations of germ cells in the recipients (Brinster and Avarbock, 1994;
Izadyar et al., 2003b; Honaramooz et al., 2005a; Oatley et al., 2005; Mikkola et al., 2006). The irradiation method was found to be a safer choice for use in farm animals, because chemotherapy agents such as busulfan can show unexpectedly high toxicity in certain strains or species, and carry various degrees of health risk for the recipients (Ogawa et al., 1999; Brinster et al., 2003; Honaramooz et al., 2005a).

The transplantation protocols used for GCT in large animals are different from those used for rodents. In rodents, where the tunica albuginea is translucent, the donor germ cells are suspended in a dye solution to be deposited into the visible seminiferous tubules, efferent ductules, or rete testis using a glass micropipette system. The dye (e.g., trypan blue) facilitates the immediate tracking of the injected solution to ensure the cells are being deposited in the targeted site (Brinster and Avarbock, 1994; Brinster and Zimmermann, 1994). In large animal, the technique had to be modified to allow transfer without direct visualization in the testes that were also hundreds of fold larger than in rodents. This led to the use of ultrasonography to visualize the needle insertion path into the centrally located rete testis, followed by tracking the injected solution through the introduction of air bubbles or an ultrasound contrast media along with the donor cell suspension (Honaramooz et al., 2002b, 2003a; Izadyar et al., 2003a; Joerg et al., 2003; Rodriguez-Sosa and Dobrinski, 2009).

Confirmation of the proper transfer of donor cells into recipient seminiferous tubules and follow up analyses of the donor cell development can be performed using several methods. For the detection of donor cells after a short interval post-GCT, the donor cells can be labelled prior to injection using either a dye or a fluorescent agent (e.g., trypan blue, carboxyfluorescein diacetate succinyl diester- CFDA-SE- and/or PKH26) (Honaramooz et al., 2002b; Hill et al., 2005; Rodriguez-Sosa et al., 2009). For detection of the transplanted cells over long-term, however, a more permanent marker is required which can be provided by using germ cells from donors carrying inherent markers such as the lacZ or chloramphenicol acetyltransferase (CAT) that can be visualized directly in situ using immunohistochemical detection methods (Iwase et al., 1994; Honaramooz et al., 2002b; Orwig et al., 2002b). A more commonly used strategy for long-term identification of donor-derived germ cells or resultant spermatozoa is based on nucleic-acid techniques to trace a transgene or donor-specific microsatellites (Honaramooz et al., 2002b; Stockwell et al., 2009; Hermann et al., 2012). An alternative method, although less commonly
used, includes transplanting normal germ cells into the testes of recipients with a genetic aberration such as the immotile short-tail spermatozoa syndrome which is based on detection of normal donor-derived spermatozoa in the recipient ejaculates (Mikkola et al., 2006). Nonetheless, the ultimate proof of GCT success is determined by the number of functional donor-derived spermatozoa produced, assessed through *in vitro* or *in vivo* fertilization, or the capability of the recipients to sire donor-derived progeny (Brinster and Avarbock, 1994; Goossens et al., 2003; Honaramooz et al., 2003a).

GCT has sparked considerable interest in its use as a unique means for understanding the unexplored aspects of the biology of spermatogenesis, particularly related to the stem cell potential and stem cell niche. It also offers the only available bioassay for evaluating the *in vivo* competency of putative populations of SSC (Pereira et al., 1998; Nagano et al., 1999; Hill and Dobrinski, 2006; Honaramooz and Yang, 2010). In terms of clinical or field applications, GCT can also be used as a tool for the conservation, preservation, or restoration of fertility (discussed in Chapter 2.6), as well as production of transgenic farm animals, because the current methods are inefficient (Brinster, 2002, 2007; Keefer, 2004; Niemann and Kues, 2007).

2.5.2 Testis Tissue Xenografting

Historically, grafting of the testis tissue has been performed as early as the mid-18th century, although mostly as autologous (same individual) or homologous (same species), and merely to understand the biology of testis function (*i.e.*, spermatogenesis, endocrinology) or its role in male reproduction (*i.e.*, male secondary characteristics) (Setchell, 1990). Although heterologous/xenogeneic (across species) grafting (xenografting) was also attempted, the results from the early studies were subjected to controversies, and the tissue rejection was always a limiting factor that hindered success (Gunn and Seddon, 1930; Setchell, 1990). The feasibility of cross-species testis tissue grafting was highlighted only in the 1970s when a Finnish group reported that a testis tissue of human fetal origin and its germ cells (gonocytes) survived 4-8 wk post-grafting in the abdominal wall of adult nude mice. Furthermore, they showed that the developmental potential of germ cells was maintained after xenografting of rat testis tissue into mice (Povlsen et al., 1974; Skakkebaek et al., 1974). These findings also marked for the first time, the potential of
testis tissue xenografting (TTX) as a tool for the preservation of male genetic material; however, the progress in TTX remained stagnant.

Complete cross-species spermatogenesis and the production of functional spermatozoa from TTX were finally achieved in 2002. In this breakthrough study, small fragment (0.5-1 mm³) of testis tissue from neonatal mice, pigs, and goats were ectopically grafted under the back skin of immunodeficient mice. The grafts from all three donor species survived and responded to the host mouse gonadotropins by initiating testicular development and completing all stages of spermatogenesis. At the end of the study, fertilization-competent donor-derived spermatozoa were retrieved from the grafts of all donor species, evidenced by pronuclear and polar-body formation after ICSI in mouse oocytes. In addition, when the homologous mouse embryos produced using this system were transferred into pseudo-pregnant mice, normal fetal development was observed (Honaramooz et al., 2002a). As a result, the newly developed TTX system uses the recipient mice as a bio-incubator for the grafted testis tissue. The establishment of blood supplies (revascularization) from the grafts as well as surrounding tissues (recipient) allowed initiation of feedback loops between the pituitary of the mouse and the endocrine cells in grafts (Schlatt et al., 2002b). The immunodeficient status of the recipients is key, ensuring the survival of the grafts, which is particularly critical for grafting from phylogenetically distant species (Paris et al., 2004; Dobrinski, 2005).

Since 2002, this system has been adopted by many research groups and applied to answer various biological questions in a range of species. Currently, complete spermatogenesis after TTX from immature testis tissues of diverse species has been reported, which includes lab animals (e.g., mouse, rat, hamster, rabbit), companion animals (e.g., dog, cat), farm animals (e.g., pig, goat, sheep, horse, cattle, alpaca), and wildlife species (e.g., ferret, monkey, deer, bison) (Honaramooz et al., 2002a; Schlatt et al., 2002b; Shinohara et al., 2002; Kaproth et al., 2002; Snedaker et al., 2004; Rathi et al., 2008, 2005, 2006; Kim et al., 2007a; Abbasi and Honaramooz, 2010a, 2012; Abrishami et al., 2010a; Gourdon and Travis, 2011; Elzawam, 2013; Parvari et al., 2015). Moreover, viable progenies have been produced using the spermatozoa extracted from the grafts (i.e., mice, rabbits, pigs) using ICSI and embryo transfer (Schlatt et al., 2002b; Shinohara et al., 2002; Nakai et al., 2010; Kaneko et al., 2012). Several of these studies found that the maturation in the grafted tissue is accelerated, where spermatozoa could be found earlier than in intact testes.
This was particularly the case after TTX from donor pigs, monkeys, sheep, and humans (Honaramooz et al., 2002b, 2004; Zeng et al., 2006; Sato et al., 2010). Unlike from animal donors, the grafts from human donors demonstrated poor survival, and germ cells underwent massive degeneration after TTX (Geens et al., 2006; Schlatt et al., 2006; Wyns et al., 2007, 2008, Poels et al., 2013, 2014), the reasons for which are described in Chapter 2.5.4.

2.5.3 Testis Cell Aggregate Implantation

Following the establishment of GCT and TTX systems, another novel approach was introduced which involved the implantation of testis cell-aggregates (Dufour et al., 2002; Gassei et al., 2006; Honaramooz et al., 2007; Kita et al., 2007; Arregui et al., 2008b; Zhang et al., 2008; Campos-Junior et al., 2014). Testis cell implantation (TCI) involves implanting dissociated testis cells from diverse donor species, obtained from enzymatic digestion, into immunodeficient recipient mice. Similar to TTX, the subcutaneous tissue of the back skin has been used a common site for TCI (Gassei et al., 2006; Honaramooz et al., 2007; Kita et al., 2007; Arregui et al., 2008b; Zhang et al., 2008; Campos-Junior et al., 2014). Upon implantation, dissociated donor cells undergo autonomous cellular reorganization, which over time leads to regeneration of a donor-derived functional testis tissue capable of supporting spermatogenesis (Honaramooz et al., 2007; Kita et al., 2007).

Compared with TTX, the TCI model is understudied; although it has been performed using different rodent and non-rodent mammalian and non-mammalian species (i.e., pig, sheep, cattle, marmoset, fish, frog) (Dufour et al., 2002; Gassei et al., 2006; Kawasaki et al., 2006, 2010; Honaramooz et al., 2007; Kita et al., 2007; Arregui et al., 2008b; Zhang et al., 2008; Ackerle et al., 2013; Campos-Junior et al., 2014). In all these studies, the ability of the dissociated testis cells to reorganize and regenerate testis cords after ectopic implantation was retained. Complete spermatogenesis and donor-derived progenies have been reported only after TCI from donor mice (Kita et al., 2007). Although, haploid germ cells (i.e., spermatids/spermatozoa) have also been obtained after TCI of sheep and pig testis cells, indicating the potential of this in vivo system for development of testis cell aggregates from diverse species (Honaramooz et al., 2007; Arregui et al., 2008b; Watanabe et al., 2009; Campos-Junior et al., 2014). In a TCI study using bovine cells, the formation of seminiferous tubules containing some germ cells was observed; however, the
spermatogenic potential was not further evaluated since the study only lasted 3 mo (Zhang et al., 2008).

When compared with TTX, the onset of germ cell differentiation and spermatogenesis is delayed after TCI (Gassei et al., 2006; Honaramooz et al., 2007; Arregui et al., 2008b; Campos-Junior et al., 2014). For example, while using sheep donor testis tissue for TTX resulted in the completion of spermatogenesis at 12 wk, comparable with the timing in situ, it took ~40 wk for the same event to occur after TCI (Arregui et al., 2008a). In a side-by-side comparison using peccary (Tayassu tajacu) donors, spermatogenesis was observed at 6 mo and 8 mo, in TTX and TCI, respectively (Campos-Junior et al., 2014). Although the dissociated donor cells are fully capable of rearranging and developing into testicular cords and structures that have remarkable morphological and physiological similarity to normal testis tissue, the newly developed seminiferous cords/tubules are typically void of germ cells (Gassei et al., 2006; Honaramooz et al., 2007; Kita et al., 2007; Arregui et al., 2008a). The lack of germ cells in the regenerated cords/tubules was believed to result from the very low initial number of donor germ cells used for TCI and/or a progressive degeneration of germ cells after implantation (Rathi et al., 2006; Arregui et al., 2008a). These differences resulted in relatively lower spermatogenic efficiency of TCI, depicted by lower production of haploid spermatids (Watanabe et al., 2009; Campos-Junior et al., 2014).

Since most initial TCI studies merely adopted components of the well-established GCT and TTX systems, modifications of the employed protocols (e.g., cell preparation, donor species, recipient strain, implantation technique, incubation period) are expected to improve the outcomes of TCI. When the population of donor testis cells used in TCI was almost entirely comprised of somatic cells (~93% Sertoli and 2% myoid cells), de novo formation of testis cords still occurred, suggesting that this event is independent of germ cells (Dufour et al., 2002). Since there has been no standardized protocol for the preparation of donor cells for TCI, different research groups have used different protocols for isolation of testis cells. This can lead to differences in somatic-germ cell ratios, and has likely contributed to the discrepancy in findings of many TCI studies (van der Wee and Hofmann, 1999; Gassei et al., 2006; Honaramooz et al., 2007; Arregui et al., 2008a; Watanabe et al., 2009). There has also been a lack of consistency in the number of implanted cells, especially when the procedure was performed using the conventional surgical approach (creating a small pocket in the subcutaneous fascia to be filled with donor cells) (Honaramooz et al., 2007).
However, this issue can be resolved by subcutaneous injection of cells to reduce the potential leakage of cells out of the implantation site. Adding commercially-available extracellular matrices such as Matrigel, to act as a carrier for injected cell suspensions, has also been tested with varying results (Gassei et al., 2006; Watanabe et al., 2009; Ackerle et al., 2013; Dores and Dobrinski, 2014).

Therefore, TCI provides a unique in vivo culture system that is also easily accessible for the study and manipulation of potential molecular cues and cellular interactions during testis morphogenesis. Using TCI, the recipient milieu can also be controlled to better elucidate various factors involved in the regulation of spermatogenesis; thereby, using it as a previously-unavailable model to examine biological questions that are otherwise difficult to study in situ.

2.5.4 Factors Affecting the Outcome of Testis Tissue Xenografting and Testis Cell Implantation

Since the introduction of TTX and TCI, many studies have used these models to examine the developmental potential of testis tissues and cells from various donors. A few of these studies directly or indirectly investigated several factors that affect the outcomes of these models, which included the effects of donor, recipient, tissue/cell preparation, and technique used.

The outcomes of TTX and TCI expectedly vary to a great extent based on factors related to the donor. Following TTX and TCI, the testis tissue and cells from all examined donor species have survived, developed, and initiated spermatogenesis in the recipient mouse, and given enough time, most have also shown completion of spermatogenesis (Honaramooz et al., 2002a; Schlatt et al., 2002b; Shinohara et al., 2002; Snedaker et al., 2004; Kawasaki et al., 2006; Zeng et al., 2006; Honaramooz et al., 2007; Arregui et al., 2008a; Watanabe et al., 2009; Abrishami et al., 2010a; Kawasaki et al., 2010; Campos-Junior et al., 2014). However, the extent of post-TTX/TCI development in the grafts/implants from certain donor species has been limited. In particular, TTX using human testes, regardless of the developmental stage of the donor tissue (i.e., fetal, infantile, prepubertal, adult), has resulted in limited development of germ cells beyond the spermatogonial stage or even in degeneration of the tissue (Schlatt et al., 2006; Yu et al., 2006; Geens et al., 2008; Goossens et al., 2008; Wyns et al., 2008; Van Saen et al., 2011). Nevertheless, occasionally, generation of spermatocytes has been observed in infant testis grafts 9-12 mo post-TTX (Sato et
The grafts from high spermatozoa producing species (e.g., pig, goat, sheep) show a higher percentage of seminiferous tubules with fully-formed spermatozoa than in some others (e.g., horse, bull) (Honaramooz et al., 2002a; Zeng et al., 2006), (Oatley et al., 2004, 2005, Rath et al., 2005, 2006; Huang et al., 2008). In the former examples, the number of spermatozoa produced (per gram of tissue) in the grafts was also comparable to that in intact tissues (Honaramooz et al., 2002a). The underlying reasons for differences in spermatogenic efficiency among various species remain to be elucidated. However, the development potential of testis grafts naturally relies on the compatibility and interactions between the graft and host hypothalamic-pituitary axis of the host, and this may explain some of the observed differences in spermatogenic efficiency after TTX (Arregui and Dobrinski, 2014).

Aside from the effect of donor species, TTX and TCI outcomes are known also to be donor-age dependent, where grafts from neonatal/immature donors demonstrate superior developmental potential compared with the adult/mature. In the original report and almost all subsequent TTX studies, when neonatal/immature sources were used as tissue donors, full testicular development and complete spermatogenesis were observed in the grafts (Honaramooz et al., 2002a) (Schlatt et al., 2002a; Shinohara et al., 2002; Snedaker et al., 2004; Rath et al., 2005; Kim et al., 2007; Abbasi and Honaramooz, 2011, 2012; Reddy et al., 2012; Elzawam, 2013). In contrast, tissues from mature sources are typically unable to survive or develop after TTX, and frequently degenerate (Schlatt et al., 2006; Arregui et al., 2008b; Turner et al., 2010). This degeneration was found to be especially more evident in species/tissues with more intense spermatogenesis (high daily spermatozoa output per gram of testis tissue, i.e., pigs and goats) or more advanced pre-grafting spermatogenesis than those with less intense/advanced spermatogenesis (i.e., bulls and monkeys) (Arregui et al., 2008b). This phenomenon has been associated with the vulnerability of differentiated germ cells to hypoxic conditions after grafting, as well as the poor angiogenic ability of the adult testis tissue (Rathi et al., 2006; Kim et al., 2007). In addition, Sertoli cells in the adult testes have reached maturity and have lost their proliferative potential (Meachem et al., 2005), leading to the lack of compensatory regeneration following TTX.

Effect of donor age or the developmental status of the testis tissues used in TTX, on the progression of spermatogenesis in grafts has been examined using different donor species. The results varied, but a general theme can be inferred from these studies. For instance, optimal TTX results were
obtained if the donor cats and dogs were neonatal or were used at some time prior to the onset of puberty at \(~4\) mo and \(~6\) mo, respectively (Kim et al., 2007; Abrishami et al., 2010a). Using fetal testes for TTX from humans, cattle, and Cuzier’s gazelle, it was concluded that the developmental potential and spermatogenic capacity are probably conserved in the fetal tissue; however, no haploid germ cells have so far been produced in the grafts (Povlsen et al., 1974; Skakkebaek et al., 1974; Yu et al., 2006; Rodriguez-Sosa et al., 2011; Arregui et al., 2014). Variations observed in the developmental potential of testis grafts have been associated with differences in gene expression and cues at different ages/developmental stages (Schmidt et al., 2007). The efficiency of spermatogenesis was suggested to be higher with TTX using young and immature bovine or feline tissues, compared with the neonatal (Oatley et al., 2005; Kim et al., 2007). The increased number of SSC prior to puberty (Orwig and Schlatt, 2005), may provide the grafts with more readily available SSC to initiate differentiation shortly after TTX (Rathi et al., 2006; Kim et al., 2007). Hypoxic conditions that grafts are expected to undergo in the first few hours or days post-TTX, before revascularization occurs, are thought to be responsible for the massive losses of (especially differentiated) germ cells. Therefore, having a relatively higher number of SSC prior to grafting can be advantageous to spermatogenic efficiency (Schlatt et al., 2002a, b; Yu et al., 2006; Arregui et al., 2008b, 2012).

Although the tissue/cells to be used in TTX/TCI are ideally collected fresh, in real-world applications, they cannot always be used immediately after the collection, and may need to be stored either short-term or long-term for later use. Short-term storage of testis tissue, in the form of refrigeration for up to three days, was shown to result in comparable development after TTX using pig, cat, or rhesus monkey donor tissues. Interestingly, the percentage of tubules with differentiated germ cells was unexpectedly higher in the grafts from refrigerated than fresh tissue. Therefore, cold storage of donor tissue/cells prior to TTX at low temperatures, may in fact lead to decreased hypoxic damages by reducing the metabolism of tissue/cells (Honaramooz et al., 2002a; Jahnukainen et al., 2007; Zeng et al., 2009; Abrishami et al., 2010b; Abbasi and Honaramooz, 2011; Mota et al., 2012). For long-term storage of testis tissue, different approaches (i.e., slow/programmed freezing or vitrification) have been introduced, although the protocols had to be modified/adjusted according to the donor species and tissue maturity (Abrishami et al., 2010b; Mota et al., 2012; Arregui et al., 2014). Overall, cryopreserved tissue demonstrated satisfactory cellular survivability and differentiation potential, and at times similar graft recovery rates as with
fresh tissue (Honaramooz et al., 2002a; Shinohara et al., 2002; Jahnukainen et al., 2007; Wyns et al., 2008; Zeng et al., 2009; Abrishami et al., 2010b; Van Saen et al., 2011; Poels et al., 2012; Arregui et al., 2014). However, similarities in viability between the fresh and frozen testis tissue should not be taken as equal developmental potential, because tissues might develop differently after grafting (Arregui et al., 2014). The cryoprotectant used for cryopreservation (e.g., DMSO), for instance, might have a more severe adverse effect on germ cells than somatic cells and result in delayed onset of spermatogenesis (Jahnukainen et al., 2007; Zeng et al., 2009; Mota et al., 2012).

The type of recipient mice may also affect the outcomes of TTX. So far, two strains of immunodeficient mice have been used as recipients in the majority of TTX/TCI studies. The nude mouse (nu/nu), which was used in the initial development of both TTX and TCI models (Honaramooz et al., 2002a, 2007) is a popular choice, while the severe combined immunodeficient (SCID) mice have also been used as an alternative to the nude mice (Snedaker et al., 2004; Rathi et al., 2006; Kim et al., 2007; Campos-Junior et al., 2014). Both strains of recipients were reported to produce comparable TTX outcomes (Snedaker et al., 2004; Rathi et al., 2005, 2006; Geens et al., 2006; Schlatt et al., 2006); however, SCID mice might have an advantage over nude mice, because their immune system is more compromised. The loss of human testis tissue grafts was less likely to happen in SCID than in nude mice (Schlatt et al., 2006). On the other hand, the spermatogenic potential of porcine grafts implanted in SCID mice was reported to be significantly higher than in nude mice (Abbasi and Honaramooz, 2010b). In a study designed to compare the efficiency of TTX and TCI techniques, no significant effect of strain was found (i.e., nude vs. SCID vs. NOD/Shi-SCID, IL-2Rγcnull.-NOG), although SCID mice appeared to promote better reconstitution of the testis tissue (morphogenesis) and restoration of spermatogenesis (Watanabe et al., 2009).

The castration of recipient mice is generally presumed to have a beneficial effect on TTX outcomes. The removal of testes from recipient mice prior to grafting results in the elimination of the androgen negative feedback on gonadotropins, causing a surge in the release of LH and FSH from the pituitary (Schlatt et al., 2002b). Both FSH and LH promote graft development by initiating the proliferation of Sertoli cells and maturation of Leydig cells, which later produce testosterone to support spermatogenesis. Removing the recipient testes also terminates the growth promoting effects of mouse testosterone on its vesicular glands, where the development is androgen-
dependent (Gosden and Aubard, 1996). Thus, in castrated recipients, the physical and histological properties of the vesicular glands can be used as a bioassay for monitoring the androgenic competence of testis grafts. The effect of recipient gonadal status (castrated vs. intact) on TTX outcomes seems to be species-specific. While the development of immature testis tissue of horses and rhesus monkeys was compromised upon TTX into intact recipients (Honaramooz et al., 2004; Rathi et al., 2006), using immature tissue from rabbits, cattle, pigs, hamsters, and buffalos led to the development and production of functional spermatozoa in similarly intact recipient mice (Shinohara et al., 2002; Huang et al., 2008; Abbasi and Honaramooz, 2010b; Schlatt et al., 2010; Reddy et al., 2012). A side-by-side comparison of castrated and intact recipients showed no differences in the development of grafts between recipient types (Huang et al., 2008; Abbasi and Honaramooz, 2010a; Schlatt et al., 2010). The sex and age of the recipient mice were also examined for their potential effects on TTX outcomes. Although even female recipient mice with intact ovaries were fully capable of supporting the development of porcine testis grafts, the grafts in male recipients were larger in size, with higher graft recovery rate, and higher occurrence of fully developed seminiferous tubules (Abbasi and Honaramooz, 2010b). The use of mature recipients (1-year-old at grafting) led to better development of hamster testis xenografts, speculated to be due to the immunosenescence of recipients, because the grafts recovered from young recipients (1-wk-old at grafting) showed more spermatogenic loss with a high prevalence of Sertoli-cell-only tubules (Ehmcke et al., 2008).

Conventionally, grafting eight fragments of testis tissue per recipient (4 on each side of the back skin) has been a common practice in TTX; however, having more grafts/implants per recipient would be advantageous because potentially more spermatozoa could be recovered from the developed grafts. When 2, 4, 8, or 16 tissue grafts were used per mouse, the recipient mice were fully capable of supporting the development of even 16 grafts. More importantly, in mice with 16 grafts, in addition to generating a greater total mass of grafted tissue, even the individual graft sizes and development observed per graft were higher when compared with mice with only 2 grafts (Abbasi and Honaramooz, 2010a).

The mouse is a social species by nature and may prefer to be housed in a group, rather than individually (Würbel, 2001; Van Loo et al., 2003; Latham and Mason, 2004; Fitchett et al., 2006). Grouping male mice in a single cage, on the other hand, might negatively affect the androgen levels
and other reproductive parameters (Machida et al., 1981; Koyama and Kamimura, 1998). This potential effect on graft development, however, was ruled out in a study where the recipients of TTX were housed either individually or in a group; housing choice had no significant effect on the graft recovery rate, weight, microscopic development, or serum levels of androgens (Arregui et al., 2008b).

The ability of grafts to establish neovascularization has also been proposed to have an impact on the graft survival and development, and hence TTX outcomes (Schmidt et al., 2006b; Caires et al., 2009). Treating the grafted tissue with VEGF was found to promote angiogenesis and increase the graft size and number of tubules with elongated spermatids (Schmidt et al., 2006b).

As discussed earlier (Chapter 2.5.3), different outcomes might be expected from testis tissue grafts than cell implants, as exemplified by the delayed spermatogenesis and higher prevalence of tubules with no germ cells in implants from TCI (Gassei et al., 2006; Honaramooz et al., 2007; Arregui et al., 2008b; Watanabe et al., 2009; Campos-Junior et al., 2014). Therefore, the effects of recipient and donor factors on the survival and development of implants would need to be examined for TCI as well, in order to improve the outcomes.

2.6 Application of Male Germline Stem Cells in Fertility and Conservation

As shown by the evidence presented thus far in this chapter, MGSC can be maintained using *in vitro* and *in vivo* culture systems, and induced to proliferate and differentiate into haploid germ cells. The self-renewal, proliferation, and differentiation properties of MGSC ensure that a stem cell pool remains to provide a continuous supply of spermatozoa throughout adulthood. In addition, advances in the field of MGSC and assisted reproductive technologies (ART; *e.g.*, GCT and IVF) in recent years have allowed a better understanding of MGSC biology and opened many windows of potential application in genetic conservation and male reproductive health.

At least theoretically, a combination of the aforementioned technologies can be applied to overcome fertility challenges that only two decades ago would have seemed impossible to resolve. For instance, it is now conceivable to preserve the fertility potential of prepubertal boys undergoing gonadotoxic treatments (*i.e.*, chemotherapy or total body radiotherapy), which frequently result in the depletion of germ cells. Unlike in adult men, the collection of spermatozoa for cryopreservation
is not an option for pre-pubertal males. However, cryopreservation of testis biopsies obtained prior to the onset of cytotoxic cancer treatments can offer an option if decades later the donor decides to seek treatment for infertility (Wyns et al., 2008, 2011; Honaramooz, 2012). Cryopreserved biopsies from immature testes that are void of haploid germ cells can then undergo maturation using the aforementioned in vitro or in vivo systems to produce spermatozoa, elongated spermatids, or even round spermatids for use in ICSI or ROSI to achieve donor-derived progeny (Schrader et al., 2001). In the adult male, MGSC technologies also offer a therapeutic potential for infertility treatment, particularly those conditions that hinder the development and differentiation of SSC into advanced germ cells. Examples include chromosomal abnormalities or genetic disorders, where oligozoospermia or azoospermia is caused by the lack of certain factors or signaling pathways. Using in vitro systems, the missing factors or signals can be introduced, either in a pure or recombinant form, to induce in vitro spermatogenesis. This possibility was substantiated using the Steel (Sl) mouse model, a condition caused by c-kit ligand (KITL) mutation, which results in underdeveloped testis, low and abnormally distributed SSC, and total absence of spermatozoa (non-obstructive azoospermia). The number of SSC in the mutant testis tissue fragments was increased in a dose-dependent manner after culturing with recombinant KITL, which eventually led to successful induction of in vitro spermatogenesis (Sato et al., 2012). It goes without saying that despite the promising perspectives and recent progress in lab animal models, the clinical application of MGSC technologies for humans is not yet feasible; aside from the ethical and safety concerns, the efficiency remains very low at the present time. Various questions, particularly related to understanding the requirements of every step involved in these technologies (e.g., cryopreservation, culturing, transplantation, IVF), need to be addressed.

In recent decades, species are becoming extinct at a faster rate, mostly due to the impact of human activities. The loss of genetic diversity due to infertility and premature death of neonatal/young males adds to conservation challenges. The declining number of animals in an endangered species populations means that the genetic material of every existing individual is immensely valuable, and the ability to obtain offspring from a single male could have a significant impact on the preservation of genetic diversity within a population. Hence, MGSC can be potentially applied in genetic conservation of endangered wildlife or valuable rare breeds of livestock. When such a prized male dies, and the collection of semen or even testicular/epidydimal spermatozoa is not an option, such as when the individual is neonatal/immature, then testis tissue collected even shortly after death
can be prepared for cryopreservation for future use in similar advanced reproductive technologies. This concept has also been supported, through the use of testis tissue cryopreservation and TTX using domestic mammals (e.g., the sheep, goat, cattle, horse, pig, alpaca, cat, dog) as a model for endangered counterparts (e.g., ungulate herbivores, equid, suid, camelid, felid, canid) (Snedaker et al., 2004; Oatley et al., 2005; Rathi et al., 2006; Abrishami et al., 2010a; Elzawam, 2013). Promising results and even donor-derived spermatozoa have also been obtained through TTX from donors of some of the target wildlife species, such as the Javan banteng, Iberian lynx, Cuvier gazelle, Mohor gazelle, white-tailed deer, and bison (Honaramooz et al., 2005b; Abbasi and Honaramooz, 2011, 2012; Arregui et al., 2014).

2.7 Conclusions

The testis plays a central role in male reproduction by providing male gametes and androgens; both of which occur via complex processes that extend continuously throughout the male adult life. These involve highly coordinated signaling between the autocrine, paracrine, and endocrine components, including the hypothalamic-pituitary-gonadal axis. Any disruption during the development or normal function of the testis may impact the male reproductive health and fertility. Despite the tremendous advances in the study of testis function, many questions pertaining to the regulation of testicular development and spermatogenesis remain unanswered and require further investigation.

MGSC form the foundation of spermatogenesis, where their capacity for self-renewal and differentiation ensure the continuity of the male germ cell lineage. Understanding the mechanisms controlling self-renewal and differentiation, provide a basis for the maintenance and manipulation of MGSC both in vitro and in vivo. Most of our knowledge about MGSC has come from the extensive studies performed using SSC. Not until recent years had gonocytes been given proper attention in MGSC studies. Being the only germ cell type present in the neonatal testis, gonocytes offer great advantage and practicality as the source of MGSC over the other types. Our knowledge of MGSC in general and gonocytes, in particular, is very limited when it comes to farm animals, especially in the pig as an important biomedical model.

The efficacy of using MGSC in clinical or biomedical research relies on our ability to prepare large numbers of enriched populations. New developments in technology and the introduction of novel
biomarkers continue to improve the identification, isolation, enrichment, and manipulation of MGSC. *In vitro* culture systems have been successful in supporting the self-renewal and differentiation of MGSC. Incorporation of growth factors that have the potential to play a part in testis culture systems either *in vitro* or *in vivo*, will also lead to a better understanding of their roles for testis development *in situ*. Using laboratory animal models, MGSC have been propagated, maintained long-term, and allowed to differentiate into even functional spermatozoa. However, the application of these culture conditions is still limited due to species differences and lack of standardized protocols. Therefore, the search for optimal culture conditions for MGSC, especially from nonrodent species demand ongoing efforts.

In vivo culture systems for testis tissue and cells offer an alternative for culturing MGSC that is more readily applicable to diverse donor species. GCT provides a unique bioassay to assess the competency of MGSC for establishing new colonies of spermatogenesis, and allow examination of their stem cell niche. The capability of testis tissue fragments or dissociated cells (through TTX and TCI) from distant species to develop into functional tissue and give rise to donor-derived spermatozoa in mice, has introduced new solutions to genetic and fertility preservation challenges. The autonomous reorganization and *de novo* formation of testis tissue after TCI can be used to understand the mechanisms behind testicular morphogenesis. The developmental potential and spermatogenic efficiency of TTX/TCI relies on various factors; the investigation for which will also give new insights on spermatogenesis and testis function.

Recent developments in the field of MGSC technologies have greatly impacted the fields of regenerative medicine and advanced reproductive technologies. The limitless self-renewal and proliferation potential of MGSC can be exploited as an alternative source for the generation of pluripotent stem cells for use in cell-based therapy and drug delivery studies. However, the most significant application of MGSC technology at least in the near future will be the preservation, conservation, and restoration of fertility, especially when recovery of spermatozoa is not possible.
2.8 Objectives and Hypotheses

The overarching hypothesis of this thesis was that *in vitro* and *in vivo* culture systems can be used to study the development of porcine testis cells and tissue. The general objectives of this thesis were to identify, examine, and manipulate potential factors associated with the development of testis cells and tissue using *in vitro* and *in vivo* culture systems. Experiments were designed to test the following specific objectives and hypotheses:

A. Optimization of Culture Conditions for Short-Term Maintenance, Proliferation, and Colony Formation of Porcine Gonocytes (Chapter 3)

The objective of this study was to:

1. Optimize culture conditions (gonocyte proportion, cell seeding density, temperature, and medium changing regimen) to improve maintenance, proliferation, and colony formation of porcine gonocytes.

It was hypothesized that:

1. Optimizing culture conditions (cell seeding density and gonocyte proportion, incubation temperature, and medium changing regimen) will improve maintenance, proliferation, or colony formation of porcine gonocytes.

B. Live-Cell Imaging and Ultrastructural Study of Cultured Porcine Gonocytes (Chapter 4)

The objective of this study was to:

1. Study cellular organization, movement pattern, and ultrastructure of neonatal porcine gonocytes in a prolonged culture.

It was hypothesized that:

1. Organization, movement pattern, or ultrastructure of neonatal porcine gonocytes will change over time in culture.
C. Effect of Multiple Factors on Regeneration of Testis Tissue After Ectopic Implantation of Porcine Testis Cell Aggregates in Mice: Improved Outcomes Consistency and in Situ Monitoring (Chapter 5)

The objectives of this study were to:

1. Establish an efficient method for implantation of neonatal porcine testis cell aggregates in mice.
2. Evaluate the potential of ultrasound biomicroscopy for *in situ* assessment of the development of testis cell aggregates after implantation in mice.

It was hypothesized that:

1. The optimized method will be more efficient than the conventional method for implantation of neonatal porcine testis cell aggregates in mice.
2. Ultrasound biomicroscopy will be utilized for assessing the development of neonatal porcine testis cell implants in mice.

D. Effects of Growth Factors on De Novo Regeneration of Porcine Testis Tissue After Ectopic Implantation of Testis Cells in Mice (Chapter 6)

The objective of this study was to:

1. Evaluate the effects of growth factors (EGF, RA, VEGF, FGF2, FGF9, GDNF, SCF, or LIF) on *de novo* formation of porcine testis tissue after implantation of testis cell aggregates in mice.

It was hypothesized that:

1. The addition of growth factors (EGF, RA, VEGF, FGF2, FGF9, GDNF, SCF, or LIF) to testis cell aggregates will improve *de novo* formation of porcine testis tissue after implantation in mice.
CHAPTER 3

OPTIMIZATION OF CULTURE CONDITIONS FOR SHORT-TERM MAINTENANCE, PROLIFERATION, AND COLONY FORMATION OF PORCINE GONOcyTES 1,2

3.1 Abstract

Gonocytes give rise to spermatogonial stem cells, and thereby play an essential role in establishing spermatogenesis. Optimized culture conditions for gonocytes provide an opportunity for their study and in vitro manipulation for potential application in reproductive technologies. Using six experiments in a step-wise design, we examined the effects of several culture conditions on the maintenance, proliferation, and colony formation of porcine gonocytes. Testis cells from neonatal piglets were cultured for 7 d in DMEM supplemented with 10% fetal bovine serum. The examined culture conditions included using different cell seeding densities, gonocyte proportions, incubation temperatures, sampling strategies, and medium changing regimens. Confluency of cells was optimal (>90% by ~6 d) when 3.0×10^4 testis cells/cm2 containing ~40% gonocytes were used. Incubating the cells at 35 °C or 37 °C resulted in similar cell number and viability at confluency, but incubation at 35 °C resulted in a delayed confluency. In the first 2 d of culture, gonocytes remained mostly floating in the medium and gradually settled over the next 5 d. Consequently, not changing the medium for 7 d (as opposed to changing it every 2 d) led to a significant increase in the number of gonocyte colonies by reducing the loss of “floating gonocytes”. We found that gonocytes require the presence of a critical minimum number of somatic cells for settlement, and can proliferate and form growing colonies even in a basic medium. Large numbers of viable gonocytes remain floating in the medium for several days. The optimized culture conditions in the

1 This study has been published. Awang-Junaidi AH and Honaramooz A (2018). J. Anim. Sc. Biotechnol. 9:8. Portions of this study were also presented at the 41st American Society of Andrology Annual Meeting. The document has been reformatted from the original version for inclusion in the thesis.

2 AHAJ contributed to the conceiving and designing of the study, performed the experiments and wrote the first draft of the manuscript.
present study included seeding with 3.0×10^4 testis cells/cm2 containing ~40% gonocytes, incubating at 37 °C, and without changing the medium in the first week, which can result in improved colony formation of porcine gonocytes.

3.2 Introduction

Testis stem cells are a unique population of stem cells in an adult body, because in addition to their dual ability to self-renew and give rise to differentiating germ cells, they can pass the genetic information to the offspring. Among the many types of male germ cells present from the fetal period to adulthood, primordial germ cells (PGC), gonocytes, and particularly spermatogonial stem cells (SSC) are believed to possess stem cell potential and hence are referred to as male germline stem cells (MGSC) (Lehmann, 2012). An in vivo functional assay for confirming the stem cell potential of MGSC was provided when SSC were deposited in the lumen of seminiferous tubules of recipient testes using germ cell transplantation technique. The transplanted SSC were capable of homing to the tubule basement membrane, forming new colonies of developing germ cells, and initiating donor-derived spermatogenesis (Brinster and Avarbock, 1994; Jiang and Short, 1998; Honaramooz et al., 2002b, 2003b, a; Izadyar et al., 2003b). In breeding trials, some of the germ cell recipient animals of various species were capable of siring donor-derived progeny (Brinster and Avarbock, 1994; Honaramooz et al., 2003a; Herrid et al., 2009). There are also a few reports of using gonocytes and PGC as donor cells in germ cell transplantation leading to the establishment of spermatogenesis in the recipient testis (Jiang and Short, 1998; Chuma et al., 2005; Kim et al., 2014).

The choice of donor MGSC is a critical factor for the outcome of germ cell transplantation. Using PGC as donor cells has been less practical because their isolation requires collection from embryos and there are only a limited number of PGC per embryo (Jiang and Short, 1998; Ohta et al., 2004). Spermatogonia can be collected from mature donor individuals and enriched for SSC at relatively high numbers. However, spermatogonia are inherently a heterogeneous population of cells and the lack of biomarkers has made unequivocal isolation of pure SSC populations difficult (De Rooij, 2001b; Orwig et al., 2002c; Grisanti et al., 2009). Compared with PGC and SSC, gonocytes offer a potentially more practical option. Gonocytes are transitory germ cells (between PGC and SSC) that have a distinct morphology (large round cells with large nucleus to cytoplasm ratio), and are
present during both fetal and early postnatal period for several days, months or even years, depending on the species (De Rooij and Russell, 2000; Oatley and Brinster, 2008; Culty, 2009). Perhaps more importantly, gonocytes are the only germ cells present in the testes of neonates; thus, they can be detected using most germ cell markers (e.g., VASA, DAZL), pluripotency markers (e.g., NANOG, OCT4), and certain surface protein markers (e.g., DBA, UCHL1). These characteristics provide an opportunity for enrichment and in vitro manipulation of gonocytes (Goel et al., 2007; Culty, 2009; Han et al., 2009; Yang and Honaramooz, 2012; Zogbi et al., 2012).

Gonocytes are relatively limited in numbers since they comprise only ~1.4% of cells in the testes of neonatal rats (Orwig et al., 2002a) and ~7% of seminiferous cord cells in piglets (Honaramooz et al., 2005a). The efficiency of colonization by the donor germ cells in the seminiferous tubules of recipients is directly proportional to the number of transplanted MGSC. Therefore, to increase the efficiency of germ cell transplantation, gonocytes must be enriched and/or propagated in vitro prior to transplantation, as suggested for SSC (Dobrinski et al., 1999; Shinohara et al., 2000b). Various strategies have been introduced to optimize the isolation, enrichment, or purification of gonocytes with differing outcomes, depending on the species (van den Ham et al., 1997; Goel et al., 2007; Han et al., 2009; Borjigin et al., 2011). Using conventional cell separation methods, no more than ~10% of isolated neonatal testis cells were gonocytes (van Dissel-Emiliani et al., 1989; Li et al., 1997; Orwig et al., 2002a; Honaramooz et al., 2005a). However, development of a three-step enzymatic digestion in our laboratory has allowed the collection of populations of cells containing ~40% gonocytes from neonatal porcine testes (Yang et al., 2010). The resultant population of gonocytes can also be enriched further to ~90% using a combination of Nycodenz centrifugation and differential plating (Yang and Honaramooz, 2011).

While the pig is an important biomedical animal model, purification of porcine MGSC is still limited. The ability to obtain highly enriched populations of gonocytes from neonatal piglets (Yang et al., 2010; Yang and Honaramooz, 2011), however, has provided new opportunities for using gonocytes as a model for in vitro propagation and manipulation of MGSC. This calls for further research on culture systems that can allow efficient large-scale propagation of gonocytes. No systematic study has examined the effects of different culture conditions on colony formation of porcine gonocytes. Therefore, given the importance of cell culture in MGSC research, the present study was designed to examine a number of culture conditions for maintenance, proliferation, and
colony formation of neonatal porcine gonocytes as a model. The objectives of the present study were to examine several aspects of porcine gonocyte culture through multiple experiments in a stepwise design. The examined factors included the gonocyte proportion and seeding density, incubation conditions, sampling, medium changing regimens, and effects of applying those optimal conditions on gonocyte colony formation.

3.3 Materials and Methods

3.3.1 Testis Collection and Preparation

Testes from Yorkshire-cross piglets (Camborough-22 × Line 65; PIC Canada, Winnipeg, MB, Canada) less than 1 wk of age were used in this study. The testes were collected weekly (5-15 pairs per wk) through aseptic castration at the Prairie Swine Center (a university-affiliated facility). All experimental procedures involving animals were reviewed and approved by the University of Saskatchewan’s Institutional Animal Care and Use Committee (Animal Use Protocol# 20080042). The testes were kept in ice-cold Dulbecco’s phosphate-buffered saline (DPBS; catalogue no. 20-031-CV; Mediatech, Manassas, VA, USA), containing 1% w/v antibiotics solution (penicillin and streptomycin; catalogue no. 30-002-CI, Mediatech), and were transported within 1 h of collection to the laboratory. The testes were thoroughly rinsed three times with DPBS prior to processing. The parenchyma was separated from the tunica albuginea and excess connective tissues, and used for isolation of testicular cells.

3.3.2 Isolation of Testis Cells and Enrichment for Gonocytes

Isolation of testis cells and enrichment of gonocytes were performed using methods that were established in our laboratory (three-step enzymatic digestion, Nycodenz density gradient centrifugation and extracellular matrix (ECM) differential plating; (Han et al., 2009; Yang and Honaramooz, 2011). Briefly, for each batch of the three-step enzymatic digestion, ~600 mg of testis parenchyma was thoroughly minced with fine scissors for 5 min, suspended in 5 mL of DPBS, vortexed for 30 sec in a test tube shaker (Reax Top; catalogue no. 541-10000; Heidolph Instrument, Essex, UK) and digested with 1 mL of 0.2% w/v collagenase IV (catalogue no. C-153; Sigma-Aldrich, Oakville, ON, Canada), 0.1% w/v hyaluronidase (catalogue no. H-3884; Sigma-Aldrich), and 0.01% DNase (catalogue no. DN25; Sigma-Aldrich) in Dulbecco’s modified Eagle’s medium
(DMEM; catalogue no. 10-013-CM; Mediatech) supplemented with 1% w/v antibiotics (as above) at 37 °C for 10 min. Fetal bovine serum (FBS; catalogue no. A15-701; PAA Laboratories, Etobicoke, ON, Canada) was added to stop the digestion and the suspension was vortexed for another 30 sec and filtered through a 40 µm filter (catalogue no. 3522340; BD Biosciences, San Jose, CA, USA). The filtrate suspension was centrifuged at 500×g at 16 °C for 5 min and resuspended in 5 mL of DPBS supplemented with 1% w/v antibiotics. A large number of red blood cells were observed among the isolated testis cells. Therefore, erythrocyte depletion was performed by mixing the cells with 20 mL of the lysis buffer, composed of 156 mmol/L ammonium chloride (NH₄Cl; catalogue no. A9434; Sigma-Aldrich), 10 mmol/L potassium bicarbonate (KHCO₃; catalogue no. 237205; Sigma-Aldrich), and 0.1 mmol/L disodium ethylenediaminetetraacetate (Na₂EDTA; catalogue no. E6635; Sigma-Aldrich) in sterile distilled water prior to another cycle of centrifugation (500×g at 16 °C for 5 min). Finally, the cell pellet was resuspended in 5 mL of DMEM supplemented with 10% v/v FBS and 1% antibiotics (designated as DMEM++ and underwent gentle pipetting to obtain a single cell suspension.

For enrichment of gonocytes among the cells obtained from the three-step enzymatic digestion, 3 mL of 17% Nycodenz in DPBS (Histodenz; catalogue no. D2158; Sigma-Aldrich) was placed at the bottom of a 15-mL graduated conical tube. This was followed by gentle addition of 2 mL of cell suspension on top and the tube was centrifuged at 500×g at 4 °C for 15 min. The supernatant was discarded, and the pellet was harvested and resuspended as a single cell suspension. This was immediately followed by ECM differential plating, for which 6-well culture plates (catalogue no. 353046; BD Biosciences) were coated with 1 mL of 50 µg/mL poly-D-lysine (catalogue no. 47743-736; VWR International, Mississauga, ON, Canada) and 10 µg/mL fibronectin (catalogue no. 477743-728; VWR) in an incubator with 5% CO₂ at 37 °C for 1 h, and dried in a biosafety cabinet for another 1 h. The poly-D-lysine pre-coated wells were rinsed twice with DPBS before seeding the cells obtained from Nycodenz gradient density centrifugation. The cells were seeded onto the plates at a concentration of 2.5 × 10⁵ cells/cm² in DMEM++, and cultured in an incubator with 5% CO₂ at 37 °C. After 2 to 3 h, the floating cells were harvested, centrifuged at 500×g at 16 °C for 5 min and the pellets were collected and resuspended as a single cell suspension. These procedures lead to obtaining isolated testis cells highly enriched in gonocytes. We performed a side-by-side quantitative comparison of the cell yield, viability and loss after each progressive step. Samples were prepared from single cell suspensions obtained from each step. The suspension was smeared...
onto poly-L-lysine pre-coated glass coverslips, dried overnight in a biosafety cabinet and kept at -20 °C for use in fluorescent labeling.

3.3.3 Simultaneous Cell Quantification and Viability Assessment

The number of resultant cells after each isolation and enrichment step as well as after culturing was quantified, and the cell viability was assessed using the trypan blue exclusion technique. For evaluation of cells collected after isolation and enrichment, single cell suspensions were prepared as described above. For cultured cells, detachment of the adherent cells was performed by adding 1 mL of 0.25% (w/v) trypsin in Hank’s balanced salt solution (HBSS) and 2.21 mmol/L EDTA (catalogue no. 25-053-CI; Mediatech) at 37 °C for 1-2 min (depending on confluency) with gentle agitation. The enzymatic digestion was stopped by adding 1 mL of undiluted FBS, and the mixture was centrifuged at 500×g at 16 °C for 5 min. The pellets were collected and subjected to resuspension into a single cell suspension prior to viability assessment. Trypan blue (100 µl of a 0.4% solution in saline, catalogue no. T8154; Sigma-Aldrich) was mixed (1:1 ratio) gently with the cell suspension, and 20 µl of the mixture was transferred to each hemocytometer chamber and live/dead cells were identified with the aid of a light microscope. For each replicate, two counts of live/dead cells were performed and averaged to calculate the yield and viability of cells (given as a percentage). As explained in more detail in Chapter 3.3.6, fluorescent labeling of lectin DBA was performed to confirm and quantify gonocytes, as they are the only type of germ cells present in neonatal pig testes; hence the remaining cells were categorized as somatic cells. For this staining, a minimum of 600 cells in randomly selected fields were counted in each cell smear, and the proportion (%) of gonocytes/somatic cells was calculated.

3.3.4 Cell Culture

Different cell culture conditions were evaluated using a stepwise approach. The same medium (DMEM++), culture plates (6-well plates), and incubator conditions (5% CO₂ and 95% humidity) were used in all experiments in order to evaluate the effects of changing other variables (i.e., gonocyte proportion, incubation temperature, cell seeding density, and medium changing regimen). For all experiments, pH of the medium was adjusted to 7.4 immediately prior to using it in cell cultures. The pH of the medium was measured using a digital pH meter (catalogue no. 11288-368; model Symphony SB70P; VWR). Cell growth was monitored at least once daily using an inverted
phase contrast microscope (Nikon, Eclipse TS100). For each experiment, multiple replications were performed where cells obtained from each batch of testis tissue digestion were considered one replication. We have previously shown that the characteristics of cells obtained from 1-wk old piglets from this source remain consistent over time, both within and among litters (Yang et al., 2010).

Effects of several factors on the behavior and the morphology of cultured testis cells were examined using cytology and fluorescent labeling. The examined factors included different gonocyte proportions obtained before or after each step of enrichment (40% vs. 80% vs. 86%), incubation temperature (35 °C vs. 37 °C), cell seeding density (1.0 × 10^5 vs. 3.0 × 10^5 vs. 5.0 × 10^5 cells/well; each well in a 6-well plate has ~10 cm² cell growth area) and medium changing regimen (every 2 d vs. modified regimen vs. no changing of medium for up to 7 d). Confluency assessment was defined as the relative coverage of the plate surface by the mixture of testis cells, and a gonocyte colony was defined as a group of more than three gonocytes in close contact.

3.3.5 Cell Sampling

For sampling of cultured cells, glass coverslips coated with 0.1% w/v poly-L-lysine were used. Glass coverslips sized 22 × 22 mm (catalogue no. 12-540B; Fisher Scientific, USA) were arranged in a sterile metal coverslip rack and immersed in 1% HCL in 70% alcohol for 10 min, followed by rinsing with sterile distilled water for 5 sec and allowed to dry for 20 min. The rack was transferred into a 0.1% w/v poly-L-lysine (catalogue no. P8920; Sigma-Aldrich) solution for 10 min and allowed to dry overnight. Finally, the glass coverslips were placed at the bottom of each well in 6-well plates. These procedures were conducted under a biosafety cabinet.

3.3.6 DBA Fluorescent Labeling

Gonocytes were identified using *Dolichos biflorus* agglutinin (DBA) according to previously described protocols (Yang et al., 2010; Yang and Honaramooz, 2011), with minor modifications. Briefly, the dried coverslips (with cell smears or with cells grown directly on them) were fixed in Bouin’s solution (catalogue no. 1120-31; Richa Chemical Company, Pocomoke City, MD, USA) for 2-3 min. The samples were then rinsed three times with 70% alcohol to remove excess Bouin’s solution followed by three rinses with DPBS. The samples were blocked with 5% bovine serum
albumin (BSA; catalogue no. 0332, Amresco, Solon, OH, USA) at 37 °C for 30 min in a humidified chamber. The blocking agent was removed and the samples were incubated with fluorescein isothiocyanate (FITC)-conjugated lectin DBA (1:100, catalogue no. FL-1031, Vector Labs, Burlington, ON, Canada) overnight at 4 °C in a humidified chamber. The samples underwent another cycle of rinsing, followed by incubation with 0.3% Sudan Black B w/v (catalogue no. S2380; Sigma-Aldrich) in 70% alcohol for 15 min, at 37 °C in a humidified chamber. The samples were rinsed with DPBS and stained with 4’6’-diamidino-2-phenylindole (DAPI; catalogue no. D9542; Sigma-Aldrich) and observed under a fluorescence microscope. FITC-conjugated lectin DBA specifically labels gonocytes which appear green under the fluorescence microscope while DAPI stains the nuclei of all cells which appear blue (Fig. 3.1).

3.3.7 Statistical Analyses

Unless stated otherwise, all data are presented as means ± standard error of mean (SEM) and analyzed using either one-way or two-way analysis of variance (ANOVA), as appropriate, followed by Tukey’s HSD post-hoc test. For percentages, the data were transformed using Arcsine function prior to analysis using ANOVA. The level of significance was set at $P < 0.05$. Data were analyzed using the Statistical Package for Social Science (SPSS; Version 20.0, SPSS Inc., Chicago, IL, USA).
Fig. 3.1. *Dolichos biflorus* agglutinin (DBA) fluorescent labeling of neonatal gonocytes. (A-C) Gonocyte labeling with DBA was performed on testis cell smears collected immediately following cell isolation. (D-F) Multiple gonocytes form a colony on a somatic-cell monolayer observed at 1 wk of culture. (G-I) Floating gonocytes in the removed medium observed 4 d after incubation. (A,D,G) DAPI-stained nuclei of the cells appear blue (B,E,H). Fluorescein-conjugated DBA-labeled gonocytes appear green under the fluorescence microscope. (C,F,I) Merged images.
3.4 Results

As summarized in Table 3.1, enzymatic digestion of testis tissues yielded a population of testis cells containing ~41% germ cells (Fig. 3.1A-C), which at this developmental stage (~1 wk of age) are exclusively gonocytes. Gradient centrifugation by Nycodenz, followed by ECM differential plating resulted in enrichment of gonocytes to ~80% and ~86%, respectively. However, the enrichment procedures also caused significant reductions \((P < 0.05)\) in cell counts after each step, resulting in ~73% and ~92% total testis cell loss and ~47% and ~83% gonocyte loss, respectively. The relatively lower gonocyte loss at each step, compared with the total cell loss, resulted in significant enrichment of gonocytes. The viability of cells was also reduced after each enrichment step (from ~93% to 84% and 82%, respectively, \(P < 0.05\)). When the cells were cultured \((3.0 \times 10^5\) cells/well at 37°C with 5% CO\(_2\) and the medium was changed every 2 d), only the cells used immediately after the three-step enzymatic digestion \((i.e.,\ without enrichment)\) demonstrated growth by reaching ~90% confluency in ~6 d.

3.4.1 Experiment 1: Effect of Cell Seeding Density and Gonocyte Proportion

One of the objectives of this experiment was to determine the optimal seeding density for culturing testis cells. A comparison was made by randomly assigning cells into 6-well plates at \(1.0 \times 10^5\), \(3.0 \times 10^5\), or \(5.0 \times 10^5\) cells/well \((i.e.,\ 1.0 \times 10^4, 3.0 \times 10^4,\ or\ 5.0 \times 10^4\ cells/cm^2\ since\ each\ well\ was\ ~10\ cm^2,\ n = 12\ replications)\), in 3 mL of medium to determine the time required for the cells to reach 90% confluency. Cells were used fresh \((immediately\ after\ enzymatic\ digestion\ and\ without\ enrichment,\ hence\ containing\ ~40%\ gonocytes)\) and cultured under similar conditions at 37 °C, and the medium was changed every 2 d.

As shown in Table 3.2, cells in the highest seeding density group \((5.0 \times 10^5)\) became confluent earlier than other groups \((P < 0.05)\), reaching >90% confluency in ~4 d, while the \(3.0 \times 10^5\) seeding density group of cells were >90% confluent by ~Day 6. Cells cultured at \(1.0 \times 10^5\) seeding density had slow growth and only reached ~30% confluency after 7 d in culture.

In a separate experiment, testis cells enriched for gonocytes \((undergoing\ both\ Nycodenz\ centrifugation\ and\ ECM\ plating,\ hence\ containing\ ~86%\ gonocytes)\) were used as the source of
cells for culturing, using the same incubation conditions. Cells did not grow in plates seeded with 1.0×10^5 or 3.0×10^5 cells/well and only had limited growth in the 5.0×10^5 seeding density group after 7 d in culture (5-15% confluency, data not shown). Therefore, for the remaining experiments in this study we used testis cells without enrichment (i.e., containing ~40% gonocytes), and since the 3.0×10^5 seeding density resulted in confluency of cells in ~6 d (without the need for passaging the cells within 1 wk), we used this seeding density in the subsequent experiments.

3.4.2 Experiment 2: Effect of Incubation Temperature

The objective of this experiment was to evaluate the growth of cultured testis cells using incubation temperatures of either $35 \, ^\circ \text{C}$ or $37 \, ^\circ \text{C}$ for 1 wk ($n = 12$ replications), while other culture conditions remained the same (e.g., medium, cell seeding density, and CO$_2$ levels). As shown in Table 3.3, the viability and number of cells at confluency did not differ between the two incubation temperatures ($P > 0.05$). However, the cells cultured at $35 \, ^\circ \text{C}$ reached confluency later than those at $37 \, ^\circ \text{C}$ ($P < 0.05$); therefore, for practical reasons we chose to culture the cells at $37 \, ^\circ \text{C}$ for subsequent experiments.
Table 3.1. The population of testis cells obtained after enzymatic digestion and subsequent enrichment.

<table>
<thead>
<tr>
<th>Method</th>
<th>Proportion (%)</th>
<th>Cell count (× 106) *</th>
<th>Cell loss (%) **</th>
<th>Viability (%)</th>
<th>Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gonocytes</td>
<td>Somatic cells</td>
<td>Total</td>
<td>Gonocytes</td>
<td>Total</td>
</tr>
<tr>
<td>Enzymatic digestion</td>
<td>40.60 ± 1.21a</td>
<td>59.40 ± 1.21a</td>
<td>37.84 ± 2.44a</td>
<td>15.38 ± 1.09a</td>
<td>-</td>
</tr>
<tr>
<td>Nycodenz centrifugation</td>
<td>80.40 ± 1.46b</td>
<td>19.60 ± 1.46b</td>
<td>10.00 ± 0.41b</td>
<td>8.00 ± 0.21b</td>
<td>73.18 ± 1.76a</td>
</tr>
<tr>
<td>ECM differential plating</td>
<td>86.40 ± 1.03c</td>
<td>13.60 ± 1.03c</td>
<td>3.02 ± 0.19c</td>
<td>2.60 ± 0.2c</td>
<td>91.62 ± 0.79b</td>
</tr>
</tbody>
</table>

The results are mean ± SEM.
* Each replicate was based on the digestion of ~600 mg of testis tissue.
One-way ANOVA (or t test **) was used for statistical analyses, and P < 0.05 was considered as significant.
abc Within each column, data with different superscripts differ significantly (P < 0.05). n = 5 replications.
Table 3.2. The effect of seeding density on the growth of testis cells in culture.

<table>
<thead>
<tr>
<th>Seeding density</th>
<th>Confluency at days</th>
<th>Cell count</th>
<th>Viability (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 × 10^5</td>
<td>(*~30% at 7)</td>
<td>(*2.98 × 10^5 ± 0.01)</td>
<td>(*88.4 ± 1.02)</td>
</tr>
<tr>
<td>3.0 × 10^5</td>
<td>>90% at 6.0 ± 0.17a</td>
<td>8.10 × 10^5 ± 0.01</td>
<td>91.21 ± 0.58</td>
</tr>
<tr>
<td>5.0 × 10^5</td>
<td>>90% at 4.0 ± 0.15b</td>
<td>8.16 × 10^5 ± 0.01</td>
<td>91.62 ± 0.56</td>
</tr>
</tbody>
</table>

The results are mean ± SEM.
*The results from 1.0 × 10^5 seeding density group were excluded from statistical analysis as the cells did not reach 90% confluency.
Independent sample *t* test was used for statistical analyses.
ab Within each column, if data differed significantly (*P* < 0.05), they are denoted by different superscripts.
n = 12 replications.
Table 3.3. The effect of incubation temperature on the growth of testis cells in culture.

<table>
<thead>
<tr>
<th>Temperature</th>
<th>>90% confluence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Days</td>
</tr>
<tr>
<td>35 °C</td>
<td>6.42 ± 0.15<sup>a</sup></td>
</tr>
<tr>
<td>37 °C</td>
<td>5.83 ± 0.17<sup>b</sup></td>
</tr>
</tbody>
</table>

The results are mean ± SEM. Independent sample *t* test was used for statistical analyses. Within each column, if data differed significantly (*P* < 0.05), they are denoted by different superscripts. *n* = 12 replications.
3.4.3 Experiment 3: Sampling of Cultured Testis cells for Analysis

Various methods can be used to sample cultured cells for analysis. When sampling for applications such as immunocytochemistry, coverslips are commonly pre-coated with certain matrices to enhance adherence of cells. It is not clear whether the presence of the pre-coated coverslips in testis cell culture would affect cell growth. Furthermore, in situations where multiple samplings from each replicate are required, it would be more efficient to use all available cultured cells, including those grown on areas of the culture well not covered by the coverslip. The objectives of this experiment were to determine 1) whether the rate or pattern of testis cell growth in culture would change in the presence of glass coverslips (22 × 22 mm) coated with 0.01% poly-L-lysine, and 2) whether the growth of testis cells on the coverslips differs from those on the peripheral areas of the wells, not covered by the coverslips (Fig. 3.2).

When plates with and without poly-L-lysine-coated coverslips were compared, the number or viability of the resultant cultured cells did not differ between plates (8.18 ± 0.01 × 10⁵ vs. 8.22 ± 0.02 × 10⁵ cells per plate, with 91.0 ± 0.57% vs. 91.3 ± 0.87% cell viability, plates with coverslips vs. plates with no coverslips, respectively, n = 12 replications, P > 0.05). When non-coated coverslips were used, little or no cell growth was observed. Furthermore, within the plates with poly-L-lysine-coated coverslips, the viability of cells grown on coverslips did not differ from those grown on the peripheral areas of the well, not covered by coverslips (92.0 ± 0.33% vs. 92.4 ± 0.51%, coverslips vs. periphery, respectively, P > 0.05). However, the number of cells obtained from the peripheral areas was higher than that from the coverslips (4.59 ± 0.14 × 10⁵ vs. 2.99 ± 0.06 × 10⁵, respectively, P < 0.05), even though both encompassed a similar cell growth area (~4.8 cm² each).
Fig. 3.2. Schematic representation of the areas within culture plates used for sampling in Experiment 3. The numbers and viability of cells grown on poly-L-lysine-coated coverslips (A) were compared with those grown on the peripheral areas of the wells, not covered by the coverslip (B).
3.4.4 Experiment 4: Short-Term Culture of Neonatal Porcine Testis Cells

Morphological changes of neonatal porcine testis cells in culture were evaluated for 1 wk under the above-mentioned culture conditions (3.0 × 10^5 seeding density, DMEM++, 37 °C, n = 6 replications). The medium was changed every 2 d. Within the first 12 h of incubation, most of the cells and cell particles were still floating in the medium (Fig. 3.3A). By 24 h after incubation, small numbers of cells settled and appeared to have adhered to the plate. The early settling cells were mostly somatic cells and began to form cytoplasmic projections, creating irregularly shaped cell boundaries (Fig. 3.3B), while more cells continued to settle. After 2 d of incubation, the cells started to appear in clumps (Fig. 3.3C), and over time these groups of cells spread further and combined to create a large somatic-cell monolayer. At the same time, round cells with large nuclei, appearing bright or with a halo under phase-contrast microscopy, were seen attached onto the somatic-cell monolayer (Fig. 3.3D-E). These rounds cells were confirmed to be gonocytes using fluorescent labeling (Fig. 3.1D-F). It was also observed that while initially gonocytes were present as singles or pairs, starting at Day 5, colonies (grape-like clumps) of more than 3 cells could also be observed (Fig. 3.3D). It was noticed that gonocytes were only loosely attached to the somatic-cell monolayer, since some would detach due to slight movements of the plate. By the end of the experiment (Day 7), the number of these round cell colonies were still considerably less than expected, given that the population of testis cells at seeding contained ~41% gonocytes. The somatic cells continued to multiply and once reaching 70-80% confluency (at ~4 to 5 d), many appeared as spindle-shaped fibroblast-like cells (Fig. 3.3E).

3.4.5 Experiment 5: Floating Cells in the Culture Medium

Based on the findings of Experiments 1 and 4, it was clear that gonocytes require sufficient ratios of somatic cells or feeder cells, to which they formed a loose attachment for growth in culture. We speculated that the very low number of gonocyte colonies observed by Day 7 during short-term culture (Fig. 3.3E) might be due to their loss through routine medium changes, which apparently eliminated the floating and loosely adherent gonocytes. Therefore, this experiment was designed to examine the medium removed from the plates. The results showed that indeed high numbers of round cells were present in the medium removed routinely every other day. The number of these cells was greatest in the medium removed on Day 2 (6.81 ± 0.63 × 10^4), compared with Days 4 and
6 (1.02 ± 0.09 × 10^4 and 0.4 ± 0.07 × 10^4 cells/well, P < 0.05, n = 5 replications, Fig. 3.4). On the other hand, if the medium was not changed, greater numbers of floating gonocytes remained in the medium examined on Days 4 and 6 (4.2 ± 0.10 × 10^4 and 1.92 ± 0.05 × 10^4 cells/well, respectively), compared with the numbers obtained on the same days when the medium was changed every other day (P < 0.05, n = 5 replications, Fig. 3.4). Based on the morphology, it was presumed that these cells were gonocytes; they were large and round in shape with prominent nuclei (large nucleus to cytoplasm ratio). The viability of these round cells remained high in all examined days (~85-97%, data not shown). Using fluorescent labeling, these round cells were later confirmed to be gonocytes (Fig. 3.1G-I).

3.4.6 Experiment 6: Effect of Medium Changing Regimens on Attached Gonocytes

This experiment was designed to assess the effects of different medium changing regimens on the number and viability of attached gonocytes. The cells were cultured using the selected culture conditions (3.0 × 10^5 testis cells/well containing ~40% gonocytes, DMEM++, 37 °C) for 1 wk, and medium changing regimens were assigned to groups of plates as follows: 1) To serve as a control group, the cells were seeded with 3 mL of medium, and the medium was changed routinely, every 2 d (routine group, 3 changes in 1 wk); 2) the cells were seeded with 2 mL of medium, followed by the addition of another 1 mL after 24 h, and then every 2 d 1 mL of medium was removed from the well and replaced with 1 mL of fresh medium (modified group); or 3) the cells were seeded with 3 mL of medium but the medium was not changed (unchanged group). On Days 2, 4, 6, and 7, the cultured cells were observed under an inverted microscope and the number of gonocyte colonies in four randomly selected fields at 400× was recorded and cells were collected for evaluation of viability (n = 5 replications per group).

As shown in Fig. 3.5, alterations in medium changing regimens affected the number of attached gonocytes or gonocyte colonies present on the somatic-cell monolayers. Overall, the number of gonocyte colonies increased (P < 0.05) from Day 2 to Day 4 of culture in all medium changing regimens. However, among the medium changing regimens, the unchanged group had greater (P < 0.05) number of gonocyte colonies on Days 6 and 7 compared with the routine medium changing group (control).
The viability of cells in different medium changing regimens is shown in Fig. 3.6. Compared with the cell viability at seeding (~90%), there was a reduction in viability of cells at Days 4, 6, and 7 in all groups ($P < 0.05$). The cell viability was reduced further in the unchanged group on Days 6 and 7 ($P < 0.05$). Between the regimens, the viability of cells in the unchanged groups was lower ($P < 0.05$) than the routine group on Days 6 and 7 of culture.
Fig. 3.3. Morphology of testis cells in short-term cell culture. (A) Morphology of floating cells 12 h after seeding. (B) Some somatic cells settled to the bottom of the plate within 24 h of incubation. (C) These somatic cells extended cytoplasmic projections toward one another. (C-F) Cells presumed to be gonocytes are seen attached to somatic cells (black arrows). The same gonocytes are also shown at a higher magnification (insets). (D) Gonocytes appeared as singles (black arrow), pairs (yellow arrow), or small colonies (red arrow). (E) Spindle-shaped fibroblast-like cells were more prominent when confluency reached >70%. Only a small number of gonocyte colonies were observed by Day 7 when routine medium changing regimen was applied. (F) Increased number of gonocyte colonies were observed when the medium was not changed for 7 d. (Scale bar: 50 µm).
Fig. 3.4. Number of gonocytes upon analysis of the floating cells from the removed medium. The initial number of cells at seeding was set at 3.0×10^5 cells/well containing ~40% gonocytes and the viability was $89 \pm 0.5\%$. The medium removed from the plates was examined and large numbers of gonocytes were seen floating in the medium on Day 2. Most of the floating gonocytes were eliminated by routine (every 2 d) medium changes (Routine), while some were present on Days 4 and 6, if the medium was not changed (Unchanged). The data are mean ± SEM. a,b Data with different letters within each day differ significantly ($P < 0.05$). xyz Data with different letters within each treatment over time differ significantly ($P < 0.05$). $n = 5$ replications.
Fig. 3.5. Number of gonocytes or gonocyte colonies observed after applying different medium changing regimens. The cultured cells underwent one of the following medium changing regimens: 1) Seeded with 3 mL of medium and the medium was routinely changed every 2 d (Routine); 2) Seeded with 2 mL of medium, followed by the addition of another 1 mL after 24 h, and then every 2 d, 1 mL of medium was removed from the well and replaced with 1 mL of fresh medium (Modified); 3) Seeded with 3 mL of medium but the medium was not changed for 7 d (Unchanged). The data are mean ± SEM. \(^{ab} \) Data with different letters within each day differ significantly \((P < 0.05) \). \(^{xy} \) Data with different letters within each treatment over time differ significantly \((P < 0.05) \). \(n = 5 \) replications.
Fig. 3.6. Viability of cells at seeding and after applying different medium changing regimens. The cultured cells underwent one of the following medium changing regimens: 1) Seeded with 3 mL of medium and the medium was routinely changed every 2 d (Routine); 2) Seeded with 2 mL of medium, followed by the addition of another 1 mL after 24 h, and then every 2 d, 1 mL of medium was removed from the well and replaced with 1 mL of fresh medium (Modified); 3) Seeded with 3 mL of medium but the medium was not changed for 7 d (Unchanged). Viability on Day 0 represents the initial viability at seeding. The data are mean ± SEM. "ab" Data with different letters within each day differ significantly ($P < 0.05$). "xyz" Data with different letters within each treatment over time differ significantly ($P < 0.05$). $n = 5$ replications.
3.5 Discussion

In the neonatal testis, gonocytes represent MGSC, which have great potential applications in male reproduction research (reviewed in (Honaramooz and Yang, 2010; Honaramooz, 2012). Various methods have been established to culture MGSC to facilitate their study and manipulation or to harness their potential for downstream applications such as genetic conservation, transgenesis, or infertility treatments (Honaramooz et al., 2002b, 2003b, 2008; Zeng et al., 2013; Mankidy et al., 2014). However, depending on the donor species, age, or developmental status, optimized culturing or enrichment of MGSC can be challenging (Yang and Honaramooz, 2010; Yang et al., 2010).

Cell isolation is a critical step in preparing testis cells for culture. The number and proportion of the resultant populations of cells also vary greatly depending on the methods used to isolate the cells. As a first step in the present study, we performed a side-by-side comparison of the total testis cell yield and gonocyte proportions from three protocols (Yang et al., 2010; Yang and Honaramooz, 2011). Although as expected the enrichment process resulted in highly purified populations of gonocytes (~86%), it also led to losing up to 90% of the initial number of testis cells. These findings provide a basis upon which an appropriate approach could be adopted for gonocyte isolation/enrichment in order to meet the objectives and needs of specific experiments. For example, the highly enriched populations of gonocytes could be used in studies that focus mainly on gonocytes per se, while the heterogeneous populations of testis cells obtained immediately after enzymatic digestion may be more suitable for longer-term culture or for the study of interactions between gonocytes and somatic cells.

One of the advantages of using neonatal testes as the source of germ cells is that gonocytes are the only type of germ cells present during the early postnatal stage. Gonocytes possess a distinct morphology and a unique pattern of distribution in the seminiferous cords of neonatal testes, which facilitate their identification in situ (Orwig et al., 2002a; Goel et al., 2007). Once the cells are enzymatically dissociated; however, accurate identification of gonocytes requires immunocytochemistry/fluorescent labeling. There are several biomarkers that could be used for identification of gonocytes including germ cell markers (e.g., VASA and DAZL, (Reijo et al., 1996; Castrillon et al., 2000) and stem cell markers (e.g., Nanog, SSE-A1, and OCT4, (Anderson et al., 2007; Goel et al., 2007; Fujihara et al., 2011; Zogbi et al., 2012). Two of the most commonly
used markers for neonatal porcine gonocytes are DBA (Goel et al., 2007; Kim et al., 2010a; Yang and Honaramooz, 2012) and ubiquitin C-terminal hydrolase L1 (UCHL1; previously known as PGP9.5) (Han et al., 2009; Kim et al., 2010a). DBA has a specific affinity to bind to \(\alpha \)-D-N-acetylgalactosamine, which is localized on the surface of porcine gonocytes (i.e., primitive germ cells) (Goel et al., 2007), while UCHL1 can identify both primitive and more advanced germ cells.

In the present study, the identification of gonocytes was initially hampered by autofluorescence, which was partly overcome by using a quenching protocol (Yang and Honaramooz, 2012); however, some autofluorescence remained. Autofluorescence in the tissue/cells can be due to endogenous sources (e.g., lipofuscin or lipofuscin-like pigments), or acquired during processing (e.g., certain fixatives). In any case, autofluorescence can interfere with specific signals by fluorescent labeling and lead to false positive results. In the present study, the autofluorescence was eliminated through modification of the quenching protocol (Yang and Honaramooz, 2012). The use of Sudan black B (SBB) has been reported to be efficient in masking autofluorescence of lipofuscins, triglycerides, and lipoproteins origin (Schnell et al., 1999; Baschong et al., 2001) and is a major component of the quenching protocol for testis cells (Yang and Honaramooz, 2012). In this study, as a first step in modifying the original quenching protocol, the length of incubation with SBB was extended, which led to a further reduction of the autofluorescence of testis cells, but not to its complete elimination. We then speculated that the remaining autofluorescence might have a fixative origin. The picric acid component of Bouin’s solution used for fixing testis tissue has also been cited as a potential cause of autofluorescence (Hess and Moore, 1993; Howroyd et al., 2005). Therefore, we applied further control measures to refine the use of fixatives in the quenching protocol. We found that the inclusion of three thorough and gentle rinses with 70% alcohol after the Bouin’s fixation completely eliminated the autofluorescence problem in Bouin’s fixed testis cell samples. As an alternative, we also found that to avoid the autofluorescence caused by Bouin’s, cell smears or cells grown on coverslips can be fixed using methanol at -20 °C for 10 min.

Cell seeding density influences the performance of cultured cells, presumably by affecting the contact and interactions among cells (Xia et al., 2011). Optimization of the cell seeding density prior to culturing cells ensures normal cell growth and allows estimation of the time to reach certain confluency levels. In the present study, the cell seeding density of \(3.0 \times 10^5 \) well (i.e., in \(\sim 10 \text{ cm}^2 \))
was found to be more practical because it allowed sampling within 1 wk without a need for passaging the cells.

Temperature may play an important role in the efficiency of testis cell culture, but the effect of incubation temperature on the proliferation of neonatal porcine testis cells has not been well studied. In Experiment 2, testis cells were cultured at either 35 or 37 °C to mimic the testis temperature in situ, which is normally lower than the core body temperature, ranging 38–40 °C in pigs (Ingram and Legge, 1970; Lohse et al., 2010). Testis cells cultured at either 35 or 37 °C proliferated and reached a 90% confluency within 1 wk; however, those cultured at 35 °C became 90% confluent later (5.8 vs. 6.4 d, respectively, \(P < 0.05 \)). Earlier studies using human or mouse testis cells concluded that DNA synthesis and steroidogenesis were increased when cells were cultured at 31/32 °C, compared with 37 °C, which is the core body temperature in these species (Nakamura et al., 1987; Zhou et al., 2008). Although these latter studies also point to the beneficial effects of culturing testis cells at lower than core body temperature, they each examined only one such temperature, making it difficult to compare the results. Results from the present study suggest that further studies will be required to determine the optimal temperature for culturing testis cells for a given species.

The use of poly-L-lysine-coated coverslips is recommended when sampling cultured testis cells. Opposing ionic charges among the cells (polyanionic) and poly-L-lysine-coated coverslip surface (polycationic) enhance efficient attachment of cells onto the coverslips. In the present study, we showed that 1) the presence of poly-L-lysine-coated coverslips had no adverse effects on the growth of cultured testis cells; 2) cells did not grow on non-coated coverslips; and 3) there was no difference in cell viability between the cells growing on coverslips and the peripheral areas of the well. Therefore, while coverslips placed at the bottom of round plate wells provide a convenient method of sampling for analyses such as immunocytochemistry, the cells at the peripheral areas could also be used for other evaluations such as monitoring of the cell viability or use in other assays. Using coverslips also offers the advantage of allowing multiple samplings from the culture dish with minimal disturbance to other cells in the same dish/plate.

In vivo proliferation of gonocytes is influenced by their contact or interaction with the basement membrane of the seminiferous tubule (McGuinness and Orth, 1992). It has also been suggested
that gonocytes require the presence of feeder cells in order to settle and form colonies in vitro (Orth and McGuinness, 1991; Hasthorpe et al., 1999; Kanatsu-Shinohara et al., 2003; Nagano et al., 2003; Borjigin et al., 2011). In the present study, testis somatic cells formed a monolayer, which provided a platform for subsequent gonocyte attachments. It also appeared that the survival and propagation of gonocytes depended on the proper ratio of gonocytes to somatic cells. This was exemplified in Experiment 1, where we used highly enriched gonocytes (~86%) for seeding and observed no or slow cell proliferation, even when the enriched gonocytes were used at the same seeding density (3.0 × 10^5/well) as heterogeneous populations of testis cells. This is in agreement with a previous study by van Dissel-Emiliani et al., (1993) showing that when gonocytes were cultured alone, they failed to adhere to the culture plate and instead formed gonocyte aggregates, which were subsequently lost.

In fetal and neonatal testes, gonocytes are larger than most testis cells and one would expect that among testis cells in the suspension, gonocytes would be one of the first cells to settle. This was indeed the case for mouse fetal gonocytes showing the highest sedimentation velocity of all testis cells (van Dissel-Emiliani et al., 1989). In the present study, however, gonocytes settled much later than other testis cells, and could be seen floating even after several days of culture. Goel et al., (2008) examined the population of floating cells after 4 h of culturing neonatal pig testis cells and concluded that they were mostly viable (~95%) and composed of mostly germ cells (91%). In the present study, although the number of floating gonocytes decreased over time, their viability remained high (78-86%) up to 6 d after culture. The extended presence of floating gonocytes may be an advantageous characteristic if they are collected to be used for gonocyte enrichment; however, it can also be disadvantageous and lead to the loss of gonocytes during medium changes, if done without due care.

Changing of medium is important to furnish nutrients and remove waste from a culture system; however, the frequency of medium-changing may affect culture conditions. Most studies on testis cell culture use a daily, every-other-day, or twice-weekly approach to medium changing (Joffre and Roche, 1988; van Dissel-Emiliani et al., 1993; Majumdar et al., 1995; Goel et al., 2007; Han et al., 2009). In the present study, routine changing of medium (every 2 d) reduced the number of attached gonocytes, prompting us to design Experiment 6 for optimizing the medium changing regimen to increase the number of gonocyte colonies. Given our observations of the floating
gonocytes, we compared gonocyte colony formation following the routine medium changing regimen (every 2 d) with the group in which the medium was not changed for 1 wk, or with the modified medium changing regimen, where a smaller volume of medium was exchanged at a time. Compared with Day 2 (~5.0 × 10^3), the number of gonocytes and gonocyte colonies increased in all regimens in subsequent days (Days 4, 6, and 7; Fig. 3.5). The increased number of gonocyte colonies on Day 4 in all groups (ranging from ~10.0 × 10^3 to ~13.5 × 10^3, Fig. 3.5) could be taken as evidence of gonocyte proliferation in these early days of culture. This conclusion is especially based on the plates in the routine medium changing regimen which had undergone a complete medium change. As a result, this group of plates presumably should have lost all or most of its floating gonocytes, yet there was a 2-fold increase in the number of gonocyte colonies. On the other hand, the number of gonocyte colonies in subsequent days (6 and 7) were ~50% greater in the unchanged group, compared with the routine medium changing regimen (~18.0 × 10^3 vs. ~12 × 10^3, respectively, Fig. 3.5). This can be seen as evidence of continued settlement of gonocytes. The number of gonocyte colonies also increased over time in all groups; this increase was ~3.3 fold for the unchanged medium group (from ~5.4 × 10^3 on Day 2 to ~18.0 × 10^3 on Day 7, Fig. 3.5). This fold-increase in the total number of gonocyte colonies does not take into account that the number of gonocytes within each colony also increased over time (Fig. 3.3D). Therefore, these results collectively indicate that the optimized culture conditions developed in the present study improved gonocyte colony formation.

In the present study, we systematically examined the effects of several culture conditions on testis cells of the neonatal pig, as a non-rodent animal model. After each experiment, we built upon the newly obtained results and designed subsequent experiments to make successive advances in the survival, propagation, and colony formation of gonocytes. Our results are expected to facilitate further studies aiming at, for instance, investigation of specialized media for large-scale propagation of gonocytes, as a source of MGSC. Applications for MGSC range from basic to applied research, including germ cell transplantation studies in farm animals for the purpose of animal transgenesis, genetic conservation, or infertility treatment models (Honaramooz et al., 2002b, 2003b, 2008; Zeng et al., 2013; Mankidy et al., 2014). Germ cell transplantation can also be used as a functional assay to assess the relative abundance or confirm the developmental potential of MGSC within a given population of testis cells, including cultured gonocytes (reviewed in Honaramooz, 2012).
3.6 Conclusions

In conclusion, the optimized culture conditions developed in the present study included seeding neonatal porcine testis cells at 3.0×10^4 testis cells/cm2 containing ~40% gonocytes in DMEM++ at 37 °C, and without changing the medium in the first week. These results can be used to improve in vitro maintenance, proliferation, and formation of gonocyte colonies and thereby as a basis for the development of more specialized culture systems for MGSC.
TRANSITION

The optimized culture conditions established in Chapter 3 efficiently maintained and supported the proliferation and formation of gonocyte colonies in a short-term culture. Therefore, these optimized conditions were utilized in Chapter 4 as a basis to study the organization, behavior, and ultrastructure of neonatal porcine gonocytes in a prolonged culture.
CHAPTER 4

LIVE-CELL IMAGING AND ULTRASTRUCTURAL STUDY OF CULTURED PORCINE GONOCYTES3,4

4.1 Abstract

Gonocytes in the neonatal testis have male germline stem cell potential. The objective of the present study was to examine the behavior and ultrastructure of gonocytes in culture. Neonatal porcine testis cells were cultured for 4 wk and underwent live-cell imaging to explore real-time interactions among cultured cells. This included imaging every 1 h from Day 0 to Day 3, every 2 h from Day 4 to Day 7, and every 1 h for 24 h at Days 14, 21, and 28. Samples also underwent scanning electron microscopy, transmission electron microscopy, morphometric evaluations, immunostaining, and RT-PCR. Live-cell imaging revealed an active amoeboid-like movement of gonocytes, assisted by the formation of extensive cytoplasmic projections, which under scanning electron microscopy were categorized as spike-like filopodia, leaf-like lamellipodia, membrane ruffles, and cytoplasmic blebs. In the first wk of culture, gonocytes formed loose attachments on top of a somatic-cell monolayer and in Week 2 formed grape-like clusters, which over time grew in cell number. Starting at Week 3 of culture, some of the gonocyte clusters transformed into large multinucleated embryoid body-like colonies (EBLC) that expressed both gonocyte- and pluripotent-specific markers. The number and diameter of individual gonocytes, the number and density of organelles within gonocytes, as well as the number and diameter of the EBLC increased over time ($P < 0.05$). In conclusion, cultured porcine gonocytes displayed extensive migratory behavior facilitated by their

3 The manuscript for this study has been submitted for publication in the *Journal of Cell & Tissue Research* under joint co-authorship with Eiko Kawamura, LaRhonda Sobchishin, and Ali Honaramooz.

4 AHAJ contributed to the conceiving and designing of the study, performed the experiments, and wrote the first draft of the manuscript.
various cytoplasmic projections, propagated, and transformed into colonies that increased in size and complexity over time.

4.2 Introduction

Gonocytes are a transient population of germ cells that are intermediary between the primordial germ cells (PGC) and spermatogonial stem cells (SSC) (Orwig et al., 2002). Gonocytes are formed during the fetal period as a morphologically-distinct group of actively proliferating large cells (also referred to as M-gonocytes) which reside at the center of seminiferous cords. Gonocytes remain largely quiescent throughout the fetal and early postnatal periods (also referred to T1-prospermatogonia), and are the only type of germ cells present during these periods (Shinohara et al., 2000). At a certain species-specific developmental stage after birth, gonocytes resume proliferation and migrate to the basal membrane of the seminiferous cords, where they become known as (T2)-prospermatogonia (McGuinness and Orth 1992). Prospermatogonia later develop into undifferentiated spermatogonia which can either commit to differentiation to initiate spermatogenesis, or to self-renewal to maintain the SSC population and ensure the continuity of the germline (Oatley and Brinster 2008; De Rooij 1998). PGC, gonocytes and especially SSC possess stem cell potential and are hence referred to as male germline stem cells (MGSC) (De Rooij and Russell 2000). The distinct morphology and unique spatial and temporal distribution of gonocytes in the neonatal testis make them more accessible for identification, isolation, and manipulation, compared with their predecessors (PGC) and successors (SSC).

Studies using gonocytes have important implications for various basic and applied settings including animal conservation, experimental and/or clinical reproductive medicine (e.g., fertility preservation and restoration), as well as stem cell research and therapy. For instance, testes can be collected postmortem for genetic preservation of newborn or immature males of rare/endangered species that die prior to reaching maturity. Gonocytes within the cryopreserved testis tissues can be then used as a source of MGSC to initiate spermatogenesis and produce spermatozoa using the emerging in vitro and in vivo reproductive technologies (Honaramooz 2012; 2014). Similarly, gonocytes in cryopreserved biopsies of testis tissue can be potentially used for future restoration of fertility of prepubertal boys undergoing gonadotoxic chemotherapy or irradiation (Honaramooz 2012; 2014). The study of porcine gonocytes can also provide insights for the ongoing research on
MGSC and even as a source of multipotent stem cells (Goel et al., 2009; Niu et al., 2016).

Gonocytes comprise a relatively small percentage of cells in the neonatal testes (e.g., ~1.4% in rats) and using conventional enzymatic digestion of the neonatal pig testis tissue only ~5-10% of freshly isolated cells were gonocytes (Honaramooz et al., 2003; Herrid et al., 2009; Yang and Honaramooz, 2011). Therefore, the number of gonocytes would need to be increased prior to their potential use in downstream applications. We have introduced a novel three-step enzymatic digestion method that results in the isolation of neonatal porcine testis cells containing ~40% gonocytes (Yang et al., 2010). We have also developed efficient methods for enrichment of neonatal porcine gonocytes to ~90%, using Nycodenz gradient density centrifugation and/or extracellular matrix differential plating techniques (Yang and Honaramooz, 2011). Enrichment of gonocytes in different species has also been made possible using fluorescent or magnetic cell sorting technologies (i.e., FACS and MACS) (Kubota et al., 2004; Shinohara et al., 2000; Shinohara et al., 1999). Gonocytes possess several known surface markers (e.g., DBA, UCHL1, THY1) (Zheng et al., 2014; Yang et al., 2010; Goel et al., 2007) as well as markers that are common with both germ cells (e.g., DAZL, VASA) (Castrillon et al., 2000; Reijo et al., 2000), and stem cells (e.g., POU5F1, NANOG, SOX2, SSEA) (Wang et al., 2015; Fujihara et al., 2011; Goel et al., 2008; Perrett et al., 2008; Ohmura et al., 2004; Ohbo et al., 2003).

Maintenance and propagation of gonocytes have been achieved in various short-term and long-term culture systems (Lee et al., 2013; Borjigin et al., 2011; Goel et al., 2007; Kanatsu-Shinohara et al., 2003; Nagano et al., 2003; Larsen et al., 2002). But these culture systems vary greatly depending on the species and laboratories (Sahare et al., 2016; Kubota et al., 2011; Hamra et al., 2005; Ryu et al., 2005). For instance, the type of media used in different studies varies from basic to enriched (Sahare et al., 2016; Tu et al., 2007), and the media may be supplemented with serum or serum-replacements (Aponte et al., 2006; Izadyar et al., 2003). The addition of certain growth factors and hormones were also found to be beneficial, especially for long-term maintenance of gonocytes (Tu et al., 2007; Chuma et al., 2005; Kubota et al., 2004; Kanatsu-Shinohara et al., 2003; Larsen et al., 2002). Since gonocytes show limited growth when cultured alone (van Dissel-Emiliani et al., 1993), they are commonly co-cultured with other testis cells (De Miguel et al., 1996; van Dissel-Emiliani et al., 1996; Orth and Jester, 1995; van Dissel-Emiliani et al., 1993), feeder cells (Kubota et al., 2004), or in the presence of extracellular matrices (e.g., gelatin, collagen,
laminin) (Sahare et al., 2016; Yu et al., 2005; Kanatsu-Shinohara et al., 2003; Hadley et al., 1985). Alternative serum-free or feeder-free culture systems have also been examined (Kanatsu-Shinohara et al., 2014; Aoshima et al., 2013; Kanatsu-Shinohara et al., 2011; Ryu et al., 2005; Kubota et al., 2004). Gonocytes are believed to retain their self-renewal potential in long-term cultures, and are known to form various characteristic colonies, which increase in size and density over time (Lee et al., 2013; Borjigin et al., 2011; Goel et al., 2007; Kuijk et al., 2009; Hasthorpe et al., 1999; van Dissel-Emiliani et al., 1993).

Studies on gonocytes have predominantly used rodent models (Orwig et al., 2002; van den Ham et al., 1997; van Dissel-Emiliani et al., 1993; McGuinness and Orth, 1992); however, the growing evidence for the potential application of gonocytes in the preservation of male fertility from young individuals has promoted further studies using large animal models (Kim et al., 2014; Borjigin et al., 2011) and humans (Tu et al., 2007; Wu et al., 2009; Altman et al., 2014). Despite recent advances in the study of gonocytes, there is a lack of efficient and reproducible systems to culture and propagate gonocytes from non-rodent animal models. Development of such models is critical for understanding the cellular and molecular signature of gonocytes and for using their potential. The pig is an important non-rodent animal model for biomedical research. Recently, we studied a number of factors affecting testis cell cultures and introduced an optimized system for short-term maintenance and propagation of neonatal porcine gonocytes (Awang-Junaidi and Honaramooz, 2018). This culture system allowed the optimal growth of neonatal porcine gonocytes and resulted in significant increases in the number of gonocyte colonies after 7 days of culture. The objective of the present study was to investigate the behavior and ultrastructure of neonatal porcine gonocytes in a prolonged culture using various imaging modalities. This is an important step in enhancing our understanding of the biology of porcine gonocytes and our ability to harness their potential in a large animal model.

4.3 Materials and Methods

4.3.1 Testis Collection and Preparation

Testes were collected from ~one-wk-old Yorkshire-cross piglets (n = 40) via aseptic castration, as described in more details in Chapter 3.3.1.
4.3.2 Isolation of Testicular Cells

Isolation of testicular cells was performed using a three-step enzymatic digestion method that has been established in our laboratory to yield testicular cells of ~40% gonocytes proportion (Yang et al., 2010). A more detailed description of the cell isolation procedures was provided in Chapter 3.3.2.

4.3.3 Cell Culture

The resultant piglet testis cells were cultured using the optimized settings and conditions that we have recently reported (Awang-Junaidi and Honaramooz, 2018) and described in Chapter 3.3.4. Briefly, the cells were cultured in 6 well-plates, at a cell seeding density of 3.0×10^5 cells/well in 3 ml DMEM, supplemented with 10% FBS and 1% antibiotics. The cells were incubated at 37 °C with 5% CO$_2$ and 95% humidity ($n = 6$ replications). The cell culture was monitored twice daily using an inverted microscope (Nikon, Eclipse TS100), the media was changed once a week, and the cells were maintained for up to 4 wk. To facilitate sampling for fluorescent labeling, a sterile coverslip (sized 22×22 mm; catalogue no. 12-540B; Fisher Scientific) coated with 0.1% poly-L-lysine was placed at the bottom of each well in 6-well plates prior to cell seeding.

4.3.4 Live-Cell Imaging

Real-time interactions of the cultured testis cells were periodically assessed throughout the 4-wk period using live-cell imaging. For this purpose, the cells were cultured in glass-bottom tissue culture dishes (FluoroDish, catalogue no: FD35-100, World Precision Instruments Inc., Sarasota, FL, USA) using the same culture conditions as described above. Throughout the study, differential interference contrast (DIC) images were taken from ten randomly-selected fields using an inverted microscope (IX83, Olympus, Tokyo, Japan), equipped with a 20× objective (Numerical Aperture/N.A. = 0.75) and a DP73 camera, every 1 h from Day 0 to Day 3, every 2 h from Day 4 to Day 7, and every 1 h for 24 h at Days 14, 21, and 28. Live-cell imaging of shorter intervals (every 2.5 s) was also performed at a higher magnification using a 100× objective (N.A. = 1.4) at three randomly-selected fields for 5 min after completion of each imaging session (i.e., every day from Day 1 to Day 7 and after a full day imaging at Days 14, 21, and 28). Throughout live-cell
imaging, the cells were maintained at 37 °C and 5% CO₂ in a humidified incubator fitted on the microscope stage.

4.3.5 Fluorescent Labeling

Fluorescent labeling was performed using a fluorescein isothiocyanate (FITC)-labelled lectin Dolichos biflorus agglutinin (DBA; catalogue no. FL1031; Vector Labs, Burlington, ON, Canada) to identify gonocytes, anti-UCHL1 (also known as PGP9.5) antibody (mouse monoclonal to PGP9.5; catalogue no. ab 8189; Abcam, Toronto, ON, Canada) to validate their germ cell status, anti-POU5F1 (also known as OCT4) antibody (rabbit polyclonal to POU5F1; catalogue no. ab18976; Abcam, Toronto, ON, Canada) to evaluate their pluripotency, and phalloidin-FITC (catalogue no. P5252; Sigma-Aldrich) to visualize actin filaments. Briefly, the coverslips with cell smears (fresh after isolation) or with cultured cells (samples retrieved at Days 7, 14, 21, and 28) were fixed for 2-3 min in Bouin’s solution (for DBA) or 4% paraformaldehyde solution (for POU5F1 and phalloidin). For DBA staining, the samples were rinsed three times with 70% alcohol to remove excess Bouin’s, followed by three rinses with DPBS. For POU5F1, UCHL1, and phalloidin fluorescent labeling, the samples were permeabilized three times with 0.1% Triton X-100 (Omnipur; catalogue no. 9400; EMD Chemical Inc, Gibbstown, NJ, USA) in DPBS for 3 min. All samples were blocked with 5% bovine serum albumin (BSA; catalogue no. 2452C055; Amresco, Solon, OH, USA) at 37 °C for 30 min in a humidified chamber, incubated with primary antibodies (1:100 for both DBA, UCHL1, and POU5F1 at 4 °C overnight, and 1:250 for phalloidin at room temperature for 45 min), and washed three times with DPBS. The UCHL1 and POU5F1 immunostaining were further continued by incubation for 1 h at room temperature with Alexa Fluor 488-conjugated donkey anti-mouse IgG (1:200, catalogue number ab150109; Abcam) and Alexa Fluor 594-conjugated goat anti-rabbit IgG (1:500; catalogue no. ab150088; Abcam). All samples were rinsed again with DPBS and mounted using hard-set antifade mounting media containing DAPI (Vectashield; catalogue no. H-1500; Vector Labs) prior to microscopic evaluation. DAPI, FITC, and Alexa 594 were imaged sequentially using an inverted microscope with 20 and 40× (N.A. = 0.95) objectives, with a DAPI filter set (catalogue no. 49000; Chroma, Bellows Falls, VT, USA; excitation 350 nm/50 nm and emission 460 nm/50 nm), a FITC filter set (catalogue no. 49002; Chroma, excitation 470 nm/40 nm and emission 525 nm/50 nm), and a Texas Red filter set.
(catalogue no. 49008; Chroma, excitation 560 nm/40 nm and emission 630 nm/75 nm), respectively.

4.3.6 RNA Extraction and Reverse Transcription Polymerase Chain Reaction (RT-PCR)

Total RNA was extracted and cDNA synthesized from neonatal pig testis cells as freshly-isolated and as cultured cells at Days 7, 14, 21, and 28 using the Invitrogen™ RNAqueous Micro Total Isolation Kit (catalogue no. AM1931; Fisher Scientific, Vilnius, Lithuania) and qScript™ XLT cDNA Supermix (catalogue no. CA10142-784; Quanta Biosciences, Gaithersburg, MD, USA) according to the manufacturer instructions. Nucleotides 719 to 918 of the POU5F1 (OCT4) coding region were amplified using Phusion® High-Fidelity DNA polymerase (catalogue no. M0530S; New England Biolabs Inc, Ipswich, MA, USA). The forward and reverse primers for the amplification were 5’-AGA GAA AGC GGA CAA GTA-3’ and 5’-ATC CTC TCG TTG CGA ATA-3’, respectively. The amplified PCR products were confirmed by sequencing and running through agarose gel electrophoresis for visualization. The freshly isolated cells were used as a reference, cultured porcine mesenchymal stem cells as the positive control, and no template as the negative control.

4.3.7 Scanning Electron Microscopy

Scanning electron microscopy (SEM) was performed on the cultured cells at Days 7, 14, 21, and 28. The cells were fixed by immersion in 3% glutaraldehyde (catalogue no. 014; Canemco, Gore, QC, Canada) in 0.1 M sodium cacodylate buffer, pH 7.2 (NaCAC; catalogue no. C0215; Sigma-Aldrich) for 1.5 h, followed by three rinses with the same buffer. The samples were kept at 4 °C until further processing. The samples were post-fixed with 1% osmium tetroxide (catalogue no. 19110; Electron Microscopy Sciences, Hatfield, PA, USA) for 10 min followed by three rinses with distilled water. Dehydration was performed in a series of gradient ethanol (once in 30, 50, 70, 80, 90, 95%, and twice in 100%) for 10-15 min in each step. Later, the samples underwent substitution process by immersion in gradually increasing concentrations of amyl acetate (catalogue no. 3-9094; J.T Baker Chemical Co., Philipsburg, NJ, USA) (once in 25, 50, 75%, and twice in 100% amyl acetate) for 15 min in each solution. The samples then underwent critical point drying (Polaron E3000, Quorum Technologies, Lewes, UK), sputter-coating with gold (Edwards
S150B; BOC Edwards, UK), and observation under a scanning electron microscope (SU8010; Hitachi, Tokyo, Japan).

4.3.8 Transmission Electron Microscopy

For transmission electron microscopy (TEM), the cultured cells were fixed at Days 7, 14, 21, and 28 with cold (4 °C) 2% glutaraldehyde in 0.1 M sodium cacodylate buffer (pH 7.2) for 3 h, immersed in 0.1 M sodium cacodylate buffer, and stored at 4 °C overnight. Post-fixation was carried out by immersion in 1% osmium tetroxide for 1 h at room temperature, followed by a rinse with distilled water. The cells were then dehydrated in a series of gradient ethanol (50, 70, 95, and 100%, 15 min at each step), immersed in two changes of absolute ethanol, and LR White resin mix (1:1 and 1:2) for 1 h, respectively, and finally in 100% resin for 2 h. The samples were sealed and polymerized at 65 °C overnight. The polymerized samples were broken down into small pieces, blocked and sectioned at 100 nm using a Leica Ultracut UCT, and viewed under a transmission electron microscope (HT7700; Hitachi) at accelerating voltage of 80Kv.

4.3.9 Morphometric Evaluations

Morphometric analyses were performed on samples taken at Days 7, 14, 21, and 28 (n = 4 replications). For each replicate, ten randomly-selected fields were imaged at 100, 200, and 400× and evaluated using the cellSens imaging software (Olympus, Pittsburgh, PA, USA). Quantification of gonocytes was performed by counting the number of gonocytes at 200× in five randomly-selected fields. The average diameters (X and Y axes) of at least 150 gonocytes were assessed at 400× in each of four randomly-selected fields (i.e., n = >600 gonocytes). The number of EBLC and their average diameters were assessed at 100× in ten randomly-selected fields. The number of gonocytes and EBLC were expressed per cm².

4.3.10 Statistical Analyses

All numerical data were analyzed using one-way analysis of variance (ANOVA), followed by Tukey’s HSD as the post-hoc test. The data are presented as mean ± standard error of mean (SEM) and the level of significance was set at P < 0.05. Data were analyzed using the SPSS (Version 22.0, SPSS Inc., Armonk, NY, USA).
4.4 Results

4.4.1 Organization of Neonatal Porcine Testis Cells in Culture

Neonatal porcine testis cells were monitored during culture using live-cell imaging and conventional phase-contrast microscopy. Based on the morphology and organization, we categorized the growth and development of the cultured cells into three main stages, (a) formation of a somatic-cell monolayer, (b) establishment of gonocyte colonies, (c) and development of embryoid body-like colonies (EBLC).

4.4.1.1 Formation of Somatic-cell Monolayer

At seeding, the cells were composed of ~60% somatic cells. Within the first 7 days of culture, somatic cells contributed to the formation of a somatic-cell monolayer. Briefly, in the first 12 h after seeding, all cells appeared rounded and remained floating in the media (Fig. 4.1A and Video 1, Appendix A). Shortly after 24 h of incubation, small numbers of cells began to settle and adhere to the bottom of the plate. These settling somatic cells (identified based on morphology and later by DBA staining exclusion) flatten down and established cytoplasmic projections, forming irregular-shaped cells (Fig. 4.1B). Over time, more somatic cells settled, expanded, and formed contacts with other cells, leading to the formation of clumps within 48-52 h of incubation (Fig. 4.1C). These somatic cell clumps later spread further, formed a large somatic-cell monolayer, and reached 70-80% confluency at ~4-5 days post-seeding. Upon confluency, the morphology of somatic cells transformed from irregular with multiple cytoplasmic projections to fibroblast-like spindle-shaped (Fig. 4.1D). In addition, starting as early as Day 5 of culture, some somatic cells formed circular arrangements (Fig. 4.1D-E). Over time, these circular arrangements became more prominent, increased in diameter, and appeared to be a preferred site for gonocytes and their colonies (Fig. 4.1G-I).
Fig. 4.1. Representative images showing the organization of neonatal porcine testis cells in culture over time. (A) A single-cell suspension of testis cells immediately after seeding. (B-D) Somatic cells quickly settled and adhered to the plate and then gradually expanded their cytoplasmic projections, forming a somatic-cell monolayer and becoming confluent. (E) Gonocytes (white arrows) settled on top of the somatic-cell monolayer, and (E-I) their numbers increased over time to form gonocyte colonies. (D-F) Note the organization of somatic cells into circular arrangements (CAs, some denoted by dotted circles). (F-I) The CAs appeared to be preferred sites for gonocyte cluster- and colony formations. (G) As the number of gonocytes in the culture increased, morula-like colonies were formed (m). (H) A morula-like colony has transformed into an embryoid body-like colony (EBLC, black arrow). (I) Multiple EBLC, each within a CA, are seen surrounded by many migrating gonocytes. (Scale bar: 50 µm (A-H) and 100 µm (I))
4.4.1.2 Establishment of Gonocyte Colonies

While the population of somatic cells started settling as early as 24 h post-seeding, gonocytes continued to float and settled down after the somatic-cell clumps or monolayer had been established. Over time, as more gonocytes settled on the somatic-cell monolayer, the number of floating gonocytes in the media decreased ($P < 0.001$; Day 2: $6.94 \pm 0.3 \times 10^4$ gonocytes/well with $84.1\% \pm 1.2$ viability; Day 3: $3.75 \pm 0.4 \times 10^4$ gonocytes/well with $72.5\% \pm 2.0$ viability; Day 6: $1.9 \pm 0.1 \times 10^4$ gonocytes/well with $69.3\% \pm 1.5$ viability; $n = 5$ replications). When live cell imaging was performed, an active ameboid-like movement of gonocytes assisted by their extensive cytoplasm projections was evident (Fig. 4.2 and Video 2, Appendix A).

Once gonocytes started settling down within 48 h post-seeding, they formed loose attachments to the somatic-cell clumps and later to the somatic-cell monolayer. Morphology of the settled gonocytes changed over time. Gonocytes began losing their distinctive round shape (seen after isolation and for several hours after seeding) and started forming pseudopod-like cytoplasmic extensions. Some gonocytes, especially those that remained floating and/or failed to attach to somatic cells maintained their round morphology. Shortly after settling, gonocytes were present as singles or pairs (Fig. 4.3A), and after ~5-7 days started to also form grape-like clusters (Fig. 4.3B). During Wk 2 of culture, the grape-like clusters became more prevalent, and beginning at Wk 3, the number and diameter of grape-like clusters increased, and some clusters transformed into large morula-like colonies (Fig. 4.3C), and gradually into larger dome-shaped masses, which we termed embryoid body-like colonies (EBLC) (Fig. 4.3D). Using live-cell imaging, we documented the active process of gonocyte colony formation in real-time (Video 3, Appendix A). We observed that some gonocytes migrated toward others, forming a cluster of gonocytes, which gradually grew in size and led to the formation of larger colonies. There seemed to be a tendency for gonocytes to migrate to the center of circular arrangements formed by the somatic-cell monolayer, where they formed gonocyte clusters and colonies.

4.4.1.3 Development of Embryoid Body-Like Colonies

The transformation from morula-like colonies to EBLC was more noticeable beginning at 3 wk of culture. EBLC were characterized as large round colonies with a dome-shaped appearance and
extensive cytoplasmic projections (Fig. 4.3D-F). Under phase-contrast microscopy, EBLC exhibited a light brown appearance, which was different from the bright appearance of the earlier stage colonies and clusters. Migration of the surrounding single gonocytes towards the EBLC resulted in their joining the colony to form a multinucleated core in the EBLC (Fig. 4.3D-F). These large colonies also possessed extensive cytoplasmic projections with pulsatile outward and inward movements. The real-time live-cell observations suggested that the formation of EBLC occurs via a cell fusion process, where the migrating gonocytes approach the margin of EBLC and either anchor their cytoplasmic projections to EBLC or become entrapped by the extensive EBLC cytoplasmic projections (Fig. 4.3E).
Fig. 4.2. Representative serial images, taken every 30 seconds (sec), from a single porcine gonocyte in culture. Sequential images depict the active movement of the cytoplasmic extensions and the changes in shape of the gonocyte over time. (Scale bar: 2 μm).
Fig. 4.3. Higher magnification images of neonatal porcine gonocytes in culture showing the transition to form an embryoid body-like colony (EBLC). (A) Gonocytes settled on the somatic-cell monolayer as singles (s) or pairs (p). (B) Gonocytes later formed grape-like clusters. (C) The number of gonocytes within a cluster increased over time and some formed morula-like colonies (m). (D) After ~14 d of culture, EBCLs (eblc) started to be formed. Note the presence of extensive cytoplasmic projections (black arrows) out of the EBLC which seemed to assist with their movement and attachment of migrating gonocytes. (E) Cytoplasmic fusion (*) of adjacent gonocytes seemed to transform a morula-like colony into an EBLC. (F) Continued fusion of additional migrating gonocytes (mg) increased the mass of the EBLC. (Scale bar: 20 µm).
4.4.2 Morphometric Evaluations

The data on the number and diameter of individual gonocytes throughout the study are summarized in Figure 4. The number of gonocytes increased over time in culture ($P < 0.001$, $n = 4$ replications) (Fig. 4.4A). Compared with Day 7 after incubation ($1.38 \pm 0.22 \times 10^4$ gonocytes/cm2), the number of gonocytes increased 5.3 fold at Day 14 ($7.32 \pm 0.55 \times 10^4$ gonocytes/cm2), 7.9 fold at Day 21 ($10.99 \pm 0.93 \times 10^4$ gonocytes/cm2), and 8.5 fold at Day 28 ($11.74 \pm 0.64 \times 10^4$ gonocytes/cm2). The size of individual gonocytes also increased over time in culture ($P < 0.001$, Fig. 4.4B). The average diameter of gonocytes was 13.37 ± 0.11 µm at Day 7 (ranged 10.19-19.08 µm), 14.10 ± 0.13 µm at Day 14 (ranged 10.29-24.05 µm), 14.36 ± 0.89 µm at Day 21 (ranged 10.88-20.27 µm), and 14.53 ± 0.80 µm at Day 28 (ranged 11.41-18.17 µm) (Fig. 4B).

The data on the number and diameter of EBLC are summarized in Table 4.1. No EBLC were yet formed at Day 7 of culture, while both the number and diameter of EBLC increased ($P < 0.001$, $n = 4$ replications) from Day 14 to Day 21 ($P < 0.05$), and remained unchanged to Day 28 (end of study). Overall, the majority of the EBLC observed at Day 14 were <100 µm in diameter, while ~70% of the EBLC at Day 21, and ~75% of the EBLC at Day 28 were >100 µm in diameter (Table 4.1).
Fig. 4.4. Changes in the number (A) and diameter (B) of cultured porcine gonocytes over time. The data are presented as mean ± SEM. In each graph, columns with different letters differ significantly over time \((P < 0.05)\).
Table 4.1. Changes in the number and diameter of embryoid body-like colonies (EBLC) over time.

<table>
<thead>
<tr>
<th>Time</th>
<th>Number of EBLC/cm²</th>
<th>Diameter (µm)</th>
<th>Diameter range (µm)</th>
<th>Percentage of EBLC in each diameter category (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>≤ 99</td>
</tr>
<tr>
<td>Day 14</td>
<td>273 ± 13.6</td>
<td>96 ± 1.7</td>
<td>59 – 167</td>
<td>58 ± 5.6</td>
</tr>
<tr>
<td>Day 21</td>
<td>403 ± 10.1</td>
<td>127 ± 2.4</td>
<td>53 – 237</td>
<td>31 ± 3.5</td>
</tr>
<tr>
<td>Day 28</td>
<td>413 ± 9.2</td>
<td>131 ± 2.5</td>
<td>58 – 236</td>
<td>26 ± 2.7</td>
</tr>
</tbody>
</table>

Data are mean ± SEM.
EBLC had not yet been formed at 7 d post-seeding; therefore, no data are shown for Day 7.

\(a \) Within the columns for number of EBLC and diameter, values with different superscripts differ significantly \((P < 0.05)\). \(n = 4 \) replications.
4.4.3 Fluorescent Labeling

Gonocytes were identified using FITC-conjugated DBA staining as shown in Figure 5A-D. DBA-labeled gonocytes were consistently observed for the duration of the study (4 wk). DBA stained the surface and to some degree the cytoplasm of gonocytes. Expression of POU5F1 (OCT4) as a pluripotency marker was also detected for the duration of the study in both nuclear and cytoplasmic compartments of gonocytes (Fig. 4.5E-H). Gonocytes and EBLC also stained positive with phalloidin fluorescent labeling, localized in the cytoplasm (cytoplasmic projections), indicating the presence of actin filaments (F-actin) cytoskeleton (Fig. 4.5I-L).

4.4.4 PCR Analysis

The expression of POU5F1 was observed in the porcine neonatal testis cells cultured at Days 7, 14, 21, and 28, but was absent in the freshly isolated cells (Fig. 4.6). The amplified region of POU5F1 also showed expression in the cultured porcine mesenchymal stem cells (as a positive control). In addition to the analysis by gel electrophoresis, amplicons were confirmed by sequencing.
Fig. 4.5. Fluorescent labeling of embryoid body-like colonies (EBLC) formed in the cultures of neonatal porcine testis cells. (A-D) Fluorescent labeling using *Dolichos biflorus* agglutinin (DBA), as a gonocyte marker. (E-H) Fluorescent labeling using UCHL1, as a germline stem cell marker. (I-L) Fluorescent labeling using POU5F1, as a pluripotency marker. (M-P) Identification of actin filaments (F-actin) in cytoplasmic projections (lamellipodia) of an EBLC using phalloidin fluorescent labeling. (A, E, I, M) Differential interference contrast (DIC) images. (B, F, J, N) DAPI-stained nuclei of the cells appear blue under the fluorescence microscope. (C, G, K, O) Fluorescein-conjugated DBA-positive gonocytes and fluorescein-conjugated phalloidin-positive F-actin appear green. (D, H, L) Merged images (Scale bar: 20 µm).
Fig. 4.6. Expression of the pluripotency marker POU5F1 (OCT-4) in cultured porcine testis cells. M: 100 bp molecular-weight marker; Lane 1: DNA samples from cultured porcine mesenchymal stem cells (positive control); Lane 2: DNA samples from freshly isolated porcine neonatal testis cells obtained after a 3-step enzymatic digestion (containing ~40% gonocytes); Lane 3 to 6; DNA samples from porcine neonatal testis cells cultured for 7, 14, 21, and 28 days, respectively; 7 no template control (negative control).
4.4.5 Ultrastructure of Gonocyte Colonies

SEM and TEM of cultured cells were performed on samples taken at weekly intervals and the results were as follows:

4.4.5.1 SEM

Figure 6 contains representative SEM images that show in more detail the circular arrangements formed by somatic cells and provides visualization of the 3-dimensional (3-D) structure of different formations of gonocyte clusters and colonies. Individual gonocytes varied in shape from rounded to flattened (Fig. 4.7B). Round gonocytes that lacked cytoplasmic projections under live-cell imaging had a smooth surface under SEM. More importantly, SEM images showed the various forms of cytoplasmic projections of individual gonocytes, clusters, morula-like colonies, and EBLC. These cytoplasmic projections could be categorized into spike-like filopodia, leaf-like lamellipodia, membrane ruffles, and cytoplasmic blebs (Fig. 4.7B). However, as the colonies turned into EBLC, lamellipodia appeared as the most prevalent cytoplasmic projection (Fig. 4.7E). Higher magnification of the marginal areas where single gonocytes were closely attached to the EBLC showed extensive finger-like projections (Fig. 4.7G-H).

4.4.5.2 TEM

Representative TEM images of the cultured testis cells are shown in Figure 4.8. Gonocytes contained a prominent nucleus with euchromatin and heterochromatin; the latter mainly concentrated near the nuclear membrane. While the spongy-like nucleolus showed no defined membranes, the nuclear membrane was prominent with its double-layered structure (inner and outer membranes, separated by the perinuclear space) and nuclear pores (Fig. 4.8B). The nuclei of gonocytes were frequently observed in close proximity to their attachment to the somatic-cell monolayer. Where gonocytes were apposed to the somatic-cell monolayer, a certain gap was maintained (Fig. 4.8F). Closer examination of the cytoplasmic projections showed no evidence of microtubules. The organelle complexity of gonocytes seemed to increase over time. In Wk 1 samples, where gonocytes were mostly present as single cells, the organelles consisted mainly of mitochondria and rough endoplasmic reticulum (Fig. 4.8A). In samples from the following weeks when gonocytes established contacts with each other, increasing numbers of the Golgi apparatus
with vesicles, vacuole-like structures, and secretory granules were also observed, creating a dense cytoplasm (Fig. 4.8C-D). TEM examination of the EBLC cross-sections also validated the multinucleated nature of EBLC, presumed from live-cell imaging and immunostaining (Fig. 4.8E).
Fig. 4.7. Representative scanning electron microscopy (SEM) images of neonatal porcine gonocytes in culture showing the formation of embryoid body-like colonies (EBLC). (A) Gonocytes (few highlighted in a dotted circle) seen on top of the somatic-cell monolayer. (B) Within the first week after cell seeding, gonocytes were present as singles (s) or pairs (p) on the somatic-cell monolayer (sm). At this magnification, gonocyte cytoplasmic projections could be differentiated into spike-like filopodia (fp), leaf-like lamellipodia (lp), membrane ruffles (rf), and cytoplasmic blebs (bl). (C) Some migrating gonocytes (mg) formed a cluster and (D) their continued increase in numbers formed a morula-like colony (m). (E) Over time, the morula-like colonies transformed into EBLC (eblc). (C-F) Gonocytes and their colonies were primarily seen within circular arrangements (white arrows) formed by the somatic-cell monolayer. (F) A few individual gonocytes with various types of cytoplasmic projections are shown next to an EBLC with only lamellipodia. (G-H) Higher magnification images of the interface where individual gonocytes are fused with an EBLC show numerous and extensive finger-like projections (Scale bar: 100 µm (A) and 10 µm (B-H)).
Fig. 4.8. Representative transmission electron microscopy (TEM) images of neonatal porcine gonocytes in culture. (A) Cross-section of a gonocyte (g) shown on top of a somatic-cell monolayer (sm). (B) A gonocyte at a higher magnification with extensive cytoplasmic projections (cp) and lysosomes (arrows). Also note the euchromatic and heterochromatic zones of the nucleus (N). (A,B) Organelles such as mitochondria (mt) and rough endoplasmic reticulum (ReR) are evident. (C) After 2 wk of culture, the number and density of cytoplasmic organelles in gonocytes were increased. The spongy appearance of the nucleolus (nu) is also shown. (D) Also shown are the cross-section of two adjacent gonocytes in a morula-like colony, and (E) cross-section of an embryoid body-like colony showing multiple nuclei (N) and the absence of a distinct border separating gonocytes. Numerous secretory granules (sg) are also observed. (F) Higher magnification of the interface between a gonocyte and the somatic-cell monolayer (thick arrows) shows a constant gap is maintained (Scale bar: 2 µm).
4.5 Discussion

Porcine testis cells have been cultured using various short-term and long-term systems that have mainly focused on their maintenance and propagation (Goel et al., 2007; Han et al., 2009; Lee et al., 2013; Zheng et al., 2014; Awang-Junaidi and Honaramooz 2018). To our knowledge, the present study is the first report on the behavior of cultured porcine testis cells using live-cell imaging. This is also the first study reporting on the ultrastructure of porcine gonocytes and their colonies. Previous studies on the ultrastructure of testis cells were conducted on tissue samples (Baillie 1964; Gondos and Hobel 1971; Tiptanavattana et al., 2015). In a recent study, we examined a number of factors that could affect the maintenance, proliferation, and colony formation of porcine gonocytes in a short-term culture (i.e., 7 days). The examined factors included the effects of using different cell densities, gonocyte proportions, incubation temperatures, sampling effects, and media changing regimens. We concluded that seeding of 3.0×10^4/cm2 of neonatal porcine testis cells, containing ~40% gonocytes, culturing at 37 °C, and without changing the media in the first week, can result in improved colony formation of porcine gonocytes (Awang-Junaidi and Honaramooz 2018). Therefore, these optimized culture conditions for short-term culture were also used in the present study for a prolonged culture.

In the present study, gonocytes proliferated and formed clusters and colonies, including EBLC; the number of gonocytes increased ~8.5 fold between Days 7 and 28. This fold increase, in fact, underestimates the total increases in gonocyte numbers because our counting was based on a fixed focal plane immediately above the somatic-cell monolayer and, therefore, excluded gonocytes that formed the bulk of EBLC and gonocytes floating in different focal planes. The importance of gonocyte proliferation and EBLC formation in the present study is highlighted when considering that the culture media was basic; comprising only of DMEM+10% FBS, without additional growth factors or hormones. FBS-enriched media alone was deemed sufficient in allowing rat gonocytes to initiate growth (Hasthorpe et al., 1999; Hasthorpe et al., 2000). However, the formation of ES-like cells and/or colonies from the neonatal and/or adult testes of mice, humans, and pigs required stem cell-specific media or supplementation with various growth factors (e.g., LIF, GDNF), which carry safety concerns over their use in potential cell replacement therapies (reviewed in Goel and Imai 2011; Hermann and Orwig 2011).
Gonocytes are considered non-adherent to glass or plastic, making their culture as a pure population a challenge (van Dissel-Emiliani et al., 1993), requiring co-culture with supporting/feeder cells to improve survival and proliferation (De Miguel et al., 1996; McGuinness and Orth 1992; van Dissel-Emiliani et al., 1993). In the present study, the population of testis cells at seeding contained ~60% somatic cells, which led to the establishment of a somatic-cell monolayer acting as feeder cells to support proliferation and colony formation of gonocytes. Our results, therefore, differ from studies using the rat model that concluded the somatic-cell underlay had no enhancing effects or even had inhibitory effects on gonocyte colony formation (Hasthorpe et al., 2000; Hasthorpe 2003; Orth and Boehm 1990).

Sertoli cells promote in vitro survival of gonocytes by establishing specific contacts with gonocytes, even in the presence of other testis somatic cells (van Dissel-Emiliani et al., 1993). Rat Sertoli cells were reported to became senescent after 20-24 days in culture (Buzzard et al., 2002). In the present study, the cultured testis cells were not passaged, and somatic cells were allowed to continue growing, forming a monolayer which became confluent in about a week, after which time their growth slowed. Not having to passage the cells was convenient and avoided disruption of gonocyte colony formation or their potential loss during passaging. Co-culturing gonocytes with their somatic cell counterparts (from the same donor) can be advantageous in preventing cross-contamination with xenogeneic cells, pathogens, or metabolites, which may arise from the use of established feeder cell lines (frequently originating from other species such as mice; Llames et al., 2015).

We observed the formation of circular arrangements by the somatic-cell monolayer, which commonly coincided with gonocyte colony formations. A similar arrangement has been described when enriched populations of rat Sertoli cells were cultured on extracellular matrix-containing gels, indicating that it was driven by interactions amongst Sertoli cells (Hadley et al., 1985). However, to our knowledge, Sertoli cell circular arrangements becoming a preferred site for gonocytes colonies in vitro has not been described. We have previously reported that when neonatal testis cell suspensions were implanted under the back skin of immunodeficient mice, they showed an unexpected ability to regenerate functional testis tissue de novo. Within a few days after implantation, extensive cellular rearrangements were evident, and by the second week post-implantation, seminiferous cords were fully formed and housed gonocytes in their center.
Continued development of the implanted cells eventually led to the formation of a regenerated testis tissue capable of producing androgens, differentiating germ cells, and even spermatозoa (Arregui et al., 2008; Honaramooz et al., 2007). Therefore, it may be postulated that the observed somatic cell circular arrangements in the present study were formed as a result of an innate tendency of testis somatic cells to organize themselves in such a way to enclose gonocytes. While an in vivo culture system allows the implanted cells to move more freely to form 3-D seminiferous cords, the in vitro culture system is understandably more limited to 2-D formations.

In the present study, in addition to gonocytes typically showing cytoplasmic projections (pseudopodia), we observed a smaller population of gonocytes that lacked cytoplasmic projections and displayed a round shape with a smooth surface. The morphology of gonocytes has been related to their potential fate in the spermatogenic lineage. When rat gonocytes with or without pseudopodia were transplanted into the testes of infertile recipient mice, only the gonocytes with pseudopodia had the competency to initiate donor-derived colonies of spermatogenesis (Orwig et al., 2002). In the developing testis, gonocytes migrate from the center to the periphery of the seminiferous cords, via amoeboid movements and this migratory event is believed to be crucial for gonocyte survival, since their failure to move to the periphery results in apoptosis (McGuinness and Orth 1992; Nagano et al., 2000; Orwig et al., 2002). Therefore, in the present study, gonocytes with pseudopodia that were observed to be motile and later developed other cytoplasmic projections may represent the functional population of gonocytes, while those lacking pseudopodia likely represent the apoptotic or dead gonocytes. This conclusion also highlights the importance of the present study in examining gonocyte cytoplasmic projections and migratory behavior.

In the present study, we also documented that cytoplasmic projections assisted gonocytes in their movement/migration, and later contributed to their formation of colonies. Our phalloidin fluorescent labeling confirmed that these cytoplasmic projections were composed of a dense and dynamic actin meshwork. Polymerization (via ATP hydrolysis) of the actin meshwork has been shown to induce protrusions (continuous growth of actin filaments) towards the leading edge, which along with retraction of the rear end, results in cell movement (Korn et al., 1987; Lauffenburger and Horwitz 1996). Our TEM observations revealed the presence of a constant gap at the interface between the basolateral membrane of gonocytes and the somatic-cell monolayer. The continuous movement of gonocytes on top of the somatic-cell monolayer, documented by our
real-time imaging of live cultured cells, may explain the need for such a constant gap between gonocytes and somatic cells.

In the present study, gonocytes proliferated to form clusters, morulae-like colonies, and EBLC. The formation of germ cell colonies by cultured testis cells has been reported for different species (Goel et al., 2007; Kuijk et al., 2009; Hasthorpe et al., 1999; van Dissel-Emiliani et al., 1993; Lee et al., 2013), which at times formed 3-D structures that resembled embryoid bodies typical of those made by pluripotent embryonic stem (ES) cells when cultured in vitro (Sahare et al 2016; Bratt-Leal et al., 2009). Given the great therapeutic potential of pluripotent stem cells, extensive research is underway mainly using either ES cells or induced pluripotent stem cells (iPSC); although significant ethical concerns and carcinogenic risks have limited their clinical application. This further highlights the importance of research on MGSC, including gonocytes, as a potential alternative source of multipotent stem cells.

Using fluorescent labeling and RT-PCR, we confirmed that EBLC maintained both their primitive germ cell status (positive for DBA and UCHL1, a gonocyte marker) and stem cell characteristics (expressed POU5F/OCT4, a pluripotency marker). This is an important finding because unlike in all previous studies, the EBLC in our study were spontaneously formed in a simple media. Therefore, our results are also of interest for the field of therapeutic potential of pluripotent stem cells. This is because the use of additional growth factors in culture of these cells can carry carcinogenic risks which would limit their clinical application. The exact mechanism of EBLC formation in the present study is not clear. The formation of embryoid bodies has been shown to occur via cell-to-cell adhesion receptors, involving hemophilic binding of E-cadherin, which is highly expressed in undifferentiated embryonic stem cells (Dang et al., 2004; Dasgupta et al., 2005; Fok and Zandstra 2005; Kurosawa 2007; Park et al., 2003). This mechanism may explain our live-cell observations in which gonocytes established contacts with each other, leading to their aggregation and creating a center for attraction of more gonocytes to form larger colonies and ultimately EBLC.

In the present study, POU5F1 (OCT4) expression was observed in all weekly samples of cultured cells, but was absent in the freshly isolated cells, consistent with a previous report using neonatal pig testis cells (Goel et al., 2008). In humans, downregulation of POU5F1 during the fetal to
neonatal transition has been associated with differentiation of gonocytes into more advanced germ cell stages (Rajpert-De Meyts et al., 2004). On the other hands, POU5F1 expression in PGP9.5-positive cultured neonatal porcine gonocytes (from 5-day old donors) and in more advanced spermatogonia (from 10 wk old donors) suggested that POU5F1 is upregulated in the culture environment (Lee et al., 2013; Luo et al., 2006). The expression of POU5F1 is deemed crucial for the survival, self-renewal, and pluripotency of male germline stem cells in vitro, as shown in studies involving mouse spermatogonia (Pesce et al., 1993; Dann et al., 2008). Transplantation of cultured porcine gonocytes expressing POU5F1, as well as other stem cell markers such as NANOG, PLZF, and THY1 into the testes of immunodeficient recipient mice has been shown to result in successful colonization at the basement membrane of the seminiferous tubules (Lee et al., 2013). The ability to induce functional pluripotent male germline stem cells in vitro would have important cell-based therapy applications.

In the present study, using live-cell imaging and TEM, we also found that gonocyte-derived EBLC are multinucleated structures, where multiple gonocytes share a cytoplasm. There are no closely related comparable observations to compare with our results. In human testis tissue, the presence of multinucleated germ cells (e.g., spermatogonia and spermatocytes), occurring via cell-to-cell fusion has been associated with senescent of seminiferous tubule epithelium or pathological conditions (Miething 1993; 1995). These multinucleated germ cells usually degenerate, in contrast to EBLC in our culture which demonstrated increased diameters to 4 wk (end of study).

In the present study, we also found that over time gonocytes increased in size and underwent complex transformations at the subcellular levels. There are no published reports on the size of gonocytes in culture to compare with our observations. Increases in cell volume and size in vitro have been associated with aging (Cristofalo and Kritchevsky 1969; Schneider and Fowlkes 1976; Schneider and Mitsui 1976; Yang et al., 2011). Aging cells have a low proliferative capability, and large size cells have been shown to have a shorter lifespan (Bowman et al., 1975; Zadrag-Tecza et al., 2009). However, all of these conclusions are derived from studies involving mammalian somatic cells, mostly fibroblasts. Stem cells are known to be capable of long-term and sustained self-renewal. Gonocytes have been successfully maintained and propagated in long-term culture (3-5 months) in an enriched system (Kanatsu-Shinohara et al., 2003; Jeong et al., 2003). Considering that gonocytes in the present study were kept for only 4 wk and were mitotically active,
these morphological transformations are unlikely to be indicative of aging or degenerative changes. We also speculate that the increased size of gonocytes was likely due to their tendency to elongate, flatten, and spread their cytoplasm during migration.

4.6 Conclusions

In conclusion, live-cell imaging allowed non-invasive monitoring of neonatal porcine testis cells in vitro. Gonocytes migrated freely atop the somatic-cell monolayer, assisted by the presence of various cytoplasmic projection, delineated through SEM imaging. Gonocytes gradually established clusters and colonies, which increased in size and complexity over time, and some transformed into EBLC where a number of gonocytes shared a cytoplasm. These observations demonstrated remarkable migratory behavior and colony formation of neonatal porcine gonocytes in culture.
TRANSITION

The results of live-cell imaging and electron microscopy in Chapter 4 allowed detailed study of neonatal porcine gonocytes and their colony-formation patterns in an *in vitro* culture system. Having addressed our primary objectives related to the study of testis cells *in vitro* in Chapters 3 and 4, we designed the experiments in Chapter 5 to expand our study of testis cells by examining their potential for *de novo* formation of testis tissue after implantation in recipient mice, as an *in vivo* culture system.
CHAPTER 5

EFFECTS OF MULTIPLE FACTORS ON REGENERATION OF TESTIS TISSUE AFTER ECTOPIC IMPLANTATION OF PORCINE TESTIS CELL AGGREGATES IN MICE: IMPROVED OUTCOMES CONSISTENCY AND IN SITU MONITORING 5, 6

5.1 Abstract

Ectopic implantation of donor testis cell aggregates in recipient mice results in de novo formation/regeneration of testis tissue, and as such provides a unique in vivo model for the study of testis development. However, the results are inconsistent, and the efficiency of the model remains low. This study was designed to 1) examine several factors that can potentially improve the consistency and efficiency of this model, and 2) explore the use of ultrasound biomicroscopy (UBM) for the non-invasive in vivo evaluation of implants. Testis cell aggregates, containing ~40% gonocytes from 1-wk old donor piglet, were implanted under the back skin of immunodeficient mice through skin incisions and using gel matrices or through subcutaneous injections and without using gel matrices. The addition of gel matrices led to inconsistent tissue development, where the outcomes were dependent on the gel type; gelatin had the greatest development, followed by collagen, and agarose resulted in poor development. The results also depended on the implanted cell numbers, where implants with 100×10^6 cells were larger than those with 50×10^6 cells. The injection approach for cell implantation was less invasive and resulted in more consistent and efficient testis tissue development. UBM provided promising results as a means for non-invasive monitoring of implants and prediction of the outcomes, and hence improved the implantation model further.

5 The manuscript for this study has been submitted for publication in the Journal of Reproduction, Fertility and Development under joint co-authorship with Jaswant Singh and Ali Honaramooz.

6 AH AJ contributed to the conceiving and designing of the study, performed the experiments, and wrote the first draft of the manuscript.
5.2 Introduction

Implantation of dissociated neonatal porcine testis cells into immunodeficient mice led to *de novo* formation/regeneration of testis tissue (Honaramooz *et al.*, 2007). The testis cell implantation (TCI) procedure involved enzymatic digestion of the neonatal pig testis tissue to obtain single-cell suspensions, followed by centrifugation to obtain concentrated cell aggregates for ectopic implantation under the back skin of immunodeficient mice. Within 4 d post-TCI, some cells displayed organized alignments, which by 7 d formed extensive cellular rearrangements leading to the formation of cord-like structures. By 2 wk, the newly formed testis cords resembled the seminiferous cords typical of those seen in neonatal pig testes. The extensive rearrangements of cells and structures in the regenerated tissue included the usual polarization of Sertoli cells (with their nuclei facing the basal membrane of the cords), localization of gonocytes in the center of cords, and formation of the interstitial tissue in the intertubular areas. When given enough time, the *de novo* formed testis tissues underwent complete development to result in morphologically normal spermatogenesis, at times indistinguishable from age-matched pig testis tissue *in situ*. These regenerated xenogeneic porcine testis tissues were also capable of releasing sufficient androgens to restore the vesicular gland weights of the castrated recipient mice to the range of values seen in intact mice (Honaramooz *et al.*, 2007).

The unexpected morphogenic capacity of isolated cells from a postnatal donor to undergo autonomous rearrangements to form a structurally- and functionally-complex tissue such as the testis tissue is remarkable. Testicular morphogenesis has also been shown to occur using dissociated cells from other donor species such as the mouse, sheep, and cattle (Kita *et al.*, 2007, Arregui *et al.*, 2008b, Zhang *et al.*, 2008). This unique *in vivo* culture system provides an ideal microenvironment, and an accessible model for the study and manipulation of testis morphogenesis and spermatogonial stem cell niche formation (Honaramooz *et al.*, 2007; Dores and Dobrinski 2014). The TCI model may also be viewed as a unique approach to allow preservation of fertility potential of prepubertal boys undergoing gonadotoxic cancer treatments. This, for instance, would involve cell sorting to exclude cancerous cells out of isolated testis cells obtained from testis tissue biopsies of prepubertal cancer patients, followed by formation of the tissue using *in vitro or in vivo* culture systems.
Despite its great potential, the application of TCI model for de novo tissue formation has been somewhat limited due to the lack of an optimized protocol to provide more efficient and consistent outcomes (Dores and Dobrinski, 2014). For instance, the commonly used testis cell isolation techniques (e.g., conventional two-step enzymatic digestion) yield testis cell suspensions of low germ cell numbers (e.g., ~7%), resulting in a lack of germ cells in many regenerated seminiferous cords/tubules, and hence leading to low spermatogenic efficiency (Honaramooz et al., 2007; Kita et al., 2007). In these previous studies, the implantation of dissociated testis cells under the back skin of recipient mice required transferring loose cell aggregates/pellets into pockets of subcutaneous fascia and closing the incisions with sutures or metal wound clips. The drawbacks of this approach included the lack of control over the number of transferred implanted cells (since cells could remain attached to the holding vials or transferring probes) and also a tendency of the cells to leak out of the skin incisions prior to or after wound closure. The inflammation due to skin incisions could also affect the fate of implanted cells and the formation of tissue. Thus, a comparison of alternative methods for implantation of cell aggregates was needed to provide more consistent and efficient strategies to overcome the aforementioned problems.

To address some of the limitations associated with low germ cell numbers in the donor cell populations, we have introduced improvements in the isolation of neonatal testis cells to allow obtaining donor cell populations with a high proportion of gonocytes (~40%, using a new 3-step enzymatic digestion method; Yang and Honaramooz 2010), which could be further enriched (to ~90%, using a combination of Nycodenz centrifugation and differential plating) (Yang et al., 2011).

Our findings in another implantation model, testis tissue xenografting (TTX), have also provided a better understanding of various factors affecting the efficiency of implantation/grafting. For instance, TTX studies indicate that using testis tissue from immature donors results in higher graft survival and better support of spermatogenesis than tissue from more mature donors (Schlatt et al., 2002b; Honaramooz et al., 2007; Arregui et al., 2008b; Rathi et al., 2008). The efficiency of spermatogenesis in xenografts is also dependent on the donor species. Studies in various species demonstrated variations in the response of graft development. Although complete spermatogenesis has been observed in grafts from the pig, goat (Honaramooz et al., 2002b, 2003b), cattle (Oatley et al., 2005; Schmidt et al., 2006), sheep (Arregui et al., 2008a), cats (Kim et al., 2007), rhesus
monkeys (Honaramooz et al., 2004), and horses (Rathi et al., 2006), the spermatogenic efficiency has been inconsistent among donor species. In term of recipients, there are indications of considerable differences among immunodeficient mice used as a recipient choice (Paris et al., 2004; Honaramooz et al., 2007). The use of SCID mice for TTX was found to be more advantageous than nude mice (Abbasi and Honaramooz, 2010b), thus suggesting the strain of immunodeficient mice used as recipients for TCI may also affect the outcomes. The effect of recipient mouse sex on TTX outcomes was also examined, in which and males (regardless of the strain) gave rise to significantly higher graft development when compared with female recipients (Abbasi and Honaramooz, 2010b). The effect of gonadectomy on graft development, however, remains less clear. While some studies suggested that castration of recipients prior to TTX led to a higher development of grafts over intact recipients (Schlatt et al., 2002a; Rathi et al., 2006), these findings contradicted the observations in earlier studies (Shinohara et al., 2002; Abbasi and Honaramooz, 2010a). The results from our laboratory showed no beneficial effect of gonadectomy (orchidectomy or ovariectomy) for TTX (Abbasi and Honaramooz, 2010a). In addition to recipient factors, the number of transplanted grafts, their size, as well as their implantation site have also been shown to affect TTX outcomes and therefore these same factors may also influence tissue formation in the TCI model (Schlatt et al., 2002b; Shinohara et al., 2002; Rathi et al., 2006; Abbasi and Honaramooz, 2010b).

Gel matrices have been widely used as binders or scaffolds in cell delivery systems, mostly in tissue engineering and regenerative medicine applications (Fan et al., 2008; Nicodemus and Bryant, 2008; Park et al., 2009). The biocompatible properties of these materials (i.e., being inert and absorbable) reduce the risk of rejection when applied as the carrier for drugs and cells. The use of Matrigel (a gelatinous protein mixture obtained from a mouse sarcoma cell line), as a binder/scaffold for TCI has been reported (Dores and Dobrinski, 2014). However, the presence of a host of known and unknown growth factors and other proteins in Matrigel makes its use less suitable for cell implantation studies aimed at investigating the effects of different factors on the TCI outcome. To date, basic gel-based matrices (without additives) have not been tested as potential carriers or scaffolds for TCI.

Moreover, evaluation of TCI and TTX outcomes have thus far been limited to the post-mortem/post-retrieval examination of implants/grafts. Therefore, in the present study, we also
tested the feasibility of using ultrasound biomicroscopy (UBM), as a non-invasive tool to monitor the development of testis cell aggregates prior to their retrieval. UBM is a high-resolution ultrasound imaging tool allowing real-time in vivo assessment of structures, tissues, and organs and hence has been used in a range of clinical and research applications. However, UBM has not been previously used in the assessment of TTX or TCI models. Therefore, the objectives of the present study were to examine various factors related to the TCI model, and to test UBM for non-invasive evaluation of the implants prior to their retrieval.

5.3 Materials and Methods

5.3.1 Study Design

The present study consisted of two experiments, the design of which is schematically illustrated in Fig. 5.1. In Experiment 1, we studied the effects of using different basic gel matrices (gelatin, agarose, or collagen, without additives) and different cell numbers (50 × 10^6 or 100 × 10^6 cells) on de novo formation of testis tissue after TCI of neonatal porcine cell aggregates under the back skin of immunodeficient mice. The implantation was performed using a previously described surgical approach involving the transfer of cell aggregates through skin incisions (Honaramooz et al., 2007). At 2 wk post-TCI, the mice were euthanized and the implants retrieved for gross and microscopic analyses. In Experiment 2, a less-invasive method of implantation through subcutaneous injection of testis cell aggregates was evaluated. We also examined the effects of gonadal status (intact vs. castrated) and implantation site under the back skin on the TCI outcomes. For both experiments, the implants were imaged in vivo using UBM, before their retrieval.

5.3.2 Testis Collection and Preparation

Neonatal testes were collected through aseptic castration of Yorkshire-cross piglets (Camborough-22 × Line 65) aged <1 wk (n = 160), as described in more details in Chapter 3.3.1.
Fig. 5.1. Schematic overview of the study design for Experiments 1 and 2. In Experiment 1, three types of gel-based implants (i.e., gelatin, agarose, and collagen) containing either 50×10^6 or 100×10^6 testis cells were implanted surgically under the back skin of recipient mice ($n = 3$) via the creation of pockets in subcutaneous fascia by blunt dissection. Implants void of testis cells from each of the three gel types and a cell pellet (100×10^6 cells) without gels were also implanted as controls. The 10 implants in each mouse were labeled as GEL-50 or GEL-100 (gelatin with 50×10^6 or 100×10^6 cells), AGR-50 or AGR-100 (agarose with 50×10^6 or 100×10^6 cells), COL-50 or COL-100 (collagen with 50×10^6 or 100×10^6 cells), GEL-0, COL-0, or AGR-0 (agarose, collagen, or gelatin with no cells, as negative controls), and CAG-100 (cell aggregate containing 100×10^6 cells without gel matrices, as a positive control). In Experiment 2, cell aggregates were injected into 8 sites (100×10^6 cells per implantation site) under the back skin of recipient mice ($n = 8$), which were either castrated ($n = 4$) or intact ($n = 4$). The implant sites were assigned based on location on each side of the recipient as L1, L2, L3, and L4 or R1, R2, R3, and R4. For ease of analysis, the implantation sites were also grouped based on the relative craniocaudal location as Cranial (L1 and R1), CraMid (L2 and R2), MidCa (L3 and R3), and Caudal (L4 and R4). The implants were scanned using ultrasound biomicroscopy (UBM) at 2 wk for Experiment 1 and at both 1 and 2 wk for Experiment 2. The mice were euthanized and the implants retrieved at 2 wk post-implantation in both experiments.
5.3.3 Isolation of Testis Cells

Isolation of testis cells was performed using methods that have been previously established in our laboratory (three-step enzymatic digestion, Yang et al., 2010), with minor modifications as described in Chapter 3.3.2. The final cell pellet, containing ~40% gonocytes and a mixture of testis somatic cells, was re-suspended in 30 mL of DMEM supplemented with 10% FBS and 1% antibiotics and underwent gentle pipetting to obtain a single cell suspension.

5.3.4 Experiment 1 – Evaluation of Basic Gel-Based Matrices as Carriers for Implantation of Testis Cell Aggregates

5.3.4.1 Preparation of Gel-Based Matrices

Three types of basic (without additives) gel-based matrices were evaluated, which included agarose, gelatin, and collagen. Preliminary experiments were performed to determine the optimal composition for each gel matrix by assessing its physical properties at different temperatures as well as its effect on the viability of cultured testis cells (data not shown). The optimal composition was determined to be 10% (w/v) for gelatin, 0.05% (w/v) for agarose, and 5 mg/mL for collagen type I.

Briefly, for the preparation of 10% gelatin, 1.0 g of gelatin (catalogue no. D2500, Sigma-Aldrich) was dissolved in 10 mL of DPBS containing 1% antibiotics and kept at room temperature (21 °C) for 30 min. The mixture was then heated on a magnetic stirring hot plate to 60-70 °C, transferred into a 15-mL test tube, and incubated in a 37 °C-water bath. At the same time, the cell suspensions were placed in an incubator for 10 min to bring the temperature up to 37 °C. The cell suspension was aliquoted into 1.5 mL micro-centrifuge tubes to a total of either 50 × 10^6 or 100 × 10^6 cells per tube. The aliquots were centrifuged for 5 min at 500×g at 16 °C, and the supernatant was removed, leaving behind the cell pellets. Immediately, 100 µl of 10% gelatin was mixed with the cell pellet and gently pipetted up and down to homogenize the mixture. The gelatin-cell mixture was then pipetted onto a sterile Parafilm in a petri dish and kept in a refrigerator (4 °C) for 10 min to solidify. Parafilm was used to prevent adherence of gel-based matrices to the dish. Prior to implanting the gelatin-based cell aggregates they were kept in an ice-cold container.
For the preparation of 0.05% agarose, 500 µg of agarose (catalogue no. 11388983001, Sigma-Aldrich) was mixed with 10 mL of DPBS with 1% antibiotics, and the mixture was heated and stirred at 60 °C for 5 min. Once the mixture was homogenized, it was incubated at 37 °C for 5 min and immediately mixed with the cell pellet. The remaining procedures continued as described for gelatin.

For the preparation of collagen, 200 µl of 5 mg/mL collagen type I (catalogue no. 50201, Ibidi, Fitchburg, WI, USA) was added to the cell pellet, and the mixture was homogenized before pipetting onto a Parafilm. The end product for all preparations was a sphere-shaped (~1.0 cm in diameter) gel-based testis cell aggregate.

5.3.4.2 Implantation of Gel Matrix-Based Neonatal Testis Cell Aggregates via the Surgical Method

The recipients were double-homozygous severe combined immunodeficient hairless outbred mice (SHO mice, Crl:SHO-PrkdcscidHrdcr, strain code 474; Charles River, Montreal, Canada, n = 3), aged 8 wk at time of surgery. The mice were housed in sterile Plexiglas micro-isolator individual cages, maintained under controlled photoperiod (lights on 0600-1800), and handled aseptically. Sterile water and food were provided ad libitum. The mice were acclimatized for 1 wk prior to the procedures, and anesthetized using 5% isoflurane in oxygen for induction and 2% isoflurane in oxygen for maintenance throughout the surgery. After the surgical preparation of the skin, the mice were castrated and received 10 longitudinal linear skin incisions on their backs. Using blunt dissection through each incision, a subcutaneous pocket was created and an implant was inserted into each pocket. For each mouse, the implants included a gelatin-based sphere with 50×10^6 cells (GEL-50), one with 100×10^6 cells (GEL-100), an agarose-based sphere with 50×10^6 cells (AGR-50), one with 100×10^6 cells (AGR-100), a collagen-based sphere with 50×10^6 cells (COL-50), and one with 100×10^6 cells (COL-100). In addition, a gel-based sphere with no cells from each of the 3 matrices as negative controls (i.e., GEL-0, COL-0, AGR-0), and a cell aggregate containing 100×10^6 cells without any matrices, as a positive control for cell aggregates (CAG-100), were also implanted (i.e., 10 implants per mouse). The incisions were sutured using 6-0 coated, non-absorbable braided silk (Sofsilk, catalogue no. SS1639G, Syneture, Norwalk, USA). All experimental procedures involving animals were reviewed and approved by the University of...
Saskatchewan’s Institutional Animal Care and Use Committee (Animal Use Protocol# 20080042). A schematic representation of the study design and designation of implant placement is illustrated in Fig. 5.1.

5.3.5 Experiment 2 – Development of an Alternative Method for Implantation of Neonatal Testis Cell Aggregates

5.3.5.1 Implantation of Neonatal Testis Cell Aggregates via an Injection Method

Based on the results of Experiment 1, an injection method for TCI was evaluated in this experiment. The recipient mice and anesthesia procedure were as described for Experiment 1. The mice were either castrated ($n = 4$) or remained intact ($n = 4$), and each mouse received 8 implants in the form of injected cell aggregate. Testis cells were isolated as described above, maintained at 4 °C overnight, and centrifuged at $500 \times g$ for 5 min at 16 °C to obtain cell aggregates for injection. Cell aggregates were highly concentrated (100×10^6 cells per 0.1 mL), 0.8 mL of which was drawn into a 1-mL syringe and a 22-gauge needle was attached. The skin was lifted to create a tent, and 0.1 mL of the cell aggregate was gently injected into the subcutaneous tissue. To keep track of implants at analyses, the implantation sites were categorized as being on the left (L) or right (R), and from 1 through 4 (i.e., L1, L2, L3, and L4 or R1, R2, R3, and R4), corresponding to the craniocaudal positioning, respectively (i.e., Cranial, CraMid, MidCau, Caudal; Fig. 5.1). The mice were housed and cared for under similar conditions as described in Experiment 1.

5.3.5.2 Ultrasound Biomicroscopy (UBM) Assessment

We also evaluated the potential application of an ultrasound biomicroscope (UBM; 40 MHz, VEVO 3100, Visual Sonics, Toronto, ON, Canada), as a non-invasive tool for the assessment of implants in vivo. For Experiment 1, this assessment was performed at 2 wk post-TCI (prior to euthanasia) and, for Experiment 2, at 1- and 2 wk post-TCI. The mice underwent anesthesia using a mixture of ketamine at 100 mg/kg and xylazine at 10 mg/kg, injected intraperitoneally, were placed in sternal recumbency on the UBM stage and the ultrasound gel lubricant (EcoGel 200; catalogue no 40JB; Eco-Med Pharmaceutical Inc, Mississauga, ON, Canada) was applied on the skin. The transducer, which was prefixed onto a custom-designed holder, was lowered into contact with the surface of the skin covering the implant. The platform was then moved craniocaudally
until the implant was visualized, at which time the platform was steered slowly from cranial to caudal aspect of the implant and images were digitally recorded. The same procedure was repeated to image the remaining implants.

Dimensions of each implant were measured using the 2D (B-mode) and 3D functions of UBM. We also used the color flow Doppler function to evaluate the blood vessels supplying the implants (performed only in Experiment 2). The machine settings, based on previous reports (Mircea et al., 2009; Cervantes et al., 2013), used for obtaining images of implants included: transducer with a 50-MHz central frequency (MX Transducer, MX700, Visual Sonics), power 100%, radio frequency 2 kHz, master gain 38 dB, delay 1.0 mm, field of view 9 mm × 10 mm, frame rate 19 fps, and range 70 dB. At 50 MHz central frequency, the axial resolution was 30 µm and the maximum imaging depth was 10 mm. The fixed focal point was set at 4.5 mm from the transducer surface.

To examine the accuracy/fidelity of UBM measurements of implants in live mice, we compared the UBM data with the measurements of implants retrieved post-mortem. The length and width of implants were calculated from the recorded UBM images and videos, and compared with those from the photographs of the implants after the mice were euthanized, and while the implants were still attached to the skin (measured using ImageJ, U.S. National Institutes of Health, Bethesda, Maryland, USA). The implant length (along the transverse plane or Y-axis) was calculated based on the UBM probe displacement from the cranial to caudal border, and the implant width (along the sagittal plane or X-axis) based on the lateromedial dimension. The implant thickness/height (Z-axis) was measured as the vertical dimension between the ventral and dorsal borders of the implant, at the halfway point between the cranial and caudal borders. For UBM, the images were recorded continuously at 0.5 mm intervals (slices), thus multiplying the total number of images from an implant by the thickness of slices produced an estimate of the implant dimensions.

5.3.5.3 Implant Retrieval and Gross Evaluation

The implants were retrieved at 2 wk post-TCI in both experiments. Based on the previous reports (Honaramooz et al., 2007; Arregui et al., 2008b; Zhang et al., 2008), this duration was sufficient for the reorganization of the cells, and formation of testis cords. Mice were euthanized using an overdose of isoflurane anesthesia, followed by bilateral thoracotomy to ensure death. Necropsy
was performed and the implant recovery rates, dimensions, weights, and gross features were recorded. The vesicular glands of recipient mice were excised and weighed to calculate the vesicular gland index as follows:

\[
\text{Vesicular gland index} = \frac{\text{Weight of vesicular glands}}{\text{Live weight of the mouse}} \times 100
\]

5.3.6 Histological Evaluation

The retrieved implants were fixed in Bouin’s solution overnight, rinsed with and preserved in 70% ethanol until processing in an automated tissue processor (Tissue Tek, Sakura Finetek USA Inc, Torrance, USA). Processed tissues were then paraffin embedded, sectioned at a thickness of 5 µm, and stained with hematoxylin and eosin (H&E) and Masson’s trichrome. Histological assessment was performed using a microscope equipped with digital photomicrography (Northern Eclipse Image Analysis software version 7.0, Empix Imaging, Mississauga, ON, Canada). The degree of de novo tissue formation was assessed by calculating the relative area of the grafts occupied by the seminiferous cords. In addition, the average number of gonocytes per 1,000 Sertoli cells was also counted in five randomly-selected fields per slide (at 400× magnification). For comparison, this relative number of gonocytes was also calculated for testis tissue samples of age-matched 1, 2, and 3 wk old piglets.

5.3.7 Statistical Analyses

All data are presented as means ± standard error of mean (SEM). Unless stated otherwise, all data were analyzed using independent t-tests, one-way, or two-way analysis of variance (ANOVA) as appropriate. For percentages, the data were transformed using Arcsine function prior to analysis using ANOVA. The level of significance was set at \(P < 0.05 \). Data were analyzed using the SPSS (Version 22.0, SPSS Inc., Armonk, NY, USA).
5.4 Results

5.4.1 Feasibility of Using UBM for Assessment of Implants

As part of Experiment 1, we evaluated the feasibility of using UBM in monitoring the gel-based implants in vivo prior to their retrieval at 2 wk post-TCI. The implants were readily identifiable and clearly defined upon ultrasonography, allowing their measurements across the X, Y, and Z-axes. As shown in Fig. 5.2, the implants had a hyperechoic line outlining the periphery, and their core showed different degrees of echogenicity, presumably indicative of differential cellular organization or testis cord formation among different types of implants.

The degree of echogenicity appeared to be related to the original number of cells incorporated in the implants. In contrast to the relatively homogenous echogenicity seen in the cell-only implants (Fig. 5.2A), anechogenic texture (lack of echogenicity) was evident in the agarose-only implants (Fig. 5.2B). Echogenicity seemed to also differ depending on the gel composition. The echogenicity in the gelatin-based implants (Fig. 5.2C) was greater than that of the agarose-based implants (Fig. 5.2D), although both contained the same number of cells (i.e., 100×10^6 cells).

The number of implanted cells also influenced the size of the implants since the same collagen-based implants with fewer cells (50×10^6 cells, Fig. 5.2E) appeared smaller than those with a greater number of cells (100×10^6 cells, Fig. 5.2F). Judging from the heterogeneous texture of implants through UBM images, we predicted higher cellular organization and testis cord formation in the gelatin- and collagen-based implants. This was also dependent on the number of incorporated cells, and little or no cellular activity or tissue formation was evident in the agarose-based implants. However, not all implants could be found using UBM; the negative control implants (i.e., no-cell gelatin and no-cell collagen) were not detected, indicating they might have undergone complete absorption (Table 5.1). Finally, we also observed pulsatile movement at the periphery of the implants via UBM, suggesting the presence of blood vessels. However, this observation occurred only twice out of all observations (2/27).

The UBM examination at 1- and 2 wk post-TCI in Experiment 2 allowed assessment of the implants over time. The results indicated that the encapsulation of the implant by a hyperechoic layer was also detectable at 1 wk. (Fig. 5.3). The implants at 1 wk post-TCI appeared less echogenic than
those at 2 wk (Fig 5.3A-B). Additional assessments included using the color Doppler mode and 3D imaging to visualize the blood supply, which appeared limited to the periphery of the implants at 1 wk post-TCI but was extended into the implants at 2 wk (Fig. 5.3C-D).
Fig. 5.2. Representative *in vivo* images of gel-based implants obtained using ultrasound biomicroscopy (UBM). Depicted implants include (A) cell aggregates with 100×10^6 cells but no gels (CAG-100, as a positive control), (B) agarose with no cells (AGR-0, as a negative control for agarose), (C) gelatin with 100×10^6 cells (GEL-100), (D) agarose with 100×10^6 cells (AGR-100), (E) collagen with 50×10^6 cells (COL-50), and (F) collagen with 100×10^6 cells (COL-100). UBM was performed at 2 wk post-implantation using the B-mode. Note the presence of a capsule (arrowheads) surrounding the implants and the echogenic appearance presumed to represent cellular activity or testis cord formation. One or two asterisks (*) represent the varying opacity of implants (A-D). Evidence of cellular activity or testis cord formation was observed in collagen-based implants in a cell number-dependent manner (E-F). (Scale bar: 1 mm).
Fig. 5.3. Representative *in vivo* images of cell injection implants obtained using ultrasound biomicroscopy (UBM). UBM was performed at 1- and 2 wk post-implantation, using the B- (A-B) and color Doppler modes (C-D). Note the changes in the size and shape of the implants (A-D). The distribution of blood vessels in the implants could be assessed by UBM via color Doppler mode (C-D). The blood vessels appeared as blue or red pseudo-colors indicating different directions of the blood flow; blue indicating the blood flowing away from the transducer (towards the implants) and red indicating the blood flow towards the transducer (away from the implants). Note the blood vessels were primarily present at the periphery of the implant at 1 wk and extended into the implants at 2 wk post-implantation. (Scale bar: 1 mm).
Table 5.1. The number of implants upon retrieval at 2 wk post-implantation in Experiment 1.

<table>
<thead>
<tr>
<th>Implants</th>
<th>Cell no. (×10⁶)</th>
<th>Mouse 1</th>
<th>Mouse 2</th>
<th>Mouse 3</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collagen-based</td>
<td>100</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>3/3</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>2/3</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0/3</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>3/3</td>
</tr>
<tr>
<td>Gelatin-based</td>
<td>50</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>3/3</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0/3</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>3/3</td>
</tr>
<tr>
<td>Agarose-based</td>
<td>50</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>3/3</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>3/3</td>
</tr>
<tr>
<td>Cell aggregates</td>
<td>100</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>3/3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>8/10</td>
<td>8/10</td>
<td>7/10</td>
<td></td>
</tr>
</tbody>
</table>

+ Indicates the implants were present at retrieval at 2 wk post-implantation.
- Indicates the absence of implants at retrieval at 2 wk post-implantation.
5.4.2 Fidelity of UBM Measures for Predicting the Size of Implants Prior to Retrieval

The length and width of implants measured *in vivo* using UBM were consistently greater (by 21% and 18%, respectively, \(P < 0.05 \)) than those measured using image analyses of post-mortem implants. There were positive correlations among the measurements (Table 5.2).

5.4.3 Gross Evaluation of Implants

In Experiment 1, upon opening the back skin, the implants were readily identifiable while being adhered to the subcutaneous layer of the skin. The presence of blood vessels leading to the implants and encapsulation of the implants by thin fibrous connective tissues were also detectable (Fig. 5.4A-C). Some of the implants were not visible/retrieved, leading to a recovery rate of 8/10 implants in two mice, and 7/10 in the third mouse (Table 5.1). While all collagen- and gelatin-only (negative control) implants were absent in all mice, all the implants with cells were retrieved, except for one implant (*i.e.*, COL-50) in one mouse. The positive control implants (CAG-100) were present in all mice.

In Experiment 2, at euthanasia, vascularization and encapsulation of the implants were observed to be similar to those in Experiment 1 (Fig 5.4D-F); however, 100% of implants were retrieved from all recipients (*i.e.*, 64/64 implants). Less variation in size and shape was observed in implants retrieved in Experiment 2, compared with the implants in Experiment 1 with the same number of cells (100 \(\times 10^6 \) cells; CAG-100). Overall, the implants from Experiment 2 were heavier (37.95 ± 2.15 mg, \(n=64; P < 0.05 \)) than comparable cell-only implants (100 \(\times 10^6 \) cells, CAG-100) retrieved in Experiment 1 (19.1 ± 9.32 mg, \(n = 3 \)).
Table 5.2. Relationships between the implant dimensions measured either *in vivo* using ultrasound biomicroscopy (UBM) or *post-mortem* after implants were visualized while still attached to the skin.

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Method</th>
<th>Mean ± SEM (mm)</th>
<th>Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>r</td>
</tr>
<tr>
<td>Length</td>
<td>In vivo</td>
<td>8.55 ± 0.25</td>
<td>0.224</td>
</tr>
<tr>
<td></td>
<td>Post-mortem</td>
<td>7.09 ± 0.22</td>
<td></td>
</tr>
<tr>
<td>Width</td>
<td>In vivo</td>
<td>6.15 ± 0.13</td>
<td>0.250</td>
</tr>
<tr>
<td></td>
<td>Post-mortem</td>
<td>5.20 ± 0.15</td>
<td></td>
</tr>
</tbody>
</table>

Data are mean ± SEM (*n* = 64 implants).

Pearson’s product-moment correlation coefficients (*r*) were calculated between the two methods of dimension measurements.

Correlation coefficients were considered significant when *P* < 0.05.
Fig. 5.4. Representative photomacrographs showing implants before and after retrieval at 2 wk post-implantation in Experiments 1 and 2. The appearance of implants (A, D) under the skin, prior to retrieval, (B, E) still attached to the skin, and (E, F) after retrieval in Experiment 1 (A-C) and Experiment 2 (D-F). Note the presence of blood vessels directed toward the implants (B, E). Vesicular glands (SV) are also shown.
5.4.4 Histological Evaluation of Implants

Histological examination of the implants in Experiment 1 showed the organization of cells and *de novo* formation of testis cords in the collagen- (Fig. 5.5C-D) and gelatin-based implants (Fig. 5.5G-H), as well as cell-only implants (positive control/no-gel; Fig. 5.5A). Qualitatively, the development of cords was most complete in the gelatin-based implants. No cord development was observed in the agarose-based implants with 50×10^6 cells (AGR-50), where only necrotic cells were found (Fig. 5.5E). However, in the agarose-based implants with 100×10^6 cells (AGR-100), a small degree of cellular organization was observed but without formation of cords (Fig. 5.5F). No cellular activities were observed in the retrieved negative control implants for agarose (AGR-0), which only contained a vacuolated/empty space (Fig. 5.5B).

In Experiment 2, a number of common histological patterns were observable in all implants (Fig. 5.6A-B). For instance, cross-sections of the implants collected at 2 wk post-TCI could be categorized into three zones/areas: 1) The external capsule made of fibrous connective tissue (capsular area); 2) areas of cellular activity or testis cord formation (tissue formation area); and 3) areas void of cellular activities in some implants, primarily associated with vacuolation/fluid-filled cavity in the center of the implant (vacuolar area). Vascularization was evident by the presence of blood vessels (visualized with the aid of Masson’s trichrome staining) both at the capsular and tissue formation areas (Fig. 5.6E-F), supporting the UBM observations (Fig. 5.3C-D).
Fig. 5.5. Representative histological photomicrographs of implants from Experiment 1 at 2 wk post-implantation. De novo testis cord formation was observed in (A) the positive control implant (CAG-100, cell aggregates with 100×10^6 but no gels). A similar development is present in (C-D) collagen (COL)-based and (G-H) gelatin (GEL)-based implants, and the degree of de novo testis cord formation is correlated with the number of cells (i.e., higher with 100×10^6 vs. 50×10^6 cells). In contrast, no or limited development was observed in agarose (AGR)-based implants, including (B) the negative control with agarose-only, and (E-F) agarose with 50×10^6 or 100×10^6 cells. (Scale bars: 50 and 100 µm, H&E staining).
Fig. 5.6. Representative histological photomicrographs of implants from Experiment 2 at 2 wk post-implantation. De novo testis cord formation is evident in implants at (A) low and (B) high magnifications. Morphology of intact testis tissue of (C) 1 wk and (D) 3 wk old piglets for comparison (H&E staining). Blood vessels (arrows) are observed at the (E) periphery of the implants and (F) within the areas of cord formation (Masson’s trichrome staining), consistent with ultrasound biomicroscopy observations.
5.4.5 The Effect of Gonadal Status of the Recipient Mice on Development of Implants

The SHO mice used in this study are a new immunodeficient strain, which have not been previously used in TTX or TCI studies. Therefore, as an added comparison in Experiment 2, we subjected half of the recipient mice to castration while leaving the remaining mice intact, and compared the effect of gonadal status on the following parameters:

5.4.5.1 Vesicular Gland Index and Implant Weight

The weight of the vesicular glands relative to the body weight (vesicular gland index) did not differ between the castrated and intact groups of recipient mice \((P > 0.05; 0.58 \pm 0.04\% \text{ vs. } 0.52 \pm 0.02\%, \text{ respectively, } n = 4 \text{ mice/group}) \). Similarly, the weight of the implants did not differ between the castrated and intact mice \((P > 0.05; 41.3 \pm 2.8 \text{ mg } \text{vs. } 34.60 \pm 3.2 \text{ mg, respectively, } n = 32 \text{ implants/group}) \).

5.4.5.2 De Novo Formation of Testis Tissue

Histomorphometric analyses were performed on cross-sectioned samples and the following criteria were measured: the total area of implant parenchyma (all areas excluding the capsule, \(P \)), the area of tissue formation (areas with evidence of cellular activity and tissue formation, \(T \)), and the area of complete cord formation (areas with complete cords only, \(C \)). The total parenchymal area \((P) \) did not differ between implants from castrated and intact recipients \((P > 0.05; 7.34 \pm 0.55 \text{ mm}^2, n = 29 \text{ and } 6.67 \pm 0.47 \text{ mm}^2, n = 27, \text{ respectively}) \). Similarly, the relative area of tissue formation to the total parenchymal area \((T/P \times 100) \) did not differ between the two groups \((P > 0.05; 33.77 \pm 3.21\% \text{ vs. } 33.56 \pm 3.86\%, \text{ in castrated vs. intact, respectively}) \). The relative area of complete cord formation \((C/P \times 100) \) also did not differ between the castrated and intact groups \((P > 0.05; 26.37 \pm 2.77\% \text{ vs. } 19.12 \pm 2.36\%) \). However, the relative area of complete cord formation to the area of tissue formation \((C/T \times 100) \) was greater in the castrated group \((P < 0.05; 81.14 \pm 4.53\% \text{ vs. } 57.04 \pm 5.40\% , \text{ respectively}) \). The relative number of gonocytes per 1,000 Sertoli cells in the implants also did not differ between castrated and intact recipients \((P > 0.05; 44 \pm 5.8, n = 4 \text{ and } 43 \pm 3.5, n = 4, \text{ respectively}) \). The combined relative number of gonocytes in all implants \((44 \pm 3.1, n = 8) \) was lower \((P < 0.05) \) than the relative number of gonocytes in 1-, 2-, or 3 wk old pig testis reference samples \((126 \pm 8.2, 103 \pm 3.3, \text{ or } 87 \pm 3.4, \text{ respectively, } n = 5/\text{age}; \text{ Fig. 5.6C-D}) \).
5.4.5.3 The Effect of Implantation Site

When the implant weight data were analyzed for the effects of gonadal status (intact vs. castrated) and implantation site (Cranial vs. CraMid vs. MidCa vs. Caudal), no main effect of gonadal status ($P > 0.05$) or interactions were detected ($P > 0.05$). However, the main effect of implantation site was significant ($P < 0.05$) and the implants retrieved from the Cranial (L1 and R1; 52.2 ± 6.2 mg, $n = 16$) and CraMid sites (L2 and R2, 43.2 ± 3.3 mg, $n = 16$) were heavier ($P < 0.05$) than those from the caudal sites (L4 and R4; 22.6 ± 3.1 mg, $n = 16$) (Fig. 5.7). Moreover, the weight of implants retrieved from the right side (R1, R2, R3, and R4; 38.29 ± 3.4 mg, $n = 16$) did not differ ($P > 0.05$) from those of the left side (L1, L2, L3, and L4; 37.61 ± 2.7 mg, $n = 16$).
Fig. 5.7. Weight of the retrieved implants from Experiment 2 based on the site of implantation. Each mouse received 8 testis cell aggregate implants (4 on each side), which were labelled craniocaudally as: Cranial (L1 and R1), CraMid (L2 and R2), MidCa (L3 and R3), and Caudal (L4 and R4). Data are mean ± SEM. Data with different letters differ significantly between groups ($P < 0.05$).
5.5 Discussion

Testis cell implantation (TCI) from a range of donor species under the back skin of recipient mice has provided a unique model for the study of testis regeneration (Dufour et al., 2002; Gassei et al., 2006; Honaramooz et al., 2007; Kita et al., 2007; Arregui et al., 2008b; Zhang et al., 2008; Campos-Junior et al., 2014). In the present study, we used neonatal porcine testis cells to examine several factors that can potentially affect the efficiency and consistency of TCI outcomes. The examined effects included increasing the proportion of gonocytes, comparing the number of implanted cells, employing different gel-based matrices, comparing implantation methods, using a new strain of recipient mice, comparing the gonadal status of the recipients, comparing the implantation sites, and using UBM to assess the growth and development of implants.

First, we addressed the importance of testis cell composition and number for use in TCI. In earlier TCI studies (Honaramooz et al., 2007; Kita et al., 2007; Arregui et al., 2008b; Zhang et al., 2008), a conventional two-step digestion protocol (Honaramooz et al., 2002b; 2003) was used to isolate testis cells which yields a low proportion of germ cells (e.g., 4.5%) (Honaramooz et al., 2007). To date, all TCI studies have reported de novo-generated seminiferous cords/tubules that typically lack germ cells (i.e., few have germ cells but most only have Sertoli cells) and consequently TCI results have been associated with a low spermatogenic efficiency (Honaramooz et al., 2007; Kita et al., 2007; Arregui et al., 2008b; Zhang et al., 2008; Dores and Dobrinski 2014). The low number/proportion of germ cells in the donor cells may be a contributing factor in the observed Sertoli cell-only tubules and low spermatogenic efficiency. The lack of a specialized cell isolation method to preferentially select germ cells was a major limitation. In response to this limitation, our lab has developed a 3-step enzymatic digestion strategy for neonatal donor testes which results in high numbers of testis cells containing ~40% gonocytes, which can be further enriched to 80-90% (Yang et al., 2010; Yang and Honaramooz 2011). Recently, we determined that for in vitro culture of neonatal testis cells, the proportion of 40% gonocytes were better suited compared with much lower or much higher gonocyte proportions (Chapter 3) (Awang-Junaidi and Honaramooz, 2018). Therefore, in the present study, we used a similar population of neonatal testis cells (with 40% gonocytes). The relative number of gonocytes (per 1,000 Sertoli cells) in 2 wk implants was lower than that in intact piglet testes of related ages (4% in implants vs. 13% in 1 wk, 10% in 2 wk, and 9% in 3 wk old intact testes). There are no comparative data using pig donors at these ages to assess
how the number of gonocytes in the implants in the present study compare with those after conventional procedures.

In the present study, we also addressed another limitation of conventional TCI, namely the inconsistency due to a lack of control over the actual number of implanted cells because of the inaccurate means of cell transfer (using pipet tips) and post-implantation leakage of cells from skin wounds (Honaramooz et al., 2007). This implantation of a defined number of testis cells using subcutaneous injection in the present study (Experiment 2) was aimed at overcoming this limitation, and the improved consistency of TCI outcomes (i.e., implant size, shape, and weight) supported this application. Additionally, our injection method can reduce cell preparation time (compared with gel-based implants), surgery time and costs, and the potential risk of infection. Therefore, the injection method is more efficient and suitable for the delivery or implantation of testis cell aggregates, while the conventional implantation technique is more suitable for implanting solid gel-based spheres or testis tissue fragments.

There have been no standardized provisions for the assessment of testis tissues or cell aggregate implants prior to their retrieval from the recipients. In the present study, we addressed this limitation through the application of UBM. There are several reports of the use of UBM for visualization of organs (Hinton et al., 2008; Shen et al., 2008; Mancini et al., 2009), embryology (Foster, 2003; Spurney et al., 2006), oncology (Manning et al., 2008; Greco et al., 2010), clinical ophthalmology (Dada et al., 2011; Mannino et al., 2016), cardiology (Springer et al., 2005), and assessment of tissue repair (Töyräs et al., 2003; Schöne et al., 2016). However, to our knowledge, this is the first attempt to evaluate the feasibility of UBM to monitor the development of testis cell aggregate implants in a recipient mouse model. Based on our results, not only is UBM simple and non-invasive, it also provides high-resolution data and allows real-time in vivo assessment of implants over time without the need of sacrificing the recipients at different time points. UBM provided valuable information such as the survival and development of implants prior to their retrieval. Varying cellular activity or tissue formation among different types of implants were indicated through changes in echogenicity. In addition, the response of the recipients towards implants (i.e., through assessment of neovascularization and encapsulation) could be used as a biocompatibility indicator. Our UBM assessment findings were also consistent with our gross observations of implants (i.e., their survival, morphology, and the presence of blood vessels) and
their histological attributes (i.e., the degree of cellular activities and tissue formation). Furthermore, the UBM estimations of implant size and growth prior to their retrieval were correlated with the post-mortem measurements. The decreasing trend in length (21%) and width (18%) of post-mortem retrieved implants would have been expected since the shape and dimensions of the implants change after detachment from the surrounding tissues and skin. Therefore, our results paved the way for the use of UBM for non-invasive and repeated pre-retrieval assessment of implants in future TCI and testis tissue xenografting (TTX) studies; thereby, reducing the number of recipient mice needed for such studies.

Here, we also investigated the addition of different gel matrices (i.e., gelatin, agarose, or collagen) as a binder or carrier of neonatal testis cell aggregates (Experiment 1). This approach, known as cell microencapsulation, has been widely used in tissue engineering, including transplantation of mesenchymal stem cells, and has also been reported in regenerative medicine (Liu and Chang, 2010) Lund et al., 2008; Gasperini et al., 2014; Tzouanas et al., 2014). The rationale for encapsulation of cells by gel-based matrices is to provide a scaffold to facilitate cell movements and interaction by mimicking the in vivo 3D arrangement of cells, and provide a semi-permeable medium that allows the exchange of beneficial molecules (e.g., oxygen, nutrients, and growth factors), while eliminating waste products. In addition, the bio-inert attribute of these gel-based matrices also provides a temporary protective barrier that prevents immediate absorption of implanted cells or their rejection (Murua et al., 2008). In the present study, de novo tissue formation by neonatal testis cell aggregates encapsulated with certain basic gel based-matrices (gelatin and collagen) points to the potential of using these known matrices as an economical alternative to commercially available matrices with an unknown composition of growth factors.

In Experiment 1, not all implants were retrieved because some had undergone complete absorption. Almost all of these untraceable implants were from the gel-only controls (no cells). No signs of rejection were observed in either experiment. De novo testis tissue formation in implanted gel-based matrices containing cells indicates that the added gel-based matrices are safe, biocompatible, and biodegradable. From a qualitative standpoint based on gross morphology and histological assessment, we concluded that collagen and gelatin are more suitable as an encapsulation and binding agent than agarose.
Neovascularization or angiogenesis is a key step in successful incorporation of any graft or implant in the new environment. In this present study, the presence of blood vessels as early as 1 wk after implantation was observed through UBM, and subsequently at gross and histological evaluations. The presence of peripheral blood vessels at 1 wk post-implantation and within the implants at 2 wk post-implantation are evidence of angiogenic progression, indicating that these vessels were of the recipient origin. Timely formation of blood vessels ensures the survival of implanted cells and support of the developing tissues. Although the exact mechanisms of neovascularization in this model have not been determined, it is likely initiated due to the ischemic conditions at the time of implantation, triggering the release of vascular endothelial growth factors (VEGF), as a potent promoter of new blood vessel formation and migration (Ferrara, 2000; Neufeld et al., 1999). VEGF is upregulated in hypoxic conditions to restore the inadequate supply of oxygen to the tissues (Shweiki et al., 1992). When VEGF was used in a TTX study, it promoted a better development of grafts by increasing the graft weight, the number of seminiferous tubules, and presence of advanced germ cells (Schmidt et al., 2006). The promising results of the present TCI study provide an excellent model for the examination of various growth factors on the development of testis tissue.

Severe combined immunodeficient (SCID) mice have been widely used in TTX studies where the lack of both T- and B lymphocytes provides a more conducive environment for the development of grafts (Ito et al., 2002), without compromising the outcomes (Rathi et al., 2006; Goossens et al., 2008; Watanabe et al., 2009). To our knowledge, hairless SCID mice (also designated SHO) have not been used as recipients in TTX or TCI. This mouse strain is a promising new model because in addition to being immunodeficient to the same degree as conventional SCID mice, has the advantage of being hairless which allows better visualization of developing implants and grafts, similar to nude mice. In the present study, we also evaluated the effect of castration on the outcomes of neonatal testis cell implantation in this new recipient model. Immediately after castration of the recipient, serum levels of gonadotropins increase, which theoretically should stimulate the development of newly grafted testis tissues (Honaramooz et al., 2002a; Schlatt et al., 2002a, b; Paris and Schlatt, 2007; Rodriguez-Sosa and Dobrinski, 2009). However, a comprehensive study using SCID and nude mice showed that the recipient gonadal status had no significant effects on the development of neonatal testis tissue (Shinohara et al., 2002; Abbasi and Honaramooz, 2010b). This was also the case in the present study using SHO mice.
The vesicular glands, as with other accessory male glands, rely for their maintenance on continued exposure to testosterone, and thereby become considerably smaller as early as 2 wk after castration (Schlatt et al., 2002a). The size of the vesicular glands hence provides a bioindicator for the levels of circulating testosterone (Honaramooz et al., 2007; Arregui et al., 2012). While in intact recipient mice the circulating testosterone can be from both endogenous (own testes) and xenogeneic sources, any circulating testosterone in castrated mice is solely from the implants. Thus, the difference in the testosterone levels between these two groups would be reflected in the vesicular glands mass. In the present study, no effects of castration on the vesicular gland indices were observed at 2 wk post-implantation, indicating that the implants were capable of supplying sufficient testosterone to the host.

In the present study, we found that the implantation site can affect the growth of implants, where implants located more cranially on the back of mice grew larger compared with those of the caudal region. This rather surprising observation has not been previously reported and the reasons for such a difference are not known. However, differences in relative abundance of blood vessels or relative laxity of the subcutaneous tissue between different regions of the back skin might be a potential cause. Due to the observed effect of implantation site on the growth of implants, randomization of implants sampling can be recommended for future studies to reduce the potential confounding effects of the implantation site within the same mouse.

5.6 Conclusions

In conclusion, in the present study, we established an improved method for implantation of neonatal porcine testis cell aggregates which allows more consistent outcomes for de novo testis tissue formation. The use of gel matrices as a binder for cell implants led to inconsistent tissue development, and the outcomes were gel-type and cell number-dependent. The injection approach offers a simple and less invasive technique and results in more consistency and greater de novo testis tissue formation. Finally, UBM was found to be applicable as a non-invasive monitoring tool, allowing the prediction of implantation outcomes.
Subcutaneous injection of porcine testis cell aggregates under the back skin of recipient mice as described in Chapter 5 offers an efficient model for *de novo* formation of testis tissue and results in more consistent implantation outcomes. Therefore, we used this model in Chapter 6 to study the effects of brief pre-implantation exposure of testis cells to various growth factors on the development of testis tissue in the resultant implants.
CHAPTER 6

EFFECTS OF GROWTH FACTORS ON DE NOVO REGENERATION OF PORCINE TESTIS TISSUE AFTER ECTOPIC IMPLANTATION OF TESTIS CELLS IN MICE

6.1 Abstract

The role of growth factors during normal testis development is difficult to assess in situ, especially in non-rodents. Ectopic implantation of neonatal pig testis cell aggregates under the back skin of recipient mice results in de novo formation/regeneration of testis tissue, hence provides a powerful model for the study of testis formation. In the present study, we used this model to study the effects of exposing donor porcine testis cell aggregates to various growth factors. Each recipient mouse (n = 7 mice/group) was implanted with eight porcine testis cell aggregates (~100 × 10⁶ cells/implant) that were exposed to a given dose of different growth factors. A total of 11 groups were examined: EGF (20 ng/mL of cell aggregates: EGF-L or 2µg/mL: EGF-H), GDNF (20 ng/mL: GDNF-L or 2 µg/mL: GDNF-H), FGF2: 1 µg/mL, FGF9: 5 µg/mL, VEGF: 3.5 µg/mL, LIF: 5 µg/mL, SCF: 3.5 µg/mL, RA: 3.5×10⁻⁵ M, or no growth factors (Control). Two randomly-selected implants were removed from each mouse at 1, 2, and 4 wk, and the remaining implants were retrieved at euthanasia at 8 wk post-implantation. The overall implant recovery rate was 95% and did not differ among groups. The main effects of treatments on de novo tissue morphogenesis were enhanced implant weight (FGF2 and LIF), implant area (FGF2, EGF-L, and SCF), and seminiferous cord area (FGF2 and GDNF-L). RA promoted the formation of enlarged cords, GDNF-H led to irregular cords, and FGF2 resulted in the highest ratio of regular cords and lowest ratio of aberrant cords. RA also promoted the number of gonocytes in the implants. The use of higher doses of EGF and GDNF did not improve the results compared with their lower doses. Overall, the use of FGF9 and VEGF had no effects on formation of cords. Rete testis formation occurred earlier in the implants.

AHAJ contributed to the conceiving and designing of the study, performed the experiments, and wrote the first draft of the manuscript.
treated with EGF-L, GDNF-H, FGF2, FGF9, or LIF. The results show that even brief pre-implantation exposure of testis cells to growth factors can have profound effects on the formation of testis tissue using the testis cell aggregate implantation model.

6.2 Introduction

Ectopic implantation of testis cell aggregates from neonatal donor piglets in recipient mice was shown to result in de novo formation/regeneration of testis tissue (Honaramooz et al., 2007). Similar results have also been obtained using other donor species (Dufour et al., 2002; Gassei et al., 2006; Kawasaki et al., 2006, 2010; Arregui et al., 2008). In this testis cell implantation (TCI) model, cells obtained after enzymatic dissociation of donor testes are implanted under the back skin of immunodeficient mice. The heterogeneous population of donor testis cells undergo autonomous rearrangements to form seminiferous cords that are morphologically similar to those of the intact testis. Over time, the newly-developed testis tissue can further develop into a functional testis tissue, capable of supporting spermatogenesis and steroidogenesis (Honaramooz et al., 2007). This unexpected morphogenic capacity of dissociated testis cells to regenerate a functional testis tissue suggests that factors involved in the process of testis development are retained even shortly after birth. Therefore, this unique in vivo culture system offers a promising model for the study and manipulation of various potential factors involved in testis development and formation. This can include the study of putative growth factors and molecular cues in the process, which otherwise are inherently difficult to study in situ, especially in non-rodent target species.

Testis tissue morphogenesis is a complex process which involves coordinated endocrine, paracrine, and autocrine signaling (Lamb, 1993; Huleihel and Lunenfeld, 2004). Several paracrine, growth, and differentiation factors are believed to play a key role in tissue patterning and organogenesis during the gonadal development. For instance, the presence of fibroblast growth factor 9 (FGF9) is crucial during sex determination (DiNapoli et al., 2006; Kim et al., 2006a), where it regulates Sertoli cell proliferation and testis cord formation, leading to the suppression of genes that are responsible for ovarian development (Park and Jameson, 2005; Jameson et al., 2012). Disruption of FGF9 and its receptors have been shown to result in termination of testis development, which can lead to sex reversal. The vascular endothelial growth factor (VEGF), in addition to being vital
for vasculature development in the embryo (Carmeliet et al., 1996; Ferrara et al., 1996), contributes to the formation of testis cords, as well as promotion and coordination of cell migration from the mesonephros to the developing gonad (Bott et al., 2006; Baltes-Breitwisch et al., 2010; Cool et al., 2011).

The basic fibroblast growth factor 2 (FGF2) and epidermal growth factors (EGF) regulate Leydig cell proliferation and steroidogenesis (Gonzalez et al., 1990; Sordoillet et al., 1991, 1992; Han et al., 1993). On the other hand, certain growth factors are thought to act primarily on germ cells, including the glial cell-derived neurotrophic factor (GDNF), leukemia inhibitory factor (LIF), stem cell factor (SCF), and retinoic acid (RA) (De Miguel et al., 1996; Mauduit et al., 1999; Meng et al., 2000; Kubota et al., 2004a; Hofmann et al., 2005; Wu et al., 2005; Aponte et al., 2006; Zhou et al., 2008; Chung et al., 2009). The GDNF produced by Sertoli cells is an integral part of the stem cell niche within the seminiferous tubules, and promotes the self-renewal of spermatogonial stem cells (SSC) (Meng et al., 2000; Viglietto et al., 2000; Chuma et al., 2005; Hofmann et al., 2005). The SCF and LIF exert their action on germ cells throughout life, ensuring the survival, proliferation, and differentiation of developing germ cells (Matsui et al., 1991; Pesce et al., 1993; Mauduit et al., 1999; Yan et al., 2000a; Aponte et al., 2008). Additionally, RA is responsible for maintaining the pool of fetal gonocytes and promoting their differentiation to spermatogonia after birth (Wang and Culty, 2007; Zhou et al., 2008; Manku et al., 2015). Role of the aforementioned factors in testis development and function has been deciphered primarily using knockout mice and in vitro models, with considerably less data on non-rodent species.

The limited literature on the ectopic TCI model has thus far been primarily focused on describing the potential of this model, survival of the implants, formation of testis tissue, and progression of spermatogenesis. The lack of a defined protocol, inconsistency in results, and the low rate of spermatogenic efficiency have limited the application of this potentially powerful model (Gassei et al., 2006; Kita et al., 2007; Arregui et al., 2008a; Campos-Junior et al., 2014; Honaramooz et al., 2007; Arregui et al., 2008a; Dores and Dobrinski, 2014). A single previous study has employed this model to examine the effect of a growth factor on post-implantation testis tissue formation, where treatment with VEGF led to improved outcomes (Schmidt et al., 2006b; Dores and Dobrinski, 2014). In this latter study, the beneficial effects of VEGF were attributed to its
angiogenic promoting effect, because it is believed that in the early days post-implantation, the implants are likely exposed to ischemic conditions, before blood supply is established.

Despite the regeneration of a functional testis tissue, the implants resulting from this model commonly display low spermatogenic efficiency, because most seminiferous cords/tubules lack germ cells (Honaramooz et al., 2007; Arregui et al., 2008a; Watanabe et al., 2009; Campos-Junior et al., 2014). The reasons for the observed low number of germ cells in the newly developed tubules are not clear, but a low proportion of germ cells in the donor cell populations or subsequent loss of germ cells during development have been proposed as likely causes (Honaramooz et al., 2007; Arregui et al., 2008a). For example, in a study where the donor cell aggregates comprised of ~5% germ cells, only ~11% of the resultant seminiferous tubules contained complete spermatogenesis at 30 wk post-implantation (Honaramooz et al., 2007). To address the potential lack of sufficient germ cells in the donor cell populations, our lab has previously established a three-step enzymatic testis cell isolation protocol that yields ~40% germ cells from donor neonatal pig testes (Yang et al., 2010). We have recently also examined several potential factors that can improve the consistency of the results and spermatogenic efficiency of the TCI model (Chapter 5). Taking advantage of the improved TCI model, the present study was designed to investigate the effect of various growth factors (i.e., EGF, GDNF, FGF2, FGF9, VEGF, LIF, SCF, and RA) on de novo formation of porcine testis tissue.

6.3 Materials and Methods

6.3.1 Animal and Experimental Design

A total of 165 male piglets of ~2 wk of age were used as donors of testis cells to be implanted under the back skin of recipient mice. Each recipient mouse (n = 7 mice/group, total n = 77) received eight cell aggregate implants (each containing 100 x 10^6 cells). Immediately prior to implantation (within an hour), cell aggregates were exposed to a designated growth factor/dose. In total, there were 11 groups as follows: EGF (20 ng/mL of cell aggregates: EGF-L or 2µg/mL: EGF-H), GDNF (20 ng/mL: GDNF-L or 2 µg/mL: GDNF-H), FGF2: 1 µg/mL, FGF9: 5 µg/mL, VEGF: 3.5 µg/mL, LIF: 5 µg/mL, SCF: 3.5 µg/mL, RA: 3.5×10^-5 M, or no growth factors (Control). Two randomly-selected implants were removed from each mouse at 1, 2, and 4 wk, and the remaining
implants retrieved at euthanasia at 8 wk post-implantation. The growth factors used, number of recipients, and implants in each group are summarized in Table 6.1. The recipient mice were double-homozygous severe combined immunodeficient hairless outbred mice (SHO), their housing, handling, anesthesia, and cell aggregate injections were as described in Chapter 5.3.4.2, Chapter 5.3.5.1, and shown in Figure 6.1A. All recipient mice were males and remained intact (were not castrated).
Table 6.1. Summary of the growth factors, recipients, and implants in each treatment group.

<table>
<thead>
<tr>
<th>Growth factors</th>
<th>Catalogue no.</th>
<th>Manufacturer</th>
<th>Dose</th>
<th>No. implants/mouse ((n))</th>
<th>No. mice/group ((n))</th>
<th>Total no. implants/group ((n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epidermal Growth Factor (EGF)</td>
<td>236-EG-200</td>
<td>R&D Systems, Inc., Minneapolis, USA.</td>
<td>20 ng/mL (low)</td>
<td>8</td>
<td>7</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 µg/mL (high)</td>
<td>8</td>
<td>7</td>
<td>56</td>
</tr>
<tr>
<td>Glial Cell Derived Neurotrophic Factor (GDNF)</td>
<td>212-GD-010</td>
<td>"</td>
<td>20 ng/mL (low)</td>
<td>8</td>
<td>7</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 µg/mL (high)</td>
<td>8</td>
<td>7</td>
<td>56</td>
</tr>
<tr>
<td>Fibroblast Growth Factor basic 146 aa (FGF2)</td>
<td>233-FB-025</td>
<td>"</td>
<td>1 µg/mL</td>
<td>8</td>
<td>7</td>
<td>56</td>
</tr>
<tr>
<td>Fibroblast Growth Factor 9 (FGF9)</td>
<td>273-F9-025</td>
<td>"</td>
<td>5 µg/mL</td>
<td>8</td>
<td>7</td>
<td>56</td>
</tr>
<tr>
<td>Vascular Endothelial Growth Factor 165 (VEGF)</td>
<td>293-VE-010</td>
<td>"</td>
<td>3.5 µg/mL</td>
<td>8</td>
<td>7</td>
<td>56</td>
</tr>
<tr>
<td>Leukemia Inhibitory Factor (LIF)</td>
<td>7734-LF-025</td>
<td>"</td>
<td>5 µg/mL</td>
<td>8</td>
<td>7</td>
<td>56</td>
</tr>
<tr>
<td>Stem Cell Factor (SCF)/c-Kit Ligand</td>
<td>255-SC-010</td>
<td>"</td>
<td>3.5 µg/mL</td>
<td>8</td>
<td>7</td>
<td>56</td>
</tr>
<tr>
<td>Retinoic Acid (RA)</td>
<td>0695</td>
<td>Tocris Bio-</td>
<td>3.5 × 10^{-5} M</td>
<td>8</td>
<td>7</td>
<td>56</td>
</tr>
</tbody>
</table>
Fig. 6.1. Representative photomicrographs demonstrating the recipient mice undergoing ectopic implantation of testis cell aggregates. (A) Testis cell aggregates were injected under the back skin of immunodeficient mice, where each injection site received $\sim 100 \times 10^6$ cells in a volume of 0.1 mL. (B) Each mouse received eight subcutaneous implants, four on each side of the midline. (C) Two randomly-selected implants were retrieved at 1, 2, and 4 wk post-implantation, followed by the final retrieval at 8 wk at the time of euthanasia. (D) Individual implants after retrieval.
6.3.2 Testis Collection and Preparation

Donor testes were obtained through aseptic castration of 2 wk old Yorkshire-cross piglets from the Prairie Swine Centre, performed 24 h prior to each implantation day (15 pairs of donor testes/group of mice; hence n=165 piglets). The testes were prepared and processed for the isolation of testis cells as described in Chapter 3.3.1.

6.3.3 Isolation of Testis Cells

Isolation of testis cells was performed using a three-step enzymatic digestion method that has been established in our laboratory (Yang et al., 2010; Yang and Honaramooz, 2011). Briefly, the testis parenchyma was pooled to obtain a sufficient number of cells. For the ease and efficiency of isolation, the parenchyma was divided equally into 5 portions, where each portion was transferred into a 14 mL polypropylene round-tube and thoroughly minced with fine scissors for 10 min. Other detailed were as described in Chapter 3.3.2. The resultant cell pellet was resuspended and stored at 4 °C overnight.

6.3.4 Cell Aggregate Preparation

On the day of implantation, the cells were resuspended, filtered, centrifuged at 500×g at 16 °C for 10 min, and the media was discarded to yield a compact cell aggregate. The volume of cell aggregates was standardized to 8 mL in a 50 mL falcon test tube, the total dose of a designated growth factor in 0.5 mL was added, and the suspension was gently pipetted to ensure homogeneity. Most growth factors were used as a single dose, while EGF and GDNF were used in two doses (Table 6.1). Except for the RA, all growth factors were of the human recombinant origin (Table 6.1). Preparation of growth factors was according to the manufacturers recommendations. For the controls, the cell aggregates were mixed with 0.5 mL of sterile Dulbecco’s phosphate-buffered saline (DPBS; catalogue no. 20-031-CV; Mediatech, Manassas, VA, USA).

6.3.5 Cell Aggregate Implantation

The mouse anesthesia and preparation for cell implantation were as described in Chapter 5.3.5.1. Approximately 0.8 mL of the designated cell aggregates for each mouse was aspirated into a 1-mL syringe, the skin was lifted to create a ‘tent’ (Fig. 6.1C), the needle (22-gauge) was inserted
subcutaneously on either side of the back skin, and 0.1 mL of the cell aggregates was injected into each site. The cell aggregates were prepared to contain \(\sim 100 \times 10^6 \) cells per 0.1 mL.

6.3.6 Retrieval of Implants

Two implants were randomly retrieved from each mouse at 1, 2, and 4 wk post-implantation, performed under general anesthesia (as described in Chapter 5.3.5.3). A transverse linear skin incision was created adjacent to the edge of an implant, and the implant was gently severed from the skin and surrounding subcutaneous tissue. The incision was then closed with metal wound clips (Michel clips; catalogue no. 12-460-179; Miltex Inc., York, PA, USA) (Fig. 6.1E). The remaining implants were retrieved at 8 wk post-implantation at the time of euthanasia; performed using an overdose of isoflurane, followed by bilateral thoracotomy to ensure death.

6.3.7 Tissue Processing and Histology

The retrieved implants were fixed, processed, embedded in paraffin blocks, sectioned, and stained with hematoxylin and eosin (H&E) as described in Chapter 5.3.6.

6.3.8 Gross and Histological Analysis

The weight of each implant was recorded immediately after retrieval. During the final implant retrieval at euthanasia, the vesicular glands were also removed and their weight index calculated (\%; relative to body weight). The histology slides were subjected to histomorphometric analysis, where each mouse (unless stated otherwise) was treated as the experimental unit. From each implant, digital micrographs were captured using a light microscope equipped with digital photomicrography (Northern Eclipse Image Analysis software version 7.0; Empix Imaging, Mississauga, ON, Canada). The obtained images included 40× magnification for general observation of the implants (1 image) and 400× magnification (5 randomly-selected fields) for detailed morphometric analysis. The histomorphometric evaluations of implants included their general development, seminiferous cords (SC), and prevalence of germ cells. The collected data included the number of recovered implants, implants showing de novo morphogenesis, SC development, rete testis-like structures (RT), and fluid-filled cavities (FFC); expressed as their prevalence and percentage (\%). The surface area measurements included the total implant area.
the total area occupied by SC (%; relative to total implant area), the relative area of SC by category (i.e., % of regular SC, irregular SC, enlarged SC, and aberrant SC; relative to total SC occupied area). The relative number of gonocytes (per 1,000 Sertoli cells) in 2 wk samples was also counted in five randomly-selected fields per slide (at 400× magnification). All the measurements and counting were performed using ImageJ software (National Institutes of Health, Bethesda, Maryland, USA).

6.3.9 Statistical Analyses

All data are presented as mean ± standard error of mean (SEM). Unless otherwise stated, the statistical analyses were performed using repeated measures analysis of variance (ANOVA) and Chi-square tests. For percentage expression, the data were transformed using the Arcsin function prior to analysis. The level of significance was set at $P < 0.05$. Data were analyzed using the SPSS (Version 22.0, SPSS Inc., Armonk, NY, USA).
6.4 Results

6.4.1 Gross Evaluations

6.4.1.1 Recipient Mouse Body Weight and Vesicular Gland Index

Five out of the 77 recipient mice died prior to the scheduled time of euthanasia; they were from different groups and died at various time points post-implantation. The body weight (BW) and vesicular gland (VG) index of the mice, recorded at the time of euthanasia (8 wk post-implantation), did not differ among all groups ($P > 0.05$, treatment vs. control or low vs. high dose) (Table 6.2).

6.4.1.2 Implant Recovery and Implant Weight

We retrieved a total of 563 identifiable implants from the remaining 596 potential implants, which included recovery of some samples from the mice that died prematurely. Therefore, the overall implant recovery rate was ~95%, which ranged between 84% and 98%, but did not differ among the groups ($P > 0.05$, Table 6.2). The effect of time on implant weight was significant for all treatment groups ($P < 0.05$), except EGF-H, which only showed a tendency when compared with the control ($P = 0.054$; Fig. 6.2 and 6.3). The implant weight increased over time in most groups, except in EGF-H, GDNF-H, and RA groups. The effect of treatment on implant weight was significant only for FGF2 and LIF groups ($P < 0.05$), where the implant weight in FGF2 group at 4 wk (99.3 ± 8.3 mg) was greater than that of the control (66.5 ± 10.1 mg; $P < 0.05$; Fig. 6.3A and 6.3D). Interactions were also observed between the effects of time and treatment for implants weight in control vs. EGF-H, EGF-L vs. EGF-H, GDNF-L vs. GDNF-H and control vs. RA groups ($P < 0.05$; Fig. 6.2B, 6.2C, 6.2F, and 6.3F, respectively). Among these groups, unlike the control, the implant weight in EGF-H and RA groups did not differ over time ($P > 0.05$). Weight of implants in the EGF-H group was greater than EGF-L at 1- and 2 wk, and than control at 2 wk, while in the RA group was less than control at 8 wk ($P < 0.05$; Fig. 6.2 and 6.3). The weight of implants retrieved at 8 wk negatively correlated with the VG index in EGF-H and GDNF-L groups, as well as overall (Table 6.3).
Table 6.2. The recipient mouse body weight, vesicular gland index, and the relative number of implants retrieved at the time of euthanasia.

<table>
<thead>
<tr>
<th>Group</th>
<th>Mouse BW (g)</th>
<th>VG index (%)</th>
<th>No. implant retrieved/total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>32.32 ± 1.2</td>
<td>0.69 ± 0.40</td>
<td>42/46 (91)</td>
</tr>
<tr>
<td>EGF-L</td>
<td>33.62 ± 0.9</td>
<td>0.61 ± 0.10</td>
<td>53/54 (93)</td>
</tr>
<tr>
<td>EGF-H</td>
<td>34.99 ± 1.4</td>
<td>0.77 ± 0.04</td>
<td>55/56 (98)</td>
</tr>
<tr>
<td>GDNF-L</td>
<td>32.60 ± 1.3</td>
<td>0.70 ± 0.10</td>
<td>47/50 (94)</td>
</tr>
<tr>
<td>GDNF-H</td>
<td>31.79 ± 0.5</td>
<td>0.78 ± 0.03</td>
<td>47/56 (84)</td>
</tr>
<tr>
<td>FGF2</td>
<td>33.56 ± 1.1</td>
<td>0.67 ± 0.03</td>
<td>54/56 (96)</td>
</tr>
<tr>
<td>FGF9</td>
<td>33.73 ± 0.7</td>
<td>0.79 ± 0.05</td>
<td>55/56 (98)</td>
</tr>
<tr>
<td>VEGF</td>
<td>33.95 ± 0.9</td>
<td>0.64 ± 0.10</td>
<td>52/54 (96)</td>
</tr>
<tr>
<td>LIF</td>
<td>34.20 ± 0.9</td>
<td>0.69 ± 0.04</td>
<td>53/56 (95)</td>
</tr>
<tr>
<td>SCF</td>
<td>32.04 ± 0.5</td>
<td>0.73 ± 0.04</td>
<td>52/56 (93)</td>
</tr>
<tr>
<td>RA</td>
<td>30.90 ± 0.8</td>
<td>0.77 ± 0.01</td>
<td>53/56 (95)</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>563/596 (94.5)</td>
</tr>
</tbody>
</table>

Mouse body weight (BW: g); vesicular gland index (VG: % weight of VG/BW); epidermal growth factor (EGF); glial-derived neurotrophic factor (GDNF); fibroblast growth factor (FGF2); fibroblast growth factor 9 (FGF9); vascular endothelial growth factor (VEGF); leukemia inhibitory factor (LIF); stem cell factor (SCF); retinoic acid (RA).

Each group was compared with the control.
The high (H) and low (L) doses of the same growth factor groups were compared with each other.
BW and VG index data were analyzed using independent t-tests.
Implant % were analyzed using the Chi-square tests.
The data did not differ ($P > 0.05$) among all compared groups.
Fig. 6.2. The weight of implants (mg) in (A-C) the epidermal growth factor (EGF) and (D-F) glial-derived neurotrophic growth factor (GDNF) groups over time. Two doses of each growth factor were evaluated, low dose (20 ng/mL of cells): (A) EGF-L and (D) GDNF-L, and high dose (2 mg/mL of cells): (B) EGF-H and (E) GDNF-H. The weight of implants was compared with the control and between the doses (low vs. high) (C) and (F). The growth factors were added to the neonatal porcine testis cell aggregates (~100 × 10^6 cells) before implantation under the back skin of recipient mice (n = 7 per group). The control implants received no growth factor. Implants were retrieved at 1, 2, 4, and 8 wk post-implantation. Data are mean ± SEM. ab Data with different letters between treatments differ significantly (P < 0.05). xy Data with different letters over time differ significantly (P < 0.05). ***The main effect of time was significant (P < 0.05), but no individual group differed (P > 0.05) at post-hoc analysis.
Fig. 6.3. The weight of implants (mg) in the (A) basic fibroblast growth factor (FGF2), (B) fibroblast growth factor 9 (FGF9), (C) vascular endothelial growth factor (VEGF), (D) leukemia inhibitory factor (LIF), (E) stem cell factor (SCF), and (F) retinoic acid (RA) groups over time. The implants weight was compared with the control and over time. The growth factors were added to the neonatal porcine testis cell aggregates (~100 × 10^6 cells) before implantation under the back skin of recipient mice (n = 7 per group). The control implants received no growth factor. Implants were retrieved at 1, 2, 4, and 8 wk post-implantation. Data are mean ± SEM. ab Data with different letters between treatments differ significantly (P < 0.05). xyz Data with different letters over time differ significantly (P < 0.05). ***The main effect of treatment was significant (P < 0.05), but no individual group differed (P > 0.05) at post-hoc analysis.
Table 6.3. Relationships among the recipient mouse vesicular gland index, implant weight, implant area, and seminiferous cord area at euthanasia (8 wk post-implantation) in EGF and GDNF groups of implants.

<table>
<thead>
<tr>
<th>Group (No. mice)</th>
<th>Variable</th>
<th>VG Index (%)</th>
<th>Implant weight (mg)</th>
<th>Implant area (mm²)</th>
<th>SC area (mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall (n = 72)</td>
<td>VG Index</td>
<td>-</td>
<td>-0.29 0.01</td>
<td>-0.32 0.00</td>
<td>0.37 0.01</td>
</tr>
<tr>
<td>Implant weight</td>
<td>-0.29</td>
<td>0.01</td>
<td>-</td>
<td>0.01</td>
<td>0.97</td>
</tr>
<tr>
<td>Implant area</td>
<td>-0.12</td>
<td>0.28</td>
<td>0.32 0.00</td>
<td>-</td>
<td>0.37</td>
</tr>
<tr>
<td>SC area</td>
<td>-0.18</td>
<td>0.12</td>
<td>0.01 0.97</td>
<td>0.37 0.01</td>
<td>-</td>
</tr>
<tr>
<td>Control (n = 5)</td>
<td>VG Index</td>
<td>-</td>
<td>-0.02 0.98</td>
<td>0.41 0.37</td>
<td>0.24 0.61</td>
</tr>
<tr>
<td>Implant weight</td>
<td>0.02</td>
<td>0.98</td>
<td>-</td>
<td>-0.83 0.02</td>
<td>-0.88 0.01</td>
</tr>
<tr>
<td>Implant area</td>
<td>0.41</td>
<td>0.37</td>
<td>-0.83 0.02</td>
<td>-</td>
<td>0.89 0.01</td>
</tr>
<tr>
<td>SC area</td>
<td>0.24</td>
<td>0.61</td>
<td>-0.88 0.01</td>
<td>0.89 0.01</td>
<td>-</td>
</tr>
<tr>
<td>EGF-L (n = 6)</td>
<td>VG Index</td>
<td>-</td>
<td>-0.57 0.19</td>
<td>-0.07 0.89</td>
<td>-0.36 0.42</td>
</tr>
<tr>
<td>Implant weight</td>
<td>-0.57</td>
<td>0.19</td>
<td>-</td>
<td>-0.64 0.12</td>
<td>-0.51 0.25</td>
</tr>
<tr>
<td>Implant area</td>
<td>-0.07</td>
<td>0.89</td>
<td>-0.64 0.12</td>
<td>-</td>
<td>0.92 0.00</td>
</tr>
<tr>
<td>SC area</td>
<td>-0.36</td>
<td>0.42</td>
<td>-0.51 0.25</td>
<td>0.92 0.00</td>
<td>-</td>
</tr>
<tr>
<td>EGF-H (n = 7)</td>
<td>VG Index</td>
<td>-</td>
<td>-0.79 0.04</td>
<td>-0.70 0.08</td>
<td>-0.42 0.04</td>
</tr>
<tr>
<td>Implant weight</td>
<td>-0.79</td>
<td>0.04</td>
<td>-</td>
<td>0.53 0.22</td>
<td>0.45 0.31</td>
</tr>
<tr>
<td>Implant area</td>
<td>-0.70</td>
<td>0.08</td>
<td>0.53 0.22</td>
<td>-</td>
<td>-0.16 0.74</td>
</tr>
<tr>
<td>SC area</td>
<td>-0.42</td>
<td>0.04</td>
<td>0.45 0.31</td>
<td>-0.16 0.74</td>
<td>-</td>
</tr>
<tr>
<td>GDNF-L (n = 7)</td>
<td>VG Index</td>
<td>-</td>
<td>-0.86 0.01</td>
<td>0.35 0.45</td>
<td>0.27 0.56</td>
</tr>
<tr>
<td>Implant weight</td>
<td>-0.86</td>
<td>0.01</td>
<td>-</td>
<td>0.05 0.92</td>
<td>0.04 0.93</td>
</tr>
<tr>
<td>Implant area</td>
<td>0.35</td>
<td>0.45</td>
<td>0.05 0.92</td>
<td>-</td>
<td>0.01 0.98</td>
</tr>
<tr>
<td>SC area</td>
<td>0.27</td>
<td>0.56</td>
<td>0.04 0.93</td>
<td>0.01 0.98</td>
<td>-</td>
</tr>
<tr>
<td>GDNF-H (n = 6)</td>
<td>VG Index</td>
<td>-</td>
<td>0.64 0.12</td>
<td>0.92 0.00</td>
<td>-0.32 0.49</td>
</tr>
<tr>
<td>Implant weight</td>
<td>0.64</td>
<td>0.12</td>
<td>-</td>
<td>0.47 0.28</td>
<td>-0.47 0.28</td>
</tr>
<tr>
<td>Implant area</td>
<td>0.92</td>
<td>0.00</td>
<td>0.47 0.28</td>
<td>-</td>
<td>-0.48 0.28</td>
</tr>
<tr>
<td>SC area</td>
<td>-0.32</td>
<td>0.49</td>
<td>-0.47 0.28</td>
<td>-0.48 0.28</td>
<td>-</td>
</tr>
</tbody>
</table>

Vesicular gland (VG) index (% weight of VG/body weight); epidermal growth factor (EGF); glial-derived neurotrophic factor (GDNF).
The high (H) and low (L) doses of the same growth factor groups were compared with each other.
Each group was also compared with the control.
Pearson's correlation coefficients \((r)\) were considered significant when \(P < 0.05\).
6.4.2 **Histological Evaluations**

6.4.2.1 **Implant Area**

An effect of time on implant area, measured at the widest cross-section of the samples, was observed in all groups \((P < 0.05; \text{Fig. 6.4 and 6.5})\). Overall, the implant area of 1 and 2 wk samples was smaller \((P < 0.05)\) than that of 4 and 8 wk samples. An effect of treatment on implant area was observed in EGF-L, FGF2, and SCF groups, and in GDNF-L vs. GDNF-H groups \((P < 0.05; \text{Fig. 6.4A, 6.5A, 6.5E, and 6.4F, respectively})\). Among groups, the implant area in EGF-L and SCF groups at 8 wk was larger than that in control \((7.60 \pm 0.4 \text{ mm}^2; P < 0.05; \text{Fig. 6.4A and 6.5E})\). Interactions were observed between the effects of time and treatment for implants area in control vs. GDNF-H, EGF-L vs. EGF-H, and GDNF-L vs. GDNF-H \((P < 0.05; \text{Fig. 6.4E, 6.4C, and 6.4F, respectively})\). The area of implants was larger in EGF-H than EGF-L at 2 wk and larger in GDNF-H than control at 1 wk, while at 8 wk it was smaller in GDNF-H than both GDNF-L and control \((P < 0.05; \text{Fig. 6.4})\). At 8 wk, the overall area of implants positively correlated with the implants weight \((r = 0.32; P < 0.05)\). Among individual groups, this correlation was strongly negative in the control \((r = -0.83; P < 0.05)\), while it was strongly positive in LIF \((r = 0.88; P < 0.05; \text{Tables 6.3 and 6.4})\). The implant area and VG index were correlated only in GDNF-H group \((r = 0.92; P < 0.005)\) and VEGF \((r = -0.87; P < 0.05; \text{Table 6.3 and 6.4})\).

6.4.2.2 **General Development/Regeneration of Testis Tissue**

Upon histological examination, a total of 500 out of 563 retrieved implants (89%) had at least some level of *de novo* regenerated testis parenchyma. Typical development observed in implants at 1 wk included enclosure within a defined connective tissue capsule, and the presence of random cellular arrangements (Fig. 6.6A). In some implants at 1 wk post-implantation, the formation of seminiferous cords (SC) was also evident, which first appeared at the periphery of implants. At 2 wk post-implantation, individual implants typically had both random cellular arrangements and SC formations at the same time (Fig. 6.6B). At 4 wk, the area covered by random cellular arrangements was reduced and, especially at 8 wk, was replaced by cordal/tubular structures, and occasionally by rete testis-like formations (Fig. 6.6C-D). The overall percentage of implants with regenerated
testis tissue ranged from 82% to 93%, which did not differ among groups or over time ($P > 0.05$; Table 6.5).
Fig. 6.4. The implant areas (mm2) measured at the widest cross-section in (A-C) epidermal growth factor (EGF) and (D-F) glial-derived neurotrophic factor (GDNF) samples over time. Two doses of each growth factor were evaluated, low dose (20 ng/mL of cells): (A) EGF-L and (D) GDNF-L, and high dose (2 mg/mL of cells): (B) EGF-H and (E) GDNF-H. The implant areas were compared with the control and between the doses (low vs. high) (C) and (F). The growth factors were added to the neonatal porcine testis cell aggregates (~100 × 106 cells) before implantation under the back skin of recipient mice (n = 7 per group). The control implants received no growth factor. Implants were retrieved at 1, 2, 4, and 8 wk post-implantation. Data are mean ± SEM. ab Data with different letters between treatments differ significantly (P < 0.05). $^{xyz/X'/Y'}$ Data with different letters over time differ significantly (P < 0.05).
Fig. 6.5. The implant areas (mm2) measured at the widest cross-section in the (A) basic fibroblast growth factor (FGF2), (B) fibroblast growth factor 9 (FGF9), (C) vascular endothelial growth factor (VEGF), (D) leukemia inhibitory factor (LIF), (E) stem cell factor (SCF), and (F) retinoic acid (RA) groups over time. The implant areas were compared with the control and over time. The growth factors were added to the neonatal porcine testis cell aggregates (~100 × 10^6 cells) before implantation under the back skin of recipient mice (n = 7 per group). The control implants received no growth factor. Implants were retrieved at 1, 2, 4, and 8 wk post-implantation. Data are mean ± SEM. a Data with different letters between treatments differ significantly (P < 0.05). xy Data with different letters over time differ significantly (P < 0.05).
Table 6.4. Relationships among the recipient mouse vesicular gland index, implant weight, implant area, and seminiferous cord area at euthanasia (8 wk post-implantation) in FGF2, FGF9, LIF, SCF, and RA groups of implants.

<table>
<thead>
<tr>
<th>Group (No. mice)</th>
<th>Variable</th>
<th>VG Index (%)</th>
<th>Implant weight (mg)</th>
<th>Implant area (mm2)</th>
<th>SC area (mm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>r</td>
<td>P</td>
<td>r</td>
<td>P</td>
</tr>
<tr>
<td>FGF2 ($n = 7$)</td>
<td>VG Index</td>
<td>-</td>
<td>-</td>
<td>0.18</td>
<td>0.70</td>
</tr>
<tr>
<td></td>
<td>Implant weight</td>
<td>0.18</td>
<td>0.70</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Implant area</td>
<td>0.69</td>
<td>0.09</td>
<td>0.43</td>
<td>0.34</td>
</tr>
<tr>
<td></td>
<td>SC area</td>
<td>-0.18</td>
<td>0.70</td>
<td>0.19</td>
<td>0.68</td>
</tr>
<tr>
<td>FGF9 ($n = 7$)</td>
<td>VG Index</td>
<td>-</td>
<td>-</td>
<td>-0.27</td>
<td>0.56</td>
</tr>
<tr>
<td></td>
<td>Implant weight</td>
<td>-0.27</td>
<td>0.56</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Implant area</td>
<td>-0.05</td>
<td>0.92</td>
<td>0.26</td>
<td>0.57</td>
</tr>
<tr>
<td></td>
<td>SC area</td>
<td>0.21</td>
<td>0.65</td>
<td>-0.26</td>
<td>0.58</td>
</tr>
<tr>
<td>VEGF ($n = 6$)</td>
<td>VG Index</td>
<td>-</td>
<td>-</td>
<td>0.19</td>
<td>0.69</td>
</tr>
<tr>
<td></td>
<td>Implant weight</td>
<td>0.19</td>
<td>0.69</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Implant area</td>
<td>-0.87</td>
<td>0.11</td>
<td>-0.09</td>
<td>0.85</td>
</tr>
<tr>
<td></td>
<td>SC area</td>
<td>0.25</td>
<td>0.59</td>
<td>0.25</td>
<td>0.59</td>
</tr>
<tr>
<td>LIF ($n = 7$)</td>
<td>VG Index</td>
<td>-</td>
<td>-</td>
<td>0.44</td>
<td>0.32</td>
</tr>
<tr>
<td></td>
<td>Implant weight</td>
<td>0.44</td>
<td>0.32</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Implant area</td>
<td>0.24</td>
<td>0.61</td>
<td>0.88</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>SC area</td>
<td>-0.02</td>
<td>0.97</td>
<td>0.42</td>
<td>0.35</td>
</tr>
<tr>
<td>SCF ($n = 7$)</td>
<td>VG Index</td>
<td>-</td>
<td>-</td>
<td>-0.37</td>
<td>0.41</td>
</tr>
<tr>
<td></td>
<td>Implant weight</td>
<td>-0.37</td>
<td>0.41</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Implant area</td>
<td>0.05</td>
<td>0.92</td>
<td>0.32</td>
<td>0.49</td>
</tr>
<tr>
<td></td>
<td>SC area</td>
<td>0.26</td>
<td>0.58</td>
<td>-0.16</td>
<td>0.73</td>
</tr>
<tr>
<td>RA ($n = 7$)</td>
<td>VG Index</td>
<td>-</td>
<td>-</td>
<td>0.06</td>
<td>0.90</td>
</tr>
<tr>
<td></td>
<td>Implant weight</td>
<td>0.06</td>
<td>0.90</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Implant area</td>
<td>-0.69</td>
<td>0.09</td>
<td>0.21</td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td>SC area</td>
<td>-0.46</td>
<td>0.30</td>
<td>0.35</td>
<td>0.44</td>
</tr>
</tbody>
</table>

Vesicular gland (VG) index (% weight of VG/body weight); fibroblast growth factor (FGF2); fibroblast growth factor 9 (FGF9); vascular endothelial growth factor (VEGF); leukemia inhibitory factor (LIF); stem cell factor (SCF); retinoic acid (RA).

Each group was compared with the control.

Pearson’s correlation coefficients (r) were considered significant when $P < 0.05$.

Data for the control group is already included in Table 6.3.
Fig. 6.6. Representative histological photomicrographs demonstrating de novo morphogenesis of porcine testis tissue after implantation of porcine testis cell aggregates under the back skin of recipient mice. Each image represents a typical morphology observed at 1, 2, 4, and 8 wk post-implantation. (A) The morphogenesis at 1 wk was characterized by random cellular formations, demarcated in encapsulated areas. Note the initial formation of seminiferous cords starting from the periphery of the implants (white arrows). (B) More defined formation of seminiferous cords seen at 2 wk post-implantation; overall morphology of the cords starting to resemble seminiferous cords in intact testis tissue. The area occupied by the cords also continuously increased. (C) The random cellular formations diminished at 4 wk, and the implant area was almost entirely occupied by seminiferous cords. (D) The testis tissue underwent extensive morphological changes over time. The presence of large and irregularly shaped seminiferous cords become especially prominent at 8 wk post-implantation. Note also the presence of the rete testis-like structures, which initially developed in the center of implants and then branched radially over time (yellow arrows). (H&E Staining, Scale bar: 200 µm).
Table 6.5. The prevalence of testis tissue regeneration among implants of different groups and over time.

<table>
<thead>
<tr>
<th>Group</th>
<th>1 wk</th>
<th>2 wk</th>
<th>4 wk</th>
<th>8 wk</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>10/13 (77)</td>
<td>10/11 (91)</td>
<td>9/10 (90)</td>
<td>8/8 (100)</td>
<td>37/42 (88)</td>
</tr>
<tr>
<td>EGF-L</td>
<td>14/14 (100)</td>
<td>13/14 (93)</td>
<td>10/13 (77)</td>
<td>12/12 (100)</td>
<td>49/53 (93)</td>
</tr>
<tr>
<td>EGF-H</td>
<td>14/14 (100)</td>
<td>12/14 (86)</td>
<td>8/13 (62)</td>
<td>13/14 (93)</td>
<td>47/55 (86)</td>
</tr>
<tr>
<td>GDNF-L</td>
<td>14/14 (100)</td>
<td>9/11 (82)</td>
<td>9/10 (90)</td>
<td>11/12 (92)</td>
<td>43/47 (92)</td>
</tr>
<tr>
<td>GDNF-H</td>
<td>9/11 (82)</td>
<td>9/13 (69)</td>
<td>10/12 (83)</td>
<td>11/11 (100)</td>
<td>39/47 (83)</td>
</tr>
<tr>
<td>FGF2</td>
<td>11/12 (92)</td>
<td>12/14 (86)</td>
<td>12/14 (86)</td>
<td>14/14 (100)</td>
<td>49/54 (91)</td>
</tr>
<tr>
<td>FGF9</td>
<td>13/13 (100)</td>
<td>11/14 (79)</td>
<td>13/14 (93)</td>
<td>12/14 (86)</td>
<td>49/55 (89)</td>
</tr>
<tr>
<td>VEGF</td>
<td>12/14 (86)</td>
<td>13/14 (93)</td>
<td>11/12 (92)</td>
<td>12/12 (100)</td>
<td>48/52 (92)</td>
</tr>
<tr>
<td>LIF</td>
<td>10/13 (77)</td>
<td>13/13 (100)</td>
<td>11/13 (85)</td>
<td>14/14 (100)</td>
<td>48/53 (91)</td>
</tr>
<tr>
<td>SCF</td>
<td>9/14 (64)</td>
<td>13/14 (93)</td>
<td>9/12 (75)</td>
<td>12/12 (100)</td>
<td>43/52 (83)</td>
</tr>
<tr>
<td>RA</td>
<td>12/13 (92)</td>
<td>11/14 (79)</td>
<td>12/13 (92)</td>
<td>13/13 (100)</td>
<td>48/53 (91)</td>
</tr>
<tr>
<td>Total</td>
<td>128/145 (88.2)</td>
<td>126/146 (85.1)</td>
<td>114/136 (83.8)</td>
<td>132/136 (97.1)</td>
<td>500/563 (88.8)</td>
</tr>
</tbody>
</table>

Data are the number and % of implants showing de novo morphogenesis of testis tissue among the retrieved samples at each time point.

Epidermal growth factor (EGF); glial-derived neurotrophic factor (GDNF); fibroblast growth factor (FGF2); fibroblast growth factor 9 (FGF9); vascular endothelial growth factor (VEGF); leukemia inhibitory factor (LIF); stem cell factor (SCF); retinoic acid (RA).

The high (H) and low (L) doses of the same growth factor groups were compared with each other.

Each group was also compared with the control.

The data were compared using the Chi-square tests.

The data did not differ \(P > 0.05 \) among all compared groups.
6.4.2.3 Formation of Seminiferous Cords (SC)

6.4.2.3.1 First Appearance and Prevalence of SC in Implants

Implants displaying SC formation appeared as early as 1 wk post-implantation (earliest) in implants from recipient mice of all groups, except RA, in which the earliest implants with SC were observed at 2 wk (Table 6.6). Compared with the control, first appearance of SC in implants was advanced in all groups, except LIF and RA groups. All implants in all group contained SC by 4 wk, except those in RA group with some implants showing SC as late as 8 wk. Although, the overall number of implants with SC did not differ among groups ($P > 0.05$), 1 wk implants in RA group contained no SC (0%), which was different from the control (30%, $P < 0.05$), and those in EGF-L group had less SC (14%) than EGF-H (64%, $P < 0.01$). At 2 wk, more implants in RA and FGF2 groups had developed SC than in controls (91% and 92%, respectively vs. 50%; Table 6.6).

6.4.2.3.2 SC Area in Implants

The area occupied by SC in implants (% relative to the total implant area) increased at each examined time point (i.e., from 2 to 4 wk, and from 4 to 8 wk) in all groups ($P < 0.05$; Fig. 6.7 and 6.8). An effect of treatment on the SC area was observed for GDNF-L, FGF2 groups and in GDNF-L vs. GDNF-H groups ($P < 0.05$; Fig. 6.7D, 6.8A, and 6.7F, respectively). The SC area in 2 and 4 wk GDNF-L implants was larger than both the control and GDNF-H groups (Fig. 6.7D and 6.7F). Overall, there was a positive correlation between SC area and implant area ($r = 0.37; P < 0.05$). Among the groups, this correlation was strongly positive for the control ($r = 0.89; P < 0.01$) and EGF-L groups ($r = 0.92; P < 0.01$). However, SC area in control implants had a strongly negative correlation with implants weight ($r = -0.88; P < 0.05$; Table 6.3).
Table 6.6. The prevalence and first appearance of seminiferous cord formations among implants from different groups.

<table>
<thead>
<tr>
<th>Group</th>
<th>No. implants with SC/total implants (%)</th>
<th>First appearance (wk)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 wk</td>
<td>2 wk</td>
</tr>
<tr>
<td>Control</td>
<td>3/10 (30)</td>
<td>5/10 (50)</td>
</tr>
<tr>
<td>EGF-L</td>
<td>2/14 (14)</td>
<td>10/13 (77)</td>
</tr>
<tr>
<td>EGFR-H</td>
<td>9/14 (64)††</td>
<td>6/12 (50)</td>
</tr>
<tr>
<td>GDNF-L</td>
<td>9/14 (64)</td>
<td>8/9 (89)</td>
</tr>
<tr>
<td>GDNF-H</td>
<td>5/9 (56)</td>
<td>6/9 (67)</td>
</tr>
<tr>
<td>FGF2</td>
<td>4/11 (36)</td>
<td>11/12 (92)*</td>
</tr>
<tr>
<td>FGF9</td>
<td>5/13 (39)</td>
<td>9/11 (82)</td>
</tr>
<tr>
<td>VEGF</td>
<td>5/12 (42)</td>
<td>10/13 (77)</td>
</tr>
<tr>
<td>LIF</td>
<td>3/10 (30)</td>
<td>8/13 (62)</td>
</tr>
<tr>
<td>SCF</td>
<td>3/9 (33)</td>
<td>8/13 (62)</td>
</tr>
<tr>
<td>RA</td>
<td>0/12 (0)*</td>
<td>10/11 (91)*</td>
</tr>
<tr>
<td>Total</td>
<td>48/128</td>
<td>91/126</td>
</tr>
</tbody>
</table>

Data are the prevalence of seminiferous cord (SC) formations and their first appearance among implants showing de novo morphogenesis of testis tissue at each time point.

Epidermal growth factor (EGF); glial-derived neurotrophic factor (GDNF); fibroblast growth factor (FGF2); fibroblast growth factor 9 (FGF9); vascular endothelial growth factor (VEGF); leukemia inhibitory factor (LIF); stem cell factor (SCF); retinoic acid (RA).

The high (H) and low (L) doses of the same growth factor groups were compared with each other.

Each group was also compared with the control.

The data were compared using the Chi-square tests.

The first appearance of SC was assessed based on their first occurrence; earliest, the midpoint of occurrence; median, and the last occurrence from all implant retrieved in a single recipient.

* $P < 0.05$ compared to the control.

†† $P < 0.01$ compared to the lower dose.
Fig. 6.7. The area occupied by seminiferous cords (SC) relative to the total implant area (%), measured at the widest cross-section of samples over time in (A-C) epidermal growth factor (EGF) and (D-F) glial-derived neurotrophic factor (GDNF) groups. Two doses of each growth factor were evaluated, low dose (20 ng/mL of cells): (A) EGF-L and (D) GDNF-L, and high dose (2 mg/mL of cells): (B) EGF-H and (E) GDNF-H. The SC% areas were compared with the control and between the doses (low vs. high) (C) and (F). The growth factors were added to the neonatal porcine testis cell aggregates (~100 x 10^6 cells) before implantation under the back skin of recipient mice (n = 7 per group). The control implants received no growth factor. Implants were retrieved at 1, 2, 4, and 8 wk post-implantation, although the SC area developed in implants retrieved at 1 wk was excluded in this analysis. Data are mean ± SEM. Data with different letters between treatments differ significantly (P < 0.05).
Fig. 6.8. The area occupied by seminiferous cords (SC) relative to the total implant area (%), measured at the widest cross-section of samples over time in the (A) basic fibroblast growth factor (FGF2), (B) fibroblast growth factor 9 (FGF9), (C) vascular endothelial growth factor (VEGF), (D) leukemia inhibitory factor (LIF), (E) stem cell factor (SCF), and (F) retinoic acid (RA) groups. The SC% areas of each group were compared with the control. The growth factors were added to the neonatal porcine testis cell aggregates (~100 ×10^6 cells) before implantation under the back skin of recipient mice (n = 7 per group). The control implants received no growth factor. Implants were retrieved at 1, 2, 4, and 8 wk post-implantation, although the SC area developed in implants retrieved at 1 wk was excluded in this analysis. Data are mean ± SEM. ab Data with different letters between treatments differ significantly (P < 0.05). xyz Data with different letters over time differ significantly (P < 0.05). *** The main effect of treatment was significant (P < 0.05), but no individual group differed (P > 0.05) at post-hoc analysis.
6.4.2.3.3 Classification of SC

Upon histological examination, SC within the retrieved implants displayed various morphology which could be classified into four types: 1) *regular* SC, referring to those with a normal morphology, typical of SC in the donor neonatal porcine testis tissue (diameter: 48.7 ± 0.2 µm, range: 34.4-57.4 µm, $n = 500$ SC; Fig. 6.9A); 2) *irregular* SC, with obvious branching, not normally observed in the donor testis tissue (149.7 ± 1.6 µm, 76.8-259.2 µm, $n = 500$; Fig. 6.9B); 3) *enlarged* SC, characterized by considerably larger diameter than age-matched regular SC (132.4 ± 1.0 µm, 63.3-237.2 µm, $n = 500$; Fig. 6.9C); and 4) *aberrant* SC, or SC-like structures completely or partially enclosed by a cuboidal cell lining (94.7 ± 1.6 µm, 38.6-199.9 µm, $n = 500$; Fig. 6.9D).

Relative prevalence of each SC type within implants ranged from 0% to 100%. When the relative prevalence of SC types within implants of all examined time points were combined (*i.e.*, 2, 4, and 8 wk, $n = 822$), regular and enlarged SC were more prevalent (~30% each, $P < 0.005$) than irregular and aberrant SC (23% and 18%, respectively) (Fig. 6.10A). Similarly, the overall area of implants covered by regular SC was greatest (39 ± 2%, $P < 0.0005$), followed irregular and enlarged SC (26 ± 2% and 25 ± 2%, respectively), and aberrant SC (10 ± 1%) (Fig. 6.10C).

(a) Regular SC

The overall prevalence of the regular type of SC was 100% (41/41 implants) at 1 wk, and 97% (88/91) at 2 wk, but dropped ($P < 0.0005$) to 45% of implants at 4 wk post-implantation. Among different groups at 4 wk, this prevalence was lower (0%, $P < 0.0005$) in both GDNF-H and RA groups than in control (78%), and also lower in GNDF-H than in GNDF-L group (0% vs. 78%, $P < 0.0005$). At 8 wk, the prevalence of regular SC was higher in FGF2, VEGF, LIF, and SCF groups than in control ($P < 0.05$; Fig. 6.10B and Table 6.7).

The overall area occupied by regular SC decreased over time ($P < 0.0005$), from 91% at 2 wk to 21% and 19% at 4 and 8 wk, respectively ($P < 0.005$). Among individual groups at 4 wk, this area was smaller ($P < 0.01$) in FGF9, GDNF-H, and RA groups than in control, and also smaller ($P < 0.005$) in GDNF-H than GDNF-L group. At 8 wk, this area was larger ($P < 0.005$) in FGF2 group than in control, and greater in EGF-L than EGF-H group (Fig. 6.10D and Table 6.7).
(b) Irregular SC

The first irregular SC was observed at 2 wk in only ~1% of implants (1/91), but their prevalence rapidly increased ($P < 0.005$) to 70% and 83% at 4 and 8 wk, respectively. Consequently, compared with regular SC, the prevalence of irregular SC was lower ($P < 0.005$) at 2 wk, but higher ($P < 0.005$) at 4 and 8 wk post-implantation. Irregular SC were conspicuously absent in RA (0% of implants) at 4 wk and therefore lower ($P < 0.005$) than the control (89%). On the other hand, this prevalence at 8 wk was 100% for both GDNF-L and RA, and hence higher than the control (63%; $P < 0.005$; Fig. 6.10B and Table 6.7).

The overall area of implants occupied by irregular SC increased over time ($P < 0.0005$), from 1 wk (1%) to 4 and 8 wk (35%), where at 8 wk it was highest among all SC types ($P < 0.0005$; Fig. 6.10D). Among individual groups at 8 wk, this area was larger ($P < 0.005$) in both EGF-H and GDNF-H groups than in their respective low-dose groups (Fig. 6.10D and Table 6.7).

(c) Enlarged SC

The overall prevalence of enlarged SC in implants was highest at 4 wk (97%), followed by 8 wk (89%, $P < 0.05$), and was lowest at 2 wk (20%, $P < 0.0005$) (Fig. 6.10B). Compared with regular SC, enlarged SC were also less prevalent at 2 wk ($P < 0.0005$), but most prevalent at both 4 and 8 wk ($P < 0.005$). At 2 wk, no enlarged SC were observed in implants of RA, GDNF-L, EGF-H, and FGF9 groups, while their prevalence ranged between 13% and 60% among other groups. At 2 wk, more implants had enlarged SC in EGF-L than in EGF-H ($P < 0.04$). At 8 wk, multiple groups had enlarged SC in all (100%) their implants (i.e., GDNF-L, FGF2, LIF, SCF, and RA) and therefore differed from the control (63%; $P < 0.005$; Fig. 6.10B and Table 6.7).

The overall area of implants containing enlarged SC was larger ($P < 0.005$) at 4 wk (43%) than at 2 wk (8%) and 8 wk (23%). At 4 wk, enlarged SC covered the largest area ($P < 0.0005$) among all SC types. Among individual groups, this area was larger in RA (100%) than in the control (28%, $P < 0.0005$; Fig. 6.10D and Table 6.7).
(d) Aberrant SC

The aberrant type of SC first appeared at 4 wk in 22% of combined implants but this prevalence increased to 91% at 8 wk ($P < 0.0005$). Compared with regular SC, the prevalence of aberrant SC was lower at 4 wk ($P < 0.0005$) and higher at 8 wk ($P < 0.0005$). At 4 wk, while no aberrant SC (0%) were observed in implants of the control, GDNF-L, or RA groups, this prevalence was higher ($P < 0.05$) in EGF-H (30%), SCF (44%), and FGF9 (69%) groups, as compared with the control. At 8 wk, implants of all groups had aberrant SC, ranging from 71% to 100%, which did not differ among groups ($P < 0.05$; Fig. 6.10B and Table 6.7).

The area of aberrant SC in combined implants at 4 wk was only 1%, but increased to 23% at 8 wk ($P < 0.0005$). Compared with the area of other SC types at 4 wk, aberrant SC covered the least area ($P < 0.05$). Among the groups at 8 wk, the area of aberrant SC was smaller ($P < 0.05$) in FGF2 (5%), LIF (10%), and RA (10%) groups than in the control (35%; Fig. 6.10D and Table 6.7).
Fig. 6.9. Representative histological photomicrographs demonstrating typical morphology of seminiferous cords (SC) classified into: (A) regular (rSC), (B) irregular (irSC), (C) enlarged (eSC), and (D) aberrant seminiferous cords (abSC). Additional observed structures in the implants included (E) rete testis-like structure (RT) and (F) fluid-filled cavities (FFC). (H&E Staining, Scale bar: 50µm (A-E) and 200 µm (F)). Also see Appendix B.1 for representative normal morphology of testis tissue cross-sections from pigs at different developmental stages.
Fig. 6.10. The prevalence (%) of different types of seminiferous cords (SC) as well as their relative area (% compared with the total implant area), measured at the widest cross-section of samples. (A) The overall prevalence (%) of different types of SC in all implants, and (B) their prevalence at each time point. (C) The overall relative area occupied by different types of SC in all implants, and (D) their relative area at each time point. The data for the prevalence and area were analyzed using Chi-Square test and one-way ANOVA, respectively. Data are the relative number of observations (% ± SEM). * The regular type of SC as the basis of comparison. abc Data with different letters between treatments differ significantly ($P < 0.05$). xyz Data with different letters differ significantly over time ($P < 0.05$).
Table 6.7. The prevalence of each type of seminiferous cords and their relative area among implants of different groups.

<table>
<thead>
<tr>
<th>Group</th>
<th>Wk</th>
<th>No. (%)</th>
<th>Area (%)</th>
<th>No. (%)</th>
<th>Area (%)</th>
<th>No. (%)</th>
<th>Area (%)</th>
<th>No. (%)</th>
<th>Area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>2</td>
<td>5/5 (100)</td>
<td>90±10</td>
<td>0/5 (0)</td>
<td>0/5 (0)</td>
<td>1/5 (20)</td>
<td>0/5 (0)</td>
<td>0/5 (0)</td>
<td>0/5 (0)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>7/9 (78)</td>
<td>32±9</td>
<td>8/9 (89)</td>
<td>36±8</td>
<td>9/9 (100)</td>
<td>33±7</td>
<td>9/9 (100)</td>
<td>0/9 (0)</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1/8 (13)</td>
<td>6/8 (63)</td>
<td>31±12</td>
<td>5/8 (63)</td>
<td>28±9</td>
<td>7/8 (88)</td>
<td>35±12</td>
<td></td>
</tr>
<tr>
<td>EGF-L</td>
<td>2</td>
<td>9/10 (90)</td>
<td>78±11</td>
<td>0/10 (0)</td>
<td>0/10 (0)</td>
<td>5/10 (50)</td>
<td>22±8</td>
<td>0/10 (0)</td>
<td>0/10 (0)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5/10 (50)</td>
<td>29±11</td>
<td>9/10 (90)</td>
<td>42±10</td>
<td>9/10 (90)</td>
<td>28±7</td>
<td>3/10 (30)</td>
<td>4±1</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>6/12 (50)</td>
<td>24±9</td>
<td>6/12 (50)</td>
<td>16±7</td>
<td>7/12 (58)</td>
<td>15±6</td>
<td>12/12 (100)</td>
<td>45±10</td>
</tr>
<tr>
<td>EGF-H</td>
<td>2</td>
<td>6/6 (100)</td>
<td>100</td>
<td>0/6 (0)</td>
<td>- (-)</td>
<td>0/6 (0)</td>
<td>0/6 (0)</td>
<td>0/6 (0)</td>
<td>0/6 (0)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5/8 (63)</td>
<td>10±6</td>
<td>4/8 (50)</td>
<td>36±14</td>
<td>8/8 (100)*</td>
<td>53±14</td>
<td>3/8 (38)*</td>
<td>1±0.4</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>3/13 (23)</td>
<td>4±3†</td>
<td>11/13 (85)</td>
<td>49±9††</td>
<td>11/13 (84)</td>
<td>14±4</td>
<td>13/13 (100)</td>
<td>37±10</td>
</tr>
<tr>
<td>GDNF-L</td>
<td>2</td>
<td>8/8 (100)</td>
<td>100</td>
<td>0/8 (0)</td>
<td>0/8 (0)</td>
<td>0/8 (0)</td>
<td>0/8 (0)</td>
<td>0/8 (0)</td>
<td>0/8 (0)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>7/9 (78)</td>
<td>46±11</td>
<td>6/9 (67)</td>
<td>36±12</td>
<td>9/9 (100)</td>
<td>18±3</td>
<td>9/9 (100)</td>
<td>0/9 (0)</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>4/11 (36)</td>
<td>14±7</td>
<td>11/11 (100)*</td>
<td>29±4</td>
<td>11/11 (100)*</td>
<td>27±6</td>
<td>11/11 (100)*</td>
<td>31±9</td>
</tr>
<tr>
<td>GDNF-H</td>
<td>2</td>
<td>6/6 (100)</td>
<td>92±8</td>
<td>0/6 (0)</td>
<td>0/6 (0)</td>
<td>1/6 (17)</td>
<td>8/6 (8)</td>
<td>0/6 (0)</td>
<td>0/6 (0)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0/10 (0)***</td>
<td>0±0††</td>
<td>9/10 (90)</td>
<td>59±10</td>
<td>9/10 (90)</td>
<td>33±10</td>
<td>1/10 (10)</td>
<td>0.30</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>2/11 (19)</td>
<td>13±9</td>
<td>10/11 (91)</td>
<td>52±10†</td>
<td>10/11 (91)</td>
<td>24±8</td>
<td>9/11 (82)</td>
<td>12±3</td>
</tr>
<tr>
<td>FGF2</td>
<td>2</td>
<td>11/11 (100)</td>
<td>98±1</td>
<td>0/11 (0)</td>
<td>0/11 (0)</td>
<td>3/11 (27)</td>
<td>2±1</td>
<td>0/11 (0)</td>
<td>0/11 (0)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>6/12 (50)</td>
<td>22±9</td>
<td>9/10 (90)</td>
<td>30±9</td>
<td>12/12 (100)</td>
<td>47±7</td>
<td>2/12 (17)</td>
<td>1±1</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>14/14 (100)**</td>
<td>53±6**</td>
<td>12/14 (86)</td>
<td>21±5</td>
<td>14/14 (100)**</td>
<td>20±3</td>
<td>12/14 (86)</td>
<td>5±1**</td>
</tr>
<tr>
<td>FGF9</td>
<td>2</td>
<td>9/9 (100)</td>
<td>100</td>
<td>0/9 (0)</td>
<td>0/9 (0)</td>
<td>0/9 (0)</td>
<td>0/9 (0)</td>
<td>0/9 (0)</td>
<td>0/9 (0)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5/13 (39)</td>
<td>11±4*</td>
<td>12/13 (92)</td>
<td>33±6</td>
<td>13/13 (100)</td>
<td>52±6</td>
<td>9/13 (69)**</td>
<td>4±1</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>3/12 (25)</td>
<td>9±5</td>
<td>9/12 (75)</td>
<td>33±7</td>
<td>10/12 (83)</td>
<td>21±5</td>
<td>12/12 (100)</td>
<td>37±10</td>
</tr>
<tr>
<td>VEGF</td>
<td>2</td>
<td>9/10 (90)</td>
<td>70±12</td>
<td>1/10 (10)</td>
<td>10</td>
<td>6/10 (60)</td>
<td>21±9</td>
<td>0/10</td>
<td>0/10</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5/11 (46)</td>
<td>32±12</td>
<td>6/11 (55)</td>
<td>33±11</td>
<td>11/11 (100)</td>
<td>35±7</td>
<td>2/11 (18)</td>
<td>1±1</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>7/12 (58)*</td>
<td>21±8</td>
<td>11/12 (92)</td>
<td>32±7</td>
<td>10/12 (83)</td>
<td>19±4</td>
<td>11/12 (92)</td>
<td>29±7</td>
</tr>
<tr>
<td>LIF</td>
<td>2</td>
<td>7/8 (88)</td>
<td>88±13</td>
<td>0/8 (0)</td>
<td>0/8 (0)</td>
<td>1/8 (13)</td>
<td>13</td>
<td>0/8 (0)</td>
<td>0/8 (0)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5/10 (50)</td>
<td>24±8</td>
<td>10/10 (100)</td>
<td>54±10</td>
<td>8/10 (80)</td>
<td>22±9</td>
<td>1/10 (10)</td>
<td>1±1</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>9/14 (64)*</td>
<td>29±9</td>
<td>11/14 (79)</td>
<td>37±9</td>
<td>14/14 (100)*</td>
<td>24±4</td>
<td>10/14 (71)</td>
<td>10±3*</td>
</tr>
<tr>
<td>SCF</td>
<td>2</td>
<td>8/8 (100)</td>
<td>99±1</td>
<td>0/8 (0)</td>
<td>0/8 (0)</td>
<td>1/8 (13)</td>
<td>13</td>
<td>0/8 (0)</td>
<td>0/8 (0)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>6/9 (67)</td>
<td>35±12</td>
<td>8/9 (89)</td>
<td>35±9</td>
<td>9/9 (100)</td>
<td>27±6</td>
<td>4/9 (44)*</td>
<td>3±2</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>7/12 (58)*</td>
<td>26±9</td>
<td>11/12 (92)</td>
<td>26±6</td>
<td>12/12 (100)*</td>
<td>28±4</td>
<td>12/12 (100)</td>
<td>20±5</td>
</tr>
<tr>
<td>RA</td>
<td>2</td>
<td>10/10 (100)</td>
<td>100</td>
<td>0/10 (0)</td>
<td>0/10 (0)</td>
<td>0/10 (0)</td>
<td>0/10 (0)</td>
<td>0/10 (0)</td>
<td>0/10 (0)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0/12 (0)**</td>
<td>0±0**</td>
<td>0/12 (0)**</td>
<td>0±0**</td>
<td>0/12 (0)**</td>
<td>0±0**</td>
<td>0/12 (0)**</td>
<td>0±0**</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0/13 (0)</td>
<td>0/13 (100)*</td>
<td>58±6</td>
<td>13/13 (100)*</td>
<td>32±7</td>
<td>13/13 (100)</td>
<td>10±3*</td>
<td></td>
</tr>
</tbody>
</table>

Data are the prevalence (%) of different types of seminiferous cord (SC) and their relative area (%), compared with the total implant area, measured at the widest cross-section of samples.

Epidermal growth factor (EGF); glial-derived neurotrophic factor (GDNF); fibroblast growth factor 2 (FGF2); fibroblast growth factor 9 (FGF9); vascular endothelial growth factor (VEGF); leukemia inhibitory factor (LIF); stem cell factor (SCF); retinoic acid (RA).

The high (H) and low (L) doses of the same growth factor groups were compared with each other. Each group was also compared with the control.

Data are mean ± SEM.

The data were compared using the Chi-square and independent t-tests for the prevalence and area data, respectively.

* P < 0.05 compared to the control.

** P < 0.01 compared to the control.

†† P < 0.05 compared to the lower dose treatment.

† † P < 0.01 compared to the lower dose treatment.
6.4.2.3.4 Predominant Type of SC Per Group

We also combined the area covered by the same type of SC from different time points to determine the predominant type of SC per treatment group. Since SC development in most implants first appeared at 2 wk, we compared the overall area of SC types among groups by combing data from 2, 4, and 8 wk (1st approach). Because the high prevalence of regular SC at 2 wk masked the overall effect of other SC types, we also determined the predominant SC type for each group by combining the data from only 4 and 8 wk (2nd approach) (Table 6.8).

Analysis using the 1st approach showed that, with few exceptions, the overall area occupied by various types of SC in a given treatment group differed \((P < 0.05)\), where regular SC were the predominant type, making up 34-56% of all SC in EGF-L, GDNF-L, FGF2, FGF9, VEGF, LIF, and SCF groups \((P < 0.05)\). The exceptions included a lack of a difference for the overall area of SC types in EGF-H and control groups \((P > 0.05)\), and the predominance of irregular SC and enlarged SC types in GDNF-H and RA groups, respectively \((P < 0.05)\; Table 6.8)\).

Using the 2nd approach, the overall area occupied by various types of SC differed in most treatment groups \((P < 0.05)\), in which the predominant SC type was distributed among irregular SC (in EGF-H, GDNF-H, and LIF), enlarged SC (in FGF9 and RA), and regular SC (in FGF2), while regular and irregular SC had covered equal areas (each 30% in SCF; \(P < 0.05)\). The overall area of SC types did not differ in implants of the control, EGF-L, GDNF-L, and VEGF groups \((P > 0.05)\). RA was the only group that lacked regular SC (0%) and instead had the highest area of enlarged SC among all groups, and differed from the control \((P < 0.005)\; Table 6.8)\).

6.4.2.4 Relative Number of Gonocytes

The number of gonocytes relative to the number of Sertoli cells was calculated in 2 wk implants, because at this time point the implants had the most number of regular SC. The relative number of gonocytes in control was \(15 \pm 2\) per 1,000 Sertoli cells, and while it was numerically higher in all other groups, it was significantly higher only in RA \((27 \pm 3)\) compared with the control \((P < 0.05)\; Fig. 6.11).
Table 6.8. The predominant type of seminiferous cords per group, calculated based on two different approaches.

<table>
<thead>
<tr>
<th>Group</th>
<th>1<sup>st</sup> Approach: Overall at 2, 4, and 8 wk</th>
<th>2<sup>nd</sup> Approach: Overall at 4 and 8 wk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Type of SC (%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Regular</td>
<td>Irregular</td>
</tr>
<tr>
<td>Control</td>
<td>0.10</td>
<td>36 ± 8</td>
</tr>
<tr>
<td>EGF-L</td>
<td>0.01</td>
<td>41 ± 7*</td>
</tr>
<tr>
<td>EGF-H</td>
<td>0.41</td>
<td>27 ± 8</td>
</tr>
<tr>
<td>GDNF-L</td>
<td>0.00</td>
<td>49 ± 8a</td>
</tr>
<tr>
<td>GDNF-H</td>
<td>0.00</td>
<td>26 ± 8a</td>
</tr>
<tr>
<td>FGF2</td>
<td>0.00</td>
<td>56 ± 6a</td>
</tr>
<tr>
<td>FGF9</td>
<td>0.03</td>
<td>34 ± 7a</td>
</tr>
<tr>
<td>VEGF</td>
<td>0.00</td>
<td>39 ± 7a</td>
</tr>
<tr>
<td>LIF</td>
<td>0.00</td>
<td>42 ± 7a</td>
</tr>
<tr>
<td>SCF</td>
<td>0.00</td>
<td>49 ± 8a</td>
</tr>
<tr>
<td>RA</td>
<td>0.00</td>
<td>29 ± 8bc</td>
</tr>
</tbody>
</table>

Data are the predominant type of seminiferous cords (SC) per group, defined as the combined relative area (%) covered by the same type of SC from different time points, measured at the widest cross-section of samples. Two different approaches were used to calculate the values.

Epidermal growth factor (EGF); glial-derived neurotrophic factor (GDNF); fibroblast growth factor (FGF2); fibroblast growth factor 9 (FGF9); vascular endothelial growth factor (VEGF); leukemia inhibitory factor (LIF); stem cell factor (SCF); retinoic acid (RA).

Data are mean ± SEM.

The high (H) and low (L) doses of the same growth factor groups were compared with each other: independent t-test. Each group was also compared with the control: independent t-test.

Data from within the treatment groups were compared among SC types: one way ANOVA.

* P < 0.05 compared to the control.
** P < 0.01 compared to the control.
†† P < 0.01 compared to the lower dose treatment.

Data from within the treatment groups were compared among SC types: one way ANOVA.

* P < 0.05 compared to the control.
** P < 0.01 compared to the control.
†† P < 0.01 compared to the lower dose treatment.
Fig. 6.11. The relative number of gonocytes (per 1,000 Sertoli cells) in implants retrieved from different groups. (A) The gonocyte numbers were compared among implants treated with the epidermal growth factor (EGF) or glial-derived neurotrophic factor (GDNF) at either low doses (20 ng/mL of cells; EGF-L and GDNF-L), or high doses (2 mg/mL of cells; EGF-H and GDNF-H). The gonocyte numbers were compared with the control and between the doses (low vs. high). (B) The gonocyte numbers were also compared among implants treated with the basic fibroblast growth factor (FGF2), fibroblast growth factor 9 (FGF9), vascular endothelial growth factor (VEGF), leukemia inhibitory factor (LIF), stem cell factor (SCF), or retinoic acid (RA). The relative number of gonocytes in each group was compared with the control. The growth factors were added to the neonatal porcine testis cell aggregates (~100 ×10⁶ cells) before implantation under the back skin of recipient mice (n = 7 per group). The control implants received no growth factor. Implants were retrieved at 1, 2, 4, and 8 wk post-implantation, although the relative number of gonocytes was determined only in the implants retrieved at 2 wk. Data are expressed as mean ± SEM. ab Data with different letters differ significantly (P < 0.05). N.S No significant difference (P > 0.05) was observed between the low vs. high dose.
6.4.2.5 Rete Testis-Like Formation

In addition to the formation of SC, the implanted cells underwent reorganizations to form structures resembling the rete-testis (RT) and efferent ductules. The RT formations were typically observed at the center of implants, over time branched out radially, and were lined by cuboidal epithelial cells (Fig. 6.9E). Although not significantly different among groups ($P > 0.05$), RT appeared as early as 2 wk in implants of about half of the groups, the median point for RT appearance was 4 or 8 wk, and by 8 wk (latest) most but not all retrieved implants had RT. When data from different time points were pooled for each group, the prevalence of RT did not differ ($P > 0.05$) among groups, and RT was evident in 27-56% of implants in all groups. However, at 4 wk, more implants in GDNF-H group (100%) had RT than in control (67%), and more in EGF-L (80%) than in its high dose group ($P < 0.05$; Table 6.9).

6.4.2.6 Fluid-Filled Cavities

Fluid-filled cavities (FFC) were atypical morphological features observed in some implants, characterized by a space void of cellular organizations (originating from implanted cells), filled with fluid or occasionally with red blood cells (RBC) (Fig. 6.9F). The FFC were observed in ~10% of all implants (49/500) that displayed regeneration of testis tissue. The majority of FFC were only present at 1 wk, comprising 32% (41/128) of implants at this time point, or 84% (41/49) of all implants with FFC. Over time, the number and the diameter of FFC decreased ($P < 0.05$); they were present in 5% (6/126) of 2 wk implants or 12% of all implants with FFC, in 2% (2/114) of 4 wk implants or 4% of all implants with FFC, and none among the 8 wk implants. However, the overall prevalence of FFC, or that of individual groups vs. control, or among high vs. low dose groups did not differ ($P > 0.05$; Table 6.10).
<table>
<thead>
<tr>
<th>Group</th>
<th>No. implants with RT/total implants (%)</th>
<th>First appearance (wk)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Early</td>
</tr>
<tr>
<td></td>
<td>1 wk</td>
<td>2 wk</td>
<td>4 wk</td>
</tr>
<tr>
<td>Control</td>
<td>0/10 (0)</td>
<td>0/10 (0)</td>
<td>6/9 (67)</td>
</tr>
<tr>
<td>EGF-L</td>
<td>0/14 (0)</td>
<td>3/13 (23)</td>
<td>8/10 (80)</td>
</tr>
<tr>
<td>EGF-H</td>
<td>0/14 (0)</td>
<td>0/12</td>
<td>2/8 (25)*</td>
</tr>
<tr>
<td>GDNF-L</td>
<td>0/14 (0)</td>
<td>0/9 (0)</td>
<td>8/9 (89)</td>
</tr>
<tr>
<td>GDNF-H</td>
<td>0/9 (0)</td>
<td>1/9 (11)</td>
<td>10/10 (100)*</td>
</tr>
<tr>
<td>FGF2</td>
<td>0/11 (0)</td>
<td>2/12 (17)</td>
<td>8/12 (67)</td>
</tr>
<tr>
<td>FGF9</td>
<td>0/12 (0)</td>
<td>2/11 (18)</td>
<td>10/13 (77)</td>
</tr>
<tr>
<td>VEGF</td>
<td>0/12 (0)</td>
<td>0/13 (0)</td>
<td>6/11 (55)</td>
</tr>
<tr>
<td>LIF</td>
<td>0/10 (0)</td>
<td>1/13 (8)</td>
<td>5/11 (46)</td>
</tr>
<tr>
<td>SCF</td>
<td>0/9 (0)</td>
<td>0/13 (0)</td>
<td>8/9 (89)</td>
</tr>
<tr>
<td>RA</td>
<td>0/12 (0)</td>
<td>0/11 (0)</td>
<td>3/12 (25)</td>
</tr>
<tr>
<td>Total</td>
<td>0/128 (0)</td>
<td>9/126 (7.14)</td>
<td>74/114 (64.91)</td>
</tr>
</tbody>
</table>

Data are the prevalence of rete testis (RT) formations and their first appearance among implants showing de novo morphogenesis of testis tissue at each time point. Epidermal growth factor (EGF); glial-derived neurotrophic factor (GDNF); fibroblast growth factor (FGF2); fibroblast growth factor 9 (FGF9); vascular endothelial growth factor (VEGF); leukemia inhibitory factor (LIF); stem cell factor (SCF); retinoic acid (RA).

The high (H) and low (L) doses of the same growth factor groups were compared with each other. Each group was also compared with the control.

The data were compared using the Chi-square tests

The first appearance of RT was assessed based on their first occurrence; earliest, the midpoint of occurrence; median, and the last occurrence from all implant retrieved in a single recipient.

* $P < 0.05$ compared to the control.

† $P < 0.05$ compared to the lower dose.
Table 6.10. The prevalence of fluid-filled cavities among implants of different groups and over time.

<table>
<thead>
<tr>
<th>Group</th>
<th>1 wk</th>
<th>2 wk</th>
<th>4 wk</th>
<th>8 wk</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>2/10 (20)</td>
<td>2/10 (20)</td>
<td>0/9 (0)</td>
<td>0/8(0)</td>
<td>4/37 (11)</td>
</tr>
<tr>
<td>EGF-L</td>
<td>8/14 (57)</td>
<td>0/13 (0)</td>
<td>0/10 (0)</td>
<td>0/12 (0)</td>
<td>8/49 (16)</td>
</tr>
<tr>
<td>EGF-H</td>
<td>2/14 (14)</td>
<td>0/12 (0)</td>
<td>0/8 (0)</td>
<td>0/13 (0)</td>
<td>2/47 (4)</td>
</tr>
<tr>
<td>GDNF-L</td>
<td>7/14 (50)</td>
<td>0/9 (0)</td>
<td>0/9 (0)</td>
<td>0/11 (0)</td>
<td>7/43 (16)</td>
</tr>
<tr>
<td>GDNF-H</td>
<td>4/9 (44)</td>
<td>0/9 (0)</td>
<td>0/10 (0)</td>
<td>0/11 (0)</td>
<td>4/39 (10)</td>
</tr>
<tr>
<td>FGF2</td>
<td>0/11 (0)</td>
<td>0/12 (0)</td>
<td>0/12 (0)</td>
<td>0/14 (0)</td>
<td>0/49 (0)</td>
</tr>
<tr>
<td>FGF9</td>
<td>6/13 (46)</td>
<td>1/11 (9.10)</td>
<td>0/13 (0)</td>
<td>0/12 (0)</td>
<td>7/49 (14)</td>
</tr>
<tr>
<td>VEGF</td>
<td>7/12 (58)</td>
<td>0/13 (0)</td>
<td>0/11 (0)</td>
<td>0/12 (0)</td>
<td>7/48 (15)</td>
</tr>
<tr>
<td>LIF</td>
<td>3/10 (30)</td>
<td>0/13 (0)</td>
<td>0/11 (0)</td>
<td>0/14 (0)</td>
<td>3/48 (6)</td>
</tr>
<tr>
<td>SCF</td>
<td>2/9 (22)</td>
<td>3/13 (23)</td>
<td>0/9 (0)</td>
<td>0/12 (0)</td>
<td>5/43 (12)</td>
</tr>
<tr>
<td>RA</td>
<td>0/12 (0)</td>
<td>0/11 (0)</td>
<td>2/12 (17)</td>
<td>0/13 (0)</td>
<td>2/48 (4)</td>
</tr>
<tr>
<td>Total</td>
<td>41/128 (32.03)</td>
<td>6/126 (4.76)</td>
<td>2/114 (1.75)</td>
<td>0/132 (0)</td>
<td>49/500 (9.8)</td>
</tr>
</tbody>
</table>

Data are the number and % of implants showing fluid-filled cavities (FFC) among the retrieved samples at each time point.

Epidermal growth factor (EGF); glial-derived neurotrophic factor (GDNF); fibroblast growth factor (FGF2); fibroblast growth factor 9 (FGF9); vascular endothelial growth factor (VEGF); leukemia inhibitory factor (LIF); stem cell factor (SCF); retinoic acid (RA).

The high (H) and low (L) doses of the same growth factor groups were compared with each other.

Each group was also compared with the control.

The data were compared using the Chi-square test.

The data did not differ ($P > 0.05$) among all compared groups.
6.5 Discussion

In the present study, we investigated the effects of several growth factors on de novo morphogenesis of testis tissue after implantation of neonatal porcine testis cell aggregates in mice. With the exception of VEGF (Schmidt et al., 2006b; Dores and Dobrinski, 2014), the examined growth factors had not been previously studied using the TCI model. Hence, there was a lack of background information on choosing suitable doses of these growth factors, their efficient mode of treatment, or the expected outcomes. The growth factors we evaluated in this study are known to play an important role in testis development (Sordoillet et al., 1991; Mauduit et al., 1999; DiNapoli et al., 2006; Kim et al., 2006a; Zhou et al., 2008; Baltes-Breitwisch et al., 2010; Cool et al., 2011; Svingen and Koopman, 2013). Some of these growth factors, such as GDNF, FGF2, EGF, and LIF have long been used for in vitro maintenance and propagation of SSC (Kanatsu-Shinohara et al., 2003; Kubota et al., 2004a; Ryu et al., 2005; Kanatsu-Shinohara et al., 2007; Aponte et al., 2008). Due to a lack of comparable in vivo studies, the doses of growth factors applied in the present study were chosen to be higher than those commonly used in vitro, taking into account the obvious differences between the two systems and the brief exposure of growth factors to cells prior to implantation. For example, our doses of EGF, GNDF, and FGF2 were 2–100 fold higher than those used for in vitro SSC culture systems (Kanatsu-Shinohara et al., 2003; Kubota et al., 2004a; Kanatsu-Shinohara et al., 2007). For VEGF, which had been used in the ectopic TCI model with modest effects, we aimed to augment potential effects, simulating overexpression of VEGF; hence, its dose was 35 fold higher than the previously used dose/cell (Dores and Dobrinski, 2014). In addition, the higher dose was also deemed crucial to ensure sufficient amounts of VEGF being applied given the short exposure to the high number of cells used in our study.

In this chapter, we applied the modifications for testis cell implantation that we established in Chapter 5. The injection technique for testis cell implantation allowed manipulation of the cell number, effective and accurate placement of cells in the implantation site, and minimized the potential cell leakage experienced using the conventional surgical implantation technique (Honaramooz et al., 2007). Using our improved protocol, ~100 ×10⁶ testis cells were injected per implantation site in this study, which is 2–50 fold higher than the previously used numbers (Arregui et al., 2008a; Watanabe et al., 2009; Campos-Junior et al., 2014; Dores and Dobrinski, 2014).
overall implant recovery rate in our study was very high (95% of 596 implants), which compares favorably and exceeds comparable earlier reports using donor pig testis cells (78–82% of 96 implants) (Honaramooz et al., 2007; Campos-Junior et al., 2014) or donor sheep testis cells (92% of 96 implants) (Arregui et al., 2008a). This high recovery rate alone indicates that our modifications have been effective, especially considering that we used a much higher number of recipient mice in our study than in previous studies (77 mice vs. typically up to 12). In a single previous study using the same model to evaluate the effect of VEGF (Diores and Dobrinski, 2014), the proportion of developed implants (92%) treated with VEGF was similar, albeit their use of a cell carrier (Matrigel matrix) for implantation and different cell numbers.

From the perspective of gross and histological evaluations, FGF2 had significant effects on the implant weight, implant area, and SC area; these parameters were consistently higher than in the control at all retrieval points. These findings, coupled with the positive correlations between all the parameters (although not significantly), lead to the conclusion that FGF2 has an effect on de novo morphogenesis of testis tissue, by giving rise to larger implants and greater SC formation. Proliferative and protective (improved survival) effects of FGF2 on pig Sertoli cells have been demonstrated in several in vitro studies (Jaillard et al., 1987; van Dissel-Emiliani et al., 1996). Therefore, we speculate that in our in vivo model, FGF2 also exerts its effects on the somatic cells of implants, especially Sertoli cells, by promoting their proliferation. The protective role of FGF2 on Sertoli cells may also have helped to maintain the Sertoli cell pool to support the initiation of seminiferous cord formation. It has also been shown that FGF2 is abundantly expressed in the testis, where it peaks in the prepubertal testis and decreases over time (Mullaney and Skinner, 1992; Cancilla et al., 2000; Abd-Elmaksoud et al., 2005). Thus, in our study, the effects of FGF2 were potentiated because in addition to the exogenous FGF2 (from our treatment), endogenous FGF2 was already highly expressed in the implanted testis cells since they were from neonatal donors.

Several growth factors showed a significant overall effect on at least one of the evaluated gross or histological parameters (i.e., implant weight, implant area, or SC area), including the effects of LIF on implant weight, EGF-L and SCF on implant area, and GDNF-L on SC area. Therefore, we further analyzed the data for potential correlations and focused on the outcomes at 8 wk post-implantation. For LIF, the overall treatment effect on the implant weight was significant, and there were correlations between implant weight and area. For EGF-L, the implant area was significantly
correlated with the SC area. The effects of EGF, LIF, and SCF are thought to be on both the somatic and germ cells components of the testis (Dolci et al., 1991; Sordoillet et al., 1991; De Miguel et al., 1996; Levine et al., 2000; Piquet-Pellorce et al., 2000; Yan et al., 2000a, b; Wahab-Wahlgren et al., 2003; Tu et al., 2007; Rastegar et al., 2015). Thus, we suggest that the observed effects of these growth factors in our in vivo model could be due to a combination of their effects on both somatic and germ cells for the promotion of de novo morphogenesis. Such potential effects of EGF-L and LIF on de novo testis tissue morphogenesis can be delineated in the future studies.

Based on the SC area alone, we concluded that GDNF-L has a significant effect on the development of SC. Measuring SC area is a more reliable criteria than implant area for assessing de novo testis tissue morphogenesis because it excludes non-tubular compartments within the implant. Aside from its important role in SSC self-renewal in the testis (Meng et al., 2000; Kubota et al., 2004b, 2011; Oatley et al., 2007), GDNF has been shown to have proliferative effects on immature Sertoli cells in vitro (Hu et al., 1999; Yang and Han, 2010). In addition, GDNF has been identified as one of the factors that promote tubulogenesis during testis and even kidney development (Popsueva et al., 2003; Costantini and Shakya, 2006). Therefore, we propose that the observed effects of GDNF in our in vivo model is exerted through its promotion of Sertoli cell proliferation and tubulogenesis, giving rise to implants with improved SC development.

Here, we highlighted the presence of different types of SC and their developmental pattern over time (in terms of both prevalence and area). In the limited available literature on the ectopic TCI model, detailed examination of SC morphology in de novo testis tissue formation is lacking, instead the endpoints have been focused on spermatogenic efficiency. We observed that SC can be found in different patterns; while initially regular SC are the predominant type at 2 wk, enlarged and irregular SC develop and become more prominent at 4 and 8 wk post-implantation. The development of enlarged seminiferous tubules has been described previously in the TTX model, where the enlargements coincided with the increased size of the seminiferous tubular lumen (Schlatt et al., 2002b; Rathi et al., 2005). The absence of efferent ducts in the grafts leading to accumulation of the Sertoli cell secretions has been proposed as the causative mechanism (Schlatt et al., 2002b; Arregui et al., 2008a). However, many of the implants in the present study developed both efferent ducts and rete testis-like structure. Since we retrieved the implants prior to their potential development of a seminiferous lumen, we could not determine whether these structures
would contribute to the absorption of such secretions. Moreover, the nature of enlarged SC in early implants is different from that of the late stage grafts, and the cause of their formation remains to be elucidated in future studies. Reasons for the development of irregular SC are not known but can be attributed to the less than optimal conditions in which the implants are being formed. Similarly, the causes of aberrant SC formation remain unknown but given that they are usually seen in the proximity of rete testis, it could be hypothesized that the hyperplastic rete testis cells entrap some of the neighboring parenchyma undergoing SC development. This is further supported by the presence of cuboidal epithelial lining, typical of rete testis cells, surrounding the aberrant SC.

Several growth factors were found to enhance the development of a specific type of SC. Considering both approaches for determining the predominant type of SC among groups, we propose that FGF2, GDNF-H, and RA enhance the formation of regular, irregular, and enlarged SC, respectively. This is also generally supported by evaluations of the prevalence of different SC types and implant area. Compared with the control, FGF2 treatment led to development of most regular and least aberrant SC. The RA treatment led to the presence of enlarged SC in 100% and ~32% of implants at 4 and 8 wk, respectively. Meanwhile, in the GDNF-H group, irregular SC were seen in >90% of the implants at 4 and 8 wk, where they occupied >50% (range 52-59%) of the implant area.

This was the only histomorphometric study using the TCI model that evaluated the survival of gonocytes in implants. We evaluated the effect of various growth factors on the relative number of gonocytes using only 2-wk samples, because gonocytes were morphologically more distinctive at this time point, compared with those in implants of earlier or later stages. Compared with the control, RA was the only group that increased the relative number of gonocytes in SC. There are no comparable in vivo studies, but our results seem to contrast several in vitro studies (i.e., organ or cell culture) showing an apoptotic effect of RA on neonatal gonocyte numbers, although mitosis had also resumed in the remaining gonocytes (Livera et al., 2000a; Boulogne et al., 2003). In the postnatal testis, gonocytes migrate to the seminiferous basement membrane prior to their resumption of mitosis and differentiation to SSC; failure to migrate leads to gonocyte apoptosis (Roosen-Runge and Leik, 1968; Orwig et al., 2002a). To achieve migration, gonocytes must actively interact and bind to Sertoli cells; a process that has been shown to be promoted by RA (Griswold et al., 1989; Orth and Jester, 1995; Vernet et al., 2006). In the pig, gonocyte migration
occurs at 4-8 weeks. Considering that the donor pigs were already 2 wk old and the examined implants were 2 wk post-implantation, the timing of RA treatment in our study may have coincided with intrinsic timing of events at this stage of testis development. Therefore, although the mechanism for the observed effect of RA in our study is unknown, it could be hypothesized that RA is involved in either direct promotion of gonocyte survival or indirect promotion of the gonocyte-Sertoli cell interactions during the SC morphogenesis.

A limitation of the earlier TCI studies was the low proportion of germ cells among the donor cells (e.g., 4.5%), resulting in de novo formation of seminiferous cords/tubules that typically lacked germ cells (Honaramooz et al., 2007; Kita et al., 2007; Arregui et al., 2008b; Zhang et al., 2008; Dores and Dobrinski 2014). In the present study, the implanted testis cells had ~40% gonocytes; however, the number of gonocytes in implants examined at 2 wk was low, ranging from ~1.5% to 2.6% relative to Sertoli cells. Therefore, there is an obvious disconnect between the ratio of gonocytes at implantation and that at retrieval, even as early as 2 wk after implantation. This may be due to either a massive reduction in gonocyte numbers or a substantial increase in the relative number of somatic cells. In the short-term in vitro culture study (Chapter 3), we observed a rapid expansion of somatic cells to full confluency within a week, while gonocyte numbers did not increase nearly as much. Therefore, the observed decrease in gonocyte ratio in implants of the present study is more likely due to the much higher rate of somatic cell proliferation that overtakes gonocyte numbers. In a study by Dores and Dobrinski (2014), implantation of testis cells with relative enrichment of spermatogonia (i.e., 25% vs. 3-4%) did not improve the spermatogenic efficiency, defined as the number of seminiferous tubules containing germ cells at 40 wk post-implantation. There are no comparable data from the previous studies, but judging from the histological images presented in some of these earlier studies (Honaramooz et al., 2007; Arregui et al., 2008), the relative number of gonocytes in the present study appears to be improved. Thus, the ideal proportion of gonocytes among donor cells to be implanted would need to be further investigated. On the other hand, the relative number of gonocytes in the present study are almost half of that in our previous study in Chapter 5 (~2% vs. ~4%). We used the same testis cell isolation protocol for both studies, but the donor pigs were 2 wk old in the present study and 1 wk old in Chapter 5: therefore, at least part of the difference between these results is due to using donors of different age. This is supported by a study using TTX, where the development of grafts was donor age-dependent, even among very young donors (Schmidt et al., 2006a).
The development of rete testis or rete testis-like structures during de novo testis tissue morphogenesis has not been previously reported. In this study, the rete testis was one of the frequently occurring features (observed in ~40% of all implants), regardless of the treatment. Although there were generally no differences in the prevalence of rete testis formation among the groups, this formation occurred earlier in the implants treated with EGF-L, GDNF-H, FGF2, FGF9, or LIF. The expression of EGF, FGF2, and their receptors (EGFRs and FGFRs) have been localized in the straight tubules and rete testis of bulls (Abd-Elmaksoud et al., 2005; Kassab et al., 2007). In addition to GDNF, as describe previously, EGF, FGF2, and FGF9 are involved in promoting tubulogenesis in the developing gonad and kidney (Taub et al., 1990; Humes and Cieslinski, 1992; Castrillon et al., 2000; Popsueva et al., 2003; Combes et al., 2009; Svingen and Koopman, 2013; Li et al., 2014). Given that previous reports failed to mention the development of rete testis in implants, it is unclear whether this widespread rete testis formation in the present study was due to the contamination of the parenchymal testis cell isolates with the mediastinal cells or other mechanisms. Therefore, these findings should be further investigated. In addition, the relationship between the rete testis development and formation of aberrant SC would also warrant further studies.

In the present study, the FFC were a non-pathological feature found in many implants, likely occurring as a result of the remnant fluid within the cell aggregates (i.e., from the added media or growth factor diluents). In addition, the needle insertion may have also caused bleeding, which explains the presence of RBC within FFC observed through histological assessments. The FFC were transient, with high prevalence at 1 wk post-implantation, where they were present in >50% of the samples in multiple groups.

In addition, overall, the use of FGF9 and VEGF in the present study had no discernable effect on de novo testis tissue morphogenesis. This was surprising, because these two growth factors have been shown to have important roles during fetal testis development (Ergün et al., 1997; Willerton et al., 2004; Kim et al., 2006a; Cool et al., 2011), and exert supportive effects on both somatic and germ cells in vitro (El Ramy et al., 2005; DiNapoli et al., 2006; Schmidt et al., 2006b; Caires et al., 2009). We also found that the use of a higher dose of EGF and GDNF was not advantageous, and in the case of GDNF, in fact, led to a lower implant development. This observation reinforced
the fact that the expected outcomes of studies using growth factors are not simply a function of their relative dose.

6.6 Conclusions

In this exploratory study, the effects of multiple growth factors on de novo testis tissue morphogenesis were evaluated for the first time. Our findings suggest that even brief pre-implantation exposure of testis cells to growth factors can have profound and long-term effects on the development of both somatic and germ cells in the implants. Growth factors also caused unique SC formation patterns which may influence the spermatogenic and steroidogenic efficiency of the implants. Therefore, our findings provided a basis for future studies using the TCI model where background information was lacking.
CHAPTER 7

GENERAL DISCUSSION AND FUTURE DIRECTIONS

7.1 General Discussion

In vitro and *in vivo* culture systems are two important tools in the study of testicular function and spermatogenesis. The knowledge obtained from the studies based on these two systems has significantly improved our understanding of the factors involved in the regulation of testis development and spermatozoa production. The studies presented in this thesis were designed to focus on *in vitro* and *in vivo* culture systems for the development of testis cells and tissue using pigs as a model. The following is a discussion of the common themes and findings among different experiments as well as general conclusions that can be drawn from them.

7.1.1 Optimized Culture Conditions for Maintenance, Proliferation, and Colony Formation of Porcine Gonocytes

Through a step-wise approach, optimized culture conditions for the short-term maintenance, proliferation, and colony formation of porcine gonocytes were established (Chapter 3). These optimized conditions were then utilized to study the *in vitro* development of porcine testis cells in a prolonged culture (Chapter 4). One of the most important findings to emerge from the first study (Chapter 3), aside from the optimized culture conditions, was that gonocytes require the presence of feeder cells (which were present in the form of ~60% mixed testis somatic cells) for their survival and growth *in vitro*. This finding was further supported by the poor cell growth when we attempted to culture an enriched population of gonocytes (~80-90%). The observed requirement of feeder cells presence for gonocyte growth in culture was consistent with previously reports (van Dissel-Emiliani *et al.*, 1993). On the other hand, the ‘floating’ nature of gonocytes, especially during the first few days of culture (Chapter 3), indicated that infrequent media changes can avoid the unnecessary losses of gonocytes during media changes. This conclusion was strongly supported by evidence of highly viable floating gonocytes (>85% viability) in the removed media after several
days of culture, which increased the number of gonocytes settling on the somatic cell monolayer after the infrequent media change routine was adapted. Overall, these findings contributed in several ways to our understanding of neonatal porcine gonocytes and provided a basis for future in vitro studies.

7.1.2 Development of Neonatal Porcine Testis Cells and Colonies In Vitro

Using the optimized culture conditions established in our first in vitro study (Chapter 3), we evaluated the in vitro behavior, colony formation, and ultrastructure of gonocytes, with the aid of various imaging techniques (i.e., live-cell imaging, SEM and TEM) and fluorescent labeling in a second in vitro study (Chapter 4). To our knowledge, this latter study was the first to trace the development of neonatal porcine testis cells in real-time and thoroughly examine their ultrastructural changes over time. However, given that our optimized culture conditions (Chapter 3) were using a basic culture system, it was not clear whether they could support the development of neonatal porcine testis cells in a prolonged culture.

In Chapter 4, we highlighted the unique organization of somatic cells to form areas of circular arrangements, which we presumed to be a preferred site for the establishment of gonocyte colonies. We are not certain whether the formation of these circular structures is indeed as a result of somatic cell-germ cell interactions. Currently, there are no closely-related studies to support our assumption. The most intriguing observation in this study was the formation of EBLC by gonocytes, which was tracked stage-by-stage (i.e., singles, paired, clusters, morula-like colonies, and EBLC) via live-cell imaging. The formation of the EBLC, or commonly reported as embryoid bodies, is a common feature of gonocytes and other MGSC in vitro, and their developmental stages have been well described (van Dissel-Emiliiani et al., 1993; Hasthorpe et al., 2000; Goel et al., 2007, 2009; Han et al., 2009; Kuijk et al., 2009; Matsui et al., 2014). Real-time observations revealed that the formation of EBLC relies on the ability of gonocytes to establish contact with each other, leading to their aggregation, and creation of a center for the attraction of more gonocytes to form bigger colonies and finally EBLC. This is achieved via their active movement, assisted by the cytoplasmic projections, which based on SEM examinations could be categorized into lamellipodia, filopodia, membrane blebs, and membrane ruffles. The formation of cytoplasmic projections in migrating cells is driven by the polymerization of actin cytoskeletal, promoted by
the expression of GDNF (Korn et al., 1987; Dovere et al., 2013; Tang and Gerlach, 2017), as was confirmed in this study by F-actin fluorescent labeling.

The multinucleated nature of EBLC and the events leading to their transformation via cellular fusion were proposed in this study for the first time. In fact, these multinucleated EBLC also possessed extensive cytoplasmic projections and motility at a slow rate. The present study adds to a growing body of research that indicates the importance of cytoplasmic projection (or pseudopods) during the migration of gonocytes to the basement membrane of seminiferous tubules prior to their differentiation into SSC (McGuinness and Orth, 1992; Nagano et al., 2000; Orwig et al., 2002a). We also noted the presence of round gonocytes among the populations of gonocytes with cytoplasmic projections. These immotile and non-viable gonocytes, confirmed using live-cell imaging and trypan-blue assays, respectively, represent the cells that had undergone apoptosis or were dead. This finding complimented the previous observations by Orwig et al., (2002a) that compared the developmental competency of two subpopulations of gonocytes (pseudopod vs. round gonocytes), using a germ cell transplantation assay.

One of the ultimate goals of in vitro culture systems for MGSC is to expand their numbers while maintaining their ‘stemness’ long-term. Using the same basic culture system developed in Chapter 3, we were able to propagate gonocytes up to ~9 fold by the end of our study in Chapter 4 (4 wk). The pluripotent nature of the propagated gonocytes and EBLC, as shown by the expression of POU5F1, suggests that they have the capacity to undergo infinite self-renewal, and potentially give rise to any cells and tissues of the three germinal layers. These findings might also have clinical implications in fertility preservation, where high numbers of MGSC are required for efficient germ cell transplantation and cell-based therapy. Therefore, our findings in Chapter 4 adequately addressed the question posed earlier in this section as to whether basic culture conditions can support the maintenance and propagation of gonocytes in a prolonged culture condition.

7.1.3 The Ectopic Testis Cell Implantation (TCI) Model

The experiments designed in Chapter 5 focused on the development of an efficient technique for implantation of testis cells in an ectopic implantation model. In a pioneering study by Honaramooz et al., (2007), a surgical implantation technique was developed, which coupled with the low number of germ cells in the population of donor cells resulted in inconsistent implant development with
low spermatogenic efficiency. The issue of low number of germ cells among the donor cells had been addressed by the establishment of a three-step enzymatic digestion method in our lab and was applied in Chapter 3. Two implantation approaches were examined in two separate experiments, the conventional surgical approach (but with the added gel-based matrices as a cell carrier) and a subcutaneous injection method of cell aggregates (without cell carriers). Other examined variables included the cell number and the implantation site. This study was the first study to examine various gel-based matrices (i.e., gelatin, collagen, and agarose) for cell implantation, which adds to the literature where the only other studies had used the commercially available Matrigel matrix (Watanabe et al., 2009; Dores and Dobrinski, 2014). This study found that both approaches offer advantages over the conventional implantation technique used in the previous reports (Honaramooz et al., 2007; Arregui et al., 2008b). The use of gel-based matrices as a cell carrier enables manipulation of the number of cells to be implanted (50 - 100 × 10^6 cells per implant/site) and efficient placement of cells at the implantation site. Although de novo morphogenesis of testis tissue from the gel-based matrix implants (i.e., gelatin and collagen) was not compromised and performed slightly better than the control, the consistency of the outcomes, control over the transferred cells, as well as being less invasive led us to adopt the subcutaneous injection technique for our next experiments in Chapter 6.

In these experiments (Chapter 5), we also examined for the first time the potential of ultrasound biomicroscopy (UBM) for monitoring the implants prior to their retrieval. The use of UBM via 2D and 3D modes allowed visualization of the implants, estimation of their degree of tissue formation, and neovascularization in situ. However, the most obvious advantage of using UBM is that it allows basic measurements of implants (e.g., length, width, and height), through which the data could be manipulated to derive other useful information (e.g., volume and cross-sectional area), with the aid of its software. As proof of principle, we compared the UBM measurements (i.e., length and width) with physical measurements when the implants were retrieved, and found high fidelity between the two methods. This finding has significant implications for future studies in the areas of testis cell implantation as well as testis tissue xenografting, where UBM could be used to assess the development of implants and grafts over time, potentially reducing the number of required samples and recipient mice.
The findings in Chapter 5 also highlighted for the first time the effect of implantation site on the development of testis cell implants. The developmental potential of implants as indicated by their weight decreased from cranial to caudal sites. This important finding will influence the way we sample implants in the future, especially during the early period post-grafting, pointing to a need to also randomize our sampling based on the implant site. Finally, we also evaluated the effect of gonadal status on the development of testis cell implants and found no apparent gross or histomorphometric differences between the intact and castrated recipients, consistent with previous reports (Shinohara et al., 2002; Abbasi and Honaramooz, 2010b). Learning from the latter two findings from Chapter 5, we randomized our sampling and used intact recipient in our subsequent study in Chapter 6.

7.1.4 The Effect of Growth Factors on De Novo Porcine Testis Tissue Morphogenesis In Vivo

The final study in this thesis (Chapter 6) provides the first comprehensive assessment of the effect of growth factors on de novo morphogenesis of porcine testis tissue in an ectopic implantation model. In this study, we examined the effect of brief exposure of cell aggregates to various growth factors (i.e., EGF, GDNF, FGF2, FGF9, VEGF, SCF, LIF, or RA). The selected growth factors are known to have a significant role in testis development (De Miguel et al., 1996; Mauduit et al., 1999; Meng et al., 2000; Kubota et al., 2004a; Wu et al., 2005; Hofmann et al., 2005; Aponte et al., 2006; Bott et al., 2006; DiNapoli et al., 2006; Kim et al., 2006a; Wang and Culty, 2007; Zhou et al., 2008; Chung et al., 2009; Baltes-Breitwisch et al., 2010; Cool et al., 2011; Manku et al., 2015). Due to a lack of background in vivo studies, the dosage of each growth factor was set higher than those applied in vitro, and where there was widespread disagreement in the range of such doses, a low and a high dose group were included (i.e., EGF-L, EGF-H and GDNF-L, GDNF-H). The growth factors were added to the testis cell aggregates immediately prior to implantation, using the subcutaneous injection technique that was optimized in Chapter 5.

This exploratory study showed that indeed the TCI model could be used to examine potential factors involved in testis development because de novo morphogenesis of the testis tissue could be manipulated in the presence of growth factors. The FGF2 appeared to be the only growth factor to have an impact on both the physical and histological development of implants, while several other growth factors had an effect on either parameter (i.e., LIF, SCF, EGF, and GDNF-L). We
speculated that these growth factors enhanced *de novo* testis tissue morphogenesis via promoting the survival of implanted testis cells and later by regulating their proliferation and differentiation, reflected by their roles in the testis development *in situ* (Gonzalez *et al*., 1990; Sordoillet *et al*., 1991, 1992; Matsui *et al*., 1991; Pesce *et al*., 1993; Han *et al*., 1993; De Miguel *et al*., 1996; Mauduit *et al*., 1999; Meng *et al*., 2000; Yan *et al*., 2000a; Hirai *et al*., 2004; Wu *et al*., 2005; Hofmann *et al*., 2005; Aponte *et al*., 2006, 2008; Chung *et al*., 2009a). We found unique temporospatial changes in the morphology of SC, where the prevalence of regular, enlarged, irregular, and aberrant types of SC changed over time, which were accentuated by different growth factors. The accumulation of secretions from Sertoli cells was suggested as a cause of the formation of dilated/enlarged SC (Arregui *et al*., 2008b). However, the presence of efferent ductules and rete testis in the developed tissue, reported for the first time here in this study, might debunk that assumption. Adding to this interesting finding was the tendency of certain growth factors to support the development of rete testis and/or a specific type of SC. The exact mechanism underlying these morphological changes and their association with specific growth factors remain to be explored.

Other than VEGF, which has been examined in a single study using the same model (Dores and Dobrinski, 2014), there are no closely-related studies to compare with our observations. Therefore, this large-scale study provided several important findings to further our insights into *de novo* testis tissue morphogenesis, and many more leads into the potential effects of various growth factors to guide future research in this field.

One of the limitations of the TCI model was the low spermatogenic efficiency, likely as a consequence of the low number of donor germ cells in the developed implants (Honaramooz *et al*., 2007; Arregui *et al*., 2008a; Campos-Junior *et al*., 2014; Dores and Dobrinski, 2014). Thus, in this study, we addressed this problem by implanting cell aggregates of high germ cell proportions (~40% gonocytes). Although direct comparison of results is not possible, in previous studies most SC in implants lacked germ cells, while we observe gonocytes in almost all SC. Despite being higher than in the previous reports, the relative number of gonocytes was lower in the implants than in intact age-matched testes. The RA treatment appeared to be the only growth factor to have a significant effect on the relative number of gonocytes. The hypoxic conditions, prior to the establishment of blood supplies, have been proposed as a causative factor for germ cell losses in implants (Schmidt *et al*., 2006b; Arregui *et al*., 2014; Dores and Dobrinski, 2014). However, considering the fact that adding VEGF, as an angiogenesis promoter, had no apparent effect on the
relative number of gonocytes, we propose that germ cell losses post-implantation are not because of the hypoxic effects on germ cells but likely due to other intrinsic factors that remain to be elucidated. For instance, reduced proportion of gonocytes may in fact have nothing to do with their losses but instead with the disproportional proliferation rate of somatic cells over gonocytes.

Finally, the data in Chapter 6 showed no advantage of using higher doses of EGF and GDNF over lower doses on the development of implants. In fact surprisingly, this development in the high dose groups appeared repressed and even less than the control. The reasons for such observations are not clear but indicate the need for more extensive studies using this model to elucidate the effect of each growth factor in more details.

7.2 Future Directions

7.2.1 Manipulation of Culture Conditions for Long-Term Maintenance and Propagation of Porcine Gonocytes

The optimized culture system developed in this thesis (Chapter 3) can be further examined and potentially modified for use in long-term maintenance and propagation of gonocytes. This basic culture system could be utilized as a tool to examine the effects of other conditions that are known to have beneficial effects (i.e., survival, self-renewal, or proliferation) on gonocytes. Such conditions can include the use of other media and serum alternatives (e.g., DMEM/F12 or KSR), growth factors (such as some of those described in Chapter 6), hormones (e.g., LH, FSH, testosterone, or progesterone), and other additives (e.g., amino acids, proteins, or vitamins). For this purpose, the already established culture systems, such as those for long-term maintenance and propagation of SSC, could be used as a study baseline (Kanatsu-Shinohara et al., 2003, 2005, 2008a; Kubota et al., 2004b; Ryu et al., 2005). To address the concern of the negative effect of testis somatic cells on the pluripotency of gonocytes, mitotically inactivated cells (e.g., STO and MEF) should also be considered as alternative feeder cells. A study performed by Lee et al., (2013) showed that porcine SSC could be optimally cultured at 31 °C, demonstrating marked pluripotency compared with those cultured at 34 °C and 37 °C. Thus, the effect of temperature on gonocytes could be re-examined by testing lowered temperatures (i.e., <35 °C), along with the addition of analyses for DNA synthesis and proliferation to the routine evaluations for growth rate.
7.2.2 Motility and Pluripotency of Porcine Gonocytes and EBLC

Establishment of the cytoplasmic projections is crucial for the survival and migration of gonocytes (McGuinness and Orth, 1992; Nagano et al., 2000; Orwig et al., 2002a). Thus, identifying the molecular cues regulating the formation of these projections is of high importance in the study of gonocytes. Two candidate growth factors, GDNF and SCF/c-kit ligand (Orth et al., 1997; Basciani et al., 2008; Dovere et al., 2013) have been proposed to promote the development of actin cytoskeleton and migration of gonocytes to the basement membrane of the SC, and could be included in deciphering the motility of gonocytes in vitro. In addition, live-cell imaging could be utilized to further understand the kinetics of gonocyte proliferation and migration in vitro. It will be interesting to see whether improving the population of motile gonocytes (with cytoplasmic projections/pseudopods) would indeed benefit their stem cell potential for application in germ cell transplantation, because the efficiency of gonocyte migration and subsequent colonization of the SC are thought to rely on the number of motile gonocytes (Orwig et al., 2002a).

The MGSC can be manipulated to produce pluripotent stem cells and offer a useful tool for cell-based therapy and regenerative medicine (Geijsen and Jones, 2008). The application of pluripotent stem cells of MGSC origin for human use is favored over the iPSC of somatic cell origin, due to their autologous nature, their superior genomic integrity, and close resemblance to ESC (Ko et al., 2009; Kim and Izpisua Belmonte, 2011). In addition, the pluripotent state of MGSC could be induced spontaneously under specific culture conditions (Kanatsu-Shinohara et al., 2004b; Ko et al., 2009), without the need of forced biophysical reprogramming such as that for the iPSC (Takahashi et al., 2007; Lowry et al., 2008; Kim et al., 2016). However, the progress in germline-derived pluripotent stem cells (GPS) has been hindered by the poor understanding of factors behind this spontaneous pluripotency, and the inefficiency of the isolation and propagation of MGSC (Kim and Izpisua Belmonte, 2011). Accordingly, the neonatal porcine gonocytes offer a great advantage to be used as a model to study GPS, especially now that they can be isolated, enriched, and propagated efficiently with the available technologies described or established in this thesis. Future studies should focus on how to improve and identify the molecular cues regulating the pluripotency of gonocytes. The SCF and LIF are two growth factors that have been proposed to be essential for the maintenance of gonocyte pluripotency in vitro (Kanatsu-Shinohara et al., 2007; Tu et al., 2007).
Comprehensive investigation of the role of these and other growth factors in regulating the pluripotency of gonocytes will provide insight into GPS.

In this study, the pluripotency of gonocytes and EBLC was determined using a single marker, POU5F1. Future studies should examine the expression of other pluripotency markers, such as the SSEA-1 and NANOG homeobox (NANOG). The multipotency of gonocytes and EBLC could be investigated *in vitro* by providing specific culture conditions that direct their transformation into any cells and tissues of the three germinal layers, as previously shown for SSC from adult mouse testes (Guan et al., 2006). Transfer of cultured gonocytes and EBLC *in vivo* is another approach that could be performed in the future to assess their multipotency. Teratoma formation, as an indicator of multipotency, has been observed after subcutaneous implantation of cultured piglets gonocytes (Hoei-Hansen et al., 2005; Tu et al., 2007; Goel et al., 2009; Niu et al., 2016).

7.2.3 Incorporating UBM in TTX and TCI Studies

Future studies could utilize UBM for monitoring the development of grafts/implants in between designated retrieval points. In addition to visualizing gross features of grafts/implants (*i.e.*, size, shape, and dimension), the UBM data could be extrapolated to gain additional information on the development of grafts/implants. The ability to detect blood vessels at implantation sites should be incorporated in the study of angiogenesis and hemodynamics of grafts/implants. The ability of the UBM to measure the oxygen saturation level should be further studied to assess the hypoxic environment and its effect on graft/implant survival. With the aid of a software, 3D remodeling of grafts/implants and their blood supply could also be constructed. Future studies should also explore the relationship/correlation between the echogenicity of implants and their histology. This will be useful as a preliminary indicator of *de novo* morphogenesis, especially during the early phases of grafting/implanting. The UBM also allows for image-guided injections in future studies, especially in the studies designed to evaluate the application of a series of treatments over time (*i.e.*, growth factors, drugs, or hormones) to the grafts/implants.
7.2.4 Utilizing De Novo Morphogenesis of Testis Tissue for the Study of Testiculogenesis and Spermatogenesis

Despite the lack of extensive background information and poor spermatogenic efficiency, *de novo* morphogenesis of testis tissue remains one of the only and most promising bioassays for the study of testis development and spermatogenesis. This model has a unique advantage for elucidating the molecular cues and cellular interactions during the process of testis development, where it offers an accessible route for manipulating both the somatic and germ cell components of the testis. However, further studies are needed to standardize the protocols and improve the consistency of the outcomes, before this bioassay can be fully utilized. Nevertheless, the effect of growth factors on *de novo* morphogenesis of testis tissue should be further investigated for future studies. The findings presented in this thesis, provide a basis for designing future experiments to examine new growth factors, dosage/regimen of treatment, as well as assessment criteria. The growth factors that displayed significant effects on gross and/or histomorphometric evaluations in this study (*i.e.*, FGF2, RA, GDNF, LIF, SCF, and EGF) could be further studied in detail. We also suggest re-examining other growth factors that were not found effective, using other treatment doses/regimens. One of the approaches that could be implemented to evaluate the effect of a given growth factor is by performing loss-of-function or gain-of-function studies. Future studies should also manipulate the growth factor dose, regimen, interval, and duration of exposure. Finally, it would also be interesting to uncover the underlying factors leading to the temporospatial changes of the SC and their long-term effect on the spermatogenic efficiency and tissue function. The source and mechanism of the rete testis and efferent ductules development in the implants and their impact on the structural growth of the resultant testis tissue should also be investigated.
REFERENCES

Abbasi S and Honaramooz A (2010a) The number of grafted fragments affects the outcome of testis tissue xenografting from piglets into recipient mice. Veterinary Medicine International 2011 20–23.

Abrishami M, Anzar M, Yang Y and Honaramooz A (2010b) Cryopreservation of immature porcine testis tissue to maintain its developmental potential after xenografting into recipient mice. Theriogenology 73 86–96.

Champy C (1920) Quelques résultats de la méthode de culture des tissus. Archives de Zoologie Expérimentale et Générale. 60 461–500.

Chiquoine AD (1954) The identification, origin, and migration of the primordial germ cells in the mouse embryo. The Anatomical Record 118 135–146.

Couse JF, Lindzey J, Grandien K, Gustafsson JÅ and Korach KS (1997) Tissue distribution and quantitative analysis of estrogen receptor-α (ERα) and estrogen receptor-β (ERβ) messenger ribonucleic acid in the wild-type and ERα-knockout mouse. Endocrinology 138 4613–4621.

Culty M (2013) Gonocytes, from the fifties to the present: Is there a reason to change the name?. Biology of Reproduction 89 46.

Huang S, Sartini BL and Parks JE (2008) Spermatogenesis in testis xenografts grafted from pre-pubertal Holstein bulls is re-established by stem cell or early spermatogonia. Animal Reproduction Science 103 1–12.

Joffre BYM and Roche A (1988) Follicle-stimulating hormone induces hyperpolarization of immature. **481**–**499**.

Labosky PA, Barlow DP and Hogan BL (1994) Mouse embryonic germ (EG) cell lines: Transmission through the germline and differences in the methylation imprint of insulin-like growth factor 2 receptor (Igf2r) gene compared with embryonic stem (ES) cell lines. Development 120 3197–3204.

van Pelt AMM and de Rooij DG (1991) Retinoic acid is able to reinitiate spermatogenesis in vitamin A-deficient rats and high replicate doses support the full development of spermatogenic cells. *Endocrinology* **128** 697–704.

232
de Rooij DG and Russell LD (2000) All you wanted to know about spermatogonia but were afraid to ask. *Journal of Andrology* 6512 776–798.

245

APPENDIX A

SUPPLEMENTARY VIDEOS

Video 1 Organization of neonatal porcine testis cells in prolonged culture at 0–24 h (00:04s), 25–48 h (00:09s), 17–120 h (00:15s), D7 (00:20s), D14 d (00:27s), D21 (00:33s) and D28 (00:39s) (time-lapse: 15 fps). Images were taken every 1 hr for 24 hr from day 0 to day 3, every 2 hr for 24 hr from day 4 to day 7 and finally every 1 hr for 24 hr at days 14, 24 and 28.

Video 2 Cytoplasmic projections and amoeboid-like movement of gonocytes at 1-wk (a) in the media (00:04s) and (b) on top of somatic cell monolayer (00:12s). The images were taken every 2.5 sec for 30 sec (time-lapse: 1 fps) and 5 min for gonocytes (time lapse: 4 fps) floating in the media and on the somatic monolayer, respectively.

Video 3 The stages in the formation of embryoid body-like colony (EBLC) formation. The images were taken every 2.5 sec for 5 min (time-lapse: 4 fps). (a) Gonocytes first settled on the somatic cell monolayer either singles or paired (00:04s). (b) Continuous migration of gonocytes towards each other results in the formation of morula-like (grape-like) colonies (00:11s). (c) The morula-like colonies increased in size over time (00:18s). (d) The EBCL formed after ~14 d of culture (00:24s). Cytoplasmic fusions of adjacent gonocytes seemed to transform the morula-like colonies into an embryoid body-like colony (00:34s). (e-f) Continued fusion of migrating gonocytes increased the mass of the EBLC (00:44s). (g) Note the presence of extensive cytoplasmic projections possessed by EBLC which seemed to assist with its movement, and further attachment of migrating gonocytes (00:56s). (h) Higher magnification of active movement of cytoplasmic projections of EBLC (01:06).
APPENDIX B

A PRELIMINARY STUDY OF HISTOMORPHOMETRY AND IMMUNOHISTOCHEMICAL EXPRESSION PATTERNS OF FACTORS ASSOCIATED WITH TESTIS DEVELOPMENT IN PORCINE TESTIS

Background: This study was conducted as part of this PhD research, but due to the preliminary nature of its results, it was not included as a separate chapter. The main objective of this study was to gain insight into the histomorphometry and expression patterns of various factors associated with testis development.

Methodology: Testis tissue samples of prenatal (82 dpc, n=3), neonatal (1, 2, 3, and 4 wk of age, n=5/age), prepubertal (9 and 14 wk of age, n=5/age), and sexually mature (n=4) Yorkshire-cross pigs were subjected to hematoxylin and eosin (H&E) staining and immunohistochemistry. Expression patterns of five factors that were deemed potentially associated with the testis tissue development were examined using horseradish peroxidase (HRP) immunoassay. These factors included sex determining region Y (SRY), SRY-box 9 (SOX9), fibroblast growth factor 9 (FGF9), prostaglandin D2 synthase (PGD2), and anti-Müllerian hormone (AMH).

Results: The histomorphometric and immunohistochemistry finding are presented in Appendix B.1 through B.4. The immunohistochemistry results remain inconclusive due to inconsistencies we observed among the samples. The major issue was the presence of background staining, which is a common challenge when working with testis tissue. Preliminary results of the localization of the examined factors are summarized in Appendix B.4. These observations need to be further validated after optimization of staining protocols.
Representative histological photomicrographs of cross-sections of the testis tissue of pigs at different developmental stages. (A) 82 days of fetal age, (B) 1 wk of age, (C) 2 wk of age, (D) 3 wk of age, (E) 4 wk of age, (F) 9 wk of age, (G) 14 wk of age, and (H) mature pig. H&E staining (scale bar = 50 µm).
APPENDIX B.2

A)

The distribution of gonocytes in prenatal (82 dpc) and neonatal (1, 2, 3, and 4 wk of age) testis tissue of pigs. (A) A stacked graph demonstrating the proportion (%) of gonocytes residing at the center (Ct) and the periphery (Pr) of the seminiferous cords. (B) Identification of gonocytes using PGP 9.5 immunohistochemistry (1:1000 dilution). (Scale bar = 20 µm.)
APPENDIX B.3

Histomorphometric analysis of the somatic and germ cells in the porcine testis tissues of different ages.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Pig Age</th>
<th>Number of SC or ST/mm²</th>
<th>SC or ST area (%)</th>
<th>Diameter of SC or ST (µm)</th>
<th>Diameter of ST lumen (µm) **</th>
<th>Gonocytes Center (%)</th>
<th>Periphery (%)</th>
<th>Number/1,000 SC</th>
<th>Most advanced germ cell stage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Prenatal (82 dpc) n=3</td>
<td>Neonatal n=5</td>
<td>Prepubertal n=5</td>
<td>Mature n=4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 wk n=5</td>
<td>2 wk n=5</td>
<td>3 wk n=5</td>
<td>4 wk n=5</td>
<td>9 wk n=5</td>
<td>14 wk n=5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of SC or ST/mm²</td>
<td>214.13 ± 3.8a</td>
<td>88.48 ± 2.4b</td>
<td>87.27 ± 1.9bc</td>
<td>83.92 ± 1.7bc</td>
<td>79.90 ± 0.8c</td>
<td>57.78 ± 2.0d</td>
<td>32.98 ± 0.9e</td>
<td>12.45 ± 0.5f</td>
<td></td>
</tr>
<tr>
<td>SC or ST area (%)</td>
<td>32.75 ± 1.4a</td>
<td>34.78 ± 0.6ab</td>
<td>35.44 ± 0.9ab</td>
<td>35.54 ± 0.9ab</td>
<td>39.78 ± 0.5b</td>
<td>48.61 ± 1.0c</td>
<td>49.11 ± 2.0c</td>
<td>67.86 ± 1.4d</td>
<td></td>
</tr>
<tr>
<td>Diameter of SC or ST (µm)</td>
<td>34.56 ± 0.4a</td>
<td>39.10 ± 0.3b</td>
<td>39.86 ± 0.3b</td>
<td>42.85 ± 0.3bc</td>
<td>46.84 ± 0.4c</td>
<td>70.65 ± 0.5d</td>
<td>90.03 ± 1.0e</td>
<td>210.30 ± 2.2f</td>
<td></td>
</tr>
<tr>
<td>Diameter of ST lumen (µm) **</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Gonocytes Center (%)</td>
<td>75.67 ± 2.2αa</td>
<td>66.04 ± 2.6βα</td>
<td>46.73 ± 1.6δ</td>
<td>44.92 ± 1.2εα</td>
<td>42.15 ± 1.1εc</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Periphery (%)</td>
<td>24.33×γ</td>
<td>33.96×δβ</td>
<td>53.27δγ</td>
<td>55.08δγ</td>
<td>57.85ζγ</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Number/1,000 SC</td>
<td>190 ± 6.3a</td>
<td>132.6 ± 5.9b</td>
<td>102.8 ± 3.3c</td>
<td>86.8 ± 3.4c</td>
<td>49.8 ± 4d</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Most advanced germ cell stage</td>
<td>Gonocytes</td>
<td>Spermatogonia</td>
<td>Spermatogonia</td>
<td>Spermatogonia</td>
<td>Spermatogonia</td>
<td>Spermatogonia</td>
<td>Spermatogonia</td>
<td>Secondary spermatoctyes Sperm</td>
<td></td>
</tr>
</tbody>
</table>

SC = Seminiferous cords; ST = Seminiferous tubules.
Data are mean ± SEM.
One way ANOVA (or independent-samples t-test **) was used for statistical analyses, and P<0.05 was considered as significant.
Within each row/column, data with different superscripts differ significantly (P < 0.05).
APPENDIX B.4

Summary of localization of different factors associated with testis development in the porcine testis tissue of different ages.

<table>
<thead>
<tr>
<th>Factor</th>
<th>Pig Age</th>
<th>Prenatal (82 dpc)</th>
<th>Neonatal</th>
<th>Prepubertal</th>
<th>Mature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>n=3</td>
<td>1wk n=5</td>
<td>2 wk n=5</td>
<td>3 wk n=5</td>
</tr>
<tr>
<td>SRY</td>
<td></td>
<td>+/SC,GC</td>
<td>+/SC,GC</td>
<td>+/SC,GC</td>
<td>-</td>
</tr>
<tr>
<td>FGF9</td>
<td></td>
<td>+/-SC,GC</td>
<td>+/-SC,GC</td>
<td>+/-SC,GC</td>
<td>+/-SC,GC</td>
</tr>
<tr>
<td>PGD2</td>
<td></td>
<td>+/-SC</td>
<td>+/-SC</td>
<td>+/-SC</td>
<td>+/-SC</td>
</tr>
<tr>
<td>AMH</td>
<td></td>
<td>+/-SC</td>
<td>+/-SC</td>
<td>+/-SC</td>
<td>+/-SC</td>
</tr>
</tbody>
</table>

The examined factors included the sex determining region Y (SRY); SRY-box 9 (SOX9); fibroblast growth factor 9 (FGF9); prostaglandin D2 synthase (PGD2); and anti-Müllerian hormone (AMH).

The immunohistochemistry was performed using the OneStep polymer HRPO (only horseradish peroxidase) staining system. The expression of these factors was evaluated qualitatively, and recorded as presence (+) or absence (-). The cellular localization were recorded as Sertoli cells (SC), germ cells (GC), or Leydig cells (LC).