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ABSTRACT 

Phytoalexins are plant metabolites produced in response to different kinds of stress like 

pathogen attack, while not present in healthy plants. Cruciferous phytoalexins are produced 

under pathogen attack and different types of stress by crucifers such as oilseed crops (canola, 

rapeseed), vegetables (rutabaga, cauliflower, turnip) and condiments (wasabi, mustard). The 

fungal species Alternaria brassicicola (Schwein.) Wiltshire is an economically important 

pathogen that causes Alternaria black spot in many important crucifer species, namely in 

Brassica species. Although resistance to A. brassicicola within the commercially available 

Brassica species is not known, some ecotypes of the wild species Arabidopsis thaliana are 

resistant to this pathogen. 

In the first part of this thesis, synthesis of some important cruciferous phytoalexins 

(camalexin, 1-methylcamalexin, 6-methoxycamalexin, cyclobrassinin, brassilexin, rutalexin and 

rapalexin A), their antifungal activity and metabolism by the crucifer pathogen A. brassicicola 

was investigated. Almost all tested phytoalexins showed substantial activity against A. 

brassicicola except cyclobrassinin with moderate activity. Metabolic investigation has shown 

that A. brassicicola was able to detoxify camalexin to indole-3-thiocarboxamide (> 5 days), 

which was transformed further to indole-3-carbonitrile and carboxylic acid, respectively. With 

the aim of obtaining mechanistic clue on the biotransformation of camalexins, some camalexin 

derivatives and analogues were synthesized and their antifungal activity as well as metabolism 

by A. brassicicola was investigated. All camalexin derivatives and analogues showed strong 

antifungal activity against A. brassicicola. Metabolic investigation has shown that substituent at 

C-4ʹ or C-5ʹ positions of thiazolyl ring of camalexin stopped oxidative degradation of thiazolyl 

ring by A. brassicicola. In addition, it was obtained that oxidative degradation of the thiazolyl 

ring requires it to be attached to indole by C-2ʹ. In comparison to camalexins, cyclobrassinin was 

quickly (ca. 8 hours) detoxified by A. brassicicola to S-methyl [(2-sulfanyl-1H-indolyl-

3)methyl]carbamothioate, which was further oxidized to sulfinic and sulfonic acid derivatives. 

Similarly, A. brassicicola was able to detoxify brassilexin to 3-aminomethylinindole-2-thione 

(24 hours). Rutalexin was detoxified by A. brassicicola to a highly reactive metabolite that 

reacted with phomapyrone G, a secondary metabolite produced by A. brassicicola, to yield a 
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stable adduct. All metabolites from biotransformation of mentioned phytoalexins were 

synthesized and their metabolism as well as antifungal activity against A. brassicicola was 

investigated. It was indicated that A. brassicicola can detoxify the cruciferous phytoalexins 

camalexin, 1-methylcamalexin, 6-methoxycamalexin, cyclobrassinin, brassilexin, and rutalexin. 

Rapalexin A with strong activity against A. brassicicola was resistant to metabolism. 

In the second part of this thesis, inhibition of brassinin detoxification by Leptosphaeria 

maculans was investigated. Potential inhibitors were designed and synthesized based on the 

camalexin scaffold and their inhibitory activity against BOLm was determined using cell-free 

extracts. Almost all tested compounds showed inhibitory activity against BOLm, however their 

activity was weaker than camalexin.  
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1 INTRODUCTION 

1.1 General objectives 

Phytoalexins are antimicrobial plant secondary metabolites elicited by biotic (microbial 

attacks) and abiotic (UV radiation or heavy metal salts) factors and are not usually produced in 

healthy plants (Pedras et al., 2011b; VanEtten et al., 1994). Fungal pathogens are able to 

metabolize phytoalexins to less or non-toxic compounds through enzyme-catalyzed reactions 

(Pedras et al., 2011b; Pedras and Ahiahonu, 2005). Inhibition of these fungal detoxifying 

enzymes could stop cruciferous pathogens from invading crucifers (Pedras and Minic, 2014; 

Pedras et al., 2012; 2009b). Detoxification of several cruciferous phytoalexins by plant 

pathogens was investigated and their transformation pathways were determined (Pedras, 2014; 

Pedras et al., 2011b). Some cruciferous phytoalexins were shown to be resistant to metabolism 

by plant pathogens (Pedras et al., 2011b). Phytoalexins that are resistant to metabolism are of 

interest to engineer plants with higher disease resistance levels. Toward this goal, it is important 

to study the potential metabolism of these compounds and derivatives by plant pathogenic fungi. 

The specific objectives of my PhD work are to:  

o Investigate the metabolism and determine the products of transformation of the 

cruciferous phytoalexins camalexin (1), 1-methylcamalexin (2), 6-methoxycamalexin (3), 

cyclobrassinin (4), rutalexin (5), brassilexin (7), and rapalexin A (8) by Alternaria 

brassicicola; 

o Investigate the metabolism and determine the products of transformation of the 

camalexin related structures, 1-methylcyclobrassinin (193) and 1-methylbrassilexin (165) 

by Alternaria brassicicola; 

o Determine the antifungal activity of phytoalexins, selected compounds and metabolites 

resulting from biotransformation against Alternaria brassicicola; 

o Determine the effect of camalexin related structures on the rate of brassinin detoxification 

by Leptosphaeria maculans using cell-free extracts. 
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1.2 Crucifers and fungal pathogens 

Crucifers (family Brassicaceae, syn. Cruciferae) are important sources of edible and 

industrial oils, condiments and forage. Chinese cabbage (Brassica campestris var. Pekinensis), 

rutabaga (Brassica napus var. napobrassica), turnip (B. campestris var. rapifera), kale (Brassica 

oleracea var. acephala), cabbage (B. oleracea var. capitata), cauliflower (B. oleracea var. 

italica) and many more known vegetables are crucifers (Gomez-Campo, 1999). Crucifers contain 

some important model plants. For example, Arabidopsis thaliana (Thale cress) has been 

established as an important model plant, and was the first flowering plant to have its genome 

sequenced (Theologis et al., 2000). 

1.2.1 Secondary metabolites of crucifers 

Organic compounds produced by plants are either primary or secondary metabolites. 

Primary metabolites such as sugars, amino acids, common fatty acids, and nucleotides are 

essential for basic metabolic processes of the plants. In contrast, secondary metabolites are not 

essential for basic plant growth and development (Hartmann, 2007). Secondary metabolites 

participate in defense mechanisms against stress and play important roles in the fitness of their 

producers (Bednarek and Osbourn, 2009; Bennett and Wallsgrove, 1994). Crucifers synthesize 

and accumulate a variety of biologically active secondary metabolites, such as phytoalexins and 

phytoanticipins (Bednarek, 2012; Pedras et al., 2011b). 

1.2.1.1 Phytoalexins  

Phytoalexins are antimicrobial plant metabolites elicited by biotic (microbial attacks) and 

abiotic (UV radiation or heavy metal salts) factors and are not usually produced in healthy plants 

(Pedras et al., 2011b; VanEtten et al., 1994). Until now 53 phytoalexins (indolyl and non indolyl) 

have been isolated and characterized from stressed crucifers; however, only a limited number of 

crucifer species have been investigated. The majority of the cruciferous phytoalexins were 

isolated from the Brassica species (Pedras et al., 2011b; 2015; Pedras and To, 2015). Recent 
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comprehensive reviews dealing with indolyl cruciferous phytoalexins have been published 

(Pedras et al., 2011b; Pedras et al., 2000). For this reason, only reports of immediate interest to 

work described in this thesis as well as the non-indolyl cruciferous phytoalexins are reviewed. 

Indolyl phytoalexins 

Camalexin (1) was first detected and isolated from Camelina sativa (false flax) infected 

with Alternaria brassicae (Ayer et al., 1992) and then was isolated from the model plants A. 

thaliana infected with Pseudomonas syringae (Glawischnig, 2007; Pedras et al., 2011b; Tsuji et 

al., 1992). The structure of camalexin (1) was confirmed by its synthesis in 1992 (Ayer et al., 

1992; Pedras et al., 2011b). Camalexin (1) showed strong antifungal activity against a variety of 

cruciferous pathogens such as Alternaria brassicicola (Schwein.) Wiltshire, Alternaria brassicae 

(Berk.) Sacc, Leptosphaeria maculans (Desm.) Ces. et de Not. (asexual stage Phoma lingam 

(Tode ex Fr.) Desm.), Botrytis cinerea Pers. Fr. (teleomorph Botryotinia fuckeliana (de Bary) 

Whetzel), Rhizoctonia solani Kuhn (Pedras et al., 2011b). Furthermore, camalexin (1) was 

shown to be important in the resistance of A. thaliana (Columbia) to A. brassicicola; that is, 

mutants of A. thaliana deficient in camalexin (1) production were highly susceptible to A. 

brassicicola (Thomma et al., 1999). Selected structures of indolyl phytoalexins produced by 

crucifers are shown in Figure 1.1; the phytoalexin structures relevant to work described in this 

thesis are grouped in the rectangular box. 
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Figure 1.1 Structures of selected indolyl cruciferous phytoalexins: camalexin (1), 1-
methylcamalexin (2), 6-methoxycamalexin (3), cyclobrassinin (4), rutalexin (5), brassicanal A 
(6), brassilexin (7), rapalexin A (8), brassinin (9), brussalexin (10) spirobrassinin (11), 1-
methoxyspirobrassinin (12), erucalexin (13), brassicanate A (14), (Pedras et al., 2011b). 

Cyclobrassinin (4) was first isolated from Chinese cabbage (Brassica campestris L. ssp. 

pekinensis) heads inoculated with bacterium Pseudomonas cichorii in 1986 and its synthesis 

confirmed the proposed structure (Pedras, 2014; Pedras et al., 2011b; Takasugi et al., 1986). 

Cyclobrassinin (4) is a biosynthetic precursor of rutalexin (5) and brassilexin (7) (Pedras, 2014; 

Pedras et al., 2011b). Cyclobrassinin (4) showed antifungal activity against a broad range of 

pathogens such as, A. brassicae, B. cinerea, C. cucumerinum, L. maculans, R. solani and 

Sclerotinia sclerotiorum (Lib.) de Bary (Pedras, 2014). Cyclobrassinin (4) was synthesized in 

35% yield from brassinin (9), which, in turn, was synthesized from aldehyde 26 in 58% overall 

yield (Scheme 1.1) (Pedras et al., 2011b; Takasugi et al., 1986).  
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Scheme 1.1 Synthesis of cyclobrassinin (4). Reagents and conditions: (i) NH2OH.HCl, 
Na2CO3, 1 h, 80 °C; (ii) NiCl2.6H2O, NaBH4, MeOH, 10 min, 0 °C; (iii) Et3N, pyridine, CS2, 10 
min, 0 °C, MeI, 30 min, 0 °C; (iv) Pyridinium bromide perbromide (PBP), 1,8-
diazabicycloundec-7-ene (DBU), THF, 100 min, r.t., 35% (Takasugi et al., 1986). 

Rutalexin (5) was first isolated and characterized from stressed (UV light) rutabaga 

(Brassica napus L. ssp. rapifera) tubers (Pedras et al., 2004b). Synthesis of rutalexin (5) 

confirmed the proposed structure (Scheme 1.2) (Pedras et al., 2004b). The synthesis started with 

oxidation of aldehyde 15 to N-Boc-2-chloroindole-3-carboxylic acid (16). Acid 16 was reacted 

with thionyl chloride followed by methylamine to provide amide 17. Amide 17 was reacted with 

NaSH in DMF/H2O to yield sulfanylamide 18. Finally, rutalexin (5) was obtained from reaction 

of sulfanylamide 18 with phosgene followed by subsequent deprotection at 165–170 °C in 24% 

overall yield (Scheme 1.2) (Pedras et al., 2004b). 
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Scheme 1.2 Synthesis of rutalexin (5). Reagents and conditions: (i) NaClO2, 2-methylbut-2-
ene, KH2PO4, tert-butyl alcohol/H2O, r.t., 2 h, 96%; (ii) SOCl2, THF, rt, 3 h, then CH3NH2, THF, 
0 °C, 20 min, 85% (based on acid 16); (iii) NaSH, DMF/H2O, 0 °C, 2 h; (iv) NaH, THF, 0 °C, 10 
min then COCl2 (20% in toluene), -78 °C to rt, 4 h, 30% (based on 17); (v) 165–170 °C, 30 min, 
100% (Pedras et al., 2004b). 

Rutalexin (5) was also prepared from 9-Boc-2-methoxy-4-oxo-[1,3]thiazino[6,5-b]indole 

(20) and cyclobrassinin (4) (Budovská et al., 2015). 9-Boc-1,3-thiazino[6,5-b]indole-2,4-dione 

(21) was synthesized from hydrolysis of 20 (HCl) and then reacted with MeI in presence of DBU 

(1,8-diazabicyclo[5.4.0]undec-7-ene) to yield N-Boc-rutalexin (19). As in the previous synthesis, 

deprotection of compound 19 under solvent free conditions yielded rutalexin (5) in 76% overall 

yield (Scheme 1.3) (Budovská et al., 2015). 
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Scheme 1.3 Synthesis of rutalexin (5). Reagents and conditions: (i) HCl/H2O (1:1, cat.), 
acetone, r.t., overnight, 80%; (ii) DBU, CH3I, THF, under N2, r.t., 2 h, 95%; (iii) 165–170 °C, 30 
min, quant.; (iv) Boc-anhydride, DMAP, THF, 5 °C, 1 h, 88%; (v) PCC, CH2Cl2, 24 h, 66% 
(Budovská et al., 2015). 

Synthesis of compound 21 was also reported from oxidation of N-Boc-cyclobrassinin 

(22) using pyridinium chlorochromate (PCC) in 66% yield (Scheme 1.3). Although these routes 

yielded rutalexin (5) in reasonable overall yield, from either 9-tert-butoxycarbonyl-2-methoxy-4-

oxo-[1,3]thiazino[6,5-b]indole (20) or N-Boc-cyclobrassinin (22), compounds 20 or 22 were 

obtained from multi step reactions in low overall yield (Suchy et al., 2001). For example, N-Boc-

cyclobrassinone (20) was synthesized from aldehyde 23 in 17% overall yield (Scheme 1.4) 

(Kutschy et al., 2002).  

 

 

N
Boc

S

N
OCH3

O

N
Boc

S

NH
O

O

N
Boc

S

N
O

O

N
H

S

N
O

O

N
Boc

S

N
SCH3

N
H

S

N
SCH3

54

19

22

20 21

i ii

iii

iv

v



 8 

	

Scheme 1.4 Synthesis of N-Boc-cyclobrassinone (20). Reagents and conditions: (i) Boc2O, 
DMAP, THF, 5°C, 1 h, 68%; (ii) NBS, AIBN, tetrachloromethane, reflux, 10 min; (iii) KSCN, 
acetone, r.t., 15 min, 41% (based on 15); (iv) CH3OH, acetone, r.t., 2 h; (v) Et3N, r.t., 1 h, 61% 
(yield is based on isothiocyanate 24). 

Due to the low solubility of rutalexin (5) in PDA, its antifungal activity was determined 

using a TLC bioassay: rutalexin (5) inhibited completely the growth of C. cucumerinum at 2 × 

10-6 mol (Pedras et al., 2004b).  

Brassilexin (7) was isolated and characterized in 1988 from the leaves of mustard 

(Brassica juncea) (Devys et al., 1988; Pedras et al., 2011b). The proposed structure of 

brassilexin (7) was confirmed with synthesis two years later (Devys and Barbier, 1990). 

Brassilexin (7) showed strong antifungal activity against L. maculans, A. brassicae, R. solani and 

S. sclerotiorum (Pedras, 2014). 

Rapalexin A (8) was the first naturally occurring aromatic isothiocyanate. Rapalexin A 

(8) was isolated from canola leaves (Brassica rapa), infected with Albugo candida, Pers. ex 

Chev., Kuntze. Its structure was confirmed by synthesis (Pedras et al., 2011b; 2007b) (Scheme 

1.5). Nitration of 4-methoxyindole (31) using AgNO3 yielded 4-methoxy-3-nitroindole (30) in 

30% yield. Standard hydrogenation of nitro group of 30 followed by reaction with thiophosgene 

afforded rapalexin A (8) (Scheme 1.5) (Pedras et al., 2011b; 2007b). Later on 4-methoxy-3-

nitroindole (30) was synthesized from methoxylation of 3-nitroindole (29) using thallium (III) 

trifluoroacetate (TTFA) in 64% yield (Pedras and Yaya, 2012). Rapalexin A (8) showed strong 
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antifungal activity against L. maculans (Pedras and Sarma-Mamillapalle, 2012) and A. candida 

(Pedras et al., 2011b). 

	

Scheme 1.5  Synthesis of rapalexin A (8). Reagents and conditions: (i) AgNO3, benzoyl 
chloride, CH3CN, 30%; (ii) Pd/C, H2, AcOH; (iii) CH2Cl2, CaCO3, CSCl2, 20% over two steps; 
(Pedras et al., 2007b); (iv) TFA, TTFA, I2, CuI, DMF, NaOMe, MeOH, 64%, (Pedras and Yaya, 
2012).  

Brassinin (9), the first phytoalexin reported from Brassicaceae, was first isolated and 

characterized from stressed Chinese cabbage (Brassica campestris L. ssp. pekinensis) by 

Takasugi and co-workers (Pedras et al., 2011b; Takasugi et al., 1986). The structure of brassinin 

(9) was confirmed with its synthesis from indole-3-methanamine (28) (Scheme 1.1) (Takasugi et 

al., 1986). Brassinin (9) is a biosynthetic precursor of several cruciferous phytoalexins (Scheme 

1.6) (Pedras et al., 2011b). Furthermore, brassinin (9) showed strong antifungal activity against 

cruciferous pathogens such as, L. maculans, S. sclerotiorum and B. cinerea (Pedras et al., 

2011b). 
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Scheme 1.6 Biosynthetic relationship among brassinin (9) and other phytoalexins 
cyclobrassinin (4), rutalexin (5), brassicanal A (6), brassilexin (7), and brassicanate A (14) 
(Pedras et al., 2011b). 

Non-indolyl phytoalexins 

The hypothesis that crucifer species could biosynthesize non-indolyl phytoalexins was 

formulated long time ago when 4-hydroxybenzylisothiocyanate (33) was isolated as a major 

antifungal component from white mustard (Sinapis alba) sprayed with a copper(II) chloride 

(CuCl2) solution (Pedras and Smith, 1997). 

	

Figure 1.2 Structure of 4-hydroxybenzylisothiocyanate (33). 

Eighteen years later, the first group of non-indolyl cruciferous phytoalexins was isolated 

and characterized from the copper(II) chloride treated leaves of watercress (Nasturtium officinale 

R. Br.) (Pedras and To, 2015). Nasturlexin A (34), nasturlexin B (35) and tridentatol C (36) are 

the first three non-indolyl cruciferous phytoalexins containing a phenyl ring instead of indole in 

their structures (Figure 1.3). 
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Figure 1.3 Structures of non-indolyl cruciferous phytoalexins; nasturlexin A (34), nasturlexin 
B (35), tridentatol C (36) (Pedras and To, 2015). 

Phytoalexins from Barbarea species, winter cress (Barbarea vulgaris R. Br) and upland 

cress (Barbarea verna (P. Mill.) Aschers) were isolated from the leaves sprayed with copper(II) 

chloride (Pedras et al., 2015). The new non-indolyl phytoalexins, nasturlexin C (37), nasturlexin 

C sulfoxide (38), nasturlexin D (39), nasturlexin D sulfoxide (40) were isolated from both 

species (Figure 1.4) (Pedras et al., 2015). 

	

Figure 1.4 Structures of nasturlexin C (37), nasturlexin C sulfoxide (38), nasturlexin D (39), 
nasturlexin D sulfoxide (40) (Pedras et al., 2015). 

Tridentatol C (36) is a secondary metabolite previously isolated from Tridentata 

marginata in 1996 (Lindquist et al., 1996). The structure of tridentatol C (36) was first confirmed 

by X-ray crystallography (Lindquist et al., 1996) and later, synthesized (Jayatilake and Baker, 

1999). Tridentatol C (36) was synthesized from (±)-octopamine (41) via nasturlexin B (35). (±)-

Octopamine (41) was reacted with CS2/MeI in the presence of Et3N to yield nasturlexin B (35) in 

90% yield. Nasturlexin B (35) was then oxidized to tridentatol C (36) using DDQ in 1,4-dioxane 

in 70% yield (Scheme 1.7) (Jayatilake and Baker, 1999; Pedras and To, 2015). 
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Scheme 1.7 Syntheses of nasturlexin B (35) and tridentatol C (36). Reagents and conditions: 
(i) CS2, MeI, Et3N, DCE, reflux, 90%; (ii) DDQ, 1,4-dioxane, reflux, 70% (Jayatilake and Baker, 
1999; Pedras and To, 2015). 

Nasturlexin C (37) was synthesized from 2-amino-1-phenylethanol hydrochloride (42) in 

20% overall yield. Compound 42 was chlorinated upon reaction with SOCl2 and the resulting 

intermediate was treated with CS2 that cyclized spontaneously. Methylation with MeI afforded 

compound 43, which was oxidized to nasturlexin C (37) with DDQ in 1,4-dioxane (Pedras et al., 

2015). 

	

Scheme 1.8 Synthesis of nasturlexin C (37). Reagents and conditions: (i) SOCl2, DMF, 
CHCl3, 0 °C; (ii) CS2, pyridine, Et3N, MeI, r.t., 29% (over 2 steps); (iii) DDQ, 1,4-dioxane, 100 
°C, 70% (Pedras et al., 2015). 

The sulfoxide derivatives of nasturlexin C and D, 38 and 40, were obtained by m-CPBA 

oxidation of nasturlexin C (37) and nasturlexin D (39). The sulfoxide 40 was obtained in 

quantitative yield using two equivalents of m-CPBA. Similarly, nasturlexin C (37) was oxidized 

to sulfoxide 38 (Pedras et al., 2015). 
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Scheme 1.9 Syntheses of nasturlexin C sulfoxide (38) and nasturlexin D sulfoxide (40). 
Reagent and condition: (i) m-CPBA (1eq for 38 and 2eq for 40), CH2Cl2, 72% (38) and 
quantitative (40) (Pedras et al., 2015).  

Nasturlexin A (34) was synthesized from phenylethylamine (44) after treatment with CS2 

and MeI (Scheme 1.10) (Gaspari et al., 2006; Pedras and To, 2015). 

	

Scheme 1.10 Synthesis of nasturlexin A (34). Reagents and conditions: (i) CS2, Et3N, pyridine, 
15 min, r.t., (ii) MeI, 15 min, 43% (over two steps)(Pedras and To, 2015). 

The antifungal activities of nasturlexin A (34), nasturlexin B (35), nasturlexin C (37), 

nasturlexin D (39), nasturlexin C sulfoxide (38), nasturlexin D sulfoxide (40), and tridentatol C 

(36) were determined against the fungal pathogens A. brassicicola, L. maculans and S. 

sclerotiorum (Pedras et al., 2015; Pedras and To, 2015). Except for sulfoxides 38 and 40 that 

were not active against S. sclerotiorum, all tested compounds displayed strong inhibitory activity 

(Pedras et al., 2015; Pedras and To, 2015). The biosynthetic pathway of non-indolyl phytoalexins 

was proposed to derive from tyrosine (Tyr) or phenylalanine (Phe) (Scheme 1.11) (Pedras and 

To, 2015). Scheme 1.11 summarizes the proposed biosynthetic pathway of these non-indolyl 

cruciferous phytoalexins (Pedras et al., 2015; Pedras and To, 2015). 
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Scheme 1.11 Proposed biosynthetic relationships (dashed arrows) among phenylalanine (Phe) 
(46), tyrosine (Tyr) (47) and non-indolyl cruciferous phytoalexins (Pedras et al., 2015; Pedras 
and To, 2015).  

1.2.1.2 Phytoanticipins 

Phytoanticipins are antimicrobial plant secondary metabolites that are present in healthy 

plants and their concentrations may increase with stress (VanEtten et al., 1994). Selected 

structures of phytoanticipins produced by crucifers are shown in Figure 1.5. The distinction 

between phytoalexins and phytoanticipins is not always obvious. Some compounds are 

phytoalexins in one species and phytoanticipins in another. For example, methyl-1-

methoxyindole-3-carboxylate (55) was reported as a phytoanticipin from A. thaliana while the 

same compound isolated from stressed wasabi was a phytoalexin (Pedras and Adio, 2008; Pedras 

et al., 1999). Arvelexin (54) a phytoalexin isolated from the wild crucifer Thlaspi arvense is a 

phytoanticipin in canola (brassica napus L. spp. oleifera) infected by Plasmodiophora brassicae 

(clubroot) (Pedras et al., 2003; 2008b).  
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Figure 1.5 Structures of phytoanticipins: Indole-3-carboxaldehyde (26), indolyl-3-
acetonitrile (52), 1-methoxyindolyl-3-acetonitrile (53), 4-methoxyindolyl-3-acetonitrile (54, i.e. 
arvelexin), and methyl 1-methoxyindole-3-carboxylate (55).  

1.2.2 Fungal pathogens, Alternaria species 

Cruciferous plants (Brassicaceae) are susceptible to Alternaria species. Alternaria 

species such as A. brassicae, A. brassicicola, A. raphani, and A. alternata cause major damage 

on Brassicae plants (Nowicki et al., 2012). Alternaria black spot, the most common disease of 

Brassica species, is caused by A. brassicicola, in conjunction with A. brassicae (Pedras et al., 

2009a). Alternaria black spot symptoms appear on almost all parts of the host plants as necrotic 

lesions. 

Some secondary metabolites produced by Alternaria species are toxic to plants 

(phytotoxins) and cause cell death at low concentration (Thomma, 2003). Phytotoxins facilitate 

fungal colonization of plants (Walton, 1996). Brassicicolin A (56) is the only phytotoxin 

produced by A. brassicicola (Pedras et al., 2009a). Secondary metabolites from Alternaria 

species showed a variety of biological activities for example, destruxins from A. brassicae 

showed antitumor, antiviral and insecticidal activities (Liu and Tzeng, 2012). Secondary 

metabolites from Alternaria fungi and their bioactivities were reviewed recently by Lou and co-

workers (Lou et al., 2013). Herein, work of immediate interest in this thesis is reviewed.  

1.2.2.1 Secondary metabolites of Alternaria brassicicola 

Alternaria brassicicola produces several secondary metabolites including nitrogen-

containing metabolites, terpenoids, pyranones and some other metabolites (Lou et al., 2013). 

Brassicicolin A (56) was the first metabolite isolated from A. brassicicola (Ciegler and 

Lindenfelser, 1969). Twenty years after isolation of brassicicolin A (56), its structure was 

established as a mixture of epimers (Gloer et al., 1988). Later on brassicicolin A (56) was 
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isolated from liquid cultures of A. brassicicola and established to be a host-selective toxin (HST) 

(Pedras et al., 2009a). 

	

Figure 1.6 Structures of brassicicolin A (56) and depudecin (57). 

Phytotoxicity of brassicicolin A (56) was determined on leaves of Brassica juncea cv. 

Cutlass (susceptible), Brassica napus cv. Westar (tolerant) and Sinapis alba cv. Ochre (resistant) 

(Pedras et al., 2009a). Results of phytotoxicity experiments indicated that brassicicolin A (56) 

was a HST causing damage only on leaves of B. juncea and B. napus (Pedras et al., 2009a). 

Depudecin (57) was isolated from cultures of A. brassicicola grown in minimal media (MM) in 

1992 (Matsumoto et al., 1992). Depudecin (57) was reported as a histone deacetylase inhibitor 

(Kwon et al., 2003; 1998). Depudecin-minus mutants of A. brassicicola revealed that depudecin 

plays a minor role in the virulence of A. brassicicola on cabbage (Wight et al., 2009). Depudecin 

(57) was chemically synthesized from tetraol 58 in 1995 (Shimada et al., 1995). Tetraol 58 was 

treated with MeC(OMe)3 and catalytic amount of pyridinium p-toluenesulfonate (PPTS) in 

presence of trimethylsilyl chloride and triethylamine to yield diacetoxy dichloride 59. Basic 

hydrolysis of 59 followed by spontaneous cyclization yielded bis-trans epoxide 60 in 74% 

overall yield. Finally, deprotection using mercuric chloride and excess calcium carbonate yielded 

depudecin (57) (Scheme 1.12) (Shimada et al., 1995). 
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Scheme 1.12 Synthesis of depudecin (57). Reagents and conditions, (i) MeC(OMe)3, cat. PPTS, 
23 °C; (ii) trimethylsilyl chloride (TMSCl), Et3N, 23 °C; (iii) K2CO3, MeOH, 23 °C; (iv) 50 eq. 
HgCl2-CaCO3, MeCN-H2O, 23 °C, 3.5 h, 52% (Shimada et al., 1995). 

In 1999 six potentially phytotoxic compounds were isolated from liquid cultures of A. 

brassicicola that were called brassicicenes A-F (61-66), however due to the small amounts 

obtained from culture extracts, their phytotoxicity was not determined (MacKinnon et al., 1999). 

Later on brassicicene G (67), brassicicene H (68), brassicicene I (69) (Pedras et al., 2009a), 

brassicicene J (70) and brassicicene K (71) (Kenmoku et al., 2014) were also isolated and 

characterized from cultures of A. brassicicola.  
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Figure 1.7 Structures of brassicicene A-F (61-66), brassicicene G-I (67-69) and brassicicene 
J-K (70 and 71). 

Phomapyrones A, F and G (72, 74 and 75) and infectopyrone (73) were isolated from the 

non-phytotoxic fractions of broth extracts of cultures of A. brassicicola (Pedras et al., 2009a); 

these metabolites were reported previously from L. maculans and L. biglobosa (Pedras and 

Biesenthal, 2001; Pedras and Chumala, 2005; Pedras et al., 1994). 

 

O

HO
OCH3

OH

HO

67

OH

HO
OCH3

H

HO

68

HO
OCH3

HO

69

O

HO
OCH3

OH

HO

O

HO
OCH3

HO

O

HO
OCH3

H

HO

O

HO
OCH3

HO

OH H

O

HO
OCH3

H

HO

OH

O

HO
OCH3

HO

HO

OAc

61

6665

646362

O

HO
OCH3

H

HO

OOH

70

H O

HO
OCH3

H

HO

71

H



 19 

	

Figure 1.8 Structures of phomapyrones A (72), F (74), G (75) and infectopyrone (73). 

The structures of phomapyrone A (72) and infectopyrone (73) were confirmed by 

synthesis of both compounds (Scheme 1.13, Scheme 1.14) (Geiseler and Podlech, 2012). 

Phomapyrone A (72) was synthesized by condensation of vermopyrone (78) with phosphonium 

salt 77 in present of BuLi (Scheme 1.13) (Geiseler and Podlech, 2012). None of the 

phomapyrones or infectopyrone (73) showed phytotoxic activity (Pedras et al., 2009a). 

	

Scheme 1.13 Synthesis of phomapyrone A (72). Reagents and conditions: (i) LiAlH4, Et2O, 0 
°C, 77%; (ii) PBr3, Et2O, 0 °C, 51%; (iii) Ph3P, CH3CN, 120 °C, 75%; (iv) BuLi, THF, 0 °C, 
78% (Geiseler and Podlech, 2012). 

Infectopyrone (73) was obtained from phomapyrone D (79) in 53% overall yield 

(Geiseler and Podlech, 2012). The reaction was initiated by condensation of phomapyrone D 
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(79) with tert-butyl diethyl phosphonoacetate in the presence of BuLi (Geiseler and Podlech, 

2012). 

	

Scheme 1.14 Synthesis of infectopyrone (73). Reagents and conditions: (i) BuLi, THF, 0 °C, 
78%; (ii) TFA, 98% (Geiseler and Podlech, 2012). 

Siderophores are low molecular mass Fe3+ chelators (Haas et al., 2008). In fungi, one of 

the mechanisms of iron uptake is mediated by siderophores (Haas et al., 2008). All fungal 

siderophores reported so far are hydroxamates (Haas et al., 2008). A. brassicicola produces 

siderophores (Haas et al., 2008) that are responsible for iron storage. Siderophores are important 

in the virulence of A. brassicicola. A mutant of A. brassicicola deficient in siderophores 

production (ΔAbnps6) was less virulent on A. thaliana than the wild type isolate (Oide et al., 

2006). An example of siderophore produced by A. brassicicola is shown in Figure 1.9.  
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Nα-dimethyl coprogen 

Figure 1.9 Example of a siderophore of Alternaria brassicicola.  

1.2.2.2 Mutants of Alternaria brassicicola 

Camalexin (1) is one of the phytoalexins produced by several wild crucifer species 

(Pedras et al., 2011b). Camalexin (1) showed strong toxicity to A. brassicicola (Pedras and 

Abdoli, 2013). Probably the toxicity of camalexin (1) to A. brassicicola is due to cell membrane 

damage (Joubert et al., 2011). Mutants of A. brassicicola (AbSlt2Δ) deficient in production of a 

kinase (Slt2) were hypersensitive to camalexin (1) and brassinin (9) (Joubert et al., 2011). 

Brassinin (9) was detoxified to indole-3-methanamine (28) and Nʹ-acetylindole-3-

methanamine (81) by A. brassicicola (Scheme 1.15) (Pedras et al., 2011b). The role of brassinin 

(9) detoxification in the virulence of A. brassicicola to Brassica species was determined by 

disruption of the genes that encode a brassinin detoxifying enzyme (Srivastava et al., 2013). 

Mutants of A. brassicicola unable to detoxify brassinin (9) (Δbdtf1) were less virulent on 

Brassica species than wild type isolates (Srivastava et al., 2013). Mutants caused leaf lesions 

about 70% smaller than the wild type on Brassica juncea, Brassica oleracea var. botrytis and 

Brassica rapa var. pekinensis. The virulence of these mutants on A. thaliana, which does not 

produce brassinin (9), was comparable to the wild type isolate of A. brassicicola (Srivastava et 

al., 2013). In general, the mutants of A. brassicicola that are not successful to metabolize 

brassinin (9) were less virulent in Brassica juncea, Brassica oleracea var. botrytis and Brassica 

rapa var. pekinensis. (Srivastava et al., 2013). 

	

Scheme 1.15 Detoxification of the phytoalexin brassinin (9) by Alternaria brassicicola (Pedras 
et al., 2009a). 
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1.3 Metabolism of phytoalexins by fungal pathogens 

In the interaction of plants with their environment, they use secondary metabolites to 

respond to stress. As mentioned in Section 1.2.1.1 phytoalexins are an important group of 

secondary metabolites with multiple roles in protecting plants (Pedras et al., 2011b). For 

example, it was recently demonstrated that some cruciferous phytoalexins inhibited 

detoxification of cruciferous phytoalexins by inhibiting the corresponding detoxifying enzymes 

(Pedras and Minic, 2014; Pedras et al., 2010a). Susceptibility of plants to certain pathogens is 

partly related to metabolism and detoxification of phytoalexins by pathogen (Pedras et al., 

2011b; Pedras and Ahiahonu, 2005). Metabolism of cruciferous phytoalexins by plant pathogens 

was reviewed by Pedras and co-workers (Pedras et al., 2011b), but here the metabolism of 

cruciferous phytoalexins of immediate interest to my PhD work is reviewed. 

1.3.1 Phytoalexins from cruciferous plants 

Fungal plant pathogens were reported to detoxify cruciferous phytoalexins (Pedras et al., 

2011b). It was shown that the virulence of some pathogens is correlated to the ability of 

pathogen to detoxify phytoalexins (Srivastava et al., 2013). The biotransformations of 

cruciferous phytoalexins carried out by important cruciferous pathogens such as L. maculans, L. 

biglobosa, R. solani, S. sclerotiorum, A. brassicicola, and B. cinerea were investigated (Pedras et 

al., 2011b).  

Camalexin (1) was found to be metabolized by R. solani (Pedras and Khan, 1997), S. 

sclerotiorum (Pedras and Ahiahonu, 2002), B. cinerea (Pedras et al., 2011a) and A. brassicicola 

(Pedras and Abdoli, 2013) as summarized in Scheme 1.16. L. maculans and A. brassicae were 

not able to metabolize camalexin (1) (Pedras et al., 1998). The detoxification pathway of 

camalexin (1) in A. brassicicola (Pedras and Abdoli, 2013) was identical to that used by B. 

cinerea (Pedras et al., 2011a). Camalexin (1) was transformed by both species to indole-3-

thiocarboxamide (82), which was metabolized further to indole-3-carboxylic acid (84) via 

indole-3-carbonitrile (83). However, the rate of transformation of camalexin (1) in cultures of A. 
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brassicicola was much slower than that observed in B. cinerea (Pedras et al., 2011a; Pedras and 

Abdoli, 2013). Camalexin (1) was detoxified by S. sclerotiorum to 6-oxy-(O-β-

glucopyranosyl)camalexin (86) via 6-hydroxycamalexin (85) (Pedras and Ahiahonu, 2002). 

Camalexin (1) was transformed to 5-hydroxycamalexin (87) by R. solani, which was further 

transformed to 5-hydroxy-2-formamidophenyl-2'-thiazolylketone (88) and 5-hydroxyindole-3-

carbonitrile (89) (Scheme 1.16) (Pedras and Khan, 1997). 

	

Scheme 1.16 Detoxification of the phytoalexin camalexin (1) by plant pathogens: (i) Botrytis 
cinerea (Pedras et al., 2011a); (ii) Alternaria brassicicola (Pedras and Abdoli, 2013); (iii) 
Sclerotinia sclerotiorum (Pedras and Ahiahonu, 2002) (iv) Rhizoctonia solani (Pedras and Khan, 
1997). 

1-Methylcamalexin (2) was detoxified by R. solani to 1-methylindole-3-carbonitrile (92), 

1-methylindole-3-carboxamide (97) and 2-(1-methyl-3-indolyl)-oxazoline (96) (Scheme 1.17) 

(Pedras and J. Liu, 2004). Recently, metabolism of 1-methylcamalexin (2) was investigated in A. 

brassicicola (Pedras and Abdoli, 2013). A. brassicicola carried out the oxidative degradation of 

the thiazole ring to the corresponding thiocarboxamide 90 that was further metabolized to nitrile 

92 and acid 94 (Scheme 1.17) (Pedras and Abdoli, 2013). 
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Scheme 1.17 Detoxification of the phytoalexins 1-methylcamalexin (2) and 6-
methoxycamalexin (3) by plant pathogens: (i) Alternaria brassicicola (Pedras and Abdoli, 2013); 
(ii) Rhizoctonia solani (Pedras and Liu, 2004); (iii) Sclerotinia sclerotiorum (Pedras and 
Ahiahonu, 2002). 

6-Methoxycamalexin (3) was metabolized by S. sclerotiorum through two different 

pathways (Pedras and Ahiahonu, 2002) (Scheme 1.17). In one pathway, 6-methoxycamalexin (3) 

was metabolized through demethylation of the methoxy group to 6-hydroxycamalexin (85) 

followed by glucosylation of the hydroxyl group to compound 86. 6-Methoxycamalexin (3) was 

also metabolized by S. sclerotiorum to the N-glucosylated product 98, a minor metabolite 

(Pedras and Ahiahonu, 2002). Metabolism of 6-methoxycamalexin (3) in A. brassicicola yielded 

thiocarboxamide 91 as a result of oxidative degradation of its thiazole ring (Pedras and Abdoli, 

2013). Thiocarboxamide 91was further metabolized by A. brassicicola to the corresponding 

nitrile 93 and acid 95 (Scheme 1.17) (Pedras and Abdoli, 2013). 

The metabolism of brassilexin (7) by two fungal species was investigated (Scheme 1.18). 

Brassilexin (7) was metabolized by L. maculans (virulent on canola) to enamine 99 through 

reduction of N-S bond of its isothiazole ring, then enamine 99 was metabolized further to 

sulfonic acid 100 (Pedras and Suchy, 2005). Brassilexin (7) was detoxified to the N-glucosylated 
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product 101 by S. sclerotiorum utilising a glucosyl transferase (Scheme 1.18) (Pedras and 

Hossain, 2006).  

	

Scheme 1.18 Detoxification of the phytoalexin brassilexin (7) by plant pathogens: (i) 
Leptosphaeria maculans (Pedras and Suchy, 2005); (ii) Sclerotinia sclerotiorum (Pedras and 
Hossain, 2006). 

The transformations of cyclobrassinin (4) by L. maculans (Pedras, 1998), L. biglobosa 

(Pedras and Okanga, 1999), R. solani (Pedras and Okanga, 1999) and S. sclerotiorum (Pedras et 

al., 2004a) were investigated (Scheme 1.19). Cyclobrassinin (4) was metabolized to the 

phytoalexin dioxibrassinin (103) by L. maculans (Pedras, 1998) and brassilexin (7) (Pedras and 

Okanga, 1999) by L. biglobosa. The metabolism of cyclobrassinin (4) by S. sclerotiorum was via 

glycosylation to the N-glucosylated product 102 (Pedras et al., 2004a). R. solani transformed 

cyclobrassinin (4) to the phytoalexin brassicanal A (6), which was oxidized further to compound 

105 via brassicanal A (6) (Pedras and Okanga, 1999). 
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Scheme 1.19 Detoxification of the phytoalexin cyclobrassinin (4) by plant pathogens: (i) 
Leptosphaeria maculans (Pedras, 1998); (ii) Rhizoctonia solani (Pedras and Okanga, 1999); (iii) 
Sclerotinia sclerotiorum (Pedras et al., 2004a); (iv) Leptosphaeria biglobosa (Pedras, 2014; 
Pedras and Okanga, 1999). 

The metabolism of the phytoalexin brassinin (9) by several cruciferous fungi such as L. 

maculans, A. brassicicola, L. biglobosa, B. cinerea and S. sclerotiorum were investigated as 

summarized in Scheme 1.20 (Pedras et al., 2011b). It was indicated that A. brassicicola, L. 

maculans (virulence on mustard), L. biglobosa and B. cinerea transformed brassinin (9) to 

identical products. These pathogens metabolized brassinin (9) to indole-3-methanamine (28) 

followed by Nb-acetyl-indole-3-methanamine (81) (Pedras et al., 2011a; 2009a; 2007a). 

Brassinin (9) was transformed by S. sclerotiorum to the N-glucosylated compound 106 (Pedras et 

al., 2004a). Brassinin (9) was oxidized to indole-3-carboxaldehyde (26) by L. maculans (virulent 

on canola) followed by further oxidation to indole-3-carboxylic acid (84) (Scheme 1.20) (Pedras 

and Jha, 2006).  
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Scheme 1.20 Detoxification of the phytoalexin brassinin (9) by plant pathogens: (i) 
Leptosphaeria maculans (virulence on canola); (ii) Alternaria brassicicola, L. biglobosa and 
Botrytis cinerea (Pedras et al., 2011a; 2009a; 2007a); (iii) Sclerotinia sclerotiorum (Pedras et al., 
2004a). 

1.3.2 Phytoalexins from non-cruciferous plants 

To date, several examples reported in the literature demonstrate that fungal pathogens can 

efficiently detoxify phytoalexins from other plant families (Pedras and Ahiahonu, 2005). 

Metabolism and detoxification of phytoalexins from non-cruciferous plants was 

comprehensively reviewed in 2005 (Pedras and Ahiahonu, 2005) and here only the work 

reported after 2005 is reviewed. 

The phytoalexin daidzein (107), isolated from Colombian bean (Phaseolus vulgaris) 

(Durango et al., 2002) was metabolized by the fungus Aspergillus oryzae to the potent 

antioxidant 8-hydroxydaidzein (108) (Scheme 1.21) (Seo et al., 2013). Metabolism of daidzein 

(107) to 8-hydroxydaidzein (108) in A. oryzae was identical to Aspergillus saitoi (Scheme 1.21) 

(Esaki et al., 1998) (Pedras and Ahiahonu, 2005). 

	

Scheme 1.21 Detoxification of daidzein (107) by (i) Aspergillus oryzae (Seo et al., 2013); (ii) 
Aspergillus saitoi (Esaki et al., 1998; Pedras and Ahiahonu, 2005). 
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Sakuranetin (109) is a phytoalexin isolated from rice plants (Oryza sativa) infected by 

Pyricularia oryzae (Dillon et al., 1997). The metabolism of the phytoalexin sakuranetin (109) by 

Magnaporthe oryzae (rice blast fungus) indicated that the phytoalexin was transformed, although 

no metabolites were isolated from the cultures (Hasegawa et al., 2010). Later on, analysis of 

extracts of cultures of M. oryzae incubated with sakuranetin (109) showed that it was 

metabolized to naringenin (110) (Scheme 1.22) (Hasegawa et al., 2014). 

	

Scheme 1.22 Detoxification of sakuranetin (109) by (i) Magnaporthe oryzae (Hasegawa et al., 
2014). 

The phytoalexin genistein (4ʹ,5,7-trihydroxyisoflavone) (111) was metabolized by 

Armillaria mellea, causal agent of root rot, to five different compounds; 4-hydroxyphenylacetic 

acid (112), 2,5-dihydroxyphenylacetic acid (homogentisic acid) (113), its lactone 5-hydroxy-

2(3H)-benzofuranone (114), 1,4-benzoquinone (115) and 1,3,5-trihydroxybenzene (116) (Curir 

et al., 2006) (Scheme 1.23). All metabolites caused lower growth inhibition against mycelial 

growth of A. mellea than the parent compound. The pathway of detoxification of genistein (111) 

was proposed as shown in Scheme 1.23 (Curir et al., 2006). 
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Scheme 1.23 Detoxification of genistein (111) by (i) Armillaria mellea (Curir et al., 2006). 

The metabolism of momilactone A (117), the major phytoalexin from rice, was 

investigated in 2010: although no metabolites were isolated from the cultures incubated with 

momilactone A (117) (Hasegawa et al., 2010). Later on, it was reported that momilactone A 

(117) was transformed to 3,6-dioxo-19-nor-9β-pimara-7,15-diene (118) by M. oryzae (Scheme 

1.24) (IMAI et al., 2012). Compound 118 was further metabolized to undetermined metabolite(s) 

by M. oryzae. The antifungal activity of compound 118 was the same as that of momilacton A 

(117). 3,6-Dioxo-19-nor-9β-pimara-7,15-diene (118) was proposed as a precursor for the 

detoxified metabolites. 

	

Scheme 1.24 Detoxification of momilacton A (117) by (i) Magnaporthe oryzae (Imai et al., 
2012). 
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bassiana to 5-methoxyresvertarol-3-O-glucoside (120) and 5-hydroxyresveratrol-3-sulphate 

(122) (Herath et al., 2013). P. chrysogenium  metabolized resveratrol (119) to 5-

methoxyresveratrol-3-sulphate (121) and 5-hydroxyresveratrol-3-sulphate (122) (Herath et al., 

2013). 

	

Scheme 1.25 Detoxification of resveratrol (119) by (i) Beauveria bassiana; (ii) Penicillium 
chrysogenium (Herath et al., 2013). 

Stilbenes are a group of antifungal phenolic compounds have been found in spruce and 

other species of the family Pinaceae (Underwood and Pearce, 1992). The stilbene-type 

phytoalexin astringin (123), biosynthesized from resveratrol (119) (Jeandet et al., 2014) 

(Hammerbacher et al., 2011), is transformed by two different isolates of Ceratocystis polonica 

(Scheme 1.26) (Hammerbacher et al., 2013). Metabolism of astringin (123) yielded compounds 

128, 124, 125, and 129 (Hammerbacher et al., 2013). Metabolites 124, 125, 128 and 129 were 

transformed further by C. polonica to piceatannol lactone 130 and piceatannol dimers 132 and 

133 (Scheme 1.26). 
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Scheme 1.26 Detoxification of astringin (123) by Ceratocystis polonica (Hammerbacher et al., 
2013).  

The metabolism of glyceollin (134), a soybean phytoalexin, was investigated in different 

plant pathogens (Lygin et al., 2010). Metabolism of glyceollin (134) in Cercospora 

sojina �, �Diaporthe phaseolorum var. meridionales, Macrophomina phaseolina, Phialophora 

gregata and R. solani yielded compound 135 (Scheme 1.27) (Lygin et al., 2010). Glyceollin 

(134) was metabolized to compound 136 in cultures of Sclerotinia sclerotiorum (Lygin et al., 

2010). 
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Scheme 1.27 Detoxification of glyceollin (134) by: (i) Cercospora sojina�; (ii) �Diaporthe 
phaseolorum var. meridionales; (iii) Macrophomina phaseolina; (iv) Phialophora gregata; (v) 
Rhizoctonia solani; (vi) Sclerotinia sclerotiorum (Lygin et al., 2010). 

1.4 Inhibition of detoxification of cruciferous phytoalexins 

Plants resist pathogens using both constitutive and induced defences. Phytoalexins, an 

induced defence, have been studied for many years; however, the specific roles of these induced 

chemicals are not fully understood. Recently, it has been shown that cruciferous phytoalexins 

can inhibit the detoxification of other phytoalexins by cruciferous pathogens. Detoxification of 

cruciferous phytoalexins by important cruciferous pathogens has been studied (Pedras et al., 

2011b) and is an on-going investigation. Preventing these detoxification reactions using 

inhibitors of enzymes responsible for these detoxifications is also under investigation. 

PALDOXINS (phytoalexin detoxification inhibitors) are a new generation of synthetic 

compounds that can selectively inhibit phytoalexin detoxifying enzymes, with minimal effect on 

other organisms and environment (Pedras, 2014; Pedras et al., 2011b). Some of the enzymes 

involved in selective detoxification of cruciferous phytoalexins were recently reported (Pedras, 

2014). 
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1.4.1 11Detoxifying enzymes 

Five phytoalexin detoxifying enzymes were isolated and characterized from four fungal 

species (Pedras and Minic, 2014; Pedras et al., 2008a; 2009c; Sexton et al., 2009). Four of these 

enzymes are responsible for detoxification of brassinin (9) (Pedras et al., 2009c; 2008a; Sexton et 

al., 2009) and one is responsible for detoxification of cyclobrassinin (4) (Pedras and Minic, 

2014). Pioneering work led to the isolation of brassinin oxidase from L. maculans (BOLm) 

(Pedras et al., 2008a). BOLm responsible for oxidative detoxification of brassinin (9) to indole-

3-carboxaldehyde (26) (Scheme 1.28) was the first phytoalexin detoxifying enzyme ever 

characterized. Production of BOLm in fungal cultures required induction with specific 

compounds such as 3-phenylindole (234) or camalexin (1) (Pedras et al., 2008a; 2005). Protein 

extracts of control cultures of L. maculans showed very low BO activity (Pedras et al., 2008a). 

BOLm was purified from mycelia of L. maculans using brassinin (9) as substrate (Pedras et al., 

2008a).  

	

Scheme 1.28 Transformation of brassinin (9) by brassinin oxidase from Leptosphaeria 
maculans (isolate virulent on canola) (BOLm); Brassinin hydrolase from Alternaria brassicicola 
(BHAb); brassinin hydrolase from Leptosphaeria maculans (virulent on mustard) (BHLmL2) 
and brassinin glucosyl transferase from Sclerotinia sclerotiorum (SsBGT1).  

Two brassinin hydrolases were isolated from L. maculans (isolate L2, virulent on 

mustard) (BHLmL2) and A. brassicicola (BHAb) (Pedras et al., 2009c). BHAb is a dimeric 

protein with the molecular mass of 120 kDa, while BHLmL2 is a tetrameric protein with mass of 
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220 kDa (Pedras et al., 2009c). BHLmL2 and BHAb catalyzed the detoxification of brassinin (9) 

to indole-3-methaneamine (28) (Scheme 1.28). Similar to BOLm, brassinin hydrolases are non-

constitutive enzymes induced by camalexin (1) and 3-phenylindole (234). BHs showed a high 

degree of substrate specificity (Pedras et al., 2009c). 

Brassinin glucosyl transferase (BGT1) from Sclerotinia sclerotiorum (SsBGT1) is 

inducible and involved the detoxification of brassinin (9) via glucosylation of the nitrogen of 

indole (Scheme 1.28). The enzyme was expressed in Saccharomyces cerevisiae and purified 

(Sexton et al., 2009). Three substrates were found for SsBGT1, the phytoalexins cyclobrassinin 

(4) and 6-methoxycamalexin (3), and 3-phenylindole (234) (Sexton et al., 2009).  

Recently cyclobrassinin hydrolase was isolated from A. brassicicola (CHAb) (Pedras and 

Minic, 2014). The enzyme catalyzed transformation of cyclobrassinin (4) to S-methyl [(2-

sulfanyl-1H-indolyl-3)methyl]carbamothioate (137) (Scheme 1.29).  

		

Scheme 1.29 Transformation of cyclobrassinin (4) by cyclobrassinin hydrolase from Alternaria 
brassicicola (CHAb). 

CHAb is an inducible enzyme and its production in fungal cultures required induction 

with camalexin (1) (Pedras and Minic, 2014). Protein extracts of the control cultures of A. 

brassicicola showed very low CHAb activity (Pedras and Minic, 2014). Cyclobrassinin 

hydrolase is a tetrameric protein with a molecular mass of 330 kDa (Pedras and Minic, 2014). 
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1.4.2 Inhibitors 

1.4.2.1 Phytoalexins 

In addition to their antifungal activities, phytoalexins can inhibit phytoalexin detoxifying 

enzymes produced by pathogens (Pedras, 2014). To identify potential inhibitors of phytoalexin 

detoxifying enzymes, cruciferous phytoalexins were screened using purified enzymes involved 

in brassinin detoxification. Camalexin (1), 6-methoxycamalexin (3), cyclobrassinin (4), 

brassilexin (7), spirobrassinin (11) and wasalexins (138 and 139) inhibited BOLm activity 

(Pedras et al., 2010a; 2009b; 2008a). The phytoalexins brassitin (141) and cyclobrassinin (4) 

inhibited BHs activity (Pedras et al., 2012), whereas the phytoalexins camalexin (1), brassicanal 

A (6), brassilexin (7), dioxibrassinin (103) and sinalexin (140) inhibited CHAb (Pedras and 

Minic, 2014). The inhibitors of phytoalexin detoxifying enzymes identified to date are 

summarized in Table 1.1.  

	

Figure 1.10 Structures of phytoalexin that are inhibitors of phytoalexin detoxifying enzymes. 
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Table 1.1 Effect of phytoalexins on inhibition of phytoalexin detoxifying enzymes 

Compound (#) Inhibition (%)  
Conc. 
(mM) 

BOLm BHLmL2 BHAb CHAb 

Camalexin (1) 0.30  
0.10 

53 ± 4  
30 ± 4 

n. d. n. d. 65 ± 5 
52 ± 6 

6-Methoxycamalexi (3) 0.30 
0.10 

63 ± 5 
41 ± 6 

n. d. n. d. n. d. 

1-Methylcamalexin (2) 0.30 
0.10 

n. i. 
n. i. 

n. d. n. d. n. d. 

Cyclobrassinin (4) 0.30 
0.10 

37 ± 8  
23 ± 6 

n. d. 26 ± 4 
16 ± 2 

n. d. 

Brassilexin (7) 0.30 
0.10 

16 ± 2 
8 ± 2 

n. i. 
n. i. 

n. i. 
n. i. 

93 ± 2 
85 ± 2 

Wasalexin A & B (138 & 139) 0.30 
0.10 

14 ± 4 
8 ± 5 

n. d. n. d. n. d. 

Rutalexin (5) 0.30 
0.10 

n. d. 
n. i. 

n. i. 
n. i. 

n. i. 
n. i. 

n. d. 

Erucalexin (13) 0.30 
0.10 

n. d. n. i. 
n. i. 

n. i. 
n. i. 

n. d. 

Brassicanal A (6) 0.30 
0.10 

n. d. n. i. 
n. i. 

n. i. 
n. i. 

43 ± 4 
20 ± 3 

Brassinin (9) 0.30 
0.10 

n. d. n. d. n. d. n. i. 
n. i. 

Sinalexin (140) 0.30 
0.10 

n. d. n. d. n. d. 52 ± 5 
30 ± 2 

Spirobrassinin (11) 0.30 
0.10 

n. d. n. d. n. d. n. i. 
n. i. 

Dioxibrassinin (103) 0.30 
0.10 

n. d. n. d. n. d. 58 ± 5 
40 ± 5 

n. i. = no inhibition 
n. d. = not determined 
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1.4.2.2 Synthetic inhibitors 

Evaluation of synthetic compounds uncovered some inhibitors of phytoalexins 

detoxifying enzymes. The chemical structures of the tested compounds were designed based on 

the structures of phytoalexins that displayed inhibitory activity.  

Brassinin oxidase from Leptosphaeria maculans (BOLm) 

A library of compounds was synthesized based on the structure of camalexin (1, 53% at 

0.30 mM). The inhibitory activity of these compounds was determined using purified BOLm 

(Pedras et al., 2009b). Results of the enzymatic assays indicated that 5-methoxycamalexin (145, 

72% at 0.30 mM) was the strongest inhibitor followed by 5-fluorocamalexin (146, 63% at 0.30 

mM). Amongst the tested derivatives of camalexin (1), 6-fluorocamalexin (147, 46% at 0.30 

mM) was the weakest inhibitor of BOLm. In general, 5-substituted camalexins inhibited BOLm 

to a larger extend than their 6-substituted derivatives (Pedras et al., 2009b). Using naphthalene 

instead of indole and replacing the thiazole ring of camalexin (1) with isothiazole afforded 

additional potential inhibitors of BOLm; among these, isothiazoles 142 (21% at 0.30 mM) and 

143 (42% at 0.30 mM) were found to moderately inhibit BO activity (Figure 1.11) (Pedras et al., 

2009b).  

	

Figure 1.11 Structures of BOLm inhibitors, compounds 142–147. 
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Another group of potential inhibitors of BOLm was designed based on the structures of 

brassilexin (7) and wasalexins A (138) and B (139) (Pedras et al., 2010a). Among the derivatives 

of wasalexins A (138) and B (139) (14% at 0.30 mM), compound 148 (18% at 0.30 mM) and 

149 (14% at 0.30 mM) were shown to inhibit BOLm (Figure 1.12) (Pedras et al., 2010a). 

Among the derivatives of brassilexin (7), compounds 150-158 showed inhibitory activity against 

BOLm (Figure 1.12). 6-Chlorobrassilexin (153, 66% at 0.30 mM) and 6-bromobrassilexin (155, 

63% at 0.30 mM) showed significant inhibitory activity (Pedras et al., 2010a). In general, 6-

substituted brassilexins were found to be more inhibitory than 5-substuted brassilexins (Pedras et 

al., 2010a). 

	

	

Figure 1.12 Structures of BOLm inhibitors based on scaffold of brassilexin (7) and wasalexins 
A (138) and B (139) (Pedras et al., 2010a). 

Thiabendazole (159, 25% at 0.30 mM), a commercially available fungicide, did not show 

significant activity against BOLm (159, 25% at 0.30 mM) (Pedras et al., 2008a).  

	

Figure 1.13 Structure of thiabendazole (159).  
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Brassinin hydrolase from Alternaria brassicicola (BHAb) 

Among the synthetic compounds tested for inhibition of BHAb, methyl N-(1-

naphthalenylmethyl) carbamate (160, 89% at 0.30 mM) was discovered as the best inhibitor 

(Figure 1.14), followed by methyl N-(1-naphthalenylmethyl) carbonate (161, 62% at 0.30 mM 

concentration) and methyl N-(2-naphthalenylmethyl) carbonate (162, 52% at 0.30 mM) (Pedras 

et al., 2012). Among the compounds synthesized based on the structure of brassinin (9), methyl 

Nʹ-(3-indolylmethyl) carbamate (163, 21% at 0.30 mM) and methyl 1-methyl-Nʹ-(3-

indolylmethyl) carbamate (164, 46% at 0.30 mM) were identified as inhibitors of BHAb (Pedras 

et al., 2012). In general, compounds 160, 161 and 162 with a naphthalene ring were more 

inhibitory than compounds 163 and 164 with an indolyl ring (Pedras et al., 2012). 

	

Figure 1.14 Structures of BH inhibitors (Pedras et al., 2012). 

Cyclobrassinin hydrolase from Alternaria brassicicola (CHAb) 

1-Methylbrassilexin (165) and 1-methylbrassinin (166) were the only synthetic 

compounds tested as potential inhibitors of CHAb (Pedras and Minic, 2014). 1-

Methylbrassilexin (165, 73% at 0.30 mM) showed significant inhibition against BHAb; after the 

phytoalexin brassilexin (7, 93% at 0.30 mM) it is the strongest inhibitor of CHAb. In contrast, 1-

methylbrassinin (166) did not show inhibitory activity against CHAb (Pedras and Minic, 2014). 
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Figure 1.15 Structure of 1-methylbrassilexin (165) and 1-methylbrassinin (166). 

1.5 Conclusion 

The biosynthesis of phytoalexins in infected plants is an important defence mechanism of 

plants to protect themselves against pathogens. In turn, enzymatic detoxification of phytoalexins 

by pathogens is an important strategy among pathogens. As a result of detoxification reactions, 

plants are deprived of their natural defences, which make them more susceptible to pathogens. 

Inhibition of phytoalexin detoxifying enzymes could help plants accumulate sufficient amount of 

phytoalexins in the infected parts. Phytoalexin detoxification inhibitors (PALDOXINS) are an 

interesting class of synthetic compounds that could selectively inhibit enzymes responsible for 

metabolism of phytoalexins. Paldoxins with low antifungal and cytotoxic activity might serve as 

better crop protecting agents than fungicides. 

This thesis describes the chemistry involved in the metabolism of cruciferous 

phytoalexins, their derivatives and analogues by A. brassicicola and the effects of camalexin 

related structures on brassinin oxidase (BOLm) activity. 
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2 RESULTS AND DISCUSSION 

2.1 Transformation of phytoalexins and related structures by Alternaria brassicicola  

Crucifers produce a wide range of secondary metabolites to protect themselves against 

environmental stresses such as microbial pathogens. Phytoalexins are inducible plant secondary 

metabolites produced during infection and usually not synthesized in healthy plants (Pedras et 

al., 2011b). Notwithstanding the variety of antifungal metabolites (such as phytoalexins) 

produced in crucifers, they are susceptible to some pathogens because of the ability of pathogens 

to detoxify phytoalexins (Pedras et al., 2011b). Although the transformation of cruciferous 

phytoalexins by plant pathogens has been investigated for more than two decades (Pedras et al., 

2011b), there are many cruciferous phytoalexins whose resistance to transformation by plant 

pathogens is still unknown. Investigation of phytoalexin transformation by A. brassicicola was 

carried out following the general procedure summarized in Figure 2.1 (Pedras and Abdoli, 

2013). 

	

Figure 2.1 Experimental flowchart for investigation of phytoalexin transformation. 
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2.1.1 Camalexins and related structures 

2.1.1.1 Synthesis and antifungal activity 

The camalexins 1, 2 (Pedras and Liu, 2004), 3 (Ayer et al., 1992) and related structures 

167 (Ayer et al., 1992), 169 (Moody et al., 1997), 171, 172 (Pedras et al., 2009b),  (Figure 2.2) 

were synthesized following published procedures. Syntheses of camalexins 1, 2 and 3 were 

carried out as described in Section 3.3. 

	

Figure 2.2 Structures of camalexins 1-3 and related structures 167-174. 

Camalexin analogues 173, 174 and structural isomers 168 and 170 are new compounds 

whose syntheses have not been reported previously. Analogues 173 and 174 were synthesized as 

summarized in Scheme 2.1 (Pedras and Abdoli, 2013). Compound 173 was obtained from 

indole-3-thiocarboxamide (82), which was prepared from the nitrile 83 as described in Section 

3.4.1.3.1, upon reaction with chloroacetone in ethanol (Moody et al., 1997) under reflux, in 

quantitative yield. Similarly, condensation of 2-bromopropanal (176) with indole-3-

thiocarboxamide (82) yielded compound 174 in 90% yield (Scheme 2.1) (Pedras and Abdoli, 

2013). 2-Bromopropanal (176) was prepared by regioselective α-bromination of 

propionaldehyde (175) in 1,4-dioxane at 0 °C (Scheme 2.1) (Gangjee et al., 2005). 
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Scheme 2.1 Syntheses of 2-(1H-indol-3-yl)-4-methylthiazole (173) and 2-(1H-indol-3-yl)-5-
methylthiazole (174). Solvent and conditions: (i) 95% EtOH, 80 °C, 1.5 h (173, 90%) and 2 h 
(174, quantitative); (ii) Br2, 1,4-dioxane, 0 °C, 1 h, 62% (Gangjee et al., 2005). 

Synthesis of 170 was started from 2-chloro-1-(3-indolyl)ethanone (177), prepared from 

reaction of indole (231) with chloroacetyl chloride, via azide 178. Azide 178 was prepared from 

2-chloro-1-(3-indolyl)ethanone (177) and sodium azide in acetone-water at 50 °C (Roy et al., 

2006). The resulting azide 178 was reduced to the corresponding amine 179 using H2/Pd in 

presence of HCl. Condensation of amine 179 with ethyl formate followed by thiation using 

Lawesson’s reagent and cyclization yielded the camalexin isomer 170 in 40% overall yield 

(Scheme 2.2) (Pedras and Abdoli, 2013). 
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Scheme 2.2 Synthesis of camalexin isomer 170. Reagents and conditions: (i) NaN3, H2O, 
acetone, 50 °C, 20 h, 81%; (ii) Pd/C, H2, HCl, MeOH, r.t., 3 h, 85%; (iii) Ethyl formate, Et3N, 
THF, 50 °C, 8 h, 86%; (iv) Lawesson’s reagent, 1,4-dioxane, 120 °C, 30 min, 68%. 

Camalexin isomer 168 was obtained following a procedure used for the synthesis of 4-

arylisothiazoles (Pedras and Suchy, 2006). Enol-aldehyde 182 was obtained from transformation 

of indole-3-acetic acid (181) with POCl3/DMF followed by hydrolysis in NaOH solution. 

Chlorination of enol-aldehyde 182 with thionyl chloride followed by condensation with 

ammonium thiocyanate yielded thiazolyl-3-indole 168 in 46% overall yield (Scheme 2.3). 

	 	

Scheme 2.3 Synthesis of camalexin isomer 168. Reagents and conditions: (i) POCl3, DMF, 0-
90 °C, 3 h, 91%; (ii) NaOH, 1,4-dioxane, reflux, 8 h, 90%; (iii) SOCl2, THF, -20 °C, 10 min; (iv) 
NH4SCN, DMF, 70 °C, 12 h, 56%. 

The antifungal activities of camalexins 1, 2, 3 and related structures 167-174 were 

determined against A. brassicicola employing a mycelial radial growth assay (potato dextrose 

agar, PDA), as described in the experimental chapter Section 3.2. The antifungal activity was 
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determined using different concentrations (0.50, 0.20, 0.10 and 0.050 mM) of each compound in 

PDA. The results of these assays are shown in Table 2.1. 

Table 2.1 Antifungal activity of camalexins 1, 2, 3 and related structures 167-174 against 
Alternaria brassicicola. 

Compound (#) 
Inhibition ± SD (%)a  
0.50mM 0.20 mM 0.10 mM 0.050 mM 

Camalexin (1)  - 100 ± 0b 76 ± 0b,c,d 25 ± 5d 

1-Methycamalexin (2) - 100 ± 0b 71 ± 1c,d 43 ± 3b,c 

6-Methoxycamalexin (3) 100 ± 0b 71 ± 0d 28 ± 5g,h 14 ± 5e 

4ʹ-Methylcamalexin (173)  - 100 ± 0b 80 ± 0b 47 ± 3b 

5ʹ-Methylcamalexin (174) - 100 ± 0b 65 ± 2d 37 ± 3c 

1H-3-(4ʹ-Thiazolyl)indole� (169) 100 ± 0b  45 ± 3f 33 ± 5f,g n. d. 

1H-3-(5ʹ-Thiazolyl)indole (170) - 100 ± 0e 53 ± 5e 23 ± 2d 

1H-3-(4ʹ-Isothiazolyl)indole (168)   100 ± 0b 46 ± 2f 23 ± 2h n. d. 

1H-3-(2ʹ-Oxazolyl)indole (167)   100 ± 0b 60 ± 0e 38 ± 1f n. d. 

1H-3-(2ʹ-Thia-3ʹ,4ʹ-diazolyl)indole 

(172)  

  100 ± 0b 92 ± 1c 72 ± 1b,c,d n. d. 

1H-3-(2ʹ-Oxa-3ʹ,4ʹ-diazolyl)indole 

(171)  

  53 ± 1c 30 ± 3g 24 ± 1h n. d. 

aThe percentage of inhibition was calculated using the formula: % inhibition = 100 - [(growth on 
amended/growth in control) × 100]; values are averages of three independent experiments 
conducted in triplicate; n. d. = not determined. For statistical analysis, one-way ANOVA tests 
were performed followed by Tukey’s test with adjusted α set at 0.05; n = 3; different letters in 
the same column (b–h) indicate significant differences (P < 0.05). 

 
Results of the antifungal assays indicated that camalexins and related structures are 

inhibitory against A. brassicicola at 0.50 mM (Table 2.1). At the highest concentration (0.50 

mM) all tested compounds could completely inhibit the mycelial growth of A. brassicicola, 

except for 1H-3-(2ʹ-oxa-3ʹ, 4ʹ-diazolyl)indole (171) that showed only 53% growth inhibition. 1-
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Methylcamalexin (2) and camalexin (1) completely inhibited the mycelial growth of A. 

brassicicola at 0.20 mM; at similar concentration (0.20 mM) 6-methoxycamalexin (3) showed 

71% inhibition.  

Amongst related structures, 4ʹ-methylcamalexin (173), 5ʹ-methylcamalexin (174) and 

compound 170 were more inhibitory of fungal growth than camalexin (1). Compared to 

camalexin (1), compounds 168, 171 and 172 were weaker inhibitors against mycelial growth of 

A. brassicicola (Pedras and Abdoli, 2013). 
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2.1.1.2  Biotransformation of camalexins 

The transformation of camalexins 1, 2, and 3 by A. brassicicola was investigated (Pedras 

and Abdoli, 2013). Due to the inhibitory activity of camalexins 1, 2 and 3 against A. brassicicola 

(Table 2.1), the metabolic studies were carried out using lower concentrations (0.05 mM) of 

camalexins, analogues and its structural isomers. Cultures were incubated for different periods of 

times and samples were collected from each culture immediately after addition of phytoalexins 

up to 10 days. Samples of broth of cultures were extracted and analyzed by HPLC-DAD-ESI-

MS. Control solutions containing camalexins (no fungus) or related structures were investigated 

similarly. 

	

Figure 2.3 Progress curves of transformation of camalexin (1, ¢) by Alternaria brassicicola 
and formation of products 82 (p), 83 (¿) and 84 (�) and recovery of camalexin (1, £) in 
control medium.  

The HPLC chromatograms of the neutral extracts of cultures of A. brassicicola incubated 

with camalexin (1) showed that it was transformed slowly (Figure 2.3). The chromatograms of 

the neutral extracts showed the presence of camalexin (1) and additional peaks at 3.6, 4.7 and 7.8 

min. New peaks in the neutral extracts were due to indole-3-thiocarboxamide (82, tR = 4.6 min), 

indole-3-carbonitrile (83, tR = 7.8 min) and indole-3-carboxylic acid (84, tR = 3.6 min), as 

determined by direct comparison with authentic synthetic samples (nitrile 83 and acid 84 were 

commercially available) (Figure 2.4). No additional peaks were detected either in acidic/basic 

extracts or in controls. 
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Figure 2.4 Structures of thiocarboxamides 82, 90, 91, nitriles 83, 92, 93 and acids 84, 94, 95 
from transformations of camalexin (1), 1-methylcamalexin (2) and 6-methoxycamalexin (3) by 
A. brassicicola. 

To establish the sequence of steps of camalexin (1) transformation, each metabolite was 

administered separately to cultures of A. brassicicola. The cultures were incubated, extracted and 

analyzed by HPLC-DAD-ESI-MS as described for camalexin (1). The HPLC chromatograms of 

the neutral extracts of the cultures incubated with indole-3-thiocarboxamide (82) showed that it 

was transformed to indole-3-carbonitrile (83), which in turn was slowly transformed to indole-3-

carboxylic acid (84) (Figure 2.5). 

	

Figure 2.5 Progress curves of transformation of indole-3-thiocarboxamide (82, ¢) by 
Alternaria brassicicola and formation of product 83 (�) and recovery of indole-3-
thiocarboxamide (82, £) in control medium. 

As previously reported, thiocarboxamide 82 was not stable in media yielding the 

corresponding nitrile 83 and acid 84 (Pedras et al., 2011a); however, its transformation in 

cultures was much faster, indicating that an enzyme-mediated transformation occurred 
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simultaneously (Figure 2.5). The HPLC chromatograms of the neutral extracts of the cultures 

incubated with indole-3-carbonitrile (83) showed that it was transformed to indole-3-carboxylic 

acid (84). Indole-3-carboxylic acid (84) was stable in cultures of A. brassicicola (Pedras and 

Abdoli, 2013).  

Similar biotransformation experiments using 1-methylcamalexin (2) and 6-

methoxycamalexin (3) showed that they were metabolized at similar rate via similar 

intermediates by A. brassicicola. Camalexins 2 and 3 were metabolized to corresponding 

carboxylic acid 94 and 95 via thiocarboxamides 90 and 91 and nitriles 92 and 93 (Figure 2.4, 

Figure 2.6 and Figure 2.7).  

	

Figure 2.6 Progress curves of transformation of 1-methylcamalexin (2, ¢) by Alternaria 
brassicicola and formation of products 90 (p), 92 (¿) and 94 (�) and recovery of 1-
methylcamalexin (2, £) in control medium. 
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Figure 2.7 Progress curves of transformation of 6-methoxycamalexin (3, ¢) by Alternaria 
brassicicola and formation of products 91 (p), 93 (¿) and 95 (�) and recovery of 6-
methoxycamalexin (3, £) in control medium. 

The HPLC chromatograms of the neutral extracts of the MM incubated with 

tiocarboxamides 82, 90 and 91 showed their corresponding nitriles and acids (Figure 2.5, Figure 

2.8 and Figure 2.9). 

	

Figure 2.8 Progress curves of transformation of 1-methylindole-3-thiocarboxamide (90, �) 
by Alternaria brassicicola and formation of products 92 (¢) and 94 (p) and recovery of 1-
methylindole-3-thiocarboxamide (90, �) in control medium. 
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Figure 2.9 Progress curves of transformation of 6-methoxyindole-3-thiocarboxamide (91, �) 
by Alternaria brassicicola and formation of product 93 (¢) and recovery of 6-methoxyindole-3-
thiocarboxamide (91, �) in control medium. 

The HPLC chromatograms of the neutral extracts of cultures of A. brassicicola incubated 

with thiocarboxamides 82, 90 and 91 showed that they were metabolized at similar rate, while, 

thiocarboxamide 90 showed higher stability in the controls than the other two thiocarboxamides 

(ca. 60% left at 48 h after incubation compared to 40%). 

2.1.1.3 Biotransformation of related structures 

To obtain potential intermediate(s) of the degradation pathway of camalexins 1, 2 and 3 

(thiazole ring) by A. brassicicola, analogues of camalexin were designed to contain a methyl 

group at C-4ʹ or C-5ʹ of thiazole ring. Compounds 173 and 174 were synthesized as summarized 

in Section 2.1.1.1 and incubated with cultures of A. brassicicola and also un-inoculated (control) 

medium at 0.050 mM, separately. Samples were collected at different periods of times, extracted 

and analyzed by HPLC-DAD-ESI-MS, as described for camalexin (1) (Pedras and Abdoli, 

2013). HPLC analysis of the broth extracts of cultures incubated with analogues 173 and 174 

indicated that both compounds were transformed completely by A. brassicicola at a rate slightly 

faster than metabolism of camalexin (1) (Figure 2.3). Time-course analyses revealed that, 4ʹ-

methylcamalexin (173) was completely transformed within 96 h; a new peak was detected at 

10.3 min, with a UV spectrum different from the metabolites of camalexin (1). The metabolite at 

10.3 min was isolated from larger scale cultures of A. brassicicola incubated with 4ʹ-
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methylcamalexin (173) as described in Section 3.4.1.2. Analyses of spectroscopic data allowed 

the identification of the metabolite with tR = 10.3 min as (2-(1H-indol-3-yl)thiazol-4-yl)methnol 

(185) (Figure 2.12). Metabolite 185 was not detected either in control cultures or in media 

incubated with compound 173. No additional compounds were detected in either acidic/basic 

extracts of any cultures or controls. HPLC analysis of the cultures incubated with compound 185 

did not show any metabolites. Also, recovery of compound 185 from the cultures and controls 

were comparable, which revealed that compound 185 was not transformed by A. brassicicola 

and remained intact in both cultures and media up to 72 h (Figure 2.11). 

 

	

Figure 2.10 Progress curves of transformation of 4ʹ-methylcamalexin (173, �) by Alternaria 
brassicicola and formation of product 185 (¢) and recovery of 2-(1H-indol-3-yl)-4-
methylthiazole (173, �) in control medium. 
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Figure 2.11 Curves representing the recovery of (2-(1H-indol-3-yl)thiazol-4-yl)methnol (185, 
¢) in Alternaria brassicicola and in control medium (£). 

	

Figure 2.12 Structures of (2-(1H-indol-3-yl)thiazol-4-yl)methnol (185) and (2-(1H-indol-3-
yl)thiazol-5-carboxylic acid (184) from transformations of compounds 173 and 174 by 
Alternaria brassicicola. 

Time-course studies revealed that 5ʹ-methylcamalexin (174) was almost completely 

metabolized within 96 h by A. brassicicola at a rate comparable to 4ʹ-methylcamalexin (173) 

(Figure 2.13), but no metabolites could be detected in the extracts of cultures incubated with 

174. Cultures of A. brassicicola were prepared in water and were fed with 5ʹ-methylcamalexin 

(174) as described in Section 3.4.1.2. Samples were collected at various times, concentrated to 

dryness using a freeze-dryer and the residue was analyzed directly by HPLC-DAD-ESI-MS. 

HPLC-ESI-MS data of the freeze-dried samples of cultures indicated the presence of a highly 

polar metabolite. The HPLC-ESI-MS (negative mode) analysis of the new metabolite indicated 

an ion at m/z 243 [M-H]-, which was 32 units higher than compound 174. Based on these ions the 

metabolite was proposed to contain two additional oxygen atoms. (2-(1H-indol-3-yl)thiazol-5-
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carboxylic acid (184) (Figure 2.12) was proposed to result from oxidation of compound 174 as 

determined by direct comparison with an authentic synthetic sample. Acid 184 was not soluble in 

ethyl acetate, therefore was not detected in extracts of any cultures. Compound 184 was not 

detected either in control cultures or in media incubated with compound 174. No additional 

compounds were detected in either acidic/basic extracts of any cultures or controls. Acid 184 

was not metabolized by A. brassicicola and remained intact in cultures for at least 120 h. 

	

Figure 2.13 Progress curves of transformation of 5ʹ-methylcamalexin (174, ¢) by Alternaria 
brassicicola and formation of product 184 (�) and recovery of 2-(1H-indol-3-yl)-5-
methylthiazole (174, £) in control medium. 

Compounds 169, 170, 168, 167, 172 and 171 were designed to probe the selectivity of the 

oxidative enzyme(s) of A. brassicicola in degradation of thiazol rings of camalexins (Pedras and 

Abdoli, 2013). HPLC analyses of broth extracts of cultures of A. brassicicola incubated with 1H-

3-(2ʹ-oxazolyl)indole (167) and 2-(1H-indol-3-yl)-1,3,4-oxadiazole (171) separately, indicated 

that these analogues were transformed by A. brassicicola slowly (>120 h, Figure 2.15, Figure 

2.16) to a metabolite with tR = 3.6 min; the structure of this metabolite was indole-3-carboxamide 

(186) (Figure 2.14), as determined by direct comparison with an authentic synthetic sample. 

Indole-3-carboxamide (186) was not detected either in control cultures or in media incubated 

with compounds 167 or 171. No other metabolites were detected in acidic/basic extracts of either 

culture. Indole-3-carboxamide (186) remained stable against transformation by A. brassicicola. 
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Figure 2.14 Structure of indole-3-carboxamide (186) from transformation of 2-(1H-indol-3-
yl)-1,3,4-oxadiazole (171) by Alternaria brassicicola. 

	 	

Figure 2.15 Progress curves of transformation of 1H-3-(2ʹ-oxazolyl)indole (167, �) by 
Alternaria brassicicola and formation of 1H-indole-3-carboxamide (186, ¢) and recovery of 1H-
3-(2ʹ-oxazolyl)indole (167, �) in control medium. 

	

Figure 2.16 Progress curves of transformation of 2-(1H-indol-3-yl)-1,3,4-oxadiazole (171, ¢) 
by Alternaria brassicicola and formation of 1H-indole-3-carboxamide (186, p) and recovery of 
2-(1H-indol-3-yl)-1,3,4-oxadiazole (171, £) in control medium. 
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The HPLC-DAD-ESI-MS chromatograms of neutral extracts of cultures of A. 

brassicicola incubated with 1H-3-(2ʹ-thia-3ʹ,4ʹ-diazolyl)indole (172) showed that this compound 

was transformed slowly (>120 h, Figure 2.17) by A. brassicicola to indole-3-thiocarboxamide 

(82), which was transformed further to indole-3-carboxylic acid (84) via indole-3-carbonitrile 

(83) (Pedras and Abdoli, 2013). None of these metabolites were detected either in control 

cultures or in media incubated with compound 172. No other metabolites were detected in acidic 

or basic extracts of either culture. 1H-3-(2ʹ-thia-3ʹ,4ʹ-diazolyl)indole (172) was metabolized by 

A. brassicicola with the transformation pathway identical to camalexin (1), however the rate of 

transformation was slower than camalexin (1).  

	

Figure 2.17 Progress curves of transformation of 1H-3-(2ʹ-thia-3ʹ,4ʹ-diazolyl)indole (172, ¢) 
by Alternaria brassicicola and formation of indole-3-thiocarboxamide (82, �) and indole-3-
carboxilic acid (84, p) and recovery of 1H-3-(2ʹ-thia-3ʹ,4ʹ-diazolyl)indole (172, £) in control 
medium. 

HPLC analysis of neutral, basic and acidic extracts of cultures of A. brassicicola 

incubated with 1H-3-(4ʹ-thiazolyl)indole (169), 1H-3-(5ʹ-thiazolyl)indole (170) and 1H-3-(4ʹ-

isothiazolyl)indole (168) revealed that these compounds were extracted under neutral condition 

and no additional compounds were detected. Also, recovery of compounds 169, 170 and 168 from 

culture and control samples was comparable (Figure 2.18, Figure 2.19 and Figure 2.20). 

 

0.00 

0.01 

0.02 

0.03 

0.04 

0.05 

0.06 

0.07 

0 24 48 72 96 120 144 

C
on

c.
 (m

M
) 

Incubation time (h) 



 57 

	

Figure 2.18 Curves representing the recovery of 168 in cultures of Alternaria brassicicola in 
minimal medium (¢) and in control medium (£). 

	

Figure 2.19 Curves representing the recovery of 169 in cultures of Alternaria brassicicola in 
minimal medium (u) and in control medium (¯).  
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Figure 2.20 Curves representing the recovery of 170 in cultures of Alternaria brassicicola in 
minimal medium (¢) and in control medium (£).  

To better understand the degradation pathway of thiazolyl rings of camalexins by A. 

brassicicola, it was important to isolate potential precursor(s) of indole-3-thiocarboxamide (82) 

from the cultures of A. brassicicola incubated with camalexin (1). For this reason transformation 

of camalexin (1) by A. brassicicola was investigated under different conditions. For example, 

cultures of A. brassicicola were incubated at higher concentration of camalexin (1) (0.10 mM vs 

0.050 mM), at higher temperature (30 °C vs 23 °C) or in different media (PDB vs chemically 

modified media). However, HPLC-DAD-ESI-MS of any of these conditions showed no 

additional camalexins metabolites. It is also possible that precursor(s) of indole-3-

thiocarboxamide (82) are more polar than amide 82 and are not extractable from the culture with 

EtOAc. Cultures of A. brassicicola in water were incubated with camalexin (0.05 mM). Samples 

were collected at different periods. Mycelia were filtered off and the filtrate was extracted with 

EtOAc then the extracted aqueous was freeze-dried. Both EtOAc extracts and the aqueous 

residue were analyzed with HPLC-DAD-ESI-MS. HPLC chromatograms of ethyl acetate 

extracts showed thiocarboxamide, nitrile and acid from transformation of camalexin (1) and no 

more metabolites were detected in the aqueous residue (Pedras and Abdoli, 2013). 
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2.1.1.4 Synthesis and antifungal activity of metabolites 

Thiocarboxamides 82, 91 and 90 that resulted from transformation of camalexins 1, 2 and 

3 were obtained by reaction of their corresponding nitriles 83, 92 and 93 with thioacetamide in 

10% HCl-DMF according to previously published procedures (Gu et al., 1999; Pedras et al., 

2011a) as described in Sections 3.4.1.3.1 and 3.4.1.3.2. 6-Methoxyindole-3-carbonitrile (93) was 

synthesized in reasonable yield from dehydration of oxime 188 using acetic anhydride in 

presence of pyridine under reflux conditions (Pedras et al., 2010b) and then was transformed to 

thiocarboxamide 91 as described above in 38% overall yield (Scheme 2.4) (Gu et al., 1999; 

Pedras et al., 2011a; Pedras and Abdoli, 2013). 

	

Scheme 2.4 Syntheses of 93 and 91. Reagents and conditions: (i) POCl3, DMF, r.t., 2.5 h, 
98%; (ii) HONH2.HCl, NaOAc, 95% EtOH, H2O, r.t., 3 h; (iii) Ac2O, pyridine, CH2Cl2, reflux, 9 
h, 96%; (iv) Thioacetamide, HCl/DMF, 90 °C, 12 h, 40%. 

1-Methylindole-3-carboxylic acid (94) and 6-methoxyindole-3-carboxylic acid (95) were 

synthesized by oxidation of 1-methylindole-3-carboxaldehyde (189) and 6-methoxyindole-3-

carboxaldehyde (190) respectively using sodium chlorite (NaClO2) under mild acidic condition 

(Scheme 2.5) as described in Section 3.4.1.3.4 (Pedras and Abdoli, 2013). 

	

Scheme 2.5 Syntheses of acids 94 and 95. Reagents and conditions: (i) NaClO2, NaH2PO4, t-
butanol, 2-methylbut-2-ene, H2O, 14 h, r.t., 75% (94) and 60 h, 52% (95). 
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The new compounds 1H-3-(4-hydroxymethyl-2-thiazolyl)indole (185) and 2-(1H-indol-

3-yl)-4-thiazolecarboxylic acid (184) were synthesized as summarized in Scheme 2.6. Ester 191 

was prepared by condensation of thiocarboxamide 82 with ethyl bromopyruvate in ethanol under 

reflux (Moody et al., 1997) and then it was reduced to alcohol 185 using LiAlH4 in 83% yield 

(Scheme 2.6). Carboxylic acid 184 was synthesized by condensation of thiocarboxamide 82 with 

methyl 2-chloro-3-oxopropanoate (Gangjee et al., 2001) in ethanol under reflux, followed by 

basic hydrolysis of resulting methyl ester (192) in 62% overall yield (Scheme 2.6).  

	

Scheme 2.6 Syntheses of compounds 185 and 184. Reagents and conditions: (i) Ethyl 
bromopyruvate, 95% EtOH, reflux, 1 h; (ii) LiAlH4, THF, 10 h, 83% from 82; (iii) Methyl 2-
chloro-3-oxopropanoate, 95% EtOH, reflux, 5 h, 62%; (iv) NaOH, THF, reflux, 4 h, 100%. 

To establish if the transformation of camalexins 1, 2, 3 and related structures 167 and 

171-174 by A. brassicicola were detoxifications, mycelial radial growth assays were carried out. 

The antifungal activities against A. brassicicola of all metabolites were determined as described 

in Section 3.2; results of these assays are shown in Table 2.2.  
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Table 2.2 Antifungal activity of compounds 82-84, 90-95 and 184-186 against Alternaria 
brassicicola. 

Compound (#) 
Inhibition ± SD (%)a 
0.50 mM 0.20 mM 0.10 mM 

Indole-3-thiocarboxamide (82) 53 ± 3f 31 ± 3ef 24 ± 3cd 

Indole-3-carbonitrile (83) 100 ± 0b 92 ± 1b 73 ± 3b 

Indole-3-carboxylic acid (84) 26 ± 2h 11 ± 2i n. i. 

1-Methylindole-3-thiocarboxamide (90) 60 ± 3e 35 ± 3de 21 ± 3de 

6-Methoxyindole-3-thiocarboxamide (91) 40 ± 3g 21 ± 3gh n. i. 

1-Methylindole-3-carbonitrile (92) 100 ± 0b 35 ± 3de 8 ± 3f 

6-Methoxyindole-3-carbonitrile (93) 100 ± 0b 52 ± 3c 31 ± 0c 

1-Methylindole-3-carboxylic acid (94) 26 ± 2h 16 ± 2hj n. i. 

6-Methoxyindole-3-carboxylic acid (95) 34 ± 0g 26 ± 2fg n. i. 

2-1H-3-(4-Hydroxymethyl-2-thiazolyl)indole 

(185) 

90 ± 2c 41 ± 4d 13 ± 2f 

2-(1H-Indol-3-yl)-4-thiazolecarboxylic acid 

(184)  

85 ± 1c 38 ± 3de 11 ± 2f 

Indole-3-carboxamide (186)  68 ± 1d 41 ± 2d 15 ± 3ef 

aThe percentage of inhibition was calculated using the formula: % inhibition = 100 - [(growth on 
amended/growth in control) × 100]; values are averages of three independent experiments 
conducted in triplicate; n. i. = no inhibition. For statistical analysis, one-way ANOVA tests were 
performed followed by Tukey’s test with adjusted α set at 0.05; n = 3; different letters in the 
same column (b–i) indicate significant differences (P < 0.05). 

Comparison of the antifungal activities (Table 2.2) suggested that growth inhibition gradually 

decreased from thiocarboxamides 82, 90 and 91 to acids 84, 94 and 95 and the inhibition was 

weaker than that caused by their parent compounds. However, nitriles 83, 92 and 93 showed 

strong inhibitory activity against A. brassicicola; at the highest concentration (0.50 mM) of 

nitriles 83, 92 and 93, the mycelial growth of A. brassicicola was completely inhibited, while 

acids 84, 94 and 95 did not show substantial activity against A. brassicicola (Table 2.2). 

Metabolites 184 and 185 resulted from transformation of 173 and 174 showed weaker antifungal 



 62 

activity against A. brassicicola compared to their parent compounds. Results of antifungal 

activities showed that the transformation of camalexins 1, 2, 3 and analogues 167 and 171-174 

by A. brassicicola are detoxifications (Pedras and Abdoli, 2013). 

2.1.1.5  Discussion and conclusion 

Bioassays with camalexin (1), 1-methylcamalexin (2), 6-methoxycamalexin (3), and 

related structures 167-174 showed that amongst all camalexins 1, 2, 3 and compounds 173 and 

174 exhibited strong inhibitory activity against A. brassicicola while compound 171 was the 

weakest (Table 2.1). The metabolites resulting from transformations of camalexins and the 

related structures were much less toxic against A. brassicicola compared to their parent 

compounds (Table 2.2) (Pedras and Abdoli, 2013). Results of the antifungal activities indicated 

that the transformations of camalexin (1), 1-methylcamalexin (2) and 6-methoxycamalexin (3) 

by A. brassicicola are detoxifications (Pedras and Abdoli, 2013). 

Camalexin (1), 1-methylcamalexin (2) and 6-methoxycamalexin (3) were metabolized by 

A. brassicicola to thiocarboxamides 82, 90 and 91 at almost similar rates (ca. 120 h) during 

enzyme mediated oxidative degradation of their thiazolyl rings (Pedras and Abdoli, 2013). 

Thiocarboxamides 82, 90 and 91were transformed further by A. brassicicola to acids 84, 94 and 

95 respectively via their corresponding nitriles (83, 92 and 93). The pathway of transformations 

of camalexins 1, 2 and 3 by A. brassicicola is proposed in Scheme 2.7. 

 

 



 63 

	

Scheme 2.7 Biotransformations of camalexin (1), 1-methylcamalexin (2) and 6-
methoxycamalexin (3) by Alternaria brassicicola and metabolic products. 

Previous work showed that camalexin (1) was transformed to indole-3-thiocarboxamide 

(82) quickly (ca. 12 h) by B. cinerea (Pedras and Hossain, 2011). These results indicated that 

camalexin (1) was transformed by A. brassicicola to metabolic products that were identical to 

those observed in cultures of B. cinerea, however, the rate of transformation in B. cinerea was 

much faster than A. brassicicola (12 h vs 10 days) (Pedras and Abdoli, 2013; Pedras and 

Hossain, 2011). The transformation pathway suggested that enzymatic degradation of thiazolyl 

ring of camalexin (1) to thiocarboxamide 82 is the most important step in camalexin (1) 

detoxification; this step is followed by further transformation of thiocarboxamide 82 to acid 84 

via nitrile 83 (Scheme 2.7). To better understand the mechanism of degradation of thiazolyl ring 

of camalexin (1) by A. brassicicola and also to probe the selectivity of the enzyme(s) involving 

in degradation of the thiazolyl ring of camalexin (1), transformations of related structures 167-

174 were investigated in cultures of A. brassicicola. Related structures 173 and 174 were 

metabolized to compounds 185 and 184 respectively at similar rate (Figure 2.21, t1/2 ca. 36 h, 

complete ca. 96 h) by A. brassicicola (Pedras and Abdoli, 2013). Transformations of compounds 

173 and 174 by A. brassicicola were somewhat faster than camalexin (1) (Figure 2.3) (Pedras 

and Abdoli, 2013). Compounds 185 and 184 were not metabolized further by A. brassicicola. 

The transformation of related structures 173 and 174 by A. brassicicola is shown in Scheme 2.8 

(Pedras and Abdoli, 2013). 
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Scheme 2.8 Biotransformations of 1H-3-(4-hydroxymethyl-2-thiazolyl)indole (173) and 2-
(1H-indol-3-yl)-4-thiazolecarboxylic acid (174) by Alternaria brassicicola and metabolic 
products.  

	

Figure 2.21 Progress curves of transformations of 1H-3-(4-hydroxymethyl-2-thiazolyl)indole 
(173) (�) and 2-(1H-indol-3-yl)-4-thiazolecarboxylic acid (174) (¢) by Alternaria brassicicola.  

 The transformations of analogues 173 and 174 revealed that, substitution at C-4ʹ or C-5ʹ 

of thiazolyl rings of compounds 173 and 174 blocked the degradation of the thiazole ring by A. 

brassicicola, however, did not prevent oxidation of methyl group of 173 and 174 (Pedras and 

Abdoli, 2013). Analogues 167 and 171 were metabolized to carboxamide 186 at similar rate 

(Figure 2.22, t1/2 ca. 72 h, complete >120 h) by A. brassicicola (Pedras and Abdoli, 2013). 

Carboxamide 186 did not metabolize further by A. brassicicola. The transformations of 

analogues 167 and 171 by A. brassicicola are shown in Scheme 2.9 (Pedras and Abdoli, 2013). 
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Scheme 2.9 Biotransformations of analogues 1H-3-(2ʹ-oxazolyl)indole (167) and 1H-3–(2ʹ-
oxa-3ʹ,4ʹ-diazolyl)indole (171) by Alternaria brassicicola and metabolic product. 

Thiadiazole 172 was metabolized by A. brassicicola to thiocarboxamide 82 similar to 

metabolism of camalexin (1). Thiocarboxamide 82 was metabolized further to indole-3-

carboxylic acid (84) via indole-3-carbonitrile (83) (Pedras and Abdoli, 2013). The pathway of 

transformation of compound 172 by A. brassicicola is proposed in Scheme 2.10 (Pedras and 

Abdoli, 2013). 

	

Scheme 2.10 Biotransformation of 1H-3-(2ʹ-thia-3ʹ,4ʹ-diazolyl)indole (172) by Alternaria 
brassicicola and metabolic products.  

The rate of transformations of oxazole 167 and diazoles 172 and 171 by A. brassicicola 

was slower than camalexin (1) (Figure 2.22, t1/2 ca. 72 h, complete >120 h). 
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Figure 2.22 Progress curves of transformations of 1H-3-(2ʹ-oxazolyl)indole (167, p), 1H-3–
(2ʹ-oxa-3ʹ,4ʹ-diazolyl)indole (171, �) and 1H-3-(2ʹ-thia-3ʹ,4ʹ-diazolyl)indole (172, ¢) by 
Alternaria brassicicola. 

Camalexins 168, 169 and 170 were resistant to metabolism by A. brassicicola, comparing 

that with transformations of camalexins 1, 2, 3 and compounds 56, 73, 74 revealed that oxidation 

of thiazole ring by A. brassicicola required it to be attached to indole by C-2ʹ.  

In conclusion, it was shown for the first time that the plant pathogen A. brassicicola was 

able to slowly detoxify camalexins 1, 2 and 3 to the corresponding thiocarboxamides 82, 90 and 

91 using similar transformation pathways, involving an oxidative degradation of thiazolyl rings 

of camalexins. Thiocarboxamides 82, 90 and 91were metabolized further to the corresponding 

acids, the least antifungal compounds, via nitriles 83, 92 and 93. Transformations of analogues 

173 and 174 by A. brassicicola were faster than camalexins but without degradation of the 

thiazole ring. That showed, methyl group on either C-4ʹ or C-5ʹ of compounds 173 and 174 

changed the transformation pathways of these compound but did not prevent the metabolisms. 

Furthermore, structural isomers 168, 169 and 170 were not metabolized by A. brassicicola, thus 

it can be concluded that the degradation of thiazole ring by A. brassicicola requires it to attach to 

indole by C-2ʹ.  

Detoxification of camalexins 1, 2, and 3 by A. brassicicola is slow in comparison with 

metabolism of other phytoalexins like brassinin (ca. 12 h at 0.10 mM) (Pedras et al., 2009a) by 

this fungus. This slow detoxification of camalexin (1) is consistent with its importance in the 

resistance of A. thaliana to A. brassicicola (Thomma et al., 1999). According to the high 
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antifungal activity of camalexins 1, 2, and 3 against A. brassicicola as well as slow 

transformation of them by A. brassicicola, engineering the biosynthetic pathway of camalexins 

into cultivated Brassica species is one of the assured ways to protect cultivated crucifers against 

black spot diseases. 
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2.1.2  Cyclobrassinin and 1-methylcyclobrassinin 

Cyclobrassinin (4) is a phytoalexin produced mainly by Brassica species and one of the 

first cruciferous phytoalexin isolated from Chinese cabbage (Pedras et al., 2011b). 

Cyclobrassinin (4) is a biosynthetic precursor of some cruciferous phytoalexins such as 

brassilexin (7) and rutalexin (5) (Pedras et al., 2011b). 1-Methylcyclobrassin (193) is not a 

natural product; it was prepared by methylation of cyclobrassinin (4). 

	

Figure 2.23 Structures of cyclobrassinin (4) and 1-methylcyclobrassinin (193). 

2.1.2.1 Synthesis and antifungal activity 

Cyclobrassinin (4) and 1-methylcyclobrassinin (193) were synthesized following a 

published procedure (Pedras et al., 2011b), as described in Section 3.3.3. The antifungal 

activities of cyclobrassinin (4) and 1-methylcyclobrassinin (193) were determined against A. 

brassicicola employing a mycelial radial growth assay (potato dextrose agar, PDA), as described 

in the Section 3.2. Three different concentrations (0.50, 0.20 and 0.10 mM) of each compound in 

PDA were used for determination of the antifungal activity. Results of these assays are shown in 

Table 2.3. 
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Table 2.3 Antifungal activity of compounds 4 and 193 against Alternaria 
brassicicola. 

Compound (#) 
Inhibition ± SD (%)a 
0.50 mM 0.20 mM 0.10 mM 

Cyclobrassinin (4) 39 ± 3c 25 ± 3d 18 ± 5e 

1-Methylcyclobrassinin (193) 69 ± 3b 29 ± 5d 16 ± 3e 

a The percentage of inhibition was calculated using the formula: % inhibition = 
100 – [(growth on amended/growth in control) × 100]; values are averages of 
three independent experiments conducted in triplicate. For statistical analysis, 
one-way ANOVA tests were performed followed by Tukey’s test with adjusted α 
set at 0.05; n = 6; different letters (b–e) indicate significant differences (P < 0.05). 

Results of the antifungal assays indicated that at the highest tested concentration (0.50 

mM) cyclobrassinin (4) showed about 40% inhibition on mycelial growth of A. brassicicola. 1-

Methylcyclobrassinin (193) caused 69% inhibition at 0.50 mM (Table 2.3), however, at low 

concentration (0.20 and 0.10 mM) both compounds behaved similarly and showed similar 

inhibitory activity against mycelial growth of A. brassicicola (Table 2.3). 

2.1.2.2 Biotransformation of cyclobrassinin and 1-methylcyclobrassinin 

The transformations of cyclobrassinin (4) and 1-methylcyclobrassinin (193) by A. 

brassicicola were investigated. These experiments were carried out using 0.10 mM of 

cyclobrassinin (4) and 1-methylcyclobrassinin (193) (Pedras et al., 2013; Pedras and Minic, 

2014). Cultures were incubated for different periods of time and samples were collected from 

each culture immediately after addition of cyclobrassinin (4). Samples of cultures were extracted 

and analyzed by HPLC-DAD-ESI-MS. Control solutions containing cyclobrassinin (4) and 1-

methylcyclobrassinin (193) (only MM, no fungus) were investigated similarly. Results of 

preliminary time-course studies were somewhat inconsistent; the amounts of cyclobrassinin (4) 

or 1-methylcyclobrassinin (193) in triplicate samples varied by ca. 30% (poor recovery of 4 or 

193). To solve this problem cultures of A. brassicicola were prepared in MM for each time point 

(5 ml in 25 ml Erlenmeyer flasks in triplicates) and were incubated with cyclobrassinin (4) 

(Section 3.4.2.1). Cultures were filtered, the filtrate was extracted and the flasks and mycelia 
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were rinsed with EtOAc. The combined EtOAc extracts were concentrated to dryness and the 

residue was analyzed by HPLC-DAD-ESI-MS. Control solutions containing cyclobrassinin (4) 

(only MM, no fungus) were analyzed similarly to determine its chemical stability during the 

incubation time. 

	

Figure 2.24 Progress curves of transformation of cyclobrassinin (4, n) by Alternaria 
brassicicola, formation of product (137, p) and recovery of cyclobrassinin (4, £) in minimal 
medium.  

The HPLC chromatograms of neutral extracts of cultures of A. brassicicola incubated 

with cyclobrassinin (4) showed that it was not detected after 8 h (Figure 2.24). The 

chromatograms of the neutral extracts showed the presence of cyclobrassinin (4) and an 

additional peak at 13.6 min. The metabolite at 13.6 min was obtained from larger-scale cultures 

but was not sufficient for complete spectroscopic characterization (enough for 1H NMR and 

HRMS analyses). However, no reasonable MS data was obtained for this compound using 

available ionization techniques. The 1H NMR of this metabolite showed all signals 

corresponding to cyclobrassinin (4) with slight changes in their chemical shifts. Considering the 
1H NMR, structure 137 was proposed for the metabolite at 13.6 min (Figure 2.25). 
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Figure 2.25 Structure of S-methyl [(2-sulfanyl-1H-indolyl-3)methyl]carbamothioate (137) 
from transformation of cyclobrassinin (4) by Alternaria brassicicola. 

Compound 137 was synthesized as described in Section 3.4.2.2.1 and its data was 

compared with those of the isolated compound, confirming the assigned structure (Pedras et al., 

2013). Results of biotransformation of cyclobrassinin (4) revealed that compound 137 was 

metabolized further by A. brassicicola. However, no other metabolites were detected in the 

neutral extracts (Figure 2.26). Metabolite 137 was administrated separately to cultures of A. 

brassicicola in water (culture preparation in water described in Section 3.4.2.1). Samples were 

collected at various times, freeze-dried, the residue was dissolved in MeOH-H2O (1:1) and 

analyzed directly by HPLC-DAD-ESI-MS. HPLC-ESI-MS data of freeze-dried samples of 

cultures incubated with 137 in water indicated complete transformation of 137 in 8 h (Figure 

2.26).  

	

Figure 2.26 Progress curves of transformation of 137 (n) by Alternaria brassicicola and 
recovery of 137 (£) in control medium. 
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The HPLC-ESI-MS analysis of the 4 h samples of cultures of A. brassicicola incubated 

with 137 showed presence of 2 peaks at 12.8 and 14.6 min (Method G). The HPLC-ESI-MS 

(negative mode) analysis of the peak at tR = 12.8 min indicated an ion at m/z 283 [M-H]- which 

was 32 units higher than 137, and the peak at tR = 14.6 min at m/z 299 [M-H]-, which was 48 

units higher than that of 137. Based on these negative ions the metabolites were proposed to 

contain two and three additional oxygen atoms, respectively. Compounds 194 and 195 (Figure 

2.27) were proposed to result from oxidation of compound 137. These acids were not soluble in 

the EtOAc, therefore were not detected in extracts of any cultures. None of the metabolites were 

detected either in control cultures or in media incubated with compound 137.  

	

Figure 2.27 Structures of sulfinic acid 194 and sulfonic acid 195 from transformation of 
cyclobrassinin (4) by Alternaria brassicicola. 

Similar biotransformation experiments using 1-methylcyclobrassinin (193) showed that it 

was metabolized at similar rate (ca. 8h) by A. brassicicola (Figure 2.28).  
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Figure 2.28 Progress curves of transformation of 1-methylcyclobrassinin (193, n) by 
Alternaria brassicicola, formation of product (196, p) and recovery of methylcyclobrassinin 
(193, £) in control medium. 

The chromatograms of the neutral extracts showed the presence of 1-

methylcyclobrassinin (193, tR = 19.3) and an additional peak at 18.8 min. 1H NMR of the 

metabolite at 18.8 min was similar to compound 137 with an additional methyl group at δ 3.7 

ppm. Considering the 1H NMR data, structure 196 was proposed for the metabolite at 18.8 min 

(Figure 2.29).  

	

Figure 2.29 Structures of S-methyl [(1-methyl-2-sulfanyl-1H-indolyl-3)methyl]carbamo-
thioate (196) from transformation of 1-methylcyclobrassinin (193) by A. brassicicola. 

Compound 196 was synthesized similarly, to compound 137, as described in Section 

3.4.2.2.1 and its data was compared with those of the isolated compound, confirming the 

assigned structure (Pedras et al., 2013). Compound 196 was not stable in cultures of A. 

brassicicola and was metabolized further by A. brassicicola. Cultures of A. brassicicola in water 

were incubated with 196 and were analyzed as described for transformation of compound 137. 
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The HPLC chromatograms of the cultures of A. brassicicola incubated with 196 showed it 

transformed almost completely after 8 h (Figure 2.31). The HPLC-ESI-MS analysis of the 4 h 

samples of cultures of A. brassicicola incubated with 196 showed presence of 2 broad peaks at 

14.5 and 15 min (method G). The HPLC-ESI-MS (negative mode) analysis of the peak at tR = 

14.5 min indicated an ion at m/z 297 [M-H]- which was 32 units higher than 196, and the peak at 

tR = 15 min at m/z 313 [M-H]-, which was 48 units higher than that of 196. Based on these 

negative ions the metabolites were proposed to contain two and three additional oxygen atoms, 

respectively. Compounds 197 and 198 (Figure 2.30) were proposed to result from oxidation of 

compound 196.  

	

Figure 2.30 Structures of sulfinic acid 197 and sulfonic acid 198 from transformation of 1-
methylcyclobrassinin (193) by A. brassicicola. 

	

Figure 2.31 Progress curves of transformation of 196 (n) by Alternaria brassicicola and 
recovery of 196 (£) in control medium. 
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2.1.2.3 Synthesis and antifungal activity of metabolites  

Metabolites 137 that resulted from biotransformation of cyclobrassinin (4) was obtained 

from acid catalyzed hydrolysis of cyclobrassinin (4) as summarized in Scheme 2.11 (Pedras et 

al., 2013). Cyclobrassinin (4) was hydrolyzed (HCl, 0.50 M) to metabolite 137, the major 

compound, and some minor side products. Because of the poor solubility of the compound 137, 

recovery of the product by extraction of the reaction mixture (neutral or acidic) was not 

successful (<15%). The reaction mixture was concentrated to dryness and the residue was rinsed 

with EtOAc or MeOH. Analysis of the soluble part in either MeOH or EtOAc did not show 

metabolite 137. The residue was dissolved in DMSO-d6 and analyzed by 1H NMR, 13C NMR and 

HMBC. The 1H NMR revealed a total of 11 protons of which five were in the aromatic region 

(δH 7.0-8.5), two were for a methylene group (δH 3.9, s, 2H) and three were for methyl groups (δH 

2.1, s, 3H). The 13C NMR spectrum displayed signals for 11 carbons. Results of spectroscopic 

analyses confirmed the proposed structure for 137 (Table 2.4) (Pedras et al., 2013). Furthermore, 

the presence of tautomer 199 in DMSO-d6 solution was ruled out from analysis of the NMR 

spectroscopic data.  

	

1-Methylcyclobrassinin (193) was subjected to similar reaction conditions as described 

for hydrolysis of cyclobrassinin (4) to yield compound 196 as the major product, together with a 

few side products (Scheme 2.11) (Pedras et al., 2013). Compound 196 was not soluble in most 

organic solvents; therefore DMSO-d6 was used for spectroscopic analysis and the presence of 

tautomer 200 in DMSO-d6 solution was ruled out from analysis of the NMR spectroscopic data 

(Table 2.4) (Pedras et al., 2013). 
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Scheme 2.11 Syntheses of 137 and 196. Reagent and condition (i) HCl (0.5 M), 1,4-dioxane, 24 
h, 40 °C, 137 (51%), 196 (35%) (Pedras et al., 2013). 

Table 2.4 1H NMR and 13C NMR spectroscopic data of compounds 137 (in DMSO-d6) and 
196 (in DMSO-d6). 

C/H# δC 137 δH (m, J, H) 137 δC 196 δH (m, J, H) 196 

2 126.2 - 125.2 - 

3 119.7 - 120.0 - 

3a 126.1 - 124.3 - 

4 120.1 7.56 (d, 7.5 Hz, 1H) 115.7 7.57 (d, 7 Hz, 1H) 

5 123.9 7.22 (dd, 7.5, 7.5 Hz, 1H) 123.5 7.31 (dd, 7, 8 Hz, 1H) 

6 119.8 7.05 (dd, 7.5, 7.5 Hz, 1H) 119.9 7.10 (dd, 7, 8 Hz, 1H) 

7 111.6 7.37 (d, 7.5 Hz, 1H) 110.5 7.53 (d, 8 Hz, 1H) 

7a 137.4 - 138.1 - 

1' 34.4 3.92 (brd, 2.5 Hz, 2H) 34.5 3.64 (br, 2H) 

2' 165.8 - 165.6 - 

(N-1)H - 11.57 (brs, 1H) - - 

(N)H - 8.22 (brt, 2.5 Hz, 1H)  - 8.20 (brt, 1H) 

(S)CH3 11.5 2.12 (s, 3H) 11.4 2.10 (s, 3H) 

(N)CH3 - - 29.8 3.67 (s, 3H) 

  

To determine the structure of the side products resulting from hydrolysis of 

cyclobrassinin (4) (Scheme 2.12), the EtOAc extract of the reaction mixture was analyzed by 
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HPLC-DAD. The HPLC chromatograms of the extract displayed two peaks at 17.9 and 26.0 min, 

which were separated by FCC and characterized. The compound at 17.9 min (<5%) displayed a 

molecular formula of C18H14N2S2, as suggested by HRMS-EI. The 1H NMR (CDCl3) spectrum 

of the metabolite at 17.9 min displayed signals for 14 protons: eight aromatic (δH 7.0-7.5), two 

D2O exchangeable (δH 9.51 and 7.94) and four methylenic protons (δH 3.65, d, J=16Hz, 1H; 2.83, 

dd, J=16, 2Hz, 1H; 3.87, d, J = 13 Hz, 1H; 2.64, dd, J = 13, 2 Hz, 1H). The 13C NMR spectrum 

displayed signals for 18 carbons (Table 2.6). Analysis of the HMBC and HMQC indicated that 

the proton at δH 3.65 correlated to the C=S at δc 210.8 and that methylene protons at δH 3.65 and 

2.83 correlated with a quaternary carbon at δC 106.2. Based on these results, structure 201 was 

suggested for the compound with tR = 17.9 min (Scheme 2.12) (Pedras et al., 2013). Another 

product obtained together with 201 could not be purified completely. 

	

 Figure 2.32 Selected HMBC correlation of compound 201. 

Similarly, hydrolysis of 1-methylcyclobrassinin (193) gave some minor products, of 

which two (tR = 26.0 and 24.8 min) were purified by preparative TLC (<10%) and 

spectroscopically characterized (Pedras et al., 2013). The purified compounds were structural 

isomers, as suggested by their identical molecular formulas (C20H18N2S2) obtained from HRMS 

(EI and ESI) and NMR spectral data. Similar to compound 201, obtained from hydrolysis of 

cyclobrassinin (4), the 1H NMR spectrum of the compound at 26.0 min displayed two 

independent aromatic spin systems of four protons each, two spin systems of methylene protons 

(δH 3.88, d, J = 13 Hz, 1H; 2.58, dd, J = 13, 2 Hz, 1H; 3.64, d, J = 16 Hz, 1H; 2.77, dd, J = 16, 

2Hz, 1H) and two methyl singlets. The 13C NMR spectrum displayed signals for 20 carbons, of 
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which a carbon signal at δC 208.6 was assigned to a thiocarbonyl group. This spectroscopic 

analysis suggested structure 203 for one of the isomers (Pedras et al., 2013). The 1H NMR of the 

minor compound (tR = 24.8 min) displayed two independent aromatic spin systems of four 

protons each, and a spin systems of two methylene protons, which were different from those of 

isomer 203 (δH 3.33, ddd, J = 17, 12, 6 Hz and 3.10, ddd, J = 17, 12, 6Hz; 2.85, ddd, J = 14, 12, 

6 Hz and 2.04, ddd, J = 14, 12, 6 Hz) (Table 2.6). The coupling constants showed that the 

methylene protons of this isomer were adjacent to each other. These spectroscopic results 

suggested structure 202, a structural isomer of 203, for this compound. Detailed analysis of the 

HMBC and HSQC of each isomer was consistent with these proposed structures. For example 

the methylene protons of 202 at δH 3.33 correlated with carbon at δC 104.9 and a quaternary sp3 

carbon at δC 62.5, as summarized in Figure 2.33. 

	

Figure 2.33 Selected HMBC correlation of compound 202. 

	

Scheme 2.12 Hydrolysis of cyclobrassinin (4) and 1-methylcyclobrassinin (193). Reagent and 
condition: (i) HCl (0.50 M), 1,4-dioxane, 24 h, 40 °C. 
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Importantly, while structures 201-204 could be justified as products of [4+2] 

cycloadditions, that is, Diels-Alder reactions of 3-methyleneindoline-2-thiones 205 and 206, the 

formation of 202 and 204 appeared to be unique. For this reason, spirocyclic indoline-2-thiones 

were prepared using another procedure, as follows.  

	

Figure 2.34 Structures of 3-methyleneindoline-2-thiones 205 and 206. 

	

Scheme 2.13 Synthesis of (E and Z)-3-benzylideneindoline-2-thione (210). Reagents and 
condition: (i) PhCHO, conc. HCl/EtOH, 20 °C (Thompson et al., 1993).  

Condensation of 1-methylindoline-2-thione (207) with formaldehyde under acidic 

condition followed by [4+2] intermolecular cycloaddition yielded a mixture of compounds 203 

and 202 in a 1:1 ratio (32% yield) (Scheme 2.14) were separated using FCC for further analyses 

(Table 2.6) (Pedras et al., 2013). 

 

Scheme 2.14 Syntheses of spirocyclic indoline-2-thiones 203, 202, 211 and 212. Reagents and 
condition: (i) HCHO, MeOH, HCl, r.t (Table 2.5). 
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Similarly, condensation of 1-methoxyindoline-2-thione (208) with formaldehyde 

proceeded under acid catalysis and was followed by cycloaddition to afford compounds 211 and 

212 in a 1.2:1 ratio (46% yield) (Scheme 2.14)(Table 2.6) (Pedras et al., 2013). Several attempts 

to obtain compounds 201 and 204 from condensation of indole-2-thione (209) with 

formaldehyde yielded multiple products, of which 201 was a minor component of the reaction 

mixture as determined by the HPLC analysis. Spiroindolinethiones 202, 203, 211 and 212 were 

prepared using either HCl or TFA, as summarized in Table 2.5, but were obtained in better yield 

using HCl (Pedras et al., 2013). 

Table 2.5 Synthesis of spiroindolinethiones 203, 202, 211 and 212 and reaction 
conditions. 

Indoline-2-thiones Conditions Products (ratio) Yield (%) 

207 HCl 203+202 (1:1) 32 

208 HCl 211+212 (1.2:1) 46 

207 TFA 203+202 (1:1) 20 

208 TFA 211+212 (1.2:1) 33 

 

As it was described, the formation of 202 or 212 from [4+2] intermolecular cycloaddition 

of 3-methyleneindoline-2-thiones 205, 206 and 215 is unprecedented. Therefore, to further 

confirm the structures crystallization of 212 in hexane-Et2O solution yielded crystals suitable for 

X-ray crystallography as shown in Figure 2.35. This analysis confirmed the structural 

assignment based on NMR spectroscopic data (Pedras et al., 2013). 
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Figure 2.35 Molecular structure of compound 212 with thermal ellipsoids at 30% of the 
probability level (hydrogen atoms omitted for clarity). 
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Table 2.6 1H NMR and 13C NMR spectroscopic data of compounds 201, 203, 202, 211 and 212 (in CDCl3). 
 

C/H
# 

δC 

202 
δH (m, J, H) 

202 
δC 

203 
δH (m, J, H) 

203 
δC 

201 
δH (m, J, H) 

201 
δC 

211 
δH (m, J, H) 

211 
δC 

212 

δH (m, J, 
H) 
212 

2 203.
2 - 208.6 - 210.

8 - 198.4 - 193.7 - 

3 62.5 - 54.0 - 54.4 - 52.5 - 60.3 - 

3a 136.
5 - 135.5 - 135.

7 - 133.9 - 134.2 - 

4 124.
2 7.11 (d, 7.5 Hz, 1H) 126.4 7.21(d, 7.5 Hz, 1H) 126.

7 7.23 (d, 7.5 Hz, 1H) 126.6 7.43 (d, 10 Hz, 1H) 117.3 7.4 (d, 10 
Hz, 1H) 

5 124.
9 7.01 (dd, 7.5, 7.5 Hz, 1H) 124.1 7.03 (dd, 7.5, 7.5 Hz, 1H) 123.

9 
7.01 (ddd, 7.5, 7.5, 1 Hz, 

1H) 120.3 7.22 (m,  3H) 120.4 7.1 (m, 2H) 

6 129.
1 7.36 (dd, 7.5, 7.5 Hz, 1H) 128.4 7.36 (dd, 7.5, 7.5 Hz, 1H) 128.

5 
7.31 (ddd, 7.5, 7.5, 1 Hz, 

1H) 128.7 7.38 (dd, 10, 5 Hz, 1H) 129.4 
7.30 (dd, 
10, 5 Hz, 

1H) 

7 109.
7 7.09(d, 7.5 Hz, 1H) 109.3 7.10 (d, 7.5 Hz, 1H) 109.

7 7.08 (d, 7.5 Hz, 1H) 108.2 7.29 (d, 10 Hz, 1H) 108.2 7.33 (d, 10 
Hz, 1H) 

7a 145.
5 - 144.2 - 141.

3 - 140.3 - 139.7 - 

3ʹ  18.5 

3.33 (ddd, 17, 12, 6 Hz, 
1H) 

3.10 (ddd, 17, 12, 6 Hz, 
1H) 

32.9 
3.64 (d, 16 Hz, 1H) 

2.77 (dd, 16, 2 Hz, 1H) 
32.4 

3.65 (d, 16 Hz, 1H) 
2.83 (dd, 16, 2 Hz, 1H) 

31.9 
3.86 (d, 15 Hz, 1H) 
2.73 (d, 15 Hz, 1H) 

18.2 

3.33 (dm, 
1H) 

3.04 (m, 
1H) 

4ʹ  34.8 

2.85 (ddd, 14, 12, 6 Hz, 
1H) 

2.04, (ddd, 14, 12, 6 Hz, 
1H) 

37.1 
3.88, 1H, d, 13Hz 

2.58 (dd, 13, 2 Hz, 1H) 
37.1 

3.87, 1H, d, 13Hz 
2.64 (dd, 13, 2 Hz, 1H) 

36.3 
3.58 (d, 13 Hz, 1H) 
2.63 (d, 10 Hz, 1H) 

34.4 

2.79 (m, 
1H) 

2.10, (dm, 
1H) 

Oth
ers 29.8 3.59 (s, 3H) 32.0 3.78 (s, 3H) - 7.94 (s, N-H) 65 4.2 (s, 3H) 65.1 4.12 (s, 3H) 

9'a 127.
6 - 127.5 - 124.

7 - 124.9 - 124.2 - 

4'a 104.
9 - 104.8 - 106.

2 - 102.7 - 103.1 - 

4ʹb 127.
4 - 128.1  128.

5 - 128.7 - 125.6 - 
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C/H
# 

δC 

202 

δH (m, J, H) 
202 

δC 

203 

δH (m, J, H) 
203 

δC 

201 

δH (m, J, H) 
201 

δC 

211 

δH (m, J, H) 
211 

δC 

212 

δH (m, J, 
H) 
212 

5' 117.
0 7.51 (d, 7.5 Hz, 1H) 116.7 7.32 (d, 7.5 Hz, 1H) 116.

7 7.34 (d, 7.5 Hz, 1H) 116.9 7.22 (m, 3H) 121.8 7.16 (d, 5 
Hz, 1H) 

6' 119.
3 7.16 (dd, 7.5, 7.5 Hz, 1H) 119.2 7.06 (dd, 7.5, 7.5 Hz, 1H) 119.

8 7.10 (dd, 7.5, 7.5 Hz, 1H) 120.3 
7.08 (ddd, 10, 5, 5 Hz, 

2H) 

125.5 
6.99 (dd, 
10, 5 Hz, 

1H) 

7' 120.
8 

7.21, (dd, 7.5, 7.5 Hz, 
1H) 120.8 7.18 (dd, 7.5, 7.5 Hz, 1H) 121.

5 7.18 (dd, 7.5, 7.5 Hz, 1H) 121.8 120.4 7.1 (m, 2H) 

8' 108.
4 7.30 (d, 7.5 Hz, 1H) 108.2 7.31 (d, 7.5 Hz, 1H) 110.

1 7.36 (d, 7.5 Hz, 1H) 107.2 7.22 (m, 3H) 108.5 7.03 (d, 5 
Hz, 2H) 

8ʹa 
137.

8 - 137.5  136.
5 - 132.4 - 134.2 - 

Oth
ers 32.1 3.74 (s, 3H) 30.1 3.77 (s, 3H) 

9.51 
(s, 
N-
H)- 

9.51 (s, N-H)- 62.2 4.1 (s, 3H) 62.2 3.88 (s, 3H) 
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Compounds 137 and 196 were further characterized after methylation of the thiol group 

using MeI (Scheme 2.15). The reaction was carried out using NaH. Compound 213 was obtained 

5 min after addition of NaH; longer reaction times (45 min) yielded compound 214 (Scheme 

2.15).  

	

Scheme 2.15 Syntheses of 213 and 214. Reagents and conditions (i) NaH, MeI, THF, 0°C. 

The chemical synthesis of compounds 194 and 195 were carried out to confirm the 

chemical structures of the final biotransformation products of cyclobrassinin (4) and to obtain 

sufficient amounts for determination of their antifungal activities. Preparation of compounds 194 

and 195 was attempted by oxidation of 137 using m-CPBA or H2O2. Compound 194 was 

obtained by oxidation of compound 137 with H2O2 in good yield (Scheme 2.16).  

	

Scheme 2.16 Syntheses of sulfinic acids 194 and 195. Reagent and conditions (i) 
MeOH/CHCl3, (1:1), r.t., H2O2 (16.5eq),16 h, 194 (91%) or H2O2 (32 eq), 20 h, 195. 

Due to the low solubility of the product in organic solvents, the reaction mixture was 

concentrated to dryness and the residue was rinsed with MeOH. Most of the residue remained 

insoluble in MeOH. 1H NMR (DMSO-d6) spectrum of the residue displayed signals for 11 

protons, of which six were aromatic (δH 7.1-8.2), two were from a methylene group (δH 3.9, s, 

2H) and three were from a methyl group (δH 2.1, 3H). The HPLC-ESI-MS analysis of the sample 
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showed a peak at 12.8 min containing an ion (negative mode): [M-1]- at m/z 283. This structural 

analysis suggested structure 194. Increasing the time of the reaction as well as using excess 

amount of H2O2 gave sulfonic acid 195 as the major compound. 1H NMR of the crude reaction 

mixture in DMSO-d6 was similar to that obtained for acid 194. The HPLC-ESI-MS analysis of 

the crude reaction mixture showed a broad peak at 8 min containing an ion (negative mode) at 

m/z 299 [M-1]-. These results suggested structure 195. HPLC-ESI-MS chromatogram of the 

crude also showed acid 194 as minor product in the crude reaction mixture.  

Another method to prepare acids 194 and 195 was attempted by oxidation of compound 

137 with m-CPBA; however this condition lead to mixture of both acids 194 and 195.  

	

Scheme 2.17 Syntheses of sulfinic acid 194 and sulfonic acid 195. Reagent and condition (i) m-
CPBA, MeOH, -20 °C. 

In summary, conditions to obtain sulfonic acid 195 as a single reaction product were used 

namely various time and temperature, however mixture of acids 194 and 195 was obtained in all 

conditions. The mixture could not be separated by chromatography. 

To establish if biotransformations of cyclobrassinin (4) and 1-methylcyclobrassinin (193) 

by A. brassicicola were detoxification reactions, mycelial radial growth assays were carried out. 

The antifungal activities against A. brassicicola of all metabolites and the spiro compounds 203, 

202, 211 and 212 were determined as described in Section 3.2; results of these assays are shown 

in Table 2.7. 
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Table 2.7 Antifungal activity of metabolites 137, 39 and spiro compounds 
203, 202, 211 and 212 against Alternaria brassicicola. 

Compound (#) 
Inhibition ± SD (%)a 
0.50 mM 0.20 mM 0.10 mM 

Hyd-cyclobrassinin (137) 14 ± 3e,f n. i. n. i. 

Hyd-methylcyclobrassinin (196) 24 ± 0c 20 ± 3d,e 15 ± 3d,e,f 

Methylspiro (203) 27 ± 3b,c 22 ± 3c,d 15 ± 0d,e,f 

Methylspiro (202) 25 ± 0c 22 ± 3c,d 13 ± 3e,f 

Methoxyspiro (211) 33 ± 3b 23 ± 3c 13 ± 3e,f 

Methoxyspiro (212) 25 ± 2c 13 ± 3e,f 8 ± 3f 

aThe percentage of inhibition was calculated using the formula: % inhibition = 
100 – [(growth on amended/growth in control) × 100]; values are averages of 
three independent experiments conducted in triplicate; n.i. = no inhibition. For 
statistical analysis, one-way ANOVA tests were performed followed by Tukey’s 
test with adjusted α set at 0.05; n = 3; different letters in the same column (b–g) 
indicate significant differences (P < 0.05). 

Metabolite 137 from transformation of cyclobrassinin (4) showed low antifungal activity 

against A. brassicicola. Compound 137 showed 14% inhibitory activity against mycelial growth 

of A. brassicicola only at highest tested concentration (0.50 mM). Hydrolyzed product 196 from 

transformation of 1-methylcyclobrassinin (193) showed slightly stronger inhibitory activity than 

metabolite 137 against A. brassicicola. At highest concentration (0.50 mM), compound 196 

showed 24% mycelial growth inhibition. The activities of spirocompounds 202, 203, 211 and 

212 were also determined against A. brassicicola. All tested spirocompounds showed similar 

antifungal activity against A. brassicicola (Table 2.7).  
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2.1.2.4 Discussion and conclusion 

Cyclobrassinin (4) and 1-methylbrassilexin (193) displayed weak antifungal activity 

against mycelial growth of A. brassicicola compared to camalexin (1, 100% at 0.20 mM) or 

brassilexin (7, 100% at 0.50 mM). At the highest concentration (0.50 mM) 1-

methylcyclobrassinin (193) showed stronger inhibitory activity than cyclobrassinin (4) against 

mycelial growth of A. brassicicola. However, both compounds showed very similar activity 

against A. brassicicola at lower (0.20 and 0.10 mM) concentrations. The spiro compounds 

showed antifungal activity against A. brassicicola that was around 30% for the highest 

concentration (0.50 mM). 

Cyclobrassinin (4) and 1-methylcyclobrassinin (193) were metabolized completely after 

8 h by A. brassicicola to compounds 137 and 196, at similar rates. Compounds 137 and 196 were 

transformed further by A. brassicicola to the corresponding acids 194, 197, 195 and 198 

(Scheme 2.18). It is noteworthy that detoxification of cyclobrassinin (4) is rather fast, unlike the 

metabolism of the phytoalexin camalexin (1) (ca. 10 days at 0.50 mM) by A. brassicicola (Pedras 

and Abdoli, 2013). The pathway of transformation of cyclobrassinins by A. brassicicola is 

proposed in Scheme 2.18. 

	

Scheme 2.18 Proposed pathway of detoxification of cyclobrassinin (4) and 1-
methylcyclobrassinin (193) by Alternaria brassicicola and metabolic products. 
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Comparison of the antifungal activities (Table 2.3 and Table 2.7) suggested that growth 

inhibition of the metabolites was weaker than that caused by the parent compounds. The 

antifungal activity of acids 194, 195, 197 and 198 were not determined against A. brassicicola. 

Results of antifungal activity of these acids are necessary to confirm that biotransformations of 

cyclobrassinin (4) and 1-methylcyclobrassinin (193) are detoxifications.  

	

Scheme 2.19 Chemical transformations of compounds 137, 196, 207 and 208 to spirocyclic 
indoline-2-thiones 201, 204, 203, 202, 211 and 212. 

As described above, compounds 201, 202, 203, 204, 211 and 212 were obtained from 

[4+2] cycloaddition of corresponding 3-methyleneindoline-2-thiones (Scheme 2.19) (Pedras et 

al., 2013). The formation of compounds 202 or 212 resulting from [4+2] intermolecular 

cycloadditions of 3-methyleneindoline-2-thiones 207 or 208 is unprecedented. By contrast, the 

formation of 203 and 211 from [4+2] intermolecular cycloadditions has literature precedent 

(Thompson et al., 1993). It was surprising to find that both isomers from each reaction were 

produced in the same amount. In addition, it was established that purified products 211 and 212 

are stable under conditions identical to those used in the condensation reactions and did not 
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interconvert (Pedras et al., 2013).  

In conclusion, it was shown for the first time that the plant pathogen A. brassicicola was 

able to detoxify cyclobrassinin (4) and 1-methylcyclobrassinin (193) in 8 h, using a 

transformation pathway, that involved hydrolyses to compounds 137 and 196. Compounds 137 

and 196 were metabolized further by A. brassicicola to their corresponding sulfinic and sulfonic 

acids 194 and 197. Previously it had been shown that cyclobrassinin (4) can inhibit the fungal 

enzyme brassinin hydrolase (BHAb) from Alternaria brassicicola (Pedras et al., 2012), which 

catalyzes brassinin (9) detoxification to indole-3-methanamine (28). However, these results 

suggest that cyclobrassinin (4) is not of interest as a lead structure to design paldoxins against A. 

brassicicola because it is quickly metabolized by this plant pathogen (Pedras et al., 2013). 
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2.1.3 Rutalexin 

Rutalexin (5) was first isolated from stressed (UV light) rutabaga tubers (Brassica napus 

L. ssp. rapifera) and its synthesis confirmed the proposed structure (Pedras et al., 2004b). Due to 

poor solubility of rutalexin (5) in agar, its antifungal activity was determined against 

Cladosporium cucumerinum using a TLC bioassay that showed complete inhibition at 2 × 10-6 

mol (Pedras et al., 2004b). 

	

Figure 2.36 Structure of rutalexin (5).  

2.1.3.1 Synthesis and antifungal activity 

In a previously reported procedure (Pedras et al., 2004b), rutalexin (5) was synthesized in 

24% overall yield from N-Boc-2-chloroindole-3-carboxaldehyde (15), via sulfanylamide 18. 

Because of the low yield (24% overall) of 5 in the reported procedure, the first part of this work 

was dedicated to optimize rutalexin (5) synthesis. Since sulfanylamide 18 was prepared in good 

yield (Pedras et al., 2004b), it was used in this work as an intermediate. However, it was 

discovered that sulfanylamide 18 was not stable; upon acidic work-up it oxidized spontaneously 

to disulfide 219. The structure of sulfanylamide 18 was confirmed by methylation of its thiol 

group followed by deprotection using TFA (20%) in DCM to afford 218 in 91% overall yield 

(Scheme 2.20). To prevent the oxidation of 18, methyl chloroformate was added directly to the 

reaction mixture containing sulfanylamide 18, which after 30 min at room temperature afforded 

compound 216 in almost quantitative yield (95%). Cyclization of amide 216 in the presence of 

Et3N followed by deprotection using TFA yielded crude rutalexin (5). The final reaction mixture 

was concentrated to dryness and the residue was rinsed with Et2O to yield pure rutalexin (5) in 

93% yield over two steps (vi and vii) and about 80% overall yield (from the aldehyde 15) 

(Scheme 2.20). In another attempt to simplify the described procedure, amide 216 was allowed 
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to react for longer time to cyclize and yield N-Boc-rutalexin 19. Compound 19 was separated 

from the crude reaction mixture using FCC in 56% yield (from amide 17, Scheme 2.20). 

Although this is a simple procedure, the yield was not as good as in the previous transformation. 

Alternatively, N-Boc deprotection of compound 19 using K2CO3 afforded rutalexin (5) in 60% 

yield (step viii). 

	

Scheme 2.20 Syntheses of rutalexin (5) and 218. Reagents and conditions: (i) NaClO2, 
KH2PO4, 2-methylbut-2-ene, t-butanol, H2O, r.t., 100%; (ii) SOCl2, DMF, THF, r.t.; iii) 
CH3NH2, THF, 0 °C, 95% (over steps ii and iii); (iv) NaSH, DMF, H2O, 0 °C, 1 h; (v) Methyl 
chloroformate, 30 min, 216 (95%) and 6 h, 19 (56%); (vi) THF, Et3N, r.t., 4 h; (vii) TFA (20%) 
in DCM, r.t., 4 h, 93% (over 2 steps); (viii) K2CO3, MeOH, r.t., 2 h, 60%; (x) MeI, THF, r.t., 30 
min, 97%. 
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Figure 2.37 Structure of compound 219. 

Due to low solubility in agar medium, the antifungal activity of rutalexin (5) was 

determined against A. brassicicola employing a mycelial radial growth assay in liquid minimal 

medium (not in solid agar medium), as described in the experimental Section 3.2. The antifungal 

activity was determined using two different concentrations (0.10 and 0.05 mM). Results of these 

assays are shown in Table 2.8. 

Table 2.8 Antifungal activity of rutalexin (5) against 
Alternaria brassicicola. 

Compound (#) 
Inhibition ± SD (%)a 
0.10 mM 0.050 mM 

Rutalexin (5) 20 ± 4d 12 ± 3e 
Camalexin (1) 76 ± 0b 25 ± 5c 

aThe percentage of inhibition was calculated using the formula: % 
inhibition = 100 – [(growth on amended/growth in control) × 100]; 
values are averages of three independent experiments conducted in 
triplicate. For statistical analysis, one-way ANOVA tests were 
performed followed by Tukey’s test with adjusted α set at 0.05; n = 
3; different letters (b–e) indicate significant differences (P < 0.05). 

Results of the antifungal activity assays indicated that the inhibitory activity of rutalexin 

(5) against A. brassicicola (Table 2.8) is not as strong as camalexin (1) (76%, 0.10 mM, Table 

2.1). At the highest concentration (0.10 mM) rutalexin (5) showed only 20% inhibitory against 

mycelial growth of A. brassicicola, which decreased to 12% at 0.05 mM (Table 2.8). 
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2.1.3.2 Biotransformation of rutalexin 

The transformation of rutalexin (5) by A. brassicicola was investigated. Due to the 

moderate inhibitory activity of rutalexin (5) against A. brassicicola, the metabolic studies were 

carried out using 0.10 mM of rutalexin (5). Cultures of A. brassicicola were incubated for 

different periods of time and samples were collected from each culture immediately after 

addition of rutalexin (5) up to several days. Samples of cultures were extracted and analyzed by 

HPLC-DAD-ESI-MS. Control solutions containing rutalexin (5) (MM only, no fungus) were 

analyzed similarly to determine the chemical stability of rutalexin (5) during the incubation 

experiment.  

	

Figure 2.38 Progress curves of transformation of rutalexin (5, n) by Alternaria brassicicola 
and formation of disulfide 220 (p) and 221 (�) and recovery of rutalexin (5, £) in control 
medium.  

The HPLC chromatograms of the neutral extracts of cultures of A. brassicicola incubated 

with rutalexin (5) showed that it was transformed in ca. 24 h (Figure 2.38). The chromatograms 

of the neutral extracts obtained after 12 h of incubation displayed the corresponding peak of 

rutalexin (5) at 8.4 min and additional peaks at 9.9 and 10 min. The peaks at 9.9 and 10 min 

(HPLC method C) were not detected in either fungal cultures without rutalexin (5) or MM 

incubated with rutalexin (5). No additional peaks were detected either in acidic/basic extracts or 

in controls. The HPLC-ESI-MS (negative mode) analysis of the peak at tR = 10 min indicated an 

ion at m/z 409 [M-H]-. Based on this negative ion metabolite was proposed to be disulfide 220 
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(Figure 2.39), which had resulted from oxidation of sulfanylamide 223 (Scheme 2.23). This 

structure was confirmed by direct comparison with an authentic synthetic sample.  

	

Figure 2.39 Structure of disulfide 220 (tR = 10 min) from transformation of rutalexin (5) by 
Alternaria brassicicola. 

Larger scale mycelial cultures incubated with rutalexin (5) were extracted, the extract 

was fractionated by reverse phase silica gel chromatography and each fraction was analyzed by 

HPLC. The metabolite at 9.9 min displayed a molecular formula of C24H28N2O5S, suggested by 

HRMS-EI and consistent with the NMR spectroscopic data. The 1H NMR spectrum (CD3CN) 

displayed signals for 28 protons: five aromatic (δH 7–7.9 ppm), two D2O exchangeable (δH 7.3–

9.9 ppm), two vinyl (δH 6 and 6.3 ppm), one methyl attached to oxygen (δH 3.8 ppm), one methyl 

attached to –NH (2.9 ppm), and four additional methyl groups. The 13C NMR spectrum 

displayed signals for 24 carbons Table 2.9. These NMR data indicated the presence of an indolyl 

moiety containing an amide at C-3 and sulfur at C-2. Detailed analysis of the HSQC and HMBC 

data indicated that the proton at δH 6.37 correlated to C6, C9 and C12 at δC 160.5, 76.8 and 26.8, 

respectively; δH 6.10 correlated to C3, C6 and C7 at δC 102.5, 160.5 and 129.7, respectively; the 

methyl protons at δH 1.40 correlated with C9 at 76.8. NOE data showed correlations between H5 

and H13, H13 and H8 (Figure 2.40). Comparison of 1H and 13C NMR spectroscopic data of the 

unknown metabolite with 1H and 13C NMR data of phomapyrone G, a secondary metabolite 

reported from A. brassicicola (Pedras et al., 2009a), suggested it to be part of the unknown 

metabolite. Namely, the presence of two characteristic singlets at 6.1 and 6.3 ppm in 1H NMRs 

of the unknown metabolite (at 9.9 min) and phomapyrone G (75).  
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Figure 2.40 Structure of adduct 221 (tR = 9.9 min) from transformation of rutalexin (5) by 
Alternaria brassicicola. 
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Table 2.9 1H NMR and 13C NMR spectroscopic data of 
adduct 221 (in CD3CN). 

C/H# δC 221 δH (m, J, H) 221 
2 165.2 - 
3 102.5 - 
4 167.1 - 
5 94 6.1 (s, 1H) 
6 160.5 - 
7 129.7 - 
8 136.8 6.4 (s, 1H) 
9 76.8 - 
10 57.6 3.5 (q, J= 5Hz, 1H) 
11 17.6 1.4 (d, J = 7Hz 3H) 
12 26.8 1.5 (s, 3H) 
13 13.5 2.1 (s, 3H) 
14 9 1.8 (s, 3H) 
2ʹ 130.9 - 
3ʹ 115.63 - 
3ʹa 127.8 - 
4ʹ 111.9 7.30 (d, J =8Hz, 1H) 
5ʹ 124.1 7.07 (dd, J =7.5, 7.5 Hz 1H) 
6ʹ 121.7 7.14 (dd, J =7, 7Hz, 1H) 
7ʹ 121.8 7.95 (d, J =8Hz, 1H) 
7ʹa 137.3 - 
8ʹ 166.4 - 
OH - 4.2 (b, 1H) 
(N-1)H - 9.90 (b, 1H) 
(NH) - 7.33 (b, 1H) 
(O)CH3 57.3 2.12 (s, 3H) 
(NH)CH3 26.4 2.9 (d, J = 5Hz, 3H) 

 

Next, disulfide 220 was administrated to cultures of A. brassicicola. The cultures were 

incubated, extracted and analyzed by HPLC-DAD-ESI-MS, as described above for rutalexin (5). 

Time-course studies revealed that disulfide 220 was metabolized within 24 h by A. brassicicola, 
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but no metabolites could be detected in the extracts of the cultures incubated with disulfide 220. 

Cultures of A. brassicicola were prepared in water as described in Section 3.4.3.1 and were 

incubated with disulfide 220. Samples were collected at various times, freeze-dried, the residue 

was dissolved in MeOH-H2O (50:50) and analyzed directly by HPLC-DAD-ESI-MS. HPLC-

ESI-MS data of freeze-dried samples showed presence of a broad peak around 15 min (Method 

G). The HPLC-ESI-MS (negative mode) analysis of this peak indicated an ion at m/z 253 [M-H]-

, which was 48 units higher than that of sulfanylamide 220. Based on this negative ion, 

metabolite was proposed to contain three additional oxygen atoms. Metabolite was proposed to 

be sulfonic acid 222. The structure of acid 222 was confirmed by direct comparison with an 

authentic synthetic sample. The HPLC chromatograms of freeze-dried samples of control 

solutions (water only, no fungus) containing disulfide 220 showed that it was not stable and 

spontaneously oxidized to sulfonic acid 222. Nonetheless, the transformation of disulfide 220 in 

fungal cultures was slightly faster than in control medium solutions, indicating that this 

transformation might be partly mediated by an enzyme (Figure 2.42). 

	

Figure 2.41 Structure of acid 222 from transformation of rutalexin (5) by Alternaria 
brassicicola. 

 

N
H

SO3H

NH
O

222



 

 98 

	

Figure 2.42 Progress curves of transformation of disulfide 220 (�) by Alternaria brassicicola 
and recovery of disulfide 220 (n) in control medium. 

Comparison of the chromatograms of neutral extracts of cultures of A. brassicicola 

incubated with rutalexin (5) and control cultures (no rutalexin (5)) showed that phomapyrone G 

(75) was produced in higher concentration in cultures incubated with rutalexin (5) than in 

controls (Figure 2.43). 

		

Figure 2.43 Progress curves of formation of phomapyrone G (75) in culture of Alternaria 
brassicicola incubated with rutalexin (5) (n) and in control culture (£). 
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2.1.3.3 Synthesis and antifungal activity of metabolites 

Disulfide 220 and sulfonic acid 222 were obtained as summarized in Scheme 2.21. 

Disulfide 220 was synthesized by oxidative dimerization of sulfanylamide 18 followed by 

deprotection in 20% TFA in DCM as described in Section 3.4.3.2. Sulfonic acid 222 was 

synthesized from m-CPBA oxidation of disulfide 220 in MeOH in moderate yield (Scheme 

2.21).  

	

Scheme 2.21 Syntheses of 220 and 222. Reagents and conditions: (i) TFA (20%) in DCM, r.t., 
4 h, 80% (from 18); (ii) m-CPBA, MeOH, r.t., 2.5 h, 59% (from 220). 

To establish if the biotransformation of rutalexin (5) by A. brassicicola was a 

detoxification reaction, mycelial radial growth assays were carried out. The antifungal activities 

against A. brassicicola of all metabolites resulting from transformation of rutalexin (5) were 

determined as described in Section 3.2; results of the assays are shown in Table 2.10. 
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Table 2.10 Antifungal activity of metabolites 220, 222, 221 and synthetic compound 218 
against Alternaria brassicicola. 

Compound (#) 
Inhibition ± SD (%)a 
0.50 mM 0.20 mM 0.10 mM 

2,2'-disulfanediylbis(N-methyl-1H-indole-3-
carboxamide) (220) 

n. d. 32 ± 0b,c 25 ± 3c,d,e 
 

Adduct 221 34 ± 3b,c 21 ± 3d,e 6 ± 3f 

3-(methylcarbamoyl)-1H-indole-2-sulfonic 
acid (222) 

5 ± 2f n. i. n. i. 

N-methyl-2-(methylthio)-1H-indole-3-
carboxamide (218) 

29 ± 3b,c,d 20 ± 3d,e 15 ± 4e 

aThe percentage of inhibition was calculated using the formula: % inhibition = 100 – 
[(growth on amended/growth in control) × 100]; values are averages of three independent 
experiments conducted in triplicate; n. i. = no inhibition, n. d. = not determined . For 
statistical analysis, one-way ANOVA tests were performed followed by Tukey’s test with 
adjusted α set at 0.05; n = 3; different letters in the same column (b–f) indicate significant 
differences (P < 0.05).  

Comparison of the antifungal activities (Table 2.8 and Table 2.10) suggested that growth 

inhibition gradually decreased from disulfide 220 to sulfonic acid 222. However, disulfide 220 

showed almost similar antifungal activity against A. brassicicola compared to rutalexin (5). At 

the highest concentration (0.20 mM), disulfide 220 showed 32% inhibitory activity that 

decreased to 25% at 0.10 mM. Disulfide 220 was not soluble in MM at concentrations higher 

than 0.20 mM. Sulfonic acid 222 did not show inhibitory activity against A. brassicicola at 0.20 

and 0.10 mM. Results of antifungal activity of metabolites from biotransformation of rutalexin 

(5) indicated that the metabolism of rutalexin (5) by A. brassicicola is a detoxification. 

2.1.3.4 Discussion and conclusion 

Synthesis of rutalexin (5) was first reported by Pedras and co-workers in 2004 (Pedras et 

al., 2004b) and recently by Budovská and co-workers in 2015 (Budovská et al., 2015). The 

procedure for synthesis of rutalexin (5) was modified compared to the previously reported 

procedure by Pedras and co-workers (Scheme 2.22) (Pedras et al., 2004b) and the overall yield 

was improved compared to both reported procedures (Budovská et al., 2015; Pedras et al., 
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2004b) (Scheme 2.20). In the previously reported procedure (Pedras et al., 2004b) the step 

containing reaction of sulfanylamide 18 with phosgene (step iv) afforded 19 in low yield (30% 

overall yield for two steps) (Scheme 2.22). In this work it was discovered that sulfanylamide 18 

is not stable and spontaneously oxidized to disulfide 219 upon acidic extraction (Pedras et al., 

2004b), for this reason methyl chloroformate was added directly to the reaction mixture (Scheme 

2.20).  

	

Scheme 2.22 Synthesis of rutalexin (5). Reagents and conditions: (i) NaClO2, 2-methylbut-2-
ene, tert- butyl alcohol/H2O, r.t., 2 h, 96%; (ii) SOCl2, THF, rt, 3 h, then CH3NH2, THF, 0 °C, 20 
min, 85% (based on acid 16); (iii) NaSH, DMF/H2O, 0 °C, 2 h; (iv) NaH, THF, 0 °C, 10 min 
then COCl2 (20% in toluene), -78 °C to rt, 4 h, 30% (based on 17); (v) 165- 170 °C, 30 min, 
100% (Pedras et al., 2004b). 

After optimization of this reaction (v) compound 216 was obtained in 95% yield 

(Scheme 2.20).  

Due to the poor solubility of rutalexin (5) in agar, its antifungal activity was not 

determined using radial mycelial growth assay. Previously, the antifungal activity of 5 was 

determined using a TLC bioassay using C. cucumerinum (Pedras et al., 2004b). In this work the 

inhibitory activity of rutalexin (5) against mycelial growth of A. brassicicola at 0.10 mM was 

determined using mycelial growth assay on MM, instead of potato dextrose agar (PDA). It was 

important to determine the antifungal activity of rutalexin (5) for concentrations higher than 0.10 

mM. For this reason different experiments such as using different organic solvents or increasing 

the amounts of DMSO in the assay media were carried out, but the problem was not solved. That 
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is, concentrations higher than 0.10 mM could not be achieved due to precipitation. Bioassay of 

rutalexin (5) against A. brassicicola in MM showed that at 0.10 mM it is not a strong mycelial 

growth inhibitor (Table 2.8), but metabolites 221 and 222 resulting from transformation of 

rutalexin (5) showed lower inhibitory activity against A. brassicicola than rutalexin (5) (Table 

2.10). 

Rutalexin (5) was transformed to disulfide 220 and adduct 221 by A. brassicicola. 

Disulfide 220 was previously synthesized using a different procedure and was used to inhibit 

tyrosine kinase activity of EGFR (epidermal growth factor receptor) (Palmer et al., 1995). 

Disulfide 220 appeared to be oxidized further to sulfonic acid 222 by A. brassicicola, however 

additional work to prove this is an enzyme mediated transformation is required (Scheme 2.25). 

From the structure of 220 and 221 it is likely that A. brassicicola transformed rutalexin (5) to 

amide 223 (Scheme 2.23), however 223 was not detected in the extracts of cultures incubated 

with rutalexin (5) either in water or MM. Compound 223 did not accumulate in cultures perhaps 

due to its reactivity, as it spontaneously oxidized to disulfide 220. Its reaction with phomapyrone 

G (75) to yield a stable adduct 221 has no precedent. This is the first reported reaction between a 

phytoalexin metabolite and a secondary metabolite produced by a fungus. The pathway of 

rutalexin (5) transformation to sulfanylamide 18, followed by oxidation to disulfide 220 or 

reaction with phomapyrone G (75) is proposed in Scheme 2.23. 
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Scheme 2.23 Proposed transformation pathway of rutalexin (5) by Alternaria brassicicola and 
metabolic products. 

In conclusion, rutalexin (5) was synthesized using an efficient procedure in reasonable 

overall yield and its biological activity against the cruciferous pathogen A. brassicicola was 

evaluated. This is the first report of transformation of rutalexin (5) by a plant pathogen. It was 

shown that the plant pathogen A. brassicicola was able to quickly detoxify rutalexin (5) to 

disulfide 220 and adduct 221. Disulfide 220 was transformed further to sulfonic acid 222, the 

least antifungal compound. The weak inhibitory activity of rutalexin (5) together with quick 

detoxification by A. brassicicola suggest that rutalexin (5) is not a phytoalexin of interest to 

improve the disease resistance of crucifers to A. brassicicola. Nonetheless, rutalexin (5) may 

have stranger roles in protecting crucifers against other fungal pathogens. Investigation of 

transformation of rutalexin (5) by other cruciferous pathogens is of interest to clarify the function 

of rutalexin (5) in protecting crucifers.  
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2.1.4 Rapalexin A, brassilexin and 1-methylbrassilexin 

Brassilexin (7) is a phytoalexin produced mainly by Brassica species and biosynthesized 

from cyclobrassinin (4) (Pedras et al., 2011b). Brassilexin (7) was isolated and characterized in 

1988 from the leaves of mustard (Brassica juncea) (Devys et al., 1988; Pedras et al., 2011b). 

Rapalexin A (8) is the first naturally occurring aromatic isothiocyanate that has been isolated 

from canola leaves (Brassica rapa), infected by A. candida (Pedras et al., 2011b; 2007b). 1-

Methylbrassilexin (165) is not a natural product; it was synthesized by methylation of brassilexin 

(7). 

	

Figure 2.44 Structures of brassilexin (7), 1-methylbrassilexin (165) and rapalexin A (8). 

2.1.4.1  Synthesis and antifungal activity 

 Brassilexin (7) (Pedras and Jha, 2005) and 1-methylbrassilexin (165) (Pedras and Jha, 

2005) were synthesized as previously reported (Pedras et al., 2011b) and described in Section 

3.3.5. The antifungal activities of rapalexin A (8), brassilexin (7) and 1-methylbrassilexin (165) 

were determined against A. brassicicola employing a mycelial radial growth assay (potato 

dextrose agar, PDA), as described in the experimental chapter Section 4.4. Different 

concentrations (0.50, 0.20, and 0.10 mM) of each compound in PDA were used for 

determination of the antifungal activity. Results of these assays are shown in Table 2.11. 
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Table 2.11 Antifungal activity of brassilexins 7, 165 and rapalexin A (8) 
against Alternaria brassicicola. 

Compound (#) 
Inhibition ± SD (%)a 

0.50 mM 0.20 mM 0.10 mM 
Brassilexin (7) 100 ± 0b 79 ± 4d,e 66 ± 4f 

1-Methylbrassilexin (165) 100 ± 0b 90 ± 0b,c 69 ± 0e,f 

Rapalexin A (8) 100 ± 0b 89 ± 2c,d 66 ± 3f 

aThe percentage of inhibition was calculated using the formula: % inhibition 
= 100 – [(growth on amended/growth in control) × 100]; values are averages 
of three independent experiments conducted in triplicate. For statistical 
analysis, one-way ANOVA tests were performed followed by Tukey’s test 
with adjusted α set at 0.05; n = 6; different letters in the same column (b–f) 
indicate significant differences (P < 0.05). 

Results of the antifungal assays indicated that rapalexin A (8), brassilexin (7) and 1-

methylbrassilexin (165) completely inhibited the mycelial growth of A. brassicicola at 0.50 mM 

(Table 2.11). Brassilexin (7) and rapalexin A (8) displayed similar activities causing ca. 70% 

inhibition at 0.10 mM, whereas 1-methylbrassilexin (165) was slightly more inhibitory than 

brassilexin (7) at 0.20 and 0.10 mM. 

2.1.4.2 Biotransformation of brassilexin, 1-methylbrassilexin and rapalexin A 

The transformation of brassilexin (7) and 1-methylbrassilexin (165) by A. brassicicola 

was investigated. Due to the inhibitory activity of brassilexin (7) and 1-methylbrassilexin (165) 

against A. brassicicola (Table 2.11), the metabolic studies were carried out using lowest tested 

concentration (0.10 mM) of brassilexins 7 and 165. Cultures were incubated for different periods 

of time and samples were collected from each culture immediately after addition of brassilexin 

(7) up to 2 days. Samples of cultures were extracted and analyzed by HPLC-DAD-ESI-MS. 

Control solutions containing brassilexin (7) (no fungus) were analyzed similarly to determine its 

chemical stability during the incubation time. 
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Figure 2.45 Progress curves of transformation of brassilexin (7, ¢) by Alternaria brassicicola 
and recovery of brassilexin (7, £) in minimal medium. 

The HPLC chromatograms of the neutral extracts of cultures of A. brassicicola incubated 

with brassilexin (7) showed that after 48 h (Figure 2.45) it was not detected. The chromatograms 

of the neutral extracts obtained after 12 h of incubation displayed the peak of brassilexin (7) and 

additional peaks at 6.2, 3.8 and 1.2 min. The peaks at 6.2, 3.8 and 1.2 min were not detected in 

either control cultures without brassilexin (7) or MM incubated with brassilexin (7). No 

additional peaks were detected either in acidic or basic extracts. The peaks at 6.2 and 3.8 min 

detected in the neutral extracts were due to 3-(aminomethylene)indoline-2-thione (99, tR= 6.2 

min), isatin (224, tR = 3.8 min) (Figure 2.46), as determined by direct comparison with synthetic 

99 and commercially available isatin (224). The metabolite responsible for the peak at 1.2 min 

was not available in our UV or MS data library. The HPLC-ESI-MS (negative mode) analysis of 

this peak indicated an ion at m/z 148 [M-H]-, which were 2 units higher than that of isatin (224). 

Based on this negative ion metabolite was proposed to contain two additional hydrogen atoms. 

This metabolite was proposed to be 3-hydroxyindoline-2-one (226) (Figure 2.46) and its 

structure was confirmed by direct comparison with an authentic synthetic sample. 
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Figure 2.46 Structures of metabolites from transformations of brassilexin (7) and 1-
methylbrassilexin (165) by Alternaria brassicicola. 

Next, to establish the sequence of steps of brassilexin (7) transformation by A. 

brassicicola, each metabolite was administrated separately to cultures of A. brassicicola. The 

cultures were incubated, extracted and analyzed by HPLC-DAD-ESI-MS, as described above for 

brassilexin (7). The HPLC chromatograms of the neutral extracts of the cultures incubated with 

3-(aminomethylene)indoline-2-thione (99) showed brassilexin (7) and 3-hydroxyindoline-2-one 

(226) (Figure 2.47). As previously reported, 3-(aminomethylene)-indoline-2-thione (99) was not 

stable in media and spontaneously oxidized to brassilexin (7) (Pedras and Suchy, 2005); 

however, its transformation in cultures was faster, indicating that an enzyme-mediated 

transformation occurred simultaneously (Figure 2.47). Because of the spontaneous oxidation of 

enamine 99 to brassilexin (7) determination of the amount of enamine (99) in each sample is not 

accurate. Due to presence of brassilexin (7) in the sample, making the calibration curve using the 

pure 3-(aminomethylene)-indoline-2-thione (99) was not achievable. Therefore, the amount of 

enamine in the controls and cultures was calculated as follows. Since the molecular masses of 

brassilexin (7) and enamine 99 are close (174 and 176 respectively), the concentration of 

enamine 99 was calculated in the control samples (no fungus) considering the amount of 

brassilexin (7) in that sample. The number of mmols for brassilexin (7) in each sample was 

calculated using calibration curve of brassilexin (7). Amount (mmols) of brassilexin (7) was 

subtracted from 0.10 mmol (the total number of mmols were added) to find the number of mmols 

for enamine 99 in each sample. The calibration curve for enamine 99 was prepared using these 

concentrations and related peak area in data points of control samples. Then the amount of 

enamine 99 in the cultures was obtained using this calibration curve (Figure 2.47). 
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Figure 2.47 Progress curves of transformation of 3-(aminomethylene)-indoline-2-thione (99, 
n) by Alternaria brassicicola, formation of brassilexin (7, �), 3-hydroxyindoline-2-one (226, 
p), and recovery of 3-(aminomethylene)-indoline-2-thione (99, £) and brassilexin (7, �) in 
minimal medium. 

HPLC-DAD-ESI-MS analyses of the extracts of the cultures of A. brassicicola incubated 

with isatin (224) showed that it was transformed in ca. 3 h to 3-hydroxyindoline-2-one (226) by 

A. brassicicola (Figure 2.48). 3-Hydroxyindoline-2-one (226) was stable in cultures of A. 

brassicicola (Scheme 2.25) (Figure 2.48). 

	

Figure 2.48 Progress curves of transformation of isatin (224, ¢) by Alternaria brassicicola, 
formation of 3-hydroxyindoline-2-one (226, �) and recovery of isatin (224, £) in minimal 
medium. 
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Similar biotransformation experiments using 1-methylbrassilexin (165) showed that it 

was metabolized at similar rate via similar intermediates by A. brassicicola. 1-Methylbrassilexin 

(165) was metabolized to corresponding 1-methyl-3-hydroxyindoline-2-one (227) via enamine 

228 and 1-methylisatin (225) (Figure 2.49, Scheme 2.25). 

	

Figure 2.49 Progress curves of transformation of 1-methylbrassilexin (165, �) by Alternaria 
brassicicola and recovery of methylbrassilexin (165, �) in minimal medium. 

Similar calculation, as described for enamine 99, was employed to calculate the 

concentration of enamine 228 in the cultures of A. brassicicola incubated with 3-

(aminomethylene)-1-methylindoline-2-thione (228) (Figure 2.50). 
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Figure 2.50 Progress curves of transformation of 3-(aminomethylene)-1-methylindoline-2-
thione (228, l) by Alternaria brassicicola and recovery of 1-methylbrassilexin (165, ¢) from 
the cultures, 3-(aminomethylene)-1-methylindoline-2-thione (228, �), and 1-methylbrassilexin 
(165, £) in minimal medium. 

As it is shown in Figure 2.47 at 48 h ca. 50% of enamine 99 was oxidized to brassilexin 

(7). In comparison, enamine 228 showed to be more stable in MM and less than 10% of 228 was 

oxidized to 1-methylbrassilexin (165) within 48 h (Figure 2.50). Also, enamine 228 was 

detected in the control extracts even after 48 h. The rate of transformation of brassilexin (7) and 

1-methylbrassilexin (165) by A. brassicicola are comparable (ca. 48 h). 

	

Figure 2.51 Progress curves of transformation of 1-methylisatin (225, ¢) by Alternaria 
brassicicola, formation of 1-methyl-3-hydroxyindoline-2-one (227, �), and recovery of 1-
methylisatin (225, £) in minimal medium. 
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The transformation of rapalexin A (8) by A. brassicicola was investigated similar to what 

was described for brassilexin (7). Due to the inhibitory activity of rapalexin A (8) against A. 

brassicicola (Table 2.11), the metabolic studies were carried out using 0.10 mM of rapalexin A 

(8) in MM. The HPLC-DAD-ESI-MS of neutral, basic and acidic extracts revealed that rapalexin 

A (8) remained in cultures for the duration of the incubation, that is, A. brassicicola did not 

transform rapalexin A (8) (Figure 2.52). 

	

Figure 2.52 Progress curve of recovery of rapalexin A (8, n) by Alternaria brassicicola. 

2.1.4.3 Synthesis and antifungal activity of metabolites 

Enamines 99 and 228 that resulted from transformation of brassilexin (7) and 1-

methylbrassilexin (165) respectively, were synthesized following a published procedure (Pedras 

et al., 2011b), as described in Section 3.4.4.2. Metabolites 226 and 227 were synthesized in 

reasonable yield from reduction of isatin (224) and 1-methylisatin (225) using NaBH4 in ethanol 

at room temperature (Scheme 2.24) (Bergonzini and Melchiorre, 2011). 
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Scheme 2.24 Syntheses of 3-hydroxyindoline-2-one (226) and 1-methyl-3-hydroxyindoline-2-
one (227). Reagents and conditions: (i) NaBH4, 95% EtOH, r.t., 20 min, 68% for 226 and 92% 
for 227 (Bergonzini and Melchiorre, 2011). 

To establish if the transformation of brassilexin (7) and 1-methylbrassilexin (165) by A. 

brassicicola were detoxification reactions, mycelial radial growth assays were carried out. The 

antifungal activities against A. brassicicola of all metabolites were determined as described in 

Section 3.2; results of these assays are shown in Table 2.12. 

Table 2.12 Antifungal activity of compounds 224-227 against Alternaria 
brassicicola. 

Compound (#) 
Inhibition ± SD (%)a 
0.50 mM 0.20 mM 0.10 mM 

Isatin (224) 63 ± 0b  27 ± 3d,e 15 ± 4g,h 
Methylisatin (225) 32 ± 0d 18 ± 4f,g 10 ± 4h,i 
3-hydroxyindoline-2-one (226) 46 ± 0c  24 ± 4e,f  n. i. 
3-hydroxy-1-methylindoline-2-one 
(227) 

14 ± 3g,h  6 ± 3i,j  n. i. 

a The percentage of inhibition was calculated using the formula: % inhibition = 
100 – [(growth on amended/growth in control) × 100]; values are averages of 
three independent experiments conducted in triplicate; n. i. = no inhibition. For 
statistical analysis, one-way ANOVA tests were performed followed by Tukey’s 
test with adjusted α set at 0.05; n = 6; different letters in the same column (b–j) 
indicate significant differences (P < 0.05). 

Comparison of the antifungal activities (Table 2.12) suggested that growth inhibition 

gradually decreased from isatins 224 and 225 to 3-hydroxyindoline-2-ones 226 and 227 and that 

inhibition caused by compounds 226 and 227 was weaker than that caused by brassilexins 7 and 

165. At highest concentration (0.50 mM) of isatin (224) the mycelial growth of A. brassicicola 
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was inhibited 63%, while 3-hydroxyindoline-2-one (226) caused 46% inhibition at identical 

concentration (0.50 mM). Compounds 226 and 227 showed no inhibitory activity against 

mycelial growth of A. brassicicola at the lowest tested concentrations (0.10 mM) (Table 2.12). 

The antifungal activity of enamines 99 and 228 were not determined because of the low stability 

of samples in media (spontaneous oxidation to corresponding brassilexins).  

2.1.4.4 Discussion and conclusion 

Brassilexin (7), 1-methylbrassilexin (165) and rapalexin A (8) displayed strong antifungal 

activity against mycelial growth of A. brassicicola. However, they were not as strong as 

camalexin (1) with 100% growth inhibition for both 0.50 and 0.20 mM concentrations. At the 

highest concentration (0.50 mM) all tested compounds could completely inhibit the mycelial 

growth of A. brassicicola. Compared to 1-methylbrassilexins (165), brassilexin (7) and rapalexin 

A (8) were slightly weaker against mycelial growth of A. brassicicola especially at the lowest 

tested concentration (0.10 mM) (Table 2.11). Comparison of the antifungal activities of 

metabolites with parent compounds (Table 2.11 and Table 2.12) suggested that the growth 

inhibition gradually decreased from isatin (224) and 1-methylisatin (225) to 3-hydroxyindoline-

2-one (226) and 3-hydroxy-1-methylindoline-2-one (227) that were weaker than their parent 

compounds. Results of antifungal activities indicated that the transformations of brassilexin (7) 

and 1-methylbrassilexin (165) by A. brassicicola are detoxifications. 

Brassilexin (7) and 1-methylbrassilexin (165) were metabolized by A. brassicicola to 

enamines 99 and 228 at a similar rate (ca. 96 h) likely using enzymatic reduction of N-S bonds of 

their isothiazole rings. Enamines 99 and 228 were transformed further by A. brassicicola to isatin 

(224) and 1-methylisatin (225) respectively. Isatins 224 and 225 were reduced to 3-

hydroxyindoline-2-one (226) and 1-methyl-3-hydroxyindoline-2-one (227). The pathway of 

transformation of brassilexins by A. brassicicola is proposed in Scheme 2.25.  
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Scheme 2.25 Biotransformations of brassilexin (7) and 1-methylbrassilexin (165) by Alternaria 
brassicicola and metabolic products.  

Previous work showed that brassilexin (7) was transformed to enamine 99 by L. 

maculans (Pedras and Suchy, 2005). However, the rate and complete pathway of transformations 

were different.  

Bioassay with rapalexin A (8) against A. brassicicola showed that, mycelial growth was 

completely inhibited at highest concentration (0.50 mM). Furthermore, it was shown that 

rapalexin A (8) is resistant to transformation by A. brassicicola. Previously it was investigated 

that rapalexin A (8) was also resistant to transformation by L. maculans (Pedras and Sarma-

Mamillapalle, 2012) with strong antifungal activity against L. maculans (Pedras and Sarma-

Mamillapalle, 2012).  

In conclusion, it was shown for the first time that the plant pathogen A. brassicicola was 

able to detoxify brassilexin (7) and 1-methylbrassilexin (165) quickly (ca. 96 h, t1/2<6 h) using 

similar transformation pathways, involving enzymatic reduction of N-S bond of their isothiazole 

rings of brassilexins. Enamines were metabolized further to corresponding alcohols 226 and 227, 

the least inhibitory among the metabolic products, via isatin (224) and 1-methylisatin (225) 

respectively. Previously it has been shown that brassilexin (7) and 1-methylbrassilexin (165) 

could inhibit (93% and 73% respectively at 0.30 mM) the fungal enzyme cyclobrassinin 

hydrolase (CHAb) from A. brassicicola (Pedras and Minic, 2014), which catalyzes detoxification 

of cyclobrassinin (4) by A. brassicicola. These results indicated that brassilexin (7) is not of 
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interest as a lead structure to design paldoxins against A. brassicicola because it is metabolized 

quickly by this plant pathogen.  

Rapalexin A (8) showed strong antifungal activity against A. brassicicola and was also 

resistant to transformation by this fungus. Since rapalexin A (8) was not metabolized by A. 

brassicicola and L. maculans (Pedras and Sarma-Mamillapalle, 2012) and showed strong 

antifungal activity against both pathogens, accumulation of rapalexin A (8) into cultivated 

Brassica species could be great in protection of them against both black spot and blackleg 

diseases. 

 

2.2  Inhibitory activity of camalexin analogues against brassinin oxidase of Leptosphaeria 
maculans 

Previous work (Pedras, 2014; Pedras et al., 2011b; 2008a) suggested that L. maculans 

produces inducible brassinin oxidase (BO) that can detoxify brassinin (9), one of the most 

important cruciferous phytoalexins. Due to the importance of brassinin (9) production in 

crucifers (Pedras, 2014), inhibition of its detoxification could be used to control L. maculans. As 

depicted in Scheme 2.26 the detoxification of brassinin (9) by L. maculans, involves the 

oxidative transformation of a dithiocarbamate to an aldehyde catalyzed by BO (Scheme 2.26) 

(Pedras et al., 2008a).  

	

Scheme 2.26 Detoxification of the phytoalexin brassinin (9) catalyzed by brassinin oxidase 
(BO). 

In previous work amongst several synthetic compounds and a few phytoalexins, 
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at 0.30 mM) (Pedras et al., 2008a). Camalexin (1) is not biosynthesized in cultivated crucifers 

and is not metabolized by L. maculans. For this reason, camalexin (1) was considered as a lead 

structure for development of phytoalexin detoxification inhibitors against L. maculans. A group 

of compounds were designed and synthesized involving replacement of the thiazolyl moiety, 

modification of the indolyl moiety, replacement of indolyl with naphthyl and phenyl substituents 

and replacement of both indole and thiazolyl moieties (Pedras et al., 2009b). Among all tested 

compounds, camalexins with substitution at the C-5 and C-6 showed the strongest inhibitory 

activity against BO (Pedras et al., 2009b). As was described in Section 2.1.1 compounds 167-

170, 173, 174, 184 and 185 were synthesized to better understand the mechanism of oxidative 

degradation of thiazole ring of camalexin (1) in camalexins transformation by A. brassicicola. 

However, the effect of substitution(s) on thiazole ring of camalexin (1) on the activity against 

BO was not determined. Having these camalexin related structures in hand and considering the 

previous work (Pedras et al., 2009b), it was of interest to evaluate their activities against BO 

(Figure 2.53). 

	

Figure 2.53 Potential brassinin oxidase inhibitors with structures based on camalexin (1). 
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2.2.1 Synthesis of potential inhibitors 

Camalexin (1) and related structures 167-170, 173, 174, 184, 185, 229 and 230 were 

synthesized and their inhibitory activity against BO was investigated using cell-free extracts 

(Table 2.14). Synthesis of all analogues except 229 and 230 is described in Section 2.1.1(Pedras 

and Abdoli, 2013). 

	

Scheme 2.27 Synthesis of 229. Reagents and condition: (i) Ethyl 2-chloro-3-oxopropanoate, 
95% EtOH, H2SO4, 90 °C, 2 h, 58%. 

 2-(1H-indol-3-yl)oxazol-4(5H)-one (229) was prepared from indole-3-thiocarboxamide 

(82) as shown in Scheme 2.27. Condensation of thiocarboxamide 82 with ethyl 2-chloro-3-

oxopropanoate in acidic conditions gave compound 229 in 58% yield. 

	

Scheme 2.28 Synthesis of acid 230. Reagent and condition: (i) NaOH, THF, 14 h, r.t., 89% 
(Moody et al., 1997). 

Acid 230 was obtained from basic hydrolysis of ester 191 using sodium hydroxide as 

shown in Scheme 2.28. The reaction was carried out at room temperature for 14 h (Moody et al., 

1997). The preparation of ethyl ester 191 is described in Section 2.1.1.4. 
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2.2.2  Determination of the inhibitory activity  

The effect of the phytoalexin camalexin (1) and related structures 167-170, 173, 174, 

184, 185, 229 and 230 on BO activity were evaluated using two different concentrations (0.10 

mM and 0.30 mM). In this work cell-free extracts of L. maculans containing BO were used for 

inhibitory activity determination of potential inhibitors. It was established that production of BO 

in fungal cultures required induction with specific compounds (Pedras et al., 2008a; 2005). Cell-

free extracts of control cultures of L. maculans showed residual activity, while the BO activity 

was ca. 2.31 mU/mg (U = µmol.min-1) for the cultures incubated with 3-phenylindole (234) 

(Pedras et al., 2008a). Furthermore, it was shown that camalexin (1) induced detoxification of 

brassinin (9) in cultures of L. maculans (Pedras et al., 2005). That is, BO activity was detected in 

crude cell-free extracts only when L. maculans was grown in presence of inducers such as 3-

phenylindole (234) or camalexin (1) (Pedras et al., 2008a). Cell-free extracts were prepared 

using a previously published procedure (Pedras et al., 2009b) described in detail in Section 3.5.2. 

In brief, cultures of L. maculans were grown in MM and after 48 h of incubation 3-phenylindole 

(234) (final concentration, 0.10 mM) in CH3CN was added to induce production of BO. After 

incubation for an additional 24 h, the mycelia were collected by filtration and stored at -20 °C. 

Frozen mycelial cells were homogenized in ice-cold extraction buffer at 4 °C using a mortar and 

pestle. The protein homogenate was obtained by centrifugation of the mixture. The cell-free 

extracts obtained from the previous step were dialyzed at 4 °C (described in Section 3.5.2). The 

dialyzed cell-free extracts were used to determine BO activity. The Bradford protein assay was 

used to quantify the amount of protein in cell-free extracts (using bovine serum albumin) as 

described in Section 3.5.3. The specific activity of cell-free extracts was defined as the amount 

(nmol) of indole-3-carboxaldehyde (26) formed per min per mg of protein. The amount of 

product was determined after extraction of the reaction mixture and HPLC analysis of the 

extracts. It was established that the presence of an electron acceptor is essential for activity of 

BO (Pedras et al., 2008a). BO could accept a wide range of cofactors, including phenazine 

methosulfate (PMS) (Pedras et al., 2008a). The reaction mixture contained assay buffer 

(diethanolamine (DEA), dithiothreitol (DTT), Triton X-100 and deionized water), brassinin (9), 

PMS, deionized water and cell-free extracts in a total volume of 1000 µl. After incubation of the 

reaction mixture at 24 °C and solvent extraction, HPLC was used for detection and quantification 
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of indole-3-carboxaldehyde (26). The concentration of indole-3-carboxaldehyde (26) was 

determined using a calibration curve prepared from pure indole-3-carboxaldehyde (26). To 

establish if storage of cell-free extracts at -20 °C affected the specific activity of BO, enzyme 

assays of both dialyzed and non-dialyzed cell-free extracts were tested, as summarized in Table 

2.13. The amount of protein in dialyzed cell-free extracts was lower than in non-dialyzed cell-

free extracts (Table 2.13). 

Table 2.13 Specific activity of brassinin oxidase (BO) in cell-free extracts of mycelia of 
Leptosphaeria maculans. 

 
 
 
Time 
(Days)c  

Amount of product 26 
(nmol)a 

Amount of protein 
(µg in 50 µl of cell-free 
extracts) 

Specific activity of BO 
(nmol/mg/min)b ± SD  

Dialyzed Non-
dialyzed Dialyzed  Non-dialyzed Dialyzed Non-dialyzed 

0 n. d. n. d. 70.2 ± 1.2 148.8 ± 4.3 n. d. n. d. 

5 43.0 ± 2.0 n. d. 70.6 ± 0.90 148.8 ± 3.8 22.8 ± 1.1 n. d. 

9 52.0 ± 1.2 70 ± 20 94.5 ± 0.10 175.9 ± 5.8 27.6 ± 0.7 19.6 ± 0.60 

13 48.6 ± 0.80 72 ± 40 100.2 ± 0.90 142.9 ± 0.40 24.6 ± 0.4 25.2 ± 1.4 

15 54.3 ± 1.4 89 ± 30 98.0 ± 0.50 144.3 ± 1.5 27.7 ± 0.7 30.7 ± 1.0 

32 50.6 ± 0.40 80 ± 60 100.2 ± 0.70 150.4 ± 2.5 25.3 ± 0.2 26.6 ± 2.1 

a nmols of indole-3-carboxaldehyde (26) were determined using a calibration curve prepared 
from pure indole-3-carboxaldehyde (26). 
b Results are expressed as means and standard deviation of triplicate samples of cell-free extracts 
of one set of cultures; brassinin at 0.10 mM, n. d. = not determined. 
c Days stored at -20 °C 

 

Camalexin (1) and related structure 167-170, 173, 174, 184, 185, 229 and 230 were tested 

for potential inhibition of BO as follows. First, the stability of each compound was tested under 

identical reaction conditions. All compounds were found to be stable within the incubation 

period (20 min) except compound 229 that partially decomposed to more than one compound. 

The assays were done in triplicate using cell-free extracts from one set of cultures. Each potential 

inhibitor (final concentration 0.10 and 0.30 mM) dissolved in DMSO was added to a vial 
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containing PMS (0.10 mM) and brassinin (9, 0.10 mM) followed by addition of assay buffer 

(DEA (20 mM), DTT (0.10 mM), 0.1% triton X-100, deionized water), deionized water and 

finally 50 µl of cell-free extract. The reaction mixture was incubated at room temperature (24 °C) 

for 20 min. Then samples were immediately extracted separately with EtOAc and the extracts 

were analyzed by HPLC for the detection and quantification of the reaction product, indole-3-

carboxaldehyde (26). Control experiments containing only brassinin (9, 0.10 mM) were carried 

out similarly. Results of the enzymatic assays are summarized in Table 2.14. 
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Table 2.14 Effect of compounds on brassinin oxidase (BO) in dialyzed cell-free extracts of 
mycelia of Leptosphaeria maculans. 

Substrate (#)a +Inhibitor (#) 
Specific activityb, d 

(nmol/mg/min) ± SD  Inhibition (%)c ,d 

0.10 mM 0.30 mM 0.10 mM 0.30 mM 
Brassinin (9) + Camalexin (1) 14.7 ± 0.9 9.3 ±0.5 42 ± 4 64 ± 2 
 

Brassinin (9) + 5ʹ-methylcamalexin 
(174) 

18.3 ± 0.5 15.1 ± 0.9 29 ± 2 41 ± 3 

Brassinin (9) + 4-(1H-indol-3-
yl)thiazole (169) 

22.7 ± 0.3 19.0 ± 0.7 11 ± 1 26 ± 3 

Brassinin (9) + 2-(1H-indol-3-
yl)oxazole (167) 

20.7 ± 0.2 16.6 ± 1.3 19 ± 1 35 ± 5 

Brassinin (9) + (2-(1H-indol-3-
yl)thiazol-4-yl)methanol (185) 

21.6 ± 0.7 16.9 ± 0.8 16 ± 3 34 ± 3 

Brassinin (9) + 4-(1H-indol-3-
yl)isothiazole (168) 

22.2 ± 1.0 14.1 ± 0.7 13 ± 4 45 ± 2 

Brassinin (9) + 5-(1H-indol-3-
yl)thiazole (170) 

18.0 ± 0.7 15.5 ± 0.6 30 ± 3 39 ± 2 

Brassinin (9) + 4ʹ-methylcamalexin 
(173) 

20.4 ± 1.5 20.1 ± 0.9 20 ± 6 21 ± 3 

    

Brassinin (9) + 2-(1H-indol-3-
yl)oxazol-4(5H)-one (229) 

22.4 ± 0.6 18.1 ± 1.3 13 ± 2 29 ± 5 

Brassinin (9) + 2-(1H-indol-3-
yl)thiazole-5-carboxylic acid (184) 

27.3 ± 1.0 26.3 ± 2.2 n. i. n. i. 

Brassinin (9) + 2-(1H-indol-3-
yl)thiazole-4-carboxylic acid (230) 

25.5 ± 0.4 24.1 ± 0.7 n. i. 6 ± 2 

Brassinin (9) + Ethyl 2-(1H-indol-3-
yl)thiazole-4-carboxylate (191) 

23.5 ± 0.7 15.3 ± 1.2 8 ± 3 40 ± 4 
    

aSubstrate (brassinin (9)) was used at 0.10 mM in all experiments. 
bBO activity was measured under standard conditions (described in section 4.6.3 ) in the 
presence of potential inhibitors (0.10 and 0.30 mM) and brassinin (9, 0.10 mM). Specific activity 
of control assays (26 ± 2 nmol/mg/min). 
cInhibition is expressed as a percentage of activity of control (100%), n. i. = no inhibition.  
% inhibition = 100 – [(amount of aldehyde in assay/amount of aldehyde in control) × 100]; 
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d Results are expressed as means and standard deviation of triplicate samples of cell-free extracts 
of one set of cultures. 

Among all tested 5ʹ- methylcamalexin (174, ca. 29% at 0.10 mM and 41% at 0.30 mM) 

was the most potent inhibitors of BO activity, followed by 4-(1H-indol-3-yl)isothiazole (168, ca. 

13% at 0.10 mM and 45% at 0.30 mM) and ethyl 2-(1H-indol-3-yl)thiazole-4-carboxylate (191, 

8% at 0.10 mM and 40% at 0.30 mM). 2-(1H-indol-3-yl)thiazole-5-carboxylic acid (184) and 2-

(1H-indol-3-yl)thiazole-4-carboxylic acid (230) (6% at 0.30 mM) did not show any activity 

against BO. 4-(1H-indol-3-yl)isothiazole (168) showed strong inhibitory activity (45% at 0.30 

mM) against BO, while at 0.10 mM the activity was very low. In addition, 2-(1H-indol-3-

yl)oxazole (167), (2-(1H-indol-3-yl)thiazol-4-yl)methanol (185) and 2-(1H-indol-3-yl)oxazol-

4(5H)-one (229) showed very similar inhibitory activity against BO (Table 2.14). 

2.2.3 Discussion and conclusion 

It was reported that camalexin (1) and some related structures with substitution at C-5 

and C-6 of indole could inhibit the activity of BO and slow down the transformation of brassinin 

(9) to indole-3-carboxaldehyde (26) (Pedras et al., 2009b). In continuation of that work, a new 

group of camalexin related structures that were synthesized by modification of the thiazole ring 

were tested as potential inhibitors of BO (Figure 2.53). The specific activity of BO and the 

amount of protein of dialyzed and non-dialyzed cell-free extracts were determined after storage 

at -20 °C for different times (Table 2.13). The amount of protein present in dialyzed cell-free 

extracts was lower than that for non-dialyzed sample, suggesting protein losses during dialysis. 

In addition, the results showed that dialyzed cell-free extracts had similar specific activity 

compared to non-dialyzed cell-free extracts (Table 2.13). 

None of the tested camalexin related compounds showed activity stronger than camalexin 

(1) against BO. Based on the percentage of inhibition caused by 174, 184 and 230, increasing the 

size of substituents at C-4ʹ and C-5ʹ decreases the inhibitory activity of the potential inhibitors, 

however additional structures need to be tested to confirm this hypothesis. Interestingly, almost 

all 4ʹ-substituted compounds were active against BOLm, however it was very weak for 2-(1H-
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indol-3-yl)thiazole-4-carboxylic acid (230). These results together with previous results (Pedras 

et al., 2009b) indicated that the camalexin scaffold is a reasonable model to design potential 

inhibitors of BO. Furthermore, camalexin (1) is resistant to metabolism by L. maculans (Pedras 

et al., 1998), however, the transformation of these inhibitors by L. maculans needs to be 

investigated. Nevertheless, camalexin showed potential to be a good lead structure for synthesis 

of inhibitors to inhibit the activity of BO from L. maculans. These compounds cannot be 

considered PALDOXINS, due to their strong antifungal activity against most cruciferous 

pathogens (Pedras et al., 2011b; Pedras and Abdoli, 2013).  

In conclusion, however almost all related structures of camalexin (1), compounds 173, 

13-15, 18, 31, 32, 56, 57 and 214, showed inhibitory activity against BO, but none of them was 

stronger than camalexin (1).  
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2.3 General conclusion and future direction 

The antifungal activity of camalexin (1), 1-methylcamalexin (2), 6-methoxycamalexin (3) 

and related structures 167-174 towards the A. brassicicola was determined (Table 2.1). They 

were found to be strongly active against mycelial growth of A. brassicicola (Pedras and Abdoli, 

2013). While, brassilexin (7), 1-methylbrassilexin (165) and rapalexin A (8) showed strong 

antifungal activity against A. brassicicola but they were not as strong as camalexin (1) (Table 

2.11). Cyclobrassinin (4), 1-methylcyclobrassinin (193) and rutalexin (5) showed moderate 

antifungal activity against A. brassicicola (Table 2.8, Table 2.3). 

It was established that rapalexin A (8) could resist transformation by A. brassicicola. 

While, camalexin (1), 1-methylcamalexin (2) and 6-methoxycamalexin (3) were slowly (ca. 10 

days) metabolized by A. brassicicola (ca. 10 days) (Pedras and Abdoli, 2013). This slow 

detoxification of camalexin (1) indicates its importance in the resistance of A. thaliana to A. 

brassicicola (Thomma et al., 1999). Modification of the thiazolyl moiety of camalexin (1) 

prevents degradation of the thiazole ring in related structures 173, 174 and 168-170. The 

transformation of analogues 173 and 174 revealed that substitution at C-4ʹ or C-5ʹ of thiazolyl 

rings of compounds 173 and 174 blocked the degradation of the thiazole ring by A. brassicicola, 

however, this did not prevent oxidation of the methyl group on compounds 173 and 174. The 

resistance of compounds 168, 169 and 170 to transformation by A. brassicicola in comparison to 

the transformation that occurs in oxazole 167, diazoles 171, 172 and camalexins 1, 2 and 3 

indicates that oxidation of thiazolyl ring by A. brassicicola required attachment to the indole ring 

by C-2ʹ (Pedras and Abdoli, 2013). Cyclobrassinin (4) and 1-methylcyclobrassinin (193) were 

detoxified very quickly compared to camalexin (1) (8 h vs 10 days) by A. brassicicola. 

Cyclobrassinin (4) has been discovered to inhibit BHAb (Pedras et al., 2012) however, the quick 

transformation of cyclobrassinin (4) by A. brassicicola revealed that it is not a good lead 

structure to use in synthesizing inhibitors of BHAb. Brassilexin (7) and 1-methylbrassilexin 

(165) were metabolized by A. brassicicola faster than camalexin (1) (24 h vs 10 days). 

Brassilexin (7) has been discovered to inhibit CHAb (Pedras and Minic, 2014), however, its 

metabolism by A. brassicicola shows that structure of brassilexin (7) cannot be used as a model 

in the development of CHAb inhibitors. Metabolism of rutalexin (5) by plant pathogens is 

reported here for the first time. Rutalexin (5) is proposed to be metabolized by A. brassicicola to 
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an unstable metabolite, sulfanylamide 223, which stabilizes with oxidation to disulfide 75 or 

reacts with phomapyrone G (75), a secondary metabolites from A. brassicicola, to form stable 

adduct 75.  

All metabolites resulting from metabolism of phytoalexins and their N-methylated 

derivatives by A. brassicicola showed lower inhibitory activity against A. brassicicola compare 

to their parent compounds which means that complete fungal transformation of all tested 

phytoalexins by A. brassicicola are detoxifications. 

Potential inhibitors of brassinin oxidase, 167-170, 173, 174, 184, 185, 229 and 230, were 

synthesized based on the phytoalexin camalexin (1) scaffold with modification of its thiazole ring. 

Compounds 167-170, 173, 174, 184, 185, 229 and 230 were used for the inhibition of BO using 

the mycelial cell-free extracts of L. maculans containing BO. Most of the selected compounds 

were able to inhibit the activity of BO. However, none of them were as active as camalexin (1) in 

inhibiting of BO. Overall, compounds 168, 174, 170, 191 and 167 showed substantial effects in the 

inhibition of BO, and compound 168 was found to be the strongest amongst all tested compounds. 

Further studies are required to understand the antifungal activity of all tested compounds against L. 

maculans as well as their metabolic stability in L. maculans.  

 

Future work 

o Design, synthesize and evaluate the effect of compounds derived from other potential 

heterocyclic skeletons (not indolyl) in the activity of BOLm.  

o Investigation of transformation of rutalexin (5) by other cruciferous pathogens. 

o Determine the antifungal activity of compounds 1, 167-170, 173, 174, 184, 185, 191, 229 and 

230 against L. maculans. 

o Determine the metabolic stability of compounds 1, 167-170, 173, 174, 184, 185, 191, 229 

and 230 in L. maculans. 
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3 EXPERIMENTAL 

3.1  General 

All reagents and chemicals were purchased either from Sigma-Aldrich or Alfa Aesar. All 

solvents were HPLC grade, except those used in synthetic procedure. If necessary solvents were 

dried prior to use according to established procedures (pyridine and DMF with 3 Å molecular 

sieves, THF and Et2O over sodium and benzophenone, DCM, CH3CN, and benzene over CaH2). 

Organic extracts were dried over Na2SO4 and solvents were removed under reduced pressure in a 

rotary evaporator.  

Reaction process was monitored using thin layer chromatography (TLC). TLC was 

carried out on alumina sheets pre-coated with silica gel, Merck, 60 F254 (20 × 20 cm × 0.25 mm). 

Compounds developed on the TLC plates were visualized under UV light (254/366 nm) and/or 

by dipping in a solution of 5% (w/v) aqueous phosphomolybdic acid containing 1% (w/v) ceric 

sulphate and 4% (w/v) H2SO4, followed by charring on hot plate at 200 °C. 

Flash column chromatography (FCC) was carried out using silica gel grade 60, mesh size 

230-400 Å.  

NMR spectra were obtained on Bruker Avance 500 or 600 MHz spectrometers. For 1H 

NMR (500 or 600 MHz) and 13C NMR (125.8 MHz), the chemical shift values (δ) are reported in 

parts per million (ppm) relative to tetramethylsilane (TMS). For 1H NMR (500 or 600 MHz) the 

δ values were referenced to CDCl3 (CHCl3 at 7.27 ppm), CD3CN (CHD2CN at 1.94 ppm), 

CD3OD (CHD2OD at 3.31) or (CD3)2SO (DMSO-d5 at 2.50). Multiplicities are indicated by the 

following notations: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet and br = broad. 

Spin coupling (J values) are reported to the nearest 0.5 Hz. For 13C NMR (125.8 MHz) the δ 

values are referenced to CDCl3 (77.23 ppm), CD3CN (118.69 ppm), CD3OD (49.15 ppm), 

(CD3)2SO (39.50 ppm). 

Fourier transform infrared (FTIR) data were acquired on Bio-Rad FTS-40 spectrometers. 

Spectra were measured by the diffuse reflectance method on samples dispersed in KBr.  

HPLC analysis was carried out with Agilent high performance liquid chromatography 

instruments equipped with quaternary pump, automatic injector, diode array detector (DAD, 
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wavelength range 190–600 nm), degasser, and a column having an in-line filter. Several elution 

methods were used:  

Method A: column Zorbax Eclipse XDB-C18 (5 µm particle size silica, 4.6 × 150 mm), mobile 

phase H2O–MeOH (1:1, v/v) to MeOH, for 25.0 min, linear gradient, and at a flow rate 0.75 

ml/min;  

Method B: column Zorbax SB-C18 (3.5 µm particle size silica, 3 × 100 mm), mobile phase 

H2O–MeOH (1:1, v/v) to MeOH, for 35.0 min, linear gradient, and at a flow rate 0.40 ml/min;  

Method C: column Zorbax SB-C18 (3.5 µm particle size silica, 3.0 × 100 mm), mobile phase 

H2O–MeOH (7:3, v/v) to MeOH, for 35.0 min, linear gradient, at a flow rate of 0.40 ml/min; 

Method D: column Zorbax SB-C18 (3.5 µm particle size silica, 3.0 × 100 mm), mobile phase 

H2O–MeOH (9.50:0.50, v/v) to MeOH, for 35.0 min, linear gradient, at a flow rate of 0.40 

ml/min; 

Method E: column Zorbax SB-C18 (3.5 µm particle size silica, 3.0 × 100 mm), mobile phase 

H2O–CH3CN (1:0, v/v) to (1:9, v/v), for 28.0 min, linear gradient, at a flow rate of 0.40 ml/min.  

HPLC-ESI-MS analysis was carried out with an Agilent 1100 series HPLC system 

equipped with an auto sampler, binary pump, degasser, and a diode array detector connected 

directly to a mass detector (Agilent G2446A MSD-Trap-XCT ion trap mass spectrometer) with 

an electrospray ionization (ESI) source. Chromatographic separations were carried out at room 

temperature using Eclipse XDB-C 18 column (5 mm particle size silica, 150 × 4.6 mm I.D.). The 

mobile phase consisted of a linear gradient of: 

Method F: H2O (with 0.20% HCO2H)-CH3CN (with 0.20% HCO2H) from 75:25 to 25:75 in 35 

min, to 0:100 in 5 min and a flow rate of 1.0 ml/min.  

Method G: H2O (with 0.20% HCO2H)-CH3CN (with 0.20% HCO2H) from 90:10 to 0:100 in 35 

min and a flow rate of 1.0 ml/min. 

Data acquisition was carried out in positive and negative polarity modes in a single LC 

run, and data processing carried out with Agilent Chemstation Software. Samples were dissolved 

in CH3CN, MeOH, or mixture of H2O-MeOH (50:50). 

MS [high resolution (HR), electron ionization (EI)] were obtained on a VG 70 SE and 

Jeol AccuToF 4G GCv mass spectrometers.  
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Minimal media (MM) is a mixture of glucose (15 g/l, 83.3 mM) and 4 different solutions 

as mentioned below. Glucose, solution 1 and solution 3 were mixed in distilled water and 

autoclaved. Sterilized solution 2 and 4 were added to the above mixture at room temperature.  

Solution 1: KNO3 (3.1 g/l, 31 mM), K2HPO4 (0.75 g/l, 4.3 mM), KH2PO4 (0.75 g/l, 5.5 mM), 

NaCl (0.10 g/l, 1.7 mM), asparagine (0.28 g/l, 2.1 mM); 

Solution 2: CaCl2·2H2O (0.10 g/l, 0.68 mM), MgSO4·7H2O (0.50 g/l, 2.0 mM); 

Solution 3: ZnSO4.7H2O (0.40 mg/l, 1.4 µg), CuSO4.5H2O (0.079 mg/l, 0.32 µM), MnSO4.4H2O 

(0.041 mg/l, 0.18 µM), MoO3 (85%, 0.050 mg/l, 0.12 µM), ferric citrate (0.038 mg/l, 0.10 µM), 

Na2B4O7.10H2O (0.04 mg/l, 0.10 µM); 

Solution 4: Thiamine (0.10 mg/l, 0.38 µM); 

3.2  Fungal isolates and antifungal activity 

Alternaria brassicicola (UAMH 7474) and L. maculans (UAMH 9410) were obtained 

from the University of Alberta Microfungus Collection and Herbarium. A. brassicicola was 

grown on potato dextrose agar (PDA) plates at room temperature (23 ± 1 °C), under continuous 

light for 15 days. Spores suspensions of fungus was prepared overlaying the PDA plates with 10 

ml of sterile distilled water, and the plate surfaces were rubbed with a flamed glass rod. The 

suspension was filtered and transferred to falcon tubes and the spores were separated by 

centrifugation at 3000g for 30 min. After one washing with sterile distilled water and separation 

by centrifugation, the spores were counted under a microscope using haemocytometer and stored 

at -20 °C. Similarly, spores of L. maculans were collected from the cultures of the fungus on V8 

agar [20% (v/v) V8 juice, 0.75 g/l CaCO3, 100 mg/l streptomycin sulfate, 40 mg/l Rose Bengal, 

15 g/l agar] plates (Pedras and Khan, 1996). 

Antifungal activity  

The antifungal activity of compounds against A. brassicicola was determined using a 

mycelial radial growth bioassay. A. brassicicola was grown on PDA plates for 7 days at 23 ºC 

under constant light. Sterile culture plates (12-well, 20 mm diameter) were used in all bioassays. 
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A solution of compounds to be tested (dissolved in DMSO) was added to PDA or MM (up to 1% 

DMSO in final volume) to prepare the different concentrations (0.50, 0.20 and 0.10 mM). 

Control plates were prepared to contain same percentage of DMSO as it is in the fungus with 

compound in PDA or fungus with compound in MM. Plates containing compound and control 

(1.5 ml PDA or 1 ml MM per well) were inoculated with mycelium plugs [2 mm diameter, cut 

from the edge of 7-day old solid culture of A. brassicicola] placed upside down on the center of 

each well and incubated under constant light. Mycelial growth in each well was measured and % 

inhibition values were calculated as previously reported (% inhibition=100–[(growth on 

amended/growth in control) × 100]) (Pedras et al., 2009a). All bioassay experiments were carried 

out in triplicate, at least two times. 

3.3 Synthesis of phytoalexins and related structures 

3.3.1 Camalexins 

3.3.1.1 Camalexin (1) and 6-methoxycamalexin (3) 

 

Scheme 3.1 Syntheses of camalexin (1) and 6-methoxycmalexin (3). Reagents and conditions: 
(i) MeI, Mg, Et2O, r.t.; (ii) 2-Bromothiazole, Benzene, 24 h, 90 °C, 80% (1) and 56% (3) (Ayer 
et al., 1992)(Pedras et al., 2011b). 

Methyl iodide (0.25 ml, 4.0 mmol) was added to a mixture of Mg (98 mg, 4.0 mmol) in 

dry diethyl ether (2 ml) under argon at room temperature. After all magnesium was dissolved, 

diethyl ether was distilled off and dry benzene (2 ml) was added to the reaction mixture. A 

solution of indole (231, 445 mg, 3.80 mmol) in dry benzene (2 ml) was added dropwise to the 
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reaction mixture. The reaction mixture was stirred for additional 10 minutes, followed by 

addition of 2-bromothiazole (0.080 ml, 0.90 mmol) and was refluxed for 24 h. The reaction 

mixture was quenched with cold water and extracted with EtOAc. The combined extracts were 

washed with brine, dried and concentrated to dryness. The residue was subjected to FCC (silica 

gel, EtOAc-hexane, 3:7) to afford camalexin (1) in 80% yield as yellow solid (Ayer et al., 1992). 

Similarly, 6-methoxycamalexin (3) was synthesized in 56% yield as yellow solid using 6-

methoxyindole (187, 150mg, 1.02mmol), Mg (48 mg), methyl iodide (0.19 ml, 3.0 mmol) and 2-

bromothiazole (0.19 ml, 2.1 mmol). 

 

Camalexin (1) 

Melting point: 145–146 °C 

HPLC tR = 12.3 min (method A). 

UV (HPLC, CH3OH-H2O) λmax(nm): 215, 275, 315. 
1H NMR (500 MHz, CDCl3): δ 9 (b, 1H), 8.3 (d, J = 7 Hz, 1H), 7.9 (s, 1H), 7.8 (s, 1H), 7.4 (d, J 

= 7 Hz, 1H), 7.3 (m, 3H). 

 

6-Methoxycamalexin (3) 

Melting point: 157–146 °C 

HPLC tR = 12.5 min (method A). 

UV (HPLC, CH3OH-H2O) λmax(nm): 220, 290, 320. 
1H NMR (500 MHz, CDCl3): δ 8.7 (br, 1H), 8.1 (d, J = 8.5 Hz, 1H), 7.8 (d, J = 3.5 Hz, 1H), 7.7 

(d, J = 2.5 Hz, 1H), 7.2 (d, J = 3.5 Hz, 1H), 6.9 (dd, J = 2.5, 9 Hz, 1H), 6.8 (d, J = 2 Hz, 1H), 3.8 

(s, 3H). 
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3.3.1.2 1-Methylcamalexin (2) 

 

Scheme 3.2 Synthesis of 1-methylcamalexin (2). Reagents and conditions: (i) MeI, NaH, THF, 
2 h, r.t., 100% (Pedras and Liu, 2004). 

Sodium hydride 60% suspension in mineral oil (19 mg, 0.48 mmol, washed with hexane) 

was added to a solution of camalexin (1, 46 mg, 0.23 mmol) in dry THF (4 ml) at 0 °C. The 

reaction mixture was stirred at 0 °C for 10 min, followed by dropwise addition of methyl iodide 

(0.020 ml, 0.32 mmol). The ice bath was removed and the reaction mixture was stirred at room 

temperature for additional two hours followed by dilution with water and extraction with EtOAc. 

The combined extracts were dried and concentrated to dryness. The residue was subjected to 

FCC (silica gel, EtOAc-hexane, 1:1) to afford 1-methylcamalexin (2) in quantitative yield as 

light yellow solid (Moody et al., 1997; Pedras and Liu, 2004).  

 

Melting point: 69–70 °C 

HPLC tR = 15.0 min (method A). 

UV (HPLC, CH3OH-H2O) λmax(nm): 220, 270, 330. 
1H NMR (500 MHz, CDCl3): δ 8.3 (m, 1H), 7.8 (d, J = 3.5 Hz, 1H), 7.7 (d, J = 1.5 Hz, 1H), 7.3 

(m, 3H), 7.2 (d, J = 3.5 Hz, 1H), 3.7 (s, 3H). 
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3.3.1.3 4ʹ-Methylcamalexin (173) 

 

Scheme 3.3 Synthesis of 4ʹ-methylcamalexin (173). Reagent and condition: (i) CH3COCH2Cl, 
95% EtOH, 1.5 h, 80 °C, quantitative. 

2-Chloropropanone (0.010 ml, 0.12 mmol) was added dropwise to a solution of indole-3-

thiocarboxamide (82, 10 mg, 0.060 mmol) in EtOH (95%, 2 ml) and the reaction mixture was 

refluxed at 80 °C for 1.5 h. The reaction mixture was concentrated and the residue was diluted 

with H2O. Aqueous phase was neutralized with NaHCO3 (satd. sol.) and then was extracted with 

EtOAc. The combined extracts were dried and concentrated to dryness to afford 4ʹ-

methylcamalexin (173, 14 mg, quantitative) as white powder.  

Melting point: 168–169 °C. 

HPLC tR = 15.8 min (method A). 

UV (HPLC, CH3OH-H2O) λmax (nm): 220, 280, 320. 

FTIR (KBr) νmax cm-1: 3119, 2222, 1534, 1445, 1242, 1116, 733. 
1H NMR (500 MHz, CDCl3): δ 9.42 (br, 1H), 8.19 (d, J = 7.5 Hz, 1H), 7.88 (d, J = 2.5 Hz, 1H), 

7.33 (d, J = 7.5 Hz, 1H), 7.25 (m, 2H), 6.79 (s, 1H), 2.50 (s, 3H). 
13C NMR (125.8 MHz, CDCl3): δ 163.0, 152.2, 136.6, 124.9, 124.8, 123.2, 121.5, 120.0, 112.1, 

112.0, 110.8, 17.2. 

HRMS-EI m/z: measured 214.0561 ([M]+, calcd. 214.0565 for C12H10N2S) (100%).  
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3.3.1.4 5ʹ-Methylcamalexin (174)  

 

Scheme 3.4 Synthesis of 5ʹ-methylcamalexin (174). Reagents and conditions: (i) Br2, 1,4-
dioxane, 1 h, 0 °C; (ii) CH3CHBrCHO (176), 95% EtOH, 2 h, 80 °C, 55%. 

Bromine (2.7 ml, 0.060 mmol) was added dropwise to a solution of propionaldehyde 

(175, 4.0 ml, 0.060 mmol) in 1,4-dioxane (0.50 ml) at 0 °C. The reaction mixture was stirred at 0 

°C for 1 h followed by concentration to dryness. The residue was subjected to FCC (silica gel, 

EtOAc–hexane, 30:70) to afford 2-bromopropanal (176) (Gangjee et al., 2005). 

2-Bromopropanal (176, 100 µl, 0.340 mmol) was added to a solution of indole-3-

thiocarboxamide (82, 30 mg, 0.17 mmol) in EtOH (95%, 1.5 ml) and was refluxed at 80 °C for 2 

h. The reaction mixture was diluted with water, neutralized with NaHCO3 (satd. sol.), and 

extracted with CH2Cl2. The combined extracts were dried and concentrated to dryness. The 

residue was subjected to FCC (silica gel, EtOAc–hexane, 1:1) to yield 5ʹ-methylcamalexin (174, 

20 mg, 55%) as white powder.  

 

Melting point: 170–172 °C. 

HPLC tR = 16.3 min (method A). 

UV (HPLC, CH3OH–H2O) λmax (nm): 220, 278, 320. 

FTIR (KBr) νmax cm-1: 2833, 1540, 1451, 1242, 1119, 740. 
1H NMR (500 MHz, CDCl3): δ 8.60 (br, 1H), 8.22 (m, 1H), 7.83 (d, J = 2.5 Hz 1H), 7.48 (s, 1H), 

7.44 (m, 1H), 7.29 (m, 2H), 2.53 (s, 3H). 
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13C NMR (500 MHz, CDCl3): δ 162.1, 139.7, 136.5, 130.9, 124.6, 124.3, 123.0, 121.3, 120.4, 

112.3, 111.7, 12.0. 

HRMS-EI m/z: measured 214.0563 ([M]+, calcd. 214.0565 for C12H10N2S) (100%).  

3.3.1.5 1H-3-(4ʹ-Thiazolyl)indole (169) 

 

Scheme 3.5 Synthesis of 1H-3-(4ʹ-thiazolyl)indole (169). Reagents and conditions: (i) 
Chloroacetylchloride, toluene, pyridine, 1 h, 60 °C and 1 h, r.t.; (ii) Thioformamide, 95% EtOH, 
3 h, 80 °C, 38%. 

Chloroacetylchloride (48 mg, 0.42 mmol) was added dropwise to a solution of indole 

(500 mg, 4.2 mmol) and pyridine (500 µl) in toluene (10 ml) at 60 °C. After complete addition of 

chloroacetylchloride, the reaction mixture was kept at 60 °C for additional 1 h. The reaction 

mixture was cooled to room temperature; H2O (13 ml) and MeOH (2 ml) were added to the 

reaction mixture. The reaction mixture was stirred at room temperature for an additional 1 h and 

was concentrated using rotary evaporator. The resulting precipitate was filtered and was 

crystalized with EtOH. The crystals were washed with diethyl ether after filtration to afford 2-

chloro-1-(1H-indol-3-yl)ethanone (177). Thioformamide (29 mg, 0.47 mmol) was added to 

the solution of 2-chloro-1-(1H-indol-3-yl)ethanone (177, 50 mg, 0.26 mmol) in EtOH (95%, 2 

ml). The reaction mixture was kept at 90 °C for 3 h, then was diluted with water and extracted 

with EtOAc. The combined extracts were dried and concentrated to dryness. The residue was 

subjected to FCC (silica gel, EtOAc-hexane, 1:1) to afford 2-(1H-indol-3-yl)-5-methylthiazole 

(169) as light brown powder in 38% yield (20 mg, 0.10 mmol) (Moody et al., 1997). 

 

Melting point: 140–141 °C. 

HPLC tR = 11.28 min (method A). 
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UV (HPLC, CH3OH-H2O) λmax (nm): 220, 278, 320.  

FTIR (KBr) νmaxcm-1: 3438, 3070, 1566, 1416, 1253, 1102, 990, 819. 
1H NMR (500 MHz, CD3CN): δ 8.71 (s, 1H), 8.20 (br, 1H), 7.85 (d, 1H), 7.63 (s, 1H), 7.44 (m, 

1H), 7.28 (s, 1H), 7.25 (d, 1H), 7.07 (m, 2H). 
13C NMR (500 MHz, CD3CN): δ 154.1, 153.2, 138.2, 126.3, 125.9, 123.5, 121.5, 121.3, 113.1, 

112.9, 110.8. 

HRMS-EI m/z: measured 200.0402 ([M]+, calcd. 200.0408 for C11H8N2S) (100%).  

3.3.1.6 1H-3-(5ʹ-Thiazolyl)indole (170)  

 

Scheme 3.6 Synthesis of 1H-3-(5ʹ-thiazolyl)indole (170). Reagents and conditions: (i) NaN3, 
H2O, acetone, 20 h, 50 °C; (ii) Pd/C, H2, HCl, MeOH, 3 h, r.t., 85%; (iii) CH3CH2OCHO, Et3N, 
THF, 8 h, 50 °C, 86%; (iv) Lawesson’s reagent, 1,4-dioxane, 30 min, 120 °C, 68%. 

A mixture of 2-chloro-1-(1H-indol-3-yl)ethanone (177, 300 mg, 1.50 mmol) and sodium 

azide (200 mg, 3.00 mmol) in acetone (20 ml) and H2O (10 ml) was heated at 50 °C for 20 h. 

The reaction mixture was cooled to room temperature, was diluted with H2O (20 ml) and 

extracted with CH2Cl2. The combined extracts were dried and concentrated to dryness. The crude 

product was washed with CH2Cl2 and used for the next step (250 mg, 81%). Pd/C (50 mg) was 

added to a solution of 2-azido-1-indolyl-3-ethanone (178, 50 mg, 0.23 mmol) in MeOH (3 ml) 

followed by HCl (20 µl). The reaction flask was connected to an H2-filled balloon and the 

reaction mixture was stirred at room temperature under H2 atmosphere for 3 h. The reaction 

mixture was filtered and the filtrate was concentrated. The crude product was subjected to FCC 

(silica gel, MeOH-CH2Cl2, 2:8) to afford 2-amino-1-indolyl-3-ethanone (40 mg, 85%). Ethyl 

formate (1.5 ml) was added to a solution of 2-amino-1-indolyl-3-ethanone (30 mg, 0.16 mmol) in 

dry THF (2 ml) followed by Et3N (50 µl). The reaction mixture was heated at 50 °C for 8 h, 

concentrated and diluted with H2O. The mixture was neutralized with aqueous HCl (1 M) and 
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extracted with EtOAc. The combined extracts were dried, concentrated to dryness and the 

residue was subjected to FCC (silica gel, MeOH-CH2Cl2, 1:9) to afford N-(2-(1H-indol- 3-yl)-2-

oxoethyl)formamide (30 mg, 86%). Lawesson’s reagent (50 mg) was added to a solution of N-

(2-(1H-indol-3-yl)-2-oxoeth- yl)formamide (30 mg, 0.15 mmol) in 1,4-dioxane (1.5 ml) while 

the solution was heating at 120 °C under argon. After 30 min, 1,4-dioxane was removed with a 

rotary evaporator and the residue was diluted with H2O. The aqueous solution was neutralized 

using NaHCO3 (satd. sol.) and extracted with EtOAc. The combined extracts were dried, 

concentrated to dryness and the residue was subjected to FCC (silica gel, EtOAc-hexane, 1:1) to 

afford 1H-3-(5ʹ-thiazol- yl)indole (170, 20 mg, 68%) as white powder. 

Melting point: 140–142 °C 

HPLC tR = 8.2 min (method A). 

UV (HPLC, CH3OH–H2O) λmax (nm): 210, 242, 262, 300. 

FTIR (KBr) νmax cm-1: 3204, 1566, 1416, 1253, 823. 
1H NMR (500 MHz, CD3CN): δ 9.64 (br, 1H), 8.76 (s, 1H), 8.10 (s, 1H), 7.87 (d, J = 8 Hz, 1H), 

7.60 (d, J= 2.5 Hz 1H), 7.50 (d, J = 8 Hz 1H), 7.25 (dd, J= 8, 7 Hz, 1H), 7.20 (dd, J = 8, 7 Hz, 

1H). 
13C NMR (500MHz, CD3CN): δ 151.4, 139.1, 138.0, 134.1, 126.4, 125.4, 123.9, 121.8, 120.4, 

113.3, 108.0. 

HRMS-EI m/z: measured 200.0413 ([M]+, calcd. 200.0408 for C11H8N2S) (100%).  

3.3.1.7 1H-3-(4ʹ-Isothiazolyl)indole (168) 

 

Scheme 3.7 Synthesis of 1H-3-(4ʹ-isothiazolyl)indole (168). Reagents and conditions: (i) 
POCl3, DMF; (ii) NaOH, 1,4-dioxane; (iii) SOCl2, THF, 10 min, -20 °C; (iv) NH4SCN, DMF, 12 
h, 70 °C, 56%. 
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Indolyl-3-acetic acid (181, 220 mg, 1.25 mmol) in DMF (0.25 ml) was added to a 

mixture of DMF (0.50 ml) in POCl3 (0.35 ml, 3.2 mmol) at 0 °C. The reaction mixture warmed 

up to room temperature and was refluxed at 90 °C for 3 h. The reaction mixture was cooled to 

room temperature, crushed ice was added to adjust the volume to ca. 30 ml and was extracted 

with CH2Cl2. The combined extracts were dried, and concentrated to dryness to afford crude 

diamine 181a (315 mg) as a yellowish powder in 91% yield. Diamine 181a (100 mg, 0.400 

mmol) was dissolved in 1,4-dioxane (2 ml) followed by addition of NaOH (25% aq, 2 ml), and 

the reaction mixture was refluxed for 8 h. 1,4-Dioxane was removed with a rotary evaporator, the 

residue was diluted to ca. 30 ml by addition of crushed ice and acidified to pH ≤ 3 using aq HCl 

(1:1). The resulting mixture was extracted with diethyl ether, the combined extracts were dried, 

and the solvent was evaporated to yield crude enolaldehyde 182 (69 mg, 90%). SOCl2 (0.35 ml, 

4.8 mmol) was added to crude enolaldehyde 182 (50 mg, 0.26 mmol) in THF (1.5 ml) and the 

reaction mixture was cooled to -20 °C and stirred for 10 min. The solvent was evaporated and the 

residue was dissolved in EtOAc and subjected to FCC (silica gel, EtOAc-Hexane, 7:3) to yield a 

fraction containing chloroacrolein 183 that was immediately used in the next step. NH4SCN (30 

mg, 0.40 mmol) was added to the solution of chloroacrolein 183 (20 mg, 0.10 mmol) in DMF 

(1.5 ml), and the reaction mixture was heated at 70 °C for 12 h with stirring (caution: in hood, 

NaOH trap for HCN). The reaction mixture was diluted with brine (20 ml) and extracted with 

EtOAc. The combined extracts were dried, the solvent was evaporated, and the residue was 

subjected to FCC (silica gel, EtOAc–hexane, 3:7) to afford 1H-3-(4ʹ -isothiazolyl)indole (168, 16 

mg, 56% yield) as light yellowish powder.  

Melting point: 124–125 °C 

HPLC tR = 12.2 min (method A). 

UV (HPLC, CH3OH-H2O) λmax (nm): 225, 290. 

FTIR (KBr) νmax cm-1: 3406, 1582, 1457, 1243, 890. 
1H NMR (500 MHz, CDCl3): δ 8.83 (s, 1H), 8.73 (s, 1H), 8.36 (br, 1H), 7.86 (d, J = 7.5 Hz, 1H), 

7.48 (s, 2H), 7.25 (m, 3H). 
13C NMR (125.8MHz, CDCl3): δ 156.6, 140.6, 136.4, 133.3, 125.7, 122.9, 122.2, 120.8, 119.3, 

111.6, 109.8. 

HRMS-EI m/z: measured 200.0407 ([M]+, calcd. 200.0408 for C11H8N2S) (100%).  
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3.3.1.8 1H-3-(2ʹ-Oxazolyl)indole (167) 

 

Scheme 3.8 Synthesis of 1H-3-(2ʹ-oxazolyl)indole (167). Reagents and conditions: (i) 
Chloroacetaldehyde, 95% EtOH, 2 h, reflux, 73% (Ayer et al., 1992). 

A solution of indole-3-carboxamide (230, 30 mg, 0.20 mmol) and chloroacetaldehyde 

(0.04 ml) in EtOH (95%, 0.7 ml) was refluxed for 2 h. EtOH was removed under vacuum using a 

rotary evaporator and then the reaction mixture was diluted with water and extracted with 

EtOAc. The combined extracts were dried and concentrated to dryness to afford 1H-3-(2ʹ-

oxazolyl)indole (167, 25 mg, 0.10 mmol, 73%) as light yellowish powder (Ayer et al., 1992).  

 

Melting point: 130–132 °C 

HPLC tR = 10.1 min (method A). 

UV (HPLC, CH3OH-H2O) λmax (nm): 220, 260, 297. 

FTIR (KBr) νmax cm-1: 1672, 1526, 1456, 1215, 1132, 742, 505. 
1H NMR (500 MHz, CDCl3): δ 8.65 (br, 1H), 8.3 (dd, J = 2, 3 Hz, 1H), 7.9 (d, J = 3 Hz, 1H), 7.7 

(s, 1H), 7.4 (dd, J = 3, 2 Hz, 1H), 7.3 (m, 2H), 7.2 (s, 1H). 
13C NMR (125.8MHz, CDCl3): δ 160.3, 136.9, 136.3, 127.6, 125.7, 124.8, 123.4, 121.7, 121.3, 

111.7, 106.1. 

HRMS-EI m/z: measured 184.0637 ([M]+, calcd. 184.0637 for C11H8N2O) (100%).  
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3.3.1.9 2-(1H-indol-3-yl)oxazol-4(5H)-one (229) 

 

Scheme 3.9 Synthesis of 2-(1H-indol-3-yl)oxazol-4(5H)-one (229). Reagents and condition: 
(i) Ethyl 2-chloro-3-oxopropanoate, EtOH, H2SO4, 6 h, 90 °C, 58%. 

Ethyl 2-chloro-3-oxopropanoate (245 mg, 1.30 mmol) was added to a solution of indole-

3-thocarboxamide (82, 70 mg, 0.40 mmol) in EtOH (5 ml) followed by addition of H2SO4 (1 

drop). The reaction mixture in sealed reaction vial was heated at 90 °C for 6 h. The reaction 

mixture was cooled to room temperature. EtOH was removed using a rotary evaporator; the 

reaction mixture was diluted with water and extracted with EtOAc. The combined extracts were 

dried and concentrated to dryness. The residue was subjected to FCC (silica gel, EtOAc-hexane, 

1:1) to give pure 229 (50 mg, 0.20 mmol, 58%) as brown powder. 

 

Melting point: 150–151 °C 

HPLC tR = 11.4 min (method C). 

UV (HPLC, CH3OH-H2O) λmax (nm): 210, 255, 270, 350. 

FTIR (KBr) νmax cm-1: 3117, 1672, 1526, 1468, 1360, 1207, 1132, 738. 
1H NMR (500 MHz, DMSO-d6): δ 12.6 (br, 1H), 8.6 (d, J = 3.5 Hz, 1H), 8.2 (dd, J = 2, 3.5 Hz, 

1H), 7.6 (dd, J = 3.5, 2 Hz, 1H), 7.3 (m, 2H), 4.1 (s, 2H). 
13C NMR (125.8MHz, DMSO-d6): δ 191.4, 188.1, 137.2, 134.9, 124.7, 123.6, 122.7, 121.2, 

112.9, 111.0, 37.1. 

HRMS-FD m/z: measured 216.03595 ([M]+, calcd 216.03573 for C11H8N2OS) (100%).  
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3.3.1.10 2-(1H-indol-3-yl)thiazole-4-carboxylic acid (230)  

 

Scheme 3.10 Syntheses of (ethyl 2-(1H-indol-3-yl)thiazole-4-carboxylate (191) and 2-(1H-
indol-3-yl)thiazole-4-carboxylic acid (230). Reagents and conditions: (i) Ethyl bromopyruvate, 
95% EtOH, 1 h, reflux, 90%;  (ii) NaOH, THF, 14 h, r.t., 89% (Moody et al., 1997). 

A solution of indole-3-thiocarboxamide (82, 50 mg, 0.30 mmol) and ethyl bromopyruvate 

(77 mg, 0.40 mmol) in EtOH (95%, 5 ml) was refluxed for 1 h. EtOH was removed using a 

rotary evaporator to afford (ethyl 2-(1H-indol-3-yl)thiazole-4-carboxylate (191, 70 mg, 0.26 

mmol, 90%) (Moody et al., 1997). 

 

Melting point: 245 °C (decomposed) 

HPLC tR = 18.7 min (method C). 

UV (HPLC, CH3OH-H2O) λmax (nm): 220, 275, 325. 

FTIR (KBr) νmax cm-1: 3247, 1710, 1540, 1460, 1327, 1227, 908, 725. 
1H NMR (500 MHz, CDCl3): δ 8.2 (d, J = 5.5 Hz, 1H), 8.1 (br, 1H), 8.1 (s, 1H), 7.5 (d, J = 7 Hz, 

1H), 7.3 (m, 2H), 4.5 (q, J = 6 Hz, 2H), 1.4 (t, J = 6 Hz, 3H). 
13C NMR (125.8MHz, CDCl3): δ 164.3, 161.8, 146.5, 136.6, 126.7, 124.7, 124.6, 123.4, 121.8, 

120.2, 112.3, 111.2, 61.8, 14.6. 

HRMS-FD m/z: measured 272.06263 ([M]+, calcd 272.06195 for C11H8N2OS) (100%).  

 

Sodium hydroxide (0.30 ml) was added to a solution of (ethyl 2-(1H-indol-3-yl)thiazole-

4-carboxylate (191, 10 mg, 0.04 mmol) in THF (1 ml). The reaction mixture was stirred at room 

temperature for 14 h and then was diluted with water and acidified to pH ∼ 3 (HCl, 0.50 M). The 

reaction mixture was extracted with EtOAc. The combined extracts were dried and concentrated 

to dryness to yield 2-(1H-indol-3-yl)thiazole-4-carboxylic acid (230) (8 mg, 0.03 mmol, 89%). 

 

N
H

NH2
S

N
H

N
S

COOEt

i

82 191

N
H

NS
COOH

ii

230



 

 141 

Melting point: 131–132 °C  

HPLC tR = 4.7 min (method C). 

UV (HPLC, CH3OH-H2O) λmax (nm): 220, 270, 320. 

FTIR (KBr) νmax cm-1: 3350, 1695, 1542, 1244, 732. 
1H NMR (500 MHz, MeOD): δ 8.2 (s, 1H), 8.1 (m, 1H), 8.0 (s, 1H), 7.5 (m, 1H), 7.2 (m, 2H). 
13C NMR (125.8MHz, MeOD): δ 166.3, 164.6, 148.2, 138.5, 127.8, 125.9 (d), 124.0, 122.3, 

121.1, 113.2, 111.8. 

HRMS-FD m/z: measured 244.02984 ([M]+, calcd 244.03065 for C12H8N2O2S) (100%).  

3.3.2 Brassinin (9) 

 

Scheme 3.11 Synthesis of brassinin (9). Reagents and conditions: (i) NH2OH.HCl, Na2CO3, 1 
h, 80 °C, 95%; (ii) NiCl2.6H2O, NaBH4, MeOH, 10 min, 0 °C, 70%; (iii) Et3N, pyridine, CS2, 10 
min, 0 °C; (iv) MeI, 30 min, 0 °C, 73% (Sharma-Mamillapalle, 2012). 

A solution of NH2OH.HCl (957 mg, 13.8 mmol) and Na2CO3 (803 mg, 7.58 mmol) in 

water (10 ml) was added to a solution of indolyl-3-carboxaldehyde (26, 1.0 g, 7.0 mmol) in 

EtOH (95%, 25 ml). The mixture was stirred at 80 °C for 1 h then was concentrated. The 

resulting precipitate was filtered and the precipitate was washed with water to afford indolyl-3-

carboxaldoxime (27, 1050 mg, 6.600 mmol, 95%) as yellow solid.  

NaBH4 (1075 mg, 28.00 mmol) was added portionwise to a solution of indolyl-3-

carboxaldoxime (27, 700 mg, 4.40 mmol) and NiCl2.6H2O (1039 mg, 4.400 mmol) in MeOH (10 

ml) at 0 °C followed by stirring at the same temperature for 10 min. The reaction mixture was 

diluted with mixture of water and NH4OH (2:1, 50 ml), filtered and extracted with chloroform. 

The combined extracts were dried and concentrated to dryness. The residue was subjected to 

FCC (silica gel, CHCl3-MeOH-NH4OH, 80:20:1.0) to afford 3-indolylmethanamine (28, 450 mg, 
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3.10 mmol, 70%) as white solid (Kutschy et al., 1998).  

Carbon disulfide (199 ml, 3.30 mmol) was added to a solution of amine (28, 440 mg, 

3.01 mmol) and Et3N (837 ml, 6.0 mmol) in pyridine (3 ml) at 0˚ C. The mixture was stirred for 

10 min at the same temperature followed by addition of methyl iodide (282 ml, 4.50 mmol) and 

stirring at room temperature for additional 30 min. The reaction mixture was diluted with water 

and extracted with EtOAc. The combined extracts were dried and concentrated to dryness. The 

residue was subjected to FCC (silica gel, EtOAc-hexane, 2:8) to afford brassinin (9, 521 mg, 

2.20 mmol, 73%) as an off-white solid. 

 

Melting point: 132–133 °C 

HPLC tR = 15.3 min (method C).  

UV (HPLC, CH3OH-H2O) λmax(nm): 217, 270. 
1H NMR (500 MHz, CD3CN): δ 9.25 (br, 1H, D2O exchangeable), 8.24 (s, 1H, D2O 

exchangeable), 7.63 (d, J = 8 Hz, 1H), 7.43 (d, J = 8 Hz, 1H), 7.31 (d, J = 2 Hz, 1H), 7.16 (dd, J 

= 8, 8 Hz, 1H), 7.08 (dd, J = 8, 8 Hz, 1H), 5.04 (d, J = 5 Hz, 2H), 2.55 (s, 3H) and minor signals 

4.77 (d) and 2.64 (s) (ca. 1/10 intensity of the major peaks) due to a rotamer. 
 

3.3.3 Cyclobrassinins 

3.3.3.1 Cyclobrassinin (4) 

 

Scheme 3.12 Synthesis of cyclobrassinin (4). Reagents and conditions: (i) PBP, DBU, THF, 
100 min, r.t., 58% (Takasugi et al., 1986; Pedras et al., 2011b). 
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Pyridinium bromide perbromide (PBP) (220 mg, 0.60 mmol) was added to a solution of 

brassinin (9, 160 mg, 0.600 mmol) in THF (4 ml). The reaction mixture was stirred at room 

temperature for 40 min followed by addition of 1,8-diazabicycloundec-7-ene (DBU) (320 µl, 

0.320 mmol). The reaction mixture was kept stirring at room temperature for additional 1 h then 

was concentrated to dryness. The residue was subjected to FCC (silica gel, CH2Cl2-hexanes, 6:4) 

to afford cyclobrassinin (4, 90 mg, 0.40 mmol, 58%) as light yellow solid (Takasugi et al., 1986; 

Pedras et al., 2011b). 

 

Melting point: 136–137 °C 

HPLC tR = 13.9 min (method B).  

UV (HPLC, CH3OH-H2O) λmax(nm): 210, 280. 
1H NMR (500 MHz, CDCl3): δ 7.9 (br, 1H), 7.5 (d, J = 6.5 Hz, 1H), 7.3 (d, J = 6.5 Hz, 1H), 7.2 

(dd, J = 6, 6.5 Hz, 1H), 7.2 (dd, J = 6, 6 Hz, 1H), 5.1 (s, 2H), 2.6 (s, 3H). 

 

3.3.3.2 1-Methylcyclobrassinin (193) 

 

Scheme 3.13 Synthesis of 1-methylcyclobrassinin (193). Reagents and conditions: (i) NaH, 
MeI, THF, 1 h, 0 ºC, 90%. 

Sodium hydride 60% suspension in mineral oil (18 mg, 0.40 mmol, washed with hexane) 

was added to a solution of cyclobrassinin (4, 54 mg, 0.20 mmol) in THF (2 ml) at 0 °C. The 

reaction mixture was stirred at 0 °C for 30 min followed by dropwise addition of methyl iodide 

(30 µl, 0.48 mmol). The reaction mixture was kept stirring at room temperature for additional 2.5 

h then was diluted with water and extracted with EtOAc. The combined extracts were dried and 

concentrated to dryness. The residue was subjected to FCC (silica gel, EtOAc-hexanes, 1:9) to 

afford 1-methylcyclobrassinin (193, 56 mg, 90%). 
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Melting point: 95–98 °C 

HPLC tR = 19.1 min (method B).  

UV (HPLC, CH3OH-H2O) λmax(nm): 206, 230, 300. 
1H NMR (500 MHz, CDCl3): δ 7.5 (d, J = 8 Hz, 1H), 7.3 (d, J = 8 Hz, 1H), 7.2 (dd, J = 7.5, 7.5 

Hz, 1H), 7.1 (dd, J = 7, 7.5 Hz, 1H), 5.1 (s, 2H), 3.7 (s, 3H), 2.6 (s, 3H). 

3.3.4 Rutalexin (5) 

	

Scheme 3.14 Synthesis of rutalexin (5). Reagents and conditions: (i) NaClO2, KH2PO4, 2-
methylbut-2-ene, tert-butyl alcohol, H2O, 4 h, r.t., 100%; (ii) SOCl2, THF, 2 h, rt.; iii) CH3NH2, 
THF, 0 °C, 1 h, 95% (over steps ii and iii); (iv) NaSH, DMF, H2O, 1 h, 0 °C; (v) Methyl 
chloroformate, 30 min, r.t., 95%; (vi) THF, Et3N, 4 h, r.t.; (vii) TFA (20%) in DCM, 4 h, r.t., 
93% (over steps vi and vii). 

A solution of NaClO2 (1 g, 6.80 mmol) and KH2PO4 (1.2 g, 8.8 mmol) in water (6 ml) 

was added to a mixture of 1-Boc-2-chloroindole-3-carboxaldehyde (15, 255 mg, 0.900 mmol), 

tert-butyl alcohol (6.4 ml) and 2-methylbut-2-ene (6.4 ml). The reaction mixture was stirred at 

room temperature for 4 h. The organic phase was separated and the aqueous layer was acidified 

(HCl (0.50 M), PH ∼ 3) and extracted with EtOAc. The combined extracts were dried and 

concentrated to dryness to afford 1-Boc-2-chloroindole-3-carboxylic acid (16, 270 mg, 0.900 

mmol, 100%) (Pedras et al., 2004b).  
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Thionyl chloride (250 µl, 3.75 mmol) was added to a solution of acid 16 (90 mg, 0.30 

mmol) in dry THF (3 ml) at 0 °C followed by catalytic amount of DMF (5 µl). The reaction 

mixture was stirred at room temperature for 2 h. The excess amount of thionyl chloride was 

evaporated using rotary evaporator and the reaction mixture was cooled to 0 °C. A solution of 

MeNH2 in THF (2 M, 4 ml, 8 mmol) was added slowly (in 10 min) to the reaction mixture and 

the reaction mixture was stirred for additional 1 h at 0 °C. The reaction mixture was diluted with 

water and extracted with EtOAc. The combined extracts were dried and concentrated to dryness. 

The residue was subjected to FCC (silica gel, EtOAc-hexane, 1:1) to afford tert-butyl 2-chloro-3-

(methylcarbamoyl)-1H-indole-1-carboxylate (17, 88 mg, 0.29 mmol, 95%) as colorless oil 

(Pedras et al., 2004b).  

A solution of sodium hydrogen sulfide (360 mg, 3.20 mmol) in water (100 µl) was added 

to a mixture of tert-butyl 2-chloro-3-(methylcarbamoyl)-1H-indole-1-carboxylate (17, 50 mg, 

0.25 mmol) in DMF (1.5 ml) at 0 °C. The reaction mixture was stirred at 0 °C for 1 h. Methyl 

chloroformate (1.2 ml, 14 mmol) was added dropwise to the reaction mixture. The ice bath was 

removed and the reaction mixture was stirred at room temperature for additional 30 min. The 

reaction mixture was diluted with water, extracted with EtOAc. The combined extracts were 

dried and concentrated to dryness to afford 216 (56 mg, 0.15 mmol, 95 %) as colorless oil. 

 

HPLC tR = 11.6 min (method B). 

UV (HPLC, CH3OH-H2O) λmax (nm): 210, 280. 
1H NMR (500 MHz, CD3OD): δ 8.10 (d, J = 8.5Hz, 1H), 7.98 (d, J = 8Hz, 1H), 7.41 (dd, J = 7.5, 

8Hz, 1H), 7.31 (dd, J = 7.5, 7.5 Hz, 1H), 6.5 (br, 1H), 3.9 (s, 3H), 3.0 (d, J = 5Hz, 3H), 1.7 (s, 

9H).  
13C NMR (500 MHz, CD3OD): δ 168.4, 164.2, 149.3, 137.6, 126.8, 126.8, 126.8, 123.9, 121.5, 

121.4, 115.5, 85.7, 55.4, 28.2, 26.7. 

HRMS-EI m/z: measured 364.11078 ([M]+, calcd. 364.10929 for C24H28N2O5S). 

 

Triethylamine (100 µl) was added to a solution of amide 216 in THF (1 ml) and the 

reaction mixture was stirred at room temperature for 4 h. After all 216 was consumed, a mixture 

of 20% TFA in DCM was added to the reaction. The reaction mixture was kept stirring for 

additional 4 h at room temperature. The reaction mixture was concentrated to dryness and the 
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residue was washed with diethyl ether (2 ml × 2) to afford pure rutalexin (5, 30 mg, 0.13 mmol, 

93%) as white powder.  

 

Melting point:  310–312 °C 

HPLC tR = 8.5 min (method B). 

UV (HPLC, CH3OH-H2O) λmax (nm): 213, 242, 275. 
1H NMR (500 MHz, DMSO-d6): δ 12.57 (br, 1H, D2O exchangeable), 8.09 (m, 1H), 7.54 (m, 

1H), 7.28 (m, 2H), 3.37 (s, 3H). 
13C NMR (125 MHz, DMSO-d6): δ 162.8, 160.0, 136.9, 135.0, 125.1, 123.6, 122.1, 119.5, 111.8, 

101.5, 28.2. 

	

Scheme 3.15 Synthesis of rutalexin (5). Reagents and conditions: (i) NaSH, DMF, H2O, 0 °C, 1 
h; (ii) Methyl chloroformate, 30 min, 216 (95%) and 6 h, 19 (56%); (iii) TFA (20%) in DCM, 
r.t., 4 h; (iv) K2CO3, MeOH, r.t., 2 h, 60%. 

A solution of sodium hydrogen sulfide (36 mg, 0.50 mmol) in water (50 µl) was added to 

a mixture of tert-butyl 2-chloro-3-(methylcarbamoyl)-1H-indole-1-carboxylate (17, 10 mg, 0.050 

mmol) in DMF (0.50 ml) at 0 °C. The reaction mixture was stirred at 0 °C for 1 h followed by 

dropwise addition of methyl chloroformate (50 µl, 0.60 mmol). The ice bath was removed and 

the reaction mixture was kept stirring at room temperature for an additional 6 h. The reaction 

mixture was diluted with water and extracted with EtOAc. The combined extracts were 
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concentrated to dryness. The residue was subjected to FCC (silica gel, EtOAc–hexane, 3:7) to 

afford N-Boc-rutalexin (19, 6 mg, 56%) as white powder.  

 

HPLC tR = 21.3 min (method B). 

UV (HPLC, CH3OH-H2O) λmax (nm): 216, 253. 
1H NMR (500 MHz, CD3CN): δ 8.30 (d, J = 6.5, 1H), 8.11 (d, J = 7.5, 1H), 7.42 (m, 2H), 3.4 (s, 

3H), 1.7 (s, 9H). 

 

iii. TFA (400 µl) was added to a solution of N-Boc-rutalexin (19, 20 mg, 0.060 mmol) in 

DCM (2 ml) at room temperature. The reaction mixture was stirred at room temperature for 4 h, 

followed by concentration to dryness. The residue was rinsed with diethyl ether (2 ml × 2) and 

dried to afford rutalexin (5) in quantitative yield. 

iv. Potassium carbonate (5 mg, 0.04 mmol) was added to a solution of N-Boc-rutalexin 

(19, 5 mg, 0.02 mmol) in MeOH (1 ml). The reaction mixture was stirred for 2 h at room 

temperature, followed by concentration to dryness. The residue was subjected to FCC (silica gel, 

EtOAc–hexane, 3:7) to afford rutalexin (5, 2 mg, 60%) as white powder. 

  

HPLC tR = 8.5 min (method B). 

UV (HPLC, CH3OH-H2O) λmax (nm): 213, 242, 275. 
1H NMR (500 MHz, DMSO-d6): δ 12.57 (br, 1H, D2O exchangeable), 8.09 (m, 1H), 7.54 (m, 

1H), 7.28 (m, 2H), 3.37 (s, 3H). 
13C NMR (125 MHz, DMSO-d6): δ 162.8, 160.0, 136.9, 135.0, 125.1, 123.6, 122.1, 119.5, 111.8, 

101.5, 28.2. 
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3.3.5 Brassilexins 

3.3.5.1 Brassilexin (7) 

 

Scheme 3.16 Synthesis of brassilexin (7). Reagents and conditions: (i) POCl3/DMF, NH4OH, 
20 min, 45 °C then 0 °C; (ii) Pyridine, I2, 1 h, r.t., 51%. 

Indole-2-thione (209) was added to a solution of freshly distilled POCl3 (64 µl, 0.70 

mmol) in DMF (350 µl) at 45 °C. The reaction mixture was stirred for 20 min at 45 °C then was 

cold to 0 °C on an ice bath. NH4OH (8 ml) was added dropwise to the reaction mixture with 

constant stirring. The reaction mixture was warmed up to room temperature and was extracted 

with diethyl ether. The combined extracts were dried and concentrated to dryness. The residue 

was dissolved in pyridine (1 ml) followed by addition of I2 (42 mg, 0.33 mmol). The reaction 

mixture was stirred for 1 h at room temperature and then was acidified using H2SO4 (1.5 M, 10 

ml) and extracted with diethyl ether. The combined extracts were dried and concentrated to 

dryness. The residue was subjected to FCC (silica gel, EtOAc-hexane, 2:8) to afford brassilexin 

(7, 30 mg, 0.17 mmol, 51%) (Pedras and Jha, 2005). 

 

Melting point: 140–142 °C 

HPLC tR = 12.6 min (method C).  

UV (HPLC, CH3OH-H2O) λmax (nm): 220, 250, 265. 
1H NMR (500 MHz, CDCl3): δ 8.7 (s, 2H), 7.9 (d, J = 6.5 Hz, 1H), 7.5 (d, J = 7 Hz, 1H), 7.4 (dd, 

J = 6.5, 6.5 Hz, 1H), 7.3 (dd, J = 6.5, 7.5 Hz, 1H). 
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3.3.5.2 1-Methylbrassilexin (165) 

 

Scheme 3.17 Synthesis of 1-methylbrassilexin (165). Reagents and condition: (i) NaH, 
MeI, THF, 0 ºC, 1 h, 94%. 

Sodium hydride 60% suspension in mineral oil (35 mg, 1.5 mmol, washed with hexane) 

was added to a solution of brassilexin (24) (51 mg, 0.29 mmol) in THF (3 ml) at 0 ºC. The 

reaction mixture was stirred for 15 minutes at 0 ºC followed by addition of methyl iodide (27 µl, 

0.44 mmol). The reaction mixture was stirred for an additional 1 h at 0 ºC. Ice-cold water was 

added to quench the reaction and then the aqueous was extracted with DCM. The combined 

extracts were dried and concentrated to dryness. The crude reaction mixture was subjected to 

FCC (silica gel, DCM-hexane, 80:20) to afford 1-methylbrassilexin (165, 52 mg, 0.30mmol, 

94%) (Pedras and Suchy, 2005). 

Melting point: 67–69 °C 

HPLC tR = 15.7 min (method B).  

UV (HPLC, CH3OH-H2O) λmax (nm): 220, 250, 270. 
1H NMR (500 MHz, CDCl3): δ 8.7 (s, 1H), 7.9 (d, J = 6.5 Hz, 1H), 7.4 (m, 2H), 7.3 (dd, J = 6, 7 

Hz, 1H), 3.9 (s, 3H). 

3.4 Biotransformation of phytoalexins and related structures by Alternaria brassicicola 

3.4.1 Camalexins and related structures 

3.4.1.1 Biotransformation of camalexins  

Time course experiments for camalexins 1, 2 and 3 were carried out in MM. Fungal 

cultures of A. brassicicola were initiated by inoculating A. brassicicola spores (106/100 ml) in 
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minimal media (50 ml in 125 ml Erlenmeyer flask) at 23 ± 1 °C, under constant light, on a 

shaker at 110 rpm. After 48 h of incubation, compounds to be tested (dissolved in CH3CN) were 

added to each culture (triplicate) and uninoculated MM (final concentration in media 0.050 mM). 

Control cultures of the fungus were grown separately. Samples (5 ml) were withdrawn from the 

cultures immediately after addition of each compound and then after different time intervals up 

to 120 h (every 24 h). Samples were extracted with EtOAc (10 ml × 2); the aqueous phase was 

acidified (HCl) and reextracted with EtOAc (10 ml × 2); the remaining aqueous phase was 

basified (NaOH) and reextracted with CHCl3 (10 ml × 2). The combined extracts (neutral, acidic 

and basic separately) were concentrated and residues were dissolved in CH3CN (0.20 ml) and 

analyzed by HPLC-DAD-ESI-MS. Transformations of metabolites were carried out similarly. 

For time course experiments carried out in H2O, mycelia of cultures were filtered off after 48 h 

of incubation, were washed with water and transferred into sterile H2O; a solution of the 

compound to be tested (dissolved in CH3CN) was added to the cultures (final concentration of 

0.050 mM). Cultures were incubated in a shaker at room temperature and treated as reported 

above. The EtOAc extract or the freeze-dried residue was dissolved in CH3CN or MeOH–H2O 

(1:1) and analyzed by HPLC-DAD-ESI-MS. 

3.4.1.2 Biotransformation of related structures 

Time course experiments for related structures 173, 169, 170, 168, 167, 172, 171 were 

carried out in MM and only in case of compound 174 the experiment was carried out in water 

using the procedure described in Section 3.4.1.1.  

Metabolite 185 resulted from transformation of compound 173 by A. brassicicola was 

isolated from the larger scale cultures. Cultures (500 ml) were prepared in 250 ml Erlenmeyer 

flasks containing 100 ml MM. After 48 h of incubation, 4ʹ-methylcamalexin (173, 5.5 mg, 

dissolved in CH3CN) were added to fungal cultures (final concentration in media 0.050 mM). 

The cultures were incubated for additional 96 h (at 23 ± 1 °C, under constant light). The cultures 

were filtered and the mycelia were washed with water. The filtrates (total ca. 500 ml) were 

combined and concentrated using a freeze-dryer. The residue was extracted with EtOAc (3 × 100 

ml). The combined extracts were dried and concentrated under reduced pressure to yield an oily 

residue (50 mg). The residue was subjected to FCC (silica gel, EtOAc) to yield metabolite 185 

(3.00 mg). 
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3.4.1.3 Synthesis of metabolites 

3.4.1.3.1 Indole-3-thiocarboxamide (82) and 1-Methylindole-3-thiocarboxamide (90) 

 

Scheme 3.18 Syntheses of indole-3-thiocarboxamide (82) and 1-methylindole-3-
thiocarboxamide (90). Reagents and conditions: (i) CH3CSNH2, 10% HCl/DMF, 12 h, 90 °C, 
45% (82), 80% (90) (Gu et al., 1999). 

A mixture of indole-3-carbonitrile (83, 100 mg, 0.70 mmol) and thioacetamide (105 mg. 

1.40 mmol) in 10% HCl-DMF solution (1.50 ml) was stirred at 90 °C for 12 h. The reaction 

mixture was then neutralized with NaHCO3 (satd. sol.) and extracted with EtOAc. The combined 

extracts were dried and concentrated to dryness. The residue was subjected to FCC (silica gel, 

DCM-MeOH, 99:1) to afford indole-3-thiocarboxamide (82, 53 mg, 45%) as yellow powder. 1-

Methylindole-3-thiocarboxamide (90, 82 mg, 80%, as a light yellow powder) was prepared 

similarly from 1-methylindole-3-carbonitrile (92, 100 mg, 0.70 mmol) (Gu et al., 1999). 

 

Indole-3-thiocarboxamide (82) 

Melting point: 151–152 °C 

HPLC tR = 4.6 min (method A). 

UV (HPLC, CH3OH-H2O) λmax (nm): 215, 255, 318. 

FTIR (KBr, cm-1) νmax: 3190, 1621, 1527, 1442, 850. 
1H NMR (DMSO-d6) δ: 10.91 (s, 1H), 8.08 (s, 1H), 7.95 (s, 1H), 7.75 (d, J= 7.5 Hz, 1H), 7.22 

(d, J= 3.0 Hz, 1H), 6.56 (d, J= 8.0 Hz, 1H), 6.29 (dd, J= 7.0, 7.0 Hz, 1H), 6.26 (dd, J= 7.0, 7.0 

Hz, 1H). 
13C NMR (DMSO-d6) δ: 193.6, 136.8, 128.1, 125.9, 122.0, 121.8, 120.7, 116.3, 112.0. 

HRMS-EI m/z: measured 176.0409 ([M]+, calcd. 176.0408 for C9H8N2S) (100%).  
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1-Methylindole-3-thiocarboxamide (90) 

 

Melting point: 125–128 °C. 

HPLC tR = 6.6 min (method A). 

UV (HPLC, CH3OH-H2O) λmax (nm): 220, 260, 330. 
1H NMR (500 MHz, CD3CN): δ 8.32 (d, J= 7.5 Hz, 1H), 8.93 (s, 1H), 7.65 (br, 2H), 7.43 (d, J= 

7.5 Hz, 1H), 7.27 (m, 2H), 3.80 (s, 3H). 
13C NMR (125.8MHz, CD3CN): δ 195.8, 138.8, 135.3, 126.2, 123.6, 122.7, 122.1, 116.8, 111.6, 

33.99.  

 

3.4.1.3.2 6-Methoxyindole-3-carbonitrile (93) and 6-methoxyindole-3-thiocarboxamide 
(91) 

 

Scheme 3.19 Syntheses of 6-methoxyindole-3-carbonitrile (93) and 6-methoxyindole-3-
thiocarboxamide (91). Reagents and conditions: (i) POCl3, DMF, 2.5 h, 98%; (ii) HONH2, HCl, 
NaOAc, 95%, EtOH, H2O, 3 h, r.t.; (iii) Ac2O, pyridine, THF, reflux, 9 h. 96%; (iv) CH3CSNH2, 
HCl/DMF, 12 h, 90 °C, 40%. 

A solution of 6-methoxyindole (187) in DMF (0.04 ml) was added to an ice-cold mixture 

of DMF (0.07 ml) and POCl3 (0.07 ml) and the reaction mixture was stirred at room temperature 

for 2.5 h. The reaction mixture was diluted with water and extracted with EtOAc. The combined 

extracts were dried and concentrated to dryness to yield 6-methoxyindol-3-carbaldehyde in 98% 

yield. A solution of HONH2.HCl (27 mg, 0.40 mmol), NaOAc (31 mg, 0.38 mmol) and H2O (50 

µl) was added to a solution of 6-methoxyindol-3-carbaldehyde (50 mg, 0.30 mmol) in EtOH 

(95%, 4 ml). The reaction mixture was stirred at room temperature for 3 h, EtOH was removed 

and the residue was diluted with H2O and extracted with EtOAc. The combined extracts were 

dried and concentrated to dryness to yield 6-methoxyindol-3-oxime (188). Pyridine was added to 
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a solution of 6-methoxyindol-3-oxime (188, 50 mg, 0.25 mmol) in THF (3 ml) and Ac2O (50 µl, 

0.50 mmol) under argon and the reaction mixture was refluxed for 9 h. Pyridine was removed in 

a rotary evaporator using toluene to afford 6-methoxyindole-3-carbonitrile (93, 43 mg, 96%) as a 

light yellow powder. 

Melting point: 180 °C (decomposed; lit 174 °C, decomposed).  

HPLC tR = 7.9 min (method A). 

UV (HPLC, CH3OH-H2O) λmax (nm): 220, 270, 290. 

FTIR (KBr) νmax cm-1: 3383, 1612, 1451, 1122, 739. 
1H NMR (500 MHz, CD3CN): δ 8.50 (br, 1H), 7.60 (s, 1H), 7.63 (m, 2H), 6.97 (dd, J= 8.5, 2 Hz 

1H), 6.93 (s, 1H), 3.91 (s, 3H). 
13C NMR (500MHz, CD3CN): d 157.6, 136.2, 132.4, 120.8, 119.4, 115.9, 112.2, 95.4, 85.4, 55.2.  

HRMS-EI m/z: measured 172.0638 ([M]+, calcd. 172.0637 for C10H8N2O) (100%). 

  

A solution of 6-methoxyindole-3-carbonitrile (93, 50 mg, 0.50 mmol) and thioacetamide 

(55 mg, 0.70 mmol) in 10% HCl-DMF (1 ml) was stirred at 90 °C for 12 h. The reaction mixture 

was neutralized with NaHCO3 (satd. sol.) and then was extracted with EtOAc. The combined 

extracts were dried, concentrated to dryness and the residue was subjected to FCC (silica gel, 

MeOH–DCM, 0.30:9.7) to afford 6-methoxyindole-3-thiocarboxamide (91, 24 mg, 40%) as a 

light brownish powder.  

Melting point: 133–135 °C. 

HPLC tR = 4.5 min (method A). 

UV (HPLC, CH3OH-H2O) λmax (nm): 220, 250, 280. 

FTIR (KBr) νmax cm-1: 3399, 3250, 1630, 1530, 1040. 
1H NMR (500 MHz, CD3CN): δ 9.68 (br, 1H), 8.24 (d, J= 8.5 Hz, 1H), 7.83 (d, J= 2.5 Hz, 1H), 

7.60 (br, 2H), 7.00 (d, J= 2.5 Hz, 1H), 6.86 (dd, J= 8.5, 2.5 Hz, 1H), 3.81 (s, 3H). 
13C NMR (500 MHz, CD3CN): d 195.3, 156.7, 137.9, 128.0, 121.9, 119.25, 111.4, 100.0, 95.1, 

55.1. 

HRMS-EI m/z: measured 206.0515 ([M]+, calcd. 206.0514 for C10H10N2OS) (100%).  
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3.4.1.3.3 1-Methylindole-3-carbonitrile (92) 

 

Scheme 3.20 Synthesis of 1-methylindole-3-carbonitrile (92). Reagents and conditions: (i) 
NaH, MeI, THF, 2 h, 0 °C, quantitative (Pedras and Liu, 2004). 

Sodium hydride 60% suspension in mineral oil (19 mg, 0.48 mmol, washed with hexane) 

was added to a solution of indole-3-carbonitrile (83, 33 mg, 0.23 mmol) in THF (4 ml) at 0 °C. 

The reaction mixture was stirred at 0 °C for 10 min followed by dropwise addition of methyl 

iodide (0.020 ml, 0.32 mmol). The reaction mixture was kept stirring at 0 °C for an additional 2 

h. The reaction mixture was diluted with water and extracted with EtOAc. The combined extracts 

were dried and concentrated to dryness to yield 1-methylindole-3-carbonitrile (92, 36 mg, 0.2 

mmol, quantitative) (Pedras and Liu, 2004). 

 

Melting point: 53–55 °C 

HPLC tR = 14.6 min (method A). 

UV (HPLC, CH3OH-H2O) λmax (nm): 220, 280. 

FTIR: 3331, 3116, 2932, 2223, 1528, 1459, 1383, 1335, 1254, 1195, 1136 cm-1.  
1H NMR (500 MHz, CD3OD): δ 7.91 (s, 1H), 7.72 (d, J= 8 Hz, 1H), 7.55 (d, J= 8 Hz, 1H), 7.37 

(dd, J= 8, 7.5 Hz, 1H), 7.29 (dd, J= 8, 7.5 Hz, 1H), 3.89 (s, 3H). 
13C NMR (500 MHz, CD3CN): δ 135.5, 135.2, 126.5, 122.3, 120.6, 114.5, 114.5, 109.4, 82.7, 

31.2. 

HRMS-EI m/z: measured 156.0687 ([M]+, calcd. 156.0687 for C10H8N2) (100%). 

N
H

CN

83

i
N
Me

CN

92
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3.4.1.3.4 1-Methylindole-3-carboxylic acid (94) and 6-methoxyindole-3-carboxylic acid 
(95) 

 

Scheme 3.21 Syntheses of 1-methylindole-3-carboxylic acid (94) and 6-Methoxyindole-3-
carboxylic acid (95). Reagents and conditions: (i) NaClO2, NaH2PO4, t-butanol, 2-methylbut-2-
ene, H2O, r.t., 14 h, 75% (94) and 60 h, 52% (95). 

A solution of NaClO2 (25 eq) and NaH2PO4 (20 eq) in water (1 ml) was added to a 

mixture of 1-methylindole-3-carbaldehyde (189, 25 mg, 0.15 mmol) in t-butanol (1.5 ml) and 2-

methylbut-2-ene (1.5 ml). The reaction mixture was stirred at room temperature for 14 h (94) 

followed by dilution with water and extraction with EtOAc. The combined extracts were dried 

and concentrated to dryness. The residue was subjected to FCC (silica gel, MeOH-DCM, 1:9) to 

afford 1-methylindole-3-carboxylic acid (94, 20 mg, 75%) as a light yellow powder.  

6-Methoxyindole-3-carboxylic acid (95, 10 mg, 52%, as a light yellow powder) was 

prepared similarly from 6-methoxyindole-3-carboxaldehyde (190) after 60 h stirring at the same 

condition.  

 

1-Methylindole-3-carboxylic acid (94) 

Melting point: 200–204 °C 

HPLC tR = 4.7 min (method A). 

UV (HPLC, CH3OH-H2O) λmax (nm): 215, 290. 
1H NMR (500 MHz, MeOD): δ 8.04 (d, J= 8 Hz, 1H), 7.88 (s, 1H), 7.41 (d, J= 8 Hz, 1H), 7.23 

(dd, J= 7 Hz, 1H), 7.18 (dd, J= 7 Hz, 1H), 3.84 (s, 3H). 
13C NMR (500 MHz, MeOD): δ 167.4, 137.5, 135.8, 126.8, 122.3, 121.2, 120.9, 109.7, 106.3, 

32.1. 

HRMS-EI m/z: measured 175.0638 ([M]+, calcd 172.0633 for C10H9N1O2) (100%).  
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6-Methoxyindole-3-carboxylic acid (95) 

Melting point: 193–194 °C 

HPLC tR = 2.9 min (method A). 

UV (HPLC, CH3OH-H2O) λmax (nm): 215, 275. 
1H NMR (500 MHz, MeOD): δ 9.78 (s, 1H), 7.98 (s, 1H), 7.96 (d, J= 5 Hz, 1H), 6.96 (s, 1H), 

6.86 (d, J= 6 Hz, 1H), 3.81 (s, 3H). 
13C NMR (500 MHz, MeOD): δ 167.9, 156.8, 137.6, 130.9, 121.2, 120.3, 111.1, 107.3, 94.5, 

54.5. 

HRMS-EI m/z: measured 1910585 ([M]+, calcd. 191.0582 for C10H9N1O3).  

 

3.4.1.3.5 Indole-3-carboxamide (186) 

 

Scheme 3.22 Synthesis of indole-3-carboxamide (186). Reagents and conditions: (i) SOCl2, 
THF, 1 h, 60 °C; (ii) NH4OH, diethyl ether, 3 h, r.t, 80% over 2 steps. 

Thionyl chloride (0.30 ml, 7 mmol) was added dropwise to a solution of indole-3-

carboxylic acid (20 mg, 0.12 mmol) in freshly distilled THF (0.50 ml). The reaction mixture was 

heated at 60 °C for 1 h, concentrated to dryness and the residue was used immediately for the 

next step. The residue was dissolved in dry diethyl ether (1.5 ml) and added dropwise to a cold 

solution of NH4OH (0.25 ml) in diethyl ether. The reaction mixture was stirred at room 

temperature for 3 h followed by dilution with water and extraction with EtOAc. The combined 

extracts were dried and concentrated to dryness. The residue was subjected to FCC (silica gel, 

EtOAc-hexane, 1:1) to afford indole-3-carboxamide (186, 15 mg, 80%) in white powder. 
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HPLC tR = 3.7 min (method A). 

UV (HPLC, CH3OH-H2O) λmax (nm): 220, 280. 
1H NMR (500 MHz, MeOD): δ 8.1 (d, J= 7.5 Hz, 1H), 7.9 (s, 1H), 7.4 (d, J=7.5 Hz, 1H), 7.1 (m, 

2H). 
13C NMR (500 MHz, MeOD): δ 171.08, 138.3, 130.2, 127.3, 123.6, 122.2, 121.9, 112.9, 111.9.  

HRMS-EI m/z: measured 160.0636 ([M]+, calcd. 160.0636 for C9H8N2O) (100%). 

 

3.4.1.3.6 1H-3-(4-Hydroxymethyl-2-thiazolyl)indole (185)  

 

Scheme 3.23 Synthesis of 2–1H-3-(4-hydroxymethyl- 2-thiazolyl)indole (185). Reagent and 
condition: (i) LiAlH4, THF, 10 h, r.t., 83%. 

Lithium aluminum hydride  (1.5 mg, 0.040 mmol) was added to an ice-cold solution of 

191 (10 mg, 0.040 mmol) in dry THF (1 ml) at 0 °C under argon and the reaction mixture was 

stirred at 0 °C for 10 min. The ice bath was removed and the reaction mixture was stirred at room 

temperature for an additional 10 h. The reaction mixture was quenched with addition of 25% aq. 

NaOH (0.50 ml) then filtered and concentrated to dryness. The residue was subjected to FCC 

(silica gel, EtOAc-hexane, 7:3) to afford (2–1H-3-(4-hydroxymethyl- 2-thiazolyl)indole (185, 7 

mg, 83%) as a white powder,  

Melting point: 196–198 °C. 

HPLC tR = 10.2 min (method A). 

UV (HPLC, CH3OH-H2O) λmax (nm): 220, 280, 320. 

FTIR (KBr) νmax cm-1: 3191, 1534, 1444, 1241, 1014, 727. 
1H NMR (500 MHz, CD3OD): δ 8.1 (d, J= 7 Hz, 1H), 7.9 (s, 1H), 7.4 (d, J= 7 Hz, 1H), 7.2 (m, 

3H), 4.7 (s, 2H). 
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13C NMR (500 MHz, CD3OD): δ 164.6, 156.3, 136.9, 125.2, 124.4, 122.3, 120.5, 119.4, 111.6, 

111.1, 110.7, 59.9. 

HRMS-EI m/z: measured 230.0513 ([M]+, calcd. 230.0514 for C12H10N2SO) (100%).  

3.4.1.3.7 2-(1H-indol-3-yl)thiazole-5-carboxylic acid (184) 

 

Scheme 3.24 Synthesis of 2-(1H-indol-3-yl)-5-thiazolecarboxylic acid (184). Reagents and 
conditions: (i) Methyl 2-chloro-3-oxopropanoate, 95% EtOH, reflux, 5 h, 62%; (ii) NaOH, THF, 
4 h, reflux, quantitative. 

Methyl 2-chloro-3-oxopropanoate (Gangjee et al., 2001) was added to a solution of 

indole-3-thiocarboxamide (82, 50 mg, 0.28 mmol) in EtOH (95%, 2 ml) and then was refluxed 

for 5 h. The reaction mixture was concentrated to dryness and the residue was subjected to FCC 

(silica gel, EtOAc-Hexane, 3:7) to yield methyl 2-(1H-indol-3-yl)thiazole-5-carboxylate (45 mg, 

62%). NaOH (25% aq, w/v, 0.30 ml) was added to a solution of 2-(1H-indol-3-yl)thiazole-5-

carboxylate (40 mg, 0.16 mmol) in THF (2 ml) and the reaction mixture was refluxed for 4 h. 

THF was removed and the residue was diluted with H2O (20 ml) and acidified (pH ≤ 3) with 

37% HCl. The aqueous solution was extracted using EtOAc; the combined extracts were dried 

and concentrated to dryness to afford 2-(1H-indol-3-yl)-5-thiazolecarboxylic acid (230, 38 mg, 

quantitative) as a yellow powder. 

 

 

Melting point:  215 °C (decomposed). 

HPLC tR = 4.5 min (method A). 

UV (HPLC, CH3OH-H2O) λmax (nm): 220, 280, 340. 

FTIR (KBr) νmax cm-1: 3199, 2392, 1637, 1526, 1220, 1081, 826. 
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1H NMR (500 MHz, CD3OD): δ 8.29 (s, 1H), 8.11 (m, 1H), 8.07 (s, 1H), 7.49 (m, 1H), 7.26 (m, 

2H). 
13C NMR (500 MHz, CD3OD): δ 171.3, 164.7, 149.5, 138.6, 128.7, 127.3, 125.8, 124.2, 122.7, 

121.2, 113.4, 112.1. 

HRMS-EI m/z: measured 244.0307 ([M]+, calcd. 244.0306 for C12H8N2O2S) (100%). 

3.4.2 Cyclobrassinin and 1-methylcyclobrassinin 

3.4.2.1 Biotransformation of cyclobrassinin and 1-methylcyclobrassinin 

Time course experiments for cyclobrassinins 4 and 193 were carried out in MM. Cultures 

of A. brassicicola were initiated by inoculating A. brassicicola spores (106/100 ml, using diluted 

solution of spores) in minimal media (5 ml in 25 ml Erlenmeyer flasks) following the procedure 

described in Section 3.4.1.1. Triplicate cultures and controls were prepared separately for each 

time point. After 48 h of incubation, compounds to be tested (dissolved in CH3CN) were added 

to the cultures and to uninoculated media (final concentration in media 0.10 mM). Control 

cultures of fungus were grown separately. Cultures were filtered at different time intervals up to 

8 h (0, 2, 4, 8 h) separately, filtrate was extracted with EtOAc (2 × 10 ml) and mycelia were 

rinsed with EtOAc (5 ml). The combined EtOAc extracts were concentrated to dryness. The 

residues were dissolved in CH3CN (0.20 ml) and analyzed by HPLC-DAD-ESI-MS. Similarly, 

time course experiments of compounds 137 and 196 were carried out in H2O. A solution of the 

compounds to be tested (dissolved in DMSO) was added to the cultures and to uninoculated 

sterile water (final concentration in media 0.10 mM). Cultures were filtered at different time 

intervals up to 8 h (0, 2, 4, 8 h) separately and the mycelia were rinsed with water. The combined 

filtrates were freeze-dried and the residue was dissolved in MeOH-H2O (50:50, 0.20 mM) and 

analyzed by HPLC-DAD-ESI-MS. 



 

 160 

3.4.2.2 Synthesis of metabolites 

3.4.2.2.1 Synthesis of compounds 137, 196 and 201-204 

 

Scheme 3.25 Syntheses of compounds 137, 196 and 201-204. Reagent and condition: (i) HCl 
(0.50 M), 1,4-dioxane, 40 °C. 

Hydrochloric acid (0.20 ml, 0.50 M) was added dropwise to a solution of cyclobrassinin 

(4, 20 mg, 0.09 mmol) in 1,4-dioxane (1 ml) and the reaction mixture was kept at 40 °C for 24 h. 

The reaction mixture was concentrated to dryness and the residue was washed with DCM to 

yield crude 137 in 51% yield. The DCM solution was concentrated and the residue was subjected 

to FCC (silica gel, EtOAc-hexane, 30:70) to yield a mixture of 201 and 204 (3 mg, 11%). 204 

was the minor isomer in the resultant mixture and the purified amount was not sufficient for fully 

characterization. Similar reaction was carried out using 1-methylcyclobrassinin (193, 20 mg, 

0.085 mmol) yielded 196 in 35% yield and a mixture of 203 and 202 in 7% yield. 

 

S-methyl [(2-sulfanyl-1H-indolyl-3)methyl]carbamothioate (137)  

Yellow powder. 

Melting point: 148–150 °C 

HPLC tR = 15.8 min (method A).  

UV (HPLC, CH3OH-H2O) λmax (nm): 218, 335(br). 

FTIR (KBr) νmax cm-1: 3408, 3319, 2924, 1644, 1621, 1507, 1211. 
1H NMR (500 MHz, DMSO-d6): δ 11.57 (br, 1H), 8.22 (brt, J= 2.5 Hz, 1H), 7.56 (d, J= 7.5 Hz, 

1H), 7.37 (d, J= 7.5Hz, 1H), 7.22 (dd, J= 7.5,7.5 Hz 1H), 7.05 (dd, J= 7.5,7.5 Hz, 1H), 3.92 (brd, 

J= 2.5 Hz, 1H), 2.12 (s, 3H). 
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13C NMR (500 MHz, DMSO-d6): δ 165.8, 137.4, 126.2, 126.1, 123.9, 120.1, 119.8, 119.7, 111.6, 

34.4, 11.5. 

HRMS-EI m/z: measured 250.0231 ([M-2]+, calcd. 250.0234 for C11H10N2OS2). MS (EI) m/z (% 

relative int.): 250.02 (52), 161.03(100). 

S-methyl [(1-methyl-2-sulfanyl-1H-indolyl-3)methyl] carbamothioate (196) 

 
Yellow powder. 

Melting point: 157–158 °C. 

HPLC tR = 21.4 min (method A). 

UV (HPLC, CH3OH-H2O) λmax (nm): 220, 345. 

FTIR (KBr) νmax cm-1: 3318, 2929, 1640, 1524, 1459, 1370, 1308,1217. 
1H NMR (500 MHz, DMSO-d6): δ 8.20 (br, 1H), 7.57 (d, J= 7 Hz, 1H), 7.53 (d, J= 8 Hz, 1H), 

7.31 (dd, J= 7, 8 Hz 1H), 7.10 (dd, J= 7, 8 Hz, 1H), 3.67 (br, 3H), 3.64 (br, 1H), 2.10 (s, 3H). 13C 

NMR (500 MHz, DMSO-d6): δ 165.6, 138.1, 125.2, 124.3, 123.5, 120.0, 119.9, 115.7, 110.5, 

34.5, 29.8, 11.4. 

HRMS-EI m/z: measured 264.0391 ([M-2]+, calcd. 264.0391 for C12H12N2OS2). MS (EI) m/z (% 

relative int.): 264.03 (56), 175.04 (100). 

4',9'-Dihydro-2'H-spiro[indoline-3,3'-thiopyrano[2,3-b]indole]-2-thione (201) 

Brownish powder. 

Melting point: 140–143 °C. 

HPLC tR = 17.9 min (method A). 

UV (HPLC, CH3OH-H2O) λmax (nm): 238, 308. 

FTIR (KBr) νmax cm-1: 3391, 2922, 2852, 1703, 1618, 1496, 1464, 1450, 1348, 1249, 1226, 1140, 

1016. 
1H NMR (500 MHz, CDCl3): δ 9.51 (s, 1H), 7.94 (s, 1H), 7.36 (d, J= 7.5 Hz, 1H), 7.34 (d, J= 7.5 

Hz, 1H), 7.31 (ddd, J= 7.5, 7.5, 1 Hz, 1H), 7.23 (d, J= 7.5 Hz 1H), 7.18 (dd, J= 7.5, 7.5 Hz, 1H), 

7.10 (dd, J= 7.5, 7.5 Hz, 1H), 7.08 (d, J= 7.5 Hz, 1H), 7.01 (ddd, J= 7.5, 7.5, 1 Hz, 1H), 3.87 (d, 

J= 13 Hz, 1H), 3.65 (d, J= 16 Hz, 1H), 2.83 (dd, J= 16, 2 Hz), 2.64 (dd, J= 13, 2 Hz, 1H). 
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13C NMR (500 MHz, CDCl3): δ 210.8, 141.3, 136.5, 135.7, 128.5, 128.5, 126.7, 124.7, 123.9, 

121.5, 119.8, 116.7, 110.1, 109.7, 106.2, 54.7, 37.1, 32.4. 

HRMS-EI m/z: measured 322.0607 ([M]+, calcd. 322.0598 for C18H14N2S2). MS (EI) m/z 

(%relative int.): 322.06 [M+] (24), 289.08 (12), 161.03 (100), 117.06 (38). 

3.4.2.2.2 Synthesis of compounds 194 and 195 

	

Scheme 3.26 Syntheses of acid 194 and 195. Reagents and conditions (i) MeOH:CHCl3 (1:1), 
r.t., H2O2 (16.5eq),16 h, 194 (91%) or H2O2 (32 eq), 20 h, 195. 

Hydrogen peroxide (82 µl, 0.66 mmol) was added to a solution of compound 137 (10 mg, 

0.040 mmol) in a mixture of MeOH-CHCl3 (1:1, 2 ml). The reaction mixture was stirred at room 

temperature for 16 h. The reaction mixture was concentrated to dryness and the residue was 

washed with MeOH to yield sulfinic acid 194 in 91% yield. Compound 195 was prepared 

similarly from compound 137 (10 mg, 0.040 mmol), hydrogen peroxide (164 µl) and stirring for 

20 h. 

Sulfinic acid 194 

HPLC-ESI-MS [M-1]-: m/z 283  
1H NMR (500 MHz, DMSO-d6): δ 11.6 (s, 1H), 8.2 (s, 1H), 7.6 (d, J= 6.5 Hz, 1H), 7.4 (d, J= 7 

Hz, 1H), 7.2 (dd, J= 6.5, 6 Hz 1H), 7.1 (dd, J= 6, 6.5 Hz, 1H), 3.9 (d, J= 3.5 Hz, 1H), 2.1 (s, 3H). 

Sulfonic acid 195 

HPLC-ESI-MS [M-1]-: m/z 299  
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1H NMR (500 MHz, DMSO-d6): δ 11.6 (s, 1H), 8.2 (s, 1H), 7.6 (d, J= 8.5 Hz, 1H), 7.4 (d, J= 7.5 

Hz, 1H), 7.2 (dd, J= 7, 8 Hz 1H), 7.1 (dd, J= 8.5, 6.5 Hz, 1H), 3.9 (d, J= 3.5 Hz, 1H), 2.1 (s, 3H). 

3.4.2.3 Synthesis of compounds 202, 203, 211 and 212 

	

Scheme 3.27 Syntheses of compounds 202, 203, 211 and 212. Reagent and condition: (i) HCl 
(0.50 ml, 0.50 M) or TFA, MeOH, r.t. 

Formaldehyde (540 mg, 6.66 mmol, 37% aq solution, w/w, containing 7-8% MeOH) was 

added to a stirred solution of 207 or 208 in MeOH (0.50 ml) at room temperature, followed by 

HCl (0.50 ml, 0.50 M) or TFA (0.10 ml) and the reaction mixture was stirred at room 

temperature for 16 h. The reaction mixture was diluted with water and the aqueous was extracted 

with EtOAc. The combined extracts were dried and concentrated to dryness. The residue was 

subjected to FCC (silica gel, EtOAc-hexane, 1:9) to afford a mixture of 196, 202, 211and 212. 

Isomers for each set were separated using FCC (silica gel, EtOAc-hexane, 0.500:99.5). Yield for 

mixture of 196 and 202 was 32% for HCl; 20% for TFA and for mixture of 211 and 212 was 

46% for HCl; 33% for TFA.  

 

 

1,9'-Dimethyl-4',9'-dihydro-3'H-spiro[indoline-3,2'-thiopyrano[2,3-b]indole]-2-thione 
(202) 

Yellow powder. 

Melting point: 155–160 °C. 

HPLC tR = 24.8 min (method A). 

UV (HPLC, CH3OH-H2O) λmax (nm): 237, 297, 330. 
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FTIR (KBr) νmax cm-1: 3048, 2924, 1720, 1610, 1464, 1369, 1308, 1186, 1162, 1095. 
1H NMR (500 MHz, CDCl3): δ 7.51 (d, J= 7.5 Hz, 1H), 7.36 (dd, J= 7.5, 7.5 Hz, 1H), 7.30 (d, J= 

7.5 Hz, 1H), 7.21 (dd, J= 7.5, 7.5 Hz, 1H), 7.16 (dd, J= 7.5, 7.5 Hz 1H), 7.11 (d, J= 7.5 Hz, 1H), 

7.09 (d, J= 7.5, Hz, 1H), 7.01 (dd, J= 7.5, 7.5, Hz, 1H), 3.74 (s, 3H), 3.59 (s, 3H), 3.33 (ddd, J= 

17, 12, 6 Hz, 1H), 3.10 (ddd, J= 17, 12, 6 Hz, 1H), 2.85 (ddd, J= 14, 12, 6 Hz 1H), 2.04 (ddd, J= 

14, 12, 6 Hz, 1H). 
13C NMR (500 MHz, CDCl3): δ 203.2, 145.5, 137.8, 136.5, 129.1, 127.6, 127.4, 124.9, 124.2, 

120.8, 119.3, 117.0, 109.7, 108.4, 104.9, 62.5, 34.8, 32.1, 29.8, 18.5. 

HRMS-EI m/z: measured 350.0906 ([M+], calcd. 350.0911 for C20H18N2S2). MS (EI) m/z (% 

relative int.): 350.09 [M+] (11), 317.11 (12), 175.04 (100), 130.06 (22). 

1,9'-Dimethyl-4',9'-dihydro-2'H-spiro[indoline-3,3'-thiopyrano[2,3-b]indole]-2-thione 
(203) 

 
Brownish powder. 

Melting point: 158–163 °C. 

HPLC tR = 26.0 min (method A). 

UV (HPLC, CH3OH-H2O) λmax (nm): 237, 300. 

FTIR (KBr) νmax cm-1: 3365, 2924, 2852, 1715, 1611, 1570, 1464, 1371, 1182, 1091, 1023. 
1H NMR (500 MHz, CDCl3): δ 7.36 (dd, J= 7.5, 7.5 Hz, 1H), 7.32 (d, J= 7.5 Hz, 1H), 7.31 (d, J= 

7.5 Hz, 1H), 7.21 (d, J= 7.5 Hz, 1H), 7.18 (dd, J= 7.5, 7.5 Hz 1H), 7.10 (d, J= 7.5 Hz, 1H), 7.06 

(dd, J= 7.5, 7.5 Hz, 1H), 7.03 (dd, J= 7.5, 7.5, Hz, 1H), 3.88 (d, J= 13 Hz, 1H), 3.78 (s, 3H), 3.77 

(s, 3H), 3.64 (d, J= 16 Hz, 1H), 2.77 (dd, J= 16, 2 Hz), 2.58 (dd, J= 13, 2 Hz, 1H). 
13C NMR (500 MHz, CDCl3): δ 208.6, 144.2, 137.5, 135.5, 128.4, 128.1, 127.5, 126.4, 124.1, 

120.8, 119.2, 116.7, 109.3, 108.2, 104.8, 54.0, 37.1, 32.9, 32.0, 30.1. 

HRMS-EI m/z: measured 350.0911 ([M+], calcd. 350.0911 for C20H18N2S2). MS (EI) m/z (% 

relative int.): 350.09 [M+] (34), 175.04 (100). 

1,9'-Dimethoxy-4',9'-dihydro-2'H-spiro[indoline-3,3'-thiopyrano[2,3-b]indole]-2-thione 
(211) 

Yellow crystals. 
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Melting point: 162–165 °C. 

HPLC tR = 25.5 min (method A). 

UV (HPLC, CH3OH-H2O) λmax (nm): 235, 305. 

FTIR (KBr) νmax cm-1: 2933, 1721, 1617, 1457, 1383, 957. 
1H NMR (500 MHz, CDCl3): δ 7.43 (d, J= 10 Hz, 1H), 7.38 (dd, J= 10, 5 Hz, 1H), 7.22 (m, 6H), 

7.29 (d, J= 10 Hz, 1H), 4.2 (s, 3H), 4.10 (s, 3H), 3.86 (d, J= 15 Hz, 1H), 3.58 (d, J= 13 Hz, 1H), 

2.73 (d, J= 15 Hz, 1H), 2.63 (d, J= 10, 1H). 
13C NMR (500 MHz, CDCl3): δ 198.4, 140.3, 133.9, 132.4, 128.7(d), 126.6, 124.9, 121.8, 

120.3(d), 116.9, 108.2, 107.2, 102.7, 65, 62.2, 52.5, 36.3, 31.9. 

HRMS-EI m/z: measured 382.0812 ([M+], calcd. 382.0800 for C20H18N2O2S2). MS (EI) m/z (% 

relative int.): 382.08 (57), 351.06 (100), 319.98 (47), 274.05 (65), 191.03 (29), 161.03 (92). 

1,9'-Dimethoxy-4',9'-dihydro-3'H-spiro[indoline-3,2'-thiopyrano[2,3-b]indole]-2-thione 
(212) 

Yellow powder. 

Melting point: 158–160°C. 

HPLC tR = 24.3 min (method A). 

UV (HPLC, CH3OH-H2O) λmax (nm): 235, 300, 340. 

FTIR (KBr) νmax cm-1: 2926, 1620, 1460,1379. 
1H NMR (500 MHz, CDCl3): δ 7.4 (d, J= 10 Hz, 1H), 7.33 (d, J= 10 Hz, 1H), 7.30 (dd, J= 10, 5 

Hz, 1H), 7.16 (d, J= 5 Hz, 1H), 7.1 (m, 4H), 7.03 (d, J= 5 Hz, 1H), 6.99 (dd, J= 10, 5 Hz, 1H), 

4.12 (s, 3H), 3.88 (s, 3H), 3.33 (dm, 1H), 3.04 (m, 1H), 2.79 (m, 1H), 2.10 (dm, 1H). 
13C NMR (500 MHz, CDCl3): δ 193.7, 139.7, 134.2(d), 129.4, 125.6, 125.5, 124.2, 121.8, 

120.4(d),117.3, 108.5, 108.2, 103.1, 65.1, 62.2, 60.3, 34.4, 18.2. 

HRMS-EI m/z: measured 382.0810 ([M+], calcd. 382.0800 for C20H18N2O2S2). MS (EI) m/z (% 

relative int.): 382.08 (28), 351.06 (45), 287.06 (69), 191.03 (49), 161.02 (100). 
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3.4.2.4 Synthesis of compounds 213 and 214 

 

Scheme 3.28 Syntheses of compounds 213 and 214. Reagents and conditions (i) NaH, MeI, 
THF, 0 °C, 20% (213), 63% (214). 

Sodium hydride 60% suspension in mineral oil (10 mg, 0.25 mmol, washed with hexane) 

was added to a cold solution of S-methyl [(2-sulfanyl-1H-indolyl-3)methyl]carbamothioate (137, 

15 mg, 0.060 mmol) in THF (2 ml) in an ice bath, followed by dropwise addition of MeI (30 µl, 

0.10 mmol). After 5 min the reaction mixture was quenched using ice water and extracted with 

EtOAc. The combined organic extracts were dried and concentrated to dryness. The residue was 

subjected to FCC (silica gel, CHCl3-hexanes, 7:3) to afford S-methyl [(2-sulfanylmethyl-1H-

indolyl-3)methyl]carbamothioate (213, 3 mg, 0.01 mmol, 20%). When the same reaction mixture 

was allowed to proceed for 40 min, compound 214 was obtained in 30% yield (5 mg, 0.02). 

Compound 214 was prepared similarly from S-methyl [(1-methyl-2-sulfanyl-1H-indolyl-

3)methyl]carbamothioate (196, 15 mg, 0.060 mmol) to yield S-methyl [(1-methyl-2-

sulfanylmethyl-1Hindolyl-3)methyl] carbamothioate (214, 10 mg, 0.038 mmol, 63%). 

 

S-methyl [(2-sulfanylmethyl-1H-indolyl-3)methyl]carbamothioate (213) 

Brownish gum. 

HPLC tR = 11.3 min (method A). 

UV (HPLC, CH3OH-H2O) λmax (nm): 285, 220. 

FTIR (KBr) νmax cm-1: 3290, 2927, 2359, 1650, 1505, 1450, 1311, 740. 
1H NMR (500 MHz, CDCl3): δ 8.19 (br, 1H), 7.63 (d, J=5 Hz, 1H), 7.34 (d, J= 5Hz, 1H), 7.25 

(dd, J= 10, 5 Hz 1H), 7.16 (dd, J= 10, 5, 1H), 5.50 (br, 1H), 4.79 (d, J= 5 Hz, 1H), 2.42 (s, 3H), 

2.40 (s, 3H). 
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HRMS-EI m/z: measured 266.0539 ([M+], calcd. 266.0548 for C12H14N2OS2). MS (EI) m/z (% 

relative int.): 266.05 (53), 219.05 (55), 176.05 (100), 117.05 (21). 

S-methyl [(1-methyl-2-sulfanylmethyl-1Hindolyl-3)methyl] carbamothioate (214) 

Yellowish powder. 

Melting point: 146–150 °C. 

HPLC tR = 15.9 min (method A). 

UV (HPLC, CH3OH-H2O) λmax (nm): 240, 290. 

FTIR (KBr) νmax cm-1: 3310, 2915, 1637, 1516, 1482, 1325, 1209. 
1H NMR (500 MHz, CDCl3): δ 7.66 (d, J= 5 Hz, 1H), 7.31 (m, 1H), 7.17 (dd, J= 10, 5 Hz 1H), 

5.47 (br, 1H), 4.84 (s, 1H), 3.87 (s, 3H), 2.39 (s, 3H), 2.30 (s, 3H). 

HRMS-EI m/z: measured 280.0716 ([M+], calcd. 280.0714 for C13H16N2OS2). MS (EI) m/z (% 

relative int.): 280.07 (38), 233.08 (70), 190.07 (100). 

 

3.4.3 Rutalexin 

3.4.3.1 Biotransformation of rutalexin 

Time course experiment for rutalexin (5) was carried out in MM. Cultures of A. 

brassicicola were prepared as described in Section 3.4.1.1. After 48 h of incubation, solution of 

rutalexin (5) (dissolved in DMSO) was added to fungal cultures and to uninoculated MM 

(triplicate, final concentration in media 0.10 mM). Control cultures of the fungus were grown 

separately. Samples were withdrawn (5 ml) at different time intervals up to 48 h (0, 6, 12, 24 and 

48 h), and extracted with EtOAc (10 ml × 2); the aqueous phase was acidified and reextracted 

with EtOAc; the remaining aqueous phase was basified and reextracted with CHCl3. All extracts 

were concentrated and residues were dissolved in CH3CN (0.20 ml) and analyzed by HPLC-

DAD-ESI-MS. Similarly, transformation of disulfide 220 was carried out in H2O using a solution 

of compound in DMSO (final concentration in media 0.10 mM). Samples were withdrawn (5 ml) 



 

 168 

at different time intervals and freeze-dried. The residue was dissolved in MeOH-H2O (50:50, 

0.20 ml) and analyzed by HPLC-DAD-ESI-MS. 

 Metabolite 221 resulted from transformation of rutalexin (5) by A. brassicicola was 

isolated from the larger scale cultures. Cultures (4 l) were prepared in 250 ml Erlenmeyer flasks 

containing 100 ml sterile water (culture preparation in water was described in Section 3.4.1.1). 

Rutalexin (5, 92 mg, dissolved in DMSO) was added to fungal cultures (final concentration in 

media 0.10 mM). Cultures were incubated at room temperature for an additional three days. The 

cultures were filtered and the filtrates were combined (total ca. 4 l) and concentrated using 

freeze-drier. The concentrated solution (total ca. 100 ml) was extracted with EtOAc (100 ml × 2). 

The combined extracts were dried and concentrated to dryness to yield an oily residue (160 mg). 

The residue was subjected to reversed phase column and eluted with CH3CN-H2O (20:80, 15 ml; 

25:75, 15 ml; 30:70, 15 ml). All fractions were analyzed by HPLC. The fractions containing the 

adduct 221 were combined and concentrated to dryness using freeze-dryer to obtain adduct 221 

(3.9 mg, 0.010 mmol).  

	

HPLC tR = 9.9 min (method B). 

UV (HPLC, CH3OH-H2O) λmax (nm): 220, 300. 

FTIR (KBr) νmax cm-1: 1680, 1627, 1551, 1463, 1384, 1226, 1171, 1013, 751. 
1H NMR (600 MHz, CH3CN): δ 9.90 (br, 1H), 7.95 (d, J =8Hz, 1H), 7.33 (br, 1H), 7.30 (d, J 

=8Hz, 1H), 7.14 (dd, J =7, 7Hz, 1H), 7.07 (dd, J =7.5, 7.5 Hz 1H), 6.4 (s, 1H), 6.1 (s, 1H), 4.2 

(br, 1H), 3.5 (q, J= 5Hz, 1H), 2.12 (s, 3H), 2.1 (s, 3H), 1.5 (s, 3H), 1.8 (s, 3H), 1.4 (d, J = 7Hz 

3H). 
13C NMR (600 MHz, CH3CN): δ 167.1, 166.4, 165.2, 160.5, 137.3, 136.8, 130.9, 129.7, 127.8, 

124.1, 121.8, 121.7, 115.6, 111.9, 102.5, 94.0, 76.8, 57.6, 57.3, 26.8, 26.4, 17.6, 13.5, 9.0,  

HRMS-EI m/z: measured 456.1705 ([M]+, calcd. 456.1719 for C24H28N2O5S) (100%).  
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3.4.3.2 Synthesis of metabolites 

	

Scheme 3.29 Syntheses of compounds 217, 218, 220 and 222. Reagents and conditions: (i) 
NaSH, DMF, H2O, 1 h, 0 °C; (ii) 20% TFA in DCM, 4 h, r.t., quantitative; (iii) MeI, THF, 30 
min, r.t., 97%; (iv) TFA (20%) in DCM, 4 h, r.t., 94%; (v) m-CPBA, DCM, MeOH, 2.5 h, r.t., 
59%.   

2,2'-disulfanediylbis(N-methyl-1H-indole-3-carboxamide) (220) 

 
A solution of NaSH (108 mg, 1.92 mmol) in water (100 µl) was added to a solution of 

amide 17 (30 mg, 0.15 mmol) in DMF (1 ml) at 0 °C. The reaction mixture was stirred at 0 °C 

for 1 h and then was diluted with brine (10 ml) and acidified (pH ≤ 3) using HCl (0.50 M). The 

reaction mixture was extracted with EtOAc. The combined extracts were dried and concentrated 

to dryness. The residue (18) was dissolved in a solution of TFA (20%) in DCM (1.50 ml). The 

reaction mixture was stirred at room temperature for 4 h and then was concentration to dryness. 

The residue was rinsed with diethyl ether to give 220 in quantitative yield (20 mg, 0.02 mmol) as 

white powder. 

  

Melting point: 210 (decomposed) 

HPLC tR = 10.5 min (method B). 

UV (HPLC, CH3OH-H2O) λmax (nm): 220, 310. 
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FTIR (KBr) νmax cm-1: 1614, 1535, 1438, 1409, 1209, 1026, 742. 
1H NMR (500 MHz, DMSO-d6): δ 13 (s, 1H), 7.9 (s, br, 1H), 7.8 (d, J= 8Hz, 1H), 7.5 (d, J= 

8Hz, 1H), 7.2 (dd, J= 7.5, 7.5Hz, 1H), 7.1 (dd, J= 7.5, 7.5Hz, 1H), 2.9 (d, J= 4.5, 3H). 
13C NMR (500 MHz, DMSO-d6): δ 165.3, 136.8, 134.8, 124.5, 122.7, 120.8, 119.4, 111.7, 111.1, 

26.3. 

HRMS-EI m/z: measured 410.08847 ([M]+, calcd. 410.08712 for C20H18N4O2S2) (100%).  

3-(methylcarbamoyl)-1H-indole-2-sulfonic acid (222) 

 
A solution of m-CPBA (90 mg, 0.50 mmol) in DCM (1 ml) was added to a solution of 

disulfide 220 (14 mg, 0.03 mmol) in MeOH (0.50 ml) at room temperature. The reaction mixture 

was stirred for 2 h at room temperature followed by addition of dimethyl sulfide (0.12 ml, 0.12 

mmol). The reaction mixture was kept stirring at room temperature for an additional 30 min 

followed by concentration to dryness. The residue was fractionated by reversed-phase column 

(MeOH-H2O) to afford 222 (10 mg, 0.04 mmol, 59%) as white powder. 

  

Melting point: more than 300 °C 

HPLC tR = 1.04 min (method B). 

UV (HPLC, CH3OH-H2O) λmax (nm): 220, 280. 

FTIR (KBr) νmax cm-1: 1600, 1463, 1368, 1118, 1072, 802. 
1H NMR (500 MHz, DMSO): δ 11.6 (s, 1H), 9.1 (s, 1H), 8.2 (d, J= 8Hz, 1H), 7.4 (d, J= 8.5Hz, 

1H), 7.1 (dd, J =7, 7.5Hz, 1H), 7.0 (dd, J= 7.5, 7.5Hz, 1H), 2.8 (s, 3H). 
13C NMR (125.8 MHz, DMSO): δ 164.6, 141.8, 132.9, 127.7, 122.4, 122.4, 120.5, 112.1, 105.8, 

25.7. 

HRMS-EI m/z: measured 254.0351 ([M]+, calcd. 254.0361 for C10H10N2O4S) (100%).  

N-methyl-2-(methylthio)-1H-indole-3-carboxamide (218) 

 
A solution of NaSH (108 mg, 1.19 mmol) in water (100 µl) was added to a solution of 

amide 17 (30 mg, 0.15 mmol) in DMF (1 ml) at 0 °C. The reaction mixture was stirring at 0 °C 



 

 171 

for 1h, followed by dropwise addition of methyl iodide (187 µl, 3 mmol). The ice bath was 

removed and the reaction mixture was stirred at room temperature for an additional 30 min 

followed by dilution with water and extraction with EtOAc. The combined extracts were dried 

and concentrated to dryness to afford tert-butyl 3-(methylcarbamoyl)-2-(methylthio)-1H-indole-

1-carboxylate (217, 24 mg, in 97%) as a light yellowish powder. 

 

HPLC tR = 13.4 min (method B). 

UV (HPLC, CH3OH-H2O) λmax (nm): 212, 293. 

FTIR (KBr) νmax cm-1: 1736, 1639, 1446, 1370, 1321, 1154, 1101, 748. 
1H NMR (500 MHz, CDCl3): δ 8.3 (d, J= 7.5 Hz, 1H), 7.9 (d, J= 8.5 Hz, 1H), 7.7 (br. 1H), 7.3 

(dd, J= 10, 5 Hz, 1H), 7.3 (dd, J= 10, 5 Hz, 1H), 3.1 (d, J= 4.5 Hz, 3H), 2.5 (s, 3H), 1.7 (s, 9H). 
13C NMR (500 MHz, CDCl3): δ 165.0, 149.6, 136.5, 132.2, 128.0, 125.8, 123.9, 122.4, 121.2, 

114.4, 85.7, 28.4, 26.5, 21.2. 

HRMS-EI m/z: measured 320.11966 ([M]+, calcd. 320.11946 for C16H20N2O3S) (100%). 

 

A mixture of TFA (20%) in DCM (2 ml) was added to a solution of tert-butyl 3-

(methylcarbamoyl)-2-(methylthio)-1H-indole-1-carboxylate (217, 24 mg, 0.080 mmol) in DCM. 

The reaction mixture was stirred at room temperature for 4 h and then was concentrated to 

dryness. The residue was subjected to FCC (silica gel, EtOAc-hexane, 1:1) to afford N-methyl-2-

(methylthio)-1H-indole-3-carboxamide (218) as white powder in 94% yield (15mg, 0.070 

mmol). 

  

HPLC tR = 2.8 min (method B). 

UV (HPLC, CH3OH-H2O) λmax (nm): 220, 300. 

FTIR (KBr) νmax cm-1: 2926, 1725, 1618, 1543, 1413, 1313, 1148, 750. 
1H NMR (500 MHz, CDCl3): δ 8.8 (br, 1H), 8.3 (d, J= 7 Hz, 1H), 7.3 (d, J= 7 Hz, 1H), 7.2 (m, 

2H), 3 (d, J= 3.5Hz, 3H), 2.5 (s, 3H). 
13C NMR (500 MHz, CDCl3): δ 166.3, 136.3, 132.2, 127.6, 123.5, 121.8, 121.6, 112.3, 111.0, 

26.5, 19.3. 

HRMS-EI m/z: measured 220.06678 ([M]+, calcd. 220.06703 for C11H12N2OS) (100%). 
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3.4.4 Brassilexin and 1-methylbrassilexin 

3.4.4.1 Biotransformation of brassilexin and 1-methylbrassilexin 

Time course experiments for brassilexins 7, 165 were carried out in MM following the 

procedure described in Section 3.4.1.1, using a final concentration of 0.10 mM of each 

compound in the cultures and controls. Cultures were incubated; samples were withdrawn (5 ml) 

up to 48 h (0, 6, 12, 24 and 48 h), and treated as reported in Section 3.4.1.1.  

3.4.4.2 Synthesis of metabolites 

Synthesis of enamines 99 and 228 

Synthesis of enamines 99 and 228 as an intermediate in synthesis of brassilexin (7) and 1-

methylbrassilexin (165) respectively, were described in Section 3.3.1.5. 

Synthesis of compounds 226 and 227 

 

 

Scheme 3.30 Syntheses of compounds 226 and 227. Reagent and condition: (i) NaBH4, 95% 
EtOH, 20 min, r.t., 68% (226) and 92% (227), (Bergonzini and Melchiorre, 2011). 

Isatin (224, 147 mg, 1.00 mmol) was added to a solution of NaBH4 (111 mg, 3.00 mmol) 

in EtOH (95%, 10 ml). The reaction mixture was stirred at room temperature for 20 min. The 

resulting suspension was purred into cold water (30 ml) in an ice bath, acidified (HCl, pH ∼ 5) 

and extracted with chloroform. The combined extracts were dried and concentrated to dryness. 

The residue was subjected to FCC (silica gel, DCM-MeOH, 98:2.0) to afford 226 (100 mg, 68%) 

as yellow powder. Similarly compound 227 was synthesized using 1-Methylisatin (161 mg, 1.00 
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mmol) and NaBH4 (111 mg, 3.00 mmol) to afford 227 (150 mg, 92%) as a yellow powder 

(Bergonzini and Melchiorre, 2011).  

 

3-hydroxyindoline-2-one (226) 

 

Melting point: 118–120 °C 

HPLC tR = 2.7 min (method C). 

UV (HPLC, CH3OH-H2O) λmax (nm): 210, 260, 300. 

FTIR (KBr) νmax cm-1: 1717, 1623, 1469, 1266, 1215, 743. 
1H NMR (500 MHz, MeOD): δ 7.4 (d, J= 7 Hz, 1H), 7.24 (dd, J= 8, 7.5 Hz, 1H), 7 (dd, J= 8, 7.5 

Hz, 1H), 6.9 (d, J= 8 Hz, 1H), 4.9 (s, 1H). 
13C NMR (500 MHz, MeOD): δ 180.8, 143.4, 130.7, 130.3, 126.2, 123.7, 111.3, 71.3. 

HRMS-EI m/z: measured 149.0474 ([M]+, calcd. 149.0474 for C8H7N1O2) (90.9%). 

 

3-hydroxy-1-methylindoline-2-one (227) 

 

Melting point: 148–150 °C 

HPLC tR = 4.6 min (method C). 

UV (HPLC, CH3OH-H2O) λmax (nm): 210, 260, 300. 

FTIR (KBr) νmax cm-1: 3293, 1702, 1619, 1469, 1385, 1269, 1090, 758. 
1H NMR (500 MHz, CD3Cl): δ 7.4 (d, J= 7 Hz, 1H), 7.3 (dd, J= 7.5, 8 Hz, 1H), 7.1 (dd, J= 7.5, 

7.5 Hz, 1H), 6.9 (d, J= 7.5 Hz, 1H), 4.9 (s, 1H), 3.1 (s, 3H). 
13C NMR (500 MHz, MeOD): δ 178.6, 145.2, 130.8, 129.6, 125.8, 124.2, 109.9, 70.9, 26.5. 

HRMS-EI m/z: measured 163.0630 ([M]+, calcd. 163.0633 for C9H9N1O2) (100%). 
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3.5 Screening of potential brassinin detoxification inhibitors using cell free extracts 

3.5.1 Fungal culture of Leptosphaeria maculans 

Liquid cultures of L. maculans were initiated by inoculating MM (100 ml) with fungal 

spores at 107/ml in 250 ml Erlenmeyer flasks, followed by incubation in a shaker under constant 

light at 23 °C. Two days old cultures of L. maculans were incubated with 3-phenylindole (0.10 

mM final concentration in cultures to induce BO) for an additional 24 h and then gravity filtered 

to separate mycelia from the culture broth. The mycelia was dried by squeezing and was stored 

at -20 °C and used to obtain protein extracts containing BO activity.  

3.5.2 Preparation of crude cell free extract 

Frozen mycelia (1.2 g) from L. maculans were suspended in ice-cold extraction buffer (5 

ml) and ground (mortar) for 5 min at 4 °C. The extraction buffer consisted of diethanolamine 

(DEA, 25 mM, pH ∼ 8.3), 10% (v/v) glycerol, D,L-dithiothreitol (DTT, 1 mM), and 1/200 (v/ v) 

protease inhibitor cocktail (P-8215, Sigma-Aldrich Canada). The homogenate was centrifuged at 

4 °C for 30 min at 50000 g. The resulting supernatant was dialyzed 3 times (2 times with 300 ml 

of dialyzing buffer for 3h in each time and then using 400 ml buffer for 12 h) using dialyzing 

cassettes in buffer (diethanolamine (DEA, 25 mM, pH ∼ 8.3), 5% (v/v) glycerol, triton X-100 

(10%) and deionized water). Dialyzed cell-free extract was used for determination of specific 

activity of BO. Protein concentrations were determined as described by Bradford using the 

Coomassie Brilliant Blue method with BSA as a standard.  

3.5.3 Protein measurement 

In a spectrophotometric cell (1 ml) were taken 5.00 µl of Protein extract and 995 µl of 

Bradford reagent. After mixing the solution, mixture was incubated for 5 min in dark condition 

and the optical density (OD) was measured at 595 nm. A blank sample containing 5.00 µl 
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extraction buffer and 995 µl Bradford reagent was used as control. All samples were prepared in 

triplicate and finally the concentration of proteins was determined using the BSA calibration 

curve.  

3.5.4 Preparation of BSA calibration curve 

Calibration curve was prepared from bovine serum albumin (BSA). The calibration curve 

was used to estimate the amount of protein in the cell homogenate. Different concentrations of 

BSA (0.300, 0.250, 0.200, 0.150 and 0.100 mg/ml) were prepared using the serial dilution from 

the stock solution of BSA in extraction buffer (1mg/ml). 100 µl of each solution together with 

900 µl of Bradford reagent were added to a spectrophotometric cell (1 ml). Resulted solution was 

mixed well and incubated for 5 min. The OD was measured at 595 nm. A blank sample 

containing 100 µl of extraction buffer and 900 µl of Bradford reagent was used as control. All 

samples were prepared in triplicate. The calibration curve was obtained by plotting concentration 

vs OD. 

3.5.5 Enzyme assay 

The reaction mixture contained DEA (20 mM, pH ∼ 8.3), DTT (0.10 mM), 0.1% (v/v) 

triton X-100, brassinin (0.10 mM), phenazine (0.10 mM), and protein extract (50 µl) in a total 

volume of 1.0 ml. The reaction was carried out at 24 °C for 20 min. The product was extracted 

with EtOAc (4 ml) and concentrated to dryness. The extract was dissolved in CH3CN (200 µl) 

and analyzed by HPLC-DAD. The amount of indole-3-carboxaldehyde (26) in the reaction assay 

was determined using calibration curve built with pure indole-3-carboxaldehyde (26). One 

enzyme unit (U) is defined as the amount of the enzyme that catalyzes the conversion of one 

micromole of substrate per minute (µmol·min-1 = U).  
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